Little Mathematics Libr*aty




First published 1977

Ha anzaunckom asvixe

© English translation, Mir Publishers, 1978



CONTENTS

Foreword

1. What Is Proof?

2. Why Is Proof a Necessity?

3. What Should Be Meant by a Proof?

4. What Propositions May Be Accepted Without Proof?

12
19






FOREWORD

One fine day at the very start of a school year 1 happened
to overhear two young girls chatting. They exchanged views on
lessons, teachers, girl-friends, made remarks about new subjects.
The elder was very much puzzled by lessons in geometry.

“Funny,” she said, “the teacher enters the classroom, draws
two equal triangles on the blackboard and next wastes the whole
lesson proving to us that they are equal. I've no idea what’s that
for.” “And how are you going to answer the lesson?’ asked the
younger. “I'll learn from the textbook although it's going to be
a hard task trying to remember where every letter goes.

The same evening [ heard that girl diligently studying geometry
sitting at the window: “To prove the point let’s superpose
triangle .A'B'C’ on triangle ABC superpose triangle A'B'C’
on triangle ABC she repeated time and again. Unfortunately,
[ do not know how well the girl did in geometry, but 1
should think the subject was not an easy one for her.

Some days later another pupil, Tolya, came to visit me, and
he, too. had misgivings about geometry. Their teacher explained
the theorem to the effect that an exterior angle of a triangle
is greater than any of the interior angles not adjacent to it and
made them learn the theorem at home. Tolya showed me a
drawing from a textbook (Fig. 1) and asked whether there was
any sense in a lengthy and complicated proof when the drawing
showed quite clearly that the exterior angle of the triangle was
obtuse and the interior angles not adjacent to it were acute.
“But an obtuse angle,” insisted Tolya, “is always greater than
any acute angle. This is clear without proof.” And I had to
explain to Tolya that the point was by no means self-evident,
and that there was every reason to insist on it being proved.

Quite recently a schoolboy showed me his test paper the
mark for which, as he would have it, had been unjustly discounted.
The problem dealt with an isosceles trapezoid with bases of 9
and 25 cm and with a side of 17 cm, it being required to
find the altitude. To solve the problem a circle had been inscribed
in the trapezoid and it was said that on the basis of the theorem
on a circumscribed quadrilaterals (the sums of the opposite sides
of a circumscribed quadrilateral are equal) one can inscribe a
circle in the trapezoid (9 + 25 = 17 + 17). Next the altitude was
identified with the diameter of the circle inscribed in the isosceles
trapezoid which is equal to the geometrical mean of its bases
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(the pupils proved that point in one of the problems solved
earlier).

The solution had the appearance of being very simple and
convincing, the teacher, however, pointed out that the reference to
the theorem on a circumscribed quadrilateral had been incorrect.
The boy was puzzled. “Isn’t it true that the sums of opposite
sides of a circumscribed quadrangle are equal? The sum of the
bases of our trapezoid is equal to the sum of its sides, so a
circle may be inscribed in it. What's wrong with that?”

Fig.

One can cite many facts of the sort | have just been tell-
ing about. The pupils often fail to understand why truths should
be proved that seem quite evident without proof. the proofs often
appearing to be excessively complicated and cumbersome. It
sometimes happens, too, that a seemingly clear and convincing
proof turns out, upon closer scrutiny, to be incorrect.

This booklet was written with the aim of helping pupils
clear up the following points:

1. What is proof?

2. What purpose does a proof serve?

3. What form should a proof take?

4. What may be accepted without proof in geometry?

§ 1. What Is Proof?

1. So let’s ask ourselves: what is proof? Suppose you are
trying to convince your opponent that the Earth has the shape of
a sphere. You tell him about the horizon widening as the observer
rises above the Earth’s surface, about round-the-world trips, about
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a disc-shaped shadow that falls from the Earth on the Moon
in times of Lunar eclipses, etc.

Each of.such statements designed to convince your opponent
is termed an arayment of the proof. What determines the strength
or the convincibility of an argument? Let’s discuss the last of
the arguments cited above. We insist that the Earth must be
round because its shadow is round. This statement is based on
the fact that people know from experience that the shadow from
all spherical bodies is round, and that, vice versa, a circular shadow
is cast by spherical bodies irrespective of the position of a body.
Thus, in this case, we first make use of the facts of our everyday
experience concerning the properties of bodies belonging to the
material world around us.

Next we draw a conclusion which in this case takes roughly
the following form. “All the bodies that irrespective of their
position cast a circular shadow are spherical.” “At times of Lunar
eclipses the Earth always casts a circular shadow on the Moon
despite varying position it occupies relative to it.” Hence, the
conclusion: “The Earth is spherical.”

Let’s cite an example from physics.

The English physicist Maxwell in the sixties of the last century
came to the conclusion that the velocity of propagation of
clectromagnetic oscillations through space is the same as that of
light. This led him to the hypothesis that light, too, is a form
of electromagnetic oscillations. To prove his hypothesis he should
have made certain that the identity in properties of light and
electromagnetic oscillations was not limited to the velocity of
propagation, he should have provided the necessary arguments
proving that the nature of both phenomena was the same. Such
arguments were to come from the results of polarization experiments
and several other facts which showed beyond doubt that the
nature of optical and of electromagnetic oscillations was the same.

Let’s cite, in addition, an arithmetical example. Let’s take
some odd numbers, square each of them and subtract unity from
each of the squares thus obtained, e. g.:

72 —-1=48; 112 -1=120; 52 -1 =24;
92— 1=280; 152 —-1=224

etc. Looking at the numbers obtained in this way we note that
they possess one common property, i. e. each of them can be
divided by 8 without a remainder. After trying out several other
odd numbers with identical results we should be prepared to state

2-18 9



the following hypothesis: “The square of every odd number minus
unity is an integer multiple of 8."

Since we are now dealing with any odd number we should,
in order to prove it, provide arguments which would do for
every odd number. With this in mind, let’'s remember that every
odd number is of the form 2n— 1, where n is an arbitrary
natural number. The square of an odd number minus unity may
be written in the form (2n — 1)> — 1. Opening the brackets we
obtain Qn—12 —1=4n*>—dn+1-1=4n*—4n=4n(n-1).
The expression obtained is divisible by 8 for every natural n.
Indeed, the multiplier 4 shows that the number 4n(n—1) is
divisible by 4. Moreover, n — 1 and n are two consecutive natural
numbers, one of which is perforce even. Consequently, our expression
must contain the multiplier 2 as well.

Hence, the number 4n(n — 1) is always an integer multiple of 8,
and this is what we had to prove.

These examples will help us to understand the principal ways
we take to gain knowledge about the world around us, its
objects, its phenomena and the laws that govern them. The
first. way, consists. in. carrvjng, caat. numerans. ahservations. and.
experiments with objects and phenomena and in establishing on
this_basis_.the_laws.. goyerning. them._ The._examnlgs. _cited_ ahoye . _

show that observations made it possible for people to establish

the relationship between the shape of the body and its shadow;
numerous experiments and observations confirmed the hypothesis
about the electromagnetic nature of light; lastly, experiments which
we carried out with the squares of odd numbers helped us to
find-out the property of such squares minus unity. This way — the
establishment of general conclusions from observation of numerous
specific cases — is termed induction (from the Latin word inductio —
specific cases induce us to presume the existence of general
relationships).

We take the alternative way when we are aware of some
general laws and apply this knowledge to specific cases. This
way is termed deduction (from the Latin word deductio). That

was how in the last example we applied general rules of

arithmetic to a specific problem, to the proof of the existence
of some property common to all odd numbers.

This example shows that induction and deduction cannot be
separated. The unity of induction and deduction is characteristic
of scientific thinking.

It may easily be seen that in the process of any proof we
make use of both ways. In search of arguments to prove some
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proposition we turn to experience, to observations, to facts or to
established propositions that have already been proven. On the
basis of results thus obtained we draw a conclusion as to the
validity, or falsity, of the proposition being proved.

2. Let’s, however, return to geometry. Geometry studies spatial
relationships of the material world. The term “spatial” is applied
to such properties which determine the shape, the size and the
relative position of objects. Evidently, the need of such knowledge
springs from practical requirements of mankind: people have
to measure lengths, areas and volumes to be able to design ma-
chines, to erect buildings, to build roads, canals, etc. Naturally,
geometrical knowledge was initially obtained by way of induction
from a very great number of observations and experiments.
However, as geometrical facts accumulated, it became evident
that many of them may be obtained from other facts by way
of reasoning, e. by deduction, making special experiments
unnecessary.

Thus, numerous observations and long experience convince
us that “one and only one straight line passes through any two
points™ This fact enables us to state without any further experiment
that “two different straight lines may not have more than one
point in common” This new fact is obtained by very simple
reasoning. Indeed, if we assume that two different straight lines
have two common points we shall have to conclude that two
different straight lines may pass through two points, and this
contradicts the fact established earlier.

In the course of their practical activities men established a very
great number of geometrical properties that reflect our knowledge
of the spatial relationships of the material world. Careful studies
of these properties showed that some of them may be obtained
from the others as logical conclusions. This led to the idea of
choosing from the whole lot of geometrical facts some of the
most simple and general ones that could be accepted without
proof and using them to deduce from them the rest of geometrical
properties and relationships.

This idea appealed already to the geometers of ancient Greece,
and they began to systematize geometrical facts known to them
by deducing them from comparatively few fundamental propositions.
Some 300 years B. C. Euclid of Alexandria made the most perfect
outline of the geometry of his time. The outline included selective
propositions which were accepted without proof, the so-called
axioms (the Greek word afio] means “worthy”, “trustworthy”).
Other propositions whose validity was tested by proof became
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known as theorems (from the Greek word Seopeo — to think, to
ponder).

The Euclidean geometry lived through many centuries, and
even now the teaching of geometry at school in many aspects
bears the marks of Euclid. Thus, in geometry we have comparatively
few fundamental assumptions — axioms — obtained by means of
induction and accepted without proof, the remaining geometrical
facts being deduced from these by means of deductive reasoning.
For this reason geometry is mainly a deductive science.

At present many geometers strive to reveal all the axioms
necessary to build the geometrical system, keeping their number
down to the minimum. This work has begun already in the last
century and although much has already been accomplished it
may not even now be regarded as complete.

In summing up this section we are now able to answer
the question: what is proof in geometry? As we have seen, proof
is a system of conclusions with the aid of which the validity
of the proposition being proved is deduced from axioms and
other propositions that have been proved before.

One question stil remains: what is the guarantee of the truth
of the propositions obtained by means of deductive reasoning?

The truth of a deduced conclusion stems from the fact that
in it we apply some general laws to specific cases for it is
absolutely obvious that something that is generally and always
valid will remain valid in a specific case.

If, for instance, I say that the sum of the angles of every
triangle is 180° and that ABC is a triangle there can be no
doubt that « A+ 2B+ ~ C = 180°

If you study geometry carefully you will easily find out that
that is exactly the way we reason in each case.

§ 2. Why Is Proof
a Necessity?

1. Let’s now try to answer the question: why is proof a
necessity?

The need for proof follows from one of the fundamental
laws of logic (logic is the science that deals with the laws of
correct thinking) — the law of sufficient reason. This law includes
the requirement that every statement made by us should be founded,
i. €. that it should be accompanied by sufficiently strong arguments
capable of upholding the truth of our statement, testifying to its
compliance with the facts, with reality. Such arguments may consist
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either in a reference to observation and experiment by means of
which the statement could be verified, or in a correct reasoning
made up of a system of judgements.

The argumentation of the latter type is most common in
mathematics.

Fig.

Proof of a geometrical proposition aims at establishing its
validity by means of logical deduction from facts known or
proven before.

However, still the question springs up: should one bother
about proof when the proposition to be proved is quite evident
by itself?

This was the view taken by Indian mathematicians of the
Middle Ages. They did not prove many geometrical propositions.
but instead supplied them with expressive drawing with a single
word “Look! written above. Thus, for instance, the Pythagorean
theorem appears in the book Lilawary by the Indian mathematician
Bhaskar Acharya in the following form (Fig. 2). The reader is
expected to “see” from these two drawings that the sum of the
areas of squares built on the legs of a right triangle is equal to
the area of the square built on the hypotenuse.

Should we say that there is no proof in this case? Of course.
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not. Should the reader just look at the drawing without pondering
over it he could hardly be expected to arrive at any conclusion.
The author actually presumes that the reader not only looks at
the drawing, but thinks about it as well. The reader should
understand that he has equal squares with equal areas before him.
The first square is made up of four equal right-angled triangles
and a square built on the hypotenuse and the second, of four
identical right triangles and of two squares built on the legs.
It remains to be realized that if we subtract equal quantities
(the areas of four right-angled triangles) from equal quantities (the
areas of two large equal squares) we shall obtain equal areas:
the square built on the hypotenuse in the tirst instance and the two
squares built on the legs in the second.

Still, however, aren’t there theorems in geometry so obvious
that no proof whatever is needed?

It is appropriate here to remark that an exact science cannot
bear systematic recourse to the obvious for the concept of the
obvious is very vague and unstable: what one person accepts
as obvious, another may have very much in doubt. One
should only recall the discrepancies in the testimonies of the
eyewitnesses and the fact that it is sometimes very hard to
arrive at the truth on the basis of such testimony.

An interesting geometrical example of a case when a seemingly
obvious fact may be misleading may be cited. Here it is: I take
a sheet of paper and draw on it a continuous closed line; next
1 take a pair of scissors and make a cut along this line. The
question is: what will happen to the sheet of paper after the
ends of the strip are stuck together? Presumably most of you will
answer unhesitatingly: the sheet will be cut in two separate parts.
This answer may, however, happen to be wrong. Let's make the
following experiment: take a paper strip and paste its ends together
to make a ring after giving it half a twist. We shall obtain the
so-called Mdbius strip (Fig. 3). (Mobius was a German mathematician
who studied surfaces of that kind.) Should we now cut this strip
along a closed line at approximately equal distances from both
fringes the strip would not be cut in two separate parts — we
should still have one strip. Facts of this sort make us think
twice before relying on “obvious™ considerations.

2, Let’s discuss this point in more detail. Let’s take for the
first example the case of the schoolgirl mentioned above. The
girl was puzzled when she saw the teacher draw two equal
triangles and then heard her proving the seemingly obvious fact
of their equality. Things actually took a quite different turn:
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the teacher did by no means draw two equal triangles, but, having
drawn the triangle ABC (Fig. 4), said that the second triangle
A'B'C’ was built so that A'B'=AB, BC' =BC and - B= B
and that we do not know whether ~ 4 and 2 4', 2 C and 2 C
and the sides A'C’ and AC are equal (for she did not build the
angles 2 A’ and 2 C' to be equal to the angles ~ 4 and 2 C,
respectively, and she did not make the side A’C’ equal to the side AC).

C

Fig. §

Thus, in this case it is up to us to deduce the equality of
the triangles, i. e. the equality of all their elements, from the
conditions A'B' = AB; B'C' = BC and « B’ = « B, and this requires
some consideration, i. e. requires proof.

It may easily be shown, too, that the equality of triangles
based on the equality of three pairs of their respective elements
is not at all so “obvious” as would appear at first glance.
Let’s modify the conditions of the first theorem: let two sides
of one triangle be equal to two respective sides of another, let
the angles be equal, too, though not the angles between these
sides, but those lying opposite one of the equal sides, say,
BC and B'C’' Let’s write this condition for A ABC and A A'B'C":
A'B'= AB,B'C’' = BCand 2 A' = « A. Whatis to be said about these
triangles? By analogy with the first instance of equality of two
triangles we could expect these triangles to be equal, too, but
Fig. 5 convinces us that the triangles ABC and A'B'C’ drawn
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in it are by no means equal although th i .
WB —AB BC _BC and 2 A' = ooq, Y S2USIY the conditions
Examples of this sort tend to make us very careful in our
deliberations and show with sufficient clarity that only a correct
proof can guarantee the validity of the propositions being advanced.
3. Consider now a second theorem, the theorem on the
exterior angle of a triangle which puzzled Tolya. Indeed, the
drawing contained in the approved textbook shows a triangle
whose exterior angle is obtuse and the interior angles not adjacent
to it are acute, what can easily be judged without any measurement.
But does it follow from this that the theorem requires no proof? Of

c

Fig. 6

course, not. For the theorem deals not only with the triangle
drawn in the book, or, for that matter, on paper, on the
blackboard, etc. but with any triangle whose shape may be quite
unlike that shown in the textbook.

Let’s imagine, for instance, that the point A moves away from
the point C along a straight line. We shall then obtain the
triangle ABC of the form shown in Fig. 6 where the angle at
the point B will be obtuse, too. Should the point 4 move some
ten metres away from the point C we would be unable to
detect the difference between the interior and exterior angles with
the aid of our school protractor. And should the point 4 move
away from the point C by the distance, say, equal to that from
the Earth to the Sun, one could say with absolute certainty that
none of the existing instruments for measuring angles would be
capable of detecting the difference between these angles. It follows
that in the case of this theorem, too, we cannot say that it is
“obvious” A rigorous proof of this theorem, however, does not
depend on the specific shape of the triangle shown in the drawing
and demonstrates that the theorem about the exterior angle of a
triangle is valid for all triangles without exception, this not being
dependent on the relative length of its sides. Therefore, even in
cases when the difference between the interior and exterior angles

so small as to defy detection with the aid of our instrumenis

still are sure that it exists. This is because we have proved
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that always, in all cases, the exterior angle of a triangle is greater
than any interior angle not adjacent to it.

In this connection it is appropriate to look at the part
played by the drawing in the proof of a geometrical theorem.
One should keep in mind that the drawing is but an auxiliary
device in the proof of the theorem, that it is only an example,
only a specific case from a whole class of geometrical figures for
which the theorem is being proved. For this reason it is very
important to be able to distinguish the general and stable prop-
erties of the figure shown in the drawing from the specific
and casual ones. For instance, the fact that the drawing in the
approved textbook accompanying the theorem about the exterior
angle of a triangle shows an obtuse exterior angle and acute
interior angles is a mere coincidence. Obviously, it is not permissible
to base the proof of a property common to all triangles on such
casual facts.

An essential characteristic of a geometrical proof that in a
great degree determines its necessity is the one that enables it to be
used to establish general properties of spatial figures. If the
inference was correct and was based on correct initial propositions,
we may rest assured that the proposition we have proven is
valid. Just because of this we are contident that every geometrical
theorem, for instance, the Pythagorean theorem, is valid for a
triangle of arbitrary size with the length of its sides varying from
several millimetres to millions of kilometres.

4. There is, however, one more extremely important reason
for the necessity of proof. It boils down to the fact that
geometry is not a casual agglomeration of facts describing the
spatial properties of bodies, but a scientific system built in
accordance with rigorous laws. Within this system every theorem
is structurally related to the totality of propositions established
rnpeviausly, aod. this, relatiooshin, is. heawght, tou thae susface. hy,
means of proof. For example, the proof of the well-known
theorem on the sum of the interior angles of a triangle being
equal to 180° is based on the properties of parallel lines and
this points to a relationship existing between the theory of
parallel lines and the properties of the sums of interior angles
of polygons. In the same way the theory of similarity of figures
as a whole is based upon the properties of parallel lines.

Thus, every geometrical theorem is connected with theorems
proven before by a veritable system of reasonings, the same
being true of the connections existing between the latter and
the theorems proven still earlier and so on, the network of such
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reasonings. continuing down to the fundamental definitions and
axioms that make up the corner-stones of the whole geometrical
structure. This system of connections may be easily followed if
one takes any geometrical theorem and considers all the propositions
it is based on.

Summing up we may state the case for the necessity of
proof as follows:

(a) In geometry only a few basic propositions — axioms — are
accepted without proof. Other propositions — theorems — are subject
to proof on the basis of these axioms with the aid of a set of
judgements. The validity of the axioms themselves is guaranteed
by the fact that they, as well as theorems based on them, have
been verified by repeated observation and long-standing experience.

(b) The procedure of proof satisfies the requirement of one of
the fundamental laws of human thinking — the law of sufficient
reason that points to the necessity of rigorous argumentation to
confirm the truth of our statements.

(c) A proof correctly constructed can be based only on
propositions previously proved, no references to obvious fact being
permitted.*

(d) Proof is also necessary to establish the general character
of the proposition being proved, i.e. its applicability to all
specific cases.

(e) Lastly, proofs help to line up geometrical facts into an
elegant system of scientific knowledge, in which all interrelations
between various properties of spatial forms are made tangible.

§ 3. What Should Be Meant
by a Proof?

1. Let's turn now to the following question: what conditions
should a proof satisfy for us to call it a correct one, i.e. one
able to guarantee true conclusions from true assumptions? First
of all note that every proof is made up of a series of judgements,
therefore the validity, or falsity, of a proof depends on whether
the corresponding judgements are correct, or erroneous.

As we have seen, deductive reasoning consists in the application
of some general law to a specific case. To avoid an error in

* Many propositions of science previously considered unassailable
because of their obvious character in due time turned out to be false.
Every proposition of each science should be the object of rigorous proof.
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the inference one should be aware of certain patterns with the
aid of which the relations between all sorts of concepts, including
those of geometry, are expressed. Let’s show this with the aid
of an example. Suppose we obtain the following inference: (1) The
diagonals of all rectangles are equal. (2) All squares are rectangles.
(3) Conclusion: the diagonals of all squares are equal.

What do we have in this case? The first proposition establishes
some general law stating that all rectangles, i.e. a whole class
of geometrical figures termed rectangles, belong to a class of
quadrilaterals the diagonals of which are equal. The second

P

Fig. 7

proposition states that the entire class of squares is a part of the
class of rectangles. Hence, we have every right to conclude that
the entire class of squares is a part of the class of quadrilaterals
having equal diagonals. Let’s express this conclusion in a gene-
ralized form. Let's denote the widest class (quadrilaterals with
equal diagonals) by the letter P, the intermediate class (rectangles)
by the letter M, the smallest class (squares) by the letter S.

Then schematically our inference will take the following form:

(1) All M are P.

(2) All S are M.

(3) Conclusion: all § are P.
This relationship may easily be depicted graphically. Let’s depict
the largest class P by a large circle (Fig. 7). The class M will
be depicted by a smaller circle lying entirely inside the first.
Lastly, we shall depict the class S by the smallest circle placed
inside the second circle. Obviously, with the circles placed as
shown, the circle S will lie entirely inside the circle P.

20



This method of depicting the relationships between concepts,
by the way, was proposed by the great mathematician Leonard
Euler, Member of the St. Petersburg Academy of Sciences
(1707-1783).

Such a pattern may be used to express other forms of judgement,
as well. Consider now another inference that leads to a negative
conclusion:

(1) All quadrilaterals whose sum of opposite angles is not
equal to 180° cannot be inscribed in a circle.

Fig. 8

(2) The sum of opposite angles of an oblique parallelogram
is not equal to 180°

(3) Conclusion: an oblique parallelogram cannot be inscribed
in a circle. Let’s denote the class of quadrilaterals which cannot
be inscribed in a circle by the letter P, the class of quadrilaterals
whose sum of opposite angles is not equal to 180° by the letter M,
the class of oblique parallelograms by the letter S. Then we
shall find that our inference follows this pattern:

(1) None of the M’s is P

(2) All § are M.

(3) Conclusion: none of the S’s is P

This relationship, too, may be made quite visible with the aid
of the Euler circles (Fig. 8).

The overwhelming majority of deductive inferences in geometry
follows one or the other pattern.

2. Such depiction of relationships between geometrical concepts
facilitates understanding of the structure of every judgement and
the detection of an error in incorrect judgements.
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By way of an example let’s consider the reasoning of the pupil
mentioned above which the teacher branded as erroneous. He obtained
his inference in the following way:

(1) The sums of opposite sides of all circumscribed quadrilaterals
are equal.

(2) The sums of opposite sides of the trapezoid under consideration
are equal.

(3) Conclusion: the said trapezoid can be circumscribed about a
circle.

Denoting the class of circumscribed quadrilaterals by P, the
class of quadrilaterals having equal sums of opposite sides by M

Fig. 9

and the class of trapezoids having the sum of bases equal to that
of the sides by S we shall bring our inference in line with the following
pattern:

(1) All P are M.

(2) All S are M.

(3) The conclusion that all S are P is wrong for using the
Euler circles to depict the relationships between the classes (Fig. 9)
we see that P and S lie inside M, but we are unable to draw
any conclusion about the relationship between S and P

To make the error in the conclusion obtained above still
more apparent let’s cite as an example a quite similar inference:

(1) The sum of all adjacent angles is 180°

(2) The sum of two given angles is 180°

(3) Conclusion: therefore the given angles are adjacent. This

of course, an erroneous conclusion for the sum of the
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given angles may be 180° but they need not be adjacent (for
instance, the opposite angles of an inscribed quadrilateral). How
do such errors come about? The clue is that people making use
of such reasoning refer to the direct theorem instead of to the
converse of it. In the example with the circumscribed quadrilateral
use has been made of the theorem stating that the sums of
opposite sides of a circumscribed quadrilateral are aqual. However,
the approved textbook does not contain the proof of the converse
of that theorem to the effect that a circle can be inscribed in any
quadrilateral with equal sums of opposite sides although such
a proof is possible and will be presented below.

Should the theorem have been proved the correct judgement
should follow the pattern:

(1) A circle can be inscribed in every quadrilateral with equal
sums of opposite sides.

(2) The sum of the bases of the given trapezoid is equal to that
of the sides.

(3) Conclusion: therefore, a circle can be inscribed in the given
trapezoid. Naturally, this conclusion is quite correct for it has
been constructed along the pattern shown in Fig. 6.

(1) All M are P

(2) All S are M.

(3) Conclusion: all S are P.

Thus, the mistake of the pupil was that he relied on the
direct theorem instead of relying on the converse of it.

3. Let’s prove this important converse theorem.

Theorem. A circle can be inscribed in every quadrilateral with
equal sums of the opposite sides.

Note, to begin with, that if a circle can be inscribed in a
quadrilateral, its centre will be equidistant from all its sides.
Since the bisector is the locus of points that are equidistant from
the sides of a quadrilateral the centre of the inscribed circle
will lie on the bisector of each interior angle. Hence the centre
of the inscribed circle is the point of intersection of the four
bisectors of the interior angles of the quadrilateral.

Next, if at least three bisectors intersect at the same point,
the fourth bisector will pass through that point, as well, and the
said point is equidistant from all the four sides and is the centre of
the inscribed circle. This can be proved by means of the same
considerations that were used to prove the theorem on the
existence of a circle inscribed in a triangle and we therefore
leave it to the reader to prove it himself.

Now we shall turn to the main part of the proof. Suppose
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we have a quadrilateral ABCD(Fig. 10) for which the following relation
holds:
AB + CD = BC + AD (1)

First of all we exclude the case when the given quadrangle
turns out to be a rhombus, for rhombus’s diagonals are the
bisectors of its interior angles and because of this the point of
their intersection is the centre of the inscribed circle, i.e. it is
always possible to inscribe a circle in a rhombus. Therefore,
let’s suppose that two adjacent sides of our quadrangle are

Fig. 10

unequal. Let, for instance, 4B > BC. Then, as the result of equation
(1) we shall have: CD < AD. Marking off the segment BE = BC
on AB we obtain an isosceles triangle BCE. Marking off the segment
DF =CD on AD we obtain an isosceles triangle CDF Let's
prove that A AEF is isosceles, too. Indeed, let’s transfer BC in
equation (1) to the left and CD to the right and obtain:
AB — BC = AD — CD. But AB — BC = AE, AD — CD = AF Hence,
AE = AF and A AEF is an isosceles triangle. Now let’s draw
bisectors in three isosceles triangles thus obtained, i. e. the bisectors
of « B, D and 2« A. These three bisectors are perpendicular to the
bases CE, CF and EF and divide them in two. Hence they are
perpendiculars erected from the mid-points of the sides of triangle
CEF and must therefore intersect at one point. It follows that
three bisectors of our quadrangle intersect at one point which,
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as has been demonstrated above, is the centre of the inscribed
circle.

4. Quite frequently one comes up against the following error
in proof: instead of referring to the converse of a theorem people
refer to the direct theorem. One must be very careful to avoid this
error. For instance, when pupils are required to determine
the type of the triangle with the sides of 3, 4 and 5 units of
length one often hears that the triangle is right-angled because
the sum of the squares of two of its sides, 3% + 42, is equal to
the square of the third, 52, reference being made to the Pythagorean
theorem instead of to the converse of it. This converse theorem
states that if the sum of the squares of two sides of a triangle
is equal to the square of the third side, the triangle is right-angled.

P

Fig. 11

Although the approved textbook does contain the proof of this
theorem little attention is usually paid to it and this is the
cause of the errors mentioned above.

In this connection it would be useful to determine the
conditions under which both the direct and the converse theorems
are true. We are already acquainted with examples when both a
theorem and the converse of it hold, but one can cite as many
examples when the theorem holds and the converse of it does
not. For instance, a theorem states correctly that vertical angles are
equal while the converse of it would have to contend that all
equal angles are vertical ones, which is, of course, untrue.

To visualize the relationship between a theorem and the converse
of it we shall again resort to a schematic representation of this
relationship. If the theorem states: “All S are P” (“All pairs
of angles vertical in respect to each other are pairs of equal
ingles™). the converse of it must contain the statement: “All P are $”
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("All pairs of equal angles are pairs of angles vertical in respect
to each other™). Representing the relationship between the concepts
in the direct theorem with the aid of the Euler circles (Fig. 11)
we shall see that the fact that the class S is a part of the
class P generally enables us to contend only that “Some P are S
(“Some pairs of equal angles are pairs of angles vertical in
respect of each other”).

What are then the conditions for simultaneous validity of the
proposition “All S are P” and the proposition “All P are §"?

Fig. 12

It is quite obvious that this may happen if and only if the
classes S and P are identical (S= P). In this case the circle
denoting S will coincide with the circle denoting P (Fig. 12). For
instance, for the theorem “All isosceles triangles have equal angles
adjacent to the base” the converse: “All triangles with equal angles
at the base are isosceles triangles” holds as well. This is because
the class of isosceles triangles and the class of triangles with
equal angles at the base is one and the same class. In the same
way the class of right triangles and that of the triangles whose square
of one side is equal to the sum of squares of two other sides
coincide. Our pupil was “lucky” to solve his problem despite the
fact that he relied on the direct theorem instead of on the
converse of it.

But this proved possible only because the class of quadrilaterals
in which a circle can be inscribed coincides with the class of
quadrilaterals whose sums of opposite sides are equal. (In this
case both contentions “all P are M” and “all M are P” proved
to be true — see p. 22.)

This investigation demonstrates at the same time that the
converse of a theorem, should it prove true, is by no means an
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obvious corollarv_of the direct theorem and should alwavs be the
object of a special proof.

5. It may sometimes appear that the direct theorem and the
converse of it do not comply to the pattern “All § are P”
and “All P are §” This happens when these theorems are expressed
in the form of the so-called “conditional reasoning” which may be
schematically written in the form: “If 4 is B, C is D.” For
example: “If a quadrilateral is circumscribed about a circle, the
sums of its opposite sides will be equal.” The first part of the
sentence, “If 4 is B”, is termed the condition of the theorem, and
the second, “C is D”, is termed its conclusion. When the converse
theorem is derived from the direct one the conclusion and the condi-
tion change places. In many cases the conditional form of a theorem
is more customary than the form “All S are P” which is termed the
“categoric” form. However, it may easily be seen that the difference
is inessential and that every conditional reasoning may easily be
transformed into the categoric one, and vice versa. For example,
the theorem expressed in the conditional form “If two parallel
lines are intersected by a third line, the alternate interior angles
will be equal” may be expressed in the categoric form: “Parallel
lines intersected by a third line form equal alternate interior angles.”
Hence, our reasoning remains true of the theorems expressed in the
conditional form, as well. Here, too, the simultaneous validity
of the direct and the converse theorem is due to the fact that the
classes of the respective concepts coincide. Thus, in the example
considered above both the direct and the converse theorem hold,
since the class of “parallel lines” is identical to the class of
“the lines which, being intersected by a third line, form equal
alternate interior angles”

6. Let’s now turn to other defects of proof. Quite often the
source of the error in proof is that specific cases are made the
basis of the proof while other properties of the figure under
consideration are overlooked. That was the mistake Tolva made
in trying to prove the general theorem about the exterior angle
of every triangle while limiting his discussion to the case of the
acute triangle all the exterior angles of which are, indeed,
obtuse while all the interior ones are acute.

Let’s cite another example of a similar error in proof which
this time is much less apparent. We have presented above the
example of two unequal triangles (Fig. 4) whose two respective
sides and an angle opposite one of the sides were, nevertheless,
equal. Let’s now present “proofs” that despite established facts the
triangles satisfying the above conditions will necessarily be equal.
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Another interesting point in connection with this proof is that
it is very much like the proof of the third criterion of the
equality of triangles in the approved textbook.

So let it be given that in A ABC and A A'B'C’ (Fig. 13)
AB = A'B’, AC=A'C' and 2 C= . C To prove our point let’s
place A A'B'C’ on A ABC so that side AB coincides with A'B’
and the point C' occupies the position C” Let's connect the
points C and C” presuming that the segment CC” will intersect the
side AB between the points A and B (Fig. 13a4). The condition

C c’

|
]
A Y
) A’ B’
|
: (a)

o C" (b)

Fig. 13

stipulates that A ACC” is an isosceles triangle (AC = AC”) and
consequently £ ACC” = 2 AC"C. Since « C = « C" we find, after
subtracting equal angles from equal angles, that ~ BCC" = « BC"C,
as well, and hence A CBC” will, too, be isosceles. Therefore,
BC = BC” and consequently A ABC = A ABC" because all three of
their sides are equal. Thus, & ABC = A'B'C’

Should the segment CC” intersect the line AB outside the
segment AB, the theorem will still be valid (Fig. 13b). Indeed,
A ACC” is in this case an isosceles one, as well. and
< ACC” = 2« AC"C. But since « C = « C”, after subtracting these
angles from the angles of the previous equation we shall again
find that £ BCC" = « BC"C and that A BCC" is an isosceles one
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with BC = BC", and thus we again arrive at the third criterion
of the equality of triangles, i. e. again A ABC = A A'B'C’

It seems that we have presented a sufficiently complete proof
and exhausted all the possibilities. However, one more possibility
was overlooked, i. e. that when the segment CC” passes through the
end of the segment AB. The segment CC” in Fig. 14 passes through
the point B. It may easily be seen that in that case our reasoning
fails and the triangles may prove to be quite different, as shown
in Fig. 14.

There is another very instructive example of an error of this
sort, namely, the theorems on the lateral area of an oblique prism

A

CII

C
B
C'
A'A

Fig. 14

and on the homogeneity of a right and an oblique prism. The
first of these theorems states: “The lateral area of a prism is
equal to the product of the perimeter of the normal section and
the lateral edge.” The second theorem states: “Every prism is
homogeneous to the right prism whose base is the normal section
of the oblique prism and whose altitude is its lateral edge.”
It is, however, easily seen that both theorems have in fact been
proven only for a specific case, namely, that when the edges
of the prism are long enough to enable a normal section to be
drawn. At the same time there exists a whole class of prisms
for which it is impossible to draw a normal section which would
intersect all the lateral edges. These are extremely oblique prisms
of very small altitude (Fig. 15). In such a prism a section perpendicular
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to one of the lateral edges shall not intersect all the other edges,
and the reasoning used to prove the stated propositions becomes
inapplicable. In this case the source of the error lies in our
habit of picturing the prism as a brick of sufficiently great
height while at the same time short “table” prisms are practically
never to be seen on a blackboard, in a notebook, or in a textbook.
This example also shows how particular we must be with the
drawing we use to illustrate the proof. Every time we make
some construction we should ask ourselves: “Is this construction
possible in every case?”’ Should this question have been asked
when the above-mentioned proof of the propositions relating to an

Fig. 1S

oblique prism was conducted it would have been easy to find
an example of a prism for which it is impossible to draw a
normal section.

7. The essence of the error in the last two examples is that
the proof is effected not for the proposition to be proved, but for
some specific case relating to the peculiarities of the figure used in
the process of proof. Another example of a similar error may
be cited, this time, however, of a more subtle error and not so
apparent.

The subject will be the proof of the existence of incommensurable
segments that is usually presented in the school course of elementary
geometry. Let’s present a short reminder of the general course
of reasoning leading to this proof. To begin with, a definition of a
common unit of length of two segments is made wherein it is
established that' this unit of length is laid off a whole number
of times along the sum and the difference of the given segments.
Next, a method of finding the common unit of .length is described
of which already Euclid has been aware. The essence of that
method is that the smaller segment is laid off on the greater
one, next the first difference is laid off on the smaller segment,
the second difference on the first difference, etc. The difference that
when laid off on the preceding one leaves no difference is the
greatest common unit of length of the two segments. A further
definition states that the segments having a common unit of length
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arc termed commensurable and those that have no such unit of
length are termed incommensurable. However, the verv fact of the
existence of incommensurable segments should have been proved
by the discovery of at least one pair of such segments. The usual
example cited is that of incommensurability of the diagonal and the
side of a square. The proof is conducted on the basis of the
Euclidean method of successive laying off first the side of the square
on its diagonal, then the difference obtained on the side, etc. It
turns out in the process that the difference between the diagonal
and the side becomes the side of a new square that should be laid
off on a new diagonal, etc., and that consequently such a process
of successive laying off will never end and the greatest common
unit of length of the diagonal and the side of a square cannot
be found. Next the conclusion is drawn: therefore, a common unit
of length of the diagonal of a square and its side cannot be
found and the segments are incommensurable.

What is wrong with this conclusion? The error here lies in the
fact that the impossibility of finding a common unit of length by
the use of the Euclidean method in no way proves that such a
common unit does not exist. For should we fail to find some
object with the aid of a certain method it would not mean that
it could not be found with other means. Under no circumstances
would we be prepared to accept such a reasoning, for example:
“Electrons are not visible in any microscope, therefore they do not
exist.” No doubt, it is easy to counter reasoning of this kind by
such a remark: “There are other means and methods, besides the
microscope, that we can use to detect the existence of the electrons.”

To perfect the proof of the existence of incommensurable segments
it is necessary to begin by proving the following proposition.

If the process of searching for the greatest common unit of
length of two segments continues infinitely long such segment§
would be incommensurable.

Let’s prove this important proposition.

Let @ and b be the given segments (the lines above denote
segments, the letters without the lines denote numbers) with
a> b. Suppose we lay off successively b along a, the first difference
F, along b, etc. and obtain as a result an unlimited series of
differences: Fy, F,, 73, . . ., every preceding segment being greater than
the following. Thus, we shall have

a>b>F >t > >
Suppose the segments a and b have a common unit of length p,
and, by the property of a common unit of length, it is possible
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to lay it off a whole number of times on &, on b and on each of the
differences ry, 75, F3, Suppose this unit of length can be laid
off m times on &, n times on b, n, times on F,, n, times on F,,
n, times on 7, etc. The numbers m, n, n;, ny, nj,
are positive integers and because of the inequalities between the
segments we shall have respective inequalities between these numbers:

m>n>n > n;>ny >

Since we made the assumption that the series of segments continues
indefinitely, the series m, n, n,, n,, ny,  must continue indefinitely,
as well, but this is impossible because a series of continuously
decreasing positive integers cannot be infinite. The resulting
contradiction forces us to drop the assumption that there is a common
unit of length of such segments and to admit that they are
incommensurable. The example of the square demonstrates the
existence of the segments for which the process of successive
laying off will never end, therefore, the diagonal of the square is
incommensurable with its side.

Without this additional proposition the proof of the incom-
mensurability of the segments does not strike its point for it proves
quite another proposition than the one we were required to prove.

8. Frequently another type of error springs up in the course
of a proof. This occurs when reference is made to propositions
that have not been proven before. It also happens, although not
so often, that the person proving the theorem makes a reference
just to the proposition he is trying to prove. For example, sometimes
the following conversation between the teacher and the pupil may
be heard: The teacher asks: “Why are these lines perpendicular?”
The pupil answers: “Because the angle between them is right.”
“And why is it right?”” “Because the lines are perpendicular.”

Such an error is termed “a vicious circle in proof” and in so
apparent a form is comparatively rare. More often one meets it in a
subtle form. For example, the pupil was required to solve a problem:
“Prove that if two bisectors of a triangle are equal it must be an
isosceles triangle.”

The proof was constructed as follows: “Let in A ABC the
bisector AM be equal to bisector BN (Fig. 16). Consider A ABM
and A ABN which are equal since AM = BN, AB is common to both
and 2 ABN = 2« BAM, being the halves of equal angles at the bases.
Hence, A ABM = A ABN and therefore AN = BM. Next consider
A ACM and A BCN which are equal since AM = BN and since
the respective angles adjoining these sides are equal, as well.
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Therefore, CN=CM and hence AN + NC = BM + CM,
AC = BC, just what was to be proved.”

The proof is erroneous because it contains the reference to the
equality of angles at the base of the triangle, which is due to the fact
that the triangle is isosceles, just the very proposition that had
to be proved.

In some cases the proof is based on unproved propositions
being regarded as obvious although the propositions are not part
of axioms. Let’s consider two examples. The problem of the mutual

C

Fig. 16

position of a straight line and a circle is subdivided into three
cases: (1) the distance between the line and the centre of the
circle is greater than the radius — the line passes outside of the
circle; (2) the distance from the line to the centre is equal to
the radius — the line has one and only one common point with
the circle (a tangent line); (3} the distance from the line to the
centre is less than the radius —the line has two common
points with the circle (a secant).

Note that the first two propositions are usually proved correctly
while in the third case the agrument usually runs as follows:
“The line passes through a point within the circle and in this
case it obviously intersects the circle.” It may easily be seen that
the word “obviously™ hides a very important geometrical proposition:
“Every straight line that passes through an interior point of a circle
intersects the circle.” True, this proposition is rather obvious, but
we discussed already how vague and indefinite the latter concept is.
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Therefore, this proposition should either be proved on the basis of
other propositions or made an axiom.

By way of the second example we shall cite the proof of the
converse of the theorem on the circumscribed quadrangle which
is contained in some courses of elementary geometry.

We are required to prove that if the sums of opposite sides of a
quadrangle are equal a circle can be inscribed in this quadrangle.

We quote the proof: “Given AB + CD = BC + AD (Fig. 17).
Let’s draw a circle which touches the sides AB, BC and CD.
Let’s prove that it will touch the side AD, too. Let’s suppose the

C

Fig. 17

circle failed to touch the side AD. Drawing the tangent AD, through
the point A we shall obtain the circumscribed quadrangle ABCD,
where, in compliance with the direct theorem, AB + CD;, = BC +
+.AD,. Subtracting this equation term by term from the given
equation we obtain CD — CD, = AD, — AD or DD, = AD, — AD
which is impossible (the difference between two sides of A ADD,
cannot be equal to the third side). Therefore, the circle that is
tangent to the sides AB, BC, and CD is tangent to the side AD,
as well.”

The error in this proof is that it is based on the knowledge
of the position of the point A which has not, as yet, been
gained in the proof: one should first prove that the point of
tangency of the circle lies between the points A and B. Should
the position of the points A and D be such as shown in Fig. 18
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it would be impossible to apply the reasoning contained in this
proof. It is quite possible to prove that the points of tangency
must lie between A and B and between C and D, but this involves
rather lengthy proceedings and because of that it is better to use
the proof shown above (see p. 23).

Therefore, we should give the following answer to the question
as to what form a proof should take to be correct, i.e. to be a
guarantee of the truth of the proposition being proved:

(@) The proof should be based only on true propositions, i. e.
on axioms and on the theorems that have been proved before.

¢ oB

D¢

Fig. 18

(b} All inferences making up the proof should be correctly
constructed.

(c) The aim of the proof, i. e. the establishment of the truth
of the proposition being proved, should always be kept in mind
and should not be substituted for by some other proposition.*

9. The need to fulfil these requirements poses a natural question:
how can correct proofs be found?

Let’s give some advice how to cope with this problem. When
we are required to prove some geometrical proposition we should
begin with clearly defining the main idea which should be the
object of proof. Frequently this idea remains obscure. For example,
we are offered to “prove that having connected successively the
middle points of the sides of a quadrilateral we should obtain
a parallelogram” Whereby are we to prove that we shall obtain

* As it was the case in example on p. 30.
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a parallelogram? To answer the question we should recall the
definition of the parallelogram as a quadrilateral the pairs of opposite
sides of which are parallel. Hence, we must prove that the segments
obtained shall be parallel.

After the proposition to be proved has been defined one should
use the text of the theorem to define the conditions that are
given there and that are needed for the proof. The example cited
above states that we connect the middle points of the sides of a

Fig. 19

quadrilateral — this means that a point is chosen on each side that
divides it into two equal parts.

We write all this down in a symbolic form normally used
in school practice and consisting of two sections headed “Given”
and “To be proved” Thus, in our example if ABCD is the
quadrilateral (Fig. 19) and M, N, P, Q0 the middle points of its
sides we can write our theorem in the form:

Given: in the quadrilateral ABCD MA = MB, NB= NC,
PC=PD, QD = QA.

To be proved: MN}PQ, MO|NP

This notation is followed by the proof of the theorem. In the
course of that proof we should make use of the axioms and
theorems established before together (one should well remember it)
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with such special relationships that may be stated in the conditions
of the theorem.

10. But how should that set of judgements be found that would
connect the proposition being proved with those established before
and with the conditions of the theorem? How should a choice
be made from among a multitude of sundry propositions of just
those that would help us to prove our theorem?

The wisest way is to choose the proposition to be proved
as the starting point of our quest and to formulate the problem
as follows: the corollary of what proposition could it be? Should
such a proposition be found and should it at the same time be the
consequence of the conditions and theorems proved before our
problem would be solved. Otherwise we are to formulate the same
problem, but this time in respect of this new proposition, etc.
Such a way of thinking in science is termed analysis.

In the example with the quadrilateral we are now considering
we have to prove that some segments are parallel. At the same
time we should remember that these segments connect the middle
points of the quadrilateral’s sides. Having established it we ask
ourselves: is there a proposition among those proved before that
deals with the parallelism of segments connecting the middle points
of the sides of a polygon? One of such propositions is the theorem
on the median of a triangle that says that the segment connecting
the mid-points of two sides of the triangle is parallel to the third
side and equal to half its length. But the figure under consideration
has no such triangles. However, such a triangle can easily be
constructed in it. Let’s draw, for instance, the diagonal BD. This
gives us at once two triangles ABD and BCD in which the segments
MQ and NP act as medians. Hence, MQ | BD and NP i BD and,
consequently, NP | MQ. In the same way, after drawing the second
diagonal we could prove that MN | PQ. As it happens, such a
construction is not necessary for from the first pair of triangles
we have MQ =!/,BD and NP ="'/,BD and hence MQ = NP,
i. e. the opposite sides MQ and NP of the quadrilateral MNPQ
are not only parallel, but equal as well, and this gives us directly
that the quadrilateral is a parallelogram.

For the second example let’s take the well-known theorem on
the sum of the interior angles of a triangle. In this case the text
does not contain any special conditions and we therefore should
write down only what is to be proved: in A ABC (Fig. 20)
a+ P +y=180°

We see from the context of the proposition being proved that
we shall have to add up the three interior angles of the triangle.
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This addition is conveniently accomplished on the figure itself.
Let's build the angle v' =y at the vertex B of the angle B.
Then the side BD of the angle y' will be parallel to AC because
the alternate angles made by the transversal BC are equal. Pro-
tracting the side AB beyond the point B we shall obtain ~ CBE
which we shall denote o', o' =a, both being the corresponding
angles that the transversal AB makes with the two parallel lines.
Thus we have o’ + B + vy = 180° since together these angles make

C

Fig. 20

up a straight angle. Hence, taking into account the equality of
angles o’ =4, ¥ =y we obtain the required relationship

a+B+y=180°

In both examples cited above it did not take us long to find
the necessary relationships. However, there are cases when such
a relationship is established by means of a series of auxiliary
propositions. In these cases the analysis becomes more lengthy and
complicated.

11, Let’s cite an example of a more complicated analysis. It is
required to prove the following proposition: If a circle is circumscribed
about a triangle and perpendiculars to the sides of the triangle are
dropped from an arbitrary point on it their bases will lie on a single
line (the Simson line).

Let’s make the analysis. Let ABC be the given triangle (Fig. 21),
M is the point on the circumscribed circle, N, P, Q are the
respective projections of this point on the sides BC, CA, AB of the
given triangle. It is required to prove that N, P and Q lie on the
same line. We may write down the proposition to be proved noting
that the conditions that the points N, P and Q are on the same
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line is equivalent to the proposition that the angle NPQ is a
straight one. Thus we have:

Given: MN L BC, MP . CA, MQ L AB. The point M is on
the circle circumscribed about A ABC.

To be proved: ~ NPQ = 180° Considering the angle NPQ we
see that it is made up of £ MPN =3, MPA =90° and = APQ = .
The proposition would have been proved had we been able to prove
that £ NPQ =98 +90° + a = 180° But to this end it is sufficient

Fig. 21

to prove that x + 8 =90° Consider ~ CPN =ao'. « MPC = 90°
and, by force of this, a’ + 8 =90° Thus, the theorem will have
been proven if we were able to prove that o' = a. We shall try to
establish the sought equation by considering new angles for which
purpose we shall make use of the conditions of the theorem. The
end points of the right angles APM and AQM rest upon the
segment AM. Therefore a circle that would be built with AM as
its diameter would pass through the points P and Q. Because of
the properties of the inscribed angles « AMQ = 2 APQ =o. In
the same way, constructing a circle with the segment MC as its
diameter we shall see that it will pass through P and N and in
compliance with the properties of inscribed angles ~ CMN =
= 2 CPN =a. Let’s try now to prove that - AMQ = - CMN.
To this end note that the quadrilateral ABCM is an inscribed one
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and for this reason the sum of its opposite angles is 180°:

£ AMC + 2« B = 180°
or 1)

£ AMQ + 2 QMC + 2 B = 180°

On the other hand, the angles at the points Q and N of the
quadrilateral BOMN are right angles, therefore the sum of its
other two angles is 180°:

< QMN + 2 B = 180°
or (2)

2 QMC + 2 CMN + « B = 180°
Comparing equations (1) and (2) we obtain:
£OMC+ £ CMN+ 2B=2 AMQ+ QMC+ 2« B
whence
<« CMN = 2 AMQ,

e ¥ =a
As we have already seen this results in x+ 6 =90° and
x+ 8 +90° = 180° and, lastly, ~ NPQ = 180°
If we were to reconstruct the sequence of the proof we would
have to move in the opposite direction: first we should have
proved that « AMQ = - CMN; next we would have established
the equalities

£ AMQ = 2 MQN and « CMN = 2 CPN

Lastly, making use of the fact that ~ CPA= . CPN +
+ 2« MPN + 90° = 180° we would have obtained that ~ NPQ =
= £ MPN +90° + 2« APQ = 180°, as well, i. e. that the points N,
P and Q lie on the same line.

This method reciprocal to that of analysis is usually employed
to prove theorems in textbooks and in class and is termed
synthesis. It is easier and more natural to present the proof of a
theorem by way of the synthetic method, but we should not forget
that in looking for the proof we must perforce make use of
analysis.
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Thus, analysis and synthesis are two inseparable steps of the
same process — that of constructing the proof of a given theorem.
Analysis is the method of finding the proof, synthesis — that of
presenting it.

It is, of course, not easy while looking for the proof of some
proposition to establish the necessary sequence of judgements. It is
not always possible to strike the right track at once, sometimes
one has to drop the planned route and take another.

Here is an example. Suppose we have to prove the proposition:
“If two medians of a triangle are equal the triangle is isosceles.”
Given: A ABC the medians AM and BN of which are equal. It
may at first appear to be appropriate to consider the triangles
ABM and ABN and to prove their equality. However, it is easily
seen that we lack data for such a proof — we only know that
AM = BN and that the side AB is common to both triangles. We
have neither the condition of equality of the angles, nor the condition
of equality of the third sides. Therefore, we shall have to relinquish
this way. Similarly, we shall come to the conclusion that it is
senseless to consider the triangles ACM and BCN for we have
not enough data to prove them equal either. Having dropped those
two possibilities, let’s look for some new ones. Let’'s denote the
point of intersection of the two medians by P and consider the
triangles ANP and BMP Since the medians are equal and since
the point P lies on one-third of each median we shall find that
PN =PM, PA =PB and 2 APN = - BPM, both being vertical
angles. Therefore, A ANP = A BPM and consequently AN = BM.
These segments being halves of the respective sides it follows that
AC = BC, which is what was required to prove.

Analytical skill and the ability to find proofs independently are
the result of repeated exercises and to this end one should
systematically work on problems dealing with proofs.

12. To conclude the section we would like to draw your
attention to the fact that we can prove some theorems by two
methods, direct and indirect.

In the direct proof we establish the truth of the proposition
being proved by establishing the direct connection between this
proposition and those proved before.

In the indirect proof we establish the fact that should we raise
doubts as to validity of the proposition being proved and regard
it as false we would arrive at a contradiction either with the conditions,
or with propositions proved before. For this reason the indirect
proof is also known as reductio ad absurdum.
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In the above we made use mainly of the direct proof. Let's
cite now some examples of reductio ad absurdum.

As a first example we shall cite the third criterion for the
equality of triangles. The approved textbook states that it is
inconvenient to prove this criterion by superposing triangles since
we know nothing about the equality of the angles. However, using
the reductio ad absurdum method it is possible to use superposition
to prove this criterion, as well.

Let ABC and A'B'C’ be the given triangles (Fig. 22) where
BC = B'C',CA =C'A’, AB = A'B’. To prove the point let’s superpose
A A'B'C' on A ABC so that the side A'B’ coincides with AB.

C'

‘B':

Fig. 22

As we know nothing about the equality of the angles we have
no right to assert that the points C and C' will coincide. Let’s
assume therefore that it will occupy the position C” Let’s connect
the points C and C” The triangle ACC” is isosceles (to comply
to the condition AC” = AC); A BCC" is isosceles, too (from the
condition BC” = BC). The altitude AM of the isosceles triangle
ACC” will pass through the point M — the middle of the side CC”
(for in an isosceles triangle the médian and the altitude coincide).
The altitude BM of the isosceles triangle BCC” will also pass
through the middle M of the side CC” Thus, we see that two
perpendiculars AM and BM have been erected from the point M
to the line CC” These perpendiculars cannot coincide for it would
mean that the points A, B and M belong to the same line
which is impossible because the points C and C” (and therefore
the entire segment) lie to the same side of the line AB.

Hence, we have arrived at the conclusion that should we
assume that the points C and C’ will not coincide we shall have
to admit that it is possible to erect two different perpendiculars
from the same point M to the line CC” But this is in contradiction
with the properties of the perpendicular established before.
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Consequently, on superposition of the triangle the point C' must
coincide with the point C and we shall find that A ABC = A A'B'C’
As a second example we shall take the proof of the assumption
expressed before that if two bisectors of a triangle are equal that
triangle is an isosceles one.
Suppose we have A ABC and its bisectors AM and BN (Fig. 23).
Let’s write down the theorem.

Fig. 23

Given: in A ABC « CAM = - BAM; - CBN= - ABN and
AM = BN.

To be proved: AC = BC.

We shall use the reductio ad absurdum method of proof. Let’s
suppose that the triangle is not isosceles and that, to be definite,
AC > BC. If it is so, then « ABC > « CAB, as well. Ascribing
numbers to the angles as shown in the drawing we obtain ~ 3> « 1.
Next compare A ABM and A ABN; AB is common to both,
AM = BN from the condition, but the angles between the respective
equal sides are not equal. Therefore, the side lying opposite the
greater angle will be greater, too, i.e. AN > BM. Let’s draw the
segment ND equal and parallel to AM through the point N. In that
case the quadrilateral AMDN will be a parallelogram and therefore
MD = AN and 2 5 = 2 2. Connecting B with D we obtain A BDN
which will be an isosceles one for ND = AM = BN. On the other
hand, in A BDM the side MD = AN, but AN > BM and therefore
MD > BM,whence £ 7> « 6. At the same time, « 4 > ~ 5 because
5=22=21and £4= 3, but £3> 2 1. Should we add
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up the inequalities « 7> 2 6and 2 4> « S term by term we would

obtain: £4+ 7> .5+ 26, i.e. 2« BDN > « DBN. We have

found that the angles at the base of an isosceles triangle BDN
are not equal. The resulting contradiction makes us reject the
assumption that AC > BC. In the same way we could have refuted
the assumption that BC > AC. Hence, AC = BC.

The above examples make the point of the nature of the
reductio ad absurdum proof sufficiently clear. We usually resort
to this method when in the process of the search for arguments
it is established that it is difficult, or sometimes even impossible,
to find a direct proof.

It is customary in such cases to turn to a proposition contrary
to that which it is required to prove and to try by means of
analysis to find such a set of judgements that would lead to a
proposition contradicting some previously established proposition.
Such were the contradictory propositions we arrived at in the two
latter examples: in the first we arrived at the conclusion that two
perpendiculars to a single line can be erected from the same
point and in the second that the angles at the base of an
isosceles triangle are not equal.

§ 4. What Propositions
May Be Accepted
Without Proof?

1. Let's now answer the last question formulated in the
introduction: what propositions in geometry may be accepted without
proof?

This question seems a very simple one at first glance. Anyone
will say that axioms may be accepted without proof; as such one
should take propositions the truth of which has been tested
repeatedly in practice and is beyond any doubt. However, when
we try and choose such propositions it turns out to be not so
simple practically.

At present we know many geometrical propositions that have
been tested in practice so often as to exclude any doubt as to
their validity. But it by no means follows from here that all those
propositions should be accepted as axioms. For instance, we do not
doubt that only one straight line can be drawn through two points;
that one and only one perpendicular to a line can be drawn
through a given point; that the sum of two sides of a triangle
is larger than its third side; that two segments each equal to a
third are equal between themselves: that the distance between two
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parallel lines is everywhere the same, etc. Clearly, the list of such
propositions could be lengthened many times over again. Why not
accept all these propositions as axioms? This would make the
presentation of geometry much more simple, many proofs would
have become superfluous, etc.

However, the progress of geometry did not take this course:
on the contrary, the geometers strived to cut the number of
axioms down to the minimum and to deduce the remaining ma-
terial of geometry from this small number of fundamental truths.

Why did they take this seemingly more difficult and complicated
course of constructing the system of geometrical knowledge?

The desire to build geometry on the basis of a minimum
number of axioms is due to a number of causes. Firstly, as the
number of axioms decreases the importance of each rises: we should
not forget that axioms must contain all the future geometry that is
to be deduced from them. Therefore, the less the number of axioms
the more general, more profound and more important are the proper-
ties of spatial forms that are reflected by each separate axiom.

Another important reason to minimize the number of axioms
is that it is much easier to test the truth of a small number of
axioms and to see how the conditions set for the totality of axioms
{we shall deal with them below) are fulfilled.

2, Thus, we are faced with the problem of choosing the minimum
number of the most fundamental and most important propositions
of geometry which we shall accept as axioms. What is to guide
us in this choice? We should first of all keep in mind that we
should not choose axioms considering them one by one, independently
of other axioms. We should accept not a single axiom, but an
entire system of axioms, because it is only such a system that can
correctly reflect the real properties and interrelations of the main
spatial forms of the material world.

Naturally, only repeatedly tested facts that reflect the most
general and fundamental laws of spatial forms may be included
in such a system.

Next, in accepting such a system of axioms we must make
sure that it will not include contradictory propositions for such
propositions cannot all be true at the same time. For example,
it is not permissible for the system to include simultaneously the
axioms: “Not more than one line parallel to the given straight
line can be drawn through the given point” and “No line paral-
lel to the given line can be drawn through the given point”

Not only the axioms themselves should not be contradictory,
but among the conclusions from them there should not be two
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propositions contradicting each other. This main requirement to be
satisfied by the system of axioms is termed the condition of consis-
tency.

But at the same time, we should see to it that our system
of axioms does not include a proposition provable with the aid
of the other axioms. This requirement will be clear if we remember
that we strive to minimize our system, i. e. make it contain the
least number of propositions which are taken without proof. If a pro-
position can be proved on the basis of other axioms, then it is a theorem
rather than an axiom and should not be included into the system
of axioms. The requirement that the axiom should not be a
consequence of the other axioms is termed the condition of
independence.

However, in striving to minimize our system of axioms we
should not go too far and exclude such propositions from it that
we shall unavoidably have to use as a basis in the presentation
of geometry.

This is the third condition that a system of axioms should
fulfil — the condition of completeness of the system. To be exact,
this condition may be formulated as follows: if a system is
incomplete it is always possible to add a new proposition to it
(clearly a proposition containing the same basic concepts as other
axioms) that would be independent of the other theorems and
would not contradict them. In case of a complete system every new
proposition containing the same concepts as in axioms will either
be a conclusion drawn from these axioms or will contradict them.

3. To gain a clearer understanding of the conditions of com-
pleteness, independence and consistency. for a system of axioms one
could turn to a simple example which, although not an exact
reflection of geometrical relations, presents a fair analogy with
them.

Let's consider a system of equations in three unknowns. We
shall regard each of the three unknowns as some “concept”
requiring definition and each equation as a sort of an “axiom”
with the aid of which the relationship between the “‘concepts” is
established.

So let’s suppose we have a system

2x—y—2z=13
x+y+4:z=

Can the unknowns x, y and z be determined from this system?
No. they cannot, since the equations are fewer than the unknowns.
The system does not comply with the condition of completeness.
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Next we shall try to modify the system by supplementing it
with yet another equation:

2x—y—2z=3
x+y+4z=6
3x+3y+12z=18

After careful consideration of the modified system we conclude
that the addition of the new equation did not change the
situation because the third equation is simply a consequence of
the second and does not introduce any new relations. The system
violates the condition of independence.

Let’s change the third equation and consider this system:

2x—y=-2z=3
x+y+4z=6
Ix+3y+12z=15
Again it may easily be seen that this system, too, cannot be
used to determine the unknowns.
Indeed, dividing both parts of the last equation by 3 we
obtain the equation

x+y+4z=935
On the other hand, the second equation yields:
x+y+4z=6
Which of the two equations should be believed? Clearly, we
have here an inconsistent system which is also useless for the

determination of the unknowns.
Should we at last consider the system

2x—y—-2z=3
x+y+4:z=

2x+y+5z=8

we would easily conclude that it has a unique solution (x =S5,
y =13, z= — 3), that it is consistent, independent and complete.
Should the fourth equation be added to the system it would turn out to
be either a consequence of the given three, or would contradict
them.

4. We see from here that the choice of axioms to serve as a
basis of geometry is far from arbitrary, but subject to very serious
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requirements. The work of setting up the necessary system of
axioms was started as far back as the end of the past century
and although the scientists have done a great deal in this direction
it still cannot be regarded as completed. This is because in the
course of the revision of the available system of axioms scientists
discover from time to time the presence of superfluous, i.e.
“dependent™ axioms, that are the consequence of more simple and
more general axioms, and therefore complicated propositions con-
taining numerous conditions are replaced by axioms with fewer
conditions, etc. This research is of great interest to science for it
aims at establishing what are the most general, profound and
important properties of spatial forms that determine the entire
context of geometry.

In order to throw some light on the system of axioms of
modern geometry let us turn first to the presentation of geometry
at school and see what axioms it is built on, what axioms it
lacks. We shall limit ourselves to the axioms of plane geometry.

The presentation of geometry at school starts with the explanation
of the basic concepts of geometry: the body, the surface, the line,
the point. Next the straight line is selected from lines of all sorts
and the plane from the surfaces. The first axioms of the school
course establish the relations between the point, the straight line
and the plane. These are axioms of connection — the first group
in the complete system of axioms of geometry.

The axioms of this group establish how the main geometric
elements are connected with each other: how many points determine
a straight line, or a plane, what are the conditions for the straight
line to belong to a plane, etc.

Out of the axioms of connection only two are mentioned
in the school course:

(1) One and only one straight line passes through any two
points.

(2) If two points of a straight line lie in a plane the entire
line lies in the plane.

At the same time we, consciously, or instinctively, make constant
use of other axioms of connection, as well, from whose number
the following are also necessary to substantiate plane geometry:

(3) On every struight line there are at least two points. The
requirement of this axiom is, as we see, quite limited. However,
in future we shall be able to prove with the aid of axioms of
order the existence of an infinite number of points on a straight
line.

(4) There exist at least three points in the plane not lying on one
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straight line. This axiom, too, contains the minimum requirement on
the basis of which the existence of an unlimited number of points in
a plane can be proved in future.

5. We shall now turn to the second group of axioms that is
totally absent from the school course, although one has to use them
time and again. The axioms of the second group are termed
axioms of order. These axioms describe the laws that govern the
mutual position of the points on a straight line and that of the
points and straight lines in a plane. We often use these axioms

Fig. 24

although in an implicit form. If, for instance, we have to prolong
a segment we do it knowing that it is always possible to prolong
a segment both ways.

If we connect two points lying to two different sides of a
straight line we are confident that the segment thus obtained will
intersect the line. We relied on this fact, for instance, while proving
the theorem that triangles with two equal sides and an equal
angle lying opposite one of the sides are equal (see Fig. 12). One
more example: we are confident that the bisector of an interior
angle of a triangle will not fail to intersect the opposite side.

Undoubtedly, all those are quite obvious facts, but still they
speak of the existence of some basic properties of the geometrical
figures that we constantly use and that for this reason should
find their place among axioms.

The axioms that determine the position of the points on a
straight line are bound up with basic concepts such as “to precede”
and “to follow” and are formulated as follows:

(), 401y e Ay tha e pints g, v ke Steaight. ling
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« defined as the preceding one, in that case the second be
the following.

(2) If A, B, C are points on the same straight line and if A
precedes B, B precedes C, then A precedes C.

Already these two axioms define rather clearly the peculiarities
of the straight line which are not characteristic of all lines. Let’s
take, for example, a circle (Fig. 24) and moving clockwise along it
mark in turn the points A, B, C; we shall then see that on the circle
point A4 precedes point B, point B precedes point C and point C
again precedes point A. When the position of the points 4, B
and C on the straight line is as has been stated above, we say
that B lies between A and C (Fig. 25).

A 8

C
—C O—— T —
Fig. 25

(3) Between any two points of a straight line there is alway.
another point of the same line.

Applying this axiom in turn to two points on the straight
line (they exist by force of the second axiom of connection),
next to each of the intervals thus obtained, etc., we find that
between any two points of a straight line there is an infinite number
of points of the same line.

The part of a straight line on which lie two of its points
and all the points between them is termed a segment.

(4) Every point of a straight line has both a preceding and a
Jollowing point.

As a consequence of this axiom a segment of a straight line
can be prolonged both ways. Another consequence is that there
is no point on a straight line that would precede, or follow, all
the other points, e. that a straight line has no ends.

The part of a straight line to which belong the given point
and all its preceding, or following points, is termed a ray or
half-line.

The mutual position of points and straight lines in a plane
is determined by the following axiom termed the “Pasch’s axiom™
after the German mathematician who first formulated it.

(5) If there exist three points not lying on one line, then the
line lying in the same plane and not passing through these points
and intersecting a segment joining these points intersects one and
only one other segyment (Fig. 26).

This axiom is used to prove the theorem on a' straight line
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aividing a plane into two half-planes. Let’s cite the proof of this
theorem as an example of rigorous proof that relies only on axioms
and on theorems proved before. We shall formulate the theorem
as follows.

A straight line lying in a plane divides all the points of the
plane not lying on the line into two classes such that points of one
class determine a segment not intersecting the line and the points
of distinct classes determine a segment intersecting the line.

In the course of the proof we shall make use of some special
designations which ought to be remembered. < is the sign of belonging:

Fig. 26

A < a— “the point A belongs to the straight line a” x is the
intersection sign; AB x a — “the section AB intersects the straight
line a” A bar placed above some relation means its negation:

A ca—*“the point A does not belong to the straight line a”

is the symbol of drawing a conclusion — “therefore” Having
adopted this notation we now turn to the proof of the theorem.
First of all note that if the three points lie on the same straight
line, for them, too, holds a proposition similar to Pasch’s-axiom:
a line intersecting one of the three segments determined by these
three points intersects one and only one other segment. This proposition
may easily be proved on the basis of axioms dealing with the
position of points on a straight line.

Indeed, if the points 4, B and C lie on a single straight line
and point B lies between the points A and C all the points of the
segments AB and BC belong to the segment AC and every point of the
segment AC (excluding B) belongs either to AB, or to BC.
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Therefore, a line intersecting AB, or BC, will perforce intersect AC,
and a line intersecting AC will intersect either AB, or BC.
Suppose now we have the straight line [ lying in a plane. We
must prove the following:
(1) It is possible with the aid of this line [ to divide the
points of the plane that do not lie on this line into classes.
(2) There can be two and only two classes.
(3) The classes have the properties that are stated in the theorem.
To establish this fact let’s take the point A not lying on the
line ! (Fig. 27) and adopt the following conditions:

Fig. 27

(a) point A belongs to the first class (let’s denote it K,):

(b) a point not lying on [ belongs to the first class if it,
together with the point A, determines a segment that does not
intersect [;

{c) a point not lying on | belongs to the second class (let’s
denote it K,) if it, together with the point A, determines a segment
that intersects /.

It may easily be seen that there are points of both classes.
Let’s take a point P on the line / and draw a straight line PA.
The ray with the vertex P containing the point A contains only
points of the first class since the point of intersection P lies
outside the segments determined by the point 4 and the other points
of the ray. The opposite ray with the same vertex contains only
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points of the second class since the point of intersection P lies
inside all the segments determined by the point A and the points
of this ray. Connecting A with any point of the line ! we shall
obtain an infinite number of straight lines containing the points
of the first and the second class.

There can be only two classes since we can state only two
propositions in respect of any segment that connects A with a
point not lying on [: either the segment intersects I, or it does
not — there can be no third possibility.

Lastly, let’s show that the classes K; and K, satisfy the
conditions of the theorem. Let’s consider the following cases.

(1) Both points belong to the first class: B < K, C = K. Since
B < K, then AB x [; since C < K; then AC x L. by force of

Pasch’s axiom BC x I

(2) Both points belong to the second class: D = K, and E < K,.
Since Dc K, then AD x I, since Ec K, then AE x L by
force of Pasch’s axiom DE x I.

(3) The points belong to different classes: B< K;; D c K,.

Since B « K, then AB x [; since D « K, then AD x I. by force
of Pasch’s axiom BD x I

The theorem has been proved.

The part of a plane to which belong all the points of one
class is termed a half-plane.

Note that the theorem can be proved without the use of a
drawing. The drawing only helps to follow the course of the
reasoning and to memorize the obtained relationships. This, by
the way, is true of any sufficiently rigorous proof.

6. The following, third, group of axioms deals with the concept
of equality. In the school geometry course the equality of figures
in a plane is established by superposition of one figure on another.

The approved geometry textbook treats this problem as follows:
“Geometrical figures may be moved about in space without changing
either their shape or sizez. Two geometrical figures are termed
equal if by moving one of them in space it can be superposed
on the other so that both figures will coincide in all their parts.”

At first glance this definition of equality seems to be quite
comprehensible, but if one considers it carefully a certain logical
circle may easily be found in it. Indeed, to establish the equality
of figures we have to superpose them, and to do this we must

move ‘oné ‘nguré 1 space;”né mgure remaining uwhcnangeda m“tuc

process. But what does “remaining unchanged” mean? It means that
the figure all the time remains equal to its original image. Thus,
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it comes about that we define the concept of equality by moving
an “unchanged figure” and at the same time we define the concept
“unchanged figure” by means of “equality.”

Therefore there seems to be much more sense in establishing
the equality of figures by means of a group of axioms dealing
with the equality of segments, angles and triangles.

The axioms that establish the properties of the equality of
segments are the following:

(1) One and only one segment equal to the given segment can be
marked off on a given line in a given direction from a given point.

(2) Every segment is equal to itself. If the first segment is equal
to the second, the second is equal to the first. Two segments each
equal to a third are equal to each other

(3) If A, B and C lie on the same straight line and A’, B’ and
C', too, lie on the same straight line and if AB = A'B’, BC = B'C’
then AC = A'C', too.

In other words, should equal segments be added to equal ones
the sums would be equal, as well.

There are quite similar axioms for the angles.

(4) One and only one angle equal to the given angle can be built
at the given ray in the given half-plane.

(5) Every angle is equal to itself. If the first angle is equal
to the second, the second is equal to the first. If two angles are each
equal to a third they are equal to each other.

(6) If a, b and ¢ are rays with a common vertex, a', b’ and ¢
are other rays with a common vertex and if < ab= ca'lt,
b= 2 bdc, then < ac =~ adc, too.

In other words, should equal angles be added to the equal
ones the sums would be equal, too.

Lastly, one more axiom of the third group is introduced to
substantiate the equality of triangles.

(7) If two sides and the angle between them of one triangle
are equal to the respective sides and the angle between them of the
second, the other respective angles of these triangles are equal, too.
If, for example, we have A ABC and A A'B'C’ with AB=A'B’,
AC=AC and £ A=, A, then £«B=2«B and £ C= 2« C,
as well.

These seven axioms are used first to prove the main criteria
of the equality of triangles, to be followed by all the theorems
dealing with the equality of figures that are based on those
criteria. Now no more need arises for the method of superposition,
it becomes superfluous.
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Let's see, for instance, how the first criterion of the equality
of triangles is proved.

Suppose A ABC and A A'B'C’ are given (Fig. 28) with AB = A'B’,
AC=A'C' and £ A= 2 A'. It is required to prove the equality
of all the other elements of the triangles. From axiom (7) we obtain
immediately that ~ B= 2 B’ and « C = « C’ It remains for us to
show that BC = B'C’

Suppose that BC # B'C’ Then we mark off B'C" = BC on
the side B'C’ from the point B' Consider A ABC and & A'B'C”

B 8’

Fig. 28

They have AB = A'B’, BC=BC” and ~ B= ~ B’ Then in com-
pliance with axiom (7) 2 B'A'C" = 2 A, too. But two angles equal
to a third are themselves equal, therefore « B'A'C" = 2 B'A'C’
We see that two different angles each equal to the same angle 4
have been built at the ray A'B’ in the same half-plane and this
contradicts axiom (4). Hence, if we reject the supposition BC # B'C’
we shall obtain BC = B'C’

The proof of other theorems dealing with the equality of
figures is similar.

7. As the presentation of the elementary geometry proceeds,
the need arises for yet another group of axioms, i. e. the axioms
of continuity, to be introduced. The problems of intersection of a
line and a circle and of intersection of circles are closely related
to the axioms of this group. These are the problems upon which
all the geometrical constructions made with the aid of compasses and
aruler are based. This fact speaks for the enormous importance of the
axioms of continuity. Moreover, the entire theory of measurement
of geometrical quantities is built around the axioms of continuitv,

The group of axioms of continuity includes the following two
axioms’
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(1) The Archimedean axiom. If two segments are given, one of
them greater than the other, then by repeating the smaller segment
a sufficiently large number of times we can always obtain a sum
that exceeds the larger segment. In short, if 4 and b are two
segments and a > b there exists an integer n.such that nb.> a.

The Archimedean axiom found its place in the approved text-
book, as well, namely, in the chapter on the measurement of
segments. The above-mentioned method of finding a common unit
of length of two segments by means of successive laying off is
based on the Archimedean axiom. Indeed, this method entails
the laying off of the small segment on the larger one, and the

Ao A1AsB, B, Bo
M

Fig. 29

Archimedean axiom assures us that with such a procedure the sum
of small segments will ultimately cover the large segment.

We conclude directly from the Archimedean axiom that if the
interval a is greater than the interval b there always exists an

integer n such that s< b.

The second of the continuity axioms bears the name of Cantor,
or the nested intervals axiom. Here is how it reads:

(2) If there is a system of intervals wherein each succeeding
interval is inside the preceding one and if within this system there
can always be found an interval that is smaller than any given
one then there is a single point lying inside all these intercvals.

In order to illustrate the way in which the Cantor axiom is
used let’s consider the following example. Let's take the interval
AoB, (Fig. 29), denote its mid-point by B, and find the middle
of the interval 4,B, which we shall denote by A4,. Next we take
the middle of 4,B,, denote it by B, and find the middle of the
interval 4,B, which we denote by A,. Next we take the middle
of A,B, which we denote by B,, find the middle of A4,B; and
denote it by A;. Next we take the middle of A;B;, etc.* The intervals
AoBo, A\By, A3B;, A3B;,  constitute a system of nested intervals.
Indeed, each succeeding interval is inside the preceding one and is
equal to !/, of it. Thus, the length of the interval A,B, is equal

* There is no room in the drawing for this interval 43B,. so it has
to be imagined.
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to '/s AoBo. the length of A;B; = '/,¢ AgBo, A3B3 = /64 AoBo.

. AoB
and in general A,B, = o0

It follows from the Archimedean axiom that the length

A‘l’g" obtained in this manner can be smaller than any given
segment for a sufficiently large n. Hence, all the conditions of the
axiom are satisfied and there is a single point lying inside the
entire system of segments. This point may easily be shown. Indeed,
if we take point M on !/; of the segment AyB,, i.e. so that
AoM =1/; AyB, this will be the point we are looking for. Indeed,
should we take point A, as the origin of the number axis
and assume the segment AyB, to be unity the following numerical

values would then correspond to the points A,, A,, A,, A,
.1 5 1,1 121, 1+4+42+ .. +4"'
vt eTwat et T &

Each of these fractions is less than /5.

Indeed, if we subtract unity from the denominator of each of
the fractions, the fraction will become larger and exactly equal
to '/3:
1+4+42+ ... +4"

4n—l

_ 1+4+4%+ ... +4 _1*
]

T@-1)(1+44+4% 4 +4"Y)

On the other hand, the corresponding numerical values for
the points B,, B,, B,. B, are

i1 1 3.1 1t 1L 1 1_1_ 1l
272 8 82 8 32 3 2 8 32 2241

The numerical value corresponding to the point B, may also be
written in the following form:

or_ny_ (v _ 1y (1L 1 )
27\a78/7\16 32 T

1 1 1 1
Tlet:m T Tt e

P

OO0 | =

I
=2 4"

* Here we make use of the formula
@ —b"=@—b)@ " +a" h+a" . a2+ b
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Should we add these numbers up we would obtain

22»_22n—1+22n—2 ~._23+22_2+1
J2n+1

It may easily be obtained from here that each numerical value
that corresponds to the points B,, B,, B, is greater than !/,.
Adding unity to the denominator we thereby make the fraction
smaller obtaining

Bm -l gm0 342241
22n+l+1 -
Y et Sl o e R 1 o U
(2+ l)(zla_zZn—l +22n—2 _23+22_2+ 1) 3

Hence all the numerical values that correspond to the points
B,, B,, B,, .., B, are greater than /5. Tt follows from here
that the point M with the corresponding numerical value equal to
174 is inside each of the segments A,B,, 4,B,, A3B;, ., A,B,,
Therefore, this is the unique point determined by the sequence of
these segments.

Let’s now turn to the proof of the basic theorem on the
intersection of a straight line and a circle.

Let’s recall that a circle is determined by its centre and its
radius. The points of the plane the distance from which to the
centre is less than the radius are termed interior points in respect
to the circle; the points the distance from which to the centre
is greater than the radius are termed exterior in respect to the
circle.

The basic theorem is formulated as follows:

A segment that connects an interior point*in respect to the
circle with an exterior one huas one and only one common point
with the circle.

Suppose we have a circle with the centre at point O and the
radius r; A is an interior point (OA <r), B is an exterior point
(OB > r) (Fig. 30). Let's prove, to begin with, that if there is a
point M on AB the distance from which to point O is equal to
the radius, that point will be unique. Indeed, if such a point M

* Here we make use of the formula
a4 b = (a+ b e — b+ a2~ L. —ab?" ) 4+ )
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exists, there should also exist a point M’ symmetrical with M
in respect to the perpendicular dropped from O to AB with
M'O = MO = r. By force of the properties of inclined lines drawn
from a point to the straight line AB all the interior points of
the segment M'M will be interior points of the circle, as well,
and all the exterior points of the segment M'M will be exterior
points of the circle. Therefore, the point 4 must always lie between
the points M’ and M and only one point M may lie on the
segment AB.

T

A 8, B
M I
|

|
|
|
I
|
|
!
|
I
|
é

o]
Fig. 30

Having established this fact let's divide the segment AB in
two and compare the distance of the point thus obtained from the
centre with the radius. If this distance turns out to be equal to the
radius, the theorem will have been proven. If this distance turns
out to be less than the radius, the point will be an interior
one and we shall denote it A4,. If this distance turns out to be
greater than the rddius, the point will be an exterior one and we
shall denote it B,.

Next we take the middle of the segment A;B (or AB,) in
respect to which there are again three possible cases: either the
distance from it to the centre is equal to the radius and in
that case the theorem will have been proven, or it is less- than the
radius — in that case we denote this point 4 with a corresponding
numerical index, or it is greater than the radius — in that case
we denote this point B with a corresponding numerical index.
Confinuing this process indefinitely we find that either the distance
of one of such points from the centre is equal to the radius
and this proves the theorem, or all the points denoted by the
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letters A,, A,, , Ap will be interior and all the points
denoted by the letters B,, B,, B,, will be exterior. But
in this latter case we obtain a system of segments satisfying
the conditions of the Cantor axiom for each of the succeeding
segments lies inside the preceding one and the length of each
succeeding segment is half that of the preceding segment. Therefore,
there exists a unique point that lies inside all those segments.
Since it lies between all the interior and all the exterior points
of the segment it can be neither an interior, nor an exterior
one; therefore, it is a point of the circle.

Fig. 31

It follows from this theorem, in particular, that if the distance
from the straight line to the centre of a circle is less than the
radius, this line will have two and only two points in common
with the circle. Indeed, let O be the centre and r the radius of
the circle (Fig. 31). The distance OP from the centre to the line !
is less than the radius; therefore, P is an interior point. Let's
mark off the segment PQ =r on the line / from the point P

Since the hypotenuse OQ of the right triangle OPQ is greater
than the leg PQ =r, it follows that OQ > r and, therefore, Q is
an exterior point. According to the theorem just proved the segment
PQ has one point A in common with the circle. The second
common point A’ is symmetrical with 4 in respect of the per-
pendicular OP. Since all the interior points of the segment AA’
are also the interior points of the circle and all the exterior points
are exterior in respect of the same circle, the line ! has no other
common points with the circle.

The propositions similar to the Archimedean and the Cantor
axioms may be proved for the arcs of a circle as well, e. it is
possible to prove that:

60



(1) By repeating a given arc a sufficiently large number of
times we can obtain an arc greater than any predetermined arc.

(2) If we have a system of arcs in which each succeeding arc
lies inside the preceding one and if it is always possible to find
an arc in the system that is smaller than any given arc, there is a
point that lies inside all these arcs.

On the basis of these propositions one may easily prove the
basic theorem on the intersection of circles:

If A is the interior and B the exterior point in respect of
the given circle, then the arc of any other circle that connects A
and B has one and only one common point with the given circle.

The proof of this theorem is quite similar to that of the
theorem on the intersection of a straight line and a circle.

8. The last, fifth, group of geometrical axioms deals with the
concept of parallelism and consists of only one axiom:

Only one line can be drawn parallel to a given line through a given
point not on this line.

The propositions based on this axiom are widely known and we
shall not stop to consider them.

The system of axioms discussed above gives an idea of the
totality of propositions taken without proof that can make the
basis of geometry. But it should be noted that aiming at the
simplification of presentation we made no attempts to minimize
the system. The number of those axioms could be brought down still
further. For instance, two axioms — those of Archimedes and
Cantor — could be replaced by one, the so-called Dedekind axiom.
The conditions of the axioms could be made less strict. For
example, it would be possible to refute the requirement that the
straight line in Pasch’s axiom which intersects one of the sides
of a triangle should intersect one and only one other side. Actually,
it is possible to retain the only requirement that a straight line
which intersects one of the sides of a triangle should intersect
another side and to prove that there will be only one such side.
In the same way in the formulation of Cantor’s axiom the
requirement that the point determined by the system of nested
intervals be unique may be refuted. The uniqueness of this point,
too, can be proved. All this would, however, make the presentation
more elaborate and complicated.

Let’s summarize in conclusion the themes we have discussed
in this booklet.

(1) We defined geometry as a science dealing with the spatial
forms of the material world.
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(2) We obtained initial knowledge of the spatial forms by way
of induction, i. e. through repeated observations and experiments.

(3) We formulated the most profound and most general spatial
properties of things in the form of a system of fundamental
propositions — axioms.

(4) A system of axioms will correctly reflect the real spatial
properties only if it satisfies the conditions of completeness,
independence and consistency.

(5) With. the exception of axioms all the other propositions of
geometry — theorems — are obtained by way of deduction from the
axioms and from the theorems proved before. This system of
deduction is called proof.

(6) For the proof to be correct, i. e. the validity of the theorem
being proved to be beyond doubt, it must be built on correct
judgements and must be free from errors. The correctness of a
proof depends on: (1) an accurate correct formulation of the
proposition being proved, (2) the choice of the necessary and
true arguments and (3) rigorous adherence to the rules of logic
in the course of the proof.
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