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PREFACE

This text has been carefully designed for flexible use. It is primarily designed to provide an
introduction to some fundamental concepts in Graph Theory, for under-graduate and post-graduate
students.

Each topic is divided into sections of approximately the same length, and each section is divided
into subsections that form natural blocks of material for teaching. Instructors can easily pace their
lectures using these blocks.

All definitions and theorems in this text are stated extremely carefully so that students will ap-
preciate the precision of language and rigor needed in mathematical sciences. Proofs are motivated and
developed dowly ; their steps are all carefully justified.

The writing style in this book is direct and pragmatic. Precise mathematical language is used
without excessive formalism and abstraction. Care has been taken to balance the mix of notation and
words in mathematical statements.

Over 1500 problems are used to illustrate concepts, related to different topics, and introduce
applications. In most examples, a question isfirst posed, then its solution is presented with appropriate
details. The applicationsincluded in thistext demonstrate the utility of Graph Theory, in the solution of
real-world problem. This text includes applications to a wide-variety of areas, including computer
science and engineering.

There are over 1000 exercises in the text with many different types of questions posed. There is
an ample supply of straightforward exercises that develop basic skills, a large number of intermediate
exercises and many challenging exercise sets. Problem sets are stated clearly and unambiguously, and
all are carefully graded for various levels of difficulty.

It will be honest on my part to accept that it is not possible to include everything in one book.

Many people contributed directly or indirectly to the completion of this book. Thanks are due to
my friends who were able to convince me that | should write this book.

| am grateful to my students, who always encouraged me and many times thanked me for writing
this book.

Foecial thanks to my teachers, who made me realize that | can indeed write a book on “ Graph
Theory” . Some pulled me down, some encouraged me and some gave me constr uctive suggestions. | am
grateful to all of them.

| specially thank my parents, elder brothers, elder sister and maternal uncle, who tolerated me
all along while | devoted my time to completing this book.

| experess my sincere thanksto the Chairman Mr. R K. Gupta, the Managing Director Mr. Saumya
Gupta, the Marketing Manager Mr. V.R. Babu and Mr. Vincent D. Souza, M/s New Age International (P)
Ltd. Publishers, New Delhi, for their responsible work-done at every level in the publication of the book
with high production standards.

Healthy criticism and suggestions to improve the quality and standards of the text are most
welcome.

Bangalore C. Vasudev
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CHAPTER

| ntroduction to Graph Theory

INTRODUCTION
It is no coincidence that graph theory has been independently discovered many times, since it
may quite properly be regarded as an area of applied mathematics.

The basic combinatorial nature of graph theory and a clue to its wide applicability are indicated
in the words of Sylvester, ‘‘ The theory of ramification is one of pure calligation, for it takes no
account of magnitude or position ; geometrical lines are used, but have no morereal bearing on the
matter than those employed in genealogical tables have in explaining the laws of procreation.”

Indeed, the earliest recorded mention of the subject occurs in the works of Euler, and
although the original problem he was considering might be regarded as a somewhat frivolous
puzzle, it did arisefrom the physical world. Subsequent rediscoveriesof graph theory by Kirchhoff
and Cayley also had their rootsin the physical world.

Kirchhoff’s investigations of electric networks led to his development of the basic concepts and
theorems concerning trees in graphs, while Cayley considered trees arising from the enumeration of
organic chemical isomers. Another puzzle approach to graphs was proposed by Hamilton. After this,
the celebrated four colour conjecture came into prominence and has been notorious ever since.

In the present century, there have aready been a great many rediscoveries of graph theory
which we can only mention most briefly in this chronological account.

Euler (1707-1782) became the father of graph theory as well as topology. Graph theory is con-
sidered to have begun in 1736 with the publication of Euler’s solution of the Konigsberg bridge prob-
lem. The graph theory is one of the few fields of mathematics with a definite birth date by ore.

1.1 WHAT IS A GRAPH ? DEFINITION

A graph G consists of aset of objectsV = {vy, V,, v, ......} called vertices (also called points or
nodes) and other set E={e;, e, €;, ....... } whose elements are called edges (also called lines or arcs).

The set V(G) is caled the vertex set of G and E(G) isthe edge set.

Usually the graph isdenoted as G = (V, E)

Let G be agraph and {u, v} an edge of G. Since {u, v} is 2-element set, we may write {v, u}
instead of {u, v}. It is often more convenient to represent this edge by uv or vu.

If e=uvisan edge of agraph G, then we say that uand v are adjacent in G and that ejoinsu and
v. (We may also say that each that of uand v is adjacent to or with the other).

For example :
A graph G is defined by the sets
V(G) ={u,v,w, X, y, zZt and E(G) = {uv, uw, wWx, Xy, Xz}.

1



2 GRAPH THEORY WITH APPLICATIONS

Now we have the following graph by considering these sets.

z y u

X w Vv

Every graph has adiagram associated with it. The vertex u and an edge e are incident with each
other asare v and e. If two distinct edges say e and f are incident with a common vertex, then they are
adjacent edges.

A graph with p-vertices and g-edgesis called a (p, g) graph.

The (1, 0) graph iscalled trivial graph.

In thefollowing figure the verticesa and b are adjacent but a and ¢ are not. The edgesx and y are
adjacent but x and z are not.

Although the edgesx and zintersect in the diagram, their intersection is not avertex of the graph.

e

q
a c
n m
b d

Examples :
(1) LeaV={1234andE={{1,2},{1, 3}, {3, 2}.{4, 4}}.
Then G(V, E) isagraph.
(2 LeaV={12234 andE={{1,5},{2 3}}.
Then G(V, E) isnot agraph, as5isnotinV.

3

€s

V5 V4

A graph with 5-vertices and 8-edgesis called a (5, 8) graph.



INTRODUCTION TO GRAPH THEORY 3

1.2 DIRECTED AND UNDIRECTED GRAPHS

1.2.1. Directed graph

A directed graph or digraph G consists of aset V of verticesand aset E of edges such that e (1 E
is associated with an ordered pair of vertices.

In other words, if each edge of the graph G has a direction then the graph is called directed
graph.

In the diagram of directed graph, each edgee= (u, V) isrepresented by an arrow or directed curve
frominitial point u of e to the terminal point v.

Figure 1(a) is an example of a directed graph.

C

a > b

Fig. 1(a). Directed graph.
Suppose e = (u, V) isadirected edge in adigraph, then (i) uiscaled theinitial vertex of eand v
isthe terminal vertex of e
(i) eissaid to be incident from u and to be incident to v.
(iii) uis adjacent to v, and v is adjacent from u.

1.2.2. Un-directed graph

An un-directed graph G consists of set V of vertices and a set E of edges such that each edgee 0 E
is associated with an unordered pair of vertices.

In other words, if each edge of the graph G has no direction then the graph is called un-directed
graph.

Figure 1(b) is an example of an undirected graph.

We can refer to an edge joining the vertex pair i and j as either (i, j) or (j, i).

b d

a C

Figure 1(b). Un-directed graph.



4 GRAPH THEORY WITH APPLICATIONS

1.3 BASIC TERMINOLOGIES

1.3.1 Loop : An edge of agraph that joins a node to itself is called loop or self loop.
i.e, aloop isan edge (vi, v;) where v; = \;.

1.3.2. Multigraph

In amultigraph no loops are alowed but more than one edge can join two vertices, these edges
are called multiple edges or paralel edges and a graph is called multigraph.

Two edges (v;, vj) and (V, ;) are parallel edgesif v, = v, and v, ;.

| @Vz | @vz
V3 V3

Directed multigraph Un-directed multigraph
Fig. 2(a) Fig. 2(b)
In Figure 1.2(a), there are two parallel edges associated with v, and v,.
In Figure 1.2(b), there are two parallel edges joining nodes v, and v, and v, and V5.

1.3.3. Pseudo graph
A graph in which loops and multiple edges are alowed, is caled a pseudo graph.

u z u z

Un-directed Pseudo graph Directed Pseudo graph

Fig. 3(a) Fig. 3(b)

1.3.4. Simple graph
A graph which has neither loops nor multiple edges. i.e., where each edge connects two distinct
vertices and no two edges connect the same pair of verticesis called asimple graph.

Figure 1.1(a) and (b) represents simple undirected and directed graph because the graphs do not
contain loops and the edges are all distinct.

1.3.5. Finite and Infinite graphs

A graph with finite number of verticesaswell asafinite number of edgesiscalled afinitegraph.
Otherwisg, it is an infinite graph.



INTRODUCTION TO GRAPH THEORY 5

1.4 DEGREE OF A VERTEX

The number of edges incident on a vertex v; with self-loops counted twice (is called the degree
of avertex v; and is denoted by degs(v;) or deg v; or d(v,).
The degrees of verticesin the graph G and H are shown in Figure 4(a) and 4(b).

\F]

OVe

A Vs
Fig. 4(a) Fig. 4(b)
In G as shown in Figure 4(a),

degg (v,) = 2 = degg (v,) = degg (), degg (Va) = 3 and deg (vs) = 1 and
In H as shown in Figure 4(b),

degy, (Vp) = 5, degy (v4) = 3, degy (v5) =5, degy, (vy) = 4 and degy, (vs) = 1.
The degree of avertex is some times a so referred to as its valency.

15 ISOLATED AND PENDENT VERTICES

1.5.1. Isolated vertex
A vertex having no incident edge is called an isolated vertex.
In other words, isolated vertices are those with zero degree.

1.5.2. Pendent or end vertex
A vertex of degree one, iscaled a pendent vertex or an end vertex.
In the above Figure, v; is a pendent vertex.

1.5.3. In degree and out degree
In a graph G, the out degree of a vertex v, of G, denoted by out degg (v;) or degg (V), isthe

number of edges beginning at v; and the in degree of v;, denoted by in deg () or degg' (v), is the
number of edges ending at v;.

The sum of the in degree and out degree of a vertex is called the total degree of the vertex. A
vertex with zero in degree is called a sour ce and a vertex with zero out degree is called a sink. Since
each edge has an initial vertex and terminal vertex.

1.6 THE HANDSHAKING THEOREM 1.1
If G = (v, E) be an undirected graph with e edges.

Then ) degg (V) =2e

vV

i.e, thesum of degrees of the verticesis an undirected graph is even.



6 GRAPH THEORY WITH APPLICATIONS

Proof : Sincethedegree of avertex isthe number of edgesincident with that vertex, the sum of the
degree counts the total number of times an edge is incident with a vertex.

Since every edgeisincident with exactly two vertices, each edge gets counted twice, once
at each end.

Thus the sum of the degrees equal twice the number of edges.

Note: This theorem applies even if multiple edges and loops are present. The above theorem
holdsthisrulethat if severa people shake hands, the total number of hands shake must be
even that is why the theorem is called handshaking theorem.

Corollary : Inanon directed graph, the total number of odd degree verticesis even.
Proof : Let G = (V, E) anon directed graph.
Let U denote the set of even degree vertices in G and W denote the set of odd degree

vertices.
Then ) deds (4) = ) degs (v) + ) degg (%)
vi OV vi DU vi UW
0 2e- 5 degs(w) = ) degs (v) ()
vi OU vi OW

Now Z degg (V) isaso even
v UW

Therefore, from (1) z degs (V) iseven
vi UW

0 Theno. of odd verticesin G is even.
Theorem 1.2. If V = {vy, V,, ...... v} isthe vertex set of a non directed graph G,

n
then S deg(v) =2|E|
i=1

n n
If G isadirected graph, then » deg” (v) = > deg™ (%) = |E|
i=1 i=1

Proof : Since when the degrees are summed.
Each edge contributes a count of oneto the degree of each of the two vertices on which the
edge isincident.
Coroallary (1) : Inany non directed graph there is an even number of vertices of odd degree.
Proof : Let W be the set of vertices of odd degree and let U be the set of vertices of even degree.
Then > deg(v) = ) deg(v) + ) deg(v)=2|E|

vOV(G) vOow vOu

Certainly, > deg (V) iseven,

vOu
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Hence Z deg (V) iseven,
vw
Implying that | W | is even.
Corallary (2) : If k=9(G) isthe minimum degree of al the vertices of anon directed graph G, then
k|V|s > deg(v)=2|E]
vOV(G)
In particular, if G isak-regular graph, then
k|V|= > deg(v)=2]E]|.
vOV(G)
Problem 1.1. Show that, in any gathering of six people, there are either three people who all
know each other or three people none of whom knows either of the other two (six people at a party).

Solution. To solve this problem, we draw a graph in which we represent each person by a vertex
and join two vertices by asolid edge if the corresponding people know each other, and by a dotted edge
if not. We must show that there is always a solid triangle or a dotted triangle.

Let v be any vertex. Then there must be exactly five edgesincident with v, either solid or dashed,
and so at least three of these edges must be of the same type.

Let us assume that there are three solid edges (see figure 5) ; the case of atleast three dashed
edgesis similar.

Fig. 5.

If the people corresponding to the vertices w and x know each other, then v, w and x form a solid
triangle, as required.

Similarly, if the people corresponding to the verticesw and y, or to the verticesx andy, know each
other, then we again obtain a solid triangle.

These three cases are shown in Figure (6).
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Fig. 6.

Finally, if no two of the people corresponding to the verticesw, x and y know each other, then w,
x and y from a dotted triangle, as required (see figure (7).

Fig. 7.

Problem 1.2. PlacethelettersA, B, C, D, E, F, G, H into the eight circlesin Figure (8), in such
away that no letter is adjacent to a letter that is next to it in the al phabet.

Fig. 8.
Solution. First note that trying al the possibilitiesis not apractical proposition, asthereare8! =
40320 ways of placing eight lettersinto eight circles.

Note that (i) the easiest letters to place are A and H, because each has only one letter to which it
cannot be adjacent, namely, B and G, respectively.

(ii) the hardest circlesto fill are those in the middle, as each is adjacent to six others.

This suggests that we place A and H inthe middle circles. If we place A to the left of H, then the
only possible positions for B and G are shown in Figure (9).
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Theletter C must now be placed on the left-hand side of the diagram, and F must be placed on the
right-hand side.

It isthen a simple matter to place the remaining letters, as shown in Figure (10).

Fig. 10.

Problem 1.3. Determine the number of edgesin a graph with 6 vertices, 2 of degree 4 and 4 of
degree 2. Draw two such graphs.

Solution. Suppose the graph with 6 vertices has e number of edges. Therefore by Handshaking
lemma

S deg(v)=2e
i=1

O d(vy) + d(v,) + d(vg) + dl(v,) + d(ve) + cl(ve) = 2e
Now, given 2 vertices are of degree 4 and 4 vertices are of degree 2.
Hence the above equation,

@+H+(2+2+2+2)=2e
g 16 =2e O e=8.
Hence the number of edges in a graph with 6 vertices with given condition is 8.
Two such graphs are shown below in Figure (11).

] 2o

Fig. 11.
Problem 1.4. How many vertices are needed to construct a graph with 6 edges in which each
vertex is of degree 2.

Solution. Suppose these are P verticesin the graph with 6 degree. Also given the degree of each
vertex is 2.

By handshaking lemma,
P
> deg(v)=2q=2x6
i=1
O d(vy) +d(vy) +...... +d(v,) =12

O 2+2+ ... +2=12
O 2P=12 0 P =6 vertices are needed.
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Problem 1.5. Itispossibleto construct a graph with 12 vertices such that 2 of the vertices have
degree 3 and the remaining vertices have degree 4.

Solution. Supposeit is possible to construct a graph with 12 vertices out of which 2 of them are
having degree 3 and remaining vertices are having degree 4.

Hence by handshaking lemma,

12
z d(v;) = 2e where eisthe number of edges
i=1

According to given conditions
(2x3)+(10x 4) =2e
O 6+40=2e
O 2e=46 O e=23
It is possible to construct a graph with 23 edges and 12 vertices which satisfy given conditions.
Problem 1.6. It ispossible to draw a simple graph with 4 vertices and 7 edges ? Justify.

Solution. In asimple graph with P-vertices, the maximum number of edges will be P(P2— D .
: , . . 4x3
Hence a simple graph with 4 vertices will have at most 5 = 6 edges.

Therefore, the simple graph with 4 vertices cannot have 7 edges.

Hence such a graph does not exist.

Problem 1.7.  Show that the maximum degree of any vertex in a simple graph with P verticesis
(P-1).

Solution. Let G be asimple graph with P-vertices. Consider any vertex v of G. Sincethegraphis
simple(i.e., without self loops and parallel edges), the vertex v can be adjacent to atmost remaining (P— 1)
vertices.

Hence the maximum degree of any vertex in asimple graph with P verticesis (P—1).

Problem 1.8. Write down the vertex set and edge set of the following graphs shown in Figure
12(a) and 12(b).

Vi

V7

Fig. 12.
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Solution. (a) V(G) = {vy, Vs, Vg, Vy, Vg, Vg, Vo, Vg, Vi}

E(G) = {VaVy, V1V, VoV, V3V, V5V, VgV, VVgh

(b) V(G) ={a,B,y, o}

E(G) ={aB, ay, ad, B3, By, y3}.
Problem 1.9. Show that the size of a simple graph of order n cannot exceed "C..
Solution. Let G be agraph of order n.
Let V be avertex set of G.
Then cardinality of V is n and elements of E are distinct two elements subsets of V.
The number of ways we can choose two elements from aset V of n elementsis"C,.
Thus, E may not have more than "C, elements (edges).
Problem 1.10. Find the degree sequence of the following graph.

o d

e

f

Solution.  degg (a) =3, degg (b) = 4, degg () =2
degg (d) =3, degg (€) = 3, deg; (f) =2
degs (9) = 1, degg (h) = 0.

Therefore, the degree sequence of the graphisO, 1, 2, 2, 3, 3, 4.
Problem 1.11. Construct two graphs having same degree sequence.
Solution. The following two graphs have the same degree sequence.
The degree sequence of the graphsis 2, 2, 2, 2, 2, 2.

i

Problem 1.12. Show that there exists no simple graph corresponds to the following degree
sequence :

i0,223,4 (i) 1,1,2,3 (iii)2,2,3,4,55 (iv) 2,2, 4,6.
Solution. (i) to (iii) :

There are odd number of odd degree vertices in the graph.

Hence there exists no graph corresponds to this degree sequence.

(iv) Number of verticesin the graph isfour and the maximum degree of avertex is6, whichisnot
possible as the maximum degree cannot exceed one less than the number of vertices.
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Problem 1.13. Show that the total number of odd degree vertices of a (p, g)-graph is always

Solution. Let vy, v, ...... v be the odd degree verticesin G. Then, we have

P
Z degs (%) =29

=~

ZdegG (v)+ Z degg (Vi) =29 = even number
=k+1

O
Mx

degg (V) = even number — z degg (V)
i=k+1

1
=

k P
O Z (odd number) = even number — Z (even number)
i=1 i=k+1

= even number — even number
= even number.
O Thisimpliesthat number of termsin the left-hand side of the equation is even.
Therefore, kis an even number.
Problem 1.14. Show that the sequence 6, 6, 6, 6, 4, 3, 3, 0 is not graphical.
Solution. To prove that the sequence is not graphical.
The given sequenceis6, 6, 6, 6, 4, 3, 3,0
Resulting the sequence 5, 5, 5, 3, 2, 2, 0
Again consider the sequence 4, 4,2,1,1,0
Repeating thesame 3, 1, 0, 0, 0
Sincethere exists no ssmple graph having one vertex of degree three and other vertex of degree one.
The last sequence is not graphical.
Hence the given sequence is also not graphical.
Problem 1.15. Show that the following sequence is graphical. Also find a graph correspond-

ing to the sequence 6, 5, 5, 4, 3, 3, 2, 2, 2.

Solution. We can reduce the sequence as follows :

Given sequence 6,5/5,4,3,3,2,2,2
Reducing first 6 terms by 1 counting from second term 4,.4,3,2,2,1,2, 2.
Writing in decreasing order 4,4,3,2,2,2,2,1
Reducing first 4 terms by 1 counting from second 3,2,1,1221
Writing in decending order 3,2,2,2,1,1,1
Reducing first 3 terms by 1, counting from second 1,1,1,1,1,1

Sequence 1, 1,1, 1,1, 1isgraphical.
Hence the given sequence is also graphical.
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The graph corresponding to the sequence 1, 1, 1, 1, 1, 1 is given below

To obtain agraph corresponding to the given sequence, add avertex to each of the vertices whose
degreesaret; —1,t,—1, ...... t.— 1.

And repeat the process.

Step 1:

Degree sequence of thisgraphis3,2,2,2,1,1, 1

Step 2:

Degree sequence of thisgraphis4, 4, 3,2, 2,2, 2, 1.
Step 3: Fina graph

gl

Degree sequence of thisgraphis6, 5,5, 4, 3, 3, 2, 2, 2.
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Problem 1.16. Show that no simple graph has all degrees of its vertices are distinct.
(i.e., in a degree sequence of a graph atleast one number should repeat.)
Solution. Let G be agraph of order n.

Then there are n termsin the degree sequence of G. If no number (integer) in the degree sequence
repeats, then only possible case it is of the form

0,123,4... ,nh-1

Since maximum degree cannot exceed n — 1. But the last vertex of degree n — 1 should be
adjacent to every other vertex of G, since G issimple.

Thus minimum degree of every vertex is one.
A contradiction to the fact that the degree of one vertex is zero.
Problem 1.17. Isthere a simple graph with degree sequence (1, 1, 3,3,3,4,6,7) ?

Solution. Assume there is such a graph. Then the vertex of degree 7 is adjacent to al other
vertices, so in particular it must be adjacent to both vertices of degree 1.

Hence, the vertex v of degree 6 cannot be adjacent to either of the two vertices of degree 1.
Problem 1.18. Find the degree of each vertex of the following graph :

V, vV,

Vs Vs

Solution. It is an undirected graph. Then
deg (v;) =2, deg (v,) =4, deg (v5) =4
deg (v) =4, deg (vs) = 4, deg (Vo) = 2.
Problem 1.19. Findthein degree out degree and of total degree of each vertex of the following
graph.

v O

Solution. It isadirected graph
indeg (v;) =0, out deg (v;) = 3, total deg (v;) =4
indeg (v,) = 2, out get (v,) =1, total deg (v,) =3
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in deg (v5) = 4, out deg (v3) =0, total deg (v5) = 4
indeg (v,) =1, out deg (v,) = 3, total deg (v,) = 4.
Problem 1.20. Sate which of the following graphs are simple ?

() (i) (iii)
Solution. (i) The graph isnot asimple graph, since it contains parallel edge between two vertices
aand b.
(if) The graph is asimple graph, it does not contain loop and parallel edge.
(iii) The graph is not a simple graph, since it contains parallel edge and aloop.
Problem 1.21. Draw the graphs of the chemical molecules of

(i) Methane (CH,) (ii) Propane (C3Hg).
Solution. (i) H (ii) H H H
H ‘C H H C C
H H H H

Problem 1.22. Show that the degree of a vertex of a simple graph G on n vertices cannot
exceed n—1.

Solution. Let v be avertex of G, since G issimple, no multiple edges or loops are allowed in G.
Thus v can be adjacent to atmost all the remaining n — 1 vertices of G.
Hence v may have maximum degreen—1in G.
i.e, 0<deg; (V) <n-1foradlvOV(G).
Problem 1.23. Does there exists a simple graph with seven vertices having degrees (1, 3, 3, 4,
5,6,6)?
Solution. Suppose there exists a graph with seven vertices satisfying the given properties.
Since two vertices have degree 6, each of these two vertices is adjacent with every other vertex.

Hence the degree of each vertex isat least 2, so that the graph has no vertex of degree 1, whichis
a contradiction.

Hence there does not exist a ssimple graph with the given properties.
Problem 1.24. Isthere a simple graph corresponding to the following degree sequences ?
H(@1,273 (i) (2,2, 4, 6).
Solution. (i) There are odd number (3) of odd degree vertices, 1, 1 and 3.
Hence there exist no graph corresponding to this degree sequence.
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(it) Number of verticesin the graph sequence is 4, and the maximum degree of avertex is 6,

which is not possible as the maximum degree cannot exist on less than the number of
vertices.

Problem 1.25. Show that the maximum number of edges in a simple graph with n verticesis
nin—1)
s

Solution. By the handshaking theorem,

S d(v) =2e
i=1

where e is the number of edges with n vertices in the graph G.
O d(vy) +d(v) +...... +d(v,) =2e (D
Since we know that the maximum degree of each vertex in the graph G can be (n — 1).
Therefore, equation (1) reduces

(n=L)+(n-1)+... tonterms=2e
O nh-1)=2e
n(n -1)

u e= >

Hence the maximum number of edges in any simple graph with n verticesis n(n - 1)

Problem 1.26. Consider the following graphs and deter mine the degree of each vertex :

a
b d ( [ b
a c e d c
()
b
a
e
o
d c

(i)

| % |
v, Vs

(iii) (iv)

Solution. (i) deg (@) =2, deg(b)=4, deg(c)=4, deg(d)=3, deg(e) =3
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(ii) deg(a)=5 deg(b)=2 deg(c)=3, deg(d)=6, deg(e)=0
(iii) deg(a)=5 deg(b)=3, deg(c)=2 deg(d)=2
(iv) Every vertex has degree 4.
Problem 1.27. Findthein-degree and out-degree of each vertex of the following directed graphs

2 A
Vi Va
i
() (i)
Solution. (i) in-degree v, = 2, out-degreev; = 1
in-degree v, = 2, out-degree v, = 2
in-degree v5 = 2, out-degree v; = 1
in-degree v, = 2, out-degree v, = 2
in-degree v = 0, out-degree v = 3
(i) in-degreea =6, out-degreea=1
in-degreeb =1, out-degreeb=5
in-degree c = 2, out-degreec =5
in-degreed = 2, out-degree d = 2.

Problem 1.28. Draw a graph having the given properties or explain why no such graph exists.
(i) Graph with four vertices of degree 1, 1, 2 and 3.
(if) Graph with four vertices of degree 1, 1, 3and 3
(iii) Smple graph with four vertices of degree 1, 1, 3and 3
(iv) Graph with six vertices each of degree 3
(v) Graph with six vertices and four edges
(vi) Graph with five vertices of degree 3, 3, 3, 3, 2
(vii) Graph with five vertices of degree0, 1, 2, 2, 3.
Solution. (i) No such graphs exists, total degreeis odd.
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(ii)

o@ [ 1=3

.
C
d

d g c d
d c
(iif) No simple graph.
a b c 2 ¢ ¢
f e d
b d f

b Cc
(vi) @ d (vii) é
o
e

Problem 1.29. If the simple graph G has V vertices and e edges, how many edges does G’
(complement of G) have ?

v(iv-1)

Solution.

Problem 1.30. Construct a 3-regular graph on 10 vertices.
Solution. The following graphs are some examples of 3-regular graphs on 10 vertices.

Yo L

(i) (i)
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(iii) (iv)

Problem 1.31. Doesthere exists a 4-regular graph on 6 vertices ? If so construct a graph.

Pxr 6x4 —12
2 2

Hence 4-regular graph on 6-vertices is possible and it contains 12 edges. One of the graph is
shown below.

Solution. We have g=

Every 4-regular graph contains a 3-regular graph.

Problem 1.32. What isthe size of an r-regular (p, g)-graph.
Solution. Since G is an r-regular graph.

By the definition of regularity of G.

We have degg (v)) =r for all v, O V(G)

P
But 2q= Zdege ()
i1

P
2q= Zrszr
i=1
Pxr
0 a= .

Problem 1.33. Doesa 3-regular graph on 14 vertices exist ? What can you say on 17 vertices ?

Pxr

2

Solution. We have q =
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givenr =3, P=14
14%x3 , L
Now q= 5 = 21, isapositive integer.

Hence 3-regular graphs on 14 vertices exist.

Pxr 17x3 51 " itiveint
5 = 5 =, isnotapositiveinteger.
Hence no 3-regular graphs on 17 vertices exist.

Further, if P=17, then q =

1.7 TYPES OF GRAPHS
Some important types of graph are introduced here.

1.7.1. Null graph
A graph which contains only isolated node, is called a null graph.
i.e, thesetof edgesinanull graphisempty.
Null graph is denoted on n verticesby N,
N, is shown in Figure (13), Note that each vertex of anull graph isisolated.

Fig. 13.

1.7.2. Complete graph
A simple graph G is said to be complete if every vertex in G is connected with every other vertex.
i.e, if G contains exactly one edge between each pair of distinct vertices.

A comple graphisusually denoted by K .. It should be noted that K, has exactly

n(n2— 1) edges

ThegraphsK, forn=1, 2, 3, 4, 5, 6 are show in Figure 14.

— A X &

Fig. 14.
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1.7.3. Regular graph
A graph in which al vertices are of equal degree, is called aregular graph.
If the degree of each vertex isr, then the graph is called aregular graph of degreer.
Notethat every null graphisregular of degree zero, and that the complete graph K, isaregular of

degree n — 1. Also, note that, if G has n vertices and is regular of degree r, then G has %ﬁr n edges.
1.7.4. Cycles

Thecycle C,, n= 3, condsts of nvertices v, Vs, ......, Vi, and edges {vy, o}, {Vy, Vig}, woeey { V1 _ 1, Vi} s
and {v,, v}.

The cyles ¢, ¢, C5 and cg are shown in Figure 15.

vy vy Vs,
/ \ \'
V., V. V, V.
3 03 2 4 C4 3

Fig. 15. Cycles C;, C,4, Cs and Cs,.

1.7.5. Wheels

The wheel W, is obtained when an additional vertex to the cycle ¢, for n = 3, and connect this

new vertex to each of the n verticesin c,,, by new edges. The wheels W;, W,,, W and W are displayed
in Figure 16.

A D &

Figure 16. The wheels W, W,, W and W

1.7.6. Platonic graph

The graph formed by the vertices and edges of the five regular (platonic) solids—The tetrahe-
dron, octahedron, cube, dodecahedron and icosahedron.
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The graphs are shown in Figure 17.

AR
/ \\
| /
| L A
T N TN
| v V/
| N /7
| VAN %
J S S AN,
7 = - =
—=<
‘ ’
/
P

Tetrahedron Octahedron Cube Icosahedron @

Dodecahedron

N

Fig. 17.

1.7.7. N-cube

The N-cube denoted by Q,, isthe graph that has vertices representing the 2" bit strings of length n.
Two vertices are adjacent if and only if the bit strings that they represent differ in exactly one bit posi-
tion. The graphs Q,, Q,, Q; are displayed in Figure 18. Thus Q,, has 2" verticesand n . 2"~ edges, and
isregular of degree n.

110 111

10 11
g |10
Q, -' 011
000 001
)
0 o 0

Q,

Fig. 18. The n-cube Q,for n=1, 2, 3.

Problem 1.34. Determine whether the graphs shown is a simple graph, a multigraph, a
pseudograph.



INTRODUCTION TO GRAPH THEORY

) e@a d (i) (i)

Solution. (i) Simple graph
(if) Pseudograph
(iii) Multigraph.
Problem 1.35. Consider the following directed graph G : V(G) = {a, b, ¢, d, e, f, g}
E(G) = {(a, a), (b, &), (a,€), (& b), (9, 0), (a €), (d, ), (d, b), (9, 9)}
(i) Identify any loops or parallel edges.
(ii) Arethere any sourcesin G ?
(iii) Arethereany sinksin G ?
(iv) Find the subgraph H of G determined by the vertex set V' = {a, b, c, d}.
Solution. (i) (a, a) and (g, g) are loops
(a, @) and (a, €) are parallel edges.
(if) No sources
(iii) No sinks
(iv) V'={a, b,c,d}
E ={(a a), (d b)}
H=H(\V', E).
Problem 1.36. Consider the following graphs, determine the (i) vertex set and (ii) edge set.

B D 2

A
(a) 2 1 (b

Solution. (a) (i) Vertex set V ={1, 2, 3, 4},

(i) Edge set E={(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)}
(b) (i) Vertex set V ={A, B, C, D}

(i) Edge st E={ (A, B), (B, C), (B, D), (C, C)}

23
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(©) (i) Vertex set V = {vy, V,, Vi, i}
(ii) Edge set E = { (v, V), (v4, V), (V5, Va)}
(d) (i) Vertex setV ={1, 2, 3, 4}
(i) Edgeset E={(1, 2), (2, 3), (3, 4), (4, 1)}
All edges are double edges.
Problem 1.37. How many vertices and how many edges do the following graphs have ?
() K, (i) C, (i) W, (iv) Ky n ) Q,.

n(n-1)

Solution. (i) n vertices and 5

edges.

(if) nverticesand n edges
(iii) n+ 1 vertices and 2n edges
(iv) m+ nvertices and mn edges
(v) 2"verticesand n. 2"~ edges.

Problem 1.38. There are two different chemical molecules with formula C,H,, (isobutane).
Draw the graphs corresponding to these molecules.

Solution.
P |
T e
HHHH H\C/C|)\C/H
HZ "\ H /" H
H H

Problem 1.39. Draw all eight graphs with five vertices and seven or more edges.
Solution.
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Problem 1.40. Draw all six graphs with five vertices and five edges.
Solution.

<
18 SUBGRAPH <F. @

A subgraph of Gisagraph having al of itsverticesand edgesin G. If G, isasubgraph of G, then
G isasuper graph of G;.

@ @
G: G,:

Fig. 19. G, isa subgraph of G.

In other words. If G and H are two graphs with vertex sets V(H), V(G) and edge sets E(H) and
E(G) respectively such that V(H) O V(G) and E(H) O E(G) then we call H as a subgraph of G or G as
a supergraph of H.

1.8.1. Spanning subgraph

A spanning subgraph is a subgraph containing all the vertices of G.

In other words, if V(H) O V(G) and E(H) O E(G) then H isa proper subgraph of G and if V(H)
= V/(G) then we say that H is a spanning subgraph of G.

A spanning subgraph need not contain all the edgesin G.

v, v,
0]
A A A A v, A A A
G,: F,: H,: Ji:
v, A v, A v, A v, A

Fig. 20.

The graphs F, and H; of the above Fig. 20 are spanning subgraphs of G, but J; is not a spanning
subgraph of G,.
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SinceV; O V(G,) —V(J). If Eisaset of edges of agraph G, then G — E isa spanning subgraph
of G obtained by deleting the edges in E from E(G).

Infact, H isaspanning subgraph of Gif and only if H =G —E, where E = E(G) —E(H). If eisan
edge of agraph G, then we write G — e instead of G —{€}. For the graphs G,, F; and H, of the Fig. 20,
we have F; = G; — vz and Hy = Gy — {v;V,, VoVa}.

1.8.2. Removal of a vertex and an edge

The removal of avertex v, from a graph G result in that subgraph G — v; of G containing of all
verticesin G except v; and all edges not incident with vi.. Thus G — v; is the maximal subgraph of G not
containing v;. On the otherhand, the removal of an edge x; from G yields the spanning subgraph G — ;
containing all edges of G except X.

Thus G — X isthe maximal subgraph of G not containing X;.

v, v, v, v,
G: Vs G-v,:
Vs Vs
%
3
Vs Vo Vs

v V. v, V. V. v,
1 Vo Os 1 Vo 5
G: G—-V,v;:
v, A v, A
Vi Vo
Vs
O

G — {v,Vy, VoV, ViVt
Vs Va
Fig. 21(b). Deleting edges from a graph.

1.8.3. Induced subgraph

For any set Sof vertices of G, the vertex induced subgraph or simply an induced subgraph <S> is
the maximal subgraph of G with vertex set S. Thus two vertices of S are adjacent in <S> if and only if
they are adjacent in G.

In other words, if Gisagraph with vertex set VV and U isasubset of V then the subgraph G(U)
of G whose vertex set is U and whose edge set comprises exactly the edges of E which join verticesin
U istermed as induced subgraph of G.
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Vi

Here H is not an induced subgraph since v,v; O E(G), but v,v; O E(H).

On the otherhand the graph J is an induced subgraph of G. Thus every induced subgraph of a
graph G is obtained by deleting a subset of vertices from G.

Note: Let |V |=mand | E | = n. Thetota non-empty subsets of V is2™— 1 and total subsets of
Eis2".

Thus, number of subgraphsisequal to (2™—1) x 2".

The number of spanning subgraphsis equal to 2".

1.9 GRAPHS ISOMORPHISM

Let G, = (v4, E;) and G, = (v,, E,) be two graphs. A function f: v; - v, is called a graphs
isomorphism if

(i) fis one-to-one and onto.

(i) forall a,b O v, {a, b} O E, if and only if {f(a), f(b)} O E, when such afunction exists, G, and
G, are called isomorphic graphs and is written as G; OG..

In other words, two graphs G; and G, are said to be isomorphic to each other if thereis a one-
to-one correspondence between their vertices and between edges such that incidence relationship is
preserve. Written as G, UG, or G; = G,.

The necessary conditions for two graphs to be isomorphic are
1. Both must have the same number of vertices
2. Both must have the same number of edges
3. Both must have equal number of vertices with the same degree.
4

. They must have the same degree sequence and same cycle vector (c;, ......, G,), wherec; is
the number of cycles of length i.

S &

(i)

paig)s(

(iii)
Fig. 22(i), (ii) (iii) Isomor phic pair of graphs
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Vi

v5
V2
Fig. 23. Two graphs that are not isomor phic.

Problem 1.41. Construct two edge-digoint subgraphs and two vertex disjoint subgraphs of a
graph G shown below

V4

vy

Solution.

Vz vy Vs
Thegraphs S, and S, are edge-digjoint subgraphs of G.

Vi

53:V2 S4: .—.

V3
S; and S, are vertex disjoint subgraphs of G which are also edge-disjoint subgraphs of G.
Problem 1.42. Doesthere exist a proper subgraph Sof G whose size is equal to the size of the
graph ?
Solution. Yes, consider the graph G shown in Figure below.
The graph Sis a subgraph of G with V(S) O E(G) and E(S) = E(G).
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The graph G Subgraph S

Problem 1.43. Write down all possible non-isomor phic subgraphs of the following graphs G.
How many of they are spanning subgraphs ?

Solution. Its possible all (non-isomorphic) subgraphs are

® ®
() k() e (i) (iv) I *
® ® ®

(v)I:I (W)<b (w'i)I I (i)
(ix) <y x) ® I> (xi) I> xi)e e @

(xiiil) @ I (xiv) o—eo—e (xv) ¢ ° (xvi) o—@ (i) @

of these graphs (i) to (x) are spanning subgraphs of G.
All the graphs except (vi) are proper subgraphs of G.
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Problem 1.44. Construct three non-isomorphic spanning subgraphs of the graph G shown
below :

Solution. Three non-isomorphic subgraphs are

(i) (i)

(iii)

Problem 1.45. Find the total number of subgraphs and spanning subgraphsin Kg, Lg and Qs.
Solution. In graph Kg, wehave |V [=6and |E | =15
Thus, total number of subgraph is
(25— 1) x 215 = 63 x 32768 = 2064384
The total number of spanning subgraph is: 2%° = 32768.
Inthelinear graph L;, wehave|V |=5and |[E|=4
Thus, total number of subgraph is
(2°—1) x 2* = 31 x 16 = 496.
The total number of spanning subgraph is: 2* = 16.
In the 3-cube graph Q;, wehave |V |=8and |[E|=12
Thus, total number of subgraph is
(28 — 1) x 22 = 127 x 4096 = 520192
The total number of spanning subgraphsis
2'2 = 4096.
Problem 1.46. For the graph G shown below, draw the subgraphs
ihG-e (i)G—-a (iii) G —b.
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b

d

B

C

Solution. (i) After deleting the edge e = (c, d) from the graph G, we get a subgraph G — e as shown
below

o
o@
o

(ii) After deleting the vertex a from the graph G, and all edgesincident on this vertex, we set
the subgraph G — a as shown below :

<

(iif) The subgraph is obtained after deleting the vertex b.

{y

Problem 1.47. Consider the graph G(V, E) shown below, determine whether or not H(V, , E,)
is a subgraph of G, where
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a b
d c
(i) Vi={a b, d} Ei={(a b), (a d)}
(i) Vi={a Db, c,d} E, ={(b, ¢, (b, d)}

Solution. (i) H is not a subgraph because (a, d) is not an edgein G.
(if) H isasubgraph because it satisfies condition for a subgraph of the given graph G.
Problem 1.48. Find all possible non-isomor phic induced subgraphs of the following graph G
corresponding to the three element subsets of the vertex set of G

[ X

Solution.

a a
S,: @2
i
e b d :
82: C SS: . .—. SS .e
b c
d

od

The subgraph S shown in Figure (25) of the above graph G shown in Figure 24 is not ainduced
subgraph of G.

For the edge (a, d) of G can be added to S. The graph obtained by adding this edge is again a
subgraph of

d
Fig. 25.

Note: The graph G isitself a maximal subgraph of G.
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Problem 1.49. Show that the following graphs are isomorphic

b

Cc

d

a’

br

Solution. Letf: G - G' be any function defined between two graphs degrees of the graph G and

G areasfollows:
deg (G)
deg (@) =3
deg (b) =2
deg () =3
deg (d) =3
deg(e) =1

Each has 5-vertices and 6-edges.

d(a) = d(@) = 3
d(b) = d() = 2
d©) = d(¢) =3
d(d) = d(d) = 3
d(e) = d¢) = 1

Hence the correspondenceisa—a’, b—1b',
Therefore, the given two graphs are isomorphic.

deg (G)

deg (@) =3
deg (b)) =2
deg(c)=3
deg (d) =3
deg(€¢)=1

Problem 1.50. Show that the following graphs are isomorphic.

a d
e
G:

b

C

b’

e

a’

¢

Solution. Let f: G —» G’ be any function defined between two graphs degrees of the graphs G

and G’ are asfollows::

deg (G)

deg(a) =3
deg (b) =2
deg (¢) =3

deg (G)

deg (@) =3
deg (b)) =2
deg(c)=3
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deg (d) =5 deg (d) =5

deg(e) =1 deg(€¢)=1
Each has 5-vertices, 6-edges and 1-circuit.

deg(a) = deg(a’) = 3

deg(b) = deg(b) = 2

deg(c) = deg(c’) =3

deg(d) = deg(d) =5

deg(e) = deg(€) = 1
Hence the correspondenceisa—a’, b-b', ..., e—¢€.
Therefore, the given two graphs G and G' are isomorphic.
Problem 1.51. Arethe 2-graphs, is given below, isisomorphic ? Give a reason.

br

Solution. Let us enumerate the degree of the vertices
Vertices of degree4: b—f'
d-c
Vertices of degree3: a—4a
c—d
Vertices of degree2: e—b'
f-¢
Now the vertices of degree 3, in G area and ¢ and they are adjacent in G', while these are &' and
d" which are not adjacent in G'.
Hence the 2-graphs are not isomorphic.
Problem 1.52. Show that the two graphs shown in Figure are isomorphic.

a
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Solution. Here, V(Gy) ={1, 2, 3,4}, V(G,) ={a, b, ¢, d}
E(G) ={{1.2.{2 3}, {3, 4} and E(Gy = {{a, b}, {b, d}, {d, c}}
Define afunction f: V(G;) - V(G,) as
f)=a,f(2)=b,f(3)=d,adf(4) =c
f is clearly one-one and onto, hence an isomorphism.
Further, {1,2} OE(Gy) and {f(2), f(2)} ={a b} OEG,)
{2,3} OE(Gy) and {f(2), f(3)} ={b, d} O E(G,)
{3,4} OE(Gy and {f(3), f(4)} ={d, c} OE(G,)
and {1, 3} OE(Gy) and {f(2), f(3)} ={a, d} O E(G,)
{1, 4} OE(Gy) and {f(2), f(4)} ={a, c} OE(G,)
{2,4} OE(Gy) and {f(2), f(4)} ={b, c} O E(Gy).
Hence f preserves adjacency as well as non-adjacency of the vertices.
Therefore, G, and G, are isomorphic.

Problem 1.53. For each pair of graphs shown, either label the graphs so as to exhibit an
isomorphism or explain why the graphs are not isomorphic.

(i) g ;

(@) (b)
X XN
(a) (b)

(iii) K $
(a) (b)
X S
(a) (b)
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Solution. (i) The graphs are not isomorphic because (a) has 5-edges and (b) has 4-edges.
(if) The graphs are isomorphic, as shown by the labelling

a b
c d b c
(@) (b)
(iii) The graphs are not isomorphic because (b) has a vertex of degree 1 and (a) does not have.
(iv) The graphs are isomorphic, as shown by the labelling

a b
b
X | : |
c d d
(@) (b)
Problem 1.54. Whether the following pair of non-directed graphs in figure (26) are isomor-
phic or not ? Justify your answer ?

Fig. 26.

Solution. Here, G' has vertex b’ of degree 2, while G has no vertex of degree 2.
Hence, they are not isomorphic.

Problem 1.55. How many different non-isomorphic trees are possible for a graph of order 4 ?
Draw all of them.

Solution. The sum of the degrees of the 4-vertices equals
26e)=2(n-1)=2n-2=8-2=6
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Hence, the degree of 4-vertices are (2, 2, 1, 1) or (3, 1, 1, 1), they are drawn as shown in Figure
below

A

B C

Problem 1.56. Draw a cycle graph which isisomorphic to its complement.
Solution. First we draw G and the complement of G denoted G', by drawing edges between
vertices which are non-adjacent in G.
The verticesin G’ are labelled so as to corresponds to those of G asfollows:
1r

5 2 3 4
G G
4 3
5 2
(0 (i)
Fig. 27.
From Figure (27)
\erticesin G \erticesin G’

1 1
2 2
3 3
4 4
5 5

Thislabelling ensuresthat 5" and 2' are adjacent to 1' in G', while 5 and 2 are adjacentto 1in G,
3 and 1’ areadjacentto 2' in G', while 3 and 1 are adjacentto 2 in G.

Also d(i") = d(i) for dl i.
Hence G and G' are isomorphic.

Problem 1.57. If a simple graph with n-vertices isisomor phic with its complement, how many
vertices will that have ? Draw the corresponding graph.

Solution. If eisthe number of edgesof G and e the number of edgesin the complement G,then

n(n +1)
4

e=e= . Hence nor n + 1 must be divisible by 4.
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A B
A B
G: b C
D’ o
Problem 1.58. Determine whether the following pairs of graphs are isomorphic. If the graphs
are not isomorphic, give an invariant that the graphs do not share.

@
<>

(if)

Solution. (i) Non isomorphic, they do not have the same number of vertices.
(i) Nonisomorphic, vertices of degree 3 are adjacent in one graph, non adjacent in the other.
(iif) Non isomorphic, one has a vertex of degree 2 but other does not.

Problem 1.59. Find whether the following pairs of graphs are isomorphic or not.

R

[\
o

(|||)

(o}
8]
(o]

(i) b

(o]
Q@ 1
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(ii)

Qo

Solution. (i) Not isomorphic.
G has 2 nodes b and e of degree 2 while G' has one node a' of degree 2.
(if) Not isomorphic.
G has 4 edges, and G’ has edges.

Problem 1.60. If agraph G of n verticesisisomorphic to its complement G, show that nor (n—1)
must be a multiple of 4.

Solution. SinceG= G , both of G and G have the same number of edges.

Also, the total number of edgesin G and G taken together must be equal to the number of edges
inK,.

_1 _
0 ~D dges, it follows that each of G and G has

Since K, has

n(n-1 edges
4

Thus, must be a positive integer, as such, n or (n— 1) must be a multiple of 4.

n(n-1
4

Problem 1.61. Consider two graphs G, and G, as shown below, show that the graphs G, and
G, are isomorphic.

Solution. The correspondence between the graphsis as follows :

The vertices (vy, Vs, V3, Vy, V) in G, correspond to (vy', V', V4', V', V') respectively in G,

The edges (e}, &, €3, &4, &5, &) iN G, correspond to (e/', &), €5, &/, &5, &) respectively in G..
Here the incidence property is preserved.

Therefore the graphs G, and G, are isomorphic to each other.
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Problem 1.62. Draw all non-isomorphic graphs on 2 and 3 vertices.
Solution. All non-isomorphic graphs on 2 vertices are

G: @ ® G,: @¢——@
All non-isomorphic graphs on 3 vertices are

ARSI

Problem 1.63. Show that the following graphs are isomorphic.

~----
RAaRN /// \\ ,/ \\\
S -7 SN -=z ’ \ ’ N
N . ~ -2 , \
~O Tes< a7 - ’ N N
G . < 7 ~<sle- - \\<, 4 A4 N
I e o6
PPN P TSR N SN ’
P ~ L ~2s . SN L
oL -7 N / \ e
NS N
‘*-----@
’
v Vi e’ Vs
v, ’ vV, -
A ' \ oy '
S~ e4,/ S e7/,, e3 at \ €, ’ AN
Sl L2 RN JI-2C b ‘e R
SN o~ 5 =27 78 ’ NS A
2°N_ - \\\ - S sz e
G,: e B ={< >< e ,
1 1 PAeEN =T~ 0N 9 G,:v ‘ ‘ ,.V
o e 3= e 2 W e s
< - ~ - ~ ~ N ’ \ 7
Pt N - S0 / \
.- N - e RN N / \
N €5 N/ v, €
v v Y [ "y
5 i
v’ €5 V.
2 5

Solution. There is one-to-one correspondence between vertices and one-to-one correspodence
between edges. Further incidence property is preserved.

Therefore G, isisomorphic to G,,
Problem 1.64. Determine whether the following graphs are isomorphic or not

Solution. Here both the graphs G; and G, contains 8 vertices and 10 edges.

The number of vertices of degree 2 in both the graphs are four.

Also the number of vertices of degree 3 in both the graphs are four.

For adjacency, consider the vertex of degree 3in G;. It is adjacent to two vertices of degree 3 and
one vertex of degree 2.

But in G, there does not exist any vertex of degree 3, which is adjacent to two vertices of degree
3 and one vertex of degree 2.
i.e, adjacency isnot preserved.

Hence, given graphs are not isomorphic.
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Problem 1.65. Show that the following graphs are isomorphic.

Solution. There are one-to-one correspondence between the vertices as well as between edges.
Further, the incidence property is preserved.
Therefore, G, isisomorphic to G..

Problem 1.66. Establish a one-one correspondence between the vertices and edges to show
that the following graphs are isomorphic.

Graph G,



42 GRAPH THEORY WITH APPLICATIONS

Solution. Define  @: V(G;) - V(G,) by @) = A, o) =B
@®c)=C, @(d) =D, () =E
@f) =J, @(g) =H, o) = |
@) =F () =G.

Problem 1.67. Show that the following graphs are isomorphic.

G,:
G,:

Solution. We first label the vertices of the graph as follows :

1 2 ] 6
7 3 3 4
6 4 5 2
7
5

Definean isomorphism¢ : V(G) - V(G,) by @(i) =i, we observe that ¢ preserves the adjacency
and non-adjacency of the vertices.

Hence G, and G, are isomorphic to each other.

1.10 OPERATIONS OF GRAPHS

1.10.1. Union
Given two graphs G, and G,, their union will be a graph such that
V(G, O Gy =V(G) O V(G

and E(G, 0 G,) = EG,) 0 E(G,)
a e b b
s
€, e, U &
€g
c ®s d d
G, G,

G,uG,
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1.10.2. Intersection

Given two graphs G, and G, with at least one vertex in common then their intersection will be a
graph such that

V(G, n G,) = V(G n V(G,)

and E(G, n Gy = E(G)) n E(G))
a 03 b
c
e, e N ., 6

e———o
a b

c ®s d a €s b

Gy G, G, NG,

1.10.3. Sum of two graphs

If the graphs G, and G, such that V(G,) n V(G,) = ¢, then the sum G, + G, is defined as the
graph whose vertex set isV(G;) + V(G,) and the edge set is consisting those edges, which arein G; and
in G, and the edges obtained, by joining each vertex of G, to each vertex of G,.

For example,
@ a
a a
o b
b b
@c c
G, G, G, +G,

1.10.4. Ring sum

Let G, (V4, E;) and G, (V,, E,) be two graphs. Then the ring sum of G; and G,, denoted by
G, O G, is defined as the graph G such that :

(i) V(G) =V(Gy) O V(G
(i) E(G) = E(Gy O E(G,) —E(Gy) n E(G)
i.e., the edgesthat either in G, or G, but not in both. The ring sum of two graphs G, and G, is shown below.
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1 1 « 2
x y
a
2 Z 3
5 b 3
G, 4 G,

1.10.5. Product of graphs

To define the product G, x G, of two graphs consider any two points u = (uy, U,) and v = (v, V) in
V =V, xV,. Thenuandv are adjacent in G, x G, whenever [u, =v; and u, adj. v,] or [u, = v, and u, adj. v;]

For example,
u, (uy, uy) (uy, v,) (uy, wy)
U, Vo Wy
[ @ L
\'
! (vy, up) (V1, Vo) (v, W)
G, G, G, x G,

Fig. (a). The product of two graphs.

1.10.6. Composition

The composition G = G,[G,] dsohasV =V, x V, asitspoint set, and u = (u,, U,) isadjacent with
v = (vy, V,) whenever (u; adj. v;) or (u; = v; and u, adj. v,)

For the graphs G, and G, of Figure. (a), both compositions G;[G,] and G,[G,] are shown in
Figure (b).

(V4 Up) (uy, vyp) (uy, wy) (uy, uy) (up, vy)
(v,, uy) (Va, V)
(vy, uy) (v, V) (v, wy)
(W, uy) (Wy, v,)
G,[G,] G,[Gi]

Fig. (b). Two compositions of graphs



INTRODUCTION TO GRAPH THEORY 45

1.10.7. Complement

The complement G' of G is defined as a simple graph with the same vertex set as G and where
two vertices u and v adjacent only when they are not adjacent in G.

For example,
v
u w u w
z X z X
y
y
G

Complement of G.

A graph G is self-complementary if it isisomorphic to its complement.
For example, the graphs

S

Self-complementary. The other self-complementary graph with five verticesis

1.10.8. Fusion

A pair of verticesv; and v, in graph G issaid to be ‘fused’ if these two vertices are replaced by a
single new vertex v such that every edge that was adjacent to either v, or v, or both is adjacent v.

Thus we observe that the fusion of two vertices does not alter the number of edges of graph but
reduced the vertices by one.

v, is fused with v,
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Theorem 1.3. For any graph G with six points, G or G contains a triangle.

Proof. Letvbeapoint of agraph G with six points. Since v is adjacent either in G or in G to
the other five points of G.

We can assume without loss of generality that there are three points u,, U,, U; adjacent to v in G.

If any two of these points are adjacent, then they are two points of atriangle whose third point isv.

If no two of them are adjacent in G, then u;, u, and us are the points of atrianglein G.

111 THE PROBLEM OF RAMSEY : 1.4

Prove that at any party with six people, there are three mutual acquaintances or three mutual
nonacquai ntances.

Solution. This situation may be represented by a graph G with six points standing for people, in
which adjacency indicates acquaintance.

Then the problem is to demonstrate that G has three mutually adjacent points or three mutually
nonadjacent ones.

The complement G of agraph G also has V(G) asits point set, but two points are adjacent in G
if and only if they are not adjacent in G.

In Figure 28, G has no triangles, while G consists of exactly two triangles.

Fig. 28. A graph and its complement

Infigure 29 : A self-complementary graph isisomorphic with its complement.
The complete graph K, has every pair of its P points adjacent. Since V is not empty, P > 1.

Thus Kp has EEE lines and is regular of degree P—1.

Aswe have seen, K5 iscalled atriangle. The graphs Kp aretotally disconnected, and are regular
of degree 0.
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Figure 29. The smallest nontrivial self-complementary graphs.

Theorem 1.5. The maximum number of lines among all P point graphs with no triangles
P20
Is L.

G408

Proof. The statement is obvious for small values of P. An inductive proof may be given sepa-
rately for odd P and for even P.

Suppose the statement is true for all even P < 2n.

Wethen proveit for P=2n + 2

Thus, let G be a graph with P = 2n + 2 points and no triangles.

Since G is not totally disconnected, there are adjacent points u and v.

The subgraph G' = G —{u, v} has 2n points and no triangles, so that by the inductive hypothesis

in?0 ,
G hasat most G—{1 = n? lines.
840

There can be no point W such that u and v are both adjacent to W, for then u, v and w would be
points of atrianglein G.

Thusif uisadjacent to K points of G', v can be adjacent to at most 2n — K points.

Then G has at most
nP+K+@n-K)+1=n>+2n+1=— = G lines.
4040

Theorem 1.6. Every graph is an intersection graph.

Proof. For each point v, of G

Let S be the union of {v;} with the set of lines incident with v;.

Then it isimmediate that G isisomorphic with Q (F) where F = {S}.

Note: Theintersection number w’ (G) of agiven graph G isthe minimum number of elementsin
aset Ssuch that Gisan intersection on S.

Coroallary (2)
If Gisconnected and P = 3, then w(G) < q.

Proof. Inthiscase, the points can be omitted from the sets S used in the proof of the theorem,
so that S= X(G).
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Corollary (2)
If G has P, isolated points and no K, components, then w(G) < q + P,.

Theorem 1.7. Let G be a connected graph with P > 3 points. Then «(G) = qif and only if G
has no triangles.

Proof. We first prove the sufficiency.

To show that w(G) = g for any connected G with atleast 4 points having no triangles.

By definition of the intersection number, G isisomorphic with an intersection graph Q(F) on a
set Swith | S| = w(G).

For each point v; of G, let § be the corresponding set.

Because G has no triangles, no element of S can belong to more than two of the sets S;, and
S n S #gif andonly if vi; asaline of G.

Thus we can form a 1 — 1 correspondence between the lines of G and those elements of Swhich
belong to exactly two sets S.

Therefore w(G) =|S|=q so that w(G) = q.

To prove necessity :

Let w(G) = q and assume that G has a triangle then let G; be a maximal triangle-free spanning
subgraph of G. wW(Gy) =a, = | X(GY |.

Suppose that G, = Q(F), where F is afamily of subsets of some set Swith cardinality g;.

Let xbealine of G notin G; and consider G, = G; + x. Since G, isamaximal triangle-free, G,
must have some triangle, say Uy, Uy, Us Where X = u;Us.

Denoteby S;, S,, S; the subsets of S corresponding to uy, U,, Us. Now if u, is adjacent to only u;
and uz in Gy, replace S, by a singleton chosen from S; n S, and add that element to S,.

Otherwise, replace S; by the union of S; and any elementinS; n S,.

In either case this givesafamly F' of distinct subsets of S such that G, = Q(F).
Thus w(G,) < g, while| X(G,) |=q; +1

If G, UG thereis nothing to prove.

Butif G, # G, thenlet | X(G) |- | X(G) | = qy

It follows that G is an intersection graph on a set with g, + g, elements.
However, q; +qo=q—1

Thus w(G) < q
Hence the proof.

: : P20
Theorem 1.8. For any graph G with P >4 points, w(G) < 525

Theorem 1.9. A graph G is a clique graph if and only if it contains a family F of complete
subgraphs, whose union in G, such that whenever every pair of such complete graphsin some subfamily
F " have a non empty intersection, the intersection of all the members of F ’is non empty.
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A graph and its clique graph.

1.12 CONNECTED AND DISCONNECTED GRAPHS

A graph G issaid to be aconnected if every pair of verticesin G are connected. Otherwise, G is
called adisconnected graph. Two verticesin G are said to be connected if there is at |east one path from
one vertex to the other.

In other words, agraph G issaid to be connected if thereis at least one path between every two
verticesin G and disconnected if G has at least one pair of vertices between which there is no path.

A graph is connected if we can reach any vertex from any other vertex by travelling along the
edges and disconnected otherwise.

For example, the graphs in Figure 30(a, b, ¢, d, €) are connected whereas the graphs in Figure
31(a, b, ¢) are disconnected.

A
C
B @D
(@) (b)
[
A D
e s
€,
B C
() (d)

Fig. 30.
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V, Vs,

| X X
vs .T.w ¢ ./ v, v

(b) (0)
Fig. 31.

A complete graph is always connected, also, anull graph of more than one vertex is disconnected
(see Fig. 32). All paths and circuits in a graph G are connected subgraphs of G.

A®

B@® oC

Fig. 32.
Every graph G consists of one or more connected graphs, each such connected graphisasubgraph
of G and is called a component of G. A connected graph has only one component and a disconnected
graph has two or more components.

For example, the graphs in Figure 31(a, b) have two components each.

1.12.1. Path graphs and cycle graphs

A connected graph that is 2-regular is called a cycle graph. Denote the cycle graph of n vertices
by I',. A circuit in agraph, if it exists, is a cycle subgraph of the graph.

The graph obtained from I",, by removing an edge is called the path graph of n vertices, it is
denoted by P,

T, Ps
(@) (b)
Fig. 33.
The graphs I'; and Pg are shown in Figure 33(a) and 33(b) respectively.
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1.12.2. Rank and nullity

For agraph G with n vertices, m edges and k components we define the rank of G and is denoted
by p(G) and the nullity of G is denoted by u(G) asfollows.

pP(G) =Rank of G=n—-k
M(G) = Nullity of G=m—-p(G) =m—-n+k
If G isconnected, then we have
p(G)=n—land u(G)=m-n+1.

Problem 1.68. Provethat a simple graph with n vertices must be connected if it has more than
(h-H(h-2
2

Solution. Consider a simple graph on n vertices.
Choose n—1 vertices vy, Vs, ......, V,_4 Of G.

(n=Y(n-2)
2

edges

We have maximum "~!C, = number of edges only can be drawn between these

vertices.

Thus if we have more than W edges atleast one edge should be drawn between the

nth vertex v, to somevertex v, L<i<n-1of G.
Hence G must be connected.

Problem 1.69. Show that if a and b are the only two odd degree vertices of a graph G, then a
and b are connected in G.

Solution. If G is connected, nothing to prove.

Let G be disconnected.

If possible assume that a and b are not connected.
Then a and b lie in the different components of G.

Hence the component of G containing a (similarly containing b) contains only one odd degree
vertex a, which isnot possible as each component of G isitself aconnected graph and in agraph number
of odd degree vertices should be even.

Therefore a and b lie in the same component of G.
Hence they are connected.

Problem 1.70. Prove that a connected graph G remains connected after removing an edge e
from G if and only if e liein some circuit in G.

Solution. If an edge eliesin acircuit C of the graph G then between the end vertices of e, there

exist atleast two pathsin G.
e
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Hence removal of such an edge e from the connected graph G will not effect the connectivity of G.
Conversely, if edoesnot liesin any circuit of G then remova of e disconnectsthe end vertices of e.
Hence G is disconnected.

Problem 1.71.

V(G)) n V(G Z .

Solution. If V(G;) n V(G,) = @ then V(G)) and V(G,) are the vertex partition of V(G) (there

exists no edges | eft in G to include between vertex of V(G,) and V(G,) as G, and G, are edge partition
of G).

Hence, G is disconnected, a contradiction to the fact that G is connected.
Problem 1.72.  Which of the graphs below are connected :

If G, and G, are (edge) decomposition of a connected graph G, then prove that

(2) (b)
Solution. The graph shown in Figure (a) is connected graph since for every pair of distinct
vertices there is a path between them.

The graph shown in Figure (b) is not connected since there is no path in the graph between
vertices b and d.

The graph shown in Figure (c) is not connected. In drawing a graph two edges may cross at a
point which is not a vertex. The graph can be redrawn as :

Vs

Theorem 1.10. If a graph (connected or disconnected) has exactly two vertices of odd degree,
there must be a path joining these two vertices.

Proof. Let G be agraph with all even vertices except vertices v; and v,, which are odd.

From theorem, which holds for every graph and therefore for every component of a diconnected
graph,
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No graph can have an odd number of odd vertices.

Therefore, in graph G, v, and v, must belong to the same component and hence must have a path
between them.

Theorem 1.11. A simple graph with n vertices and k components cannot have more than
(n-K(n-k+1)
2

Proof. Let n, = the number of verticesin component i,

edges.

k
1<ic<k, then n =n.
2"
A component with n, vertices will have the maximum possible number of edges when it is complete.

1
That is, it will contain 2 n(n; — 1) edges.

Hence the maximum number of edgesis:

1 k 1 k 1 k
PR PSP
1 2 A 1
<3 IP-(k-D@n-k] - n
1

=5 [N —2nk + k® + n—K]

=%(n—mm—k+n.

Corollary :
1
If m> 2 (n—1)(n - 2) then asimple graph with n vertices and m edges is connected.

Proof. Suppose the graph is disconnected. Then it has at least two components, therefore by
theorem.

m< — (n—K(n—k+ 1) fork=2

N~

< -(n-2)(n-1)

N

This contradicts the assumption that m > % (n=D(n-2).

Therefore, the graph should be connected.
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Theorem 1.12. A graph G isdisconnected if and only if its vertex set V can be partitioned into
two subsets V; and V,, such that there exists no edge in G whose one end vertex isin the subset VV; and the
other in the subset V..

Proof. Let G be disconnected. Then we have by the definition that there exists avertex x in G
and a vertex y in G such that there is no path between xand y in G

LetV,={Z OV : zisconnected to x}. Then V, isthe set of dl vertices of G which are connected to x.
LetV,=V -V, ThenV,;nV,=¢@andV,0V,=V.

Hence V, and V,, are the partition of V(G). Let a be any vertex of V.

To provethat ‘a’ is not adjacent to any vertex of V..

If possiblelet b [0 V, such that ab O E(G). Then a O V, there exist apath P; : from xto a.
This path can be extended to the path P, = P, ab, b.

P, isapath from xto bin G.

Therefore x and b are connected. Thisimplies that b [0 V, which is contradiction to the fact

VinV,=0.
X
ag ob
v, v,

Conversely, let us assume that V can be partitioned into two subsets V,; and V, such that no
vertex of V, is adjacent to a vertex of V.,

Let x be any vertex in V, and y be any vertex in V..

V, v,
w

To provethat Gisdisconnected, if possible, suppose G is connected. Then x and y are connected.

Therefore, there exists apath betweenx and y in G. But this path is possible only through a vertex
W in G whichis not either in V, or V..

Hence V, O V, # V, acontradiction.
Theorem 1.13. Show that a simple (p, g)-graph is connected then P < q + 1.

Proof. The proof is by induction on the number of edgesin G. If G has only one or two edges
then the theorem is true. Assume that the theorem is true for each graph with fewer than n edges.

Let G be given connected (p, q) graph.
Case (i) : G contains acircuit.

Let S be agraph obtained by G by removing an edge from a circuit of G. Then Sis a connected
graph having q— 1 edges. The number of vertices of Sand G are same, hence by inductive hypothesis
psg-1+1
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Thusp < g, hencecertainly p< g+ 1.
Case (ii) : G does not contain acircuit.

Let p bealongest pathin G. Let a and b be the end vertices of the path. The vertex a must be of
degree 1, otherwise the path could be made longer, or there would be a circuit in G.

Remove the vertex a and the edge incident with the vertex a.
Let H be the graph so obtained. Then H contains exactly one vertex and one edge less than that of

Further H is connected, hence by inductive hypothesisp—-1<(q—1) + 1.
Hencep<qg+ 1.

Problem 1.73. Prove that a connected graph G remains connected after removing an edge e
from G if and only if e belongs to some circuit in G.

Solution.  Suppose e belongs to some circuit C in G. Then the end vertices of e, say, A and B
are joined by atleast two paths, one of which is e and the other C —e.

Hence the removal of e from G will not affect the connectivity of G ; even after the removal of e
the end vertices of e. (i.e., A and B) remain connected.

B

Conversely, suppose e does not belong to any circuit in G. Then the end vertices of e are con-
nected by atmost one path.

Hence the removal of e from G disconnects these end points. This meansthat G — e is a discon-
nected graph.

Thus, if e does not belong to any circuit in G then G — e is disconnected.
Thisis equivaent to saying that if G — e is connected then e belongs to some circuit in G.
Problem 1.74. Let G be a disconnected graph with n vertices where n is even. If G has two

(n-2)

components each of which is complete, prove that G has a minimum of N edges.

Solution. Let x be the number of verticesin one of the components.
Then the other component has n — x number of vertices since both components are complete

graphs, the number of edges they have are x(x2— b and (n= x)(r; ~x-D

respectively.
Therefore, the total number of edgesin G is

_X(x=D)  (n-x)(n-x-1)
) 2
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— 2 +D 1
=X —nx 2(n—)

O m=2x—-nm'=2>0, =
Therefore, mis minimum when 2x—n=0

U X

NS

UnQd

Min. m= %ﬁz —nBEH+ g(n—l)

_n(n-2)
==
Problem 1.75. Find the rank and nullity of the complete graph k...
Solution. k, isaconnected graph with n vertices and
_n(n-1

m= 5 edges

Therefore, by the definitions of rank and nullity, we have
Rank of k,=n—1

1
Nullity of k,=m—-n+1= En(n—l)—n+1

_1
=5 (n=D(n-2).

1.13 WALKS, PATHS AND CIRCUITS

1.13.1. Walk
A walk is defined as a finite alter native sequence of vertices and edges, of the form
Vi€ Vit 1§ 4 15 Vig g oeeeene , 8Vim
which begins and ends with vertices, such that

(i) each edgein the sequenceisincident on the vertices preceding and following it in the
sequence.

(if) no edge appears more than once in the sequence, such a sequenceis called a walk or
atrial in G.

For example, in the graph shown in Figure 34, the sequences
Vo€ VglsV, 83V and V;E5V,6,VgesVse, Vs are walks.



INTRODUCTION TO GRAPH THEORY 57

Note that in thefirst of these, each vertex and each edge appears only once whereas in the second
each edge appears only once but the vertex vs appears twice.

These walks may be denoted simply as V,VgV,V; and vVoVgVsVs respectively.

v, A A

Fig. 34.

The vertex with which awalk beginsis called the initial vertex and the vertex with which awalk
ends is called the final vertex of the walk. The initial vertex and the final vertex are together called
terminal vertices. Non-terminal vertices of awalk are called itsinternal vertices.

A walk havingu astheinitial vertex and v asthefinal vertex iscalled awalk fromutov or briefly
au—vwalk. A walk that begins and ends at the same vertex is called a closed walk. In other words, a
closed walk is awalk in which the terminal vertices are coincident.

A walk that is not closed is called an open walk.

In other words, an open walk is awalk that begins and ends at two different vertices.
For example, in the graph shown in Figure 34.

V,6V,85V56,V; IS aclosed walk and Vse,VsezVesV, is an open walk.

1.13.2. Path

In awalk, avertex can appear more than once. An open walk in which no vertex appears more
than onceis called a simple path or a path.

For example, in the graph shown in Figure 34.
VgE5V,485V46,V, IS @ path whereas vge,vee;V;; is an open walk but not a path.

1.13.3. Circuit

A closed walk with atleast one edge in which no vertex except the terminal vertices appears more
than onceis called a circuit or acycle.

For example, in the graph shown in Figure 34,
V,€V,85V769V; and V,e,VesV,E5V46,V, are Circuits.
But vy ev,65V,e,Ve5V,85V56,V,0e, v, IS a closed walk but not a circuit.
Note: (i) In walks, path and circuit, no edge can appears more than once.
(if) A vertex can appear more than once in awalk but not in a path.
(iii) A path isan open walk, but an open walk need not be a path.
(iv) A circuit isaclosed walk, but a closed walk need not be a circuit.
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S XD 0

Open walk Open walk Closed walk Closed walk
which is a path which is not a path which is a circuit which is not a circuit.
1.13.4. Length

The number of edgesin awalk is called its length. Since paths and circuits are walks, it follows
that the length of a path is the number of edges in the path and the length of a circuit is the number of
edges in the circuit.

A circuit or cycle of length k, (with k edges) is called ak-circuit or ak-cycle. A k-circuit is called
odd or even according as k is odd or even. A 3-cycleiscalled atriangle.

For example, in the graph shown in Figure 34,
The length of the open walk vgesVse Vs is 2
The length of the closed walk v;egv,egve;V, i3
The length of the circuit v,6,vgesV,e5v48,V, is 4
The length of the path vgev,esvsev.e; v, is4
The circuit v,e,v,e5v,€,0v; iS atriangle.
Note: (i) A self-loop isal-cycle.
(if) A pair of paralel edgesform acycle of length 2.
(iii) The edgesin a 2-cycle are parallel edges.
Problem 1.76. Write down all possible
(i) pathsfromv; to vg (i) Circuits of G and (iii) trails of length three.
in G from v, to vg of the graph shown in Figure (35).

Fig. 35.
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Solution.
(i) Priviepvg, I(P) =1
Py 1 V1€ V,8/V5eaVe8V-e11 Ve, |(P) = 5
Py & V181V 8V8)V,€sVe8eVeBoV7€11 Ve |(Pa) = 7
These are the only possible paths from v, to vg in G.
(i) Cy: v1€Vo8VeBVeoV-11 VeeoVy, 1(Cy) = 6
Cy 1 V18V V384V €eVsBeVeEoV7e11 VgV, (Cp) = 8
G 1 Va8)Va8,Vy8eVee Vo, 1(C5) = 4
C,ivaevs I(Cp =1
Cs:VyeVy 1(Co) =1
G V78V 1(C) = 1
These are the only possible circuits of G.
W @ vaevaev,evs, [(W;) =3
W, & Vae3VaeV,85Vs, [(W,) = 3
W3 & Vae,V,85V,485Vs, |(W35) = 3.
These are the only possible trails of length three from v; to vg.
Problem 1.77. In the graph below, determine whether the following are paths, simple paths,
trails, circuits or simple circuits,
(i) VoerV1€1oVseoVy8yVy (i) V4eV,89V5e10V185V-E0Vs
(i) v, (V) VgVoVaVaVaVaVs.

Vs

Solution. (i) The sequence has a repested vertex v, but does not have a repeated edge so it isa
trail. It isnot cycle or circuit.
(i) The sequence has a repeated vertex v, and repested edge e,. Hence it is a path. It is not
cycle or circuit.
(iii) 1t has no repeated edge, no repeated vertex, starts and ends at same vertex. Henceit isa
simple circuit.
(iv) Itisacircuit sinceit hasno repeated edge, starts and ends at same vertex. Itisnot asimple
circuit since vertex v, is repeated.
Theorem 1.14. In a graph (directed or undirected) with n vertices, if there is a path from
vertex u to vertex v then the path cannot be of length greater than (n — 1).
Proof. LetTt: u, vy, Vo, Vs, ..... V., V be the sequence of verticesin a path u and v.

If there are m edges in the path then there are (m + 1) vertices in the sequence.
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If m< n, then the theorem is proved by default. Otherwise, if m= n then there exists avertex v, in
the path such that it appears more than once in the sequence

Deleting the sequence of vertices that leads back to the node v;, all the cyclesiin the path can be
removed.

The process when completed yields a path with al distinct nodes. Since there are n nodes in the
graph, there cannot be more than n distinct nodes and hence n — 1 edges.

Problem 1.78. For the graph shown in Figure, indicate the nature of the following sequences
of vertices

(@) ViVoVav, (B) VaViVoVaV,vs (C) V1VoVaVyVs
(d) ViVoVavavy (€) VgVsVaVaV,ViVyVe
Vg \Z Vs,
Vs v, V3

Solution. (a) Not awalk
(b) Open walk but not a path
(c) Open wak whichisapath
(d) Closed walk which is acircuit
(e) Closed walk which is not acircuit.

Theorem 1.15. Let G= (V, E) bean undirected graph, witha, b [7V, a Zb. If there exists a trail
(in G) fromato b, then thereisa path (in G) fromatob.

Proof. Sincethereisantrail fromato b.

We select one of shortest length, say{a, X}, {X;, X}, «-ee. , {X,, b}.

If this trail is not a path, we have the situation {a, X;}, {Xy, X5}, -.... X Xt {0 X s 1)
{Xk+1lxk+2}a ------ ’{)Qn—llxm}i(xm’ Xm+1}a ------ ’{Xn! b}a

where k < mand X, = X, possibly withk=0and a(= xp) =X, orm=n+21land X, =b (=X, 1)

But then we have a contradiction, because

{axd, {xg, X}, e cA%— 1 X Xy Xa 1) s eeeeee , {X,, b} isashortest trail from ato b.

Problem 1.79. Let G = (V, E) be aloop-free connected undirected graph, and let {a, b} be an
edge of G. Provethat {a, b} ispart of a cycleif and only if itsremoval (the verticesa and b are left) does
not disconnect G.

Solution. If {a, b} isnot part of acycle, then its removal disconnects a and b (and G).

If not, thereisapath Pfromato b, and P together with { a, b} providesacycle containing { a, b}.

Conversely, if theremoval of {a, b} from G disconnects G, there exist x, y [0 V such that the only
path Pfrom x to y contains e = { a, b}. If e were part of acycle C, thenthe edgesin (P—{¢€}) O (C—{€})
would contain a second path connecting x to y.
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Theorem 1.16. Inagraph G, every u—v path contains a simple u — v path.
Proof. If apathisaclosed path, then it certainly contains the trivial path.
Assume, then, that P is an open u— v path.

We complete the proof by induction on the length n of P.

If P haslength one, then Pisitself asimple path.

Suppose that all open u—v paths of length k. Where 1 < k < n, contains asimple u— v path. Now
suppose that P isthe open u— v path

{Vor Vi}s e {Vp Vi + 1}, Whereu=vyand v=,, , , of course, it may be that P has repeated
vertices, but if not, then Pisasimple u—v path.
If, on the other hand, there are repeated verticesin P.
Letiand j bedistinct positive integerswherei <j and v, = v;.

If the closed path v; —v; is removed from P, an open path P’ is obtained having length < n, since
at least the edge {v;, v; , ,} was deleted from P.

Thus, by the inductive hypothesis, P' contains a simple u — v path and, thus, so does P.
Problem 1.80. Find all circuitsin the graph shown below :

A

e

€6

P

Solution. There are no circuits beginning and ending with the vertices A, C and R.
The circuits beginning and ending with the vertices
B, P, Q are Be;Pe;Qe,B, Pe;Qe,BesP, Qe,BesPeQ
But all of these represent one and the same circuit.
Thus, there is only one circuit in the graph.

Problem 1.81. Consider the graph shown in Figure, find all paths from vertex A to vertex R.
Also, indicate their lengths.

€4
A B

Solution. There are four paths from A to R.
These are Ae,Be,R, AeBe,QeR, Ae,Pe:Qe;R, Ae,Pe:Qe;Be/R.
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These paths contain, two, three the and four edges.
Their lengths are two, three, three and four respectively.
Problem 1.82. Prove the following :
(@) A path with nverticesisof lengthn—1
(b) If acircuit has n vertices, it has n edges
(c) The degree of every vertex in a circuit is two.
Solution. (a) In apath, every vertex except the last is followed by precisely one edge.
Therefore, if apath has n vertices, it must have n— 1 edges. Itslengthisn— 1.
(b) Inacircuit, every vertex isfollowed by precisely one edge.
Therefore, if acircuit has n vertices, it must have n edges.
(c) Inacircuit, exactly two edges are incident on every vertex.
Therefore, the degree of every vertex in acircuit is two.

Problem 1.83. If G isa simple graph in which every vertex has degree at least k, prove that G
containsa path of length at least k. Deduce that if k = 2 then G also contains a circuit of length at least k + 1.

Solution. Consider a path P in G, which has a maximum number of vertices. Let u be an end
vertex of P. Then every neighbour of u belongsto P. Since u has at least k neighbours and since G is
simple, P must have at least k vertices other than u.

Thus, Pisapath of length at least k
If k= 2 then P and the edge from u to its farthest neighbour v conditute acircuit of length at least k + 1.

1.14 EULERIAN GRAPHS

1.14.1. Euler path

A path in agraph G is caled Euler path if it includes every edges exactly once. Since the path
contains every edge exactly once, it is also called Euler trail.

1.14.2. Euler circuit

An Euler path that is circuit is called Euler circuit. A graph which has a Eulerian circuit is called
an Eulerian graph.

D B E

(b) (©

(@)

Fig. 36.
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The graph of Figure 36(a) has an Euler path but no Euler circuit. Note that two vertices A and B
are of odd degrees 1 and 3 respectively. That means AB can be used to either arrive at vertex A or leave
vertex A but not for both.

Thus an Euler path can be found if we start either from vertex A or from B.

ABCDEB and BCDEBA aretwo Euler paths. Starting from any vertex no Euler circuit can befound.

The graph of Figure 36(b) has both Euler circuit and Euler path. ABDEGFDCA isan Euler path
and circuit. Note that all vertices of even degree.

No Euler path and circuit is possible in Figure 36(c).

Note that all vertices are not even degree and more than two vertices are of odd degree.

The existence of Euler path and circuit depends on the degree of vertices.

Note : To determine whether a graph G has an Euler circuit, we note the following points :
(i) List the degree of al verticesin the graph.

(i) If any value is zero, the graph is not connected and hence it cannot have Euler path or
Euler circuit.

(i) If all the degrees are even, then G has both Euler path and Euler circuit.

(iv) If exactly two vertices are odd degree, then G has Euler path but no Euler circuit.
Theorem 1.17. The following statements are equivalent for a connected graph G :

(i) GisEulerian

(ii) Every point of G has even degree

(iii) The set of lines of G be partitioned into cycles.
Proof. (i) implies (ii)
Let T be an Eulerian trail in G.

Each occurrence of agiven pointin T contributes 2 to the degree of that point, and since each line
of G appears exactly oncein T, every point must have even degree.

(ii) implies (iii)
Since G is connected and non trivial, every point has degree at least 2, so G contains acycle Z.

The removal of the lines of Z results in a spanning subgraph G, in which every point still has
even degree.

If G; has no lines, then (iii) already holds ; otherwise, repetition of the argument applied to G,
resultsin agraph G, in which again al points are even, etc.

When atotally disconnected graph G,, is obtained, we have a partition of the lines of G into
n cycles.

(iii) implies (i)

Let Z, be one of the cycles of this partition.

If G consists only of this cycle, then G is obviously Eulerian.

Otherwise, thereis another cycle Z, with apoint vin common with Z,.

The walk beginning at v and consisting of the cycles Z; and Z, in succession is a closed trail
containing the lines of these two cycles.

By continuing this process, we can construct a closed trail containing all lines of G.
Hence G is Eulerian.
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Fig. 37. An Eulerian graph.

For example, the connected graph of Figure 37 in which every point has even degree has an
Eulerian trail, and the set of lines can be partitioned into cycles.

Corollary (1) :

Let G be a connected graph with exactly 2n odd points, n = 1, then the set of lines of G can be
partitioned into n open trails.

Corollary (2) :

Let G be a connected graph with exactly two odd points. Then G has an open trail containing all
the points and lines of G (which begins at one of the odd points and ends at the other).

Problem 1.18. A non empty connected graph G is Eulerian if and only if its vertices are all of
even degree.

Proof. Let G be Eulerian.

Then G has an Eulerian trail which begins and ends at u, say.

If wetravel along thetrail then each time we visit avertex we use two edges, one in and one out.

Thisis also true for the start vertex because we also ends there.

Since an Eulerian trial uses every edge once, each occurrence of v represents a contribution of 2
to its degree.

Thus deg(v) is even.

Conversdly, suppose that G is connected and every vertex is even.

We construct an Eulerian trail. We begin atrail T, at any edgee. We extend T, by adding an edge
after the other.

If T, isnot closed at any step, say T, beginsat u but ends at v # u, then only an odd number of the
edges incident on v appear in T;.

Hence we can extend T, by another edge incident on v.

Thus we can continue to extend T, until T, returnsto itsinitial vertex u.
i.e, until T,isclosed.

If T, includes al the edges of G then T, isan Eulerian trail.
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Suppose T, does not include all edges of G.
Consider the graph H obtained by deleting all edges of T, from G.

H may not be connected, but each vertex of H has even degree since T, contains an even number
of the edges incident on any vertex.

Since G is connected, thereis an edge € of H which has an end point u' in T.

We construct atrail T,inH beginning at u' and using €'. Since all verticesin H have even degree.
We can continue to extent T, until T, returnsto u' as shown in Figure.

We can clearly put T, and T, together to form alarger closed trail in G.

We continue this process until all the edges of G are used.

We finally obtain an Eulerian trail, and so G is Eulerian.

Theorem 1.18. A connected graph G has an Eulerian trail if and only if it has at most two odd
vertices.

i.e., it has either no vertices of odd degree or exactly two vertices of odd degree.

Proof. Suppose G has an Eulerian trail which is not closed. Since each vertex in the middle of
thetrail is associated with two edges and since there is only one edge associated with each end vertex of
the trail, these end vertices must be odd and the other vertices must be even.

Conversdly, suppose that G is connected with atmost two odd vertices.

If G has no odd vertices then G is Euler and so has Eulerian trail.

The leaves us to treat the case when G has two odd vertices (G cannot have just one odd vertex
since in any graph there is an even number of vertices with odd degree).

Corollary (1) :

A directed multigraph G has an Euler path if and only if it is unilaterally connected and the in
degree of each vertex is equal to its out degree with the possible exception of two vertices, for which it
may be that the in degree of islarger than its out degree and the in degree of the other is onelessthan its
out degree.

Coradllary (2) :

A directed multigraph G has an Euler circuit if and only if G is unilateraly connected and the
indegree of every vertex in G is equal to its out degree.

Problem 1.84. Show that the graph shown in Figure has no Eulerian circuit but hasa Eulerian
trail.
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Solution. Here deg (u) = deg (v) = 3and deg (W) =4, deg (X) =4

Since u and v have only two vertices of odd degree, the graph shown in Figure, does not contain
Eulerian circuit, but the path.

b—a —c—d-g-f—eisan Eulerian path.
Problem 1.85. Let G be a graph of Figure. Verify that G has an Eulerian circuit.

Solution. We observe that G is connected and all the vertices are having even degree
deg (vy) = deg (V,) = deg (v,) = deg (vs) = 2.
Thus G has a Eulerian circuit.
By inspection, we find the Eulerian circuit
V) —V3—Vg—V,— V53—V, —Vj.
Problem 1.86. Show that the graphs in Figure below contain no Eulerian circuit.

Vs

Vs
® v, A A
Vs, vV,
Vi Vs
® Vg Vs v,
A Ve
(@) (b) ()

Solution. The graph shown in Figure (a) does not contain Eulerian circuit since it is not con-
nected.

The graph shown in Figure (b) is connected but vertices v, and v, are of degree 1.
Hence it does not contain Eulerian circuit.

All the vertices of the graph shown in Figure (c) are of degree 3.

Hence it does not contain Eulerian circuit.
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Problem 1.87.  Which of the following graphs have Eulerian trail and Eulerian circuit.

Solution. In G; an Eulerian trail from u to v is given by the sequence of edges e;, e,, ......, €.
Whilein G, an Eulerian cycle (circuit) from uto visgiven by e, e,, ...... €1, e

Problem 1.88. Show that a connected graph with exactly two odd verticesisa unicursal graph.
Solution. Suppose A and B be the only two odd vertices in a connected graph G.

Join these vertices by an edge e.

Then A and B become even vertices.

Since al other verticesin G are of even degree, the graph G [ e is an Eulerian graph.

Therefore, it has an Euler line which must include. The open walk got by deleting e from this
Euler lineis asemi-Euler linein G.

Hence G isaunicursal graph.

Problem 1.89. (i) Isthereisan Euler graph with even number of vertices and odd number of edges ?

(ii) I1sthere an Euler graph with odd number of vertices and even number of edges ?

Solution. (i) Yes. Suppose C isacircuit with even number of vertices.

Let v be one of these vertices.

Consider acircuit C' with odd number of vertices passing through v such that C and C' have no
edge in common.

The closed walk q that consists of the edges of C and C' isan Eulerian graph of the desired type.

(ii) Yes, in (i), suppose C and C' are circuits with odd number of vertices.

Then g is an Eulerian graph of the desired type.

Problem 1.90. Find all positive integers n such that the complete graph k;, is Eulerian.

Solution. In the complete graph k., the degree of every vertexisn—1.

Therefore, k, is Eulerian if and only if n—1iseven, i.e, if and only if nisodd.

Problem 1.91. Which of the undirected graph in Figure have an Euler circuit ? Of those that
do not, which have an Euler path ?

a b a b a b

d c d c c d e
G, G, G,

The undirected graphs G,, G, and Gs.
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Solution. The graph G, has an Euler circuit.

For example, a, €, ¢, d, e b, a. Neither of the graphs G, or G5 has an Euler circuit. However, G5
has an Euler path, namely a, ¢, d, e b, d, a, b.

G, does not have an Euler path.

Problem 1.92. Which of the directed graphsin Figure have an Euler circuit ? Of those that do
not, which have an Euler path ?

a b
E |
d H1 C

The directed graphsH,, H,, Hy

Solution. The graph H, has an Euler circuit, for examplea, g, ¢, b, g, e, d, f, a. Neither H, nor H,
has an Euler circuit. H; has an Euler path, namely e, a, b, ¢, d, b but H, does not.

Problem 1.93. Which graphs shown in Figure have an Euler path ?

A W7 <&

a g
b c
G

2

Three undirected graphs.

Solution. G, contains exactly two vertices of odd degree, namely, b and d.

Henceit has an Euler path that must have b and d asits end points. One such Euler pathisd, a, b,
c, d, b. Similarly, G, has exactly two vertices of odd degree, namely, b and d. So it has an Euler path that
must have b and d as enpoints. One such Euler pathisb, a, g, f, e, d, c, g, b, c, f, d.

G; has no Euler path since it has six vertices of odd.

Lemma

If G isagraph in which the degree of each vertex is at least 2, then G contains a cycle.
Proof. If G has any loops or multiple edges, the result istrivial.

Suppose that G is asimple graph.

Let v be any vertex of G.
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We construct awalk v - v; - V, - ...... inductively by choosing v; to be any vertex adjacent to
vandforeachi> 1.

Choosing v; , 4 to be any vertex adjacent to v; except v; _ ,;, the existence of such a vertex is
guaranteed by our hypothesis.

Since G has only finitely many vertices, we must eventually choose a vertex that has been cho-
sen before.

If v, isthefirst such vertex, then that part of the walk lying between the two occurrences of v, is
the required cycle.

Theorem 1.19. A connected graph G isEulerian if and only if the degree of each vertex of Gis
even.

Proof. Supposethat Pisan Eulerian trail of G. Whenever P passes through avertex, thereisa
contradiction of 2 towards the degree of that vertex.

Since each edge occurs exactly once in P, each vertex must have even degree.

The proof is by induction on the number of edges of G.

Suppose that the degree of each vertex is even.

Since G is connected, each vertex has degree at least 2 and so by lemma, G contains a cycle C.
If C contains every edge of G, the proof is complete.

If not, we remove from G the edges of C to form a new, possibly disconnected, graph H with
fewer edges that G and in which each vertex still has even degree.

By the induction hypothesis, each component of H has an Eulerian trail.

Since each component of H has at least one vertex in common with C, by connectedness, we
obtain the required Eulerian trail of G by following the edges of C until a non-isolated vertex of H is
reached, tracing the Eulerian trail of the component of H that contains that vertex, and then continuing
along the edges of C until we reach a vertex belonging to another component of H and so on.

The whole process terminates when we return to the initial vertex (see Figure below)

Corollary (1) :

A connected graph is Eulerian if and only if its set of edges can be split up into digjoint cycles.
Corollary (2) :

A connected graph is semi-Eulerian if and only if it has exactly two vertices of odd degree.
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Theorem 1.20. Let G be an Eulerian graph. Then the following construction is always possi-
ble, and produces an Eulerian trail of G.

Sart at any vertex u and traverse the edgesin an arbitrary manner, subject only to the following
results :

(i) erasethe edges asthey are traversed, and if any isolated vertices result, erase themtoo ;
(ii) at each stage, use a bridge only if there is no alternative.

Proof. We show first that the construction can be carried out at each stage.

Suppose that we have just reached a vertex v.

If v # u then the subgraph H that remains is connected and contains only two vertices of odd
degreeuand v.

To show that the construction can be carried out, we must show that the removal of the next edge
does not disconnected H or equivaently, that v is incident with atmost one bridge.

But if this is not the case, then there exists a bridge wv such that the component K of H — ww
containing w does not contain u (see Figure, below).

Since the vertex w has odd degree in K, some other vertex of K must also have odd degree,
giving the required contradiction.

If v = u, the proof isamost identical, as long as there are till edges incident with u.

Figure

It remains only to show that this construction always yields a complete Eulerian trail.

But this is clear, since there can be no edges of G remaining untraversed when the last edge
incident to u is used, since otherwise the removal of some earlier edge adjacent to one of these edges
would have disconnected the graph, contradicting (ii).

Theorem 1.21. (@) If agraph G has more than two vertices of odd degree, then there can be no
Euler path in G.

(b) If G is connected and has exactly two vertices of odd degree, thereisan Euler pathin G. Any
Euler path in G must begin at one vertex of odd degree and end at the other.
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Proof. (a) Let vy, W, V5 be vertices of odd degree.

Any possible Euler path must leave (or arrive at) each of v, v, v with no way to return (or leave)
since each of these vertices has odd degree.

One vertex of these three vertices may be the beginning of the Euler path and another the end, but
this leaves the third vertex at one end of an untraveled edge.

Thus there is no Euler path.

(b) Let u and v be the two vertices of odd degree. Adding the edge {u, v} to G produces a
connected graph G' all of whose vertices has even degree. Thereis an Euler circuit 1T'in G'.

Omitting {u, v} from 1t produces an Euler path that begins at u (or v) and ends at v (or u).

Theorem 1.22. (a) If agraph G has a vertex of odd degree, there can be no Euler circuit in G.

(b) If Gisa connected graph and every vertex has even degree, then thereis an Euler circuitin G.

Proof. (b) Suppose that there are connected graphs where every vertex has even degree, but
there is no Euler circuit. Choose such a G with the smallest number of edges.

G must have more than one vertex since, if there were only one vertex of even degree, thereis
clearly in Euler circuit. We show first that G must have atleast one circuit. If visafixed vertex of G, then
since G is connected and has more than one vertex, there must be an edge between v and some other
vertex vj.

Thisisasimple path (of length 1) and so simple paths exists. Let 11, be asimple path in G having
the longest possible length, and let its vertex sequence be vy, v,, ...... V.. Since v has even degree and 11,
uses only one edge that has v, as a vertex, there must be an edge e not in g, that also has v, as a vertex.

If the other vertex of eis not one of the v;, then we could construct a simple path longer than T,
Which is a contradiction.

Thus e has some v, as its other vertex, and therefore we can construct a circuit.

Vi, Vi g gy e Vv, Vi in G.

Since we know that G has circuits, we may choose a circuit Ttin G that has the longest possible
length. Since we assumed that G has no Euler circuits, 1t cannot contain all the edges of G.

Let G, be the graph formed from G by deleting all edges in Tt (but not vertices).

Since Ttis acircuit, deleting its edges will reduce the degree of every vertex by O or 2, so G; is
also agraph with all vertices of even degree.

The graph G, may not be connected, but we can choose a largest connected component (piece)
and call this graph G, (G, may be G,).

Now G, has fewer edges than G, and so (because of the way G was chosen), G, must have an
Euler path 11'.

If U passes through all the vertices on G, then 1tand 1’ clearly have vertices in common.

If not, then these must be an edge in G between some vertex V' in 1, and some vertex v not in 1t

Otherwise we could not get from vertices in 1’ to the other verticesin G, and G would not be
connected.

Since eisnot in 1T, it must have been deleted when G, was created from G, and so must be an
edgein Tt

Then Vv isaso in the vertex sequence of 11, and so in any case 1tand 11" have atleast one vertex v/
in common. We can then construct a circuit in G that is longer than 1tby combining rtand 1’ at Vv'.

Thisis a contradiction, since Ttwas chosen to be the longest possible circuit in G.

Hence the existence of the graph G always produces a contradiction, and so no such graph is
possible.
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Problem 1.94. Which of the graphsin Figure (a), (b), (c) have an Euler circuit, an Euler path
but not an Euler circuit, or neither ?

(@) (b) (©)
Solution. (i) In Figure (a), each of the four vertices has degree 3 ; thus, there is neither an Euler
circuit nor an Euler path.

(if) The graphin Figure (b) has exactly two vertices of odd degree. Thereisno Euler circuit, but
there must be an Euler path.

(iii) In Figure (c), every vertex has even degree ; thus the graph must have an Euler circuit.

1.15 FLEURY'S ALGORITHM
Let G = (V, E) be a connected graph with each vertex of even degree.
Step 1. Select an edge e, that isnot abridge in G.
Let its vertices be vy, \.
Let tbe specified by V,;: vy, Vo and E;; : e;.
Remove e, from E and v, and v, from V to create G,.

Step 2. Supposethat V@ vy, Vs, ...... viandE, e, e, ... e._1 have been constructed so far, and
that all of these edges and vertices have been removed from v and E to form G, _;.

Since v, has even degree, and g, _; ends there, there must be an edge g, in G, _, that also has v
as avertex.

If there is more than one such edge, select one that is not a bridge for G, _;.

Denote the vertex of g other thanv, by v, . ;, and extend V,;and E 10 V1 V4, Vp, ...y Vi, Vi 4 1 @ND
E. . €e,€, ., _1 6

Step 3. Repeat step 2 until no edges remainin E.

End of agorithm.

Problem 1.95. UseFleury salgorithmto construct an Euler circuit for the graph in Figure (1).

Fig. (1)
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Solution. According to step 1, we may begin anywhere.
Arbitrarily choose vertex A. We summarize the results of applying step 2 repeatedly in Table.

:A,B,C,A,D,C E GFEHGA

Current Path Next Edge Reasoning

. A {A, B} No edge from A is a bridge. Choose any one.
T:A,B {B, C} Only one edge from B remains.

m:A,B,C {C, A} No edges from C is abridge. Choose any one.
m:A,B,CA {A, D} | Noedgesfrom A isabridge. Choose any one.
m:A,B,CA,D {D, C} Only one edge from D remains.
m:A,B,CA,D,C {C, E} Only one edge from C remains.
mn:A,B,CAD,CE {E, G} No edge from E is a bridge. Choose any one.
m:A,B,CADCEG {G, F} {A, G} isahbridge. Choose {G, F} or {G, H}.
m:A,B,CAD,CEG,F {F, E} Only one edge from F remains.
m:A,B,CADCEG,FE {E, H} Only one edge from E remains.
m:A,B,CADCEG,FEH {H, G} Only one edge from H remains
m:A,B,CADCEGFEH,G {G, A} Only one edge from G remains.

]

d

Fig. (2)

The edges in Figure (b) have been nembered in the order of their choice in applying step 2.
In several places, other choices could have been made.

In general, if agraph has an Euler circuit, it islikely to have severa different Euler circuits.
Problem 1.96. Using Fleury's algorithm, find Euler circuit in the graph of Figure.

g
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Solution. The degrees of al the vertices are even. There exists an Euler circuit in it.

Current Path Next Edge Remark
T: a {a,j} No edge from a is a bridge choose (a, j). Add j to
and remove (a, j) from E.
T g {j, } No edge from j isabridge. Choose (j, f). Add f to Ttand
remove (j, f) from E.
1t ajf {f, g} (f, ) isabridge and (f, g) isnot abridge. Other option (f, h)
11 ajfg {g, h} (g, h) isthe only edge.
11 ajfgh {h, i} (h, i) is the other option
11 ajfghi {i, j} (i, ) isthe only edge.
1T ajfghij {j, h} (j, h) isthe only edge.
1t ajfghijh {h, f} (h, f) isthe only edge
1t ajfghijhf {f, €} (f, € isthe only edge
1t ajfghijhfe {e, d} Other options are (g, ), (e, @)
1t ajfghijhfed {d, ¢} (d, ¢) isthe only option.
1t ajfghijhfedc {c, b} Other options are (c, €), (c, a).
11 ajfghijkfedch {b, &} (b, @) isthe only option.
11 ajfghijkfedcba {q, ¢} Other options are (a, €)
1t ajfghijkfedcbac {c, € (c, €) isthe only option.
1t ajfghijkfedcbace {e a} (e, @) isthe only option.
11 ajfghijkfedcbacea No edge isremaining in E.

Thisisthe Euler circuit.
Problem 1.97. Using Fleury's algorithm, find Euler circuit in the graph of Figure.

B E J

D H L

Solution. The degree spectrum of the graph is (2, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 2) considering the
node from A to L in alphabetica order. Since all values are even there exists an Euler circuit init. The
process is summarized in the following table. The start nodeis A.
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SNo. Current path Next Edge Remark
Considered
1. mA {A, B} We sdlect (A, B). Add B to mand remove
(A, B) from E.
2. Tm:AB {B, C} It is the only option. Remove (B, C) from E
and B fromV. Add Cto 1t
3. m:ABC {C, E} (C, D) cannot be selected, asit isabridge.
Add E to rtand remove (C, E) from E.
4. T1:ABCE {E, F} Other options are there.
5. m: ABCEF {F, H} Other option is (H, I). We cannot select
6. 1. ABCEFH {H, G} (H, C), asitisabridge.
7. 1: ABCEFHG (G, E} AsinSl. No. 2
8. m:ABCEFHGE {E, 1} AsinSl. No. 2
Other options are also there. Edge (I, H) isa
9. 1: ABCEFHGEI {3 bridge.
10. 1. AFCEFHGEIJ {J, K} Asin S. No. 2.
11. m: ABCEFHGEIXK {K, L} Asin S. No. 2
12. 1. ABCEFHGEIXKL {L, 1} Asin Sl. No. 2
13. 1. ABCEFHGEIIKLI {I, H} Asin S. No. 2
14. 1. ABCEFHGEIJKLIH {H, C} Asin S. No. 2
15. 1. ABCEFHGEIXKLIHC {C, D} Asin S. No. 2
16. m: ABCEFHGEIXKLIHCD {D, A} Asin S. No. 2
17. 1. ABCEFHGEIKLIHCDA Thisisthe Euler cycle
1.16 HAMILTONIAN GRAPHS

Hamiltonian graphs are named after Sir William Hamilton, an Irish mathematician who intro-
duced the problems of finding a circuit in which al vertices of a graph appear exactly once.

ending vertex that appear s twice is known as Hamiltonian cir cuit.

distinct.

Note that an Eulerian circuit traverses every edge exactly once, but may repeat vertices, while a
Hamiltonian circuit visists each vertex exactly once but may repeat edges. While thereis a criterion for
determining whether or not a graph contains an Eulerian circuit, a similar criterion does not exist for
Hamiltonian ciruits.

A graph G is caled a Hamiltonian graph, if it contains a Hamiltonian circuit.
A Hamiltonian path is a smple path that contains all vertices of G where the end points may be

A circuit in a graph G that contains each vertex in G exactly once, except for the starting and
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In the following figures, hamiltonian path and cycles are shown :

c d [ d C d
G, i G,: E GS:I:I
a a b a b

The graph G, has no hamiltonian path (and so hamiltonian cycle), G, has hamiltonian path abcd
but no hamiltonian cycle, while G5 has hamiltonian cycle abdca.

The cycle C, with n distinct (and n edges) is hamiltonian. Moreover given hamiltonian graph G
thenif G' isasubgraph obtained by adding in new edgesbetween verticesof G, G’ will also be hamiltonian.
Since any hamiltonian cycle in G will also be hamiltonian cycle in G'. In particular k,,, the complete
graph on n vertices, in such a supergraph of a cycle, k, is hamiltonian.

A simple graph G is called maximal non-hamiltonian if it is not hamiltonian but the addition to it
any edge connecting two non-adjacent vertices forms a hamiltonian graph. The graph G, is a maximal
non-hamiltonian since the addition of an edge bd gives hamiltonian graph G..

1.17 DIRAC'S THEOREM (1.23)

P
2
Proof. If p= 3, then the condition on G impliesthat G [Jk; and hence G is hamiltonian.
We may assume, therefore, that p = 4.

Let P:vy, Vo, e Vv, be alongest path in G (see Figure). Then every neighbour of v; and every
neighbour of v, ison P.

Let G beagraph of order p= 3. If degv = — for every vertex v of G, then G is hamiltonian.

A Vi

Otherwise, there would be alonger path than P.

Consequently, n>1 + g .

There must be some vertex v; where 2 < i < n, such that v, is adjacent to v, and v, is adjacent to
VI — l-

If this were not the case, then whenever v, is adjacent to avertex v;, the vertex v, is not adjacent
tovi_;.

Since atleast g of p—1 vertices different from v,, are not adjacent to v,

Hence, degv, < (P-1)— g < g , which contradicts the fact that deg v,, = g .
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Thereforeaswe claimed, there must beavertex v; adjacent tov; andv; _ isadjacent tov,, (see Figure).

We now seethat G hascycle C: vy, Vi, Vi, 1, «one. Vi— 15 Vi Vi_ 15 Vi _ 9y «eeeey Vi, Vg that contains all
the vertices of P.

If C contains all the vertices of G (if n = p) then C is a hamiltonian cycle, and the proof.
Otherwise, there is some vertex u of G that is not on C.

By hypothesis, deg u = g . Since P contains at least 1 + g vertices, there are fewer than g
vertices not on C ; so u must be adjacent to avertex v that lieson C.

However, the edge uv plusthe cycle C contain apath whose length is greater than that of B, which
isimpossible.

Thus C contains all vertices of G and G is hamiltonian.

Hence the proof.

Corallary :

2

Let G be a graph with p-vertices. If deg v = & for every vertex v of G then G contains a

hamiltonian path.
Proof. If p=1then G Ok; and G contains a (trivial) Hamiltonian path.
Suppose then that p= 2 and defineH = G + k;.
Let v denote the vertex of H that isnot in C.
Since H has vertex p + 1, it follows that deg v= p.
Moreover, for every vertex u of G,

p-1 __p*tl_ |VH)I
5 +1= 5 = 5
By Dirac’'s theorem, H contains a hamiltonian cycle C. By removing the vertex v from C, we
obtain a hamiltonian path in G.
Hence the proof.

Theorem 1.25. If Gisa connected graph of order three or more which is not hamiltonian, then
the length k of a longest path of G satisfiesk = 2G).

Proof. Letp: ug, Uy, ... , U, be alongest path in G.
Since Pislongest path, each of u, and u, is adjacent only two vertices of P.

If ugu; O E(G), 1<i <k, thenu;_; u, O E(G) for otherwise the cycle C: ug, Uy, Uy, «.c.oy Ui _q, Uy,
Uk — 1> Ug_2, -eery Uy, Ug OF length k + 1 is present in G.

degyu=deggu+1=
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The cycle C cannot contain all vertices of G, since G is not Hamiltonian.

Therefore, there exists a vertex w not on C adjacent with a vertex of C, however thisimplies G
contains a path of length k + 1, which isimpossible.

Hencefor each vertex of {u,, U, ......, U} adjacent to u, thereisavertex of {ug, Uy, ....., U, _1} not
adjacent with u,.
Thus deg u, < k—deg u, so that
k> deg u, + deg uy = 25(G).
Hence the proof.

Theorem 1.26. Let G be a simple graph with n vertices and let u and v be an edge. Then G is
hamiltonian if and only if G + uv is hamiltonian.

Proof. Suppose G is hamiltonian. Then the super graph G + uv must also be hamiltonian.
Conversely, suppose taht G + uv is hamiltonian.
Then if G is not hamiltonian.
i.e, if Gisagraphwith p= 3 vertices such that for all non adjacent verticesu and v, deg u + deg v = p.
We obtain the inequality deg u + degv<n.
However by hypothesis, deg u + deg v =n.
Hence G must be hamiltonian.
This completes the proof.

1.18 ORE'S THEOREM (1.27)

If Gisagroup with p = 3 vertices such that for al non adjacent verticesu and v, deg u+ deg v =p,
then G is hamiltonian.

Proof. Let k denotes the number of vertices of G whose degree does not exceed n,

where 1sns§

These k verticesinduce a subgraph H which is complete, for if any two vertices of H were not
adjacent, there would exist two non adjacent vertices, the sum of whose degree is less than p.

Thisimpliesthat k< n+ 1. However k# n + 1, for otherwise each vertex of H is adjacent only
two verticesof H, and if u J V(H) and v V(G) —V(H), thendegu + degv<sn+(p-n-2)=p-
2, which is a contradiction.

Further k # n ; otherwise each vertex of H is adjacent to at most one vertex of G not in H.

However, since k= n< P , there exists a vertex w 0 V(G) — V(H) adjacent to no vertex of H.

Thenif udV(H),degu+degw<n+(p—n-1) =p-1, which again a contradiction.
Therefore k < n, which implies that G satisfies the condition, so that G is Hamiltonian.
Hence the proof.
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Problem 1.98. Let G be a simple graph with n vertices and m edges where mis at least 3. If
1
m = E(n—l)(n—Z) + 2.

Prove that G is Hamiltonian. Is the converse true ?

Solution. Let u and v be any two non-adjacent verticesin G.
Let x and y be their respective degrees.

If we delete u, v from G, we get a subgraph with n — 2 vertices.

1
If this subgraph has q edges then q < > (n=2)(n-23).

Since u and v are non-adjacent, m=q+ X +y
m m
Thus, x+y=m—q= (- -2) +H — B (n-2(-3H =n.
y=m-qz [L(0-1(1-2) +Z] - [ (n-2)(n-3]

Therefore, the graph is Hamiltonian.
The converse of the result just proved is not always true.

Because, a 2-regular graph with 5-vertices (see Figure below) is Hamiltonian but the inequality
does not hold.

Theorem 1.28. In a complete graph K, , ; there are n edge disoint Hamiltonian cycles.

Proof. Wefirstlabel thevertices of Ky, 1 @8SVy, Vo, ...... Vyn 41 then we construct n paths Py, P,,
...... P, on the vertices vy, v,, ......, V,, asfollows :

P =V, Vi p Vi e s VignonViep 1<isn

.. 0o
We note that the jth vertex of P, isv, wherek =i + (- 1)) *1 Ega and all subscripts are taken as

theintegers 1, 2, ...... , 2n (mod 2n).
The Hamiltonian cycle C; is got by joining V,,, ., 4 to the end vertices of P,.
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The Figure below illustrates the construction of Hamiltonian cyclesin k.
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Itisstill an open problem to find aconvenient method to determine which graphsare Hamiltonian.

A graph G in which every edge is assigned a real number is called a weighted graph. The real

number associated with an edge is called its weight, and the sum of the weights of the edges of G is
called the weight of G.

Problem 1.99. Which of the graphs given in Figure below is Hamiltonian circuit. Give the
circuits on the graphs that contain them.

Vo €, V3 Vy

€4 Va
e, &5 €; G €,
v, e, v, v, €, A
(a) (b)

Solution. The graph shown in Figure (a) has Hamiltonian circuit given by v;e,v,e,v4e;v,e,v;.
Note that all vertices appear in this a circuit but not all edges.
The edge &; is not used in the circuit.

The graph shown in Figure (b) does not contain circuit since every circuit containing every
vertex must contain the e; twice.

But the graph does have a Hamiltonian path v; — v, — V5 —V,.
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Problem 1.100. Give an example of a graph which is Hamiltonian but not Eulerian and vice-
versa.

Solution. The following graph shown in Figure below is Hamiltonian but non-Eulerian.

v, e A €, A
€
€6 ; e &) €3
Vs &s Vs & Vs

The graph contains a Hamiltonian circuit v,€,V,e,V4e;V,e,VsesVesVs.
Since the degree of each vertex is not n even the graph is non-Eulerian.
The graph shown in Figure below is Eulerian but not Hamiltonian.

vy €, Vo

€ e,

€ Vs Vg

e, €

€

v, €y Vg

The graph is Eulerian since the degree of each vertex is even.
It does not contain Hamiltonian circuit.

This can be seen by noting any circuit containing every vertex must contain avertex twice except
starting vertex and ending vertex.

Problem 1.101. Show that any k-regular simple graph with 2k — 1 vertices is Hamiltonian.

. ) 1 1 n
Solution. In a k-regular graph, the degree of every vertex iskand k > k— 55 (2k-1) = 5
Where n = 2k — 1 is the number of vertices. Therefore, the graph considered is Hamiltonian.
Problem 1.102. Prove that the complete graph k,, n = 3 is a Hamiltonian graph.

Solution. In k,,the degree of every vertexisn—1.1f n>2, wehaven—-2>0o0r2n—-2>nor

1 n
1> —
n 2

n
Thus, in k,, where n > 2, the degree of every vertex is greater than 5

Hence k,, is Hamiltonian.
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Theorem 1.29. Let G be a simple graph on n vertices. If the sum of degrees of each pair of
verticesin Gisat least n — 1, then there exists a Hamiltonian path in G.

Proof. Wefirst prove that G is connected.
If not, then G contains at least two components say G, and G,.
Let n, and n, be the number of vertices of G in the components G, and G..

Thenn, +n, < n, the degree of avertex x of G that isin the component G, isatmost n; —1 and the
degree of avertex y of G that isin the component G, is amost n, — 1.

Hence the sum of degrees of the verticesxand y of Gisat most (n; +n,)—2<n-2<n-1,a
contradiction.

Now we show the existence of the Hamiltonian path, by construction. The construction is as
follows :

Step 1. Choose avertex a of G.

Step 2. Starting from ‘a’ construct apath Pin G.

Step 3. If PisaHamiltonian path stop, otherwise go to step 4.

Step 4. Extend the path on both the ends to the maximum (make P be a maximal path).

That isif x is a vertex of G adjacent to the end vertex of the path P and not in P, then
includes the vertex to P with the corresponding edge and repeats the process. Call the path
so obtained as P.

Step 5. If PisaHamiltonian path then stop. Otherwise, we observe that there exists avertex xin
G that isnot in P and adjacent to avertex y in P (but y is not an end vertex of P).

Step 6. Since Pismaximal, no vertices of G which are not in P adjacent to the end vertex P.
The end vertices are adjacent to only those verticesin P.
LetP:a=ay, ay ....., &. Then k< n (otherwise, process stops at step 5).

If a, is adjacent to a,, then obtain acircuit C by join a; and a,, go to step 8. Otherwise, go
to step 7 with the following observation.

We observe that there exist i, 1 < i <k, such that a;a, , ; and a,a, arethe edgesin G.
If not, then &, is not adjacent to any vertex a , ;in P, which is adjacent to a,.

But the vertices adjacent to a, are only the vertices of P (follows by the construction of P),
it follows that, if degree of a, is m, then there are mvertices which are not adjacent to a; in
P
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Thus, there are at most k—m— 1 vertices of P (since a, is not adjacent to a).
Hence degree of a, + degree of g, < (k—m—1) + m=k—-1<n-1, acontradiction to the
assumption made in the statement of the theorem.

Step 7. Construct acircuit C by deleting an edge a;a; , , in P and joining the edges a;a, . ; and a,a,
to P.

Step 8. Join the edge between the vertex x of G and the vertex y in P (the verticesx and y are those
vertices which are observed in step 5) to the circuit C. And delete an edgeyz incident with
yinC.

Step 9. Step 8 yields a path between the vertex x and the vertex z This path contains one more
vertex than the path P so far we havein our hand (i.e., obtained in step 4) call this path as
P and go to step 4.

Finally, we note that the process terminates as in each time we are getting a path on one
more vertex (that is not in the earlier path) than the earlier path. Moreover, the final output
is the desired Hamiltonian path.

Hence the proof.

Theorem 1.30. In acomplete graph with n-vertices there are n?—l edge-digoint hamiltonian

circuits, if nisan odd number = 3.

(n-9
2

n
Proof : A complete graph with n vertices has edges, and a hamiltonian circuit con-

sists of n edges.

Therefore, the number of edge-digioint hamiltonian circuitsin G cannot exceed (-9 .

Thisimpliesthere are n?_l edge-digoint hamiltonian circuits, when nisodd it can be shown as

by keeping the vertices fixed on acircle, rotate the polygonal pattern clockwise by
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360 2360 3360 n-3 360
(-1 (n-1) (n-1°' """ 2 "~ (n-1 "I

At each rotation we get a hamiltonian circuit that has no edge in common with any of the previ-
ous ones. Thus we have nT_?’ new hamiltonian circuits, all edges digoint from one and also edge

digoint among themselves.
Hence the proof.

Problem 1.103. Which of the simple graphs in Figure have a Hamilton circuit or, if not, a
Hamilton path ?

a b a b a b
@
e c d s g s f‘
e
G, G,
d
G,

Fig. Three simple graphs.
Solution. G, hasaHamilton circuit : a, b, ¢, d, e, a.

There is no Hamilton circuit in G,, but G, does have a Hamilton path, namely a, b, ¢, d. G; has
neither a Hamilton circuit nor a Hamilton path, since any path containing all vertices must contain one
of the edges{a, b} {e, f} and {c, d} more than once.

Problem 1.104. Show that neither graph displayed in Figure has a Hamilton circuit.

N ;

G H

Fig. Two graphsthat do not have a Hamilton circuit.

Solution. There is no Hamilton circuit in G since G has a vertex of degree one, namely, e. Now
consider H. Since the degrees of the vertices a, b, d and e are al two, every edge incident with these
vertices must be part of any Hamilton circuit. It is now easy to see that no Hamilton circuit can exist in
H, for any Hamilton circuit would have to contain four edges incident with C, which isimpossible.
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Problem 1.105. Find the minimum Hamiltonian circuit starting from node E in the graph of

the Figure.
7 A \

D 1 E

Solution. We have to start with the node E. Closest node to E is the node B. Move to B. Now
closest node to B is C move to C, extend path up to C and drop node B and all edges from it, from the
graph. From C moveto D.

From D, move to A and then to E back.

Finally, we have only node E left in the graph.

Thus, we have a Hamiltonian circuit in the graph, which is 11: EBCDAE.

The total minimum of thiscircuit is:
EB+BC+CD+DA+EA=5+9+6+7+10=37.

Problem 1.106. At a committee meeting of 10 people, every member of the committee has
previously sat next to at most four other members. Show that the members may be seated round a
circular table in such a way that no one is next to some one they have previously sat beside.

Solution. Consider a graph with 10 vertices representing the 10 members.

L et two vertices be joined by an edge if the corresponding members have not previously sat next
to each other.

Since any member has not previously sat next to at least five members, the degree of every vertex
isat least five.

Therefore, the graph has a Hamiltonian circuit. Thiscircuit provides a seating arrangement of the
desired type.

Problem 1.107. Find three distinct Hamiltonian cycles in the following graph. Also find their
weights.

c d

Solution. The cycles C,, C, and C; are three distinct Hamiltonian cycles.
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a 1 b 1 b a b
3
G2 4 C,: s C,: 2 4
5 5
¢ d c 6 d c d

Weight of thecycleC, =1+4+6+2=13.

Weight of thecycleC,=1+5+6+3=15

Weight of thethird cycleC;=3+4+5+2=14

Hence thefirst cycleis of minimum weight.

Theorem 1.31. A complete graph k,,, has a decomposition into n Hamiltonian paths.
Proof. Consider a complete graph k..

Now join avertex x into K,,, and the edges xv; ¥ i, 1<i<?2n.

Then the graph G’ so obtained in K, , ;.

Hence G’ can be decomposed into n Hamiltonian cycles.

Removal of the vertex x from each of these cycles we get n edge digoint Hamiltonian paths
which are the required decomposition of K.

Theorem 1.32. Let G be a connected graph with n vertices, n > 2, and no loops or multiple
edges. G has a Hamiltonian circuit if for any two vertices u and v of G that are not adjacent, the degree
of u plus the degree of v is greater than or equal to n.

Corollary : G has aHamiltonian circuit if each vertex has degree greater than or equal to g .

=)

n
Proof. The sum of the degrees of any two verticesis at least 5 + n.

E =
T 1
Theorem 1.33. Let the number of edges of G be m. Then G hasa Hamiltonian circuit if m=> 5
(n>-3n+ 6).
(recall that n isthe number of vertices)

Proof. Supposethat uand v are any two vertices of G that are not adjacent. We write deg (u)
for the degree of u.

Let H be the graph produced by eliminating u and v from G along with any edges that have u or
v as end points.

The H has n — 2 vertices and m — deg (u) — deg (V) edges (one fewer edge would have been
removed if uand v had been adjacent).

The maximum number of edges that H could possibly haveis ,,_,C..
This happens when there is an edge connecting every distinct pair of vertices.
Thus the number of edges of H is at most

(n-2)(n-3)

1 2
5 2(n —5n+ 6)

n_2Co =
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We then have m—deg (u) —deg (v) < 5 (n“—=5n+ 6).

Therefore, deg (u) + deg (V) = m— % (n?>-5n + 6)
By the hypothesis of the theorem,
deg (u) + deg (v) = % (N>—3n+6) - % (n>—5n+ 6) = n.

Problem 1.108. Determine whether a Hamiltonian path or circuit exists in the graph of Figure.

B D

F

Solution. Let us take node A to start with. Next, move to either B or C, say B. Extend the path
upto B. Next move to D and not to C as a cycle of length 3 could be formed here. Extend the path upto
D and drop node B and edges (B, A), (B, C) and (B, D). Then move to H. Drop D and edges from it.
Then move to G, then to F (or E) then to E (or F), then to C and finally to A dropping the nodes and
edgesfrom them on theway. At theend, only onenode A isleft with degree zero and tisABDHGFECA.
Thisis aHamiltonian cycle.

Problem 1.109. Determine whether a Hamiltonian path or circuit existsin the graph of Figure.

E
A
F
B
G

Solution. Let us start with the node A. We can select any one but node C and D. Initialize the
path 11: A. Next move to the node B we cannot move to C from A. Because any moveto D from B and
to D from B need node C. Extend the path upto B. Then move to node C, extend the path upto C and
drop node B together with edges (B, A) and (B, C). We have now the path 11: ABC. Now move to D,
extend the path upto D and drop node C together with arcs (C, A) and (C, D). Then move to either node
G or E but not to F. Extend the path and do the rest. Finally, proceeding in thisway, we get 1: ABCDEFG.
And two nodes A and G, with degree zero, are left. Thus, this graph has a Hamiltonian path 1t but no
Hamiltonian circuit.

1.19 PROBLEM OF SEATING ARRANGEMENT 1.109

Nine members of a club meet every day for a dinner. They sit in a round table for a dinner, but no
two members who sat together will sit together in future. How long is this possible ?
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Solution. The seating arrangement can be represented as follows :

1 2

Any two numbers can occupy consecutive tables. The neighbouring persons can be represented
by an edge. Then each arrangementsis a cycle on 9 vertices. These cycles can be chosen from kg (Since
each member can sit with anybody in the beginning).

Thus distinct arrangements as they desired are the edge disjoint (no edges should re-appear, i.e.,
none of the persons sitting together will sit together in next arrangements) Hamiltonian cycles of Ko,
which is possible only for four days(as9=2n+1 [0 n=4). However thisis aso possible for 10
members for 4 days only.

If we consider a bench instead of a round table, then for 10 members it is possible for 5 days.
(Hamiltonian paths of ky,). What can you say about the same situation for nine members.

1.20 TRAVELING-SALESMAN PROBLEM
The traveling-salesman problem, stated as follows :

““ A salesman isrequired to visit anumber of cities during atrip. Given the distances between the
cities, in what order should he travel so as to visit every city precisely once and return home, with the
minimum mileage traveled ?’ Representing the cities by vertices and the roads between them by edges.
We get agraph. In this graph, with every edge g there is associated areal number (the distancein miles,
say), w(e). Such agraph is called aweighted graph ; w(e) being the weight of edge .

(i.e., A traveling salesman wants to visit each of n cities exactly once and return to his starting
point) if each of the cities has aroad to very other city, we have a complete weighted grap.

For example, suppose that the salesman wants to visit five cities, namely, A, B, C, D and E (see
Figure). In which order should he visit these cities to travel the minimum total distance ? To solve this
problem we can assume the salesman startsin A (since this must be part of the circuit) and examine all
possible ways for him to visit the other four cities and then return to A (starting el sewhere will produce
the same circuits). There are atotal of 24 such circuits, but since we travel the same distance when we
travel acircuit in reverse order, we need only consider 12 different circuits to find the minimum total
distance he must travel. We list these 12 different circuits and the total distance traveled for each circuit.

As can be seen from thelist, the minimum total distance of 458 milesistraveled using the circuit
A-B-E-D-C-A (oritsreverse).
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Route Total Distance (miles)
A-B-D-C-E-A 610
A-B-D-E-C-A 516
A-B-E-C-D-A 588
A-B-E-D-C-A 458
A-B-C-E-D-A 540
A-B-C-D-E-A 504
A-C-B-D-E-A 598
A-C-B-E-D-A 576
A-C-E-B-D-A 682
A-C-D-B-E-A 646
A-D-C-B-E-A 670
A-D-B-C-E-A 728

C
D
56 ' 98
E A
133 58
B

The graph showing the distance between five cities (A, B, C, D, E)

The traveling salesman problem asks for the circuit of minimum total weight in a weighted,
complete, undirected graph that visits each vertex exactly once and returns to its starting point. Thisis
equivalent to asking for aHamilton circuit with minimum total weight in the complete graph, since each
vertex is visited exactly once in the circuit.

The most straight forward way to solve an instance of the traveling salesman problem is to
examine all possible Hamilton circuits and select one of minimum total length.

How many circuits do we have to examine to solve the problem if there are n vertices in the
graph ? Once a starting point is chosen, there are (n—1) ! different Hamilton circuits to examine, since
there are n — 1 choices for the second vertex, n — 2 choices for the third vertex, and so on.

(n-9
2

|
Since aHamilton circuit can betraveled in reverse order, we need only examine " circuitsto

find our answer.
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-1!
Note that (n 21) " grows extremely rapidly. Trying to solve atraveling salesman problem in this

way when there are only afew dozen verticesisimpractical.

|
For example, with 25 vertices, a total of 2% (approximately 3.1 x 10%) different Hamilton

circuits would have to be considered.

If it took just one nanosecond (10~° second) to examine each Hamilton circuit, atotal of approxi-
mately ten million year would be required to find a minimum-length Hamilton circuit in this graph by
exhaustive search techniques.

1.21 KONIGSBERG'S BRIDGE PROBLEM

There were two islands linked to each other to the bank of the Pregel river by seven bridges as
shown above.

The problem wasto begin at any of the four land areas, walk across each bridge exactly once and
return to the starting point.

One can eadsily try to solve this problem, but all attempts must be unsuccessful. In proving that,
the problem is unsolvable. Euler replaced each land area by a vertex and each bridge by an edgejoining
the corresponding vertices, there by producing a ‘graph’ as shown below :

C

1.22 REPRESENTATION OF GRAPHS

Although a diagrammatic representation of agraph isvery convenient for avisual study but this
is only possible when the number of nodes and edges is reasonably small.

Two types of representation are given below :

1.22.1. Matrix representation

The matrix are commonly used to represent graphs for computer processing. The advantages of
representing the graph in matrix form lies on the fact that many results of matrix algebra can be readily
applied to study the structural properties of graphsfrom an algebraic point of view. There are number of
matrices which one can associate witch any graph. We shall discuss adjacency matrix and the incidence
matrix.
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1.22.2. Adjacency matrix

1.22.2. (a) Representation of undirected graph
The adjacency matrix of agraph G with n verticesand no pardlel edgesisan n by nmatrix A = {a;}
whose elements are given by g; = 1, if there is an edge between ith and jth vertices, and
= O, if there is no edge between them.
Note that for a given graph, the adjacency matrix is based on ordering chosen for the vertices.

Hence, there are as many as n ! different adjacency matrices for a graph with n vertices, since
there are n ! different ordering of n vertices.

However, any two such adjacency matrices are closely related in that one can be obtained from
the other by simply interchanging rows and columns.

There are anumber of observationsthat one can make about the adjacency matrix A of agraph G
are:

Observations:
(i) Alissymmetrici.e a;=a; foraliand]
(if) The entries along the principa diagona of A all zerosif and only if the graph has no self
loops. A self loop at the vertex corresponding to &; = 1.

(iii) If the graph is ssmple (no self loop, no paralel edges), the degree of vertex equals the
number of 1'sin the corresponding row or column of A.

(iv) The(i, ) entry of A™isthe number of paths of length (no. of occurence of edges) mfrom
vertex v; vertex v,.

(V) If G beagraph with n vertices vy, V,, ...... v, and let A denote the adjacency matrix of G
with respect to thislisting of the vertices. Let B be the matrix.

B=A+AZ+A%+ . +A"M?
Then G is aconnected graph if B has no zero entries of the main diagonal.
Thisresult can be also used to check the connectedness of a graph by using its adjacency matrix.

Adjacency can aso be used to represent undirected graphs with loops and multiple edges. A loop
at the vertex v, isrepresented by a1 at the (i, j)th position of the adjacency matrix. When multiple edges
are present, the adjacency matrix is no longer a zero-one matrix, since the (i, j)th entry equals the
number of edges these are associated to {Vv; —v;}.

All undirected graphs, including multigraphs and pseudographs, have symmetric adjacency matrices.

1.22.2 (b) Representation of directed graph
The adjacency matrix of adiagonal D, with n verticesisthe matrix A = {a;}, . , inwhich
a;=1lifac{v;—v}isinD
= 0 otherwise.
One can make a number of observations about the adjacency matrix of a diagonal.
Observations

(i) Aisnotnecessary symmetric, sincethere may not be an edgesfromy; tov, whenthereisan
edge fromv; to v;.
(i) Thesum of any column of j of A is equal to the number of arcs directed towards v;.
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(iii) Thesum of entriesinrow i isequal to the number of arcs directed away from vertex v; (out
degree of vertex v;)

(iv) The(i, j) entry of AMisequal to the number of path of Iength m from vertex v; to vertex v;
entriesof AT. A shows the in degree of the vertices.

The adjacency matrices can also be used to represent directed multigraphs. Again such
matrices are not zero-one matrices when there are multiple edges in the same direction
connecting two vertices.

In the adjacency matrix for a directed multigraph &; equals the number of edges that are
associated to (i, ;).

1.22.3. Incidence matrix

1.22.3. (a) Representation of undirected graph
Consider a undirected graph G = (V, E) which has n vertices and m edges all labelled. The
incidence matrix B = { b,j}, isthen n x m matrix,
where by =1 when edge g isincident with v;
= 0 otherwise
We can make a number of observations about the incidence matrix B of G.
Observations:
(i) Each column of B comprises exactly two unit entries.
(ii) A row with al O entries corresponds to an isolated vertex.
(iif) A row with a single unit entry corresponds to a pendent vertex.
(iv) Thenumber of unit entriesin row i of B isequal to the degree of the corresponding vertex v..
(V) The permutation of any two rows (any two columns) of B correspondsto alabelling of the
vertices (edges) of G.
(vi) Two graphs are isomorphic if and only if their corresponding incidence matrices differ
only by a permutation of rows and columns.
(vii) If Gisconnected with n vertices then the rank of B isn—1.

Incidence matrices can also be used to represent multiple edges and loops. Multiple edges
are represented in the incidence matrix using columns with identical entries. Since these
edges are incident with the same pair of vertices. Loops are represented using a column
with exactly one entry equal to 1, corresponding to the vertex that is incident with this loop.

1.22.3. (b) Representation of directed graph
Theincidence matrix B = {by;} of digraph D with n vertices and medgesisthe n x mmatrix in which
b; = 1if arcj isdirected awvay from avertex v,
=—1if arcj directed towards vertex v;
= 0 otherwise.

1.22.4. Linked representation

In this representation, alist of vertices adjacent to each vertex is maintained. This representation
is aso caled adjacency structure representation. In case of a directed graph, a case has to be taken,
according to the direction of an edge, while placing a vertex in the adjacent structure representation of
another vertex.
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Problem 1.110. Use adjacency matrix to represent the graphs shown in Figure below

2 A v Vi Vo
2

v, A v, A

(@) (0) (o)

Solution. We order the vertices in Figure (1)(a) as vy, Vs, V3 and v,.

Since there are four vertices, the adjacency matrix representing the graph will be a square matrix
of order four. The required adjacency matrix A is

[0 1 10

U
dons

0 14
34 o1 o

We order the vertices in Figure (1)(b) as vy, V, and v5. The adjacency matrix representing the
graph is given by

B O K

0 1 0O
N
B 2 0

Taking the order of the vertices in Figure(1)(c) as v,, Vs, V3 and v,. The adjacency matrix repre-
senting the graph is given by

M 11 g
A=S) 01 0f
0 0 0 10
10 0 0o
Problem 1.111. Draw the undirected graph represented by adjacency matrix A given by
M 110 0
1o 10 05
A= 1 0 1 ol
%) 010 1%
B oo 1 1

Solution. Since the given matrix isasquare of order 5, the graph G hasfive verticesv,, V,, V3, v,
and Vs.
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Draw an edge from v, to v, where g; = 1.
The required graph is drawn in Figure below.

v, v,

A A "
5

Problem 1.112. Draw the digraph G corresponding to adjacency matrix

00 1 1
[]
A=5)010D
1 1 o 10d
411 of

Solution. Since the given matrix is square matrix of order four, the graph G has 4 vertices vy, .,
V3 and v,,. Draw an edge from v; to v; where g;; = 1.

The required graph is shown in Figure below.

v, v,

Problem 1.113. Draw the undirected graph G corresponding to adjacency matrix

==
R~ O N

1) o

Solution. Since the given adjacency matrix is square matrix of order 4, G hasfour verticesv;, .,
v and v,,. Draw n edges from v, to v; where g; = n.

Also draw n loop at v; where g; = n.
The required graph is shown in Figure below.
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Va

Problem 1.114. Show that the graphs G and G ’ are isomorphic

Solution. Congider themapf: G —» G defineasf(a)=d’, f(b)=a,f(c)=b',f(d)=c andf(e) =¢€.
The adjacency matrix of G for the ordering a, b, ¢, dand eis

a b c de

a® 1 0 1 O

b 0 1 0 17
AG=clb 1 0 1 ]%
d 0 1 0 1

e 1 1 1 o

The adjacency matrix of G' for the ordering d', &, b', ¢ and €' is

d a b c e’
dm 1 0 1 OO
a4 010 17
AG)=bl 1 0 1 11
of 010 1%
e 111 H

i.e, A(G) = A(G)
O G and G’ are isomorphic.
Problem 1.115. Find the incidence matrix to represent the graph shown in Figure below :

e, Vo

\ \ v
1 e1 2 1
e4 N ez e4 ez
v, €3 vV, v,
(@)



96 GRAPH THEORY WITH APPLICATIONS

Solution. Theincidence matrix of Figure (a) is obtained by entering for row v and column eis 1
if eisincident on v and 0 otherwise. The incidence matrix is

€ & & &6
vyl O 1

i 100

v [0 1 0
v45) 0 1

The incidence matrix of the graph of Figure (b) is

i ey Y]

o1 0 0 -1 1T

U [
EO -1 1 O —1%
50 0 -1 1 of

Problem 1.116. Use an adjacency matrix to represent the graph shown in Figure below :

a b

[ d

Solution. We order the verticesas a, b, c, d.
The matrix representing this graph is

[0

&

K|

1

Problem 1.117. Draw a graph with the adjacency matrix

I ) [

m 1 1 g
700 1
(1 0o 0o 1
D11 o

with respect to the ordering of vertices a, b, c, d.
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Solution. A graph with this adjacency matrix is shown in Figure below :

a b

d c

Problem 1.118. Use an adjacency matrix to represent the pseudograph shown in Figure
below :

d c

Solution. The adjacency matrix using the ordering of verticesa, b, ¢, dis

M 3 0 2O
B0 11
M 1 1 2
21208

Problem 1.119. Represent the graph shown in Figure below, with an incidence matrix.

vy

Solution. The incidence matrix is
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£ S &5 S
BLOGETH o
P O OO R @

&
0
1
0
1

0

€ & &

= O O k-

0

0
1
0
1

1 o

GRAPH THEORY WITH APPLICATIONS

Problem 1.120. Represent the Pseudograph shown in Figure below, using an incidence matrix.

Solution. The incidence matrix for thisgraphis:

€ &
vy 1

vzg) 1

;[0 0
\ 0

vi D 0

€

o O O

€ & &

0

o O B

0

= O+ O

0

= O O B

€;

iy oy i

0

Problem 1.121. Write adjacency structure for the graphs shown in Figure (1)

b
d
A/ i
a [o]
(@)

a d
%\\De
b - c

(b)

Solution. The adjacency structure representation is given in the table for Figure (a).
Here the symbol @ is used to denote the empty list.
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\ertex Adjacency list
a b, c
b a, c
c ab,d
d e
€ ®

The adjacency structure representation is given in the table for the directed graph shown in
Figure (b).

\ertex Adjacency list
a b, c
b c
c d
d a e
e c

Problem Set 1.1

1. How many vertices do the following graphs have if they contain

(i) 16 edges and all vertices of degree 2

(i) 21 edges, 3 vertices of degree 4 and others each of degree 3.
2. Suppose agraph has vertices of degree 0, 2, 2, 3 and 9. How many edges does the graph have ?
3. Determine whether the following graphs are isomorphic

\2 v, v, v,

0 G,

G,

Vi Vs

(ii) G,: f c G f c
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4. Show that graphs are not isomorphic

V2
| @ | | |
Vs v, A

5. Show that the following graphs are isomorphic

a
e
() a: a c
(o]
G':
b d ,

(i) a:

o
(o}
[ X

b c

6. Show that the given pairs of graphs are isomorphic

b
a' c'
(i) a c
e d '
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a’ b’
v
" .
PN
it o
7. Write down the number of vertices, the number of edges, and the degree of each vertex, in
() thegraphinFig. (a) (i) thetreeinFig. (b).

P Q P Q
@ R R
T S S
(a)
(b)

8. Figure below represents the chemical molecules of methane (CH,) and propane (C5Hg).
() Regarding these diagrams as graphs, what can you say about the vertices representing car-
bon atoms (C) and hydrogen atoms (H) ?

(i) There are two different chemica molecules with formula C,H,,. Draw the graphs corre-
sponding to these molecules.

H H H
H—(l)—H H—(|3—(|3—C|)—H
) hoho

Methane Propane

9. Write down the vertex set and edge set of each graph in Figure below :

| p
u v w
M | m
X y z n q
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10.

11

12.

13.

14.

GRAPH THEORY WITH APPLICATIONS

Draw (i) asimple graph,

(if) anon-simple graph with no loops,

(i) anon-simple graph with no multiple edges, each with five vertices and eight edges.
(i) Show that there are exactly 2""~ 972 |abelled simple graphs on n vertices

(if) How many of these have exactly m edges ?

(i) By suitably labelling the vertices, show that the two graphsin Fig. (a) are isomorphic
(i) Explain why the two graphsin Fig. (b) are not isomorphic.

Fig. (a)

Fig. (b)

For the graphs shown below, indicate the number of vertices, the number of edges and the
degrees of vertices.

. A B C y Q R
() (1)
P Q R S T
Describe the graphs shown below :
A B A B B
() (ii) (iif)
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15. Show that the following graphs are not isomorphic :

& ©)

16. Verify that the following graphs are isomorphic :

vV

17. Show that the following graphs are not isomorphic :

(%

18. Threegraphs G,, G,, G; are shown in Figure (a), (b), (c) respectively. Is G; asupergraph of G,

and G ?
(a)

19. Let G bethe graph shown in Figure below. Verify whether H = (V', E') isasubgraph of G inthe
following cases :

) V'={PQ S, E={(RQ), (R 9}
(i) V' ={Q}, E' =@, the null set
(i) V' ={PRQ R} E ={(PQ), (QR), (Q S}
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R R

20. For the graph shown in the following Figure, find the nature of the following sequence :
(i) BAPCB (i) PABQ (iii) CBAPBQ.

Q

21. Prove that the edge set of every closed walk can be partitioned into pairwise edge-digjoint
circuits.

22. Show that in agraph with n vertices, the length of a path cannot exceed n — 1 and the length of
acircuit cannot exceed n.

23. Provethat if uisan odd vertex in agraph G then there must be a path in G from u to another odd
vertex vin G.

24. Inagraph G, let P, and P, be two different paths between two given vertices. Prove that G has
acircuitinit.

25. Suppose G; and G, are isomorphic. Prove that if G, is connected then G, is aso connected.

26. Provethat any two simple connected graphs with n vertices, al of degree two, are isomorphic.

27. Show that if G isaconnected graph in which every vertex has degree either 1 or O then G is
either a path or acycle.

28. Let G beagraph with 15 vertices and 4 components. Prove that atleast one component of G has
atleast 4 vertices.

29. If Gisasimple graph with n vertices and k components, prove that G has atleast n — k number
of edges.

30. Provethat aconnected graph of order n contains exactly one circuit if and only if itssizeisason.
31. Let G beasimple graph. Show that if G isnot connected then its complement G is connected.

32. Provethat if aconnected graph G is decomposed into two subgraphs H, and H,, there must be
atleast one vertex common to H, and H..
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33.

34.
35.

36.

37.

38.

39.

40.

41.

Prove that aconnected graph is semi-Eulerian if and only if it has exactly zero or two vertices of
odd degree.

Prove that the Petersen graph is neither Eulerian nor semi-Eulerian.
Show that the following graph is not Eulerian :

P B
R A
Q C

Show that the following graph is Eulerian :
/\/B\
P Q R

1
Show that the complete graph K, contains 2 (n—1) ! different Hamiltonian circuits.

Provethat, if G isabipartite graph with an odd number of vertices then G is non-Hamiltonian.

(n-9
2

If the degree of each vertex of a smple graph is atleast , where n is the number of

vertices, show that the graph has a Hamiltonian path.
Show that the following graphs are Hamiltonian but not Eulerian.

)8

Show that the following graph is Hamiltonian.

11.1
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42. Solve the travelling salesman problem for the weighted graph shown below :

A 6 B
3
7 5
D 9 C
Answers 1.1
1. (i) 16 (i) 13 2. 8 3. (i) Not isomorphic (i) Not isomorphic

7. (i) There are 5 vertices and 8 edges ; vertices P and T have degree 3, vertices Q and S have
degree 4, and vertex R has degree 2.

(i) There are 6 verticesand 5 edges ; vertices A, B, E and F have degree 1 and vertices C and D
have degree 3.

8. (i) Each carbon atom vertex has degree 4 and each hydrogen atom vertex has degree 1.
(ii) Thegraphsareasfollows:

T |
T S
HoR R H\/ "
/\ /\

9. V(G) ={u,v,w, x,v, Z, E(G) ={ux, uy, uz, vx, vy, vz, WX, Wy, Wz} ;
V(G)={l,mn,p,q,r}, E(G) ={lp, Iq, Ir, mp, mg, mr, np, ng, nr}.
12. (i) We can label the vertices as follows :

4‘1 5“‘

(ii) Inthefirst graph, no vertices of degree 2 are adjacent, in the second graph they are adjacent
in pairs, since isomorphism preserves adjacency of vertices, the graphs are not isomorphic.
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13. (i) Thereare6 verticesand 5 edges; verticesA, B, Q, R are pendant vertices and vertices C and

P have degree 3.

(ii) Thereare5 verticesand 7 edges; verticesP and Q have degree 2, Sand T have degree 3 and

Q has degree 4.

14. (i) Thisisasimple graph with four vertices and five edges. Vertices A and B are of degree 3

18.
20.
35.

36.
42.

and vertices P, Q are of degree 2.

(if) Thisisagenera graph with four vertices and six edges, of which two are self-loops. The

vertices A and Q are of degree 2, and B and P are of degree 4.

(iii) Thisis a multigraph with four vertices and five edges. There are parallel edges joining A

and P. The degree of A is4, degree of Pis 3, degree of B is 2 and Q is a pendant vertex.

Yes 19. (i) No (i) Yes (iii) No.
(i) Circuit (if) Path (iii) Open walk which is not a path.
Starting with any vertex, it is not possible to return to that vertex without traversing the edge

RA twice.
The graph contains an Euler line : PAQBRQP.
Circuit of least weight : ADBCA ; least total weight 23.



CHAPTER

Planar Graphs

INTRODUCTION

In this section we will study the question of whether a graph can be drawn in the plane without
edges crossing. In particular, we will answer the houses-and-utilities problem. There are always many
ways to represent agraph. When isit possible to find atleast one way to represent this graph in a plane
without any edges crossing. Consider the problem of joining three houses to each of three separate
utilities, as shown in figure below. Is it possible to join these houses and utilities so that none of the
connections cross ? This problem can be modeled using the complete bipartite graph K, 5. The origina
question can be rephrased as : can K3 5 be drawn in the plane so that no two of its edges cross ?

Fig. 2.1. Three houses and three utilities.

2.1 COMBINATORIAL AND GEOMETRIC GRAPHS (REPRESENTATION)

An abstract graph G can be defined as G = (V, E, W) where the set V consists of the five objects
named a, b, ¢, dand g, that is, V ={a, b, ¢, d, €} and the set E consists of seven objects (none of which
isinset V) named 1, 2, 3, 4, 5,6 and 7, that is,

E={1,23,4,5,6,7}

and the rel ationship between the two setsis defined by the mapping W, which consists of combinatorial
representation of the graph.

0ld (ac

023 (cd

030 (ad

) =E 40, (ab) [ Combinatorial representation of a graph

O5E (b d

60 (de
H70. (be

Here, thesymbol 1 3. (&, c) saysthat object 1 from set E is mapped onto the (unordered) pair
(a, ¢) of objectsfrom set V.

108
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It can be represented by means of geometric figure as shown below. It is true that graph can be
represented by means of such configuration.

a 1 b

e 4 d
Fig. 2.2. Geometric representation of a graph.

2.2 PLANAR GRAPHS

A graph G is said to be planar if there exists some geometric representation of G which can be
drawn on a plane such that no two of its edgesintersect. The points of intersection are called crossovers.

A graph that cannot be drawn on a plane without a crossover between its edges crossing is called
a plane graph. The graphs shown in Figure 2.3(a) and are planar graphs.

Fig. 2.3.

A drawing of ageometric representation of agraph on any surface such that no edgesintersect is
called embedding.

Note that if a graph G has been drawn with crossing edges, this does not mean that G is non
planar, there may be another way to draw the graph without crossovers. Thus to declare that a graph G
is non planar. We have to show that all possible geometric representations of G none can be embedded
in aplane.

Equivalently, agraph G isplanar isthereif there exists agraph isomorphic to G that is embedded
in a plane, otherwise G is non planar.

For example, the graph in Figure 2.4(a) is apparently non planar. However, the graph can be
redrawn as shown in Figure (2.4)(b) so that edges don’t cross, it isaplanar graph, though its appearance
is non coplanar.
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A

(a) ®)

Fig. 2.4.

2.3 KURATOWSKI'S GRAPHS

For this we discuss two specific non-planar graphs, which are of fundamental importance, these
are caled Kuratowski’s graphs. The complete graph with 5 vertices is the first of the two graphs of
Kuratowski. The second is a regular, connected graph with 6 vertices and 9 edges.

Fig. 2.5.

Observations
(i) Both are regular graphs
(ii) Both are non-planar graphs
(iif) Removal of one vertex or one edge makes the graph planar

(iv) (Kuratowski’s) first graph is non-planar graph with smallest number of vertices and
(Kuratowski’s) second graph is non-planar graph with smallest number of edges. Thus
both are simplest non-planar graphs.

The first and second graphs of Kuratowski are represented as K5 and K3 5. The letter K
being for Kuratowski (a polish mathematician).

2.4 HOMEOMORPHIC GRAPHS

Two graphs are said to be homeomorphic if and only if each can be obtained from the same graph
by adding vertices (necessarily of degree 2) to edges.

Thegraphs G, and G, in Figure (2.6) are homeomorphic since both are obtainable from the graph
G inthat figure by adding a vertex to one of its edges.
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oO——=O0
C )
G, G
G,

Fig. 2.6. Two homeomor phic graphs obtained from G by adding verticesto edges.

In Figure 2.7, we show two homeomorphic graphs, each obtained from K by adding verticesto
edges of K (In each case, the vertices of Kg are shown with solid dots).

s

Fig. 2.7. Two homeomor phic graphs obtained from K.

2.5 REGION

A plane representation of a graph divides the plane into regions (also called windows, faces, or
meshes) as shown in figure below. A region is characterized by the set of edges (or the set of vertices)
forming its boundary.

Notethat aregionis not defined in anon-planar graph or even in aplanar graph not embedded in
aplane.

ZENVS

Fig. 2.8. Plane representation (the numbers stand for regions).

For example, the geometric graph in figure below does not have regions.
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Fig. 2.9.

2.6 MAXIMAL PLANAR GRAPHS

A planar graph is maximal planar if no edge can be added without loosing planarity. Thusin any
maximal planar graph with p = 3 vertices, the boundary of every region of G is a triangle for this
maximal planar graphs (or plane graphs) are also refer to as triangulated planar graph (or plane graph).

2.7 SUBDIVISION GRAPHS

A subdivision of agraph isagraph obtained by inserting vertices (of degree 2) into the edges of G.
For the graph G of the figure below, the graph H isa subdivision of G, while Fis not asubdivision of G.

Fig. 2.10.

2.8 INNER VERTEX SET

A set of vertices of aplanar graph G iscalled aninner vertex set | (G) of G. If G can be drawn on
the plane in such a way that each vertex of 1(G) lies only on the interior region and I(G) contains the
minimum possible vertices of G. The number of vertices i(G) of I1(G) is said to be the inner vertex
number if they liein interior region of G.

Fig. 2.11.
For any cycle C,, i(C,) = 0.
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2.9 OUTER PLANAR GRAPHS
A planar graph is said to be outer planar if i(G) = 0. For example, cycles, trees, K, — x.

2.9.1. Maximal outer planar graph

An outer planar graph G is maximal outer planar if no edge can be added without losing outer
planarity.

For example,

——
TS

Fig. 2.12. Maximal outer planar graphs.

2.9.2. Minimally non-outer planar graphs
A planar graph G is said to be minimally non outer planar if i(G) = 1

For example, K, : A Ko <D

2.10 CROSSING NUMBER

The crossing number C(G) of agraph G is the minimum number of crossing of its edges among
all drawings of G in the plane.

A graph is planar if and only if C(G) = 0. Since K, is planar C(K,) = O for p < 4. On the other
hand C(Ks) = 1. Also K; 3 is non planar and can be drawn with one crossing.
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Fig. 2.13. K5 and K53 3 are non planar graphs with one crossing.

2.11 BIPARTITE GRAPH

A graph G = (V, E) ishipartiteif the vertex set V can be partitioned into two subsets (digoint) V,
and V, such that every edgein E connects avertex in V; and avertex V, (so that no edge in G connects
either two vertices in V, or two vertices in V). (V,, V,) is called a bipartition of G. Obviously, a
bipartite graph can have no loop.

X X, X5 X,

x, Which redrawn as :

Y1 Xz Y3
Yi Yo Y3

X Y1

' . ] . ’

. which redrawn as :

Y4 X4

Y4

Fig. 2.14. Some bipartite graphs.

2.11.1. Complete bipartite graph

The complete bipartite graph on mand n vertices, denoted K, , is the graph, whose vertex set is
partitioned into sets V; with m vertices and V., with n vertices in which there is an edge between each
pair of verticesV; and V. Where V, isinV, and V, isin V,. The complete bipartite graphs K, 5, K3 3,
Kz 5 and K, ¢ are shown in Figure below. Note that K, ¢ hasr + s vertices and rs edges.
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K K
Ky 5 2,4 3,3
Ky s Ky s

Fig. 2.15. Some complete bipartite graphs.

A complete bipartite graph K, is not aregular if m# n.
Problem 2.1.  Show that C; is a bipartite graph.
Solution. Cg is a bipartite graph as shown in Figure below.

Since its vertex set can be partitioned into two sets V; = {v;, V3, v5} and V, = {V,, v,, vg} and
every edge of C, connects avertex in vV, and avertex in V..

v v,

1
Va
v, v, v,
'] Vs
A Vg
v v v v
3 2 5 4
Cy v, S v Cs v, G v,

Fig. 2.16.

Problem 2.2. Prove that a graph which contains a triangle cannot be bipartite.

Solution. At least two of three vertices must lie in one of the bipartite sets, since these two are
joined by two are joined by edge, the graph can not be bipartite.

Problem 2.3. Determine whether or not each of the graphs is bipartite. In each case, give the
bipartition sets or explain why the graph is not bipartite.
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(iii)

1 2
(@) (i)

Solution. (i) The graph is not bipartite because it contains triangles (in fact two triangles).
(i) Thisis bipartite and the bipartite setsare {1, 3, 7, 9} and {2, 4, 5, 6, 8}
(iii) Thisis bipartite and the bipartite setsare {1, 3, 5, 7} and {2, 4, 6, 8}.

2.12 EULER’S FORMULA

The basic results about planar graph known as Euler’s formulais the basic computational tools

for planar graph.

Theorem 2.1. Euler’s Formula

If a connected planar graph G has n vertices, e edgesand r region, thenn—e+ r = 2,

Proof. We prove the theorem by induction on e, number of edges of G.

Basis of induction : If e= 0 then G must have just one vertex.

n=1and oneinfiniteregion, i.e,r=1

Thenn—e+r=1-0+1=2

If e =1 (though it is not necessary), then the number of vertices of G is either 1 or 2, the first

possibility of occurring when the edge is a loop.

These two possibilities give rise to two regions and one region respectively, as shown in Figure

(2.17) below.

n=1

Figure. 2.17. Connected plane graphs with one edge.
Inthecaseof loop, n—e+r=1-1+2=2andincaseof non-loop, n—e+r=2-1+1=2,
Hence the result is true.

Induction hypothesis :
Now, we suppose that the result is true for any connected plane graph G with e — 1 edges.
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Induction step :
We add one new edge K to G to form a connected supergraph of G which is denoted by G + K.
There are following three possibilities.

(i) Kisaloop, inwhich case anew region bounded by the loop is created but the number of
vertices remains unchanged.

(if) K joinstwo distinct vertices of G, in which case one of the region of G issplit into two, so
that number of regionsisincreased by 1, but the number of vertices remains unchanged.

(iii) K isincident with only one vertex of G on which case another vertex must be added,
increasing the number of vertices by one, but leaving the number of regions unchanged.

If let n', € and r' denote the number of vertices, edges and regionsin G and n, e and r denote the
samein G + K. Then

Incase(i)n—e+r=n—-(€+)+('+1)=n—-¢€ +r'.
Incase(i)n—e+r=n"—-(€+)+('+D)=n"—-€+r
Incase(ii)n—e+r=(N+1)—(€+1)+r'=n-€ +r'.
But by our induction hypothesis, ' —€ +r' = 2.
Thusineachcasen—e+r =2

Now any plane connected graph with e edgesis of the form G + K, for some connected graph G
with e — 1 edges and a new edge K.

Hence by mathematical induction the formulais true for all plane graphs.
Corollary (1)
If aplane graph has K componentsthenn—e+r =K + 1.

The result follows on applying Euler’s formula to each component separately, remembering not
to count the infinite region more than once.

Corollary (2)
If G isconnected simple planar graph with n (= 3) vertices and e edges, then e < 3n —6.

Proof. Each region is bounded by atleast three edges (since the graphs discussed here are
simple graphs, no multiple edges that could produce regions of degree 2 or loops that could produce
regions of degree 1, are permitted) and edges belong to exactly two regions.

2e=3r

If we combine this with Euler’'sformula, n—e+r =2, we get 3r =6 — 3n + 3e < 2e which is
equivalentto e< 3n-—6.

Corollary (3)

If Gisconnected simple planar graph with n (= 3) vertices and e edges and no circuits of length
3, thene<2n-4.

Proof. If the graph is planar, then the degree of each region is atleast 4.
Hence the total number of edges around all the regions is atleast 4r.

Since every edge borders two regions, the total number of edges around all the regionsis 2e, so
we established that 2e > 4r, which isequivalentto 2r < e.

If we combine thiswith Euler’sformulan—e+r = 2, we get
2r=4-2n+2e<e
whichisequivalent to e< 2n—4.
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Problem 2.4. Show that the graph K is not coplanar.

Solution. Since K isasimple graph, the smallest possible length for any cycle K isthree.
We shall suppose that the graph is planar.

The graph has 5 vertices and 10 edges so that n = 5, e = 10.

Now 3n-6=35-6=9<e

Thus the graph violates the inequality e < 3n — 6 and hence it is not coplanar.

This may be noted that the inequality e < 3n — 6 is only by a necessary condition but not a
sufficient condition for the planarity of a graph.

For example, graph K3 5 satisfies the inequality because e=9<3.6-6 =12, yet the graph is
non planar.

Problem 2.5.  Show that the graph K 5 is not coplanar.

Solution. Since K5 3 has no circuits of length 3 (it is bipartite) and has 6 vertices and 9 edges.
ie., n=6ande=9sothat2n-4=26-4=8.

Hence the inequality e < 2n — 4 does not satisfy and the graph is not coplanar.

Problem 2.6. A connected plane graph has 10 vertices each of degree 3. Into how many re-
gions, does a representation of this planar graph split the plane ?

Solution. Here n = 10 and degree of each vertex is 3
> deg(v) =3x10=30
But  deg(v) =2e 0 30=2e O e=15
By Euler’'sformula, wehave n—e+r =2 0 10-15+r=2 o r=7.
Problem 2.7. Show that K,,isa planar graph for n <4 and non-planar for n > 5.

Solution. A K, graph can be drawn in the way as shown in the Figure (2.18). This does not
contain any false crossing of edges.

Thus, it isa planar graph.
Graphs K, K, and K3 are by construction a planar graph, since they do not contain a false
crossing of edges.

Kz is shown in the Figure (2.19)

Fig. 2.18. Fig. 2.19.
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It is not possible to draw this graph on a 2-dimentional plane without false crossing of edges.
Whatever way we adopt, at |east one of the edges, say e, must cross the other for graph to be completed.

Hence K5 is not a planar graph.

For any n > 5, K, must contain a subgraph isomorphic to K.

Since K is not planar, any graph containing K as its one of the subgraph cannot be planar.
Problem 2.8.  Show that K3 5 isa non-planar graph.

Solution. Graph K3 5 is shown in the Figure (2.20) below.

A B c
D E F
Fig. 2.20.

It is not possible to draw this graph such that there is no false crossing of edges. Thisis classic
problem of designing direct lanes without intersection between any two houses, for three houses on
each side of aroad.

In this graph there exists an edge, say e, that cannot be drawn without crossing another edge.
Hence K 5 isanon-planar graph.
It is easy to determine that the chromatic number of this graphis 2.

Theorem 2.2.  Sumof the degrees of all regionsin a map is equal to twice the number of edges
in the corresponding graph.

Proof. As discussed earlier, a map can be drawn as a graph, where regions of the map is
denoted by vertices in the graph and adjoining regions are connected by edges.

Degree of aregion in amap is defined as the number of adjoining region.

Thus, degree of aregioninamap isequa to the degree of the corresponding verticesin the graph.

Weknow that the sum of the degrees of all verticesin agraph isequal to the twice the number of
edges in the graph.

Therefore, we have 2e = Zdeg(R).

Problem 2.9. Prove that K, and K, , are planar.

Solution. InK,, wehavev=4and e= 6

Obvioudly,6<3*4-6=6

Thus this relation is satisfied for K.

For K, ,,wehavev=4ande=4.

Aganinthiscase therelation e<3v-6
i.e, 4<3* 4-6=6issdisfied.

Hence both K, and K, , are planar.
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Problem 2.10. Determine the number of vertices, the number of edges, and the number of
region in the graphs shown below. Then show that your answer satisfy Euler’s theorem for connected
planar graphs.

Fig. 2.21.

Solution. There are 17 vertices, 34 edges and 19 regions. Sov—e+r =17 — 34 + 19 = 2 which
verifies Euler’s theorem.

Problem 2.11. If every region of a simple planar graph with n-vertices and e-edges embeded
: : kin—2)
in a plane is bounded by k-edges then show that e= IR
Solution. Since every region is bounded by K-edges, then r-regions are bounded by Kr-edges.

Also each edge is counted twice, once for two of its adjacent regions.

2e

Hence we have 2e=Kr O r=? ..(1)

i.e, if Gisaconnected planar graph with n-vertices e-edges and r-regions, then n—e+r =2,
From (1), we have
N
n-e+ =
g nK —eK + 2e=2K

O nK —2K = eK —2e

O K(n—-2)=¢K -2)
K(n-2

O e= —( ).

K-2
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Problem 2.12. Determine whether the graph G shown in Figure (2.22), is planar.

ity f b

5

Fig. 2.22. The undirected graph G, a subgraph H homeomor phic to K5 and K.

Solution. G has a subgraph H homeomorphic to K5, H is obtained by deleting h, j and K and all
edges incident with these vertices. H is homeomorphic to K5 since it can be obtained from Kz (with
vertices a, b, ¢, g and i) by asequence of elementary subdivisions, adding the vertices d, e and f.

Hence G is non planar.
Theorem 2.3. KURATOWSKI'S

K3, 3 and Ky are non-planar.
Proof. Suppose first that K 5 is planar.

SinceK; ghasacycleu - v — w - X -y - z - uof length 6, any plane drawing must contain
this cycle drawn in the form of hexagon, asin Figure (2.23).

u v u \'4
Z.W W
y X X

Fig. 2.23. Fig. 2.24.

Now the edge wz must lie either wholly inside the hexagon or wholly outside it. We deal with the
case in which wz lies inside the hexagon, the other case is similar.

Since the edge ux must not crossthe edgewz, it must lie outside the hexagon ; the situation is now
asin Figure (2.24).

It isthen impossible to draw the edge vy, as it would cross either ux or wz.

This gives the required contradiction.

Now suppose that K is planar.

SinceKg hasacyclev - w - X - y - z - vof length 5, any plane drawing must contain this
cycle drawn in the form of a pentagon as in Figure (2.25).
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Fig. 2.25. Fig. 2.26.

Now the edge wz must lie either wholly inside the pentagon or wholly outside it.
We deal with the case in which wz lies inside the pentagon, the other case is similar.

Since the edges vx and vy do not cross the edge wz, they must both lie outside the pentagon, the
situation isnow asin Figure (2.26)

But the edge xz cannot cross the edge vy and so must lie inside the pentagon.
Similarly the edge wy must lie inside the pentagon, and the edges wy and xz must then cross.
This gives the required contradiction.

Theorem 2.4. Let G be a simple connected planar (p, g)-graph having at least K edgesin a
boundary of each region. Then (k—2)q <k(p — 2).

Proof : Every edge on the boundary of G, lies in the boundaries of exactly two regions of G.
Further G may have some pendent edges which do not lie in aboundary of any region of G.
Thus, sum of lengths of all boundaries of G is less than twice the number of edges of G.

i.e, kr <2q ..(1)
But, G is a connected graph, therefore by Euler’s formula
Wehave r=2+q-p ..(2)

Substituting (2) in (1), we get
k(2+g-p)<2q
O (k—=2)g<k(p—2).
Problem 2.13. Suppose G is a graph with 1000 vertices and 3000 edges. Is G planar ?
Solution. A graph G is said to be planar if it satisfies the inequality.i.e, q<3p—-6
Here P = 1000, g = 3000 then
3000<3p-6
i.e, 3000 < 3000 -6
or 3000 <2994 whichisimpossible.
Hence the given graph is not a planar.

Praoblem 2.14. A connected graph has nine vertices having degrees 2, 2, 2, 3, 3, 3, 4, 4 and 5.
How many edges are there ? How many faces are there ?
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Solution. By Handshaking lemma,
n
> degy; =2q
i=1

i.e, 20=2+2+2+3+3+3+4+4+5=28

0 q=24

Now by Euler’'sformula p—q+r=2 oo 9-14+r=2 a r=7

Hence there are 14 edges and 7 regions in the graph.

Problem 2.15. Find a graph G with degree sequence (4, 4, 3, 3, 3, 3) such that (i) G is planar
(if) G isnon planar.

Solution. For (i) we have drawn a planar graph with six vertices with degree sequence 4, 4, 3, 3,
3, 3 as shown below.

For (ii) By Handshaking lemma

n
> degy =2q
i=1
ie, 20=4+4+3+3+3+3
20=20
O q=10
Hence the graph with P = 6, is said to be planar if it satisfies the inequality.
i.e, g=3p-6
ie., 10<3x6-6
or 10<18-6
10<12

Henceit is not possible to draw a non planar graph with given degree sequence 4, 4, 3, 3, 3, 3.

Problem 2.16. Determine the number of regions defined by a connected planar graph with 6
vertices and 10 edges. Draw a simple and a non-simple graph.

Solution. Given p=6,q=10

Hence by Euler’s formula for a planar graph
p-q+r=2
6-10+r=2 O r=6
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Hence the graph should have 6 regions.
Simple and non-simple graphs with p =6, g =10 and r = 6 are shown below.

Simple graph

Non-simple graph

Fig. 2.27.

Problem 2.17. Draw all planar graphs with five vertices, which are not isomorphic to each
other.

Solution. We have drawn all planar graphs with 5 vertices as shown below.

) GZQ . GA@ GS@ Gs@

Problem 2.18. How many edges must a planar graph have if it has 7 regions and 5 vertices.
Draw one such graph.

Solution. According to Euler’s formula, in a planar graph G.
p-q+r=2

Here p=5r=7,q="7

Since the graph is planar, therefore 5—-q+7=2 0 qg=10.
Hence the given graph must have 10-edges.

Here we have drawn more than one graph as shown below.
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Problem 2.19. By drawing the graph, show that the following graphs are planar graphs.

a b v,
Va

vy
(a) (b)
Fig. 2.28.

Solution. The graphs shown in Figure (2.28)(a, b) can be redrawn as planar graphs as follows
see Figure (2.29) (a, b).

(@) )

Fig. 2.29.

Problem 2.20. Show that the Petersen graph is non planar.

Solution. Petersen graph is well known non planar graph. Since G has some similarity with K
because of 5-cycle, ABCDEA. However since K has vertices of degree 4 only subdivision of Kg will
also have such vertices so G can not have only subdivision of K.

Sinceits vertices each have degree 3. So we look for asubgraph of G whichis subdivision of the
bipartite graph K; 5.

The Petersen graph shown in Figure (2.30)(a) is non planar since it contains a subgraph
homeomorphic to K3 3 as shown in Figure (2.30)(c). Note that the Petersen graph does not contain a
subgraph homeomorphic to K,
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(b) ©

Fig. 2.30.

Problem 2.21. Find a smallest planar graph that is regular of degree 4.

Solution. For the graph with two vertices, which is complete, then degree of each vertex is one.
For the next smallest graphs are with vertices 3 and 4, if they are complete then degree of each vertex is
2and 3.

The next graph is with 5 vertices. If degree of each vertex is 4, then it is complete graph with 5
vertices Kg which is non planar. For the next graph with 6 vertices, if it complete then degree of each
vertex isP—1. i.e,, 5. To make this graph 4 regular or regular of degree 4. Remove any 3 non adjacent
edges from Kg we get Kg — 3x where X is an edge of G, as shown in Figure (2.31), which is regular of
degree 4.

K3x:

Fig. 2.31.

2.12.1. Three utility problem (2.22)

There are three homes H,, H, and H; each to be connected to each of three utilities Water (W),
Gas(G) and Electricity(E) by means of conduits. Is it possible to make such connections without any
crossovers of the conduits ?
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Solution. H, H, H,

W G E

The problem can be represented by a graph shown in Figure the conduits are shown as edges
while the houses and utility supply centers are vertices.

The above graph is a complete bipartite graph K, 5 which is anon planar graph. Hence it is not
possible to draw without crossover. Therefore it is not possible to make the connection without any
crossover of the conduits.

Problem 2.23. Isthe Petersen graph, shown in Figure below, planar ?

a

‘Av

d c

Fig. 2.32. Petersen graph

Solution. The subgraph H of the Petersen graph obtained by deleting b and the three edges that
have b as an end point, shown in Figure (2.33) below, is homeomorphic to K5 5 with vertex sets{f, d, j}

H

Fig. 2.33.
and {e, i, h}, since it can be obtained by a sequence of elementary subdivisions, deleting {d, h} and
adding {c, h} and{c, d}, deleting{e, f} and adding{a, €} and{a, f} and deleting{i, j} and adding {g, i}
and{g, j}.
Hence the Petersen graph is not planar.
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Problem 2.24. Show that the following graphs are planar :
(i) Graph of order 5 and size 8 (ii) Graph of order 6 and size 12.

Solution. To show that agraph is planar, it is enough if we draw one plane diagram representing
the graph in which no two edges cross each other.

Figure (2.34) (a) and (b) show that the given graphs are planar.

(@) )

Fig. 2.34.
Problem 2.25. \erify that the following two graphs are homeomorphic but not isomorphic.

Solution. Each graph can be obtained from the other by adding or removing appropriate vertices.

Therefore, they are homeomorphic.

That they are not isomorphicis evident if we observe that the incident relationship is not identical.

Problem 2.26. Show that if a planar graph G of order n and size m has r regions and K
components, thenn—m+r = k+ 1.

Solution. Let Hy, Ho, ...... H, be the K components of G.

Let the number of vertices, the number of edges and the number of non-exterior regionsin H; be
n;, m, r; respectively, i =1, 2, ...... K.

The exterior region is the same for all components.

Therefore, Zn; =n, >m=m, Xri=r-1

If the exterior region is not considered, then the Euler’s formula applied to H; yields

n—-m+r=1
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On summation (fromi = 1toi =K) thisyields
n—-m+(r—1)=k

O n-m+r=k+1
Problem 2.27. Let G be a connected simple planar (n, m) graph in which every region is
k(n-2)
bounded by at least k edges. Show that m < W .
Solution. Since every region in G is bounded by at least k edges, we have 2m > kr ..(1)

Wherer is the number of regions
Substituting for r from the Euler’s formulain (1), we get
2m=k(m—-n+2)

O k(n—2) = km—-2m
k(n-2)
O m< k-2)

Problem 2.28. Let G be a simple connected planar graph with fewer than 12 regions, in which
each vertex has degree at least 3. Prove that G has a region bounded by at most four edges.

Solution. Suppose every region in G bounded by at least 5 edges.
Then, if G has n vertices and m edges,
we have, 2m= 5r ..(1)

Since each vertex has degree atleast 3, the sum of the degrees of the vertices is greater than or
equal to 3n. By virtue of the handshaking property, this means that

2m=3n ..(2)
By Euler’s formula, we have
r=m-n+2

>m- %§m+2 .. (@)

=%1+22§r+2 )

Thisyields6r = 5r + 12, r > 12.
Thisis a contradiction, because G has fewer than 12 regions.
Hence, some region in G is bounded by atmost four edges.

Problem 2.29. Show that these does not exist a connected simple planar graph with m= 7
edges and with degree = 3.

Solution. Suppose there is a graph G of the desired type.

. . . @2mgd .
Then, for this graph, the inequality & < B?H gives3n< 14.
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Ontheotherhand, 7<3n—-6 or 3n=>13.
Thus, we have 13 < 3n < 14 which is not possible (because n has to be a positive integer).
Hence the graph of the desired type does not exist.

Problem 2.30. Show that every simple connected planar graph G with less than 12 vertices
must have a vertex of degree < 4.

Solution. Suppose every vertex of G has degree greater than or equal to 5.

Then, if d;, d,, ds, ...... d, are the degrees of n verticesof G, wehaved; 25, d, =5, ...... d,=5.
So that d,+d,+ ... +d, = 5n.

or 2m = 5n, by handshaking property,

or 5 =m ..(1)

Ontheother hand, M<3n-6
Thus, we have, in view of (1)

5n

o <3n-6 or n=12
Thus, if every vertex of G has degree = 5, then G must have at least 12 vertices.
Hence, if G hasless than 12 vertices, it must have a vertex of degree < 5.

Problem 2.31. Show that the condition m < 3n—6 is not a sufficient condition for a connected
simple graph with n vertices and m edges to be planar.

Solution. Consider the graph K 5 which is simple and connected and which has n = 6 vertices
and m=9 edges.

We check that, for this graph, m< 3n—6.
But the graph is non-planar.

Problem 2.32. What is the minimum number of vertices necessary for a simple connected
graph with 11 edges to be planar ?

Solution. For a simple connected planar (n, m) graph,
Wehave, m<3n-6

1
or nzé(m+6)

17
Whenm=11, weget n> 3

Thus, the required minimum number of verticesis 6.
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Problem 2.33. Verify Euler’s formula for the graph shown in Figure (2.35).

Fig. 2.35.

Solution. The graph has n = 6 vertices, m= 10 edges and r = 6 regions.

Therefore Nn—m+r=6-10+6=2

Thus, Euler’'s formulais verified.

Problem 2.34. What is the maximum number of edges possible in a simple connected planar
graph with eight vertices ?

Solution. When n=38,

m<3n-6=18
Thus, the maximum number of edges possibleis 18.
Theorem 2.5. A graphisplanar if and only if each of its blocksis planar.

Theorem 2.6. Every 2-connected plane graph can be embedded in the plane so that any speci-
fied face is the exterior.

Proof. Let f be anon exterior face of a plane block G. Embed G on a sphere and call some
point interior to f the North pole.

Consider a plane tangent to the sphere at the South pole and project G onto that plane from the
North pole.

Theresultisaplanegr  aphisomorphic to G in which f is the exterior face.
Corollary :

Every planar graph can be embedded in the plane so that a prescribed line is an edge of the
exterior region.

Theorem 2.7. Every maximal planar graph with P > 4 points is 3-connected.

(a)
(b)

Fig. 2.36. Plane wheels.
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There are five ways of embedding the 3-connected wheel W5 in the plane : one looks like Figure
(2.36)(a) and the other four look like Figure (2.36)(b).

However, thereisonly oneway of embedding W on asphere, an observation which holdsfor all
3-connected graphs.

Theorem 2.8. Every 3-connected planar graph is uniquely embeddable on the sphere.

Fig. 2.37. Two plane embeddings of a 2-connected graph.
To show the necessity of 3-connectedness, consider theisomorphic graphs G, and G, of connec-
tivity 2 shown in Figure above.

The graph G, is embedded on the sphere so that none of its regions are bounded by five edges
while G, has two regions bounded by five edges.

Theorem 2.9. A graphisthe 1-skeleton of a convex 3-dimensional polyhedron if and only if it
is planar and 3-connected.

Theorem 2.10. Every planar graph is isomorphic with a plane graph in which all edges are
straight segments.

Theorem 2.11. A graph Gisouter planar if and only if each of its blocks is outerplanar.

Theorem 2.12. Let G be a maximal outerplane graph with P > 3 vertices all lying on the
exterior face. Then G has P — 2 interior faces.

Proof. Obvioudy the result holds for P = 3.

Suppose it istruefor P=nand let G have P=n + 1 vertices and minterior faces.
Clearly G must have a vertex v of degree 2 on its exterior face.

In forming G — v we reduce the number of interior facesby 1 sothat m—1=n-2.
Thus m=n-1=P -2, the number of interior faces of G.

(a) (b)
¢ (©)

Fig. 2.38. Three maximal outerplanar graphs.
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Fig. 2.39. The forbidden graphsfor outer planarity.
Corollary :
Every maximal out planar graph G with P points has
(@) 2P—3lines
(b) at least three points of degree not exceeding 3.
(c) at least two points of degree 2.
(d) K(G) =2

All plane embeddings of K, and K, 3 are of the forms shown in Figure (2.39) above, in which
each has avertex inside the exterior cycle.

Therefore, neither of these graphs is outer planar.

Theorem 2.13. A graphisouter planar if and only if it has no subgraph homeomorphic to K,

Fig. 2.40. A homeomor ph of K,.

Theorem 2.14. Every planar graph with atleast nine points has a non planar complement, and
nine is the smallest such number.

Theorem 2.15. Every outerplanar graph with atleast seven points has a non outer planar
complement, and seven is the smallest such number.

Wbae

Fig. 2.41. The four maximal outer planar graphs with seven points.
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Proof. To prove the first part, it is sufficient to verify that the complement of every maximal
outerplanar graph with seven pointsis not outer planar.

This holds because there are exactly four maximal outer planar graphs with P = 7. (See Figure
above) and the complement of each is readily seen to be non outer planar.

The minimality follows from the fact that the (maximal) outer planar graph of Figure below, with
six points has an outer planar complement.

Fig. 2.42.

Lemma 1.

Thereisacyclein F containing ug and v,

Proof. Assume that thereis no cyclein F containing u, and v,

Then u, and v, liein different blocks of F.

Hence, there exists a cut point W of F lying on every u,— v, path.

We form the graph F, by adding to F the lines wu, and wv,, if they are not already present in F.
In the graph F,, uy and v, still lie in different blocks, say B, and B,, which necessarily have the

point W in common. Certainly, each of B, and B, has fewer lives than G, so either B, is planar or it
contains a subgraph homeomorphic to K or K 5.

If, however, the insertion of wu, produces a subgraph H of B; homeomorphic to K or K3 3, then
the subgraph of G obtained by replacing wu, by a path from u, to W which begins with x, is necessarily
homeomorphic to H and so to K or K3 3, but thisis a contradiction.

Hence, B, and similarly B, is planar. Both B, and B, can be drawn in the plane so that the lines
wu, and wv, bound the exterior region.

Hence it is possible to embed the graph F, in the plane with both wu, and wv,, on the exterior
region.

Inserting %, cannot then destroy the planarity of F,. Since G isa subgraph of Fy + X, G isplanar,
this contradiction shows that thereis a cycle in F containing uy and v,

Let F be embedded in the plane in such away that a cycle Z containing u, and v, has amaximum
number of regionsinterior to it.

Orient the edges of Z in acyclic fashion, and let Z[u, v] denote the oriented path from uto v along Z.

If v does not immediately follow u to z, we also write Z(u, V) to indicate the subgraph of Z[u, V]
obtained by removing u and v.

By the exterior of cycle Z, we mean the subgraph of F induced by the vertices lying outside Z,
and the components of this subgraph are called the exterior components of Z.
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By an outer piece of Z, we mean a connected subgraph of F induced by all edges incident with
atleast one vertex in some exterior component or by an edge (if any) exterior to Z meeting two vertices
of Z. In alike manner, we define the interior of cycle Z, interior component, and inner piece.

Fig. 2.43. Separating cycle Z illustrating lemma.

An outer or inner pieceiscaled u— v separating if it meets both Z(u, v) and Z(v, u).
Clearly, an outer or inner piece cannot be u — v separating if u and v are adjacent on Z.

Since F is connected, each outer piece must meet Z, and because F has no cut vertices, each outer
piece must have atleast two vertices in common with Z.

No outer piece can meet Z(uy, Vp) or Z(Vy, Up) in more than one vertex, for otherwise there would
exist a cycle containing u, and v, with more interior regions than Z.

For the same region, no outer piece can meet u, Or Vj,

Hence every outer piece meets Z in exactly two vertices and is uy — Vv, Separating.

Further more, since x, cannot be added to F in planar fashion, thereisat least one u, — Vv, Separat-
ing inner piece.

Lemma 2.

There exists a u, — v, Separating outer piece meeting Z (U, Vo), Say at uy, and Z(vy, Up), Say at vy,
such that there is an inner piece which is both uy — v, separating and u, — v, separating.
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Proof. Suppose, to the contrary, that the lemma does not hold. It will be helpful in understand-
ing this proof to refer to Figure (2.43).

We order the u, — Vv, separating inner pieces for the purpose of relocating them in the plane.
Consider any u, — V,, separating inner piece |; which is nearest to u, in the sense of encountering points
of this inner piece on moving along Z from u,. Continuing out from u,, we can index the uy — v,
Separating inner pieces |, 15 and so on.

Fig. 2.44. The possibilities for non planar graphs.

Let u, and u be the first and last points of 1, meeting Z(u,, V) and v, and v be the first and last
vertices of |, meeting Z(vg, Uy).

Every outer piece necessarily has both its common vertices with Z on either Z[v,, u,] or Z[u,, V5],
for otherwise, there would exist an outer piece meeting Z(Ug, Vo) at u; and Z(v,, Ug) at v, and an inner piece
which isboth ug — v, separating and u, — v, separating, contrary to the supposition that the lemmaisfalse.

Therefore, acurve Cjoining v and u, can be drawn in the exterior region so that it meets no edge
of F (see Figure (2.43).

Thus, 1, can be transferred outside of C in a planar manner.



PLANAR GRAPHS 137

Similarly, the remaining u, — v, separating inner pieces can be transferred outside of Z, in order,
so that the resulting graph is plane.

However, the edge X, can then be added without destroying the planarity of F, but thisisacontra-
diction, completing the lemma.

2.12.2. Kuratowski’'s Theorem
A graphis planar if and only if it has no subgraph homeomorphic to Ky or K 3.

Proof. LetH betheinner piece guaranteeed by lemma (2) which is both uy — v, Separating and
u, — Vv, Separating. In addition, let wy, Wy, w; and w;" be vertices at which H meets Z(ug, Vo), Z(Vg, Up),
Z(uy, vy) and Z(vy, U,) respectively.

There are now four cases to consider, depending on the relative position on Z of these four
vertices.

Case 1. One of the vertices w; and w;' is on Z(uy, V) and the other is on Z(vg, up).

We can then take, say, wy =w; andw, =w;', inwhich case G contains asubgraph homeomorphic
to K3 3 asindicated in Figure (2.44)(a) in which the two sets of vertices are indicated by open and
closed dots.

Case 2. Both vertices w; and w," are on either Z(u,, Vg) or Z(Vg, Up).

Without loss of generality we assume the first situation. There are two possibilities : either
Vi #F Wy Or vV =Wy

If v; # Wy, then G contains a subgraph homeomorphic to K3 5 as shown in Figure (2.44)(b or c),
dependending on whether wy' lies on Z(uy, v;) or Z(vy, U,) respectively.

If vi = w,' (see Figure 2.44), then H contains a vertex r from which there exist digoint paths to
w;, wy" and vy, al of whose vertices (except wy, w;' and v;) belong to H.

In this case also, G contains a subgraph homeomorphic to K ».

Case 3. w; = vyand wy' # Up.

Without lossof generality, letw,' beon Z(u,, vp). Once again G containsasubgraph homeomorphic
to K3 .

If wy' ison (v, vyp), then G has a subgraph K3 5 as shown in Figure 2.44(€).

If, on the other hand, wy'" ison Z(vy, Up), thereisaK; ; asindicated in Figure 2.44(f).

This Figure is easily modified to show G contains K 3 if wy' = v;.

Case 4. w; =vyand w;' = U,

Here we assume w,, = u; and wy' = v, for otherwise we are in a situation covered by one of the
first 3 cases.

We distinguish between two subcases.

Let P, be a shortest path in H from u, to v, and let P, be such a path from uj, to v;,

The paths P, and P, must intersect.

If Py and P, have more than one vertex in common, then G contains a subgraph homeomorphic to
K3, 3 asshown in Figure 2.44(g).

Otherwise, G contains a subgraph homeomorphic to K as in Figure 2.44(h).
Since these are al possible cases, the theorem has been proved.
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Theorem 2.17. Agraphisplanar if and only if it does not have a subgraph contractible to Kg

or K3 5.

2.13 DETECTION OF PLANARITY OF A GRAPH :

If agiven graph G is planar or non planar is an important problem. We must have some simple
and efficient criterion. We take the following simplifying steps :

Elementary Reduction :

Step 1:

Step 2:
Step 3:

Step 4.

Since a disconnected graph is planar if and only if each of its components is planar, we
need consider only one component at atime. Also, a separable graph is planar if and only
if each of itsblocksis planar. Therefore, for the given arbitrary graph G, determine the set.

G={G, G, ...... G}
where each G, is anon separable block of G.
Then we have to test each G, for planarity.
Since addition or removal of self-loops does not affect planarity, remove all self-loops.

Since parallel edges aso do not affect planarity, eliminate edges in parallel by removing
all but one edge between every pair of vertices.

Elimination of a vertex of degree two by merging two edges in series does not affect
planarity. Therefore, eliminate all edgesin series.

Repeated application of step 3 and 4 will usually reduce a graph drastically.
For example, Figure (2.46) illustrates the series-parallel reduction of the graph of Figure (2.45).

L et the non separable connected graph G; be reduced to a new graph H; after the repeated appli-
cation of step 3 and 4. What will graph H; look like ?

Graph H; is

1. A single edge, or

2. A complete graph of four vertices, or

3. A non separable, simple graphwithn>5ande> 7.

Fig. 2.45.
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(eseq)
€;
e, e,

€3 (e4e,)

(a) Series Reduced b) Parallel Reduced
(e.e7)

e /

(c) Series Reduced d) Parallel Reduced

Fig. 2.46. Series-parallel reduction of the graph in Figure 2.45

Problem 2.35. Check the planarity of the following graph by the method of elementary deduc-
tion.

Fig. 2.47.
Solution. Step 1 : Does not apply, because the graph is connected.
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Step 2 : Separating blocks of G

Fig. 2.48.
Step 3 : Removing self-loops and parallel edges
@ @

Fig. 2.49.
Step 4 : Merging the series edges.
The final graph contains three components. Largest component contains 7 vertices. Remaining

two istriangle and an edge hence they are planar. The largest component contains no subgraph isomor-
phic to K5 or K3 3 and henceiit is planar.

Thus the given graph is planar.
Problem 2.36. Check the planarity of the following graph by the method of elementary reduction.

Fig. 2.50.
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Solution. The elementary reduction of the given graph G consists of the following stages :
Step 1: Splitting G into blocks. This splitting is shown below :

o«

Fig. 2.51.

Step 2 : Removing self-loops and eliminating multiple edges. The resulting graph is as shown
below :

Fig. 2.52.
Step 3: Merging the edgesincident on vertices of degree 2. The resulting graph is as shown below :

S

Fig. 2.53.
Step 4 : Eliminating parallel edges. The resulting graph is shown below :
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_fa

Fig. 2.54.

The reduction is now complete. The final reduced graph (shown in Figure above) has three
blocks, of which the first and the third are obviously planar. The second one is evidently the complete
graph Kg, which is non planar.

Thus, the given graph contains K as a subgraph and is therefore non planar.
Problem 2.37. Carryout the elementary reduction process for the following graph :

€4
s
€7
€,
Fig. 2.55.

Solution. The given graph G is a single non separable block. Therefore, the set A of step 1
contains only G. As per step 2, we have to remove the self loops. In the graph, there is one self-loop
consisting of the edge e,. Let us removeit.

As per step 3, we have to remove one of the two parallel edges from each vertex pair having such
edges. In the given graph, e;, e are parallel edges. Let us remove eg from the graph.

The graph |eft-out after the first three stepsis as shown below :

e,
)
Fig. 2.56.

As per step 4, we have to eliminate the vertices of degree 2 by merging the edges incident on
these vertices.
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Thus, we merge (i) the edges e, and e, into an edge e, (say) and (ii) the edges e; and e, into an
edge ey; (say)-
The resulting graph will be as shown below :

e,
€44
€19

Fig. 2.57.

As per step 3, let us remove one of the parallel edges e; and e, and one of the parallel edges e;
and e;;. The graph got by removing e, and e;; will be as shown below :

)
e : €3

Fig. 2.58.
As per step 4, we merge the edges e; and e, into an edge e;, (say) to get the following graph.

€2
€s

Fig. 2.59.
As per step 3, we remove one of the two parallel edges, say e;,. Thus, we get the following

graph :
\

Thisgraphisthefinal graph obtained by the process of elementary reduction applied to the graph
in Figure (1). Thisfina graph which isasingle edgeis evidently a planar graph.
Therefore, the graph in Figure (1) is aso planar.
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2.14 DUAL OF A PLANAR GRAPH
Consider the plane representation of a graph in Figure (2.60)(a) with six regions of faces F,, F,
Fs F4 Fsand Fg.
Let us place six points Py, P, ...... Ps, onein each of the regions, as shown in Figure (2.60)(b).
Next let us join these six points according to the following procedure :

(i) If two regionsF and F; are adjacent (i.e., have acommon edge), draw alinejoining points
P, and P, that intersects the common edge between F; and F; exactly once.

(i) If thereis more than one edge common between F, and F;, draw one line between points P,
and P, for each of the common edges.

(iii) For an edgee lying entirely in one region, say F,, draw a self-loop at point P, intersecting
e exactly once.

By this procedure we obtained a new graph G* (in broken linesin Figure (2.60)(c) consisting of
six vertices, Py, P, ...... Ps and of edges joining these vertices. Such a graph G* is caled dual (a
geometrical dual) of G

Clearly, there is a one-to-one correspondence between the edges of graph G and its dual G*—
one edge of G* intersecting one edge of G. Some simple observations that can be made about the
relationship between a planar graph G and its dual G* are :

(i) Anedgeforming asdlf-loop in G yields a pendant edge in G*.

(if) A pendant edgein G yields asdlf-loop in G*.

(iii) Edgesthat arein seriesin G produce parallel edgesin G*.

(iv) Parallel edgesin G produce edgesin seriesin G*.

(v) Remarks (i)-(iv) are the result of the general observation that the number of edges
constituting the boundary of aregion F; in G is equal to the degree of the corresponding
vertex P, in G*.

(vi) Graph G* isaso embedded in the plane and is therefore planar.

(vii) Considering the process of drawing adual G* from G, it is evident that G isadual of G*
(see Fig. (2.60) (c)). Therefore, instead of calling G* adua of G, we usualy say that G
and G* are dual graphs.

(viii) If n, e f, r and u denote as usual the numbers of vertices, edges, regions, rank, and nullity
of aconnected planar graph G, and if n*, e, f*, r* and pu* are the corresponding numbers
in dua graph G*, then

n=fe=¢gf*=n
Using the above relationship, one can immediately get  r* =, p* =r.



PLANAR GRAPHS 145

(a) )

Fig. 2.60. Construction of a dual graph.

2.14.1. Uniqueness of the dual

Given a planar graph G, we can construct more than one geometric dual of G. All the duals so
constructed have one important property. This property is stated in the following result :

All geometric duals of a planar graph G are 2-isomorphic, and every graph 2-isomorphic to a
geometric dual of G is also ageometric dual of G.

2.14.2. Double dual

Given aplanar graph G, suppose we construct its geometric dual G* and the geometric dual G**
of G*.

Then G** is called a double geometric dual of G.
If Gisaplanar graph, then G** and G are 2-isomorphic.

2.14.3. Sdf-dual graphs

A planar graph G is said to be self-dual if G isisomorphic to its geometric dual G*, i.e., if
G=G*.

Consider the complete graph K, of four vertices show in Figure (2.61)(a). Itsgeometric dual K 4*
can be constructed. Thisis shown in Figure (2.61)(b).
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,,,,,

(@) )

Fig. 2.61.

We observe that K ,* has four vertices and six edges. Also, every two vertices of K,* arejoined
by an edge. This means that K ,* also represents the complete graph of four vertices. As such, K, and
K,* areisomorphic. In other words, K, is a self-dua graph.

2.14.4. Dual of a subgraph

Let G be aplanar graph and G* beits geometric dual. Let ebe an edgein G and e* beitsdua in
G*. Consider the subgraph G — e got by deleting e from G. Then, the geometric dua of G — e can be
constructed as explained in the two possible cases.

Case (1) :
Suppose e is on a boundary common to two regionsin G.
Then the removal of e from G will merge these two regions into one.

Then the two corresponding vertices in G* get merged into one, and the edge €* gets deleted
from G*.

Thus, in this case, the dual of G — e can be obtained from G* by deleting the edge €* and then
fusing the two end vertices of € in G* —e*.

Case (2):

Suppose e is not on a boundary common to two regionsin G.

Then eis apendant edge and e€* is a self-loop.

The dua of G —eisnow the same as G* — e*.

Thus, the geometric dua of G — e can be constructed for all choices of the edge e of G.
Since every subgraph H of agraph is of the form G — swhere sis a set edges of G.

2.14.5. Dual of a homeomorphic graph
Let G be a planar graph and G* be its geometric dual .
Let ebean edgein G and € beitsdua in G*.

Suppose we create an additional vertex in G by introducing a vertex of degree 2 in the edge e.
Thiswill smply add an edge parallel to e in G*. If we merge two edgesin seriesin G then one of the
corresponding parallel edgesin G* will be eliminated. The dua of any graph homeomorphic to G can be
obtained from G*.
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2.14.6. Abstract dual

Given two graphs G, and G,, we say that G, and G, are abstract duals of each other if thereisa
one-to-one correspondence between the edges in G, and the edges in G,, with the property that a set of
edgesin G, formsacircuit in G, if and only if the corresponding set of edgesin G, formsacut-setin G,,.

Consider the graphs G, and G, shown in Figure (2.62).

Fig. 2.62.
We observe that there is a one-to-one correspondence between the edges in G, and the edgesin
G, with the edge g in G, corresponding to theedge g’ inG,, i =1, 2, ...... 8.
Further, note that a set of edgesin G, which formsacircuit in G, corresponds to a set of edgesin
G, which forms a cut setsin G..

For example, {e;, €;, g} isacircuitin G, and {&;', e/, &) isacut-set in G,.
Accordingly, G, and G, are abstract duals of each other.

2.14.7. Combinatorial dual

Given two planar graphs G; and G,, we say that they are combinatorial duals of each other if
there is a one-to-one correspondence between the edges of G, and G, such that if H, isany subgraph of
G, and H, is the corresponding subgraph of G,, then

Rank of (G, —H,) = Rank of G, — Nullity of H;

Fig. 2.63.



148 GRAPH THEORY WITH APPLICATIONS

Consider the graph G, and G, shown in Figure (2.62) above, and their subgraphs H; and H,
shown in Figure (2.64)(a, b).

Hz G2 - H2
(b) (©

Fig. 2.64.

Notethat thereis one-to-one correspondence between the edges of G, and G, and that the subgraphs
H, and H, correspond to each other.

The graph of G, — H, is shown in Figure (2.64)(c).
This graph is disconnected and has two components.
Rank of G, =5-1=4, Rankof H;=4-1=3
Nullity of H; =4-3=1
Rank of (G,—-H,) =5-2=3.
0O  Rankof (G, —H,) =3 =Rank of G, — Nullity of H;.
Hence, G; and G, are combinatorial duals of each other.
Theorem 2.18. If G isa plane connected graph, then G** isisomorphic to G.

Proof. Theresult follows immediately, since the construction that givesriseto G* from G can
be reversed to give G from G*,

For example, in Figure (2.65), the graph G isthe dual of the graph G*

Fig. 2.65.

We need to check only that a face of G* cannot contain more than one vertex of G (it certainly
contains at least one) and this follows immediately from the relations n** = f* = n, where n** is the
number of vertices of G**.
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Theorem 2.19. Let G be a planar graph and let G* be a geometric dual of G. Then a set of
edgesin G formsa cyclein G if and only if the corresponding set of edges of G* forms a cutset in G*.

Proof. We can assume that G is a connected plane graph. If Cisacyclein G, then C encloses
one or more finite faces C, and thus contains in its interior a non-empty set S of vertices of G*.

It follows immediately that choose edges of G* that cross the edges of C form a cutset of G*
whose removal disconnects G* into two subgraphs, one with vertex set S and the other containing those
vertices that do not liein S (see Figure 2.66).

O
\

1

1

1

1

!

O -

Fig. 2.66.
Corollary : A set of edges of G formsa cutset in G if and only if the corresponding set of edges
of G* formsacyclein G*.
Theorem 2.20. If G* isan abstract dual of G, then G is an abstract dual of G*.
Proof. Let Cbeacutset of G and let C* denote the corresponding set of edges of G*.
We show that C* isacycle of C*.

C has an even number of edgesin common with any cycle of G, and so C* has an even number of
edges in common with any cut set of G*.

C* iseither acyclein G* or an edge-digoint union of at least two cycles.

But the second possibility cannot occur, since we can show similarly that cycles in C* corre-
spond to edge-disjoint unions of cut setsin G, and so C would be an edge-digjoint union of at least two
cutsets, rather than a single cutset.

Theorem 2.21. A graphisplanar if and only if it has an abstract dual.

Proof. It issufficient to prove that if G isa graph with an abstract dual G*, then G is planar.
The proof isin four steps.
(i) Wenotefirst that if an edge e isremoved from G, then the abstract dual of the remaining
graph may be obtained from G* by contracting the corresponding edge €*.
On the repeating this procedure, we deduce that, if G has an abstract dual, then so does any
subgraph of G.
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(if) We next observethat if G has an abstract dual, and G’ is homeomorphic to G, then G' also
has an abstract dual.

Thisfollows from the fact that the insertion or removal in G of avertex of degree 2 results
in the addition or deletion of a multiple edge in G*.

(iii) Thethird step is to show that neither Kg nor K3 5 has an abstract dual.

If G* isadual of K3 5 then since K3 5 contains only cycles of length 4 or 6 and no cutsets
with two edges, G* contains no multiple edges and each vertex of G* has degree at least 4.

Hence G* be have at least five vertices, and thus atleast (5;24) = 10 edges, which isa
contradiction.
The argument for K is similar and is omitted.
(iv) Suppose, nhow, that G is a non-planar graph with an abstract dual G*.
Then, by Kuratowski’s theorem, G has a subgraph H homeomorphic to K5 to K3 5.
It follows from (i) and (ii) that H, and hence also K or K3 5, must have an abstract dual,
contradicting (iii).
Theorem 2.22. Let G be a connected planar graph with n vertices, medgesand r regions, and
let its geometric dual G* have n* vertices, m* edgesand r* regions. Thenn* =r,m* = m, r* = n,
Further, if p and p* arethe ranksand | and p* are the nullities of G and G* respectively, then
p*=pandp* = p.
Proof. Every region of G yields exactly one vertex of G* and G* has no other vertex.
Hence the number of regionsin G is precisely equal to the number of vertices of G*,
i.e, r=n*. ..(1)
Corresponding to every edge e of G, there is exactly one edge e* of G* that crosses e exactly
once, and G* has no other edge.
Thus G and G* have the same number of edges,
i.e, m= m* ..(2)
Now, the Euler’s formula applied to G* and G yields
r=m"—-n*+2
=m-r+2
=n
Since G and G* are connected, we have
p=n-1 p=m-n+1
pr=n* =1 pr=m—-n*+1
These together with the results (1) and (2) and the Euler’s formulayield
pPF=n*=-1=r-1=(mM-n+2)-1
=m-n+1=p
pP*=m*—n*+1l=m-r+1
=m-(M-n+2)+1=n-1=p.



PLANAR GRAPHS 151

Theorem 2.23. A graph hasa dual if and only if it is planar.
Proof. Suppose that a graph G is planar.

Then G has ageometric dua in G*.

Since G* isageometric dud, it isadual.

Thus G has adual.

Conversely, suppose G has adual.

Assume that G is non planar. Then by Kuratowski’s theorem, G contains K5 and K3 5 or agraph
homeomorphic to either of these as a subgraph.

But K5 and K3 3 have no duals and therefore a graph homeomorphic to either of these also hasno
dual.

Thus, G contains a subgraph which has no dual.
Hence G has no dual. Thisis a contradiction.
Hence G is planar if it hasadual.

Problem 2.38. If G isa 3-connected planar graph, prove that its geometric dual is a simple
graph.

Solution. If G is 3-connected, then G has no vertices of degree 1 or 2.

Therefore, G* has no self-loops or multiple edges. That is, G* is simple.

Problem 2.39. Show that a connected planar self-dual graph G with n vertices should have
2n — 2 edges.

Solution. Since the graph G is self-dual, we have n = n*. But n* =r,

Therefore, in G, n=r,

The Euler’sformulanow givesn=m—n + 2
or m=2n-2.

Problem 2.40. Show that a set of edges in a connected planar graph G forms a spanning tree
of Gif and only if the set of duals of the remaining edges forms a spanning tree of a geometric dual of G.

Solution. Consider a connected planar graph G with n vertices and m edges.

Let T be aspanning tree of G. Thisisaset of n—1 edges. Theremaining edgesare m—(n—1) in
number.

The duals of these edges are also m— (n — 1) in number.
The set T* of these duals belong to G*.

Since G* hasm—n + 2 vertices, the set T* which consists of m—n + 1 verticesis a spanning tree
of G*.

This proves the first part of the required result.
By reversing the roles of G and G* in the above argument, we get the second proof.

Problem 2.41. Show that thereis no planar graph with five regions such that thereis an edge
between every pair of regions.

Solution. Suppose there is a planar graph G having the desired property.

Then, the geometric dual G* of G will have five vertices such that thereis an edge between every
pair of vertices.
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This means that G* isthe graph K.

Therefore, G* is non planar.

Thisis a contradiction because G* has to be planar. (like G).
Hence, a planar graph of the desired type does not exist.

Problem 2.42. Disprove that the geometric dual of the geometric dual of a planar graph G is
the same as the abstract dual of the abstract dual of G.

Solution. Consider the disconnected graph G with two components, each of which isatriangle
as shown in Figure (2.67)(a).

(@) (b)

Fig. 2.67.
The geometric dual G* is shown in Figure (2.67)(b), we observe that G* has five regions.
Therefore, the geometric dual G** of G* hasfive vertices.
On the other hand, if G' is the abstract dual of G, then G isthe abstract dual of G'.
Hence, G isthe abstract dual of the abstract dual of G. i.e, G=G".
Since G has six vertices, it follows that G" cannot be the same as G** (which has five vertices).

The above counter example disproves that the geometric dual of the geometric dual is the same
as the abstract dual of the abstract dual.

Problem 2.43. Let G be a connected planar graph. Prove that G is bipartite if and only if its
dual ison Euler graph.

Solution. If G is bipartite, then each circuit of G has even length.

Therefore, each cutset of itsdual G' has an even number of edges.

In particular, each vertex of G' has even degree.

Therefore G' is an Euler graph.

Theorem 2.24. Let G be a plane connected graph. Then G isisomorphic to its double dual G**.

Proof. Let f beany face of the dual G* contains atleast one vertex of G, namely its corre-
sponding vertex v.

In fact thisis the only vertex of G that f contains since by theorem.

i.e, aconnected graph G with n-vertices, e-edges, f-faces and n*, e+, f* denotes the vertices, edges
and faces of G* then n* = f, e = g, f* = n, the number of faces of G* is the same as the number of
vertices of G.

Hence in the construction of double dual G**, we may choose the vertex v to be the vertex in
G** corresponding to face f of G*.

This choice gives our required result.
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Theorem 2.25. Let G be a connected plane graph with n-vertices e-edges and f-faces. Let
n*, et and f* denote the number of vertices, edges and faces respectively of G*, thenn* = f, e* = e
and f* = n.

Proof. Thefirst two relations are direct consequence of the definition of G, the third relation
follows immediately on substituting these two relationsinto Euler’ s theorem applied to both G and G*.

If Gisaplane graph then G* isaso aplane graph. We may also construct the dual of G*, called
the double dua of G and denoted by G**.

% =G**=G

Fig. 2.68.

2.15 GRAPH COLORING
Coloring problem
Suppose that you are given agraph G with n vertices and are asked to paint its vertices such that

no two adjacent vertices have the same color. What is the minimum number of colors that you would
require. This constitutes a coloring problem.

2.15.1. Partitioning problem

Having painted the vertices, you can group them into different sets—one set consisting of all red
vertices, another of blue, and so forth. Thisis a partitioning problem.

For example, finding a spanning tree in a connected graph is equivalent to partitioning the edges
into two sets—one set consisting of the edges included in the spanning tree, and the other consisting of
the remaining edges. I dentification of a Hamiltonian circuit (if it exists) is another partitioning of set of
edges in agiven graph.
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2.15.2. Properly coloring of a graph

Painting all the vertices of a graph with colours such that no two adjacent vertices have the same
colour is called the proper colouring (or ssimply colouring) of a graph.

A graph in which every vertex has been assigned a colour according to a proper colouring is
called a properly coloured graph.

Usually a given graph can be properly coloured in many different ways. Figure (2.69)(a) shows
three different proper colouring of a graph.

v, @ Red v, @ Red v, @ Red

v, @ Blue
v, @ Blue v, @ Blue

V3 Vs V3 Vs V3 Vs
Green Yellow Green Yellow Yellow Yellow
V. i

4+ Pink v, Red

(a) b) v, Red

(c)

Fig. 2.69. Proper colours of a graph.

The K-colourings of the graph G is a colouring of graph G using K-colours. If the graph G has
colouring, then the graph G is said to be K-colourable.
2.15.3. Chromatic number
A graph G is said to be K-colourable if we can properly colour it with K (number of) colours.
A graph G which is n-colourable but not (K — 1)-colourable is called a K-chromatic graph.

In other words, a K-chromatic graph is a graph that can be properly coloured with K-colours but
not with less than K colours.

If a graph G is K-chromatic, then K is called chromatic number of the graph G. Thus the
chromatic number of a graph isthe smallest number of colours with which the graph can be properly
coloured.The chromatic number of agraph G isusually denoted by x(G).

We list afew rules that may be helpful :
1. X(G) |V |, where|V |isthe number of vertices of G.

2. A triangle always requires three colours, that isx(K3) = 3 ; more generaly, x(K,) = n, where
K, isthe complete graph on n vertices.

3. If some subgraph of G requires K colors then x(G) = K.
4. If degree (v) = d, then atmost d colours are required to colour the vertices adjacent to v.
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X(G) = maximum {x(C)/C is a connected component of G}

Every K-chromatic graph has at least K vertices v such that degree (v) = k— 1.

For any graph G, x(G) < 1 + A(G), where A(G) isthe largest degree of any vertex of G.
When building a K-colouring of agraph G, we may delete all vertices of degree less than K
(along with their incident edges).

In general, when attempting to build a K-colouring of a graph, it is desirable to start by K-

colouring acomplete subgraph of K vertices and then successively finding vertics adjacent to
K —1 different colours, thereby forcing the color choice of such vertices.

9. These are equivalent :
(i) A graph G is2-colourable (il) Gisbipartite
(iii) Every cycle of G has even length.

© N o U

10. If &(G) isthe minimum degree of any vertex of G, then x(G) = %: —&(G) where |V |isthe

number of vertices of G.

2.15.4. K-Critical graph

If the chromatic number denoted by (G) = K, and (G — V) is less than equal to K — 1 for each
vertex v of G, then

2.16 CHROMATIC POLYNOMIAL

A given graph G of n vertices can be properly coloured in many different ways using a suffi-
ciently large number of colours. This property of a graph is expressed elegantly by means of a polyno-
mial. This polynomial is called the chromatic polynomial of G.

Thevalue of the chromatic polynomial P, (A) of agraph with n vertices givesthe number of ways
of properly colouring the graph, using A of fewer colours. Let C; be the different ways of properly

CA\O)
colouring G using exactly i different colours. Since i colours can be chosen out of A coloursin H H

CAC
different ways, there are ¢; H H different ways of properly colouring G using exactly i colours out of A

colours.

Sincei can be any positive integer from 1 to n (it is not possible to use more than n colourson n
vertices), the chromatic polynomia is asum of these terms, that is,

" A
P,(\) = iZlCi 3g

+C2)\()\2—Il)+C3)\()\—2)I()\— 2 ,

A
:(:1E

AA=DA = 2) . A — N+ 1)
n!

.+ C,
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Each C; hasto be evaluated individually for the given graph.

For example, any graph with even one edge requires at least two colours for proper colouring,
and therefore C, = 0.

A graph with n vertices and using n different colours can be properly coloured in n'! ways.
that is, C,=nl.
Problem 2.44. Find the chromatic polynomial of the graph given in Figure (2.70).

Va

Vs

vy

Fig. 2.70. A 3-chromatic graph.

AA-1) AA=-DA - 2)
21 " Cs 3!

Solution. Ps(\) = C,A + C,

AA-DA-2)(A-3 AA-DA-2)A-3)\-4
C4( )(4!)( )+c5( )( 53.( )A - 4)

Since the graph in Figure 2.70 has a triangle, it will require at least three different colours for
proper colourings.

Therefore, C,=C,=0 and C;=5!
Moreover, to evaluate C;, suppose that we have three colours x, y and z
These three colours can be assigned properly to vertices vy, v, amd v;in 3! = 6 different ways.

Having done that, we have no more choices left, because vertex vs must have the same colour as
V5 and v, must have the same colour as V.

Therefore, C;=6.

Similarly, with four colours, v;, v, and v, can be properly coloured in 4 « 6 = 24 different ways.
The fourth colour can be assigned to v, or Vs, thus providing two choices.

The fifth vertex provides no additional choice.

Therefore, C, =24+ 2 =48.

Substituting these coefficientsin Ps(A), we get, for the graph in Figure (2.70).
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PsA) =AA-DA-2)+2AA -D)A -2)A-3) + A\A -DA —-2)A -3)(A —4)
=MA =D\ -2)(N\2-5\+7)
The presence of factors A —1 and A — 2 indicates that G is at least 3-chromatic.
Problem 2.45.  Find the chromatic polynomial and chromatic number for the graph K ».

Solution. Chromatic polynomial for K5 5 isgiven by A(A — 1)°.

Thus chromatic number of this graphis 2.

Since A\ —1)°> 0 first when A = 2.

Here, only two distinct colours are required to colour K; 5.

The vertices a, b and ¢ may have one colours, as they are not adjacent.

Similarly, vertices d, e and f can be coloured in proper way using one colour.

But avertex from {4, b, ¢} and a vertex from {d, e, f} both cannot have the same colour.
In fact every chromatic number of any bipartite graph is always 2.

Problem 2.46. Find the chromatic polynomial and hence the chromatic number for the graph
shown below.

a

Fig. 2.71.

Solution. Since G is made up of components of G,, G, and G; where G, = K3, G, is alinear
graph and G; is an isolated vertex.

Now G, can be coloured in A(A — 1)(A — 2) ways, G, can be coloured in A(A — 1) ways and G,
isA ways.

Therefore, by the rule of product G can be coloured be
AA=DA =2AA = DA = N3A —1)°(\ - 2).

2.16.1. Decomposition theorem (2.26)
If G = (V, E) isaconnected graph and e={a, b} O E, then P(G,, A) = P(G, A) + P(G,, A).

Where G, denotes the subgraph of G obtained by deleting e from G without removing vertices a
and b.
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i.e, G,=G-eandG, isasecond subgraph of G obtained from G, by colouring the verticesa and b.

Proof. Lete={a, b}. The number of ways to properly color the verticesin G, = G — e with
(atmost) A coloursin P(G,, A).

Those colourings where end points a and b of e have different colours are proper colourings of
G.

The colourings of G, that are not proper colourigns of G occur when a and b have the same color.
But each of these colourings corresponds with a proper colouring for G,'.

This partition of the P(G,, A) proper colourings of G, into two disoint subsets results in the
equation

P(Ge, A) =P(G, A) + P(G¢, A)

(a=b)

o

d b d

o

(9]

a G c a G, G, c

Fig. 2.72.

Problem 2.47. Using decomposition theorem find the chromatic polynomial and hence the
chromatic number for the graph given below in Figure (2.73).

a b a b a b (= D)
@
e = _
@
¢ d c d c

(a) Q) ()

Fig. 2.73.
Solution. Deleting the edge e from G, we get G, as shown in Figure (b). Then the chromatic
polynomial of G, is
PG ) =AA-1D)(A-2)
By colouring the endpoints of e, i.e., aand b, we get G.' as shown in Figure (c). Then the
chromatic polynomial of G, is
P(Ge, A) = A\ —1)%
Hence, by decomposition theorem, the chromatic polynomial of G is



PLANAR GRAPHS 159

A+ 1L

PG, N)=AA-1)°-AA-D(A-2)
=AA-1) [(A -’ A -2)]
SAA -1 —-(A3-3\+3)\*
= 4\% + 61 — 3.
Theorem 2.27. For each graph G, the constant termin P(G, A) isO.
Proof. For each graph G, A(G) > 0 becauseV # @.
If P(G, M) has constant term a, then P(G, 0) = a# 0.
Thisimplies that there are aways to colour G properly with 0 colours, a contradiction.
Theorem 2.28. Let G = (V, E) with | E| > 0. Then the sum of the coefficientsin P(G, A) isO.
Proof. Since|E|=1, wehave A(G) = 2, so we cannot properly colour G with only one colour.
Consequently, P(G, 1) = 0 = the sum of the coefficientsin P(G, A).
Prablem 2.48. Explain why each of the following polynomials cannot be a chromatic polynomial
(i) 2+5A2-31+5=0
(i) A*+323-3)A%2=0.
Solution. (i) The polynomia cannot be achromatic polynomia since the constant termis 5, not O.
(i) The polynomia cannot be achromatic polynomial since the sum of the coefficient is 1, not O.
Theorem 2.29. (Mizing) If Gisa simple graph with maximum vertex degree Athen A <x'(G) <

Theorem 2.30. Let A(G) be the maximum of the degrees of the vertices of a graph G. Then

X(G) =1+ AG).

Proof. The proof is by induction on V, the number of vertices of the graph.

WhenV =1, A(G) = 0and X(G) = 1, so the result clearly holds.

Now let K beaninteger K = 1, and assume that the result holdsfor all graphswith V =K vertices.
Suppose G isagraph with K + 1 vertices.

G
Let vbeany vertex of G andlet G, = ﬁ be the subgraph with v (and all edges incident with it)

deleted.

for v.

Note that A(Gp) < A(G). Now G, can be be coloured with x(G) colours.

Since G, has K vertices, we can use the induction hypothesis to conclude that X(Gg) < 1 + A(Gy).
Thus, X(Gp) < 1+ A(G), so go can be coloured with atmost 1 + A(G) colours.

Since there are atmost A(G) vertices adjacent to v, one of the variable 1 + A(G) coloursremains

Thus, G can be coloured with atmost 1 + A(G) colours.
Theorem 2.31. (Kempe, Heawood). If G isa planar graph, then x(G) <5.
Proof. We must prove that any planar graph with V vertices has a 5-colouring.
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Again we use induction on V and note that if V = 1, the result is clear.

Fig. 2.74.

Let K = 1 be an integer and suppose that any planar graph with K vertices has a 5-colouring.

Let G be aplanar graph with K + 1 vertices and assume that G has been drawn as a plane graph
with straight edges. We describe how to obtain a 5-colouring of G.

First, G contains a vertex v of degree atmost 5.

G
Let G, = — bethe subgraph obtained by deleting v (and all edges with which it isincident).

{v}

By the induction hypothesis, G, has a 5-colouring.
For convenience, label the five colours 1, 2, 3, 4 and 5.

If one of these colours was not used to colour the vertices adjacent to v, then it can be used for v
and G has been 5-coloured.

Thus, we assume that v has degree 5 and that each of the colour 1 through 5 appears on the
vertices adjacent to v.

In clockwise order, label these vertices vy, Vs, ... V5 and assume that v; is coloured with colour i
(see Figure 2.74).

\We show how to recolour certain vertices of G, so that a colour becomes available for v.
There are two possibilities :

Casel:

Case?2:

Thereis no path in G, from v; to v; through vertices all of which are coloured 1 or 3.

Inthissituation, let H be the subgraph of G consisting of the vertices and edges of al paths
through vertices coloured 1 or 3 which start at v;.

By assumption, v5 isnot in H. Also, any vertex whichisnot in H but which is adjacent to
avertex of H is coloured neither 1 nor 3.

Therefore, interchanging colours 1 and 3 throughout H produces another 5-colouring of G,.

In this new 5-colouring both v, and v; acquire colour 3, so we are now freeto give color 1
to v, thus obtaining a 5-colouring of G.

Thereisapath Pin G, from v, to v; through vertices all of which are coloured 1 or 3.

In this case, the path B, followed by v and v, gives a circuit in G which does not enclose
both v, and v,. Thus, any path from v, to v, must cross P and, since G is a plane graph,
such a crossing can occur only at a vertex of P.

It follows that there is no path in G, from v, to v, which uses just colours 2 and 4.

Now we are in the situation described in case (1), where we have aready shown that a 5-
colouring for G exists.
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Problem 2.49.  x(K,) = n, (K, ,) = 2, why ?
Solution. It takes n coloursto colour K, because any two vertices of K, are adjacent. x(K,) = n.

On the otherhand, X(K, ) = 2, colouring the vertices of each bipartition set the same colour
produces a 2-colouring of K, ..

Problem 2.50. What isthe chromatic number of the graph in Figure (2.75).

W

Fig. 2.75. A map and an associated planar graph.

Solution. A way to 4-colour the associated graph, was given in the text. From this, we deduce
that x(G) < 4.

To seethat X(G) = 4, we investigate the consequences of using fewer than four colours.
Vertices 1, 2, 3 from atriangle, so three different colours are needed for these.

Suppose we use red, blue and green, respectively, as before.

To avoid afourth colour, vertex 4 has to be coloured red and vertex 5 green.

Thus, vertex 6 has to be blue.

Since vertex 9 is adjacent to vertices 1, 5 and 6 of colours red, green and blue, respectively.
Vertex 9 requires a fourth colour.

Problem 2.51. Show that x(G) = 4 for the graph of G of Figure (2.76).

b 2
a@c 1@3
e 4

Fig. 2.76.
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Solution. Clearly the triangle abc requires three colours, assign the colours 1, 2 and 3to a, b and
C respectively.

Then since d is adjacent to a and ¢, d must be assigned a colour different from the colours for a
and c, colour discolour 2.

But then e must be assigned a colour different from 2 since e is adjacent to d.

Likewise e must be assigned a colour different from 1 or 3 because eis adjacent to a and to c.

Hence a fourth colour must be assigned to e.

Thus, the 4-colouring exhibited incidates X(G) < 4.

But, at the same time, we have argued that x(G) cannot be less than 4.

Hence x(G) = 4.

Theorem 2.32.  The minimum number of hours for the schedule of committee meetings in our
scheduling problemis x(G).

Proof. Suppose x(Gp) = K and suppose that the colours used in colouring Gy are 1, 2, ..... K.
First we assert that all committees can be scheduled in K one-hour time periods.

In order to seethis, consider all those vertices coloured 1, say, and the committees corresponding
to these vertices.

Since no two vertices coloured 1 are adjacent, no two such committees contain the same member.
Hence, all these committees can be scheduled to meet at the same time.

Thus, al committees corresponding to same-coloured vertices can meet at the same time.
Therefore, all committees can be scheduled to meet during K time periods.

Next, we show that all committees cannot be scheduled in less than K hours. We prove this by
contradiction.

Suppose that we can schedule the committees in m one-hour time periods, where m< K.

We can then give G, an m-colouring by colouring with the same colour all vertices which corre-
spond to committees meeting at the same time.

To seethat thisis, infact, alegitimate m-colouring of G, consider two adjacent vertices.
These vertices correspond to two committees containing one or more common members.
Hence, these committees meet at different times, and thus the vertices are coloured differently.
However, an m-colouring of G, gives a contradiction since we have x(G) = K.

Problem 2.52. Suppose x(G) = 1 for some graph G. What do you know about G ?
Solution. If G has an edge, its end vertices must be coloured differently, so x(G) = 2.

Thus X(G) = 1if and only if G has no edges.

Problem 2.53. Any two cycles are homeomorphic. Why ?

Solution. Any cycle can be obtained from a 3-cycle by adding vertices to edges.

Problem 2.54. Find the number N defined in this proof for the graph of Figure (2.77). Verify
that N < 2E. Give an example of an edge which is counted just once.
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Fig. 2.77.

Solution. The boundaries of the regions are gievn :
{d,e h},{a,bfgctand{a b, gcd e h}
N=3+5+7=15<16=2E.
Edge f is counted only once.

Problem 2.55. Show that, Euler’s theorem is not necessarily true if *“connected” is omitted
from its statement.

Solution. /\ /\

Inthegraph shown, V-E+R=6-6+3=3.

Problem 2.56. Consider the plane graph shown on the left of Figure 2.78, below :
(8) How many regions are there ?

(b) List the edges which form the boundary of each region.

(c) Which region is exterior ?

Figure 2.78.
Solution. The graph on the left of Figure 2.78 has three regions whose boundaries are { d, e, h},
{a,b,f,g,c} ad{a b, g,c,d e h},thelast region isexterior.
The graph on theright is atree, it determines only one region, the exterior one, with boundary
{a, b, c, d}.
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2.16.2. Scheduling Final Exams (2.57)

How can the final exams at a university be scheduled so that no student has two exams at the
sametime ?

Solution. This scheduling problem can be solved using a graph model, with vertices represent-
ing courses and with an edge between two vertices if there is a common student in the courses they
represent. Each time slot for afinal exam isrepresented by adifferent colour. A scheduling of the exams
corresponds to a colouring of the associated graph.

For instance, suppose there are seven finals to be scheduled. Suppose the courses are numbered
1 through 7. Suppose that the following pairs of courses have common students: 1 and 2, 1 and 3, 1 and
4, 1and7,2and3,2and4,2and5,2and 7,3and 4, 3and 6, 3and 7, 4 and 5, 4 and 6, 5 and 6, 5 and
7,and 6 and 7.

In Figure 2.79, the graph associated with this set of classesis shown.

A scheduling consists of a colouring of this graph.

Since the chromatic number of this graph is 4, four times dlots are needed.

A colouring of the graph using four colours and the associated schedule are shown in Figure

2.80.
1 1 Red
Brown
7 2 7 2 Blue
6 3 6 3 Green
Red
5 4 5 Green 4 Brown
Fig. 2.79. Fig. 2.80.
The graph representing Using a colouring to schedule
the scheduling of final exams final exams.
Time period Courses
I 1,6
I 2
Il 3,5
Y 4,7

2.16.3. Frequency assignments (2.58)

Television channels 2 through 13 are assigned to stations in New Delhi so that no two stations
within 150 miles can operate on the same channel. How can the assignment of channels be modeled by
graph colouring ?
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Solution. Construct a graph by assigning a vertex to each station.

Two vertices are connected by an edge if they are located within 150 miles of each other.

An assignment of channels corresponds to a colouring of the graph. Where each colour repre-
sents a different channel.
2.16.4. Index registers (2.59)

In efficient compilers the execution of loops is speeded up when frequently used variables are
stored temporarily in index registersin the central processing unit, instead of in regular memory. For a
given loop, how many index registers are needed ?

Solution. This problem can be addressed using a graph colouring model.
To set up the model, let each vertex of a graph represent avariable in the loop.

There is an edge between two vertices if the variables they represent must be stored in index
registers at the same time during the execution of the loop.

Thus, the chromatic number of the graph gives the number of index registers needed, since
different registers must be assigned to variables when the vertices respresenting these variables are
adjacent in the graph.

Problem 2.60. What is the chromatic number of the graph C, ?

Solution. We will first consider some individual cases.

To begin, let n = 6. Pick a vertex and colour it red.

Proceed clockwise in the planar depiction of Cg shown in Figure (2.81).

It is necessary to assign a second colour, say blue, to the next vertex reached.

Continue in the clockwise direction, the third vertex can be coloured red, the fourth vertex blue,
and the fifth vertex red.

Finally, the sixth vertex, which is adjacent to the first, can be coloured blue.
Hence, the chromatic number of Cg is 2. Figure (2.81) displays the colouring constructed here.
Next, let n=5 and consider Cs. Pick a vertex and colour it red.

Proceeding clockwise, it is necessary to assign a second colour, say blue, to the next vertex
reached.

Continuing in the clockwise direction, the third vertex can be coloured red, and the fourth vertex
can be coloured blue.

Thefifth vertex cannot be coloured either red or blue, since it is adjacent to the fourth vertex and
the first vertex.

Consequently, athird colour is required for this vertex.

Note that we would have also needed three colours if we had coloured vertices in the counter
clockwise direction.

Thus, the chromatic number of C; is 3. A colouring of Cs using three colours is displayed in
Figure (2.81).
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Fig. 2.81. Colourings of Cs and Cg.

In general, two colours are needed to colours C,, when n is even. To construct such a colouring,
simply pick avertex and colour it red.

Proceeding around the graph in aclockwise direction (using a planar representation of the graph)
colouring the second vertex blue, the third vertex red, and so on.

The nth vertex can be colored blue, since the two vertices adjacent to it, namely the (n — 1)st and
the first vertices, are both coloured red.

When nisodd and n > 1, the chromatic number of C,,is 3.

To seethis, pick aninitia vertex. To use only two colours, it is necessary to alternate colours as
the graph is traversed in a clockwise direction.

However, the nth vertex reached is adjacent to two vertices of different colours, namely, the first
and (n—1)st.

Hence, athird colour must be used.

Problem 2.61. What is the chromatic number of the complete bipartite graph K, ,, where m
and n are positive integers ?

Solution. The number of colours needed may seem to depend on mand n.

However, only two colours are needed. Colour the set of mvertices with one colour and the set of
n vertices with a second colour.

Since edges connect only a vertex from the set of m vertices and a vertex from the set of n
vertices, no two adjacent vertices have the same colour.

A colouring of K3 , with two coloursis displayed in Figure (2.82).

Red Red Red
a b c

d e b g
Blue Blue Blue Blue

Fig. 2.82. A colouring of K ,.
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Problem 2.62. What is the chromatic number of K, ?

Solution. A colouring of K, can be constructed using n colours by assigning a different color to
each vertex. Isthere acolouring using fewer colours ? The answer isno. No two vertices can be assigned
the same colour, since every two vertices of this graph are adjacent.

Hence, the chromatic number of K, = n.
A colouring of K using five coloursis shown in Figure (2.83).
a Red b Blue

Brown Green

d Yellow
Fig. 2.83. A colouring of K.

Problem 2.63. What is the chromatic numbers of the graphs G and H shown in Figure (2.84).

Fig. 2.84. The smple graphs G and H.

Solution. The chromatic number of G is at least threg, since the vertices a, b and ¢ must be
assigned different colorus.

b Blue e Green
a g
C f
Green Blue
G H

Fig. 2.85. Colourings of the graphs G and H.
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To seeif G can be colourd with three colours, assign red to a, blue to b, and green to c. Then, d
can (and must) be coloured red since it is adjacent to b and c.

Furthermore, e can (and must) be coloured green sinceit is adjacent only to vertices coloured red
and blue, and f can (and must) be coloured blue since it is adjacent only to vertices coloured red and
green.

Findly, g can (and must) be coloured red sinceit is adjacent only to vertices coloured blue and green.

This produces a colouring of G using exactly three colours. Figure (2.85) displays such acolouring.

The graph H is made up of the graph G with an edge connecting a and g.

Any attempt to colour H using three colours must follow the same reasoning as that used to
colour G, except at the last stage, when all vertices other than g have been coloured.

Then, since g is adjacent (in H) to vertices coloured red, blue, and green, a fourth colour, say
brown, needs to be used.

Hence, H has a chromatic number equa to 4.

A colouring of H is shown in Figure (2.85).

Problem 2.64. Suppose that in one particular semester, there are students taking each of the
following combinations of courses.

* Mathematics, English, Biology, Chemistry

* Mathematics, English, Computer Science, Geography

* Biology, Psychology, Geography, Spanish

* Biology, Computer Science, History, French

* English, Psychology, History, Computer Science

* Psychology, Chemistry, Computer Science, French

* Psychology, Geography, History, Spanish.

What is the minimum number of examination periods required for exams in the ten courses
specified so that students taking any of the given combinations of courses have no conflicts ?

Find a possible schedule which uses this minimum number of periods.

Solution. In order to picture the situation, we draw a graph with ten vertices labeled M, E, B, ...
corresponding to Mathematics, English, Biology and so on, and join two vertices with an edge if exams
in the corresponding subjects must not be scheduled together.

The minimum number of examination periodsis evidently the chromatic number of this graph. What
isthis? Since the graph contains K (with verticesM, E, B, G, CS), at lesst five different colours are needed.
(The examsin the subjects which these vertices represent must be scheduled at different times). Five colours
are not enough, however, since P and H are adjacent to each other and to each of E, B, G and CS.

The chromatic number of the graphis, infact 6.
In Figure (2.86), we show a 6-colouring and the corresponding exam schedule.

Period 1 Mathematics, Psychology
Period 2 English, Spanish, French
Period 3 Biology

Period 4 Chemistry, Geography
Perido 5 Computer Science

Period 6 History
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Theorem 2.33. A graph G ishipartite if and only if it does not contain a odd cycle.

Proof. Let G be bipartite. Then the vertex set G can be partitioned into two subsets V, and V,
such that every edgein G joinsavertex in V; with avertex in V..

Suppose G contains acycle. Let v be avertex of this cycle. Then to trace the cycle starting from
v we have to travel on the edges of G.

The edges of G are the only edges between V; and V..

Thus starting from v to come back to v along the cycle of G we have to travel exactly even
number of times between V, and V..

That is, the number of edgesin C iseven, that is, the length of C is even.
Conversely, without loss of generality we assume G is connected.

Let G does not contain a odd cycle. Choose a vertex x of G. Colour the vertex by the Colour
Black. Colour al the vertices that are at odd distances from x with the colour Red. Color al the vertices
that are at even distances from x with colour Black. Since every distanceis either aodd or even (but not
both), every vertex of G is now coloured.

We now show that the graph G isnow properly coloured. Suppose G is not properly coloured, the
G contains two adjacent vertices say u and v, colored with the same colour. Then distance from the
vertex x to both the vertices u and v is odd.

Let P, and P, be shortest paths from x to u and x to v respectively.

Let y bethelast vertex common to P; and P, (i.e., the path from y to u and path from y to v aong
P, and P, are digoint). Then d(x, y) along P, is same aong P, (since both P, and P, are shortest paths).

Otherwise, if thed(x, y) along P; issmaller than that on P,, then the path from x toy along P; with
the path from y to v aong P, is shorter than P,, which is a contradiction to the fact that P, is shortest.

Let d(x, u) = mand d(x, v) = n, then both mand n are odd numbers or both are even numbers
(since u and v are coloured with same colour).

Then d(y, u) and d(y, v) are both either odd or even and hence the sum is even.

Hence, the circuit formed due to these paths together with the edge uv is of odd length, whichis
a contradiction.

Thus we conclude that the colouring is proper.

Now consider the set V, of all vertices of G coloured by Black and the set V,, of all the vertices of
G coloured by the colour Red.

These sets are the partition of G such that no two vertices in the same set are adjacent.
Hence G is bipartite.
Theorem 2.34. A graph of n vertices is a complete graph if and only if its chromatic polyno-
mial is
PA)=AA-1)(A-2)...... (A=n+1).
Proof. With A colours, there are A different ways of colouring any selected vertex of a graph.

A second vertex can be coloured properly in exactly A — 1 ways, the third in A — 2 ways, the
fourthin A —3 ways, ...... ,andthenthin A —n+ 1 waysif and only if every vertex is adjacent to every
other.

That is, if and only if the graph is complete.
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Theorem 2.35. Let a and b be two non adjacent vertices in a graph G. Let G’ be a graph
obtained by adding an edge between a and b. Let G” be a simple graph obtained from G by fusing the
vertices a and b together and replacing sets of parallel edges with single edges. Then

P.(A) of G = P,(A) of G’ + P, _4(A) of G”.

Proof. The number of ways of properly colouring G can be grouped into two cases, one such
that vertices a and b are of the same colour and the other such that a and b are of different colours.

Since the number of ways of properly colouring G such that a and b have different colours
= number of ways of properly colouring G', and

Number of ways of properly colouring G such that a and b have the same colour = number of
ways of properly colouring G".

P,A) of G=PR,) of G' + P,_;(A) of G"

NN
b KA

A= 1A —2)(L —3)(A —4) A= 1) = 2)( - 3) A0 = 1)L = 2)( - 3) A =)A= 2)

Ps(\) of G=AA —1)(A —2) + 2AA —1)(A —=2A =3) + \A —1)(A —2(A —=3)(A —4)
=AA=-DA-2)(A° =5\ +7)

Fig. 2.87. Evaluation of a chromatic polynomial.
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Theorem 2.36. A graphisbicolourableif and only if it has no odd cycles.
Theorem 2.37. For any graph G, x(G) <1+ max G,
Where the maximum is taken over all induced subgraphs G’ of G.
Proof. Theresult isobvious for totally disconnected graphs.
Let G be an arbitrary n-chromatic graph, n= 2.
Let H be any smallest induced subgraph suchthat  x(H) =n
The graph H therefore has the property that
X(H—Vv) = n—1for dl itspoints v.
It followsthat deg v = n— 1 so that d(H) = n— 1 and hence
n—1<9d(H) < max &H') < max d(G')

The first maximum taken over al induced subgraphs H' of H and the second over al induced
subgraphs G' of G.

Thisimplies that
X(G) =n<1+max dG)

Coroallary : For any graph G, the chromatic number is atmost one greater than the maximum
degreex <1+ A.

Theorem 2.38. If A(G) =n= 2, then G isn-colourable unless, or
(i) n=2and G has acomponent which is an odd cycle, or
(ii) n>2and K, , ; isacomponent of G.

P
Theorem 2.39. For any graph G, B_ <xXsP-[,+ 1
0

Proof. If X(G) = n, then V can be partitioned into n colour classes V4, V., ...... V,, each of
which, as noted above, is an independent set of points.

If |V;| =P, then every P. < 3, so that

P=2P <np,

To verify the upper bound, let S be a maximal independent set containing 3, points.

Itisclear that x(G—9S) = x(G) — 1.

Sicne G —ShasP - 3, points, X(G—9S) < P-[3,

Therefore, X(G) < x(G—-9) +1<P—-fB,+ 1.

Theorem 2.40. For every two positive integers m and n, there exists an n-chromatic graph
whose girth exceeds m.

Theorem 2.41. For any graph G, the sum and product of x and )_( satisfy the inequalities :
2o JP SX+ X SP+1,

P+ 1t

PEXX=H72 H
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Proof. LetG ben-chromaticandletV,,V,, ...V, bethecolour classesof G, where |V, |=P,

P
Then of course 2P, = P and max P, = e
Since each V, induces a complete subgraph of G

P sothat XX =P

X zmaxPizﬁ

Since the geometric mean, it follows that x + X > 2.p.
This establishes both lower bounds.

To show that x + X <P+ 1, we use induction on P, noting that equality holds when P = 1.

We thus assume that x(G) + X (G) < Pfor dl graphs G having P— 1 points.
LetHand H be complementary graphs with P points, and let v be a point of H.
ThenG=H-vand G + H — v are complementary graphs with P— 1 points.

Let the degree of vin H be d so that the degree of vin H isP—d—1.
It is obvious that

X(H) < X(G) + Land X (H) < X (G) + 1
If either

X(H) <X(G) + Lor X (H) < X (G) + L.
then x(H)+ X(H)<P+1.

Suppose then that x(H) = x(G) + 1 and X (H) = X (G) + 1.

Thisimplies that the removal of v from H, producing G, decreases the chromatic number so that
d= x(G).

Similaly P-d-12 X (G),

thus X(G) + X (G) < P-1

Therefore, we dways have  x(H) + X H<P+1
Finally, applying the inequality
- . o _ OP+f
A0 x <(X+ X)? weseetha < O :
XX <X+ X) XX ETH
Theorem 2.42. Every tree T with two or more vertices is 2-chromatic.

Proof. Since TreeT is abipartite graph.

The vertex set V of G can be partitioned into two subsets V', and V, such that no two vertices of
the set V, are adjacent and two vertices of the set V,, are adjacent.

Now colour the vertices of the set V; by the colour 1 and the vertices of the set V., by the colour 2.
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This colouring is a proper colouring.

Hence, chromatic number of G < 2, and since T contains atleast one edge chromatic number of
G=2.

Thus, chromatic number of Gis 2.
Theorem 2.43. A graph G is 2-chroantic if and only if G is bipartite.
Proof. Let chromatic index of agraph G be two.

Let G be properly coloured with two colours 1 and 2. Consider the set of vertices coloured with
the colour 1 and the set of all vertices coloured with the colour 2.

These sets are precisely partition of the vertex set such that no two of the vertices of the same set
are adjacent.

Hence G is bipartite.

Conversely, G is not bipartite then G contains a odd cycle.

The chromatic number of a odd cycleis three.

Hence G contains a subgraph whose chromatic number is three.
Therefore, K(G) = 3.

Theorem 2.44. The chromatic number of a graph cannnot exceed one more than the maximum
degree of a vertex of G.

Proof.  Since maximum degree of the graph is m, the graph cannot have asubgraph K, n>m+ 1.
Thus K(G)<m+ 1

Coroallary. The chromatic number of agraph cannot exceed maximum degree m of avertex of G
if and only if G does not have a subgraph isomorphic to K, ;.

Theorem 2.45. If d,, IS the maximum degree of the verticesin a graph G, chromatic number
of G<1+ dppye

Theorem 2.46. (Konig's theorem)
A graph with atleast one edge is 2-chromatic if and only if it has no circuits of odd length.
Proof. Let G be aconnected graph with circuits of only even lengths.

Consider aspanning tree T in G, let us properly color T with two colors. Now add the chords to
T one by one.

Since G had no circuits of odd length, the end vertices of every chord being replaced are differ-
ently coloured in T.

Thus G is coloured with two colours, with no adjacent vertices having the same colour.
That is, G is 2-chromatic.

Conversely, if G has a circuit of odd length, we would need at least three colours just for that
circuit.

Thus the theorem.
Theorem 2.47. A graph G is2-chromatic if and only if it is a non-null bipartite graph.

Proof. Supposeagraph G is 2-chromatic. Then it isnon-null, and some vertices of G have one
colour, say a, and the rest of the vertices have another colour, say f3.

Let V, be the set of vertices having colour o and V, be the set of vertices having colour (3.
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ThenV, 0OV, =V, thevertex set of G, andV, n V, = @.

Also, no two vertices of V; can be adjacent and no two vertices of V., can be adjacent.

Assuch, every edgein G hasone end in V, and the other end in V..

Hence G is a bipartite graph.

Conversdly, suppose G is a non-null bipartite graph. Then the vertex set of G has two partitions

V, and V, such that every edge in G has one end in V, and another end in V..

Consequently, G cannot be properly coloured with one colour, because then verticesin V,; and

V, will have the same colour and every edge has both of its ends of the same colour.

Suppose we assign acolour o to al verticesin V, and a different colour 3 to al verticesin V..
This will make a proper colouring of V.

Hence G is 2-chromatic.

Corollary. Every three with two or more verticesis a bipartite graph.

Proof. Every tree with two or more vertices is 2-chromatic. Therefore, it is bipartite, by the

theorem.

Theorem 2.48. For agraph G, the following statements are equivalent :
(i) Gis2-chromatic
(if) G isnon-null and bipartite
(iii) G has no circuits of odd length.
Coroallary. A graph G isanon-null bipartite graph if and only if it has no circuits of odd length.

Theorem 2.49. If Gisa graph with n vertices and degree d, then x(G) > n_Té .

Proof. Recall that & isthe minimum of the degrees of vertices.

Therefore, every vertex v of G has atleast d number of vertices adjacent to it.

Hence there are at most n — d vertices can have the same colour.

Let K be the least number of colours with which G can be properly coloured.

Then K = x(G).

Let aq, Oy, ...... oy be these colours and let n; be the number of vertices having colour a,, n, be

the number of vertices having colour o, and so on, and finally n, bethe number of vertices having colour ay.

and

or

Then N+ n,+ng+ ... n=n (D
n<nN-9n,<n-9, ... n<n-29% (2)
Adding the K in equalitiesin (2), we obtain
ng+n,+.... + N < K(n-19)
n<K(n-9), using (1)
Since K = X(G), this becomes

n
X©) 2

Thisisthe required result.
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Problem 2.65. Write down chromatic polynomial of a given graph on n vertices.
Solution. Let G be agraph on n vertices.
Let C; denote the different ways of properly coloring of G using exactly i distinct colors.

These i colors can be chosen out of A colorsin E\E distinct ways.
Thus total number of distinct ways a proper coloring to a graph with i colors out of A colorsis

possiblein E\Eq ways.

n
Hence Z Eﬁq. Each C; has to be evaluated individually for the given graph.
i=1

Problem 2.66. Find all maximal independent sets of the following graph.

a

Fig. 2.88.

Solution. The maximal independent sets of G are{a}, {b}, {c} and {d}.
Problem 2.67. Find all maximal independent sets of the following graph.

a

Fig. 2.89.
Solution. Maximal independent sets are {a, ¢, d} and {b}.
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Problem 2.68. Findall possible maximal independent sets of the following graph using Boolean
expression.

X J
o@

d

Fig. 2.90.
Solution. The Boolean expression for this graph
@ =2xy=ab+ad+ cd + de and
¢'=(a +b)@ +d)(c +d)(d +e)
={a@+d)+b@+d)} {c(d+e)+d(d+e)}
={a +ba +bd} {cd +cé +d}
={a(1+b)+bd}{d(c +1) +ce}
={a +bd} {d + €}
=ad +dce +bd +bcdé
=zad +ace +bd (1+ce)
=ad +ace +bd
Thusf, =ad,f,=ace andf;=b'd.
Hence maximal independent setsareV —{a, b} ={b, c, €
V —{a,c, e ={b,d} andV —{b,d} ={a, c, €}.
Problem 2.69. Find the chromatic polynomial of a connected graph on three vertices.

Solution. Since the graph is connected it contains an edge, hence minimum two colours are
required for any proper colouring of G.

ThusC, =0.

Further the number of ways agraph on n vertices with n distinct colours can be properly assigned
inn!ways.

Hence for the graph on 3 verticesC;=3! = 6.

If Gisatriangle, then G cannot be labeled with two colours.

Hence C, = 0, thus

CAO A

Py(A) = C =0+0+ 6

=2 HEC bh
_AMA-D(A-2)
- 3!

If Gisapath, then end vertices can be coloured with only two wayswith two coloursand for each

choice of end vertex only one choice of another colour is possible for the middle vertex. ThusC, = 2 and
similar to above argument C; =3 !.

6=\ -1\ -2)
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Therefore, P;(A) = iﬁ\ﬁq =0+ @§2+ @56
i=1

_ )\()\—1)2+7\()\—1)()\— 2)6
2! 3!
=SAA-D)+AA-D(A -2
=AA-D)A+(A-2)
=AA -1)>
Theorem 2.50. An n-vertex graph is a tree if and only if its chromatic polynomial
P,(A) = AA -1" L
Proof. Let G beatreeon n vertices.
We prove the result by induction on n.
If n=1, then G contains only one vertex which can be coloured in A distinct ways only.
Hence the result holds in this case.
If n =2, then G contains one edge, so that exactly two colours are required for the proper colour-
ing of the graph.
Hence C, = 0 and two colours can be assigned in two different ways for the vertices of the graph.
Therefore, C, = 2.
O\ -0
D—( )DZ =AA-1)
02" 0
Hence the result holds with n = 2,
Now assume the result for lesser values of n, n = 2.
Since the graph G is atree, it contains a pendent vertex. Let v be a pendent vertex of the graph.
Let G' be the graph obtained by deleting the vertex v. Then by inductive hypothesis the chromatic
polynomia of G'isA(\ —1)" 2.
Now for each proper coloring of G’ the given graph can be properly colored by painting the
vertex v with the colour other than vertex adjacent to the vertex v.
Thus we can choose (A — 1) colorsto v for each proper colouring of G'.
Hence total A(A —1)" 2 (A — 1) = A(A — 1)"~* ways we can properly colour the given tree.
Thus the result hold by induction.

Problem 2.70. How many ways a tree on 5 vertices can be properly coloured with at most 4
colors.

Solution. We have a tree with n vertices can be coloured with at most A coloursin A(A —1)" 1
ways.

Therefore atree on n = 5 vertices can be properly coloured with at most A = 4 coloursin A(A —1)" 1
=4+3'=4+81=324ways.

Thus P, (A\) =0 +
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Problem 2.71. Wkite down the chromatic polynomial of the graph K, —e.
Solution.

Fig. 2.91.

The graph K, — eis shown below. It contains exactly two non-adjacent vertices.

Let G' be agraph obtained by adding the edge between these non adjacent vertices.

Then G' is acomplete graph K,.

Hence P,(A) of G' = A(A = 1)(A —2)(A —3)

Let G" be the graph obtained by fusing these vertices and replacing the parallel edges.

Then G" isacomplete graph K.

Hence P;(A) of G" = AN —=1)(A —2)

Now, P,A) of G=P,A) of G +P,_;(A) of G"
=AA-DA-2A-3)+AA-D(A-2)
=AA-DA-2)(L+A-3)
=MA -\ -2)>2

Problem 2.72.  Find the chromatic number of the following graphs

Vg v, A

Fig. 2.92.

Solution. (i) For the graph in Figure 2.92(a), let us assign a colour o to the vertex v;.
Then, for a proper colouring, we have to assign a different colour to its neighbours v,, v, V.

Since v,, V,, Vg are non adjacent vertices, they can have the same color, say 3 (which is different
from a).
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Since v;, Vs are not adjacent to v,, these can have the same colours as v;, namely a.

Thus, the graph can be properly coloured with at least two colours, with the vertices vy, vg, Vg
having one colour o and v,, v, Vg having a different colour 3.

Hence the graph is 2-chromatic
(i.e., thechromatic number of the graph is 2).
(ii) For the graph in Figure 2.92(b), let us again the colour a to the vertex v;.

Then, for a proper colouring, its neighbours v,, v; and v, cannot have the colour a, but vs can
have the colour a.

Further more, v,, v3, v, must have different colours, say {3, v, 0.

Thus, at least four colours are required for a proper colouring of the graph.

Hence, the graph is 4-chromatic (i.e., the chroamtic number of the graph is 4).

Problem 2.73. Prove that a simple planar graph G with less than 30 edges in 4-colorable.
Solution. If G has 4 or less number of vertices, the required result is true.

Assume that the result is true for any graph with n = K vertices.

Consider agraph G' with K + 1 vertices and less than 30 edges.

Then, G’ has at least one vertex v of degree at most 4.

Now, considering the graph G' — v we find that G' is 4-colorable.

Problem 2.74.  Prove that a graph of order n (> 2) consisting of a single circuit is 2-chromatic
if niseven, and 3-chromatic if nis odd.

Solution. The given graph is the cycle graph C,, n = 2 as shown in figure below.

n-1

Vi

Vv,
V3

Fig. 2.93.

Obviously, the graph cannot be properly colored with asingle colour. Assign two colours aterna-
tively to the vertices, starting with v;.

That is, the odd verticesv;, v,, Vs etc, will have acolour o and the even verticesv,, v,, Vg etc., will
have a different colour f3.

Suppose nis even. Then the vertex v, is an even vertex and therefore will have the colour 3, and
the graph gets properly coloured.

Therefore, the graph is 2-chormatic.

Suppose n is odd. Then the vertex v,, is an odd vertex and therefore will have the colour o, and
the graph is not properly coloured. To make it properly coloured. v,, should be assigned athird colour vy.
Thus, in this case, the graph is 3-chromatic.
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Problem 2.75. Prove that every tree with two or more vertices is 2-chromatic.

Solution. Consider atree T rooted at a vertex v as shown in figure below. Assign a colour o to v
and a different colour 3 to all vertices adjacent to v. Then the vertices adjacent to those which have the
color 3 are not adjacent to v (because a tree has no circuits) and are at a distance 2 from v. Assign the
colour a to these vertices. Repeat the process until al vertices are coloured.

Fig. 2.94.

Thus, v and all vertices which are at distances 2, 4, 6, ...... from v have a as their color and all
verticeswhich are at distances 1, 3, 5, ...... from v have 3 as their colour.

Accordingly, along any path of T the vertices are of aternating colours,

Since thereis one and only one path between any two verticesin atree, no two adjacent vertices
will have the same colour.

Thus, T has been properly coloured with 2 colours.

If T has two or more vertices, it has one or more edges. As such, it cannot be coloured with 1
colour. This proves that the chromatic number of T is 2, that is 2-chromatic.

Problem 2.76. Find the chromatic number of a cubic graph with p > 6 vertices.

Solution. Every cubic graph contains of odd degree and in which there exists at least onetriangle.
Hence X(G) = 3, where G is a cubic graph.

The following Figure (2.95) gives the result :

1

Fig. 2.95
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Problem 2.77. Find the chromatic polynomial of a complete graph on n vertices.

Solution. Since minimum n colours required for the proper colouring of complete graph K,,onn
vertices.

Wehave C,=0fordli=12, ... n-1.
Further since the graph contains n vertices, n distinct colours can be assigned in n ! ways.
ThusC,=n!.

”E}\D DN]

Therefore, P,A) = ZBH -HIE

=)\()\—1)()\—2) ....... )\—(n+1)nI
n!
=AA-D(A-2) ... A=-n+1).
Problem 2.78.  Show that the chromatic number of agraph GisA(A-1)(A-2) ...... (A-n+1)
if and only if G is a complete graph on n vertices.
Solution. For agiven A, the first vertex of a graph can be colored in A ways.

A second vertex can be coloured properly with A — 1 ways, the third vertex in only A —2 ways if
and only if this vertex is adjacent to first two vertices. Continuing like this we have, the last vertex can
be coloured with (A —n + 1) waysif and only if the graph is complete.

Problem 2.79. Prove that, for a graph G with n vertices

CORNGR

Solution. Let K be the minimum number of colours with which G can be properly colored.

Then K = x(G). Let ay, ay, ...... oy be these colours and let ny, n,, ...... Nk be the number of
vertices having colours a;, O, ...... O respectively.

Thenng, n,, ...... nk are the orders of the maximal independent sets, because a set of all vertices
having the same colour contain all vertices which are mutually non-adjacent.

Sicne B(G) isthe order of a maximal independent set with largest number of vertices, none of
Ny, Ny, oo Nk can exceed B(G).

i.e, n, <BG), n<pG), ... Nk < B(G)
Adding these inequalities, we get
ng+n,+ ... + ng < KB(G)
Sincen; + N, + ...... + ng = nand K = X(G), this becomes
n<x(G).B(G)

n
o FO=36)
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Problem 2.80. Show that the following graph is uniquely colourable.

Vi

Vs Va

v, V,

Fig. 2.96.

Solution. We check that the given graph G has only the following independent sets both of
which are maximal.

Wy ={V,, v}, W, ={vs, vg}

Both of these have 2 vertices, and as such B(G) = 2.

The sets W; and W, are mutually digoint and yield only one chromatic partition given below :
P={Wy, Wy, {vi}}

Inview of thissingle possible chromatic partitioning of G, weinfer that G isuniquely colourable.

2.17 COLOUR PROBLEM

The most famous unsolved problem in graph theory and perhaps in al of Mathematics is the
celebrated four colour conjecture. This remarkable problem can be explained in five minutes by any
mathematician to the socalled man in the steet. At the end of the explanation, both will understand the
problem, but neither will be able to solveit.

The conjecture states that, any map on a plane or the surface of a sphere can be coloured with
only four colours so that no two adjacent countries have the same colour. Each country must consist of
a single connected region, and gjdacent countries are those having a boundary line in common. The
conjecture has acted as a catalyst in the branch of mathematics known as combinatorial topology and is
closely related to the currently fashionable field of graph theory. More than half a century of work by
many mathematicians has yielded proofs for specia cases ..... . The consensus is that the conjecture is
correct but unlikely to be proved in general.

It seems destined to retain for some time the distinction of being both the simplest and most
fascinating unsolved problem of mathematics.

The four colour conjecture has an interesting history, but its origin remains some what vague.
There have been reports that Mdbius was familiar with this problem in 1840, but it is only definite that
the problem was communicated to De Morgan by Guthrie about 1850.

Thefirst of many erroneous proofs of the conjecture was given in 1879 by Kempe. An error was
found in 1890 by Heawood who showed, however, that the conjecture becomes true when ‘four’ is
replaced by ‘five'.

A counter example, if ever found, will necessarily be extremely large and complicated, for the
conjecture was proved most recently by Ore and Stemple for all maps with fewer than 40 countries.
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The four colour conjecture is a problem in graph theory because every map yields a graph is
which the countries are the points, and two points are joined by a line whenever the corresponding
countries are adjacent. Such a graph obviously can be drawn in the plane without intersecting lines.

Thus, if it is possible to colour the points of every planar graph with four or fewer colours so
that adjacent points have different colours, then the four colour conjecture will have been proved.

2.17.1. The Four colour theorem : 2.51
Every planar graph is 4-colorable.
Assume the four colour conjecture holds and let G be any plane map.
Let G* be the underlying graph of the geometric dua of G.

Since two regions of G are adjacent if and only if the corresponding vertices of G* are adjacent,
map G is 4-colorable because graph G* is 4-colorable.

Conversely, assume that every plane map is 4-colorable and let H be any planar graph.

Without loss of generality, we suppose H is a connected plane graph.

Let H* bethe dua of H, so drawn that each region of H* encloses precisely one vertex of H. The

connected plane pseudograph H* can be converted into a plane graph H' by introducing two vertices
into each loop of H* and adding a new vertex into each edge in a set of multiple edges.

The 4-colorability of H' now implies that H is 4-colorable, completing the verification of the
equivalence.

If the four color conjecture is ever proved, the result will be best possible, for it is easy to give
examples of planar graphs which are 4-chromatic, such as K, and Wy (see Figure 2.97 below).

Fig. 2.97. Two 4-chromatic planar graphs.

Theorem 2.52. Every planar graph with fewer than 4 triangles is 3-colourable.
Corollary. Every planar graph without triangle is 3-colourable.

Theorem 2.53. The four colour conjecture holds if and only if every cubic bridgeless plane
map is 4-colourable.

Proof. We have already seen that every plane map is4-colourableif and only if the four colour
conjecture holds.

Thisisaso equivaent to the statement that every bridgel ess plane map is 4-colourable since the
elementary contraction of identifying the end vertices of a bridge affects neither the number of regions
in the map nor the adjacency of any of the regions.
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Certainly, if every bridgeless plane map is 4-colorable, then every cubic bridgeless plane map is
4-colorable.

In order to verify the converse, let G be a bridgeless plane map and assume all cubic bridgeless
plane maps are 4-colourable.

Since G is bridgeless, it has no end vertices.

If G contains avertex v of degree 2 incident with edges y and z, we subdivide y and z, dencting
the subdivision vertices by u and w respectively.

We now removey, identify uwith one of the vertices of degree 2 in acopy of thegraph K, —xand
identify w with the other vertex of degree 2in K, —x.

Observe that each new vertex added has degree 3 (see Figure 2.98).

If G contains a vertex v, of degree n = 4 incident with edges Xy, Xy, ...... X, arranged cyclically
about v, we subdivide each x; producing a new vertex v;.
We then remove v, and add the new edges V,Vy, VoV, ...y Vi _ 1V ViVy-

Again each of the vertices so added has degree 3.

Before

degv=2 L4
\

X,

Fig. 2.98. Conversion of a graph into a cubic graph.

Denote the resulting bridgeless cubic plane map by G', which, by hypothesis, is 4-colourable.

If for each vertex v of G with deg v # 3, we identify all the newly added vertices associated
with vin the formation of G', we arrive at G once again. Thus, let there be given a4-colouring of G'.
The above mentioned contradiction of G’ into G induces an m-colouring of G, m< 4, which completes
the proof.
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Theorem 2.54. The four color conjecture holdsif and only if every hamiltonian planar graph
is 4-colorable.

Theorem 2.55. For any graph G, the line chromatic number satisfies the inequalties
A<sxy'sA+ 1

Y =A W=A+1
Fig. 2.99. The two values for the line-chromatic number.

2.17.2. The Five colour theorem 2.56
Every planar graph is 5-colorable.

Proof. We proceed by induction on the number P of points. For any planar graph having P <5
points, the result follows trivially since the graph is P-colorable.

Astheinductive hypothesiswe assumethat al planar graphswith P points, P> 5, are 5-colourable.
Let G be aplane graph with P + 1 vertices, G contains a vertex v of degree 5 or less.
By hypothesis, the plane graph G — v is 5-colourable.

Consider an assignment of coloursto the vertices of G —v so that a 5-colouring results, when the
coloursare denoted by C,, 1 <i <5.

Certainly, if some colour, say Cj, is not used in the colouring of the vertices adjacent with v, then
by assigning the colour C; to v, a 5-colouring of G results.

Thisleaves only the case to consider in which deg v = 5 and five colours are used for the vertices
of G adjacent with v.

Permute the colours, if necessary, so that the vertices coloured C,, C,, C;, C, and C; are arranged
cyclicaly about v,

Now label the vertex adjacent with v and coloured C, by v;, 1 <i < 5 (see Figure 2.100)

v, A

Fig. 2.100. A step in the proof of the five colour theorem.
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Let G,5 denote the subgraph of G — v induced by those vertices coloured C; or C,.

If v; and v; belong to different components of G,3, then a 5-coloring of G — v may be accom-
plished by interchanging the colors of the vertices in the component of G,5 containing v;.

In this 5-coloring however, no vertex adjacent with v is colored C,, so by coloring v with the
color C,, a5-coloring of G results.

If, on the other hand, v, and v, belong to the same component of G5, then there existsin G apath
between v; and v; all of whose vertices are colored C, or C,.

This path together with the path v, w; produces a cycle which necessarily encloses the vertex v,
or both the vertices v, and vs.

In any case, there exists no path joining v, and v, al of whose vertices are coloured C, or C,.

Hence, if welet G,, denote the subgraph of G —v induced by the vertices coloured C, or C,, then
Vv, and v, belong to different components of G,,.

Thusif we interchange colors of the vertices in the component of G,, containing v,, a 5-colour-
ing of G — v is produced in which no vertex adjacent with v is coloured C,.

We may then obtain a 5-coloring of G by assigning to v the colour C,.

Problem Set 2.1

1. (&) Show that the graph is planar by drawing an isomorphic plane graph with straight edges.
(b) Label the regions defined by your plane graph and list the edges which form the boundary
of each region.

() VeifythaaV —E+R=2 N<2E, andE<3V -6.
2. Veify Euler’sformulaV — E + F = 2 for each of the five platanoic solids.
3. If G aconnected plane graph with VV > 3 vertices and R regions, show that R < 2V — 4.
4. (a) Give an example of aconnected planar graph for which E = 3V —6.

(b) Let G be a connected plane graph for which E = 3V — 6 show that every region of Gisa
triangle.

5. (@) If G is a connected plane graph with at least three vertices such that no boundary of a
region isatriangle, prove that E < 2V —4.

(b) Let G be aconnected planar bipartite graph with E edges and V = 3 vertices. Prove that
E<2v -4

6. (@) Forwhich nisK, planar ?
(b) For whichmand nisK, , planar ?

7. Show that K, , is homeomorphic to K.

8. Suppose a graph G; with V, vertices and E, edges is homeomorphic to a graph G, with V,
vertices and E, edges prove that E, -V, =E; —V;.

9. Show that any graph homeomorphic to K5 or K 5 is obtainable from K or K; 5 respectively,
by addition of vertices to edges.

10. (a) Let G beaconnected graph with V; vertices and E; edges and let H be a subgraph with V,,
vertices and E, edges. Show that E, -V, < E; - V.
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11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

(b) Let Gbeaconnected graph withV vertices; E edges, and E<V + 2. Show that G isplanar.

Let G be agraph and let H be obtained from G by adjoining a new vertex of degree 1 to some
vertex of G. Isit possible for G and H to be homeomorphic ? Explain.

(&) Show that any planar graph all of whose vertices have degree at least 5 must have at |east
12 vertices.

(b) Find a planar graph each of whose vertices has degree at least 5.

(@) Provethat if Gisaplanar graph with n connected components, each components having at
least three vertices then E < 3V —6n.

(b) Provethat if Gisaplanar graph with n connected components, then it is always true that
E<3V-3n

(a) Provethat every planar graph with V = 2 vertices has at |east two vertices of degree d < 5.
(b) Provethat every planar graph with V = 3 vertices has at | east three vertices of degreed < 5.
(c) Provethat every planar graph withV > 4 vertices has at least four vertices of degree of d < 5.
(a) A connected planar graph G has 20 vertices. Prove that G has at most 54 edges.

(b) A connected planar graph G has 20 vertices, seven of which have degree 1. Prove that G
has at most 40 edges.

Suppose G isaconnected planar graph in which every vertex has degree at least 3. Prove that at
least two regions of G have at most five edges on their boundaries.

Draw a graph corresponding to the map shown at the right and find a coloring which requires
the least number of colors. What is the chromatic number of the graph ?

(8 Whatisx(Ky,) ?What is x(Ks, 14) ? Why ?

(b) Let G, and G, by cycleswith 38 and 107 edges, respectively. What is X(G;) ? What is X(G,) ?
Explain.

Let n = 4 be anatural number. Let G be the graph which consists of the union of K, _; and a

5-cycle C together with all possible edges between the vertices of these graphs. Show that
X(G) = n, yet G does not have K|, as a subgraph.

Find a formula for V — E + R which applies to planar graphs which are not necessarily con-
nected.

Find its chromatic number and explain why this piece of information is consistent with the four
color problem.

Prove that every subgraph of a planar graph is planar.

Prove that :

(i) Ksgisthenon planar graph with the smallest number of vertices.
(i) Kj 3isthenon planar graph with the smallest number of edges.
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24.
25.
26.

27.

28.
29.

30.

31.

32.

33.

GRAPH THEORY WITH APPLICATIONS

Show that every graph with four or fewer verticesis planar.
Show that the graphsK; sfor S>1and K, sfor S= 2 are planar.
Let G be asimple connected graph with at least 11 vertices. Prove that either G or its comple-

ment G must be non planar.
Verify the Euler’ s formula for the graphs shown below :

&>

Verify the Euler’s formula for the graphs Wg, K, 5 and K, 4.

Prove that every simple connected planar graph with n = 4 vertices has at least four vertices of
degree five or less.

Let G be a connected planar graph with more than two vertices. If G has exactly ny vertices of
degree K and A(G) = P, show that

5n; +4n,+3n;+ 20, + ng=2n, + 2ng + ...... +(P-6) n, + 12
Prove that the sum of the degree of the regions of aplanar graph is equal to twice the number of
edges in the graph.
Show that a simple planar connected graph with less than 30 edges must have a vertex of
degree < 4.

What is the minimum number of vertices necessary for a simple connected graph with 7 edges
to be planar ?

By using the method of elementary reduction, show that the following graph is planar.
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35.

36.
37.
38.
39.
40.

41.

42.

43.

By the method of elementary reduction, show that the following graph is non planar.

Prove that a planar graph G isisomorphic to G** if and only if G is connected.

Let G be aplanar connected graph. Provethat G is bipartiteif and only if G* isan Euler graph.
Prove that a self loop free planar graph G is 2-connected if and only if G* is 2-connected.
Prove that 5-connected planar graph has at least 12 vertices.

Show that the following graphs are self dual.

(i) Q (ii) & (iii@

20
Show that a simple graph with n vertices and more than BZD edges cannot be 2-chromatic.
o*0

2
Prove or disprove that in agraph of order nand sizem, x(G) <1+ _rr]n .

Find the chromatic numbers of the following

LA

(@) (i) (iif) (iv)
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Answers 2.1

1. (&) Wedraw the graph quickly as aplanar and then, after some thinking, as aplanar graph with
straight edges.

(b) Thereare seven regions, numbered 1, 2, ...... 7, with boundariesafg, ghe, hbi, icd, bjc, fedk,
and ajk, respectively.

(c) E=11,V=6,R=7,N=22,50V-E+R=6-11+7=2;N=22<22=2EandE=11

<12<3V -6
2. Solid \% E F V-E+F
tetrahedron 4 6 4 2
cube 8 12 6 2
octahedron 6 12 8 2
dodecahedron 201 30 12 2
icosahedron 12 30 20 2

w

. Weknow that E < 3V —6, subgtitutingE=V + R—2, weobtainV + R-2< 3V —-60r R< 2V —4,
as required.

4. (a) A E=3=3(3)-6=3V 6.

. (8) K,isplanar if and only if n< 4.

()]

A B A
Introduce
B here
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10.

11

13.

14.

15.
16.

17.

18.
20.

42.

(8 Assumethe result is not true. Then there is some counter example G and subgraph H ; that
is, for these graphs E; — V; <E, — V.. (In particular, V; # V), choose H such that V, -V,
isas small as possible. Since G is connected, we can find avertex v which isin G, but not
H which is joined to some vertex in H. Let K be that subgraph of G consisting of H, v and
all edgesjoining v to verticesin H. Letting v; and E; denote the number of vertices and
edges, respectively, in K, wehaveV; =V, + 1, whileE; = E, + 1. HenceE, -V, < E; -
Vyand so E; -V, <E; -V, Thus, G and its subgraph K provide another counter exam-
ple, but this contradicts the minimality of V, —V,sinceV; -V3<V,; - V..

Yes. An exampleis shown to the right. The graphs are homeomorphic since the one on the right

is obtainable from the other by adding a vertex of degree 2.

(8 LetGy, G, ... , G, be the connected components of G. Since G, has atleast three vertices,
wehave Eg <3Vg —6.Hence, ZEg <33V —6n, s0 E <3V —6nisrequired.

(&) Wemay assumethat G is connected. Say thereisonly one vertex of degree atmost 5. Then
> deg v, = 6(V —1) =6V —6, contradicting
>degv,=2E<6V -12.
(8 E<3V-6,s0E<3(20)-6=>54.
Say at most one region has atmost five edges on its boundary. Then, N = 6(R —1). But N < 2E,
S02E>26R—-6,3R<E+3.SinveV-E+R=2,6=3V-3E+3R<3V-2E+3thatis,
2E < 3V — 3. But 2E = 2deg v; = 3V by assumption, and this is a contradiction.

We show the graph superimposed over the given map. Since this graph contains triangles,
atleast three colours are necessary. A 3-colouring is shown, so the chromatic number is 3.

(@ Forany n, X(K,) =nandforany m n, x(K,, ,) =2 Thus, Xx(Ky,) = 14 and X(K5 14) = 2.
Letting x denote the number of connected components of G, wehaveV —E+ R =1+ x.

For each component C, V- — E¢ + R = 2. Adding, we get

3V —32Eq; + 2R = 2x. Wehave 2V =V and ZE- = E, but 2R = R + (X — 1) since the exterior
region is common to al components.

Thus,V-E+R+x-1=2x,V-FE +R =x+1.

() 2, (i) 3, (iii) 4 (iv) 4



CHAPTER

Trees

INTRODUCTION

Kirchhoff developed the theory of trees in 1847, in order to solve the system of simultaneous
linear equations which give the current in each branch and arround each circuit of an electric network.

In 1857, Cayley discovered theimportant class of graphs called treesby considering the changes
of variables in the differential calculus. Later, he was engaged in enumerating the isomers of saturated
hydro carbons C, H,, . , with agiven number of n of carbon atoms as

e

Methane Ethane Propane Butane Isobutane

Fig. 3.1.

3.1 TREE

3.1.1. Acyclic graph
A graphisacyclicif it has no cycles.

3.1.2. Tree
A treeis aconnected acyclic graph.

3.1.3. Forest
Any graph without cyclesis aforest, thus the components of aforest are trees.
The tree with 2 points, 3 points and 4-points are shown below :

EVYM

192
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Note:
(1) Every edge of atreeisabridge.
i.e, every block of G isacyclic.
Conversdly, every edge of a connected graph G is a bridge, then G isatree.
(2) Every vertex of G (tree) which is not an end vertex is neccessarily a cut-vertex.
(3) Every nontrivial tree G has at least two end vertices.

3.2 SPANNING TREE
A spanning tree is a spanning subgraph, that is atree.

3.2.1. Branch of tree
Anedgeinaspanning tree T is called a branch of T.

3.2.2. Chord
An edge of G that isnot in agiven spanning treeis called a chord.
Note:
(1) The branches and chords are defined only with respect to a given spanning tree.

(2) An edge that is a branch of one spanning tree T, (in agraph G) may be chord, with respect to
another spanning tree T,.

3.3 ROOTED TREE
A rooted tree T with the vertex set V is the tree that can be defined recursively as follows :

T hasaspecialy designated vertex v; 0V, called theroot of T. The subgraph of T, consisting of
the vertices V —{V} is partitionable into subgraphs.

Ty, Ty e , T, each of which isitself arooted tree. Each one of these r-rooted tree is called a
subtree of v;.

Fig. 3.3. A rooted tree.

3.3.1. Cotree

Thecotree T* of aspanning tree T in aconnected graph G isthe spanning subgraph of G containing
exactly those edges of G which are not in T. The edges of G which are not in T* are called itstwigs.
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For example:

20 (S

Fig. 3.4.

3.4 BINARY TREES

A binary tree is arooted tree where each vertex v has atmost two subtrees ; if both subtrees are

present, oneis called aleft subtree of v and the other right-subtree of v. If only one subtreeis present, it
can be designated either as the left subtree or right subtree of v.

In other words, a binary tree is a 2-ary tree in which each child is designated as a left child or

right child.

In abinary tree e very vertex has two children or no children.
Properties: (Binary trees) :
(1) The number of vertices n in a complete binary tree is aways odd. This is because there is

exactly one vertex of even degree, and remaining n — 1 vertices are of odd degree. Since from
theorem (i.e., the number of vertices of odd degree is even), n— 1 iseven. Hence nisodd.

(2) Let P bethe number of end verticesin abinary tree T. Then n —p — 1 isthe number of vertices
of degree 3. The number of edgesin T is

1 n+1
E[p+3(n—p—1)+2]=n—1 or p=? ..(1)

(3) A non end vertex inabinary treeiscalled aninter nal vertex. It follows from equation (1) that
the number of interna vertices in abinary is one less than the number of end vertices.

(4) Inabinary tree, avertex v; issaid to be at level |, if v; isat adistancel; from the root. Thusthe
root is at level O.

——————— Level 3

--- Level 4

Fig. 3.5. 13-vertices, 4-level binary tree.
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The maximum numbers of vertices possiblein ak-level binary treeis20+ 21+ 22+ ... + 2= n,
The maximum level, |, of any vertex in abinary treeis called the height of the tree.

On the other hand, to construct a binary tree for agiven n such that the farthest vertex isasfor as
possible from the root, we must have exactly two vertices at each level, except at the O level.

n-1

Hence max |, = 5

For example,

Fig. 3.6.

9-1
Max'masz =4

The minimum possible height of n-vertex binary treeismin |, = [l0g,(n + 1) — 1]

Inanalysis of algorithm, we are generally interested in computing the sum of the levels of al end
vertices. This quantity, known as the path length (or externa path length) of atree.

3.4.1. Path length of abinary tree
It can be defined as the sum of the path lengths from the root to all end vertices.
For example,

Fig. 3.7.

Herethesumis2 + 2 + 3+ 3 + 3 + 3 = 16 isthe path length of a given above binary tree.
The path length of the binary tree is often directly related to the executive time of an agorithm.
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3.4.2. Binary treerepresentation of general trees

There is a straight forward technique for converting a general tree to a binary tree form. The
algorithm has two easy steps :

Step 1:

Insert edges connecting siblings and delete all of a parents edges to its children except to its left
most off spring.

Step 2.

Rotate the resulting diagram 45° to distinguish between left and right subtrees.

For example,

General tree

Fig. 3.8.

Herev,, v; and v, are siblings to the parent v;, now apply the steps given above we have abinary
tree as shown here.

Fig. 3.9.
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Theorem 3.1. A(p, q) graphisatreeif and onlyifitisacyclicandp=q+ lorg=p-1

Proof. If Gisatree, thenitisacyclic.

By definition to verify the equality p=q + 1.
We employ induction on p.

For p =1, theresult istrivial.

Assume, then that the equality p = q + 1 holds for all (p, q) treeswith p > 1 vertices.

Let G, beatreewith p + 1 vertices.

Let v be an end-vertex of G,.

Thegraph G, = G; —visatreeof order p, andso p=| E(G,) | + 1.
Since G, has one more vertex and one more edge than that of G..

Vy v, A v,

G;: v, G,:G;—vVv: v,

v
Va Va

Fig. 3.10.
IV(G) [=p+1=(EGy) [+1)+1
=|EGy [+1
O V(G I=]EGy|+1
Conversely : Let G bean acyclic (p, ) graphwithp=q+ 1.

To show G is atree, we need only verify that G is connected. Denote by G,, G, ....

components of G, where k> 1.

Furthermore, let G; be a (p;, ;) graph.
Since each G, isatree, p;= g + 1.

k
Hence p-1=q= )G

i=1

k
=3 (P -D =p-k
i=1

O p—-1=p-k 0 k=1andGisconnected.
Hence, (p, q) graph isatree.
Hence the proof.

, Gy, the

Corollary : A forest G of vertices p has p — k edges where k is the number of components.

Theorem 3.2. A(p, q) graph Gisatreeif and only if Gisconnectedandp= g+ 1.

Proof. Let G bea(p, q) tree.

By definition of G, it is connected and by theorem : i.e., A(p, ) graphisatreeif and only if itis
acyclicandp=q+1),p=qg+1
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Conversaly : We assume G is connected (p, g) graph withp=q + 1.

It is sufficient to show that G is acyclic.

If G contains a cycle C and eis an edge of C, then G — e is a connected graph with p vertices
having p — 2 edges.

Thisisimpossible by the definition (i.e., A(p, g) graph has q < p — 1 then G is disconnected).

This contradicts our assumption.

Hence G is connected.

Theorem 3.3. A complete n-ary tree with minternal nodes containsn x m+ 1 nodes.

Proof. Sincethere are minterna nodes, and each internal node has n descendents, therearen x m
nodes in three other than root node.

Since there is one and only one root node in atree, the total number of nodes in the tree will n
xm+ 1.

Problem 3.1. Atreehasfive vertices of degree 2, three vertices of degree 3 and four vertices of
degree 4. How many vertices of degree 1 does it have ?

Solution. Let x be the number of nodes of degree one.
Thus, total number of vertices
=5+3+4+x=12+x
Thetotal degree of thetree=5x2+3x3+4x4+x=35+X
Therefore number of edges in the three is half of the total degree of the tree.
If G =(V, E) bethe tree, then, we have

35+ x
[V]|=12+xand |E|= 5
Inany tree, |E|=|V |-1
35+ X
Therefore, we have 5 =12+x-1
O 3B+x=24+2x-2

0 x=13
Thus, there are 13 nodes of degree one in the tree.

Problem 3.2.  Atree has 2n vertices of degree 1, 3n vertices of degree 2 and n vertices of degree
3. Determine the number of vertices and edges in the tree.

Solution. It is given that total number of verticesin thetreeis2n + 3n + n=6n.
Thetotal degree of thetreeis2nx 1+3nx 2+ nx 3=11n.

The number of edges in the tree will be half of 11n.

If G =(V, E) bethe tree then, we have

11n
|[V]=6n and |E|=7

Inany tree, |[E|=|V |-1.
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Therefore, we have

11n

7 =6n-1
O 1ln=12n-2
O n=2

Thus, there are 6 x 2 = 12 nodes and 11 edgesin the tree.
Theorem 3.4. Thereare at the most n" leavesin an n-ary tree of height h.
Proof. Let us prove this theorem by mathematical induction on the height of the tree.
Asbasis step take h =0, i.e., tree consists of root node only.
Since n° =1, thebasis step istrue.
Now let us assume that the above statement is true for h = k.
i.e., ann-ary tree of height k has at the most n* leaves.

If we add n nodes to each of the leaf node of n-ary tree of height k, the total number of leaf nodes
will beat themost n" x n=n"*1,

Hence inductive step is aso true.
This proves that above statement istrue for al h= 0.
Theorem 3.5. Inacomplete n-ary tree with minternal nodes, the number of leaf nodel isgiven
by the formula
_ (h=-)(x-1)
=0
where, X is the total number of nodes in the tree.
Proof. It isgiven that the tree has minternal nodes and it is complete n—ary, so total number of

nodes
X=nxm+1
_(x-1
T oo
It isalso given that | isthe number of leaf nodesin the tree.
Thus, we have x=m+l+1
Substituting the value of min this equation, we get

Thus, we have m

_ x-10 P41
X = B_n H
(n=-H(x-1
or [=—7T—
n
Theorem 3.6. If T = (V, E) bearooted tree with v, as its root then

(i) Tisaacyclic
(i) vyistheonlyrootinT
(iii) Each node other than root in T hasin degree 1 and v, has indegree zero.
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Proof. We prove the theorem by the method of contradiction.

(i)

(ii)

(iii)

Let thereisacyclettin T that begins and end at a node v.

Since the in degree of root is zero, v # V.

Also by the definition of tree, there must be a path from vy to v, let it be p.
Then mp isalso apath, distinct from p, from v, to v.

This contradicts the definition of atree that there is unique path from root to every other
node.

Hence T cannot have acyclein it.

i.e, atreeisaways acyclic.

Let v, isanother rootin T.

By the definition of atree, every node is reachable from root.

This v, isreachable from v, and v, is reachable from v, and the paths are Ty, and Tt, respec-
tively.

Then 1, combination of these two paths is a cycle from v and v,

Since atreeis always acyclic, v, and v; cannot be different.

Thus, v, is a unique root.

Let w be any non-root nodein T.

Thus, Dapath 1t: vy, vy, ...... , iw from vptowin T.

Now let us suppose that indegree of wis two.

Then Otwo nodes w,; and w, in T such that edges (wy, V) and (W, Vi) arein E.

Let Ty, and 11, be paths from v, to w; and w, respectively.

Then 1 vy ... VW,W and Tg, § VgV e ViW,W are two possible paths from v, to w.

This is in contradiction with the fact that there is unique path from root to every other
nodesin atree.

Thus indegree of w cannot be greater than 1.

Next, let indegree of v, > 0. Then Janode vin T such that (v, vp) O E.

Let tbe apath from v, to v, thus Ti(v, V) is a path from v, to v, that isacycle.
Thisis again a contradiction with the fact that any tree is acyclic.

Thus indegree of root node v, cannot be greater than zero.

Problem 3.3. Let T = (V, E) bearooted tree. Obviously E is a relation on set V. Show that

()
(i)
(iii)

Eisirreflexive
E is asymmetric
If (& b) [JEand (b, c) [JEthen(a, c) E, ¥ a, b, c V.

Solution. Since atreeis acyclic, there is no cycle of any length in atree.
Thisimpliesthat thereisno loopin T.

Thus, (v, v) DEMalOV.

Thus E isan irreflexive relation on V.
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Let (x,y) O E. If (y, X) O E, then there will be cycle at node x as well as on nodey.

Since ho cycleis permissible in atree, either pair (x, y) or (y, X) can bein E but never both.
Thisimplies that presence of (X, y) excludes the presence of (y, X) in E and vice versa.
Thus E isaasymmetric relation on V.

Let(a, c) O E.

Thus presence of pairs (b, ¢) and (a, ¢) in E implies that ¢ has indegree > 1.

Hence (a, ¢) O E.

Problem 3.4. Provethat atree T is always separable.

Solution. Let w be any internal nodein T and node v is the parent of w.

By the definition of atree, in degree of wisone.

If wisdropped from the tree T, the incoming edge from v to w is also removed.

Therefore al children of w will be unreachable from root and tree T will become disconnected.

See theforest of the Figure (3.11), which has been obtained after removal of node F from the tree
of Figure (3.12).

Fig. 3.11 Fig. 3.12

Problem 3.5. Let A= {v;, Vy, V3, Vi, Vg, Vg, V7, Vg, Vg, Vy3o} and let
T={(V, V), (Vo, V1), (Vs Vi), (Vg V), (Vs Vi), (Ve V7), (Vs Vo), (¥, Vig), (V7 Via)}-
Show that T is a rooted tree and identify the root.

Solution. Since no paths begin at vertices vy, Vs, Vg, Vg and vy, these vertices cannot be roots of
atree.

There are no paths from vertices vg, V7, V, and v; to vertex v, so we must eliminate these vertices
as possible roots.

Thus, if T isarooted tree, its root must be vertex v,,.

It is easy to show that thereis a path from v, to every other vertex.

For example, the path v, vg, V7, Vg leads from v, and v, since (v, Vg), (Vg V) and (v;, V) aredl in T.
We draw the digraph of T, beginning with vertex v,, and with edges shown downward.

The result is shown in Fig. (3.13). A quick inspection of this digraph shows that paths from
vertex v, to every other vertex are unique, and there are no paths from v, and v,.

Thus T isatree with root v,.
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Fig. 3.13

Theorem 3.7. Thereisone and only one path between every pair of verticesin atreeT.

Proof. Since T is a connected graph, there must exist atleast one path between every pair of
verticesin T.

Let there are two distinct paths between two vertices u and v of T.

But union of these two paths will contain a cycle and then T cannot be a tree.

Theorem 3.8. Ifinagraph G thereisone and only one path between every pair of vertices, G
isatree

Proof. Since there exists a path between every pair of vertices then G is connected.

A cycle in agraph (with two or more vertices) implies that there is atleast one pair of vertices
u, v such that there are two distinct paths between u and v.

Since G has one and only one path between every pair of vertices, G can have no cycle.

Therefore, G isatree.

Theorem 3.9. Atree T with n vertices hasn — 1 edges.

Proof. The theorem is proved by induction on n, the number of vertices of T.

Basis of Inductive : When n = 1 then T has only one vertex. Since it has no cycles, T can not
have any edge.

i.e, ithase=0=n-1

Induction step : Suppose the theorem istrue for n = k > 2 where k is some positive integer.

We use this to show that the result istrue for n=k + 1.

Let T be atree with k + 1 vertices and let uv be edge of T. Let uv be an edge of T. Then if we
remove the edge uv from T we obtain the graph T — uv. Then the graph is disconnected since T — uv
contains no (u, v) path.

If there were a path, say u, vy, v, ...... v from u to v then when we added back the edge uv there
would beacycle u, v, s, ...... v,uinT.

Thus, T — uv is disconnected. The removal of an edge from a graph can disconnected the graph
into at most two components. So T — uv has two components, say, T, and T,.
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Since there were no cyclesin T to begin with, both components are connected and are without
cycles.

Thus, T, and T, are trees and each has fewer than n vertices.
This means that we can apply the induction hypothesisto T, and T, to give
&Ty) =Ty -1
&Ty) =T, -1
But the construction of T, and T, by removal of asingle edge from T gives that
M) =eTy) +&((Ty) +1
and that V(T) =W(T,) +W(T),)

it follows that
M) =v(T)-1+Vv(Ty)—-1+1
=v(T)-1
=k+1-1=k.

Thus T has k edges, as required.
Hence by principle of mathematical induction the theorem is proved.

Theorem 3.10. For any positiveinteger n, if G is a connected graph with n verticesand n—1
edges, then Gisatree.

Proof. Let nbeapositiveinteger and suppose G is a particular but arbitrarily chosen graph that
is connected and has n vertices and n — 1 edges.

We know that atree is a connected graph without cycles. (We have proved in previous theorem
that atree has n — 1 edges).

We have to prove the converse that if G has no cycles and n— 1 edges, then G is connected.
We decompose G into k components, ¢, C,, ...... Ce.

Each component is connected and it has no cycles since G has no cycles.

Hence, each C, isatree.

K K
Nowe =n—land Y & = > (0 -1) =n-k
i =1

=1

0 e=n-k

Then it followsthat k = 1 or G has only one component.
Hence Gisatree.

Problem 3.6. Consider the rooted tree in Figure (3.14).
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(8) What istheroot of T ?

(b) Find the leaves and the internal vertices of T.

(c) What arethe levels of c and e.

(d) Find the children of c and e.

(e) Find the descendants of the vertices a and c.

Solution. (a) Vertex ais distinguished as the only vertex located at the top of the tree.
Therefore a is the root.

(b) The leaves are those vertices that have no children. These b, f, g and h. The internal vertices

arec,dand e

(c) Thelevelsof c and eare 1 and 2 respectively.

(d) The children of c ared and e and of e are g and h.

(e) The descendantsof aare b, ¢, d, g f, g, h.

The descendants of care d, g, f, g, h.

Theorem 3.11. A full mary tree with i internal vertex hasn= mi + 1 vertices.

Proof. Since the tree is a full m-ary, each internal vertex has m children and the number of

internal vertex isi, the total number of vertex except the root is mi.

Therefore, thetree has n = mi + 1 vertices.
Since 1 isthe number of leaves, we haven =1 +i using thetwo equalitiesn=mi + landn=1+1,

the following results can easily be deduced.

A full mary tree with

(i) nverticeshasi = internal verticesand | = €s.

(-1 (m-Dn+3] |
m m

(ii) i internal verticeshasn=mi + 1 verticesand | = (m—1)i + 1 leaves.

(m-1 (-
(m=-1) verticesand i = (m-1)

(iii) | leaveshas n = internal vertices.

Theorem 3.12. Thereare at most m" leaves in an m-ary tree of height h.

Proof. We prove the theorem by mathematical induction.

Basis of Induction :

For h = 1, the tree consists of aroot with no more than m children, each of which is aleaf.
Hence there are no more than m! = mleavesin an m-ary of height 1.

Induction hypothesis :

We assume that the result is true for all m-ary trees of heights less than h.

Induction step :

Let T be an m-ary tree of height h. The leaves of T are the leaves of subtrees of T obtained by

deleting the edges from the roots to each of the vertices of level 1.

Each of these subtrees has at most m"~ 1 leaves. Since there are at most m such subtrees, each

with amaximum of m"~! leaves, there areat most m. n"~1 = m".
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Problem 3.7. Find all spanning trees of the graph G shown in Figure 3.15.

Fig. 3.15.

Solution. The graph G has four vertices and hence each spanning tree must have 4 — 1 = 3 edges.
Thus each tree can be obtained by deleting two of the five edges of G.

This can be done in 10 ways, except that two of the ways lead to disconnected graphs.

Thus there are eight spanning trees as shown in Figure (3.16).

Lt
NN NS

Fig. 3.16.

Problem 3.8. Find all spanning trees for the graph G shown in Figure 3.17, by removing the
edges in simple circuits.

Fig. 3.17.

Solution. The graph G has one cycle cbec and removal of any edge of the cycle gives atree.
There are three trees which contain al the vertices of G and hence spanning trees.

f e d f e d f e d
a b c a b c a b c

Fig. 3.18.
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Theorem 3.13. A simple graph G has a spanning tree if and only if G is connected.

Proof. First, suppose that asimple graph G hasaspanning tree T. T contains every vertex of G.
Let aand b beverticesof G. Sinceaandb arealso verticesof T and T isatree, thereisapath P between
aandb.

Since T is subgraph, P also serves as path between aand b in G.
Hence G is connected.
Conversely, suppose that G is connected.

If Gisnot atree, it must contain asimple circuit. Remove an edge from one of these simplecircuits.
The resulting subgraph has one fewer edge but till contains al the vertices of G and is connected.

If this subgraph is not atree, it has a simple circuit, so as before, remove an edge that isin a
simple circuit.

Repeat this process until no simple circuit remain.

This is possible because there are only a finite number of edges in the graph, the process termi-
nates when no simple circuits remain.

Thus we eventually produce an acyclic subgraph T which is atree.
Thetreeis aspanning tree since it contains every vertex of G.
Theorem 3.14. Thereis one and only path between every pair of verticesin a tree.
(OR)
Agraph Gisatreeif and only if every two distinct vertices of G are joined by a unique path of G.
Proof. SinceT isaconnected graph, there must exist atleast one path between pair of verticesin T.
Now suppose that between two vertices a and b of T there are two distinct paths.
The union of these two paths will contain acycle, and T cannot be atree.

Conversdly, suppose in agraph G there is one and only one path between every pair of vertices,
then Gisatree

If there exists a path between every pair of vertices, then G is connected.

A cyclein agraph impliesthat there is atleast one pair of vertices a and b such that there are two
distinct paths between a and b.

Sicne G has one and only one path between every pair of vertices, G can have no cycle.
Therefore, G is atree.
Theorem 3.15. Every non trivial tree contains atleast two end vertices.

Proof. Suppose that T is a tree with p-vertices and g-edges and let d;, d,, ...... d, denotes the
degrees of its vertices, ordered sothat d; < d, < ....... <d,

Since T is connected and non trivial, d, = 1 for each i(1 <i <p).
If T does not contain two end vertices, thend =2 1andd; = 2for 2<i <p,

p
So Y diz1+2(p-1)=2p-1 (1)
i=1

p

However from the resultsi.e., Z degv; =2qand atree with p-vertices has p — 1 edges.
i=1
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p
> di =2q=2(p—1) = 2p— 2 which contradicts in equality (1).
=51

Hence T contains atleast two end vertices.

Theorem 3.16. If Gisatreeand if any two non adjacent vertices of G arejoined by an edge e,
then G + e has exactly one cycle.

Proof. Suppose G isatree. Then there is exactly one path joining any two vertices of G.

If we add an edge of G, that edge together with unique path joining u and v forms a cycle.

Theorem 3.17. A graph G is connected if and only if it contains a spanning tree.

Proof. It isimmediate that, if a graph contains a spanning tree, then it must be connected.

Conversdly, if a connected graph does not contain any cyclethenitisatree.

For a connected graph containing one or more cycles, we can remove an edge from one of the
cycles and still have a connected subgraph. Such removal of edges from cycles can be repeated until we
have a spanning tree.

Theorem 3.18. If uand v are distinct vertices of a tree T contains exactly one u — v path.

Proof. Suppose, to the contrary that T contains two u — v paths say P and Q are different u—v,
paths there must be a vertex x (i.e., x = u) belonging to both P and Q such that the vertex immediately
following x on Q. See Figure 3.19.

Fig. 3.19.

Let y be the first vertex of P following x that also belongsto Q (y could be v).
Then this produces to x —y paths that have only x and y in common.

These two paths produces a cycle in T, which contradicts the fact that T isatree.
Therefore, T has only one u — v path.

Problem 3.9. Construct two non-isomorphic trees having exactly 4 pendant vertices on 6
vertices.

Solution. ® ® ®

Fig. 3.20.
Problem 3.10. Construct three distinct trees with exactly
(i) one central vertex (i) two central vertices.

Solution. (i) The following trees contain only one central vertex.
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e

Fig. 3.21.

(i) The following trees contain exactly two central vertices.

Fig. 3.22.

Problem 3.11. Count the number of vertices of degree three in a binary tree on n vertices
having k number of pendant vertices.

Solution. Since the binary tree contains k number of pendant vertices and one vertex of degree
two, we have total number of remaining vertices which are of degreethreeisn—k—1.

Problem 3.12. Let T be a tree with 50 edges. The removal of certain edge from T yields two
digoint trees T, and T,. Given that the number of vertices in T, equals the number of edges in T,
determine the number of vertices and the number of edgesin T, and T.

Solution. We have removal of an edge from a graph will not remove any vertex from the graph.
Thus [V(Ty [+[V(Ty) [=]V(T)|
Since T, and T, are trees and number of vertices of T, isequal to the number of edgesin T,, we
get
IV [=1V(T) [+ V(T) |
=(IV(M) -1 +[V(Ty |
=2|V(Ty|-1
but |V(T)|=|E(T)+1|=50+1=51
Hence2 |V(T,) |-1=51
O |[V(T,) |=26and |V(T,) | =25
Therefore, there are 26 vertices and hence 25 edges in T, and there are 25 vertices hence 24
edgesin T,.
Thus 50 — (25 + 24) = 1 edge isremoved from the tree T.
Problem 3.13. What is the maximum number of end vertices a tree on n vertices may have ?
Solution. The graph K, , contains maximum number of end vertices.
Thus atree on n vertices may contain a maximum of n— 1 end vertices.

Problem 3.14. Provethat a pendant edge in a connected graph G is contained in every span-
ning tree of G.

Solution. By a pendant edge, we mean an edge whose one end vertex is a pendant vertex.
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Let e be apendant edge of a connected graph G and let v be the corresponding pendant vertex.
Then eisthe only edge that isincident on v.

Suppose there is a spanning tree of T for which e is not a branch.

Then, T cannot contain the vertex v.

Thisis not possible, because T must contain every vertex of G.

Hence there is no spanning tree of G for which e is not a branch.

Problem 3.15. Show that a Hamiltonian path is a spanning tree.

Solution. Recall that a Hamiltonian path P in a connected graph G, if there is a path which
contains every vertex of G and that if G has n vertices then P has n — 1 edges.

Thus, P is a connected subgraph of G with n vertices and n — 1 edges.
Therefore, Pisatree. Since P contains al vertices of G, it is a spanning tree of G.

Problem 3.16. Prove that the number of branches of a spanning tree T of a connected graph G
is equal to the rank of G and the number of the corresponding chordsis equal to the nullity of G.

Solution. Let n bethe number of vertices and mbethe number of edgesin aconnected graph G. Then
Rank of G=p(G)=n-1
= no. of branches of a spanning tree T of G.
Nullity of G= pu(G) = m—(n—-1)
= no. of chordsrelativeto T.

Problem 3.17. Prove that every circuit in a graph G must have atleast one edge in common
with a chord set.

Solution. Recall that a chord set is the complement of a spanning tree.

If there is a circuit that has no common edge with this set, the circuit must be containined in a
spanning tree.

Thisisimpossible, because a tree does not contain a circuit.

Problem 3.18. Let G be a graph with k components, where each component isa tree. If nisthe
number of vertices and mis the number of edgesin G, provethat n= m+ k.

Solution. Let Hy, H,, ...... H, be the components of G.
Since each of theseisatree, if n; isthe number of verticesin H; and m, isthe number of edgesin

Wehave m=n-1, i=12, ... k
thisgives m+m,+ ... +m=(n—-1)+(n,—1)+ ... (n.—1)

Therefore m=n-k
O n=m+k

Problem 3.19. Showthat, inatree; if the degree of every non-pendant vertex is 3, the number
of verticesin thetreeis even.
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Solution. Let n be the number of verticesin atreeT.

Let k be the number of pendant vertices.

Then, if each non-pendant vertex is of degree 3, the sum of the degrees of verticesisk + 3(n—Kk).
This must be equal to 2(n—1)

Thus, k+ 3(n—k) =2(n—-1)

O n=2k-1)

Therefore, nis even.

Problem 3.20. Supposethat atree T has N, vertices of degree 1, N, vertices of degree 2, N;

vertices of degree 3, ...... N, vertices of degree k. Prove that

N; =2+ Ng+ 2N, + 3Ng + ... + (K-2) N,.
Solution. Note that atree T,
The total number of vertices= N; + N, + ...... + Ny
Sum of the degrees of vertices= N; + 2N, + 3N5 + ........ KN,
Therefore, the total number of edgesin T is
N+ N, + ... +N,—1, and

Rearranging terms, which gives
N3+ 2N, + 3Ng + ...... +(k—2) Ny=N; -2
O N;=2+Ng+2N,+3Ng+...... +(k—=2) N
Problem 3.21. Show that if a tree has exactly two pendant vertices, the degree of every other

vertex is two.

Solution. Let n be the number of verticesin atree T.
Suppose, it has exactly two pendant vertices, and let dy, ds, ...... d,_, be the degrees of the other

vertices.

inK,.

Then, since T has exactly n— 1 edges.

We have 1+1+d;+dy+...... +d,_,=2(n-1)

O d,+d, + ... +d,_,=2n-4=2(n-2)

The left hand side of the above condition has n — 2 terms d's, and none of these is one or zero.
Therefore, this condition holds only if each of the d;sis equal to two.

Problem 3.22. Show that the complete graph K, is not a tree, whenn > 2.

Solution. If vy, v,, V5 are any three vertices of K, n > 2 then the closed walk v;V,v3v; isacircuit

Since K, has acircuit, it cannot be a tree.
Problem 3.23. Supposethat atree T hastwo vertices of degree 2, four vertices of degree 3 and

three vertices of degree 4. Find the number of pendant verticesin T.

Solution. Let N be the number of pendant verticesin T.
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It is given that T has two vertices of degree 2, four vertices of degree 3 and three vertices of
degree 4.

Therefore, the total number of vertices

=N+2+4+3

=N+09.
Sum of the degrees of vertices=N + (2x 2) + (4 x 3) + (3 x 4)

=N+ 28.
Since T has N + 9 vertices, ithasN + 9—1 =N + 8 edges.
Therefore, by handshaking property, we have
N +28=2(N + 8)

O N =12
Thus, the given tree has 12 pendant vertices.
Problem 3.24.  Show that the complete bipartite graph K; sisnot atreeif r >2.

Solution. Let v; and v, be any two verticesin thefirst partition and v;', v, be any two verticesin
the second partition of K, s>r> 1.

Then the closed walk v;v;'v,v,'vy isacircuit in K, o
Since K, ¢ hasacircuit, it cannot be a tree.

Problem 3.25. Prove that, in a tree with two or more vertices, there are atleast two leaves
(pendant vertices).

Solution. Consider atree T with n vertices, n= 2. Then, it has n — 1 edges.
Therefore, the sum of the degrees of the n vertices must be equal to 2(n — 1).
Thus, if d;, d,, ...... d, are the degrees of vertices.
Wehave d;+d,+.... +d,=2n-1)=2n-2.
If each of dy, d,, ...... d, is= 2, then their sum must be at least 2n.
Since thisis not true, atleast one of the d’sisless than 2.
Thus, thereisa d which isequal to 1.
Without loss of generality, let us take this to be d;. Then
d,+d;+ ... +d, =(2n-2)-1=2n-3.
Thisispossible only if atleast one of d,, ds ...... d,isequal to 1.
So, there is atleast one more d which is equal to 1.
Thus, there are atleast two vertices with degree 1.
Problem 3.26. Prove that a graph with n vertices, n — 1 edges, and no circuits is connected.
Solution. Consider a graph G which has n vertices, n — 1 edges and no circuits.
Suppose G is not connected.
Let the componentsof GbeH;,i =1, 2, ...... K.
If H; has n; vertices, we have
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Since G has no circuits, H;sis also do not have circuits.

Further, they are al connected graphs.

Therefore, they are trees.

Consequently, each H; must have n; — 1 edges.

Therefore, the total number of edgesin these H;sis(n; — 1) + (N, — 1) + ...... (n,-1)=n-k
This must be equal to the total number of edgesin G, thatis n—k=n-1.

Thisisnot possible, since k > 1.

Therefore, G must be connected.

Problem 3.27. Construct three distinct binary trees on 11 vertices.

Solution. (i) (i) (iii)

Fig. 3.23.
Problem 3.28. What isthe minimum possible height of a binary treeon 2n—1 (n = 1) vertices ?
Solution. Let k be the minimum height of abinary tree on 2n — 1 vertices.
For minimum height we have to keep maximum number of verticesin the previous level before

placing any vertex in the next level.

Thus, k should satisfy the inequality
2n—1<20+21+22+ . +28

_1(1_2k+l)

C1-2
Since right hand side is a G.P. series with first term is 1 and common ratio having k + 1 terms.
e, 2n—1<2*1_1 O 2ng2k*l

0 ns2k
Now taking natural log on both sides we get
log, n<k O k=log,n.

Since k is an integer, thisimplies that the minimum value of k = [log, n].

Problem 3.29. What is the maximum possible number of verticesin any k-level tree ?
Solution. The level of aroot is zero and it is the only one vertex at level zero.

There are two vertices that are adjacent to the root, at which are at levels one.
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From these vertices we can find maximum four vertices at level 2so on ...... to get a minimum
heighten tree we have to keep the vertex at higher level only after filling all the vertices in its lower
level.

Trees maximum number of vertices possible for such a k-level treeis therefore

_ 1(1_2k+l)
T1-2

n<20+21+224+ 2K =k+1_1q

Problem 3.30. What is the maximum possible level (height) of a binary treeon 2n+ 1 (n >0)
vertices.

Solution. Let k be the height of abinary tree on 2n + 1 vertices.

To get avertex in maximum level we must keep exactly two (minimum) vertices in each level
except the root vertex.

That is out of 2n + 1 vertices one is aroot and the remaining 2n vertices can keep in exactly n
levels.

Thus the maximum height of atreeis n.
Hence maximum possible value of kisn.

Problem 3.31. Sketch two different binary trees on 11 vertices with one having maximum
height and the other with minimum height.

Solution. Required binary trees on 11 vertices are

(i) (ii)
With minimum height 3 With maximum height 5.
Fig. 3.24.
Problem 3.32.  Show that the number of verticesin a binary tree is always odd.

Solution. Consider abinary tree on n vertices. Since it contains exactly one vertex of degreetwo
and other vertices are of degree one or three, it follows that there are n — 1 odd degree vertices in the
graph.

But if the number of odd degree vertices of agraphiseven, it followsthat n— 1 iseven and hence
nis odd.
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Problem 3.33. In any binary tree T on n vertices, show that the number of pendant vertices

(edges) isequal to (%1)

Solution. Let the number of pendant edgesin abinary tree on n vertices be k.

Then we have there are n— k — 1 vertices of degree three, one vertex of degree two, k vertices of
degree one and n — 1 edges.

Therefore, sum of degrees of vertices = 2 x number of edges.
(n—-k—=1)x3+2+kx1=2(n-1)
0O 3n-3k-3+2+k=2n-2

O 2k=3n-2n+1=n+1
_(n+])
O k= BCEE

Problem 3.34. Draw a tree with 6 vertices, exactly 3 of which have degree 1.
Solution. A tree with 6 vertices which contains 3 pendant verticesis given in Figure (3.25).

Fig. 3.25.

Problem 3.35. Which trees are complete bipartite graphs ?
Solution. Suppose T is atree which is a compl ete bipartite graph.
Let T =K, , then the number of verticesin T is(m + n).

Hence the tree T contains (m + n — 1) number of edges.

But the graph K, ,, has (m, n) number of edges.

Therefore m+n—-1=mn

O m-m-n+1=0
O mnhn-1)-1n-1)=0
O (m-1)(n-1)=0
O m=2lorn=1

Thismeans T iseither K, or K, ; that is T isadtar.
Problem 3.36. Draw all non-isomorphic trees with 6 vertices.
Solution. All non isomorphic trees with 6 vertices are shown below :



TREES 215

Fig. 3.26.

Problem 3.37. Isit possible to draw a tree with five vertices having degrees 1, 1, 2, 2, 4.

Solution. Since the tree has 5 vertices hence it has 4 edges.

Now given the vertices of tree are having degrees

1,1,224.
i.e, thesum of the degrees of the tree = 10
5
By handsheking lemma, 2g= ) d(%)
i=1
Where q is the number of edgesin the graph
20=10 0 g=5

Which is contradiction to the statement that the tree has 4 edges with 5 vertices.
Hence the tree with given degrees of vertices does not exist.

3.5. COUNTING TREES

The subject of graph enumeration is concerned with the problem of finding out how many non-
isomorphic graphs possess a given property. The subject was initiated in the 1850’ s by Arthur Cayley,
who later applied it to the problem of enumerating alkanes C,, H,, . , with a given number of carbon
atoms. This problem isthat of counting the number of trees in which the degree of each vertex is either
4 or 1. Many standard problems of graph enumeration have been solved.

For example, it ispossibleto cal culate the number of graphs, connected graphs, treesand Eulerian
graphs with a given number of vertices and edges, corresponding general results for planar graphs and
Hamiltonian graphs have, however, not yet been obtained. Most of the known results can be obtained by
using a fundamental enumeration theorem due to Polya, a good account of which may be found in
Harary and Palmer.

Unfortunately, in almost every case it isimpossible to express these results by means of simple
formulas.

Consider Fig. (3.27), which shows three ways of labelling a tree with four vertices. Since the
second labelled tree is the reverse of the first one, these two labelled trees are the same. On the other
hand, neither isisomorphic to the third labelled tree, as you can see by comparing the degrees of vertex 3.
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Thus, the reverse of any labelling does not result in a new one, and so the number of ways of
4!

labelling thistreeis (—2) =12.

Similarly, the number of ways of labelling the treein Fig. (3.28) is 4, since the central vertex can
be labelled in four different ways, and each one determines the labelling.

Thus, the total number of non-isomorphic labelled trees on four verticesis 12 + 4 = 16.

1 2 3 4 4 3 2 1 1 2 4 3
—9o 0 9o o690 o o oo o o
Fig. 3.27.

Fig. 3.28.

Theorem 3.19. Let T be a graph with n vertices. Then the following statements are equivalent :
(i) Tisatree
(if) T contains no cycles, and has n — 1 edges
(iii) Tisconnected and has n — 1 edges
(iv) Tisconnected and each edgeis a bridge
(V) Any two vertices of T are connected by exactly one path
(vi) T contains no cycles, but the addition of any new edge creates exactly one cycle.
Proof. If n=1, all six results are trivial, we therefore assume that n = 2.
() O (iii)
Since T contains no cycles, the removal of any edge must disconnect T into two graphs, each of
which isatree.

It follows by induction that the number of edges in each of these two treesis one fewer than the
number of vertices. We deduce that the total number of edges of T isn—1.

@iy O (iii)
If T isdisconnected, then each component of T isaconnected graph with no cycles and hence, by
the previous part, the number of verticesin each component exceeds the number of edges by 1.

It follows that the total number of vertices of T exceeds the total number of edges by atleast 2,
contradicting the fact that T has n — 1 edges.
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@iii) O (iv)

The removal of any edge results in a graph with n vertices and n — 2 edges, which must be
disconnected.

(iv) 0 (v)

Since T is connected, each pair of vertices is connected by atleast one path.

If agiven pair of verticesis connected by two paths, then they enclose a cycle, contradicting the
fact that each edgeis a bridge.

(V) O (vi)

If T contained a cycle, then any two vertices in the cycle would be connected by atleast two
paths, contradicting statement (V).

If an edge eis added to T, then, since the vertices incident with e are already connected in T, a
cycleis created.

The fact that only one cycle is obtained.
(vi) O (i)
Suppose that T is disconnected.

If we add to T any edge joining a vertex of one component to a vertex in another, then no cycle
is created.

Corollary :

If Gisaforest with n vertices and k components, then G has n — k edges.
Theorem 3.20. If T isany spanning forest of a graph G, then

(i) each cutset of G has an edge in common with T

(i) each cycle of G has an edge in common with the complement of T.

Proof. (i) Let C* be a cutset of G, the removal of which splits a component of G into two
subgraphs H and K.

Since T isa spanning forest, T must contain an edge joining a vertex of H to avertex of K, and
this edge is the required edges.

(i) Let C be acycle of G having no edge is common with the complement of T.

Then C must be contained in T, which is a contradiction.

3.5.1. Cayley theorem (3.21)

There are n"~2 distinct labelled trees on n vertices.

Remark. The following proofs are due to Priifer and Clarke.

Proof. First proof :

We establish a one-one correspondence between the set of labelled trees of order n and set of
sequences (ay, ay, -..... a,_»), Where each a, isan integer satisfying 1 < a < n.

Since there are precisely n"~? such sequence, the result follows immediately.

We assume that n = 3, since theresult istrivia if n=1 or 2.

In order to establish the required correspondence, wefirst let T be alabelled tree of order n, and
show how the sequence can be determined.

If b, isthe smallest label assigned to an end-vertex, welet a; bethe label of the vertex adjacent to
the vertex b;.



218 GRAPH THEORY WITH APPLICATIONS

We then remove the vertex b; and itsincident edge, leaving alabelled tree of order n— 1.

We next let b, be the smallest |abel assigned to an end-vertex of our new tree, and let a, be the
label of the vertex adjacent to the vertex b,.

We then remove the vertex b, and its incident edge, as before.
We proceed in thisway until there are only two verticesleft, and the required sequenceis (ay, a,,

...... a, _o)-
For example, if T isthe labelled tree in Figure (3.29),

then b;=2,8=6,b,=3,8=5Db;=4,a;=6
b,=6,8,=5Db;=5a=1
The required sequence is therefore (6, 5, 6, 5, 1)

4 3
6 5
7
2 1
Fig. 3.29.
To obtain the reverse correspondence, we take a sequence (&, -..... a,_o)

Let b; be the smallest number that does not appear in it, and join the vertices a; and b;.

We then remove a, from the sequence, remove the number b; from consideration, and proceed as
before.

In thisway we build up the tree, edge by edge,

For example, if we start with the sequence (6, 5, 6, 5, 1), thenb; =2, b, =3,b; =4, b, =6, b; =5,
and the corresponding edges are 62, 53, 64, 56, 15.

We conclude by joining the last two vertices not yet crossed out-in this case, 1 and 7.

It issimpleto check that if we start with any labelled tree, find the corresponding sequence, and
then find the labelled tree corresponding to that sequence, then we obtain the tree we started from.

We have therefore established the required correspondence and the result follows.

Second Proof :

Let T(n, k) be the number of 1abelled trees on n vertices in which a given vertex v has degree k.

We shall derive an expression for T(n, k), and the result follows on summing fromk=1tok=n-1.

Let A be any labelled tree in which deg (V) = k— 1.

The removal from A of any edge wz that is not incident with v leaves two subtrees, one
containing v and either w or z (w, say), and the other containing z.

If we now join the verticesv and z, we obtain alabelled tree B in which deg (V) = K see Fig. (3.30).

We call a pair (A, B) of labelled trees of linkage if B can be obtained from A by the above
construction.
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Our aim isto count the possible linkages (A, B).

A\ v w Z
n w z —>B

Fig. 3.30.

Since A may be chosenin T(n, k— 1) ways, and since B isuniquely defined by the edgewz which
may be chosenin (n—1) — (k—1) = (n—Kk) ways, the total number of linkages (A, B) is(n—K) T(n, k—1).

On the other hand, let B be alabelled treein which deg (v) =k, and let T, ...... T, be the subtrees
obtained from B by removing the vertex v and each edge incident with v.

Then we obtain alabelled tree A with deg (v) = k— 1 by removing from B just one of these edges
(v, say, wherew; liesin T;), and joining w; to any vertex u of any other subtree T (see Fig. 3.31).

Note that the corresponding pair (A, B) of labelled treesisalinkage, and that al linkages may be
obtained in this way.

Since B can be chosen in T(n, k) ways, and the number of ways of joining w; to vertices in any
other T; is (n—1) —n;, where n; is the number of vertices of T;, the total number of linkages (A, B) is

TN, K {(n—-1-n) + ...... +(h-1-n)} =(n-1)(k—-1) T(n, k), sincen, + ...... +n=n-1
We have thus shown that

(=K T(n, k—1) = (n—1)(k— 1) T(n, K).

Fig. 3.31.
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On iterating this result, and using the obvious fact that T(n, n — 1) = 1, we deduce immediately

T(n,K) = %:fﬁ (=Dp_y_s

On summing over al possible values of k, we deduce that the number T(n) of labelled treeson n

verticesis given by

A T

n-1
= T(n, k) =
T(n) kZl (n, k) kle(‘lﬁ

={(n-1)+1}""2=n""2,
Corollary :
The number of spanning trees of K, isn
Proof. To each labelled tree on n vertices there corresponds a unique spanning tree of K,..
Conversely, each spanning tree of K, gives rise to a unique labelled tree on n vertices.
Theorem 3.22.  Prove that the maximum number of verticesin a binary tree of depth dis29 —1,

n-2

whered > 1.

Proof. We shall prove the theorem by induction.
Basis of induction :
The only vertex at depth d = 1 isthe root vertex.
Thus the maximum number of vertices on depth
d=1is2'-1=1.
Induction hypothesis :
We assume that the theorem is true for depth k,
d>k=1
Therefore, the maximum number of vertices on depth k is 2K_1.
Induction step :
By induction hypothesis, the maximum number of vertices on depth k—1is 2~ — 1.
Since, we know that each vertex in abinary tree has maximum degree 2, therefore, the maximum

number of vertices on depth d = k is twice the maximum number of vertices on depth k — 1.

So, at depth k, the maximum number of verticesis2.2"1—1=2¢—1,
Hence proved.
Problem 3.38. What aretheleft and right children of b shown in Fig. 3.32 ? What are the left

and right subtrees of a ?
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Fig. 3.32.

Solution. Theleft child of b isd and the right child is e. The left subtree of the vertex a consists
of the verticesb, d, e and f and the right subtree of aconsists of the verticesc, g, h, j and k whose figures
are shown in Fig. 3.33. (a) and (b) respectively.

b

(@) )

Fig. 3.33.

Theorem 3.23. Prove that the maximum number of vertices on level n of a binary tree is 2",
wheren > 0.

Proof. We prove the theorem by mathematical induction.

Basis of induction :

When n = 0, the only vertex is the root.

Thus the maximum number of verticeson level n=0is2°=1.

Induction hypothesis :

We assume that the theorem is true for level K, wheren >k > 0.

So the maximum number of vertices on level k is 2.

Induction step :

By induction hypothesis, maximum number of vertices on level k—1is 22,

Since each vertex in binary tree has maximum degree 2, then the maximum number of vertices
on level kistwice the maximum number of level k—1.

Hence, the maxmum number of vertices at level kis=2.2"1= 2K
Hence, the theorem is proved.
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Theorem 3.24. |f Tisfull binary treewithi internal vertices, then T hasi + 1 terminal vertices
and 2i + 1 total vertices.

Proof. The vertices of T consists of the vertices that are children (of some parent O) and the
vertices that are not children (of any parent).

Thereisonenon child-theroot. Sincetherearei internal vertices, each parent having two children,
there are 2i children.

Thus, there are total 2i + 1 vertices and the number of terminal verticesis(2i +1) —i =i+ 1.

3.6. TREE TRAVERSAL

A traversal of atreeisaprocessto traverse atreein asystematic way so that each vertex isvisited
exactly once. Three commonly used traversals are preorder, postorder and inorder. We describe here
these three process that may be used to traverse a binary tree.

3.6.1. Preorder traversal
The preorder traversal of abinary treeis defined recursively as follows
(i) Visit theroot
(ii) Traverse the left subtree in preorder.
(iii) Traverse the right subtree in preorder

3.6.2. Postorder traversal
The postorder traversal of abinary treeis defined recursively as follows
(i) Traversethe left subtree in postorder
(if) Traverse the right subtree in postorder
(iii) Visit the root.

3.6.3. Inorder traversal
The inorder traversal of abinary tree is defined recursively as follows
(i) Traverseininorder the left subtree

(i) Vist the root

(iii) Traversein inorder the right subtree
Given an order of traversal of atreeit is possible to construct a tree.
For example,
Consider the following order :
Inorder=dbeac
We can construct the binary trees shown below in Fig. (3.36) using this order of traversal.

3.7. COMPLETE BINARY TREE

If al the leaves of afull binary tree are at level d, then we call atree as a complete binary tree of
depth d. A complete binary tree of depth of 3 isshownin Fig. (3.34).
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Fig. 3.34. A complete binary tree

3.7.1. Almost complete binary tree
A binary tree of depth dis said to be almost complete binary tree if
(i) each nodeinthetreeiseither at level d or d — 1.

(ii) for any node in the tree with aright descendant at level d, all the left descendants of this
node are also at level d.

Fig. (3.35) shows as amost complete binary tree.

Fig. 3.36. Binary trees constructed using given inorder.
Therefore we can conclude that given only one order of traversal of atreeit is possible to con-
struct a number of binary trees, a unique binary tree is not possible to be constructed.
For construction of aunique binary tree we require two ordersin which one hasto be inorder, the
other can be preorder or postorder.
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To draw a unique binary tree when inorder and preorder traversal of thetreeisgiven :
(i) Theroot of T isobtained by choosing the first vertex in its preorder.

(ii) Theleft child of theroot vertex isobtained asfollows. First usetheinroder traversal to find
the verticesin the left subtree of the binary tree (all the verticesto the left of thisvertex in
the inorder traversal are the part of the left subtree).

Theleft child of the root is obtained by selecting thefirst vertex in the preorder traversal of
the left subtree draw the left child.

(iif) Usetheinorder traversal to find the vertices in the right subtree of the binary tree (all the
vertices to the right of the first vertex are the part of the right subtree).

Then theright child is obtained by selecting thefirst vertex in the preorder traversal of the
right subtree. Draw the right child.

(iv) The procedure is repeated recursively until every vertex is not visited in preorder.
To draw a unique binary tree when inorder and postorder traversal of thetreeisgiven :
(i) Theroot of the binary treeis obtained by choosing thelast vertex in the postorder traversal.

(ii) Theright child of the root vertex is obtained as follows. First use the inorder traversal to
find the vertices in the right subtree. (all the vertices right to the root vertex in the inorder
traversal are the vertices of the right subtree).

Theright child of theroot is obtained by selecting the last vertex in the postorder traversal.
Draw the right child.

(iif) Usetheinorder traversal to find the vertices in the left subtree of the binary tree. Then the
left child is obtained by selecting thelast vertex in the postorder traversal of theleft subtree.
Draw the left child.

(iv) The processis repeated recursively until every vertex is not visited in postorder.

3.7.2. Representation of algebraic structure of binary trees

Binary trees are used to represent algebraic expressions, the vertices of the tree are labeled with
the numbers, variables or operations that makeup the expression. The leaves of the tree can be labeled
with numebrs or variables operations such as addition subtraction, multiplication, division or
exponentiation can only be assigned to internal vertices. The operation at each vertex operates on its left
and right subtrees from left to right.

3.8. INFIX, PREFIX AND POSTFIX NOTATION OF AN ARITHMETIC EXPRESSION

We know that even for fully parenthesised expression a repeated scanning of the expression is
still required in order to evaluate the expression. This phenomenon is due to the fact that operators
appear with the operands inside the expression. We can represent expressions in three different ways.
They are Infix, Prefix and Postfix forms of an expression.

3.8.1. Infix notation
The notation used in writing the operator between its operands is called infix notation.

The infix form of an algebraic expression is the inorder traversal of the binary tree representing
the expression. It gives the original expression with the elements and operations in the same order as
they originally occured. To make the infix forms of an expression unambiguous it is necessary to in-
clude parentheses in the inorder traversal whenever we encounter an operation.
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3.8.2. Prefix notation

The repeated scanning of an infix expression is avoided if it is converted first to an equivalent
parenthesis free of polish notaiton. The prefix form of an expression is the preorder traversal of the
binary tree representing the given expression. The expression in prefix notation are unambiguous, so
that no parentheses are needed in such expression.

3.8.3. Postfix notation

The postfix form of an expression is the postorder traversa of the binary tree representing the
given expression. Expressions written in postfix form are said to be in reverse polish notation. Expres-
sions in this notation are unambiguous, so that parentheses are not needed.

Table below gives the equivaent forms of severa fully parenthesised expressions. Note that in
both the prefix and postfix equivalents of such an infix expression, the variable namesare all in the same
relative position.

Infix Prefix Postfix
(x*y)+2 +Xyz Xy*z +
(x+y)* (z+1) *txy+zt Xy +zt +*
(x+y* 2 —(uv+w) —+X* yz+ uw Xyz* + uviw + —

3.8.4. Evaluating prefix and postfix form of an expression

To evauate an expression in prefix form, proceed as follow move from left to right until we find
a string of the form F,j, where F is the symbol for a binary operator and x and y are two operands.
EvaluatexFy and substitute theresult for the string . Consider the result asanew operand and continue
this procedure until only one number remains. When an expression isin postfix form, it is evaluated in
amanner similar to that used for prefix form, except that the operator symbol is after its operands rather
than before them.

Problem 3.39. Represent the expression as a binary tree and write the prefix and postfix forms
of the expression

A*B-C D+ FHF
Solution. The binary tree representing the given expression is shown below.
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Prefix : + —* AB 1+ CD/EF
Postfix : AB * CD 1t —EF/+
Problem 3.40. What is the value of
(a) Prefix expression X—84 + 6/42
(b) Postfix expression 823* 21 63/+
Solution. (a) The evaluation is carried out in the following sequence of steps
(i) x—84+6/42
(i) x4+6/42  sincethefirst stringinthe F, is—84and8-4=4.
(i) x4 + 62 replacing /42 by 4/2 =2
(iv) x48 replacing + 62 =8
(v) 32 replacing x48 by 4x8 = 32
(b) The evaluation is carried out in the following sequence of steps.
(i) 823* —21 63/+
(i) 86—21 63/+ replacing 23* by 2* 3=6

(iii)y 221 63/+ replacing 86 —by 8 —6=2
(iv) 463/ replacing2 1 2by 22 =4
(V) 42+ replacing 63/by 6/3 = 2
(Vi) 6 replacing 42+ by 4 + 2 =6.

3.9. BINARY SEARCH TREES

A binary searchtreeisbasically abinary tree, and thereforeit can betraversed in preorder postorder,
and inorder. If we traverse a binary search tree in inorder and print the identifiers contained in the
vertices of the tree, we get a sorted list of identifiersin the ascending order.

Binary trees are used extensively in computer science to store elements from an ordered set such
as a set of numbers or a set of strings.

Suppose we have a set of strings and numbers. We call them askeys. We are interested in two of
the many operations that can performed on this set.

(i) ordering (or sorting) the set

(if) searching the ordered set to locate a certain key and, in the event of not finding the key in
the set, adding it at the right position so that the ordering of the set is maintained.

A binary search treeisabinary tree T in which data are associated with the vertices. The dataare
arranged so that, [ for each vertex vin T, each dataitem in the | eft subtree of v islessthan the dataitem
in v and each dataitem in the right subtree of v is greater than the dataitemin v.

Thus, abinary search tree for aset Sisalabel binary treein which each vertex vislabelled by an
element |(v) O S such that

(i) for each vertex uin the left subtree of v, I(u) < [(Vv),
(ii) for each vertex u in the right subtree of v, I(u) > [(V),
(iii) for each element a O S, thereis exactly one vertex v such that [(v) = a.

The binary tree T in Fig. 3.38. is a binary search tree since every vertex in T exceeds every
number in its left subtree and is less than every number in its right subtree.
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Fig. 3.38. A binary search tree.

3.9.1. Creating a binary search tree

The following recursive procedure is used to form the binary search tree for alist of items. To
start, we create a vertex and place the first item in thelist in this vertex and assign this as the key of the
root. To add anew item, first compare it with the keys of vertices already in the tree. Starting at the root
and moving to the left if the item is less than the key of the respective vertex if this has aleft child, or
moving to the right if the item is greater than the key of the respective vertex if this vertex has aright
child when the item isless than the respective vertex and this vertex has no left child, then a new vertex
with thisitem asits key isinserted as a new left child.

Similarly, when the item is greater than the respective vertex and this vertex has no right child,
then a new vertex with thisitem asits key is inserted as a new right child. In this way, we store all the
itemsin the list in the tree and thus create a binary search tree.

3.10. STORAGE REPRESENTATION OF BINARY TREE

In this section, we discuss two ways of representing a binary tree in computer memory. The first
way uses asingle array, called the sequential representation of binary tree. The second is called the link
representation.

3.10.1. Sequential Representation

We can represent the vertices of a binary tree as array elements and access the vertices using
array notations. The advantage is that we need not use a chain of pointers connecting the widely sepa-
rated vertices.

Consider the almost complete binary tree shown in Fig. 3.39.

1(A)

O

2(B)
4 5

Fig. 3.39.
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Note that we assigned numbers for all the nodes. We can assign numbers in such away that the
root isassigned the number 1, aleft child isassigned twice the number assigned to itsfather, aright child
is assigned one more than twice the number assigned to its father. We can keep the vertices of an almost
complete binary tree in an array Fig. (3.40) shows vertices kept in an array.

123 45

Arrray positions vertices (A[B[c[D[E]
Fig. 3.40.

By this convention, we can map vertexi toith index in the array, and the parent of vertexi will get
mapped at an index i/2 where as left child of vertex i gets mapped at an index 2i and right child gets
mapped at an index 2i + 1. The sequential representation can be extended to general binary trees. We do
this by identifying an amost complete binary tree that contains the binary tree being represented. An
almost complete binary tree containing the binary tree in Fig. (3.41) is shown in Fig. (3.42).

Fig. 3.42. An almost complete binary tree containing the binary treein Fig. 3.41.

3.10.2. Linked representation

An array representation of a binary treeis not suitable for frequent insertions and deletions, and
therefore we find that even though no storage is wasted if the binary tree is a complete one when array
representation is used, it makes insertion and deletion is atreeis costly.
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Computer representation of trees based on linked allocation seems to more popular because of
the ease with which nodes can beinserted in and deleted from atree, and because tree structure can grow
to an arbitary size. Therefore instead of using an array representation, one can use a linked representa
tion, in which every node is represented as a structure having 3 fields, one for holding data, one for
linking it with left sub-tree and the one for linking it with right sub-tree as shown below. A genera tree
can easily be converted into an equivalent binary tree by using the natural correspondence algorithm.

Where LLINK or RLINK contain a pointer to the left sub-tree respectively of the node in
guestion. DATA contains the information which is to be associated with this particular node. Each
pointer can have avalue of NULL.

An example of binary tree as agraph and its corresponding linked representation in memory are
givenin Fig. (3.43).

nil

nil

(a) : Binary tree (b) : Linked representation of binary tree.

Fig. 3.43.
Problem 3.41. Forma binary search tree
(i) for the data 16, 24, 7, 5, 8, 20, 40, 3 in the given order
(if) for the words if, then, end, begin, else (used as keywords in ALGOL) in lexicographic
order.

Solution. (i) We begin by selecting the number 16 to be the root. Since the next number 24 is
greater than 16, and aright child of the root and level it with 24.

We choose next element in the list 7 and again start at the root and compare it with 16. Since 7 is
less than 16. Add aleft child of the root and level it with 7.

We compare 5to 7, since 7 is greater than 5, then we move further down to the right child of 7
and level the vertex to 5.

Similar procedure is followed for left out numbers in the list. The Fig. (3.44) shows the steps
used to construct the binary search tree.
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Fig. 3.44.

(if) We start the word if as the key of the root. Since then comes after if (in alphabetical order),
add aright child of the root with key then. Since the next word end comes beforeif, add aleft child of the

root with key end.

The next word begin is compared with if. Since beginis before if we move down to the left child
of if, which isthe vertex labelled end. We compare end with begin. Since begin comes before end, then
we move further down to the left child of end and level with key begin.

Similarly else comes after begin, we move further down to the right child of begin and level with
key else. The Fig. (3.45) shows the steps used to construct the binary search tree.

®
G (hen)
Gean)
(else)

Fig. 3.45.
Problem 3.42. Given the preorder and inorder traversal of a binary tree, draw the unique tree
Preorder :g b g a ¢ p d e r
Inorder : g b ¢c a g p e drr
Solution. Here g isthe first vertex in preorder traversal, thus g is the root of the tree.
Using inorder traversal, left subtree of g consists of the vertices g, b, cand a.

Then the left child g is b since b is the first vertex in the preorder traversal in the left subtree.
Similarly, right subtree of g consists of the vertices P, e, d and r, then the right child of gisP since Pis
the vertex in the preorder traversal in the right subtree.

Repeating the above process with each node, we finally obtain the required tree as shown in
Fig. (3.46).
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Fig. 3.46.
Problem 3.43. Given the postorder and inorder traversal of a binary tree, draw the unique
binary tree

Postorder :d e ¢ f b h i g a

In order :d c e b f ah gi
Solution. Here aisthe last vertex in postorder traversal, thus a is the root of the tree.
Using inorder traversal, right subtree of root vertex a consists of the vertices h, g and i.
Theright child of ais g since g isthe last vertex in the post order traversal in the right subtree.

Similarly, |eft subtree of a consists of the verticesd, c, e, b and f then the left child of aisb since
b isthe last vertex in the postorder traversal in the left subtree.

Repeating the above process with each vertex, we finally obtain the required tree as shown in
Fig. (3.47).

Fig. 347.
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Problem 3.44. Determine the value of the expression represented in a binary tree shown in
Fig. (3.48).

Fig. 3.48.

Solution. The expression represented by the binary treeis (9/3x4+2) /(1 +2) * 3) —2) and
thevalueis(3* 4+2)/((3*3)*2)=(12+2)/(9—-2)=14/7=2.

Problem 3.45. Use a binary tree to represent the expression

(ha*b (i) (a+ b)lc (iii) @+ b) * (c/d) (iv) ((a+b) * c) + (dle)

Solution. (i)

[}

Fig. 3.49.

(ii)

Fig. 3.50.
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(iii)

(iv)

Fig. 3.52.

Theorem 3.25. Let T = (V, E) be a complete m-ary tree of height h with | leaves. Then| <m
and h >[log, 1.

Proof. The proof that | < m" will be established by induction on h.

When h=1, T isatree with aroot and m children.

Inthiscasel =m=n", and the result istrue. Assumethe result true for all trees of hei ght <h, and
consider atree T with height hand | leaves. (the level numbersthat are possible for these leavesare 1, 2,
...... , h, with at least mof the leaves at level h).

Thel leavesof T arealso thel leaves (total) for themsubtree T,, 1<i <m, of T rooted at each of
the children of the root.

For 1 <i <m,let|; bethe number of leavesin subtree T;.

(In the case where leaf and root coincide, |; = 1. But sincem= 1 and h-1 = 0, we have
m-1>1=1)

By the induction hypothesis, I, < m(T;) < m"~%, where h(T,) denotes the height of the subtree T,
andsol =1+, + ...+l <mm~Y)=n"

With | < m", we find that log,,, | < log,,, (m") = h, and since h 0 Z*, it follows that h > [log,, I].

Corollary :

Let T be abalanced complete m-ary tree with | leaves. Then the height of T is[log,, I1.
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Problem 3.46. Answer the following questions for the tree shown in Fig. (3.53).

Fig. 3.53.
(a) Which vertices are the leaves ? (b) Which vertex is the root ?
(c) Which vertex is the parent of g ? (d) Which vertices are the descendants ?
(e) Which vertices are the siblings of s ? (f) What is the level number of vertex f ?
(g) Which vertices have level number 4 ?
Solution. (a) f, h, k, p, g, s, t (b) a
(cd (defjast
(¢ at (f)2

@kpoast
Problem 3.47. For the tree shown in Fig. (3.54), list the vertices according to a preorder
traversal, an in order traversal, and a post order traversal.

r

Fig. 3.54.



TREES 235

Solution. Preorder : r,j,h,g,ed, b, a, ¢ f,i,k,mp,snq,t v,wu
Inorder : h,e a b, d, c g,fji,r,mspknvtwaqu
Postorder : a, b, c,d, e f, g, h,i,j,s,p, mv,w,t,uqnkr.

3.11. ALGORITHMS FOR CONSTRUCTING SPANNING TREES

An algorithm for finding a spanning tree based on the proof of the theorem : A simple graph G
has a spanning tree if and only if G is connected, would not be very efficient, it would involve the
time-consuming process of finding cycles. Instead of constructing spanning trees by removing edges,
spanning tree can be built up by successively adding edges. Two algorithms based on this principle
for finding a spanning tree are Breath-first search (BFS) and Depth-first search (DFS).

3.11.1. BFS algorithm

In thisalgorithm arooted tree will be constructed, and underlying undirected graph of thisrooted
formsthe spanning tree. Theideaof BFSisto visit all verticeson agiven level before going into the next
level.

Procedure:

(i) Arbitrarily choose a vertex and designate it as the root. Then add all edgesincident to this
vertex, such that the addition of edges does not produce any cycle.

(if) The new vertices added at this stage become the vertices at level 1 in the spanning tree,
arbitrarily order them.

(iii) Next, for each vertex at level 1, visited in order, add each edge incident to this vertex to the
tree aslong as it does not produce any cycle.

(iv) Arbitrarily order the children of each vertex at level 1. This produces the vertices at level
2 inthetree.

(v) Continue the same procedure until all the vertices in the tree have been added.
(vi) The procedure ends, since there are only a finite number of edgesin the graph.

(vii) A spanning treeis produced since we have produced atree without cycle containing every
vertex of the graph.

3.11.2. DFS algorithm

An dternative to Breath-first search is Depth-first search which proceeds to successive levelsin
atree at the earliest possible opportunity.

DFSisalso called back tracking.
Procedure:
(i) Arbitrarily choose a vertex from the vertices of the graph and designate it as the root.

(if) Form apath starting at this vertex by successively adding edges aslong as possible where
each new edge is incident with the last vertex in the path without producing any cycle.

(i) If the path goes through all vertices of the graph, the tree consisting of this path is a
spanning tree.

Otherwise, move back to the next to last vertex in the path, and, if possible, form a new
path starting at this vertex passing through vertices that were not already visited.
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(iv) If thiscannot be done, move back another vertex in the path, that istwo vertices back in the
path, and repeat.

(V) Repeat this procedure, beginning at the last vertex visited, moving back up the path one
vertex at atime, forming new pathsthat are as long as possible until no more edges can be
added.

(vi) This process ends since the graph has a finite number of edges and is connected. A span-
ning tree is produced.

Problem 3.48. Use BFSalgorithm to find a spanning tree of graph G of Fig. (3.55).

b e

Fig. 3.55.
Solution. (i) Choose the vertex a to be the root.

(if) Add edgesincident with all vertices adjacent to a, so that edges{a, b}, {a, ¢} are added.
Thetwo verticesb and carein level 1in thetree.

(iii) Add edges from these vertices at level 1 to adjacent vertices not already in the tree.
Hence the edge {c, d} isadded. The vertex disin level 2.

(iv) Addedgefromdinlevel 2to adjacent vertices not already in thetree. The edge{d, € and
{d, g} are added.

Henceeand g areinlevel 3.

(V) Add edge from e at level 3 to adjacent vertices not aready in the tree and hence{e, f } is
added. The steps of Breath first procedure are shown in Fig. (3.56).

b b
N a< a@d
C
C
(@) (b)

(c)
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c g
(d)

Fig. 3.56.
Hence, Fig. (3.56) (e) is the required spanning tree.

Problem 3.49. Find a spanning tree of the graph of Fig. (3.57) using Depth-first search
algorithm.

Fig. 3.57.

Solution. Choose the vertex a.

Form apath by successively adding edgesincident with vertices not already in the path aslong as
possible.

This producesthe patha—-c—-d—-e—f—g.

Now back track of f. There is no path beginning at f containing vertices not already visited.
Similarly, after backtrack at e, thereis no path. So move back track at d and form the path d —b.
This produces the required spanning tree which is shown in Fig. (3.58).

Fig. 3.58.

Problem 3.50. Give all the spanning trees of K,.
Solution. Here n = 4, so there will be 4%~2 = 16 different spanning trees.
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All the spanning trees of K, are shown in Fig. (3.59).

1 2 1 2 1 2
3 4 3 4 3 4
Ky
1 2 1 2 1 2
| | :] X D<
3 4 3 4 3 4

1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2 1 2

8 4 3 4 .j 1 N
3 4 3 4 3 4

Fig. 3.59. K, and its 16 different spanning trees.

Theorem 3.26. If G= (V, E) isan undirected graph, then G is connected if and only if G hasa
spanning tree.

Proof. If G hasaspanning tree T, then for every pair a, b of distinct verticesin V asubset of the
edgesin T provides a (unique) path between a and b, and so G is connected.

Conversdly, if G is connected and G is not atree, remove al loops from G.
If the resulting subgraph G, is not atree, then G; must contain acycle C,.
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Remove an edge e, from C; and let G, = G, —e;.

If G, contains no cycles, then G, is a spanning tree for G because G, contains al the verticesin
G, isloop-free, and is connected.

If G, doesnot contain acycle, say, C,, then remove and edgee, from C, and consider the subgraph
G3=Gy—6, =G, —{ey, &}.

Once again, if G5 contains no cycles, then we have a spanning tree for G.

Otherwise we continue this procedure a finite number of additional times until we arrive at a
spanning subgraph of G that is loop-free and connected and contains no cycles. (and, consequently, isa
spanning tree for G).

Theorem 3.27. If a, baredistinct verticesinatree T = (V, E), then there is a unique path that
connects these vertices.

Proof. Since T is connected, thereis at least one path in T that connects a and b.

If there were more, then from two such paths some of the edges would form a cycle.

But T has no cycles.

Theorem 3.28. For everytree T= (V, E), if | V| 2 2, then T has at least two pendant vertices.

Proof. Let|V |=n=2

We know that | E|=n—1, so, if G = (V, E) isan undirected graph or multigraphthen ) deg (V)
vV

=2|E|itfollowsthat 2(n-1) =2 |E|= ) deg(v).
vV

Since T is connected, we have deg (v) = 1 for al v O V.
If T has fewer than two pendant vertices, then either deg (v) = 2 for al vV or deg (v*) = 1 for

only onevertex v* in V.
In the first case we arrive at the contradiction
2n-1)= ) deg(v) 22|V |=2n.

vV

For the second case we find that

2(n-1)= ) deg(v) 21+2(n-1)
vV

another contradiction.

Theorem 3.29. IfeverytreeT=(VE),|V|=]|E|+ L

Proof. The proof is obtained by applying the alternative form of mathematical inductionto | E |.

If | E| =0, then the tree consists of asingle isolated vertex asin Fig. (3.60) (a).

Here|V |=1=|E|+ 1, parts (b) and (c) of the figure verify the result for the cases, where
|[E|]=1or2.
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(a) (b) (©

Fig. 3.60.

Assume the theorem is true for every tree that contains atmost k edges, where k = 0.

Now consider atree T = (V, E), asin Fig. (3.61) where | E | = k + 1. (the dotted edges indicates
that some of the tree does not appear in the figure).

X
w
y »
z

Fig. 3.61.
If, for instance, the edge with end pointsy, zisremoved from T, we obtain two subtrees, T,
=(Vy B and T, = (Vo By, where |V | = |V [+]|V,|and |E [+ E [+ 1=]E].
(One of the these subtrees could consists of just asingle vertex if, for example, the edge with end
points w, X were removed).
Since0<|E;|<K and 0<|E,| <K, itfollows, by theinduction hypothesis, that | E; | + 1
=|V,| fori=1,2
Consequently, |V [= [V [+[Vy|=(E [+ D) + (| E [+ 1)
=(E+]E[+D+1
=|El+1,
and the theorem follows by the alternative form of mathematical induction.
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Theorem 3.30. The following statements are equivalent for a loop-free undirected graph
G=(V, E).
(i) Gisatree
(if) Gisconnected, but the removal of any edge from G disconnects G into two subgraphs that
are trees.
(iii) Gcontainsnocycles,and |V |=|E|+ 1
(iv) Gisconnected,and|V|=|E|+ 1
(v) G contains no cycles, and if a, b [7V with {a, b} [JE then the graph obtained by adding
edge {a, b} to G has precisely one cycle.
Proof. (i) O (ii)
If Gisatree, then Gisconnected. So let e = {a, b} be any edge of G.
Then if G —eis connected, there are at least two paths in G from a and b.

Hence G — e is disconnected and so the vertices in G — e may be partitioned into two
subsets.

(1) Vertex a and those vertices that can be reached from a by a path in G — e, and
(2) Vertex b and those vertices that can be reached from b by a pathin G —e.

There two connceted components are trees because a loop or cycle in either component
would also bein G.

@) O (ii)
If G containsacycle, then e={a, b} be an edge of the cycle. But then G —e is connected,
contradicting the hypothesisin part (ii).
So G contains no cycles, and since G is aloop-free connected undirected graph, we know
that G isatree.
Conseguently, it followsfrom |V | = | E| + 1.

@ii) O (iv)
Let K(G) =r and let G;, Gy, ....., G, be the components of G.

For1<i<r,selectavertexv, UG, and add ther —1 edges{vy, o}, { Vo, V}, oo, {V, _1, Vi }
to G toformthegraph G' = (V, E'), which isatree.

Since G' isatree, we know that | V | = | E' | + 1 because of, in every tree T = (V, E),
[VI=|E[+1

But from part (iii), |V |=|E|+1,s0|E|=|E |andr —1=0, withr =1, it followsthat G
is connected.

Problem 3.51. If G= (V, E) isaloop-free undirected graph, prove that G isatreeif thereisa
unique path between any two vertices of G.

Solution. If there is a unique path between each pair of verticesin G, then G is connected.
If G contains acycle, then thereisapair of vertices x, y with two distinct paths connecting x and y.
Hence, G is aloop-free connected undirected graph with no cycles, so G isatree.

Problem 3.52. Let G = (V, E) be aloop-free connected undirected graph. Let H be a subgraph
of G. The complement of H in a G is the subgraph of G made up of those edgesin G that are not in H
(along with the vertices incident to these edges).
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(i) If Tisaspanningtreeof G, prove that the complement of T in G does not contain a cut-set
of G.

(i) If Cisacut-set of G, prove that the complement of C in G does not contain a spanning tree
of G.

Solution. (i) If the complement of T contains a cut set, then the removal of these edges disconnects
G, and these are vertices x, y with no path connecting them. Hence T is not a spanning tree
for G.

(i) If the complement of C contains a spanning tree, then every pair of verticesin G hasapath
connecting them, and this path includes no edges of C.

Hencethe removal of the edgesin C from G does not disconnect G, so C isnot a cut set for
G.

Problem 3.53. A labeled treeisonewherein the vertices are labeled. If the tree has n vertices,
then{1, 2, 3, ....., n} isused asthe set of labels. We find that two trees that are isomor phic without labels
may become non isomor phic when labeled. In Fig. (3.62) the first two trees are isomorphic as labelled
trees. The third tree is isomorphic to the other two if we ignore the labels, as a labeled tree, however, it
is not isomorphic to either of the other two.

8@ 8@ 8@
30— @f 30— @f 60— @5
6 6 3
5 5 1
(i) (if) (iif)
Fig. 3.62.

The number of non isomorphic trees with n labeled vertices can be counted by setting up a one-
to-one correspondence between these trees and the n"~2 sequence (with repetitions allowed) Xy, X, .....
X,_» Whose entries are taken from{1, 2, 3, ...... , n}. If T is one such labeled tree, we use the following
algorithm to establish the one-to-one correspondence. (Here T has at least one edge)

Sep 1: set the counter i to 1

Sep2:saT(i)=T

Sep 3: Snce atree has at least two pendant vertices, select the pendant vertex in T(i) with the
smallest label y;. Now remove the edge {x;, y;) from T(i) and use x for thei™ component of the sequence.
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Sep 4: If i = n— 2, we have the sequence corresponding to the given labeled tree T(1). Ifi Zn—2,
increasei by 1, set T(i) equal to the resulting subtree obtained in step (3), and return to step (3).

(&) Find the six-digit sequence for trees (i) and (iii) in Fig. (3.62).

(b) If visavertexin T, show that the number of times the label on v appearsin the sequence
X1y Xop wee Xy _ o IS DEQ (V) — 1.

(c) Reconstruct the labeled tree on eight vertices that is associated with the sequence 2, 6, 5,
5,5, 5.

(d) Develop an algorithm for reconstructing a tree from a given sequence x;, Xs, ...... Xy _ -
Solution. (a) (i) 3, 4, 6, 3, 84 (i) 3,4,6,6,8,4

(b) No pendant vertex of the given tree appears in the sequence, so the result is true for these
vertices. When an edge{x, y} isremoved andy isapendant vertex (of thetree or one of the
resulting subtrees), the deg () is decreased by 1 and x is placed in the sequence.

Asthe process continues, either (i) this vertex x becomes a pendant vertex in a subtree and
is removed but not recorded again in the sequence, or (ii) the vertex x is left as one of the
last two vertices of an edge.

In either case x has been listed in the sequence [deg (X) — 1] times.

3
4
2 6 5
(© i
7
1 8

Fig. 3.63.

(d) From the given sequence the degree of each vertex in the tree is known.

Step 1: Set the counter i to 1.

Step 2 : From among the vertices of degree 1, selected the vertex v with the smallest 1abel.

This determinesthe edge { v, x;} . Removev from the set of labels and reduce the degree of

X by 1.

Step 3: If i <n—2,increasei by 1 and return to step (2).

Step 4: If i = n—2, the vertices (Iabels) X, _s, X,,_, are connected by an edgeif X,_3 % X, _».

(The tree is then complete).

Problem 3.54. Let G = (V, E) bealoop-free undirected graph with | V| = n. Provethat Gisa

treeif and only if, P(G, A) = A(A —1)" 1.

Solution. If Gisatree, consider G arooted tree. Then these are A choicesfor coloring the root of
G and (A — 1) choices for coloring each of its descendants. The result then follows by rule of product.
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Conversely, if P(G, A) = A(A — 1)" 1, then since the factor A occurs only once, the graph G is
connected.

PG AN =AA-=D" 1=A"—(n—D) A1+ . + (D"
0 Ghasnverticesand (n—1) edges.
Hence Gisatree.

Problem 3.55. Let G= (V, E) bealoop-free undirected graph. If deg (v) =2 for all v [TV, prove
that G contains a cycle.

Solution. We assume that G = (V, E) is connected, otherwise we work with a component of G.

Since G is connected, and deg (v) = 2 for all v OV, it follows from, for every tree T = (V, E), if |
V| =2 then T has at least two pendant vertices, that G is not a tree. But every loop-free connected
undirected graph that is not a tree must contain a cycle.

Problem 356. Let T = (V, E) beatreewith V = {v;, V,, ...... v.}, for n > 2. Prove that the

number of pendant verticesin Tisequal o2+ )  (deg(v)-2).
deg(vi)=3

Solution. For 1 <i (< n), let x, = the number of vertices v, where deg (v) = 1.
Then x; + X, + ...... +X,_1=|V|=|E|+L,02|E|=2(-1+ X + X + ...... +X,_1)

But2|E|= ngdeg(") = (X D+ g+ o (M=) %)

Solving 2(— 1 + X, + X, + ...... +Xy_1) =X+ 2%+ ... +(n—1) x,_, for x;, wefind that
Xp =2+ Xg+ 2%, + 35 + ... +(N—=3) Xy_1

=2+ Y [deg(v)-2].
deg (v) =3

Problem 3.57. Suppose that some one starts a chain letter. Each person who receives the
letter isasked to send it on to four other people. Some people do this, but others do not send any letters.
How many people have seen the letter, including the first person, if no one receives more than one letter
and if the chain letter ends after there have been 100 people who read it but did not send it out ? How
many people sent out the letter ?

Solution. The chain letter can be represented using a 4-ary tree.

The internal vertices correspond to people who sent out the letter, and the leaves correspond to
people who did not send it out.

Since 100 people did not send out the letter, the number of leavesin thisrooted treeis | = 100.
Hence, the number of people who have seen the letter isn= (4 . 100 - 1)/(4 — 1) = 133.

Also, the number of internal verticesis 133 — 100 = 33.

So, that 33 people sent out the letter.
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Problem 3.58. Which of the rooted trees shown in Fig. (3.64) are balanced ?

AR £,

T3
Fig. 3.64.
Solution. T, is balanced, since all its leaves are at levels 3 and 4.
However, T, is not balanced, since it has leaves at levels 2, 3 and 4.
Finally, T5isbalanced, since dl itsleaves are at level 3.

Problem 3.59. Findthelevel of each vertex in the rooted tree shown in Fig. (3.65). What isthe
height of thistree ?

Fig. 3.65.

Solution. Theroot aisat level 0. Verticesb, j and k areat level 1. Verticesc, e, fand | areat level 2.
Verticesd, g, i, mand nare at level 3.

Finally, vertex hisat level 4. Since the largest level of any vertex is 4, this tree has height 4.
Problem 3.60. Which of the graphs shown in Fig. (3.66) are trees ?

a b a b a b a b
[ d
c d ¢
d c d
e f e f e f e f
G, G, G, G,

Fig. 3.66.
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Solution. G, and G, are trees, since both are connected graphs with no simple circuits. G5 is not
atree because g, b, a, d, eisasimple circuit in this graph.
Finaly, G, isnot atree sinceit is not connected.

Theorem 3.31. An undirected graph is a tree if and only if there is a unique simple path be-
tween any two of its vertices.

Proof. First assumethat T isatree. Then T is a connected graph with no simple circuits.
Let x and y be two vertices of T. Since T is connected there is a simple path between x and y.

Moreover, this path must be unique, for if there were a second such path, the path formed by
combining the first path from x to y followed by the path from y to x obtained by reversing the order of
the second path from x to y would form a circuit. Thisimpliesthat thereisasimple circuit in T.

Hence, there is a unique simple path between any two vertices of atree.

Now assume that there is a unique simple path between any two vertices of agraph T.

Then T is connected, since there is a path between any two of its vertices.

Furthermore, T can have no smplecircuits. To seethat thisistrue, suppose T hasasimple circuit
that contained the vertices x and y.

Then there would be two simple paths between x and y, since the ssmple circuit is made up of a
simple path from x to y and a second simple path from y to x.

Hence, a graph with a unique simple path between any two verticesis atree.

Problem 3.61. Inthe rooted tree T (with root &) shown in Fig. (3.67), find the parent of C, the
children of g, the siblings of h, all ancestors of e, all descendants of b, all internal vertices, and all
leaves. What is the subtree rooted at g ?

Fig. 3.67. A rooted tree T.

Solution. The parent of cisb. The children of gare h, i and j. The siblings of harei and j.
The ancestors of e are ¢, b and a. The descendants of b are ¢, d and e.

Theinterna verticesare a, b, ¢, g, hand j.

Theleavesared, g, f, i, k, | and m.

The subtree rooted at g is shown in Fig. (3.68).
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Fig. 3.68. The subtree rooted at g.

Problem 3.62. Aretherooted treesin Fig. (3.69) full m-ary treesfor some positive integer m?

Fig. 3.69. Four rooted trees.

Solution. T, isafull binary tree since each of itsinternal vertices has two children.

T, isafull 3-ary tree since each of itsinternal vertices has three children.

In T4 each internal vertex has five children, so Tyisafull 5-ary tree.

T, isnot afull mary tree for any m since some of its internal vertices have two children and
others have three children.

Problem 3.63. What aretheleft and right children of d in the binary tree T shown in Fig. (3.70).
(Where the order is that implied by the drawing). What are the left and right subtrees of C ?
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Fig. 3.70.

Solution. The left child of disf and theright child is g. We show the left and right subtrees of ¢
in Fig. (3.71) (a) and (b), respectively.

h
®

(@) (b)
Fig. 3.71.

3.12. TREES AND SORTING

3.12.1. Decision trees

Rooted trees can be used to model problemsin which a series of decisions|eadsto asolution. For
instance, a binary search tree can be used to locate items based on a series of comparisons, where each
comparison tells us whether we have located the item, or whether we should go right or left in a subtree.

A rooted tree in which each internal vertex corresponds to a decision, with a subtree at these
vertices for each possible outcome of the decision, is called a decision tree. The possible solutions of
the problem correspond to the paths to the leaves of this rooted tree.

3.12.2. The complexity of sorting algorithms

Many different sorting algorithms have been developed. To decide whether a particular sorting
algorithm is efficient, its complexity is determined. Using decision trees as models, a lower bound for
the worst-case complexity of sorting algorithms can be found. We can use decision trees to model
sorting algorithms and to determine an estimate for the worst-case complexity of these algorithms.
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Note that given n elements, therearen ! possible orderings of these elements, since each of the
n! permutations of these elements can be the correct order. The sorting algorithms are based on binary
comparisons, that is, the comparison of two elements at a time. The result of each such comparison
narrows down the set of possible orderings.

Thus, a sorting algorithms based on binary comparisons can be represented by abinary decision
tree in which each internal vertex represents a comparison of two elements. Each leaf represents one of
the n! permutations of n elements.

Fig. 3.72. A Decision tree for sorting three distinct elements.

3.12.3. The merge sort algorithms

For sorting agiven list of nitemsinto ascending order. The method is called the merge sort, and
we find that the order of its worst-case time-complexity function is 0/(n log, n). This will be accom-
plished in the following manner.

(i) First we measure the number of comparisons needed when n is a power of 2. Our method
will apply apair of balanced complete binary trees.

(if) Then we cover the case for general n by using optional material on divide and conquer
aorithms, where

(&) Thetimeto solvetheintia problem of size n =1 isaconstant ¢ = 0 (solving the problem
for asmall value of ‘n’ directly).

(b) Thetime to break the given problem of size n into asmaller (similar) problems, together
with the time to combine the solutions of these smaller problems to get a solution for the
given problem, is h(n), a function of n.

For the case where n is an arbitrary positive integer, we start by considering the following
procedure.

Given alist of n items to sort into ascending order, the merge sort recursively splits the
given list and all subsequent sublists in half until each sublist contains a single element.
Then the procedure merges these sublistsin ascending order until the original nitems have
been so sorted. The splitting and merging processes can best be described by a pair of
balanced complete binary trees.
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Merge sort algorithm
Procedure:
Step 1: If n=1, thenlistisalready sorted and the process terminates. If n> 1, then go to step (2).
Step 2: (Divide the array and sort the subarrays). Perform the following :
(i) Assign mthe vaue (/200
(if) Assignto List 1 the subarray
List[1], List[2], ...... List [m].
(iii) Assignto List 2 the subarray
List [m+ 1], List[m+ 2], ......, List [n].
(iv) Apply mergesort to List 1 (of sizem) and to List 2 (of size n—m).
Step 3: Merge (List 1, List 2).

Problem 3.64. Determine the (worst-case) time-complexity function of the merge sort, con-
sider alist of n elements, assuming that n = 2,

Solution. In the splitting process, the list of 2" elementsis first split into two sublists of size 2"~1.,
These are the level 1 vertices in the tree representing the splitting process. As the process continues,
each successive list of size 2"~% h >k, isat level k and splits into two sublists of size (1/2) (2" %)
=2"-k=1 At level hthe sublists each contain 2"~* = 1 element.

Reversing the process, we first merge the n = 2" leaves into 2"~ ordered sublists of size 2.
These sublists are at level h—1 and require (1/2) (2") = 2"~ comparisons.

As this merging process continues, at each of the 2 vertices at level k, 1< k<h, thereisa
sublist of size 2"~ obtained from merging the two sublists of size 2"~%~1 at its children (on
level k + 1). This merging requires at most 2" -1+ 2h-k-1_1

=2"-kK_1 comparisons.
When the children of the root are reached, there are two sublists of size 2"~ (at level 1).
To merge these sublistsinto the final list requires at most 2"~* + 2" -1 —1 = 2" — 1 comparisons.
Consequently, for 1 <k < h, at level k there are 2~ pairs of vertices.

At each of these vertices is a sublist of size 2"~ so it takes atmost 2" ¥ ** — 1 comparisons to
merge each pair of sublists.

With 2k~ pairs of vertices at level k, the total number of comparisons at level k is atmost
2k—1 (2h—k+ 1_ 1)
When we sum over all levelsk, where 1 < k < h, we find that the total number of comparisonsis

h h-1
at most sz—l (2"-kr1_1)= 22" (2h~k -1
k=1 k=0

h-1 h

-1
-32-32
k=0 k=0

=h.2"—-(2"-1)
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With n = 2", we have h = log, n and
h.2"—(@2"-1)=nlog,n—(n—1)
=nlog,n—n+ 1.

Where n log, n is the dominating term for large n.

Thus the (worst-case) time-complexity function for this sorting procedureisg(n) =nlog, n—n+1
andg 00 (nlog, n), forn=2"h0z.

Hence the number of comparisons needed to merge sort alist of nitemsis bounded above by dn
log, n for some constant d, and for all n = n,, where n, is some particular (large) positive integer.

Problem 3.65. Show that the order of the merge sort is 0 (n log, n) for all n [7Z".

Solution. Let a, b, c O Z*, withb > 2.

Ifg:Zz' -  R*O{0} isamonotoneincreasing function, where g(1) < c,

g(n) < ag (n/b) + cn, for n=Db" h 0 Z*, then for the case wherea = b, we have g 0 0 (nlog n) for
dlnOZz".

The function g : z" 1 R" O {0} will measure the (worst-case) time-complexity for this
algorithm by counting the maximum number of comparisons needed to merge sort an array of n items.

Forn=2" h 0z, wehave

g(n) = 2log (n/2) + [(n/2) + (n/2) —1]

The term 2g (n/2) results from step (2) of the merge sort algorithm, and the summand [(n/
2) + (n/2) — 1] follows from step (3) of the agorithms.

With g(1) = 0, the preceding equation provides the in equalitiesg(1) =0 < 1.

gn)=29(n/2) + (n—1) <29 (n/2) +n

forn=2" h0z".

We also observe that g(1) =0, g(2) = 1, g(3) =3 and g(4) =5, s0 g(1) < g9(2) < 9(3) < g(4).

Consequently, it appears that g may be a monotone increasing function.

Lemma:

Let L, and L, be two sorted lists of ascending numbers. Where L; contains n, elements, for i =1,
2. Then L, and L, can be merged into one ascending list L using atmost n; + n, — 1 comparisons.

Proof. Tomergel, L, intolist L, we perform the following algorithm.

Step 1: Set L equal to the empty list @

Step 2 : Compare the first elementsin L4, L.

Remove the smaller of the two from the list it isin and place it at the end of L.

Step 3: For the present listsL ;, L, (one change is made in one of these lists each time step (2) is
executed), there are two considerations.

(a) If either of L4, L, isempty, then the other list is concatenated to the end of L. This completes
the merging process.

(b) If not, return to step (2).

Each comparison of anumber from L, with onefrom L, resultsin the placement of an element at
the end of list L, so there cannot be more than n, + n, comparisons.

When one of the lists L; or L, becomes empty no further comparisons are needed, so the maxi-
mum number of comparisons needed isn; + n, — 1.
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Theorem 3.32. A sorting algorithm based on binary comparisons requires at least [log n !]
comparisons.

Corollary. The number of comparisons used by a sorting algorithm to sort n elements based on
binary comparisonsin Q (nlog n).

Theorem 3.33. The average number of comparisons used by a sorting algorithms to sort n
elements based on binary comparisonsis Q (nlog n).

Problem 3.66. Suppose there are seven coins, all with the same weight, and a counterfeit coin
that weighsless than the others. How many weighings are necessary using a balance scale to determine
which of the eight coins is the counterfeit one ? Give an algorithm for finding this counterfeit coin.

Solution. There are three possibilities for each weighing on a balance scale.

The two pans can have equal weight, the first pan can be heavier, or the second pan can be
heavier.

Consequently, the decision tree for the sequence of weighingsis a 3-ary tree.

There are at least eight leaves in the decision tree since there are eight possible outcomes (since
each of the eight coins can be the counterfeit lighter coin), and each possible outcome must be repre-
sented by at least one leaf.

The largest number of weighings needed to determine the counterfeit coin is the height of the
decision tree. The height of the decision treeis at least [log; 8] = 2.

Hence, at least two weighings are needed.
It is possible to determine the counterfeit coin using two weighings.
Problem 3.67. Using the Merge Sort, sortsthelist 6, 2,7, 3,4, 9,5, 1, 8.
Solution. The tree at the top of the Figure (3.73) shows how the process first splits the given list
into sublists of SIZE 1.
The merging process is than outlined by the tree at the bottom of the Figure 3.73.
6,2,7,3,4-9,51,8

i
(<=}

51,

\

AN A A VAN

6-2 7 3/ 4 9 51 8

______ 6
6 2

to\_—‘

1,58

1,2,3,4,5,6,7,8,9

Fig. 3.73.
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3.13. WEIGHTED TREES AND PREFIX CODES

Consider the problem of using bit strings to encode the letters of the English al phabet (where no
distinction is made between lower case and upper case letters).

We can represent each letter with a bit string of length five, since there are only 26 letters and
there are 32 hit strings of length five.

The total number of bits used to encode datais five times the number of charactersin the text when
each character is encoded with five bits. Isit possible to find a coding scheme of these letters so that, when
data are coded, fewer bits are used ? We can save memory and reduce transmittal timeif this can be done.

Consider using bit strings of different lengths to encode letters. Letters that occur more fre-
guently should be encoded using short bit strings, and longer bit strings should be used to encode rarely
occurring letters. When letters are encoded using varying numbers of bits, some method must be used to
determine where the bits for each character start and end.

For instance, if e were encoded with 0, a with 1, and t with 01, then the bit string 0101 could
correspond to eat, tea, eaea, or tt.

Oneway to ensure that no bit string corresponds to more than one sequence of |ettersisto encode
letters so that the bit string for a letter never occurs as the first part of the bit string for another Ietter.
Codes with this property are called prefix codes.

For instance, the encoding of eas0, aas 10, and t as 11 is a prefix code.

A word can be recovered from the unique bit string that encodes its letters.

For example, the string 10110 is the encoding of ate.

To see this, note that the initial 1 does not represent a character, but 10 does represent a (and
could not be the first part of the bit string of another letter).

Then, the next 1 does not represent a character but 11 does represent t. The find bit, O, represents e.

A prefix code can be represented using a binary tree, where the characters are the labels of the
leavesin the tree. The edges of the tree are labeled so that an edge leading to aleft child isassigned a0
and an edge leading to aright child is assigned a 1.

The bit string used to encode a character is the sequence of |abels of the edges in the unique path
from the root to the leaf that has this character asits|abel.

For instance, thetreein (3.74) represents the encoding of e by 0, aby 10, t by 110, nby 1110, and
shy 1111.

Fig. 3.74. The binary tree with a prefix code.
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The tree representing a code can be used to decode a bit string. For instance, consider the word
encoded by 11111011100 using the code in Fig. (3.74).

Thishbit string can be decoded by starting at the root, using the sequence of bitsto form a path that
stops when aleaf isreached. Each 0 bit takes the path down the edge leading to the left child of the last
vertex in the path, and each 1 bit corresponds to the right child of this vertex.

Consequently, theinitial 1111 corresponds to the path starting at the root, going right four times,
leading to aleaf in the graph that has s asits label, since the string 1111 is the code for s.

Continuing with the fifth bit, we reach a leaf next after going right then left, when the vertex
labeled with a, which is encoded by 10, is visited.

Starting with the seventh bit, we reach aleaf next after going right three times and then | eft, when
the vertex labeled with n, which is encoded by 1110, is visited. Finaly, the last bit, 0, leads to the |eaf
that is labeled with e. Therefore, the original word is same.

We can construct a prefix code from any binary tree where the left edge at each internal vertex is
labeled by 0 and the right edge by a 1 and where the leaves are labeled by characters. Characters are
encoded with the bit string constructed using the labels of the edges in the unique path from the root to
the leaves.

3.13.1. Huffman coding

We now introduce an algorithm that takes as input the frequencies (which are the probabilities of
occurrences) of symbolsin a string and produces as output a prefix code that encodes the string using
the fewest possible bits, among all possible binary prefix codes for these symbols. This algorithm,
known as Huffman coding.

Note that this algorithm assumes that we aready know how many times each symbol occursin
the string so that we can compute the frequency of each symbol of dividing the number of times this
symbol occurs by the length of the string.

Huffman coding is afundamental aglorithm in data compression the subject devoted to reducing
the number of bits required to represent information.

Huffman coding is extensively used to compress hit strings representing text and it also plays an
important role in compressing audio and image files.

Algorithm : Huffman coding
Procedure Huffman (C : symbols a; with frequenciesW,, i =1, ......, n)
F : =forest of nrooted trees, each consisting of the single vertex a and assigned weight W;.
While Fisnot atree
begin
Replace the rooted trees T and T' of least weights from F with W(T) = W(T") with atree having

anew root that has T asitsleft subtree and T' asits right subtree. Label the new edgeto T with O
and the new edgeto T' with 1.

Assign W(T) + W(T') as the weight of the new tree.
end

{the Huffman coding for the symbol &; is the concatenation of the labels of the edges in the
unique path from the root to the vertex a;}
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Given symbols and their frequencies, out goa is to construct a rooted binary tree where the
symbols are the labels of the leaves. The agorithm begins with aforest of trees each consisting of one
vertex, where each vertex has a symbol as its label and where the weight of this vertex equals the
frequency of the symbol that isitslabel. At each step we combine two trees having the least total weight
into asingle tree by introducing anew root and placing the tree with larger weight asits left subtree and
the tree with smaller weight as its right subtree.

Furthermore, we assign the sum of the weights of the two subtrees of this tree as the total weight
of thetree. The algorithm is finished when it has constructed atree, that is, when the forest is reduced to
asingle tree.

Note that Huffman coding is a greedy agorithm. Replacing the two subtrees with the smallest
weight at each step leadsto an optimal codein the sense that no binary prefix code for these symbols can
encode these symbols using fewer bits.

There are many variations of Huffman coding

For example, instead of encoding single symbols, we can encode blocks of symbols of aspecified
length, such as blocks of two symbols. Doing so many reduce the number of bits required to encode the
string. We can a so use more than two symbolsto encode the original symbolsin the string. Furthermore,
a variation known as adaptive Huffman coding can be used when the frequency of each symbol in a
string is not known in advance, so that encoding is done at the same time the string is being read.

In other words, a prefix code where in the shorter sequences are used for the more frequently
occurring symbols. If there are many symbols, such as all 26 letters of the aphabet, a trial-and-error
methods for constructing such atree is not specified. An elegant construction developed by Huffman
provides a technique for constructing such trees. The general problem of constructing an efficient tree
can be described as follows :

Let wy, Wy, ...... w,, be a set of positive numbers called weights, wherew; < w, < ...... < W,

If T =(V, E) isacomplete binary tree with n leaves, assign these weights to the n leaves.

Theresult is called a complete binary tree for the weights wy, W, ...... y W

n
Theweight of the tree, denoted W(T), isdefined as Z wl (W), whereforeach1<i<n,I(w)is
i=1
the level number of the leaf assigned the weight w;. The objectiveis to assign the weights so that W(T)
isas small as possible.
A complete binary tree T' for these weightsis said to be an optimal treeif W(T') < W(T) for any
other complete binary tree T for the weights.
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Fig. (3.75) shows two complete binary trees for the weights 3, 5, 6 and 9.

4
Fortree T, W(T;) = ) wil (W) =(3+9+5+6).2=46
i=1
because each leaf haslevel number 2.
Inthe case of T, W(T,) = 3.3+ 5.3+ 6.2+ 9.1 =45, which isoptimal.

Huffman construction is that in order to obtain an optimal tree T for the n weights w;, w,, ws,
...... , W,, one considers an optimal tree T' for the n — 1 weights w; + W,, Wy, ......, W,

In particular, thetree T' is transformed into T by replacing the leaf v having weight w; + w, by a
tree rooted at v of height 1 with left child of weight w; and right child of weight w.

If thetree T, inFig. (3.75) isoptimal for thefour weights1 + 2, 5, 6, 9, then thetreein Fig. (3.76)
will be optimal for the five weights 1, 2, 5, 6, 9.

Fig. 3.76.
Example : For the prefix code P = {111, 0, 1100, 1101, 10} the longest binary sequence has
length 4.
The labeled full binary tree of height 4 as shown in Fig. (3.77).

Fig. 3.77.
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The elements of P are assigned to the vertices of this tree as follows.

For example, the sequence 10 traces the path from theroot r to itsright child Ck. Then it contin-
ues to the left child of Cy where the box indicates completion of the sequence.

Returning to the root, the other four sequences are traced out in similar lashion, resulting in the
other four boxed vertices. For each boxed vertex remove the subtree that it determines.

Theresulting tree isthe complete binary tree of Fig. (3.78) where no box isan ancestor of another
box.

n:1100

Lemma:

If T isan optimal tree for the n weightsw; <w, < ....... < w,, then there exists an optimal tree T'
in which the leaves of weights w,; and w, are siblings at the maximal level (in T').

Proof. Let v be an internal vertex of T where the level number of vis maximal for all internal
vertices. Let w, and w,, be the weights assigned to the children X, y of vertex v, with w, < w,

By the choice of vertex v, [(w,) = 1(w,) = 1(wy), |(w).
Consider the case of w; < w,. (If w; = w,, then w; and w, can be interchanged and we would

consider the case of w, <w,. Applying the following proof to this case, we would find that wy, and w, can
be interchanged).

I 1(ws) > (W), let 1(w,) = I(wy) +j, for somej O Z*. Then wyl (wy) + W (W) = Wil (wy) +w [I(wy) +j]
= wyl(wy) + W j + wl(wy)
> wyl (W) + Wy j + wl(wy)
= wyl(w,) + wil(wy).

So W(T) = wyl(wy) +wpl (w) + D WI(W) >wil(ws) + wl(wy) + > Wil (w).

P21, x 21 x

Consequently, by interchanging thelocations of the weightsw, andw,, we obtain atree of smaller
weight.

But this contradicts the choice of T as an optimal tree.
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Therefore, 1(wy) = 1(wy) = 1(w).
In asimilar manner, it can be shown that
I(wy) = (W), S0 (W) = T1(w) = 1(wy) = T(w).
Interchanging the locations of the pair w,, w, and the pair w,, W, we obtain an optimal tree T',
where w;, w, are siblings.

Theorem 3.34. Let T be an optimal tree for the weights w, + w, W, ......, W, wherew; sw, <
Ws .. <w,. At the leaf with weight w; + w, place a (complete) binary tree of height 1 and assign the
weights w;, w,, to the children (leaves) of thisformer leaf. The new binary tree T, so constructed isthen
optimal for the weights wy, Wy, W, ...... W,

Proof. Let T, be an optimal tree for the weights wy, W, ...... , W,,, where the leaves for weights
w;, W, are siblings.

Remove the leaves of weights w;, w, and assign the weight w; + w, to their parent (now a leaf).

This complete binary tree is denoted T4 and

W(T,) = W(T3) + w; +W,. Also W(T;) = W(T,) + w; + w,.

Since T isoptimal, W(T) < W(T5).

If W(T) < W(T5), then W(T,) <W(T,), contradicting the choice of T, as optimal.

Hence W(T) = W(T3) and, consequently, W(T,) = W(T).

So T, isoptimal for the weights wy, W, ......, W,

Problem 3.68. Use Huffman coding to encode the following symbols with the frequencies
listed: A: 0.08,B:0.10,C: 0.12, D : 0.15, E: 0.20, F : 0.35. What is the average number of bits used
to encode a character ?

Solution. Fig. (3.79) displays the steps used to encode these symbols. The encoding produced
encodes A by 111, B by 110, C by 011, D by 010, and F by 00.

The average number of bits used to encode a symbol using this encoding is
3.0.08 +3.0.10 + 3.0.12 + 3.0.15 + 2.0.20 + 2.0.35 = 2.45.

0.08 0.10 0.12 0.15 0.20 0.35 Initial
g o o o o o forest
A B C D E F

0.12 0.15 0.18 0.20 0.35
o o o o Step 1
C D 0 1 E F
B A
0.08 0.20 0.27 0.35
[ ]
E

® Step 2
o/ \1 F
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Step 3

Step 4

1.00

Step 5

Fig. 3.79. Huffman coding of symboals.

Problem 3.69. Construct two different Huffman codes for these symbols and frequencies :
t:0.2,u:03,v:02 w:0.3.

Solution. Therearefour possible answer in al, the one shown here and three more obtained from
this one by swapping t and v and/or swapping u and w.
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Problem 3.70. Build a binary search tree for the words banana, peach, apple, pear, coconut,
mango, and papaya using alphabetical order.

Solution. banana

peach
apple

coconut
pear

papaya

Fig. 3.81.
Problem 3.71. Construct an optimal prefix code for the symbolsa, 0, g, u, y, zthat occur (in a
given sample) with frequencies 20, 28, 4, 17, 12, 7, respectively.
Solution. Fig. 3.82 showsthe construction that follows Huffman’ s procedure. In part (b) weights
4 and 7 are combined so that we then consider the construction for the weights 11, 12, 17, 20, 28.
At each step (in part (c) — (f) of Fig. (3.82), we create a tree with subtrees rooted at the two
smallest weights.

These two smallest weights belong to vertices each of which is originally either isolated (atree
with just aroot) or the root of atree obtained earlier in the construction. From the last result, a prefix
code is determined as

a: 11, 0:01, g : 0000, u: 10, y : 001, z: 0001

@ o o o o ®
(a) 4 7 12 17 20 28
[ ) [ ) [ ) [ )
4 7 12 17 20 28
(C) 23
" 12
7 ® ® [
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(d) 23

11 37

(€)

28

12

(f)

Fig. 3.82.

Problem 3.72. For the prefix code given in Fig. (3.83), decode the sequences

(a) 1001111101 (b) 10111100110001101

n:1100

a:111

(c) 1101111110010

261
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Solution. (a)tear
(btatener
(orant.

3.14. MORE APPLICATIONS

In this section we consider, graph theory applications, taken from operational research, organic
chemistry, electrical network theory and computing and each involving the use of trees.

3.14.1. The minimum connector problem

L et us suppose that we wish to build arailway network connecting n given cities so that a passen-
ger can travel from any city to any other. If, for economic reasons, the total amount of track must be a
minimum, then the graph formed by taking the n cities as vertices and the connecting rail s as edges must
be atree.

The problem is to find an efficient algorithm for deciding which of the n" ~2 possible trees
connecting these cities uses the least amount of track, assuming that the distances between al the pairs
of cities are known.

As before, we can reformulate the problem in terms of weighted graphs. We denote the weight of
the edge e by W(e), and our aim isto find the spanning tree T with least possible total weight W(T).

Unlike some of the problems we considered earlier, thereis a simple agorithm that provides the
solution. It is known as a greedy agorithm, and involves choosing edges of minimum weight in such a
way that nocycle is created.

For example, if there are five cities, as shown in Fig. (3.84), then we start by choosing the edges
AB (weight 2) and BD (weight 3).
We cannot then choose the edge AD (weight 4), since it would create the cycle ABD, so we

choose the edge DE (weight 5). We cannot then choose the edges AE or BE (weight 6), since each
would create a cycle, so we choose the edge BC (weight 7).

This completes the tree (see Fig. 3.85).
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Fig. 3.85.

3.14.2. Enumeration of chemical molecules

One of the earliest uses of trees was in the enumeration of chemical molecules. If we have a
molecule consisting only of carbon atoms and hydrogen atoms, then we can represent it as a graph in
which each carbon atom appears as a vertex of degree 4, and each hydrogen atom appears as a vertex of
degree 1.

The graphs of n-butane and 2-methyl propane are shown in Fig. (3.86). Although they have the
same chemical formula C,H,,, they are different molecules because the atoms are arranged differently
with in the molecules. These two molecules form part of a general class of molecules known as the
alkanes or paraffins, with chemical formula C H,,, . », and it is natural to ask how many different mol-
ecules there are with this formula.

HHHH H
HHHH H c H
N TN

VAN

Fig. 3.86.

To answer this, we notefirst that the graph of any moleculewith formulaC,, H,,, , , isatree. Since
it is connected and hasn + (2n + 2) = 3n + 2 vertices and {4n + (2n + 2)}/2 = 3n + 1 edges.

Note that the molecule is determined completely once we know how the carbon atoms are
arranged, since hydrogen atoms can then be added in such away asto bring the degree of each carbon
vertex to 4. We can thus discard the hydrogen atoms, asin Fig. (3.87), and the problem reduces to that
of finding the number of trees with n vertices, each of degree 4 or less.
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Fig. 3.87.

3.14.3. Electrical neworks

Suppose that we are given the electrical network in Fig. (3.88), and that we wish to find the
current in each wire.

Fig. 3.88.

Todothis, weassign an arbitrary direction to the current in each wire, asin Fig. (3.89), and apply
Kirchhoff’s laws :

Fig. 3.89.
(i) the algebraic sum of the currents at each vertex is O,

(i) the toal voltage in each cycle is obtained by adding the products of the currents i, and
resistances R, in that cycle.
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Applying Kirchhoff’s second law to the cycles VY XV, VWYV and VWY XV, we obtain the
equations.

LR +iL,R, = E, isRs +i,R,—1,R, =0, ;R; +isR; +i,R, = E.

The last of these three equations is simply the sum of the first two, and gives us no further
information. Similarly, if we have the Kirchhoff equations for the cycles VWYV and WZY W, then we
can deduce the equation for the cycle VWZYV. It will save alot of work if we can find a set of cycles
that gives us the information we need without any redundancy, and this can be done by using a funda-
mental set of cycles.

In this example, taking the fundamental system of cyclesin Fig. (3.90), we obtain the following

equations.
v Vv v w v W
X Y Y z z Y z
Fig. 3.90.
For the cycle VY XV, i1R; +i,R, = E,
For the cycle VY ZV, i,R, +i5Rs + igRs = 0,
For the cycle VWZV, isR3 +isRs +i,R; =0,

The equations arising from Kirchhoff’ sfirst law are :

For the vertex X, ip—iy =0,

For the vertex V, ip—i,—ig+isg=0,

For the vertex W, iz—is—i;=0

For the vertex Z, is—ig—i7,=0

These eight equations can now be solved to give the eight currents iy, ...... i7.

For example, if E = 12, and if each wire has unit resistance (that is, R; = 1 for each i), then the
solutionisas given in Fig. (3.91).

n
=

Vv
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Problem Set 3.1

1

11.

12.

13.

14.

15.
16.
17.
18.

19.

(a) Draw the graphs of al nonisomorphic unlabeled trees with five vertices.

(b) How many isomers does pentane (CsH,,) have ? Why ?

Prove that the subgraph of a C.H,, . , tree T consisting of the k carbon vertices and all edges
from T among them isitself atree.

Recall that agraphisacyclicif it hasno cycles. Prove that agraph withn verticesisatreeif and
only if it isacyclic with n — 1 edges.

Prove that aconnected graph with n verticesisatreeif and only if the sum of the degrees of the
verticesis2(n—1)

(a) Draw the graphs of all nonisomorphic unlabeled trees with six vertices.

(b) How many isomers does hexane (C¢H,,) have ? Why ?

Suppose G is an acyclic graph with n > 2 vertices and we remove one edge. Explain why the
new graph G' cannot be connected.

Suppose agraph G has two connected components, T,, T, each of which isatree. Suppose we
add anew edge to G by joining a vertex of T, to avertex in T,. Prove that the new graph isa
tree.

Let T be atree with n vertices vy, v,, ...... V,,. Prove that the number of leavesin T is

2+ Y ldegy -2,
degv, =23

. Prove that atree with n > 2 verticesis a bipartite graph.
10.

(a) Show that atree with two vertices of degree 3 must have at least four vertices of degree 1.

(b) Show that the result of (a) is best possible. A tree with two vertices of degree 3 need not
have five vertices of degree 1.

Suppose T isatree with k vertices labeled C, each of degree at most 4. Enlarge T by adjoining
sufficient vertices labeled H so that each vertex C has degree 4 and each vertex H has degree 1.
Prove that the number of H vertices adjoined to the graph must be 2k + 2.

Let ebean edgein atree T. Prove that the graph consisting of all the vertices of T but with the
single edge e deleted is not connected.

Let e be an edge of the complete graph k,,. Prove that the number of spanning trees of k, which
contain eis2n"~3,

Suppose some edge of a connected graph G belongs to every spanning tree of G. What can you
conclude and why ?

How many labeled trees are there on n vertices, for L<n<6?
How many spanning trees does k, have ? Why ?
Draw all the labeled trees on four vertices ?

Draw all the spanning trees of K, , and indicate the isomorphism classes of these. How many
isomorphism classes are there ?

Determine the number of spanning trees of the complete bipartite graph K, .
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20.

21.

22.

23.

24.
25.
26.
27.
28.

29.

30.

267

How many graphs have n verticeslabeled vy, v, ....., v, and n — 1 edges ? Compare this number
with the number of trees with vertices vy, ...... ,V,for2<n<6.

(a) Provethat every edge in a connected graph is part of some spanning tree.
(b) Prove that any two edges of a connected graph are part of some spanning tree.

(c) Given three edges in a connected graph, is there always a spanning tree containing these
edges ? Explain your answer.

If Gisagraph and e is an edge which is not part of a circuit, then e must belong to every

spanning tree of G. Why ?

Let C, bethe cycle with n verticeslabeled 1, 2, ...... n, in the order encountered on the cycle.

(8 Find the number of spanning treesfor C, (in two ways).

(b) Find ageneral formulafor the number of spanning treesfor C, [l {€} whereejoins1toa
(3<asn-1).

Draw three distinct rooted trees that have 4 vertices.

Find al the trees with six vertices.

Define spanning tree. Give an example.

Which connected simple graphs have exactly one spanning tree ?
Draw dl the spanning trees of the following graph shown below.

b c d
How many different spanning trees does each of the following simple graphs have ?

(@) K3 (b) K, (©) Ky, 2
Find a spanning tree for each of the graphs shown by removing edges.

@ ® L 4 L 4 L J (b)

| w |
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(€) § (f) i

31. Which of the following graphs are tree ?

’ W (b) \//\ ;
(0) I [ Z (e) X (

32. Givethetree with root at a as shown in Figure.

(@ find the parentsof cand h

(b) find the children of d and e

(c) find the descendents of cand e
(d) findthe siblings of f and h

(e) find the leaves

() find the internal vertices

(g) draw the subtree rooted at c.
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33. Consider the tree with root v, shown in Figure.

(a) what arethelevelsof vyand v, ?
(b) what are the children of v; ?
(c) what isthe height of this rooted tree ?
(d) what isthe parent of vs ?
(e) what are the siblings of v, ?
(f) what are the descendants of v, ?
34. Consider the rooted tree T in Figure

(a) identifying path from the root r to each of the following vertices, and find the level of
vertex (i) d (ii) j and (iii) g.
(b) findtheleavesof T
35. Give linked representation of the binary tree
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36. Give an array representation of each tree given below

37. Determine the order in which the vertices of the binary tree given below will be visited under

(i) In-order (ii) pre-order (iii) post-order.
(2)
(a) (@) (b)
(b) (©)
D © 9
)

38. How many binary trees are possible with three vertices ?
39. How will you different between a general tree and a binary tree ?
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40. Draw two different binary trees with five vertices having maximum number of leaves.
41. Construct abinary tree whose in-order and pre-order traversal is given below
(@ (i) In-order:5,1,3,11,6,8,2,4,7
(ii) Pre-order : 6,1,5,11, 3,4,8,7,2
(b) (i) In-order: 10,8,9,7,6,4,5,2,3,1
(i) Pre-order : 10,9,8,7,6,5,4,3,2,1
(¢) (i)In-order:d,g,b,eihjac,f
(i) Pre-order : a, b, d, g, € h,i,]j, c,f.
42. Draw the binary tree to represent the expression (x + 3y)° (a — 2b) and find the expression in
pre-order notation.
43. Draw the binary tree to represent the expression (((a+ b) —c) 1 d) —((e* f) + Q)
Write the corresponding expression in post order notations and hence find the value when
a=3,b=4,c=5d=2e=6,f=7andg=1
44. Represent each of the expression in abinary tree
@ (A+B)* (C-D) (b) [(A+B)/IC]+D
(© [(A-B) 1 2]/(A +B) (d) X+7)*[(4*Y +2)/(S+3)]
(€ (B+x)—(4*X)-(x-2) ) (5*a)+(3-(6* ) +(a—3*h)).
Answers 3.1

1 (a 0—0O0—0—0—=0 @/i ><

(b) Since each tree with five vertices has all vertices of degree atmost four, thereis one isomer
for each such tree, the C atoms corresponding to the vertices. There are three isomers of
C5H12'

2. Thereareno circuitsin the subgraph sincethere are no circuitsin C.H,, , ». Also, given any two
C vertices, there is a path between them in CH,, . , (because C H, . , is connected). Any H
vertex on this path would have degree two. Thus, there is none, the path consists entirely of C
vertices and hence lies with in the subgraph. Thus, the subgraph is connected hence a tree.

3.(») A treewith nverticeshas n— 1 edges and no cycles.

(<) Suppose G isan acyclic graph with n vertices and n — 1 edges. Since G has no cycles, we
haveonly to provethat G isconnected. Letthen C,, C,, ...... , Cy bethe connected components
of G and supposethat C, hasn; vertices. (Thus, Zn; =n). Since G has no cycles, thereare no
cycleswithin each C,,. It followsthat each C, isatree with n, — 1 edges. The number of edges
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k K 0
inGis, therefore » (N =1 = éZniD—k=n—k,Son—k=n—1,k=1,GhasonIyone
1 T O

component i that is, G is connected.

10. (@) Wehave 2deg (v;) = 8, so thetree has at |east four edges and hence at least five vertices. If
the result is not true, then there are at most three vertices of degree one while the rest have
degree at least two. Then Zdeg v, = 2(3) + 3(1) + (n—5)2 = 2n—1 contradicting the fact that
2degv, = 2(n—1).

11. Letxbethenumber of H verticesadjoined. Since T had K — 1 edges, and one new edgeis added
for each H, G has (K —1) + x edges. ThereforeZdegv; = 2(K —1 +x). But Zdegv; = 4K +xsince
each C has degree 4 and each H has degree 1. Therefore 4K + x=2K —2 + 2xand x= 2K + 2.

14. Theedgesinquestionisabridge, that is, itsremoval disconnects the graph. To see why, call the

edgee. If G\{ e} were connected, it would have a spanning tree. However, since G\{ €} contains
all the vertices of G, any spanning treefor it is also aspanning tree for G. We have a contradic-

tion.
15. Thenumbers1-1=1,2°=1, 3" =3, 42 = 16, 5° = 125 and 6* = 1296.
17.
A B A B A B A B A % A B A B A B
C D (o} D C D C D C D C D C D C D
A B A B A B A B A B A B A B A B
O O O @ I : : I
@, O
C D C D C D C D C D C D C D C D

18. K, , has four spanning trees (obtained by deleting each edge in succession). They are all iso-
morphic to O—0—0—=0

20. Thereare % possible edges from which we choose n — 1. The number of graphsis, therefore

U
é%ﬂjg The number of trees on n labeled vertices is n"~2. For n < 6, the table shows the

numbers of trees Vs. graphs.
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n No. of trees No. of graphs
2 1 1
3 3 3
4 16 20
5 125 210
6 1296 3003

21. (a) Say theedgeiseand T isany spanning tree. If eisnotin T, then T O {€} must contain a
circuit. Deleting and edge of this circuit other than e gives another spanning tree which

includes e.

(b) No. If the three edges form a circuit, no spanning tree can contain them.

27. Tree.

v

X

X

a e e a e
a
28.
b [ d f b c d f b c d f

29. (a) 3

(c) 4
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30.

31.
32.

33.

35.

GRAPH THEORY WITH APPLICATIONS

(@) oo () (© :j
@ @ @
@ @ @
@ @ @

(@), (), (¢)

(@ band d (b) for d, hand i and for eisj ©efaj;i
(d)g;i ©j,f,gh,i (Hab,rcde
9) .

i
@02 (b) Vs, Vg ©3 (d) vs (€) Vg, Vg () Vs, Vg, Vio-
@@ r—-a-d;2 (ir-b-f-g;3 (iilr—c—g; 2
(b)h,e i j. g

nil nil il

nil nil
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3%.(@ (aA|B|lCc|D|E]|F|a H | |

1 2 3 4 5 6 7 8 9 10 11 12 13 14

b |aA|B8|E]|C F| G D H
37. (@ bdaec abcde dbeca
(b)edcba abcde edcba

(c0ecgfhbda abcefghd eghfcdba

(dddgbaheicf abdgcehif gdbhiefca

(ecbdeafighjg abcdefghij cedbijhgfa
38. Five

a
a 2 b B
b b o}
¢ c

c

a a

40. b c
¢ b
d
e d e

41. (a)
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preorder + 1 +x* 3y5-a2+b

postorder:ab*c—dt & *g+—:6.
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(b)




CHAPTER

Optimization and Matching

4.1 SHORTEST PATH ALGORITHMS
In many aress like transportation, cartoon motion planning, communication network topology
design etc, problems related to finding shortest path algorithms.

The shortest path problem is concerned with finding the least cost (that costs minimum) path
from an originating node in aweighted graph to adestination nodein that graph. Let us consider agraph
shown in the Fig. (4.1) in which number associated with each arc represent the weight of the arc.

Fig. 4.1

There exist many algorithmsfor finding the shortest path in aweighted graph. One such algorithm
is developed by Dijkstrain the early 1960’ s for finding the shortest path in a graph with non-negative
weight associated with edge/arc without explicitly enumerating all possible paths. This agorithm is
based upon a technique known as dynamic programming.

This algorithm determines shortest path between a pair of nodesin a graph. If there are n nodes
in agraph, we need to run the algorithm "C, times. In anetwork of 100 or more nodes, the time taken to
compute the shortest path for all possible pair of nodes can be any body’s guess.

To overcome thiswe shall discuss amaodification of Dijkstra’'s alogrithm to find shortest distance

between one node to al other nodes in a graph and Floyd Warshall’s agorithm to compute all pair
shortest path.

4.2 DIJKSTRA'S ALGORITHM
To find a shortest path from vertex A to vertex E in a weighted graph, carry out the following
procedure.
Step 1: Assign to A thelabel (-, 0).
Step 2: Until E islabeled or no further [abels can be assigned, do the following
(i) For each labeled vertex u(x, d) and for each unlabeled vertex v adjacent to u, compute
d + w(e), where e = uv.

(i) For each labeled vertex u and adjacent unlabeled vertex v giving minimum d = d + w(e),
assigntovthelabd (u, d). If avertex can belabeled (x, d') for various vertices x, make any

choice.
278
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4.2.1. Dijkstra’s algorithm (Improved)

To find the length of a shortest path from vertex A to vertex E in aweighted graph, proceed as
follows:

Step 1: Set v; = A and assign to this vertex the permanent label O.

Assign every other vertex atemporary label of co, where o is a symbol which, by definition, is
deemed to be larger than any real number.

Step 2 : Until E has been assigned a permanent label or no temporary labels are changed in (a) or
(b), do the following.

(8) Takethe vertex v; which most recently acquired a permanent label, say d. For each vertex
v which is adjacent to v, and has not yet received a permanent label, if d + w(vv) < t the
current temporary label of vto d + w(vv).

(b) Take avertex v which has atemporary smallest among al temporary labels in the graph.
Set Vi, ; = vand make its temporary label permanent. If there are several vertices v which
tie for smallest temporary label, make any choice.

4.2.2. Floyd-Warshall algorithm

To find the shortest distances between all pairs of verticesin aweighted graph where the vertices
are vy, Vs, ... , Vi,, carry out the following procedure:

Stepl: Fori=1ton,setd(,i)=0,
Fori#j,if viv, isan edge, let d(i, j) be the weight of this edge; otherwise

Set d(i, j) = o.
Step 2: Fork=1ton,
fori,j=1ton,

let d(i, j) = min{d(i, j), d(i, K) + d(k, j)}
Thefinal value of d(i, j) is the shortest distance from v, to v;.

Problem 4.1. Apply Dijkstra’s algorithm to the graph given below and find the shortest path
fromatof.

Fig. 4.2.

Solution. The initial labelling is given by

Vertex V a b c d e f

L(Vv) 0 o a a o] a

T {a, b, c, d, e f}
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Iteration 1: u=ahasL(u) =0. T becomesT—-{a}. There aretwo edgesincident a, i.e., ab and ac
where b and CET.

L(b) =min{old L(b), L(a) + w(ab)}
=min{a,0+ 1.0} =10
L(c) =min{old L(c), L(a) + w(ac)}
=min{a, 0+ 4.0} =4.0
Hence minimum label isL(b) = 1.0

Vertex V a b c d e f
L(v) 0 1.0 4.0 o a a
T { b, c, d, e, f}

Iteration 2 : u = b, the permanent label of b is 1.0 T becomes T-{b} there are three edges
incident with b, i.e., bc, bd and be wherec, d, e J T.

L(c) =min{old L(c), L(b) + w(bc)}
=min{4.0,1.0+ 2.0} =3.0

L(d) =min {old L(d), L(b) + w(bd)}
=min{a, 1.0+6.0} =7.0

L(e) = min{old L(e), L(b) + w(be)}
=min{a, 1.0+ 5.0} =6.0

Vertex V a b c d e f
L(v) 0 1.0 3.0 7.0 6.0 a
T { C, d, e f}

Thus minimum label isL(c) = 3.0.

Iteration 3: u=c, the permanent label of eis3.0, T becomes T{ c}. There is one edge incident
withc, i.e, c,ewhereedT.

L(c)=min{old L(e), L(c) + w(ce)}
=min{6.0,3.0+ 1.0} =4.0
Thus minimum label isL(c) = 4.0

Vertex V a b c d e f
L(v) 0 1.0 3.0 7.0 4.0 o
T { d, e f}

Iteration 4 : u = g, the permanent label of e is 4.0, T becomes T—-{ €}. There are two edges
incident with e, i.e., ed and ef whered, fO T
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L(d) = min{old L(d), L(e) + w(ed)}
=min{7.0,40+3.0} =7.0

L(f) = min{old L(f), L(€) + w(ef)}
=min{a, 40+ 7.0} =110

Vertex V a b c d e f
L(v) 0 1.0 3.0 7.0 4.0 11.0
T { d, f}

Thus minimum label isL(d) = 7.0

281

Iteration 5: u=d, the permanent label of dis7.0. T becomes T—{ d}. Thereisone edgeincident

with d,i.e, d fwheref OT

L(f) = min{old L(f), L(d) + w(df)}
=min {110, 7.0 + 2.0} = 9.0

Vertex V a b c d e f
L(v) 0 1.0 3.0 7.0 4.0 9.0
T { f}

The minimum label isL(f) = 9.0

Since u = f, the only choice. Iteration stops. Thus the shortest distance between aand fis 9, and

moreover, the shortest pathsis{a, b, c, g, d, f}.

Problem 4.2. Determine a shortest path between the vertices a to z as shown below.

Fig. 4.3.
Solution. The initial labelling is given by
Vertex V a b c d e f z
L(v) 0 a a a of a a
T {a, b, C, d, e f, z
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Iteration 1: u=ahasL(u) =0, T becomes T{ a}. There are three edges incident with a,
i.e, ab,ac,andadwhereb,c,dOT
L(b) = min {old L(b), L(a) + w(ab)}
=min{a, 0+ 22} =22
L(c) =min{old L(c), L(a) + w(ae)}
=min{a, 0+ 16} =16
L(d) = min{old L(d), L(a) + w(ad)}
=min{a, 0+ 8} =8.
Hence minimum label isL(d) = 8.

Vertex V a b c d e f z
L(v) 0 22 16 8 o a a
T { b, c, d, e f, z

Iteration 2 : u=d, the permanent label of dis8. T becomes T{ d}. There are two edgesincident
with d, i.e., dc and df wherec, f O T.

L(c) =min{old L(c), L(d) + w(dc)}
=min{16, 8+ 10} =16
L(f) = min{old L(f), L(d) + w(df)}
=min{a, 8+ 6} = 14.
Hence minimum label is L(f) = 14.

Vertex V a b c d e f z
L(v) 0 22 16 8 o] 14 o]
T { b, C, e f, z

Iteration 3 : u = f, the permanent label of f is 14. T becomes T-{f}. There are three edges
incident with f, i.e,, fc, fo and fzwherea, b, zO T.

L(c) =min{old L(c), L(f) + w(fc)}
=min{16+ 14 + 3} =16{16, + 14 + 3}
L(b) = min{old L(b), L(f) + w(fh)}
=min{22,14+7} =21
L(2 =min{old L(2), L(f) + w(f2)}
=min{a, 14 + 9} =23
Hence minimum label isL(c) = 16.

Vertex V a b c d e f z

L(v) 0 21 16 8 o 14 | 23

T { b, C, e V4!




OPTIMIZATION AND MATCHING 283

Iteration 4 : u = c, the permanent label of cis 16. T becomes T-{c}. These are three edges
incident with c, i.e., cb, ceand cz, where b, e, zO T.

L(b) = min{old L(b), L(c) + w(ch)}
=min{21, 16 + 20} =21
L(e) =min{old L(e), L(c) + w(ce)}
=min{a, 16 + 4} =20
L(2 =min{old L(2), L(c) + w(c2)}
=min{23, 16 + 10} = 23.
Hence minimum label isL(€) = 20

Vertex V a b c d e f z
L(Vv) 0 21 16 8 20 14 23
T b, e y4

Iteration 5 : u = e, the permanent label of eis 20. T becomes T-{€}. There are two edges
incident with e, i.e., eb and ezwhere b, zO T.

L(b) = min {old L(b), L(€) + w(eb)}
=min{21,20+2} =21
L(2 =min{old L(2), L(e) + w(ez)}
=min{23,20+4} =23
Hence minimum label isL(b) = 21.

Vertex V a b c d e f z
L(v) 0 21 16 8 20 14 23
T b, z

Iteration 6 : u= b, the permanent label of bis21. T becomes T{b}. Thereisone edgeincident
with b.i.e, bzwherezO T.

L(2 =min{old L(2), L(b) + w(bz)}
=min{23, 21 + 4} = 23.
Hence minimum label isL(2) = 23.

Vertex V a b c d e f z
L(v) 0 21 16 8 20 14 23
T { 2}

Since u = z, the only choice iteration stops.
Thus the length of the shortest path is 23 and the shortest path is (a, d, f, 2).
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Problem 4.3. What is the length of a shortest path between a and z in the weighted graph
shown in Fig, (4.4) ?

Fig. 4.4.

Solution. Although a shortest path is easily found by inspection, we will develop some ideas
useful in understanding Dijkstra’ s algorithm.

We will solve this problem by finding the length of a shortest path from a to successive vertices,
until zis reached.

The only paths starting at a that contain no vertex other than a (until the termina vertex is
reached) are a, b and a, d.

Sincethelengthsof a, b and a, d are 4 and 2, respectively, it followsthat d isthe closest vertex to a.

We can find the next closest vertex by looking at all paths that go through only a and d (until the
terminal vertex is reached).

The shortest such path to bis till a, b, with length 4, and the shortest such pathto eisa, d, ewith
length 5.

Consequently, the next closest vertex to ais b.

Tofind thethird closest vertex to a, we need to examine only paths that go through only a, d, and
b (until the terminal vertex is reached).

Thereisapath of length 7 to ¢, namely a, b, ¢, and a path of length 6 to z, namely, a, d, e, z

Consequently, zisthe next closest vertex to a, and the length of a shortest path to zis 6.

Problem 4.4. Use Dijkstra’s algorithm to find the length of a shortest path between the verti-
ces a and zin the weighted graph displayed in Fig. (4.5).

b co doeo

Fig. 4.5.
Solution. The steps used by Dijkstra’ s algorithm to find a shortest path between a and z are show
in Fig. (4.6).
All each iteration of the algorithm the vertices of the set S, are circled.
A shortest path from a to each vertex containing only verticesin S, isindicated for each iteration.
The agorithm terminates when zis circled.
We find that a shortest path from ato zisa, ¢, b, d, €, z, with length 13.
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© 2(a) e 10(a, ¢, b, d) © 2(a) ®10(a, ¢, b, d)
Fig. 4.6. Using Dijkstra’s Algorithmsto find a shortest path from ato z

Theorem 4.1. Dijkstra’s algorithm finds the length of a shortest path between two verticesin a
connected simple undirected weighted graph.

Theorem 4.2. Dijkstra’s algorithm uses O(n?) operations (additions and comparisons) to find
the length of a shortest path between two verticesin a connected simple undirected weighted graph with
n vertices.

Problem 4.5. Apply Dijkstra’s algorithm to the weighted graph G = (V, E) shown in Fig, (4.7)
in order to find the shortest distance from vertex C (= V) to each of the other five verticesin G.

11

Fig. 4.7.
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Solution.  Initidization: (i = 0) St S;={c}. Labd cwith (0,-) and dl other verticesin G with (o, ).

Firstiteration : (So={a,b, f,g, h}).
Herei =0 in step (2) and we find, for example,
that L(a)=min{L(a), L(c) + wt(c, a)}
=min{o, 0+ 0} =00
whereas L(f) = min { L(f), L(c) + wt(c, f)}
=min{c, 0+ 6} =6.
Similar calculationsyield L(b) = L(g) =« and L(h) = 11. So we label the vertex f with (6, c) and
the vertex h with (11, c).

The other verticesin S, remain labeled by (e, -). See Fig. (4.8) (a).
Instep (3) we seethat fisthe vertex v in § closesttov,, soweassignto S, theset S, 0 {f} ={c,

f} and increases the counter i to 1.
Sincei =1<5(=6-1), wereturn to step (2).

(b)

Fig. 4.8.
Second iteration : (S1={a,b, g, h}).
Now i = 1instep (2), and for each v 0 S§ we set
L(v) = rg'g {L(v), L(u) +wt(u, v)}

Thisyields
L(@) =min{L(a), L(c) + wt(c, a), L(f) + wt(f, a)}
=min{co, 0+ 0, 6+ 11} = 17.
So vertex aislabeled {17, f).
In asimilar manner, we find
L(b) =min {0, 0 + 00, 6 + 0} = 00,
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L(g) =min{c, 0+ 0, 6+ 9} =15,
L(h) =min{11,0+ 11, 6 + 4} = 10.
These results provide the labeling in Fig. (4.8) (b).

In step (3) we find that the vertex v, ish becauseh 0 § and L(h) isaminimum.

ThenS,isassigned S, O { h} ={c, f, h}, the counter increased to 2, and since 2 < 5, the algorithm
directs us back to step (2).

Third iteration : (S ={a, b, g}). Withi = 2in step (2) the following are now computed.
L@ = 3 {L(@), L(u)+wi(u, a)}

=min{17,0+ o0, 6 + 11, 10 + 11} = 17
So the label on ais not changed,
L(b) =min {c, 0 + 00, 6 + 00, 10 + o0} = 00
So the label on b remains o, and
L(g)=min{15, 0+, 6+9,10+4} =14<15.
So the label on g is changed to (14, h) because 14 = L (h) + wt(h, g).

Among the verticesin S,, g isthe closest to Vo

Since L(g) isaminimum.

In step (3), vertex vy isdefinedasgand S;=S, 0 {g} ={c,f, h, g}.
Then the counter i isincreased to 3 < 5, and we return to step (2).

Fourth iteration : (é@, ={a, b}). With i = 3, the following are determined in step (2),

L(a) =17, L(b) = .

Thus no labels are changed during thisiteration. Weset v, =aand S, =S; U {a} ={c,f, h, g, a}
in step (3).

Then the counter i isincreased to 4 (< 5), and we return to step (2).

Fifth iteration : (Ss ={b}) . Herei = 4in step (2), wefind L(b) = L(a) + wt(a, b) = 17 + 5=22.

Now the label on b is changed to (22, a).

Thenvg=binsep (3), Ssissetto{c,f, h, g, a b} and i isincremented to 5.

But now thati =5 =|v|—1, the process terminates. We reach the labeled graph shownin Fig. (4.9).
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From the labels in Fig. (4.9) we have the following shortest distances from c to the other five
verticesin G:

(i) dc,H)=L()=6 (i) d(c, hy=L(h)=10
(iii) d(c,g9)=L(g) =14 (iv) d(c,a)=L(a)=17
(V) d(c,b)=L(b)=22
To determine, for example, a shortest directed path from c to b, we start at vertex b, which is
labeled (22, a).
Hence a is the predecessor of b on this shortest path.
Thelabel on ais (17, f), so f precedes a on the path.
Finally, thelabel onfis(6, c), so we are back at vertex ¢, and the shortest directed path from cto
b determined by the algorithm is given by the edges (c, f), (f, a), and (a, b).
Problem 4.6. Obtain the shortest distance and the shortest path from vertex 1 to vertex 7 in the
network shown in Fig. (4.10).

Fig. 4.10.

Solution. First iteration : For thisiteration, P = {1} with P, =0and t= 0y forj=2,3,4,5.
By examining thefigure, wefind that, the edgesfrom 1 to 2 hasweight 4, thereforet, = 4 and so on.
Since thereis no edge from 1 to 5, we set t; = o0 and so on.
t,=4,13=6,1,=8,tg =00, t{z =00, t; = 00,
Step 1 : We note that t; is minimum for j = 2.
Therefore, we adjoin 2to P, so that P={1, 2}.
Also we label the arc (1, 2).
Step 2: WehaveP={1, 2} and t, = 4 (from step 1)
We take new t3 = min {t, t, + 0,3}
=min{6,4+1} =5,
new t, = min {t,, t, + g,,}
=min{8,4 + oo} = 8§,
min {ts, t, + s}
=min{c, 4+ 7} =11,
new tg = min {tg, t, + Oyg} = o
new t; = min {t,, t, + g7} = co.
Second iteration
For thisiteration, P={1,2},and P, =0, P, =t, = 4.
Also, t;=5,t,=8,t; =11, tg= oo, t; = o0

new tg



OPTIMIZATION AND MATCHING 289

Step 1: We note that t;, j > 2, isminimum for j = 3. Therefore, we adjoin 3 to P, so that
P={1, 2, 3}. Also, welabel thearc (2, 3).
Step2: WehaveP={1,2, 3}, t,=4,t;=5,
We take new t, = min {t,, t3 + 0g,}
=min{8,5+2} =7,
new ts = min {ts, t; + gss}
=min{11, 5+ 5} =10,
new tg = min {tg, t; + O3}
=min{c,5+4} =9,
new t; =min {0, 5+ Qg;} = 0.
Third iteration
For thisiteration, P={1,2,3},P,=0,P,=4and P;=t;=5. Also, t, =7, t; = 10, t = 9, t; = 0.

Step 1: Wenotethatt t, j>3,isminimumforj=4.Weadjoin4to P, sothat P={1, 2, 3, 4}. Also,
we label the arc (3, 4).

Step2: WehaveP={1,2 3,4},t,=4,t3=5,t,=7.
We take new t; = min {tg, t, + g,5}
=min {10, 7 + o} =10
new tg = min {tg, t, + Oug}
=min{9,7+5} =9
new t; = min {t;, t, + qyz} = oo
Fourth iteration
For thisiteration, P={1, 2, 3,4},P,=0,P,=4,1;=5and P, =t,= 7. Also t; = 10, t = 9, t; = 0.
Step 1: Wenotethatt j >4, isminimum for j = 6. We adjoin6to P, sothat P={1, 2, 3, 4, 6},
t,=4,t3=51=7, t6 9,t, = oo
We take new t; = min {ts, tz + Ogs}
=min{10, 9+ 1} =10,
new t; = min {t;, ts + 07}
=min{c, 9+ 8} = 17.
Fifth iteration
For thisiteration, P={1, 2,3,4,6},P,=0,P,=4,P;=5,P,=7and P; = t; = 9. Also, t5 = 10,
t, = 17.
Step 1: We note that 4 isminimum for j =5. We adjoin 5to P, sothat P={1, 2, 3, 4, 6, 5}.
Also, we label the arc (6, 5).
Step 2: WehaveP={1,2,3,4,6,5},t,=4,t;=5/t,=7,t;=9,t; = 10, t, = 17.
We take new t; = min {t;, ts + g7}
=min{17, 10 + 6} = 16.
Sixth iteration
For thisiteration, P={1, 2, 3,4,6,5}, P, =0,P,=4,P;=5,P, =7, P, =9, P; = t; = 10.
Also t; = 16.
Step 1: Sincethereis now only onet; left, namely t,. We adjoin 7to B, sothat P={1, 2, 3, 4, 6,
5, 7}. Also we label the arc (5, 7).
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Step 2: WehaveP={1, 2, 3, 4, 6, 5, 7} which isthe vertex set. We stop the process. We take
Also, the shortest distance from vertex 1tovertex 7is 4+ 1+2+5+1+6=19.

Fig. 4.11.

4.3. MINIMAL SPANNING TREES

4.3.1. Weighted graph

A weighted graph is agraph G in which each edge e has been assigned a non-negative number
w(e), called the weight (or length) of e. Figure (4.12) shows aweighted graph. The weight (or length) of
a path in such aweighted graph G is defined to be the sum of the weights of the edgesin the path. Many
optimisation problems amount to finding, in a suitable weighted graph, a certain type of subgraph with
minimum (or maximum) weight.

4.3.2. Minimal spanning tree

Let G be weighted graph. A minimal spanning tree of G is a spanning tree of G with minimum
weight. The weighted graph G of Figure (4.12) shows six cities and the costs of laying railway links
between certain pairs of cities. We want to set up railway links between the cities at minimum costs. The
solution can be represented by a subgraph. This subgraph must be spanning tree since it covers al the
vertices (so that each city isin the road system), it must be connected (so that any city can be reached
from any other), it must have unique simple path between each pair of vertices.

Thus what is needed is a spanning tree the sum of whose weights is minimum, i.e., a minimal
spanning tree.

2t
—_

Fig. 4.12.
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4.3.3. Algorithm for minimal spanning tree

There are several methods available for actually finding a minimal spanning tree in a given
graph. Two algorithms due to Kruskal and Prim of finding a minimal spanning tree for a connected
weighted graph where no weight is negative are presented below. These algorithms are example of
greedy algorithms. A greedy algorithm is a procedure that makes an optimal choice at each of its steps
without regard to previous choices.

4.3.4. Kruskal’s algorithm
Kruskal's algorithm for finding a minimal spanning tree :
Input : A connected graph G with non-negative values assigned to each edge.
Output : A minimal spanning tree for G

Let G=(V, E) begraphand S= (V, E)) bethe spanning treeto befound from G. Let |V | =nand
E={e, e, ... &,}. The stepwise algorithm is given below :

Method :

Step 1: Select any edge of minimal valuethat isnot aloop. Thisisthefirst edge of T. If thereis
more than one edge of minimal value, arbitrarily choose one of these edges.

i.e.,, select an edge e; from E such that e, has least weight. ReplaceE=E —{e;} and E;={e;}

Step 2: Select any remaining edge of G having minimal value that does not form a circuit with
the edges already included in T.

i.e.,, select an edge g from E such that g has least weight and that it does not form a cycle with
membersof E,. SetE=E—{e} and E;= E,U {e}.

Step 3: Continue step 2 until T contains n — 1 edges, where n is the number of vertices of G.

i.e., Repeat step 2 until |E;|=|V |-1.

Suppose that a problem calls for finding an optimal solution (either maximum or minimum).

Suppose, further, than an algorithm is designed to make the optimal choice from the available
data at each stage of the process. Any algorithm based on such an approach is called a greedy agorithm.

A greedy algorithm is usually the first heuristic algorithm one may try to implement and it does
lead to optimal solutions sometimes, but not always. Kruskal’s algorithm is an example of a greedy
algorithm that does, in fact, lead to an optimal solution.

Theorem 4.3. Let G = (V, E) be a loop-free weighted connected undirected graph. Any span-
ning tree for G that is obtained by Kruskal’s algorithm is optimal.

Proof. Let |V | =n, and let T be a spanning tree for G obtained by Kruskal’s algorithm.

TheedgesinT arelabeled e, e, ...... e,_4, according to the order in which they are generated by
the algorithm.

For each optimal tree T' of G, defined(T") = kif kisthe smallest positive integer such that T and
T' both contain e, e, .., ._4, but g O T".

Let T, be an optimal tree for which d(T;) = r is maximal.
If r =n, then T =T, and the result follows.

Otherwise, r < n—1 and adding edge g, (of T) to T, produces the cycle C, where there exists an
edgee' if Cthatisin T, but notinT.
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Start with tree T,. Adding €, to T, and deleting &', we obtain a connected graph with n vertices
and n— 1 edges.

Thisgraphisatree, T,. The weights of T, and T, satisfy wt(T,) = wt(T,) + wt(e,) — wt(e").

Following the selection of e, e,, ..., & _; in Kruskal’s algorithm, the edge e is chosen so that
wit(e) isminimal and no cycle results when e, is added to the subgraph H of G determined by e;, e,, ...,
&_1

Sincee' produces no cycle when added to the subgraph H, by the minimality of wt(e,) it follows
that wt(e,") = wi(e).

Hence wt(e) — wt(e,") < 0, so wt(T,) < wi(T,). But with T, optimal, we must have wit(T,) =
Wt(T,), so T, is optimal.

Thetree T, isoptimal and hasthe edges e;, e,, ..., & _;, & incommon with T, so d(T,) =r + 1>
r = d(T,), contradicting the choice of T;.

Consequently, T, = T and the tree T produced by Kruskal’s algorithm is optimal.

Theorem 4.4. Let G be a connected graph where the edges of G are labelled by non-negative
numbers. Let T be an economy tree of G aobtained from Kruskal’s Algorithm. Then T is a minimal
spanning tree.

Proof. As before, for each edge e of G, let C(e) denote the value assigned to the edge by the
labelling.
If G has n vertices, an economy tree T must have n— 1 edges.
n-1
Let theedges e, e, ..., §,_4 be chosen asin Kruskal's Algorithm. Then C(T) = Z C(g).
i=1

Let T, be aminimal spanning tree of G.
We show that C(T) = C(T), and thus conclude that T is aso minimal spanning tree.

If T and T, are not the same let g be thefirst edge of T notin T,

Add the edge g to T, to obtain the graph G,

Suppose g = {a, b}, then apath P from ato b existsin T, and so P together with e produces a
circuit Cin G,

Since T contains no citcuits, there must be an edge e, in Cthatisnotin T.

The graph T, = G, — & is also a spanning tree of G since T, has n — 1 edges.

Moreover, C(T;) = C(Ty) + C(g) — C(gy).

However, we know that C(T,) < C(T,) since T, was aminimal spanning tree of G.

Thus, C(T,) —C(Ty) = C(e) —C(gy) 2 0.

Implies that C(g) = C(ey).

However, since T was constructed by Kruskal’s algorithm g is an edge of smallest value that can
be added to the edges e;, e,, ..., & _ without producing acircuit. Also, if e, is added to the edges e;, e,,
..., § _1, o circuit is produced because the graph thus formed is a subgraph of the tree T,

Therefore, C(g) = C(ey), so that C(T,) = C(T).

We have constructed from T, a new minimal spanning tree T, such that the number of edges
common to T, and T exceeds the number of edges commonto Tyand T by one edge, namely &.
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Repeat this procedure, to construct another minimal spanning tree T, with one more edge in
common with T than was in common between T, and T.

By continuing this procedure, we finally arrive at a minimal spanning tree with all edges in
common with T, and thus we conclude that T isitself aminimal spanning tree.

Problem 4.7. Using Kruskal’s algorithm, find the minimum spanning tree for the weighted
graph of the Fig. (4.13).

Fig. 4.13.

Solution. Let S= (V, EJ) be the spanning tree to be found from G.

Initialize, there are eight nodes so the spanning tree will have seven arcs.

Theiterations of agorithm applied on the graph are given below and it runs at the most seven times.
The number indicates iteration number.

1. Sincearcs AC, ED, and DH have minimum weight 2. Since they do not form a cycle, we select
al of themand E; = {(A, C), (E, D), (D, H)} andE=E - ({A, C), (E, D), (D, H)}.

2. Next arcs with minimum weights 3 are AB, BC, and EG. We can select only one of the AB and
BC. Also we can select EG.

Therefore, E; = ({A, C), (E, D), (D, H), (A, B), (E, G)} and E=E - {(A, B), (E, G)}

3. Next arcs with minimum weights 4 are EF and FG. We can select only one of them.
Therefore, E; = {(A, C), (E, D), (D, H), (A, B), (E, G), (F, G)} andE=E—{(F, G)}.

4. Next arcs with minimum weights 5 are CE and CF. We can select only one of them.
Therefore, E= ({A, C), (E, D), (D, H), (A, B), (E, G), (F, G), (C,E)} andE=E - {(C, E)}.

Since number of edges in E; is seven process terminates here. The spanning tree so obtained is
shown in the Fig. (4.14).
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Problem 4.8. Show how Kruskal’s algorithm find a minimal spanning tree for the graph of

Fig. (4.15).

Fig. 4.15.
Solution. We collect the edges with their weights into atable

Edge

Weight

(b, c)
(c e
(c, d)
(a b)
(e d)
(a d)
(b, €)

AR WWN R PR

The steps of finding a minimal spanning tree are shown below.

1. Choose the edge (b, ¢) asit has aminima weight

2. Add the next edge (c, €)

3. Add the edge (c, d)

@cC

o

@ d
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4. Add the edge (b, a)

a

/ c
b ®d

e

Since vertices are 5 and we have choosen 4 edges, we stop the algorithm and the minimal span-

ning tree is produced.

Problem 4.9.  Show how Kruskal’ s algorithm find a minimal spanning tree of the graph of Fig.
(4.16).

a 9 b
1 4
C e
11 3
Fig. 4.16.
Solution. We collect the edges with their weights into a table.
Edge Weight
(a0 1
(b, d) 2
(e 9 3
(b, € 4
(d,9) 5
(d e 6
(d, ) 7
(ad) 8
(a b) 9
(d, f) 10
(c.f) 11
(f, 9) 14
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The steps of finding a minimal spanning tree are shown below :
1. Choose the edge (a, ¢) asit has minimal weight

2. Add the next edge (c, d)

3. Add the edge (d, b)

4. Addthe edge (b, €)

/a
c
/a
@
[ d
,a ,b
c d
a b
c d e

5. Add the edge (e, g)
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6. Add the edge (d, f)

Since vertices are 7 and we have chosen 6 edges, we stop the algorithm and the minimal spanning

tree is produced.
Problem 4.10. UseKruskal'salgorithmto find a minimum spanning treein the weighted graph

shown in Fig. (4.17).

P SR
3 1 2 5
ot g % Y9 3 o
4 2 4 3
’3‘3‘k1|‘

Fig. 4.17.
Solution. A minimum spanning tree and the choices of edges at each stage of Kruska’s algo-

rithm are shown in Fig. (4.18)

o> o
3 1 2 5
o g 3 9% 3 o
4 2 4 3
® 3 P 3 ‘k 1 I.
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Choice

Edge

Weight

© 0O NO O~ WDN P

P
R o

{c. d}
{k 1}
{b, f}
{c. g}
{a, b}
{f.1}
{b, ¢}
{i.
{g,h}
{i,1}

{a ¢

W W wWwwwNNDNNPEFE PP

Total : 24

Problem 4.11. Determine a railway network of minimal cost for the citiesin Fig. (4.19).

a

@c

Fig. 4.19.

Solution. We collect lengths of edgesinto atable:

Edge Cost
{b, c} 3
{d. f} 4
{a g} 5
{c, d} 5
{c ¢ 5
{a, b} 15
{a, d} 15
{f, h} 15
{g, h} 15
{e f} 15
{f.a 18




OPTIMIZATION AND MATCHING 299

1. Choosetheedges{b, c},{d, f},{a, a},{c, d}, {c, €

2. Then we have options : we may choose only one of {a, b} and {a, d} for the selection of both
creates a circuit. Suppose that we choose { a, b}.

3. Likewise we may choose only one of {g, h} and {f, h}. Suppose we choose {f, h}.
4. We then have a spanning tree asillustrated in Fig. (4.20).

a

f

Fig. 4.20.
The minimal cost for construction of thistreeis
3+4+5+5+5+15+15=52.
Problem 4.12. Apply Kruskal’s algorithm to the graph shown in Fig. (4.21).

Fig. 4.21.

Solution. Initialization : (i = 1) since there is aunique edge-namely, { e, g}, of smallest weight 1,
start with T={{e, g}}. (T startsasatree with one edge, and after each iteration it growsinto alarger tree
or forest. After the last iteration the subgraph T is an optimal spanning tree for the given graph G).

First iteration

Among the remaining edges in G, three have the next smallest weight 2. Select {d, f}, which
satisfies the conditions in step (2).

Now T istheforest {{e, g}, {d, f}}, and i isincreased to 2. With i = 2 < 6, return to step (2).
Second iteration
Two remaining edges have weight 2. Select {d, €}.

Now T isthetree {{e, g}, {d, f}, {d, €}, and i increases to 3. But because 3 < 6, the algorithm
directs us back to step (2).
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Third iteration

Among the edges of G that are not in T, edge {f, g} has minimal weight 2.

However, if this edge is added to T, the result contains a cycle, which destroys the tree structure
being sought.

Consequently, the edges{c, €}, {c, g} and {d, g} are considered.

Edge{d, g} brings about a cycle, but either {c, €} or {c, g} satisfiesthe conditionsin step (2).

Select {c, €. T growsto{{e, g}, {d, f},{d, €,{c, e}} andi isincreased to 4.

Returning to step (2), we find that the fourth and fifth iterations provide the following.

Fourth iteration

T={{ea},{d },{d, e, {c €&, {b, €}, iincreasesto 5.

Fifth iteration

T={{eg}.{d, },{d, e,{c €, {b €, {a b}}.

The counter i now becomes 6 = (number of verticesin G) — 1.

So T isan optimal tree for graph G and has weight

1+2+2+3+4+5=17
Fig. (4.22) shows this spanning tree of minimal weight.

Fig. 4.22.

Problem 4.13. Using the Kruskal’s algorithm, find a minimal spanning tree of the weighted
graph shown below :

Fig. 4.23.
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Solution. We observe that the given graph has 6 vertices, hence a spanning tree will have 5
edges. Let us put the edges of the graph in the non-decreasing order of their weights and successively
select 5 edges in such away that no circuit is created.

Edges CR QR BP CQ AB AP CP AC BQ
Weight 3 3 5 5 6 6 7 8 10
Select Yes Yes Yes No Yes No Yes

Observethat CQ is not selected because CR and QR have already been selected and the selection

of CQ would have created a circuit. Further, AP is not selected because it would have created a circuit

along with BP and AB which have already been selected we have stopped the process when exactly 5
edges are selected.

Thus, aminimal spanning tree of the given graph contains the edges CR, QR, BP, AB, CP. This
tree as shown in Fig. (4.24). The weight of thistree is 24 units.

Fig. 4.24.

Problem 4.14. Eight cities A, B, C, D, E, F, G, H are required to be connected by a new
railway network. The possible tracks and the cost of involved to lay them (in crores of rupees) are
summarized in the following table :

Track between Cost Track between Cost
Aand B 155 DandF 100
Aand D 145 EandF 150
Aand G 120
BandC 145 Fand G 140
CandD 150 FandH 150
CandE 95 GandH 160

Determine a railway network of minimal cost that connects all these cities.

Solution. Let usfirst prepare a graph whose the vertices represent the cities, edges represent the
possible tracks and weights represent the cost. The graph is as shown in Fig. (4.25).
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B
155 8
120
145 145
150
G ®cC
D

160 100 95
@
H 15 150 E

Fig. 4.25.

A minimal spanning tree of this graph represents the required network. Since there are eight
vertices, seven edges should be there in aminimal spanning tree.

Let us put the edges of the graph in the non-decreasing order of their weights and select seven
edges one by one in such away that no circuit is created.

Edges CE| DF| AG| FG | AD | BC| CD| EF | FH | AB | GH

Weight | 95 [ 100 | 120 | 140 | 145 | 145 | 150 | 150 [ 150 | 155 | 160

Select Yes| Yes| Yes| Yes| No | Yes| Yes| No | Yes.

Fig. 4.26.

Thus, aminimal spanning tree of the given graph consists of the branches CE, DF, AG, FG, BC,
CD, FH.

This tree represents the required railway network. The network is shown in Fig. (4.26). The cost
involved is 95 + 100 + 120 + 140 + 145 + 150 + 150 = 900 (in crores of rupees).
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Problem 4.15. Using the Kruskal’s algorithm, find a minimal spanning tree for the weighted
graph shown below :

Fig. 4.27.

Solution. The given graph has 6 vertices and therefore a spanning tree will have 5 edges.

Let us put the edges of the graph in the non-decreasing order of their weights and go on selecting
5 edges one by one in such away that no circuit is created.

Edges | CR| PR| QR [ BQ | BR | AB| BC| AR| PQ
Weight | 5 7| 7| 8| 9| 10| 10| 12| 12

Select Yes| Yes| Yes | Yes | No | Yes

Thus, aminimal spanning tree of the given graph contains the edges CR, PR, QR, BQ, AB. The
tree is shown in Fig. (4.28). The weight of the tree is 37 units.

re 10 B
8
Q (o]
7 5
P@® = ’
Fig. 4.28.

4.35. Prim’s algorithm
Let G = (V, E) be a connected graph with | V | = n. To find the adjacency matrix for G. Now
proceed according to the following steps :

Step 1: Select avertex v, UV and arrange the adjacency matrix of the graph in such away that
the first row and first column of the matrix correspondsto V.
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Step 2: Chooseavertex v, of V such that (v, v,) 0 E. Mergev; and v, into anew vertex, call it
Vv, and drop v,. Replace v, by v, in the graph. Find the new adjacency matrix corre-
sponding to this new quotient graph.

Step 3: While merging select an edge from those edges which are going to be removed (or
merged with other edge) from the graph. Keep arecord of it.

Step 4: Repeat steps 1, 2 and 3 until al vertices have been merged into one vertex.

Step 5: Now construct a tree from the edges, collected at different iterations of the algorithm.

The same Prim'’s algorithm with little modification can be used to find a minimum
spanning tree for a weighted graph. The stepwise agorithm is given below.

Let G=(V, E) begraph and S= (V,, EJ) be the spanning tree to be found from G.
Step 1: Select avertex v, of V and initidize
Ve={vi} and E;={}
Step 2: Select anearest neighbour of v; from V that is adjacent to same v; J V¢, and that edge
(W, v;) does not form a cycle with members edge of E,.

Set  V,=V.0O{v} and
Es=E U {(v, v}
Step 3: Repeat step 2 until |Eg|=|V |-1.
Theorem 4.5. Prim's algorithms produces a minimum spanning tree of a connected weighted
graph.
Proof. Let G be a connected weighted graph.
Suppose that the successive edges chosen by Prim’s algorithm are e, e,, ..., &,_;.
Let S bethetree with e, e,, ..., §,_; asits edges, and let S, be the tree with e, e, ..., § asits
edges.
Let T be aminimum spanning tree of G containing the edges e;, e,, ..., , where k is the maxi-

mum integer with the property that a minimum spanning tree exists containing the first k edges chosen
by Prim’s agorithm. The theorem follows if we can show that S=T.

Supposethat S# T, sothat k< n—1.

Consequently, T contains ey, e,, ..., g, but not g, ;.

Consider the graph made up of T together with g, ;.

Since this graph is connected and has n edges, too many edges to be a tree, it must contain a
simple circuit.

This simple circuit must contain g, , ; Since there was no simple circuit in T.

Furthermore, there must be an edge in the simple circuit that does not belong to S, . ; since
S..iisatree

By starting at an end point of g, . ; that is also an endpoint of one of the edges e, ..., g, and
following the circuit until it reachesan edge not in S , ;, we can find an edgee not in S, , ; that has an
end point that is also an end point of one of the edges g;, e,, ..., &..

By deleting efrom T and adding g, , ;, we obtain atree T' withn— 1 edges (it isatree sinceit has
no simple circuits).
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Note thet the tree T' contains e, &, ..., €, 64 1.

Furthermore, since g, ; was chosen by Prim’s algorithms at the (k + 1)st step, and e was also
available at that step, the weight of g, ; isless than or equal to the weight of e.

From this observation it follows that T' is also a minimum spanning tree, since the sum of the
weights of its edges does not exceed the sum of the weights of the edges of T.

This contradicts the choice of k as the maximum integer so that a minimum spanning tree exists
containing e, ..., .

Hence, k=n—-1and S=T.

It follows that Prim’s algorithm produces a minimum spanning tree.

Problem 4.16. Find the minimum spanning tree for the weighted graph of the Figure (4.29).

Fig. 4.29.

Solution. Let is begin with the node A of the graph.

Let S=(V, Ey be the spanning tree to be found from G.
InitializeV = {A} and E;={ }.

There are eight nodes so the spanning tree will have seven arcs.

Theiterations of agorithm applied on the graph are given below. The number indicates iteration
number.

1. Nodes B and C are neighbours of A. Since node C is nearest to the node A we select C.
Thus, we have V= {A, C} and E;= {(A, C)}.

2. Now node B is neighbour of both A and C and C has nodes E and F asits neighbour. We have AB
=3,CB=3,CE=5and CF=5.

Thus, the nearest neighbour is B. We can select either AB or CB. We select CB.
Therefore, V= {A, C, B} and E;= {(A, C), (C, B)}.

3. Now D, E, F are neighbour of nodesin V. An arc AB is till to be considered. This arc forms
cyclewith arcs AC and CB aready in Eg so it cannot be selected.

Thus, we have to select from BD =6, CE=5, CF=5.
We may take either CE or CF. We select CF.
Therefore, V= {A, C, B, F} and E;={(A, C), (C, B), (C, F)}
4, Now we haveto select an arc from BD = 6, CE =5, FE = 4, FG = 4. We select FE.
Therefore, V= {A, C,B, F E} and E;={(A, C), (C, B), (C, F), (F E)}.
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5. The selection of arc CE isruled out as it forms a cycle with the edges CF and FE.
Thus, we have to select an arc from BD = 6, ED = 2, FG = 4. We select ED.
Therefore, V= {A, C,B, F, E, D} and

Es={(A,C), (C,B),(C,F), (F BE), (E D)}.

6. Now BD isruled out asit forms cycle with CB, CF, FE and ED.

Thus we have to consider DH = 2, EG = 3, FG = 4. We select DH.
ThereforeV,={A, C, B, F E, D, H} and
Es={(A,C), (C B),(C,F), (R B), (E D), (D, H)}.

7. Now left over arcsare EG = 3, HG = 6, FG = 4. We sdlect EG.

Therefore, V= {A, C,B, F E, D, H, G} and
Es={(A,C), (C B),(C,F), (R E), (E D), (D, H), (E G)}.

Since number of edges in E; is seven process terminates here. The spanning tree so obtained is
shown in the Fig. (4.30).

Fig. 4.30.

Problem 4.17. Find a minimum spanning tree from the graph of the Fig. (4.31).

A e, B
€, e,
D €s c
Fig. 4.31.

Solution. The working of the procedureis shown in the following table. The first row of thetable
contains the adjacency matrix of the given graph. If there are n nodes in a graph then merging process
will continue up to nth iterations.
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Matrix Nodes merged Next node Edge kept
A B CD
AD 1 1 1O
BH 0 1 17
cl 1 0 10 B
D@ 11 OE
AL C D
AL 1 10
cd o1 Al ={A, B} C (A, B)
DH 10
AZ D
2
An0 1 A2 = (A, B,C} D (A, C)
DH o
A3 ,
A2 [0] A3 ={A,B,C,D} (A, D)
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Therefore, we get three arcs in the process. The tree constructed with these arcs is shown in the

Fig. (4.32)

ow

€5
€4

Fig. 4.32.

Problem 4.18. Using Prim’'s algorithm, find a minimal spanning tree for the weighted graph

shown in Fig. (4.33).
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Fig. 4.33.

Solution. The given graph has 6 vertices.
Therefore, aminimal spanning tree thereof has 5 vertices.

A B C D E F
A - 1 4 1 3 3
B 1 - 2 0 4 0
C 4 2 - 2 co co
D 1 0 2 - 4 5
E 3 4 0 4 — 3
F 3 00 00 5 3 -

Now we examine the A-row and pick the smallest entry 1 which correspondsto two edges (A, B)
and (A, D).

Let uschoosethefirst of these, namely (A, B). By examining the A- and B-rows, we find that the
vertex other than A and B which corresponds to the smallest entry is C.

Thus, Cisclosest to the edge (A, B). Let us connect C to (A, B).

Next, we examine the C-row and pick the smallest entry 2. The edge (C, D) is one of the corre-
sponding edges. By examining the C- and D-rows, we find that the vertex other than C and D which
corresponds to the smallest entry and which does not produce a circuit is E.

Thus, E is closest to the edge (C, D). Let us connect E to (C, D).

The construction at this stage shows that the edges (A, B), (B, C), (C, D), (D, E) belong to a
minimal tree. The vertex left over isF, which isjoined to A, D and E in the given graph.

Among the edges that contain F, the edges FA and FE have minimum weight.
Therefore, we can include either of these in the minimal spanning tree.
Thus, for the given graph we get two minimal spanning trees shown in Fig. (4.34)(a), (b)
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A A
F B F B
E C E C
D D
(@) (%)
Fig. 4.34.

Problem 4.19. Find the minimal spanning tree of the weighted graph of Fig. (4.35), using
Prim's algorithm.

vy

v, A
Fig. 4.35.

Solution. 1. We choose the vertex v;. Now edge with smallest weight incident on v; is (vy, V), SO
we choose the edge or (4, Vs).

V3

2. Now W(Vy, Vy) = 4, W(Vy, Vi) = 3, W(Vy, V) = 4, W(Vy, V,) = 2 and w(vs, V) = 3. We choose the edge
(v, Vo) sinceit is minimum.
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3. Again w(vy, V) = 3, W(V,, V) = 1 and w(vs, v,) = 3. We choose the edge (V,, V,).

Vy
Va

V3
vy

4. Now we choose the edge (v,, v5). Now all the vertices are covered.
The minimal spanning tree is produced.

Problem 4.20. UsePrim'salgorithmto design a minimum-cost communications network con-
necting all the computers represented by the graph in Fig. (4.36).

Rs. 2000

Kolkata

Mumbai

Tirupati

Fig. 4.36.

Solution. We solve this problem by finding a minimum spanning tree in the graph in Fig. (4.36).

Prim’s algorithm is carried out by choosing aninitial edge of minimum weight and successively
adding edges of minimum weight that are incident to a vertex in the tree and that do not form simple
circuits.

The edgesin colorsin Fig. (4.37) show aminimum spanning tree produced by Prim’s algorithm,
with the choice made at each step displayed.
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Rs. 2000
Mysore

Kolkata

Mumbai

Tirupati
Fig. 4.37.
Choice Edge Cost
1 {Mysore, Tirupati} Rs. 700
2 {Tirupati, Kolkata} Rs. 800
3 {Mysore, Mumbai} Rs. 1200
4 {Mumbai, Chennai} Rs. 900
Total Rs. 3600

Problem 4.21. Use Prim's algorithm to find a minimum spanning tree in the graph shown in
Fig. (4.38).

sty oo g g

3 1 2 5

g2 g 3 g 3 o

4 2 4 3

o> o ° o ' o

i i k |
Fig. 4.38.

Solution. A minimum spanning tree constructed using Prim’s algorithm is shown in Fig. (4.39).
The successive edges chosen are displayed.
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b d
o 2 o 3 o ' o
3 1 2 5
f
cg— - @ S %% 3 on
4 2 4 3
—> o > o ' o
i i k |
Fig. 4.39.

Choice Edge Weight
1 {b, f} 1
2 {a, b} 2
3 {f.5} 2
4 {a, €} 3
S {i,j} 3
6 {f, g} 3
7 {c, a} 2
8 {c, d} 1
9 {g.h} 3

10 {h 1} 3
1 {k, I} 1
Total : 24

Problem 4.22. Using Prim's algorithm, find a minimal spanning tree for the weighted graph
shown in Fig. (4.40).

Fig. 4.40.

Solution. We observe that the graph has 5 vertices. Therefore, aminimal spanning tree will have
4 edges.
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Let us tabulate the vertices of the edges between every pair of vertices as shown below :

A v, Vs v, Vs
A - 4 00 5
v, 4 - 3 6 1
V3 0 3 - 6 2
A 00 6 6 - 7
Vs 5 1 2 7 -

Now, let us start with the first row (v;-row) and pick the smallest entry therein. Thisis 4 which
corresponds to the edge (vy, Vs).

By examining al the entriesin v;- and v,-rows, we find that the vertex other than v, and v, which
corresponds to the smallest entry is vs.

Thus, v5 is closest to the edge (v4, V). Let us connect vs to the edge (vy, Vs).

Let us now examine the vs-row and note that the smallest entry 1 which corresponds to the edge
(Vs V,). By examining al entriesin v,- and vz-rows, we find that the vertex other than v, and v; which

corresponds to the smallest entry is vs.

Thus, v; is closest to the edge (v,, V5). Let us connect v; to the edge (Vs, Vs).

Thus, the edges (v4, V), (V,, V5), (Vs, V) belong to aminimal spanning tree. The vertex left over
at this stageis v, which isjoined to v,, v5 and vs in the given graph.

Among the edges that contain v,, the edges (v,, v,) and (v, v,) have minimum weights.

Therefore, we can include either of these edges in the minimal spanning tree.

Accordingly, the edges (v;, V), (V, V), (Vs, V3) together with the edge (v, v,;) or the edge (v, V,)
congtitute a minimal spanning tree.

Thus, for the given graph, there are two minimal spanning trees as shown below :

v, v, A Vg

(a) (b)

Fig. 4.41.
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Problem 4.23. Use Prim’'s algorithm to find an optimal tree for the graph in Fig. (4.42).

Fig. 4.42.

Solution. Prim’s agorithm generates an optimal tree as follows :

Initidization:i=1,P={a},N={b,c,d, e f, g}, T=q

Firstiteration: T ={{a, b)},P={a, b}, N={c,d, e f, g}, i=2

Second iteration : T ={{a, b}, {b, e}},P={a, b, e}, N={c,d,f, g},i =3

Third iteration: T ={{a, b},{b, e,{e g}},P={a,b,e g}, N={c,d,f},i=4

Fourth iteration: T ={{a, b}, {b, €},{e a},{d, e},P={a b, e g,d},N={c, f},i =5.

Fifth iteration : T ={{a, b}, {b, €}, {e g}, {d, €, {f, a}},
P={ab,eqgd f}, N={c},i=6.

Sixthiteration: T ={{a, b}, {b, €},{e, g}, {d, &, {f, g}, {c, a}},

P={ab,eg,df,ct=V,n=¢i=7=|V|.
Hence T is an optimal spanning tree of weight 17 for G, as seen in Fig. (4.43).
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Note that the minimal spanning tree obtained here differsfrom that in Fig. (4.44). So thistype of
spanning tree need not be unique.

Fig. 4.44.

Problem 4.24. Using Prim's algorithm, find a minimal spanning tree for the weighted graph
shown in Fig. (4.45).

10

Fig. 4.45.

Solution. Let us prepare the following table indicating the weights of the edges joining every
pair of vertices

Vi Vv, V3 A Vs Ve
Vi - 10 16 1n 10 17
Vy 10 — 9.5 o0 195
Vg 16 9.5 - 7 o0 12
A 11 o0 7 - 8 7
Vs 10 00 00 8 - 9
Ve 17 195 12 7 9 -
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Now we start with the first row (v;-row) and pick the smallest entry therein. Thisis 10 which
corresponds to the edge (vy, V,) of (Vy, Vs).

Let us select one of the these edges, say (v, V). Now, by examining all the entriesin v;- and vs-
rows, we find that the vertex other than v; and v which corresponds to the smallest entry is v,,.

Thus, v, is closest to the edge (v;, Vs). Let us connect v, to the edge (vy, V).

L et us now examine the v,-row and note that the smallest entry therein is 7 which corresponds to
the edge (V,, V3) Or (Vy, Vg).

L et us choose one of these, say (v,, V). By examining the entriesin v,- and vg-rows, we find that
the vertex other than v, and v which corresponds to the smallest entry is vs.

Thus, v; is closest to the edge (v, Vg). Let us connect v; to the edge (v, Vg).

Let us examine the v5-row and pick the edge (v3, v,) which corresponds to the smallest entry.

By examining the entries in v5- and v,-rows, we find that the vertex other than v; and v,, which
corresponds to the smallest entry is v..

Thus, v, is closest to the edge (v3, V,). Let us connect v, to (3, V,).

We stop the process, because we have now connected all the six vertices with five edges, (v;,
V), (Vs, V), (Va V), (Vas Va), (V3 Vo).

The corresponding graph is as shown below. This graph constitutes a minimal spanning tree of
the given graph. We note that its weight is 41.5 units.

Fig. 4.46.

4.3.6. The labeling algorithm

Step 1: Let N; be the set of all nodes connected in the source by an edge with positive excess
capacity. Label eachj in N, with [E;, 1], where E; is the excess capacity e;; of edge (1, j).
The 1 in the label indicates that j is connected to the source, node 1.

Step 2: Let node j in N; be the node with smallest node number and let N, (j) be the set of all
unlabeled nodes, other than the source, that are joined to node j and have positive
exXcess capacity.

Suppose that node kisin N, (j) and (j, k) is the edge with positive excess capactiy.
Label node k with [E,, j], where E, is the minimum of E; and the excess capacity g of
edge (j, K).

When all the nodesin N, (j) are labeled in this way, repest this process for the other
nodesin Nj.

LetN,= U N, ()
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(4.47).

Step 3:

Step 4 :
Step 5:

Note that after step 1, we have labeled each nodej in N, with E; the amount of material
that can flow from the source to j through one edge and with the information that this
flow came from node 1.

In step 2, previously unlabeled nodes k that can be reached from the source by a path
m: 1, j, karelabeled with [E, j].

Here E, is the maximum flow that can pass through 1t since it is the smaller of the
amount that can reach j and the amount that can then pass on to k.

Thus, when step 2, is finished, we have constructed two-step paths to al nodesin N.,.

Thelabel for each of these nodes records the total flow that can reach the node through
the path and its immediate predecessor in the path.

We attempt to continue this construction increasing the lengths of the paths until we
reach the sink (if possible).

Then the total flow can be increased and we can retrace the path used for thisincrease.
Repeat step 2, labelling all previously unlabeled nodes N that can be reached from a
node in N, by an edge having positive excess capacity.

Continue this process forming sets N, N, ... until after afinite number of steps either

(i) The sink has not been |abeled and no other nodes can be labeled. It can happen that
no nodes have been labeled, remember that the source is not labeled. or

(ii) The sink has been labeled.

In case (i), the algorithm terminates and the total flow then is a maximum flow.

In case (ii) the sink, node n, has been labeled with [E,,, m] where E,, is the amount of
extraflow that can be made to reach the sink through a path Tt We examineTtin reverse
order. If each (i, j) O N, then weincreasetheflow in (i, j) by E,and decrease the excess
capacity g; by the same amount.

Simultaneously, we increase the excess capacity of the (virtual) edge (j, i) by E, since
thereisthat much more flow in (i, j) to reverse.

If on the other hand, (i, j) O N, we decrease the flow in (j, i) by E, and increase its
excess capacity by E,.

We simultaneously decrease the excess capacity in (i, j) by the same amount, since
thereislessflow in (i, j) to reverse.

We now have anew flow that is E,, units greater than before and we return to step 1.

Problem 4.25. Use the labeling algorithm to find a maximum flow for the network in Fig.
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Solution. Fig. (4.48) showsthe network with initial capacities of all edgesin G. Theinitia flow
in all edgesis zero.

Fig. 4.48.

Step 1: Starting at the source, we can reach nodes 2 and 4 by edges having excess capacity, so
N; ={2, 4}.
Welabel nodes2 and 4 withthelabels[5, 1] and [4, 1], respectively, asshownin Fig. (4.49).

(4. 1]

845=3 €5, =3

(5. 1]

Fig. 4.49.

Step 2 : From node 2 we can reach nodes 5 and 3 using edges with positive excess capacity.
Node 5 is labeled with [2, 2] since only two additional units of flow can pass through
edge (2, 5).
Node 3islabeled with [3, 2] since only 3 additional units of flow can pass through edge
(2, 3). The result of this step is shown in Fig. (4.50).
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We cannot travel from node 4 to any unlabeled node by one edge. Thus, N, ={3, 5} and
step 2 is complete.

Step 3: Werepeat step 2 using N,. We can reach the sink from node 3 and 3 units through edge
(3, 6). Thus, the sink is labeled with [3, 3].

Step 4 : We work backward through the path 1, 2, 3, 6 and subtract 3 from the excess capacity
of each edge, indicating an increased flow through that edge, and adding an equal amount
to the excess capacities of the (virtual) edges. We now return to step 1 with the situation
shown in Fig. (4.51).

Fig. 451.

Proceeding as before, nodes 2 and 4 are labeled [2, 1] and [4, 1] respectively.
Note that E, is now only 2 units, the new excess capacity of edge (1, 2).

Node 2 can no longer be used to label node 3, since there is no excess capacity in the edge (2, 3).
But node 5 now will belabeled [2, 2]. Once again no unlabled node can be reached from node 4, so we
move to step 3.

Here we can reach node 6 from node 5 so node 6 is labeled with [2, 5].

The final result of step 3isshown in Fig. (4.52), and we have increased the flow by 2 unitsto a
total of 5 units.

Fig. 4.52.

We move to step 4 again and work back along the path 1, 2, 5, 6, subtracting 2 from the excess
capacities of these edges and adding 2 to the capacities of the corresponding (virtual) edges.
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We return to step 1 with Fig. (4.53).

Fig. 4.53.

Thistime steps 1 and 2 produce the following results. Only node 4 islabeled from node 1, with [4, 1].
Node 5 is the only node labeled from node 4, with [3, 4] step 3 begins with Fig. (4.54).

4,1 3,4
@1 €;5=3 €5, =3 13. 4]

Fig. 4.54.

At this point, node 5 could label node 2 using the excess capacity of edge (5, 2).
However, node 5 can aso be used to label thesink. Thesink islabeled [2, 5] and the total flow is

increased to 7 units. In step 5, we work back along the path 1, 4, 5, 6, adjusting excess capacities. We
return to step 1 with the configuration shown in Fig. (4.55).

B45=3 €5, =3

Fig. 4.55.

Verify that after steps 1, 2 and 3, nodes 4, 5 and 2 have been labeled as shown in Fig. (4.56) and
no further labeling is possible. The final 1abeling of node 2 uses the virtual edge (5, 2).
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Fig. 4.56.

Thus, the final overall flow has value 7. By subtracting the final excess capacity g; of each edge
(i,J) in N from the capacity C;;, the flow F that produces the maximum value 7 can be seein Fig. (4.57).

Fig. 4.57.

4.3.7. Reachability

A nodevinasimple graph G is said to be reachable from the vertex u of G if there existsafrom
u to v the set of vertices which a path from u to v, the set of vertices which are reachable from a given
vertex v is called the reachable set of v and is denoted by R(V).

For any subset U of the vertex set V, the reachable set of U isthe set of all vertices which are
reachable from any vertex set of S and this set is denoted by R(S).

For example, in the graph given below :

Fig. 4.58.
R(Vl) = {VZl V3, VA}’ R(VZ) = {Vll V3, V4} and R({ Vll VZ}) = {V3! V4} .
4.3.8. Distance and diameter

In aconnected graph G, the distance between the verticesu and v, denoted by d(u, v) isthelength
of the shortest path.

InFig. (4.59)(a), d(a, f) =2 and in Fig. (4.59) (b), d(a, €) = 3.
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(@) (h)
Fig. 4.59.
The distance function as defined above has the following properties.
If u, vand w are any three verties of a connected graph then
() d(u,v) =0and d(u,v) =0if u=w.

(i) d(u, v) =d(v, u) and
(i) d(u, v) = d(u, w) + d(w, v)
This shows that distance in agraph is metric.
The diameter of G, written as diam (G) is the maximum distance between any two verticesin G.
InFig. (4.59) (a), diam (G) = 2 and in Fig. (4.59) (b), diam (G) = 4.

4.3.9. Cut vertex, cut set and bridge
Sometimes the removal of avertex and all edgesincident with it produces a subgraph with more
connected components. A cut vertex of a connected graph G is a vertex whose removal increases the
number of components. Clearly if visacut vertex of a connected graph G, G — v is disconnected.
A cut vertex isalso caled a cut point.
Anaogoudy, an edge whose removal produces a graph with more connected components then
the original graph is called a cut edge or bridge.
The set of al minimum number of edges of G whose removal disconnects agraph G is called a
cut set of G. Thusacut set S of a satisfy the following :
(i) Sisasubset of the edge set E of G.
(if) Removal of edges from a connected graph G disconnects G.
(i) No proper subset of G satisfy the condition.

b d

@ f

Fig, 4.60.
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In the graph in Figure below, each of the sets{{b, d}, {c, d},{c, €t} and{{e, f}} isacut set. The
edge{ g, f} isthe only bridge. The singleton set consisting of abridge is always a cut of set of G.

4.3.10. Connected or weakly connected

A directed graph is called connected at weakly connected if it is connected as an undirected
graph in which each directed edge is converted to an undirected graph.

4.3.11. Unilaterally connected

A simpledirected graph is said to be unilaterally connected if for any pair of vertices of the graph
atleast one of the vertices of the pair is reachable from other vertex.

4.3.12. Strongly connected

A directed graph is called strongly connected if for any pair of vertices of the graph both the
vertices of the pair are reachable from one another.

For the diagraphs is Fig. (4.61) the digraph in (a) is strongly connected, in a (b) it is weakly
connected, whilein (c) it is unilaterally connected but not strongly connected.

@ >—(2) o o
i i ® @

© —3 O, & O ®

(a) Strongly connected (h) Weakly connected (¢) Unilateraly
connected

Fig. 4.61. Connectivity in digraphs.

Note that a unilaterally connected digraph is weakly connected but a weakly connected digraph
is not necessarily unilateraly connected. A strongly connected digraph is both unilaterally and weakly
connected.

4.3.13. Connectivity

To study the measure of connectedness of a graph G we consider the minimum number of verti-
ces and edges to be removed from the graph in order to disconnect it.

4.3.14. Edge connectivity

Let G be a connected graph. The edge connectivity of G isthe minimum number of edges whose
removal results in a disconnected or trivial graph. The edge connectivity of a connected graph G is
denoted by A(G) or E(G).
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(i) If G isadisconnected graph, then A(G) or E(G) = 0.
(i) Edge connectivity of a connected graph G with abridgeis 1.

4.3.15. Vertex connectivity

Let G be a connected graph. The vertex connectivity of G is the minimum number of vertices
whose removal resultsin adisconnected or atrivial graph. The vertex connectivity of a connected graph
is denoted by k(G) or V(G)

(i) If G isadisconnected graph, then A(G) or E(G) = 0.
(i) Edge connectivity of a connected graph G with abridgeis 1.

(iii) The complete graph k,, cannot be disconnected by removing any number of vertices, but the
removal of n—1 verticesresultsin atrivial graph. Hence k(k,) = n—1.

(iv) The vertex connectivity of a graph of order atleast there is one if and only if it has a cut
vertex.

(v) Vertex connectivity of a path is one and that of cycle C,, (n = 4) is two.
Problem 4.26. Find the (i) vertex sets of components
(i) cut-vertices and (iii) cut-edges of the graph given below.

u
r y
S v w
z
q
t X

Fig. 4.62.
Solution. The graph has three components. The vertex set of the componentsare{q, r}, {s, t, u,
v, W} and{x, y, Z. The cut vertices of the graph aret and y.
Its cut-edges are gr, st, Xy and yz
Problem 4.27. Isthe directed graph given below strongly connected ?

Fig. 4.63.

Solution. The possible pairs of vertices and the forward and the backward paths between them
are shown below for the given graph.
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Pairs of \Vertices Forward path Backward path
1,2 1-2 2-3-1
1,3 1-2-3 31
4 14 4-3-1
(2,3) 2-3 312
(2,4 2-3-14 4-3-1-2
3.4 4-3 4-3

Therefore, we see that between every pair of distinct vertices of the given graph there exists a
forward as well as backward path, and hence it is strongly connected.

Theorem 4.6. The edge connectivity of a graph G cannot exceed the minimum degree of a
vertexin G, i.e., A(G) <9(G).

Theorem 4.7. Let v be a point a connected graph G. The following statements are equivalent
(1) visacutpoint of G
(2) There exist points u and v distinct from v such that v is on every u—w path.

(3) There exists a partition of the set of points V—<{v} into subsets U and W such that for any
pointsu [7U and w [JW, the point v is on every u—w path.

Proof. (1) implies (3)

Sincevisacutpoint of G, G-v is disconnected and has atleast two components. Form a partition
of V{Vv} by letting U consist of the points of one of these components and W the points of the others.

The any two points u [0 U and w [0 W lie in different components of G—v.

Therefore every u—w path in G contains v.

(3) implies (2)

Thisisimmediate since (2) is a specia case of (3).

(2) implies (1)

If vison every path in G joining u and w, then there cannot be a path joining these pointsin G-v.

Thus G—v is disconnected, so v is a cutpoint of G.

Theorem 4.8. Everynontrivial connected graph hasatleast two pointswhich arenot cutpoints.

Proof. Let uand v be points at maximum distancein G, and assume v is a cut point.

Then there isa point w in a different component of G-v than u.

Hence visin every path joining u and w, so d(u, w) > d(u, v) which isimpossible.

Therefore v and similarly u are not cut points of G.

Theorem 4.9. Let x be aline of a connected graph G. The following statements are equivalent :

(1) xisabridge of G

(2) xisnot on any cycle of G

(3) There exist points u and v of G such that the line x is on every path joining u and v.

(4) These exists a partition of V into subsets U and W such that for any pointsu U and w [JW,
the line x is on every path joining u and w.
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Theorem 4.10. A graph H is the block graph of some graph if and only if every block of H is
complete.

Proof. Let H = B(G), and assume thereis a block H; of H which is not complete.

Then there are two points in H; which are non adjacent and lie on a shortest common cycle Z of
length atleast 4.

But the union of the blocks of G corresponding to the points of H; which lie on Z is then con-
nected and has no cut point, so it isitself contained in ablock, contradicting the maximality property of
ablock of agraph.

On the otherhand, let H be a given graph in which every block is complete.

From B(H), and then form a new graph G by adding to each point H; of B(H) a number of end
lines equal to the number of points of the block H; which are not cut points of H. Then it is easy to see
that B(G) isisomorphic to H.

Theorem 4.11. Let G be a connected graph with atleast three points. The following statements
are equivalent :

(1) Gisablock

(2) Every two points of G lie on a common cycle

(3) Every point and line of G lie on a common cycle.

(4) Every two lines of G lie on a common cycle

(5) Given two points and one line of G, there is a path joining the points which contains the line.

(6) For every three distinct points of G, there is a path joining any two of them which contains
the third.

(7) For every three distinct points of G, there is a path joining any two of them which does not
contain the third.

Proof. (1) implies (2)

Let u and v be distinct points of G and let U be the set of points different from u which lieon a
cycle containing ul.

Since G has atleast three points and no cutpoints, it has no bridges.

Therefore, every point adjacent to uisin U, so U is not empty.

P,

P,
(@)

Fig. 4.64. Pahsin blocks.

Suppose visnotin U. Let w be apoint in U for which the distance d(w, v) is minimum.

Let P, be ashortest w—v path, and let P, and P, be the two u-w paths of acycle containing u and w
(see Fig. 4.64(a)).

Since w is not a cutpoint, there is a u—v path P' not containing w (see Fig. 4.64(b)).

Let w' bethepoint nearest uin P whichisalsoin Py and let u bethelast point of the u—w subpath
of P in either P, or P,. Without loss of generality, we assume U’ isin P;.

Let Q; bethe u—w path consisting of the u—u’ subpath of P; and the u'-w' subpath of P'.
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Let Q, be the u—w path consisting of P, followed by the w—w" subpath of P,. Then Q; and Q,
are digoint u-w paths. Together they form acycle, so w isin U. Since w is on a shortest w—v path,
d(w', v) < d(w, v). This contradicts our choice of w, proving that u and v do lie on acycle.

(2) implies (3)

Let ubeapoint and w aline of G.

Let zbe acycle containing u and v. A cycle Z containing u and wv can be formed as follows.

If wison zthen Z consists of wv together with the v—w path of z containing u.

If wisnot on zthereisaw-u path P not containing v, since otherwise v would be a cutpoint.

Let u' bethefirst point of Pinz ThenZ consists of w followed by thew—u' subpath of P and the
u'—v path in z containing u.

(3) implies (4)

This proof is analogous to the preceding one, and the details are omitted.

(4) implies (5)

Any two points of G areincident with one line each, which lie on acycle by (4).

Hence any two points of G lie on a cycle, and we have (2) so aso (3).

Let uand v be distinct points and x aline of G.

By statement (3), there are cycles z;, containing u and X, and z, containing v and X.

If vison z, or uison z,, thereis clearly a path joining u and v containing x.

Thus we need only consider the case where visnot on z; and u is not on z,.

Begin with u and proceed aong z; until reaching the first point w of z,, then take the path on z,
joining w and v which contains x.

Thiswalk constitutes a path joining u and v that contains x.

(5) implies (6)

Let u, vand w be distinct points of G and let x be any line incident with w. By (5), thereis a path
joining u and v which contains x and hence must contain w.

(6) implies (7)

Let u, vand w be distinct points of G. By statement (6) there is au—w path P containing v. The
u—Vv subpath of P does not contain w.

(7) implies (1)

By statement (7), for any two points u and v, no point lies on every u-v path.

Hence, G must be a block.

Problem 4.28. Find the V(G), E(G) and deg (G) for the graph of the Figure (4.65).

A

(a) (b)
Fig. 4.65
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Solution. (a) The degree of the graph G, deg (G) = 5.
If we remove node D from the graph then graph becomes two components graph.

Thus, V(G) = 1.

By the removal of arcs (D, H) and (D, E) the graph G turns into two components graph.

Hence E(G) = 2.

(b) Here deg(G) =3
V(G) =2 and E(G) = 2.
Problem 4.29. Find the E(G) and V(G) of the graph shown in Figure (4.66).

Fig. 4.66.

Solution. To calculate number of arc digjoint paths between any pair of nodes, maximum flow
between that pair of nodeis calculated.

The procedure is shown in the given table. It is assumed that :
(i) an arc can carry only one unit of flow and
(if) anode has infinite capacity.

SNo. Node Pair | Maximum Flow Remark
1 1,2 3 Three arcs from node 1 can carry at the most 3 units of
flow and node 2 can receive all of them.
2. 14,3 3 same as above
3. 1,9 3 same as above
4. (1, 5) 3 same as above
5. (4, 6) 3 same as above
6. (2,3) 3 Though node 2 can send 4 units of flow, node 3 can
accept only 3 units.
7. (2,4 4 Node 2 can sent 4 units and node 4 can accept al of them
8. (2,5 3 sameasind. no. 6
9. (2, 6) 4 sameasindg. no. 7
10. (3,9 3 sameasindg. no. 1
11. (3,5) 3 sameasindg. no. 1
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12.
13.
14.
15.

(3.6)
(4.5
(4,6)
(5.6)

w b W w

sameasing.no. 1
sameasind. no. 6
sameasindg. no. 7
sameasing. no. 1

The minimum val ue of maximum flow between any pair of node 3. Thisisthe count of minimum
number of arc digoint path between any pair of nodesin G.

Hence E(G) = 3.

Similarly, we can compute V(G) of the graph.

The following assumptions are made to compute node disjoint path between one node to
another :

(i) Arc hasinfinite capacity so it can carry any amount of flow.

(i) Any intermediate node in the path can accept | units of flow along any one incoming arc
and can pass only one unit at atime along any one outgoing arc. If an intermediate node b
has 5 incoming arcs from a node a then b can accept only one unit of flow from a.

Similarly if b has 4 outgoing arcs, it can pass only one unit of flow aong any one out of

(iii)

four arcs.

If nodes are adjacent then it can sustain loss of al other nodes, so maximum flow is as-
sumed to be n—1, wherenis|V |.

The calculation is shown in the given table. From the table, it is clear that V(G) = 3.

SNo. Node Pair | Maximum Flow Remark
1 1,2 n-1 Both nodes 1 and 2 are adjacent.
2. 1, 3) 3 Node digoint pathsare (1, 2, 3), (1, 5, 4, 3) and (1, 6, 3)
3. 1,49 3 Node digoint paths are (1, 2, 4), (1, 5, 4) and (1, 6, 4)
4. (14,5 n-1 Both nodes 1 and 5 are adjacent
5. (1, 6) n-1 Both nodes 1 and 6 are adjacent
6. (2,3) n-1 Both nodes 2 and 3 are adjacent
7. (2,49 n-1 Both nodes 2 and 4 are adjacent
8. (2,5) 3 Noded digoint pathsare: (2, 1, 5), (2,4, 5) and (2, 6, 5)
9. (2, 6) - Both nodes 2 and 6 are adjacent
10. (3,9 - Both nodes 3 and 4 are adjacent
11 (3,5) 3 Noded digoint pathsare: (3, 4,5), (3,2, 1,5) and (3, 6, 5)
12. (3,6) n-1 Both nodes 1 and 2 are adjacent
13. 4,5) n-1 Both nodes 1 and 2 are adjacent
14. (4, 6) n-1 Both nodes 1 and 2 are adjacent
15. (5, 6) n-1 Both nodes 1 and 2 are adjacent
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Theorem 4.12. Inany graph G, V(G) < E(G) < deg (G).
Proof. Let deg(G) = n.
Then there existsanode V in G such that degree of V isn.

If wedrop all arcsfor which V isanincidence (anodeis called an incidence of an arc if the node
is either astart or an end point of the arc), the graph becomes disconnected.

Thus, E(G) cannot exceed n otherwise there exists a node which is incidence of m> n number of
arcs. That isin contradiction with the assumption that

deg(G) = n
Thus, E(G) < deg(G) (D
Next, Let E(G) =r.
Then there exist apair of nodes such that there are r digoint paths between them.
These r paths may cross through S < r number of nodes.

If we remove these s nodes from the graph, the r arcs get deleted from the graph making the
graph a disconnected.

That means V(G) cannot exceed r.
Thus V(G) < E(G) (2
Combining results (1) and (2), we have
V(G) < E(G) < deg(G).
Theorem 4.13. Let visa cut point of a connected graph G = (V, E). The remaining set of

vertex V—{v} can be partitioned into two non empty disjoint subsets U and W such that for any node
u [JU and w [JW, the node v lies on every u-w path.

Proof. When cut point v is removed from G it becomes disconnected.

Let U be a set of vertices of the largest connected subgraph of Gand W =V —{v} —U.

Let visnot on every u—w path.

Thisimplies that a path from u to w exists even after removal of v from G.

That means U is not the set of vertices of largest connected subgraph of G after removal of v.
Thisis acontrary to the assumption that U is the largest component.

Hence v lies on every u-w path.

4.4 TRANSPORT NETWORKS

Let N =(V, E) be aloop-free connected directed graph. Then N iscalled anetwork, or transport
network, if the following conditions are satisfied :

() Thereexistsaunique vertex a1V with id(a), the in degree of a, equal to O. Thisvertex a
is called the source.

(i) Thereisauniquevertex z[1V, caled the sink, where od(Z), the out degree of z, equals O.
(iii) The graph N isweighted, so there is a function from E to the set of non negative integers
that assigns to each edge e = (v, w) O E a capacity, denoted by c(e) = c(v, w).
If N = (V, E) isatransport network, a function f from E to the non negative integersis called a
flow for N if
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() f(e) < c(e) for each edge e 0 E, and

(ii) for each v OV, other than the source a or the sink z, Z f(w,v)= Z f(v, w)
wiVv wl VvV

If thereis no edge (v, w), then f(v, w) = 0.
Let f be aflow for atransport network N = (V, E)

() Anedge e of the network is called saturated if f(€) = c(€). When f(e) < c(e), the edge is
caled unsaturated.

(i) If aisthe sourceof N, then val(f) = z f(a,v) iscaled the vaue of the flow.
\ny

If N = (V, E) isatransport network and C is a cut-set for the undirected graph associated
with N, then C is caled a cut, or an a—=z cut, if the removal of the edges in C from the
network results in the separation of a and z

For example, the graph in Fig. (4.67) isatransport network. Here vertex a isthe source, the sink
isat vertex z, and capacities are shown beside each edge. Sincec(a, b) + c(a, g) =5+ 7 = 12, the amount
of the commodity being transported from a to z cannot exceed 12. With ¢(d, 2) + c(h, 2 =5+ 6 =11, the
amount is further restricted to be no greater than 11.

Fig. 4.67.

For the network in Fig. (4.68), the label x, y on each edge eis determined so that X = ¢(e) and y is
the value assigned for a possible flow f. The label on each edge e satisfies f(€) < c(e).

In part (&) of the Fig. (4.68), theflow into vertex g is 5, but the flow out from that vertex is2+2 =4.
Hence the function f is not aflow in this case.

b 4,1 d

(a) ()

Fig. 4.68.
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For the network in Fig. (4.68) (b), only the edge (h, d) is saturated. All other edges are unsatu-
rated.

The value of the flow in this network is

va(f) = Z f(a,v) =f(a,b) +f(a,g) =3+5=8.
vV
We observe that in the network of Fig. (4.68) (b)
Z f(a,v) =3+5=8=4+4=1(d, 2 +f(h,2 = Z f(v,2).
vV vOv

Consequently, the total flow leaving the source a equals the total flow into the sink z

Fig. (4.69) indicates a cut for the given network (dotted curves). The cut C, consists of the
undirected edges { a, g}, {b, d}, {b, g} and {b, h}. This cut partitions the vertices of the network into

the two sets P = {a, b} and its complement P= {d, g, h, Z, s0 C; isdenoted as (P, P).
The capacity of a cut, denoted C(P, P), is defined by C(P, P) = Z C(v, w) , the sum of the
viOP
wiP

capacities of all edges (v, w), wherev O Pand w O P.

In this example, C(P, P) = c(a, g) + c(b, d) + c¢(b, h) =7+ 4 + 6 = 17.
The cut ¢, induces the vertex partition Q = {a, b, g}.

5 ={d, h, Z} and has capacity c(Q, 6) =c(b,d)+c(b, h)+c(g,h)=4+6+5=15.

Fig. 4.69.

Theorem 4.14. LetfbeaflowinanetworkN= (V,E).1fC= (P, p)isanycutin N, then val(f)
cannot exceed c(P, P).

Proof. Let vertex a bethe sourcein N and vertex zthe sink. Sinceid(a) = 0, it follows that for all
w OV, f(w, a) =0.

Consequently, val(f)= ) f(av) = > f(av) — Z f(w, a)

\an\Y \an\Y wiVv
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By the definition of aflow, for al x O P, x # a,

Z f(x,v) — Z f(w, x) =0.

viav wiv

Adding the results in the above equations yields

wl Vv wQiP
X#a

O O 0 0
=0y f(av)- f(w, a)d Oy f(x,v)-— f (w, x)O
val(f) @% av)- > f(w a)§+ > @]ZV WZV -

Z f(x,v)— Z f (w, X)
X1 P

x P
vV wl VvV
0 0o 0 0
0 0 0 0
= Dz f(x,v)+ z f(x,v)D—Dz f(w, x) + z f(w, X)
xop g P 0 or Ox P [l
NOP vOP g ooe Vo P g
Since Z f(x,v) and Z f(w, X) are summed over the same set of all ordered pairsin P x P,
xOP xopP
viP wiP

these summations are equal .

Consequently, val(f)= > f(xv) — > f(wx)
xOopP xOpP
vOP wdP

For all x, wOv, f(w, X) =0, so

Y fwx) z0andva(f)s Yy f(xv) < Y c(xV) =c(P P).

xdpP xdpP xOpP
wOP vapP vapP
Corollary :

If fisa flow in a transport network N = (V, E), then the value of the flow from the source a is
equal to the value of the flow into the sink z

Proof. LetP={a}, P=V —{a},andQ=V —{2}.

From the above observation,

Y fxv) = Y fwx) =vah= > flyv) - 5 fwy)

xOP xOP yoQ yoQ
viP wOP viQ wOQ
With P={a} andid(a) = 0, we find that
> fwx) = > f(wa) =0
xOP w P

wiP
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Similarly, for Q ={z and od(2) = 0, it follows that

> fwy) = ) f(zy) =0
N

Consequently, » f(xVv) = 5 f(av) =va(f)

x P viOP
vOP

= > f(yv) = f(y, 2).
yoQ yoQ
viQ

Theorem 4.15. The value of any flow in a given transport network is less than or equal to the

capacity of any cut in the network.

Proof. Let @ beaflow and (R, F’) be a cut in atransport network. For the source a,

Yeai)- Y ja) =) dai)=w

arn arj arn
Since @(j, a) = 0 for any j. For avertex P other than ain P,

SoPi)-Y ¢i.P) =0

an arj

Combining (1) and (2), we have

O O
a= 3 D3 aPD -3 di.PL

pOP (AT arj

oaP- Y P

pOP;dli i P;alj

pOP;O P pOP: 0 P Borpe pOP; O P

u g
PR+ > «ri)-0 % &P+ 3 q(j,P)E

Note that > WPi)= > «iP
pOP; 0 P pOP; O P

because both sums run through all the verticesin P. Thus, (3) becomes

a= S @P)- Y &P

pOP;O0 P p P P

But, sine z ¢(j, P) isaways anon-negative quantity.
pOP; 0P

(1)

(2

W)

(%)
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We have
as > ®PDs 3 wRi) =wp P)
pOP;O P pOP; 0 P

Theorem 4.16. In any directed network, the value of an (s, t)—flow never exceeds the capacity
of any (s, t)—cut.
Proof. Let F = {f,} beany (s, t)-flow and {S, T} any (s, t)—cut.

Conservation of flow tellsusthat ) fy, =) fy, =0
\%

\

foranyulds u#s. (the possibility u =t is excluded because t 0 S)
Hence,vd(F) = > fs = ) fis
vV Vv
O

O
uw Z fvu ﬁ
M Vv

(since the term in parentheses is 0 except for u=9)

I
oM
™M

fu .

uds vl v O Slv Vv

Since {S, T} isapartition, thislast sum can be written

fuv+ fuv - fvu - fvu
uldS Vvl S b Swv T Ouls,yv S O @ Sv T
= fuv_ fvu + Z (fuv _fvu)
udsS vl s b Slv S OubOsv T

Thefirst two terms in the line are the same, so we obtain

val(F) = z (fw = fw).

udS\v T

Butf, <C, andf,=0,so0f, —f,<C, foral uandv.

uv —

Therefore, val(F) < ) Cy, =cap(S, T) asdesired.

uldS,\ T
Corollary 1.
If Fisany (s, t)—flow and (S, T) isany (s, t)—cut, then val(F), Z (fow — fu) -
uds T
With refernece to the network in Fig. (4.70) and thecut S={s, a, ¢}, T ={b, d, t}, the sum
specified in the corollary is
uldS\ T

which is the value of the flow in this network.
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Corollary 2.

Suppose there exists some (s, t)—flow F and some (s, t)—cut {S T} such that the value of F equals
the capacity of {S T}. Then val(F) is the maximum value of any flow and cap(S, T) is the minimum
capacity of any cut.

Proof. Let F, be any flow. To seethat val(F;) < va(F), note that the theorem says that val(F,) <
cap(S, T) and, by hypothesis, cap(S, T) = val(F).

So val(F) is maximum.

In any directed network, there is aways a flow and a cut such that the value of the flow is the
capacity of the cut, such a flow has maximum value.

Fig. 4.70. (s, t)-flow.

45 MAX-FLOW MIN-CUT THEOREM
In any network, the value of any maximum flow is equal to the capacity of any minimum cut.
First proof :

Suppose first that the capacity of each arc is an integer. Then the network can be regarded as a
digraph D whose capacities represent the number of arcs connecting the various vertices (as in Figs.
(4.71) and (4.72)).
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Fig. 4.72

The value of amaximum flow is the total number of arc-digoint paths from vtowin D, and the
capacity of aminimum cut is the minimum number of arcsin a wv-disconnecting set of D.

The extension of this result to networks in which the capacities are rational numbersiis effected
by multiplying these capacities by a suitable integer d to make them integers.

We then have the case described above, and the result follows on dividing by d.

Finally, if some capacities are irrational, then we approximate them as closely as we please by
rationals and use the above resullt.

By choosing these rational s carefully, we can ensure that the value of any maximum flow and the
capacity of any minimum cut are altered by an amount that is as small as we wish.

Notethat, in practical examples, irrational capacitiesrarely occur, since the capacitiesare usually
given in decimal form.

Second Proof

Since the value of any maximum flow cannot exceed the capacity of any minimum cut, it is
sufficient to prove the existence of a cut whose capacity is equal to the value of a given maximum flow.

Let @ be amaximum flow. We define two sets V and W of vertices of the network as follows.

If G isthe underlying graph of the network, then avertex zis containedin V, if and only if there
existssinGapahv=vy - v; - V, - ...... - V-1 — Vi = 2 such that each edge v;v; , ; corresponds
either to an unsaturated arc viv; , 4, Or to an arc v, . ;v; that carries anon-zero flow. The set W consists of
all those vertices that do not liein V.

For example, in Fig. (4.73), the set V consists of the vertices v, x and y, and the set W consists of
the vertices zand w.
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Clearly, vis contained in V. We now show that W contains the vertex w.

If thisisnot so, then wliesin V, and hence there existsin G apathv - v; - v, — ...... - Vo1
- w of the above type.

We now choose a positive number € that does not exceed the amount needed to saturate any
unsaturated arc viv; , ;, and does not exceed the flow in any arc v; , ;v; that carries a non-zero flow.

It isnow easy to seethat, if weincrease by € the flow in al arcs of the first type and decrease by
¢ the flow in al arcs of the second type, then we increase the value of the flow by €, contradicting our
assumption that ¢ is amaximum flow.

It followsthat w liesin W.

To complete the argument, we let E be the set of all arcsof the form xz, wherexisinV and zisin
W.

Clearly E is a cut. Moreover, each arc xz of E is saturated and each arc zx carries a zero flow,
since otherwisezwould also be an element of V. If follows that the capacity of E must equal the value of
@, and that E is the required minimum cut.

Remark. When applying this theorem, it is often simplest to find a flow and a cut such that the
value of the flow equals the capacity of the cut. It follows from the theorem that the flow must be a
maximum flow and that the cut must be a minimum cut. If al the capacities are integers, then the value
of amaximum flow isalso an integer, thisturns out to be useful in certain applications of network flows.

Problem 4.30. Find a maximum flow in the directed network shown in Fig. (4.74) and prove
that it is a maximum.

Fig. 4.74. A directed network.

Solution. We start by sending a flow of 2 units through the path sadt, a flow of 3 units through
shet, and a flow of 3 units through scft, obtaining the flow shown on the left in Fig. (4.75).

Continue by sending flows of 2 units through sbdt and 2 units through sbft, obtaining the flow
shown on theright in Fig. (4.75)
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Fig. 4.75.
At this point, there are no further flow-augmenting chains from sto t involving only forward
arcs.
However, we can use the backward arc da to obtain a flow-augmenting chain schdaet.
Sincethe dack of thischainis 2, we add aflow of 2 to sc, ch, bd, ae, and et, and subtract 2 from ad.
Theresult is shown in Fig. (4.76).

Fig. 4.76.

A search for further flow-augmenting chains takes us from sto c or b and on to d, where we are
stuck.

This tells us that the current flow (of value 14) is maximum.

It also presents us with a cut verifying maximality, namely, S={s, b, c, d} (those vertices reach-
able from s by flow-augmenting chains) and T = {a, e, f, t} (the complement of s).

The capacity of thiscut is

CytCptCy+Cy+tCy=2+3+2+3+4=14.
Since thisis the same as the value of the flow, we have verified that our flow is maximum.
Problem 4.31. Why does the procedure just described of adding an amount g to the forward

arcs of a chain and subtracting the same amount from the backward arcs preserve conservation of flow
at each vertex ?

Solution. Theflow on the arcsincident with avertex not on the chain are not changed, so conser-
vation of flow continuesto hold at such avertex. What is the situation at a vertex on the chain. Remem-
ber that a chain in a directed network is just atrail whose edges can be followed in either direction, this,
each vertex on a chain is incident with exactly two arcs.
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Suppose a chain contains the arcs uv, v (in that order) and that the flows on these arcs before
changes are f,, and f,,,. There are essentially two cases to consider.

Case 1.
Suppose the situation at vertex v in the network isu - v - w.
In this case, both uv and wv are forward arcs, so each has the flow increased by @.

Thetotal flow into vincreases by g, but so does the total flow out of v, so thereis still conserva-
tion of flow at v. (the analysisis similar if the situationat visu « v « w).

Case 2.

The situationat visu — v « w.

Here the flow on the forward arc uv is increased by g and the flow in the backward arc wv is
decreased by g. Thereis no change in the flow out of v.

Neither isthere any change in the flow in v since the only termsin the sum Z f,, which change
r

occur with r = uand r = w, and these become, respectively, f,, + g and f,,, — 0. (the analysisis similar if
thesituationat visu « v - w).
Problem 4.32. Verify the law of conservation at vertices a, b and d.

Solution. The law of conservation holds at a because

> fa =fq=10and ) fy =fi+fy=10+0=10
\" \"
Itholdsat bbecause y fyp, =f,=2and ) foy =fyc+fiy=1+1=2
\" v

It holds at d because Zf"d =f +fy=0+1=1and Zfdv =f,=1
\" \"

Problem 4.33. What does it mean to say that {S T} isa partition of V ?

Solution. To say that sets S and T comprise a partition of V isto say that Sand T are digoint
subsets of V whose unionisV.

Problem 4.34. With reference to the directed network of Fig. (4.77), find a flow whose value
exceeds 12.

a 12,10 c
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Solution. A flow with value 13 appearsin Fig. (4.78) and onewith value 17 isshownin Fig. (4.79).

a 12,10 c

Q Q
10,10 1,11
4,0
sQ Ot
11,3\ %] 4,2
& O
b2

;
]
2 d
Fig. 4.78. Fig. 4.79.

Problem 4.35. (i) \erify the law of conservation of flow at a, e, and d.

(i) Find the value of the indicated flow.

(iii) Find the capacity of the (s, t)-cut defined by S= {s,a, b} and T = {c, d, e, t}
(iv) Can the flow be increased along the path sbedt ? If so, by how much ?

(v) Isthe given flow maximum ? Explain.

Solution. (i) The law of conservation holds at a because

> fa =fg=2and ) fo = +fe=2+0=2
\" \"
Itholdsatebecausevae=fae+fbe=0+1=1
\"
and f, =f +fy=0+1=1
Ze«/
Itholdsat d because ) fyy =fpq+fy=3+1=4
v

and Zfdv =fy=4
v
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(ii) the value of the flow is 6.
(iii) The capacity of thecut isC,. + C,o+ C o+ Cy=3+1+4+3 =11
(iv) No. Arc dt is saturated.

(v) Theflow isnot maximum. For instance, it can beincreased by adding 1 to the flow in the arcs
along sact.

Problem 4.36. Find the capacity of the (s, t)-cut defined by S= {s,a, b, d} and T = {c, e, f, t}.

Solution. The capacity of thecutis C,.+C,+Cy;=3+9+9=21.
Problem 4.37.  Answer the following questions for each of the networks shown in Fig. (4.80).

a 3 d
S > 1
5 2 1 1
c 2 f
Fig. 4.80.

(i) Exhibit a unit flow
(i) Exhibit a flow with a saturated arc.
(iii) Find a*“good” and, if possible, a maximum flow in the network. Sate the value of your flow.
Solution. (i) Send one unit through the path sbet.
(ii) The flow in Fig. (4.80) has a saturated arc, be.
(iii) Here isamaximum flow, of value 6.
To see that the flow is maximum, consider thecut S={s, a, b}, T={c, d, e f, t}.
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a 3,\3 d
3,3 1,0 1,0 3,3
s b 1'>1 e t
2, N\]?° LA A4,
c 22 f
Fig. 4.81.

Problem 4.38. Answer the following two questions for each of the directed networks shown.

(i) Show that the given flow is not maximum by finding flow augmenting chain from sto t. What
isthe dack in your chain ?

(i) Find a maximum flow, giveits value, and prove that it is maximum by appealing to max-flow-
mincut theorem.

a 3,2 d
2,2 2,0 - 1,0 4,2
s b > & t
3, 2\ 1?° 1,0M 72 2
c 32 f
(a)

Fig. 4.82.

Solution. (a) (i) One flow-augmenting chain is sbadt in which the slack is 1.

(ii) Here is amaximum flow, of value 7. We can see this is maximum by examining the cut
S={s,a b} T={cd eft}, of capacity
Cy+Cyyt Ce=3+3+1=7, thevalue of the flow.

3,3
1

a d
7
4,3
2,2,/ A2 1 R
3,2 ) 3,2
3.3 2,0 1,1 2,2
C 3,3 f

Fig. 4.83.
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(b) (i) One flow-augmenting chain is sacdfgt, which has slack 1.

(ii) Here is amaximum flow, of value 20. We can see this is maximum by examining the cut
S={s,ab,c}, T={d, e f,gh,t}.

This has capacity Cq, + Cy, + Cy = 7 + 4 + 9 = 20, the value of the flow.

,1|‘2’

O O

e 6.6 f 7.7 g
Fig. 4.84.

4.6 MATCHING THEORY

A matching in agraph isaset of edgeswith the property that no vertex isincident with more than
one edgeinthe set. A vertex whichisincident with an edgein the set is said to be saturated. A matching
is perfect if and only if every vertex is saturated, that is ; if and only if every vertex isincident with
precisely one edge of the matching.

Let G = (V, E) be abipartite graph with V partitioned as X [ Y. (each edge of E has the form
{x,y} withxO X andy OY).

(i) A matching in G is asubset of E such that no two edges share a common vertex in X or Y.

(if) A complete matching of X into'Y isamatching in G such that every x 0 X isthe end point of
an edge.

Let G = (V, E) be bipartite with V partitioned as X [0 Y. A maxima matching in G is one that
matches as many verticesin X as possible with the verticesin Y.

Let G = (V, E) be abipartite graph where V is partitioned as X O Y. If A [0 X, then 8(A) = |
A |- | R(A) | is called the deficiency of A. The deficiency of graph G, denoted d(G), is given by
0(G) = max { &(A)/A O X}.

For example, in the graph shown on the left in Fig. (4.85)

(i) the single edge bc is a matching which saturates b and ¢, but neither a nor d ;
(i) the set { bc, bd} is not a matching because vertex b belongs to two edges ;
(i) the set { ab, cd} is a perfect matching.
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a b Uy U Uz
(] d m
(@) " KO R v

Fig. 4.85.
Edge set { ab, cd} isa perfect matching in the graph on the left. In the graph on the right, edge set
{ug, Vo, UV, Ugvy} s amatching which is not perfect.

Note that, if a matching is perfect, the vertices of the graph can be partitioned into two sets of
equal size and the edges of the matching provide a one-to-one correspondence between these sets. In the
graph on the left in Fig. (4.85), for instance, the edges of the perfect matching { ab, cd} establish a one-
to-one correspondence between {a, c} and{b,d} :a - b,c - d.

In the graph on the right of Fig. (4.85).

(i) the set of edges {u,V,, U,V,, Usv4} isamatching which is not perfect but which saturates
vy ={uy, Uy, g},

(ii) no matching can saturate v, = {v, V,, V5, V,} since such a matching would require four edges
but then at least one u, would be incident with more than one edge.

In the figure to the right, if X = {uy, Uy, u,}, then A(X) = {vs, V,}.

Since| X | £ | A(X) |, theworkersin X cannot al find jobs for which they are qualified. Thereis
no matching in this graph which saturates V.

U, u, Us u, \2
\Z Vv, A v, V,
Fig. 4.86.

The bipartite graph shown in Fig. (4.87) has no complete matching. Any attempt to construct
such a matching must include {x;, y;} and either {x,, y3} or {Xs, ys}.

If {X,, Y5} isincluded, thereis no match for xg. Likewise, if { x5, 5} isincluded, we are not able
to match X,.

If A ={X;, X, X3} O X, then R(A) ={y;, yg}. With| A | =3 >2=|R(A) |, it follows that no
complete matching can exist.
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X Y

X @ Y1

Xo 2

X3 Y3
X

! Yo

Ys

Fig. 4.87.

Theorem 4.18. Let G = (V, E) bebipartite with V partitioned as X (7 Y. A complete matching of
Xinto Yexistsif and only if for every subset of X, | A| <| R(A) |, where R(A) isthe subset of Y consisting
of those vertices each of which is adjacent to at least one vertexin A.

Proof. With V partitioned as X O Y, let X = {X;, X, ...... X @ndY ={yg, Yo, e A

Construct a transport network N that extends graph G by introducing two new vertices a and z
(the source and sink).

For each vertex x, 1 <i <m, draw edge (&, ) ; for each vertex Y, 1 <j <n, draw edge (yj, 2.

Each new edge is given a capacity of 1. Let M be any positive integer that exceeds | X |. Assign
each edgein G the capacity M.

The original graph G and its associated network N appear as shown in Fig. (4.88).

It follows that a complete matching existsin G if and only if there is a maximum flow in N that
usesall edges(a, x),1<i<m

Then the value of such a maximum flow ism=| X |.




OPTIMIZATION AND MATCHING 347

(h)
Fig. 4.88.

We shall provethat thereis acomplete matching in G by showing that C(P, P) = | X | for each cut

(P, P)inN. Soif (P, P) isan arbitrary cut in the transport network N, let usdefineA =X n Pand B =
YnP

Then A O X where we shall write A = {4, X, ...... , X%} forsomeO<i<m.

Now P consists of the source a together with the verticesin A and the set B 0 Y, as shown in
Fig. (4.89)(a).

In addition, p = (X —A) O (Y —B) 0 {Z.

Since each of these edges has capacity 1, C(P, P) = | X —A |+ |B|=|X |-|A|+|B |, withB
O R(A), wehave |B|=R(A), andsince| R(A) | = | A |, it followsthat |[B [=]A |.
Consequently, (P, P) =|X |+ (|B[-|A2|X]|.

Therefore, since every cut in network N has capacity at least | X |, such a flow will result in
exactly | X | edgesfrom X to Y having flow 1, and this flow provides a complete matching of X into Y.

Conversely, suppose that there exists asubset A of X where | A | > | R(A) |.
Let (P, P) be the cut shown for the network in Fig. (4.89)(b), with P={a} 0 A 0 R(A) and

P=(X-A)O(Y-R(A)) O{Z.Then C(P, P) isdetermined by (i) the edges from the source a to the
verticesin X — A and (ii) the edges from the verticesin R(A) to the sink z
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Hence C(P, P) =X A |+|R(A) | =X |-(A|-|RA) ) <|X],

since| A |>]|R(A) |. The network has acut of capacity lessthan | X |, it follows that any maximum flow

in the network has value smaller than | X |.

Therefore, there is no complete matching from X into Y for the given bipartite graph G.
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(b)

Fig. 4.89

Theorem 4.19. For any bipartite graph G with partition V, and V,, if there exists a positive
integer m satisfying the condition that degs(v;) = m >degg(V,), for all verticesv, 7V, and v, [JV,, then
a complete matching of V, into V, exists.

Proof. Let G be a bipartite graph with partition V; and V.

Let mbe apositive integer satisfying the condition that degs(v;) = m= degg(v,) for all vertices
v, OV;andv, OV,

Consider an r-element subset S of the set V ;.

Since the deg(v;) = m, from each element of S, there are at least m edges incident to the vertices
inV;.
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Thusthere are mr edges incident from the set Sto the verticesin V4, but degree of every vertex
of V, cannot exceed mimplies that these mr edges are incident on at least (mr)/r = r verticesin V,,.

Hence, there exists a complete matching of V, into V, exists.

4.7 HALLS MARRIAGE THEOREM (4.20)

If G is a bipartite graph with bipartition sets V; and V,, then there exists a matching which
saturates V, if and only if, for every subset X of V,, | X| <| A(X) |.

Proof. It remainsto prove that the given condition is sufficient, so we assumethat | X |< | A(X) | for
all subsets X of V.

In particular, this meansthat every vertex inV, isjoined to at least one vertex in V, and also that
[Vil<|Val
Assume that there is no matching which saturates all vertices of V ;. We derive a contradiction.

We turn G into a directed network in exactly the same manner as with the job assignment
application.

Specifically, we adjoin two vertices sand t to G and draw directed arcs from sto each vertex in
V; and from each vertex inV, to t.

Assign aweight of 1 to each of these new arcs. Orient each edge of G fromitsvertexinV, toits
vertex in V,, and assign alargeinteger | > |V, | to each of these edges.

As noted before, there is a one-to-one correspondence between matchings of G and (s, t)-flows
in this network, and the value of the flow equals the number of edges in the matching.

Since we are assuming that there is no matching which saturates V4, it follows that every
flow has value less than | V; | and hence by Max-Flow-Mincut theorem, there exists an (s, t)-cut
{S,T}{sOStOT).

Whose capacity islessthan |V |.

Now every original edge of G has been given aweight larger than |V, |.

Since the capacity of our cut islessthan |V |, no edge of G can join avertex of Sto avertex of T.

Letting X =V, n S,wehave A(X) O S.

Since each vertex in A(X) isjoined to t [1 T, each such vertex contributes 1 to the capacity of
the cut.

Similarly, since sisjoined to each vertex in V,\X, each such vertex contributes 1. Since
| X | <] A(X) |, we have a contradiction to the fact that the capacity islessthan |V, |.

Problem 4.39. Let G be a bipartite graph with bipartition setsv,, v, in which every vertex has
the same degree k. Show that G has a matching which saturates v,.

Solution. Let X be any subset of v; and let A(X) be as defined earlier.
We count the number of edges joining vertices of X to vertices of A(X).
On the one hand (thinking of X), this number isk | X |.

On the otherhand (thinking of A(X)), this number isamost k | A(X) | since k | A(X) | isthe total
degree of al verticesin A(X).

Hence, k| X [<k[A(X) ], 50| X |<[AX) ]
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Problem 4.40. Can you conclude from this problem that G also has a matching which satu-
rates V, ? More generally, does G have a matching which saturates both V, and V, at the sametime (a
perfect matching) ?

Solution. Yes, the same argument works. But more easily, note that since G is bipartite, the sum
of the degrees of verticesin V,; must equal the sum of degrees of verticesin V..

Since al vertices have the some degree, we conclude that | V, | = |V, |, S0 a matching which
saturates V, must automatically saturate V, as well and vice versa.

Proposition : 4.1. Let G be a graph with vertex set V.

1. If G has a perfect matching then |V | iseven.

2. If G hasaHamiltonian path or cycle then G has a perfect matching if and only if |V |iseven.
Theorem 4.21. If Gisagraph with vertex set 'V, | V | is even, and each vertex has degree

1
d=> 2 | V| then G has a perfect matching.

Problem 4.41. Given aset Sand n subsets A;, A, ....., A, of § it is possible to select distinct
eementss,, s,, ......, S, of Ssuchthat S, [JA,, S, JA,, ......, S, JA, if and only if, for each subset X of

{1,2, ......, n} the number of elementsin | J Ax isatleast| X |. Why ?
x OX

Solution. Construct a bipartite graph with vertex setsV, and V, where V,, has n vertices corre-
spondingto Ay, A, ......, A, V, has one vertex for each element of S and thereis an edge joining A, to
sifand only if SO A,.

Given asubset X of V,, the set A(X) is precisely the set of elementsin U AX.
x OX

Thus this question is just a restatement of Hall’s Marriage theorem.

Problem 4.42. Determine necessary and sufficient conditions for the complete bipartite graph
K n to have a perfect matching.

Solution. K, , has a perfect matching if and only if m=n. To seefthis, first assume that m=n
and let the vertex setsbe V; = {uy, Uy, ......, U} and V, = {vy, Vo, .o, Vb

Then {u;vy, UV, ......, UV IS @ perfect matching.

Conversdly, say we have a perfect matching and m< n. Since each edge in amatching must join
avertex of V, to avertex of V., there can be at most m edges.

If m<n, some vertex in V, would not be part of any edge in the matching, a contradiction.
Thus, m=n.
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Problem 4.43.  Show that a complete matching of V, into V, exists in the following graph.

—— PRt
i N , N

4 AY
3 \“ / >3
. ; 6

1
1
1
1
1
1
1
I
1
I
1
1
1
1
1
I
I
I
1
1
1
1
1
!
!
!

10/
7/

Fig. 4.90.

Solution. The minimum degree of avertex of V, =22>2
= Maximum degree of a vertex of V.,
By choosing m = 2, there exists a complete matching from the set V, into V..

Problem 4.44. Find whether a complete matching of V; into V, exist for the following graph ?
What can you say fromV, into V.

Fig. 4.91.

Solution. Yes, a complete matching exists from V, into V,, which is { Af, Bb, Cc, Dd, Ea}.

This matching is not unique, because { Af, Bb, Ce, Dd, Ea} is also acomplete matching from 'V,
into V, complete matching from V, into V, is not exists because cordinality of V, is more than the
cordinlity of V.
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Problem 4.45. Find whether a complete matching of V, into V, exist for the following graph.

Fig. 4.92.
Solution. No, because if wetake asubset { D, E} of V; having two vertices, then the elements of
this set is collectively adjacent to only the subset {d} of V..
The cordinality of {d} isone that islessthan the cordinality of the set { D, E}.
Problem 4.46. Find a complete matching of the graph of Fig. (4.93).
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Fig. 4.93.
abocdef
A0 1 0 0 0 17
00 XpunD B 100 0 0
Solution. X(G) = U ; O where X, ,,,=Cl 0 1 0 1 0
om0 H '
D 0010
EH 001 0
Heren; =5, n, =6and n=n; + n, = 11 = total number of vertices of G
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Step 1 : Choose the row B and the column b (since B contains 1 in only one place in the entire
row).

Step 2 : Discard the column b (sinceit is already chosen).

Step 3 : Choose the row D and the column d (since D contains 1 in only one place in the entire
row).

Step 4 : Discard the column d (since it is already chosen).

Step 5: Choose the row E and the column a (since E ath entry is one and which are not chosen
earlier).

Step 6 : Discard the column a (the edge which is chosen in step 5).

Step 7 : Choose the row A and the column f (since the row A contains exactly one 1 in the
column f).

Step 8: Discard the column f (sinceiit is chosen in step 7).

Step 9 : Choose the row C and the column the column e (or ) (since C isthe final).

Step 10 : No row is left to choose and all the rows are able to choose, hence the matching is
complete.

The resultant matrices after each step and the final matching is given below.

After the steps After the steps After the steps After the steps
land 2 3and 4 5and 6 7 and 8

acdef

A 0 0 0 1 ace f c e
AO 0 0 1O

CH 101 0 ch 11 o A0 0 10 © e
DD 0 1 0 O ch 1 & C% H
EHo10c0¢ EBO0OX

Resultant matrix and the corresponding matching are shown in Fig. (4.94).

abcdef
A 0 0 0 0 1O
B 100 0 CF
ClO 0001
D%)OOloq%
EH 0000 (H
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Fig. 4.94.
The complete matching is { Af, Bb, Ce, Dd, Ea}.

Problem 4.47. Prove that the bipartite graph shown in Fig. 4.95. does not have a complete
matching.

Fig. 4.95.

Solution. We observe that the three vertices v;, v,, V5 in V, are together joined to two vertices

a,, &y, inV,. Thus, thereisasubset of 3 verticesinV,; whichis collectively adjacent to 2 (< 3) vertices
inV,.

Hence, by Hall’s theorem, there does not exist a complete matching from V, to V,,.

Problem 4.48. Show that for the graph in Fig. (4.95) there does not exist a positive integer m
such that the degree of every vertex in V; > m > the degree of every vertexin V..

Solution. From the graph, we find that degree of v; = 1 and degree of a, = 3
Therefore, the specified condition does not hold for any positive integer m.
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That this is indeed the situation is confirmed by the fact that in this graph there is no complete
matching from V; to V..

Problem 4.49. Three boys b;, b,, b; and four girlsg,, 9,, g3, 9, are such that (i) b, isa cousin

GRAPH THEORY WITH APPLICATIONS

of 93, 93, 9, (ii) b, isa cousin of g, and g, (iii) by isa cousin of g, and gs.

Can every one of the boys marry a girl who isone of his cousins ? If so, find possible sets of such

couples.

Solution. Let us draw a bipartite graph G(V4, V, ; E) in which V, consists of by, b,, b; and V,
consists of g;, 0y, U3, 94 and E consists of edges representing the cousin relationship. The graph is as

shown in Fig. (4.96).

The problem is one of finding whether a complete matching exists from V; and V..

We have to consider every subset of V; withk =1, 2, 3 elements and find whether each subset is
collectively adjacent to k or more vertices in V,. The subsets S of V; and their collective adjacent
subsets S’ in V, are shown in the following table :

o
)
-
% I~
~
(o] (o]
=) >

Fig. 4.96.

K S S’
k=1 {b;} {91, 9 94}
{b,} {9, 94}
{bs} {9, g3
k=2 {b,, by} {91, G 93, 94}
{by, b3} {91 92, 93, 94}
{b,, b3} {9, 03, 94}
k=3 {b,, b,, b} {91, G 93, 94}

We observe that, for each S, the number of elementsin S is greater than or equal to the number

of elementsin S.

Therefore, the graph has a complete matching. This means that each boy can marry agirl whois

one of this cousins.
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By exammining the graph in Fig. (4.96) or the table above, we find the following five possible
couple sets:

Step 1: (by, Gy), (02, G), (b3, Go)
Step 2: (by, 91, (02, 94, (D3, 92)
Step 3: (by, 91), (b2, 9s), (b3, G3)
Step 4: (by, 91), (02, 94), (D3, 9p)
Step 5: (by, 94), (b2, 9y), (b3, Ga)-

Problem Set 4.1

1. UseKrusha’s algorithm to find a minimum spanning tree for the given weighted graphs :

(© 2 c

e 10 d

2. Use Prim’s agorithm to find a minimum spanning tree for the given weighted graphs

A A 5 B
/AN 4 “
8
(@ EC—1 18 ) c e
F 2 @
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3. Using Dijsktra's algorithm find the shortest path between node A and node Z in the mesh graph
of the figure :

A 3 3 4
4 2 2 1
3 8 1
5 2 5 6
5 1 7
10 7 6 7
2 6 5 |5

4. Apply Dijsktra's algorithm to find shortest path between node A and node Z in the graph shown
in the Figure (4.97) (a) and (b) below

(b)

5. Apply Dijsktra’s algorithm to find shortest path from node A to al other nodesin the graph show
in the figure (a) and (b) above.

6. Apply Floyd Warshall’s algorithm to compute all pair shortest distance in the graphs shown in
the figure (4.97) (a) and (b) above.

7. Find spanning tree using Prim’s algorithm for the graph of figures (4.98), (4.99) and (4.100).
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(if) (iif)

Fig. 4.100.

8. Using Prim’s agorithm, find minimum spanning tree from the graphs of the figure

Fig. 4.103. Fig. 4.104.
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9. Use Kruskal’s agorithm to find minimum spanning tree from the graphs of the figures (4.101),
(4.102), (4.103) and (4.104).

10. The Floyd-Warshall algorithm is applied to the graph shown.

() Find the fina values of d(7, 1), d(7, 2), ...... d(7, 8).
(b) Find the values of d(1, 2), d(3, 4), d(2, 5) and d(8, 6) after k = 4.
(c) Find the values of d(6, 8) at the start and as k varies from 1 to 8.

11. UseKruska’sagorithm to find a spanning tree of minimum total weight in each of the graphsin
Figure (4.105). Give the weight of your minimum tree and show your steps.

12. Suppose we have a connected graph G and we want to find a spanning tree for G which contains
a given edge e. How could Kruskal’s algorithm to do this ? Discuss both the weighted and
unweighted cases.



OPTIMIZATION AND MATCHING 361

13.

14.

15.

16.
17.
18.

19.

20.

21.

22.

23.

Prove that at each vertex v of aweighted connected graph, Kruskal’s algorithm always includes
an edge of lowest weight incident with v.

Suppose v;, V, are the bipartition sets of a bipartition graph G. Let m be the smallest of the
degrees of the verticesin v; and M the largest of the degrees of the verticesin v,. Prove that if
m= M, then G has a matching which saturates v;.

Suppose v; and v, are the bipartition setsin a bipartite graph G. If | v, | > | v, |, then it is clearly
impossible to find a matching which saturates v,. State a result which is applicable to this case
and give a necessary and sufficient condition for your result to hold.

Show that the complete graph K, has a perfect matching if and only if nis even.

Prove that if atree has a perfect matching, then that matching is unique.

Find amaximal (s, t)-flow. Verify your answer by finding an (s, t)-cut whose capacity equalsthe
value of the flow.

Let G be a connected graph, every vertex of which has degree 2. Prove that G has a perfect
matching if and only if G has an even number of vertices.

Apply Dijkstra’'s algorithm to the weighted directed multipgraph shown in Figure below, and
find the shortest distance from vertex ato the other seven vertices in the graph.

Fig. 4.106.

FornOz"andforeachl<i<n,letA ={1, 23, ....., n} —{i}. How many different systems of
distinct representative exist for the collection Ay, Ay, A, . AL ?

Using the concept of flow in a transport network, construct a directed multigraph G = (V, E),
withV ={u, v,w, X, y} andid(u) = 1, od(u)=3; id(v) = 3, od(v) = 3; id(w) = 3, od(w) =4 ; id(X)
=5,0d(x) =4 ; and id(y) = 4, od(y) = 2.
(a) Determine all systems of distinct representatives for the collection of sets
A ={1,2},A,={2,3},A;={3,4},A,={4,1}.
(b) Giventhecoallectionof setsA; ={1, 2}, A,={2, 3}, ..., A,={n, 1}, determine how many
different systems of distinct representatives exist for the collection.
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24. For the graph shown in Figure below, if four edges are selected at random, what is the probabil -

25.

26.

27.

ity that they provide a complete matching of X intoY ?

S1
¢4

S,

S3

S,

Fig. 4.107.

Let G=(V, E) beabipartite graph where V ispartitioned as X [I Y. If deg(x) = 4 for all x 0 X and
deg(y) <5foral ydY, provethat if | X | < 10 then 8(G) < 2.

Find a maximum flow and the corresponding minimum cut for each transport network shown in
Figure below.

Fig. 4.108.
Using Prim’s agorithm, find a minimal spanning tree for the following weighted graph.

Fig. 4.109.



OPTIMIZATION AND MATCHING

28. Using Prim'’s algorithm, find a minimal spanning tree of the weighted graph in Figure given

below :

Vg

14

29. Using Prim’'s algorithm, find a minimal spanning tree for the weighted graph shown below :

30. Using Prim’s agorithm, find a minimal spanning tree and its weight for the weighted graph

shown below :

15

V7

15

Fig. 4.110.

Fig. 4.111.

Vs

14

Ve

Fig. 4.112.
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Answers 4.1

1

11

12.

13.

15.

16.

20.

21.

(a) Choose af, ag, gb, gc, cd, de

(b) Choose ab, bf, bc, bd, de

(c) Choose ab, ae, bc, bd

(a) Choose AE, AC, DC, AB

(b) Choose BA, AD, DC, CF, FG, GE

(c) Choose AC, CB, BD, DE

(d) Choose OA, AB, BC, BF, FD, DT.

() We want five edges (since there are six vertices).

Choose BC, then AD, FE and DE. We would like next to choose AE, but this would complete
acircuit with AD and DE, so we choose AC and obtain the spanning tree shown, of weight 13.

A
B 5
;

c 5 F
2
E

3
D
Fig. 4.113.

If the graph is unweighted, put aweight of 1 on edge e and 2 on every other edge. If the graph
isweighted, ensure that the weights of the edges different from e are al larger than the weight
of e. In either case, Kruskal’s algorithm will select e first.

Let d be the lowest weight among the edges incident with vertex v. The first time that an edge
incident with v is considered for selection, no edge incident with v will complete a circuit with
edges previoudly selected. Always seeking edges of lowest weight, the algorithm must select
an edge of weight d.

Exchange theroles of v; and v, It may be possible to find a matching which saturatesv,. Here's
anecessary and sufficient condition for this to happen. If X isany subset of v, and A(X) isthe
set of all vertices of v; which are adjacent to some vertex of X, then | A(X) | 2| X |.

If K,, has a perfect matching, then n must be even. Conversely, assume that n = 2mis even and
label the vertices uy, Us, ...... Uy Since every pair of verticesisjoined by an edge

{uuy, UsUy, ..., Uy 71Ut Will give us a perfect matching.

d(a, b)=5,d(a,c) =11,d(a, d) =7,d(a, € =8, d(a, f) =19, d(a, g) = 9, d(a, h) = 14.

Note that the loop at vertex g and the edges (c, a) of weight 9 and (f, €) of weight 5 are of no
significance.

There are d,,, the number of derangementsof {1, 2, 3, ....., n}.
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22.

23.

24.

25.

26.

y

(@) (i) Selecti fromA;for1<i< 4.
(i) Selecti + 1 from A for1<i<3,and 1fromA,.
(b) 2.

5/585-1114
A0 '

For each subset A of X, let G, be the subgraph of G induced by the verticesin A O R(A). If eis
the number of edgesin G,, thene>4| A | because deg(a) = 4 fora J A. Likewise, e< 5| R(A) |
because deg(b) < 5for all b D R(A). SO5|R(A) |=4|A|andd(A) =|A |- |RA) |<|A |-
@n) A=W A|IsWH X ]=2

Then since 8(G) = max{d(A) | A O X}, we have §(G) = 2.

b 15, 14 d

The maximum flow is 32 whichisC(P, P) for P={a, b, d, g, h} and P ={i, 2

b 6,6 d
N

\

4

i 86 | 12,12 k

The maximum flow is 23, which isC{P, P} forP={a} and P ={b, g,1i,j,d, h, k 2.



366

27.

28.

29.

30.

Ve

13

Vs

V3
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Vs

14




CHAPTER

Matroids and Transversal Theory

INTRODUCTION

Theideaof amatroid, first studied in 1935 in a pioneering paper by Hassler Whitney. A matroid
is a set with an independence structure.

We defined a spanning tree in aconnected graph G to be a connected subgraph of G that contains
no cycles and includes every vertex of G. We note that a spanning tree cannot contain another spanning
tree as a proper subgraph.

Note: (i) If By and B, arespanning treesof G and eisan edge of B, thenthereisan edgefin B,
such that (B; —{€}) U {f} isaso aspanning tree of G.

(ii) If Visavector spaceandif B, and B, are bases of B and eisan element of B, thenwe
can find an element f of B, such that (B, —{€}) U {f} isalso abasis of V.

5.1 MATROID

A matroids M consists of a non-empty finite set E and a non-empty collection B of subsets of E,
called bases satisfying the following properties

B(i) no base properly contains another base
B(ii) if B,and B, arebasesandif eisany element of B, then thereisan element f of B, such that
(B;—{€}) U {f} isalso abase.
Note : Any two bases of amatroid M have the same number of elements, this number is called
the rank of M.

5.2 CYCLE MATROID

A matroid can be associated with any graph G by letting E be the set of edges of G and taking as
bases the edges of the spanning forests of G, thismatroid is called the cycle matroid of G and is denoted
by M(G).

5.3 VECTOR MATROID

If Eisafinite set of vectorsin avector space V, then we can define a matroid on E by taking as
bases al linearly independent subsets of E that span the same subspace as E. A matroid obtained in this
way is called a vector matroid.

5.4 INDEPENDENT (MATROIDS) SETS
A subset of E isindependent if it is contained in some base of the matroid M.

(i) for avector matroid, a subset of E isindependent whenever its elements are linearly inde-
pendent as vectors in the vector space.

367
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(ii) for the cycle matroid, M(G) of agraph G, the independent sets are those sets of edges of G
that contain no cycle. i.e., the edge sets of the forests contained in G.

Since the bases of M are maximal independent sets, a matroid is uniquely defined by specifying
its independent sets.

5.5 MATROID (MODIFIED DEFINITION)

A matroid M consists of a non-empty finite set E and a non-empty collection | of subsets of E,
called independent sets, satisfying the following properties :

I(i) any subset of an independent set is independent

[(ii) if | and Jareindependent setswith | J|> || | then thereis an element e, contained in J but
notin | such that I O { e} isindependent.

Note: (i) A baseis defined to be a maximal independent set.
(if) Any independent set can be extended to a base.

5.6 DEPENDENT (MATROID) SETS

If M = (E, I) isamatroid defined in terms of its independent sets then a subset of E is dependent
if it is not independent and a minimal dependent set is called a cycle.

If M(G) isthe cycle matroid of agraph G then the cycles of M(G) are precisely the cycles of G.
Since asubset of E isindependent if and only if it contains no cycles, amatroid can be defined in terms
of its cycles.

5.7 RANK OF A

If M =(E, I) isamatroid defined in terms of itsindependent setsand if A isasubset of E then the
rank of A denoted by r(A), isthe size of the largest independent set contained in A.

We note that the rank of M isequal tor(E) sinceasubset A of E isindependent if and only if r(A)
=|A |
Note : We can define amatroid in terms of its rank function.

5.8 TYPES OF MATROIDS

5.8.1. Bipartite matroid
A bipartite matroid be a matroid, in which each cycle has an even number of elements.

5.8.2. Eulerian matroid
A matroid on a set E to be an Eulerian matroid if E can be written as a union of digoint cycles.

5.8.3. Discrete matroids

At the other extreme is the discrete matroid on E, in which every subset of E isindependent. The
discrete matroid on E has only one base, E itself, and that the rank of any subset A is the number of
elementsin A.

5.8.4. Trivial matroids

Given any non-empty finite set E, we can define on it a matroid whose only indepenent set isthe
empty set ¢. This matroid is the trivial matroid on E and has rank O.
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5.8.5. Uniform matroids

The k-uniform matroid on E, whose bases are those subsets of E with exactly k elements, the
trivial matroid on E is o-uniform and the discrete matroid is | E [-uniform. We note that the independent
sets are those subsets of E with not more than k elements, and that the rank of any subset A iseither |A |ork

5.8.6. Isomorphic matroids

Two matroids M, and M, to be isomorphic if there is a one-one correspondence between their
underlying sets E, and E, that preserves independence.

Thus, aset of elementsof E, isindependent in M, if and only if the corresponding set of elements
of E, independent in M.
For example, the cycle matroids of the three graphs in Figure below are all isomorphic.

> & ) 9

PR

« e
L o g

Fig. 5.1.

We note that, although matroid isomorphism preserves cycles, cutsets and the number of edgesin
agraph, it does not necessarily preserve connectedness, the number of vertices, or their degrees.

5.8.7. Graphic matroids

A matroid M(G) on the set of edges of agraph G by taking the cycles of G as the cycles of the
matroid. M(G) is the cycle matroid of G and its rank function is the cutset rank €. It is natural to ask
whether agiven matroid M is the cycle matroid of some graph. In otherwords, does there exists agraph
G such that M isisomorphic to M(G) ? Such matroids are called graphic matroids.

For example, the matroid M on the set {1, 2, 3} whose bases are {1, 2} and {1, 3} isagraphic
matroid isomorphic to the cycle matroid of the graph in Figure below.

2
o« e
Fig. 5.2.
Note: A smple example of anon-graphic matroid isthe 2-uniform matroid on aset of four elements.

5.8.8. Cographic matroids

Given agraph G, the cycle matroid M(G) is not the only matroid that can be defined on the set of
edges of G. Because of the similarity between the properties of cycles and of cutsetsin agraph, we can
construct a matroid by taking the cutsets of G as cycles of the matroid.
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We call it the cutset matroid of G, denoted by M*(G). We note that a set of edges of G is inde-
pendent if and only if it contains no cutset of G. We call amatroid M cographic if there existsagraph G
such that M isisomorphic to M*(G).

5.8.9. Planar matroids
A matroid that is both graphic and cographic is a planar matroid.

5.8.10. Transversal matroids

If Eisanon-empty finitesetandin F= (S, ...... S, isafamily of non-empty subsets of E, then
the partial transversals of F can be taken as the independent sets of a matroid on E, denoted by M(F)
or M(S;, ...... , Sy Any matroid obtained in this way is atransversal matroid.

For example, the above graphic matroid M isatransversal matroid on the set {1, 2, 3}, sinceits
independent sets are the partial transversal of the family F = (S;, S,), where S; = {1} and S, = {2, 3}.

We note that the rank of a subset of E is the size of the largest partial transversal contained in A.
Every transversal matroid isrepresentable over somefield, butisbinary if and only if itisgraphic.

5.8.11. The Fano matroids

The Fano matroid F isthe matroid defined ontheset E={1, 2, 3, 4, 5, 6, 7}, whose bases are all
those subsets of E with three elements, except {1, 2, 4},{2, 3,5},{3,4,6},{4,5,7},{5,6, 1},{6, 7, 2}
and{7, 1, 3}.

This matroid can be represented geometrically by Figure. below.

O
7

Fig. 5.3.
The bases are precisely those sets of three elementsthat do not lie on aline. It can be shown that
Fisbinary and Eulerian, but is not graphic, cographic, transversal or regular.

5.8.12. Representable matroids

Given amatroid M on aset E, we say that M is representable over afield F if there exist a vector
space V over Fand amap ¢ from E to V, such that a subset of A of E isindependent in M if and only if
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@ isone-oneon A and@(A) islinearly independent in V. This amounts to saying that, if we ignore loops
and parallel elements, then M isisomorphic to a vector matroid defined in some vector space over F.

For convenience, we say that M isarepresentable matroid if there exists somefield F such that M
is representable over F.

Some matroids are representable over every field (the regular matroids), some are representable
over no field, and some are representable only over a restricted class of fields. The binary matroids
representable over the field of integers modulo 2.

For example. If G isany graph, then its cycle matroids M(G) is abinary matroids. We associate
with each edge of G the corresponding row of the incidence matrix of G, regarded as a vector with
components O or 1.

We note that, if a set of edgs of G forms a cycle, then the sum (modulo 2) of the corresponding
vectorsisO.

A binary matroid that is neither graphic nor cographic is the Fano matroid.

5.8.13. Restrictions and contractions

If M isamatroid defined on set E, and if A isasubset of E, then the restriction of M to A, denoted
by M x A, isthe matroid whose cycles are precisely those cycles of M that are contained in A. Similarly,
the contraction of M to A, denoted by M . A, isthe matroid whose cycles are the minimal members of the
collection {C; n A}, where C; isacycle of M.

A matroid obtained from M by restrictions and/or contractionsis called a minor of M.

Theorem 5.1. Every cocycle of a matroid intersects every base.

Proof. Let C* be acocycle of a matroid M suppose that there exists a base B of M with the
property that C* n B isempty.

Then C* iscontained in E-B and so C* isacycle of M* which is contained in abase of M*. This
contradiction establishes the result.

Corollary. Every cycle of amatroid intersects every cobase.

Theorem 5.2. The bases of M* are precisely the complements of the bases of M.

Proof. We show that, if B* is abase of M* then E — B* isabase of M, the converse result is
obtained by reversing the argument.

Since B* isindependent in M*, | B* | = r* (B*) and hence r(E —B*) =r(E).

It remains only to prove that E — B* isindependent in M. But this follows immediately from the
fact that r*(B*) =r*(E).

Theorem 5.3. A matroidisplanar if and only if it isregular and contains no minor isomorphic
to M(ks), M(k3 ) or their duals.

Theorem 5.4. If Gisa graph then M*(G) = (M(G))*.

Proof. Since the cycles of M*(G) are the cutsets of G, we must check that C* is a cycle of
(M(G))* if and only if C* isacutset of G.

Supposefirst that C* isacutset of G. If C* isindependent in (M(G))* then C* can be extended to
abase B* of (M(G))* and so C* n (E—B*) isempty. Since E — B* isa spanning forest of G.

Thus, C* isadependent set in (M(G))*, and therefore contains a cycle of (M(G))*.
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If, on the otherhand, D* isacycle of (M(G))* then D* is not contained in any base of (M(G))*.
It follows that D* intersects every base of M(G) that is, every spanning forest of G.
Thus D* contains a cutset.

Theorem 5.5. A matroid M isgraphic if and only if it is binary and contains no minor isomor-
phic to M*(ks), M* (k3 3), F or F*.

Corollary. A matroid M is cographic if and only if it isbinary and contains no minor isomorphic
to M(ks), M(k3 3), F or F*.

Theorem 5.6. A graph G contains k edge-digoint spanning forests if and only if for each
subgraph H of G

k($(G) - §(H)) = M(G) —m(H)
where m(H) and m(G) denote the number of edges of H and G respectively.

Theorem 5.7. If My, ..... M, arematroids on a set E with rank functionsr, ...... r then the rank
functionr of My [J ...... OM, isgiven by

r(X) = min{r,(A) + ...... +r(A)+ | X=Al},

where the minimum is taken over all subsets A of X.

Corallary. (1) Let M be amatroid, then M containsk digoint basesif and only if for each subset
AofEkr(A)+|E-A|=kr(E).

Corollary. (2) Let M be amatroid then E can be expressed as the union of k independent sets if
and only if for each subset A of E, kr(A) = | A |.

Theorem 5.8. If G* isan abstract dual of a graph G then M(G)* isisomorphic to (M(G))*.

Proof. Since G* isan abstract dua of G, there is a one-one correpondence between the edges
of G and those of G* such that cyclesin G corresponding to cutsetsin G* and conversely.

It follows immediately that the cycles of M(G) correspond to the cycles of M(G)*.

Thus M(G*) isisomorphic to M*(G).

Corollary. If G* isageometric dual of a connected plane graph G, then M(G*) isisomorphic to
(M(@G))*.

Theorem 5.9. Let E beanonempty finiteset, andlet F = (S, ..., Sp and G = (T, ..., T,;) be

two familities of non empty subsets of E. Then F and G have a common transversal if and only if for all
subsets Aand B of {1, 2, ....., m},

O o0 O
RN
oA g A
Proof. Let M bethe matroid whose independent sets are precisely the partial transversals of the
family F. Then F and G have a common transversal if and only if G has an independent transversal.

Thisissoif and only if the union of any k of the sets T, contains an independent set of size atleast
k,for 1< k<M, thatis, if and only if the union of any k of the sets T; contains a partial transversal of F
of size k.

2|A[+|B[-m
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Theorem 5.10. A matroid consists of a non-empty finite set E and an integer valued function r

defined on the set of subsets of E satisfying
r(i) 0=<r(A) <| A| for each subset A of E.

r(ii) if A B JE, then r(A) <r(B)

r(iii) for any A, B [JE, r(A LI B) + r(A n B) <r(A) + r(B).

Proof. We assume that M is a matroid defined in terms of its independent sets. We wish to
prove propertiesr(i) —r(iii). Clearly, propertiesr (i) andr(ii) aretrivial. To prover(iii), welet X be abase
(amaximal independent subset) of A n B. Since X isan independent subset of A, X can be extended to
abaseY of A, andthentoabaseZ of A [0 B. Since X [0 (Z —Y) isclearly an independent subset of B,
it follows that

rB)=r(X O (Z-Y))
=|X[+|Z]-]Y]|
=r(A n B) +r(A O B) —r(A) asrequuired.

Conversely, let M = (E, r) be amatroid defined in terms of arank function r, and define a subset
A of Eto beindependent if and only if r(A) =| A |. It isthen simpleto prove property I(i). To prove I (ii),
let | and J beindependent setswith | J| > || | and supposethat r(l O {€}) = k for each element e that lies
inJbut notin . If e and f are two such e ements then

el O{e O{fH)<r@O{e))+r(1 O{fP)-r()=k

If followsthat r(l1 00 {e} O {f}) = k. We now continue this procedure, adding one new element of
Jat atime. Since at each stage the rank k we conclude that r (I 0 J) = k and hence (by r(ii)) that r(J) <k,
which is a contradiction. It follows that there exists an element f that liesin Jbut not in |, such that

r(l O{f}) =k+1.

Theorem5.11. LetMbeamatroidonasetE,andletF= (S, ....., S,) beafamily of non-empty
subsets of E. Then F has an independent transversal if and only if the union of any k of the subsets §
contains an independent set of size at least k, for 1 <k <m.

Proof. We show that if one of the subsets (S,, say) contains more than one element then we can
remove an element from S; without altering the condition. By repeating this procedure, we eventualy
reduce the problem to the case in which each subset contains only one element and the proof is then
trivial.

It remains only to show the validity of this ‘reduction procedure’, so, suppose that S; contains
elements x and y, the removal of either of which in validates the condition.

Then there are subsets A and B of {2. 3, ....., m} with the property that r(P) < | A |and r(Q) < | B |,
where

p= S, 06 {¥) ando= US O (W)

iOA ioB

Then r(PDQ)=rEu U SjDSlEandr(PDQ)zra U SJE
' j 0An

OAO0 B B
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The required contradiction now follows, since
|[Al+[B[zr(P)+r(Q)
2r(POQ)+r(Pn Q)

>

+

U so0s

joAd B

U s

j0AN B

>(|AOB|+1)+|AnB|
=[A+[B|+1
Corollary. With the above notation, F has an independent partial transveral of sizet if and only
if the union of any k of the subsets S; contains an independent set of sizeat least k +t —m.

5.9 TRANSVERSAL THEORY

5.9.1. Transversal

If Eisanon empty finite set, and if F= (S, ..... S;) isafamily of (not necessarily distinct) non-
empty subsets of E, then atransversal of F isaset of mdistinct elements of E, one chosen from each set

S.
Supposethat E={1, 2, 3, 4, 5, 6} and
LetS;=S,={1,2},%=5,={24},5={14,5,6}
Then it isimpossible to find five distinct elements of E, one from each subset S ;
In otherwords, the family F = (S, ....., Ss) has no transversal.
The subfamily F' = (S;, S,, S;, Sy, Ss) has atransversal.
For example, {1, 2, 3, 4, 5}.

5.9.2. Partial transversal

A transversal of a subfamily of F a partia transversal of F.

For example, {1, 2, 3, 4}, here F has severa partia transversal, such as, {1, 2, 3, 6}, {2, 3, 6},
{1, 5}, and @.

We note that any subset of a partial transversal is a partial transversal.

Note: A given family of subsets of aset has atransversal. The connection between this problem
and the marriage problem is easily seen by taking E to be the set of boys, and S; to be the set of boys
known by girl g, for1<i<m

A transversd inthis caseisthen smply aset of mboys, one corresponding to, and known by, each girl.

5.9.3. Marriage problem

If thereis a finite set of girls, each of whom knows several boys, under what conditions can all
the girls marry the boys in such a way that each girl marries a boy she knows ?

For example. If there are four girls {g;, 95, 93, 9, and five boys {b,, b,, b;, b,, bs} and the
friendships are as shown in Figure 5.4(a) and (b), below
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girls | boys known by girl
O by b, bs
92 by
% | b bs by
04 b, by
Fig. 5.4. (a)

then a possible solution isfor g, to marry by, g, to marry b;, g; to marry b, and g, to marry b,

This problem can be represented graphically by taking G to be the bipartite graph in which the
vertex set is divided into two digoint sets V; and V,, corresponding to the girls and boys, and where
each edgejoinsagirl to aboy she knows. Figure 5.4(b) showsthe graph G corresponding to the situation
of Figure 5.4(a).

b,
9

b,
92

Oa b,

9 b,
\ by

Fig. 5.4. (b)

In graph-theoretic form
If G=G(V4, V,) isabipartite graph, when does there exist a complete matching fromV, toV,inG ?

5.9.4. Marriage Condition

A “matrimonia terminology’’, we note that, for the solution of the marriage problem, every k
girls must know collectively at least k boys, for al integers k satisfying 1 < k < m, where m dencotes the
total number of girls. We refer to this condition as the marriage condition.

It isanecessary condition and it turns out to be sufficient.

5.9.5. Common transversals

If Eisanon-empty finitesetand F= (S, ...... Sy andG=(Ty, ...... , T aretwo families of non-
empty subsets of E, it is of interest to know when there exists a common transversal for F and G.

i.e, asetof mdistinct e ements of E that forms atransversal of both F and G.

For example, In time tabling problems, E may be the set of times at which lectures can by given,
the sets S may be the times that mgiven professorsare willing to lecture, and the sets T; may bethetimes
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that m lecture rooms are available. Then the finding of a common transversal of F and G enables usto
assign to each professor an available lecture root at a suitable time.

5.9.6. Latin squares
Anmx n latin rectangle isan mx n matrix M = (my;) whose entries are integers satisfying
(l<smy<n (i) no two entriesin any row or in any column are equal.
We note that (i) and (ii) imply that n< n.
If m=n, then the latin rectanle is a latin square.
For example, Figure 5.5(a) and 5.5(b) shows a3 x 5 latin rectangle and a5 x 5 latin square.

1 2 3 4 57
23 4 5 2415 3
B3 521 41
2415 3 0 0
R 521 4 ot 3 5 2 1
B 143 H
Fig. 5.5(a) Fig. 5.5(b)
5.9.7. (0, 1) —matrices
The way of studying transversals of afamily F= (S, ...... , Sy of non-empty subsets of a set
E={e, ...... , €n} Isto study the incidence matrix of the family, the m x n matrix A = (g;) in which

a;=1 if g0 S and a; = 0 otherwise. We call such amatrix, inwhich each entry isO or 1, a(0, 1) —matrix.

Note: If theterm rank of A isthelargest number of 1sof A, no two of which liein the same row
or column, then F has atransversal if and only if the term rank of A is m. Moreover, the term rank of A
is precisely the number of elementsin a partial transversal of largest possible size.

5.9.8. Edge-digoint paths

The number of paths connecting two given vertices v and w in a graph G. We may ask for the
maximum number of paths from v to w, no two of which have an edge in common, such paths are called
edge-digoint paths.

5.9.9. Vertex-digoint paths

The number of paths connecting two given vertices v and w in a graph G. We may ask for the
maximum number of paths from v to w, no two of which have avertex in common, such paths are called
vertex-digoint paths.

For example, inthe graph of Fig. (5.6), there are four edge-digoint paths are two vertex-digoint
ones.
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Fig. 5.6.

5.9.10. ww-disconnecting set

Assumethat G isaconnected graph and that v and w are distinct vertices of G. A w-disconnect-
ing set of Gisaset E of edges of G such that each path from v to wincludes an edge of E. We note that
awv-disconnecting set is a disconnecting set of G.

5.9.11. w-separating set

Assume that G is a connected graph and that v and w are distinct vertices of G. A wv-separating
set of Gisaset Sof vertices, other than v or w, such that each path from v to w passes through a vertex
of S.

InFig, (5.6), thesetsE; ={ps, gs, ty, tz} and E, = { uw, xw, yw, zZw} are wv-disconnecting sets, and
V,={s t} andV,={p, q,V, Z are wy-separating sets.

Theorem 5.12. Let E be a non-empty finite set, and let F = (S, ....., §,) be a family of non-
empty subsets of E. Then F hasa transversal if and only if the union of any k of the subsets § contains at
least k elements (1 <k <m).

Proof. The necessity of the condition is clear. To prove the sufficiency.

We show that if one of the subsets (S;, say) contains more than one element, then we can remove
an element from S; without altering the condition.

By repeating this procedure, we eventually reduce the problem to the case in which each subset
contains only one element, and the proof is then trivial.

In remains only to show the validity of this ‘reduction procedure'.

Supposethat S; contains elements x and y, the removal of either of which invalidates the condition.
Then there are subsets A and B of {2, 3, ....., m} with the property that |P|<|A |and | Q| < |B |
Where  P= |JS;0(Sr {®) adQ= |JS;0(Sr {W)

jOA jOA

Then|PO Q|=

U s

j0AN B

U sjmsl‘ and|POQ|2

joAd B
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The required contradiction now follows, since
|[A|+|B|z|P|+]|Q]

=|POQI+[Pn Q]
> U so0s8 )+ U S
joAd B jOAN B

>(AOB|+1)+|ANnB|
=|Al+|B[+1
Corollary 1. If E and F are as before, then F has a partial transversal of sizet if and only if the
union of any k of the subsets S, contains at least k + t — m elements.

Remark : On applying theorem, to the family F = (S, O D .....,, S, & D) where D is any set
digoint from E and containing m—t elements.

We note that F has a partial transversal of sizet if and only if F' has atransversal.
Corollary 2. If E and F are as before, and if X is any subset of E, then X contains a partial

>|A|+t—-m

Theorem 5.13. Hall’s theorem

A necessary and sufficient condition for a solution of the marriage problem is that each set of k
girls collectively knows at least k boys, for 1 <k <m.

Proof. The condition is necessary. To prove that it is sufficient, we use induction on m.
Assume that the theorem is true if the number of girlsislessthan m.

We note that the theorem is trueif m= 1.

Suppose that there are m girls. There are two cases to consider.

Case (i) If every k girls (where k < m) collectively know at least k + 1 boys, so that the condition
is aways true ‘with one boy to spare’, then we take any girl and marry her to any boy she knows.

The origina condition then remains true for the other m— 1 girls, who can be married by induc-
tion, completing the proof in this case.

Case (ii) If now thereisaset of k girls (k < m) who collectively know exactly k boys, than these
k girls can be married by induction to the k boys, leaving m—k girls still to be married. But any collection
of h of thesem—k girls, for h < m—k must know at least h of the remaining boys, since otherwise these
h girls, together with the above collection of k girls, would collectively know fewer than h + k boys,
contrary to our assumptuon.

It follows that the original condition applies to the m—k girls. They can therefore be married by
induction in such away that everyone is happy and the proof is complete.

Corollary. Let G=G(V,, V) beabipartite graph, and for each subset A of V4, let @(A) bethe set
of vertices of V, that are adjacent to at least one vertex of A. Then a complete matching fromV; to Vv,
existsif and only if | A | < | @(A) |, for each subset A of V;.
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Theorem 5.14. Let E be a non-empty finite set, and let F = (S, ..., §) and G = (T4, ....., Tp)
be two families of non-empty subsets of E. Then F and G have a common transversal if and only if, for

O 00 O
BAENER
oA 0B
Proof. Consider the family x = { X;} of subsetsof E U {1, ....., m}.

Assuming that Eand {1, ....., m} aredigoint, wheretheindexing setisaso E [ {1, ......, m} and
where

all subsetsAand B of {1, 2, ..., m}, P = =>|A|+|B|-m

Xi=Sifi0{L, .., mandX;={i} O{j:jOT} ifi0E
Itisnot difficult to verify that F and G have acommon transversal if and only if x has atransver-
sal. The result follows on applying Hall’s theorem to the family x.
Theorem 5.15. Let M be an m x n latin rectangle with m < n. Then, M can be extended to a
latin square by the addition of n —m new rows.

Proof. We prove that M can be extended to an (m + 1) x n latin rectangle. By repeating the
procedure involved, we eventually obtain alatin square.

LeE={12, ... ,nNfandF=(S,, ..., §,), where S is the set consisting of those elements of E
that do not occur in the ith column of M.

If we can prove that F has a transversal, then the proof is complete, since the elements in this
transversal form the additional row.

By Hall’s theorem, it is sufficient to show that the union of any k of the S contains at least k
distinct elements.

But thisis obvious, since such a union contains (n — m) k elements altogether, including repeti-
tions, and if there were fewer than k distinct elements, then at least one of them would have to appear
more than n —mtimes.

Since each element occurs exactly n — mtimes, we have the required contradiction.
Theorem 5.16. Konig-Egervary theorem

Thetermrank of a (0, 1) — matrix A is egual to the minimum number i of rows and columns that
together contain all the 1s of A.

Proof. Itisclear that the term rank cannot exceed 1. To prove equality, we can suppose that all
the 1s of A are contained in r rows and S columns, where r + s= |, and that the order of the rows and
columnsis such that A contains, in the bottom left-hand corner, an (m—r) x (n—s) such matrix consist-
ing entirely of Os (See Fig. (5.7)).

n-—s S
— "
1
1
M | B }r
______ AL
1
o 1
!
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Ifi<r,let S betheset of integersj < n—ssuchthat a; = 1. Itissimple to check that the union of
any k of the § contains at least k integers, and hence that the family F= (S, ......, §;) hasatransversal. It
follows that the maxtrix M of A contains aset of r 1s, no two of which lie in the same row or column.

Similarly, the maxtrix N contains a set of S 1s with the same row or column. This shows that p
cannot exceed the term rank, as required.

Remark. Consider the matrix of Fig. 5.7(a) below, which is the incidence matrix of the family F

= (S, S, S5, Sy S) Of subsetsof E={1,2,3,4,5,6}, whereS, =S, ={1,2},S,=5,={2,3}, S, ={1,
4,5,6}.

Clearly the term rank and p are both 4.

e, € €& €& € &

s,/ 1 o o 0 o0

S,]1 @® o o 0 o0

S;lo0 1 1 0 0 o0

s,/lo 1 ® o o0 o

SL1 o o @ 1 A
Fig. 5.7(a)

Theorem 5.17.  Inany binary matrix, the maximum number of independent unit elementsequals
the minimum number of lines which cover all the units.

M 0 10 0 03 M 0 10 0 03
H 1010 19 H 0000 0f
M=D0 0 1 0 0 10 M=D 00 0 0 1.
%) 0 0
110 1 0 %)100005

B 010 0 1H B 000 0 04

Theorem 5.18. There exists a system of distinct representatives for a family of sets S;, S, .....,
S, if and only if the union of any k of these sets contains at least k elements, for all k from1to m.

Proof. The necessity isimmediate. For the sufficiency we first prove that if the collection { S}
satisfies the stated conditions and | S, | = 2, then there is an element e in S, such that the collection of
SEtS S, Sy, oy S_1, S—{ €} also satisfies the conditions.

Suppose this is not the case. Then there are lements eand f in S, and subsets Jand k of {1, 2,

such that <|J|+1land O <|K|+1

] | | |
ﬁtgjﬁﬂ] Ss {e) @LDJKS@] S= {f})

Butthen |J[+|K |2 +

AJs00 G (1)
Ok O

EJSED(&; (@)
J
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=

O O
el ey
OK Jn K

2[JOK|+1+[InK|>]|J|+]|K]|
which is a contradiction.

Theorem 5.19. If any finite lattice, the maximum number of incomparable elements equalsthe
minimum number of chains which include all the elements.

Theorem 5.20. A graph with atleast 2n pointsis n-connected if and only if for any two digjoint
sets V; and V, of n points each, there exist n digjoint paths joining these two sets of points.

Proof. To show the sufficiency of the condition, we form the graph G' from G by adding two
new points W, and W, with W; adjacent to exactly the points of V;, i =1, 2. (see Fig. 5.8 below)

Vi Vs

Fig. 5.8. Construction of G'.

Since G is n-connected, so is G, there are n digjoint paths joining W, and W,

The restrictions of these pathsto G are clearly the n digoint V, — V, paths we need.

To provethe other *half’, let Sbe aset of at least n— 1 points which separates G into G, and G,
with points sets V' and V' respectively.

Then,since|Vy |21, |V, |21and |V, [+]|V, [+]|S|=]V |=2n, thereisapartition of Sinto
two digoint subsets S; and S, such that |V, 0 S; |[znand [V, O S, |2 n.

Picking any n-subsets vV, of V' O S, and V, of V,' O S, we have two digoint sets of n points
each.

Every path joining V, and V, must contain a point of S, and since we know there are n disjoint
V, -V, paths, we seethat | S| = n, and G is n-connected.

Theorem 5.21. For any two points of a graph, the maximum number of line digoint paths
joining them equals the minimum number of lines which separate them.
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Theorem 5.22. The maximum number of arc-digoint paths from a vertex vto a vertex win a
digraph is equal to the minimum number of arcsin a vw-disconnecting set.

Theorem 5.23. Menger’s theorem

The maximum number of edge-digjoint paths connecting two distinct vertices v and w of a con-
nected graph is equal to the minimum number of edges in a vw-disconnected set.

Proof. The maximum number of edge-digoint paths connecting v and w cannot exceed the
minimum number of edgesin a vw-disconnecting set.

We use induction on the number of edges of the graph G to prove that these numbers are equal .

Suppose that the number of edges of G ism, and that the theorem istrue for al graphswith fewer
than m edges. There are two cases to consider.

Case (i). Supposefirst that there exists avw-disconnecting set E of minimum sizek, such that not
all of its edges are incident to v, and not all are incident to w. For example, in Fig. 5.6, the above set E;
is such a w-disconnecting set.

The removal from G of the edgesin E leaves two digjoint subgraphs VV and W containg v and w,
respectively.

We now define two new graphs G; and G, are follows : G; is obtained from G by contracting
every edgeof V, that is, by shrinking V down tov, and G, is obtained by similarly contracting every edge
of W ; the graphs G, and G, obtained from Fig. 5.6 are shown in Fig. 5.9 below, with dashed lines
denoting the edges of E;.

Fig. 5.9.

Since G, and G, have fewer edgesthan G, and since E is awv-disconnecting set of minimum size
for both G; and G,, the induction hypothesis gives us k edge-disoint paths in G; from v to w, and
similarly for G,,

The required k edge-digoint pathsin G are obtained by combining these paths in the obvious way.

Case (ii). Now suppose that each wv-disconnecting set of minimum size k consists only of edges
that are all incident to v or al incident to w.

For example, in Fig. 5 g, the set E, is such a wv-disconnecting set.

We can assume without loss of generality that each edge of G is contained in awv-disconnecting
set of size k, since otherwise its removal would not affect the value of k and we could use the induction
hypothesis to obtain k edge-digoint paths.
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If Pisany path from v to w, then P must consist of either one or two edges, and can thus contain
atmost one edge of any wv-disconnecting set of size k.

By removing from G the edges of P, we obtain a graph with at least k — 1 edge-digjoint paths, by
the induction hypothesis. These paths, together with P, give the required k pathsin G.

Theorem 5.24. Menger’s

The maximum number of vertex-digoint paths connecting two distinct non-adjacent vertices v
and w of a graph is equal to the minimum number of vertices in a vw-separating set.

Corollary (1) A graph G is k-edge-connected if and only if any two distinct vertices of G are
connected by atleast k edge-digjoint paths.

Corallary (2) A graph G with atleast k + 1 verticesis k-connected if and only if any two distinct
vertices of G are connected by atleast k vertex-digjoint paths.

Theorem 5.25. Menger’s theorem implies Hall’s theorem.
Proof. Let G=G(V,,V,) be abipartite graph.

We must prove that, if | A | < | @(A) | for each subset A of V,, then there is a complete matching
fromV, to V..

To do this, we apply the vertex form of Menger’s theorem to the graph obtained by adjoining to
G avertex v adjacent to every vertex in V, and a vertex w adjacent to every vertex in V, (see Fig. 5.10
below).

ﬁ\/ y

<\

by

Fig. 5.10.

Since a complete matching from V, to V, exist if and only if the number of vertex-digoint paths
from v to w is equal to the number of verticesin V; (= k, say), it is enough to show that every ww-
separating set has atleast k vertices.

So, let S be a vw-separating set consisting of asubset A of V; and asubset B of V..

Since A [0 B isawv-separating set, no edge can join avertex of V, — A to avertex of V,—B and
hence @V, —A) UB.

Itfollowsthat |V,—A|<|@V,—A)|<|B|andso|S|=|A|+|B]|=]|V,|=k asrequired.
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Problem Set 5.1

1. Provethat amatroid M isatransversal matroid if and only if M can be expressed as the union of
matroids of rank 1.

2. LetE={a, b, ¢, d, €. Find matroids on E for which

(i) Eisthe only base

(i) the empty set @isthe only base
(i) the bases are those subsets of E containing exactly three elements.
For each matroid, write down the independent sets, the cycles (if there are any) and the rank
function.

3. A matroid consists of a non-empty finite set E and an integer valued function r defined on the
set of subsets of E, satisfying
r(i) 0<r(A) <| A |for each subset A of E
r(ii) if A OB OEthen r(A) <r(B)

r(iii) forany A,BOE, r(A O B) +r(A n B) <r(A) + r(B).

4. Let M bethematroidontheset E={a, b, ¢, d} whosebasesare{a, b},{a, ¢},{a, d},{b, c},{b, d}
and { c, d} . Write down the cycles of M, and deduce that thereis no graph G with M asitscycle
matroid.

5. Show how the definition of a fundamental system of cycles in a graph can be extended to
matroids.

6. LetE={1,2,3,4,56} andF={S,,S,, S;,S;, S) whereS, =S,={1,2},S;=5,={2, 3},
S;={1,4,5, 6}

(i) Writedown the partia transversals of F and check that they form the independent sets of a
matroid on E.
(if) Write down the bases and cycles of this matroid.
7. Let G; and G, be the graphs shown in Figure 5.11 below, write down the bases, cycles and
independent sets of the cycle matroids M(G;) and M(G,).
b
a d
Cc
G,
Fig. 5.11.

8. Provethat if M satisfies any of the following properties then so does any minor of M :
(i) graphic (i) cographic (iii) binary (iv) regular.

9. LetE={a, b, c}. Show that there are (up to isomorphism) exactly eight matroidson E, and list
their bases independent sets and cycles.

10. Show that every uniform matroid is a transversal matroid.
11. Provethat every cocycle of amatroid intersects every base.
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12.
13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

Prove that every cycle of amatroid intersects every cobase.
Let M be abinary matroid on aset E

(i) provethat if M isan Eulerian matroid then M* is bipartite
(if) useinduction on | E | to prove the converse result.

(iii) By considering the 5-uniform matroid on a set of 11 elements, show that the word * binary’
cannot be omitted.

Show that the contraction matroid M, A is the matroid whose cocycles are those cocycles of M
that are contained in A.

Provethat amatroid M isgraphic if and only if it isbinary and contains no minor isomorphic to
M*(Ks), M*(K; ), for F*.

If G* isan abstract dual of a graph G, then prove that M(G*) isisomorphic to (M(G))*.

If G* isageometric dual of a connected plane graph G then prove that M(G*) isisomorphic to
(M(G)).

Prove that amatroid is planar if and only if it isaregular and contains no minor isomorphic to
M(Kg), M(Kj 3) or their duals.

Let M be amatroid then provethat M containsk digoint basesif and only if, for each subset of E.
Kr(A) + |[E-A | = Kr(E).

Let M beamatroid onaset Eand let F= (S, ...., S;) be afamily of non-empty subsets of E.

Then provethat F has an independent transversal if and only if the union of only k of the susbets
S contains an independent set of size atleast k, for 1< k< m.

If My, ...... , M, are matroids on a set E with rank functions ry, ....., r, then prove that the rank
functionr of M, O ...... 0 M, isgiven by

r(X) =min{r,(A) +...... +r(A)+ | X-A]
where the minimum is taken over all subsets A of X.

Let M beamatroid, then prove that E can be expressed as the union of k independent setsif and
only if for each subset A of E, Kr(A) = | A |.

What are the cocycles and cobases of

(i) the 3-uniform matroid on a set of 9 elements ?

(i) the cycle matroids of the graphsin Figure 12(a) below
(iii) the cycle matroid of the graph in Figure 12(b) below
(iv) the Fano matroid.
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24.
25.
26.

27.

28.
29.

30.

31.

32.

33.
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Show that the dual of a discrete matroid is atrivial matroid.
What is the dual of the k-uniform matroid on a set of n elements ?
Let E be aset of n elements. Show that upto isomorphism
(i) the number of matroids on E is at most 22"
(if) the number of transversal matroids on E is at most 2",

Let E={a, b}. Show that there are (upto isomorphism) exactly four matroids on E, and list their
bases, independent sets and cycles.

State and prove a matroid analogue of the greedy algorithm.

Let Ebetheset {1, 2, ...... 50}. How many distinct transversals has the family ({1, 2}, {2, 3},
{3, 4}, ... {50, 1}).

Prove that the term rank of a(0, 1)-matrix A is equal to the minimum number p of rows and
columns that together contain al the 1sof A.

Let M beaan mx n latin rectangle with m < n, then prove that M can be extended to alatin
square by the addition of n—mnew rows.

Verify the Konig-Egervary theorem for the following matrices :

M 0 1 0 17 11 0 13
O
011 010

4 15 g O &

011 0 d 0111 ]JS

@) 00O 15 5 1 0 0 1
2 345
FindtwowaysofcompletingthefollowingIatinrectangletoan5Iatinsquare§ 3 1 2 4%.

Give an example of a5 x 8 latin rectangle and a 6 x 6 latin square.



CHAPTER

Enumeration and Groups

INTRODUCTION

Cayley’s (1857) classic paper, a great deal of work has been done on enumeration (also called
counting) of different types of graphs, and the results have been applied in solving some practical
problems.

The Pioneersis graphical enumeration theory were Cayley, Redfield and Pélya. Graphical enu-
meration methods in current use were anticipated in the unique paper by Redfield pubished in 1927
Enumerative techniques will be developed and used for counting certain types of graphs. A thorough
exposition of Pélya’'s counting theorem, the most powerful tool in graph enumeration.

6.1 TYPES OF ENUMERATION
Type 1. Counting the number of different graphs (or digraphs) of a particular kind.
For example, al connected, simple graphs with eight vertices and two circuits.

Type 2. Counting the number of subgraphs of a particular type in a given graph G, such as the
number of edge-digjoint paths of length k between verticesaand bin G.

In problems of type 1 the word ‘different’ is of utmost importance and must be clearly under-
stood. If the graphsarelabeled, i.e., each vertex is assigned aname distinct from al others, all graphsare
counted on the otherhand, in the case of unlabeled graphs the word * different’ means non-isomorphic,
and each set of isomorphic graphs is counted as one.

For example, let us consider the problem of constructing al simple graphs with n verticesand e
n(n-1

edges. There are unordered pairs of vertices. If we regard the vertices as distinguishable from

On(n-1)0
one another i.e., labeled graphs, thereare & 2 U ways of selecting e edges to form the graph.
e

On(n-1)0
ThusZ 2 U gives the number of simple labeled graphs with n vertices and e edges.

1ef

In the problems of type 2, usually involves amatrix representation of graph G and manipulations
of this matrix. Such problems, although after encountered in practical applications, are not as varied and
interesting as those in the first category.

387
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6.2 LABELED GRAPHS

All of the labeled graphs with three points are shown in Figure 6.1 below. We see that the 4
different graphswith 3 points become 8 different labeled graphs. To obtain the number of labeled graphs

with P points, we need only observe that each of the g% possible linesis either present or absent.
O

v, v,
®
e————— O
Va V3 A2 V3
v, v, v, v,
[
® [ ®
A A A A A A A A
V4 vy
o
v, v, v, YA

Fig. 6.1. The labeled graphs with 3 points.

6.3 COUNTING LABELED TREES

On(n-1)0
Expression O 2 U can be used to obtain the number of simple labeled graphs of n vertices
e

and n— 1 edges. Some of these are going to be trees and otherswill be unconnected graphs with circuits.

For example, In Figure 6.2 below are all the 16 labeled trees with 4 points. The labels on these
trees are understood to be asin the first and last trees shown.

We note that among these 16 labeled trees, 12 are isomorphic to the path P, and 4 to k; 5.
The order of ' (P,) is 2 and that of I'(k; 3) iS6.
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We observe that since P = 4 here, we have
41 q 4]
and 4 =
IT(Py) | T (ky,3) |

The expected generalization of these two observations holds not only for trees, but also for
graphs, digraphs, and so forth.

12=

_ETTISNAZ
L/ ANRXX,

Fig. 6.2. The labeled trees with 4 points.

Vy Vs

6.4 ROOTED LABELED TREES

In arooted graph one vertex is marked as the root. For each of the n"~2 |abeled trees we have n
rooted label ed trees, because any of the n vertices can be made aroot. Therefore, the number of different
rooted |abeled trees with n verticesisn” 2.

6.5 ENUMERATION OF GRAPHS
To obtain the polynomial gp(x) which enumerates graphs with agiven number P of points. Let g,

be the number of (p, g) graphs and let gx(x) = Z gquq , al graphswith 4 points; g,(x) = 1 + x+ 2x2 +
q
S+ 2¢ + X0+ 8.

6.6 ENUMERATION OF TREES

To find the number of treesit is necessary to start by counting rooted trees. A rooted tree has one
point, its root, distinguished from the others. Let T be the number of rooted trees with P points.
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Y

Fig. 6.3.

From figure 6.3 above, in which the root of each tree is visibly distinguished from the other
points, we see T, = 4. The counting series for rooted trees is denoted by T(x) = Z Tpxp . Wedefinetp
pP=1

and t(x) similarly for unrooted trees.

6.7 PARTITIONS
When a positive integer P is expressed as a sum of positiveintegersP=A; + A\, + A5+ ...... A
suchthat A=A, 2732 ... Aq =1, the g-tuple of called a partition of integer P,

For example, (5), (41),(32),(311),(221),(2111),and (111 11) are the seven different
partitions of the integer 5.

Theinteger’'s A;'sare called parts of the partitioned number P.
The number of partitions of agiven integer Pis often obtained with the help of generating function.
The coefficient of ¢ in the polynomial
1+ XA +x)A+5) ... 1+ XD
gives the number of partitions, without repetition, of an integer k < P.

6.8 GENERATING FUNCTIONS
A generating function f(x) is a power series
f(X) = ay+ aXx + ax2 + ......
is some dummy variable x. The coefficient a, of X*isthe desired number, which depends on a collection
of k objects being enumerated.
For example, in the generating function

(1+x)"= DE + DEx+ EnEx2+ DEx:"+ DEX"
aaliie uii e I < A &
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The coefficient of X¢ gives the number of distinct combinations of n different objectstakenk at atime.
Consider the following generating function :

> Mm+k-10
L-x""=@+x+x+x+..)"= > O ‘ XK. (1)
K=ol O

The coefficient of X< in (1) gives the ways of selecting k objects from n objects with unlimited
repetitions.

6.9 COUNTING UNLABELED TREES

The problem of enumeration of unlabeled treesis more involved and requires familiarity with the
concepts of generating functions and partitions.

6.10 ROOTED UNLABELED TREES

L et u,, be the number of unlabeled, rooted trees of n vertices and let u,(m) be the number of those
rooted trees of n vertices in which the degree of the root is exactly m. Then

n-1
un= Z un(m) .

m=1

For example, In Fig. 6.4 below, an 11-vertex, rooted tree is composed of four rooted subtrees.

AT

Fig. 6.4. Rooted tree decomposed into rooted subtrees.
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Fig. 6.5. Rooted, ublabeled trees of one, two, three, and four.

6.11 COUNTING SERIES FOR u,

To circumvent some of these difficulties in computation of u,, let usfind its counting series, i.e.,
the generating function, u(x), where

U(X) = UpX + U + U+ ...
[ee] [ee]
= > ux" =x) ux" "t
n=1 n=1

6.12 FREE UNLABELED TREES

Lett'(X) bethe counting seriesfor centroidal treesandt” (xX) be the counting seriesfor bicentroidal
trees. Then t(x), the counting series for al trees, is the sum of the two. That is t(x) = t'(X) + t"(X).

Uy +10 Uy (U +1)

Thusthe number of bicentroidal treeswithn=2mverticesisgivenby t; = J 5 0= 5
| t
< Un(Un+D >
and reg= ) X

m=1

_ 1 i 2m , + - my2

= Uy X~ + (Upx™)
2 m=1 m=1
1 > - my2

=S upd)+ 5 U™’
2 2 &
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6.13 CENTROID

Inatree T, at any vertex v of degree d, there are d subtrees with only vertex v in common. The
weight of each subtree at v is defined as the number of branches in the subtree. Then the weight of the
vertex v is defined as the weight of the heaviest of the subtrees at v. A vertex with the smallest weight in
the entiretree T is called a centroid of T.

Every tree has either one centroid or two centroids. If atree has two centroids, the centroids are
adjacent.

In Fig. 6.6 below, a tree with centroid, caled a centroidal tree, and a tree with two centroids,
caled a bicentroidal tree. The centroids are shown enclosed in circles, and the numbers next to the
vertices are the weights.

6

7
6 7
: & 4
&o—e—o ® e
4 5 5 5
6 7
7

(@) Centroidal Tree (h) Bicentroidal Tree

Fig. 6.6. Centroid and bicentroids.

6.14 PERMUTATION
On afinite set A of some objects, a permutation Ttis a one-to-one mapping from A onto intself.
For example, consider aset{a, b, c, d}.

A tati —EadeDtak into b, binto d, cint d dint
permu |onnl—%) 4 c aE esainto b, binto d, cinto c, and dinto a.
Alternating, we could write Ty(a) = b, Ty(b) = d, m(c) = ¢, m(d) = a.
The number of elementsin the object set on which a permutation actsis called the degree of the
permutation.

(A b c dO
For example, the permutation 1t = %) d c aE is represented diagrammatically by Figure

<1

Fig. 6.7. Digraph of a permutation.

6.7 below :
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b c d
Permutation = E can be written as (a b d) (c).
%) d ¢ ag

The number of edges in a permutation cycleis called the length of the cycle in the permutation.

A permutation Ttof degree kis said to be of type (03, 05, ...... o)) if thas g, cycles of length i
foru=1, 2, ..... k.

For example, permutation is of type (2, 0, 2, 0, 0, 0, 0, 0).
Clearly, 10, + 20, + 305 + ..... + ko, = k.

6.15 COMPOSITION OF PERMUTATION

(62 I N
“ad

m
Consider the two permutations Ty, and 1t, on an object set {1, 2, 3,4, 5} 1, = %

L 2 3 4 50
B 412 5
A composition of these two permutations T, Ty, is another permutation obtained by first applying
1, and then applying Tt, on the resultant.
That, is TG(1) = T(2) = 4
(2 = (1) =3
Ty (3) = y(4) =2
my(4) =(5) =5
my(5) =m(3) =1

and T, =

L 2 3 4 5]
Thus 1,1, = O 0-
@ 3 2 5 10

6.16 PERMUTATION GROUP

A collection of mpermutationsP = {1, T, ....., T} actingonaset A ={a;, a,, ....., a} formsa
group under composition, if the four postulates of a group, that is, closure, associativity, identity, and
inverse are satisfied. Such a group is called a permutation group.

The number of permutations m in a permutation group is caled its order, and the number of
elements in the object set on which the permutations are acting is called the degree of the permutation
group.

For example, the set of four permutations

{(a) (b) (c) (d), (ac) (bd), (abcd),(adcb)} acting on the object set {a, b, c, d} formsa
permutaion group.
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6.17 CYCLE INDEX OF A PERMUTATION GROUP

For a permutation group P, of order m, if we add the cycle structures of al m permutationsin P
and divide the sum by m, we get an expression called the cycle index Z(P) of P.

For example, the cycleindex of S;, the full symmetric group of degree three,

1
2(S) = g (02° + 3wy, + 29,
The cycle index of the permutation group is
1 4,2
2 (1" + Yo" +2y,)

We have six permutations of type (2, 1, 0, 0) on the object set {a, b, c, d} :
(@) (b) (cd), (a) (c) (bd), (a) (d) (bc),
(b) (c) (ad), (b) (d) (ac), (c) (d) (ab).

1
Thecycleindex of S, : Z(S,) = 24 (v + By,y, + 8y1ys + By,” + 6y,).

Permutation type Number of such permutations Cycle structures
(4,0,0,0) 1 vt
(2.1,0,0 6 iYs
(1,0,1,0) 8 YiY3
(0,2,0,0) 3 Ve
(0,0,0,1) 6 Ya

6.18 CYCLE INDEX OF THE PAIR GROUP

When the n vertices of agroup G are subjected to permutation, the unordered vertex

n(n-1
2
pair also get permuted.

For example, Let V ={a, b, ¢, d} bethe set of vertices of afour-vertex graph. The permutation

Ca b c dO
B= Eﬁ b a cD on the verticesinduces the following permutation on the six unordered vertex pairs :
O

, b ac ad bc bd cdO
B_Egb da dc ba bc acH
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C

ab a
| | @ i < | ad
b bc d

C C

Fig. 6.8. Permutation on vertex set and the induced permutation on vertex-pair set.

6.19 EQUIVALENCE CLASSES OF FUNCTIONS
Consider two sets D and R, with the number of elements | D | and | R | respectively. Let f be a
mapping or function which maps each element d from doamin D to aunique imagef(d) in range R. Since
each of the | D | elements can be mapped into any of | R | elements, the number of different functions
fromDtoRis|R [P
L et there be a permutation group P on the elements of set D. Then define two mappingsf; and f,
as P-equivalent if there is some permutation 1tin P such that for every d in D we have
fy(d) = f[m(d)] (1)
The relationship defined by (1) is an equivalence relation can be shown as follows :
(i) SnceP isa permutation group, it contains the identity permutation and thus (1) isreflexive.
(i) If P contains permutation 7z it also contains the inverse permutation 77 . Therefore, the
relation is symmetric also.

(iii) Furthermore, if P contains permutations 74 and 7s, it must also contain the permutation
75,75, This makes P-equivalence a transitive relation.

The permutation group P on D is the set of all those permutations that can be produced by
rotations of the cube. These permutations with their cycle structures are :
(i) Oneidentity permutation. Its cycle structureisy,®.
(if) Three 180° rotations around lines connecting the centers of opposite faces. Its cycles struc-
tureisy,*.
(iif) Sx90° rotations (clockwise and counter clockwise) around lines connecting the centers of
opposite faces. The cycle structure is y,2.

(iv) Sx 180° rotations around lines connecting the mid-points of opposite edges. The corre-
sponding cycle structure is y,*.

(v) Eight 120° rotationsaround lines connecting opposite cornersin the cube. The cycle struc-
ture of the corresponding permutation is 'y, %>,

The cycle index of this group consisting of these 24 permutations is, therefore,

1
Z(P) = 2 (v2® + 9y, + 6y,” + 8y,%y:).
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Theorem 6.1. There are n"~? labeled trees with n vertices (n > 2).

Proof. Letthenverticesof atree T belabeled 1, 2, 3, ....., n. Remove the pendant vertex (and the
edge incident on it) having the smallest label, which is, say, a;.

Suppose that b, was the vertex adjacent to a,.
Among the remaining n — 1 vertices.

Let a, be the pendant vertex with the smallest 1abel, and b, be the vertex adjacent to a,. Remove
the edge (a,, b,).

This operation is repeated on the remaining n — 2 vertices, and then on n — 3 vertices, and so on.
The process is terminated offer n — 2 steps, when only two vertices are lft.

Thetree T defines the sequence (by, b,, ....., b,_5) uniquely ..(1)
For example, for the treein Fig. 6.9(a) below the sequenceis (1, 1, 3,5, 5, 5, 9).

Fig. 6.9.(a) Nine vertex labeled tree, which yields sequence (1, 1, 3,5, 5, 5, 9).

We note that a vertex i appearsin sequence (1) if and only if it is not pendant.

Conversdly, given asequence (1) of n—2 labels, an n-vertex tree can be constructed uniquely, as
follows : Determine the first number in the sequence 1, 2, 3, ...... , N, (2) that does not appear in
sequence (1).

Thisnumber clearly isa,. And thusthe edge (a,, b,) isdefined. Removeb, from sequence (1) and
a, from (2).

In the remaining sequence of (2) find the first number that does not appear in the remainder of
(2). Thiswould be a,, and thus the edge (a,, b,) is defined.

The construction is continued till the sequence (1) has no element left.

Finally, the last two vertices remaining in (2) are joined.

For example, given a sequence (4, 4, 3, 1, 1).
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We can construct a seven-vertex tree as follows : (2, 4) is the first edge. The second is (5, 4).
Next, (4, 3). Then (3, 1), (6, 1), and finally (7, 1), as shown in Fig. 6.9(b) below :

Fig. 6.9.(b) Three constructed from sequence (4, 4, 3, 1, 1).
For each of the n — 2 elements in sequence (1) we can choose any one of n numbers, thus
forming n" -2 ..(3)
(n— 2)-tuples, each defining a distinct labeled tree of n vertices. And since each tree defines one

of these sequences uniquely, there is a one-to-one correspondence between the trees and the n" 2
sequences. Hence the theorem.

Theorem 6.2. The number of different rooted, labeled trees with n verticesisn" 1.

Theorem 6.2(a). Pdlya’s theorem

The configuration-counting series B(X) is obtained by substituting the figure-counting A(x') for
eachy; inthe cycleindex Z(P ; yy, ¥s, <. y,) of the permutation group P.

That is, B(X) = Z(P ; Za, Zax®, 28X, ....., Zax ).

Theorem 6.3. Let A be a permutation group acting on set X with orbits 8,, 6,, ...... , 6,,and Whe
a function which assigns a weight to each orbit. Furthermore, W is defined on X so that w(x) = W(6)

n
whenever x [7 8. Then the sum of the weights of the orbitsisgivenby | A| D W(B) =5 5 W(x),
i1

alA x ax

Proof. We have, theorder | A | of the group A isthe product | A(X) |. | 6(X) | for any xin X, where
A(X) isthe stabilizer of x.

Also, since the weight function is constant on the elements in a given orbit, we see that

18 [W(B)= > W(X), for each orbit 6,
X[® i
Combining these facts, we find that

IATW(®)= 3 AW
xEBi
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Summing over al orbits, we have

A zW(e =3 3 1AW

= 6;

Corollary (BURNSIDE’'S LEMMA)

1 .
The number N(A) of orbits of the permutation group A is given by N(A) = TA] > i@,
alA

Proof. Let A be a permutation group of order m and degree d. The cycle index Z(A) is the
polynomial in d variables a,, a,, ...... a, given by the formula

1 d ik(a)
Z(A n a
A= Ta1 agA &
Since, for any permutation a, the numbersj, =j(a) satisfy 1j; + 2j, + ...... d,4 = d they constitute
a partition of the integer d.
The vector notation (j) = (jy, j,, -+ J¢) iN describing a.
For example, the partition 5= 3 + 1 + 1 corresponds to the vector (j) = (2, 0, 1, 0, 0).

OpO
g
Theorem 6.4. The number of labeled graphs with P pointsis 2%25.

pCH
. N
Corollary. The number of labeled (p, q) graphsis %2[]].

Ha

|
Theorem 6.5. The number of ways in which a given graph G can be labeled is i ?G) |

Proof. Let A beapermutation group acting on the set X of objects. For any element xin X, the
orbit of x, denoted 6(x), is the subset of X which consists of al elements y in X such that for some
permutation o in A, ax =Y.

The stabilizer of x, denoted A(X), isthe subgraph of A which consists of al the permutationsin A
which leaves x fixed.

The result follows from an application of the well-known formula| 6(X) | . | A(X) |=] A |.

Theorem 6.6. Pélya‘'s Enumeration theorem

The configuration counting series is obtained by substituting the figure counting series into the
cycle index of the configuration group, C(X, y) = Z(c(X, V)).

Proof. Leta beapermutationinA, andlet a be the corresponding permutation in the power
group EA.

Assumefirst that f is a configuration fixed by o and that Z isacycle of length k in the disjoint-
cycle decomposition of a.
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Then f(b) = f(¢b) for every element b in the representation of ¢, so that all elements permuted by
¢ must have the same image under f.

Conversely, if the elements of each cycle of the permutation a have the same image under a

configuration f, then o fixesf.

Therefore, al configurationsfixed by o are obtained by independently selecting an elementr in R
for each cycle € of a and setting f(b) =r for all b permuted by . Then if the weight W(r) is (m, n) where

m=W,r and n = W,r and { has length k, the cycle  contributes afactor of ) (X™y")* to the sum
rR

so= o f W(f).

Therefore, since ) (X" y"E =c(x, y9) .

riR

We have, for each a in A,

S .
> W(f)=1 C(x‘,y )
f=af B '

Summing both sides of this equation over al permutationsa in A (or equivalently over al a in
E”) and dividing both sidesby | A | = | E* |,
We obtain,

1 S .
W(f) = — nc k, ky jk(a)
~Z > W(f) = AT g T COE y )™
The right hand side of this equation is Z(A, C(X, V)).
To seethat the left hand side is C(x, ).

Corollary. If A isapermutation group acting on X, then the number of orbits of n-subsets of X
induced by A isthe coefficient of X" in Z(A, 1 + X).

Theorem 6.7. The counting polynomial for graphs with P pointsis
gp(X) = (89, 1+ ),

pr [P/

where Z(SD(Z))- — Z n e
M n J Ika
k=1
Ojko
(P72 Kok +1 (/2] kEZE a(r,s)iris
k=0 k+1 kzlak 1<r<s<P _p M.s) :
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Corollary 1. The counting polynomial for rooted graphs with P pointsis

() = Z((S; + Sp_ 1)@, 1+ x).
When there are atmost two lines joining each pair of points, we need only replace the figure
counting series for graphsby 1 + x + X°.
Corollary 2. The counting polynomia for multigraphs with at most two lines joining each pair
of pointsis
o' () =Z(S$?, 1+ x+x)
For arbitrary multigraphs, the figure counting series becomes

L+X+X+XC+ ..., =—

Corollary 3. The counting polynomial for multigraphs with P pointsis mu(x) = Z ESPZ) , %E
O - Xg

Theorem 6.8. The counting polynomial for digraphs with P pointsis dp(X) = Z(Sé2 ) 1+ X) .

jk
p (k-1)jk + 2k o
020 2lrlsd(rs)

where ( ) = 1 (r,s)

P! &
k

»n7]

IN
=
IN

Ikak 1 1

||:I'U

lJ

Theorem 6.9. The number S, of self-complementary graphs on P pointsis S = Z(S2 ; 0, 2,
0,2, ....).

Theorem 6.10. Identity trees are counted by the equations

ne1 UKX")
n

UK = xep 3 (-1
n=1

u(x) = U(x) - 5 [UZ(X) + U]

The number of identity trees through 12 points is given by
ux) = x+ X +8+ 3%+ 6x10+ 15x" + 20x2 + ...
Theorem 6.11. The counting series for rooted treesis given by

T(¥) = x n @- x) T
r=
Theorem 6.12. The counting series for rooted trees satisfies the functional equation

T(X) = x &xp r|°-:°|1F1 x) (D)
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Proof. Let T™(x) be the generating function for those rooted treesin which the root has degree
n, so that

T(X) = |°‘|:0T(”) () (2)

For example, T©(x) = x counts the rooted trivial graph, while the planted trees (rooted at an end
point) are counted by TY(x) = xT(X).

In general arooted tree with root degree n can be regarded as a configuration whose figures are
the n rooted trees obtained on removing the root. Fig. 6.10(a) below, illustrates thisfor n = 3.

®

Fig. 6.10(a). A given rooted tree T and its constituent rooted trees.

Since these n rooted trees are mutually interchangeable without altering the isomorphism class
of the given rooted tree, the figure counting series is T(x) and the configuration graph is S, giving
TOK) = xZ(S,, T(9) -(3)

Thefactor x accounts for the removal of the root of the given tree since the weight of atreeisthe
number of points.

Fortunately, there is awell-known and easily derived identity which may now beinvoked (where
Z(Sy) isdefined as 1)

) 00 1 r
Y Z(S, h(x) =exp ) Fh(x ) (4)
n=0 r=1

On combining the last three equations, we obtain (1)
Theorem 6.13. Homeomorphically irreducible trees are counted by the three equations,

_ 2 o ﬁ r
H(x):leX exper r(;(f) (1)

H(x) = “TX H(x) —% [H2(x) —H(X)?] (2
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h(x) = H(x) - X—lz [H(9 - H ()] ~(3)

The number of homeomorphically irreducible trees through 12 pointsis found to be :

h(x) = x + X2+ X + X3 + 28 + 2" + 48 + 5 + 10x™% + 14x™ + 26x2 + ... (4
Theorem 6.14. Power Group Enumeration Theorem
The number of equivalence classes of functionsin RP determined by the power group B is

NE)= = 5 (A () My (B), oy (B) Where m(@) = 3 Ss(B).

IBI ¢

Theorem 6.15. The configuration counting series C(x) for 1 — 1 functions from a set of n
interchangeable elementsinto a set with figure counting series C(x) is obtained by substituting C(x) into

Z(A -3 :
C) = Z(A - S, C(%)).
Theorem 6.16. For any tree T, let p* and g* be the number of similarity classes of points and
lines, respectively, and let S be the number of symmetry lines. Then S= 0 or 1 and

pr-(q-9=1 (1)
Proof. Whenever T has one central point or two dissimilar central points, thereis no symmetry
line, s0 S=0.

In this case thereis a subtree of T which contains exactly one point from each similarity class of
pointsin T and exactly one line from each class of lines.

Since this subtree has p* points and g* lines, we have p* —g* = 1.
The other posibility isthat T has two similar central points and hence S= 1.

In this case there is a subtree which contains exactly one point from each similarity class of
pointsin T and, except for the symmetry line, one line from each class of lines.

Therefore, this subtree has p* pointsand g* — 1 linesand so p* — (g* —1) = 1.
Thus, in both cases (1) holds.
Theorem 6.17. The counting series for trees in terms of rooted trees is given by the equation

100 = T00 - 5 (729 ~ 6] )

Proof. Fori=1tot, letp*,qg* and S bethe numbersof similarity classes of points, lines, and
symmetry lines for the ith tree with n points.

Sincel=p* —(g* —S) for eachi, by p* —(g* —S) = 1, we sum over i to obtain
ty=T,— > (G*-S) (2
i

Furthermore 2(g* — S)) is the number of trees having n points which are rooted at a line, not a
symmetry line. Consider atree T and take any liney of T which is not asymmetry line.

Then T —y may be regarded as two rooted trees which myst be non isomorphic.
Thus each non-symmetry line of atree corresponds to an unordered pair of different rooted trees.
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Counting these pairs of trees is equivalent to counting 1 — 1 functions from a set of two inter-
changeable elements into the collection of rooted trees.

Therefore, T(X) as the figure counting series to obtain

S x
=

n=1

t

n O
3ZM“ﬁE=a%—%wm e

=1
; 2 1 2
Since Z(A,) =a;“and Z(S,) = 5 (a°+ &)

Wehave Z(A,—S,, T(X) = % [T2(x) — T(A)] ..(4)

Now the formulain the theorem follows from (2) to (4)
Note:

© 1
Using T() =xexp » ;T(xr) and
r=1

00 = T() ~ 2 [T%9 ~T0)

We obtain the explicit numbers of rooted and unrooted trees through P = 12.
T(X) =X+ 2+ 2 + 4x* + 9% + 20x8 + 48x” + 1158 + 268x° + 719x™° + 1842xM + 4766x™2 + ...
t(X) = X +32 + ¢ + 2¢ + 3 + 68 + 11X + 23¢ + 47 + 106x%° + 235%™ + 5512 + ... .

6.20 GROUP DEFINITION

The non-empty set A together with abinary operation, denoted by the just aposition a ;0 for a;,
o, in A, constitutes a group whenever the following four axioms are satisfied

Axiom (i) (closure) : For al a,, a,in A, 0,0, isalso an element of A.

Axiom (ii) (associativity) : For al a,, a5, a3 in A, a,(0,03) = (0;,05) O3

Axiom (iii) (identity) : Thereisan elementiin A suchthat ia=ai=aforadl ainA

Axiom (iv) (inversion) : If axiom (iii) holds, then for each a in A, thereis an element denoted
a~lsuchtha oo t=ata=i.

6.21 PERMUTATION
A one-one mapping from afinite set onto itself is called a permutation.

6.22 PERMUTATION GROUP

The usua composition of mappings provides a binary operation for permutations on the same
set. Whenever a collection of permutations is closed with respect to this composition, Axioms (ii), (iii)
and (iv) are automatically satisfied and it is called a permutation group.

Note: If apermutation group A acts on object set X then | A | isthe order of thisgroup and | X |
is the degree.
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6.23 ISOMORPHIC GROUPS
If A and B are permutation groups acting on the sets X and Y then A OB, meansthat A and B are
isomorphic groups.
Here A = B indicates not only isomorphism but that A and B are identical permutation groups.
If thereisone-onemap h: A ~ B between the permutations such that for all a4, a, in A.
h(a; a5) = h(ay) h(a,) (i.e, AOB)
Also, if thereisaone-onemapf: X « Y between the objects such that for all xin X and a in A,
f(ax) = h(a) f(x) (i.e., A =B).

6.24 AUTOMORPHISM OF A GROUP

An automorphism of agroup G isan isomorphism of G with itself. Thus each automorphisma of
G is a permutation of the point set V which preserves adjacency. Of course, a sends any point onto
another of the same degree. Obviously any automorphism followed by another is aso an automorphism,
hence the automorphisms of G form a permutation group I (G).

6.25 LINE-GROUP

The point-group of G induces another permutation group I'1(G), called the line-group of G which
actson theliens of G.

6.26 OPERATIONS ON PERMUTATION GROUPS

6.26.1. Sum group

Let A be apermutation group of order m=| A | and degreed acting on the set X = {Xy, X, ..... X¢}
and | et B be another permutation group of order n=| B | and degreeeactngontheset Y ={y;, ¥,, ..... Yo} .

The sum A + B is a permutation group which acts on the digoint union X 00 Y and whose
elementsare al the ordered pairs of permutationsa in A and 3 in B, writtena + 3. Any object Zof X O Y
is permuted by a + 3 according to therule

mz , zOX
C+B@=, oy

6.26.2. Product Group

The product A x B of A and B is a permutation group which acts on the set X x Y and whose
permutations are all the ordered pairs written a x 3 of permutations a in A and 3 in B. The object (X, y)
of X x Y ispermuted by a x 3 as expected

(@ x B)(x y) = (ax, By).

6.26.3. Composition Group

The composition A[B] of ‘A around B’ also actson X x Y. For each a in A and any sequence
(ST C P By of d permutationsin B, thereis aunique permutation in A[B] written (o ; B4, By, ... By)
such that for (x;, ;) in X x Y.

(05 By Boy wvvees Ba) (6, W) = (0%, BiY))
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6.26.4. Power Group

The power group denoted by B” acts on Y*, the set of all functions from X into Y. Assume that
the power group acts on more than one function. For each pair of permutations o in A and 3 in B there
is a unique permutation, written B in B”. The action of % on any function fin Y* by the following
equation which gives the image of each x O X under the function B* f : (B*f)(x) = Bf(ax).

6.27 SYMMETRIC GRAPHS

Two pointsu and v of the graph G are similar if for some automorphism a of G, a(u) =v. A fixed
point is not similar to any other point. Two lines x; = u;v; and X, = U,v, are called similar if thereisan
automorphism o of G such that a({uy, v4}) = {u,, u,}.

A graphispoint-symmetric of every pair of pointsare similar, it isline-symmetric if every pair of
lines are similar, and it is symmetric if it is both point-symmetric and line-symmetric.

6.28 HIGHLY SYMMETRIC GRAPHS

A graph G is n-transitive, n = 1, if it has an n-route and if there is always an automorphism of G
sending each n-route onto any other n-route. Obviously acycle of any length isn-transitive for al n, and
apath of length n is n-transitive. We note that not every line-symmetric graph is 1-transitive.

Theorem 6.18. The line-group and the point-group of a graph G are isomorphismif and only
if G has atmost one isolated point and K, is not a component of G.

Proof. Letd' bethe permutation in I';(G) which isinduced by the permutation o in I'(G).
By the definition of multiplication in " (G), we have
o'f' = (aB) fordl a, BinT(G).

Thus the mapping o — a’ isagroup homomorphism from I'(G) onto I ,(G).

Hence I'(G) T 4(G) if and only if the kernel of this mapping istrivial.

To prove the necessity, assume I'(G) UIM4(G).

Then a # i (the identity permutation) impliesa' # i.

If G hasdistinct isolated points v; and v, we can define o O IM'(G) by a(v;) = v,, a(v,) = v; and
a(v) =vforalv#v, v, Thena #ibut o' =1i.

If K, isacomponent of G, taketheline of K, to bex =v,v, and definea [T" (G) exactly as above
toobtaina # i but o' =1.

To prove the sufficiency, assume that G has at most one isolated point and that K, is not a
component of G.

If I'(G) istrivial, then obvioudly I';(G) fixes every line and hence I';(G) is trivial.
Therefore, suppose there exists a [ I'(G) with a(u) = v £ u.
Then the degree of uisegual to the degree of v. Sinceu andv are not isolated, thisdegreeisnot zero.

Case(i). uisadjacent tov. Let x = uv. Since K, isnot acomponent, the degrees of bothu and v are
greater than one.

Hencethereisaliney # x which isincident with uand o' (y) isincident with v.
Therefore a'(y) Zyand so o' £ i.
Case(ii). uisnot adjacent to v. Let x be any line incident with u. Then o' (X) Zxand so o' # i.
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Theorem 6.19. A graph and its complement have the same group (G ) = (G).

Theorem 6.20(a). Thegroup (G) isS,ifandonlyif G= Kpor G= K_P .
(b) If Gisacycle of length P, then I(G) = Dp.
Theorem 2.21. Thethree groups A + B, A x B, and B” are isomorphic.

Theorem 2.22. Every finite group F is isomorphic with the group of those automor phisms of
D(F) which preserve arc colors.

Theorem 2.23. For every finite abstract group F, there exists a graph G such that I(G) and F
are isomorphic.

Theorem 2.24. If Gisa connected graph, then

InG) = §[I(G)].

Theorem 2.25. If G; is not totally disconnected, then the group of the composition of two
graphs G; and G, is the composition of their graphs, I(G,[G,]) = I(G,) [I(Gy)], if and only if the
following two conditions hold :

(i) If there are two points in G, with the same neighbourhood, then G, is connected.

(ii) If there are two pointsin G, with the same closed neighbourhood, then Gj is connected.
Theorem 6.26. If G; and G, are digjoint, connected, non isomorphic graphs, then (G, [J G,)
=Gy + I(Gy.
Corollary (1). The group of the union of two graphsisthe sum of their groups
MG UGy =T(Gy +T(Gy)
if and only if no component of G, isisomorphic with acomponent of G..
Coroallary (2). The group of the join of two graphsisthe sum of their groups
MG+ Gy =T(Gy) + (G

if and only if no component of G; isisomorphic with acomponent of G .
Theorem 6.27. The group of the product of two graphs is the product of their groups.
MGy x Gy =T(GY x T'(Gy
if and only if G, and G, arerelatively prime.

Theorem 6.28. The group of the corona of two graphs G; and G, can be written explicitly in
terms of the composition of their groups.

MG+ Gy =T(Gy [Ey + T(GH]-

if and only if G, or G2 has no isolated points.
Corollary. The group of the corona G, ¢ G, of two graphs is isomorphic to the composition
'(Gy) [ (G,)] of their groupsif and only if G, or G2 hasnoisolated points.

Theorem 6.29. Given any finite, abstract, non trivial group F and aninteger j(1 <j <4), there
are infnitely many non homeomor phic graphs G such that G is connected, has no point fixed by every
automorphism, /(G) LJF, and G also has the property P;, defined by
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P,:K(G)=nn=1

P, X(G)=nn=2

P5: Gisregular of degreen,n >3

P, : Gisspanned by a subgraph homeomorphic to a given graph.

Corollary. Given any finite group F and integersn and mwheren >3 and 2< m< n, thereare an
infinite number of graphs G such that I'(G) CIF, x(G) = m, and G isregular of degreen.

Theorem 6.30. There exists an n-cage for all n > 3. For n = 3 to 8 there is a unique n-cage.
Each of these n-cagesis t-unitransitive for somet = t(n), namely, t(3) = 2, t(4) = t(5) = 3, t(6) = t(7) = 4,
and t(8) = 5.

Theorem 6.31. Whenever P =20 isdivisible by 4, there exists a regular graph G with P points
which is line-symmetric but not point-symmetric.

Theorem 6.32. If G isconnected, n-transitive, is not cycle, has no end points and has girth g,

9
thenn<1+ 5

Theorem 6.33. Let G be a connected graph with no end points. If W is an n-route such that
there is an automor phism of G from W onto each of its successors, then G is n-transitive.

Theorem 6.34.  Every line-symmetric graph with no isolated pointsis point-symmetric or bipartite.
Proof. Consider aline-symmetric graph G with no isolated points, having g lines.

Then for any linex, there are at least g automorphisms oy, a, ..... o of G which map x onto the
linesof G.

Let x=wvV,, Vi ={a;(Vy), ee. ag(vp}, andVy={oy(v), . agy(Vo)}-
Since G has no isolated points, the union of V; and V, isV.

There are two possibilities: V, and V, are digoint or they are not.

Case (i). If V, and V, are digoint then G is bipartite.

Consider any two points u; and W, in V. If they are adjacent, then thereisalineyjoining them.
Hence for some automorphism a;, we have a;(x) = .

Thisimpliesthat one of these two pointsisin V, and the other isin V,, acontradiction.

Hence V, and V, constitute a partition of V such that no line joins two pointsin the same subset.

By definition, G is bipartite.

Case (ii). If V, and V, are not digoint, then G is point-symmetric.

Let uand w be any two points of G. We wish to show that u and w are similar.

If uand w are both in the same set, say V ; then there exists automorphism a with a(v;) = u and
B with B(vy) = w.

Thus Ba~1(u) = w so that any two points u and w in the same subset are similar.

IfuisinV,and wisinV,, let vbeapoint in both vV, and V..

Since v is similar with u and with w, u and w are similar to each other.
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Corollary (1) : If Gisline-symmetric and the degree of every lineis(d,, d,) with d; # d, then G
is bipartite.

Corollary (2) : If agraph G with no isolated points is line-symmetric, has an odd number of
points, and the degree of every lineis (d,, d,) with d, = d,, then G is point-symmetric.

Corollary (3) : If Gisline-symmetric, has an even number of points, and isregular of degree

d=

N O

then G is point-symmetric.

Problem Set 6.1

Prove that the number of different rooted labeled treeswith n verticesisn
Prove that the number of simple labeled graphs of n verticesis 2"~ 1/2,
Prove that there are n" ~2 labeled trees with n vertices (n = 2).

Provethat avertex v appearsin sequence (by, b, ..... b, _,) mtimesif and only if degreeof v=m-—1.

Show that the cycleindex of agroup consisting of theidentity permutation only isy,¥, k being the
number of elementsin the object set.

n-1

a s w N ek

PO
|
6. Prove that the number of labeled graphs with P pointsis Z%D.

|
7. Prove that the number of waysin which agiven graph G can be labeled is % .

8. Prove that the number N(A) of orbits of the permutation group A is given by N(A) =

1 .
m GEA j1(a).

9. Provethat the counting polynomial for rooted graphswith Ppointsisra(x) = Z((S; + Se_1)@, 1+X).

10. Prove that the counting series for rooted treesisgiven by T() = x 1. @-x) .
r=

11. Show that the cycle index of the induced pair group R is the same asthat of S;, that is

1
Z(Ry = 6 (V2> + 3y, + 2y5).

12. Show that the order of D,,, the group of symmetries of aregular n-side polygon is 2n. Find the
cycleindex of D,

13. Find the automorphism group Q(G) of agraph G if Gis
(i) acomplete graph of n vertices and
(i) acircuit with n vertices.

Find agraph with minimum number of verticesn > 1 in which Q(G) consists of only theidentity
permutation.
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14.

15.
16.

17.

18.

19.
20.

21.

22.

23.

24.
25.

26.
27.

GRAPH THEORY WITH APPLICATIONS

Show that the cycle index of Sg the full symmetric group of degreefiveis

1
2(S) = 3, (v2° + 10y,°y, + 20y;%y; + 15y1y,” + 30y1y, + 20y, + 24ys).

List all partition of 5 and use them to find ug, the number of unlabeled trees of six vertices.
Prove that the number of equivalence classes of functionsin RP determined by the power group

BA isN(BY) = l?fl > Z(Amy(B). Mo (B .y () where m(B) = > Sis B)

g0s

Prove that the number S, of self-complementary graphs on P pointsis S, = Z(S<? ; 0, 2, 0, 2,
...... ).

Find the number of trees with P points which are
(i) planted and labeled

(i) rooted and labeled.

Find counting series for unicyclic graphs.

In how many ways can the graphs

(i) K3 + Ky (i) K3 x K, (iii) Ky  [K;] be labeled ?
Prove that the number of partitions of n into at most m parts is the coefficient of X" in
Z 8 — 1)

0O 1-xg

Define the numbers R, ®) by the equation R, =R, _,©+ T, , ; _; then prove that the number of
rooted trees can befound using

n . .
Mor1= 3 1T RY
i=1

Show that the cycle index of the unordered pair groups Rs (on the set of 10 unordered pair
induced by S;) is

1
2S9)= ¢, (y2™ + 10y,%y,® + 20y,y5® + 15y,%y,* + 305y, + 20y,ysye + 24ys).

Find the number of different ways of painting the four faces of a pyramid with two colors.

Prove that adigraph in which the in-degree as well as the out-degree of every vertex isone can
be decomposed into one or more vertex-digoint directed circuits.

Find the counting series for the structural isomers of saturated alcohols CH,,, . ;OH.
Find the counting series for unlabeled, simple, connected graphs with exactly one circuit.
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28.

29.

30.

31.

32.
33.

35.

36.

37.

38.
39.
40.

41.

n
Prove that the number of rooted trees satisfies theinequality T, ;< ) Ti Th-i+1. It showsthat
=1

T <£E12n—2D
n n%n—l%

Let g(x, y) = » 9p(X)Y” be the generating function for graphs and let c(x, y) be that for
p=1

connected graphs then show that
- 1 r r
gx y)=exp 3 —c(x,y).
r=1

Prove that if a set of permutation P on an object set S forms a group, the set R of all permuta
tionsinduced by P on set S x S along forms a group.

Prove that a subset A of a finite group forms a subgroup if the subset satisfies the closure
postulate.

Find the different ways of painting the six vertices of an octahedron with three colors.
Determine the number S; of self complementary graphs for P = 8 and 9, both by formula
S =2(52;0,2,0,2, ....) and by constructing them.

Prove that the configuration counting series is obtained by substituting the figure counting
seriesinto the cycle index of the configuration group

Clxy) = Z(A, C(x, y)).
Prove that the smallest non trivial graph having only the identity endomorphism has 8 points.

Let G be atriply connected planar (p, g) graph whose group has order S then show that 4—sq is

an integer and S =4q if and only if G is one of the five platonic graphs.
Find the groups of the following graphs

(i) 3K, (i) Ky +C, (i) Ky, (V) Ky 2 [Ky] (V) K, OC,
Prove that every symmetric, connected graph of odd degree is 1-transitive.
Prove that every, symmetric, connected, cubic graph is n-transitive for some m.

Prove or disprove the following eight statements. If two graphs are point symmetric (line-sym-
metric) then so are their join, product, composition and corona.

Prove that the only connected graph with group isomorphicto S, n= 3
(i) with n pointsis K,
(if) with n+ 1 pointsisK

(iii) withn + 2 pointsisK; + Ky .
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42.

43.

45,

46.

47.

GRAPH THEORY WITH APPLICATIONS

Let C(m) be the smallest number of points in a graph whose group is isomorphic to C,, Then
prove that the values of C(m) for m=n"and n prime are

()C(2=2and C(2)=2"+6wWhenr > 1.

@i C(N =n"+2nforn=3,5
@[i)C(N)=n"+nforn=7.
L et G be connected with P> 3. Then show that L(G) isprimeif and only if Gisnot K, , for
m, nz=2.
If a connected graph G has a point which is not in acycle of length four then prove that G is
prime.
If Gispoint-symmetric then provethat, if ['(G) isabelian, itisagroup of theform S, +S, +......
+ S,
Find the necessary and sufficient conditions for the point-group and line-group of agraph to be
indentical.

Let A and B be two permutation groups acting on the sets X = {xy, Xy, ...... X4 and Y respec-
tively. The exponentiation group, denoted [B]*, acts on the functions Y. For each per-
mutation o in A and each sequence of permutation B, By, ...... B4 in B there is a unique
permutation [a ; By, By, -..... Bl in [B]* such that for x; in X and fin Y*

[o; B, By - Bal T(X) = By f(ox)
Then prove that the group of the cube Q,, is[S,]* and the line-group of K., , is[S]%2.



CHAPTER

@ Coverings, Partitionsand Factorization

7.1 COVERINGS

A point and aline are said to cover each other if they are incident. A set of points which covers
all thelines of agraph Giscalled apoint cover for G, while a set of lines which coversall the pointsis
aline cover.

7.1.1. Point covering number and line covering number

The smallest number of pointsin any point cover for G is called its point covering number and
is denoted by o (G) or a,. Similarly a; (G) or a, isthe smallest number of linesin any line cover of G
and is called its line covering number.

For example. 0y (Kp)=P-1and a (Kp) =[(P+ 1)/2].

A point cover or line cover is called minimum if it contains o, (respectively a,) dements.

We observe that a point cover may be minimum without being minimum, such a set of pointsis

given by the 6 non cut pointsin Fig. 7.1(a) below. The same holds for line covers, the 6 lines incident
with the cut point serve.

Fig. 7.1.(a) The graph k,.
7.2 INDEPENDENCE
A set of pointsin G isindependent if no two of them are adjacent.

7.2.1. Point independence number

The largest number of pointsin such aset is called the point is independence number of Gandis
denoted by 3, (G) or 3.

413



414 GRAPH THEORY WITH APPLICATIONS

7.2.2. Line independence number

An independent set of lines of G has no two of itslines adjacent and the maximum cardinality of
such a set is the line independence number 3, (G) or 3;.

For the complete graph, By (Kp) =1 and B, (Kp) = [P/2].
From the above graph, [, (G) =2 and (3,(G) = 3.

7.3 VERTEX COVERING

A subset W of V iscalled avertex covering or avertex cover of G if every edgein G isincident
on at least one vertex in W.

7.3.1. Trivial vertex covering

A vertex cover of agraph is a subgraph of the graph, V it self is avetex covering of G. Thisis
known as the trivial vertex covering.

7.3.2. Minimal vertex covering

A vertex covering W of G iscalled aminimal vertex covering if no proper subset of W isavertex
covering of G.

For example. In the graph shown in Fig. 7.1(b) below, the set W = {v,, v,, Vg} is a vertex
covering.

We check that { vy, Vo}, {Vy, Va}, { Vo, g}, {Vq}, {V,}, {Vs} are not vertex coverings of the graph.
Thus, no proper subset of W is avertex covering. Hence W isaminimal vertex covering.

€, Vs
€3
€5 v
4
€4
€ v,
Fig. 7.1.(b)

7.4 EDGE COVERING

A non empty subset S of E is called an edge covering or an edge cover of G if every non isolated
vertex in G isinciedent with at least one edgein S.

7.4.1. Trivial edge covering

An edge cover of a graph is a subgraph of the graph, E itself is an edge covering of G. Thisis
known as the trivia edge covering.

7.4.2. Minimal edge covering

An edge covering S of G is called a minimal edge covering if no proper subset of Sis an edge
covering of G.

For example. InFigure7.1(b), theset S={e,, &5, &;, e} isan edge covering.
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7.5 CRITICAL POINTS AND CRITICAL LINES

If Hisasubgraph of G, then o, (H) < o, (G). In particular thisinequality holdswhenH =G — v
or H=G —xfor any point v or line x.

If ag (G—V) <0, (G) thenviscalled acritical point, if oy (G —X) <a,(G) thenxisacritica line
of G.

If vand x are critical, it follows that
0, (G—V)=0y(G—X)=ay—1.

7.6 LINE-CORE AND POINT-CORE

Theline-core C, (G) of agraph G isthe subgraph of G induced by the union of all independent
sets Y of lines (if any) such that Y| = o, (G).

For example. Consider an odd cycle Cp. Here wefind that o (Cp) = (P + 1)/2 but that 3, (Cp)
= (P-1)/2 so C; has no line-core.

V7

Fig. 7.2. A graph and itsline-core.

A minimum point cover M for agraph G with point set V issaid to be external if for each subset
M’ of M, [M'| £ |U (M")], where U (M") isthe set of all points of V —W which are adjacent to a point of
M'.
Observations
(i) A covering exists for agraph if and only if the graph has no isolated vertex.
(i) A covering of an n-vertex graph will have at least [n/2] adges.

( Exgdenotes the smallest integer not less than x)

(iii) Every pendent edge in agraph isinclude in every covering of the graph.
(iv) Every covering containsaminimal covering.
(v) If we denote the remaining edges of a graph by (G —g), the set of edges g isacovering if
and only if, for every vertex v, the degree of vertex in (G —g) < (degree of vertex vin G) — 1.

(vi) No minimal covering can contain a circuit, for we can always remove an edge from a
circuit without leaving any of the vertices in the circuit uncovered. Therefore, a minimal
covering of an n-vertex graph can contain no more than n — 1 edges.

(vi) A graph, in genera, has many minimal coverings, and they may be of different sizes (i.e,.
consisting of different numbers of edges). The number of edgesin aminimal covering of
the smallest sizeis called the covering number of the graph.
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7.7 PARTITIONS

The degrees d,, ..... dy of the points of a graph form a sequence of non-negative integers, whose
sum is of course 2¢. In number theory, to define a partition of a positive integer nasalist or unordered
sequence of positive integers whose sumisn.

For example, 4 hasfive partitions
4,3+1,2+2,2+1+1,1+1+1+1
The degrees of a graph with no isolated points determine such a partition of 2q.

2+1+1 1T+1+1+1

Fig. 7.3. The graphical partitions of 4.

The partition of agraph isthe partition of 2q as the sum of the degrees of the points 2q = Xd,.
A partition Zd; of ninto P partsis graphical if thereisagraph G whose points have degree d.. If

such a partition is graphical then certainly every d; < P—1and niseven.
7.8 1-FACTORIZATION

A factor of agraph G isaspanning subgraph of G which is not totally disconnected. We say that
G isthe sum of factors G; if it istheir line-disjoint union and such aunion is called a factorization of G.

If Gisthe sum of n-factorstheir union is called an n-factorization and G it self is n-factorable.

When G has a 1-factor, say G, it isclear that P is even and the lines of G, are point digoint. In
particular, K,, , ; cannot have a 1-factor but K,,, certainly can.

vy Vo

[ . o .\\\

Fig. 7.4. A 1-factorization of Kg.
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7.9 2-FACTORIZATION

If a graph is 2-factorable then each factor must be a union of digoint cycles. If a 2-factor is
connected, it isaspanning cycle. We saw that a complete graph is 1-factorableif and only if it has even
number of points. Since a 2-factorable graph must have al points even, the complete graphs K., are not
2-factorable. The odd complete graphs are 2-factorable and infact a stronger statement can be made.

Vi

z,:

Fig. 7.5. A 2-factorization of k.

7.10 ARBORICITY

Any graph G can be expressed as a sum of spanning forests, simply by letting each factor contain
only one of the g lines of G. A natural problem is to determine the minimum number of line-digoint
spanning forests into which G can be decomposed. This number is called the arboricity of G and is
denoted by r (G).

For example. r (K, =2andr (Ks) =3, minimal decompositions of those graphsinto spanning
forests are shown in Figure 7.6 below.
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Lo
gy =N

Fig. 7.6. Minimal decompositionsinto spanning forests.
Theorem 7.1. For any nontrivial connected graph G,

ap+ fp=P=0o+
Proof. Let Mg beany maximum independent set of points, so that [M| = 3.

Since no line joins two points of M, the remaining set of P — 3, points constitutes a point cover
for G sothat 0y < P— 3.

On the other hand, if N isaminimum point cover for G, so the set V — N, is independent.
Hence, B, = P—0a, proving the first equation.
To obtain the second equality, we begin with an independent set M, of 3, lines.

A line cover Y isthen produced by taking the union of M, and a set of lines one incident line for
each point of G not covered by any linein M.

Since M|+ |Y|<Pand |Y| = a;. It followsthat a, + 3, <P,

In order to show theinequality in the other direction, let us consider aminimum line cover N, of G.

Clearly, N, cannot contain aline both of whose endpoints are incident with linesalso in N;.

Thisimpliesthat N, is the sum of stars of G (considered as sets of lines).

If onelineis selected from each of these stars, we obtain an independent set W of lines.

Now, [N4| + |W|=Pand |[W| < B;.

Thus, O, + B, = P, completing the proof of the theorem.

Corollary If Pisan hereditary property of G, then

ao(P) + By (P) = P

Theorem 7.2. Agraph G anditsline-core C, (G) areequal if and only if G is bipartite and not

reducible.
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Theorem 7.3. The following are equivalent for any graph G :
(i) Ghasaline-core
(if) G hasan external minimum point cover.
(iii) Every minimum point cover for G is external.
Theorem 7.4. Any two adjacent critical lines of a graph lie on an odd cycle.

Coroallary (1) Every connected line-critical graph isablock in which any two adjacent lineslie
on an odd cycle.

Corallary (2) Any two critical lines of a bipartite graph are independent.

Theorem 7.5. A point v is critical in a graph G if and only if some minimum point cover
contains v.

Proof. If M isaminimum point cover for G which containsv, then M —{v} coversG —v.
Henceay (G-V) <M -{V}|=|M|-1=0,(G) -1

So that viscritical in G.

Let v beacritica point of G and consider aminimum point cover M’ for G —v.

The set M’ O {v} isapoint cover for G, and since it contains one more element than M', it is
minimum.

Theorem 7.6. For any graph G,
OpSagpanday=a'y
Theorem 7.7. If Yisaline cover of G such that there is no Y-reducing walk, then Y is a
minimum line cover.

Theorem 7.8. If G is bipartite then the number of lines in a maximum matching equals the
point covering number, that is, 3, = dj.

Theorem 7.9. Every unaugmentable matching is maximum.

Proof. Let M be unaugmentable and choose a maximum matching M’ for which |[M — M’|, the
number of lineswhich arein M but not in M' is minimum.

If this number is zero then M = M'.

Otherwise, construct atrail W of maximum length whose lines alternatein M —M' and M'.

Since M' is unaugmentable, trail W cannot begin and end with lines of M — M’ and has equally
many linesinM —M' andin M.

Now we form amaximum matching N from M' by replacing those lines of W which arein M' by
thelines of Win M—M'.

Then |[M —N| < |M —M’|, contradicting the choice of M" and completing the proof.

Theorem 7.10. Apartition 2q= ;" d, belongsto a tree if and only if each d, is positive and g
=pP-1

Theorem 7.11. Let [1= (dy, d,, ......, dp) bea partition of 2qinto P> 1 parts, d, =d, >...... =2dp.

r P
Then rrisgraphical if and only if for eachinteger r, 1L >r >P -1, Zdi >r(r—1)+ Z min{r, d;} .
=1

i=r+1
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Proof. Necessity part :

Given that Ttis a partition of 2q belonging to a graph G, teh sum of the r largest degrees can be
considered in two parts, the first being the contribution to this sum of lines joining the corresponding r
points with each other, and the second obtained from lines joining one of these r points with one of the

P
remaining P—r points. These two parts are respectively aimost r(r =) and ) min{r, d;}.

i=r+1

Sufficiency part :

The proof of the sufficiency is by induction on P. Clearly the result hold for sequences of two
parts. Assumethat it holds for sequences of P parts, and let d;, d,, ......, dp, ; be asegquence satisfying the
hypotheses of the theorem.

Let mand n be the smallest and largest integers
such that Jpeqg= o = ddl+1 = =d,
Form a new sequence of P terms by letting
A1 -1 fori=1tom-landn-1-(d, -m)ton -1

_5 disq otherwise.

If the hypothesis of the theorem hold for the new sequence e, ......, &, then by the induction
hypothesis there will be a graph with the numbers g as degrees. A graph having the given degreee
sequence d, will be formed by adding anew point of degree d, adjacent to points of degrees correspond-
ing to those terms g which were obtained by subtracting 1 from terms d, , ; as above.

Clearly P>e >€,>...... 2 &, Supposethat condition (1) does not hold and et h bethe |east value
of r for which it does not. Then

h +1
Zlq >hth-1) + p; min{h, g} (2
1= i=h+1

But the following inequalities do hold :
h+1 p+1
Z d; <hh+1)+ hszin{h+1, d;} ..(3)
=1 I=h+
h-1 p
> & <(h-1)(h-2)+ ) min{h-1e} (4
i=1 i=h
h-2 p
Zq <th-2)(h-3)+ ; min{h-2,e} ..(5)
i=1 i=h-1

Let S denote the number of values of i < h for which
q=dH1—1
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Then (3) — (5) when combined with (2) yield

d, +S<2h+ i (min{h+1,di+l}—min{h,q}) ...(6)
i=h+1

&,>2h-1)-min{h-1,¢8} + i (min{h,g} -min{h-1e}) (7
i=h+1

8,_,+t6>4h-6-min{h-2,¢,_;} —min{h-2, ¢}

+ i (min{h, g} -min{h-2,&}) -(8)
i=h+1

We note that g, + h since otherwise inequality (7) gives a contradiction.
Let a, b and c denote the number of valuesof i > h for which g > h, e = h and g < h respectively.
Furthermore, let &, b’ and ¢’ denote the numbers of these for which ¢ = d,,; — 1. Then

d=s+a+b+c ..(9)
The inequalitites (6) — (8) now become
d,+s<2h+a+b +c ...(10)
g,2h+a+b ..(12)
p
€1 te22n—1+ Z (min{h, g} -min{h-2,&}) -(12)
i=h+1

There are now several cases to consider.

Case (i) ¢ =0. Since d; = g,. We have from (11)
h+a+b<d,.

But a combination of (9) and (10) gives
20, <2h+a+a +20

which is a contradiction.

Case (i) ¢ >0anddy, ; > h. This means that
d,,=¢ +1wheneverd,  ,>h.

Thereforesince d,, . ; > h, s=hand a= a'’. But the inequalities (10) and (9) imply that
d,+h<2h+a +b +c =d;+ h, acontradiction.

Case (iii) ¢ >1andd,, ; = h. Under these circumstances
g,=handa=b=0, Sod; =s+ c'. Furthermore,

Sincee,=d,,, 8 =h-1foratleast c' valuesof i > h.

Hence inequality (12) implies
g_,2h-1+c>h

Sothate,_; =d,—1.

Therefores=h-1andd; =h-1+c <¢g,_; <d, acontradiction.
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Case (iv) ¢ =1andd,,;=h.Againe,=h,a=b=0,andd; =s+cC.
Sinces<h-1,d; =h. Butthisimpliess=0andd; =1,sodl d =1.
Thus (1) is obviously setisfied, which is a contradiction.

Sincee, = hand d,, ; = g, we see that d,, ., ; connot be less that h.

Thus al possible cases have been considered and the proof is complete.

Theorem 7.12.  Apartition 7= (dy, d,,......, d,) of an even number into P partswith P —1 >d,
2d, >...... 2djisgraphical if and only if the modified partition.

nt=(d,-1,d3—1, ..., ddl+ 1—1 ddl+ 2 eeeny Op)
is graphical.

Proof. If Tt"isgraphical, then so is 17, since from a graph with partition 1t one can construct a
graph with partition Ttby adding anew point adjacent to points of degreesd, -1, d;—1, ......, ddl+ 1—1

Now let G be agraph with partition Tt If apoint of degreed, isadjacent to points of degreed, for
i =2tod; + 1, then the removal of this point resultsin a graph with partition 1t

Therefore we will show that from G one can get agraph with such a point. Suppose that G has no
such point. We assume that in G, Point v; has degree d,, with v, being a point of degree d, for which the
sum of the degrees of the adjacent points is maximum. Then there are points v; and v, with d; > d; such
that v,v; isaline but v,v; is not.

Therefore some point v, is adjacent to v; but not to vi. Removal of the lines v;v; and vv; and
addition of v;v; and v,v; results in another graph with partition 1tin which the sum of the degrees of the
points adjacent to v, is greater than before. Repeating this process resultsin agraph in which v, hasthe
desired property.

Corollary. (Algorithm)

A given partition Tt=(dy, dy, ....., dp) withP—1>d, > d, > ......> d, isgraphicd if and only if the
following procedure results in a partition with every summand zero.

(i) Determine the modified partition 7t asin the statement of the theorem.
(i) Reorder the terms of 11" S0 that they are non increasing and call the resulting partition .
(iii) Determine the modified partition 77" of 11, asin step (i) and the reordered partition T,
(iv) Continue the process as long as non negative summands can be obtained.
Theorem 1.13. The complete graph K,, is 1-factorable.
Proof. We need only display a partition of the set X of lines of K, into (2n — 1) 1-factors.
For this purpose we denote the points of G by

Vi, Vo, e , V,, and definefori=1, 2, ...... , 2n—1, the sets of lines
Xi={viVot O{Vi_jVisj51=12 ...un=1}
Where each of the subscriptsi —j and i + | is expressed as one of the numbers 1, 2, ....., 2n—1

modulo (2n —1).

The collection {X;} is easily seen to give an appropriate partition of X, and the sum of the
subgraphs G; induced by X; is a 1-factorization of K.

Theorem 7.14. The complete graph K, is the sum of a 1-factor and n — 1 spanning cycles.
Theorem 7.15. Every bridgeless cubic graph is the sum of a 1-factor and a 2-factor.
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Theorem 7.16. A graph is 2-factorabe if and only if it is regular of even degree.

Theorem 7.17. If a 2-connected graph has a 1-factor then it has at least two different 1-factors.

Theorem 7.18. Every regular bigraph is 1-factorable.

Theorem 7.19. The graph K,,, . 4 is the sum of n spanning cycles.

Proof. Inorder to construct n line-disioint spanning cyclesin K., , ;, first label its pointsv;, v.,
...... , Vo4 1- Then construct n paths P; on the pointsvy, Vs, ......, Vo, @TOllOWS: P =V, Vi _; Vi, g Vi g oo
Vien-1Vion- _

Thusthe j,, point of P, isv,, where k=i + (=1)) * 1 [j/2]

and all subscripts are taken astheintegers 1, 2, ...... , 2n (mod 2n)

The spanning cycle z is then constructed by joining v,,, , ; to the endpoints of P.

Theorem 7.20. Let G be a given graph and let f be a function from V into the non negative
integers. Then G has no spanning subgraph whose degree sequenceis prescribed by f if and only if there

exist digoint sets Sand T of pointssuch that ) f(u) <k, (ST + > H (W) -ds-s (VH.
uds vaT

Theorem 7.21. A graph G hasa 1-factor if and only if P is even odd there is no set Sof points
such that the number of odd components of G — Sexceeds |].

Proof. Necessity part

Let Sbe any set of points of G and let H be a component of G —S.

Inany 1-factor of G, each point of H must be paired with either another point of H or apoint of S.

But if H has no odd number of points, then at least one point of H is matched with a point of S.

Let k, be the number of odd components of G —S.

If G has a 1-factor then |S| = k;, since in a 1-factor each point of S can be matched with at most
one points of G — S and therefore can take care of at most one odd component.

Sufficiency part

Assumethat G does not have a 1-factor, and let S be a maximum set of independent lines.
Let T denote the set of linesnot in S, and let uy be a point incident only with linesin T.

A trail iscalled aternating if the lines alternately liein Sand T.

For each point v # u,, call v aO-point if there are no u, —v aternating trails, if thereis such atrail,
call van S-point if al thesetrailsterminatein aline of Sat v, aT-point if each terminatesin aline of T
at v, and an ST-point if some terminate in each type of line.

The following statements are immediate consequences :
Every point adjacent to uy isa T-or an ST-paint.

No S-or O-point is adjacent to any S or ST-point.

No T-point isjoined by aline of Sto any T-or O-point
Therefore, each S-point isjoined by aline of Sto a T-point.

Furthermore, each T-point vx isincident with aline of S since otherwise the linesin an alternat-
ing up— Vv trail could be switched between Sand T to obtain alarger independent set.
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Let H be the graph obtained by deleting the T-points. One component of H contains u,, and any
other pointsin it are ST- points.

The other components wither consist of an isolated S-point, only ST-points, or only 0-points.
We now show that any component H, of H containing ST- points has an odd number of them.

Obviously H; either contains u, or hasapoint u, joined in G to a T-point by aline of S such that
some alternating ug — U, trail contains this line and no other points of H;.

If H, contains u,, we take u; = U,.

The following argument will be used to show that within H, every point v other than u, isinci-
dent with someline of S.

Thisis accomplished by showing that thereis an alternating u, — v trail in H; which terminatesin
alineof S.

Thefirst step in doing thisis showing that if thereisan alternating u; —v trail Py, then thereisone
which terminatesin aline of S. Let P, be an alternating uy — v trail ending in aline of T, and let u'v’ be
the last line of P,, if any, which does not liein H;.

Then U’ must bea T-point and u'vV alinein S. Now go along P; from u, until a point w' of P,is
reached.

Continuing along P, in one of the two directions must give an alternating trail.

If going to V' resultsin an alternating path, then the original u, — uj trail P, followed by this new
path and the line v'u" would be a uy — uj trial terminating in aline of Sand u' could not be a T-point.

Hence there must be au; — v trail terminating in aline of S.
Now we show show that there is necessarily a u; — v aternating trail by assuming thereis not.
Then threreis a point w adjacent to v for which thereis a u,— w aternating trail.

If linewvisin Sthen the u; —w dlternating trail terminatesin aline of T, whileif wv isin T, the
preceding argument shows thereisau;, —w trail terminating in aline of S. In either case, thereisau, — v
alternating trail.

This shows that the component H, has an odd number of points, and theat if H; does not contain uj,
exactly one of its pointsisjoined to a T-point by aline of S.

Hence, with the exception of the component of H containing u, and those consisting entirely of
O-points, each is paired with exactly one T-point by alinein S. Since each of these and the component
containing U, is odd, the theorem is proved.

Theorem 7.22. Let G beanontrivial (p, g) graph and let g,, be the maximum number of linesin
any subgraph of G having n points. Then

(@) = max, (-0
max, Eh —]D .

Corollary. The arboricities of the complete graphs and bigraphs are r(kp) = Eigé and

b rs O

r(k, o = O s
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Problem Set 7.1

1

w

10.
11
12.

13.

14.
15.

16.
17.

18.
19.
20.

21.

Prove that a covering g of agraph isminimal if and only if g contains no paths of length three
or more.

Explore how the covering number of a graph G with n verticesis related to the diameter of G.
Sketch a graph with an even number of vertices that has no dimer covering.
Prove that any nontrivial connected graph G.
Opt Bo=P=0y+[y

If G is bipartite then show that the number of lines in a maximum matching equals the point
covering number, that is 3, = a,.
If Y isaline cover of G such that there is no Y-reducing walk then show that Y isa minmum
line cover.
Provethat apoint viscritical in agraph G if and only if some minimum point cover contains v.
Prove that, the following are equivalent for any graph G

(i) Ghasaline-core

(if) G has an external minimum point cover
(iii) Every minimum point cover for G is external.
Prove or disprove: A line xiscritical in agraph G if and only if there is a minimum line cover
containing X.
Prove or disprove : Every point cover of agraph G contains a minimum point cover.
If G has aclosed trail containing a point cover then show that L(G) is hamiltonian.
Calculate

(i) oy (Kp) (ii) 0lgo (K ) (iii) 0ty (K
If Gisregular of degree n then show that there is a partition of V into at most 1 + [n/2] subsets
such that each point is adjacent to at most one other point in the same subset.

Prove or disprove : Every 2-connected line-critical graph is hamiltonian.
If G isaconnected graph having aline-core ¢, (G) then show that
(i) C,(G) isaspanning subgraph of G
(i)) C,(CG)=C, (G)
(iii) The components of C,; (G) are bipartite subgraphs of G which are not reducible.
Prove that the complete graph K, is 1-factorable.

Let G be agiven graph and let f be afunction from V into the nonnegative integers, then show
that G has no spanning subgraph whose degree sequence is prescribed by f if and obly if there

exist digoint sets Sand T of pointssuchthat y f(U) <k, (S, T)+ ) H (V) ~ds-s(VH.
uds voT

Prove that every bridgeless cubic graph is the sum of a 1-factor and a 2-factor.

Prove that a graph is 2-factorable if and only if it isregular of even degree.

Prove or disprove : Let G be agraph with a 1-factor F. A line of G isin more than one 1-factor
if and only if it lies on a cycle whose lines are aternately in F.

Thegraph K 4 has aunique 1-factorization. Find the number of 1-factorizations of K5 3 and of K.
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22.

23.
24.
25.
26.
27.
28.
29.

30.
31.

32.
33.

35.

GRAPH THEORY WITH APPLICATIONS

Find the smallest connected (p, q) graph G such that
max, {q/(r — 1)} > {o/(p— 1)}
where g, is the maximum number of linesin any induced subgraph of G with r points.
If an n-connected graph G with P even is regular of degree n then show that G has a 1-factor.
Display aminimal decomposition of K, , into spanning forests.
If a 2-connected graph has a 1-factor then show that it has at least two different 1-factor.
Prove that every regular bigraph is 1-factorable.
Prove that the complete graph K, is the sum of a 1-factor and n — 1 spanning cycles.
Prove that the graph K, ; isthe sum of n spanning cycles.
Verify that {v, Vo, Vg, Vg} isaminimal vertex covering in the following graph.

v, A A v,

Fig. 7.7.

Prove that every pendant edge of a graph must belong to every edge covering of the graph.

Prove that the number of veritcesin avertex covering of agraph is greater than or equal to the
number of edges in every matching of the graph.

Disprove that a pendant vertex of a graph must belong to a vertex covering of the graph.

For the graph shown below, verify that {v;, V5, v, Vst and {V,, vy, Vs, Vg} are minimal vertex
coveringsand { e, e,, &g} and {e,, e,, ;} are minimal edge coverings.

Vi e, Vo e, V3
e7 e
€4 € ° e,
Vg € A €5 v,
Fig. 7.8.

Provethat asubset W of the vertex set V of agraph Gisavertex covering of G if and only if no
two veritces in the subgraph V — W are adjacent.

Provethat an edge covering S of agraph G isminimal if and only if S containsno pahsof length
three or more.
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Digraphs

8.1 DIGRAPH DEFINITION

A digraph D consists of afinite set V of pointsand a collection of ordered pairs of distinct points.
Any such pair (u, v) iscalled an arc or directed line and will usually be denoted uv. The arc uv goes from
utovandisincident with uand v. We say that u is adjacent to v and v is adjacent from u.

In otherwords, A directed graph or adigraph G consists of aset of verticesV = {v;, v,, ...}, aset
of edgeE={e,, &, ....} and amapping Y that maps every edge onto some ordered pair of vertices (v, vi).

For example, Fig. 8.1(a) below shows a digraph with five vertices and ten edges.

v, &7 Vs

Fig. 8.1.(a) Directed graph with 5 vertices and 10 edges.

8.2 ORIENTATION OF A GRAPH

Given agraph G, if thereisadigraph D such that G isthe underlying graph of D then D iscalled
an orientation of G.

Thedigraphsin Fig. 8.1(b) and Fig. 8.1(c) are two different orientations of the graph in Fig. 8.1(d).

D C D C

(h) (©) (d)
Fog. 8.1(b), (c), (d).

427
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8.3 UNDERLYING GRAPH

If D isadigraph, the graph obtained from D by ‘removing the arrows' from the directed edgesis
called the underlying graph of D. This graph is also called the undirected graph corresponding to D.

The underlying graph of the digraph in Fig. 8.1(b) is shown in Fig. 8.1(d).
The graph in Fig. 8.1(d) is the underlying graph of the digraph shown in Fig. 8.1(c).
Note : Every digraph has a unique underlying graph.

8.4 PARALLEL EDGES

Two (directed) edgese and € of adigraph D aresaid to be paralel if eand € havethe sameinitia
vertex and the same terminal vertex.

Inthedigraphin Fig. 8.2 the edgese; and e, are parallel edges whereasthe edgese,; and e, are not
paralel. e; and e; are parallel edges in the underlying graph.

Vg €5 Vg v,

Fig. 8.2.

8.5 INCIDENCE

In a digraph every edge has two end vertices, one vertex from which it begins and the other
vertex at which it terminates. If an edge e begins at avertex u and terminates at a vertex v, we say that e
isincident out of u and incident into v. Here, u is caled the initial vertex and v is called the terminal
vertex of e.

For example, in the digraph in Fig. 8.2, the edge e, isincident out of the vertex v, and incident
into the vertex v,, v, istheinitial vertex and v, is the terminal vertex of the edge e,. For aself-loop in a
digraph, theinitial and terminal vertices are one and the same. In Fig. 8.2 the edge e; is a self-loop with
V5 astheinitial and terminal vertex.

8.6 IN-DEGREE AND OUT-DEGREE

If visavertex of adigraph D, the number of edgesincident out of v is called the out-degree of v
and the number of edges incident into v is called the in-degree of v. The out-degree of v is denoted by
d*(v) and the in-degree of v is denoted by d(v).

For example, the out-degrees and in-degrees of the six vertices of the digraph shownin Fig. 8.2.
are as given below :
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di(v) =1, di(v)=4
d'(v) =2, di(v,)=2
d'(vp) =1, di(vy)=2
d*(v) =0, di(v)=0
d'(vs) =3, di(v5)=0
d'(Vg) =2, di(vg=1
For example, in Fig. 8.1(a)
d'(v) =3, di(v)=1
d'(v) =1, di(v,)=2
d'(vg) =4, d(vg) =0.

8.7 ISOLATED VERTEX
If visavertex of adigraph D then vis called an isolated vertex of D if d*(v) = d™(v) = 0.

8.8 PENDANT VERTEX
If visavertex of adigraph D then v is called a pendant vertex of D if d*(v) + d7(v) = 1.

8.9 SOURCE
If visavertex of adigraph D then v iscalled a source of D if d™(v) = 0.

8.10 SINK
If visavertex of adigraph D then viscalled asink of D if d*(v) = 0.
The digraph is Fig. 8.1(a) has v, as an isolated vertex and vs as a source.

In the digraph in Fig. 8.1(a), the vertices B and C are pendant vertices, Cisasourceand B isa
sink.

8.11 TYPES OF DIGRAPHS

8.11.1. Simple Digraphs

A digraphs that has no self-loop or parallel edgesis called a simple digraph.

The digraph shown in Fig. 8.3(a) is simple, but its underlying graph shown in Fig. 8.3(b) is not
simple.

Fig. 8.3.(a), (b).
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8.11.2. A Symmetric Digraphs

Digraphs that have atmost one directed edge between a pair of vertices, but are allowed to have
self-loops, are called asymmetric or antisymmetric digraph.

For example, the digraph in Fig. 8.4(a), is asymmetric.

The digraph in Fig. 8.4(b) is neither symmetric nor asymmetric.
The digraph in Fig. 8.4(b) is simple and asymmetric.

The digraph in Fig. 8.4(b) is simple but not asymmetric.

vy Vo

Fig. 8.4.(a), (b).

8.11.3. Symmetric Digraph

Digraphsin which for every edge (a, b) (i.e., from vertex ato b) there is also an edge (b, a).

For example, the digraph in Fig. 8.5 is a symmetric digraph. The digraph in Fig. 8.4(b) is not
symmetric.

This digraph has (v,, V5) as an edge but does not have (v, v,) as an edge.

Thedigraph in Fig. 8.5issimple aso. Such adigraphis called a symmetric ssmple digraph. The
digraph in Fig. 8.4(b) is simple and non-symmetric.

vy Vo

Fig. 85.

8.11.4. Isomorphic Digraphs

Isomorphic graphs were defined such that they have identical behaviour in terms of graph prop-
erties.

In otherwords, if their labels are removed, two isomorphic graphs are indistinguishable. For two
digraphs to be isomorphic not only must their corresponding undirected graphs be isomorphic, but the
directions of the corresponding edges must also agree.



DIGRAPHS 431

For example, Fig. 8.6, showstwo digraphsthat are not isomorphic, athough they are orientations
of the same undirected graph.

Fig. 8.6. Two nonisomor phic digraphs.

I'n otherwords, two digraphs D, and D, are said to beisomorphic if both of the following condi-
tions hold :

(i) The underlying graphs of D, and D,, are either identical or isomorphic.

(il) Under the one-to-one correspondence between the edges of D, and D, the directions of the
corresponding edges are preserved.

Thetwo digraphsin Fig. 8.7(a) and 8.7(b) areisomorphic, whereas the two digraphsin Fig.8.8(a)
and 8.8(b) are not isomorphic.

(a) (b) (a) (b)

Fig. 8.8. Two isomor phic digraphs. Fig. 8.8. Two non-isomor phic digraphs.
8.11.5. Balanced Digraphs
A digraph D is said to be abalanced digraph or anisograph if d*(v) = d"(v) for every vertex v of D.

8.11.6. Regular Digraph

A balanced digraphis said to be regular if every vertex has the same in-degree and out-degree as
every other vertex.
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8.11.7. Complete Digraphs

A complete undirected graph was defined as a simple graph in which every vertex isjoined to
every other vertex exactly by one edge.

8.11.8. Complete Symmetric Digraph

A complete symmetric digraph is a simple digraph in which there is exactly one edge directed
from every vertex to every other vertex (see Fig. 8.9).

8.11.9. Complete Asymmetric Digraph

A complete asymmetric digraph is an asymmetric digraph in which there is exactly one edge
between every pair of vertices (see Fig. 8.6).

Fig. 8.9. Complete Symmetric Digraph of Four Vertices.

8.12 CONNECTED DIGRAPHS

8.12.1. Strongly Connected

A digraph G issaid to be strongly connected if thereis atleast one directed path from every vertex
to every other vertex.

8.12.2. Weakly Connected

A digraph G is said to be weakly connected if its corresponding undirected graph is connected
but G is not strongly connected.

Fig. 8.6, one of the digraphsis strongly connected, and the other one is weakly connected.

8.12.3. Component and Fragments

Each maximal connected (weakly or strongly) subgraph of adigraph G is called a component of
G. But within each component of G the maximal strongly connected subgraphs are called the fragments
(or strongly connected fragments) of G.

For example, the digraph in Fig. 10, consists of two components. The component g, contains
three fragments { e;, e,}, {5, &, €, &} and {e,,}.

We observe that e;, e, and e, do not appear in any fragment of g;.



DIGRAPHS 433

€1

Fig. 8.10. Disconnected digraph with two components.

8.13 CONDENSATION

The condensation G, of adigraph G is a digraph in which each strongly connected fragment is
replaced by a vertex and all directed edges from one strongly connected component to another are
replaced by a single directed edge.

The condensation of the digraph G in Fig. 8.10 is shown in Fig. 8.11.

(e1! e2)
(e €,)

(€115 €12, €12)

(€5, €6 €7, €5)

(840)

Fig. 8.11. Condensation of Fig. 8.10.

Observations:
(i) The condensation of a strongly connected digraph is simply a vertex.
(ii) The condensation of a digraph has no directed circuit.

8.14 REACHABILITY

Given two vertices u and v of adigraph D, we say that v is reachable (or accessible) from u if
there exists atleast one directed path in D from u tov.

For example, in the digraph shown in Fig. 8.1, the vertex v, isreachable from the vertex vs, but v
is not reachable from v;.
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8.15 ORIENTABLE GRAPH

A graph G is said to be orientable if there exists a strongly connected digraph D for which G is
the underlying graph.

For example, the graph is Fig. 8.12(a) is orientable, a strongly directed digraph for which this
graph is the underlying graph is shown in Fig. 8.12(b).

Fig. 8.12.(a) (b)

8.16 ACCESSIBILITY

In adigraph avertex b is said to be accessible (or reachable) from vertex a if there is a directed
path from ato b. Clearly, adigraph G is strongly connected if and only if every vertex in G isaccessible
from every other vertex.

8.17 ARBORESCENCE
A digraph G is said to be an arborescence if
(i) G contains no circuit, neither directed nor semi circuit.
(i) In G thereis precisely one vertex v of zero in-degree.
This vertex vis called the root of the arborescence.
An arborescence is shown in Fig. 8.13 below.

r (root)
Fig. 8.13. Arborescence.

8.17.1. Spanning arborescence

A spanning tree in an n-vertex connected digraph, analogous to a spanning tree in an undirected
graph, consists of n — 1 directed edges.
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A spanning arborescence in a connected digraph is a spanning tree that is an arborescence.

For example, a spanning arborescence in Fig. 8.14, is{f, b, d}. There is a striking relationship
between a spanning arborescence and an Euler line.

Fig. 8.14. Euler Digraph.

8.18 EULER DIGRAPHS

Inadigraph G aclosed directed walk (i.e., adirected walk that starts and ends at the same vertex)
which transverses every edge of G exactly onceis called a directed Euler line.

A graph containing a directed Euler lineis called an Euler digraph.

For example, the graph in Fig. 8.15, is an Euler digraph, in whichthewalk abcdefisan
Euler line.

Fig. 8.15. Euler Digraph.

8.19 HAND SHAKING DILEMMA

Inadigraph D, the sum of the out-degree of all verticesisequal to the sum of the in-degrees of all
vertices, each sum being equal to the numbe of edgesin D.

For example, the digraph in Fig. 8.1, we note that the digraphs has 6 vertices and 9 edges and
that the sums of the out-degrees and in-degrees of its vertices are

§d+(\/i)=9;id_(\/i)=9
i=1 i=1
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8.20 DIRECTED WALK, DIRECTED PATH, DIRECTED CIRCUIT

8.20.1. Directed walk

A directed walk or adirected trail in D is afinite sequence whose terms are aternately vertices
and edges in D such that each edge is incident out of the vertex preceeding it in the sequence and
incident into the vertex following it.

A directed walk or adirected trail in D is a sequence of theformv, e, v; e, ..... g v, where v, v,,
...... v, are vertices of D in some order and e, e,, ..... g are edges of D such that the edge e hasv; _, as
theinitial vertex and v; astheterminal vertex, i =1, 2, ..... k.

A vertex can appear more than once in a directed walk but not an edge.

The vertex with which adirected walk beginsiscalleditsinitial vertex and the vertex with which
itsendsis called itsfinal or terminal vertex.

8.20.2. Directed path
An open directed walk in which no vertex is repeated is called a directed path.

8.20.3. Directed circuit

A closed directed walk in which no vertices, except the initial and final vertices are repeated is
called adirected circuit or adirected cycle.

8.20.4. Length
The number of edges present in adirected walk, directed path, directed circuit is called itslength.
For example, in the digraph shownin Fig. (8.1)
(i) viev,e,v485v5 is an open directed walk which is not a directed path, its length is 3.
(i) Veesvie1Vo6,V5 IS an open directed walk which is a directed path, its length is 3.
(iii) vyevuegvy Or VoV, isaclosed directed walk which is a directed circuit, itslength is 2.

8.21 SEMI-WALK, SEMI-PATH, SEMI-CIRCUIT

8.21.1. Semi-Walk

A semi-walk in adigraph D isawalk in the underlying graph of D, but is not a directed walk in
D. A walk in D can mean either adirected walk or a semi-walk in D.

8.21.2. Semi-path

A semi-path in adigraph D isapath in the underlying graph of D, but is not adirected pathin D.
A path in D can mean either a directed path or a semi-path in D.

8.21.3. Semi-circuit

A semi-circuit in adigraph D isacircuit in the underlying graph of D, but isnot adirected circuit
in D. A circuit in D can mean either a directed circuit or a semi-circuit in D.

For example, in the digraph in Fig. (8.1), the sequence vgev,6,V,€,V5 is a semi-path and the
sequence VsesV,e;V,€gVs IS a semi-circuit.
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8.22 TOURNAMENTS
A tournament is an oriented complete graph. All tournaments with two, three and four points are

shown in Fig. 8.16.
The first with three pointsis called a transitive triple, the second a cycle triple.

VAP

Fig. 8.16. Small tournament.

8.23 INCIDENCE MATRIX OF A DIGRAPH
The incidence matrix of adigraph withn vertices, e edges and no self-loopsin an n by n matrix
A = [a;] whose rows correspond to vertices and columns correspond to edges such that

a; = 1, if j" edgeisincident out of i" vertex
=—1,if " edgeisincident into i"" vertex
=0, if j'" edgeis not incident on i vertex.
For example, A digraph and its incidence matrix are shown in Fig. 8.17.

V3

a a b c¢c d e f g

h b

e w0 0 0 -1 0 1 0 o0
V. N

2 v, wHo 0 0 0 1 -1 1 -1
g wdo 0 0 0 0 0 0 10
4 Ac a. . _ 0
%wrl -1 -1 0 -1 0 0 o0f
VSBO 0 1 1 0 0 -1 og
v, 3 Vs V81 1 0 0 0 0 0 O0f

Fig. 8.17. Digraph and itsincidence matrix.

8.24 CIRCUIT MATRIX OF A DIGRAPH
Let G be adigraph with e edges and q circuits. An arbitrary orientation is assigned to each of the
q circuits. Then acircuit matrix B = [by] of the digraph G isa q by e matrix defined as
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b; =1, if i"" circuit includes | edge, and the orientations of the edge and circuit coincide
=—1,if i" circuit includes | edge, but the orientations of the two are opposite
=0, if i" circuit does not include the j™ edge.

For example, acircuit matrix of the digraphin Fig. 8.17 is

a b c d e f g h
Ooo 0 o0 1 O 1 1 0
0
Ho 0 1 0 -1 0 1 03
0o 0 1 -1 -1 -1 0 0O
H1 1 0 0 0 00 o

8.25 ADJACENCY MATRIX OF A DIGRAPH
Let G be adigraph with n vertices, containing no parallel edges. Then the adjacency matrix
X = [x;] of thedigraph Gisan n by n (0, 1) matrix whose element.
x; = 1, if there is an edge directed from i"" vertex to j™ vertex
=0, otherwise
For example, adigraph and its adjacency matrix are shown in Fig. 8.18.

4
@

\ A

P O O Fr, ON
P O O O Fkr W
O O O O Fr b~
Sia] M

Fig. 8.18. Digraph and its Adjacency Matrix.

Observations:
(i) X isasymmetric matrix if and only if G isasymmetric digraph.
(ii) Every non-zero element on the main diagonal represents a self-loop at the corresponding
vertex.
(iii) There is no way of showing parallel edges in X. This is why the adjacency matrix is
defined only for a digraph without parallel edges.

(iv) The sum of each row equals the out-degree of the corresponding vertex and the sum of
each column equals the in-degree of the corresponding vertex. The number of non-zero
entriesin X equals the number of edgesin G.
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(v) If X isthe adjacency matrix of adigraph G, then the transposed matrix X is the adjacency
matrix of a digraph GR obtained by reversing the direction of every edgein G.

(vi) For any sguare (0, 1)-matrix Q of order n, there exists a unique digraph G of n vertices
such that Q is the adjacency matrix of G.

Theorem 8.1. Let G be a connected graph. Then G is orientable if and only if each edge of G
is contained in at least one cycle.

Proof. The necessity of the condition is clear. To prove the sufficiency.

We choose any cycle C and direct its edges cyclicaly.

If each edge of G iscontained in C, then the proof is complete. If not, we choose any edge e that
isnot in C but which is adjacent to an edge of C.

By hypothesis, eis contained in some cycle C' whose edges we may direct cyclically, except for
those edges that have already been directed, that is, those edges of C' that also liein C.

Itisnot difficult to see that the resulting digraph is strongly connected, the situation isillustrated
in Fig. 8.19 below, with dashed lines denoting edges of C'.

Fig. 8.19.

We proceed in thisway, at each stage directing at least one new edge, until all edges are directed.
Since the digraph remains strongly connected at each stage, the result follows.

Theorem 8.2. A connected digraph is Eulerian if and only if for each vertex of D out deg(V)
= in deg(v).

n
Theorem 8.3. Let D bea strongly connected digraph with n vertices. If out deg (v) = 5 andin

n
deg (V) = 5 for each vertex v, then D is Hamiltonian.

Theorem 8.4. (i) Every non-Hamiltonian tournament is semi-Hamiltonian,

(ii) every strongly connected tournament is Hamiltonian.

Proof. (i) The statement is clearly true if the tournament has fewer than four vertices.
We prove the result by induction on the number of vertices.

Assume that every non-Hamiltonian tournament on n vertices is semi-Hamiltonian.
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Let T be a non-Hamiltonian tournament on n + 1 vertices, and let T' be the tournament on n
vertices obtained by removing from T avertex v and its incident arcs.

By the induction hypothesis, T' has a semi-Hamiltonian path v; — v, — ...... - V.
There are now three cases to consider
(1) if wyisanarcinT, then therequired pathisv — v; - V, ....... - V.

(2) ifwjyisnotanarcinT, which meansthat v,visandif thereexistsani such that w; isan arc
in T, then choosing i to be the first such, the required path is (see Fig. 8.20(a) below)

Vl—>V2—> ...... —>i_1—>V—>Vi—> ...... —>Vn.
(3) if thereisnoarcin T of the form wv;, then the required pathisv; — v, — ...... -V, - W

Fig. 8.20(a).
(if) We prove the stronger result that a strongly connected tournament T on n vertices contains
cyclesof length 3, 4, ...... n.
To show that T contains a cycle of length 3.

Letvbeany vertex of T and let W bethe set of all verticesW such that VW isanarcin T, and zbe
the set of all vertices z such that zvisan arc.

Since T isstrongly connected W and Z must both be non-empty, and there must bean arcin T of
theformwz, wherew isan W and Z isin Z (see Fig. 8.20(b) below). The required cycle of length 3is
thenv - w' - 7 - v

Fig. 8.20(b).
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It remains only to show that, if thereisacycle of length k, wherek < n, then thereis one of length
k+1.

Letv; — ... Vi - Vv, besuch that acycle.

Suppose first that there exists avertex v not containsin this cycle, such that there exist arcsin T
of the form wv; and of the form v,v.

Then there must be avertex v; such that bothv; _,;vand vy, arearcsin T. Therequired cycleisthen
12 VoV - .. - Vi - Vv, (seeFig. 8.20(c)).

Vis1

Fig. 8.20.(c)

If no vertex exists with the above-mentioned property, then set of vertices not contained in the
cycle may be divided into two disjoint sets W and Z, where W isthe set of verticesw such that wv, isan
arcfor each i, and Z isthe set of vertices z such taht zv, isan arc for each i.

Since T isstrongly connected, W and Z must both be non-empty, and there must beanarcin T of
theformw'Z, wherew isinW and Z isin Z.

Therequired cycleisthenv, - W - Z - v — ...... - Vi - V. (See Fig. 8.20(d) below).

Fig. 8.20(d).
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Theorem 8.5. Adigraphisstrong if and only if it has a spanning closed walk, it is unilateral if
and only if it has a spanning walk, and it is weak if and only if it has a spanning semi-walk.

Theorem 8.6. Aweak digraphisanin-treeif and only if exactly one point has out degree 0 and
all others have out degree 1.

Theorem 8.7. Aweak digraphisan out-treeif and only if exactly one point has indegree 0 and
all others have indegree 1.

Theorem 8.8. Every digraph with no odd cycles has a 1-basis.
Corollary. Every acylic digraph has a 1-basis.

Theorem 8.9. Every acyclic digraph has a unique point basis consisting of all points of
indegree 0.

Corollary. Every point basis of a digraph D consists of exactly one point from each of those
strong components in D which form the point basis of D*.

Theorem 8.10. An cyclic digraph D has at least one point of indegree zero.
Theorem 8.11. An acyclic digraph has at least one point of out degree zero.

Proof. Consider the last point of any maximal path in the digraph. This point can have no
points adjacent from it since otherwise there would be a cycle or the path would not be maximal.

The dual theorem followsimmediately by applying the principle of Directional Duality. In keep-
ing with the use of D' to denote the converse of digraph D.

Theorem 8.12. The following properties of a digraph D are equivalent.
(i) D isaacyclic.
(if) D* isisomorphic to D.
(iii) Every wak of D is a path.
(iv) It is possible to order the points of D so that the adjacency matrix A(D) is upper triangular.
Theorem 8.13. The following are equivalent for a weak digraph D.
(i) D isfunctional.

(i) D has exactly one cycle, the removal of whose arcs results in a digraph in which each
weak component is an in-tree with its sink in the cycle.

(iii) D has exactly one cycle z, and the removal of any arc of Z resultsin an in-tree.
Problem 8.1. Teleprinter’s Problem

How long is a longest circular (or cycle) sequence of 1's and O's such that no subsequence of r
bits appears more than once in the sequence ? Construct one such longest sequence.

Solution. Since there are 2" distinct r-tuples formed from 0 and 1, the sequence can be no longer
than 2" bits long. We shall construct a circular sequence 2" bits long with the required property that no
subsequence of r bits be repeated.

Construct a digraph G whose verticesare al (r — 1) tuplesof O'sand 1's.
Clearly, there are 2" ~* verticesin G.
Let atypica vertex be a,a, ...... o,_q1, Wherea; =0or 1.

Draw an edge directed from this vertex (a,ds, ..... 0, _) to each of two vertices (a,05 ..... 0, _;0)
and (0,03 ...... o, _41) label these directed edges a0, ...... a,_,0and a,a, ...... 0, _ 11 respectively.
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Draw two such edges directed from each of the 2" ~* vertices. A self-loop will result in each of the
two caseswhena; =0,=...=0a,_;=0o0r 1.

The resulting digraph is an Euler digraph because for each vertex the in-degree equals the out-
degree (each being equal to two). A directed Euler linein G consists of the 2" edges, each with adistinct
r-bit label. The labels of any two consecutive edges in the Euler line are of the form a0 ...... o,_q0,,
0,03.....0, 0, _; that is; ther — 1 trailing bits of thefirst edge are identical to ther — 1 leading bits of the
second edge. Thus in the sequence of 2" bits, made of the first bit of each of the edgesin the Euler line,
every possible subsequence of r bits occurs as the label of an edge, and since no two edges have the
same label, no subsequence occurs more than once. The circular arrangement is achieved by joining the
two ends of the sequence.

0 0
! 1
10 o
£y = 0011
>
e, = 0001 e,=0010 & =101
e, = 0000 e,=0101

&5 = 1100

Fig. 8.21. Euler digraph for maximum-length sequence.

For r = 4, the graph in Fig. 8.21 above, illustrates the procedure of obtaining such a maximum
length sequence one such sequence is 0000101001101111. Corresponding to the walk
©€16,65€4€5€6€7€:8:C10 €11€12€13€14815€16-

Problem 8.2. Find the in-degrees and out-degrees of the vertices of the digraphs shown in
Fig. 8.22 below. Also, verify the handshaking dilemma.

Fig. 8.22.
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Solution. The given digraph has 7 vertices and 12 edges. The out-degree of a vertex is got by
counting the number of edges that go out of the vertex and the in-degree of a vertex is got by counting
the number of edges that end at the vertex. Thus, we obtain the following data.

\ertex Out-degree In-degree
A 4 0
v, 2 1
A 2 2
vy 1 2
Vs 3 1
Vg 0 2
vy 0 4

This table gives the out-degrees and in-degrees of all vertices. We note that v, isasource and vg
and v, are sinks.

Also, check that
sum of out-degrees = sum of in-degrees
=12 = No. of edges.

Problem 8.3. Let D beadigraph with an odd number of vertices prove that if each vertex of D
has an odd out-degree then D has an odd number of vertices with odd in-degree.

Solution. Let vy, Vs, ...... v, be the n vertices of D, where n is odd. Also let m be the number of
edgesin D.
They by handshaking dilemma
df(v) + d(v) + ....... +d'(v)=m (1)
d(vy) + d(vp) + ... +d(v,)=m (2
If each vertex v; has odd out-degree, then the left hand side of (1) is a sum of n odd numbers.
Since nis odd, this sum must also be odd. Thus mis odd.

Let k be the number of vertics with odd in-degree. Then n — k number of vertices have even
in-degree. Without loss of generality, let ustake v, vs, ...... , Vi to be the vertices with odd in-degree and
Vict 1 Vics 2 wverer v, to be the vertices with even in-degree.

Then, (2) may be rewritten as

k
2, g = @

n
i=k+1
Now the second sum on the left hand side of this expression is even. Also, mis odd. Therefore,
the first sum must be odd. That is, d™(v;) + d7 (V) + ...... + d*(v,) = odd ..(4)
But, each of d7(vy), d7(v,), ..... d~(v) isodd.
Therefore, the number of termsin the left hand side of (4) must be odd, that is; kis odd.
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Theorem 8.14. A digraph G is an Eulerian digraph if and only if G is connected and is bal-
anced that is; d=(v) = d*(v) for every vertexvin G.
Theorem 8.15. An arborescence is a tree in which every vertex other than the root has an in-
degree of exactly one.
Proof. An arborescence with n vertices can have at most n — 1 edges because of condition (1).
Therefore, the sum of in-degree of al verticesin G
d(vy) + di(vp) +...... +d(v,)<n-1

Of the n terms on the left-hand side of this equation, only one is zero because of condition (2),
others must all be positive integers.

Therefore, they must all be 1's. Now since there are exactly n — 1 vertices of in-degree one and
one vertex of in-degree zero, digraph G has exactly n — 1 edges. Since G is aso circuitless, it must be
connected, and hence atree.

Example: InFig. 8.23 below, W = (bd cef g ha) isan Eulerian, starting and ending at vertex
2. The subdigraph { b, d, f} is aspanning arborescence rooted at vertex 2.

Fig. 8.23. Euler digraph.

Theorem 8.16. In a connected, balanced digraph G of n vertices and medges, let W= (e, e,
..... , &) be an Euler line which starts and ends at a vertex v (that is, vistheinitial vertex of e; and the
terminal vertex of e,). Among the medgesin Wthereare n— 1 edgesthat ‘enter’ each of n—1 vertices,
other than v, for thefirst time. The subdigraph g of these n — 1 directed edges together with the n vertices
is a spanning arborescence of G, rooted at vertex v.

Proof. Inthe subgraph g, vertex v is of in-degree zero, and every other vertex is of in-degree
one; for g includes exctly one edge going to each of the n— 1 vertices, and no edge going to v.

Moreover, the way g is defined in W, g is connected and contains n — 1 directed edges.

Therefore, g isa spanning arborescencein G and is rooted at v.

Theorem. 8.17. In an arborescence there is a directed path from the root R to every other

vertex. Conversely, a circuitless digraph G is an arborescence if there isa vertex vin G such that every
other vertex is accessible from v, and v is not accessible from any other vertex.

Proof. Inan arborescence consider a directed path P starting from the root R and continuing as
far as possible. P can end only at a pendant vertex, otherwise we get a vertex whose in-degree is two or
more, a contradiction.

Since an arborescence is connected, every vertex lies on some directed path from the root R to
each of the pendant vertices.
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Conversdly, since every vertex in G isaccessible fromv, and G hasno circuit, G isatree. Moreo-
ver, since v is not accessible from any other vertex, d™ (v) = 0.

Every other vertex is accessible from v and therefore the in-degree of each of these vertices must
be at least one.

The in-degree cannot be greater than one because there are only n — 1 edgesin G (n being the
number of verticesin G.)

Theorem 8.18. Let G bean Euler digraph and T be a spanning in-treein G, rooted at a vertex
R. Let e, be an edge in G incident out of the vertex R. Then a directed walk W = (g}, e,, ......, &) isa
directed Euler ling, if it is constructed as follows :

(i) No edgeisincluded in W more than once.

(if) In exiting a vertex the one edge belonging to T is not used until all other outgoing edges
have been traversed.

(iif) Thewalk is terminated only when a vertex is reached from which there is no edge left on
which to exit.

Proof. Thewak W must terminate at R, because all vertices must have been entered as often as
they have been left(because G is balanced).

Now suppose thereis an edge a in G that has not been included in W.

Let v be the terminal vertex of a. Since G is balanced v must also be the initial vertex of some
edge b not included in W. Edge b going out of vertex v must be in T according to rule (i). Thus omitted
edge leads to another omitted edge c in T, and so on.

Ultimately, we arrive at R, and find an outgoing edge there not included in W. This contradicts
rule (iii).

Theorem 8.19. If A(G) istheincidence matrix of a connected digraph of n vertices, the rank of
AG)=n-1

Theorem 8.20. The(i, j)" entryin X" equals the number of different directed edge sequences of
r edges fromthe i vertex to the j™.

Proof. (By induction)

Thetheorem istrivially truefor r = 1.

Asthe inductive hypothesis, assume that the theorem holds for X" . The (i, j)" entry in

X' (= XL X) = i[(i, k)M entryinX" ™Y X
K=1

n (number of al directed edge sequences
- kzlof lengthr — 1 from vertex i to k).x, (1)

according to the induction hypothesis. In (1), X4 = 1 or O depending on whether or not thereis adirected
edgefromktoj. Thusaterminthe sum (1) isnon zero if and only if thereis a directed edge sequence of
length r fromi to j, whose last edgeisfrom k to j.

If theterm isnon zero, its value equals the number of such edge sequencesfromi toj viak. This
holds for every k, 1 < k< n. Therefore (1) is equal to the number of all possible directed edge sequence
fromitoj.
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Theorem 8.21. Let B and A be respectively, the circuit matrix and incidence matrix of a self-
loop-free digraph such that the columnsin B and A are arranged using the same order of edges. Then

AB'=BA"=0.
Where superscript T denotes the transposed Matrix.

Proof. Consider them" row in B and thek™ row in A. If the circuit m does not include any edge
incident on vertex k, the product of the two rows is clearly zero. If, on the other hand, vertex kisin
circuit m, there are exactly two edges (say x and y) incident on k that are also in circuit m.

This situation can occur in only four different ways, as shown in Fig. 8.24 below.

k k
/X?/\ X m y
m T T
(@) (b)
k k
ﬂ ] y
7 m ™ T m
(©) ()

Fig. 8.24: Vertex k in circuit m.

The possible entriesin row k of A and row mof B in column positions x and y are tabulated for
each of these four cases.

Case Row k Row m Dot product
column x columny column X columny Row k. Row m
0] -1 1 1 1 0
(i) 1 -1 -1 -1 0
(iii) -1 -1 1 -1 0
(iv) 1 1 -1 1 0

In each case, the dot product is zero. Therefore, the theorem.
Theorem 8.22. Thei, j entry a;™ of A" is the number of walks of length n fromv; to v;.

Corollary (1) The entries of the reachability and distance matrices can be obtained from the
powers of A asfollows:

(i) forali,r;=1andd;=0
(i) r; =1if and only if for somen, a;™ >0
(iii) d(v, v;) istheleast n(if any) such that a;™ > 0, and is « otherwise.
Corollary (2) Let v; be apoint of adigraph D. The strong component of D containing v; is
determined by the entries of 1 in theith row (or column) of the matrix R x R,
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Theorem 8.23.  The value of the cofactor of any entry in the j™ column of M. is the number of
spanning out-trees with v; as source.

P
Corollary. Inan Eulerian digraph, the number of eulerian trailsis C. _I'Il(di -1
| =

Where d; = id(v;) and c is the common value of al the cofactors of M .

Theorem 8.24. For any labeled digraph D, the value of the cofactor of any entry in thei™ row
of My isthe number of spanning in-trees with v; as sink.

Theorem 8.25. The determinant of every square submatrix of A, the incident matrix of a di-
graphis1,—1or 0.

Proof. Thetheorem can be proved directly by expanding the determinant of a square submatrix
of A.

Consider a k by k submatrix M of A.

If M has any column or row consisting of all zerosdet M is clearly zero. Also det M = 0 if every
column of M contains the two non zero entries, a* and a™ .

Vs v, a b c¢c d e f g h
h ¥y wOoo 0 0 -1 0 1 0 0Of
N 0 g

v > v v,go 0 0 0 1 -1 1 -15
w00 0 0 0 0O 0 0 O
. g 0 0
1 NC Tl -1-1 0 -1 0 0 05
vwdo o 1 1 0o 0 -1 o
< >0 0
vy d Vs vy1 1 0 O 0 0 07

(a) Digraph (b) Incidence matrix

Fig. 8.25: Digraph and itsincidence matrix.
Now if det M # 0O (i.e., M isnon singular), then the sum of entriesin each column of M cannot be
zero.
Therefore, M must have a column in which thereisasingle non zero element that either + 1 or — 1.
Let this single element bein the (i, j)™ position in M.
Thusdet M =+ 1. det M;;, where M;; is the sub matrix of M with itsi™ row and ™ column deleted.

The (k—1) by (k— 1) submatrix M;; is also non singular. Therefore it too must have atleast one
column with a single non zero entry, say, in the (p, )™ position.

Expanding det M;; about this element in the (p, )" position.

det M;; = + [determinant of anon sigular (k—2) by (k —2) submatrix of M]
Repeated application of this procedure yiledsdet M = £ 1.

Hence the theorem.
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Theorem 8.26. Let A; bethereduced incidence matrix of a connected digraph. Then the number
of spanning trees in the graph equals the value of det (A; . T;").

Proof. According to the Binet-Cauchy theorem
det (A;.A,") = sum of the products of al corresponding majors of A; and A’

Every major of A, or A" is zero unlessit corresponds to a spanning tree, in which case its value
is 1 or — 1. Since both majors of A; and A" have the same value + 1 or — 1, the product is + 1 for each
spanning tree.

Theorem 8.27. Let k(G) be the Kirchhoff matrix of a simple digraph G. Then the value of the
(p, ) cofactor of k(G) is equal to the number of arborescencesin G rooted at the vertex v,

Proof. The determinant of a square matrix isalinear function of its columns. Specificaly, if p
is asquare matrix consisting of n column vectors, each of dimension n ; that is;

P=[P, P, ... (P, +P), ... Pl
then det P det =[P, Py, ooy Py ooy P + det [P, Py, ooy PT P] (1)

In graph G suppose that vertex v; has in-degree of d;. The j'" column of k(G) can be regarded as
the sum of d; different columns, each corresponding to agraph in which v; has in-degree one. And then
(1) can be repeatedly applied. After this, splitting of columns can be carried out for each j, j # g, and det

kyq(G) can be expressed as a sum of determinants of subgraphs ; that is; det ky,(G) = ) det kq(9),
g

(2
Where g is a subgraph of G, with the following properties:
(i) Every vertex in g hasan in-degree of exactly one, except v,
(if) ghasn—1 vertices, and hence n — 1 edges
det kyy(9) = 1, if and only if g is an orborescence rooted at g,
=0, otherwise.
Thus the summation in (2) carried over al g's equals the number of arborescences rooted at v,
Theorem 8.28. In an Euler digraph the number of Euler linesis

0. M [d"(w)-1)!

Theorem 8.29. A simple digraph G of n vertices and n — 1 directed edges in an arborescence
rooted at v, if and only if the (1, 1) cofactor of k(G) is equal to 1.

Proof. Let G be an arborescence with n vertices and rooted at vertex v,. Relabel the vertices as
Vi, Vs, ..... V, SUch that vertices along every directed path from the root v, have increasing indices.

Permute the rows and columns of k(G) to conform with this relabeling.

Since thein-degree of v; equals zero, the first column contains only zeros. Other entriesin k(G) are
kj=0,i>]j,
kij ==Xl <],
k”- =1,i>1
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Then the k matrix of an arborescence rooted at v, is of the form

|]) - X12 - Xl3 - Xl4 ...... - Xln%
%) 1 - X23 - X24 ...... - X2n|:|
m 1 - X34 ...... - X3n|:|
KO=H o o 1 .. 0
o .
U U
m 0 0 0 ... 1 F

Clearly, the cofactor of the (1, 1) entry is 1.

That is, det ky; = 1.

Conversdly, let G be asimple digraph of n verticesand n— 1 edges and let the (1, 1) cofactor of
itsk matrix be equal to 1 : that is; det ky; = 1.

Since det ky; # 0, every column in ky; has at least one non zero entry.

Therefored™(v) 21, fori =2, 3, ..., n.

There are only n— 1 edges to go around.

Therefore, d™(v;) =1, fori =2, 3, ....., nand d*(v;) = 0.

Now since no vertex in G has an in-degree of more than one, if G can have any circuit at all, it has
to be a directed circuit.

Suppose that such a directed circuit exists ; which passes through vertices Vi , Vi, , ..., V
Then the sum of the columnsiiy, i, ..... i, in ky; iSzero.

Thusthese r columnsin ky, are linearly dependent.

Hence det ky; = 0, a contradiction.

Therefore, G has no circuits.

If G hasn—1 edgesand no circuits, it must be atree. Sincein thistreed™(v;) =0and d(v;) =1 for
=23, ..,N

G must be an arborescence rooted at vertex v;.

The above arguments are valid for an arborescence at any vertex v,,. Any reordering of the verti-
cesin G corresponds to identical permutations of rows and columnsin k(G). Such permutations do not
alter the value or sign of the determinant.
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Problem 8.4. \erify that the following two digraphs are isomorphic.

Vy

(a) (b)

Fig. 8.26.

Solution. Let us consider the following one-to-one correspondence between the directed edgsin
the two digraphs :

(Up Ug) o (Vy, V), (Us, Up) o (V5 V)
(Up, Ug) o (Vy, V), (Ug, Up) « (V5 Vo)
(Ug, Ug) o (Vs, Vi), (Us, Ug) = (V3, Vy)

(Up, Ug) = (Vy, Vg).
These yield the following one-to-one correspondence between the vertices in the two digraphs :
Up o V3, Uy o Vo, Ug o Vg, Uy o Vg Us o Vg
The above mentioned one-to-one correspondences between the vertices and the directed edges
establish the isomorphism between the given digraphs.
Problem 8.5. Prove that a complete symmetric digraph of n vertices contains n(n — 1) edges

n(n-1)

and a complete asymmetric digraph of n vertices contains edges.

Solution. In a complete asymmetric digraph, there is exactly one edge between every pair of
vertices.
Therefore, the number of edges in such a digraph is precisely equal to the number of pairs of

1
vertices. The number of pairs of vertices that can be chosen from n verticesis "C, = 5 nin—1).

1
Thus, a complete asymmetric digraph with n vertices has exactly 5 n(n — 1) edges.

In a complete symmetric digraph there exist two edges with opposite directions between every
pair of vertices.

1
Therefore, the number of edgesin such adigraph with n verticesis 2 x 5 nin—1) =n(n-1).
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Problem 8.6. Let D be a connected simple digraph with n vertices and m edges. Prove that
n-l<msnn-1).
Solution. Since D is connected, its underlying graph G is connected. Therefore, m>n—1.

In asimple digraph, there exists at most two edges in opposite directions between every pair of
vertices.

Therefore, the number of edges in such a digraph cannot exceed 2 x "C, = n(n — 1).
i.e, m<n(n—1). Thus n—1<m<n(n-1).

Problem 8.7.  Find the sequence of vertices and edges of the longest walk in the digraph shown
in Fig. 8.27 below :

Fig. 8.27.

Solution. We check that in the given digraph, for each vertex, the in-degree is equal to the out-
degree.

Therefore, the digraph is an Euler digraph. The longest walk in the digraph is a directed Euler
line, adirected walk which includes al the edges of the digraph.

The digraph revedls that the directed Euler line is shown below :
V1€ Vi €13 V7 €41 Vg €15 Vy €, V5 €3 V3 €V €5V € V5 €5 Vg €10 V7 €15 Vi €7 V5 €9 Vg €14 V3.
Thisisthe required sequence.

Problem 8.8. Show that the digraph shown in Fig. 8.28 below, is an Euler digraph. Indicate a
directed Euler linein it.
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Solution. By examining the given digraph, we find that
d(vy) =2=d"(vy), d(vp) =2=d"(v)
d7(vg) = 2= d"(vy), d(vy) =3=d"(vy)
d(vs) = 2=d*(vs), d(Ve) = 2= d"(Vp)
Thus, for every vertex the in-degreeis equal to the out-degree.
Therefore the digraph is an Euler digraph.
By starting at v;, we can obtain the following closed directed walk that includes al the thirteen
edges :
V1 €V, €4 Vg €15 Vp €,V € V3 € V5 €19 Vg €13V €9 V3 €5 V5 €3 V5 €3 V5 €1 Vy €7 V7
Thisisadirected Euler line in the given digraph.

Problem 8.9. Prove that a connected digraph D that does not contain a closed directed walk
must have a source and a sink.

Solution. Consider a directed walk g in D, which contains a maximum number of vertices.

Let u be theinitia vertex of g and v be the terminal vertex. Suppose v is nhot a sink. Then there
must be an edge that begins at v. Since D has no closed walk, this edge cannot end at u.

Hence it must end at some vertex V.
Consequently, there is created a directed walk ' that contains all vertices of gand Vv'.
This contradicts the maximality of g. Hence v has to be a sink. Similarly, u has to be a source.
Thus, D contains at least one sink and at least one source.
Problem 8.10. Consider the digraph D shown in Fig. 8.29 below. In this digraph find
(i) adirected walk of length 8. Is this walk a directed path ?

(if) adirected trial of length 10

(iii) adirected trial of longest length

(iv) adirected path of longest length.

Fig. 8.29.
Solution. (i) aefabcgdhisadirected walk of length 8. Thisis not a directed path, because the
vertex a appear twice.
(i) aefabcgdhgbisadirected trial (walk) of length 10.

(iii) aefabcgdhgbf isadirectedtria of length 11. Thisisthelongest possible directed tria
(walk).
(iv) abcgdhisadirected path of length 5. Thisisthe longest possible directed path.
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Problem 8.11. Show that the digraph given below is strongly connected.

Fig. 8.30.

Solution. A digraph D is strongly connected if every vertex of D is rechable from every other
vertex of D.

Let us verify wheather this condition holds for the given digraph.

The following table indicates the directed paths from each of the vertices vy, V,, Vg, Vy, Vs, Vg tO
every other vertex. The existence of these directed paths proves that the given digraph is strongly con-
nected.

v, A A Vv, Vg Vg

v, — VVVaVy AATS A VVVaVg V3V VaVsVg
v, A — AAAS AAA VoV V VoV VoV V VoV
A A V3V, — VAVAVA V3V V3VsVg
Vv, VVaVoVg ATA A — VVaVs VVaVsVg
Vs A VgV VaVsy V5V,V3 VgV, — VgVg

A VgVsV; VgVsVsVaVs VgVsVaV3 VgVsVy VeVs —

8.26. NULLITY OF A MATRIX

If Qisann by nmatrix then QX =0 hasanontria solution X # 0if and only if Q issingular, that
is; det Q =0. The set of al vectors X that satisfy QX = 0 forms a vector space called the null space of
matrix Q. The rank of the null spaceis called the nullity of Q.

Rank of Q + nullity of Q=n
When Q is not square but ak by n matrix, k< n.
Theorem 8.30. (Binet-Cauchy Theorem)

If Q and Rare k by mand m x k matrices respectively with k < m then the determinant of the
product det (QR) = the sum of the products of corresponding major determinants of Q and R.
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Proof. To evauate det (QR), let us devise and multiply two (m + K) by (m+ K) partitioned
matrices

0 QUOQ @O O QR
%) ImEH_Im Fg-g_lm %

where |, and I, areidentity matrices of order mand k respectively.

0 ON oo R
Therefore det DQ = det © 0
0Tlm RO O0-lm RO

that is, det (QR) = det SQ OS ()
0T lm RO

Let us now apply Cauchy’s expansion method to the right-hand side of equation (1), and observe
that the only non-zero minors of any order in matrix — I, are its principal minors of that order. We thus
find that the Cauchy expansion consists of these minors of order m— k multiplied by their cofactors of
order kin Q and R together.

Theorem 8.31. (Sylvester’s Law)

If Qisak by nmatrix and Ris an n by P matrix then the nullity of the product cannot exceed
the sum of the nullities of the factors, that is ;

nullity of QR < nullity of Q + nullity of R ..(1)
Proof. Since every vector x that satisfies RX = 0 must certainly satisfy QRx =0
We have nullity of QR = nullity of R>0 ..(2)

Let sbe the nullity of matrix R. Then there exists a set of slinearly independent vectors
{Xq, Xg, weu.. Xg forming abasis of the null space of R.

ThusRx, =0fori=1,2, ..., s ..(3)
Now let s+t bethe nullity of matrix QR. Then there must exist aset of t linearly independent vectors
{Xs4 10 Xs 21 woeee Xs o} SUCh that the set {Xg, Xo, oo Xg X410 Xs 4+ 20 Xs ¢}
forms a basis for the null space of matrix QR.
ThusQRx, =0, fori =1,2, ..... S, s+1,s+2 ... S+t ..(4)

In otherwords, of the s+t vectorsx, forming abasis of the null space of QR, thefirst svectorsare
sent to zero by matrix R and the remaining non-zero Rx's(i=s+1,s+ 2, ...... s+ t) are sent to zero by
matrix Q.

Vectors RXg ;. 1, RXg 4 9y vereee RX, . ; arelinearly independent ; for if
OzalRXs+1+a2RXs+2+ """" +atRXs+t

=R(alxs+1+a2Xs+2+ ''''' +atxs+t)
then vector (ay X4 1+ 8y Xg 4o F woveee + & X, 1) must be the null space of R, which is possible only if

Thuswe havefound that there are at least t linearly independent vectors which are sent to zero by
matrix Q and therefore nullity of Q > t.
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Butsince t=(s+t)—s
= nullity of QR — nullity of R, equation (1) follows.
Substituting equation, rank of Q + nullity of Q = ninto equation (1), we find that
rank of QR = rank of Q + rank of R—n ...(5)
Furthermore, in equation (5) if the matrix product QR is zero, then
rank of Q + rank of R< n.
Theorem 8.32. If Gisa (p, ) graph whose points have degrees d,, then L(G) has q points and

. 1 2
o lineswhereq = —q+ >
Proof. By the definition of line graph, L(G) has q points. The d; lines incident with a point v;

, ;O
contribute 7' to g, SO
020

oo 1
q = ZEéE: Ezd|(d| _1)
1 1
=§Zdiz _Ezdl
1
= Ezdiz_q

Theorem 8.33. Unlessm= n = 4, agraph G istheline graph of k., , if and only if
(i) G has mn points
(i) Gisregular of degreem+ n—2.
(iii) Every two non adjacent points are mutually adjacent to exactly two points

(iv) Among the adjacent pairs of points, exactly n E’;ﬂ pairs are mutually adjacent to exactly
0«0

m— 2 points, and other mD\E pairsto n— 2 points.
aia
Theorem 8.34. UnlessP = 8, agraph G istheline graph of ky if and only if
(i) Ghas DDE points,
ia
(ii) Gisregular of degree 2(P —2),

(iii) Every two non adjacent points are mutually adjacent to exactly four points,
(iv) Every two adjacent points are mutually adjacent to exactly P — 2 points.
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Theorem 8.35. Thetotal graph T(G) isisomorphic to the square of the sub-division graph SG).

Corollary (1). If visapoint of G then the degree of point vin T(G) is2degv. If x=uvisaline
of G then the degree of point x in T(G) isdeg u + deg v.

Corallary (2). If Gisa(p, g) graph whose points have degrees d,, then the total graph T(G) has
1
Pr=p+qgpointsand g; = 29 + Ede lines.

Theorem 8.36. If G isa non trivial connected graph with P points which is not a path, then
L"(G) is hamiltonian for all n >P — 3.

Theorem 8.37. For n> 1, we always havery(2, n) = 3. For all other mand n, r,;(m, n)
=(m-(n-21) + 2

Theorem 8.38. A graph G iseulerian if and only if L5(G) is hamiltonian.

Theorem 8.39. Let G and G’ be connected graphswith isomorphic line graphs. Then G and G’
are isomorphic unless one is k; and the other isky, 5.

Proof. First note that among the connected graphs with up to four points, the only two different
ones with isomorphic line graphs are kg and ky, 5.

Note further that if ¢ is an isomorphism of G and G then there is a derived isomorphism ¢, of
L(G) onto L(G").

The theorem will be demonstrated when the following stronger result is proved.

If G and G’ have more than four points then any isomorphism ¢, of L(G) and L(G’) is derived
from exactly one isomorphism of G to G".

We first show that ¢, is derived from at most one isomorphism.
Assume there are two such, @ and . We will prove that for any point v of G, @V) = (V).
There must exist two linesx = uv and y = uw or wWv.

If y = wv then the points @(v) and (V) are on both lines @;(x) and @,(y), so that since only one
point is on both these lines, @) = Y(v).

By the same argument, when y = uw, @(u) = J(u) so taht since the line ¢,(x) contains the two
points () and @(u) = Y(u), we again have @) = (V).

Therefore ¢, is derived from at most one isomorphism of Gto G'.

\We now show the existence of an isomorphism ¢ from which ¢, is derived.

Thefirst step isto show that the lines x; = uvy, X, = UV, and X3 = uv; of ak; 5 subgraph of of G
must go to the lines of ak; 5 subgraph of G' under @.

Let y be another line adjacent with at least one of the x;, which is adjacent with only one or all
three. Such aline y must exist for any graph with P > 5 and the theorem is trivia for P< 5.

If the three lines @,(x) form atriangle instead of k; 3 the @,(y) must be adjacent with precisely
two of the three.

Therefore, every k; ; must go to ak; ;.

Let s(v) denote the set of lines at v. We now show that to each vin G, thereisexactly oneVv in G'
such that S(v) goes to S(v') under @;.

Ifdegv=2 lety, andy, belinesat vand let v’ be the common point of ¢,(y) and @(y-).
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Then for eachlinexat v, v isincident with @,(X) and for each linex and v, visincident with ¢, ~(x).

If degv =1, letx=uv bethelineat v.

Then deg u = 2 and hence s(u) goesto S(u’) and @,(xX) = U'V'.

Since for every line X at Vv, the lines @, }(x') and x must have a common point, uison @~ (x)
and U ison X.

Thatis, X =@,(X) and degV' = 1. The mapping @istherefore one-to-onefromvtov' sinces(u) = s(v)
only whenu=v.

Now given v in V', thereis an incident line X'.

Denote @,~1(x') by uv. The either ¢(u) = v or @)=V S0 @ isonto.

Finally, we note that for each linex = uvin G, @,(x) = @u)@({) and for eachlinex = u'v' inG',
@, }(x) = ¢ {(u) ¢ }(v'), so that @ isan isomorphism from which g, is derived.

This complete the proof.

Theorem 8.40. A connected graph isisomorphic to its line graph if and only if it isa cycle.

Theorem 8.41. A sufficient condition for L,(G) to be hamiltonian isthat G be hamiltonian and
a necessary condition is that L(G) be hamiltonian.

Theorem 8.42. If Giseulerianthen L(G) isboth eulerian and hamiltonian. If G is hamiltonian
then L(G) is hamiltonian.

Theorem 8.43. Agraphisthelinegraph of atreeif and only if it isa connected block graphin
which each cut point is on exactly two blocks.

Proof. Suppose G =L(T), T sometree.
Then G isaso B(T) since the lines and blocks of a tree coincide.

Each cut point x of G corresponds to a bridge uv to T, and is on exactly those two blocks of G
which correspond to the stars at u and v. This proves the necessity of the condition.

Sufficient part
Let G be ablock graph is which each cutpoint is on exactly two blocks.
Since each block of ablock graph is complete, there exists a graph H such that L(H) = G.
If G=Kj wecantakeH =K 3.
If G isany other block graph, then we show that H must be atree.

Assumethat H isnot atree so that it containsacycle. If H isitself acyclethen L(H) = H, but the
only cyclewhich isablock graph is K, a case not under consideration.

Hence H must properly contain a cycle, there by implying that H has a cycle Z and a line x
adjacent to two lines of Z, but not adjacent to someliney of Z. The pointsx and y of L(H) lieon acycle
of L(H) and they are not adjacent.

This contradicts that L (H) is a block graph.

Hence H is atree and the theorem is proved.

Theorem 8.44. The following statements are equivalent :
(i) Gisalinegraph

(ii) Thelines of G can be partitioned into complete subgraphsin such a way that no point lies
in more than two of the subgraphs.
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Proof. (i) implies (ii)
Let G be the line graph of H. Withoutloss of generality we assume that H has no isolated points.

Then thelinesin the star at each point of H induce a complete subgraph of G, and every line of G liesin
exactly one such subgraph.

Since each line of H belongs to the stars of exactly to points of H, no points of G isin more than
two of these complete subgraphs.

(i) implies (i)
Given adecomposition of thelinesof agraph G into completesubgraphsS,, S,, ......, S, satisfaying
(i), we indicate the construction of a graph H whose line graph is G.

The points of H correspond to the set S of subgraphs of the decomposition together with the set
U of points of G belonging to only one of the subgraphs S.

Thus S O U isthe set of points of H and two of these points are adjacent whenever they have a
non empty intersection ; that is ; H is the intersection graph Q (S O U).

Theorem 8.45. Every tournament has a spanning path.
Proof. The proof is by induction on the number of points.
Every tournament with 2, 3, or 4 points has a spanning path, by inspection.

Assume the result istrue for al tournament with n points, and consider atournament T withn + 1
points.

Let v, beany point of T. Then T — v, isatournament with n points, so it hasaspanning path P, say

Either arc Vv, or arc vyvyisin T. If Vv, isin T, then vgv,V, ..... V, is a spanning path of T.

If vivpisin T, let v, be thefirst point of P for which thearc vyv; isin T, if any.

Then v _,Vpisin T, sothat vy, ..... Vi VgV ..... V, iS @ spanning peth.

If no such paint v; exists, then v,V ...... v,y iS a spanning path. In any case, we have shown that
T has a spanning path, completing the proof.

Theorem 8.46. The distance from a point with maximum score to any other pointis 1 or 2.
Theorem 8.47. The number of transitive triplesin tournament with score sequence (S;, S,, ...,

Syis Zw.

Corollary. The maximum number of cycle triples among all tournaments with P pointsis

Op3 —
E%D if Pisodd,
(RI= 0,
— 4P if Piseven.
H 24

Theorem 8.48. Every strong tournament with P points has a cycle of lengthn, for n= 3,4, .... P.
Proof. This proof is aso by induction, but on the length of cycles.
If atournament T is strong, then it must have a cycle triple.
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Assumethat T hasacycleZ = vV, ...... vv, of lengthn<P.
We will show that it has acycle of length n + 1.

There are two cases : either there isa point u not in Z both adjacent to and adjacent from points
of Z, or thereis no such point.

Case (i) Assumethereisapoint u not in Z and points v and win Z such that arcs uv and wu are
in T. Without loss of generality, we assume that arc v,uisin T.

Let v, bethefirst point, going around Z from v, for which arcuv; isin T. Thenv; _; uisin T, and
ViVs oo Vi_q W, ... Vv isacycleof length n + 1.

Case (ii) Thereis no such point u asin case (i). Hence, all points of T which are not in Z are
partitioned into the two subsets U and W, where U isthe set of all points adjacent to every point of Z and
W isthe set adjacent from every point of Z.

Clearly, these sets are digoint, and neither set is empty since otherwise T would not be strong.
Furthermore, there are points u in U and win W such that arc wu isin T.

Therefore uv,V; ..... v,,_; wuisacycleof length, n+ 1in T.

Hence, thereis acycle of length n + 1, completing the proof.

Corollary. A tournament is strong if and only if it has a spanning cycle.

Problem Set 8.1

P
1. Provethat every digraph in whichidv, odv > — for al pointsv is hamiltonian.

2. Provethat the line digraph L(D) of aweak digraph D isisomorphic to D if and only if D or D'
is functional.

3. Provethat the number of Eulerian trails of adigraph D equals the number of hamiltonian cycles
of L(D).
4. Prove that, every orientation of an n-chromatic graph G contains a path of length n—1.
5. Let D beaprimitive digraph
(i) If nisthe smallest integer such that A™> O then show that n< (P—1)? + 1.

(ii) 1f n hasthe maximum possible value (P—1)? + 1, then show that there exists a permutation
matrix P such that PAP~* has the form [&;] wherea;; = 1wheneverj=i+1landa, ;=1
but &; = O otherwise.

6. Let A be the adjacency matrix of the line digraph of a complete symmetric digraph then show
that A2+ A hasall entries 1.

7. Provethat, there exists adigraph with outdegree sequence (S;, S,, ...... Sp) whereP-12S, =S,
> ... > S, and indegree sequence (ty, ty, ..... t,) where every t; > P—1if and only if S = 2,

K K P
and for eachinteger k<P, » § <) min{k-1t}+ > min{k,t},
S &

i=k+1

8. Provethat the determinant of every sguare submatrix of A, the incidence matrix of adigraph 1,
—1lorO.
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9.

10.

11

12.
13.

14.

15.

16.
17.

18.

19.

20.
21.

22.
23.

24.

25.

26.

27.

Let B and A be respectively, the circuit matrix and incidence matrix of a self-loop free digraph
such that the columnsin B and A are arranged using the same order of edges. Then show that
A.B"=B.AT=0.

Prove that asimple digraph G of n vertices and n — 1 directed edges is an arborescence rooted
at v, if and only if the (1, 1) cofactor of k(G) is equal to 1.

Let k(G) be the Kirchhoff matrix of asimple digraph G. Then prove that the value of the (g, )
cofactor of k(G) is equal to the number of arborescencesin G rooted at the vertex v,

Prove that, every complete tournament has a directed Hamiltonian path.

Prove that, adigraph G isacyclic if and only if its vertices can be ordered such that the adja-
cency matrix X isan upper or lower triangular matrix.

Prove that, every acyclic digraph G has at |east one vertex with zero in-degree and at least one
vertex with zero out-degree.

Prove that, digraph G is acyclic if and only if det (I — X) is not equal to zero. Where | is the
identity matrix of the same size as X.

Prove that every edge in a digraph belongs either to a directed circuit or a directed cut-set.

Prove that in any digraph the sum of the in-degrees of all verticesis equal to the sum of their
out-degrees, and this sum is equal to the number of edges in the digraph.

Prove that every Euler digraph (without isolated vertices) is strongly connected. Also show by
constructing a counter example, that the converse is not true.

Prove that an n-vertex digraph is strongly connected if and only if the matrix M, defined by
M =X+ X2+ X3+ ...... + X", has no zero entry, x is the adjacency matrix.

Prove that the number of directed Euler linesin GD(r) is 2%~ " .

Provethat an acyclic digraph G of n vertices has aunique directed Hamiltonian path if and only
n(n-1

—

Prove that for every n = 3 these exists at least one acyclic complete tournament of n vertices.
Prove that a digraph G is acyclic if and only if every element on the principa diagonal of its
reachability or accessibility matrix R(G) is zero.

If E| G |isthe number of Euler linesin an n-vertex Euler digraph G, show that 2"~ . E| G |is
the number of Euler linein L(G).

Show that if R isthe reachability matrix of adigraph G the value of thei™ entry in the principal
diagona R? gives the number of verticesincluded in the strongly connected fragment contain-
ing the i™" vertex.

Prove that any acyclic digraph G is an arborescence if and only if thereisavertex vin G such
that every vertex is accessible from v.

Let t(x) and s(X) be the generating functions for tournaments and strong tournaments, respec-

t(x)
1+t(x)

if the number of non zero elementsin R(G) is

tively, then prove that S(x) =
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28.

29.

30.

31.
32.

33.

35.

GRAPH THEORY WITH APPLICATIONS

Prove that, A graph is isomorphic to the point-group of some tournament if and only if it has
odd order.

Prove that, the maximum number of strong subtournamentswith 4 pointsin any P point tourna-
1
mentist(P, 4) = > P-3)t (P 3).

Prove that, the number of cycles of length 4 in any P point tournament is equal to the number of
strong subtournament with 4 points.

Prove that the complement D and the converse D' both have the same group as D.

Let R(G) be the reachability matrix of adigraph G and let the verticesin G be the ordered such
that the sums of the rowsin R(G) are non increasing ; that is;

n n
Z hij 2 Z g foreveryi<k

Show with this ordering of verticesin R(G) that digraph G is acyclic if and only if R(G) isan
upper triangular matrix.
Show that the following two digraphs are not isomorphic.

u, v,
i Z u, z : i j Vs 2 :
u2 u3 V2 V3
(a) (b)

Fig. 8.31.

Let D be the digraph whose vertex is
V ={vy, V,, V3, Vi, V5} and the edge set is
E ={(v1, Va), (Vo Va), (V3, Vg), (Vg Vo), (Vs Via), (Vs Vi), (Vs, V1))
Write down a diagram of D and indicate the out degrees and in-degrees of vertices.
Show that the following digraphs are not isomorphic whereas their underlying graphs are iso-

morphic.

Fig. 8.32.
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36. A directed walk in adigraph D which contains all vertices of D is called a spanning walk in D.
Find the shortest spanning walk in the digraph in Fig. 8.33 below.

2 > A

Fig. 8.33.

37. Provethat every edge in a digraph belongs to either a directed circuit or a directed cut-set.
38. Show that k, and k, 5 are orientable graphs.

39. Find a directed Eulerian line and a spanning arborescence in the digraph shown in Fig. 8.34
below.

Fig. 8.34.
40. Find the adjacency matrix for the digraph shown in Fig. 8.35 below.

Fig. 8.35.
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41. For the diagraph in Fig. 8.36 below, find all arborescence rooted at the vertex 4.

Fig. 8.36.
42. For the digraph in Fig. 8.37 below, find the incidence matrix :

Ve

AN . b
Vs, rd V4
fn J ANC
vy a Vs
Fig. 8.37.

43. Show that, in a tournament, the sum of the sgquares of in-degrees of all verticesis equal to the
sum of the sequences of out-degree.

44. Show that if atournament has a directed circuit, it has a directed triangle.
45, Prove that a tournament cannot have more than one source and more than one sink.
46. Show that the following is an Euler digraph. Find a directed Euler lineinit.

vV,

Va

Fig. 8.38.

47. Prove that, a connected digraph D is an Euler digraph if and only if d*(v) = d*(v) for every
vertex v of D.
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48. Provethat, every Euler digraph is strongly connected, but the converse is not necessarily true.

49. Prove that the condensation of a digraph D is strongly connected if and only if D is strongly
connected.

50. For the digraph shown in Fig. 8.39 below, find a path of maximum length.

Fig. 8.39.
51. Find the fragments and condensation of the digraph shown in Fig. 8.40 below.

v; Vg A

Answers 1.1

Vertices |V |V, | Vg | Vg | Vs
d* 111131
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39. Directed Euler line = e,g,e5e:6,6,65€;
Spanning arborescence : {e,, e,, €5} rooted at v,.

m 10
|
01
0 001
1 1 0 d
301 d
1 d 3 1 3 1 d 3
o ———> @ ® ® o ——=0
41. bp bA 4 Ab v
o————0 o—>—0 [ ] o
2 e 4 2 e 4 2 4
oo 0 0 -1 1 0 O
0 0 0 0 1-1 1-H
0 I
" EO O O O 0O O ]JS
ol -1 -1 0 -1 0 0 0
o o 1 1 0 0 -1 OJ
| |
51 1 0 0 0 0 0 0
46. V1€1V1€V486V,8V483V484 V€5V
47, VoV V.
Vg Vio V4 V7 Ve
51. and
v Z . Z
woow 3 v S, S, S,
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