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Preface

These notes are intended for a general mathematical audience. In particular,
we have in mind that they could be used as a course for undergraduates. They
contain an explicit construction of highly connected but sparse graphs known
as expander graphs. Besides their interest in combinatorics and graph theory,
these graphs have applications to computer science and engineering. Our aim
has been to give a self-contained treatment. Thus, the relevant background
material in graph theory, number theory, group theory, and representation
theory is presented. The text can be used as a brief introduction to these
modern subjects as well as an example of how such topics are synthesized
in modern mathematics. Prerequisites include linear algebra together with
elementary algebra, analysis, and combinatorics.

Giuliana Davidoff
Department of Mathematics
Mount Holyoke College
South Hadley, MA
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An Overview

In this book, we shall consider graphs X = (V, E), where V is the set of
vertices and E is the set of edges of X . We shall assume that X is undirected;
most of the time, X will be finite. A path in X is a sequence v1 v2 . . . vk of
vertices, where vi is adjacent to vi+1 (i.e., {vi , vi+1} is an edge). A graph X
is connected if every two vertices can be joined by a path.

For F ⊆ V , the boundary ∂F is the set of edges connecting F to V − F .
Consider for example the graph in Figure 0.1 (this is the celebrated Petersen
graph): it has 10 vertices and 15 edges; three vertices have been surrounded
by squares: this is our subset F ; the seven “fat” edges are the ones in ∂F .

Figure 0.1

The expanding constant, or isoperimetric constant of X , is

h(X ) = inf

{ |∂F |
min{|F |, |V − F |} : F ⊆ V : 0 < |F | < +∞

}
.

If we view X as a network transmitting information (where information re-
tained by some vertex propagates, say in 1 unit of time, to neighboring ver-
tices), then h(X ) measures the “quality” of X as a network: if h(X ) is large,

1
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2 An Overview

information propagates well. Let us consider two extreme examples to illus-
trate this.

0.1.1. Example. The complete graph Km on m vertices is defined by requiring
every vertex to be connected to any other, distinct vertex: see Figure 0.2 for
m = 5.

Figure 0.2

It is clear that, if |F | = �, then |∂F | = �(m − �), so that h(Km) = m − [
m
2

] ∼
m
2 .

0.2.2. Example. The cycle Cn on n vertices: see Figure 0.3 for n = 6. If F
is a half-cycle, then |∂ F | = 2, so h(Cn) ≤ 2

[ n
2 ] ∼ 4

n ; in particular h(Cn) → 0

for n → +∞.

Figure 0.3

From these two examples, wee see that the highly connected complete
graph has a large expanding constant that grows proportionately with the
number of vertices. On the other hand, the minimally connected cycle graph
has a small expanding constant that decreases to zero as the number of vertices
grows. In this sense, h(X ) does indeed provide a measure of the “quality,” or
connectivity of X as a network.

We say that a graph X is k-regular if every vertex has exactly k neighbors,
so that the Petersen graph is 3-regular, Km is (m − 1)-regular, and Cn is
2-regular.

0.3.3. Definition. Let (Xm)m≥1 be a family of graphs Xm = (Vm, Em) indexed
by m ∈ N. Furthermore, fix k ≥ 2. Such a family (Xm)m≥1 of finite, connected,
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An Overview 3

k-regular graphs is a family of expanders if |Vm | → +∞ for m → +∞, and
if there exists ε > 0, such that h(Xm) ≥ ε for every m ≥ 1.

Because an optimal design for a network should take economy of transmis-
sion into account, we include the assumption that Xm is k-regular in Defini-
tion 0.3.3. This assures that the number of edges of Xm grows linearly with the
number of vertices. Without that assumption, we could just take Xm = Km for
good connectivity. However, note that Km has m(m−1)

2 edges, which quickly
becomes expensive when transmission lines are made of either copper or op-
tical fibers. Hence, the “optimal” network for practical purposes arises from
a graph that provides the best connectivity from a minimal number of edges.

Indeed such expander graphs have become basic building blocks in many
engineering applications. We cite a few such applications, taken from Rein-
gold, Vadhan and Wigderson [55]: to network designs [53], to complexity
theory [66], to derandomization [50], to coding theory [63], and to crypto-
graphy [30].

0.4.4. Main Problem. Give explicit constructions for families of expanders.
We shall solve this problem algebraically, by appealing to the adjacency

matrix A of the graph X = (V, E); it is indexed by pairs of vertices x, y of
X , and Axy is the number of edges between x and y.

When X has n vertices, A is an n-by-n, symmetric matrix, which com-
pletely determines X . By standard linear algebra, A has n real eigenvalues,
repeated according to multiplicities that we list in decreasing order:

µ0 ≥ µ1 ≥ · · · ≥ µn−1 .

In section 1.1 we shall prove the following.

0.5.5. Proposition. If X is a k-regular graph on n vertices, then

µ0 = k ≥ µ1 ≥ · · · ≥ µn−1 ≥ −k .

Moreover,

(a) µ0 > µ1 if and only if X is connected.
(b) Suppose X is connected. The equality µn−1 = −k holds if and only if

X is bicolorable. (A graph X is bicolorable if it is possible to paint the
vertices of X in two colors in such a way that adjacent vertices have
distinct colors.)

It turns out that the expanding constant can be estimated spectrally by
means of a double inequality (due to Alon & Milman [3] and to Dodziuk
[22]) that we shall prove in section 1.2.
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4 An Overview

0.6.6. Theorem. Let X be a finite, connected, k-regular graph. Then

k − µ1

2
≤ h(X ) ≤

√
2k (k − µ1) .

This allows for an equivalent formulation of 0.4.4.

0.7.7. Rephrasing of the Main Problem. Give explicit constructions for
families (Xm)m≥1 of finite, connected, k-regular graphs with the following
properties: (i) |Vm | → +∞ for m → +∞, and (ii) there exists ε > 0 such
that k − µ1(Xm) ≥ ε for every m ≥ 1.

Therefore, to have good quality expanders, the spectral gap k − µ1(Xm)
has to be as large as possible. However, the spectral gap cannot be too large
as was observed independently by Alon and Boppana [10] and Serre [62]
(see also Grigorchuk & Zuk [31]). In fact, we have the bound implied by the
following result.

0.8.8. Theorem. Let (Xm)m≥1 be a family of finite, connected, k-regular
graphs with |Vm | → +∞ as m → +∞. Then

lim inf
m→+∞ µ1(Xm) ≥ 2

√
k − 1 .

This asymptotic threshold will be discussed in section 1.3 and proved
in section 1.4. Now Theorem 0.8.8 singles out an extremal property on the
eigenvalues of the adjacency matrix of a k-regular graph; this motivates the
definition of a Ramanujan graph.

0.9.9. Definition. A finite, connected, k-regular graph X is Ramanujan if, for
every eigenvalue µ of A other than ± k, one has

|µ| ≤ 2
√

k − 1 .

So, if for some k ≥ 3 we succeed in constructing an infinite family of
k-regular Ramanujan graphs, we will get a solution of our main problem 0.7.7
(hence, also of 0.4) which is optimal from the spectral point of view.

0.10.10. Theorem. For the following values of k, there exist infinite families
of k-regular Ramanujan graphs:

� k = p + 1, where p is an odd prime ([42], [46]).
� k = 3 [14].
� k = q + 1, where q is a prime power [48].
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An Overview 5

Our purpose in this book is to describe the Ramanujan graphs of Lubotzky
et al. [42] and Margulis [46]. While the description of these Ramanujan graphs
(given in section 4.2) is elementary, the proof that they have the desired
properties is not. For example, the proofs in [42] and [41] make free use of
the theory of algebraic groups, modular forms, theta correspondences, and
the Riemann Hypothesis for curves over finite fields. Our aim here is to give
elementary and self-contained proofs of most of the properties enjoyed by
these graphs, results the reader will find in sections 4.3 and 4.4. Actually, our
elementary methods will not give us the full strength of the Ramanujan bound
for these graphs, though they do have that property. Nevertheless, we will be
able to prove that they form a family of expanders with a quite good explicit
asymptotic estimate on the spectral gap. This estimate is strong enough to
provide explicit solutions to two outstanding problems in graph theory that
we describe as follows:

0.11.11. Definition. Let X be a graph.

(a) The girth of X , denoted by g(X ), is the length of the shortest circuit
in X .

(b) The chromatic number of X , denoted by χ (X ), is the minimal number
of colors needed to paint the vertices of X in such a way that adjacent
vertices have different colors.

The problem of the existence of finite graphs with large girth and at the
same time large chromatic number has a long history (see [7]). The problem
was first solved by Erdös [24], whose solution shows that the “random graph”
has this property; this construction is recalled in section 1.7. (This paper was
the genesis of the “random method” and theory of random graphs. See the
monograph [4].) We shall see in section 4.4 that the graphs X p,q presented in
Chapter 4 provide explicit solutions to this problem.

0.12.12. Definition. Let (Xm)m≥1 be a family of finite, connected, k-regular
graphs, with |Vm | → +∞ as m → +∞. We say that this family has large
girth if, for some constant C > 0, one has g(Xm) ≥ (C + o(1)) logk−1 |Vm |,
where o(1) is a quantity tending to 0 for m → +∞.

It is easy to see that, necessarily, C ≤ 2. By counting arguments, Erdös
and Sachs [25] proved the existence of families of graphs with large girth and
with C = 1. In the Appendix, we give a beautiful explicit construction due
to Margulis [45], leading to C = 1

3
log 3

log
(

1+√
2
) = 0.415 . . . . In section 4.3, we

shall see that the graphs X p,q , with p not a square modulo q , provide a family
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with large girth and that C = 4
3 which, asymptotically, is the largest girth

known.
We claimed previously that our constructions are “elementary”: since there

is no general agreement on the meaning of this word, we feel committed to
clarify it somewhat. In 1993, the first two authors wrote up a set of unpub-
lished Notes that were circulated under the title “An elementary approach
to Ramanujan graphs.” In 1998–99, the third author based an undergraduate
course on these Notes; in the process he was able to simplify the presenta-
tion even further. This gave the impetus for the present text. We assume that
our reader is familiar with linear algebra, congruences, finite fields of prime
order, and some basic ring theory. The relevant number theory is presented in
Chapter 2; and the group theory, including representation theory, in Chapter 3.

Other than these topics, we have attempted to present here a self-contained
treatment of the construction and proofs involved. To do this we have borrowed
some of our exposition from well-known sources, adapting and tailoring those
to give a more concise presentation of the contexts and specific theoretical
tools we need. In all such cases, we hope that we have provided clear and
complete attribution of sources for those readers who wish to pursue any topic
more broadly.

There is some novelty in our approach.

� The graphs X p,q depend on two distinct, odd primes p, q . In the liter-
ature, it is commonly assumed that p ≡ 1 (mod. 4), for simplicity. We
give a complete treatment of both the case p ≡ 1 (mod. 4) and the case
p ≡ 3 (mod. 4).

� As in [42], [44], and [57], we give two constructions of the graphs X p,q :
one is based on quaternion algebras and produces connected graphs by
construction; however, it gives little information about the number of
vertices; the other describes the X p,q as Cayley graphs of PGL2(q) or
PSL2(q), from which the number of vertices is obvious but connect-
edness is not. The isomorphism of both constructions, in the original
paper [42] (and also in Proposition 3.4.1 in [57]), depends on fairly deep
results of Malisěv [43] on the Hardy–Littlewood theory of quadratic
forms. The proof in Theorem 7.4.3 of [41] appeals to Kneser’s strong
approximation theorem for algebraic groups over the adèles. In our ap-
proach here, we first give a priori estimates on the girth of the graphs
obtained by the first method, showing that the girth cannot be too small.
We then apply a result of Dickson [20], reproved in section 3.3, that
up to two exceptions, proper subgroups of PSL2(q) are metabelian, so
that Cayley graphs of proper subgroups must have small girth. This is
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enough to conclude that our Cayley graphs of PGL2(q) or PSL2(q) must
be connected.

� The proof we give here that the X p,q ’s, with fixed p, form a family
of expanders depends on a result going back to Frobenius [27], and
is proved in section 3.5: any nontrivial representation of PSL2(q) has
degree at least q−1

2 . As a consequence, the multiplicity of any nontrivial
eigenvalue of X p,q is at least q−1

2 . Using the fact that q−1
2 is fairly large

compared to q3, the approximate number of vertices, we deduce that
there must be a spectral gap.

The idea of trying to exploit this feature of the representations of
PSL2(q) was suggested by Bernstein and Kazhdan (see [8] and [58]).
In Sarnak and Xue [59], this lower bound for the multiplicity is com-
bined with some upper-bound counting arguments to rule out excep-
tional eigenvalues of quotients of the Lobachevski upper half-plane by
congruence subgroups in co-compact arithmetic lattices in SL2(R). Our
proof of the spectral gap in these notes is based on similar ideas. This
method has also been used recently by Gamburd [29] to establish a
spectral gap property for certain families of infinite index subgroups of
SL2(Z).

Most of the exercices in this book were provided by Nicolas Louvet, who
was the third author’s teaching assistant: we heartily thank him for that. We
also thank J. Dodziuk, F. Labourie, F. Ledrappier, and J.-P. Serre for useful
comments, conversations, and correspondence.

The draft of this book was completed during a stay of the first author at
the University of Roma La Sapienza and of the third author at IHES in the
Fall of 1999. It was also at IHES that the book was typed, with remarkable
efficiency, by Mrs Cécile Gourgues. We thank her for her beautiful job.
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Chapter 1

Graph Theory

1.1. The Adjacency Matrix and Its Spectrum

We shall be concerned with graphs X = (V, E), where V is the set of vertices
and E is the set of edges. As stated in the Overview, we always assume our
graphs to be undirected, and most often we will deal with finite graphs.

We let V = {v1, v2, . . .} be the set of vertices of X . Then the adjacency
matrix of the graph X is the matrix A indexed by pairs of vertices vi , v j ∈ V .
That is, A = (Ai j ), where

Ai j = number of edges joining vi to v j .

We say that X is simple if there is at most one edge joining adjacent vertices;
hence, X is simple if and only if Ai j ∈ {0, 1} for every vi , v j ∈ V .

Note that A completely determines X and that A is symmetric because X
is undirected. Furthermore, X has no loops if and only if Aii = 0 for every
vi ∈ V .

1.1.1. Definition. Let k ≥ 2 be an integer. We say that the graph X is k-regular

if for every vi ∈ V :
∑

v j ∈V
Ai j = k.

If X has no loop, this amounts to saying that each vertex has exactly k
neighbors.

Assume that X is a finite graph on n vertices. Then A is an n-by-n sym-
metric matrix; hence, it has n real eigenvalues, counting multiplicities, that
we may list in decreasing order:

µ0 ≥ µ1 ≥ · · · ≥ µn−1.

The spectrum of X is the set of eigenvalues of A. Note that µ0 is a simple
eigenvalue, or has multiplicity 1, if and only if µ0 > µ1.

8
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1.1. The Adjacency Matrix and Its Spectrum 9

For an arbitrary graph X = (V, E), consider functions f : V → C from
the set of vertices of X to the complex numbers, and define

�2(V ) = { f : V → C :
∑
v∈V

| f (v)|2 < +∞}.

The space �2(E) is defined analogously.
Clearly, if V is finite, say |V | = n, then every function f : V → C is in

�2(V ). We can think of each such function as a vector in C
n on which the

adjacency matrix acts in the usual way:

A f =


A11 A12 . . . A1n

...
...

...
Ai1 Ai2 . . . Ain
...

...
...

An1 An2 . . . Ann




f (v1)
f (v2)

...
f (vn)



=


A11 f (v1) + A12 f (v2) + · · · + A1n f (vn)

...
Ai1 f (v1) + Ai2 f (v2) + · · · + Ain f (vn)

...
An1 f (v1) + An2 f (v2) + · · · + Ann f (vn)

.

Hence, (A f )(vi ) =
n∑

j=1
Ai j f (v j ). It is very convenient, both notationally and

conceptually, to forget about the numbering of vertices and to index matrix
entries of A directly by pairs of vertices. So we shall represent A by a matrix
(Axy)x,y∈V , and the previous formula becomes (A f )(x) = ∑

y∈V
Axy f (y), for

every x ∈ V .

1.1.2. Proposition. Let X be a finite k-regular graph with n vertices. Then

(a) µ0 = k;
(b) |µi | ≤ k for 1 ≤ i ≤ n − 1;
(c) µ0 has multiplicity 1, if and only if X is connected.

Proof. We prove (a) and (b) simultaneously by noticing first that the constant
function f ≡ 1 on V is an eigenfunction of A associated with the eigenvalue
k. Next, we prove that, if µ is any eigenvalue, then |µ| ≤ k. Indeed, let f be
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a real-valued eigenfunction associated with µ. Let x ∈ V be such that

| f (x)| = max
y∈V

| f (y)|.

Replacing f by − f if necessary, we may assume f (x) > 0. Then

f (x) |µ| = | f (x) µ| =
∣∣∣∣∣∑

y∈V

Axy f (y)

∣∣∣∣∣ ≤
∑
y∈V

Axy | f (y)|

≤ f (x)
∑
y∈V

Axy = f (x) k.

Cancelling out f (x) gives the result.
To prove (c), assume first that X is connected. Let f be a real-valued

eigenfunction associated with the eigenvalue k. We have to prove that f is
constant. As before, let x ∈ V be a vertex such that | f (x)| = max

y∈V
| f (y)|.

As f (x) = (A f )(x)
k = ∑

y∈V

Axy

k f (y), we see that f (x) is a convex combination

of real numbers which are, in modulus, less than | f (x)|. This implies that
f (y) = f (x) for every y ∈ V , such that Axy �= 0, that is, for every y adjacent
to x . Then, by a similar argument, f has the same value f (x) on every vertex
adjacent to such a y, and so on. Since X is connected, f must be constant.

We leave the proof of the converse as an exercise. �

Proposition 1.1.2(c) shows a first connection between spectral properties
of the adjacency matrix and combinatorial properties of the graph. This is one
of the themes of this chapter.

1.1.3. Definition. A graph X = (V, E) is bipartite, or bicolorable, if there
exists a partition of the vertices V = V+ ∪ V−, such that, for any two vertices
x, y with Axy �= 0, if x ∈ V+ (resp. V−), then y ∈ V− (resp. V+).

In other words, it is possible to paint the vertices with two colors in such a
way that no two adjacent vertices have the same color. Bipartite graphs have
very nice spectral properties characterized by the following:

1.1.4. Proposition. Let X be a connected, k-regular graph on n vertices. The
following are equivalent:

(i) X is bipartite;
(ii) the spectrum of X is symmetric about 0;

(iii) µn−1 = −k.
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Proof.

(i) ⇒ (ii) Assume that V = V+ ∪ V− is a bipartition of X . To show
symmetry of the spectrum, we assume that f is an eigenfunction of
A with associated eigenvalue µ. Define

g(x) =
{

f (x) if x ∈ V+
− f (x) if x ∈ V−

.

It is then straightforward to show that (Ag)(x) = −µ g(x) for every
x ∈ V .

(ii) ⇒ (iii) This is clear from Proposition 1.1.2.
(iii) ⇒ (i) Let f be a real-valued eigenfunction of A with eigenvalue −k.

Let x ∈ V be such that | f (x)| = max
y∈V

| f (y)|. Replacing f by − f if necessary,

we may assume f (x) > 0. Now

f (x) = − (A f )(x)

k
= −

∑
y∈V

Axy

k
f (y) =

∑
y∈V

Axy

k
(− f (y)).

So f (x) is a convex combination of the − f (y)’s which are, in modulus, less
than | f (x)|. Therefore, − f (y) = f (x) for every y ∈ V , such that Axy �= 0,
that is, for every y adjacent to x . Similarly, if z is a vertex adjacent to
any such y, then f (z) = − f (y) = f (x). Define V+ = {y ∈ V : f (y) > 0},
V− = {y ∈ V : f (y) < 0}; because X is connected, this defines a bipartition
of X . �

Thus, every finite, connected, k-regular graph X has largest positive eigen-
value µ0 = k; if, in addition, X is bipartite, then the eigenvalue µn−1 = −k
also occurs (and only in this case). These eigenvalues k and −k, if the sec-
ond occurs, are called the trivial eigenvalues of X . The difference k − µ1 =
µ0 − µ1 is the spectral gap of X .

Exercises on Section 1.1

1. For the complete graph Kn and the cycle Cn , write down the adjacency
matrix and compute the spectrum of the graph (with multiplicities). When
are these graphs bipartite?

2. Let Dn be the following graph on 2n vertices: V = Z/nZ × {0, 1}; E =
{{(i, j), (i + 1, j) : i ∈ Z/nZ, j ∈ {0, 1}} ∪ {{(i, 0), (i, 1)} : i ∈ Z/nZ}.
Make a drawing and repeat exercise 1 for Dn .
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3. Show that a graph is bipartite if and only if it has no circuit with odd
length.

4. Let X be a finite, k-regular graph. Complete the proof of Proposition 1.1.2
by showing that the multiplicity of the eigenvalue k is equal to the number
of connected components of X (Hint: look at the space of locally constant
functions on X .)

5. Let X be a finite, simple graph without loop. Assume that, for some r ≥ 2,
it is possible to find a set of r vertices all having the same neighbors. Show
that 0 is an eigenvalue of A, with multiplicity at least r − 1.

6. Let X be a finite, simple graph without loop, on n vertices, with eigenval-

ues µ0 ≥ µ1 ≥ · · · ≥ µn−1. Show that
n−1∑
i=0

µi = 0, that
n−1∑
i=0

µ2
i is twice

the number of edges in X , and that
n−1∑
i=0

µ3
i is six times the number of

triangles in X .

7. Let X = (V, E) be a graph, not necessarily finite. We say that X has
bounded degree if there exists N ∈ N, such that, for every x ∈ V , one
has

∑
y∈V

Axy ≤ N . Show that in this case, for any f ∈ �2(V ), one has

‖A f ‖2 =
(∑

x∈V

|(A f )(x)|2
)1/2

≤ N · ‖ f ‖2 = N ·
(∑

x∈V

| f (x)|2
)1/2

;

that is, A is a bounded linear operator on the Hilbert space �2(V ) (Hint:
use the Cauchy–Schwarz inequality.)

1.2. Inequalities on the Spectral Gap

Let X = (V, E) be a graph. For F ⊆ V , we define the boundary ∂ F of F
to be the set of edges with one extremity in F and the other in V − F .
In other words, ∂ F is the set of edges connecting F to V − F . Note that
∂ F = ∂(V − F).

1.2.1. Definition. The isoperimetric constant, or expanding constant of the
graph X , is

h(X ) = inf

{ |∂ F |
min {|F |, |V − F |} : F ⊆ V, 0 < |F | < +∞

}
.

Note that, if X is finite on n vertices, this can be rephrased as h(X ) =
min

{
|∂ F |
|F | : F ⊆ V, 0 < |F | ≤ n

2

}
.



P1: IJG

CB504-02drv CB504/Davidoff September 23, 2002 11:41

1.2. Inequalities on the Spectral Gap 13

1.2.2. Definition. Let (Xm)m≥1 be a family of finite, connected, k-regular
graphs with |Vm | → +∞ as m → +∞. We say that (Xm)m≥1 is a family of
expanders if there exists ε > 0, such that h(Xm) ≥ ε for every m ≥ 1.

1.2.3. Theorem. Let X = (V, E) be a finite, connected, k-regular graph with-
out loops. Let µ1 be the first nontrivial eigenvalue of X (as in section 1.1).
Then

k − µ1

2
≤ h(X ) ≤

√
2k (k − µ1).

Proof. (a) We begin with the first inequality. We endow the set E of edges
with an arbitrarily chosen orientation, allowing one to associate, to any edge
e ∈ E , its origin e− and its extremity e+. This allows us to define the simplicial
coboundary operator d : �2(V ) → �2(E), where, for f ∈ �2(V ) and e ∈ E ,

d f (e) = f (e+) − f (e−).

Endow �2(V ) with the hermitian scalar product

〈 f | g〉 =
∑
x∈V

f (x) g(x)

and �2(E) with the analogous one. So we may define the adjoint (or conjugate-
transpose) operator d∗ : �2(E) → �2(V ), characterized by 〈d f | g〉 =
〈 f | d∗g〉 for every f ∈ �2(V ), g ∈ �2(E). Define a function δ : V ×
E → {−1, 0, 1} by

δ(x, e) =


1 if x = e+

−1 if x = e−

0 otherwise.

Then one checks easily that, for e ∈ E and f ∈ �2(V ),

d f (e) =
∑
x∈V

δ(x, e) f (x) ;

while, for v ∈ V and g ∈ �2(E),

d∗g(x) =
∑
e∈E

δ(x, e) g(e).

We then define the combinatorial Laplace operator  = d∗d : �2(V ) →
�2(V ). It is easy to check that

 = k · Id − A ;
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in particular,  does not depend on the choice of the orientation. For an
orthonormal basis of eigenfunctions of A, the operator  takes the form

 =


0

k − µ1 ©
. . .

© k − µn−1

,

the eigenvalue 0 corresponding to the constant functions on V . Therefore, if
f is a function on V with

∑
x∈V

f (x) = 0 (i.e., f is orthogonal to the constant

functions in �2(V )), we have

‖d f ‖2
2 = 〈d f | d f 〉 = 〈 f | f 〉 ≥ (k − µ1) ‖ f ‖2

2.

We apply this to a carefully chosen function f . Fix a subset F of V and set

f (x) =
{ |V − F | if x ∈ F

−|F | if x ∈ V − F.

Then
∑
x∈V

f (x) = 0 and ‖ f ‖2
2 = |F | |V − F |2 + |V − F | |F |2 = |F |

|V − F | |V |. Moreover,

d f (e) =
{

0 if e connects two vertices either in F or in V − F ;
± |V | if e connects a vertex in F with a vertex in V − F .

Hence, ‖d f ‖2
2 = |V |2 |∂ F |. So the previous inequality gives

|V |2 |∂ F | ≥ (k − µ1) |F | |V − F | |V |.
Hence,

|∂ F |
|F | ≥ (k − µ1)

|V − F |
|V | .

If we assume |F | ≤ |V |
2 , we get |∂ F |

|F | ≥ k−µ1

2 ; hence, by definition, h(X ) ≥
k−µ1

2 .

(b) We now turn to the second inequality, which is more involved. Fix a
nonnegative function f on V , and set

B f =
∑
e∈E

| f (e+)2 − f (e−)2|.

Denote by βr > βr−1 > · · · > β1 > β0 the values of f , and set

Li = {x ∈ V : f (x) ≥ βi } (i = 0, 1, . . . , r ).
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Note that L0 = V . (Hence, ∂L0 = ∅.) To have a better intuition of what is
happening, consider the following example on C8, the cycle graph with eight
vertices.

v1

v2

v3 v4

v5

v6

v7v8

with f (v1) = f (v5) = 4, f (v2) = f (v6) = f (v7) = 1, f (v3) = 2, f (v4) =
f (v8) = 3, so that β3 = 4 > β2 = 3 > β1 = 2 > β0 = 1. Then

L0 = {v1, v2, v3, v4, v5, v6, v7, v8};
L1 = {v1, v3, v4, v5, v8};
L2 = {v1, v4, v5, v8};
L3 = {v1, v5};
∂L0 = ∅;
∂L1 = {{v1, v2}, {v2, v3}, {v5, v6}, {v7, v8}} ; |∂L1| = 4;
∂L2 = {{v1, v2}, {v3, v4}, {v5, v6}, {v7, v8}} ; |∂L2| = 4;
∂L3 = {{v1, v2}, {v4, v5}, {v5, v6}, {v8, v1}} ; |∂L3| = 4.

v1

v2

v3

v4

v5

v6

v7

v8

L0 L1 L2 L3

Geometrically, one can envision the graph broken into level curves as follows:
L0 consists of all vertices on or inside the outer-level curve corresponding to
β0 = 1; L1 consists of all vertices on or inside the level curve corresponding
to β1 = 2; and so forth. Then any ∂Li consists of those edges that reach
“downward” from inside Li to a vertex with a lower value. From the diagram
we see clearly that, for example, ∂L2 = {{v1, v2}, {v3, v4}, {v5, v6}, {v7, v8}}.
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Coming back to the general case, we now prove the following result about
the number B f .

First Step. B f =
r∑

i=1
|∂Li | (β2

i − β2
i−1).

To see this, we denote by E f the set of edges e ∈ E , such that f (e+) �=
f (e−). Clearly B f = ∑

e∈E f

| f (e+)2 − f (e−)2|. Now, an edge e ∈ E f connects

some vertex x with f (x) = βi(e) to some vertex y with f (y) = β j(e). We index
these two index values so that i(e) > j(e). Therefore,

B f =
∑
e∈E f

(β2
i(e) − β2

j(e))

=
∑
e∈E f

(β2
i(e) − β2

i(e)−1 + β2
i(e)−1 − · · · − β2

j(e)+1 + β2
j(e)+1 − β2

j(e))

=
∑
e∈E f

i(e)∑
�= j(e)+1

(β2
� − β2

�−1).

Referring to the diagram of level curves, we see that as a given edge e connects
a vertex x , with f (x) = βi(e), to a vertex y with f (y) = β j(e), it crosses every
level curve β� between those two. In the expression for B f , this corresponds
to expanding the term β2

i(e) − β2
j(e) by inserting the zero difference −β2

� + β2
�

for each level curve β� crossed by the edge e. This means that, in the previous
summation for B f , the term β2

� − β2
�−1 appears for every edge e connecting

some vertex x with f (x) = βi and i ≥ � to some vertex y with f (y) = β j and
j < �. In other words, it appears for every edge e ∈ ∂L�, which establishes
the first step.

Second Step. B f ≤ √
2k ‖d f ‖2 ‖ f ‖2.

Indeed,

B f =
∑
e∈E

| f (e+) + f (e−)| · | f (e+) − f (e−)|

≤
[∑

e∈E

( f (e+) + f (e−))2

]1/2 [∑
e∈E

( f (e+) − f (e−))2

]1/2

≤
√

2

[∑
e∈E

( f (e+)2 + f (e−)2)

]1/2

‖d f ‖2

=
√

2k

[∑
x∈V

f (x)2

]1/2

‖d f ‖2 =
√

2k ‖ f ‖2 ‖d f ‖2
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by the Cauchy–Schwarz inequality and the elementary fact that (a + b)2 ≤
2(a2 + b2).

Third Step. Recall that the support of f is supp f = {x ∈ V : f (x) �= 0}.
Assume that |supp f | ≤ |V |

2 . Then, B f ≥ h(X ) ‖ f ‖2
2.

To see this, notice that β0 = 0 and that |Li | ≤ |V |
2 for i = 1, . . . , r , so

that |∂Li | ≥ h(X ) |Li | by definition of h(X ). So it follows from the first step
that

B f ≥ h(X )
r∑

i=1

|Li | (β2
i − β2

i−1)

= h(X )
[|Lr | β2

r + (|Lr−1| − |Lr |) β2
r−1 + · · · + (|L1| − |L2|) β2

1

]
= h(X )

[
|Lr | β2

r +
r−1∑
i=1

|Li − Li+1| β2
i

]
;

however, since Li − Li+1 is exactly the level set where f takes the value βi ,
the term in brackets is exactly ‖ f ‖2

2.

Coda. We now apply this to a carefully chosen function f . Let g be a real-
valued eigenfunction for , associated with the eigenvalue k − µ1. Set V + =
{x ∈ V : g(x) > 0} and f = max {g, 0}. By replacing g by −g if necessary,
we may assume |V +| ≤ |V |

2 . (Note that V + �= ∅ because
∑
x∈V

g(x) = 0 and

g �= 0.) For x ∈ V +, we have (since g ≤ 0 on V − V +)

( f )(x) = k f (x) −
∑
y∈V

Axy f (y) = kg(x) −
∑
y∈V +

Axy g(y)

≤ kg(x) −
∑
y∈V

Axy g(y) = (g)(x) = (k − µ1) g(x).

Using this pointwise estimate, we get

‖d f ‖2
2 = 〈 f | f 〉 =

∑
x∈V +

( f )(x) g(x) ≤ (k − µ1)
∑

x∈V +
g(x)2

≤ (k − µ1) ‖ f ‖2
2.

Combining the second and third steps, we get

h(X ) ‖ f ‖2
2 ≤ B f ≤

√
2k ‖d f ‖2 ‖ f ‖2 ≤

√
2k (k − µ1) ‖ f ‖2

2 ,

and the result follows by cancelling out. �
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From Definition 1.2.2 and Theorem 1.2.3, we immediately deduce the
following:

1.2.4. Corollary. Let (Xm)m≥1 be a family of finite, connected, k-regular
graphs without loops, such that |Vm | → +∞ as m → +∞. The family
(Xm)m≥1 is a family of expanders if and only if there exists ε > 0, such
that k − µ1 (Xm) ≥ ε for every m ≥ 1.

This is the spectral characterization of families of expanders: a family of
k-regular graphs is a family of expanders if and only if the spectral gap is
bounded away from zero. Moreover, it follows from Theorem 1.2.3 that, the
bigger the spectral gap, the better “the quality” of the expander.

Exercises on Section 1.2

1. How was the assumption “X has no loop” used in the proof of
Theorem 1.2.3?

2. Let X be a finite graph without loop. Choose an orientation on the edges;
let d , d∗ and  = d∗d be the operators defined in this section. Check
that, for f ∈ �2(V ), x ∈ V ,

 f (x) = deg(x) f (x) − (A f )(x),

where deg(x) is the degree of x , i.e., the number of neighboring vertices
of x .

3. Using the example given for a function f on the cycle graph C8, verify
that B f satisfies the first two steps in the proof of the second inequality
of Theorem 1.2.3.

4. Show that the multiplicity of the eigenvalue µ0 = K is the number of
connected components of X .

1.3. Asymptotic Behavior of Eigenvalues in Families of Expanders

We have seen in Corollary 1.2.4 that the quality of a family of expanders can
be measured by a lower bound on the spectral gap. However, it turns out that,
asymptotically, the spectral gap cannot be too large. All the graphs in this
section are supposed to be without loops.

1.3.1. Theorem. Let (Xm)m≥1 be a family of connected, k-regular, finite
graphs, with |Vm | → +∞ as m → +∞. Then,

lim inf
m→+∞ µ1(Xm) ≥ 2

√
k − 1.
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A stronger result will actually be proved in section 1.4. There is an asymp-
totic threshold, analogous to Theorem 1.3.1, concerning the bottom of the
spectrum. Before stating it, we need an important definition.

1.3.2. Definition. The girth of a connected graph X , denoted by g(X ), is the
length of the shortest circuit in X . We will say that g(X ) = +∞ if X has no
circuit, that is, if X is a tree.

For a finite, connected, k-regular graph, let µ(X ) be the smallest nontrivial
eigenvalue of X .

1.3.3. Theorem. Let (Xm)m≥1 be a family of connected, k-regular, finite
graphs, with g(Xm) → +∞ as m → +∞. Then

lim sup
m→+∞

µ(Xm) ≤ −2
√

k − 1.

Theorems 1.3.1 and 1.3.3 single out an extremal condition on finite
k-regular graphs, leading to the main definition.

1.3.4. Definition. A finite, connected, k-regular graph X is a Ramanujan
graph if, for every nontrivial eigenvalue µ of X , one has |µ| ≤ 2

√
k − 1.

Assume that (Xm)m≥1 is a family of k-regular Ramanujan graphs without
loop, such that |Vm | → +∞ as m → +∞. Then the Xm’s achieve the biggest
possible spectral gap, providing a family of expanders which is optimal from
the spectral point of view.

All known constructions of infinite families of Ramanujan graphs in-
volve deep results from number theory and/or algebraic geometry. As ex-
plained in the Overview, our purpose in this book is to give, for every odd
prime p, a construction of a family of (p + 1)-regular Ramanujan graphs.
The original proof that these graphs satisfy the relevant spectral estimates,
due to Lubotzky-Phillips, and Sarnak [42], appealed to Ramanujan’s con-
jecture on coefficients of modular forms with weight 2: this explains the
chosen terminology. Note that Ramanujan’s conjecture was established by
Eichler [23].

Exercises on Section 1.3

1. A tree is a connected graph without loops. Show that a k-regular tree Tk

must be infinite and that it exists and is unique up to graph isomorphism.
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2. Let X be a finite k-regular graph. Fix a vertex x0 and, for r <
g(X )

2 , con-
sider the ball centered at x0 and of radius r in X . Show that it is isometric
to any ball with the same radius in the k-regular tree Tk . Compute the
cardinality of such a ball.

3. Deduce that, if (Xm)m≥1 is a family of connected k-regular graphs, such
that |Vm | → +∞ as m → +∞, then

g(Xm) ≤ (2 + o(1)) logk−1 |Vm |,
where o(1) is a quantity tending to 0 as m → +∞.

4. Show that, if k ≥ 5, one has actually, in exercise 3,

g(Xm) ≤ 2 + 2 logk−1 |Vm |.

1.4. Proof of the Asymptotic Behavior

In this section we prove a stronger result than that stated in Theorem 1.3.1.
The source of the inequality in Theorem 1.3.1 is the fact that the number

of paths of length m from a vertex v to v, in a k-regular graph, is at least the
number of such paths from v to v in a k-regular tree. To refine this observation,
we count paths without backtracking, and to do this we introduce certain
polynomials in the adjacency operator.

Let X = (V, E) be a k-regular, simple graph, with |V | possibly infinite.
Recall that we defined a path in X in the Overview. We refine that definition
now. A path of length r without backtracking in X is a sequence

e = (x0, x1, . . . , xr )

of vertices in V such that xi is adjacent to xi+1 (i = 0, . . . , r − 1) and
xi+1 �= xi−1 (i = 1, . . . , r − 1). The origin of e is x0, the extremity of e is
xr . We define, for r ∈ N, matrices Ar indexed by V × V , which generalize
the adjacency matrix and which are polynomials in A:

(Ar )xy = number of paths of length r , without backtracking,
with origin x and extremity y.

Note that A0 = Id and that A1 = A, the adjacency matrix. The relationship
between Ar and A is the following:

1.4.1. Lemma.

(a) A2
1 = A2 + k · Id.

(b) For r ≥ 2, A1 Ar = Ar A1 = Ar+1 + (k − 1) Ar−1.
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Proof.
(a) For x, y ∈ V , the entry (A2

1)xy is the number of all paths of length 2
between x and y. If x �= y, such paths cannot have backtracking; hence,
(A2

1)xy = (A2)xy . If x = y, we count the number of paths of length 2
from x to x , and, since X is simple, (A2

1)xx = k.
(b) Let us prove that Ar A1 = Ar+1 + (k − 1) Ar−1 for r ≥ 2. For x, y ∈

V , the entry (Ar A1)xy is the number of paths (x0 = x, x1, . . . , xr ,

xr+1 = y) of length r + 1 between x and y, without backtracking ex-
cept possibly on the last step (i.e., (x0, x1, . . . , xr ) has no backtracking).
We partition the set of such paths into two classes according to the value
of xr−1:
• if xr−1 �= y, then the path (x0, . . . , xr+1) has no backtracking, and

there are (Ar+1)xy such paths;
• if xr−1 = y, then there is backtracking at the last step, and there are

(k − 1)(Ar−1)xy such paths.

We leave the proof of A1 Ar = Ar+1 + (k − 1) Ar−1 as an exercise. �

From Lemma 1.4.1, we can compute the generating function of the Ar ’s,
that is, the formal power series with coefficients Ar . It turns out to have a
particularly nice expression; namely, we have the following:

1.4.2. Lemma.
∞∑

r=0

Ar tr = 1 − t2

1 − At + (k − 1) t2
.

(This must be understood as follows: in the ring End �2(V )[[t]] of formal
power series over End �2(V ), we have( ∞∑

r=0

Ar tr

)
(Id − At + (k − 1) t2 Id) = (1 − t2) Id.)

Proof. This is an easy check using Lemma 1.4.1. �

In order to eliminate the numerator 1 − t2 in the right-hand side of 1.4.2,
we introduce polynomials Tm in A given by

Tm =
∑

0≤r≤ m
2

Am−2r (m ∈ N).

The generating function of the Tm’s is readily computed.
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1.4.3. Lemma.
∞∑

m=0

Tm tm = 1

1 − At + (k − 1) t2
.

Proof.

∞∑
m=0

Tm tm =
∞∑

m=0

∑
0≤r≤ m

2

Am−2r tm =
∞∑

r=0

∑
m≥2r

Am−2r tm

=
∞∑

r=0

t2r
∑
m≥2r

Am−2r tm−2r =
( ∞∑

r=0

t2r

) ( ∞∑
�=0

A� t�

)

= 1

1 − t2
· 1 − t2

1 − At + (k − 1) t2
= 1

1 − At + (k − 1) t2

by Lemma 1.4.2. �

1.4.4. Definition. The Chebyshev polynomials of the second kind are defined
by expressing sin(m+1) θ

sin θ
as a polynomial of degree m in cos θ :

Um(cos θ ) = sin(m + 1) θ

sin θ
(m ∈ N).

For example, U0(x) = 1, U1(x) = 2x , U2(x) = 4x2 − 1, . . . . Using
trigonometric identities, we see that these polynomials satisfy the following
recurrence relation:

Um+1(x) = 2x Um(x) − Um−1(x).

As in Lemma 1.4.2, from this recurrence relation, we compute the generating
function of the Um’s; namely,

∞∑
m=0

Um(x) tm = 1

1 − 2xt + t2
.

Performing a simple change of variables, we then compute the generating

function of the related family of polynomials (k − 1)
m
2 Um

(
x

2
√

k−1

)
:

∞∑
m=0

(k − 1)
m
2 Um

(
x

2
√

k − 1

)
tm = 1

1 − xt + (k − 1) t2
.

In comparison to Lemma 1.4.3, we immediately get the following expression
for the operators Tm as polynomials of degree m in the adjacency matrix.
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1.4.5. Proposition. For m ∈ N: Tm = (k − 1)
m
2 Um

(
A

2
√

k−1

)
. �

Assume that X = (V, E) is a finite, k-regular graph on n vertices, with
spectrum

µ0 = k ≥ µ1 ≥ · · · ≥ µn−1.

In Proposition 1.4.5, we are going to estimate the trace of Tm in two different
ways. This will lead to the trace formula for X .

First, working from a basis of eigenfunctions of A, we have, from Propo-
sition 1.4.5,

Tr Tm = (k − 1)
m
2

n−1∑
j=0

Um

(
µ j

2
√

k − 1

)
.

On the other hand, by definition of Tm ,

Tr Tm =
∑

0≤r≤ m
2

Tr Am−2r =
∑
x∈V

∑
0≤r≤ m

2

(Am−2r )xx.

For x ∈ V , denote by f�,x the number of paths of length � in X , without
backtracking, with origin and extremity x ; in other words, f�,x = (A�)xx .
Then we get the trace formula:

1.4.6. Theorem.∑
x∈V

∑
0≤r≤ m

2

fm−2r,x = (k − 1)
m
2

n−1∑
j=0

Um

(
µ j

2
√

k − 1

)
,

for every m ∈ N.

We say that X is vertex-transitive if the group Aut X of automorphisms of
X acts transitively on the vertex-set V . Specifically, this means that for every
pair of vertices x and y, there exists α ∈ Aut X , such that α(x) = y. Under
this assumption, the number f�,x does not depend on the vertex x , and we
denote it simply by f�.

1.4.7. Corollary. Let X be a vertex-transitive, finite, k-regular graph on n
vertices. Then, for every m ∈ N,

n ·
∑

0≤r≤ m
2

fm−2r = (k − 1)
m
2

n−1∑
j=0

Um

(
µ j

2
√

k − 1

)
. �
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The value of the trace formula 1.4.6 is the following: only looking at the

right-hand side (called the spectral side) (k − 1)
m
2

n−1∑
j=0

Um

(
µ j

2
√

k−1

)
, it is not

obvious that it defines a nonnegative integer. As we shall now explain, the
mere positivity of the spectral side has nontrivial consequences. We first need
a somewhat technical result about the Chebyshev polynomials.

1.4.8. Proposition. Let L ≥ 2 and ε > 0 be real numbers. There exists a
constant C = C(ε, L) > 0 with the following property: for any probability
measure ν on [−L , L], such that

∫ L
−L Um

(
x
2

)
dν(x) ≥ 0 for every m ∈ N, we

have

ν [2 − ε, L] ≥ C.

(Thus, ν gives a measure at least C to the interval [2 − ε, L].)

Proof. It is convenient to introduce the polynomials Xm(x) = Um
(

x
2

)
;

they satisfy Xm(2 cos θ ) = sin(m+1) θ

sin θ
and the recursion formula Xm+1(x) =

x Xm(x) − Xm−1(x). It is clear from the first relation that the roots of Xm

are 2 cos � π
m+1 (� = 1, . . . , m). In particular the largest root of Xm is αm =

2 cos π
m+1 . The proof is then in several steps.

First Step. For k ≤ � : Xk X� =
k∑

m=0
Xk+�−2m .

We prove this by induction over k. Since X0(x) = 1 and X1(x) = x , the
formula is obvious for k = 0, 1. (For k = 1, this is nothing but the recursion
formula.) Then, for k ≥ 2, we have, by induction hypothesis,

Xk X� = (x Xk−1 − Xk−2) X�

= x (Xk+�−1 + Xk+�−3 + · · · + X�−k+3 + X�−k+1)

− (Xk+�−2 + Xk+�−4 + · · · + X�−k+4 + X�−k+2)

= (Xk+� + Xk+�−2) + (Xk+�−2 + Xk+�−4)

+ · · · + (X�−k+4 + X�−k+2) + (X�−k+2 + X�−k)

− (Xk+�−2 + Xk+�−4 + · · · + X�−k+4 + X�−k+2)

= Xk+� + Xk+�−2 + · · · + X�−k+2 + X�−k .
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Second Step.

Xm(x)

x − αm
=

m−1∑
i=0

Xm−1−i (αm) · Xi (x).

Indeed,

(x − αm)

(
m−1∑
i=0

Xm−1−i (αm) Xi (x)

)

= Xm−1(αm) X1(x) +
m−1∑
i=1

Xm−1−i (αm)(Xi+1(x) + Xi−1(x))

−
m−1∑
i=0

Xm−1−i (αm) αm Xi (x)

= (Xm−2(αm) − Xm−1(αm) αm) X0(x)

+
m−2∑
i=1

(Xm−i (αm) + Xm−i−2(αm) − αm Xm−1−i (αm)) Xi (x)

+ (X1(αm) − αm X0(αm)) Xm−1(x) + X0(αm) Xm(x).

Now X0(αm) = 1 and X1(αm) − αm X0(αm) = 0; in the summation
m−2∑
i=1

all

the coefficients are 0, by the recursion formula. Finally, Xm−2(αm) −
Xm−1(αm) αm = −Xm(αm) = 0, by definition of αm .

Third Step. Set Ym(x) = Xm (x)2

x−αm
; then Ym =

2m−1∑
i=0

yi Xi , with yi ≥ 0.

Indeed, by the second step we have Ym =
m−1∑
i=0

Xm−1−i (αm) Xi Xm . Now

observe that the sequence αm = 2 cos π
m+1 increases to 2. So for j < m :

X j (αm) > 0 (since αm > α j and α j is the largest root of X j ). This means
that all coefficients are positive in the previous formula for Ym . By the first
step, each Xi Xm is a linear combination, with nonnegative coefficients, of
X0, X1, . . . , X2m−1, so the result follows.

Fourth Step. Fix ε > 0, L ≥ 2. For every probability measure ν on [−L , L]
such that

∫ L
−L Xm(x) dν(x) ≥ 0 for every m ∈ N, we have ν [2 − ε, L] > 0.

Indeed, assume by contradiction that ν [2 − ε, L] = 0; i.e. the support of ν

is contained in [−L , 2 − ε]. Take m large enough to have αm > 2 − ε. Since
Ym(x) ≤ 0 for x ≤ αm , we then have

∫ L
−L Ym(x) dν(x) ≤ 0. On the other hand,
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by the third step and the assumption on ν, we clearly have
∫ L
−L Ym(x) dν(x) ≥

0. So
∫ L
−L Ym(x) dν(x) = 0, which implies that ν is supported in the finite set

Fm of zeroes of Ym ; as before we have Fm = {2 cos � π
m+1 : 1 ≤ � ≤ m}. But

this holds for every m large enough. And clearly, since m + 1 and m + 2 are
relatively prime, we have Fm ∩ Fm+1 = ∅, so that supp ν is empty. But this
is absurd.

Coda. Fix ε > 0, L ≥ 2. Let f be the continuous function on [−L , L] defined
by

f (x) =


0 if x ≤ 2 − ε

1 if x ≥ 2 − ε
2

2
ε
(x − 2 + ε) if 2 − ε ≤ x ≤ 2 − ε

2 .

On
[
2 − ε, 2 − ε

2

]
, the function f linearly interpolates between 0 and 1. For

every probability measure ν on [−L , L], we then have

ν [2 − ε, L] ≥
∫ L

−L
f (x) dν(x) ≥ ν

[
2 − ε

2
, L

]
.

Let ℘ be the set of probability measures ν on [−L , L], such that
∫ L
−L Xm(x)

dν(x) ≥ 0 for every m ≥ 1. For ν ∈ ℘, we have by the fourth step
∫ L
−L f (x)

dν(x) > 0. But ℘ is compact in the weak topology and, since f is continuous,
the map

℘ → R
+ : ν �→

∫ L

−L
f (x) dν(x)

is weakly continuous. By compactness there exists C(ε, L) > 0, such that∫ L
−L f (x) dν(x) ≥ C(ε, L) for every ν ∈ ℘. A fortiori ν [2 − ε, L] ≥ C(ε, L),

and the proof is complete. (Note that, in the final step, the need for introducing
the function f comes from the fact that the map ℘ → R

+ : ν �→ ν [2 − ε, L]
is, a priori, not weakly continuous; however, it is bounded below by a
continuous function, to which the compactness argument applies.) �

Coming back to the spectra of finite connected, k-regular graphs, we now
reach the promised improvement of Theorem 1.3.1: it shows not only that the
first nontrivial eigenvalue becomes asymptotically larger than 2

√
k − 1, but

also that a positive proportion of eigenvalues lies in any interval[
(2 − ε)

√
k − 1, k

]
.

1.4.9. Theorem. For every ε > 0, there exists a constant C = C(ε, k) > 0,
such that, for every connected, finite, k-regular graph X on n vertices, the
number of eigenvalues of X in the interval

[
(2 − ε)

√
k − 1, k

]
is at least C · n.



P1: IJG

CB504-02drv CB504/Davidoff September 23, 2002 11:41

1.4. Proof of the Asymptotic Behavior 27

Proof. Take L = k√
k−1

≥ 2 and ν = 1
n

n−1∑
j=0

δ µ j√
k−1

(where δa is the Dirac mea-

sure at a ∈ [−L , L], that is, the probability measure on [−L , L] such that∫ L
−L f (x) d δa(x) = f (a), for every continuous function f on [−L , L]). Then

ν is a probability measure on [−L , L], and
∫ L
−L Um

(
x
2

)
dν(x) =

1
n

n−1∑
j=0

Um
( µ j

2
√

k−1

)
is nonnegative, by the trace formula 1.4.6. So the assump-

tions of Proposition 1.4.8 are satisfied, and therefore there exists
C = C(ε, k) > 0 such that ν [2 − ε, L] ≥ C . But

ν [2 − ε, L] = 1

n
× (number of j’s with 2 − ε ≤ µ j√

k − 1
≤ L)

= 1

n
× (number of eigenvalues of X in [(2 − ε)

√
k − 1 , k]).

�

Continuing this analysis we prove the following:

1.4.10. Theorem. Let (Xm)m≥1 be a sequence of connected, k-regular, finite
graphs for which g(Xm) → ∞ as m → ∞. If νm = ν(Xm) is the measure on[
− k√

k−1
, k√

k−1

]
defined by

νm = 1

|Xm |
|Xm |−1∑

j=0

δµ j (Xm)√
k − 1

,

then, for every continuous function f on
[
− k√

k−1
, k√

k−1

]
,

lim
m→∞

∫ k√
k−1

−k√
k−1

f (x) dνm(x) =
∫ 2

−2
f (x)

√
4 − x2

dx

2π
.

In other words, the sequence of measures (νm)m≥1 on
[
− k√

k−1
, k√

k−1

]
weakly

converges to the measure ν supported on [−2, 2], given by dν(x) =
√

4−x2

2π
dx .

Proof. Set L = k√
k−1

. Recall that f�,x denotes the number of paths of length
�, without backtracking, from x to x in Xm . We have that for n ≥ 1, fixed and
m large enough (precisely g(Xm) > n):

fn−2r,x = 0

for any x ∈ Xm and 0 ≤ r ≤ n
2 . Hence, for m large enough the left-hand side

of the equation in Theorem 1.4.6 is zero. Thus, so is the right-hand side, and
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therefore ∫ L

−L
Un

( x

2

)
dνm(x) = 0.

We also have that ∫ L

−L
U0

( x

2

)
dνm(x) = 1.

For n ≥ 0, let us compute
∫ L
−L Un

(
x
2

)
dν(x), using the change of variables

x = 2 cos θ :∫ L

−L
Un

( x

2

)
dν(x) =

∫ π

0
Un(cos θ ) 2 sin2 θ

dθ

π

= 1

π

∫ π

0
2 sin((n + 1)θ ) sin θ dθ

= δn,0.

Hence, for any n ≥ 0,

lim
m→∞

∫ L

−L
Un

( x

2

)
dνm(x) =

∫ L

−L
Un

( x

2

)
dν(x).

From the recursion relation following Definition 1.4.4, it is clear that the linear
span of U0

(
x
2

)
, U1

(
x
2

)
, . . . , Un

(
x
2

)
is equal to the space of polynomials of

degree at most n. Hence we have that

lim
m→∞

∫ L

−L
p(x) dνm(x) =

∫ L

−L
p(x) dν(x)

for any polynomial p(x). The rest of the argument is a standard ε
3 reasoning:

fix a continuous function f on [−L , L], and a positive number ε > 0. By the
Weierstrass approximation theorem, find a polynomial p such that

| f (x) − p(x)| ≤ ε

for every x ∈ [−L , L]. Then

∣∣∣∣∫ L

−L
f (x) dνm(x) −

∫ L

−L
f (x) dν(x)

∣∣∣∣
≤

∣∣∣∣∫ L

−L
( f (x) − p(x)) dνm(x)

∣∣∣∣ +
∣∣∣∣∫ L

−L
p(x) dνm(x) −

∫ L

−L
p(x) dν(x)

∣∣∣∣
+

∣∣∣∣∫ L

−L
(p(x) − f (x)) dν(x)

∣∣∣∣.
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Since νm and ν are probability measures, the first and last term are less than
ε
3 , while the second term is less than ε

3 for m large enough. So∣∣∣∣∫ L

−L
f (x) dνm(x) −

∫ L

−L
f (x) dν(x)

∣∣∣∣ ≤ ε,

for m large, which concludes the proof. �

We can now prove the following result, analogous to Theorem 1.4.9, which
improves on Theorem 1.3.3.

1.4.11. Corollary. Let (Xm)m≥1 be a family of connected, k-regular, finite
graphs, with g(Xm) → ∞ as m → ∞. For every ε > 0, there exists a constant
C => 0, such that the number of eigenvalues of Xm in the interval [−k,
(−2 + ε)

√
k − 1] is at least C |Xm |.

Proof. The proof is similar to the last step of the proof of Theorem 1.4.8.
We use the same notation as that in Theorem 1.4.10. Let f be the function

which is 1 on
[
− k√

k−1
, −2

]
, 0 on

[
−2 + ε, k√

k−1

]
, and interpolates linearly

between 1 and 0 on [−2, −2 + ε]. Then, for every m ≥ 1,

νm

[
− k√

k − 1
, −2 + ε

]
≥

∫ k√
k−1

− k√
k−1

f (x) dνm(x).

For m → ∞, using Theorem 1.4.10, this gives

lim inf
m→∞ νm

[
− k√

k − 1
, (−2 + ε)

]
≥

∫ 2

−2
f (x) dν(x).

In other words,

lim inf
m→∞

1

|Xm | × {number of eigenvalues of Xm in [−k, (−2, ε)
√

k − 1]}

≥
∫ −2+ε

−2
f (x) dν(x),

from which the result follows. �

Exercises on Section 1.4

1. Complete the proof of Lemma 1.4.1 and prove Lemma 1.4.2.

2. Establish the recursion formula for the Chebyshev polynomials of the
second kind, and compute their generating functions.
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3. Fix real numbers L ≥ 2 and ε > 0. Let M be the set of probability mea-
sures on [−L , L], endowed with the weak topology. Show that the func-
tion M → R

+ : ν �→ ν [2 − ε, L] is not weakly continuous.

4. (Do not try this exercise if you have never heard about representa-
tions of SU (2).) Let �m be the unique irreducible representation of

SU (2) on C
m+1. Set tθ =

(
eiθ 0
0 e−iθ

)
∈ SU (2). Show that Tr �m(tθ ) =

Um(cos θ ). Use the Clebsch–Gordan formula to give an alternate proof
of the first step in the proof of Proposition 1.4.8.

1.5. Independence Number and Chromatic Number

Let X = (V, E) be a finite graph without loop; as usual we denote by A the
adjacency matrix of X .

1.5.1. Definition.

(a) The chromatic number χ (X ) is the minimal number of classes in a
partition V = V1 ∪ V2 ∪ · · · ∪ Vχ , such that, for every i = 1, . . . , χ

and every x, y ∈ Vi , we have Axy = 0. (In other words, this is the
minimal number of colors necessary to paint the vertices of X in such
a way that two adjacent vertices have different colors.)

(b) The independence number i(X ) is the maximal cardinality of a subset
F ⊆ V , such that Axy = 0 for every x, y ∈ F .

These two quantities are related by the following inequality:

1.5.2. Lemma. Let X be a finite graph without loop, on n vertices. Then
n ≤ i(X ) χ (X ).

Proof. Let V = V1 ∪ V2 ∪ · · · ∪ Vχ(X ) be a coloring of V in χ (X ) colors.

Since |Vi | ≤ i(X ) for i = 1, . . . , χ(X ), we have n =
χ (X )∑
i=1

|Vi | ≤ i(X )

χ (X ). �

For a finite, connected, k-regular graph with spectrum

k = µ0 > µ1 ≥ · · · ≥ µn−1,

we can relate i(X ) to the spectrum of X .
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1.5.3. Proposition. Let X be a finite, connected, k-regular graph on n vertices.
Then i(X ) ≤ n

k max {|µ1|, |µn−1|}.

Proof. Let F ⊆ V be a subset of V , of cardinality |F | = i(X ), such that
Axy = 0 for x, y ∈ F . As in the first part of the proof of Theorem 1.2.3, we
consider the function f ∈ �2(V ), defined by

f (x) =
{ |V − F | if x ∈ F ;

−|F | if x ∈ V − F.

Then
∑
x∈V

f (x) = 0 and ‖ f ‖2
2 = |F | · |V − F | · |V | ≤ i(X ) n2. Take x ∈ F ;

since Axy = 0 for y ∈ F , we have

(A f )(x) =
∑
y /∈F

Axy f (y) = −|F |
∑
y /∈F

Axy = −|F |
∑
y∈V

Axy = −ki(X ),

so that ‖A f ‖2
2 ≥ ∑

x∈F
(A f )(x)2 = k2 i(X )3.

In an orthonormal basis of eigenfunctions, A takes the form

A =


k

µ1 ©
. . .

© µn−1

.

Since
∑
x∈V

f (x) = 0, we have ‖A f ‖2 ≤ max {|µ1|, |µn−1|} · ‖ f ‖2. Using the

lower bound for ‖A f ‖2 and the upper bound for ‖ f ‖2, we get

k i(X )3/2 ≤ max {|µ1|, |µn−1|} · n · i(X )1/2 ,

cancelling out i(X )1/2. The result follows. �

From Lemma 1.5.2, Propositions 1.5.3 and 1.1.4, and Definition 1.3.4, we
immediately get:

1.5.4. Corollary. Let X be a finite, connected, k-regular graph on n vertices,
without loop. Then

χ (X ) ≥ k

max {|µ1|, |µn−1|} .

Moreover, if X is a nonbipartite Ramanujan graph, then

χ (X ) ≥ k

2
√

k − 1
∼

√
k

2
. �
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Exercises on Section 1.5

1. What do the results of this section become for bipartite graphs?

2. For the complete graph Kn and the cycle graph Cn , compute the
chromatic and independence numbers and verify Lemma 1.5.2 and
Proposition 1.5.3.

1.6. Large Girth and Large Chromatic Number

A combinatorial problem that has attracted much attention is to construct
graphs with large chromatic number and large girth. Note that adding edges
increases (or at least does not decrease) the chromatic number but that it does
decrease the girth. Given this tension, it is by no means obvious that such
graphs exist.

A method, known as the probabilistic method, and due to Erdös [24], has
proven to be very powerful in demonstrating the existence of such combi-
natorial objects. One proceeds by examining the graphs of a certain shape
which do not satisfy the desired properties and by showing that these are
relatively rare. In this way, most objects (i.e., the “random object”) have the
desired property and, in particular, their existence is assured. Of course such
an argument offers no clue as to be able to find, or give, explicit examples.
(These will be reached in section 4.4.)

Let k and c be given large numbers. We seek a graph X with g(X ) ≥ k
and χ (X ) ≥ c. Let n be an integer which will go to infinity in the following
discussion. Consider the set of all graphs on n labeled vertices which have m
edges. We denote this set by Xn,m . Fix ε such that 0 < ε < 1

k ; set m = [n1+ε],
where [ ] denotes the integer part.

First Step. We start by counting the number of elements inXn,m . To construct
a graph X ∈ Xn,m , we must select m edges out of the

( n
2

)
possible edges. So

|Xn,m | =
(

( n
2 )
m

)
.

Second Step. We are interested in those X ’s in Xn,m with small indepen-
dence number (and hence, by Lemma 1.5.2, large chromatic number). Take η

with 0 < η < ε
2 , and set p = [

n1−η
]
. To formalize smallness of independence

number, we will first say that, for every subset with p elements in the vertex
set, the graph X meets the complete graph K p on these p vertices, in a “large”
number of edges, say at least n edges. So we count as “bad” X ’s the ones
which meet a given complete graph K p (on our vertex set) in few edges. The
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number of such X ’s which meet a given K p in exactly 0 ≤ � ≤ n edges is
clearly ( ( p

2

)
�

) ( ( n
2

) − ( p
2

)
m − �

)
.

Thus, the number Ñ (n, m) of X ∈ Xn,m which meet this given K p in at most
n edges is

Ñ (n, m) =
n∑

�=0

( ( p
2

)
�

) ( ( n
2

) − ( p
2

)
m − �

)
.

For n ≤ N
2 and 0 ≤ � ≤ n, we have(

N

�

)
≤

(
N

n

)

(see exercise 1). So, for n large and 0 ≤ � ≤ n, we estimate

( ( p
2

)
�

)
≤( ( p

2

)
n

)
and

( ( n
2

) − ( p
2

)
m − �

)
≤

( ( n
2

) − ( p
2

)
m

)
. Thus,

Ñ (n, m) ≤ (n + 1)

( ( p
2

)
n

) ( ( n
2

) − ( p
2

)
m

)
≤ p2n

( ( n
2

) − ( p
2

)
m

)
= p2n

m!

[( n
2

) − ( p
2

)] [( n
2

) − ( p
2

) − 1
]
. . .

[( n
2

) − ( p
2

) − m + 1
]
.

Now, for 0 ≤ � ≤ m, we have

(n

2

)
−

( p

2

)
− � ≤

((n

2

)
− �

) (
1 −

( p
2

)( n
2

))
,

so that

Ñ (n, m) ≤ p2n

m!

( n
2

) [( n
2

) − 1
]
. . .

[( n
2

) − m + 1
] (

1 − ( p
2 )

( n
2 )

)m

= p2n

( ( n
2

)
m

) (
1 − ( p

2 )
( n

2 )

)m

≤ p2n

( ( n
2

)
m

) (
1 −

(
p−1
n−1

)2
)m

.

Now for 0 < x < 1, we have (1 − x)m < e−mx hence, by the first step,

Ñ (n, m) ≤ p2n e
−m

(
p−1
n−1

)2

|Xn,m |.
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Third Step. Let N (n, m) be the number of X ∈ Xn,m which meet some

K p in at most n edges. Since the number of possible K p’s is
(

n
p

)
, we

have

N (n, m) ≤
(

n

p

)
Ñ (n, m).

Fourth Step. Since
(

n
p

)
≤ n p ≤ pn (because p = [n1−η]), we have, by the

second and third steps,

N (n, m) ≤ p3n e
−m

(
p−1
n−1

)2

|Xn,m |.

Fifth Step. Recall that 0 < η < ε
2 , that m = [n1+ε], and that p = [n1−η]. As

n → ∞, we have

N (n, m) = o (|Xn,m |),
where the notation A(n) = o (B(n)) as n → ∞, means A(n)

B(n) → 0 as
n → ∞.

Put in another way, this step ensures that the proportion of X ’s in Xn,m

which meet every K p in at least n edges tends to 1 as n → ∞. This will be
used to ensure that the independence number is small.

Sixth Step. Next we address the girth. There is no reason that our good X ’s
cited previously have large girth. We will arrange this by removing from
X small circuits. Define the integer-valued function F on Xn,m by setting
F(X ) to be the number of circuits in X of length � ≤ k, where k is the large
number fixed at the very beginning. Denote by A(n, k) the average value
of F :

A(n, k) = 1

|Xn,m |
∑

X∈Xn,m

F(X ) .

Seventh Step. We can calculate A another way, that is, by calculating the
contribution to the sum of each fixed circuit of length�, say x1 → x2 → . . . →
x� → x1, with 3 ≤ � ≤ k. Indeed each such circuit contributes 1 to the sum,

for each of

( ( n
2

) − �

m − �

)
graphs X ’s. Now there are n(n − 1) . . . (n − � + 1)
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such circuits of length �. Hence, we have

A(n, k) = 1
|Xn,m |

k∑
�=3

n(n − 1) . . . (n − � + 1)

( ( n
2

) − �

m − �

)

≤
k∑

�=3

n�

(( n
2

) − �

m − �

)
( ( n

2

)
m

) (by the first step)

=
k∑

�=3

n� m(m−1)...(m−�+1)
( n

2 )(( n
2 )−1)...(( n

2 )−�+1) ≤
k∑

�=3

n� m�

( n
2 )(( n

2 )−1)...(( n
2 )−�+1)

=
k∑

�=3

n� m�

( n
2 )�

[
1 +

(
( n

2 )�

( n
2 )(( n

2 )−1)...(( n
2 )−�+1) − 1

)]
.

The term in parentheses is a o(1), as n → ∞. This gives the estimate

A(n, k) ≤ (1 + o(1))
k∑

�=3

n� m�

( n
2 )� = (1 + o(1))

k∑
�=3

(
2m

n−1

)�

≤ (1 + o(1)) k · (
2m

n−1

)k = o(n),

since m = [n1+ε] and ε < 1
k .

Eighth Step. It follows that

1

|Xn,m |
∑

X∈Xn,m :F(X )≥ n
k

n

k
≤ 1

|Xn,m |
∑

X∈Xn,m

F(X ) = A(n, k) = o(n),

as n → ∞. Hence,

|{X ∈ Xn,m : F(X ) ≥ n
k }|

|Xn,m | = o(1),

as n → ∞.

Coda. For X ∈ Xn,m , consider the two following properties:

1. X meets every K p in at least n edges;
2. F(X ) < n

k .

Combining the fifth and eighth steps, we see that, as n → ∞, the proportion
of X ∈ Xn,m , which satisfy (1) and (2), tends to 1. So for n large enough
(depending on k, ε, η), we choose such an X satisfying (1) and (2). Delete
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from X all edges which lie on closed circuits of length at most k, getting a
graph X ′. Clearly g (X ′) > k. Also, according to (2), we have deleted less than
n edges in going from X to X ′. From (1) it then follows that X ′ meets every
K p in at least one edge. That is, i (X ′) ≤ p. Thus, according to Lemma 1.5.2,
we have χ (X ′) ≥ n

p , which is of order nη and hence is greater than c for n
large enough. Thus, X ′ (which is the “random” modified element of Xn,m)
fulfills our requirements.

Exercises on Section 1.6

1. Check that, for 0 ≤ � ≤ n ≤ N
2 , one has

(
N
�

)
≤

(
N
n

)
.

2. According to the construction in section 1.6, how large does n need to
be taken in order to have g (X ) ≥ 10 and χ (X ) ≥ 10?

1.7. Notes on Chapter 1

1.1. The results in section 1.1 can also be derived from the classical Perron–Frobenius
theory. For a detailed treatment of the relation between the combinatorics of a
graph and the spectrum of its adjacency matrix, see, e.g., the books by Biggs [5]
and Chung [15].

1.2. For treatments of families of expanders, see the books by Lubotzky [41] and Sarnak
[57]. As indicated in the Overview, the construction of families of expanders is an
important problem in network theory. The first constructions go back to the years
1972–73: using counting arguments, Pinsker [52] gave a nonexplicit construction,
while Margulis [46] gave an explicit one by appealing to Kazhdan’s property (T ) in
the representation theory of locally compact groups (see [17], Chapter 7, and [41],
Chapter 3). A drawback of this second method is that it gives a priori no estimate
on the size of the ε in Definition 1.2.2 and, therefore, no measure of the quality
of the expanders. This problem was first overcome by Gabber and Galil [28]. (See
also [2], [16], [25]; as well as recent works by Wigderson & Zuckerman [70].)

The inequalities in Theorem 1.2.3 are often called the Cheeger–Buser inequali-
ties, by analogy with Riemannian geometry. Indeed, in 1970, Cheeger [13] defined
the isoperimetric constant of a compact Riemannian manifold M of dimension n:

h(M) = inf

{
voln−1(∂U )

min {voln(U ), voln(M − U )}
}
,

where U runs among nonempty open subsets with smooth boundary ∂U , and voln

denotes n-dimensional Riemannian volume. He proved that h(M) ≤ 2
√

λ1(M),
where λ1(M) is the first nontrivial eigenvalue of the Laplace operator on M . Then,
in 1982, Buser [12] proved that h(M) is also bounded by a function of λ1(M):

λ1(M) ≤ 2a(n − 1) h(M) + 10h(M)2 ,

where the constant a ≥ 0 is related to the Ricci curvature of M by the inequality
Ricci (M) ≥ −(n − 1) a2.
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The first inequality in Theorem 1.2.3 is due to N. Alon and Milman [3]; the
second is due to Dodziuk [22]. The first step in the proof of the second inequality
is often called the co-area formula, again by analogy with Riemannian geometry:
to compute the integral of a function, integrate the volume of the level sets over the
range of the function.

1.3. and 1.4. The asymptotic behavior in Theorem 1.3.1 is due to Alon and Boppana
(see [42] and [51]); it had several improvements, due to Burger [10], Serre [62], and
Grigorchuk and Zuk [31]. We have chosen Serre’s approach (Proposition 1.4.8 and
Theorem 1.4.9); our proof of Proposition 1.4.8 is a slight improvement of the one
in [62]; for explicit estimates of the constant C appearing there, see pp. 213–213
in [39].

The asymptotic behavior, in Theorem 1.3.3, for the bottom of the spectrum is
due to Li and Solé [40]. Note that the number 2

√
k − 1 appearing in Theorems

1.3.1 and 1.3.3 can be understood as follows: let Tk be the k-regular tree: this is the
common universal cover of all the finite, connected, k-regular graphs; by exercise
7 of section 1.1, the adjacency matrix A of Tk is a bounded operator on the Hilbert
space �2(V ) (where V is the set of vertices of Tk). The spectrum of A on �2(V )
is then the interval [−2

√
k − 1, 2

√
k − 1], and its spectral measure is essentially

the measure ν in Theorem 1.4.10: this is a result of Kesten [36], and actually 1.3.1
can be proved (as in [57]) by “comparing” a finite, connected, k-regular graph to
its universal cover and then applying Kesten’s result.

As mentioned in the Overview, infinite families of k-regular Ramanujan graphs
have been constructed for the following values of k:

� k = p + 1, p an odd prime (see [42], [46]);
� k = 3 [14];
� k = q + 1, q a prime power [48].

The other values of k are open, the first open value being k = 7.
An intriguing observation is: when one estimates the expanding constant by

means of the spectral gap, something is lost in the use of the Cheeger–Buser in-
equality 1.2.3. Recent results by Brooks and Zuk [9] show that the asymptotic
behavior of the expanding constant can be essentially different from the asymp-
totic behavior of the first nontrivial eigenvalue of the adjacency matrix.

1.5. Proposition 1.5.3 is due to Hoffmann [33].
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Chapter 2

Number Theory

2.1. Introduction

The constructions in the later chapters depend on some old results in the theory
of numbers. In particular, we need the fact, arguably known to Diophantus
around 400 AD and proved first by Lagrange in 1770, that every natural
number can be written as a sum of four squares. A remarkable theorem of
Jacobi gives an exact formula for the number of representations of n in the
form a2

0 + a2
1 + a2

2 + a2
3 , in terms of the divisors of n. In section 2.4, we will

prove this result for odd n and use it repeatedly later.
We will also need analogous statements about sums of two squares. Since

for any integer a, we have a2 ≡ 0 or 1 (mod. 4), it follows that any n ≡ 3
(mod. 4) is not a sum of two squares. Still there is an exact formula, due
to Legendre, for the number of solutions to a2 + b2 = n. We prove it in
section 2.2 and make use of it as well.

Notice that any sum of two squares can be factored as

n = a2 + b2 = (a + bi)(a − bi) = α α,

where α is an element of the ring of Gaussian integers

Z [i] = {a + bi : a, b ∈ Z , i2 = −1}.
The product α α is called the norm of α, denoted N (α). Thus, n is a sum of
two squares if and only if it is the norm of a Gaussian integer. It turns out to
be simpler to work in this ring. We study the arithmetic of Z [i], extending
the familiar notions of integer, prime number, and factorization. The theory
for this ring is presented in section 2.2; it is very similar to that for Z.

In a similar way, any representation of a natural number as a sum of four
squares can be expressed in terms of norms of elements in yet another ring,
the integral quaternions. This ring denoted by H (Z) is defined by

H (Z) = {a0 + a1 i + a2 j + a3 k : a0, a1, a2, a3 ∈ Z,

i2 = j2 = k2 = −1 , i j = k , jk = i , ki = j,

j i = −k , k j = −i , ik = − j}.

38



P1: IJG

CB504-03drv CB504/Davidoff September 24, 2002 12:53

2.2. Sums of Two Squares 39

H (Z) is not commutative. As with Z [i] we have conjugate pairs of integral
quaternions

α = a0 + a1 i + a2 j + a3 k , α = a0 − a1 i − a2 j − a3 k,

and the norm N (α) = α α = α α = a2
0 + a2

1 + a2
2 + a2

3 is multiplicative:

N (α β) = N (α) N (β).

Thus, the problem of expressing n as a sum of four squares becomes one of
factorization theory in H (Z). In section 2.6, we therefore study the arithmetic
of this ring.

The algebraic structure of the graphs constructed in Chapter 4 depends on
the equation x2 ≡ p (mod. q), where p and q are odd prime numbers. There
is a beautiful reciprocity due to Gauss relating the solvability of this equation
to the one with p and q reversed. In section 2.3, we give one of the many
well-known proofs of this famous “quadratic reciprocity theorem.”

2.2. Sums of Two Squares

The study of sums of two squares originated with the problem of Pythagorean
triples, or triples (a, b, c) of positive integers, such that a2 + b2 = c2. Ex-
amples of such triples 32 + 42 = 52 are 52 + 122 = 132. The description of
Pythagorean triples, as well as the fact that infinite many exist, goes back
at least to Diophantus. In the 17th century, Fermat described all integers –
not just perfect squares – that could be written as sums of two squares; he
and his successors, including Euler, went on to study sums of three or more
squares.

The aim of this section is twofold: first, we will prove the Fermat – Euler
characterization of integers that are sums of two squares; then, we will show
Legendre’s formula for the number of representations of a given integer as a
sum of two squares.

For k ≥ 2 and n ∈ N, we denote by rk(n) the number of representations of
n as a sum of k-squares, that is, the number of solutions of the Diophantine
equation x2

0 + x2
1 + · · · + x2

k−1 = n:

rk(n) =
∣∣∣∣∣
{

(x0, . . . , xk−1) ∈ Zk :
k−1∑
i=0

x2
i = n

}∣∣∣∣∣ .
We shall need the ring of Gaussian integers,

Z [i] = {a + bi : a, b ∈ Z},
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which is easily shown to be a subring of C. For α = a + bi ∈ Z [i], we define
the norm N (α) of α as

N (α) = α α = |α|2 = a2 + b2.

As is customary in algebra, we define the norm without taking the square root;
in this way, N (α) is a rational integer, as we will now call the integers of Z.
Thus, a rational integer is a sum of two squares if and only if it is the norm
of some Gaussian integer. A crucial property of the norm is the fact that it is
multiplicative:

N (αβ) = N (α) N (β) (α, β ∈ Z [i]).

Note that this immediately shows that products of sums of two squares are
sums of two squares. We say that α ∈ Z [i] − {0} is a unit if α is invertible in
Z [i]; i.e., 1

α
∈ Z [i]. Since in this case 1 = N

(
α · 1

α

) = N (α) N
(

1
α

)
, we see

that α is a unit in Z [i] if and only if N (α) = 1. Furthermore N (α) = 1 if and
only if α ∈ {1, −1, i, −i}.

2.2.1. Definition.

1. Two Gaussian integers α, β are associate if there exists a unit ε ∈ Z [i],
such that α = εβ.

2. A Gaussian integer π ∈ Z [i] is prime if π is not a unit in Z [i] and,
for any factorization π = αβ in Z [i], either α or β is a unit in Z [i].

Note that “being associate” is an equivalence relation on Z [i], preserving
such properties as invertibility, primality, and divisibility. In commutative ring
theory, elements satisfying the condition in Definition 2.2.1 (2) are usually
called irreducibles, while primes are defined by requiring that, if π divides
a product, then π divides one of the factors. However, whenever Bézout’s
relation holds, the two definitions are equivalent. We will show that this is
precisely the case for Z[i] in Propositions 2.2.4 and 2.2.5, but first we begin
with the Euclidean algorithm for the Gaussian integers.

2.2.2. Proposition. Let α, β ∈ Z [i], β �= 0. There exists γ, δ ∈ Z [i], such
that α = βγ + δ and N (δ) < N (β).

Proof. Since β �= 0, we can form the complex number

α

β
= x + iy (x, y ∈ R).

Let m, n ∈ Z be such that |x − m| ≤ 1
2 and |y − n| ≤ 1

2 . Set γ = m + ni ∈
Z [i] and δ = β [(x − m) + i(y − n)]. Clearly α

β
= γ + δ

β
; i.e., δ = α − βγ ,
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so that δ is a Gaussian integer. Finally,∣∣∣∣ δ

β

∣∣∣∣
2

= (x − m)2 + (y − n)2 ≤ 1

2
,

so that N (δ) ≤ 1
2 N (β) < N (β). �

2.2.3. Definition. Fix α, β ∈ Z [i]:

(i) α divides β if there exists γ ∈ Z [i] such that β = γα;
(ii) δ ∈ Z [i] is a greatest common divisor of α and β if δ divides α and

β, and whenever γ ∈ Z [i] divides α and β, it also divides δ.

It is clear that a greatest common divisor, if it exists, is unique up to associate.
Furthermore, if (α, β) = ±1, ± i , we say that α and β are relatively prime.
Clearly, in that case, we can take (α, β) = 1.

2.2.4. Proposition. For any α, β ∈ Z [i] − {0}, there exists a greatest com-
mon divisor (α, β) ∈ Z [i]. Moreover, Bézout’s relation holds; that is, there
exist γ, δ ∈ Z [i] such that (α, β) = αγ + βδ.

Proof. Set I = {αγ + βδ : γ, δ ∈ Z [i]}: The reader can easily check
that I is closed under addition and subtraction and, further, that if
λ ∈ I and µ ∈ Z [i], then λµ ∈ I . Thus, I forms what is called an ideal
in Z [i]. Let λ0 = α γ0 + β δ0 be a nonzero element of minimal norm in I .
We claim that (α, β) = λ0. Indeed, by Proposition 2.2.2, we can find σ, τ ∈
Z [i], such that α = σλ0 + τ and N (τ ) < N (λ0). Then τ = α − σλ0

belongs to I and, by the minimality of N (λ0), we must have τ = 0. Hence,
λ0 divides α. Similarly, λ0 divides β. Since λ0 = α γ0 + β δ0, every com-
mon divisor of α and β must divide λ0. Finally, Bézout’s relation holds with
γ = γ0, δ = δ0. �

2.2.5. Proposition. π ∈ Z [i] is prime if and only if, whenever π divides a
product αβ (α, β ∈ Z [i]), it divides either α or β.

Proof.
(⇒) If π divides αβ, we have αβ = πσ for some σ ∈ Z [i]. We may assume

that π does not divide α and must then show that π divides β. Consider
(π, α): since it divides π , which is prime, we must have (π, α) = 1.
Then, by our previous result,

1 = πγ + αδ
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for some γ, δ ∈ Z [i]. Then β = πβγ + αβδ = πβγ + πσδ =
π (βγ + σδ), showing that π divides β.

(⇐) If π = αβ, in particular π divides αβ. Say that π divides β; i.e.,
β = πγ for some γ ∈ Z [i]. Then π = αβ = απγ ; cancelling out,
we get 1 = αγ ; i.e., α is a unit. �

From this we get unique factorization in Z [i].

2.2.6. Proposition. Every nonzero element in Z [i] is, in a unique way, a prod-
uct of primes in Z [i]. More precisely, if α ∈ Z [i] − {0}, then α = π1 . . . πk

for some primes π1, . . . , πk in Z [i]; and if α = π1 . . . πk = σ1 . . . σ� are two
factorizations of α into primes, then k = � and, after permuting the indices,
πi is associate to σi , for 1 ≤ i ≤ k.

Proof. Existence is proved by induction over N (α), the case N (α) = 1 (i.e.,
α is a unit) being trivial. So assume N (α) > 1; two cases may happen: if
α is prime, there is nothing to prove; if α is not prime, we find a factoriza-
tion α = βγ , where neither β nor γ is invertible. Then N (α) = N (β) N (γ )
with N (β), N (γ ) < N (α). By induction assumption, β and γ are products of
primes in Z [i]; hence, so is α.

To prove uniqueness, assume α = π1 . . . πk = σ1 . . . σ� as in the state-
ment. We may assume k ≤ �. Since π1 divides σ1 . . . σ�, and π1 is prime,
by Proposition 2.2.5, we see that π1 divides at least one of the σi ’s; say π1

divides σ1. Write σ1 = ε1 π1, with ε1 ∈ Z [i]. Since σ1 is prime, ε1 must be a
unit. Canceling out π1 in both factorizations, we get π2 . . . πk = ε1 σ2 . . . σ�.
Clearly, we may iterate the process, until we get 1 in the left-hand side. Sup-
pose by contradiction k < �. Then we get 1 = ε1 . . . εk σk+1 . . . σ� and, taking
norms, we get a contradiction. So k = �, which concludes the proof. �

We get a first application of the arithmetic of Z [i] to sums of two squares,
a famous result stated by Fermat around 1640 and proved by Euler in 1793.
We denote by Fq the finite field with q elements and by F×

q the multiplicative
group of nonzero elements in Fq .

2.2.7. Theorem. Let p be an odd prime in N. The following are equivalent:

(i) p ≡ 1 (mod. 4);
(ii) −1 is a square in Fp; i.e., the congruence x2 ≡ −1 (mod. p) has a

solution in Z;
(iii) p is a sum of two squares (so r2(p) > 0).
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Proof.
(i) ⇔ (ii) For y ∈ F×

p , define the packet of y as

Py = {y, −y, y−1, −y−1}.
It is easily checked that the packets do partition F×

p . There might
be some coincidences within a packet Py . One cannot have y = −y
(since y is invertible and p is odd). But one may have y = y−1: this
happens exactly when y = ±1, in which case Py = {1, −1}. And
one may have y = −y−1: this happens exactly when −1 is a square
modulo p, in which case the corresponding packet Py has two ele-
ments. To summarize, we constructed a partition of F×

p into classes
of four elements, with at most two exceptions having two elements
each. Note that the exceptional class P1 is always present. Therefore,
if p ≡ 1 (mod. 4), there must be two classes with two elements, so
that −1 is a square modulo p; and if p ≡ 3 (mod. 4), there must
be just one exceptional class, namely, P1, and −1 is not a square
modulo p.

(ii) ⇒ (iii) Suppose that −1 is a square modulo p. So we find x ∈ Z

such that p divides x2 + 1. Write x2 + 1 = (x + i)(x − i) in Z [i]
and notice that p does not divide either x + i or x − i in Z [i].
By Proposition 2.2.5, this means that p is not a prime in Z [i]. So
there exists a factorization p = αβ in Z [i], where neither factor
is a unit; therefore, N (α) > 1 and N (β) > 1. Taking norms we get
p2 = N (p) = N (α) N (β). This implies N (α) = N (β) = p, so p is a
sum of two squares.

(iii) ⇒ (ii) If p is a sum of two squares, say p = a2 + b2, then a and b are
invertible modulo p. So we find c ∈ Z, such that bc ≡ 1 (mod. p).
Then pc2 = (ac)2 + (bc)2, and reducing modulo p,

0 ≡ (ac)2 + 1 (mod. p),

so that −1 is a square modulo p. �

Here is now the promised characterization of integers which are sums of
two squares: it is a celebrated result of Fermat and Euler.

2.2.8. Corollary. An integer n ≥ 2 is a sum of two squares (so r2(n) > 0) if
and only if every prime number p ≡ 3 (mod. 4) appears with even exponent
in the factorization of n into primes.
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Proof. Let n = a2 + b2 be a sum of two squares. Let p be an odd prime
dividing n. Let pk be the highest power of p dividing both a and b; set
x = a

pk , y = b
pk ; then n

p2k = x2 + y2.
Suppose that p still divides n

p2k . Then, as in the proof that (iii) ⇒ (ii) in
Theorem 2.2.7, one deduces that −1 is a square modulo p. (This follows
from the set that p cannot divide both x and y.) So, p ≡ 1 (mod. 4). By
contraposition, if p ≡ 3 (mod. 4), then p cannot divide n

p2k further, showing
that p appears with an even exponent in the factorization of n.

We leave the proof of the converse as an exercise. �

Coming back to the arithmetic in Z [i], we notice a useful criterion for a
Gaussian integer to be relatively prime to a rational integer.

2.2.9. Lemma. Let m ∈ Z, α ∈ Z [i] : (m, α) = 1 if and only if
(m, N (α)) = 1.

Proof.
(⇒) If (m, α) = 1, then by Bézout’s relation we can find γ, δ ∈ Z [i] such

that 1 = γ m + δα. Then

N (δ) N (α) = N (1 − γ m) = (1 − γ m)(1 − γ m)

= 1 − (γ + γ ) m + N (γ ) m2,

or N (δ) N (α) + (γ + γ ) m − N (γ ) m2 = 1. Note thatγ + γ and N (γ )
belong to Z. So, if β ∈ Z [i] divides both m and N (α), then it divides
1, showing that β is a unit.

(⇐) Assume that (m, N (α)) = 1. If δ ∈ Z [i] divides both m and α, then δ

divides m and N (α) = α α. Again, δ must divide 1, so δ is a unit. �

We can now characterize the primes in Z [i].

2.2.10. Proposition. A Gaussian integer π ∈ Z [i] is prime if and only if one
of the following three mutually exclusive cases occur:

(i) N (π ) = 2 (in this case π is an essociate of 1 + i ; that is, π ∈ {1 ±
i, −1 ± i});

(ii) N (π ) = p, where p is a prime in Z and p ≡ 1 (mod. 4);
(iii) π is associate to q , where q is a prime in Z, and q ≡ 3 (mod. 4).

Proof. (⇒) Let π be a prime in Z [i], and let p be a prime in Z dividing
N (π ). Set δ = (p, π ). By Lemma 2.1.9, δ is not a unit. Since π is prime, δ

is associate to π , so we may assume δ = π . Write then p = πγ , for some
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γ ∈ Z [i]. Taking norms we have p2 = N (π ) N (γ ), or p = N (π)
p · N (γ ). Two

cases then appear:

(a) N (π )
p = 1, forcing N (π ) = p. Then p is a sum of two squares, and by

Theorem 2.2.7, we have either p = 2 or p ≡ 1 (mod. 4).
(b) N (γ ) = 1, in which case π is associate to p and p is a prime in Z [i].

Then p is not a sum of two squares and therefore p ≡ 3 (mod. 4).

(⇐) Observe that, if N (π ) is prime in Z, then π is prime in Z [i]. Indeed, if
π = αβ, taking norms we get N (π ) = N (α) N (β), which gives immediately
that either α or β is invertible. So, if either N (π ) = 2 or N (π ) = p, with
p ≡ 1 (mod. 4), then π is prime in Z [i]. On the other hand, if q is prime
in Z, q ≡ 3 (mod. 4), then q remains prime in Z [i]: indeed, if q = αβ for
α, β ∈ Z [i], then taking norms we get q2 = N (α) N (β); since q is not a
sum of two squares by Theorem 2.2.7, we cannot have N (α) = N (β) = q.
Therefore, either α or β is a unit in Z [i]. �

With this in hand, we now reach Legendre’s formula for r2(n), for which
we will need some additional notation. For n ∈ N we make the following
definitions:

� d1(n) is the number of divisors of n ∈ N which are congruent to
1 modulo 4;

� d3(n) is the number of divisors of n ∈ N which are congruent to
3 modulo 4;

� d(n) is the number of divisors of n.

2.2.11. Theorem. For n ∈ N, n > 0 : r2(n) = 4 (d1(n) − d3(n)).

Proof. Set δ(n) = d1(n) − d3(n). Assume first that N ∈ N is odd and write
N = km, where

k =
a∏

h=1

prh
h (ph ≡ 1 (mod. 4)),

m =
b∏

j=1

q
s j

j (q j ≡ 3 (mod. 4)).

A divisor of N is congruent to 1 modulo 4 if and only if an even number of
q j ’s, counting multiplicities, appears in its factorization. From this we deduce

δ(N ) = d(k) δ(m).
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Claim.

δ(m) =
{

0 if at least one s j is odd
1 if all s j ’s are even, that is, if m is a square.

To prove the claim, set m ′ = m
q

s1
1

. Note that δ(1) = 1. If s1 is even, then

d1(m) = ( s1
2 + 1

)
d1(m ′) + s1

2 d3(m ′)

d3(m) = s1
2 d1(m ′) + ( s1

2 + 1
)

d3(m ′),

so that δ(m) = δ(m ′). If s1 is odd, then,

d1(m) = s1 + 1

2
d1(m ′) + s1 + 1

2
d3(m ′) = d3(m),

so that δ(m) = 0 in this case. This proves the claim.

From the claim, we deduce that

δ(N ) =
{

d(k) if m is a square,
0 otherwise.

Now, let n > 0 be an integer. Write n = 2t N , with N odd and N = km as
before. Note that δ(n) = δ(N ). If m is not a square, then δ(n) = 0 by the
previous, and also r2(n) = 0 by Corollary 2.2.8. So the theorem is true in
this case. Assume now that m is a square. Then we know, by Corollary 2.2.8
again, that r2(n) > 0. The idea is, on one hand, to write n = A2 + B2 and, on
the other, to factor n into primes in Z [i] using unique factorization and the
description of primes in Z [i] from Propositions 2.2.6 and 2.2.10. Equating
these, we get

n = A2 + B2 = (A + i B)(A − i B) = (−i)t (1 + i)2t
a∏

h=1

π
rh
h π

rh
h

b∏
j=1

q
s j

j ,

where πh ∈ Z [i] is a prime, such that N (πh) = ph . Now r2(n) is the number
of factorizations of n as (A + i B)(A − i B) in Z [i]. By unique factorization,
and the fact that N (A + i B) = N (A − i B), we must have

A + i B = u(1 + i)t
a∏

h=1

π
wh
h π

uh
h

b∏
j=1

q
s j
2

j

A − i B = u′(1 + i)t
a∏

h=1

π
uh
h π

wh
h

b∏
j=1

q
s j
2

j ,
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with u, u′ units, such that uu′ = (−i)t and uh + wh = rh (1 ≤ h ≤ a). The
freedom lies in the choice of u and of the uh’s. The number of possible choices
for A + i B is therefore

4
a∏

h=1

(rh + 1) = 4 d(k) = 4 δ(N ) = 4 d(n). �

Fixing ε > 0, we say that a real quantity f (n), depending on n ∈ N, is a
0ε(nε) if there exists a constant C = C(ε) > 0, such that

| f (n)| ≤ Cnε

for every n ∈ N. Using Theorem 2.2.11, we may estimate the order of mag-
nitude of r2(n).

2.2.12. Corollary. For all ε > 0 : r2(n) = 0ε(nε).

Proof. From Theorem 2.2.11, r2(n) ≤ 4 (d1(n) + d3(n)) ≤ 4 d(n). We leave
it as an exercise to check that d(n) = 0ε(nε). �

There is no simple formula as 2.2.11 for r3(n). (See the notes at the end of
Chapter 2.) Nevertheless, we may estimate the order of magnitude of r3(n).

2.2.13. Corollary. For all ε > 0 : r3(n) = 0ε(n
1
2 +ε).

Proof. We have

r3(n) =
[
√

n]∑
k=0

r2(n − k2)

≤ C(ε)
[
√

n]∑
k=0

(n − k2)ε by Corollary 2.2.12

≤ C(ε) n
1
2 +ε. �

Exercises on Section 2.2

1. Describe an infinite, one-parameter family of solutions x = f (t), y =
g(t), z = h(t), where x2 + y2 = z2 and (x, y, z) = 1.

2. Prove, without appealing to Theorem 2.2.11, that d1(n) − d3(n) ≥ 0.

3. Prove that d(n) = 0ε(nε) for every ε > 0.
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4. Let m, n be rational integers. Prove that m, n are relatively prime in Z [i],
if an only if m, n are relatively prime in Z.

5. Let n > 0 be an integer, such that every prime p ≡ 3 (mod. 4) appears
with an even exponent in n. Prove that n is a sum of two squares. [Hint:
use Theorem 2.2.7 and the fact that 2 is a sum of two squares.]

6. Let p be an odd prime. The aim of this exercise is to give a group-
theoretical proof of the fact that −1 is a square modulo p if and only if
p ≡ 1 (mod. 4). First prove that −1 is a square modulo p if and only
if the multiplicative group F×

p (of order p − 1) contains a subgroup of
order 4. Conclude by appealing to the fact that F×

p is a cyclic group.

2.3. Quadratic Reciprocity

Let p be an odd prime. Theorem 2.2.7 gives a complete answer to the question,
“When is −1 a square modulo p?” Quadratic reciprocity, due to Gauss, deals
with the more general question, “When is m ∈ Z a square modulo p?”

We begin by defining the Legendre symbol
(

m
p

)
as

(
m

p

)
=




0 if p divides m;
1 if p does not divide m and m is a square modulo p;
−1 if p does not divide m and m is not a square modulo p.

Using the fact that the group of squares of F×
p has index 2 in F×

p (see exercise
2 in the following), one deduces the multiplicative relation(

mn

p

)
=

(
m

p

) (
n

p

)
(m, n ∈ Z).

The following lemma has its own interest:

2.3.1. Lemma. For n ∈ Z : n
p−1

2 ≡
(

n
p

)
(mod. p).

Proof. The result is obvious if n is a multiple of p, so we may assume that
p does not divide n. Then n p−1 ≡ 1 (mod. p), by Fermat’s theorem, which
means that n

p−1
2 ≡ ±1 (mod. p). If n is a square modulo p, say n ≡ m2

(mod. p), then n
p−1

2 ≡ m p−1 ≡ 1 (mod. p), again by Fermat’s theorem. Now,
since Fp is a field, the equation x

p−1
2 = 1 has at most p−1

2 solutions in Fp.
But we just checked that each square in F×

p provides a solution, and there are
p−1

2 such squares. In other words, the set of solutions of x
p−1

2 = 1 is exactly
the set of squares in F×

p . Therefore, if n is not a square modulo p, we must

have n
p−1

2 ≡ −1 (mod. p). �
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From the multiplicativity of the Legendre symbol, we see that, to compute(
m
p

)
for an arbitrary integer m, it is enough to compute the values of the

Legendre symbol for primes in Z and for −1. The answer to this question is
provided by Gauss’ celebrated law of quadratic reciprocity.

2.3.2. Theorem. Let p be an odd prime. Then

(i)
(

−1
p

)
= (−1)

p−1
2 ;

(ii)
(

2
p

)
= (−1)

p2−1
8 ;

(iii) if q is an odd prime, distinct from p :
(

q
p

)
= (−1)

(p−1)(q−1)
4

(
p
q

)
.

Proof.
(i) This is just a rephrasing of the Fermat – Euler Theorem 2.2.7.

(ii) For every integer k ∈ Z, there is a unique integer r ∈ [−p/2, p/2],
such that k ≡ r (mod. p); we call r the minimal residue of k. Now we
compute the minimal residues of the p−1

2 numbers 2, 4, 6, . . . , p − 1.

Assume p ≡ 1 (mod. 4); we get 2; 4; . . . ; p−1
2 ; −

(
p−3

2

)
; −

(
p−7

2

)
;

. . . ; −1. Note that, in absolute values, we just get a permutation of
the p−1

2 numbers 1, 2, . . . ,
p−1

2 . Also, p−1
4 of the minimal residues

are negative. Taking the product of them all, we get

(−1)
p−1

4

(p−1)/2∏
j=1

j ≡
(p−1)/2∏

j=1

(2 j) (mod. p)

≡ 2
p−1

2

(p−1)/2∏
j=1

j (mod. p).

Cancelling out
(p−1)/2∏

j=1
j , we get

2
p−1

2 ≡ (−1)
p−1

4 ≡ (−1)
p2−1

8 (mod. p).

By Lemma 2.3.1, we also have
(

2
p

)
≡ (−1)

p2−1
8 .

For p ≡ 3 (mod. 4), we proceed in the same way, except that there

are now p+1
4 negative minimal residues, to the effect that

(
2
p

)
=

(−1)
p+1

4 = (−1)
p2−1

8 also in this case.
(iii) We first study some properties of the minimal residues. Let m be an in-

teger, not divisible by p. We consider the minimal residues of the p−1
2
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numbers m, 2m, . . . ,
p−1

2 m. Since these numbers are pairwise non-
congruent modulo p, the minimal residues form a family of p−1

2 inte-
gers in [−p/2, p/2]; among these, we denote by r1, . . . , rλ the posi-

tive ones; and by −r ′
1, . . . , −r ′

µ, the negative ones
(
λ + µ = p−1

2

)
.

Claim 1. The family {r1, . . . , rλ, r ′
1, . . . , r ′

µ} is a rearrangement of
{

1, 2, . . . ,

p−1
2

}
. Indeed, the ri ’s and r ′

j ’s are integers between 1 and p−1
2 . So it is enough

to see that ri �= r ′
j , for every i and j . For exactly one a ∈

{
1, . . . ,

p−1
2

}
we have am ≡ ri (mod. p), and for exactly one b ∈

{
1, . . . ,

p−1
2

}
we have

bm ≡ −r ′
j (mod. p). So if ri = r ′

j , we get (a + b) m ≡ 0 (mod. p); hence

a + b ≡ 0 (mod. p), which is impossible since 1 ≤ a, b ≤ p−1
2 . This proves

Claim 1.

We now generalize what we did for m = 2 in part (ii) of the proof.

Claim 2. With m, µ as before:
(

m
p

)
= (−1)µ. Indeed, consider

(p−1)/2∏
j=1

(mj) = m
p−1

2

(p−1)/2∏
j=1

j ;

by Claim 1, the numbers r1, . . . , rλ, r ′
1, . . . , r ′

µ form a rearragement of 1,

2, . . . ,
p−1

2 , so we get

m
p−1

2

(p−1)/2∏
j=1

j ≡ (−1)µ
(p−1)/2∏

j=1

j (mod. p).

Cancelling out
(p−1)/2∏

j=1
j , we get m

p−1
2 ≡ (−1)µ (mod. p). By Lemma 2.3.1,

we have m
p−1

2 ≡
(

m
p

)
(mod. p), so that, finally,

(
m
p

)
= (−1)µ. This proves

Claim 2.

We now define S(p, q) =
(p−1)/2∑

k=0

[
kq
p

]
.

Claim 3. Let µ be the number of negative minimal residues of the sequence
q, 2q, . . . ,

p−1
2 · q . Then S(p, q) has the same parity as µ.
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To see this, for k = 1, . . . ,
p−1

2 , write kq = p
[

kq
p

]
+ uk , with uk ∈

{1, . . . , p − 1}; note that uk is nothing but the remainder in the Euclidean
division of kq by p. If uk <

p
2 , then uk is the minimal residue of qk, so that

uk = ri for exactly one i ; if uk >
p
2 , then uk − p is the minimal residue of

kq, so that uk − p = −r ′
j for a unique j . Set R =

λ∑
i=1

ri and R′ =
µ∑

j=1
r ′

j , so

that R = ∑
k:uk<

p
2

uk and R′ = µp − ∑
k:uk>

p
2

uk .

Since r1, . . . , rλ, r ′
1, . . . , r ′

µ is a rearrangement of 1, . . . ,
p−1

2 (by Claim 1),
we have

p2 − 1

8
=

(p−1)/2∑
k=1

k = R + R′ = µp +
∑

k:uk<
p
2

uk −
∑

k:uk>
p
2

uk ;

that is, µ +
(p−1)/2∑

k=1
uk ≡ p2−1

8 (mod. 2). Now, summing kq = p
[

kq
p

]
+ uk

from k = 1 to k = p−1
2 , we get

q
p2 − 1

8
= p · S(p, q) +

(p−1)/2∑
k=1

uk ;

hence, p2−1
8 ≡ S(p, q) +

(p−1)/2∑
k=1

uk (mod. 2). This immediately gives

S(p, q) ≡ µ (mod. 2), proving Claim 3.

Claim 4. S(p, q) + S(q, p) = (p−1)(q−1)
4 .

To see this, we consider the rectangle
[
1,

p−1
2

]
×

[
1,

q−1
2

]
in R2. Clearly

it contains p−1
2 · q−1

2 integer points. We are going to count these points in
another way, counting first the ones below the line y = qx

p and then the ones
above that line. (Note that no integral point from the rectangle lies on the
line.)

(0, 0)

(1,          )q − 1
2

p − 1
2

(       ,         )q − 1
2

p − 1
2

(       ,         )q − 1
2

p − 1
2

(       , 1)(1, 1)
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Clearly the number of integer points under the line is
(p−1)/2∑

k=1

[
kq
p

]
, while the

number of integer points above the line is
(q−1)/2∑

�=1

[
�p
q

]
. This proves Claim 4.

To conclude the proof, we now observe that, with µ as in Claim 3, we have(
q

p

)
= (−1)µ (by Claim 2)

= (−1)S(p,q) (by Claim 3).

Similarly, we have
(

p
q

)
= (−1)S(q,p). Multiplying together, we get(

p
q

) (
q
p

)
= (−1)S(p,q)+S(q,p) = (−1)

(p−1)(q−1)
4 by Claim 4. This concludes the

proof of Gauss’ law of quadratic reciprocity. �

Exercises on Section 2.3

Let p be an odd prime.

1. Prove that p2 − 1 is divisible by 8.

2. Complete the proof of Theorem 2.3.2 (ii) for p ≡ 3 (mod. 4).

3. Prove that there are p−1
2 squares in F×

p . [Hint: show that the map F×
p →

F×
p : x �→ x2 is a group homomorphism. What is its kernel?]

4. Show that

(−3

p

)
=




1 if p ≡ 1 (mod. 6) ;
−1 if p ≡ −1 (mod. 6) ;
0 if p = 3.

5. Show that

(
5

p

)
=




1 if p ≡ ±1 (mod. 10) ;
−1 if p ≡ ±3 (mod. 10) ;
0 if p = 5.

2.4. Sums of Four Squares

The aim of this section is to prove the following classical result, due to Jacobi.

2.4.1. Theorem. Let n be an odd positive integer. Then r4(n) = 8
∑
d|n

d. The

proof rests on three lemmas.
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2.4.2. Lemma. For every n ∈ N : r4(2n) = r4(4n).

Proof. If x2
0 + x2

1 + x2
2 + x2

3 = 4n, one sees by reducing mod. 4 that either
all xi ’s are even or they are all odd. Therefore, the change of variables

y0 = x0 − x1

2
, y1 = x0 + x1

2
, y2 = x2 − x3

2
, y3 = x2 + x3

2

(with inverse x0 = y0 + y1, x1 = y1 − y0, x2 = y2 + y3, x3 = y3 − y2) maps
an integral solution of x2

0 + x2
1 + x2

2 + x2
3 = 4n to an integral solution of

y2
0 + y2

1 + y2
2 + y2

3 = 2n and establishes a bijection between the two sets of
solutions. �

2.4.3. Lemma. For odd n ∈ N : r4(2n) = 3 r4(n).

Proof. If x2
0 + x2

1 + x2
2 + x2

3 = 2n, by reducing mod. 4 we see that ex-
actly two of the xi ’s are even, while the other ones are odd. Hence, the
integer solutions of x2

0 + x2
1 + x2

2 + x2
3 = 2n can be partitioned into three

classes:

{
x0 ≡ x1 (mod. 2)
x2 ≡ x3 (mod. 2)

;

{
x0 ≡ x2 (mod. 2)
x1 ≡ x3 (mod. 2)

;

{
x0 ≡ x3 (mod. 2)
x1 ≡ x2 (mod. 2)

.

By changes of variables similar to the ones used in the proof of Lemma 2.4.2,
each of these classes is in bijection with the set of solutions of y2

0 + y2
1 +

y2
2 + y2

3 = n. �

For the previous lemma, we need one more notation: for k ≥ 2 and n ∈ N,
let Nk(n) be the number of representations of n as a sum of k squares of
positive odd integers:

Nk(n) =
∣∣∣∣∣
{

(x0, . . . , xk−1) ∈ Nk :
k−1∑
i=0

x2
i = n,

xi ≡ 1 (mod. 2) , 0 ≤ i ≤ k − 1

}∣∣∣∣∣.
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2.4.4. Lemma. For odd n ∈ N : N4(4n) = ∑
d|n

d .

Proof. Noticing that a sum of four squares is a sum of two sums of two
squares, we get the convolution formula

N4(4n) =
∑

(r,s):r+s=4n
r,s≥0

N2(r ) N2(s).

Since a sum of two odd squares is congruent to 2 modulo 4, we may rewrite
this as

N4(4n) =
∑

(r,s):r+s=4n
r≡s≡2 (mod. 4)

N2(r ) N2(s).

By Theorem 2.2.11, we have r2(k) = 4 (d1(k) − d3(k)). But r2 counts positive
and negative solutions, while N2 counts only positive solutions; so

N2(r ) = d1(r ) − d3(r ).

Now r ≡ 2 (mod. 4), so r
2 is odd. Divisors of r which contribute to the latter

formula are exactly divisors of r
2 ; that is,

N2(r ) =
∑

(a,b):r=2ab

(−1)
a−1

2 ;

similarly,

N2(s) =
∑

(c,d):s=2cd

(−1)
c−1

2 =
∑

(c,d):s=2cd

(−1)
1−c

2 .

(Here a, b, c, d are positive, odd integers.) Hence,

N4(4n) =
∑

(a,b,c,d):4n=2ab+2cd
a,b,c,d>0, odd

(−1)
a−c

2 .

Now we perform the change of variables

a = x + y ; c = x − y ; b = z − t ; d = z + t,

with inverse

x = a + c

2
; y = a − c

2
; z = b + d

2
; t = d − b

2
.

Then

ab + cd = 2 (xz − yt)



P1: IJG

CB504-03drv CB504/Davidoff September 24, 2002 12:53

2.4. Sums of Four Squares 55

and

N4(4n) =
∑

(x,y,z,t):n=xz−yt
|y|<x,|t |<z, x �≡y (mod. 2),z �≡t (mod. 2)

(−1)y .

Note that x and z are both positive. We now split this sum in three parts:

N4(4n) = N+ + N0 + N−,

according to y > 0, y = 0, y < 0.

Claim 1. N+ = N−. Indeed the change of variables

(x, y, z, t) �→ (x, −y, z, −t)

establishes a bijection between the 4-tuples contributing to N+ and the ones
contributing to N−.

Claim 2. N+ = 0. First, let us consider the set Q of 4-tuples contributing to
N+:

Q = {(x, y, z, t) : n = xz − yt ; 0 < y < x ; |t | < z ; x �≡ y (mod. 2) ;

z �≡ t (mod. 2)}.
Now we make a change of variables α defined by

x ′ = 2v(x, y) z − t ; y′ = z ; z′ = y ; t ′ = 2v(x, y) y − x,

where v(x, y) is the unique positive integer v, such that

2v − 1 <
x

y
< 2v + 1.

(Since x �≡ y (mod. 2), the rational number x
y > 1 is not an odd integer.) We

now study properties of α.

(i) α(Q) ⊂ Q. This is a cumbersome calculation, but a straightforward
one.

(ii) α2 = Id. To see this, notice that v(x, y) = v(x ′, y′): this follows since
x ′
y′ = 2v(x,y) z−t

z = 2v(x, y) − t
z and 2v(x, y) − 1 < 2v(x, y) − t

z <

2v(x, y) + 1, since |t | < z.
It is then easy to check that α2 = Id.

(iii) If (x, y, z, t) ∈ Q, then y �≡ y′ (mod. 2). In particular, α is a fixed point
free involution of Q. Since n = xz − yt is odd, xz �≡ yt (mod. 2).
Noting that t �≡ z (mod. 2) and x �≡ y (mod. 2), the result for y and
y′ is immediate.
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From (i) and (ii) we see that

N+ =
∑

(x,y,z,t)∈Q

(−1)y =
∑

(x ′,y′,z′,t ′)∈Q

(−1)y′
.

By (iii), the term associated with (x, y, z, t) is the negative of the one as-
sociated with (x ′, y′, z′, t ′). Hence, N+ = −N+, and so N+ = 0, proving
Claim 2.

From Claims 1 and 2, it remains to prove that N0 = ∑
d|n

d. But, by definition

N0 = |{(x, z, t) : n = xz , |t | < z , z �≡ t (mod. 2)}|.

Note that, in such a triple (x, z, t), the integer z must be odd since n is. Now,
for a fixed odd integer z, there are exactly z even integers in the interval
[−z, z]. Hence, N0 = ∑

z|n
z, completing the proof of Lemma 2.4.4. �

Proof of Theorem 2.4.1. We begin with a

Claim. For n odd, we have r4(4n) = 16 N4(4n) + r4(n).

Indeed, if x2
0 + x2

1 + x2
2 + x2

3 = 4n, as in the proof of Lemma 2.4.2, we
observe that either all xi ’s are even or they are all odd. In the first case,
the change of variables yi = xi

2 (i = 0, 1, 2, 3) provides a bijection between
the set of even solutions of x2

0 + x2
1 + x2

2 + x2
3 = 4n and the set of solu-

tions of y2
0 + y2

1 + y2
2 + y2

3 = n; so there are r4(n) such solutions. In the
second case, there are sixteen N4(4n) solutions (the coefficient 16 com-
ing from the 24 possible choices for the signs of the xi ’s). This proves the
claim.

Then,

3 r4(n) = r4(2n) (by Lemma 2.4.3)

= r4(4n) (by Lemma 2.4.2)

= 16 N4(4n) + r4(n) (by the previous Claim)

= 16

(∑
d|n

d

)
+ r4(n) (by Lemma 2.4.4).

Cancelling out gives the statement of Theorem 2.4.1. �
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Exercises on Section 2.4

1. In the proof of Lemma 2.4.3, check that the inverse changes of variables
map solutions of y2

0 + y2
1 + y2

2 + y2
3 = n to solutions of x2

0 + x2
1 + x2

2 +
x2

3 = 2n which satisfy the correct parity conditions.

2. Fill in the details in the proof of claim 2, in Lemma 2.3.4.

2.5. Quaternions

In section 2.2, we have seen that there is an algebraic structure underlying
sums of two squares: the ring of Gaussian integers. It turns out that there
is a similar structure underlying sums of four squares: the ring of integer
quaternions. However, the lack of commutativity makes this structure rather
more subtle. We split the exposition in two parts: in this section, we present
general definitions and properties of quaternions over R, an arbitrary commu-
tative ring with a multiplicative identity (usually called a commutative ring
with unit), and we postpone to section 2.6 the discussion of the arithmetic of
integer quaternions.

2.5.1. Definition. The Hamilton quaternion algebra over R, denoted by
H (R), is the associative unital algebra given by the following presentation:

(i) H (R) is the free R-module over the symbols 1, i, j, k; that is,
H (R) = {a0 + a1 i + a2 j + a3 k : a0, a1, a2, a3 ∈ R};

(ii) 1 is the multiplicative unit;
(iii) i2 = j2 = k2 = −1;
(iv) i j = − j i = k; jk = −k j = i ; ki = −ik = j .

This definition is natural, in the sense that any unital ring homomorphism
R1 → R2 extends to a unital ring homomorphism H (R1) → H (R2) by map-
ping 1 to 1, i to i , j to j and k to k.

If q = a0 + a1 i + a2 j + a3 k is a quaternion, its conjugate quaternion
is q = a0 − a1 i − a2 j − a3 k. The norm of q is N (q) = q q = q q = a2

0 +
a2

1 + a2
2 + a2

3 . Note that the quaternionic norm, like the Gaussian norm, is
multiplicative; that is, given q1, q2 ∈ H(R),

N (q1 q2) = N (q1) N (q2).

(Hence, the product of two sums of four squares is itself a sum of four squares.
This fact is crucial since it reduces the problem of representing any natural
number as a sum of four squares to one of finding such a representation for
primes alone.)
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We will need to identify certain quaternion algebras with algebras of 2 × 2
matrices over a field. Again, though we will be interested specifically in the
finite field Fq , this identification can be defined over more general fields.

The characteristic of a ring is either zero or the smallest positive integer
m, such that

0 = m · 1 = 1 + 1 + . . . + 1 (m times).

In an integral domain and, therefore, in any field, the characteristic must be
zero or a prime number. The rationals Q, the real numbers R, and the complex
numbers C are all fields with characteristic zero; while for any prime power
q = p�, the finite field Fq has characteristic p. With this in hand, we have the
following:

2.5.2. Proposition. Let K be a field, not of characteristic 2. Assume that
there exists x, y ∈ K , such that x2 + y2 + 1 = 0. Then H (K ) is isomorphic
to the algebra M2(K ) of 2-by-2 matrices over K .

Proof. Let ψ : H (K ) → M2(K ) be defined by

ψ(a0 + a1 i + a2 j + a3 k) =
(

a0 + a1 x + a3 y −a1 y + a2 + a3 x
−a1 y − a2 + a3 x a0 − a1 x − a3 y

)
.

One checks that ψ(q1 q2) = ψ(q1) ψ(q2) for q1, q2 ∈ H (K ). Since ψ is a
K -linear map between two K -vector spaces of the same dimension 4, to
prove that ψ is an isomorphism it is enough to show that ψ is injective. But
ψ(a0 + a1 i + a2 j + a3 k) = 0 leads to a 4-by-4 homogeneous linear system
in the variables a0, a1, a2, a3, with determinant∣∣∣∣∣∣∣

1 x 0 y
0 −y 1 x
0 −y −1 x
1 −x 0 −y

∣∣∣∣∣∣∣ = −4 (x2 + y2) = 4 �= 0

(since char K �= 2). �

Proposition 2.5.2 obviously applies not only to algebraically closed fields,
but also to, as we shall see, any finite field Fq , where q is an odd prime power.

2.5.3. Proposition. Let q be an odd prime power. There exists x, y ∈ Fq ,
such that x2 + y2 + 1 = 0.
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First Proof (Nonconstructive). Counting 0, there are q+1
2 squares in Fq . De-

fine then

A+ = {1 + x2 : x ∈ Fq} ; A− = {−y2 : y ∈ Fq}.
Since |A+| = |A−| = q+1

2 , we have A+ ∩ A− �= ∅, hence, the result.

Second Proof (Constructive). Clearly it is enough to prove the result for the
prime field Fp (p an odd prime). If −1 is a square modulo p, take the smallest
x in {2, . . . , p − 2}, such that x2 + 1 = 0, and y = 0. If −1 is not a square
modulo p, let a be the largest quadratic residue in {1, . . . , p − 2}; then a + 1
is not a square modulo p, and therefore −a − 1 is a square modulo p. Let x
(resp. y) be the smallest element in {1, . . . , p − 2}, such that x2 ≡ a (mod. p)
(resp. y2 ≡ −a − 1 (mod. p)). Then x2 + y2 + 1 ≡ 0 (mod. p). Note that
none of these proofs make use of the quadratic reciprocity 2.3.2. �

Exercises on Section 2.5

1. For R a unital commutative ring:
(a) Check that H (R) is associative;
(b) Show that the map H (R) → H (R) : q �→ q is an anti-automorphism

(i.e., q1 q2 = q2 q1 for q1, q2 ∈ H (R)).

2. Let ψ : H (K ) → M2(K ) be the map defined in the proof of Proposi-
tion 2.5.2.
(a) Check that ψ(q1 q2) = ψ(q1) ψ(q2), for q1, q2 ∈ H (K );
(b) for q ∈ H (K ), show that det ψ(q) = N (q) and that Tr ψ(q) = q + q;
(c) check that ψ maps “real” quaternions (those with q = q) to scalar

matrices.

3. For q ∈ H (Z), prove that the following properties are equivalent
(a) q is invertible in H (Z);
(b) N (q) = 1;
(c) q ∈ {±1, ± i, ± j, ± k}.

2.6. The Arithmetic of Integer Quaternions

We now restrict ourselves to H(Z) and explore some arithmetic properties
of this particular ring. Its interest comes from the fact that a rational integer
is a sum of four squares if and only if it is the norm of some quaternion
in H(Z). From exercise 3 of the previous section, we have seen that the
invertible elements, or units, are ±1, ±i , ± j , ±k. As in Z and Z [i], there
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is a factorization into primes for any integer quaternion, though in H(Z) this
factorization is no longer unique. We will show that as a noncommutative
ring, H(Z) has a modified Euclidean algorithm and corresponding greatest
common right-hand and left-hand divisors that are unique up to associates.
We will then see that no rational prime remains prime in H(Z) but, instead,
can be factored into a product of two conjugate prime quaternions. In fact,
determining whether a quaternion integer is prime is extremely simple: α ∈
H(Z) is prime if and only if N (α) is prime in Z. This presents a contrast to
the situation in Z [i], where any rational prime q ≡ 3 (mod. 4) remains prime
but has Gaussian norm N (q) = q2.

Let us begin with some definitions:

2.6.1. Definition.

(a) A quaternion α ∈ H(Z) is odd (respectively, even) if N (α) is an odd
(respectively, even) rational integer.

(b) A quaternion α ∈ H(Z) is prime if α is not a unit in H(Z), and if,
whenever α = βγ in H(Z), then either β or γ is a unit.

(c) Two quaternions α, α′ ∈ H(Z) are associate if there exist unit quater-
nions ε, ε′ ∈ H(Z), such that α′ = εαε′.

(d) δ ∈ H(Z) is a right-hand divisor of α ∈ H(Z) if there is γ ∈ H(Z),
such that α = γ δ.

Because N (ε) = 1 for any unit ε, “being associate” is an equivalence
relation on the elements of H(Z) that preserve arithmetic properties such as
being odd or even, being prime, or being a unit.

Recall that, for Z and Z [i], we were able to use Bézout’s relation to move
from the definition of a prime as an irreducible to the following (Proposi-
tion 2.2.5). π is a prime if and only if whenever π divides a product xy; then
π divides x or π divides y. However, we clearly cannot adapt this statement
to the noncommutative ring H(Z), since a right divisor of xy cannot generally
be a possible right divisor of x . Hence, we will need to proceed without that
property for primes in H(Z). Nevertheless, the definition of primes in 2.6.1(b)
immediately gives existence of factorization into prime quaternions.

2.6.2. Proposition. Every quaternion α ∈ H(Z) is a product of prime
quaternions.

Proof. We proceed by induction over N (α), the case N (α) = 1 (i.e., α in-
vertible) being trivial. So assume N (α) > 1. If α is prime, there is nothing
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to prove. Otherwise, we find a factorization α = βγ , where neither β nor
γ is invertible in H(Z). So β, γ satisfy N (β) < N (α), N (γ ) < N (α). By
induction hypothesis, β and γ are products of primes, and so is α. �

Note that the factorization in Proposition 2.6.2 is not necessarily unique
(not even up to associates); e.g.,

13 = (1 + 2i + 2 j + 2k)(1 − 2i − 2 j − 2k) = (3 + 2i)(3 − 2i)

are two genuinely different factorizations of 13 into prime quaternions.
We proceed with the partial Euclidean algorithm, that is, one confined to

odd quaternions and multiplication on the right. An analogous result holds
for multiplication on the left, but the associated γ1 and δ1 are not necessarily
the same. We will use this right-hand Euclidean algorithm to construct the
greatest common right-hand divisor, but obvious modifications in the proofs
lead to equivalent left-hand results.

2.6.3. Lemma. Let α and β ∈ H(Z), with β odd. There exists γ , δ ∈ H(Z),
such that

α = γβ + δ and N (δ) < N (β).

Proof. We begin with a

Claim. Given σ = s0 + s1 i + s2 j + s3 k ∈ H(Z), and m an odd positive in-
teger, there exists γ ∈ H(Z), such that N (σ − γ m) < m2. Indeed, for each si

we can find ri ∈ Z, such that

m ri − m

2
< si < m ri + m

2

(strict inequality holds because m is odd). Write si = m ri + ti , with |ti | <
m
2 . Set γ = r0 + r1 i + r2 j + r3 k; then N (σ − γ m) = t2

0 + t2
1 + t2

2 + t2
3 <

4
(

m
2

)2 = m2; this proves the claim.
To prove the lemma, set m = N (β) = β β and σ = α β. By the claim we

can find γ ∈ H(Z), such that

N (β) N (β) = N (β)2 = m2 > N (σ − γ m) = N (α β − γ β β)

= N (α − γβ) N (β).

Setting δ = α − γ β and cancelling out N (β), we get N (δ) < N (β), as
required. �
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Note that the left-hand Euclidean algorithm provides for γ1, δ1 ∈ H(Z),
such that α = β γ1 + δ1, with N (δ1) < N (β).

2.6.4. Definition. Let α, β be integral quaternions. We say that δ ∈ H(Z) is
a right-hand greatest common divisor of α and β if

(a) δ is a right-hand divisor of α and β;
(b) if δ0 ∈ H(Z) is a right-hand divisor of both α and β, then δ0 is a right-

hand divisor of δ.

We denote such a δ by (α, β)r ; it is clear that (α, β)r is unique up to
associate, if it exists. We plan to show that, under suitable conditions, (α, β)r

indeed exists.

2.6.5. Lemma. Let α ∈ H(Z). Then α has a unique factorization:

α = 2� π α0,

where � ∈ N, π ∈ {1, 1 + i, 1 + j, 1 + k, (1 + i)(1 + j), (1 + i)(1 − k)} and
α0 ∈ H(Z) is odd.

Proof. We indicate how to prove existence, leaving the proof of uniqueness
as an exercise. So fix α ∈ H(Z); let 2� be the highest power of 2 dividing α;
set α′ = α

2� , and write

α′ = a0 + a1 i + a2 j + a3 k,

where at least one of the ai ’s is odd. Since multiplication by a unit changes
the position of the ai ’s, up to associate we may assume that a0 is odd. Now,
if α′ is odd, then α = 2� α′ and we are finished. Therefore, we may assume
α′ even, and two cases then occur.

(a) N (α′) ≡ 2 (mod. 4).

Then exactly two ai ’s are odd, with a0 among them. If, say, a0 and a1 are odd,
then

α0 = a0 + a1

2
+

(
a1 − a0

2

)
i +

(
a2 + a3

2

)
j +

(
a3 − a2

2

)
k

is in H(Z), it is odd, and α′ = (1 + i) α0. The other possibilities (a0 and a2

odd, or a0 and a3 odd) allow one to factor out either 1 + j or 1 + k and are
treated in the same way:

(b) N (α′) ≡ 0 (mod. 4).
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Then all the ai ’s are odd, therefore congruent to ±1 (mod. 4). In any case
N (α′) ≡ 4 (mod. 8). In this case we need to consider the possibilities for
various combinations of congruences modulo 4, in principle sixteen different
subcases. However, one finds that these can be grouped into two families of
eight subcases each, depending on whether an even or an odd number of the
ai ’s are congruent to 1 (mod. 4).

Claim A. If an even number of the ai ’s are congruent to 1 (mod. 4), then
there exists an odd quaternion α1, such that α′ = (1 + i)(1 + j) α1.

Proof. First note that, multiplying by a unit if necessary, we may assume that
a0 ≡ 1 (mod. 4). First assume that a0 ≡ a1 ≡ 1 (mod. 4) and a2 ≡ a3 ≡ ±1
(mod. 4). As in case (a), we then have α′ = (1 + i) α0 with

α0 = a0 + a1

2
+

(
a0 − a1

2

)
i +

(
a2 + a3

2

)
j +

(
a3 − a2

2

)
k.

Notice that a0+a1
2 and a2+a3

2 are odd, while a0−a1
2 and a3−a2

2 are even. By case
(a), we then have α0 = (1 + j) α1, where α1 is odd since N (α0) ≡ 2 (mod. 4).
Hence, α′ = (1 + i)(1 + j) α1 as desired.

Assume now that a0 ≡ a2 ≡ 1 (mod. 4) and a1 ≡ a3 ≡ ±1 (mod. 4). Pro-
ceeding as before, we may write α′ = (1 + j)(1 + k) α1, with α1 odd. No-
tice then that (1 + j)(1 + k) = (1 + i)(1 + j). The last case, a0 ≡ a3 ≡ 1
(mod. 4) and a1 ≡ a2 ≡ ±1 (mod. 4), is entirely similar, using (1 + k)
(1 + i) = (1 + i)(1 + j).

Claim B. If an odd number of the ai ’s are congruent to 1 (mod. 4), then there
exists an odd quaternion α1, such that α′ = (1 + i)(1 − k) α1.

Proof. Again we may assume without loss of generality that three of the
ai ’s are congruent to 1 (mod. 4), with a0 among them. If a0 ≡ a1 ≡ a2 ≡ 1
(mod. 4) and a3 ≡ −1 (mod. 4), then as in case (a) we have α′ = (1 + i) α0

with

α0 = a0 + a1

2
+

(
a0 − a1

2

)
i +

(
a2 + a3

2

)
j +

(
a3 − a2

2

)
k

= b0 + b1 i + b2 j + b3 k.

Now b0 and b3 are odd, while b1 and b2 are even. Then

α0 = (1 − k)

(
b0 + b3

2
+

(
b1 − b2

2

)
i +

(
b1 + b2

2

)
j +

(
b0 + b3

2

)
k

)
= (1 − k) α1,
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where α1 is odd. So α0 = (1 + i)(1 − k) α1. The remaining cases are shown
in an analogous way. �

We let Z
[

1
2

]
denote the subring of rational numbers defined by

Z

[
1

2

]
=

{
k

2n
: k ∈ Z, n ∈ N

}
.

2.6.6. Theorem. Let α, β ∈ H(Z), with β odd. Then (α, β)r exists. Moreover,
the following version of Bézout’s relation holds: there exist γ, δ ∈ H

(
Z

[
1
2

])
such that (α, β)r = γ α + δ β.

Proof. We mimic the proof of the Euclidean algorithm for the greatest com-
mon divisor of two integers. By Lemma 2.6.3, we find γ0, δ0 ∈ H(Z), with
N (δ0) < N (β), such that

α = γ0 β + δ0.

By Lemma 2.6.5, we have δ0 = 2�0 π0 δ′
0, with δ′

0 odd and N (δ′
0) ≤ N (δ0) <

N (β). Again by Lemmas 2.6.3 and 2.6.5,

β = γ1 δ′
0 + δ1,

and δ1 = 2�1 π1 δ′
1, with N (δ′

1) ≤ N (δ1) < N (δ′
0) and δ′

1 odd. By repeated
applications of Lemmas 2.6.3 and 2.6.5, we find quaternions γi , δi , δ

′
i ∈ H(Z),

such that

δ′
i−1 = γi+1 δ′

i + δi+1,

and δi+1 = 2�i+1 πi+1 δ′
i+1, with N (δ′

i+1) ≤ N (δi+1) < N (δ′
i ), and δ′

i+1 odd.
The last two equations are

δ′
k−2 = γk δ′

k−1 + δk

δ′
k−1 = γk+1 δ′

k,

since the δi ’s are a sequence of quaternions in H(Z) with strictly decreas-
ing norms. We claim that (α, β)r = δ′

k . Indeed, δ′
k is clearly a right-hand

divisor of δ′
k−1, δ

′
k−2, . . . , δ

′
1, β, α. And if δ is a right-hand divisor of α and

β, then it is a right-hand divisor of δ0, hence also of δ′
0, by the unique-

ness part of Lemma 2.6.5; going on, we see that δ is a right-hand divisor
of δ′

k .
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Finally, we rewrite the previous system as

δ′
0 = 2−�0 π−1

0 (α − γ0 β)

δ′
1 = 2−�1 π−1

1 (β − γ1 δ′
0)

...

δ′
k = 2−�k π−1

k (δ′
k−2 − γk δ′

k−1).

Since πi is invertible in H
(
Z

[
1
2

])
, this expresses δ′

k as

δ′
k = γ α + δ β,

with γ, δ ∈ H
(
Z

[
1
2

])
. �

Following the line of argument employed for Z and Z [i], we now wish to
use the greatest common right-hand divisor and the modified Bézout relation
to characterize the primes of H(Z) and to develop a theory of factorization in
this ring. Along the way, we will see that every rational prime has a nontrivial
factorization into two conjugate prime quaternions. Ultimately we will show
that α is a prime quaternion in H(Z) if and only if N (α) is a rational prime.

As in Z [i], divisibility properties of quaternions are related to divisibility
properties of their norms. The following lemma is analogous to Lemma 2.2.9.

2.6.7. Lemma. For α ∈ H(Z) and m ∈ Z, m odd,

(m, α)r = 1 if and only if (m, N (α))r = 1.

Proof. We first prove the direct implication, so assume that (m, α)r = 1. By
Bézout’s relation 2.6.6, there exists γ, δ ∈ H

(
Z

[
1
2

])
with

(m, α)r = 1 = γ m + δ α.

Then,

N (δ) N (α) = N (1 − γ m) = (1 − γ m)(1 − γ m)

= 1 − (γ + γ )m + N (γ )m2

or

1 = N (δ) N (α) + (γ + γ )m − N (γ )m2.

Since N (δ), N (γ ) and γ + γ are elements of Z
[

1
2

]
, we can find k ∈ N, such

that 2k N (δ), 2k(γ + γ ), 2k N (γ ) are rational integers. Let β ∈ H(Z) be a
right-hand divisor of both N (α) and m; since m is odd, β is an odd quaternion.
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From

2k = (2k N (δ)) N (α) + (2k(γ + γ )) m − (2k N (γ )) m2,

we see that β is a right-hand divisor of 2k . Taking norms, we see that N (β)
divides 22k . Since N (β) is odd, we must have N (β) = 1; in other words, β is
invertible.

The proof of the converse is completely similar to the proof of the corre-
sponding statement in Lemma 2.2.9. �

2.6.8. Lemma. Let p ∈ N be an odd, rational prime. Assume that there exists
α ∈ H(Z), such that α is not divisible by p, but that N (α) is divisible by p.
Set (α, p)r = δ. Then δ is prime in H(Z), and N (δ) = p.

Proof. Write p = γ δ, for some γ ∈ H(Z). First we notice that γ is not a unit;
otherwise, p would be associate to δ and hence would divide α, contradicting
our assumption. Next, since p divides N (α), it follows from Lemma 2.6.7
that δ is not a unit. On the other hand, taking norms we get

p2 = N (p) = N (γ ) N (δ),

with N (γ ) �= 1 �= N (δ). So we must have N (γ ) = N (δ) = p.
From N (δ) = p, it follows that δ is prime in H(Z). Indeed if δ = xy is a

factorization of δ in H(Z), taking norms we get N (δ) = p = N (x) N (y), so
either N (x) = 1 or N (y) = 1; in either case x or y is a unit. �

2.6.9. Theorem. For every odd, rational prime p ∈ N, there exists a prime
δ ∈ H(Z), such that N (δ) = p = δ δ. In particular, p is not prime in H(Z).

Proof. By Proposition 2.5.3, there exist x, y ∈ Z, such that 1 + x2 + y2 ≡ 0
(mod. p). Set α = 1 + xi + y j ; clearly p does not divide α, but p divides
N (α) = 1 + x2 + y2. So Lemma 2.6.8 applies, and δ = (α, p)r is the desired
prime in H(Z). �

Finally we are able to show the following:

2.6.10. Corollary. δ ∈ H(Z) is prime in H(Z) if and only if N (δ) is prime
in Z.

Proof. We have seen in the course of the proof of Lemma 2.6.8 that if N (δ) is
a rational prime then δ is prime in H(Z). So only the direct implication needs
to be proven. Let δ be a prime in H(Z).
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Assume first that δ is even. By Lemma 2.6.5, we have δ = 2� π δ0, where
� ∈ N, π ∈ {1, 1 + i, 1 + j, 1 + k, (1 + i)(1 + j), (1 + i)(1 − k)}, and δ0 is
odd. Note that 2 is not prime in H(Z) since 2 = (1 + i)(1 − i). Since by
assumption δ is prime in H(Z), we must have � = 0, N (δ0) = 1 (since δ0 is
odd), and π ∈ {1 + i, 1 + j, 1 + k}, so that N (δ) = 2, as required.

Now suppose that δ is odd. Let p ∈ N be an odd, rational prime dividing
N (δ). We must show that N (δ) = p. Set α = (p, δ)r ; then δ = γ α for some
γ ∈ H(Z). It follows from Lemma 2.6.7 that α is not a unit in H(Z). Since
δ is prime in H(Z), we see that γ must be a unit in H(Z), so that α and δ

are associate. Hence, δ is a right-hand divisor of p, say p = ψ δ for some
ψ ∈ H(Z). Taking norms and remembering that p divides N (δ), we get

p = N (ψ)

(
N (δ)

p

)
.

If N (ψ) = 1, then p and δ are associate, so that p is prime in H(Z), which
contradicts Theorem 2.6.9. Hence, N (δ)

p = 1, so N (δ) = p. �

As a consequence of the arithmetic of H(Z), we get Lagrange’s celebrated
result on sums of four squares, which of course also follows from Theo-
rem 2.4.1.

2.6.11. Corollary. Every natural number is a sum of four squares.

Proof. Let n ∈ N. The result is obvious for n = 0 and n = 1, so we may
assume n ≥ 2. Let n = 2r0 pr1

1 . . . prk
k be the factorization of n into primes,

with pi odd. By Theorem 2.6.9, we can find δi ∈ H(Z), such that pi = N (δi ) =
δi δi , while 2 = (1 + i)(1 − i). Hence, each prime appearing in n can be
written as a sum of squares, and the multiplicativity of the quaternionic norm
gives the final representation of n itself in that form. �

As the example following Proposition 2.6.2 shows, we cannot expect
unique factorization into primes in H(Z). We will now restrict attention to
the set of integral quaternions α with N (α) = pk , where p is an odd, ra-
tional prime. We will see that, for these α, we can recover a sort of unique
factorization for these α’s.

So let p be an odd prime. By Jacobi’s Theorem 2.4.1,

a2
0 + a2

1 + a2
2 + a2

3 = p

has 8 (p + 1) integral solutions, each corresponding to an integral quaternion
α = a0 + a1 i + a2 j + a3 k of norm p. If p ≡ 1 (mod. 4), one ai is odd,
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while the rest are even; if p ≡ 3 (mod. 4), one ai is even, while the rest are
odd. In each case, one coordinate, call it a0

i , is distinguished. If a0
i �= 0, then

among the eight associates ε α of α; exactly one will have |a0
i | as its zero-th

component. (Note the absolute value here!). If a0
i = 0, as it might when p ≡ 3

(mod. 4), then two associates, ε α and −ε α, will each have a0 = 0. In this
case we may designate either one as distinguished.

Hence, there are p + 1 distinguished solutions of

a2
0 + a2

1 + a2
2 + a2

3 = p,

such that the corresponding quaternion α satisfies either α ≡ 1 (mod. 2) or
α ≡ i + j + k (mod. 2). In this list of solutions, both α and α appear whenever
a0 > 0, while only one of the pair is included when a0 = 0. We thus form the
set

Sp = {α1, α1, . . . , αs, αs, β1, . . . , βt },
where αi has a(i)

0 > 0, β j has b( j)
0 = 0, and αi αi = −β2

j = p. Note that 2s +
t = |Sp| = p + 1.

2.6.12. Definition. A reduced word over Sp is a word over the alphabet Sp,
which has no subword of the formαi αi ,αi αi ,β2

j (i = 1, . . . , s; j = 1, . . . , t).
The length of a word is the number of occurring symbols.

2.6.13. Theorem. Let k ∈ N; let α ∈ H(Z) be such that N (α) = pk . Then α

admits a unique factorization α = ε pr wm , where ε is a unit in H(Z), wm is
a reduced word of length m over Sp, and k = 2r + m.

Proof. We begin with existence. So fix α ∈ H(Z) with N (α) = pk . By Propo-
sition 2.6.2, α is a product of primes in H(Z):

α = δ1 . . . δn.

By Corollary 2.6.10, we must have N (δi ) = p (1 ≤ i ≤ n), and therefore
n = k. Since N (δi ) = p, we find a unit εi and γi ∈ Sp, such that δi = εi γi ;
hence,

α = ε1 γ1 ε2 γ2 . . . εk γk .

Now, it is easy to see that for every γ ∈ Sp and every unit ε of H(Z), we can
find some γ ′ ∈ Sp and some unit ε′, such that γ ε = ε′ γ ′. In the previous
factorization of α, this allows all the εi ’s to be moved to the left and to write

α = ε γ ′
1 . . . γ ′

k,
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with γ ′
i ∈ Sp and ε a unit in H(Z). So we have written α as the product of a

unit and a word over the alphabet Sp, but this word is not necessarily reduced.
We make it reduced simply by moving any factor p to the left, if there is an
occurrence of αi αi , αi αi or β2

j in the word: we then get a shorter word, for
which we iterate the process: this proves existence.

We prove uniqueness by a counting argument. First, by Jacobi’s theo-
rem 2.4.1, there are exactly

8
k∑

i=0

pi = 8

(
pk+1 − 1

p − 1

)

quaternions α ∈ H(Z) with N (α) = pk . Now we count the number of reduced
words of length m over the alphabet Sp: there are p + 1 possible choices for
the first letter, and p possible choices for each of the following letters (since
we have to avoid subwords of the form αi αi , αi αi and β2

j ). Thus, the number
of reduced words of length m is{

1 if m = 0
(p + 1) pm−1 if m ≥ 1.

Hence, the total number of expressions of the form ε pr wm , with ε a unit,
wm a reduced word of length m, and 2r + m = k, is


8


1 +

k
2 −1∑
r=0

(p + 1) pk−2r−1


 if k is even,

8

k−1
2∑

r=0

(p + 1) pk−2r−1 if k is odd.

In both cases, we find 8
(

pk+1−1
p−1

)
expressions, which coincide with the number

of α ∈ H(Z) with N (α) = pk . Since, by the existence part, every such α can
be written in such a form, this factorization must be unique. �

We denote by �′ the following subset of H(Z):

�′ = {α = a0 + a1i + a2 j + a3k ∈ H(Z) : α ≡ 1 (mod. 2)

or

α ≡ i + j + k (mod. 2), N (α) a power of p}.
It is easy to see, by reducing mod. 2, that �′ is closed under multiplication;
clearly it contains Sp.
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2.6.14. Corollary. Every element α ∈ �′ with N (α) = pk has a unique fac-
torization α = ± pr wm , where r ∈ N, wm is a reduced word of length m over
Sp, and k = 2r + m.

Proof. By Theorem 2.6.13, α can be written in a unique way as α = ε pr wm ,
with r and wm having the desired properties and ε as a unit in H(Z). Reducing
mod. 2, we get α ≡ ε wm (mod. 2). Any αi , β j ∈ Sp that appears in wm has
αi , β j ≡ 1 (mod. 2) or αi , β j ≡ i + j + k (mod. 2). For the moment, denote
the latter as γ . Then, in modulo 2, we have the congruences:

α ≡



ε if an even number of γ ’s appears in wm ;

ε(i + j + k) if an odd number of γ ’s appears in wm .

On the other hand, since α ∈ �′, α itself must satisfy α ≡ 1 (mod. 2) or
α ≡ i + j + k (mod. 2). Therefore, we see that in every case we must have
ε ≡ 1 (mod. 2); in other words, ε = ±1. �

Exercises on Section 2.6

1. Prove the uniqueness part in Lemma 2.6.5.

2. For γ ∈ Sp and ε a unit in H(Z), show that there exist γ ′ ∈ Sp and a unit
ε′ in H(Z), such that γ ε = ε′ γ ′.

3. Look at the example following Proposition 2.6.2 (nonuniqueness of fac-
torizations of 13 in H(Z)); how do you reconciliate it with Theorem 2.6.13
(uniqueness of factorization)?

2.7. Notes on Chapter 2

2.2. A good introduction to sums of two, three, and four squares can be found in Landau
[37]. The proof that (i) ⇔ (ii) in the Fermat – Euler theorem 2.1.7 is taken from
[1]: it is a “proof from The Book,” in the sense of Erdös. Legendre’s formula 2.1.11
was first proved by Jacobi, using the theory of elliptic functions. The proof we give
is taken from Hardy and Wright [32; 16.10]. There is no such simple formula for
r3(n) as there is for r2(n) or r4(n). However, there is a criterion of Gauss: r3(n) > 0
(or, n is a sum of three squares) if and only if n is not of the form 4a(8b − 1),
with a, b ∈ N (see [61], Appendix of Chapter 4, this work). From this result, it
is a simple exercise to deduce Lagrange’s theorem that r4(n) > 0 for every n and,
hence, that every positive integer is a sum of four squares.

2.3. Our proof of quadratic reciprocity 2.3.2 is taken from Hardy and Wright, [32; 6.13].
2.4. The elementary proof of Jacobi’s formula 2.4.1 given in section 2.4 is due to

Dirichlet [21] and was communicated by him in a letter to Liouville. This proof
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was advocated by Weil in [67]. We recall that Jacobi also computed r4(n) for
arbitrary n: the general formula is

r4(n) = 8
∑
d|n

d �≡0 (mod. 4)

d.

This has also been proved by means of the theory of elliptic functions; see [32;
20.11] for a proof.

2.6. The factorization theory of odd integral quaternions is due to Dickson [19]. A more
complete theory for slightly more general integral quaternions was obtained by
Hurwitz [35] (see also [56]). The reader can also refer to the discussion of Hurwitz
quaternions in Hardy and Wright [32].
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Chapter 3

PSL2(q)

3.1. Some Finite Groups

The Ramanujan graphs X p,q , to be defined in Chapter 4, will be associated
with the finite groups PGL2(q) and PSL2(q) that we define in this section.

Let K be a field. We denote by GL2(K ) the group of invertible 2-by-2 ma-
trices with coefficients in K , that is, those matrices with nonzero determinant.
We denote by SL2(K ) the subgroup of matrices with determinant 1, which
forms the kernel of the determinant map,

det : GL2(K ) → K ×.

We denote by PGL2(K ) the quotient group

PGL2(K ) = GL2(K )

/{(
λ 0
0 λ

)
: λ ∈ K ×

}
,

and by PSL2(K ) the quotient group

PSL2(K ) = SL2(K )

/{(
ε 0
0 ε

)
: ε = ±1

}
.

The two latter groups can be realized more concretely as follows. Let
P1(K ) = K ∪ {∞} be the projective line over K . We will embed PGL2(K )
and PSL2(K ) into the group Sym P1(K ) of permutations of P1(K ). To every

A =
(

a b
c d

)
∈ GL2(K ), we associate the fractional linear transformation

(or Möbius transformation),

ϕA : P1(K ) → P1(K ),

defined by

ϕA(z) = az + b

cz + d
.

Here we set ϕA(∞) =
{ a

c if c �= 0
∞ if c = 0

and ϕA
(−d

c

) = ∞. Thus, we get a

72
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group homomorphism

ϕ : GL2(K ) → Sym P1(K ),

where

ϕ(A) = ϕA,

and PGL2(K ) (resp. PSL2(K )) identifies with ϕ(GL2(K )) (resp. ϕ(SL2(K )).
When K = Fq , the finite field of order q, we write GL2(q), SL2(q),

PGL2(q), and PSL2(q) for the four groups defined previously.

3.1.1. Proposition.

(a) |GL2(q)| = q(q − 1)(q2 − 1)
(b) |SL2(q)| = |PGL2(q)| = q(q2 − 1)

(c) |PSL2(q)| =
{

q(q2 − 1) if q is even

q(q2−1)
2 if q is odd.

Proof. (a) A 2-by-2 matrix in GL2(q) is obtained by first choosing the first
column, a nonzero vector in F

2
q : there are q2 − 1 possible choices for that;

then by choosing the second column, a vector in F
2
q linearly independent from

the first one: there are q2 − q possible choices for that.
(b) and (c) follow from elementary group theory. �

Exercises on Section 3.1

1. (a) For A, B ∈ GL2(K ), prove that ϕAB = ϕA ◦ ϕB .
(b) Check carefully that Ker ϕ is exactly the subgroup{(

λ 0
0 λ

)
: λ ∈ K ×

}
of scalar matrices.

2. (a) Give details of the proof of Proposition 3.1.1, (b) (c).
(b) True or false: is SL2(q) isomorphic to PGL2(q)?

3. For A ∈ GL2(K ), show that ϕA ∈ PSL2(K ) if and only if det A is a square
in K ×.

3.2. Simplicity

The properties of the Ramanujan graphs X p,q in Chapter 4 will depend on
some structural properties of PSL2(q). Simplicity will be used, on one hand,
to determine which X p,q ’s are bipartite and, on the other hand, to establish
the expanding properties of the X p,q ’s.
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3.2.1. Lemma. For any field K , the group SL2(K ) is generated by the union

of the two subgroups

{(
1 λ

0 1

)
: λ ∈ K

}
and

{(
1 0
µ 1

)
: µ ∈ K

}
. Hence,

every matrix in SL2(K ) is a finite product of matrices which are either upper-
triangular or lower-triangular and which have 1’s along the diagonal.

Proof. Let

(
a b
c d

)
∈ SL2(K ). We distinguish two cases:

(a) c �= 0. Then an immediate computation gives(
1 a−1

c
0 1

) (
1 0
c 1

) (
1 d−1

c
0 1

)
=

(
a a(d−1)

c + a−1
c

c d

)
.

However, a(d−1)
c + a−1

c = ad−1
c = ad−(ad−bc)

c = b.

(b) c = 0. Then d �= 0, and the matrix

(
a + b b

d d

)
∈ SL2(K ) can be

treated as in the first case. But then(
a + b b

d d

) (
1 0

−1 1

)
=

(
a b
0 d

)
. �

Recall that a group G is simple if its only normal subgroups are {1} and
G; equivalently, every group homomorphism π : G → H is either constant
or one-to-one. The following result was proved by Jordan in 1861.

3.2.2. Theorem. Let K be a field with |K | ≥ 4. Then PSL2(K ) is a simple
group.

Proof. Using the homomorphism ϕ : SL2(K ) → PSL2(K ), it is enough to
show that a normal subgroup N of SL2(K ), not contained in

Ker ϕ =
{(

ε 0
0 ε

)
: ε = ±1

}
, is equal to SL2(K ). So let A be a nonscalar

matrix in N . Since A is nonscalar, there exists a vector v ∈ K 2 which is
not an eigenvector of A, so v and Av are linearly independent over K .
This means that {v, Av} is a basis of K 2. (Note the crucial role of di-

mension 2 in this proof). In that basis, A is written

(
0 b
1 d

)
, and since

det A = 1, we actually have A =
(

0 −1
1 d

)
. We now appeal to a classical

trick: for every B ∈ N , C ∈ SL2(K ), the commutator C−1 B−1 C B is in N
(since C−1 B−1 C ∈ N and B ∈ N ). We first apply this trick with B = A,



P1: IJG

CB504-04drv CB504/Davidoff September 24, 2002 15:43

3.2. Simplicity 75

C =
(

α 0
0 α−1

)
(α ∈ K ×); then

C−1 A−1 C A =
(

α−2 d(α−2 − 1)
0 α2

)
∈ N .

Repeating the trick with B ′ =
(

α−2 d(α−2 − 1)
0 α2

)
and C ′ =

(
1 µ

0 1

)
(µ ∈ K ), we get

C ′−1 B ′−1 C ′ B ′ =
(

1 µ(α4 − 1)
0 1

)
∈ N .

If |K | ≥ 4 and |K | �= 5, we can find α ∈ K ×, such that α4 �= 1. Then
the set of values of µ(α4 − 1) (µ ∈ K , α ∈ K ×) is exactly K , so that

N ⊇
{(

1 λ

0 1

)
: λ ∈ K

}
. Since

(
0 −1
1 0

) (
1 −µ

0 1

) (
0 −1
1 0

)−1

=
(

1 0
µ 1

)
,

one also has N ⊇
{(

1 0
µ 1

)
: µ ∈ K

}
. By Lemma 3.2.1, we have N =

SL2(K ).
This concludes the proof for K �= F5; only the remaining case makes the

proof lengthy. Although we will not need it, for completeness we give the
proof for K = F5 as well.

So assume K = F5. From the first part of the previous proof, we have(
α−2 d(α−2 − 1)

0 α2

)
∈ N , for every α ∈ F

×
5 . Take α = 2; then( −1 −2d

0 −1

)
∈ N , and, squaring, we see that

(
1 −d
0 1

)
∈ N . Two cases

are possible:

(a) d �= 0. The powers of

(
1 −d
0 1

)
are then

{(
1 λ

0 1

)
: λ ∈ F5

}
, and

we conclude as for general fields that N = SL2(F5).

(b) d = 0, so A =
(

0 −1
1 0

)
. We then perform the standard trick with

B = A and C ′′ =
(

δ 1
−1 0

)
(δ ∈ F

×
5 ), so that

A′ = C ′′−1 A−1 C ′′ A =
(

1 −δ

−δ δ2 + 1

)
∈ N .
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Since A′ is nonscalar, in a suitable basis of F
2
5 it will take the form A′ =(

0 −1
1 d ′

)
, as at the beginning of the proof, with

d ′ = Tr A′ = δ2 + 2.

Now the squares in F
×
5 are ±1, so that either d ′ = 1 or d ′ = 3. In any case

d ′ �= 0, so case (a) applies to A′, and the proof is complete. �

Exercises on Section 3.2

(Note: Alt(n) denotes the alternating group on n letters.)

1. Show that PSL2(2) is isomorphic to Sym(3) and also to the group of
isometries of an equilateral triangle; deduce that it is not a simple group.

2. Show that PSL2(3) is isomorphic to Alt(4) and also to the group of rota-
tions of a regular tetrahedron; deduce that it is not a simple group.

3. Show that PSL2(4) and PSL2(5) are isomorphic to Alt(5).

3.3. Structure of Subgroups

To establish the property of connectedness for the Ramanujan graphs X p,q to
be constructed in Chapter 4, we will need to understand some of the structure
of the subgroups of PSL2(q).

We will make repeated use of the following general principle: Recall that,
if σ is a permutation of a set X , and x ∈ X , the orbit of x under σ is x =
{σ k(x) : k ∈ Z}.

3.3.1. Lemma. Let σ be a permutation of a set X . If σ has prime order p,
then every orbit of σ on X has either 1 or p elements.

Proof. Let H be the subgroup generated by σ in Sym(X ). For x ∈ X , it
is a general fact that |x | = |H |

|Hx | , where Hx = {α ∈ H : α(x) = x} is the
stabilizer of x in H . Here, |H | = p by assumption, so that either |Hx | = 1
and |x | = p or |Hx | = p and |x | = 1. (Note that if |x | = 1, then x is a
fixed point of σ .) �

As a first application of this principle, we prove Cauchy’s theorem on
the existence of elements with prime orders in finite groups. Eventually, this
result of Cauchy was superseded by Sylow’s theorems, but since we will not
need the later, stronger results, we prove just the earlier one here.
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3.3.2. Theorem. Let G be a finite group, and let p be a prime. If p divides
|G|, then G contains some element of order p.

Proof. Consider the product G p = G × · · · × G (p factors). Let σ be the
cyclic permutation of factors:

σ (g1, g2, . . . , gp) = (g2, . . . , gp, g1).

Clearly σ is a permutation of G p, with order p. Now let H be the subset of
G p defined by

H = {(g1, . . . , gp) ∈ G p : g1 g2 . . . gp = 1}.
Clearly |H | = |G|p−1, since we may freely choose the p − 1 first coordi-
nates of a p-tuple in H . If g1 g2 . . . gp = 1, then conjugating by g−1

1 we get
g2 . . . gp g1 = 1, meaning that H is invariant under σ . From now on, we view
σ as a permutation of H . Since orbits of σ partition H , and since |H | is a
multiple of p by assumption, we see that the sum of orders of orbits of σ in
H is congruent to 0 modulo p. By Lemma 3.3.1, orbits of σ are either fixed
points or have p elements. Since σ has at least one fixed point in H , namely,
the p-tuple (1, 1, . . . , 1), it must have at least p − 1 other ones to match the
previous congruence. Such a fixed point is clearly of the form (g, g, . . . , g),
with g �= 1. To say that this p-tuple is in H means exactly that g p = 1; i.e.,
g has order p in G. This concludes the proof. �

Now we need a group-theoretical definition.

3.3.3. Definition. A group G is metabelian if it admits a normal subgroup N
such that both N and G/N are abelian.

In particular, abelian groups are metabelian and metabelian groups are
solvable; subgroups of metabelian groups are metabelian.

In 1901, Dickson gave a list, up to isomorphism, of all subgroups of
PSL2(q), where q is a prime power. We refer to [34], Theorem 8.27, for
the precise statement. Specializing to the case where q is a prime, and look-
ing up Dickson’s list, one notices that all proper subgroups of PSL2(q) are
metabelian, with two possible exceptions:

� Sym(4), of order 24, which is solvable but not metabelian;
� Alt(5), of order 60, which is simple nonabelian.

Our purpose in this section is to give a direct proof of this fact.



P1: IJG

CB504-04drv CB504/Davidoff September 24, 2002 15:43

78 PSL2(q)

3.3.4. Theorem. Let q be a prime. Let H be a proper subgroup of PSL2(q),
such that |H | > 60. Then H is metabelian.

Theorem 3.3.4 immediately follows from the following two results.

3.3.5. Proposition. Let q be a prime, and let H be a proper subgroup of
PSL2(q). If q divides |H |, then H is metabelian.

3.3.6. Proposition. Let q be a prime, and let H be a subgroup of PSL2(q). If
|H | > 60 and q does not divide |H |, then H has an abelian subgroup of index
at most 2; in particular, H is metabelian. (Note that by Proposition 3.1.1, if q
does not divide |H |, then H is a proper subgroup.)

To prove Proposition 3.3.5, we first need a description of elements of
order q in PSL2(q). Recall that ϕ : SL2(q) → PSL2(q) defined by ϕ(A) = ϕA

denotes the canonical map. For simplicity of notation, let Cb denote the matrix

Cb =
(

1 b
0 1

)
.

3.3.7. Lemma. Let q be a prime. For A ∈ SL2(q), the following properties
are equivalent:

(i) ϕA has order q;
(ii) there is a unique one-dimensional subspace D in F

2
q such that either

A or −A fixes D pointwise;
(iii) ϕA is conjugate in PGL2(q) to some ϕCb , with b ∈ F

×
q .

Proof. (i) ⇒ (ii) We recall that ϕA is a fractional linear transformation on
P1(Fq ). Since |P1(Fq )| = 1 + q and ϕA has order q, it follows from
Lemma 3.3.1 that ϕA has a unique fixed point on P1(Fq ). The latter cor-
responds to a unique one-dimensional subspace D in F

2
q which is globally

invariant under A. Now A has order q or 2q in SL2(q), and we examine both
cases:

(a) A has order q . Since A acts on D with at least one fixed point (namely,
(0, 0)) and |D| = q, it follows from Proposition 3.1.1 that A fixes D
pointwise.

(b) A has order 2q. Then the preceding argument applies to A2, so A2

fixes D pointwise. Then A acts on D by x �→ −x so that −A fixes D
pointwise.
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(ii) ⇒ (iii) Choose a basis {e1, e2} of F
2
q , with e1 ∈ D. The matrix of A in

this basis has the form

(
a b
0 d

)
, with a = d = ±1 and b �= 0. This means

that, in PGL2(q), the transformation ϕA is conjugate to ϕCab .

(iii) ⇒ (i) This is immediate, since ϕCb has order q. �

The previous proof actually shows the following: let A, B ∈ SL2(q) be
such that ϕA and ϕB have order q; if A, B globally fix the same line D in F

2
q ,

then ϕA and ϕB generate the same subgroup of order q in PSL2(q).

Proof of Proposition 3.3.5. Since q divides |H |, it follows from Theorem 3.3.2
that H contains at least one subgroup of order q .

Claim. H contains a unique subgroup of order q . Indeed, suppose by contra-
diction that C1, C2 are distinct subgroups of order q in H . By Lemma 3.3.7
and the remark following it, they correspond to two distinct lines D1, D2 in F

2
q .

Choose a basis {e1, e2}of F
2
q , with ei ∈ Di (i = 1, 2). Working in this basis, we

have C1 = ϕ

{(
1 λ

0 1

)
: λ ∈ Fq

}
and C2 = ϕ

{(
1 0
µ 1

)
: µ ∈ Fq

}
.

By Lemma 3.2.1, the subgroup generated by the union of C1 and C2 is
PSL2(q); this contradicts the assumption that H is a proper subgroup of
PSL2(q).

So let C be the unique subgroup of order q in H . By uniqueness, C is
normal in H . Conjugating if necessary within PGL2(q), we may assume, by
Lemma 3.3.7, that

C = ϕ

{(
1 λ

0 1

)
: λ ∈ Fq

}
,

so that the action of C on the projective line P1(Fq ) is by translations, z �→
z + λ. Since the unique fixed point of C in P1(Fq ) is ∞, and C is normal in
H , we have, for every ϕA ∈ C , ϕB ∈ H ,

ϕA(ϕB(∞)) = ϕB(ϕB−1 AB(∞)) = ϕB(∞),

so that ϕB(∞) is fixed under C . Thus, ϕB(∞) = ∞ for every ϕB ∈ H , which
means that H is contained in the stabilizer of ∞ in PSL2(q). But this is nothing
but the subgroup

B0 = ϕ

{(
a b
0 a−1

)
: a ∈ F

×
q , b ∈ Fq

}
,
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sometimes called the standard Borel subgroup of PSL2(q). Since B0 is meta-
belian, so is H . �

Before proving Proposition 3.3.6, we need some more terminology.

3.3.8. Definition. Let G be a group; let J ⊆ H ⊆ G be subgroups; let
g ∈ H .

(a) The centralizer CH (g) of g in H is the subgroup of elements in H that
commute with g:

CH (g) = {h ∈ H : hg = gh}.
(b) The normalizer NH (J ) of J in H is the subgroup of elements in H

that normalize J :

NH (J ) = {h ∈ H : h J h−1 = J }.

3.3.9. Lemma. Let G be a finite group, and let Z be a central subgroup of
G. Assume that, for every g ∈ G − Z , the centralizer CG(g) is abelian. Let
J, K be maximal abelian subgroups of G. If J �= K , then J ∩ K = Z .

Proof. We first notice that every maximal abelian subgroup J of G must con-
tain Z . Indeed, since Z is central, J Z = Z J is an abelian subgroup containing
J . By maximality, we must have J Z = J ; i.e., J ⊇ Z .

Claim. For every g ∈ G − Z , the centralizer CG(g) is a maximal abelian
subgroup of G. Indeed, let J be a maximal abelian subgroup containing
CG(g). Since J commutes with g, we must have J ⊆ CG(g); i.e., J = CG(g).

The lemma is now easily proved. If J, K are maximal abelian subgroups
in G with J ∩ K �= Z , we find g ∈ (J ∩ K ) − Z . Then CG(g) is maximal
abelian, and J ⊆ CG(g), K ⊆ CG(g) since J, K are abelian. By maximality
we must have J = CG(g) = K . �

Notice that the assumption in Lemma 3.3.9 is inherited by any subgroup
of G containing Z . We now show that this assumption is satisfied by SL2(q),
q prime.

3.3.10. Lemma. Let q be a prime. Every nonscalar matrix in SL2(q) has an
abelian centralizer.
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Proof. Let A =
(

a b
c d

)
be a nonscalar matrix in SL2(q). We consider the

fractional linear transformation ϕA on P1(Fq2 ), the projective line over the
field with q2 elements. Since A is nonscalar, we have ϕA �= Id. The fixed-point
equation

az + b

cz + d
= z

has one or two solutions in P1(Fq2 ). We separate cases:

(a) ϕA has a unique fixed point: Conjugating within PGL2(q2), we may
assume that this fixed point is ∞; then ϕA is a translation:

ϕA(z) = z + b (z ∈ Fq2 ),

so A = ±
(

1 b
0 1

)
. The centralizer of A in SL2(q2) is the subgroup{

±
(

1 λ

0 1

)
, λ ∈ Fq2

}
, which is abelian.

(b) ϕA has two fixed points; conjugating within PGL2(q2), we may assume
that these are 0 and ∞. Then ϕA(z) = α2z for some α ∈ F

×
q2 , α �= ±1.

This means A = ±
(

α 0
0 α−1

)
.

The centralizer of A inside SL2(q2) is then the diagonal subgroup,
which is abelian. �

3.3.11. Lemma. Let q be an odd prime. Let H be a subgroup of SL2(q),
containing scalar matrices, with q not dividing |H |. If J is a maximal abelian
subgroup of H , then [NH (J ) : J ] ≤ 2.

Proof. The result is obvious when H is the subgroup of scalar matrices in
SL2(q). So we may assume that H , and hence also J , contains some nonscalar
matrix A. As in the proof of Lemma 3.3.10, we consider the fractional linear
transformation ϕA on P1(Fq2 ).

Claim. ϕA has two fixed points on P1(Fq2 ). Indeed if ϕA has only one fixed

point, then A is conjugate in L = SL2(q2) to ±
(

1 b
0 1

)
; hence, A has order

q or 2q . So q divides |H |, which is a contradiction.
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Conjugating within L , we may assume that the fixed points of ϕA are
{0, ∞}. Since J is abelian, we have J ⊆ CL (A), where

CL (A) =
{(

a 0
0 a−1

)
: a ∈ F

×
q2

}
.

Now, for g ∈ J , n ∈ NH (J ) and z ∈ {0, ∞}, we have

g (n(z)) = n (n−1 g n (z)) = n (z),

since n−1 g n ∈ J . So n(z) is fixed under J , so that n (z) ∈ {0, ∞}. This shows
that every element in NH (J ) acts as a permutation on {0, ∞}, and this defines
a homomorphism

ω : NH (J ) → Sym {0, ∞}.
Clearly the kernel Ker ω is contained in CL (A), and Ker ω is therefore
abelian. On the other hand, Ker ω contains J . Since J is a maximal abelian
subgroup of H , we must have Ker ω = J . So [NH (J ) : J ] = |NH (J )/J | ≤
|Sym {0, ∞}| = 2, and the proof is concluded. �

Proof of Proposition 3.3.6. Let H be a subgroup of PSL2(q), with |H | > 60,
and q not dividing |H |. In view of Proposition 3.1.1, we must have q ≥ 7; in
particular, q is odd. So

ϕ : SL2(q) → PSL2(q)

has a kernel of order 2. Set H̃ = ϕ−1(H ), and |H̃ | = 2h. We denote by
C1, . . . , Cs the conjugacy classes of maximal abelian subgroups J of H̃
with [NH̃ (J ) : J ] = 1 and by Cs+1, . . . , Cs+t the conjugacy classes of max-
imal abelian subgroups J of H̃ with [NH̃ (J ) : J ] = 2. By Lemma 3.3.11,
these are the only possibilities. Note that, since H̃ contains at least one max-
imal abelian subgroup, we have s + t ≥ 1. For Ji , a representative in Ci , set
|Ji | = 2 gi .

Claim. For every nonscalar matrix A ∈ H̃ , there exists a unique index i (1 ≤
i ≤ s + t), such that A is conjugate within H̃ to some element of Ji .

Existence is clear since A is contained in some maximal abelian subgroup
of H̃ , itself conjugate to some Ji .

For uniqueness, let us assume that A is conjugate to some element of Ji

and to some element of Jj :

Bi A B−1
i ∈ Ji and B j A B−1

j ∈ Jj ,
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for some Bi , B j ∈ H̃ . Then A ∈ B−1
i Ji Bi ∩ B−1

j J j B j . By Lemma 3.3.10,

the group H̃ satisfies the assumption in Lemma 3.3.9. Since B−1
i Ji Bi and

B−1
j J j B j are maximal abelian subgroups of H̃ , it follows from Lemma 3.3.9

that B−1
i Ji Bi = B−1

j J j B j ; Ji and Jj are conjugate within H̃ , so i = j . This
proves the claim.

From the claim, it follows that, for fixed i , the number of nonscalar matrices
in H̃ , which are conjugate to some element of Ji , is (|Ji | − 2) · |Ci |. But
|Ci | = |H̃ |

|NH̃ (Ji )| = |H̃ |
|Ji | [NH̃ (Ji ):Ji ]

so (|Ji | − 2) |Ci | = (gi −1) 2h
gi [NH̃ (Ji ):Ji ]

; therefore,

2h − 2 =
s∑

i=1

(gi − 1) 2h

gi
+

s+t∑
j=s+1

(g j − 1) 2h

2g j
;

this leads to the basic relation:

1 = 1

h
+

s∑
i=1

(
1 − 1

gi

)
+

s+t∑
j=s+1

1

2

(
1 − 1

g j

)
.

Now gi , g j ≥ 2; hence, 1 − 1
gi

≥ 1
2 and

1 ≥ 1

h
+ s

2
+ t

4
>

s

2
+ t

4
.

The inequality 1 > s
2 + t

4 has exactly five integral solutions with s ≥ 0, t ≥ 0,
and s + t ≥ 1:

(a) s = 1, t = 0;
(b) s = 1, t = 1;
(c) s = 0, t = 1;
(d) s = 0, t = 2;
(e) s = 0, t = 3.

We now examine these solutions case by case.

(a) The basic relation gives 1 = 1
h + 1 − 1

g1
, i.e., h = g1: then H̃ = J1;

i.e., H̃ is abelian, so that H is abelian.
(b) The basic relation becomes 1 = 1

h + 1 − 1
g1

+ 1
2

(
1 − 1

g2

)
, or 1

g1
+

1
2g2

= 1
2 + 1

h . Now 1
g1

+ 1
4 ≥ 1

g1
+ 1

2g2
> 1

2 , so that 2 ≤ g1 < 4.

Claim. g1 = 2. If not, then g1 = 3, leading to 1
3 + 1

2g2
> 1

2 ; i.e., g2 < 3, or
g2 = 2. Then, from the basic relation, we get h = 12, contradicting h > 60.
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From g1 = 2, we deduce h = 2g2; i.e., [H̃ : J2] = 2 and [H : ϕ(J2)] = 2:
H has an abelian subgroup with index 2.

(c) Actually this case is impossible: indeed the basic relation gives 1 =
1
h + 1

2 − 1
2g1

, i.e. 1
2 + 1

2g1
= 1

h . This contradicts the inequality |H̃ | =
2h ≥ |NH̃ (J1)| = 4g1.

(d) Also this case is impossible. Indeed the basic relation gives 1 = 1
h +

1
2 − 1

2g1
+ 1

2 − 1
2g2

, or 1
h = 1

2

(
1
g1

+ 1
g2

)
.

By Lemma 3.3.9, the subgroup J1 ∩ J2 is exactly the subgroup of scalar ma-
trices; i.e., |J1 ∩ J2| = 2. So 2h = |H̃ | ≥ |J1 J2| = 2g1 g2. Hence,
1
h = 1

2

(
g1+g2

g1 g2

)
≥ 1

2
g1+g2

h ; i.e., g1 + g2 ≤ 2, which contradicts g1 ≥ 2,g2 ≥ 2.

(e) The basic relation becomes 1 = 1
h + 1

2 − 1
2g1

+ 1
2 − 1

2g2
+ 1

2 − 1
2g3

,

which gives 1
2g1

+ 1
2g2

+ 1
2g3

= 1
h + 1

2 > 1
2 . Clearly we may assume

g1 ≤ g2 ≤ g3.
� We first notice that g1 = 2. Indeed, assuming g1 ≥ 3, we get 1

2g1
+

1
2g2

+ 1
2g3

≤ 1
2 , which contradicts the previous inequality. Then 1

2g2
+

1
2g3

= 1
h + 1

4 > 1
4 .

� We now observe that g2 = 2. Indeed, if we had g2 ≥ 4, we would
get 1

2g2
+ 1

2g3
≤ 1

4 , which contradicts the previous inequality. But if

g2 = 3, then 1
2g3

= 1
h + 1

12 , where

1

12
<

1

2g3
= 1

h
+ 1

12
<

1

60
+ 1

12
= 1

10
;

i.e., 6 > g3 > 5, which cannot happen.
� So we get, from the basic relation: h = 2g3; i.e., [H̃ : J3] = 2 and

[H : ϕ(J3)] = 2. As in case (b), H has an abelian subgroup with
index 2. �

Exercises on Section 3.3

1. Check the details of the following implication: if a group H has an abelian
subgroup of index 2, then H is metabelian.

2. Let G be a group. For g1, g2 ∈ G, define the commutator of g1, g2 as
[g1, g2] = g1 g2 g−1

1 g−1
2 . Show that G is metabelian if and only if, for

every g1, g2, g3, g4 ∈ G,

[[g1, g2], [g3, g4]] = 1.
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3. Let K be a field. Show that the following groups are metabelian.
(a) the affine group of K , i.e., the group of permutations of the form

z �→ az + b (a ∈ K ×, b ∈ K ).
(b) the three-dimensional Heisenberg group over K ,

H3(K ) =


 1 x z
0 1 y
0 0 1

 : x, y, z ∈ K

 .

4. Let H be a subgroup of PSL2(q), where q is a prime. Assume that |H | >

60 and that q does not divide |H |. Show that H is either cyclic or dihedral
[Hint: in the proof of Proposition 3.3.6, show that cases (a), (b), and (e)
correspond, respectively, to subgroups which are cyclic, dihedral of order
2n (n odd), and dihedral of order 2n (n even).]

5. The purpose of this exercise is to see that Lemmas 3.3.10 and 3.3.11
become false upon replacing SL2(q) by PSL2(q).
(a) Consider the fractional linear transformation z �→ −z of P1(Fq ).

Show that, if q ≡ 1 (mod. 4), it belongs to PSL2(q). Compute then
its centralizer in PSL2(q).

(b) For a suitable value of q , construct a subgroup H of PSL2(q) and
a maximal abelian subgroup J of H such that [NH (J ) : J ] = 3
[Hint: use exercise 3 in section 3.2.]

6. Let p be a prime; set q = pr , with r ≥ 2. Show that Theorem 3.3.4 does
not hold for PSL2(q). [Hint: remember that Fp is a subfield of Fq .]

3.4. Representation Theory of Finite Groups

Students frequently ask: “We worked so hard in studying some group theory,
why should we learn group representations on top of that?”

The answer is twofold: first, in a certain sense, a group is a nonlinear object,
and linear representations are a way to linearize it. Second, linear algebra is
a powerful tool that sheds more light on groups themselves.1

A representation of a group G on a real or complex vector space V is a
homomorphism from G into the linear group of V , that is, into the group of
invertible linear transformations on V . If V is finite-dimensional and a basis
of V has been fixed, this means that a representation of G is a homomorphism
into the group of matrices with nonzero determinant acting on V .

1 Philosophically, this is analogous to what happens in calculus, where a certain affine space,
namely, the tangent space at a point of the graph of a function, provides valuable information
about the underlying differentiable function in a neighborhood of that point.
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Both in physics and in mathematics, groups appear most naturally as sym-
metries of some object X . (Recall, for example, that Sym (3), the symmetric
group on three letters, can be realized as the group of symmetries of an equi-
lateral triangle; similarly, D4, the dihedral group of order 8, can be realized
as the symmetries of a square.) A convenient rephrasing of the fact that G
is a symmetry group of X says that X is a G-space; in other words, we are
given a homomorphism from G to the group of permutations of X . Then G
also acts on any object associated with X and, in particular, on functions on
X . Since functions on X form a vector space CX , we get a representation λX

of G on CX , where each element g ∈ G acts on CX by taking the function
f ∈ CX to the function λX (g) f ∈ CX , defined by

(λX (g) f ) (x) = f (g−1 x) (x ∈ X ).

Suppose we can find a linear operator T on CX , which commutes with the
representation λX ; i.e.,

λX (g) T = T λX (g)

for every g ∈ G. Suppose that the function f is an eigenfunction of T , asso-
ciated with the eigenvalue µ; then so is the function λX (g) f , since

T λX (g) f = λX (g) T f = µ λX (g) f.

So the eigenspace Vµ of T corresponding to µ is a subspace of CX which is
invariant under λX (G); in other words, eigenspaces of commuting operators
allow us to decompose the representation into smaller pieces. (The theme
of decomposing representations into subspaces of smaller dimension is a
recurrent one; representations which cannot be decomposed further are said
to be irreducible: these are the building blocks of the theory.)

Specifically, suppose that X = (V, E) is a finite graph. Let G be a group of
automorphisms of X , and let λV be the corresponding representation of G on
CV . Since G maps edges to edges, λX commutes with the adjacency matrix A.
Since A is diagonalizable, we can use eigenspaces of A to start decomposing
λV into irreducibles; or conversely, we can use a priori knowledge on the rep-
resentations of G to bound multiplicities of eigenvalues of A. In section 3.5, we
shall prove that any nontrivial representation of PSL2(q) has dimension at least
q−1

2 ; in Chapter 4 we shall use that information to see that, for the graphs X p,q

constructed there, the multiplicity of the nontrivial eigenvalues is at least q−1
2 .

3.4.1. Definition. Let G be a group. A representation of G is a pair (π, V ),
where V is a complex vector space and π is a homomorphism G → GL(V ).
(Here GL(V ) is the group of linear permutations of V .) The degree of (π, V )
is the dimension dimC V of V .
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When there is no risk of confusion about which vector space is involved,
we write π instead of (π, V ).

3.4.2. Examples.

(i) The constant homomorphism G → GL(V ) defines the trivial repre-
sentation of G on V .

(ii) Every homomorphism G → C
× gives rises to a representation of

degree 1 of G on C.
(iii) Let X be a G-space, that is, a nonempty set endowed with a homomor-

phism G → Sym(X ), where Sym(X ) is the group of permutations of
X . Let CX be the set of functions X → C that are zero except on
finite subsets of X . The permutation representation λX of G on CX
is defined as earlier by

(λX (g) f ) (x) = f (g−1 · x),

where f ∈ CX , g ∈ G, x ∈ X .
(iv) Viewing G as a G-space by means of left multiplication, we get the

left regular representation λG of G on CG:

(λG(g) f ) (x) = f (g−1 x) ( f ∈ CG ; g, x ∈ G).

Viewing G as a G-space by means of right multiplication, we get the
right regular representation ρG of G on CG:

(ρG(g) f ) (x) = f (xg) ( f ∈ CG ; g, x ∈ G).

To analyze a representation, it makes it easier to have invariant subspaces.

3.4.3. Definition. Let (π, V ) be a representation of G. A linear subspace W
of V is invariant if for every g ∈ G : π (g)(W ) = W .

If W is invariant, then (π |W , W ) is also a representation of G, called
a subrepresentation of π . The subspaces 0 and V are the trivial invariant
subspaces.

3.4.4. Example. Let X be a G-space. Set

W0 =
{

f ∈ CX :
∑
x∈X

f (x) = 0

}
;

this is an invariant subspace of λX . If X is finite, then W0 admits a G-invariant
complement: the subspace W1 of constant functions on X . Note that λX |W1

is the trivial representation of degree 1 on W1.
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3.4.5. Definition. A representation (π, V ) with V �= {0} is irreducible if it
has no nontrivial invariant subspace.

3.4.6. Examples.
(i) Every representation of degree 1 is irreducible.

(ii) The canonical representation of GL(V ) on V (given by the identity
homomorphism GL(V ) → GL(V )) is irreducible, since GL(V ) acts
transitively on the set of linear subspaces of the same di-
mension.

As in most of mathematics, the notion of equivalence plays a crucial role
in representation theory. Here we determine equivalence of representations
of a group G through the existence of certain linear maps on the associated
representation spaces.

3.4.7(a). Definition. Let (π, V ) and (ρ, W ) be two representations of G.
A linear map T : V → W intertwines π and ρ if, for every g ∈ G, one has
T π (g) = ρ (g) T . We denote by HomG(π, ρ) the vector space of intertwiners
between π and ρ.

3.4.7(b). Definition. Let (π, V ) and (ρ, W ) be two representations of G.
We say that π and ρ are equivalent if there exists an invertible intertwiner in
HomG(π, ρ), that is, a linear map T : V → W , such that, for every
g ∈ G,

ρ (g) = T π (g) T −1.

Note that Definition 3.4.7(a) means that whenever T intertwines π and ρ,
then the following diagram commutes:

V
π (g)−−→ V

T
� � T

W
ρ(g)−−→ W

3.4.8. Examples.
(i) Consider the map T : CG → CG defined by

(T f ) (x) = f (x−1) ( f ∈ CG , x ∈ G).
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Then T ∈ HomG(λG, ρG); since T 2 = Id, we see, furthermore, that
λG and ρG are equivalent.

(ii) For a G-space X , consider the map T : CX → C given by

f �→
∑
x∈X

f (x) ;

T intertwines λX and the trivial representation of degree 1.

The next result is the celebrated Schur’s lemma; its proof sheds light on
the role of complex vector spaces in representation theory.

3.4.9. Theorem. Let (π, V ), (ρ, W ) be finite-dimensional, irreducible repre-
sentations of G. Then

dimC HomG (π, ρ) =
{

0 if π and ρ are not equivalent;
1 if π and ρ are equivalent.

Proof. We prove the first equality by contraposition, so assume that dimC

HomG (π, ρ) > 0. Then there exists a nonzero intertwiner T from π to ρ.
We must show that π and ρ are equivalent. First, the kernel, Ker T , is an in-
variant subspace of π with Ker T �= V by assumption. Since π is irreducible,
we must have Ker T = {0}, so T is injective. Next, the image, Im T , is a
nonzero invariant subspace of ρ. Since ρ is irreducible, we have Im T = W ,
so T is onto. Thus, T is invertible, and we have shown that π and ρ are
equivalent.

To prove the second equality, since π and ρ are equivalent, we may assume
that π = ρ. Now HomG(π, π ) always contains the one-dimensional subspace
of scalar matrices α I ; hence, it will be enough to show that any intertwiner
T ∈ HomG(π, π ) is scalar when π is irreducible. As V is a finite-dimensional
complex vector space, the linear operator T on V has at least one eigenvalue
λ ∈ C; that is,

Ker (T − λ · IdV ) �= 0.

Since Ker (T − λ · IdV ) is an invariant subspace and π is irreducible, we must
have Ker (T − λ · IdV ) = V ; i.e., T = λ · IdV . �

An alternative statement of Schur’s Lemma reads as follows: Let (π, V )
and (ρ, W ) be two irreducible representations of G, and let T intertwine π

and ρ. Then either (a) f ≡ 0 or (b) f is an isomorphism; thus, π is equivalent
to ρ and V ∼= W . In this case f is a scalar map f (v) = λv for some λ ∈ C.
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From now on, we shall consider representations of finite groups on finite-
dimensional complex vector spaces only.

We first define the tensor product V ⊗ W of two finite-dimensional com-
plex vector spaces V and W .

We identify V ⊗ W with a vector space of formal products in the following
way. Consider the Cartesian product V × W of pairs (v, w) with v ∈ V ,
w ∈ W , and form the additive group consisting of finite sums of pairs with
complex coefficients; that is,

G =
{∑

αi j (vi , w j ) | αi j ∈ C, vi ∈ V, w j ∈ W
}

.

Let H be the subgroup of G generated by the subset of sums of the form

(i) (v1 + v2, w) − (v1, w) − (v2, w),
(ii) (v, w1 + w2) − (v, w1) − (v, w2),

(iii) (v, αw) − (αv, w),

where α ∈ C. Now define a map i : V × W → G/H by setting

i(v, w) = (v, w) + H.

The group G/H constructed previously, which itself forms a vector space over
C, is called the tensor product of V and W ; it is denoted by
V ⊗ W .

We can be even more specific in describing elements of V ⊗ W . If {vi }1≤i≤n

and {w j }1≤ j≤m are sets of basis vectors for V and W , respectively, then the
set {i(vi , w j )} is a basis for V ⊗ W . Informally, V ⊗ W can be thought of as
a set of finite sums of products

∑
vrws satisfying the following properties

for all v ∈ V , w ∈ W :

v(w1 + w2) = vw1 + vw2 , (v1 + v2)w = v1w + v2w ,

α(vw) = (αv)w = v(αw).

Furthermore, the tensor product is unique in the following sense: let Y be any
complex vector space, and let B be any map B : V × W → Y which is linear
in both v and w. Then there exists a unique linear map B̃ : V ⊗ W → Y , such
that B = B̃ ◦ i .

We indicate how to build new representations from known ones.
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3.4.10. Definitions. Let (π, V ), (ρ, W ) be representations of the group G.

(a) Let V ∗ = Hom(V, C) be the vector space dual to V . The conjugate
representation (π∗, V ∗) of (π, V ) is the representation of G on V ∗

defined by

(π∗(g) f ) (x) = f (π (g−1) x) (g ∈ G , x ∈ V , f ∈ V ∗).

(b) The direct sum of π and ρ is the representation (π ⊕ ρ, V ⊕ W ) of G
on V ⊕ W , defined by

(π ⊕ ρ) (g) (v, w) = (π (g) v, ρ (g) w) (g ∈ G, v ∈ V, w ∈ W ).

(c) The tensor product of π and ρ is the representation (π ⊗ ρ, V ⊗ W )
of G on V ⊗ W , defined on elementary tensors v ⊗ w by

(π ⊗ ρ)(g)(v ⊗ w) = π (g)v ⊗ ρ(g)w (g ∈ G, v ∈ V, w ∈ W ).

3.4.11. Example. Let (π, V ), (ρ, W ) be representations of G. On
Hom (V, W ), consider the representation σ defined by

σ (g) (T ) = ρ (g) T π (g−1) (g ∈ G, T ∈ Hom (V, W )).

Let us show that ρ ⊗ π∗ is equivalent to σ . Indeed, for f ∈ V ∗, w ∈ W ,
define a rank 1 operator θw, f ∈ Hom (V, W ) by

θw, f (v) = f (v) w (v ∈ V ).

The map B : W × V ∗ → Hom (V, W ) : (w, f ) �→ θw, f is bilinear, so we get
a linear map

B̃ : W ⊗ V ∗ → Hom (V, W ) : w ⊗ f �→ θw, f .

The map B̃ is onto, as one sees by taking bases for V and W , and the dual
basis for V ∗. Since dimC(W ⊗ V ∗) = dimC Hom (V, W ), the map B̃ is an
isomorphism. Finally, for g ∈ G, w ∈ W , f ∈ V ∗, we have

σ (g) θw, f = θρ(g)w, π∗(g) f = B̃ (ρ (g) w ⊗ π∗(g) f ),

so σ (g) B̃ = B̃ (ρ ⊗ π∗) (g), or B̃ ∈ HomG(ρ ⊗ π∗, σ ).

Recall that a complex vector space has a hermitian scalar product (· | ·)
satisfying the following properties:

(i) (v | v) > 0 if v �= 0,
(ii) (v | w) = (w | v).

We now have the following results.
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3.4.12. Proposition. Let (π, V ) be a representation of the finite group G.

(i) There exists a hermitian scalar product 〈· | ·〉 on V which is invariant
under π (G); that is, 〈π (g) v1 | π (g) v2〉 = 〈v1 | v2〉 for every g ∈ G,
v1, v2 ∈ V .

(ii) Every invariant subspace W of π admits an invariant complement; in
other words, there exists an invariant subspace W ′, such that
W ∩ W ′ = {0} and W + W ′ = V .

(iii) If V �= {0}, then π is equivalent to a direct sum of irreducible repre-
sentations of G.

Proof.
(i) Let (· | ·) be any hermitian scalar product on V . Set

〈v1 | v2〉 =
∑
h∈G

(π (h) v1 | π (h) v2) (v1, v2 ∈ V ).

Then 〈· | ·〉 is a hermitian scalar product, which is invariant, since, for
g ∈ G,

〈π (g) v1 | π (g) v2〉 =
∑
h∈G

(π (hg) v1 | π (hg) v2)

=
∑
h′∈G

(π (h′) v1 | π (h′) v2) = 〈v1 | v2〉,

where the second equality follows from the change of variables h′ =
hg in G.

(ii) Let W be an invariant subspace of π . By (i) under Proof, we may
assume that π leaves invariant some hermitian scalar product 〈· | ·〉.
Define W ′ as the orthogonal of W with respect to 〈· | ·〉:

W ′ = {v ∈ V : 〈v | w〉 = 0 ∀ w ∈ W }.
W ′ is clearly a complement to W ; let us check that W ′ is an invariant
subspace. For g ∈ G, v ∈ W ′, w ∈ W , we have

〈π (g) v | w〉 = 〈v | π (g−1) w〉 = 0,

since W is invariant and π (g) is unitary. Thus, W ′ is also invariant
under π (G).

(iii) We prove the statement by induction on dimC V . If dimC V = 1,
then π is irreducible (see Example 3.4.6 (i)). If dimC V > 1, either
π is irreducible, and there is nothing to prove, or π admits a
nontrivial invariant subspace W . By (ii), we can find another non-
trivial invariant subspace W ′ which is a complement to W . The map
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W ⊕ W ′ → V : (w, w′) �→ w + w′ realizes an equivalence between
π |W ⊕ π |W ′ and π . Furthermore, by our induction assumption, the
representations π |W and π |W ′ are equivalent to direct sums of irre-
ducible representations. �

For a representation (π, V ) of G, we denote by

V G = {v ∈ V : π (g) v = v ∀ g ∈ G}
the space of π (G)-fixed vectors in V . This is an invariant subspace of π .

3.4.13. Example. Let X be a finite G-space. A function f ∈ CX is fixed
under λX (G) if and only if f is constant on orbits of G in X . In particular,
dimC(CX )G is the number of orbits of G in X .

3.4.14. Proposition. Let (π, V ) be a representation of the finite group G. Set
Pπ = 1

|G|
∑
g∈G

π (g). Then,

(i) P2
π = Pπ ; i.e., Pπ is an idempotent in End V = Hom(V, V );

(ii) for every h ∈ G, π (h) Pπ = Pπ π (h) = Pπ ;
(iii) Im Pπ = V G ;
(iv) 1

|G|
∑
g∈G

Tr π (g) = dimC(V G), where Tr denotes the trace of a matrix.

Proof.
(i) Noticing that, for fixed s ∈ G, there are |G| pairs (g, h) ∈ G × G,

such that gh = s, we compute

P2
π = 1

|G|2
∑
g∈G

∑
h∈G

π (gh) = 1

|G|
∑
s∈G

π (s) = Pπ .

(ii)

π (h) Pπ = 1

|G|
∑
g∈G

π (hg) = 1

|G|
∑
g′∈G

π (g′) = Pπ ,

where the second equality is obtained by means of the change of
variables g′ = hg. The equality Pπ π (h) = Pπ is proved in a similar
way.

(iii) The image of an idempotent map is its fixed point set:

Im Pπ = {v ∈ V : Pπ (v) = v}.
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Clearly, from definition, if v ∈ V G , then Pπ (v) = v. Conversely, if
Pπ (v) = v, then by (ii), for every h ∈ V :

π (h) v = π (h) Pπ (v) = Pπ (v) = v.

(iv) The trace of an idempotent map is the dimension of its image. So, by
(iii) and the linearity of the trace,

1

|G|
∑
g∈G

Tr π (g) = Tr Pπ = dimC(V G). �

In Proposition 3.4.14(iv), an important concept appears: the character of a
representation.

3.4.15. Definition. Let (π, V ) be a representation of G. The character of π

is the function χπ : G → C : g �→ Tr π (g).

3.4.16. Example. Let X be a finite G-space. To compute χλX , we may use
the basis of CX consisting of characteristic functions (δx )x∈X of points. Since
λX (g) δx = δgx for g ∈ G, we see that λX (g) is a permutation matrix. So the
trace of λX (g) is the number of 1’s down the diagonal, or, equivalently, χλX (g)
is the number of fixed points of g in X .

Specializing this to the case of the left regular representation of the finite
group G, we get

χλX (g) =
{ |G| if g = 1

0 if g �= 1.

We study the behavior of the character under the constructions of repre-
sentations in 3.4.10.

3.4.17. Proposition. Let (π, V ), (ρ, W ) be representations of G.

(i) χπ∗(g) = χπ (g−1) (for g ∈ G);
(ii) χπ⊕ρ = χπ + χρ ;

(iii) χπ⊗ρ = χπ χρ ;
(iv) If π is equivalent to ρ, then χπ = χρ .

Proof. Let e1, . . . , em (resp. f1, . . . , fn) be a basis of V (resp. W ).

(i) Let e∗
1, . . . , e∗

m be the dual basis of e1, . . . , em . In this basis of V ∗, the
matrix of π∗(g) is the transpose of the matrix of π (g−1) in the basis
e1, . . . , em . The result follows.
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(ii) In V ⊕ W , we have (π ⊕ ρ) (g) =
(

π (g) ©
© ρ (g)

)
.

(iii) Let π (g)ik (resp. ρ (g) j�) be the matrix of π (g) (resp. ρ (g)) in
the given basis. Then the matrix of π (g) ⊗ ρ (g) in the basis (ei ⊗
f j )1≤i≤m; 1≤ j≤n of V ⊗ W is (π (g)ik ρ (g) j�) 1≤i, k≤m

1≤ j, �≤n
. Then,

χπ⊗ρ(g) =
m∑

i=1

n∑
j=1

π (g)i i ρ (g) j j =
(

m∑
i=1

π (g)i i

) (
n∑

j=1

ρ (g) j j

)
= χπ (g) χρ(g).

(iv) If T ∈ HomG(π, ρ) is invertible, π and ρ are equivalent; then, by the
trace property,

χρ(g) = Tr (T π (g) T −1) = Tr π (g) = χπ (g). �

As a function on the group G, the character has the following properties.

3.4.18. Lemma. Let (π, V ) be a representation of the finite group G.

(a) χπ (1) = dimC V ;
(b) χπ (g) = χπ (g−1) for g ∈ G;
(c) χπ (g) = χπ (hg h−1) for g, h ∈ G.

Proof.
(a) This is clear, by definition.
(b) From Proposition 3.4.12(i), we know that π (G) leaves invariant a

hermitian scalar product 〈· | ·〉 on V . Let e1, . . . , em be an orthonormal
basis of V , with respect to 〈· | ·〉. Then

χπ (g−1) =
m∑

i=1

〈π (g−1) ei | ei 〉 =
m∑

i=1

〈ei | π (g) ei 〉

=
m∑

i=1

〈π (g) ei | ei 〉 = χπ (g).

(c) We leave this as an exercise. �

We now define the scalar product of two functions f1, f2 : G → C as

〈 f1 | f2〉G = 1

|G|
∑
g∈G

f1(g) f2(g).

Referring to Schur’s lemma (Theorem 3.4.9), we will show that the characters
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associated to irreducible representations of a group G form an orthonormal
system with respect to this inner product.

3.4.19. Theorem. Let (π, V ), (ρ, W ) be representations of the finite group
G. Then 〈χρ | χπ 〉G = dimC HomG(π, ρ).

Proof. We compute

〈χρ | χπ 〉G = 1

|G|
∑
g∈G

χρ(g) · χπ (g)

= 1

|G|
∑
g∈G

χρ(g) χπ (g−1) (by Lemma 3.4.18(b))

= 1

|G|
∑
g∈G

χρ(g) χπ∗(g) (by Proposition 3.4.17(i))

= 1

|G|
∑
g∈G

χρ⊗π∗(g) (by Proposition 3.4.17(iii))

= 1

|G|
∑
g∈G

Tr (ρ ⊗ π∗)(g)

= dimC (W ⊗ V ∗)G (by Proposition 3.4.14(iv)).

By Example 3.4.11, the representation ρ ⊗ π∗ is equivalent to the represen-
tation σ on Hom (V, W ) defined by

σ (g) (T ) = ρ(g) T π (g−1) (T ∈ Hom (V, W ), g ∈ G).

Clearly, T ∈ Hom (V, W ) is σ (G)-fixed if and only if T intertwines π and ρ,
that is, if T ∈ HomG(π, ρ). So we see that

dimC(W ⊗ V ∗)G = dimC Hom (V, W )G = dimC HomG(V, W ). �

3.4.20. Corollary. Let (π, V ) be a representation of the finite group G, with
V �= {0}. Write π = ρ1 ⊕ · · · ⊕ ρk , with ρ1, . . . , ρk irreducible representa-
tions of G. (This is possible, by Proposition 3.4.12(iii)). Let (ρ, W ) be an
irreducible representation of G. The number of those ρi ’s, which are equiv-
alent to ρ, is equal to 〈χπ | χρ〉G ; in particular, this number does not depend
on the chosen decomposition of π as a direct sum of irreducible represen-
tations.
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Proof.

〈χπ | χρ〉G =
k∑

i=1

〈χρi | χρ〉G (by Proposition 3.4.17(ii))

=
k∑

i=1

dimC HomG(ρ, ρi ) (by Theorem 3.4.19).

By Schur’s lemma 3.4.9:

dimC HomG(ρ, ρi ) =
{

1 if ρ is equivalent to ρi

0 if not.

So 〈χπ | χρ〉G is indeed the number of ρi ’s equivalent to ρ. �

This result gives a useful criterion for irreducibility.

3.4.21. Corollary. Let (π, V ) be a representation of the finite group G, with
V �= {0}. The representation π is irreducible if and only if 〈χπ | χπ 〉G = 1.

Proof. If π is irreducible, then, by Theorems 3.4.19 and Schur’s lemma,

〈χπ | χπ 〉G = dimC HomG(π, π ) = 1.

If π is not irreducible, then by Proposition 3.4.12(ii) we can write V as the
direct sum of two nonzero invariant subspaces W , W ′:

V = W ⊕ W ′.

Then the maps V → V : (w, w′) �→ (w, 0) and V → V : (w, w′) �→ (0, w′)
are linearly independent elements in HomG(π, π ), so that, by Theorem
3.4.19,

〈χπ | χπ 〉G = dimC HomG(π, π ) ≥ 2. �

We can now prove the uniqueness, up to order, of the decomposition of
a representation into irreducible components. First, let V = W1 ⊕ · · · ⊕ Wr

be a decomposition of V into irreducible G-invariant subspaces. Now let π :
G → Aut(V ), so π = πW1 ⊕ · · · ⊕ πWr = π1 ⊕ · · · ⊕ πr . By the properties
of the trace,

χπ = χ1 + · · · + χr ,

where χi = χπi .
By what we have just proved

〈χi , χπ 〉 = 〈χi , χ1〉 + · · · + 〈χi , χr 〉.
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Hence, 〈χi , χπ 〉 is precisely the number of isomorphic copies of πi which ap-
pears in the decomposition of π . However, that number is clearly independent
of any particular decomposition, since

〈χi , χπ 〉 = 1/|G|
∑
g∈G

χi (g) χπ (g−1).

To this extent the character χπ determines the representation of π , and, in
fact, π must contain exactly 〈χi , χπ 〉 copies of each irreducible component
πi . Thus, we have shown the following.

3.4.22. Theorem. Let π : G → Aut(V ) be a representation of G, and let
π = ∑

nj πj be a decomposition of π for which the πj are distinct irreducible
representations of G. Then this decomposition is unique up to possible re-
ordering of its components.

3.4.23. Theorem. Two representations with the same character are isomor-
phic, and any given irreducible representation appears with the same multi-
plicity in each.

From Theorem 3.4.19, the characters of inequivalent irreducible represen-
tations are orthogonal in CG with respect to the scalar product 〈· | ·〉G : this
immediately implies that G has at most |G| irreducible representations, up to
equivalence. The following is known as the degree formula.

3.4.24. Corollary. Let (ρ1, W1), . . . , (ρh, Wh) be the list of irreducible rep-
resentations of the finite group G, up to equivalence. Let ni = dimC Wi be

the degree of ρi . Then |G| =
h∑

i=1

n2
i .

Proof. We decompose the left regular representation λG into irreducible rep-
resentations. By Corollary 3.4.20, the representation ρi appears 〈χλG | χρi 〉G

times in λG . But χλG = |G| δ1, by Example 3.4.16, so that

〈χλG | χρi 〉G = 1

|G|
∑
g∈G

|G| δ1(g) · Tr ρi (g) = Tr ρi (1) = ni .

This means that χλG =
h∑

i=1

ni χρi . Evaluating at the identity of G gives the

required formula. �

The degree formula is useful in determining whether a list of irreducible
representations is complete.

We close this section with a construction of irreducible representations.
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3.4.25. Definition. A G-space X is 2-transitive if, for any two ordered pairs
(x1, y1), (x2, y2) in X × X , with xi �= yi (i = 1, 2), there exists g ∈ G, such
that g x1 = x2 and g y1 = y2.

It is easy to check that, if the action of G on X is 2-transitive, it is also
transitive. Now, let X be a finite G-space. We denote by λ0

X the restriction of
λX to the co-dimension 1 subspace

W0 =
{

f ∈ CX :
∑
x∈X

f (x) = 0

}
,

already considered in Example 3.4.4.

3.4.26. Proposition. Let G be a finite group, and let X be a finite G-space
which is 2-transitive. Then λ0

X is an irreducible representation of G.

Proof. We consider the diagonal action of G on X × X , given by

g (x, y) = (gx, gy) (g ∈ G ; x, y ∈ X ).

Since X is 2-transitive, G has exactly two orbits on X × X : the diagonal

� = {(x, x) : x ∈ X}
and its complement X × X − �. So

2 = dimC (C (X × X ))G (by Example 3.4.13)

= 1

|G|
∑
g∈G

Tr λX×X (g) (by Proposition 3.4.14(iv))

= 1

|G|
∑
g∈G

χλX×X (g).

Now consider the map

ϕ : CX ⊗ CX → C (X × X )

defined by

ϕ( f1 ⊗ f2) = g f1, f2,

where

g f1, f2 (x, y) = f1(x) f2(y).

The map ϕ defines a canonical isomorphism from CX ⊗ CX onto C (X ×
X ), which intertwines λX ⊗ λX and λX×X . Then λX ⊗ λX and λX×X are
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equivalent; hence, χλX×X = χ2
λX

by Proposition 3.4.17. This means that

2 = 1

|G|
∑
g∈G

χλX (g)2

= 〈χλX | χλX 〉G,

since χλX is real-valued, by Example 3.4.16. Now, as explained in Exam-
ple 3.4.4, the representation λX decomposes as the direct sum of λ0

X , and the
one-dimensional trivial representation on the space of constant functions on
X . Then, by Proposition 3.4.17(ii),

χλX = 1 + χ0
λX

,

so that

2 = 〈1 + χ0
λX

| 1 + χ0
λX

〉G

= 〈1 | 1〉G + 2 〈1 | χ0
λX

〉G + 〈χ0
λX

| χ0
λX

〉G .

Since 〈1 | 1〉G = 1, we get

1 = 2 〈1 | χ0
λX

〉G + 〈χ0
λX

| χ0
λX

〉G .

By Theorem 3.4.19, the numbers 〈1 | χ0
λX

〉G and 〈χ0
λX

| χ0
λX

〉G are nonnegative
integers, and 〈χ0

λX
| χ0

λX
〉G > 0. This forces

〈χ0
λX

| χ0
λX

〉G = 1,

which, by Corollary 3.4.21, implies that λ0
X is irreducible. �

Exercises on Section 3.4

1. Let G be an abelian group. Show, using Schur’s lemma, that every irre-
ducible representation of G with finite degree, has degree 1.

2. Let π be the representation of G = Z on C
2 given by π (n) =

(
1 n
0 1

)
(n ∈ Z). Show that none of the three statements of Proposition 3.4.12
holds for π.

3. Let G be a finite abelian group, of order n.
(a) Show that G has exactly n irreducible representations (up to equiva-

lence), given by n homomorphisms χ1, . . . , χn from G to C
×. [Hint:

combine exercise 1 with the degree formula 3.4.22.]
(b) Using Theorem 3.4.19, show that χ1, . . . , χn are an orthonormal basis

of CG for the scalar product 〈· | ·〉G .



P1: IJG

CB504-04drv CB504/Davidoff September 24, 2002 15:43

3.4. Representation Theory of Finite Groups 101

(c) For G = Z/nZ, set ω = e
2π i

n ; for a ∈ Z/nZ, set

ea(z) = ωaz (z ∈ Z/nZ).

Show that the ea’s (a ∈ Z/nZ) are the n homomorphisms G → C
×.

4. Let G be a finite group, and let π, ρ be representations of G with finite
degree. Show that π is equivalent to ρ if and only if χπ = χρ . (In other
words the character determines the representation.)

5. Let G be a finite group of order N , and let π be a representation of
G of degree n. Show that, for every g ∈ G, the complex number χπ (g)
is algebraic, such that |χπ (g)| ≤ n. [Hint: π (g) is diagonalizable in a
suitable basis, and its eigenvalues are N -th roots of 1 in C.]

6. Let G be a finite group. A function f ∈ CG is a class function if it is
constant on conjugacy classes of G; i.e.,

f (g h g−1) = f (h) ∀ g, h ∈ G.

Denote by Cl (G) the space of class functions on G, endowed with the
scalar product 〈· | ·〉G .
(a) Show that the dimension of Cl (G) is the number of conjugacy classes

of G.
(b) Let (ρ, V ) be a representation of G. For f ∈ Cl (G), set ρ( f ) =∑

g∈G

f (g) ρ(g). Using Schur’s lemma, show that if ρ is irreducible,

then ρ( f ) is a scalar operator on V ; actually

ρ( f ) = 1

dimC V

∑
g∈G

f (g) χρ(g) = |G|
dimC V

〈χρ | f 〉G .

(c) Let χ1, . . . , χh be the characters of the irreducible representations
of G. Show that the χi ’s are an orthonormal family in Cl (G) (i.e.,
〈χi | χ j 〉G = δi j ).

(d) Show that the χi ’s are a basis of Cl (G). [Hint: for f ∈ Cl (G) such
that 〈χi | f 〉G = 0 for i = 1, . . . , h, show that λG( f ) = 0. Applying
λG( f ) to the function δ1 ∈ CG, show that f = 0.]

(e) Show that the number of irreducible representations of G is equal to
the number of conjugacy classes in G.

7. Let G be a finite group, and let X be a finite G-space. Show that the
following properties are equivalent:

(i) χ is 2-transitive;
(ii) G has exactly two orbits X × X ;

(iii) λ0
X is an irreducible representation of G.
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8. A space with lines is a set X endowed with a family L of subsets, called
lines, satisfying the following properties:
(a) Every two distinct points of X belong to a unique line.
(b) Every line has at least two points.
(c) Every point belongs to at least two lines.
For example, take for X the n-dimensional affine (resp. projective) space
over some field. Then X , with the set of all affine (resp. projective) lines,
is a space with lines. Suppose that some group G acts by automorphisms
on a space with lines X (i.e., X is a G-space and G leaves L invariant).
Assume that X is finite.

(i) The X-ray transform T : �2(X ) → �2(L) is defined by

(T f ) (L) =
∑
x∈L

f (x) ( f ∈ �2(X ), L ∈ L)

(i.e., we “integrate” f on lines in X ). Show that T intertwines the
permutation representations λX and λL; i.e., T ∈ HomG(λX , λL).

(ii) Compute T ∗ T : �2(X ) → �2(X ) and deduce that T is injective.
(This means that a function f ∈ �2(X ) can be reconstructed from
its integrals over all lines.)

(iii) Show that the number of orbits of G on X is at most the number
of orbits of G on L. [Hint: use injectivity of T .] In particular, if
G acts transitively on L, then it acts transitively on X .

(iv) (The aim of this exercise is to show that (iii) may fail for infinite
spaces with lines; you should not try it if you do not know about
hyperbolic geometry.) Let X be the union of the real hyperbolic
plane and of its circle at infinity. A line in X is the union of a
hyperbolic line and of its two points at infinity. Let G be the group
of isometries of real hyperbolic plane. Check that X is a space
with lines and that G has two orbits on X , but acts transitively
on lines of X . This example is due to G. Valette.

3.5. Degrees of Representations of PSL2(q)

The aim of this section is to prove the following result, going back to Frobenius
[27].

3.5.1. Theorem. Let q ≥ 5 be a prime. The degree of any nontrivial repre-
sentation of PSL2(q) is at least q−1

2 .

Let B be the “ax + b” group of Fq , that is, the group of affine transforma-
tions

z �→ az + b (a ∈ F
×
q , b ∈ Fq )
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of Fq . Viewing Fq as a B-space, we may form the permutation represen-
tation λFq of B, as in Example 3.4.2(iii), and the subrepresentation λ0

Fq
on

W0 =
 f ∈ C Fq :

∑
z∈Fq

f (z) = 0

.

3.5.2. Lemma. The representation λ0
Fq

is an irreducible representation of B,
of degree q − 1.

Proof. By Proposition 3.4.24, it is enough to check that Fq is 2-transitive, as
a B-space. So let (x1, x2), (y1, y2) be two pairs in Fq × Fq , with x1 �= x2 and
y1 �= y2. We need to find an affine map g, such that g (xi ) = yi (i = 1, 2).
Geometrically, if we think of the graph of g as a subset of Fq × Fq , we need
to find the line through the points (x1, y1) and (x2, y2), as in Figure 3.1.
But of course this line is given by

g(z) = y2 − y1

x2 − x1
(z − x1) + y1

(z ∈ Fq ), so that not only g exists, but it is unique. �

(x1, y1)

(x2, y2)

Figure 3.1

Recall that we denote by

ϕ : SL2(q) → PSL2(q)

the canonical map and, as in the proof of Proposition 3.3.5, we let

B0 = ϕ

{(
a b
0 a−1

)
: a ∈ F

×
q , b ∈ Fq

}
the stabilizer in PSL2(q) of ∞ ∈ P1(Fq ). The action of B0 on Fq is then given
by

ϕA(z) = a2 z + ab, where A =
(

a b
0 a−1

)
.
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This means that B0 identifies with a subgroup of index 2 in B. Actually,
denoting by α the surjective homomorphism

α : B → F
×
q : (z �→ az + b) �→ a,

we see that B0 = α−1(F×2
q ), where F

×2
q denotes the group of squares in F

×
q .

Now we describe the representation theory of B0.

3.5.3. Proposition. Let q be an odd prime. Up to equivalence, there are q+3
2

irreducible representations of B0, comprising

� q−1
2 group homomorphisms B0 → C

×, factoring through α |B0 ;
� two inequivalent representations ρ+, ρ− of degree q−1

2 .

Proof. Since F
×2
q is an abelian group of order q−1

2 , by exercise 3 in section 3.4

it has exactly q−1
2 irreducible representations, all of degree 1, given by ho-

momorphisms χ1, . . . , χ q−1
2

from F
×
q to C

×. Composing with α |B0 gives q−1
2

homomorphisms χ1 ◦ α |B0, . . . , χ q−1
2

◦ α |B0 from B0 to C
×.

On the other hand, consider the restriction of λ0
Fq

to B0: we are going to
show that this restriction decomposes as the direct sum of two inequivalent,
irreducible representations ρ+, ρ− of B0, both of degree q−1

2 . To see this,

we appeal again to exercise 3 in section 3.4: set ω = e
2π i
q and consider, for

c ∈ Fq , the homomorphism,

ec : Fq → C
×,

given by

ec(z) = ωcz.

Then the ec’s, with c ∈ Fq , are a basis of C Fq . In particular the ec’s, with
c ∈ F

×
q , are a basis of the subspace W0 from Proposition 3.4.26. Note that, if

g ∈ B is given by g(z) = az + b, then

(λ0
Fq

(g) ec)(z) = ec (g−1 z) = ec

(
z − b

a

)
= ω− cb

a · ω
cz
a = ω− cb

a ec/a(z),

or else

λ0
Fq

(g) ec = ω− cb
a ec/a.

Denote then by W+ (resp. W−) the subspace of W0 generated by the ec’s, with
c taking all square values (resp., nonsquare values) in F

×
q :

W+ = span 〈ec : c ∈ F
×2
q 〉

W− = span 〈ec : c ∈ F
×
q − F

×2
q 〉.
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The preceding formula shows that W+ and W− are invariant subspaces for
the restriction of λ0

Fq
to B0; so we denote by ρ+ (resp. ρ−) the restriction of

λ0
Fq

|B0 to W+ (resp. W−). Note that

dimC W+ = dimC W− = q − 1

2
,

so that ρ+, ρ− have degree q−1
2 . To show that ρ+, ρ− are irreducible and

inequivalent, we first observe that, if g ∈ B − B0, then λ0
Fq

(g) exchanges W+
and W−. (This follows from the formula for the action of λ0

Fq
(g) on the ec’s.)

This means that, in the decomposition W0 = W+ ⊕ W−, we have

λ0
Fq

(g) =


(

ρ+(g) 0
0 ρ−(g)

)
if g ∈ B0 ;(

0 ∗
∗ 0

)
if g ∈ B − B0.

So, at the level of characters,

χλ0
Fq

(q) =
{

χρ+(g) + χρ−(g) if g ∈ B0 ;
0 if g ∈ B − B0.

By Lemma 3.5.2, the representation λ0
Fq

of B, is irreducible. By Corol-
lary 3.4.21, this means

1 = 〈χλ0
Fq

| χλ0
Fq

〉B = 1

|B|
∑
g∈B

|χλ0
Fq

(g)|2

= 1

2 |B0|

[∑
g∈B0

|χλ0
Fq

(g)|2 +
∑

g∈B−B0

|χλ0
Fq

(g)|2
]

= 1

2 |B0|
∑
g∈B0

|χρ+(g) + χρ−(g)|2 (by the previous formula)

= 1

2
〈χρ+ + χρ− | χρ+ + χρ−〉B0

= 1

2

[〈χρ+ | χρ+〉B0 + 2 Re 〈χρ+ | χρ−〉B0 + 〈χρ− | χρ−〉B0

]
.

By Theorem 3.4.19, the scalar products 〈χρ+ | χρ+〉B0 , 〈χρ+ | χρ−〉B0 and
〈χρ− | χρ−〉B0 are nonnegative integers, with 〈χρ+ | χρ+〉B0 > 0 and
〈χρ− | χρ−〉B0 > 0. This forces 〈χρ+ | χρ+〉B0 = 〈χρ− | χρ−〉B0 = 1 and 〈χρ+ |
χρ−〉B0 = 0. The first two equalities mean, by Corollary 3.4.21, that ρ+ and
ρ− are irreducible representations of B0; the latter means, by Theorem 3.4.9,
that ρ+ and ρ− are not equivalent.
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To show that this list of irreducible representations of B0 is complete, we
apply the degree formula 3.4.22: on the one hand, we have

|B0| = q(q − 1)

2
;

on the other hand, the sum of squares of degrees of irreducible representations
obtained so far is

q − 1

2
· 12 + 2 ·

(
q − 1

2

)2

= q(q − 1)

2
.

Hence, the list is complete. �

Proof of Theorem 3.5.1. Let π be a nontrivial representation of PSL2(q)
on C

n . Consider the restriction π |B0 . By Proposition 3.4.12, we may de-
compose it as a direct sum of irreducible representations of B0, whose list
is given in Proposition 3.5.3. Since q ≥ 5, the group PSL2(q) is simple,
by Theorem 3.2.2, so π |B0 is a faithful representation of B0, meaning that
π |B0 (g) �= I if g �= I . Now it follows from Proposition 3.5.3 that represen-
tations of degree 1 of B0 factor through the homomorphism α |B0 : B0 → F

×2
q ,

so that they are all trivial on the commutator subgroup of B0. This implies that
at least one of the irreducible representations ρ+, ρ− must appear in π |B0 , so
that n ≥ q−1

2 . �

Exercises on Section 3.5

1. Let G be a finite group, and let H be a subgroup of G. Let (π, V ) be a
finite-dimensional representation of H .
(a) Set W = { f : G → V : f (gh) = π (h−1) f (g) ∀ g ∈ G, h ∈ H}.

Show that W is a complex vector space and that

dimC W = [G : H ] dimC V .

(b) Define the induced representation IndG
H π of G on W by

((IndG
H π )(g) f )(x) = f (g−1 x) (g, x ∈ G ; f ∈ W ).

Check that IndG
H π is a linear representation of G on W .

2. Show that the representation λ0
Fq

of B is induced from a non-trivial repre-
sentation of degree 1, of the subgroup of translations z �→ z + b (b ∈ Fq ).

3. Show that N = ϕ

{(
1 b
0 1

)
| b ∈ Fq

}
is the commutator subgroup of

B0 for q ≥ 4.
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3.6. Notes on Chapter 3

3.2 It is a classical result of Jordan that, for a field K and n ≥ 2, the group PSLn(K ) is
simple, with the exceptions of PSL2(F2) and PSL2(F3). This can be found in many
books in group theory. As we already noticed in the proof of Theorem 3.2.2, the
proof we give is special to dimension 2.

3.3 Our proof of Lemma 3.3.11 is patterned after Dickson’s proof (see also [34] and
[64]). Note that the same counting argument is used in the classification of the finite
subgroups of PSL2(C).

3.4 An excellent introduction to the representation theory of finite groups, is given
in Chapter 1 of Serre’s book [60]. We tried not to duplicate it, by following a
somewhat different route to the main results, appealing more to tensor products of
representations.

3.5 The lower bound in Theorem 3.5.1 on degrees of nontrivial representations of
PSL2(q) is actually sharp; this follows from the classification of irreducible repre-
sentations of PSL2(q) (see [27] and [49]).
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Chapter 4

The Graphs X p,q

4.1. Cayley Graphs

Let G be a group (finite or infinite), and let S be a nonempty, finite subset of
G. We assume that S is symmetric; that is, S = S−1.

4.1.1. Definition. The Cayley graph G(G, S) is the graph with vertex set
V = G and edge set

E = {{x, y} : x, y ∈ G ; ∃ s ∈ S : y = xs}.

Hence, two vertices are adjacent if one is obtained from the other by right
multiplication by some element of S. Note that, since S is symmetric, this
adjacency relation is also symmetric, so the resulting graphs are undirected.

Examples.

(a) G = Z/6Z, S = {1, −1}.

1

2

34

5

0

(b) G = Z/6Z, S = {2, −2}.

1

2

34

5

0

108
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(c) G = Z/6Z, S = {3}.

1

2

34

5

0

(d) G = Z/6Z, S = {2, −2, 3}.

1

2

3

4

5
0

(e) G = Sym(3), S = {(123), (132), (12)}.

(23)

(123)

(12)

(132)

(13)Id

Examples (d) and (e) show that nonisomorphic groups can have iso-
morphic Cayley graphs.

(f) G = Z, S = {1, −1}.

− 2 − 1 1 20

(g) G = Z, S = {2, −2, 3, −3}.

− 3 − 2 − 1 0 1 2 3 4
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(h) G = Z
2, S = {(1, 0), (−1, 0), (0, 1), (0, −1)}.

(0, 1) (1, 1)(− 1, 1)

(0, 0) (1, 0)(− 1, 0)

(0, −1) (1, −1)(− 1, − 1)

(i) G = L2, the free group on two generators a, b; S = {a, a−1, b, b−1}.

a−1b

a−2

a−1

a−1b−1

b−1a−1

b−2

b−1

1

b

ba−1 b2

ab

a2

ab−1

b−1a

ba

a

More generally, for the free group Ln on n symbols a1, . . . , an , with S =
{a±1

1 , . . . , a±1
n }, the Cayley graph G(Ln, S) is the 2n-regular tree.

4.1.2. Proposition. Let G(G, S) be a Cayley graph; set k = |S|.

(a) G(G, S) is a simple, k-regular, vertex-transitive graph.
(b) G(G, S) has no loop if and only if 1 
∈ S.
(c) G(G, S) is connected if and only if S generates G.
(d) If there exists a homomorphism χ from G to the multiplicative group

{1, −1}, such that χ (S) = {−1}, thenG(G, S) is bipartite. The converse
holds provided G(G, S) is connected.
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Proof.
(a) The adjacency matrix of G(G, S) is

Axy =
{

1 if there exists s ∈ S such that y = xs;

0 otherwise.

From this it is clear that G(G, S) is simple and k-regular. On the other
hand, G acts on the left on G(G, S) by left multiplication: this action
is transitive on V = G.

(b) This result is obvious.
(c) G(G, S) is connected if and only if every x ∈ G is connected to 1 ∈ G

by a path of edges. But this holds if and only if every x ∈ G can
be expressed as a word on the alphabet S, that is, if and only if S
generates G.

(d) If the homomorphism χ : G → {±1} is given, then

V± = {x ∈ G : χ (x) = ±1}
defines a bipartition of G(G, S). For the converse, assume that G(G, S)
is connected and bipartite. Denote by V+ the class of the bipartition
through 1 ∈ G and by V− the other class. (Note that S ⊆ V−.) We then
define a map χ : G → {±1} by

χ (x) =
{

1 if x ∈ V+
−1 if x ∈ V−

.

To check that χ is a group homomorphism, we first observe that, since
S generates G,

χ (x) = (−1)�S (x),

where �S(x) is the word length of x with respect to S, hence, the distance
from x to 1 in G(G, S). The fact that G = V+ ∪ V− then makes it clear
that χ is a group homomorphism. �

Exercises on Section 4.1

1. For the group G of quaternionic units (see exercise 3 in section 2.5) draw
the Cayley graphs G(G, S) for the following choices of S:
(a) S = {±i};
(b) S = {±i, ± j}.

2. Let G be the group of symmetries of a square. Draw the Cayley graphs
G(G, S) for the following choices of S:
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(a) S = {s, r±1}, where s is a symmetry with respect to the median of a
side, and r is a 90◦ rotation.

(b) S = {s, s ′}, where s is as in (a), and s ′ is the symmetry with respect
to a diagonal.

3. Let G be the group of rotations of a regular tetrahedron. Draw the Cayley
graphs G(G, S) for the following choices of S:
(a) S = {s, r±1}, where s is the half-turn around the line joining the

midpoints of two opposite edges and r is a rotation of angle 120o

around the line joining a vertex to the center of the opposite face.
(b) S = {s, s ′} where s is as in (a), and s ′ is the half-turn around the line

joining the midpoints of another pair of opposite edges.
(c) S = {r±1

1 , r±1
2 }, where ri is a 120◦ rotation around the line joining a

vertex to the center of the opposite face, and the axes of r1, r2 are
distinct.

4. Let G(G, S) be a Cayley graph, with adjacency matrix A acting on �2(G).
Denote by λG and ρG the left and right regular representations of G on
�2(G) (see Example 3.4.2).
(a) Show that A = ∑

s∈S
ρG(s), as operators on �2(G).

(b) Let µ be an eigenvalue of A, with corresponding eigenspace Vµ.
Show that Vµ is an invariant subspace of λG .

4.2. Construction of X p,q

Let p, q be distinct odd primes. Recall from section 2.6 that we defined a
distinguished set Sp of p + 1 integral quaternions of norm p.

We now consider reduction modulo q:

τq : H(Z) → H(Fq ).

By Proposition 2.5.3 there exist integers x, y, such that x2 + y2 + 1 ≡ 0
(mod. q). Furthermore, by Proposition 2.5.2, any choice of such integers
determines an isomorphism

ψq : H(Fq ) → M2(Fq )

enjoying the following two properties (see exercise 2 in section 2.5):

(a) N (α) = det ψq (α) for α ∈ H(Fq );
(b) if α ∈ H(Fq ) is “real” (that is, if α = α), then ψq (α) is a scalar matrix.

For α ∈ Sp, we see that ψq (τq (α)) belongs to the invertible group GL2(q) of
M2(Fq ), since N (α) = p 
= q; also, ψq (τq (α α)) = ψq (τq (α α)) is a nonzero
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scalar matrix in GL2(q). Now we compose further with the homo-
morphism

ϕ : GL2(q) → PGL2(q)

(see section 3.1), whose kernel is exactly the subgroup of scalar matrices. We
then set

Sp,q = (ϕ ◦ ψq ◦ τq ) (Sp) .

The previous considerations show that Sp,q is a symmetric subset of PGL2(q),
so S−1

p,q = Sp,q .

4.2.1. Lemma. If q is large enough with respect to p (for example, if q >

2
√

p), then |Sp,q | = p + 1.

Proof. Let α = a0 + a1 i + a2 j + a3 k and β = b0 + b1 i + b2 j + b3 k be
two distinct elements of Sp. Then, for some i ∈ {0, 1, 2, 3}, we have ai 
=
bi . Since N (α) = N (β) = p, we have a j , b j ∈ (−√

p,
√

p) for every j ∈
{0, 1, 2, 3}; so if q > 2

√
p we have ai 
≡ bi (mod. q), and τq (α) 
= τq (β).

Now set A = (ψq ◦ τq )(α) and B = (ψq ◦ τq ) (β), so that A 
= B in GL2(q).
Assume by contradiction that ϕA = ϕB in PGL2(q). Then there exists λ ∈ F

×
q ,

such thatλ 
= 1 and A = λB. Taking determinants we get p = det A = λ2 det
B = λ2 p; hence,λ2 = 1, orλ = −1. From A = −B, we getα ≡ −β (mod. q);
i.e., a j ≡ −b j (mod. q) for every j ∈ {0, 1, 2, 3}. Since q > 2

√
p, we deduce

a j = −b j , showing that α = −β. By assumption, a0, b0 ≥ 0, so a0 = b0 = 0;
hence, β = α. But this contradicts the definition of Sp, since, as explained in
section 2.6, if α ∈ Sp has a0 = 0, then α /∈ Sp. �

The bound 2
√

p in Lemma 4.2.1 has nothing to do with the Ramanujan
bound 2

√
p appearing in Theorem 4.2.2; this coincidence is just a numerical

accident.
If p is a square modulo q , giving

(
p
q

)
= 1, then Sp,q is actually contained

in PSL2(q) (see exercise 3 in section 3.1). We define X p,q as the Cayley graph
of PSL2(q) with respect to Sp,q :

X p,q = G(PSL2(q), Sp,q ) .

If p is not a square modulo q, in which case
(

p
q

)
= −1, then Sp,q is contained

in PGL2(q) − PSL2(q), and we define X p,q as the Cayley graph of PGL2(q)
with respect to Sp,q :

X p,q = G(PGL2(q), Sp,q ).

The Holy Grail of this set of notes would be the following theorem.



P1: IJG

CB504-05drv CB504/Davidoff September 24, 2002 10:53

114 The Graphs X p,q

4.2.2. Theorem. Let p, q be distinct, odd primes, with q > 2
√

p. The graphs
X p,q are (p + 1)-regular graphs which are connected and Ramanujan. More-
over,

(a) If
(

p
q

)
= 1, then X p,q is a nonbipartite graph with q(q2−1)

2 vertices,

satisfying the girth estimate

g(X p,q ) ≥ 2 logp q.

(b) If
(

p
q

)
= −1, then X p,q is a bipartite graph with q(q2 − 1) vertices,

satisfying g(X p,q ) ≥ 4 logp q − logp 4.

4.2.3. Remark.

(a) The issue of connectedness of X p,q is a very important one that we
address in section 4.3. By Proposition 4.1.2(c), it is equivalent to say
that Sp,q generates either PSL2(q) or PGL2(q), according to whether(

p
q

)
= 1 or

(
p
q

)
= −1. This will be proved in section 4.3, under the

slightly stronger assumption that q > p8.
(b) Grails are seldom reached. We will not be able to prove the Ramanu-

jan property for X p,q with our elementary means. We shall, however,
indicate briefly how this property can be deduced from the Ramanu-
jan conjecture on coefficients of modular forms. Nevertheless, we will
prove by elementary means, in section 4.4, that for fixed p the family
(X p,q )q prime is a family of expanders, and we will get an explicit lower
bound on the spectral gap.

(c) Some parts of Theorem 4.2.2 are easy to prove. It follows from Proposi-
tion 4.1.2(a) and Lemma 4.2.1 that X p,q is (p + 1)-regular. The num-
ber of vertices of X p,q is given by Proposition 3.1.1, (b) and (c). If(

p
q

)
= −1, the fact that X p,q is bipartite follows Proposition 4.1.2(d)

and the group isomorphism PGL2(q)/PSL2(q) � {±1}.

Exercises on Section 4.2

1. Show that 1 /∈ Sp,q , so that X p,q is a graph without loop.

2. Construct a graph Z p,q as follows. The set of vertices is the projective
line P1(Fq ), and the adjacency matrix is

Axy = |{s ∈ Sp,q : s(x) = y}|
(for x, y ∈ P1(Fq )). Taking Theorem 4.2.2 for granted, show that Z p,q

is a (p + 1)-regular, connected, Ramanujan graph. [Hint: show that the
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spectrum of Z p,q is contained in the spectrum of X p,q .] It may happen
that Z p,q has loops or multiple edges: see the pictures of Z5,13 and Z5,17

in [57]. These pictures also show that Z p,q is not necessarily vertex-
transitive. It might, however, be interesting to know that there are (p + 1)-
regular Ramanujan graphs on q + 1 vertices.

4.3. Girth and Connectedness

In this section, we introduce another family Y p,q of (p + 1)-regular graphs
that will ultimately turn out to be isomorphic to X p,q . Because the Y p,q ’s are
defined as quotients of trees, it will be fairly easy to estimate their girth. We
will see in section 4.4 that they are also tractable for spectral estimates.

Let p be an odd prime. Recall that after Theorem 2.5.13 we defined a
subset �′ of H(Z) as

�′ = {α ∈ H(Z) : α ≡ 1(mod. 2) orα ≡ i + j + k (mod. 2),

N (α)a power ofp}.
On �′, we define the following equivalence relation: α ∼ β if there exist
m, n ∈ N, such that pmα = ± pnβ. We denote by [α] the equivalence class
of α ∈ �′, by � = �′/ ∼ the set of equivalence classes and by

Q : �′ → �

the quotient map Q(α) = [α].
Note that ∼ is compatible with multiplication; that is, if α1 ∼ β1, α2 ∼ β2,

then α1 α2 ∼ β1 β2. Thus, � comes equipped with an associative product with
unit.

Recall that before Definition 2.6.12 we defined a set

Sp = {α1, α1, . . . , αs, αs, β1, . . . , βt }
of p + 1 integral quaternions of norm p, where αi has a(i)

0 > 0 and β j has
b( j)

0 = 0. By definition Sp ⊂ �′.

4.3.1. Proposition.

(a) � is a group.
(b) The Cayley graph G(�, Q(Sp)) is the (p + 1)-regular tree.

Proof.

(a) For α ∈ �′ : α α = α α ∼ 1; hence, [α]−1 = [α], so � is a group.
(b) For α, β ∈ Sp, one sees that α ∼ β implies α = β. So |Q(Sp)| = p+1.
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By the existence part of Corollary 2.6.14, any α ∈ �′ is equivalent to a
reduced word over Sp; in other words, � is generated by Q(Sp), and, by Propo-
sition 4.1.2, the graphG(�, Q(Sp)) is (p + 1)-regular and connected. To prove
that it is a tree, we have to show that it does not contain any circuit. So suppose
by contradiction that it does contain a circuit x0, x1, x2, . . . , xn−1, xg = x0 of
length g ≥ 3. By vertex-transitivity, we may assume x0 = [1]. By definition
of a Cayley graph, we have x1 = [γ1], x2 = [γ1 γ2], . . . , xg = [γ1 γ2 . . . γg]
for some γ1, γ2, . . . , γg ∈ Sp. Since xk−1 
= xk+1 for 1 ≤ k ≤ n − 1, the word
γ1 γ2 . . . γg over Sp is reduced; i.e., it contains no occurrence of αi αi , αi αi

or β2
j (1 ≤ i ≤ s; 1 ≤ j ≤ t). The equality [1] = [γ1 γ2 . . . γg] in � becomes,

in �′,

pm = ± pnγ1 γ2 . . . γg.

But since γ1 γ2 . . . γg is a nontrivial reduced word over Sp, this contradicts
the uniqueness part in Corollary 2.6.14, and the proof is
complete. �

As in section 4.2, we consider reduction modulo q:

τq : H(Z) → H(Fq );

which sends �′ to the group H(Fq )× of invertible elements in H(Fq ). Let Zq

be the following central subgroup of H(Fq )×:

Zq = {α ∈ H(Fq )× : α = α}.
Let α, β ∈ �′: if α ∼ β, then τq (α)−1 τq (β) ∈ Zq . This means that τq :

�′ → H(Fq )× descends to a well-defined group homomorphism

�q : � → H(Fq )×/Zq .

We denote the kernel of �q by �(q) and we identify the image of �q with
the quotient group �/�(q). We set Tp,q = (�q ◦ Q)(Sp).

One sees as in Lemma 4.2.1 that, for q sufficiently large with respect to p
(for example, q > 2

√
p), one has |Tp,q | = p + 1. We define the graph Y p,q

as the Cayley graph of �/�(q) with respect to Tp,q :

Y p,q = G(�/�(q), Tp,q ).

Since � is generated by Q(Sp) (see Proposition 4.3.1), it follows from
Proposition 4.1.2 that, for q > 2

√
p, the graph Y p,q is (p + 1)-regular and

connected.
Notice now that the isomorphism ψq : H(Fq )× → GL2(q) of Proposi-

tion 2.5.2 sends Zq to the subgroup of scalar matrices in GL2(q), which,
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in turn, form the kernel of ϕ : GL2(q) → PGL2(q). Hence, ψq descends to
an isomorphism

β : H(Fq )×/Zq → PGL2(q).

This allows us to compare, by means of a commutative diagram, the con-
structions of X p,q and Y p,q :

Sp ⊂ �′ τq−−→ H(Fq )×
ψq−−→ GL2(q)� Q

� � ϕ

� −−→
�q

H(Fq )×/Zq −−→
β

PGL2(q)

(Here all vertical arrows are quotient maps.) The graph X p,q is defined by
means of ϕ ◦ ψq ◦ τq , while Y p,q is defined by means of �q ◦ Q. We do not
know yet that X p,q is connected, but we know exactly from which group it
comes, namely, from either PSL2(q) or PGL2(q), depending whether or not
p is a square modulo q. By contrast, Y p,q is connected by definition, but we
did not identify the group �/�(q) from which it comes. (For example, what
is the order of �/�(q)?). However, since β(Tp,q ) = Sp,q , we see that Y p,q

is a connected component of X p,q . Playing both constructions against each
other, we will eventually see that X p,q is connected for q > p8, so that X p,q

is isomorphic to Y p,q .
We first need to identify the “congruence subgroup” �(q).

4.3.2. Lemma.

�(q) = {[α] ∈ � : α = a0 + a1 i + a2 j + a3 k, q | a1, a2, a3}.

Proof.

[α] ∈ �(q) ⇔ τq (α) ∈ Zq

⇔ q does not divide a0 and q | a1, a2, a3

⇔ q | a1, a2, a3,

where the equivalence between the second and third lines follows from the
fact that N (α) is a power of p, and p 
= q. �

We can now give a lower bound for the girth of Y p,q .
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4.3.3. Proposition. One has g(Y p,q ) ≥ 2 logp q . If
(

p
q

)
= −1, we have the

better inequality g(Y p,q ) ≥ 4 logp q − logp 4.

Proof. For simplicity’s sake, write g for g(Y p,q ). Let x0, x1, . . . , xg−1, xg =
x0 be the vertices of a circuit of length g in Y p,q . By vertex-transitivity of
Y p,q (see Proposition 4.1.2), we may assume that x0 = xg = 1 in �/�(q).
Since Y p,q is a Cayley graph, we find t1, . . . , tg ∈ Tp,q , such that

xi = t1 t2 . . . ti (1 ≤ i ≤ g).

Now ti = �q ([γi ]) for a unique γi ∈ Sp (i = 1, . . . , g). Write α = γ1 . . . γg ∈
�′, with α = a0 + a1 i + a2 j + a3 k. Then α is a reduced word over Sp, and
[α] = [γ1] . . . [γg] is distinct from [1] in �, by Proposition 4.3.1(b). So α

is not equivalent to 1 in �′, which implies that at least one of a1, a2, a3 is
nonzero. On the other hand,

�q ([α]) = t1 t2 . . . tg = xg = 1,

so that [α] ∈ �(q). By Lemma 4.3.2, the prime q must divide a1, a2, a3. Since
one of them is nonzero, we get

pg = N (α) = a2
0 + a2

1 + a2
2 + a2

3 ≥ q2.

Taking logarithms in base p, we get the first statement.

Suppose now that
(

p
q

)
= −1. Since pg ≡ a2

0 (mod. q), we have

1 =
(

pg

q

)
=

(
p

q

)g

= (−1)g,

so that g is even, say g = 2h. Now actually

p2h ≡ a2
0 (mod. q2).

From exercise 1 in this section, it follows that

ph ≡ ± a0 (mod. q2).

On the other hand, a2
0 ≤ pg , so |a0| ≤ ph . Assume by contradiction that g <

4 logp q − logp 4 = logp
q4

4 , so ph <
q2

2 . Then |ph ∓ a0| < q2 and, from
the previous congruence, we get ph = ± a0. Then pg = a2

0 , which forces
a1 = a2 = a3 = 0; this gives a contradiction. �

4.3.4. Remark. From exercise (3) in section 1.3, we have, for p ≥ 5,

g(Y p,q ) ≤ 2 + 2 logp |Y p,q |;
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therefore, from Proposition 4.3.3,

|Y p,q | ≥ q

p
.

Better, if
(

p
q

)
= −1,

|Y p,q | ≥ q2

2p
.

This shows that |Y p,q | = |�/�(q)| grows at least linearly with q.
Here now is the main result of this section.

4.3.5. Theorem. Assume p ≥ 5. For q > p8, the graph X p,q is connected;
therefore, X p,q is isomorphic to Y p,q .

Proof. By Proposition 4.1.2(c), we have to show that Sp,q generates PSL2(q) if(
p
q

)
= 1; and PGL2(q), if

(
p
q

)
= −1. Recall the isomorphismβ : H(Fq )×/Zq

→ PGL2(q). Since β(Tp,q ) = Sp,q , it is equivalent to prove

β (�/�(q)) =



PSL2(q) if
(

p
q

)
= 1;

PGL2(q) if
(

p
q

)
= −1.

In the second case, we already observed that Sp,q ⊂ PGL2(q) − PSL2(q). Set
Hp,q = PSL2(q) ∩ β (�/�(q)). We are left to prove that, in both
cases,

Hp,q = PSL2(q).

In view of Theorem 3.3.4, this will follow from two facts: |Hp,q | > 60, and
Hp,q is not metabelian.

To prove that |Hp,q | > 60, we observe that, since q > p8 and p ≥ 5, we
certainly have, from Remark 4.3.4,

|�/�(q)| ≥ q

p
> 120;

hence, |Hp,q | > 60.
To prove that Hp,q is not metabelian, by exercise 2 in section 3.3, we must

show that there exist g1, g2, g3, g4 in Hp,q , such that

[[g1, g2], [g3, g4]] 
= 1.
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For that, we examine each case:
(a) If

(
p
q

)
= 1, we choose the gi ’s as follows from among the elements of

Sp,q : take for g1 any element in Sp,q ; choose g2 to be distinct from
g±1

1 . Then take g3 = g1, and let g4 /∈ {g±1
1 , g±1

2 }. With this choice
[[g1, g2], [g3, g4]] is a reduced word of length 16 over Sp,q . By Propo-
sition 4.3.3, the girth of Y p,q satisfies

g(Y p,q ) ≥ 2 logp q > 16;

as a consequence, any reduced word of length 16 over Sp,q cannot be
equal to 1 in Hp,q , since this would create a circuit of length at most
16 in Y p,q .

(b) If
(

p
q

)
= −1, we first choose h1, h2, h3 in Sp,q as follows: let h1 be any

element of Sp,q ; let h2 be distinct from h±1
1 and h3 /∈ {h±1

1 , h±1
2 }. Then

we set g1 = h1 h3, g2 = h2 h3, g3 = h1 h2, and g4 = h3 h2: these are
elements of Hp,q . Then [g1, g2] = h1 h3 h2 h−1

1 h−1
3 h−1

2 and [g3, g4] =
h1 h2 h3 h−1

1 h−1
2 h−1

3 . Then [[g1, g2], [g3, g4]] is a reduced word of
length 24 on Sp,q . By Proposition 4.3.3, the girth of Y p,q satisfies

g(Y p,q ) ≥ 4 logp q − logp 4 > 24 .

The conclusion then follows, as in (a). �

We summarize what this means for the graphs X p,q (in comparison to the
statement of Theorem 4.2.2).

4.3.6. Corollary. Assume that q > p8. The graphs X p,q are (p + 1)-regular
connected graphs. Moreover,

(a) If
(

p
q

)
= 1, then X p,q is nonbipartite, with

g(X p,q ) ≥ 2

3
logp |X p,q |.

(b) If
(

p
q

)
= −1, then X p,q is bipartite, with

g(X p,q ) ≥ 4

3
logp |X p,q | − logp 4.

Proof. Connectedness was established in Theorem 4.3.5. The girth estimates
follow from Proposition 4.3.3 and the fact that q3 ≥ |X p,q |. (See

Proposition 3.1.1.) Assume that
(

p
q

)
= 1: in view of Proposition 4.2.1(d)
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and the connectedness of X p,q , the fact that X p,q is not bipartite follows from

the simplicity of PSL2(q) proved in Theorem 3.2.2. Finally, if
(

p
q

)
= −1, the

fact that X p,q is bipartite was already observed in Remark 4.2.3(c). �

4.3.7. Remark. Recall from Definition 0.12 that a family (Xm)m≥1 of finite,
connected, k-regular graphs, with |Xm | → +∞ for m → +∞, has large girth
if there exists C > 0, such that g(Xm) ≥ (C + o(1)) logk−1 |Xm |. From ex-
ercise (2) in section 1.3, we necessarily have C ≤ 2. As already mentioned,
Erdös and Sachs [25] gave a nonconstructive proof of such families with

C = 1. For
(

p
q

)
= −1, the graphs X p,q are an explicit family of (p + 1)-

regular graphs with large girth, namely, C = 4
3 . This is one of the few examples

in graph theory where explicit methods give better results than nonconstruc-
tive ones.

Exercises on Section 4.3

1. Let q be an odd prime; let a, b be integers, not divisible by q , such that
a2 ≡ b2 (mod. q2); show that a ≡ ± b (mod. q2).

2. Show that, if p ≡ 1 (mod. 4) and
(

p
q

)
= −1, then g(Y p,q ) ≥ 4 logp q.

[Hint: in the proof of Proposition 4.3.3, observe that the congruence
ph ≡ ± a0 (mod. q2) improves to ph ≡ ± a0 (mod. 2q2), since p and
a0 are odd.]

3. Assume p ≡ 1 (mod. 4). Show that �(2q) = {[α] ∈ �(2) : α = a0 +
a1 i + a2 j + a3 k, 2q | a1, a2, a3} (compare with Lemma 4.3.2).

4. How should one modify Theorem 4.3.5 (and its proof) to include the case
p = 3?

5. (This exercise assumes some acquaintance with free groups.)
(a) Assume that p ≡ 1 (mod. 4); show that the group �(2) is

isomorphic to the free group L p+1
2

on p+1
2 generators.

(b) Let Ln be the free group on a1, . . . , an; set S = {a1, . . . , an,

a−1
1 , . . . , a−1

n }. Let N be a normal subgroup of Ln; denote by � :
Ln → Ln/N the quotient map, and assume that � |S is one-to-one.
Show that the girth of the Cayley graph G(Ln/N , �(S)) is the min-
imum of the word length of the nonidentity elements in N . (When
p ≡ 1 (mod. 4), this applies to the graphs Y p,q in Proposition 4.3.3.)

6. (This exercise requires some basic knowledge about free products.) Write
Sp = {α1, α1, . . . , αs, αs, β1, . . . , βt }, as immediately before Proposi-
tion 4.3.1. Observe that in �(2) : [β j ]2 = [1] (1 ≤ j ≤ t). Deduce that
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�(2) is isomorphic to the free product of Ls with t copies of Z/2Z:

�(2) � Ls ∗ Z/2Z ∗ · · · ∗ Z/2Z︸ ︷︷ ︸
t factors

.

4.4. Spectral Estimates

In this section we prove that, for fixed p, the family X p,q is a family of
expanders, with an explicit lower bound on the spectral gap when q is large
enough with respect to p.

We shall denote by n the number of vertices of X p,q , computed in
Proposition 3.1.1, and by

µ0 = p + 1 > µ1 ≥ µ2 ≥ · · · ≥ µn−1

the spectrum of its adjacency matrix. Recall from section 1.4 that fm is the
number of paths of length m without backtracking, starting, and ending at 1
on X p,q . Because, by Proposition 4.1.2(a), the graph X p,q is vertex-transitive,
the trace formula in Corollary 1.4.7 takes the following form for X p,q :

∑
0≤r≤ m

2

fm−2r = p
m
2

n

n−1∑
j=0

Um

(
µ j

2
√

p

)
,

for every m ∈ N.
Our first task is to reinterpret the left-hand side of this trace formula. For

this, we introduce the quadratic form in four variables:

Q(x0, x1, x2, x3) = x2
0 + q2(x2

1 + x2
2 + x2

3 ),

and, for m ≥ 1, we set

sQ(pm) = |{(x0, x1, x2, x3) ∈ Z
4 : Q(x0, x1, x2, x3) = pm, either x0

odd and x1, x2, x3 even, or x0 even and x1, x2, x3 odd}|.

4.4.1. Remark. Suppose either m even or p ≡ 1 (mod. 4). By reducing mod-
ulo 4, one sees in the previous definition that all the 4-tuples (x0, x1, x2, x3)
appearing have x0 odd and x1, x2, x3 even. We introduce the quadratic form:

Q′(x0, x1, x2, x3) = x2
0 + 4q2(x2

1 + x2
2 + x2

3 );

then sQ(pm) is exactly the number of integral representations of pm by the
quadratic form Q′.

We now come back to a general p.
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4.4.2. Lemma. For m ∈ N : sQ(pm) = 2
∑

0≤r≤ m
2

fm−2r .

Proof. We identify X p,q with Y p,q , by Theorem 4.3.5. Let x0 =1, x1,. . . , x�−1,
x� = 1 be the vertices of a path of length �, without backtracking, starting,
and ending at 1 in Y p,q . As in the proof of Proposition 4.3.3, we can find
t1, . . . , t� ∈ Tp,q , such that xi = t1 t2 . . . ti (1 ≤ i ≤ �). Write ti = �q [αi ] for
a unique αi ∈ Sp (i = 1, . . . , �). Then [α1] [α2] . . . [α�] is a reduced word of
length � in �, since it is lifted from a path without backtracking; and be-
cause �q ([α1] [α2] . . . [α�]) = x� = 1, we see that [α1] [α2] . . . [α�] belongs
to �(q). This proves that f� is the number of reduced words of length � in �,
belonging to �(q).

Let (x0, x1, x2, x3) ∈ Z
4 contribute to sQ(pm), so Q(x0, x1, x2, x3) = pm

and the correct congruences modulo 2 are satisfied. Form the quaternion
α = x0 + q(x1 i + x2 j + x3 k): this α belongs to �′ and, by Lemma 4.3.2,
its equivalence class is in �(q). From this we get the equality

sQ(pm) = |{α = a0 + a1 i + a2 j + a3 k ∈ �′ : N (α) = pm, q | a1, a2, a3}|.

Suppose α contributes to the right-hand side of the previous equation.
By Corollary 2.6.14, α has a unique factorization α = ± p� wm−2�, where
wm−2� is a reduced word of length m − 2� over Sp. The class [α] is therefore
a reduced word of length m − 2� in � that, moreover, belongs to �(q).
Conversely, starting from a reduced word w of length m − 2� in �(q),
the formula α = ± p� w produces two quaternions as before. This shows
that

|{α ∈ �′ : N (α) = pm, [α] ∈ �(q)}| = 2
∑

0≤r≤ m
2

fm−2r ,

which concludes the proof. �

The trace formula for X p,q becomes, for every m ∈ N:

sQ(pm) = 2

n
p

m
2

n−1∑
j=0

Um

(
µ j

2
√

p

)
.

At this juncture, we introduce the following subset �p of C:

�p = [i log
√

p, 0] ∪ [0, π ] ∪ [π, π + i log
√

p].



P1: IJG

CB504-05drv CB504/Davidoff September 24, 2002 10:53

124 The Graphs X p,q

Recall that the cosine and sine of a complex number z ∈ C are defined as

cos z = 1 − z2

2!
+ z4

4!
− z6

6!
+ · · · =

∞∑
n=0

(−1)n z2n

(2n)!
= eiz + e−i z

2

sin z = z − z3

3!
+ z5

5!
− z7

7!
+ · · · =

∞∑
n=0

(−1)n z2n+1

(2n + 1)!
= eiz − e−i z

2i
.

The reader can check easily that the change of variables z → 2
√

p cos z maps
�p bijectively to [−(p + 1), p + 1]; note that it maps [0, π ] to [−2

√
p, 2

√
p],

so this change of variables “sees” the Ramanujan interval. For j = 0, 1, . . . ,

n − 1, let θ j ∈ �p be the unique element of �p, such that µ j = 2
√

p cos θ j .

In particular, θ0 = i log
√

p and, if
(

p
q

)
= −1:

θn−1 = π + i log
√

p (by Corollary 4.3.6).

By definition of the Chebyshev polynomial Um , we have

sQ(pm) = 2

n
p

m
2

n−1∑
j=0

sin(m + 1) θ j

sin θ j
.

To prove that X p,q is Ramanujan, we, therefore, must prove that, with the
exception of θ0 = i log

√
p and possibly of θn−1 = π + i log

√
p, all the θ j ’s

are real. This was first done in [42], and we refer the reader to Remark 4.4.7
for an indication of how that proof was constructed. With elementary methods
we will not be able to go so far. Instead, we will need to content ourselves
with a proof that, for q sufficiently large, the imaginary part of θ j is bounded
above by a constant depending only on p. This will be enough to establish
that the X p,q form a family of expanders.

Since, in the trace formula, the θ j ’s are repeated according to the
multiplicities of their corresponding eigenvalues, we first gather information
about these multiplicities.

4.4.3. Proposition. Let µ be a nontrivial eigenvalue of X p,q , which means
that |µ| 
= p + 1, and denote its multiplicity by M(µ). Then M(µ) ≥ q−1

2 .

Proof. Let Vµ be the eigenspace corresponding to µ. From exercise 4 in
section 4.1, the vector space Vµ is a representation space of the group un-
derlying X p,q . Since this group always contains PSL2(q), Vµ is a represen-
tation space PSL2(q). From Theorem 3.5.1, any nontrivial representation of
PSL2(q) has degree at least q−1

2 . So we must prove that, if |µ| 
= p + 1, then
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the representation of PSL2(q) on Vµ is nontrivial. We do this by contrapo-
sition, so we assume that the representation of PSL2(q) on Vµ is trivial. We
separate two cases.

If
(

p
q

)
= 1, this means that every function in Vµ is constant, so µ = p + 1.

If
(

p
q

)
= −1, then a nonzero function f ∈ Vµ must be constant on each

of the two cosets of PSL2(q) in PGL2(q): say that

f =
{

a+ on PSL2(q);

a− on PGL2(q) − PSL2(q).

Noting that f is an eigenfunction of the adjacency matrix of X p,q , we are led
to the system of equations:{

µ a− = (p + 1) a+
µ a+ = (p + 1) a− .

Using the fact that f is nonzero, we get µ2 = (p + 1)2; hence, |µ| = p + 1,
as desired. �

We now reach the main result of this section.

4.4.4. Theorem. Fix a real number ε with 0 < ε < 1
6 . For q sufficiently large,

every nontrivial eigenvalue µ of X p,q satisfies

|µ| ≤ p
5
6 +ε + p

1
6 −ε .

In particular, the X p,q ’s are a family of expanders.

Proof. We start with our expression for the trace formula for X p,q :

sQ(pm) = 2

n
p

m
2

n−1∑
j=0

sin(m + 1) θ j

sin θ j
,

for every m ∈ N. Hereµ j = 2
√

p cos θ j . Ifµ j is not in the Ramanujan interval
[−2

√
p, 2

√
p], we write{

θ j = iψ j if 2
√

p < µ j ≤ p + 1,

θ j = π + iψ j if − (p + 1) ≤ µ j < −2
√

p,

where 0 < ψ j ≤ log
√

p in both cases.



P1: IJG

CB504-05drv CB504/Davidoff September 24, 2002 10:53

126 The Graphs X p,q

From now on, we assume that m is even. Recall that the hyperbolic sine
and hyperbolic cosine of a complex number z are defined as

sinh z = ez − e−z

2
= i sin(−i z);

cosh z = ez + e−z

2
= cos(−i z).

For µ j /∈ [−2
√

p, 2
√

p], we have in both cases, since m is even,

sin(m + 1) θ j

sin θ j
= sin i(m + 1) ψ j

sin i ψ j
= sinh(m + 1) ψ j

sinh ψ j
≥ 0.

Then, for a fixed nontrivial eigenvalue µk /∈ [−2
√

p, 2
√

p],

sQ(pm) = 2

n
p

m
2 M(µk)

sinh(m + 1)ψk

sinh ψk
+ 2

n
p

m
2

∑
j :µ j 
=µk

sin(m + 1) θ j

sin θ j

≥ 2

n
p

m
2 M(µk)

sinh(m + 1)ψk

sinh ψk
+ 2

n
p

m
2

∑
j :|µ j |≤2

√
p

sin(m + 1) θ j

sin θ j
.

We leave the reader to check that, for θ real,
∣∣ sin(m+1) θ

sin θ

∣∣ ≤ m + 1, so that

sQ(pm) ≥ 2

n
p

m
2 M(µk)

sinh(m + 1)ψk

sinh ψk
− 2 p

m
2 (m + 1).

We now estimate sQ(pm) from before. By Remark 4.4.1, since m is even,
sQ(pm) is the number of integral solutions of

x2
0 + 4q2(x2

1 + x2
2 + x2

3 ) = pm .

We first estimate the number of possible choices for x0. First, we have |x0| ≤
p

m
2 . Second, x2

0 ≡ pm (mod. q2); hence, by exercise 1 in Section 4.3,

x0 ≡ ± p
m
2 (mod. q2).

Since both x0 and p are odd, we actually have

x0 ≡ ± p
m
2 (mod. 2q2).

This gives at most two
(

p
m
2

q2 + 1
)

choices for x0. Once x0 is fixed, we must

solve

x2
1 + x2

2 + x2
3 = pm − x2

0

4q2
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in integers. Using the notations of section 2.2, there are r3

(
pm−x2

0
4q2

)
ways to

do this. Furthermore, by Corollary 2.2.13, we have

r3

(
pm − x2

0

4q2

)
= Oε

((
pm

q2

) 1
2 +ε

)

for every ε > 0. Then,

sQ(pm) = Oε

[
p

m
2 +εm

q1+2ε

(
p

m
2

q2
+ 1

)]

= Oε

[
pm(1+ε)

q3+2ε
+ p

m
2 (1+2ε)

q1+2ε

]

= Oε

[
pm(1+ε)

q3
+ p

m
2 (1+2ε)

q

]
.

Thus, for some constant Cε > 0, our inequality becomes

M(µk)

n
· p

m
2 · sinh(m + 1) ψk

sinh ψk
≤ Cε

[
pm(1+ε)

q3
+ p

m
2 (1+2ε)

q

]
+ p

m
2 (m + 1).

Canceling out p
m
2 , and using n ≤ q3 (see Proposition 3.1.1), we get

M(µk)
sinh(m + 1) ψk

sinh ψk
≤ Cε

[
pm( 1

2 +ε) + q2 pmε
]

+ q3(m + 1) .

Suppose that m is chosen in such a way that p
m
2 ≤ q3. Then

M(µk)
sinh(m + 1) ψk

sinh ψk
≤ Cε [q3+6ε + q2+6ε] + q3(1 + 6 logp q) .

Since sinh ψk ≤ sinh log
√

p, this yields

M(µk) sinh(m + 1) ψk = Oε [q3+6ε] .

Now take m to be the greatest even integer such that p
m
2 ≤ q3. For q suffi-

ciently large we have

sinh(m + 1) ψk ≥ e(m+1)ψk

3
≥ e(−1+6 logp q)ψk

3
≥ p− 1

2

3
e6 logp q·ψk ,

where we have used ψk ≤ log
√

p in the final inequality. Then

M(µk) = Oε

(
q3+6ε− 6ψk

log p

)
.
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But, since µk is a nontrivial eigenvalue, we have

M(µk) ≥ q − 1

2

by Proposition 4.4.3. So, for q large enough, we must have

3 + 6ε − 6ψk

log p
≥ 1 , giving ψk ≤

(
1

3
+ ε

)
log p.

Then, since either θk = i ψk or θk = π + i ψk , and µk = 2
√

p cos θk , we
get

|µk | = 2
√

p | cos(i ψk)| = 2
√

p cosh ψk ≤ p
5
6 +ε + p

1
6 −ε,

for q big enough. This concludes the proof. �

From Theorem 1.2.3 and Corollary 1.5.4, we immediately get estimates
for the isoperimetric constant and the chromatic number of the graphs X p,q .

4.4.5. Corollary. Fix ε ∈ (0, 1/6). For q sufficiently large, one has

h(X p,q ) ≥ p + 1 − p
5
6 +ε − p

1
6 −ε

2
.

Moreover, if
(

p
q

)
= 1 and q is large enough,

χ (X p,q ) ≥ p + 1

p
5
6 +ε + p

1
6 −ε

.

This proves that we have given an explicit construction of an infinite fam-
ily of graphs with large girth and large chromatic number, providing a con-
structive solution to the problem we discussed in section 1.6. There we used
probabilistic methods to establish the existence of such graphs, but the proof
gave no insight into how such a graph could be explicitly defined.

4.4.6. Corollary. Fix N ∈ N. There exists an odd prime p, such that, for a
prime q large enough,

g(X p,q ) ≥ N and χ (X p,q ) ≥ N .

Proof. Let p be chosen large enough to have p+1

p
11
12 +p

1
12

≥ N . Then, choose q

large enough to allow the following four conditions to be satisfied
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simultaneously:

(a) q > p8;
(b) 2 logp q ≥ N ;

(c)
(

p
q

)
= 1;

(d) χ (X p,q ) ≥ p+1

p
11
12 +p

1
12

.

(Condition (d) will be satisfied in view of Corollary 4.4.5.) Then, by Propo-
sition 4.3.3 and Theorem 4.3.5, we have

min {g(X p,q ), χ (X p,q )} ≥ N . �

4.4.7. Remark. The Ramanujan conjecture [54] is a conjecture about the
order of magnitude of coefficients of modular cusp forms; in weight 2, this
conjecture was proved by Eichler [23]. (For a discussion of modular forms,
we refer the reader to [47].)

The θ -function of the quadratic form Q′ is given by

θ (z) =
∑
x∈Z4

e2π i Q′(x)z =
∞∑

k=0

rQ′(k) e2π ikz,

where rQ′(k) is the number of integral representations of the integer k by the
form Q′. Then θ is a modular form of weight 2; decomposing θ as the sum of an
Eisenstein series and a cusp form, we may appeal to Eichler’s result to get esti-
mates on rQ′(pm) = sQ(pm) for even m’s. Specifically, we get, for every ε > 0,

sQ(pm) = 4

q(q2 − 1)

pm+1 − 1

p − 1
+ 0ε

(
p

m
2 (1+ε)

)
.

(For details, see [42], [57], and [65].) It is interesting to compare this result to
the estimates obtained in the proof of Theorem 4.4.4 by our elementary means.

Now, recall the trace formula for X p,q , as written before Proposition 4.4.3:

sQ(pm) = 2

n
p

m
2

n−1∑
j=0

sin (m + 1) θ j

sin θ j
.

We leave as an easy exercise the proof that the dominant term 4
q(q2−1)

pm+1−1
p−1

is exactly the contribution of the trivial eigenvalues:{
θ0 = i log

√
p if

(
p
q

)
= 1;

θ0 = i log
√

p and θn−1 = π + i log
√

p if
(

p
q

)
= −1.
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Suppose for simplicity that we are in the first case. Then, from the Ramanujan–
Eichler estimate on sQ(pm), we get

2

n

n−1∑
j=1

sin (m + 1) θ j

sin θ j
= Oε

(
p

εm
2

)
.

So, if some θ j is not real, as in the proof of Theorem 4.4.4, we may write
θ j = iψ j or θ j = π + iψ j , with ψ j ∈ (0, log

√
p], and the corresponding

term is

2

n

sin (m + 1) θ j

sin θ j
= 2

n

sinh (m + 1) ψ j

sinh ψ j
> 0,

since m is even. This quantity cannot cancel with the contributions of the real
θi ’s, since we certainly have∣∣∣∣∣2

n

∑
i :θi real

sin (m + 1) θi

sin θi

∣∣∣∣∣ ≤ 2 (m + 1).

So, if some θ j is not real, by choosing ε small enough, we get, for m a large

even number, a contradiction with the above estimate on
n−1∑
j=1

sin (m+1) θ j

sin θ j
. This

way one proves that the graphs X p,q are Ramanujan.

Exercises on Section 4.4

1. Check that z �→ 2
√

p cos z maps �p bijectively onto [−(p + 1), p + 1].

2. Prove that, for θ real,
∣∣ sin (m+1) θ

sin θ

∣∣ ≤ m + 1.

3. Show that Um

(
p+1
2
√

p

)
= p− m

2 · pm+1−1
p−1 .

4.5. Notes on Chapter 4

4.2 Theorem 4.2.2 is due to Lubotzky et al. [42], with a substantial part being obtained
independently by Margulis [46]. For applications of the graphs X p,q to problems
in automorphic forms, dynamical systems, and operator algebras, see [65].

4.3 The construction of the graphs Y p,q also appears in [42], [65], and [57]. When(
p
q

)
= −1, Biggs and Boshier [6] proved that the constant c = 4

3 in

Corollary 4.3.6(b) is the best possible; namely

g(X p,q ) ≤ 4 logp q + logp 4 + 2 .

As far as the constant c in Definition 0.12 is concerned, examples nearly as good
as the X p,q ’s were constructed by Lazebnik, Ustimenko, and Woldar [38]; more
precisely, for every prime power q, they construct families (Xm)m∈N of q-regular
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graphs, such that

g(Xm) ≥ 4

3
logq (q − 1) · logq−1 |Xm | .

4.4 For modular cusp forms of weight 2, the Ramanujan conjecture was proven by
Eichler [23] as a consequence of Weil’s proof of the Riemann hypothesis for curves
over a finite field (see [68] and [69]).

He did so by relating the eigenvalues of certain operators acting on such spaces
of cusp forms to the zeroes of zeta functions of modular curves over the fields
Fp . These operators are known as Hecke operators; they are close relatives of the
operators Ar used in our setting in section 1.4. The Ramanujan property turns out
to be equivalent to the Riemann Hypothesis for these zeta functions. In higher
weight, the Ramanujan conjecture was proven by Deligne [18]. All these works
rely heavily on algebraic geometry over finite fields.
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Appendix

4-Regular Graphs with Large Girth

The aim of this Appendix is to give, following Margulis [45], a completely
elementary construction of a family of 4-regular graphs with large girth, with
an explicit estimate on the constant C in Definition 0.12. These graphs will
be Cayley graphs of SL2(q), where q is an odd prime.

Let τq : SL2(Z) → SL2(q) denote reduction modulo q. In SL2(Z), consider
the two matrices:

A =
(

1 2
0 1

)
; B =

(
1 0
2 1

)
.

Set then Aq = τq (A), Bq = τq (B), and define

Sq = {Aq , A−1
q , Bq , B−1

q } ,

so that Sq is a 4-element subset of SL2(q) (since q is odd). Set Xq = G(SL2(q),
Sq ).

A.1.1. Lemma. For an odd prime q , the graph Xq is a 4-regular, connected
graph on q(q2 − 1) vertices.

Proof. Xq is 4-regular, since |Sq | = 4; the number of vertices is given by
Proposition 3.1.1(b). By Proposition 4.1.2(c), connectedness of Xq is equiv-
alent to showing that Sq is a generating subset for SL2(q). To see the latter,
we observe that, by Lemma 3.2.1, the matrices(

1 1
0 1

)
,

(
1 0
1 1

)

generate SL2(q). Since A
q+1

2
q =

(
1 1
0 1

)
and B

q+1
2

q =
(

1 0
1 1

)
, we see that

Sq generates SL2(q). �

To show that the graphs Xq are a family with large girth, we need some
information about the subgroup H of SL2(Z) generated by A and B.

132
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A.2.2. Proposition. H is isomorphic to the free group L2 on two
generators.

Proof. H is the set of reduced words over the alphabet {A, A−1, B, B−1};
recall that a word is reduced if it contains no occurrence of AA−1, A−1 A,
B B−1, B−1 B. Nonempty reduced words have exactly one form among the
four following ones:

(a) words starting and finishing with a power of A:

Ak1 B�1 Ak2 B�2 . . . Akr B�r Akr+1,

where ki , �i ∈ Z − {0} (1 ≤ i ≤ r + 1, 1 ≤ j ≤ r ).
(b) words starting and finishing with a power of B:

Bk1 A�1 Bk2 A�2 . . . Bkr A�r Bkr+1,

where ki , � j ∈ Z − {0} (1 ≤ i ≤ r + 1, 1 ≤ j ≤ r ).
(c) words starting with a power of A and finishing with a power of B:

Ak1 B�1 Ak2 B�2 . . . Akr B�r ,

where ki , � j ∈ Z − {0} (1 ≤ i, j ≤ r ).
(d) words starting with a power of B and finishing with a power of A:

Bk1 A�1 Bk2 A�2 . . . Bkr A�r ,

where ki , � j ∈ Z − {0} (1 ≤ i, j ≤ r ).

To prove that H is the free group over A and B, we have to show that any
nonempty reduced word previously cited defines a nonidentity element in H .
For this, we will use a method going back to Fricke and Klein [26], called
today the “ping-pong lemma.” Let SL2(Z) act on R

2 by its standard linear
action, and define two subsets E , F of R

2 as follows (see Figure A.1):

E = {(x, y) ∈ R
2 : |y| > |x |}

F = {(x, y) ∈ R
2 : |x | > |y|}.

One sees immediately that Ak(E) ⊂ F (k ∈ Z − {0}) and B�(F) ⊂ E (� ∈
Z − {0}). Now take a reduced word of the first kind from the previous:

W1 = Ak1 B�1 Ak2 B�2 . . . Akr B�r Akr+1 .
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E

F

E

F

Figure A.1

To apply it to E , we start playing ping-pong:

Akr+1 (E) ⊂ F

B�r Akr+1 (E) ⊂ E

Akr B�r Akr+1 (E) ⊂ F

B�r−1 Akr B�r Akr+1 (E) ⊂ E
...

W1(E) = Ak1 B�1 . . . Akr B�r Akr+1 (E) ⊂ F.

Since W1(E) ⊂ F and E ∩ F = ∅, clearly W1 �= 1. Proceeding symetrically,
for a reduced word W2 of the second form, we get W2(F) ⊂ E and therefore
W2 �= 1.

Now let W3 = Ak1 B�1 . . . Akr B�r be a reduced word of the third kind.
Choose k ∈ Z with k �= k1. Then A−k W3 Ak is a word of the first kind;
therefore, A−k W3 Ak �= 1. Clearly this implies W3 �= 1. The case of a re-
duced word W4 of the fourth kind is completely symmetric, so the proof is
finished. �

We endow R
2 with the standard scalar product

〈ξ | η〉 = ξ1 η1 + ξ2 η2

(for vectors ξ = (ξ1, ξ2), η = (η1, η2) in R
2); the corresponding euclidean

norm is

‖ξ‖ =
√

ξ 2
1 + ξ 2

2 .

Let M2(R) be the space of 2-by-2 matrices with real coefficients. We define
the operator norm of T ∈ M2(R) as

‖T ‖ = sup

{‖T ξ‖
‖ξ‖ : ξ ∈ R

2 − (0, 0)

}
.



P1: IJG

CB504-06drv CB504/Davidoff September 23, 2002 13:48

4-Regular Graphs with Large Girth 135

Then, by definition we have

‖T ξ‖ ≤ ‖T ‖ ‖ξ‖
for every ξ ∈ R

2. From this, it follows immediately that

‖T T ′ ξ‖ ≤ ‖T ‖ ‖T ′‖ ‖ξ‖
for T, T ′ ∈ M2(R); hence

‖T T ′‖ ≤ ‖T ‖ ‖T ′‖ .

A.3.3. Lemma. Let T =
(

a b
c d

)
∈ M2(R); denote by T t =

(
a c
b d

)
the

transposed matrix.

1. ‖T ‖ = ‖T t‖;
2. ‖T ‖ = ‖T t T ‖1/2;
3. ‖T ‖ ≥ max {|a|, |b|, |c|, |d|}.
4. If T is symmetric (b = c) with eigenvalues λ1, λ2 ∈ R, then ‖T ‖ =

max {|λ1|, |λ2|}.

Proof. The proof is based on the following basic inequality, which follows
immediately from the Cauchy–Schwarz inequality:

|〈T ξ | η〉| ≤ ‖T ‖ ‖ξ‖ ‖η‖,
for every ξ, η ∈ R

2.
1. Since 〈T ξ | η〉 = 〈ξ | T t η〉, we have

|〈ξ | T t η〉| ≤ ‖T ‖ ‖ξ‖ ‖η‖
for every ξ, η ∈ R

2. Setting ξ = T t η, we get

‖T t η‖2 ≤ ‖T ‖ ‖T t η‖ ‖η‖ ,

from which we deduce

‖T t η‖ ≤ ‖T ‖ ‖η‖,
for every η ∈ R

2; hence, ‖T t‖ ≤ ‖T ‖. By symmetry we also have the
reverse inequality.

2. We have ‖T t T ‖ ≤ ‖T t‖ ‖T ‖ = ‖T ‖2, by (1). To prove the converse
inequality, observe that, for every ξ ∈ R

2,

‖T ξ‖2 = 〈T ξ | T ξ〉 = 〈T t T ξ | ξ〉 ≤ ‖T t T ‖ · ‖ξ‖2,

by the basic inequality. So ‖T ‖2 ≤ ‖T t T ‖.



P1: IJG

CB504-06drv CB504/Davidoff September 23, 2002 13:48

136 4-Regular Graphs with Large Girth

3. Set ξ = (1, 0), η = (0, 1). Then a = 〈T ξ | ξ〉, b = 〈T η | ξ〉, c =
〈T ξ | η〉, d = 〈T η | η〉. So the result follows immediately from the
basic inequality.

4. If T is symmetric, it is conjugate to a diagonal matrix via an orthogonal
matrix. Since conjugating by an orthogonal matrix does not change
the operator norm, we may assume that T is diagonal; in other words,

T =
(

λ1 0
0 λ2

)
. Then, for ξ = (ξ1, ξ2) ∈ R

2 − {(0, 0)},

‖T ξ‖2

‖ξ‖2
= λ2

1 ξ 2
1 + λ2

2 ξ 2
2

ξ 2
1 + ξ 2

2

≤ max {λ2
1, λ

2
2},

so ‖T ‖ ≤ max {|λ1|, |λ2|}. The converse inequality follows from (3).
�

Example. As an application of the preceding lemma, let us compute the

operator norm of A =
(

1 2
0 1

)
, B =

(
1 0
2 1

)
and their inverses. We have

At A =
(

1 2
2 5

)
,

and the eigenvalues of At A are 3 ± 2
√

2. Thus, we have ‖At A‖ = 3 + 2
√

2

and ‖A‖ =
√

3 + 2
√

2 = 1 + √
2, by Lemma A.3.3. Similarly,

‖A−1‖ = ‖B‖ = ‖B−1‖ = 1 +
√

2 .

A.4.4. Theorem. The graphs Xq , for q an odd prime, satisfy

lim inf
q→+∞

g(Xq )

log3 |Xq | ≥ 1

3 log3(1 + √
2)

= log(3)

3 log(1 + √
2)

= 0.415492 . . . .

Proof. Write g for g(X p). By vertex-transitivity, Xq contains a circuit of
length g starting and ending at 1 ∈ SL2(q):

x0 = 1, x1, . . . , xg−1, xg = 1.

Since Xq is a Cayley graph, we find α1, α2, . . . , αg ∈ Sq , such that xi =
α1 α2 . . . αi−1αi (1 ≤ i ≤ g). Let α̃i be the unique element of {A, A−1, B,
B−1}, such that τq (̃αi ) = αi . Then α̃1 α̃2 . . . α̃g−1 α̃g is a reduced word in
H (since it is lifted from a circuit in Xq ), and, since H is free (Proposi-
tion A.2.2), we have α̃1 α̃2 . . . α̃g−1 α̃g �= 1 in H . On the other hand, since
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τq (̃α1 α̃2 . . . α̃g) = α1 α2 . . . αg = xg = 1, we have

α̃1 α̃2 . . . α̃g ∈ Ker τq .

This means that all coefficients of α̃1 α̃2 . . . α̃g − 1 are divisible by q; since
α̃1 α̃2 . . . α̃g − 1 �= 0, by Lemma A.3.3(3), we obtain

‖α̃1 α̃2 . . . α̃g − 1‖ ≥ q.

By the triangle inequality: ‖α̃1 α̃2 . . . α̃g‖ ≥ q − 1. On the other hand, by the
previous example, we also have

‖α̃1 α̃2 . . . α̃g‖ ≤ (1 +
√

2)g.

Taking logarithms to the base 3, we get

log3(q − 1) ≤ g log3(1 +
√

2).

By Lemma A.1,

log3(q − 1) = 1

3
log3 |Xq | + 0(1),

so that g ≥ 1
3 log3(1+√

2)
log3 |Xq | + 0(1), and the result follows. �

The previous exposition owes much to an unpublished paper by P. de la
Harpe, “Construction de 2 familles de graphes remarquables” (1989).

Exercises on Appendix

1. For T ∈ M2(R), why is ‖T ‖ finite? Check carefully that T → ‖T ‖ is
indeed a norm on M2(R).

2. Show that Theorem A.4.4 can be improved to

lim inf
q→+∞

g(Xq )

log3 |Xq | ≥ 2

3 log3(1 + √
2)

,

by proceeding as follows: instead of working with α̃1 α̃2 . . . α̃g − 1, work
with α̃1 . . . α̃[ g

2 ] − α̃−1
g α̃−1

g−1 . . . α̃−1
[ g

2 ]+1
: all the coefficients of this ma-

trix are divisible by q. Show that one has either ‖α̃1 . . . α̃[ g
2 ]‖ ≥ q

2 or

‖̃a−1
g α̃−1

g−1 . . . α̃−1
[ g

2 ]+1
‖ ≥ q

2 . Deduce that

q

2
≤ (1 +

√
2)

g
2 +1 ,

and conclude.
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