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PREFACE

This book is for people who want to get acquainted with the concepts of

basic geometry without taking a formal course. It can serve as a supplemental

text in a classroom, tutored, or home-schooling environment. It should also

be useful for career changers who need to refresh their knowledge of the

subject. I recommend that you start at the beginning of this book and go

straight through.

This is not a rigorous course in theoretical geometry. Such a course defines

postulates (or axioms) and provides deductive proofs of statements called

theorems by applying mathematical logic. Proofs are generally omitted in

this book for the sake of simplicity and clarity. Emphasis here is on practical

aspects. You should have knowledge of middle-school algebra before you

begin this book.

This introductory work contains an abundance of practice quiz, test, and

exam questions. They are all multiple-choice, and are similar to the sorts of

questions used in standardized tests. There is a short quiz at the end of every

chapter. The quizzes are ‘‘open-book.’’ You may (and should) refer to the

chapter texts when taking them. When you think you’re ready, take the quiz,

write down your answers, and then give your list of answers to a friend.

Have the friend tell you your score, but not which questions you got

wrong. The answers are listed in the back of the book. Stick with a chapter

until you get most of the answers correct.

This book is divided into two sections. At the end of each section is a

multiple-choice test. Take these tests when you’re done with the respective

sections and have taken all the chapter quizzes. The section tests are ‘‘closed-

book,’’ but the questions are not as difficult as those in the quizzes. A satis-

factory score is three-quarters of the answers correct. Again, answers are in

the back of the book.
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There is a final exam at the end of this course. It contains questions drawn

uniformly from all the chapters in the book. Take it when you have finished

both sections, both section tests, and all of the chapter quizzes. A satisfactory

score is at least 75 percent correct answers.

With the section tests and the final exam, as with the quizzes, have a friend

tell you your score without letting you know which questions you missed.

That way, you will not subconsciously memorize the answers. You can check

to see where your knowledge is strong and where it is not.

I recommend that you complete one chapter a week. An hour or two daily

ought to be enough time for this. When you’re done with the course, you can

use this book, with its comprehensive index, as a permanent reference.

Suggestions for future editions are welcome.

Acknowledgments
Illustrations in this book were generated with CorelDRAW. Some clip art is

courtesy of Corel Corporation, 1600 Carling Avenue, Ottawa, Ontario,

Canada K1Z 8R7.

I extend thanks to Emma Previato of Boston University, who helped with

the technical editing of the manuscript for this book.

STAN GIBILISCO

PREFACEviii



PART ONE

Two Dimensions
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CHAPTER
1

Some Basic Rules

The fundamental rules of geometry go all the way back to the time of the

ancient Egyptians and Greeks, who used geometry to calculate the diameter

of the earth and the distance to the moon. They employed the laws of

Euclidean geometry (named after Euclid, a Greek mathematician who lived

in the 3rd century B.C.). Euclidean plane geometry involves points and lines on

perfectly flat surfaces.

Points and Lines
In plane geometry, certain starting concepts aren’t defined formally, but are

considered intuitively obvious. The point and the line are examples. A point

can be envisioned as an infinitely tiny sphere, having height, width, and depth

all equal to zero, but nevertheless possessing a specific location. A line can be

thought of as an infinitely thin, perfectly straight, infinitely long wire.
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NAMING POINTS AND LINES

Points and lines are usually named using uppercase, italicized letters of the

alphabet. The most common name for a point is P (for ‘‘point’’), and the

most common name for a line is L (for ‘‘line’’). If multiple points are involved

in a scenario, the letters immediately following P are used, for example Q, R,

and S. If two or more lines exist in a scenario, the letters immediately follow-

ing L are used, for example M and N. Alternatively, numeric subscripts can

be used with P and L. Then we have points called P1, P2, P3, and so forth,

and lines called L1, L2, L3, and so forth.

TWO POINT PRINCIPLE

Suppose that P and Q are two different geometric points. Two distinct points

define one and only one (that is, a unique) line L. The following two state-

ments are always true, as shown in Fig. 1-1:

� P and Q lie on a common line L
� L is the only line on which both points lie

DISTANCE NOTATION

The distance between any two points P and Q, as measured from P towards

Q along the straight line connecting them, is symbolized by writing PQ. Units

of measurement such as meters, feet, millimeters, inches, miles, or kilometers

are not important in pure mathematics, but they are important in physics and

engineering. Sometimes a lowercase letter, such as d, is used to represent the

distance between two points.

LINE SEGMENTS

The portion of a line between two different points P and Q is called a line

segment. The points P and Q are called the end points. A line segment can

theoretically include both of the end points, only one of them, or neither of

them.

CHAPTER 1 Some Basic Rules4
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If a line segment contains both end points, it is a closed line segment. If it

contains one of the end points but not the other, it is a half-open line segment.

If it contains neither end point, it is an open line segment. Whether a line

segment is closed, half-open, or open, its length is the same. Adding or taking

away a single point makes no difference, mathematically, in the length

because points have zero size in all dimensions! Yet the conceptual difference

between these three types of line segments is like the difference between day-

light, twilight, and darkness.

RAYS (HALF LINES)

Sometimes, mathematicians talk about the portion of a geometric line that

lies ‘‘on one side’’ of a certain point. In Fig. 1-1, imagine the set of points that

starts at P, then passes through Q, and extends onward past Q forever. This

is known as a ray or half line.

The ray defined by P and Q might include the end point P, in which case it

is a closed-ended ray. If the end point is left out, the theoretical object is an

open-ended ray. In either case, the ray is said to ‘‘begin’’ at point P; infor-

mally we might say that it is either ‘‘tacked down at the end’’ or ‘‘dangling at

the end.’’

MIDPOINT PRINCIPLE

Suppose there is a line segment connecting two points P and R. Then there is

one and only one point Q on the line segment such that PQ ¼ QR, as shown

in Fig. 1-2.

PROBLEM 1-1

Suppose, in Fig. 1-2, we find the midpoint Q2 between P and Q, then the

midpoint Q3 between P and Q2, then the midpoint Q4 between P and Q3, and

so on. In mathematical language, we say we keep finding midpoints Q(nþ1)

CHAPTER 1 Some Basic Rules 5
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between P and Qn, where n is a positive whole number. How long can this

process go on?

SOLUTION 1-1

The process can continue forever. In theoretical geometry, there is no limit to

the number of times a line segment can be cut in half. This is because a line

segment contains an infinite number of points.

PROBLEM 1-2

Suppose we have a line segment with end points P and Q. What is the

difference between the distance PQ and the distance QP?

SOLUTION 1-2

This is an interesting question. If we consider distance without paying atten-

tion to the direction in which it is measured, then PQ ¼ QP. But if direction

is important, we define PQ ¼ �QP.

In basic plane geometry, direction is sometimes specified in diagrams in

order to get viewers to move their eyes from right to left instead of from left

to right, or from bottom to top rather than from top to bottom.

Angles and Distances
When two lines intersect, four angles exist at the point of intersection. Unless

the two lines are perpendicular, two of the angles are ‘‘sharp’’ and two are

‘‘dull.’’ When the two lines are perpendicular, each of the four angles is a

right angle. Angles can also be defined by sets of three points when the points

are connected by line segments.

MEASURING ANGLES

The two most common units of angular measure are the degree and the

radian.

The degree (8) is the unit familiar to lay people. One degree (18) is 1/360 of

a full circle. This means that 908 represents a quarter circle, 1808 represents a

half circle, 2708 represents three-quarters of a circle, and 3608 represents a full

circle.

A right angle has a measure of 908, an acute angle has a measure of more

than 08 but less than 908, and an obtuse angle has a measure of more than 908

but less than 1808. A straight angle has a measure of 1808. A reflex angle has a

measure of more than 1808 but less than 3608.

CHAPTER 1 Some Basic Rules6



The radian (rad) is defined as follows. Imagine two rays emanating out-

ward from the center point of a circle. Each of the two rays intersects the

circle at a point; call these points P and Q. Suppose the distance between P

and Q, as measured along the arc of the circle, is equal to the radius of the

circle. Then the measure of the angle between the rays is one radian (1 rad).

There are 2� radians in a full circle, where � (the lowercase Greek letter pi,

pronounced ‘‘pie’’) stands for the ratio of a circle’s circumference to its

diameter. The value of � is approximately 3.14159265359, often rounded

off to 3.14159 or 3.14.

A right angle has a measure of �/2 rad, an acute angle has a measure of

more than 0 rad but less than �/2 rad, and an obtuse angle has a measure of

more than �/2 rad but less than � rad. A straight angle has a measure of �

rad, and a reflex angle has a measure larger than � rad but less than 2� rad.

ANGLE NOTATION

Imagine that P, Q, and R are three distinct points. Let L be the line segment

connecting P and Q; letM be the line segment connecting R and Q. Then the

angle between L and M, as measured at point Q in the plane defined by the

three points, can be written as ffPQR or as ffRQP, as shown in Fig. 1-3.

If the rotational sense of measurement is specified, then ffPQR indicates

the angle as measured from L to M, and ffRQP indicates the angle as mea-

sured from M to L. If rotational sense is important, counterclockwise is

usually considered positive, and clockwise is considered negative. In Fig.

1-3, ffRQP is positive while ffPQR is negative. These notations can also

stand for the measures of angles, expressed either in degrees or in radians.

CHAPTER 1 Some Basic Rules 7

Fig. 1-3. Angle notation.



If we make an approximate guess as to the measures of the angles in Fig. 1-3,

we might say that ffRQP ¼ þ608 while ffPQR ¼ �608.

Rotational sense is not important in basic geometry, but it does matter

when we work in coordinate geometry. We’ll get into that type of geometry,

which is also called analytic geometry, later in this book. For now, let’s not

worry about the rotational sense in which an angle is measured; we can

consider all angles positive.

ANGLE BISECTION

Suppose there is an angle ffPQR measuring less than 1808 and defined by

three points P, Q, and R, as shown in Fig. 1-4. Then there is exactly one ray

M that bisects (divides in half) the angle ffPQR. If S is any point onM other

than the point Q, then ffPQS ¼ ffSQR. That is to say, every angle has one,

and only one, ray that bisects it.

PERPENDICULARITY

Suppose that L is a line through points P and Q. Let R be a point not on L.

Then there is exactly one lineM through point R, intersecting line L at some

point S, such that M is perpendicular to L (that is, such that M and L

intersect at a right angle). This is shown in Fig. 1-5. The term orthogonal is

sometimes used instead of perpendicular. Another synonym for perpendicu-

lar, used especially in theoretical physics, is normal.

CHAPTER 1 Some Basic Rules8
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PERPENDICULAR BISECTOR

Suppose that L is a line segment connecting two points P and R. Then there

is one and only one lineM that is perpendicular to L and that intersects L at

a point Q, such that the distance from P to Q is equal to the distance from Q

to R. That is, every line segment has exactly one perpendicular bisector. This

is illustrated in Fig. 1-6.

DISTANCE ADDITION AND SUBTRACTION

Let P, Q, and R be points on a line L, such that Q is between P and R. Then

the following equations hold concerning distances as measured along L (Fig.

1-7):

CHAPTER 1 Some Basic Rules 9

Fig. 1-5. Perpendicular principle.

Fig. 1-6. Perpendicular bisector principle. Line M is unique.



PQþQR ¼ PR

PR� PQ ¼ QR

PR�QR ¼ PQ

ANGLE ADDITION AND SUBTRACTION

Suppose that P, Q, R, and S are points that all lie in the same plane. That is,

they are all on a common, perfectly flat surface. Let Q be the vertex of three

angles ffPQR, ffPQS, and ffSQR, with ray QS between rays QP and QR as

shown in Fig. 1-8. Then the following equations hold concerning the angular

measures:

ffPQSþ ffSQR ¼ ffPQR

ffPQR� ffPQS ¼ ffSQR

ffPQR� ffSQR ¼ ffPQS

CHAPTER 1 Some Basic Rules10
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PROBLEM 1-3

Look at Fig. 1-6. Suppose S is some point on line M other than point Q.

What can we say about the lengths of line segments PS and SR?

SOLUTION 1-3

The solutions to problems like this can be made easier by making your own

drawings. The more complicated the language (geometry problems can some-

times read like ‘‘legalese’’), the more helpful drawings become. With the aid

of your own sketch, you should be able to see that for every point S on lineM

(other than point Q, of course), the distances PS and SR are greater than the

distances PQ and QR, respectively.

PROBLEM 1-4

Look at Fig. 1-8. Suppose that point S is moved perpendicularly with respect

to the page (either straight toward you or straight away from you), so S no

longer lies in the same plane as points P, Q, and R. What can we say about

the measures of ffPQR, ffPQS, and ffSQR?

SOLUTION 1-4

In this situation, the sum of the measures of ffPQS and ffSQR is greater than

the measure of ffPQR. This is because the measures of both ffPQS and ffSQR

increase if point S departs perpendicularly from the plane containing points

P, Q, and R. As point S moves further and further toward or away from you,

the measures of ffPQS and ffSQR increase more and more.

More about Lines and Angles
In the confines of a single geometric plane, lines and angles behave according

to various rules. The following are some of the best-known principles.

PARALLEL LINES

Two lines are parallel if and only if they lie in the same plane and they do not

intersect at any point. Two line segments or rays that lie in the same plane are

parallel if and only if, when extended infinitely in both directions to form

complete lines, those complete lines do not intersect at any point.

CHAPTER 1 Some Basic Rules 11



COMPLEMENTARY AND SUPPLEMENTARY

Two angles that lie in the same plane are said to be complementary angles

(they ‘‘complement’’ each other) if and only if the sum of their measures is

908 (�/2 rad). Two angles in the same plane are said to be supplementary

angles (they ‘‘supplement’’ each other) if and only if the sum of their mea-

sures is 1808 (� rad).

ADJACENT ANGLES

Suppose that L andM are two lines that intersect at a point P. Then any two

adjacent angles between lines L and M are supplementary. This can be illu-

strated by drawing two intersecting lines, and noting that pairs of adjacent

angles always form a straight angle, that is, an angle of 1808 (� rad) deter-

mined by the intersection point and one of the two lines.

VERTICAL ANGLES

Suppose that L and M are two lines that intersect at a point P. Opposing

pairs of angles, denoted x and y in Fig. 1-9, are known as vertical angles.

Pairs of vertical angles always have equal measure. (The term ‘‘vertical’’ in

this context is misleading; a better term would be ‘‘opposite’’ or ‘‘opposing.’’

But a long time ago, somebody decided that ‘‘vertical’’ was good enough, and

the term stuck.)

CHAPTER 1 Some Basic Rules12
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ALTERNATE INTERIOR ANGLES

Suppose that L andM are parallel lines. Let N be a line that intersects lines L

and M at points P and Q, respectively. Line N is called a transversal to the

parallel lines L and M. In Fig. 1-10, angles labeled x are alternate interior

angles; the same holds true for angles labeled y. Pairs of alternate interior

angles always have equal measure.

If line N is perpendicular to lines L andM, then x ¼ y. Conversely, if x ¼

y, then N is perpendicular to lines L andM. When a logical statement works

both ways like this, the expression ‘‘if and only if’’ (often abbreviated ‘‘iff’’) is

used. Here, x ¼ y iff N is perpendicular to both L and M. The phrase ‘‘is

perpendicular to’’ is often replaced by the symbol ?. So in shorthand, we can

write (N ? L and N ? M) iff x ¼ y.

ALTERNATE EXTERIOR ANGLES

Suppose that L andM are parallel lines. Let N be a line that intersects L and

M at points P and Q, respectively. In Fig. 1-11, angles labeled x are alternate

exterior angles; the same holds true for angles labeled y. Pairs of alternate

exterior angles always have equal measure. In addition, (N ? L and N ?M)

iff x ¼ y.

CORRESPONDING ANGLES

Suppose that L andM are parallel lines. Let N be a line that intersects L and

M at points P and Q, respectively. In Fig. 1-12, angles labeled w are corre-

CHAPTER 1 Some Basic Rules 13
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sponding angles; the same holds true for angles labeled x, y, and z. Pairs of

corresponding angles always have equal measure. In addition, N is perpen-

dicular to both L and M if and only if one of the following is true:

w ¼ x

y ¼ z

w ¼ y

x ¼ z

In shorthand, this statement is written as follows:

ðN ? L and N ?MÞ iff ðw ¼ x or y ¼ z or w ¼ y or x ¼ zÞ

CHAPTER 1 Some Basic Rules14
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PARALLEL PRINCIPLE

Suppose L is a line and P is a point not on L. Then there is one, but only one,

line M through P, such that M is parallel to L (Fig. 1-13). This is known as

the parallel principle or parallel postulate, and is one of the most important

postulates in Euclidean geometry.

In certain variants of geometry, the parallel postulate does not necessarily

hold true. The denial of the parallel postulate forms the cornerstone of non-

Euclidean geometry. We will look at this subject in Chapter 11.

PERPENDICULARITY REPEATED

Let L and M be lines that lie in the same plane. Suppose both L and M

intersect a third line N, and both L andM are perpendicular to N. Then lines

L and M are parallel to each other (Fig. 1-14).

CHAPTER 1 Some Basic Rules 15
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In this drawing, the fact that two lines are perpendicular (they intersect at

a right angle) is indicated by marking the intersection points with little

‘‘square-offs.’’ This is a standard notation for indicating that lines, line seg-

ments, or rays are perpendicular at a point of intersection. Alternatively, we

can write ‘‘908’’ or ‘‘�/2 rad’’ near the intersection point.

PROBLEM 1-5

Suppose you are standing on the edge of a highway. The road is perfectly

straight and flat, and the pavement is 20 meters wide everywhere. Suppose

you lay a string across the road so it intersects one edge of the pavement at a

708 angle, measured with respect to the edge itself. If you stretch the string

out so it is perfectly straight, and spool out enough of it so it crosses the other

edge of the road, at what angle will the string intersect the other edge of the

pavement, measured relative to that edge? At what angle will the string

intersect the center line of the road, measured relative to the center line?

SOLUTION 1-5

This problem involves a double case of alternate interior angles, illustrated in

Fig. 1-10. Alternatively, the principle for corresponding angles (Fig. 1-12) can

be invoked. The edges of the pavement are parallel to each other, and also are

both parallel to the center line. Therefore, the string will intersect the other

edge of the road at a 708 angle; it will also cross the center line at a 708 angle.

Note that these angles are expressed between the string and the pavement

edges and center line themselves, not with respect to normals to the pavement

edge or the center line (as is often done in physics).

PROBLEM 1-6

What are the measures of the above angles with respect to normals to the

pavement edges and center line?

SOLUTION 1-6

A normal to any line always subtends an angle of 908 relative to that line.

Thus, the string will cross both edges of the pavement at an angle of 908

�708, or 208, relative to the normal. We know this from the principle of angle

addition and subtraction, shown in Fig. 1-8. The string will also cross the

center line at an angle of 208 with respect to the normal.

Don’t conduct experiments like those of Problems 1-5 and 1-6 on real roads.

If you want to illustrate these things for yourself, make your ‘‘highway’’ with

a long length of freezer paper, and perform the experiment in your home with

the aid of a protractor, some string, a yardstick or meter stick, and a pencil.

Don’t let small children or animals trip or slip on the freezer paper, try to eat

it, or otherwise have an accident with it.

CHAPTER 1 Some Basic Rules16



Quiz
Refer to the text in this chapter if necessary. A good score is eight correct.

Answers are in the back of the book.

1. An angle measures 308. How many radians is this, approximately?

You can use a calculator if you need it.

(a) 0.3333 rad

(b) 0.5000 rad

(c) 0.5236 rad

(d) 0.7854 rad

2. Consider a half-open line segment PQ, which includes the end point P

but not the end point Q. Let line L1 be the perpendicular bisector of

PQ, and suppose that L1 intersects the line segment PQ at point Q1.

Now imagine the half-open line segment PQ1, which includes point P

but not point Q1. Let line L2 be the perpendicular bisector of PQ1, and

suppose that L2 intersects the line segment PQ1 at point Q2. Imagine

this process being repeated, forming perpendicular bisectors L3, L4,

L5, . . ., crossing line segment PQ at points Q3, Q4, Q5, . . ., which keep

getting closer and closer to P. After how many repetitions of this

process will the perpendicular bisector pass through point P? Draw

a picture of this situation if you cannot envision it from this wording.

(a) The perpendicular bisector will never pass through P, no matter

how many times the process is repeated

(b) The question cannot be answered without more information

(c) This question is meaningless, because a half-open line segment

cannot have a perpendicular bisector

(d) This question is meaningless, because a half-open line segment has

infinitely many perpendicular bisectors

3. Suppose that a straight section of railroad crosses a straight stretch of

highway. The acute angle between the tracks and the highway center

line measures exactly 1 rad. What is the measure of the obtuse angle

between the tracks and the highway center line?

(a) This question cannot be answered without more information

(b) 1 rad

(c) �/2 rad

(d) � �1 rad
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4. An open line segment

(a) contains neither of its end points

(b) contains one of its end points

(c) contains two of its end points

(d) contains three of its end points

5. Two different, straight lines in a Euclidean plane are parallel if and

only if

(a) they intersect at an angle of � rad

(b) they intersect at an angle of 2� rad

(c) they intersect at one and only one point

(d) they do not intersect at any point

6. Suppose you choose two points at random in a plane. How many

Euclidean line segments exist that connect these two points?

(a) None

(b) One

(c) More than one

(d) Infinitely many

7. The measures of vertical angles between intersecting lines

(a) always add up to 908

(b) always add up to 1808

(c) always add up to 3608

(d) depend on the angle at which the lines intersect

8. Two lines are orthogonal. The measure of the angle between them is

therefore

(a) 08

(b) � rad

(c) 2� rad

(d) �/2 rad

9. When an angle is bisected, two smaller angles are formed. These

smaller angles

(a) are obtuse

(b) measure 908

(c) have equal measure

(d) have measures that add up to 1808

10. Suppose two straight lines cross at a point P, and the lines are not

perpendicular. Call the measures of the obtuse vertical angles x1 and

x2. Which of the following equations is true?

CHAPTER 1 Some Basic Rules18



(a) x1 < x2 (that is, x1 is smaller than x2)

(b) x1 > x2 (that is, x1 is greater than x2)

(c) x1 ¼ x2
(d) x1 þ x2 ¼ 1808
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CHAPTER
2

Triangles

If you ever took a course in plane geometry, you remember triangles. Do you

recall being forced to learn formal proofs about them? We won’t go through

proofs here, but important facts about triangles are worth stating. If this is

the first time you’ve worked with triangles, you should find most of the

information in this chapter intuitively easy to grasp.

Triangle Definitions
In mathematics, it’s essential to know exactly what one is talking about,

without any ‘‘loopholes’’ or ambiguities. This is why there are formal defini-

tions for almost everything (except primitives such as the point and the line).

WHAT IS A TRIANGLE?

First, let’s define what a triangle is, so we will not make the mistake of calling

something a triangle when it really isn’t. A triangle is a set of three line

segments, joined pairwise at their end points, and including those end points.

The three points must not be collinear; that is, they must not all lie on the
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same straight line. For our purposes, we assume that the universe in which we

define the triangle is Euclidean (not ‘‘warped’’ like the space around a black

hole). In such an ideal universe, the shortest distance between any two points

is defined by the straight line segment connecting those two points.

VERTICES

Figure 2-1 shows three points, called A, B, and C, connected by line segments

to form a triangle. The points are called the vertices of the triangle. Often,

other uppercase letters are used to denote the vertices of a triangle. For

example, P, Q, and R are common choices.

NAMING

The triangle in Fig. 2-1 can be called, as you might guess, ‘‘triangle ABC.’’ In

geometry, it is customary to use a little triangle symbol (�) in place of the

word ‘‘triangle.’’ This symbol is actually the uppercase Greek letter delta.

Fig. 2-1 illustrates a triangle that we can call �ABC.

SIDES

The sides of the triangle in Fig. 2-1 are named according to their end points.

Thus, �ABC has three sides: line segment AB, line segment BC, and line

segment CA. There are other ways of naming the sides, but as long as there is

no confusion, we can call them just about anything.

INTERIOR ANGLES

Each vertex of a triangle is associated with an interior angle, which always

measures more than 08 (0 rad) but less than 1808 (� rad). In Fig. 2-1, the
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interior angles are denoted x, y, and z. Sometimes, italic lowercase Greek

letters are used instead. Theta (pronounced ‘‘THAY-tuh’’) is a popular

choice. It looks like a leaning numeral zero with a dash across it (�).

Subscripts can be used to denote the interior angles of a triangle, for example,

�a, �b, and �c for the interior angles at vertices A, B, and C, respectively.

SIMILAR TRIANGLES

Two triangles are directly similar if and only if they have the same propor-

tions in the same rotational sense. This means that one triangle is an enlarged

and/or rotated copy of the other. Some examples of similar triangles are

shown in Fig. 2-2. If you take any one of the triangles, enlarge it or reduce

it uniformly and rotate it clockwise or counterclockwise to the correct extent,

you can place it exactly over any of the other triangles. Two triangles are not

directly similar if it is necessary to flip one of the triangles over, in addition to

changing its size and rotating it, in order to be able to place it over the other.

Two triangles are inversely similar if and only if they are directly similar

when considered in the opposite rotational sense. In simpler terms, they are

inversely similar if and only if the mirror image of one is directly similar to

the other.

If there are two triangles iABC and iDEF that are directly similar, we

can symbolize this by writingiABC 	iDEF. The direct similarity symbol

looks like a wavy minus sign. If the trianglesiABC andiDEF are inversely

similar, the situation is more complicated because there are three ways this

can happen. Here they are:

� Points D and E are transposed, so iABC 	 iEDF
� Points E and F are transposed, so iABC 	 iDFE
� Points D and F are transposed, so iABC 	 iFED
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CONGRUENT TRIANGLES

There is disagreement in the literature about the exact meaning of the terms

congruence and congruent when describing geometric figures in a plane. Some

texts say two objects in a plane are congruent if and only if one can be placed

exactly over the other after a rigid transformation (rotating it or moving it

around, but not flipping it over). Other texts define congruence to allow

flipping over, as well as rotation and motion. Let’s stay away from that

confusion, and make two definitions.

Two triangles exhibit direct congruence (they are directly congruent) if

and only if they are directly similar, and the corresponding sides have

the same lengths. Some examples are shown in Fig. 2-3. If you take one

of the triangles and rotate it clockwise or counterclockwise to the correct

extent, you can ‘‘paste’’ it precisely over any of the other triangles.

Rotation and motion are allowed, but flipping over, also called mirroring,

is forbidden. In general, triangles are not directly congruent if you must flip

one of them over, in addition to rotating it, in order to be able to place it

over the other.

Two triangles exhibit inverse congruence (they are inversely congruent) if

and only if they are inversely similar, and they are also the same size.

Rotation and motion are allowed, and mirroring is actually required.

If there are two triangles iABC and iDEF that are directly congruent,

we can symbolize this by writing iABC ffi iDEF. The direct congruence

symbol is an equals sign with a direct similarity symbol on top. If the trian-

gles iABC andiDEF are inversely congruent, the same situation arises as

is the case with inverse similarity. Three possibilities exist:
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� Points D and E are transposed, so iABC ffi iEDF
� Points E and F are transposed, so iABC ffi iDFE
� Points D and F are transposed, so iABC ffi iFED

TWO CRUCIAL FACTS

Here are two important things you should remember about triangles that are

directly congruent.

If two triangles are directly congruent, then their corresponding sides have

equal lengths as you proceed around both triangles in the same direction. The

converse of this is also true. If two triangles have corresponding sides with

equal lengths as you proceed around them both in the same direction, then

the two triangles are directly congruent.

If two triangles are directly congruent, then their corresponding interior

angles (that is, the interior angles opposite the corresponding sides) have

equal measures as you proceed around both triangles in the same direction.

The converse of this is not necessarily true. It is possible for two triangles to

have corresponding interior angles with equal measures when you proceed

around them both in the same direction, and yet the two triangles are not

directly congruent.

TWO MORE CRUCIAL FACTS

Here are two ‘‘mirror images’’ of the facts just stated. They concern triangles

that are inversely congruent. The wording is almost (but not quite) the same!

If two triangles are inversely congruent, then their corresponding sides

have equal lengths as you proceed around the triangles in opposite directions.

The converse of this is also true. If two triangles have corresponding sides

with equal lengths as you proceed around them in opposite directions, then

the two triangles are inversely congruent.

If two triangles are inversely congruent, then their corresponding interior

angles have equal measures as you proceed around the triangles in opposite

directions. The converse of this is not necessarily true. It is possible for two

triangles to have corresponding interior angles with equal measures as you

proceed around them in opposite directions, and yet the two triangles are not

inversely congruent.
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POINT–POINT–POINT PRINCIPLE

Let P, Q, and R be three distinct points that do not all lie on the same straight

line. Then the following statements are true (Fig. 2-4):

� P, Q, and R lie at the vertices of some triangle T
� T is the only triangle having vertices P, Q, and R

PROBLEM 2-1

Suppose you have a perfectly rectangular field surrounded by four straight

lengths of fence. You build a straight fence diagonally across this field, so the

diagonal fence divides the field into two triangles. Are these triangles directly

congruent? If they are not congruent, are they directly similar?

SOLUTION 2-1

It helps to draw a diagram of this situation. If you do this, you can see that

the two triangles are directly congruent. Consider the theoretical images of

the triangles (which, unlike the fences, you can move around in your imagi-

nation). You can rotate one of these theoretical triangles exactly 1808 (� rad),

either clockwise or counterclockwise, and move it a short distance upward

and to the side, and it will fit exactly over the other one.

PROBLEM 2-2

Suppose you have a telescope equipped with a camera. You focus on a

distant, triangular sign and take a photograph of it. Then you double the

magnification of the telescope and, making sure the whole sign fits into the

field of view of the camera, you take another photograph. When you get the

photos developed, you see triangles in each photograph. Are these triangles

directly congruent? If not, are they directly similar?

SOLUTION 2-2

In the photos, one triangle looks larger than the other. But unless there is

something wrong with the telescope, or you use a star diagonal when taking
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one photograph and not when taking the other (a star diagonal renders an

image laterally inverted), the two triangle images have the same shape in the

same rotational sense. They are not directly congruent, but they are directly

similar.

Direct Congruence and Similarity Criteria
There are four criteria that can be used to define sets of triangles that are

directly congruent. These are called the side–side–side (SSS), side–angle–side

(SAS), angle–side–angle (ASA), and angle–angle–side (AAS) principles. The

last of these can also be called side–angle–angle (SAA). A fifth principle,

called angle–angle–angle (AAA), can be used to define sets of triangles that

are directly similar.

SIDE–SIDE–SIDE (SSS)

Let S, T, and U be defined, specific line segments. Let s, t, and u be the

lengths of those three line segments, respectively. Suppose that S, T, and U

are joined at their end points P, Q, and R (Fig. 2-4). Then the following

statements hold true:

� Line segments S, T, and U determine a triangle
� This is the only triangle that has sides S, T, and U in this order, as you

proceed around the triangle in the same rotational sense
� All triangles having sides of lengths s, t, and u in this order, as you

proceed around the triangles in the same rotational sense, are directly

congruent

SIDE–ANGLE–SIDE (SAS)

Let S and T be two distinct line segments. Let P be a point that lies at the

ends of both of these line segments. Denote the lengths of S and T by their

lowercase counterparts s and t, respectively. Suppose S and T subtend an

angle x, expressed in the counterclockwise sense, at point P (Fig. 2-5). Then

the following statements are all true:

� S, T, and x determine a triangle
� This is the only triangle having sides S and T that subtend an angle x,

measured counterclockwise from S to T, at point P
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� All triangles containing two sides of lengths s and t that subtend an

angle x, measured counterclockwise from the side of length s to the side

of length t, are directly congruent

ANGLE–SIDE–ANGLE (ASA)

Let S be a line segment having length s, and whose end points are P and Q.

Let x and y be the angles subtended relative to S by two lines L and M that

run through P and Q, respectively (Fig. 2-6), such that both angles are

expressed in the counterclockwise sense. Then the following statements are

all true:

� x, S, and y determine a triangle
� This is the only triangle determined by x, S, and y, proceeding from left

to right
� All triangles containing one side of length s, and whose other two sides

subtend angles of x and y relative to the side whose length is s, with x

on the left and y on the right and both angles expressed in the counter-

clockwise sense, are directly congruent
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ANGLE–ANGLE–SIDE (AAS) OR SIDE–ANGLE–ANGLE
(SAA)

Let S be a line segment having length s, and whose end points are P and Q.

Let x and y be angles, one adjacent to S and one opposite, and both

expressed in the counterclockwise sense (Fig. 2-7). Then the following state-

ments are all true:

� S, x, and y determine a triangle
� This is the only triangle determined by S, x, and y in the counterclock-

wise sense
� All triangles containing one side of length s, and two angles x and y

expressed and proceeding in the counterclockwise sense, are directly

congruent

ANGLE–ANGLE–ANGLE (AAA)

Let L, M, and N be lines that lie in a common plane and intersect in three

points as illustrated in Fig. 2-8. Let the angles at these points, all expressed in

the counterclockwise sense, be x, y, and z. Then the following statements are

all true:

� There are infinitely many triangles with interior angles x, y, and z, in

this order and proceeding in the counterclockwise sense
� All triangles with interior angles x, y, and z, in this order, expressed

and proceeding in the counterclockwise sense, are directly similar
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LET IT BE SO!

Are you wondering why the word ‘‘let’’ is used so often? For example, ‘‘Let

P, Q, and R be three distinct points.’’ This sort of language is customary.

You’ll find it all the time in mathematical literature. When you are admon-

ished to ‘‘let’’ things be a certain way, you are in effect being asked to

imagine, or suppose, that things are such, to set the scene in your mind for

statements or problems that follow.

PROBLEM 2-3

Refer to Fig. 2-6. Suppose x and y both measure 608. If the resulting triangle

is reversed from left to right—that is, flipped over around a vertical axis—will

the resulting triangle be directly similar to the original? Will it be directly

congruent to the original?

SOLUTION 2-3

This is a special case in which a triangle can be flipped over and the result is

not only inversely congruent, but also directly congruent, to the original. This

is the case because the triangle is symmetrical with respect to a straight-line

axis. To clarify this, draw a triangle after the pattern in Fig. 2-6, but using a

protractor to generate 608 angles for both x and y. (As it is drawn in this

book, the figure is not symmetrical and the angles are not both 608.) Then

look at the image you have drawn, both directly and while standing in front

of a mirror. The two mirror-image triangles are, in this particular case,

identical.

PROBLEM 2-4

Suppose, in the situation of Problem 2-3, you split the triangle, whose angles

x and y both measure 608, right down the middle. You do this by dropping a

vertical line from the top vertex so it intersects line segment PQ at its mid-
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point. Are the resulting two triangles, each comprising half of the original,

directly similar? Are they directly congruent? Are they inversely similar? Are

they inversely congruent?

SOLUTION 2-4

These triangles are mirror images of each other, but you cannot magnify,

reduce, and/or rotate one of these triangles to make it fit exactly over the

other. The triangles are not directly similar, nor are they directly congruent,

even though, in a sense, they are the same size and shape.

Remember that for two triangles to be directly similar, the lengths of their

sides must be in the same proportion, in order, as you proceed in the same

rotational sense (counterclockwise or clockwise) around them both. In order

to be directly congruent, their sides must have identical lengths, in order, as

you proceed in the same rotational sense, around both.

These two triangles are inversely similar and inversely congruent, because

they are mirror images of each other and are the same size.

Types of Triangles
Triangles can be categorized qualitatively (that means according to their

qualities or characteristics). Here are the most common character profiles.

ACUTE TRIANGLE

When each of the three interior angles of a triangle are acute, that triangle is

called an acute triangle. In such a triangle, none of the angles measures as

much as 908 (�/2 rad). Examples of acute triangles are shown in Fig. 2-9.

CHAPTER 2 Triangles30

Fig. 2-9. In an acute triangle, all angles measure less than 908 (�/2 rad).



OBTUSE TRIANGLE

When one of the interior angles of a triangle is obtuse, that triangle is called

an obtuse triangle. Such a triangle has one obtuse interior angle, that is, one

angle that measures more than 908 (�/2 rad). Some examples are shown in

Fig. 2-10.

ISOSCELES TRIANGLE

Suppose we have a triangle with sides S, T, and U, having lengths s, t, and u,

respectively. Let x, y, and z be the angles opposite sides S, T, and U, respec-

tively. Suppose any of the following equations hold:

s ¼ t

t ¼ u

s ¼ u

x ¼ y

y ¼ z

x ¼ z

One example of such a situation is shown in Fig. 2-11. This kind of triangle is

called an isosceles triangle, and the following logical statements are true:

s ¼ t() x ¼ y

t ¼ u() y ¼ z

s ¼ u() x ¼ z
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The double-shafted double arrow ( () ) means ‘‘if and only if.’’ It is well

to remember this. You should also know that a double-shafted single arrow

pointing to the right ()) stands for ‘‘implies’’ or ‘‘means it is always true

that.’’ When we say s ¼ t () x ¼ y, it is logically equivalent to saying s ¼ t

) x ¼ y and also x ¼ y ) s ¼ t.

EQUILATERAL TRIANGLE

Suppose we have a triangle with sides S, T, and U, having lengths s, t, and u,

respectively. Let x, y, and z be the angles opposite sides S, T, and U, respec-

tively. Suppose either of the following are true:

s ¼ t ¼ u

or

x ¼ y ¼ z

Then the triangle is said to be an equilateral triangle (Fig. 2-12), and the

following logical statement is valid:

s ¼ t ¼ u() x ¼ y ¼ z

This means that all equilateral triangles have precisely the same shape; they

are all directly similar. (They all happen to be inversely similar, too.)
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RIGHT TRIANGLE

Suppose we have a triangleiPQR with sides S, T, and U, having lengths s, t,

and u, respectively. If one of the interior angles of this triangle measures 908

(�/2 rad), an angle that is also called a right angle, then the triangle is called a

right triangle. In Fig. 2-13, a right triangle is shown in which ffPRQ is a right

angle. The side opposite the right angle is the longest side, and is called the

hypotenuse. In Fig. 2-13, this is the side of length u.

Special Facts
Triangles have some special properties. These characteristics have applica-

tions in many branches of science and engineering.
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A TRIANGLE DETERMINES A UNIQUE PLANE

The vertex points of a specific triangle define one, and only one, Euclidean

(that is, flat) geometric plane. A specific Euclidean plane can, however, con-

tain infinitely many different triangles. This is intuitively obvious when you

give it a little thought. Just try to imagine three points that don’t all lie in the

same plane! Incidentally, this principle explains why a three-legged stool

never wobbles. It is the reason why cameras and telescopes are commonly

mounted on tripods (three-legged structures) rather than structures with four

or more legs.

SUM OF ANGLE MEASURES

In any triangle, the sum of the measures of the interior angles is 1808 (� rad).

This holds true regardless of whether it is an acute, right, or obtuse triangle,

as long as all the angles are measured in the plane defined by the three

vertices of the triangle.

THEOREM OF PYTHAGORAS

Suppose we have a right triangle defined by points P, Q, and R whose sides

are S, T, and U having lengths s, t, and u, respectively. Let u be the hypo-

tenuse (Fig. 2-13). Then the following equation is always true:

s2 þ t2 ¼ u2

The converse of this is also true: If there is a triangle whose sides have lengths

s, t, and u, and the above equation is true, then that triangle is a right

triangle.

PERIMETER OF TRIANGLE

Suppose we have a triangle defined by points P, Q, and R, and having sides S,

T, and U of lengths s, t, and u, as shown in Fig. 2-14. Then the perimeter, B,

of the triangle is given by the following formula:

B ¼ sþ tþ u
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INTERIOR AREA OF TRIANGLE

Consider the same triangle as defined above; refer again to Fig. 2-14. Let s be

the base length, and let h be the height, or the length of a perpendicular line

segment between point P and side S. The interior area, A, can be found with

this formula:

A ¼ sh=2

PROBLEM 2-5

Suppose that iPQR in Fig. 2-14 has sides of lengths s ¼ 10 meters, t ¼ 7

meters, and u ¼ 8 meters. What is the perimeter B of this triangle?

SOLUTION 2-5

Simply add up the lengths of the sides:

B ¼ sþ tþ u

¼ ð10þ 7þ 8Þ meters

¼ 25 meters

PROBLEM 2-6

Are there any triangles having sides of lengths 10 meters, 7 meters, and 8

meters, in that order proceeding clockwise, that are not directly congruent to

iPQR as described in Problem 2-5?

SOLUTION 2-6

No. According to the side–side–side (SSS) principle, all triangles having sides

of lengths 10 meters, 7 meters, and 8 meters, in this order as you proceed in

the same rotational sense, are directly congruent.
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Quiz
Refer to the text in this chapter if necessary. A good score is eight correct.

Answers are in the back of the book.

1. Suppose there are three triangles, callediABC,iDEF, andiPQR.

If iABC ffi iDEF and iDEF ffi iPQR, we can surmise that

iABC and iPQR are

(a) directly congruent

(b) directly similar, but not directly congruent

(c) inversely congruent

(d) not related in any particular way

2. Suppose there are two triangles, called iABC and iDEF. If these

two triangles are directly similar, then we can be certain that

(a) ffABC and ffDFE have equal measure

(b) ffBCA and ffEFD have equal measure

(c) ffCAB and ffFED have equal measure

(d) both triangles are equilateral

3. Suppose a given triangle is directly congruent to its mirror image. We

can be absolutely certain that this triangle is

(a) equilateral

(b) isosceles

(c) acute

(d) obtuse

4. Suppose a triangle has sides of lengths s, t, and u, in centimeters (cm).

Which of the following situations represents a right triangle? Assume

the lengths are mathematically exact (no measurement error).

(a) s ¼ 2 cm, t ¼ 3 cm, u ¼ 4 cm

(b) s ¼ 4 cm, t ¼ 5 cm, u ¼ 7 cm

(c) s ¼ 6 cm, t ¼ 8 cm, u ¼ 10 cm

(d) s ¼ 7 cm, t ¼ 11 cm, u ¼ 13 cm

5. Suppose there are two triangles, callediABC andiDEF. Also sup-

pose that side DE is twice as long as side AB, side EF is twice as long

as side BC, and side DF is twice as long as side AC. Which of the

following statements is true?

(a) The interior area of iDEF is twice the interior area of iABC

(b) The perimeter of iDEF is four times the perimeter of iABC
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(c) The interior area of iDEF is four times the interior area of

iABC

(d) iABC ffi iDEF

6. Suppose a triangle has a base length of 4 feet and a height of 4 feet. Its

interior area is

(a) 4 square feet

(b) 8 square feet

(c) 16 square feet

(d) impossible to determine without more information

7. The perimeter of the triangle described in the previous question is

(a) 8 feet

(b) 16 feet

(c) 22 feet

(d) impossible to determine without more information

8. Draw a triangle on a piece of paper. Label the vertices {, [, and (,

proceeding in a counterclockwise sense. Look at this figure and call it

i{[(. Now hold the piece of paper between your eyes and a bright

light, and turn the inked side away from you but keep the page right-

side-up. You should see a figure that you can call i)]}, because the

vertices appear as ), ], and } in a counterclockwise sense. Which of the

following statements is true?

(a) These two triangles are directly congruent

(b) These two triangles are directly similar, but not directly congruent

(c) These two triangles are inversely congruent

(d) These two triangles are inversely similar, but not inversely con-

gruent

9. Take the same piece of paper that you used in the preceding problem.

Look at i{[(. Now turn the paper upside down, keeping the inked

side facing you. You should see another triangle that you can calli}])

as the vertices appear in a counterclockwise sense. Which of the fol-

lowing statements is true?

(a) These two triangles are directly congruent

(b) These two triangles are directly similar, but not directly congruent

(c) These two triangles are inversely congruent

(d) These two triangles are inversely similar, but not inversely con-

gruent
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10. Suppose there is a triangle, two of the interior angles of which measure

308. The measure of the third angle is

(a) impossible to determine without more information

(b) �/6 rad

(c) �/4 rad

(d) 2�/3 rad
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CHAPTER
3

Quadrilaterals

A four-sided geometric plane figure is called a quadrilateral. Because a quad-

rilateral has more sides than a triangle, there are more types. The allowable

range of interior-angle measures is greater than is the case with triangles.

With a triangle, an interior angle must always measure more than 08 (0 rad)

but less than 1808 (� rad); with a quadrilateral, the measure of an interior

angle can be anything up to, but not including, 3608 (2� rad).

Types of Quadrilaterals
The categories of quadrilateral are the square, the rhombus, the rectangle, the

parallelogram, the trapezoid, and the general quadrilateral. Let’s define these

and look at some examples.

IT’S THE LAW!

There are two properties that a four-sided geometric figure absolutely must

have—laws it is required to obey—if it is to qualify as a legitimate plane

quadrilateral. First, all four vertices must lie in the same plane. Second, all
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four sides must be straight line segments of finite, positive length. Curves are

not allowed, nor are points, infinitely long rays, or infinitely long lines. For

our purposes, we’ll add the constraint that a true plane quadrilateral cannot

have sides whose lengths are negative.

The vertices of a triangle always lie in a single geometric plane, because

any three points, no matter which ones you choose, define a unique geometric

plane. But when you have four points, they don’t all necessarily lie in the

same plane. Any three of them do, but the fourth one can get ‘‘out of align-

ment.’’ This is why a four-legged stool or table often wobbles, and why it is so

difficult to trim the lengths of the legs so the wobbling stops. Once the ends of

the legs lie in a single plane, and they define the vertices of a plane quad-

rilateral, the stool or table won’t wobble, as long as the floor is perfectly flat.

(Later in this book, we’ll take a look at some of the things that can happen

when a floor is not flat, or more particularly, what can take place when a

geometric universe is warped or curved.)

SQUARE

A square has four sides that are all of the same length. In addition, all the

interior angles are the same, and measure 908 (�/2 rad). Figure 3-1 shows the

general situation. The length of each side in this illustration is s units. There is

no limit to how large s can be, but it must be greater than zero.
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RHOMBUS

A rhombus is like a square in that all four sides are the same length. But the

angles don’t all have to be right angles. A square is a special type of rhombus

in which all four angles happen to have the same measure. But most rhom-

buses (rhombi?) look something like the example in Fig. 3-2. All four sides

have length s. Opposite angles have equal measure, but adjacent angles need

not. In this illustration, the two angles labeled x have equal measure, as do

the two angles labeled y. Another property of the rhombus is the fact that

both pairs of opposite sides are parallel.

RECTANGLE

A rectangle is like a square in that all four angles have equal measure. But the

sides don’t all have to be equally long. A square is a special type of rectangle

in which all four sides happen to be the same length. But most rectangles look

something like the example in Fig. 3-3. All four angles have the same mea-

sure, which must be 908 (�/2 rad). Opposite sides have equal length, but

adjacent sides need not. In this illustration, the two sides labeled s have

equal measure, as do the two sides labeled t.

PARALLELOGRAM

The defining characteristic of a parallelogram is that both pairs of opposite

sides are parallel. This alone is sufficient to make a plane quadrilateral qualify

as a parallelogram. Whenever both pairs of opposite sides in a quadrilateral
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are parallel, those pairs also have the same length. In addition, pairs of

opposite angles have equal measure. A rectangle is a special sort of paralle-

logram. So is a rhombus, and so is a square. Figure 3-4 shows an example of

a parallelogram in which both angles labeled x have equal measure, both

angles labeled y have equal measure, both sides labeled s are the same length,

and both sides labeled t are the same length.

TRAPEZOID

If we remove yet another restriction from the quadrilateral, we get a trape-

zoid. The only rule a trapezoid must obey is that one pair of opposite sides

must be parallel. Otherwise, anything goes! Figure 3-5 shows an example of a

trapezoid. The dashed lines represent parallel lines in which the two parallel

sides of the quadrilateral happen to lie. (The dashed lines are not part of the

quadrilateral itself.)
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Fig. 3-3. Example of a rectangle. Sides have lengths s and t, while the interior angles all

measure 908 (�/2 rad).

Fig. 3-4. Example of a parallelogram. Sides have lengths s and t, while x and y denote

interior angle measures.



GENERAL QUADRILATERAL

In a general quadrilateral, there are no restrictions at all on the lengths of the

sides, although the ‘‘nature of the beast’’ dictates that no angle can be outside

the range 08 (0 rad) to 3608 (2� rad), non-inclusive. As long as all four

vertices lie in the same geometric plane, and as long as all four sides of the

figure are straight line segments of finite and positive length, it’s all right.

Of course, any quadrilateral can be considered ‘‘general.’’ A rectangle, for

example, is just a specific type of general quadrilateral. But there are plenty of

general quadrilaterals that don’t fall into any of the above categories. They

don’t exhibit any sort of symmetry or apparent orderliness. These are known

as irregular quadrilaterals. Three examples are shown in Fig. 3-6.
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Fig. 3-5. In a trapezoid, one pair of opposite sides is parallel.

Fig. 3-6. Three examples of irregular quadrilaterals. The sides all have different lengths, and

the angles all have different measures.



PROBLEM 3-1

What type of quadrilateral is formed by the boundaries of a soccer field?

SOLUTION 3-1

Assuming the groundskeepers have done their job correctly, a soccer field is

shaped like a rectangle. All four corners form right angles (908). In addition,

the lengths of opposite sides are equal. The two sidelines are the same length,

as are the two end lines.

PROBLEM 3-2

Suppose a quadrilateral ABCD is defined with the vertices going counter-

clockwise in alphabetical order. Suppose further that ffABC ¼ ffCDA and

ffBCD ¼ ffDAB. What can be said about this quadrilateral?

SOLUTION 3-2

It helps to draw pictures here. Draw several examples of quadrilaterals that

meet these two requirements. You’ll see that ffABC is opposite ffCDA, and

ffBCD is opposite ffDAB. The fact that opposite pairs of angles have equal

measure means that the quadrilateral must be a parallelogram. It might be a

special case of the parallelogram, such as a rhombus, rectangle, or square;

but the only restriction we are given is the fact that ffABC ¼ ffCDA and ffBCD

¼ ffDAB. Therefore, ABCD can be any sort of parallelogram.

Facts about Quadrilaterals
Every quadrilateral has certain properties, depending on the ‘‘species.’’ Here

are some useful facts concerning these four-sided plane figures.

SUM OF MEASURES OF INTERIOR ANGLES

No matter what the shape of a quadrilateral, as long as all four sides are

straight line segments of positive and finite length, and as long as all four

vertices lie in the same plane, the sum of the measures of the interior angles is

3608 (2� rad). Figure 3-7 shows an example of an irregular quadrilateral. The

interior angles are denoted w, x, y, and z. In this example, angle w measures

more than 1808 (� rad). If you use your imagination, you might call this type

of quadrilateral a ‘‘boomerang,’’ although this is not an official geometric

term.
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PARALLELOGRAM DIAGONALS

Suppose we have a parallelogram defined by four points P, Q, R, and S. Let

D be a line segment connecting P and R as shown in Fig. 3-8A. Then D is a

minor diagonal of the parallelogram, and the following triangles defined by D

are congruent:

iPQR ffiiRSP
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Fig. 3-7. In any plane quadrilateral, the sum of the measures of the interior angles w, x, y,

and z is 3608 (2� rad).

Fig. 3-8. Triangles defined by the minor diagonal (A) or the major diagonal (B) of a paral-

lelogram are congruent.



Let E be a line segment connecting Q and S (Fig. 3-8B). Then E is a major

diagonal of the parallelogram, and the following triangles defined by E are

congruent:

iQRS ffiiSPQ

BISECTION OF PARALLELOGRAM DIAGONALS

Suppose we have a parallelogram defined by four points P, Q, R, and S. Let

D be the diagonal connecting P and R; let E be the diagonal connecting Q

and S (Fig. 3-9). Then D and E bisect each other at their intersection point T.

In addition, the following pairs of triangles are congruent:

iPQT ffiiRST

iQRT ffiiSPT

The converse of the foregoing is also true: If we have a plane quadrilateral

whose diagonals bisect each other, then that quadrilateral is a parallelogram.

RECTANGLE

Suppose we have a parallelogram defined by four points P, Q, R, and S.

Suppose any of the following statements is true for angles in degrees:

ffQRS ¼ 908 ¼ �=2 rad

ffRSP ¼ 908 ¼ �=2 rad

ffSPQ ¼ 908 ¼ �=2 rad

ffPQR ¼ 908 ¼ �=2 rad
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Fig. 3-9. The diagonals of a parallelogram bisect each other.



Then all four interior angles are right angles, and the parallelogram is a

rectangle: a four-sided plane polygon whose interior angles are all congruent.

The converse of this is also true: If a quadrilateral is a rectangle, then any

given interior angle is a right angle. Figure 3-10 shows an example of a

parallelogram PQRS in which ffQRS ¼ 908 ¼ �/2 rad. Because one angle

is a right angle and opposite pairs of sides are parallel, all four of the angles

must be right angles.

RECTANGLE DIAGONALS

Suppose we have a parallelogram defined by four points P, Q, R, and S. Let

D be the diagonal connecting P and R; let E be the diagonal connecting Q

and S. Let the length of D be denoted by d; let the length of E be denoted by e

(Fig. 3-11). If d ¼ e, then the parallelogram is a rectangle. The converse is

also true: if a parallelogram is a rectangle, then d ¼ e. Thus, a parallelogram

is a rectangle if and only if its diagonals have equal lengths.
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Fig. 3-10. If a parallelogram has one right interior angle, then the parallelogram is a

rectangle.

Fig. 3-11. The diagonals of a rectangle have equal length.



RHOMBUS DIAGONALS

Suppose we have a parallelogram defined by four points P, Q, R, and S. Let

D be the diagonal connecting P and R; let E be the diagonal connecting Q

and S. If D is perpendicular to E, then the parallelogram is a rhombus (Fig.

3-12). The converse is also true: If a parallelogram is a rhombus, then D is

perpendicular to E. A parallelogram is a rhombus if and only if its diagonals

are perpendicular.

TRAPEZOID WITHIN TRIANGLE

Suppose we have a triangle defined by three points P, Q, and R. Let S be the

midpoint of side PR, and let T be the midpoint of side PQ. Then line seg-

ments ST and RQ are parallel, and the figure defined by STQR is a trapezoid
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Fig. 3-12. The diagonals of a rhombus are perpendicular.

Fig. 3-13. A trapezoid is formed by ‘‘chopping off’’ the top of a triangle.



(Fig. 3-13). In addition, the length of line segment ST is half the length of line

segment RQ.

MEDIAN OF A TRAPEZOID

Suppose we have a trapezoid defined by four points P, Q, R, and S. Let T be

the midpoint of side PS, and let U be the midpoint of side QR. Line segment

TU is called the median of trapezoid PQRS. The median of a trapezoid is

always parallel to both the base and the top, and always splits the trapezoid

into two other trapezoids. That is, polygons PQUT and TURS are both

trapezoids (Fig. 3-14). In addition, the length of line segment TU is half

the sum of the lengths of line segments PQ and SR. That is, the length of

TU is equal to the average, or arithmetic mean, of the lengths of PQ and SR.

MEDIAN WITH TRANSVERSAL

Look again at Fig. 3-14. Suppose L is a transversal line that crosses both the

top of the large trapezoid (line segment PQ) and the bottom (line segment

SR). Then L also crosses the median, line segment TU. Let A be the point at

which L crosses PQ, let B be the point at which L crosses TU, and let C be the

point at which L crosses SR. Then the lengths of line segments AB and BC

are equal.

There is a second fact that should also be mentioned. Again, refer to Fig.

3-14. Suppose PQRS is a trapezoid, with sides PQ and RS parallel. Suppose

TU is a line segment parallel to both PQ and RS, and that intersects both of

the non-parallel sides of the trapezoid, that is, sides PS and QR. Let L be a

transversal line that crosses all three parallel line segments PQ, TU, and RS,
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Fig. 3-14. The median of a trapezoid, also showing a transversal line.



at the points A, B, and C respectively, as shown. In this scenario, if line

segments AB and BC are equally long, then line segment TU is the median

of the large trapezoid PQRS.

PROBLEM 3-3

Suppose a particular plane figure has diagonals that are the same length, and

in addition, they intersect at right angles. What can be said about this poly-

gon?

SOLUTION 3-3

From the above rules, this polygon must be a rectangle, because its diagonals

are the same length. But it must also be a rhombus, because its diagonals are

perpendicular to each other. There’s only one type of polygon that can be

both a rectangle and a rhombus, and that is a square. A square is a rhombus

in which both pairs of opposite interior angles happen to have the same

measure. A square is also a rectangle in which both pairs of opposite sides

happen to be equally long.

PROBLEM 3-4

Suppose a sign manufacturing company gets tired of making rectangular

billboards, and decides to put up a trapezoidal billboard instead. The top

and the bottom of the billboard are horizontal, but neither of the other sides

is vertical. The big sign measures 20 meters across the top edge, and 30 meters

across the bottom edge. Two different companies want to advertise on the

billboard, and both of them insist on having portions of equal height. What is

the length of the line that divides the spaces allotted to the two advertise-

ments? Does this represent a fair division of the sign area?

SOLUTION 3-4

The line segment that divides the two portions is the median of the sign. Its

length, therefore, is the average of 20 meters and 30 meters, which, as you

should be able to guess right away, is 25 meters. Whether or not this repre-

sents a fair split of the sign area can be debated. The advertiser on the bottom

gets more area than the advertiser on the top, but the ad on top is likely to be

the one that drivers in passing cars and trucks look at first. By the time

drivers are finished with the ad on the top, they might be passing the sign.

Perimeters and Areas
Interior area is an expression of the size of the region enclosed by a polygon,

and that lies in the same plane as all the vertices of the polygon. It is
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expressed in square units (or units squared). The perimeter of a polygon is the

sum of the lengths of its sides. Perimeter can also be defined as the distance

once around a polygon, starting at some point on one of its sides and pro-

ceeding clockwise or counterclockwise along the sides until that point is

encountered again. Perimeter is expressed in linear units (or, if you prefer,

‘‘plain old units’’).

PERIMETER OF PARALLELOGRAM

Suppose we have a parallelogram defined by points P, Q, R, and S, with sides

of lengths d and e as shown in Fig. 3-15. The two angles labeled x have equal

measure. Let d be the base length and let h be the height. Then the perimeter,

B, of the parallelogram is given by the following formula:

B ¼ 2dþ 2e

INTERIOR AREA OF PARALLELOGRAM

Suppose we have a parallelogram as defined above and in Fig. 3-15. The

interior area, A, is the product of the base length and the height:

A ¼ dh

PERIMETER OF RHOMBUS

Suppose we have a rhombus defined by points P, Q, R, and S, and having

sides all of which have the same length. The rhombus is a special case of the

parallelogram (Fig. 3-15) in which d ¼ e. Let the lengths of all four sides be
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Fig. 3-15. Perimeter and area of parallelogram. A parallelogram is a rhombus if and only if

d ¼ e.



denoted d. The perimeter, B, of the rhombus is given by the following

formula:

B ¼ 4d

INTERIOR AREA OF RHOMBUS

Suppose we have a rhombus as defined above and in Fig. 3-15, where d ¼ e.

Let the lengths of all four sides be denoted d. The interior area, A, of the

rhombus is the product of the length of any side and the height:

A ¼ dh

PERIMETER OF RECTANGLE

Suppose we have a rectangle defined by points P, Q, R, and S, and having

sides of lengths d and e as shown in Fig. 3-16. Let d be the base length, and let

e be the height. The perimeter, B, of the rectangle is given by the following

formula:

B ¼ 2dþ 2e

INTERIOR AREA OF RECTANGLE

Suppose we have a rectangle as defined above and in Fig. 3-16. The interior

area, A, is given by:

A ¼ de
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Fig. 3-16. Perimeter and area of rectangle. The figure is a square if and only if d ¼ e.



PERIMETER OF SQUARE

Suppose we have a square defined by points P, Q, R, and S, and having sides

all of which have the same length. The square is a special case of the rectangle

(Fig. 3-16) in which d ¼ e. Let the lengths of all four sides be denoted d. The

perimeter, B, of the square is given by the following formula:

B ¼ 4d

INTERIOR AREA OF SQUARE

Suppose we have a square as defined above and in Fig. 3-16, where d ¼ e. Let

the lengths of all four sides be denoted d. The interior area, A, is equal to the

square of the length of any side:

A ¼ d 2

PERIMETER OF TRAPEZOID

Suppose we have a trapezoid defined by points P, Q, R, and S, and having

sides of lengths d, e, f, and g as shown in Fig. 3-17. Let d be the base length,

let h be the height, let x be the angle between the sides having length d and e,

and let y be the angle between the sides having length d and g. Suppose the

sides having lengths d and f (line segments RS and PQ) are parallel. Then the

perimeter, B, of the trapezoid is:

B ¼ dþ eþ fþ g
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INTERIOR AREA OF TRAPEZOID

Suppose we have a trapezoid as defined above and in Fig. 3-17. The interior

area, A, is equal to the average (or arithmetic mean) of the lengths of the base

and the top, multiplied by the height. The formula for calculating A is as

follows:

A ¼ ½ðdþ f Þ=2�h

¼ ðdhþ fhÞ=2

Suppose m represents the length of the median of the trapezoid, that is, a line

segment parallel to the base and the top, and midway between them. Then

the interior area is equal to the product of the length of the median and the

height:

A ¼ mh

PROBLEM 3-5

Refer back to Problem 3-4. Suppose the whole billboard is 15 meters high.

Recall that it is a trapezoidal billboard, measuring 20 meters along the top

edge and 30 meters along the bottom. The sign is divided by a median,

horizontally placed midway between the top and the bottom. What fraction

of the total billboard surface area, as a percentage, does the advertiser with

the top half get?

SOLUTION 3-5

The length of the median, as determined in Problem 3-4, is 25 meters, which

is the average of the lengths of the bottom and the top. Thus m ¼ 25. We are

given that h ¼ 15. The total interior area of the sign, call it Atotal, is therefore:

Atotal ¼ 25 meters� 15 meters

¼ 375 meters squared

The area of the top half is found by considering the trapezoid in which m

forms the base. We must use the more complicated formula—the one invol-

ving the arithmetic mean, above—in order to find the interior area of this

smaller trapezoid. Let’s call this area Atop. The base length of this trapezoid

is 25 meters, while the length of the top is 20 meters. The height is 7.5

meters, half the height of the whole sign. Thus, Atop is found by this

calculation:
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Atop ¼ ½ð25 metersþ 20 metersÞ=2� � 7:5 meters

¼ ð45 meters=2Þ � 7:5 meters

¼ 22:5 meters� 7:5 meters

¼ 168:75 meters squared

The fraction of the total area represented by the top portion of the sign is the

ratio of Atop to Atotal. That is 168.75 meters squared divided by 375 meters

squared, or 0.45. Therefore, the top advertiser gets 45 percent of the total

interior area of the sign.

PROBLEM 3-6

Suppose the billboard is a rectangle rather than a trapezoid, measuring 25

meters across both the top and the bottom. Suppose the sign is 15 meters tall,

and is to be split into upper and lower portions, one for each of two different

advertisers, Top Inc. and Bottom Inc. Suppose that the executives of Bottom

Inc. demand that Top Inc. only get 45 percent of the total area of the sign

because of Top Inc.’s more favorable viewing position. How far from the

bottom of the sign should the dividing line be placed?

SOLUTION 3-6

The total area of the sign, Atotal, is equal to the product of the base (or top)

length and the height:

Atotal ¼ 25 meters� 15 meters ¼ 375 meters squared

This is the same total area as that found in Solution 3-5. Thus, 45 percent of

this, Atop, is the same as in Solution 3-5, that is, 168.75 meters squared. This

means that the area of the bottom portion, Abottom, is:

Abottom ¼ Atotal � Atop

¼ ð375� 168:75Þ meters squared

¼ 206:25 meters squared

Let x be the distance, in meters, that the dividing line is to be placed from the

bottom edge of the sign. Then x represents the lengths of the two vertical

sides of the bottom rectangle. We already know that the dividing line (which

is the top edge of the bottom rectangle) is 25 meters long, as is the base. So we

get this formula:

Abottom ¼ 25x

We know that Abottom ¼ 206.25 meters squared. So we can plug this into the

above equation and solve for x:
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206:25 ¼ 25x

x ¼ ð206:25 meters squaredÞ=ð25 metersÞ

¼ 8:25 meters

The dividing line should therefore be placed 8.25 meters above the bottom

edge of the billboard. Is this placement fair? That will have to be determined

by mutual discussions between the lawyers for Top Inc. and Bottom Inc.,

doubtless at shareholder expense.

Quiz
Refer to the text in this chapter if necessary. A good score is eight correct.

Answers are in the back of the book.

1. A quadrilateral cannot have

(a) four sides of unequal length

(b) four interior angles of unequal measure

(c) any sides with zero length

(d) an interior angle whose measure is more than 1808

2. A rhombus has sides that each measure 4 units in length. The interior

area of this quadrilateral is

(a) 4 units

(b) 8 units

(c) 16 units

(d) impossible to determine without more information

3. The median of a trapezoid

(a) is parallel to the shortest side

(b) is perpendicular to the longest side

(c) is parallel to the base

(d) is perpendicular to the base

4. Suppose we are told two things about a quadrilateral: first, that it is a

parallelogram, and second, that one of its interior angles measures

608. The measure of the angle adjacent to the 608 angle is

(a) 608

(b) 908

(c) 1208

(d) impossible to know without more information
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5. In the scenario of Question 4, the measure of the angle opposite the

608 angle is

(a) 608

(b) 908

(c) 1208

(d) impossible to know without more information

6. One of the interior angles of a quadrilateral measures 3�/2 rad. From

this alone, we know that this quadrilateral

(a) cannot lie in a single plane

(b) must be a parallelogram

(c) must be a trapezoid

(d) cannot be a parallelogram or a trapezoid

7. A parallelogram is a special instance of

(a) a rectangle

(b) a trapezoid

(c) a rhombus

(d) a square

8. A square is a special instance of

(a) a parallelogram

(b) a rectangle

(c) a rhombus

(d) more than one of the above

9. The length of the median of a trapezoid is

(a) equal to the average of the lengths of the two sides parallel to it

(b) equal to the difference between the lengths of the two sides par-

allel to it

(c) equal to the average of the lengths of the two sides it intersects

(d) equal to the difference between the lengths of the two sides it

intersects

10. Suppose a square has a diagonal measure of 10 units. The area of the

square is

(a) 25 square units

(b) 50 square units

(c) 100 square units

(d) impossible to determine without more information
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CHAPTER
4

Other Plane Figures

There is no limit to the number of sides a polygon can have. In order to

qualify as a plane polygon, all of the vertices (points where the sides come

together) must lie in the same plane, and no two sides are allowed to cross

over each other. No two vertices can coincide. No three vertices can lie on a

common line (otherwise we might get confused as to whether a line segment

represents one side or two). And finally, the sides must all be straight line

segments having finite length. They can’t be curved, and they can’t go off into

infinity.

Five Sides and Up
As you can guess, plane polygons get increasingly complicated as the number

of sides increases. Let’s consider a few special cases.

THE REGULAR PENTAGON

Figure 4-1 shows a five-sided polygon, all of whose sides have the same

length, and all of whose interior angles have the same measure. This is called
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a regular pentagon. It is called convex because its exterior never bends inward.

Another way of saying this is that all of the interior angles measure less than

1808 (� rad).

THE REGULAR HEXAGON

A convex polygon with six sides, all of which are equally long, is called a

regular hexagon (Fig. 4-2). This type of polygon is common in nature. If there

are many of them and they are all the same size, they can be placed neatly

together without any gaps. (Do you remember those old barbershops where

the floors were made of little hexagonal tiles that fit up against each other?)

This makes the regular hexagon a special sort of figure, along with the

equilateral triangle and the square. Certain crystalline solids form regular

hexagonal shapes when they fracture. Snowflakes have components with

this shape.
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Fig. 4-1. A regular pentagon. Each side is s units long, and each interior angle has measure z.

Fig. 4-2. A regular hexagon. Each side is s units long, and each interior angle has measure z.

The extensions of sides (dashed lines) are the subject of Problem 4-1.



THE REGULAR OCTAGON

Figure 4-3 shows a regular octagon. This is a convex polygon with eight sides,

all equally long. As is the case with the regular hexagon, large numbers of

these figures can be fit neatly together. So it is not surprising that nature has

seen fit to take advantage of this, building octagonal crystals.

REGULAR POLYGONS IN GENERAL

For every whole number n greater than or equal to 3, it is possible to have a

regular polygon with n sides. So far we’ve seen the equilateral triangle (n ¼ 3),

the square (n ¼ 4), the regular pentagon (n ¼ 5), the regular hexagon (n ¼ 6),

and the regular octagon (n ¼ 8). There can exist a regular polygon with 1000

sides (this might be called a ‘‘regular kilogon’’), 1,000,000 sides (a ‘‘regular

megagon’’), or 1,000,000,000 sides (a ‘‘regular gigagon’’). These last three

would look pretty much like circles to the casual observer.

GENERAL, MANY-SIDED POLYGONS

Once the restrictions are removed concerning the relationship among the

sides of a polygon having four sides or more, the potential for variety

increases without limit. Sides can have all different lengths, and the measure

of each interior angle can range anywhere from 08 (0 rad) to 3608 (2� rad),

non-inclusive.

Figure 4-4 shows some examples of general, many-sided polygons. The

object at the top left is a non-convex octagon whose sides happen to all have

the same length. The interior angles, however, differ in measure. The other
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two objects are irregular and non-convex. All three share the essential char-

acteristics of a plane polygon:

� The vertices all lie in a single plane
� No two sides cross
� No two vertices coincide
� No three vertices lie on a single straight line
� All the sides are line segments of finite length

PROBLEM 4-1

What is the measure of each interior angle of a regular hexagon?

SOLUTION 4-1

Draw a horizontal line segment to start. All the other sides must be duplicates

of this one, but rotated with respect to the first line segment by whole-number

multiples of a certain angle. This rotation angle from side to side is 3608

divided by 6 (a full rotation divided by the number of sides), or 608. Imagine

the lines on which two adjacent sides lie. Look back at Fig. 4-2. These lines

subtend a 608 angle with respect to each other, if you look at the acute angle.

But if you look at the obtuse angle, it is 1208. This obtuse angle is an interior

angle of the hexagon. Therefore, each interior angle of a regular hexagon

measures 1208.
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PROBLEM 4-2

Briefly glance at the lowermost polygon in Fig. 4-4 (the one with the shaded

interior). Don’t look at it for more than two seconds. How many sides do you

suppose this object has?

SOLUTION 4-2

This is an optical illusion. Most people underestimate the number of sides in

figures like this. After you’ve made your guess, count them and see for

yourself!

Some Rules of ‘‘Polygony’’
All plane polygons share certain things in common. It’s possible to calculate

the perimeter or area of any polygon. Certain rules and definitions apply

concerning the interior and exterior angles, and the relationships between the

angles and the sides. Some of the more significant rules of ‘‘polygony’’ (pro-

nounced ‘‘pa-LIG-ah-nee’’), a make-believe term that means ‘‘the science of

polygons,’’ follow.

IT’S GREEK TO US

Mathematicians, scientists, and engineers often use Greek letters to repre-

sent geometric angles. The most common symbol for this purpose is an

italicized, lowercase Greek letter theta (pronounced ‘‘THAY-tuh’’). It looks

like a numeral zero leaning to the right, with a horizontal line across its

middle (�).

When writing about two different angles, a second Greek letter is used

along with �. Most often, it is the italicized, lowercase letter phi (pronounced

‘‘fie’’ or ‘‘fee’’). It looks like a lowercase English letter o leaning to the right,

with a forward slash through it (�). You might as well get used to these

symbols, because if you have anything to do with engineering and science,

you’re going to encounter them.

Sometimes the italic, lowercase Greek alpha (‘‘AL-fuh’’), beta (‘‘BAY-

tuh’’), and gamma (‘‘GAM-uh’’) are used to represent angles. These, respec-

tively, look like this: �, �, �. When things get messy and there are a lot of

angles to talk about, numeric subscripts are sometimes used, so don’t be

surprised if you see angles denoted �1, �2, �3, and so on.
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SUM OF INTERIOR ANGLES

Let V be a plane polygon having n sides. Let the interior angles be �1, �2, �3,

..., �n (Fig. 4-5). The following equation holds if the angular measures are

given in degrees:

�1 þ �2 þ �3 þ � � � þ �n ¼ 180n� 360 ¼ 180ðn� 2Þ

If the angular measures are given in radians, then the following holds:

�1 þ �2 þ �3 þ � � � þ �n ¼ �n� 2� ¼ �ðn� 2Þ

In these examples, the degree symbol (8) and the radian abbreviation (rad)

are left out for simplicity. It is all right to do this, as long as it is clear which

angular units we’re dealing with.

INDIVIDUAL INTERIOR ANGLES OF REGULAR POLYGON

Let V be a plane polygon having n sides whose interior angles all have equal

measure given by �, and whose sides all have equal length given by s (Fig.

4-6). Then V is a regular polygon, and the measure of each interior angle, �,

in degrees is given by the following formula:

� ¼ ð180n� 360Þ=n

If the angular measures are given in radians, then the formula looks like this:

� ¼ ð�n� 2�Þ=n
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POSITIVE AND NEGATIVE EXTERIOR ANGLES

An exterior angle of a polygon is measured counterclockwise between a

specific side and the extension of a side next to it. An example is shown in

Fig. 4-7. If the arc of the angle lies outside the polygon, then the resulting

angle � has a measure between, but not including, 0 and 180 degrees. The

angle is positive because it is measured ‘‘positively counterclockwise’’:

08 < � < 1808

If the arc of the angle lies inside the polygon, then the angle is measured

clockwise (‘‘negatively counterclockwise’’). This results in an angle � with a

measure between, but not including, –180 and 0 degrees:

�1808 < � < 08

PERIMETER OF REGULAR POLYGON

Let V be a regular plane polygon having n sides of length s, and whose

vertices are P1, P2, P3, ..., Pn as shown in Fig. 4-8. Then the perimeter, B,

of the polygon is given by the following formula:

B ¼ ns
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A TASTE OF TRIGONOMETRY

Some of the following rules involve trigonometry. This branch of mathe-

matics has an undeserved bad reputation among some students. According

to various rumors, trigonometry is esoteric (this is not true), is inherently

incomprehensible (also not true), was dreamed up by sadistic theoreticians

with the intent of confusing people of ordinary intelligence (unlikely, but no

one knows for sure), and is peppered with Greek symbology (well, yes). There

are six trigonometric functions, also known as circular functions. They are the

sine, cosine, tangent, cosecant, secant, and cotangent. All six of these functions

produce specific numbers at their ‘‘outputs’’ when certain angular measures

are fed into their ‘‘inputs.’’

We won’t concern ourselves here with formal definitions of the circular

functions, or how they are derived. All you need to know in order to use

the following rules is how to use the sine and cosine function keys on a

calculator. The sine of an angle is found by entering the angle’s measure in

degrees or radians into a calculator, and then hitting the ‘‘sine’’ or ‘‘sin’’

function key. The cosine is found by entering the angle’s measure in degrees

or radians and then hitting ‘‘cosine’’ or ‘‘cos.’’ Some calculators have a

‘‘tangent’’ or ‘‘tan’’ function key, and others don’t. If your calculator

doesn’t have a tangent key, the tangent of an angle can be found by

dividing its sine by its cosine. Many calculators lack a ‘‘cotangent’’ or

‘‘cot’’ key, but the cotangent of an angle is equal to the reciprocal of its

tangent, or the cosine divided by the sine.
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INTERIOR AREA OF REGULAR POLYGON

Let V be a regular, n-sided polygon, each of whose sides have length s as

defined above and in Fig. 4-8. The interior area, A, is given by the following

formula if angles are specified in degrees:

A ¼ ðns2=4Þ cot ð180=nÞ

If angles are specified in radians, then:

A ¼ ðns2=4Þ cot ð�=nÞ

PROBLEM 4-3

What is the interior area of a regular, 10-sided polygon, each of whose sides is

exactly 2 units long? Express your answer to two decimal places.

SOLUTION 4-3

In this case, n ¼ 10 and s ¼ 2. Let’s use degrees for the angles. Then we can

plug our values of n and s into the first formula, above, getting this:

A ¼ ð10� 22=4Þ cot ð180=10Þ

¼ ð10� 4=4Þ cot 18

¼ 10 cot 18

¼ 10 cos 18=sin 18

¼ 10� 0:951057=0:309017

¼ 10� 3:07769

¼ 30:7769

¼ 30:78 square units (to two decimal places)

In order to obtain an answer to two decimal places, it’s best to use five or

six decimal places throughout the calculation, rounding off only at the end.

This will ensure that cumulative errors are kept to a minimum.

PROBLEM 4-4

What is the interior area of a regular, 100-sided polygon, each of whose sides

is exactly 0.20 units long? Express your answer to two decimal places.

SOLUTION 4-4

In this example, n ¼ 100 and s ¼ 0.20. If you’re astute, you’ll notice that the

perimeter of this polygon is 100� 0.20¼ 20 units, the same as the perimeter of

the 10-sided polygon of Problem 4-3, which is 10 � 2.0 ¼ 20 units. Imagine

these two regular polygons sitting side-by-side. Draw approximations of them

if you like. It seems reasonable to suppose that the area of the 100-sided
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polygon should be a little larger than that of the 10-sided figure, but not much

larger. Let’s find out. For fun, let’s use radians instead of degrees this time.

Be sure your calculator is set to work with radians, not degrees, before

each and every use of a trigonometric function key. Here we go:

A ¼ ð100� 0:202=4Þ cot ð�=100Þ

¼ ð100� 0:04=4Þ cot 0:0314159

¼ 1� cot 0:0314159

¼ cot 0:0314159

¼ cos 0:0314159=sin 0:0314159

¼ 0:999507=0:031411

¼ 31:8203

¼ 31:82 square units (to two decimal places)

When doing calculations like the ones above, it’s important to go through

each step twice. Alternatively, you can go through the entire process twice.

Best of all, take both of these precautions! It is amazing how many errors can

be made by humans using calculators to crunch numbers. The most common

mistakes occur as a result of a failure to hit the function keys in the right order.

Circles and Ellipses
A circle is a geometric figure consisting of all points in a plane that are

equally distant from some center point. Imagine a flashlight with a round

lens that throws a brilliant central beam of light surrounded by a dimmer

cone of light. Suppose you switch this flashlight on, and point it straight

down at the floor in a dark room. The outline of the dim light cone is a

circle. If you turn the flashlight so the entire dim light cone lands on the floor

but the brilliant central light ray is not pointed straight down, the outline of

the dim light cone is an ellipse.

The circle and the ellipse are examples of conic sections. This term arises

from the fact that both the circle and the ellipse can be defined as sets of

points resulting from the intersection of a plane with a cone.

A SPECIAL NUMBER

The circumference of a circle, divided by its diameter in the same units, is a

constant that does not depend on the size of a circle. This fact was noticed by
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mathematicians thousands of years ago. The value of this number cannot be

expressed as a ratio of whole numbers. For this reason, this number is called

an irrational number. (‘‘Irrational’’ means, in this context, ‘‘having no ratio.’’)

If you try to write this number in decimal form, you get a non-terminating,

non-repeating sequence of digits after the decimal point. It is a constant

called pi, and is symbolized �. This is the same � we encountered earlier

when defining the radian as a unit of angular measure.

The value of � has been calculated to many millions of decimal places by

supercomputers. It’s approximately equal to 3.14159. If you need more accu-

racy, you can use the calculator function in a personal computer. In a com-

puter that uses the Windows2 operating system, open the calculator program

and set it for scientific mode. Check the box marked ‘‘Inv.’’ Be sure there are

black dots in both the ‘‘Dec’’ and ‘‘Radians’’ spaces. Press 1, then the minus

key, then 2, and then the equals key so you get –1 on the display. Finally, hit

the ‘‘cos’’ button. This will show you the angle, in radians, whose cosine is

equal to –1; this happens to be �. A good calculator will display enough digits

to make almost anyone happy.

Here are some formulas that can be used to find the perimeters and areas

of circles, ellipses, and regular polygons that are inscribed within, or circum-

scribed around, circles. You don’t have to memorize these (except for the

formulas for the perimeter and interior area of a circle, which are worth

memorizing), but they can be useful for reference. As with all the formulas

in this book, they are straightforward, even if some of them look messy.

Using them is simply a matter of entering numbers into a calculator and

making sure you hit the correct keys in the correct order.

PERIMETER OF CIRCLE

Let C be a circle having radius r as shown in Fig. 4-9. Then the perimeter (or

circumference), B, of the circle is given by the following formula:

B ¼ 2�r

INTERIOR AREA OF CIRCLE

Let C be a circle as defined above and in Fig. 4-9. The interior area, A, of the

circle is given by:

A ¼ �r2
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INTERIOR AREA OF ELLIPSE

Let E be an ellipse whose major (longer) semi-axis measures r1 units and

whose minor (shorter) semi-axis measures r2 units, as shown in Fig. 4-10. The

interior area, A, of the ellipse is given by:

A ¼ �r1r2

ELLIPTICITY

The ratio of the length of the major semi-axis to the length of the minor semi-

axis is a quantitative indicator of the extent to which an ellipse is elongated.

The number r1/r2 is called the ellipticity, and can be symbolized by the lower-

case, italic Greek letter epsilon ("). Thus:

" ¼ r1=r2
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When " ¼ 1, an ellipse is a circle. Because r1 is defined as the major (longer)

semi-axis, " is always greater than or equal to 1. Ellipticity should not be

confused with eccentricity, another measure of the extent to which a curve

deviates from a circle. Eccentricity is defined differently than ellipticity, and

involves not only the circle and the ellipse, but other conic sections as well.

PERIMETER OF INSCRIBED REGULAR POLYGON

Let V be a regular plane polygon having n sides, and whose vertices P1, P2,

P3, ..., Pn lie on a circle of radius r (Fig. 4-11). Then the perimeter, B, of the

polygon is given by the following formula when angles are specified in

degrees:

B ¼ 2nr sin ð180=nÞ

If angles are specified in radians, then:

B ¼ 2nr sin ð�=nÞ

INTERIOR AREA OF INSCRIBED REGULAR POLYGON

Let V be a regular polygon as defined above and in Fig. 4-11. The interior

area, A, of the polygon is given by the following formula if angles are

specified in degrees:

A ¼ ðnr2=2Þ sin ð360=nÞ
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r units. Vertices of the polygon, all of which lie on the circle, are labeled P1, P2, P3,

. . ., Pn.



If angles are specified in radians, then:

A ¼ ðnr2=2Þ sin ð2�=nÞ

PERIMETER OF CIRCUMSCRIBED REGULAR POLYGON

Let V be a regular plane polygon having n sides whose center points P1, P2,

P3, ..., Pn lie on a circle of radius r (Fig. 4-12). The perimeter, B, of the

polygon is given by the following formula when angles are specified in

degrees:

B ¼ 2nr tan ð180=nÞ

If angles are specified in radians, then:

B ¼ 2nr tan ð�=nÞ

INTERIOR AREA OF CIRCUMSCRIBED REGULAR POLYGON

Let V be a regular polygon as defined above and in Fig. 4-12. The interior

area, A, of the polygon is given by the following formula if angles are

specified in degrees:

A ¼ nr2 tan ð180=nÞ

If angles are specified in radians, then:

A ¼ nr2 tan ð�=nÞ
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PERIMETER OF CIRCULAR SECTOR

Let S be a sector of a circle whose radius is r (Fig. 4-13). Let � be the apex

angle in radians. The perimeter, B, of the sector is given by the following

formula:

B ¼ rð2þ �Þ ¼ 2rþ r�

If � is specified in degrees, then the perimeter, B, of the sector is given by:

B ¼ 2rð1þ 90�Þ=�

INTERIOR AREA OF CIRCULAR SECTOR

Let S be a sector of a circle as defined above and in Fig. 4-13. Let � be the

apex angle in radians. The interior area, A, of the sector is given by:

A ¼ r2�=2

If � is specified in degrees, then the interior area, A, of the sector is given by:

A ¼ 90r2�=�

PROBLEM 4-5

What is the area of a regular octagon inscribed within a circle whose radius is

exactly 10 units?
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SOLUTION 4-5

Let’s use the formula for the area of an inscribed regular polygon, where

angles are expressed in degrees:

A ¼ ðnr2=2Þ sin ð360=nÞ

where A is the area in square units, n is the number of sides in the polygon,

and r is the radius of the circle. We know that n ¼ 8 and r ¼ 10, so we can

plug in the numbers and use a calculator as needed:

A ¼ ð8� 102=2Þ sin ð360=8Þ

¼ 400 sin 458

¼ 400� 0:7071

¼ 283 square units (approximately)

PROBLEM 4-6

What is the perimeter of a regular 12-sided polygon circumscribed around a

circle whose radius is exactly 4 units?

SOLUTION 4-6

Let’s use the formula for the perimeter of a circumscribed regular polygon,

where angles are expressed in radians:

B ¼ 2nr tan ð�=nÞ

where B is the perimeter, n is the number of sides in the polygon, and r is the

radius of the circle. Consider � ¼ 3.14159. We know that n ¼ 12 and r ¼ 4.

We plug in the numbers and use a calculator, being sure the angle function is

set for radians, not for degrees:

B ¼ 2� 12� 4 tan ð�=12Þ

¼ 96 tan 0:261799

¼ 96� 0:26795

¼ 25:72 units (approximately)

PROBLEM 4-7

How would you expect the perimeter of the circumscribed polygon in

Problem 4-6 to compare with the perimeter of the circle around which it is

circumscribed?

SOLUTION 4-7

It is reasonable to suppose that the perimeter of the polygon is slightly

greater than the perimeter (or circumference) of the circle. Let’s calculate
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the circumference of the circle to see if this is true, and if so, to what extent.

We use the formula for the circumference of a circle:

B ¼ 2�r

where B is the circumference and r is the radius. We know r ¼ 4, and we can

consider � ¼ 3.14159. Thus:

B ¼ 2� 3:14159� 4

¼ 25:13 units (approximately)

Quiz
Refer to the text in this chapter if necessary. A good score is eight correct.

Answers are in the back of the book.

1. As the number of sides in a regular polygon increases without limit,

assuming its interior area remains constant, the length of each side

(a) increases without limit

(b) approaches zero

(c) stays the same

(d) none of the above

2. As the number of sides in a regular polygon increases without limit,

the measure of each interior angle

(a) increases without limit

(b) approaches 08

(c) stays the same

(d) none of the above

3. Suppose X is the area of an n-sided, regular polygon circumscribed

around a circle, and Y is the area of an n-sided, regular polygon

inscribed within that same circle. As n becomes larger and larger with-

out limit (or, as is sometimes said, n approaches infinity), what hap-

pens to the ratio of X to Y?

(a) It approaches 1

(b) It does not change

(c) It grows without limit

(d) We cannot say unless we know the area of the circle

4. An irregular, non-convex polygon can have some interior angles

(a) that measure more than 1808
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(b) that measure more than 3608

(c) that measure exactly 08

(d) that measure exactly 3608

5. In an ellipse that is not a circle

(a) the major and minor axes have equal length

(b) the major axis is longer than the minor axis

(c) the minor axis is longer than the major axis

(d) none of the above statements is true

6. As the number of sides in a regular polygon increases without limit,

the sum of the measures of its interior angles

(a) increases without limit

(b) decreases and approaches 08

(c) increases and approaches 3608

(d) increases and approaches 7208

7. Each interior angle of a regular pentagon has a measure of

(a) 2�/5 rad

(b) 3�/5 rad

(c) 5�/3 rad

(d) 5�/2 rad

8. A circle has a radius of 2 units. What is the area of a circular sector

such that the apex angle at the center is 908?

(a) 0.5 square unit

(b) 1.0 square unit

(c) � square units

(d) It can’t be determined without more information

9. What is the perimeter of the circular sector described in Question 8?

Include the line segments connecting the center of the circle to the arc.

(a) �/2 units

(b) � units

(c) � þ 4 units

(d) It can’t be determined without more information

10. What is the tangent of �/4 rad? Use a calculator if you need it. Find

the value of � according to the method described earlier in this chap-

ter. Determine your answer to four decimal places.

(a) 0.7071

(b) 0.0137

(c) 1.0000

(d) 0.0000
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CHAPTER
5

Compass and
Straight Edge

In geometry, a construction is a drawing made with the simplest possible

instruments. Constructions are a powerful learning technique, because they

force you to think about the properties of geometric objects, independent of

numeric lengths and angle measures. Constructions are also challenging intel-

lectual games.

Tools and Rules
The most common type of geometric construction is done with two instru-

ments, both of which you can purchase at any office supply store. One

instrument lets you draw circles, and the other lets you draw straight line

segments. Once you have these, you can use them only according to certain

‘‘rules of the game.’’
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DRAFTSMAN’S COMPASS

The draftsman’s compass is a device for drawing circles of various sizes. It has

two straight shafts joined at one end with a hinge. One shaft ends in a sharp

point that does not mark anything, but that can be stuck into a piece of paper

as an anchor. The other shaft has brackets in which a pen or pencil is

mounted. To draw a circle, press the sharp point down on a piece of paper

(with some cardboard underneath to protect the table or desk top), open the

hinge to get the desired radius, and draw the circle by rotating the whole

assembly at least once around. You can draw arcs by rotating the compass

only partway around.

For geometric constructions, the compass must not have an angle measure-

ment scale at its hinge. If it has a scale that indicates angle measures or other-

wise quantifies the extent to which it is opened, you must ignore that scale.

STRAIGHT EDGE

A straight edge is any object that helps you to draw line segments by placing a

pen or pencil against the object and running it alongside. A conventional

ruler will work for this purpose, but is not the best tool to use because it has a

calibrated scale. A better tool is a drafting triangle. Use any edge of the

triangle as the straight edge.

Ignore the angles at the apexes of a drafting triangle. Some drafting tri-

angles have two 458 angles and one 908 angle; others have one 308 angle, one

608 angle, and one 908 angle. You aren’t allowed to take advantage of these

standard angle measures when performing geometric constructions, so it

doesn’t matter which type of drafting triangle you use.

WHAT’S ALLOWED

With a compass, you can draw circles or arcs having any radius you want.

The center point can be randomly chosen, or you can place the sharp tip of

the compass down on a predetermined, existing point and make it the center

point of the circle or arc.

You can set a compass to replicate the distance between any two defined

points, by setting the non-marking tip down on one point and the marking

tip down on the other point, and then holding the compass setting constant.

With the straight edge, you can draw line segments of any length, up to the

entire length of the tool. You can draw a random line segment, or choose a
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specific point through which the line segment passes, or connect any two

specific points with a line segment.

WHAT’S NOT ALLOWED

Whatever sort of circle or line segment you draw, you are not allowed to

measure the radius or the length against a calibrated scale of any sort. You

may not measure angles using a calibrated device. You may not make any

reference marks on either the compass or the straight edge. (Marking on a

straight edge is ‘‘cheating,’’ but referencing a distance using a compass is

acceptable, even though the two acts are qualitatively similar!)

Here is a subtle but important restriction: You may not make use of the

result of an infinite number of operations (imagining that it is possible), or an

infinite number of repetitions of a single operation. That means, for example,

that you cannot mentally do a maneuver over and over ad infinitum to

geometrically approach a desired result, and then claim that result as a

valid construction. The entire operation must be completed in a finite number

of steps.

DEFINING POINTS

To define an arbitrary point, all you need to do is draw a little dot on the

paper. Alternatively, you can set the non-marking point of the compass down

on the paper, in preparation for drawing an arc or circle centered at an

arbitrary point. Points can also be defined where two line segments intersect,

where an arc or circle intersects a line segment, or where an arc or circle

intersects another arc or circle.

DRAWING LINE SEGMENTS

Line segments can be drawn in three ways: arbitrarily, through (or starting

at) a single point, and through (or connecting) two points.

When you want to draw an arbitrary line segment, place the straight edge

down on the paper and run a pencil along the edge (Fig. 5-1A). You can

make it as long or as short as you want, but never longer than the length of

the straight edge. If you need to draw a line segment longer than the straight

edge, don’t align the straight edge with part of the line segment and then try

to extend it. Use a longer straight edge, so you can create the entire segment

in one swipe.
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When you want to draw a line segment through a single defined point,

place the tip of the pencil on that point (call it point P), place the straight

edge down against the point of the pencil, and then run the pencil back and

forth along the edge. If you want the point to be an end point of the line

segment, run the pencil away from the point in one direction (Fig. 5-1B).

When you want to draw a line segment through two defined points (call

them P and Q), place the tip of the pencil on one of the points, place the

straight edge down against the point of the pencil, rotate the straight edge

until it lines up with the other point while still firmly resting against the tip of

the pencil, and then run the pencil back and forth along the edge, so the mark

passes through both points. If you want the points to be the end points of the

line segment, make sure the pencil makes its mark only between the points,

and not past them on either side (Fig. 5-1C).

DENOTING RAYS

In order to denote a ray, first determine or choose the end point of the ray.

Then place the tip of the pencil at the end point, and place the straight edge

against the tip of the pencil. Orient the straight edge so it runs in the direction
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Fig. 5-1. At A, construction of an arbitrary line segment. At B, construction of a line

segment starting at a single predetermined point. At C, construction of a line

segment connecting two predetermined points.



you want the ray to go. Move the tip of the pencil away from the point in the

direction of the ray, as far as you want without running off the end of the

straight edge (Fig. 5-2A). Finally, draw an arrow at the end of the line

segment you have drawn, opposite the starting point (Fig. 5-2B). The

arrow indicates that the ray extends infinitely in that direction.

DENOTING LINES

In order to draw a line, follow the same procedure as you would to draw a

line segment. Then place arrows at both ends (Fig. 5-3). A line can be drawn

arbitrarily (as shown at A and B), through a single defined point (as shown at

C and D), or through two defined points (as shown at E and F).

DRAWING CIRCLES

To draw a circle around a random point, place the non-marking tip of the

compass down on the paper, set the compass to the desired radius, and rotate

the instrument through a full circle (Fig. 5-4A). If the center point is pre-

determined (marked by a dot), place the non-marking tip down on the dot

and rotate the instrument through a full circle.

DRAWING ARCS

To draw an arc centered at a random point, place the non-marking tip of the

compass down on the paper, set the compass to the desired radius, and rotate

the instrument through the desired arc. If the center point is predetermined

(marked by a dot), place the non-marking tip down on the dot and rotate the

instrument through the desired arc (Fig. 5-4B).
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PROBLEM 5-1

Define a point by drawing a dot. Then, with the compass, draw a small circle

centered on the dot. Now construct a second circle, concentric with the first

one, but having twice the radius.

SOLUTION 5-1

Figure 5-5 illustrates the procedure. In drawing A, the circle is constructed

with the compass, centered at the initial point (called point P). In drawing B,

a line segment L is drawn using the straight edge, with one end at point P and

passing through the circle at a point Q. The line segment extends outside the

circle for a distance considerably greater than the circle’s radius. In drawing

C, a circle is constructed, centered at point Q and leaving the compass set for

the same radius as it was when the original circle was drawn. This new circle

intersects L at point P (the center of the original circle) and also at a new

point R. Next, the non-marking tip of the compass is placed back at point P,
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through a single predetermined point. At E and F, construction of a line through

two predetermined points.



and the compass is opened up so the pencil tip falls exactly on point R.

Finally, as shown in drawing D, a new circle is drawn with its center at

point P, with a radius equal to the length of line segment PR.

PROBLEM 5-2

Draw three points on a piece of paper, placed so they do not all lie along the

same line. Label the points P, Q, and R. Construct �PQR connecting these

three points. Draw a circle whose radius is equal to the length of side PQ, but

that is centered at point R.

SOLUTION 5-2

The process is shown in Fig. 5-6. In drawing A, the three points are put

down and labeled. In drawing B, the points are connected to form �PQR.

Drawing C shows how the non-marking tip of the compass is placed at

point Q, and the tip of the pencil is placed on point P. (You don’t have to

draw the arc, but it is included in this illustration for emphasis.) With the

compass thus set so it defines the length of line segment PQ, the non-
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B, a compass is used to draw an arc centered at a predetermined point.



marking tip of the compass is placed on point R. Finally, as shown in

drawing D the circle is constructed.

PROBLEM 5-3

Can the non-marking tip of the compass be placed at point P, and the pencil

tip placed to draw an arc through point Q, in order to define the length of line

segment PQ in Problem 5-2?

SOLUTION 5-3

Yes. This will work just as well.

Linear Constructions
The following paragraphs describe how to perform various constructions

with line segments. By extension, these same processes apply to rays and

lines; you can extend line segments and add arrows as necessary.
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REPRODUCING A LINE SEGMENT

Suppose you have a line segment whose end points are P and Q (as shown in

Fig. 5-7A), and you want to create another line segment having the same

length as PQ. First, construct a ‘‘working segment’’ that is somewhat longer

than PQ. Then place a point on this ‘‘working segment’’ and call it R, as

shown in drawing B. Next, take the compass and set down the non-marking

tip on point P, and adjust the compass spread so the tip of the pencil lands

exactly on point Q. By doing this, you have defined the length of line segment

PQ using the compass.

Next, place the non-marking tip of the compass down on point R, and

create a small arc that intersects your ‘‘working segment,’’ as shown in draw-

ing C. Define the intersection of the ‘‘working segment’’ and the arc as point

S. The length of line segment RS is the same as that of PQ, so you have

reproduced line segment PQ (drawing D).
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BISECTING A LINE SEGMENT

Suppose you have a line segment PQ (Fig. 5-8A) and you want to find the

point at its center, that is, the point that bisects line segment PQ. First,

construct an arc centered at point P. Make the arc roughly half-circular,

and set the compass to span somewhat more than half the length of PQ.

Then, without altering the setting of the compass, draw an arc centered at

point Q, such that its radius is the same as that of the first arc you drew (as

shown at B). Name the points at which the two arcs intersect R and S.

Construct a line passing through both R and S. Line RS intersects the ori-

ginal line segment PQ at a point T, which bisects line segment PQ (as shown

at C).

PERPENDICULAR BISECTOR

Suppose you have a line segment PQ and you want to construct a line that

bisects PQ, and that also passes perpendicularly through PQ. Figure 5-8

shows how this line (called RS in this example) is constructed as a byproduct

of the bisection process.
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PERPENDICULAR RAY AT DEFINED POINT

Figure 5-9 illustrates the construction of a perpendicular ray from a defined

point P on a line or line segment.

Begin with the scenario at drawing A. Set the compass for a moderate

span, and construct two arcs opposite each other, both centered at point P,

that intersect the line or line segment. Call these intersection points Q and R,

as shown in drawing B. Increase the span of the compass, roughly doubling

it. Construct an arc centered at Q and another arc centered at R, so the two

arcs have the same radius and intersect as shown in drawing C. Call this

intersection point S. Construct a ray whose initial point is P, and that passes

through S. Ray PS is perpendicular to the original line or line segment at the

original defined point P.

DROPPING A PERPENDICULAR TO A LINE

Figure 5-10 shows how to drop a perpendicular from a defined point P to a

line nearby. The term dropping a perpendicular means that a line segment,

line, or ray is constructed through a point, such that it ‘‘comes down on’’ the

nearby line at a right angle.

Begin with the situation shown at A. Set the compass for a span somewhat

greater than the distance between P and the line. Construct an arc that passes

through the line at two points. Call these points Q and R, as shown in

drawing B.
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Now increase the span of the compass, roughly doubling it. Construct two

arcs, one centered at point Q and the other centered at point R, such that the

two arcs have the same radius and intersect each other (drawing C). Call this

intersection point S. Construct a line segment that passes through point S

and the original defined point P, and extend this line segment until it inter-

sects the original line. Call this intersection point T. Line segment PT inter-

sects the original line at a right angle; that is, PT is a perpendicular

‘‘dropped’’ from point P to the original line.

PARALLEL TO A LINE THROUGH A SPECIFIC POINT

There are several ways to construct a parallel to a line through a specific

point that does not lie on that line. One of these methods takes advantage of

previous constructions, and is shown in Fig. 5-11.

Suppose you have a line segment with a point P nearby (as shown at A),

and you want to create a line through P parallel to the original line. First,

drop a perpendicular from P to the line using the procedure described above

and shown in Fig. 5-10, generating points Q, R, S, and T (Fig. 5-11B). Then

set the compass for the distance PT, and construct a circle centered at P

having a radius equal to the distance PT. This gives rise to a new point, U, on

line PT, where the circle intersects line PT. Line segment UP has the same

length as line segment PT (drawing C).
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Fig. 5-9. Constructing a ray perpendicular to a line or line segment.
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Fig. 5-10. Dropping a perpendicular to a line.

Fig. 5-11. Constructing a parallel line through a defined point.



Now increase the span of the compass somewhat, and construct two

roughly half-circular arcs having identical radii, one centered at point T

and the other centered at point U, so the arcs intersect each other at two

new points, V and W. Line VW is perpendicular to line UT and also to line

PT. (We know this because we have just performed the perpendicular con-

struction described earlier.) But PT is perpendicular to the original line.

Therefore, line VW is parallel to the original line. This is an example in

which we can rightly say ‘‘Two perpendiculars make a parallel.’’

PROBLEM 5-4

Find another way to construct a parallel to a line through a given point not

on that line.

SOLUTION 5-4

The initial situation is shown in Fig. 5-12A. The following method is one

possible example; there may be others.

First, drop a perpendicular from point P to the original line, as described

earlier in this chapter. This intersects the line at point Q (Fig. 5-12B). Next,

set the compass so its span is equal to the length of line segment PQ. You can

set the non-marking point of the compass down on point Q, and draw an arc

through P to be sure you get the compass span just right.
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Now choose a second point, R, on the line (as shown in drawing C).

Construct a perpendicular ray at point R according to the procedure

described earlier in this chapter (drawing D). Set the non-marking point of

the compass down on point R, and draw an arc that intersects the ray. Call

the intersection point S. Now you have two points, P and S, that are equi-

distant from the original line. Construct line PS through these points. Line

PS is parallel to the original line (as shown at E).

PROBLEM 5-5

Construct a square. It doesn’t have to be any particular size, as long as all

four sides are the same length and all four interior angles measure 908 (�/2

rad).

SOLUTION 5-5

Examine Fig. 5-12. The quadrilateral PQRS is a rectangle. We know this

because line segments PQ and RS are both perpendicular to line QR, so both

ffPQR and ffQRS are right angles. We also know that lines QR and PS are

parallel because that is the intended outcome of Problem 5-4. Therefore it

follows that ffRSP and ffSPQ are right angles, because opposite interior

angles to the transversals of parallel lines always have equal measure; they

are congruent (ffPQR ffi ffRSP and ffQRS ffi ffSPQ).

Knowing this, it is a short step to modify the construction process shown

in Fig. 5-12 to ensure that the resulting quadrilateral PQRS is a square.

Instead of choosing point R on the original line at random, use the compass,

set so its span is equal to the distance PQ, to determine point R. Set the non-

marking point of the compass down on point Q, and draw an arc so that it

intersects the original line to obtain point R. This ensures that the distance

PQ is equal to the distance QR. From there, complete the construction in the

same way as was done to solve Problem 5-4.

Angular Constructions
The following paragraphs describe how to reproduce (copy) an angle, and

also how to bisect an angle.

REPRODUCING AN ANGLE

Figure 5-13 illustrates the process for reproducing an angle. First, suppose

two rays intersect at a point P, as shown in drawing A. Set down the non-
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marking tip of the compass on point P, and construct an arc from one ray to

the other. Let R and Q be the two points where the arc intersects the rays

(drawing B). Call the angle in question ffRPQ, where points R and Q are

equidistant from point P.

Now, place a new point S somewhere on the page a good distance away

from point P, and construct a ray emanating outward from point S, as shown

in illustration C. (This ray can be in any direction, but it’s easiest if you make

it go in approximately the same direction as ray PQ.) Make the new ray at

least as long as ray PQ. Without changing the compass span from its pre-

vious setting, place its non-marking tip down on point S and construct a

sweeping arc that is larger than arc QR. (You can do this by estimation, as

shown in drawing D. You can make a full circle if you want.) Let point T

represent the intersection of the new arc and the new ray.

Now return to the original arc, place the non-marking tip of the compass

down on point Q, and construct a small arc through point R so the compass
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spans the distance QR, as shown in drawing E. Then, without changing the

span of the compass, place its non-marking tip on point T, and construct an

arc that intersects the arc centered on point S. Call this intersection point U.

Finally, construct ray SU, as shown in drawing F. You now have a new angle

with the same measure as the original angle. That is, ffUST ffi ffRPQ.

BISECTING AN ANGLE

Figure 5-14 illustrates one method that can be used to bisect an angle, that is,

to divide it in half. First, suppose two rays intersect at a point P, as shown in

drawing A. Set down the non-marking tip of the compass on point P, and

construct an arc from one ray to the other. Call the two points where the arc

intersects the rays point R and point Q (drawing B). We can now call the

angle in question ffRPQ, where points R and Q are equidistant from point P.

Now, place the non-marking tip of the compass on point Q, increase its

span somewhat from the setting used to generate arc QR, and construct a

new arc. Next, without changing the span of the compass, set its non-mark-

ing tip down on point R and construct an arc that intersects the arc centered

on point Q. (If the arc centered on point Q isn’t long enough, go back and

make it longer. You can make it a full circle if you want.) Let S be the point

at which the two arcs intersect (drawing C). Finally, construct ray PS, as
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shown at D. This ray bisects ffRPQ. This means that ffRPS ffi ffSPQ, and also

that the sum of the measures of ffRPS and ffSPQ is equal to the measure of

ffRPQ.

PROBLEM 5-6

Find another way to bisect an angle.

SOLUTION 5-6

Refer to Fig. 5-15. The process starts in the same way as described above.

Two rays intersect at point P, as shown in drawing A. Set down the non-

marking tip of the compass on point P, and construct an arc from one ray to

the other to get points R and Q (drawing B) defining ffRPQ, where points R

and Q are equidistant from point P.

Construct line segment RQ. Then bisect it, according to the procedure for

bisecting line segments described earlier in this chapter. Call the midpoint of

the line segment point S, as shown in drawing C. Finally, construct ray PS

(drawing D). This ray bisects ffRPQ.

PROBLEM 5-7

Prove that the angle bisection method described in Solution 5-6 really works.

SOLUTION 5-7

Examine Fig. 5-15D, and note the two triangles iSRP and iPQS. These

triangles have corresponding sides that have equal lengths:
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� SR ¼ SQ (we bisected the line segment)
� RP ¼ QP (we constructed them both from the same arc centered at

point P)
� PS ¼ PS (this is trivial)

From these three facts, we know from Chapter 2 that iSRP and iPQS

are inversely congruent. This means that corresponding angles (the angles

opposite corresponding sides), as we proceed around the triangles in opposite

directions, have equal measure. Thus, because RS ¼ QS, we can conclude

that ffRPS and ffSPQ have equal measure. Because their measures obviously

add up to the measure of ffRPQ, this proves that ray PS bisects ffRPQ, that

is, it cuts the angle in half.

Quiz
Refer to the text in this chapter if necessary. A good score is eight correct.

Answers are in the back of the book.

1. Examine Fig. 5-12E. Based only on the information shown in this

drawing, which of the following statements can we be certain is true?

(a) Quadrilateral PSRQ is a parallelogram but not a rectangle

(b) Quadrilateral PSRQ is a rhombus but not a parallelogram

(c) Quadrilateral PSRQ is a rectangle

(d) We can’t be certain of any of the above

2. The most obvious way to ‘‘quadrisect’’ a large angle (that is, to divide

it into four angles of equal measure) is to

(a) bisect the large angle using two different construction schemes,

and then bisect the resulting angle

(b) bisect the large angle, and then bisect each of the smaller angles

resulting from the bisection

(c) construct a line segment connecting the rays defining the large

angle, bisect the line segment, bisect each of the smaller line seg-

ments resulting, and then construct rays from the angle apex

through each point generated by the bisections

(d) give up, because there is no way to ‘‘quadrisect’’ an angle

3. A large angle can be ‘‘trisected’’ (divided into three angles of equal

measure) by

(a) drawing an arc centered at the angle vertex, and then trisecting the

arc
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(b) drawing an arc centered at the angle vertex, then drawing two arcs

centered at the resulting points on the rays defining the angle, and

finally drawing rays connecting the points at which the arcs inter-

sect each other

(c) drawing an arc centered at the angle vertex, then drawing a line

segment connecting the points at which the arc intersects the rays

defining the angle, and finally trisecting the line segment

(d) none of the above means

4. Which of the following operations (a), (b), or (c) is not a ‘‘legal’’ thing

to do when performing a construction?

(a) Drawing a circle around a specified point

(b) Drawing a circle around a randomly chosen point

(c) Drawing a straight line through two specified points

(d) All of the above operations (a), (b), and (c) are ‘‘legal’’

5. Suppose you draw an arbitrary line and an arbitrary point P near that

line. Then, using a compass, you construct a circle centered at point P,

making the circle large enough so that it intersects the line in two

points Q and R. The points P, Q, and R lie at the vertices of

(a) a right triangle

(b) an equilateral triangle

(c) an isosceles triangle

(d) none of the above

6. Suppose you want to construct a trapezoid. The exact measurement of

the interior angles or side lengths is not important. The only thing that

matters is that the final figure be a true trapezoid. The easiest way to

start is to

(a) construct two parallel lines

(b) construct two perpendicular lines

(c) construct a circle

(d) construct two concentric circles

7. A pencil and straight edge cannot be used all by themselves to

(a) construct an arbitrary line

(b) connect two existing, specified points with a line segment

(c) copy an existing, specified line segment

(d) construct an arbitrary angle

8. In Fig. 5-15, the fact that iSRP and iPQS are inversely congruent

means that they

(a) are exact mirror images of each other
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(b) are the same size, and one can be laid down over the other simply

by moving and rotating one of them

(c) are different sizes, but have corresponding interior angle measures

that are in the same proportions

(d) are the same size, but have corresponding side lengths that might

be in different proportions

9. A compass and a pencil cannot be used all by themselves to

(a) construct an arbitrary circle

(b) construct two line segments of the same length on an existing,

specified line

(c) construct two concentric circles around an existing, specified point

(d) construct a straight line segment

10. Suppose you want to construct an angle whose measure is 458. You

could do this by

(a) constructing a square and then drawing its diagonal

(b) constructing a perpendicular bisector line to an existing line seg-

ment, and then bisecting one of the angles at which they intersect

(c) bisecting a 1808 angle, and then bisecting one of the resulting

angles

(d) any of the above methods (a), (b), or (c)
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CHAPTER
6

The Cartesian Plane

The Cartesian plane, also called the rectangular coordinate plane or rectan-

gular coordinates, is defined by two number lines that intersect at a right

angle. This makes it possible to pictorially render equations that relate one

variable to another. You should have a knowledge of middle-school algebra

before tackling this chapter. Upon casual observation, some of the equations

in this chapter look a little complicated, but nothing here goes beyond

middle-school algebra.

Two Number Lines
Figure 6-1 illustrates the simplest possible set of rectangular coordinates.

Both number lines have equal increments. This means that on either axis,

points corresponding to consecutive integers are the same distance apart, no

matter where on the axis we look. The two number lines intersect at their zero

points. The horizontal (right-and-left) axis is called the x axis; the vertical

(up-and-down) axis is called the y axis.
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ORDERED PAIRS AS POINTS

Figure 6-2 shows two specific points, called P and Q, plotted on the Cartesian

plane. The coordinates of point P are (–5, –4), and the coordinates of point Q

are (3,5). Any given point on the plane can be denoted as an ordered pair in

the form (x,y), determined by the numerical values at which perpendiculars

from the point intersect the x and y axes. In Fig. 6-2, the perpendiculars are

shown as horizontal and vertical dashed lines. When denoting an ordered
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important in finding the distance d between P and Q.



pair, it is customary to place the two numbers or variables together right up

against the comma. There is no space after the comma.

The word ‘‘ordered’’ means that the order in which the numbers are listed

is important. The ordered pair (7,2) is not the same as the ordered pair (2,7),

even though both pairs contain the same two numbers. In this respect,

ordered pairs are different than mere sets of numbers. Think of a highway,

which consists of a northbound lane and a southbound lane. If there is never

any traffic on the highway, it doesn’t matter which lane (the one on the

eastern side or the one on the western side) is called ‘‘northbound’’ and

which is called ‘‘southbound.’’ But when there are cars and trucks on that

road, it makes a big difference! The untraveled road is like a set; the traveled

road is like an ordered pair.

ABSCISSA, ORDINATE, AND ORIGIN

In any graphing scheme, there is at least one independent variable and at least

one dependent variable. As the name suggests, the value of the independent

variable does not ‘‘depend’’ on anything; it just ‘‘happens.’’ The value of the

dependent variable is affected by the value of the independent variable.

The independent-variable coordinate (usually x) of a point on the

Cartesian plane is called the abscissa, and the dependent-variable coordinate

(usually y) is called the ordinate. The point (0,0) is called the origin. In Fig.

6-2, point P has an abscissa of –5 and an ordinate of –4, and point Q has

an abscissa of 3 and an ordinate of 5.

DISTANCE BETWEEN POINTS

Suppose there are two different points P ¼ (x0,y0) and Q ¼ (x1,y1) on the

Cartesian plane. The distance d between these two points can be found by

determining the length of the hypotenuse, or longest side, of a right triangle

PQR, where point R is the intersection of a ‘‘horizontal’’ line through P and a

‘‘vertical’’ line through Q. In this case, ‘‘horizontal’’ means ‘‘parallel to the x

axis,’’ and ‘‘vertical’’ means ‘‘parallel to the y axis.’’ An example is shown in

Fig. 6-2. Alternatively, we can use a ‘‘horizontal’’ line through Q and a

‘‘vertical’’ line through P to get the point R. The resulting right triangle in

this case has the same hypotenuse, line segment PQ, as the triangle deter-

mined the other way.
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Think back to Chapter 2, and recall the Pythagorean theorem. It states

that the square of the length of the hypotenuse of a right triangle is equal to

the sum of the squares of the other two sides. In this case, that means:

d2 ¼ ðx1 � x0Þ
2 þ ðy1 � y0Þ

2

and therefore:

d ¼ ½ðx1 � x0Þ
2 þ ðy1 � y0Þ

2�1=2

where the 1=
2 power is the square root. In the situation shown in Fig. 6-2, the

distance d between points P ¼ (x0,y0) ¼ (–5,–4) and Q ¼ (x1,y1) ¼ (3,5) is:

d ¼ f½3� ð�5Þ�2 þ ½5� ð�4Þ�2g1=2

¼ ½ð3þ 5Þ2 þ ð5þ 4Þ2�1=2

¼ ð82 þ 92Þ1=2

¼ ð64þ 81Þ1=2

¼ 1451=2

¼ 12:04 ðapprox:Þ

This is accurate to two decimal places, as determined using a standard digital

calculator that can find square roots.

Relation versus Function
It’s important to know the similarities and differences between two concepts

as they pertain to coordinate geometry: the idea of a relation and the idea of a

function. A relation is an equation or formula that relates the value of one

variable to that of another. A function is a relation that meets certain require-

ments.

RELATIONS

Mathematical relations between two variables x and y are often written in

such a way that y is expressed in terms of x. When this is done, y is the

dependent variable and x is the independent variable. The following are some

examples of relations denoted this way:
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y ¼ 5

y ¼ xþ 1

y ¼ 2x

y ¼ x2

SOME SIMPLE GRAPHS

Figure 6-3 shows how the graphs of the above equations look on the

Cartesian plane. Mathematicians and scientists call such a graph a curve,

even if it happens to be a straight line.

The graph of y ¼ 5 (curve A) is a horizontal line passing through the point

(0,5) on the y axis. The graph of y ¼ x þ 1 (curve B) is a straight line that

ramps upward at a 458 angle (from left to right) and passes through (0,1) on

the y axis. The graph of y ¼ 2x (curve C) is a straight line that ramps upward

more steeply, and that passes through the origin (0,0). The graph of y ¼ x2

(curve D) is known as a parabola. In this case the parabola rests on the origin

(0,0), opens upward, and is symmetrical with respect to the y axis.
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RELATIONS VS FUNCTIONS

All of the relations graphed in Fig. 6-3 have something in common. For every

abscissa, each relation contains at most one ordinate. Never does a curve

have two or more ordinates for a single abscissa, although one of them (the

parabola, curve D) has two abscissas for all positive ordinates.

A function is a mathematical relation in which every abscissa corresponds

to at most one ordinate. According to this criterion, all the curves shown in

Fig. 6-3 are graphs of functions of y in terms of x. In addition, curves A, B,

and C show functions of x in terms of y. But curve D does not represent a

function of x in terms of y. If x is considered the dependent variable, then

there are some values of y (that is, some abscissas) for which there exist two

values of x (ordinates).

Functions are denoted as italicized letters of the alphabet, usually f, F, g,

G, h, or H, followed by the independent variable or variables in parentheses.

Examples are:

fðxÞ ¼ xþ 1

gðyÞ ¼ 2y

HðzÞ ¼ z2

These equations are read ‘‘f of x equals x plus 1,’’ ‘‘g of y equals 2y,’’ and ‘‘H

of z equals z squared,’’ respectively.

PROBLEM 6-1

Plot the following points on the Cartesian plane: (–2,3), (3,–1), (0,5), and

(–3,–3).

SOLUTION 6-1

These points are shown in Fig. 6-4. The dashed lines are perpendiculars,

dropped to the axes to show the x and y coordinates of each point. (The

dashed lines are not parts of the coordinates themselves.)

PROBLEM 6-2

What is the distance between (0,5) and (–3,–3) in Fig. 6-4? Express the answer

to three decimal places.

SOLUTION 6-2

Use the distance formula. Let (x0,y0) ¼ (0,5) and (x1,y1) ¼ (–3,–3). Then:
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d ¼ ½ðx1 � x0Þ
2 þ ðy1 � y0Þ

2�1=2

¼ ½ð�3� 0Þ2 þ ð�3� 5Þ2�1=2

¼ ½ð�3Þ2 þ ð�8Þ2�1=2

¼ ð9þ 64Þ1=2

¼ 731=2

¼ 8:544 ðapprox:Þ

Straight Lines
Straight lines on the Cartesian plane are represented by a certain type of

equation called a linear equation. There are several forms in which a linear

equation can be written. All linear equations can be reduced to a form where

neither x nor y is raised to any power other than 0 or 1.

STANDARD FORM OF LINEAR EQUATION

The standard form of a linear equation in variables x and y consists of

constant multiples of the two variables, plus another constant, all summed

up to equal zero:
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axþ byþ c ¼ 0

In this equation, the constants are a, b, and c. If a constant happens to be

equal to 0, then it is not written down, nor is its multiple (by either x or y)

written down. Examples of linear equations in the standard form are:

2xþ 5y� 3 ¼ 0

5y� 3 ¼ 0

2x� 3 ¼ 0

2x ¼ 0

5y ¼ 0

The last two of these equations can be simplified to x ¼ 0 and y ¼ 0, by

dividing each side by 2 and 5, respectively.

SLOPE–INTERCEPT FORM OF LINEAR EQUATION

A linear equation in variables x and y can be manipulated so it is in a form

that is easy to plot on the Cartesian plane. Here is how a linear equation in

standard form can be converted to slope–intercept form:

axþ byþ c ¼ 0

axþ by ¼ �c

by ¼ �ax� c

y ¼ ð�a=bÞx� c=b

y ¼ ð�a=bÞxþ ð�c=bÞ

where a, b, and c are real-number constants, and b 6¼ 0. The quantity –a/b is

called the slope of the line, an indicator of how steeply and in what sense the

line slants. The quantity –c/b represents the ordinate (or y-value) of the point

at which the line crosses the y axis; this is called the y-intercept.

WHAT IS SLOPE?

Let dx represent a small change in the value of x on such a graph; let dy

represent the change in the value of y that results from this change in x. The

ratio dy/dx is the slope of the line, and is symbolized m. Let k represent the y-

intercept. Then m and k can be derived from the coefficients a, b, and c as

follows, provided b 6¼ 0:
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m ¼ �a=b

k ¼ �c=b

The linear equation can be rewritten in slope–intercept form as:

y ¼ ð�a=bÞxþ ð�c=bÞ

and therefore:

y ¼ mxþ k

To plot a graph of a linear equation in Cartesian coordinates, proceed as

follows:

� Convert the equation to slope–intercept form
� Plot the point y ¼ k
� Move to the right by n units on the graph
� If m is positive, move upward mn units
� If m is negative, move downward |m|n units, where |m| is the absolute

value of m
� If m ¼ 0, don’t move up or down at all
� Plot the resulting point y ¼ mn þ k
� Connect the two points with a straight line

Figures 6-5A and 6-5B illustrate the following linear equations as graphed in

slope–intercept form:

y ¼ 5x� 3

y ¼ �xþ 2

A positive slope indicates that the line ramps upward as you move from left

to right, and a negative slope indicates that the line ramps downward as you

move from left to right. A slope of 0 indicates a horizontal line. The slope of a

vertical line is undefined because, in the form shown here, it requires that m

be defined as a quotient in which the denominator is equal to 0.

POINT–SLOPE FORM OF LINEAR EQUATION

It is difficult to plot a graph of a line based on the y-intercept (the point at

which the line intersects the y axis) when the part of the graph of interest is

far from the y axis. In this sort of situation, the point–slope form of a linear

equation can be used. This form is based on the slope m of the line and the

coordinates of a known point (x0,y0):

y� y0 ¼ mðx� x0Þ
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–x þ 2.



To plot a graph of a linear equation using the point–slope method, you can

follow these steps in order:

� Convert the equation to point–slope form
� Determine a point (x0,y0) by ‘‘plugging in’’ values
� Plot (x0,y0) on the coordinate plane
� Move to the right by n units on the graph, where n is some number that

represents a reasonable distance on the graph
� If m is positive, move upward mn units
� If m is negative, move downward |m|n units, where |m| is the absolute

value of m
� If m ¼ 0, don’t move up or down at all
� Plot the resulting point (x1,y1)
� Connect the points (x0,y0) and (x1,y1) with a straight line

Figure 6-6A illustrates the following linear equation as graphed in point–

slope form:

y� 104 ¼ 3ðx� 72Þ

Figure 6-6B is another graph of a linear equation in point–slope form:

yþ 55 ¼ �2ðxþ 85Þ

FINDING LINEAR EQUATION BASED ON GRAPH

Suppose we are working in the Cartesian plane, and we know the exact

coordinates of two points P and Q. These two points define a unique and

distinct straight line. Call the line L. Let’s give the coordinates of the points

these names:

P ¼ ðxp,ypÞ

Q ¼ ðxq,yqÞ

The slope m of line L can be found using either of the following formulas:

m ¼ ðyq � ypÞ=ðxq � xpÞ

m ¼ ðyp � yqÞ=ðxp � xqÞ

provided xp is not equal to xq. The point–slope equation of L can be deter-

mined based on the known coordinates of P or Q. Therefore, either of the

following formulas represent the line L:
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y� yp ¼ mðx� xpÞ

y� yq ¼ mðx� xqÞ

Parabolas and Circles
The Cartesian-coordinate graph of a quadratic equation is a parabola. In

Cartesian coordinates, a quadratic equation looks like this:

y ¼ ax2 þ bxþ c
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where a, b, and c are real-number constants, and a 6¼ 0. (If a ¼ 0, then the

equation is linear, not quadratic.) To plot a graph of an equation that

appears in the above form, first determine the coordinates of the following

point (x0,y0):

x0 ¼ �b=ð2aÞ

y0 ¼ c� b2=ð4aÞ

This point represents the base point of the parabola; that is, the point at

which the curvature is sharpest, and at which the slope of a line tangent to

the curve is zero. Once this point is known, find four more points by ‘‘plug-

ging in’’ values of x somewhat greater than and less than x0, and then

determining the corresponding y-values. These x-values, call them x–2, x–1,

x1, and x2, should be equally spaced on either side of x0, such that:

x�2 < x�1 < x0 < x1 < x2

x�1 � x�2 ¼ x0 � x�1 ¼ x1 � x0 ¼ x2 � x1

This will give five points that lie along the parabola, and that are symmetrical

relative to the axis of the curve. The graph can then be inferred (that means

we make an educated guess!) if the points are wisely chosen. Some trial and

error might be required. If a > 0, the parabola opens upward. If a < 0, the

parabola opens downward.

Let’s go ahead and try this with a concrete example.

PLOTTING A PARABOLA

Consider the following formula:

y ¼ x2 þ 2xþ 1

Using the above formula to calculate the base point:

x0 ¼ �2=2 ¼ �1

y0 ¼ 1� 4=4 ¼ 1� 1 ¼ 0

Therefore,

ðx0,y0Þ ¼ ð�1,0Þ
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This point is plotted first, as shown in Fig. 6-7. Next, plot the points corre-

sponding to x–2, x–1, x1, and x2, spaced at 1-unit intervals on either side of x0,

as follows:

x�2 ¼ x0 � 2 ¼ �3

y�2 ¼ ð�3Þ2 þ 2� ð�3Þ þ 1 ¼ 9� 6þ 1 ¼ 4

Therefore,

ðx�2; y�2Þ ¼ ð�3,4Þ

x�1 ¼ x0 � 1 ¼ �2

y�1 ¼ ð�2Þ2 þ 2� ð�2Þ þ 1 ¼ 4� 4þ 1 ¼ 1

Therefore,

ðx�1; y�1Þ ¼ ð�2,1Þ

x1 ¼ x0 þ 1 ¼ 0

y1 ¼ 02 þ 2� 0þ 1 ¼ 0þ 0þ 1 ¼ 1
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Therefore,

ðx1,y1Þ ¼ ð0,1Þ

x2 ¼ x0 þ 2 ¼ 1

y2 ¼ 12 þ 2� 1þ 1 ¼ 1þ 2þ 1 ¼ 4

Therefore,

ðx2,y2Þ ¼ ð1,4Þ

From these five points, the curve can be inferred.

PLOTTING ANOTHER PARABOLA

Let’s try another example, this time with a parabola that opens downward.

Consider the following formula:

y ¼ �2x2 þ 4x� 5

The base point is:

x0 ¼ �4=� 4 ¼ 1

y0 ¼ �5� 16=ð�8Þ ¼ �5þ 2 ¼ �3

Therefore,

ðx0,y0Þ ¼ ð1,� 3Þ

This point is plotted first, as shown in Fig. 6-8. Next, plot the following

points:

x�2 ¼ x0 � 2 ¼ �1

y�2 ¼ �2� ð�1Þ2 þ 4� ð�1Þ � 5 ¼ �2� 4� 5 ¼ �11

Therefore,

ðx�2,y�2Þ ¼ ð�1,� 11Þ

x�1 ¼ x0 � 1 ¼ 0

y�1 ¼ �2� 02 þ 4� 0� 5 ¼ �5

Therefore,

ðx�1,y�1Þ ¼ ð0,� 5Þ

x1 ¼ x0 þ 1 ¼ 2

y1 ¼ �2� 22 þ 4� 2� 5 ¼ �8þ 8� 5 ¼ �5
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Therefore,

ðx1,y1Þ ¼ ð2,� 5Þ

x2 ¼ x0 þ 2 ¼ 3

y2 ¼ �2� 32 þ 4� 3� 5 ¼ �18þ 12� 5 ¼ �11

Therefore,

ðx2,y2Þ ¼ ð3,� 11Þ

From these five points, the curve can be inferred.

EQUATION OF CIRCLE

The general form for the equation of a circle in the xy-plane is given by the

following formula:

ðx� x0Þ
2 þ ðy� y0Þ

2 ¼ r2

where (x0,y0) represents the coordinates of the center of the circle, and r

represents the radius. This is illustrated in Fig. 6-9. In the special case

where the circle is centered at the origin, the formula becomes:

x2 þ y2 ¼ r2

CHAPTER 6 The Cartesian Plane112

Fig. 6-8. Graph of the quadratic equation y ¼ –2x2 þ 4x – 5.



Such a circle intersects the x axis at the points (r,0) and (–r,0); it intersects the

y axis at the points (0,r) and (0,–r). An even more specific case is the unit

circle:

x2 þ y2 ¼ 1

This curve intersects the x axis at the points (1,0) and (–1,0); it intersects the y

axis at the points (0,1) and (0,–1).

PROBLEM 6-3

Draw a graph of the circle represented by the equation (x – 1)2 þ (yþ 2)2 ¼ 9.

SOLUTION 6-3

Based on the general formula for a circle, we can determine that the center

point has coordinates x0 ¼ 1 and y0 ¼ –2. The radius is equal to the square

root of 9, which is 3. The result is a circle whose center point is (1,–2) and

whose radius is 3. This is shown in Fig. 6-10.

PROBLEM 6-4

Determine the equation of the circle shown in Fig. 6-11.
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Fig. 6-11. Illustration for Problem 6-4.



SOLUTION 6-4

First note that the center point is (–8,–7). That means x0 ¼ –8 and y0 ¼ –7.

The radius, r, is equal to 20, so r2 ¼ 20 � 20 ¼ 400. Plugging these numbers

into the general formula gives us the equation of the circle, as follows:

ðx� x0Þ
2 þ ðy� y0Þ

2 ¼ r2

½x� ð�8Þ�2 þ ½y� ð�7Þ�2 ¼ 400

ðxþ 8Þ2 þ ðyþ 7Þ2 ¼ 400

Solving Pairs of Equations
The solutions of pairs of equations can be envisioned and approximated by

graphing both of the equations on the same set of coordinates. Solutions

appear as intersection points between the plots.

A LINE AND A CURVE

Suppose you are given two equations in two variables, such as x and y, and

are told to solve for values of x and y that satisfy both equations. Such

equations are called simultaneous equations. Here is an example:

y ¼ x2 þ 2xþ 1

y ¼ �xþ 1

These equations are graphed in Fig. 6-12. The graph of the first equation is a

parabola, and the graph of the second equation is a straight line. The line

crosses the parabola at two points, indicating that there are two solutions of

this set of simultaneous equations. The coordinates of the points, corre-

sponding to the solutions, can be estimated from the graph. It appears that

they are approximately:

ðx1,y1Þ ¼ ð�3,4Þ

ðx2,y2Þ ¼ ð0,1Þ

You can solve the pair of equations using plain algebra, and determine the

solutions exactly.
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ANOTHER LINE AND CURVE

Here is another pair of ‘‘two-by-two’’ equations (two equations in two vari-

ables) that can be approximately solved by graphing:

y ¼ �2x2 þ 4x� 5

y ¼ �2x� 5

These equations are graphed in Fig. 6-13. Again, the graph of the first equa-

tion is a parabola, and the graph of the second equation is a straight line. The

line crosses the parabola at two points, indicating that there are two solu-

tions. The coordinates of the points, corresponding to the solutions, appear

to be approximately:

ðx1,y1Þ ¼ ð3,� 11Þ

ðx2,y2Þ ¼ ð0,� 5Þ

Again, if you want, you can go ahead and solve these equations using alge-

bra, and find the values exactly.
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HOW MANY SOLUTIONS?

Graphing simultaneous equations can reveal general things about them, but

should not be relied upon to provide exact solutions. In real-life scientific

applications, graphs rarely show exact solutions unless they are so labeled

and represent theoretical ideals.

A graph can reveal that a pair of equations has two or more solutions, or

only one solution, or no solutions at all. Solutions to pairs of equations

always show up as intersection points on their graphs. If there are n inter-

section points between the curves representing two equations, then there are n

solutions to the pair of simultaneous equations.

If a pair of equations is complicated, or if the graphs are the results of

experiments, you’ll occasionally run into situations where you can’t use alge-

bra to solve them. Then graphs, with the aid of computer programs to closely

approximate the points of intersection between graphs, offer a good means of

solving simultaneous equations.

Sometimes you’ll want to see if a set of more than two equations in x and y

has any solutions shared by them all. It is common for one or more pairs of a

large set of equations to have some solutions; this is shown by points where

any two of their graphs intersect. But it’s unusual for a set of three or more
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equations in x and y to have any solutions when considered all together (that

is, simultaneously). For that to be the case, there must be at least one point

that all of the graphs have in common.

PROBLEM 6-5

Using the Cartesian plane to plot their graphs, what can be said about the

solutions to the simultaneous equations y¼ x þ 3 and (x – 1)2 þ (y þ 2)2 ¼ 9?

SOLUTION 6-5

The graphs of these equations are shown in Fig. 6-14. The equation y ¼ x þ 3

has a graph that is a straight line, ramping up toward the right with slope

equal to 1, and intersecting the y axis at (0,3). The equation (x – 1)2 þ (y þ

2)2 ¼ 9 has a graph that is a circle whose radius is 3 units, centered at the

point (1,–2). It is apparent that this line and circle do not intersect. This

means that there exist no solutions to this pair of simultaneous equations.

PROBLEM 6-6

Using the Cartesian plane to plot their graphs, what can be said about the

solutions to the simultaneous equations y ¼ 1 and (x – 1)2 þ (y þ 2)2 ¼ 9?

SOLUTION 6-6

The graphs of these equations are shown in Fig. 6-15. The equation y ¼ 1 has

a graph that is a horizontal straight line intersecting the y axis at (0,1). The

equation (x – 1)2 þ (y þ 2)2 ¼ 9 has a graph that is a circle whose radius is 3
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units, centered at the point (1,–2). It appears from the graph that the equa-

tions have a single common solution denoted by the point (1,1), indicating

that x ¼ 1 and y ¼ 1.

Let’s use algebra to solve the equations and see if the graph tells us the true

story. Substituting 1 for y in the equation of a circle (because one of the

equations tells us that y ¼ 1), we get a single equation in a single variable:

ðx� 1Þ2 þ ð1þ 2Þ2 ¼ 9

ðx� 1Þ2 þ 32 ¼ 9

ðx� 1Þ2 þ 9 ¼ 9

ðx� 1Þ2 ¼ 0

x� 1 ¼ 0

x ¼ 1

It checks out. There is only one solution to this pair of simultaneous equa-

tions, and that is x ¼ 1 and y ¼ 1, denoted by the point (1,1).
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Quiz
Refer to the text in this chapter if necessary. A good score is eight correct.

Answers are in the back of the book.

1. The ordinate in the xy-plane is the same as the value of the

(a) abscissa

(b) x coordinate

(c) dependent variable

(d) independent variable

2. The graph of y ¼ 3x2 – 5 is

(a) a straight line

(b) a parabola opening upward

(c) a parabola opening downward

(d) a circle

3. Suppose you see a graph of a straight line. The x-intercept point is

(4,0) and the y-intercept point is (0,8). What is the equation of this

line?

(a) y ¼ –2x þ 8

(b) y ¼ –4x – 8

(c) y ¼ 4x þ 8

(d) (x – 4)2 þ (y – 8)2 ¼ 0

4. At which points, if any, do the graphs of y ¼ 2x þ 4 and y ¼ 2x – 4

intersect?

(a) (0,–2)

(b) (2,0)

(c) (0,–2) and (2,0)

(d) The graphs do not intersect

5. Consider a situation similar to the one encountered in Problem 6-6

and Fig. 6-15. Suppose the equation of the circle is changed to (x – 1)2

þ (y þ 2)2 ¼ 100, but the equation of the line remains the same at y ¼

1. What can we say about the solutions to the pair of equations now?

(a) There are none

(b) There is one

(c) There are two

(d) There are more than two

6. Examine Fig. 6-12. At what point does the straight line intersect the x

axis?
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(a) (0,1)

(b) (1,0)

(c) (–3,4)

(d) It is impossible to precisely tell without more information

7. What are the y-intercept points, if any, of the circle (x þ 5)2 þ (y þ 4)2

¼ 1?

(a) It is impossible to tell without more information

(b) (0,5) and (0,4)

(c) (0,–5) and (0,–4)

(d) There are none

8. What is the distance d between the points (3,5) and (5,3)?

(a) d ¼ 0

(b) d ¼ 2

(c) d ¼ 81/2

(d) d ¼ 4

9. What is the slope of the line represented by the equation y – 2 ¼ 3x þ

18?

(a) 2

(b) 3

(c) 18

(d) –18

10. Examine Fig. 6-12. Suppose that a third equation is graphed on this

Cartesian plane, and its equation is y ¼ x – 3. If the equations of the

two existing graphs are considered together with this new equation,

how many common solutions are there to all three equations consid-

ered simultaneously?

(a) None

(b) One

(c) Two

(d) Three
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122

Test: Part One

Do not refer to the text when taking this test. You may draw diagrams or use

a calculator if necessary. A good score is at least 38 correct. Answers are in

the back of the book. It’s best to have a friend check your score the first time,

so you won’t memorize the answers if you want to take the test again.

1. Two triangles are directly similar if and only if

(a) they are both equilateral

(b) they are both isosceles

(c) they have corresponding sides of identical lengths

(d) they have the same proportions in the same rotational sense

(e) the sum of the measures of their interior angles is equal to 1808

2. A regular polygon

(a) has sides that are all the same length, but interior angles whose

measures may differ

(b) has interior angles that all have the same measure, but sides whose

lengths may differ

(c) has sides that are all the same length, and interior angles whose

measures are all the same

(d) has vertices that all lie along the same line

(e) has interior angles whose measures add up to 3608
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3. Which of the following statements is false in Euclidean geometry?

(a) Two different, parallel, straight lines do not intersect

(b) A straight line segment has no perpendicular bisectors

(c) An acute angle measures less than 908

(d) Three points, not all on the same line, always lie in the same plane

(e) Two intersecting straight lines always lie in the same plane

4. Look at Fig. Test 1-1. Suppose that line segments SQ and PR are

perpendicular to each other at their intersection point T. From this,

we can be certain

(a) that PQRS is a rhombus

(b) that PQRS is a square

(c) that PQRS is a rectangle

(d) that PQRS does not lie in a single plane

(e) about none of the above

5. Suppose that in Fig. Test 1-1, line segments PQ and RS are parallel,

but line segments PS and QR are not parallel. From this, we can be

certain

(a) that PQRS is a rhombus

(b) that PQRS is a square

(c) that PQRS is a rectangle

(d) that PQRS is a parallelogram

(e) about none of the above

6. Suppose that in Fig. Test 1-1,iPTQ ffiiRTS andiPTS ffiiRTQ.

From this, we can be certain

(a) that PQRS is a rhombus

(b) that PQRS is a square

(c) that PQRS is a rectangle

(d) that PQRS does not lie in a single plane

(e) about none of the above

Fig. Test 1-1. Illustration for Questions 4, 5, 6, and 7 in the test for Part One.
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7. Suppose that in Fig. Test 1-1, line segments PS and QR are parallel,

and iPSQ ffi iRQS. From this, we can be certain

(a) that PQRS is a rhombus

(b) that PQRS is a square

(c) that PQRS is a rectangle

(d) that PQRS is a parallelogram

(e) about none of the above

8. When creating a geometric construction, it is important that

(a) the compass be a precision drafting device, not a dime-store item

(b) the straight edge be calibrated in metric units

(c) markings on the straight edge or ruler be non-existent or ignored

(d) the marking device be a pencil, not a pen

(e) the paper be white and the marking device be black for maximum

contrast

9. How far is the point (10,10) from the origin in Cartesian coordinates?

Round off the answer to three decimal places.

(a) 7.071 units

(b) 10.000 units

(c) 14.142 units

(d) 20.000 units

(e) 100.000 units

10. A half-open line segment

(a) has zero length

(b) contains both of its end points

(c) contains one, but not both, of its end points

(d) contains neither of its end points

(e) has no end points

11. Suppose you see a graph of a circle in Cartesian coordinates. The

circle is centered at the origin (that is, the point where x ¼ 0 and

y ¼ 0). The radius of the circle is equal to 10 units. At what point

on the circle are the x and y values equal and negative? Round off the

values to three decimal places.

(a) (–10.000,–10.000)

(b) (–14.142,–14.142)

(c) (–7.071,–7.071)

(d) There are infinitely many such points

(e) There is no such point
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12. What is the slope of the graph of the equation x ¼ 3 in Cartesian

coordinates?

(a) 3

(b) –3

(c) 0

(d) It is not defined

(e) More information is needed to determine it

13. Look at Fig. Test 1-2. Suppose that lines TR, QU, and QR are all

straight, and that lines TR and QU are parallel. Which of the follow-

ing statements is false?

(a) ffTRS and ffRQU are alternate interior angles

(b) ffTRS and ffPQU have the same measure

(c) Line PR is a transversal to lines TR and QU

(d) ffPRT has the same measure as ffRQU

(e) All of the above statements are true

14. Look at Fig. Test 1-2. Suppose that lines TR, QU, and QR are all

straight and all lie in the same plane. Also suppose that ffTRQ has the

same measure as ffUQR. Which of the following statements (a), (b),

(c), or (d) is not necessarily true?

(a) Lines TR and QU are parallel

(b) ffTRS has the same measure as ffUQP

(c) Line SP is a transversal to lines TR and QU

(d) ffQRS has the same measure as ffPQR

(e) All of the above statements (a), (b), (c), and (d) are true

Fig. Test 1-2. Illustration for Questions 13 and 14 in the test for Part One.

Test: Part One 125



15. In a geometric construction, which of the following operations (a), (b),

(c), or (d) is not allowed?

(a) Placing the compass down and adjusting it to span the length of

an existing line segment

(b) Drawing two lines so they intersect at an angle measuring a cer-

tain number of degrees as indicated by a protractor

(c) Drawing a circle of arbitrary radius, centered at an arbitrary point

(d) Drawing a circle of arbitrary radius, centered at a specific point

(e) All of the above operations (a), (b), (c), and (d) are allowed

16. If the radius of a circle is 3 units, but nothing else about it is known,

then which of the following (a), (b), (c), or (d) cannot be determined?

(a) The diameter of the circle

(b) The circumference of the circle

(c) The perimeter of the circle

(d) The interior area of the circle

(e) All of the above (a), (b), (c), and (d) can be determined

17. Suppose a field is shaped like a parallelogram. The long sides measure

100 meters each, and the short sides measure 20 meters each. What is

the area of the field?

(a) 240 square meters

(b) 200 square meters

(c) 150 square meters

(d) 120 square meters

(e) It is impossible to calculate it without more information

18. Suppose a field is shaped like a parallelogram. The long sides measure

100 meters each, the short sides measure 20 meters each, and the width

of the field, as measured at right angles to its long sides, is 15 meters.

What is the area of the field?

(a) 2400 square meters

(b) 2000 square meters

(c) 1500 square meters

(d) 1200 square meters

(e) It is impossible to calculate it without more information

19. Suppose a Cartesian-coordinate graph shows two straight, parallel

lines. How many solutions exist to the pair of simultaneous equations

represented by these lines?

(a) More information is necessary in order to say

(b) None

(c) One
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(d) Two

(e) Infinitely many

20. Suppose the diagonals of a plane quadrilateral are equally long and

they intersect each other at a right angle. Then we can be certain

(a) that the quadrilateral is a square

(b) that the quadrilateral is a rectangle, but not a square

(c) that the quadrilateral is a rhombus, but not a square

(d) that the quadrilateral is a parallelogram, but not a rectangle or a

rhombus

(e) about none of the above

21. Suppose the diagonals of a plane quadrilateral are equally long, they

intersect each other at their midpoints, and they intersect each other at

a right angle. Then we can be certain

(a) that the quadrilateral is a square

(b) that the quadrilateral is a rectangle, but not a square

(c) that the quadrilateral is a rhombus, but not a square

(d) that the quadrilateral is a parallelogram, but not a rectangle or a

rhombus

(e) about none of the above

22. A triangle is obtuse if and only if

(a) all its interior angles are obtuse

(b) all its exterior angles are obtuse

(c) one of its interior angles is obtuse

(d) one of its exterior angles is obtuse

(e) the sum of the measures of its interior angles is obtuse

23. In Euclidean geometry, two lines are parallel if and only if

(a) they are in the same plane, and they do not intersect

(b) they are in the same plane, and they intersect at only one point

(c) they are in different planes, and they do not intersect

(d) they are in different planes, and they intersect at only one point

(e) they intersect at a right angle (908 or �/2 rad)

24. In Fig. Test 1-3, suppose all the sides of the polygon have identical

length s (in meters), and all the interior angles have identical measure z

(in degrees). This figure is

(a) a regular pentagon

(b) a regular hexagon

(c) a regular septagon

(d) a regular octagon

(e) an irregular polygon
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25. What is the measure of each interior angle z in the polygon of Fig.

Test 1-3, assuming the conditions given in Question 24 all hold?

(a) 1058

(b) 1208

(c) 1358

(d) 1508

(e) 1658

26. What is the length of line segment AD in Fig. Test 1-3, assuming the

conditions given in Question 24 all hold? (The exponent 1=
2 indicates

the square root.)

(a) s þ (21/2/2)

(b) s þ (21/2 � s)

(c) s þ (2 � 21/2)

(d) 2 (s þ 21/2)

(e) 2 þ s1/2

27. How can the area of the polygon in Fig. Test 1-3 be found if the value

of s is known and all the conditions given in Question 24 hold?

(a) Determine the area x of the square formed by the dashed lines,

then determine the area y of iABC, and finally determine x þ y

(b) Determine the area x of the square formed by the dashed lines,

then determine the area y ofiABC, and finally determine x þ 4y

(c) Determine the area x of the square formed by the dashed lines,

then determine the area y of iABC, and finally determine x – y

Fig. Test 1-3. Illustration for Questions 24, 25, 26, and 27 in the test for Part One.
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(d) Determine the area x of the square formed by the dashed lines,

then determine the area y ofiABC, and finally determine x – 4y

(e) Without more information, this problem cannot be solved

28. Two angles are said to be complementary if and only if

(a) they both have measures of 1808

(b) they are alternate interior angles formed by a transversal to two

parallel lines

(c) they are opposite angles formed by the intersection of two lines

(d) the sum of their measures is equal to �/2 rad

(e) they are equal halves of a bisected angle

29. In a geometric construction, which of the following operations (a), (b),

(c), or (d) is allowed?

(a) Drawing a line segment 10 centimeters long, as indicated by a

ruler

(b) Drawing an angle measuring 29 degrees, as indicated by a pro-

tractor

(c) Drawing a circle with a radius of 5 centimeters, as indicated by a

ruler

(d) Using a ruler to draw a straight line through two specific points

(e) None of the above operations (a), (b), (c), or (d) is allowed

30. Imagine two triangles iABC and iDEF. Suppose the names of the

vertices of each triangle go alphabetically in order as you proceed

counterclockwise. Further suppose that all three of the following

hold true:

� Line segment AB is the same length as line segment DE
� ffCAB has the same measure as ffFDE
� ffABC has the same measure as ffDEF

What can we say, with certainty, about iABC and iDEF ?

(a) They are directly congruent triangles

(b) They are both isosceles triangles

(c) They are both right triangles

(d) They are both acute triangles

(e) Nothing in particular

31. If the diagonals of a parallelogram are both equally long, then that

parallelogram is

(a) a square

(b) a rhombus

Test: Part One 129



(c) a rectangle

(d) an irregular quadrilateral

(e) congruent

32. What is the equation of the straight line in Fig. Test 1-4?

(a) y ¼ –4x – 1

(b) y ¼ 4x – 1

(c) y ¼ x – 4

(d) y ¼ x þ 4

(e) y ¼ 4x þ 4

33. What is the equation of the circle in Fig. Test 1-4?

(a) x2 þ y2 ¼ 6

(b) x2 – y2 ¼ 6

(c) x2 þ y2 ¼ 36

(d) x2 – y2 ¼ 36

(e) None of the above

34. How many solutions exist for the pair of simultaneous equations

represented by the line and the circle in Fig. Test 1-4?

(a) None

(b) One

(c) Two

Fig. Test 1-4. Illustration for Questions 32, 33, and 34 in the test for Part One.
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(d) Three

(e) Infinitely many

35. As the number of sides in a regular polygon increases, the interior area

of the polygon

(a) increases without limit

(b) approaches the area of a circle inscribed within the polygon

(c) approaches the area of a square inscribed within the polygon

(d) remains constant

(e) becomes undefined

36. Consider a triangle whose vertex points are D, E, and F. Suppose the

measure of ffDEF is equal to �/2 rad. Further suppose that the length

of side DE is 30 meters, and the length of side EF is 40 meters. What is

the interior area of iDEF ?

(a) 1200 square meters

(b) 600 square meters

(c) 500 square meters

(d) 120 square meters

(e) It is impossible to tell without more information

37. Envision again the triangle described in the previous question. What is

the perimeter of iDEF ?

(a) 1200 meters

(b) 600 meters

(c) 500 meters

(d) 120 meters

(e) It is impossible to tell without more information

38. In Fig. Test 1-5, suppose all the points, line segments, lines, and arcs

lie in a single plane, arc A has radius u and is centered on point P, and

arc B has radius u and is centered on point Q. Which of the following

statements logically follows from these facts?

(a) Line segment PT has the same length as line segment RT

(b) Arcs A and B encompass the same angular measure

(c) The length of line segment TQ is equal to u

(d) Line segment PQ has the same length as line segment RS

(e) None of the above

39. In Fig. Test 1-5, suppose line segment PQ is drawn, and then arcs A

and B are drawn having equal radii u and centered on points P and Q,

respectively. Finally, line RS is drawn through the points at which the

arcs intersect each other. This process illustrates a method of
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(a) angle duplication

(b) arc duplication

(c) line-segment bisection

(d) angle bisection

(e) none of the above

40. In Fig. Test 1-5, suppose all the points, line segments, lines, and arcs

lie in a single plane, arc A has radius u and is centered on point P, and

arc B has radius u and is centered on point Q. Based on these facts,

which of the following statements is not necessarily true?

(a) Line segment PT has the same length as line segment TQ

(b) Quadrilateral PRQS is a rhombus

(c) Line segment RS has the same length as line segment PQ

(d) iPTR is a right triangle

(e) All of the above statements are necessarily true

41. An angle of 3�/4 rad has the same measure as an angle of

(a) 308

(b) 458

(c) 908

(d) 1358

(e) 1808

42. Suppose a straight line is graphed in Cartesian coordinates. If you

move 2 units toward the right (that is, you increase the x-value by

2), the graph moves up by 4 units (that is, the y-value increases by 4).

What is the slope of the line?

Fig. Test 1-5. Illustration for Questions 38, 39, and 40 in the test for Part One.
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(a) 2

(b) 4

(c) –2

(d) –4

(e) There is not enough information to tell

43. In a geometric construction, which of the following operations (a), (b),

(c), or (d) does not require the use of a drafting compass?

(a) Duplicating a line segment

(b) Bisecting a line segment

(c) Drawing a perpendicular bisector to a line segment

(d) Bisecting an angle

(e) All of the above operations (a), (b), (c), and (d) require the use of

a drafting compass

44. In a trapezoid

(a) opposite pairs of angles have equal measure

(b) adjacent pairs of angles have equal measure

(c) the triangles formed by the sides and diagonals are all congruent

(d) the sum of the measures of the interior angles is equal to 3608

(e) the sum of the measures of the interior angles is equal to 1808

45. Suppose a square measures exactly 16 centimeters on a side. What is

the perimeter of a circle inscribed within this square?

(a) 4� centimeters

(b) 8� centimeters

(c) 16� centimeters

(d) 32� centimeters

(e) It cannot be determined without more information

46. The graph of the equation y ¼ 5 – 6x2 in Cartesian coordinates is

(a) a straight line with positive slope

(b) a straight line with negative slope

(c) a parabola

(d) a circle

(e) none of the above

47. Suppose there exists a line L in Euclidean geometry. Let P be some

point that is not on line L. How many lines can exist that pass through

P and are parallel to L?

(a) It is impossible to say without more information

(b) None

(c) One
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(d) Two

(e) Infinitely many

48. Suppose, in the triangle shown by Fig. Test 1-6, that the measures of

angles x and y are both 608. Then we can be certain that iPQR is

(a) an equilateral triangle

(b) an isosceles triangle, but not an equilateral triangle

(c) a right triangle

(d) a directly congruent triangle

(e) a triangle, but no particular type

49. Examine Fig. Test 1-6. If angles x and y have the same measure, then

we can be certain that iPQR is

(a) an equilateral triangle

(b) an isosceles triangle

(c) a right triangle

(d) a directly congruent triangle

(e) a triangle, but no particular type

50. Suppose, in the triangle shown by Fig. Test 1-6, that the sum of the

measures of angles x and y is equal to �/2 rad. Then we can be certain

that iPQR is

(a) an equilateral triangle

(b) an isosceles triangle

(c) a right triangle

(d) a directly congruent triangle

(e) a triangle, but no particular type

Fig. Test 1-6. Illustration for Questions 48, 49, and 50 in the test for Part One.
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PART TWO

Three Dimensions
and Up
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CHAPTER
7

An Expanded Set of
Rules

Solid geometry involves points, lines, and planes. The difference between

plane geometry and solid geometry is the fact that there’s an extra dimension.

This means greater freedom, such as we would enjoy if we had flying cars. It

also means that things are more complicated, reflecting the expanded range

of maneuvers we would have to master if we had flying cars.

Points, Lines, Planes, and Space
A point in space can be envisioned as an infinitely tiny sphere, having height,

width, and depth all equal to zero, but nevertheless possessing a specific

location. A point is zero-dimensional (0D). A point in space is just like a

point in a plane or a point on a line.

A line can be thought of as an infinitely thin, perfectly straight, infinitely

long wire. It is one-dimensional (1D). A line in space is just like a line in a
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plane, but there are more possible directions in which lines can be oriented in

space, as compared with lines confined to a plane.

A plane can be imagined as an infinitely thin, perfectly flat surface having

an infinite expanse. A plane is two-dimensional (2D). A plane comprises a

‘‘flat 2D universe’’ in which all the rules of Euclidean plane geometry apply.

Space is the set of points representing all possible physical locations in the

universe. Space is three-dimensional (3D). The idiosyncrasies of time, often

called a ‘‘fourth dimension,’’ are ignored in Euclidean space.

An alternative form of 3D can be defined in which there are two spatial

dimensions and one time dimension. This type of three-space can be thought

of as an Euclidean plane that has always existed, exists now, and always will

exist.

If time is included in a concept of space, we get four-dimensional (4D)

space, also known as hyperspace. We’ll look at hyperspace later in this

book. It, as you can imagine, gives us ‘‘hyperfreedom.’’

NAMING POINTS, LINES, AND PLANES

Points, lines, and planes in solid geometry are usually named using upper-

case, italicized letters of the alphabet, just as they are in plane geometry. A

common name for a point is P (for ‘‘point’’). A common name for a line is L

(for ‘‘line’’). When it comes to planes in 3D space, we must use our imagina-

tions. The letters X, Y, and Z are good choices. Sometimes lowercase, non-

italic letters are used, such as m and n.

When we have two or more points, the letters immediately following P are

used, for example Q, R, and S. If two or more lines exist, the letters imme-

diately following L are used, for example M and N. Alternatively, numeric

subscripts can be used. We might have points called P1, P2, P3, and so forth,

lines called L1, L2, L3, and so forth, and planes called X1, X2, X3, and so

forth.

THREE POINT PRINCIPLE

Suppose that P, Q, and R are three different geometric points, no two of

which lie on the same line. Then these points define one and only one (a

unique or specific) plane X. The following two statements are always true, as

shown in Fig. 7-1:

� P, Q, and R lie in a common plane X
� X is the only plane in which all three points lie
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In order to show that a surface extends infinitely in 2D, we have to be

imaginative. It’s not as easy as showing that a line extends infinitely in 1D,

because there aren’t any good ways to draw arrows on the edges of a plane

region the way we can draw them on the ends of a line segment. It is cus-

tomary to draw planes as rectangles in perspective; they appear as rectangles,

parallelograms, or trapezoids when rendered on a flat page. This is all right,

as long as it is understood that the surface extends infinitely in 2D.

INTERSECTING LINE PRINCIPLE

Suppose that lines L andM intersect in a point P. Then the two lines define a

unique plane X. The following two statements are always true, as shown in

Fig. 7-2:

� L and M lie in a common plane X
� X is the only plane in which both lines lie

LINE AND POINT PRINCIPLE

Let L be a line and P be a point not on that line. Then line L and point P

define a unique plane X. The following two statements are always true:

� L and P lie in a common plane X
� X is the only plane in which both L and P lie
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Fig. 7-1. Three points P, Q, and R, not all on the same line, define a specific plane X. The

plane extends infinitely in 2D.

Fig. 7-2. Two lines L and M, intersecting at point P, define a specific plane X. The plane

extends infinitely in 2D.



PLANE REGIONS

The 2D counterpart of the 1D line segment is the simple plane region. A

simple plane region consists of all the points inside a polygon or enclosed

curve. The polygon or curve itself might be included in the set of points

comprising the simple plane region, but this is not necessarily the case. If

the polygon or curve is included, the simple plane region is said to be closed.

Some examples are denoted in Fig. 7-3A; the boundaries are drawn so they

look continuous. If the polygon or curve is not included, the simple plane

region is said to be open. In Fig. 7-3B, several examples of open simple plane

regions are denoted; the boundaries are dashed.

The respective regions in Figs. 7-3A and 7-3B have identical shapes. They

also have identical perimeters and identical interior areas. The outer bound-

aries do not add anything to the perimeter or the interior area.

These examples show specialized cases, in which the regions are contigu-

ous, or ‘‘all of a piece,’’ and the boundaries are either closed all the way

around or open all the way around. Some plane regions have boundaries that

are closed part of the way around, or in segments; it is also possible to have

plane regions composed of two or more non-contiguous sub-regions. Some

such plane regions are so complex that they’re hard even to define. We won’t

concern ourselves with such monstrosities, other than to acknowledge that

they can exist.

HALF PLANES

Sometimes, mathematicians talk about the portion of a geometric plane that

lies ‘‘on one side’’ of a certain line. In Fig. 7-4, imagine the union of all

possible geometric rays that start at L, then pass through line M (which is

parallel to L), and extend onward pastM forever in one direction. The region

thus defined is known as a half plane.
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The half plane defined by L andM might include the end line L, in which

case it is closed-ended. In this case, line L is drawn as a solid line, as shown in

Fig. 7-4. But the end line might not comprise part of the half plane, in which

case the half plane is open-ended. Then line L is drawn as a dashed line.

Parts of the end line might be included in the half plane and other parts not

included. There are infinitely many situations of this kind. Such scenarios are

illustrated by having some parts of L appear solid, and other parts dashed.

INTERSECTING PLANES

Suppose that two different planes X and Y intersect; that is, they have points

in common. Then the two planes intersect in a unique line L. The following

two statements are always true, as shown in Fig. 7-5:

� Planes X and Y share a common line L
� L is the only line that planes X and Y have in common

PARALLEL LINES IN 3D SPACE

By definition, two different lines L and M in three-space are parallel lines if

and only if both of the following are true:
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Fig. 7-4. A half plane X, defined by two parallel lines, L and M. The half plane extends

infinitely in 2D on the ‘‘M’’ side of L.

Fig. 7-5. The intersection of two planes X and Y determines a unique line L. The planes

extend infinitely in 2D.



� Lines L and M do not intersect
� Lines L and M lie in the same plane X

If two lines are parallel and they lie in a given plane X, then X is the only

plane in which the two lines lie. Thus, two parallel lines define a unique plane

in Euclidean three-space.

SKEW LINES

By definition, two lines L and M in three-space are skew lines if and only if

both of the following are true:

� Lines L and M do not intersect
� Lines L and M do not lie in the same plane

Imagine an infinitely long, straight, two-lane highway and an infinitely long,

straight power line propped up on utility poles. Further imagine that the

power line and the highway center line are both infinitely thin, and that

the power line doesn’t sag between the poles. Suppose the power line passes

over the highway somewhere. Then the center line of the highway and the

power line define skew lines.

PROBLEM 7-1

Find an example of a theoretical plane region with a finite, nonzero area but

an infinite perimeter.

SOLUTION 7-1

Examine Fig. 7-6. Suppose the three lines PQ, RS, and TU (none of which

are part of the plane region X, but are shown only for reference) are mutually

parallel, and that the distances d1, d2, d3, . . . are such that d2 ¼ d1/2, d3 ¼ d2/2,

and in general, for any positive integer n, d(nþ1) ¼ dn/2. Also suppose that the

length of line segment PV is greater than the length of line segment PT. Then
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plane region X has an infinite number of sides, each of which has a length

greater than the length of line segment PT, so its perimeter is infinite. But the

interior area of X is finite and nonzero, because it is obviously less than the

interior area of quadrilateral PQSR but greater than the area of quadrilateral

TUSR.

PROBLEM 7-2

How many planes can mutually intersect in a given line L?

SOLUTION 7-2

In theory, an infinite number of planes can all intersect in a common line.

Think of the line as an ‘‘Euclidean hinge,’’ and then imagine a plane that can

swing around this hinge. Each position of the ‘‘swinging plane’’ represents a

unique plane in space.

Angles and Distances
Let’s see how the angles between intersecting planes are defined, and how

these angles behave. Let’s also see how we can define the angles between an

intersecting line and plane, and how these angles behave.

ANGLES BETWEEN INTERSECTING PLANES

Suppose two planes X and Y intersect in a common line L. Consider lineM in

plane X and line N in plane Y, such thatM ? L and N ? L, as shown in Fig.

7-7. The angle between the intersecting planes X and Y is called a dihedral

angle, and can be represented in two ways. The first angle, whose measure is

denoted by u, is the smaller angle between lines M and N. The second angle,

whose measure is denoted by v, is the larger angle between lines M and N.

If only one angle is mentioned, the ‘‘angle between two intersecting

planes’’ is usually considered to be the smaller angle u. Therefore, the

angle of intersection is larger than zero but less than or equal to a right

angle. That is, 08 < u � 908 (0 < u � �/2).

ADJACENT ANGLES BETWEEN INTERSECTING PLANES

Suppose two planes intersect, and their angles of intersection are u and v as

defined above. Then if u and v are specified in degrees, uþ v ¼ 1808. If u and v

are specified in radians, then u þ v ¼ �.
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PERPENDICULAR PLANES

Suppose two planes X and Y intersect in a common line L. Consider lineM in

plane X and line N in plane Y, such thatM ? L and N ? L, as shown in Fig.

7-7. Then X and Y are said to be perpendicular planes if the angles between

lines M and N are right angles, that is, u ¼ v ¼ 908 (�/2 rad). Actually, it

suffices to say that either u ¼ 908 (�/2 rad) or v ¼ 908 (�/2 rad).

NORMAL LINE TO A PLANE

Let plane X be determined by lines L andM, which intersect at point S. Then

line N that passes through plane X at point S is normal (also called perpendi-

cular or orthogonal) to plane X if and only if N ? L and N ? M. This is

shown in Fig. 7-8. Line N is the only line normal to plane X at point S.

Furthermore, line N is perpendicular to any line, line segment, or ray that lies

in plane X and runs through point S.

ANGLES BETWEEN AN INTERSECTING LINE AND PLANE

Let X be a plane. Suppose a line O, which is not normal to plane X, intersects

plane X at some point S as shown in Fig. 7-9. In order to define an angle at

which line O intersects plane X, we must construct some objects. Let N be a

line normal to plane X, passing through point S. Let Y be the plane deter-
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Fig. 7-7. The dihedral angle between the intersecting planes X and Y can be represented by u,

the acute angle between lines M and N, or by v, the obtuse angle between lines M

and N.



mined by the intersecting lines N and O. Let L be the line formed by the

intersection of planes X and Y. The angle between line O and plane X can be

represented in two ways. The first angle, whose measure is denoted by u, is

the smaller angle between lines L and O as determined in plane Y. The second

angle, whose measure is denoted by v, is the larger angle between lines L and

O as determined in plane Y.

If only one angle is mentioned, the ‘‘angle between a line and a plane that

intersect’’ is considered to be the smaller angle u. Therefore, the angle of
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Fig. 7-8. Line N through plane X at point S is normal to X if and only if N ? L and N ?M,

where L and M are lines in plane X that intersect at point S.

Fig. 7-9. Angles u and v between a plane X and a line O that passes through X at point S.



intersection is larger than zero but less than or equal to a right angle. That is,

08 < u � 908 (0 < u � �/2).

ADJACENT ANGLES BETWEEN AN INTERSECTING LINE
AND PLANE

Suppose a line and a plane intersect, and their angles of intersection are u and

v as defined above. Then if u and v are specified in degrees, u þ v ¼ 1808. If u

and v are specified in radians, then u þ v ¼ �.

DROPPING A NORMAL TO A PLANE

Suppose that R is a point near, but not in, a plane X. Then there is exactly

one line N through point R, intersecting plane X at some point S, such that

line N is normal to plane X, as shown in Fig. 7-10. Any lines in plane X that

pass through point S, such as L andM shown in the figure, must necessarily

be perpendicular to line N.

DISTANCE BETWEEN A POINT AND PLANE

Suppose that R is a point near, but not in, a plane X. Let N be the line

through R that is normal to plane X. Suppose line N intersects plane X at
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Fig. 7-10. Line N through point R is normal to plane X at point S. The distance between R

and X is equal to the length of line segment RS.



point S. Then the distance between point R and plane X is equal to the length

of line segment RS (Fig. 7-10).

PLANE PERPENDICULAR TO LINE

Imagine a line N in space. Imagine a specific point S on line N. There is

exactly one plane X containing point S, such that line N is normal to plane X

at point S (Fig. 7-10). Any lines in plane X that pass through point S, such as

L and M shown in the figure, must necessarily be perpendicular to line N.

LINE PARALLEL TO PLANE

A line L is parallel to a plane X if and only if the following two conditions

hold true:

� Line L does not lie in plane X
� Line L does not intersect plane X

Under these conditions, there is exactly one lineM in plane X, such that lines

L andM are parallel. Any line N in plane X, other than lineM, is a skew line

relative to L (Fig. 7-11).

DISTANCE BETWEEN A PARALLEL LINE AND PLANE

Suppose line L is parallel to plane X. Let R be some (any) point on line L.

Then the distance between line L and plane X is equal to the distance between

point R and plane X, which has already been defined.
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parallel to L; all other lines N in plane X are skew lines relative to L.



ADDITION AND SUBTRACTION OF ANGLES BETWEEN
INTERSECTING PLANES

Angles between intersecting planes add and subtract just like angles between

intersecting lines (or line segments). Here is how we can prove it, based on

knowledge we already have.

Suppose three planes X, Y, and Z intersect in a single, common line L. Let

S be a point on line L. Let P, Q, and R be points on planes X, Y, and Z

respectively, such that line segments SP, SQ, and SR are all perpendicular to

line L. Let ffXY be the angle between planes X and Y, ffYZ be the angle

between planes Y and Z, and ffXZ be the angle between planes X and Z. This

is diagrammed in Fig. 7-12. From the preceding definition of the angle

between two planes, we know that:

ffXY ¼ ffPSQ

ffYZ ¼ ffQSR

ffXZ ¼ ffPSR

Line segments SP, SQ, and SR all lie in a single plane because they all

intersect at point S and they are all perpendicular to line L. Therefore, we

know from the rules for addition of angles in a plane, that the following hold

true for the measures of the angles between the line segments:

ffPSQþ ffQSR ¼ ffPSR

ffPSR� ffQSR ¼ ffPSQ

ffPSR� ffPSQ ¼ ffQSR
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Substituting the angles between the planes for the angles between the line

segments, we see that the following hold true for the measures of the angles

between the planes:

ffXYþ ffYZ ¼ ffXZ

ffXZ� ffYZ ¼ ffXY

ffXZ� ffXY ¼ ffYZ

PROBLEM 7-3

Suppose a communications cable is strung above a fresh-water lake.

Imagine that the cable does not sag at all, and is attached at the tops of

a set of utility poles. Suppose the engineering literature recommends that

the cable be suspended 10 meters above ‘‘effective ground,’’ and that ‘‘effec-

tive ground’’ is, on average, 2 meters below the average level of the surface

of a body of fresh water. How tall should the poles be? Assume they are all

perfectly vertical.

SOLUTION 7-3

Because the poles are perfectly vertical, they are perpendicular to the surface

of the lake. This means that the poles should each be tall enough so their tops

are 10 meters above ‘‘effective ground,’’ so they should each extend 10� 2

meters, or 8 meters, above the water surface. The actual height of each pole

depends on the depth of the lake at the point where it is placed. It is assumed

that the lake is small enough, and/or weather conditions reasonable enough,

so the lake does not acquire waves so high that they inundate the cable!

PROBLEM 7-4

Imagine that you are flying a kite over a perfectly flat field. The kite is of a

design that flies at a ‘‘high angle.’’ Suppose the kite line does not sag, and the

kite flies only 108 away from the vertical. (Some kites can actually fly straight

overhead!) Imagine that it is a sunny day, and the sun is shining down from

exactly the zenith. What is the angle between the kite string (also called the

kite line) and its shadow on the flat field?

SOLUTION 7-4

Suppose you stand at point S on the surface of the field, which we call

plane X. The kite line and its shadow lie along lines SR and ST, as shown in

Fig. 7-13. The sun shines down along a line QS that is normal to plane X.

Lines SQ, SR, and ST all lie in a common plane Y, which is perpendicular to

plane X. We know that the measure of ffQSR is 108, because we are given this

information. We also know that the measure of ffQST is 908, because line QS

is normal to planeX, and line ST lies in planeX. Because lines SR, ST, and SQ
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all lie in the same plane Y, we know that the measures of the angles among

them add as follows:

ffQSRþ ffRST ¼ ffQST

and therefore

ffRST ¼ ffQST� ffQSR

The measure of ffRST, which represents the angle between the kite line and its

shadow, is equal to 908 – 108, or 808.

More Facts
In the confines of a single geometric plane, lines and angles behave according

to various rules. The following are some of the best-known examples.

PARALLEL PLANES

Two distinct planes are parallel if and only if they do not intersect. Two

distinct half planes are parallel if and only if the planes in which they lie

do not intersect. Two distinct plane regions are parallel if and only if the

planes in which they lie do not intersect.

CHAPTER 7 An Expanded Set of Rules150

Fig. 7-13. Illustration for Problem 7-4.



DISTANCE BETWEEN PARALLEL PLANES

Suppose planes X and Y are parallel. Let R be some arbitrary point on plane

X. Then the distance between planes X and Y is equal to the distance between

point R and plane Y, which has already been defined.

VERTICAL ANGLES FOR INTERSECTING PLANES

Suppose that Y and Z are two planes that intersect in a line L. Let points P,

Q, R, S, and T be as shown in Fig. 7-14, such that:

� Point T lies on lines L, PS, and RQ
� Points Q and R lie in plane Y
� Points P and S lie in plane Z
� Lines PS and RQ are both perpendicular to line L

Then the pair ffPTQ and ffSTR are vertical angles; the pair ffRTP and ffQTS

are also vertical angles. Thus, ffPTQ has the same measure as ffSTR, and

ffRTP has the same measure as ffQTS.

ALTERNATE INTERIOR ANGLES FOR INTERSECTING
PLANES

Suppose that X is a plane that passes through two parallel planes Y and Z,

intersecting Y and Z in lines L andM. Let points P, Q, R, S, T, U, V, andW

be as shown in Figs. 7-15A and 7-15B, such that:
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� Point V lies on lines L, PQ, and RS
� Point W lies on lines M, PQ, and TU
� Points P and Q lie in plane X
� Points R and S lie in plane Y
� Points T and U lie in plane Z
� Lines PQ and RS are perpendicular to line L
� Lines PQ and TU are perpendicular to line M
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Fig. 7-15. (A) Alternate interior angles between intersecting planes. (B) Another example of

alternate interior angles between intersecting planes.
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Then the pair ffPVR and ffQWU are alternate interior angles (Fig. 7-15A); the

pair ffTWQ and ffSVP are also alternate interior angles (Fig. 7-15B).

Alternate interior angles always have equal measures. Thus, ffPVR has the

same measure as ffQWU, and ffTWQ has the same measure as ffSVP.

ALTERNATE EXTERIOR ANGLES FOR INTERSECTING
PLANES

Suppose that X is a plane that passes through two parallel planes Y and Z,

intersecting Y and Z in lines L andM. Let points P, Q, R, S, T, U, V, andW

be as shown in Fig. 7-16, such that:

� Point V lies on lines L, PQ, and RS
� Point W lies on lines M, PQ, and TU
� Points P and Q lie in plane X
� Points R and S lie in plane Y
� Points T and U lie in plane Z
� Lines PQ and RS are perpendicular to line L
� Lines PQ and TU are perpendicular to line M

Then the pair ffPWT and ffQVS are alternate exterior angles; the pair ffUWP

and ffRVQ are also alternate exterior angles. Alternate exterior angles always

have equal measures. Thus, ffPWT has the same measure as ffQVS, and

ffUWP has the same measure as ffRVQ.
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CORRESPONDING ANGLES FOR INTERSECTING PLANES

Suppose that X is a plane that passes through two parallel planes Y and Z,

intersecting Y and Z in lines L andM. Let points P, Q, R, S, T, U, V, andW

be as shown in Fig. 7-17, such that:

� Point V lies on lines L, PQ, and RS
� Point W lies on lines M, PQ, and TU
� Points P and Q lie in plane X
� Points R and S lie in plane Y
� Points T and U lie in plane Z
� Lines PQ and RS are perpendicular to line L
� Lines PQ and TU are perpendicular to line M

Then the following pairs of angles are corresponding angles, and each pair

has equal measures:

ffQWU ¼ ffQVS

ffPWT ¼ ffPVR

ffUWP ¼ ffSVP

ffTWQ ¼ ffRVQ
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PARALLEL PRINCIPLE FOR PLANES

Suppose X is a plane and R is a point not on X. Then there exists one and

only one plane Y through R such that plane Y is parallel to plane X. This is

the 3D counterpart of the parallel principle for Euclidean plane geometry.

The denial of this principle, which is in fact a postulate, can take two

forms:

� There exist no planes Y through point R such that plane Y is parallel to

plane X
� There exist infinitely many planes Y through point R such that plane Y

is parallel to plane X

Both of these hypotheses give rise to forms of non-Euclidean geometry in

which 3D space is ‘‘curved’’ or ‘‘warped.’’ Albert Einstein was one of the first

scientists to envision a universe in which space is non-Euclidean.

PARALLEL PRINCIPLE FOR LINES AND PLANES

Suppose X is a plane and R is a point not on X. Then there exist an infinite

number of lines through R that are parallel to plane X. All of these lines lie in

the plane Y through R such that plane Y is parallel to plane X.

The denial of the parallel principle for planes, defined in the previous

paragraph, can result in there being no lines through R that are parallel to

plane X. In certain specialized instances, it can even result in there being

exactly one line through R that is parallel to plane X. If you have trouble

imagining this, don’t be concerned. You must think in 4D, and that is a

mental trick that few humans can do until they become armed with the

power of non-Euclidean mathematics.

PROBLEM 7-5

Suppose you are standing inside a large warehouse. The floor is flat and level,

and the ceiling is flat and is at a uniform height of 5.455 meters above the

floor. You have a flashlight with a narrow beam, and hold it so its bulb is

1.025 meters above the floor. You shine the beam upward toward the ceiling.

The center of the beam strikes the ceiling 9.577 meters from the point on the

ceiling directly above the bulb. How long is the shaft of light representing the

center of the beam? Round your answer off to two decimal places.

SOLUTION 7-5

Let’s call the flashlight bulb point A, the point at which the center of the light

beam strikes the ceiling point B, and the point directly over the flashlight
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bulb point C as shown in Fig. 7-18. Call the lengths of the sides opposite

these points a, b, and c. TheniABC is a right triangle because line segment

AC (whose length is b) is normal to the ceiling at point C, and therefore is

perpendicular to line segment BC. The right angle is ffACB. From this, we

know that the lengths of the sides are related according to the Pythagorean

formula:

a2 þ b2 ¼ c2

We want to know the length of side c; therefore:

c ¼ ða2 þ b2Þ1=2

Calling meters ‘‘units’’ so we don’t have to write the word ‘‘meters’’ over and

over, the length of side a is given as 9.577. The length of side b is equal to the

height of the ceiling above the floor, minus the height of the bulb above the

floor:

b ¼ 5:455� 1:025 ¼ 4:430

Therefore:

c ¼ ð9:5772 þ 4:4302Þ1=2

¼ ð91:719þ 19:625Þ1=2

¼ 111:3441=2

¼ 10:55

The center of the beam is 10.55 meters long.
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Quiz
Refer to the text in this chapter if necessary. A good score is eight correct.

Answers are in the back of the book.

1. Which of the following statements is false?

(a) If a line is normal to one of two parallel planes, and that line does

not lie in either plane, then that line is normal to the other of the

two parallel planes

(b) If a line is parallel to one of two parallel planes, and that line does

not lie in either plane, then that line is parallel to the other of the

two parallel planes

(c) In 3D space, there cannot exist three different planes, each of

which is perpendicular to the other two

(d) In 3D space, there can exist infinitely many different planes, each

of which is parallel to all the others

2. Suppose three different planes X1, X2, and X3 intersect in a single line

L. Imagine a fourth plane X4 that is perpendicular to all three of the

planes X1, X2, and X3. Which of the following statements is true?

(a) Line L is normal to plane X4

(b) Line L is parallel to plane X4

(c) Any line in plane X4 is a skew line relative to L

(d) There can exist no plane X4 with the characteristics described

3. Suppose that in a certain 3D universe called U, it is impossible to find

a plane Y that is parallel to a certain plane X. From this, we can

conclude that

(a) all planes in U are flat

(b) half of the planes in U are curved

(c) U is non-Euclidean

(d) time is warped in U

4. Suppose two different planes X1 and X2 intersect in a single line L.

Consider a line M that is normal to both planes X1 and X2. Which of

the following statements is true?

(a) Line M must be normal to either X1 or X2

(b) Line M must lie in either X1 or X2

(c) Line M must intersect line L

(d) There can exist no line M with the characteristics described
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5. Imagine that you are in a huge warehouse in which the floor and

ceiling are both level and flat. You place a flashlight on the floor so

the center of its beam shines upward at a 208 angle relative to the

floor. The beam strikes the ceiling some distance away. At what

angle, with respect to a normal line to the ceiling, does the center

of the beam strike the ceiling?

(a) 208

(b) 708

(c) 1608

(d) It is impossible to tell without more information

6. Imagine you are in a huge warehouse in which the floor and ceiling are

both level and flat, the ceiling is made of glass, and the ceiling forms

the roof of the warehouse. You place a flashlight on the floor so the

center of its beam shines upward at a 408 angle relative to the floor.

The beam strikes and passes through the glass roof some distance

away. At what angle, with respect to the plane of the roof, will the

center of the beam emerge from the glass?

(a) 408

(b) 508

(c) 1308

(d) It is impossible to tell without more information

7. Suppose a closed plane region, having the shape of an octagon, has

interior area equal to k square units. Suppose the perimeter of the

region is m units. The interior area of the open region (the octagon not

including the outer boundary) is

(a) k square units

(b) k – m square units

(c) k – m units

(d) impossible to determine without more information

8. A plane can be uniquely defined by

(a) three points

(b) two intersecting lines

(c) a line and a point not on that line

(d) any of the above

9. Suppose two different planes X1 and X2 intersect in a single line L.

Consider a line M that is parallel to both planes X1 and X2. Which of

the following statements is true?

(a) Line M must lie in either X1 or X2

(b) Line M must lie in both X1 and X2
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(c) Line M must lie outside both X1 and X2

(d) There can exist no line M with the characteristics described

10. Suppose two planes intersect at an angle of 708. This is the more

common of two ways the intersection angle can be expressed. The

less common value for the intersection angle of these two planes is

(a) 208

(b) 1808

(c) 2908

(d) none of the above
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CHAPTER
8

Surface Area and
Volume

In this chapter, you’ll learn how to find the surface areas and volumes of

various geometric solids in Euclidean three-space. Only the simplest sorts of

objects are dealt with here.

Straight-Edged Objects
In Euclidean three-space, geometric solids with straight edges have flat faces,

also called facets, each of which forms a plane polygon. An object of this sort

is known as a polyhedron.

THE TETRAHEDRON

A polyhedron in 3D must have at least four faces. A four-faced polyhedron is

called a tetrahedron. Each of the four faces of a tetrahedron is a triangle.

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



There are four vertices. Any four specific points, not all in a single plane,

form a unique tetrahedron.

SURFACE AREA OF TETRAHEDRON

Figure 8-1 shows a tetrahedron. The surface area is found by adding up the

interior areas of all four triangular faces. In the case of a regular tetrahedron,

all six edges have the same length, and therefore all four faces are equilateral

triangles. If the length of each edge of a regular tetrahedron is equal to s

units, then the surface area, B, of the whole four-faced regular tetrahedron is

given by:

B ¼ 31=2s2

where 31/2 represents the square root of 3, or approximately 1.732. This also

happens to be twice the sine of 608, which is the angle between any two edges

of the figure.

VOLUME OF TETRAHEDRON

Imagine a tetrahedron whose base is a triangle with area A, and whose height

is h as shown in Fig. 8-1. The volume, V, of the figure is given by:

V ¼ Ah=3

THE PYRAMID

Figure 8-2 illustrates a pyramid. This figure has a square or rectangular base

and four slanted faces. If the base is a square and the apex (the top of the
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pyramid) lies directly above a point at the center of the base, then the figure is

a regular pyramid, and all of the slanted faces are isosceles triangles.

SURFACE AREA OF PYRAMID

The surface area of a pyramid is found by adding up the areas of all five of its

faces (the four slanted faces plus the base). In the case of a regular pyramid

where the length of each slanted edge, called the slant height, is equal to s

units and the length of each edge of the base is equal to t units, the surface

area, B, is given by:

B ¼ t2 þ 2t ðs2 � t2=4Þ1=2

In the case of an irregular pyramid, the problem of finding the surface area

is more complicated, because it involves individually calculating the area of

the base and each slanted face, and then adding all the areas up.

VOLUME OF PYRAMID

Imagine a pyramid whose base is a square with area A, and whose height is h

as shown in Fig. 8-2. The volume, V, of the pyramid is given by:

V ¼ Ah=3

This holds true whether the pyramid is regular or irregular.

THE CUBE

Figure 8-3 illustrates a cube. This is a regular hexahedron (six-sided polyhe-

dron). It has 12 edges, each of which is of the same length. Each of the six

faces is a square.
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SURFACE AREA OF CUBE

Imagine a cube whose edges each have length s, as shown in Fig. 8-3. The

surface area, A, of the cube is given by:

A ¼ 6s2

VOLUME OF CUBE

Imagine a cube as defined above and in Fig. 8-3. The volume, V, of the solid

enclosed by the cube is given by:

V ¼ s3

THE RECTANGULAR PRISM

Figure 8-4 illustrates a rectangular prism. This is a hexahedron, each of whose

six faces is a rectangle. The figure has 12 edges, but they are not necessarily all

equally long.

SURFACE AREA OF RECTANGULAR PRISM

Imagine a rectangular prism whose edges have lengths s1, s2, and s3 as shown

in Fig. 8-4. The surface area, A, of the prism is given by:

A ¼ 2s1s2 þ 2s1s3 þ 2s2s3
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VOLUME OF RECTANGULAR PRISM

Imagine a rectangular prism as defined above and in Fig. 8-4. The volume, V,

of the enclosed solid is given by:

V ¼ s1s2s3

THE PARALLELEPIPED

A parallelepiped is a six-faced polyhedron in which each face is a parallelo-

gram, and opposite pairs of faces are congruent. The figure has 12 edges. The

acute angles between the pairs of edges are x, y, and z, as shown in Fig. 8-5.

SURFACE AREA OF PARALLELEPIPED

Imagine a parallelepiped with edges of lengths s1, s2, and s3. Suppose the

angles between pairs of edges are x, y, and z as shown in Fig. 8-5. The surface

area, A, of the parallelepiped is given by:
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Fig. 8-4. A rectangular prism has six rectangular faces and 12 edges.

Fig. 8-5. A parallelepiped has six faces, all of which are parallelograms, and 12 edges.



A ¼ 2s1s2 sin xþ 2s1s3 sin yþ 2s2s3 sin z

where sin x represents the sine of angle x, sin y represents the sine of angle y,

and sin z represents the sine of angle z.

VOLUME OF PARALLELEPIPED

Imagine a parallelepiped whose edges have lengths s1, s2, and s3, and that has

angles between edges of x, y, and z as shown in Fig. 8-5. Suppose further that

the height of the parallelepiped, as measured along a line normal to the base,

is equal to h. The volume, V, of the enclosed solid is equal to the product of

the base area and the height:

V ¼ hs1s3 sin y

PROBLEM 8-1

Suppose you want to paint the interior walls of a room in a house. The room

is shaped like a rectangular prism. The ceiling is exactly 3.0 meters above the

floor. The floor and the ceiling both measure exactly 4.2 meters by 5.5 meters.

There are two windows, the outer frames of which both measure 1.5 meters

high by 1.0 meter wide. There is one doorway, the outer frame of which

measures 2.5 meters high by 1.0 meter wide. With two coats of paint

(which you intend to apply), one liter of paint can be expected to cover

exactly 20 square meters of wall area. How much paint, in liters, will you

need to completely do the job?

SOLUTION 8-1

It is necessary to find the amount of wall area that this room has. Based on

the information given, we can conclude that the rectangular prism formed by

the edges between walls, floor, and ceiling measures 3.0 meters high by 4.2

meters wide by 5.5 meters deep. So we can let s1 ¼ 3.0, s2 ¼ 4.2, and s3 ¼ 5.5

(with all units assumed to be in meters) to find the surface area A of the

rectangular prism, in square meters, neglecting the area subtracted by the

windows and doorway. Using the formula:

A ¼ 2s1s2 þ 2s1s3 þ 2s2s3

¼ ð2� 3:0� 4:2Þ þ ð2� 3:0� 5:5Þ þ ð2� 4:2� 5:5Þ

¼ 25:2þ 33:0þ 46:2

¼ 104:4 square meters

There are two windows measuring 1.5 meters by 1.0 meter; each of these

therefore takes away 1.5 � 1.0 ¼ 1.5 square meters of area. The doorway
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measures 2.5 meters by 1.0 meter, so it takes away 2.5 � 1.0 ¼ 2.5 square

meters. Thus the windows and doorway combined take away 1.5 þ 1.5 þ 2.5

¼ 5.5 square meters of wall space. Then we must also take away the areas of

the floor and ceiling. This is the final factor in the above equation, 2s2s3 ¼

46.2. The wall area to be painted, call it Aw, is therefore:

Aw ¼ ð104:4� 5:5Þ � 46:2

¼ 52:7 square meters

A liter of paint can be expected to cover 20 square meters. Therefore, we will

need 52.7/20, or 2.635, liters of paint to do this job.

Cones and Cylinders
A cone has a circular or elliptical base and an apex point. The cone itself

consists of the union of the following sets of points:

� The circle or ellipse
� All points inside the circle or ellipse and that lie in its plane
� All line segments connecting the circle or ellipse (not including its

interior) and the apex point

The interior of the cone consists of the set of all points within the cone. The

cone itself might or might not be included in the definition of the interior.

A cylinder has a circular or elliptical base, and a circular or elliptical top

that is congruent to the base and that lies in a plane parallel to the base. The

cylinder itself consists of the union of the following sets of points:

� The base circle or ellipse
� All points inside the base circle or ellipse and that lie in its plane
� The top circle or ellipse
� All points inside the top circle or ellipse and that lie in its plane
� All line segments connecting corresponding points on the base circle or

ellipse and top circle or ellipse (not including their interiors)

The interior of the cylinder consists of the set of all points within the cylinder.

The cylinder itself might or might not be included in the definition of the

interior.

These are general definitions, and they encompass a great variety of

objects! In this chapter, we’ll look only at cones and cylinders whose bases

are circles.
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THE RIGHT CIRCULAR CONE

A right circular cone has a base that is a circle, and an apex point that lies on

a line normal to the plane of the base and that passes through the center of

the base (Fig. 8-6).

SURFACE AREA OF RIGHT CIRCULAR CONE

Imagine a right circular cone as shown in Fig. 8-6. Let P be the apex of the

cone, and let Q be the center of the base. Let r be the radius of the base, let h

be the height of the cone (the length of line segment PQ), and let s be the slant

height of the cone as measured from any point on the edge of the base to the

apex P. The surface area S1 of the cone, including the base, is given by either

of the following formulas:

S1 ¼ �r2 þ �rs

S1 ¼ �r2 þ �rðr2 þ h2Þ1=2

The surface area S2 of the cone, not including the base, is called the lateral

surface area and is given by either of the following:

S2 ¼ �rs

S2 ¼ �rðr2 þ h2Þ1=2
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VOLUME OF RIGHT CIRCULAR CONE

Imagine a right circular cone as defined above and in Fig. 8-6. The volume,

V, of the interior of the figure is given by:

V ¼ �r2h=3

SURFACE AREA OF FRUSTUM OF RIGHT CIRCULAR CONE

Imagine a right circular cone that is truncated (cut off) by a plane parallel to

the base. This is called a frustum of the right circular cone. Let P be the center

of the circle defined by the truncation, and let Q be the center of the base, as

shown in Fig. 8-7. Suppose line segment PQ is perpendicular to the base. Let

r1 be the radius of the top, let r2 be the radius of the base, let h be the height

of the object (the length of line segment PQ), and let s be the slant height.

Then the surface area S1 of the object (including the base and the top) is given

by either of the following formulas:

S1 ¼ �ðr1 þ r2Þ½h
2 þ ðr2 � r1Þ

2�1=2 þ �ðr21 þ r22Þ

S1 ¼ �sðr1 þ r2Þ þ �ðr21 þ r22Þ

The surface area S2 of the object (not including the base or the top) is given

by either of the following:

S2 ¼ �ðr1 þ r2Þ½h
2 þ ðr2 � r1Þ

2�1=2

S2 ¼ �sðr1 þ r2Þ
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VOLUME OF FRUSTUM OF RIGHT CIRCULAR CONE

Imagine a frustum of a right circular cone as defined above and in Fig. 8-7.

The volume, V, of the interior of the object is given by this formula:

V ¼ �hðr21 þ r1r2 þ r22Þ=3

THE SLANT CIRCULAR CONE

A slant circular cone has a base that is a circle, and an apex point such that a

normal line from the apex point to the plane of the base does not pass

through the center of the base (Fig. 8-8).

VOLUME OF SLANT CIRCULAR CONE

Imagine a cone whose base is a circle. Let P be the apex of the cone, and let Q

be a point in the plane X containing the base such that line segment PQ is

perpendicular to X (Fig. 8-8). Let h be the height of the cone (the length of

line segment PQ). Let r be the radius of the base. Then the volume, V, of the

corresponding cone is given by:

V ¼ �r2h=3

This is the same as the formula for the volume of a right circular cone.

THE RIGHT CIRCULAR CYLINDER

A right circular cylinder has a circular base and a circular top. The base and

the top lie in parallel planes. The center of the base and the center of the top
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lie along a line that is normal to both the plane containing the base and the

plane containing the top (Fig. 8-9).

SURFACE AREA OF RIGHT CIRCULAR CYLINDER

Imagine a right circular cylinder where P is the center of the top and Q is the

center of the base (Fig. 8-9). Let r be the radius of the cylinder, and let h be

the height (the length of line segment PQ). Then the surface area S1 of the

cylinder, including the base and the top, is given by:

S1 ¼ 2�rhþ 2�r2 ¼ 2�r ðhþ rÞ

The lateral surface area S2 (not including the base or the top) is given by:

S2 ¼ 2�rh

VOLUME OF RIGHT CIRCULAR CYLINDER

Imagine a right circular cylinder as defined above and shown in Fig. 8-9. The

volume, V, of the cylinder is given by:

V ¼ �r2h

THE SLANT CIRCULAR CYLINDER

A slant circular cylinder has a circular base and a circular top. The base and

the top lie in parallel planes. The center of the base and the center of the top
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lie along a line that is not perpendicular to the planes that contain them

(Fig. 8-10).

VOLUME OF SLANT CIRCULAR CYLINDER

Imagine a slant circular cylinder as defined above and in Fig. 8-10. The

volume, V, of the corresponding solid is given by:

V ¼ �r2h

PROBLEM 8-2

A cylindrical water tower is exactly 30 meters high and exactly 10 meters in

radius. How many liters of water can it hold, assuming the entire interior can

be filled with water? (One liter is equal to a cubic decimeter, or the volume of

a cube measuring 0.1 meters on an edge.) Round the answer off to the nearest

liter.

SOLUTION 8-2

Use the formula for the volume of a right circular cylinder to find the volume

in cubic meters:

V ¼ �r2h

Plugging in the numbers, let r ¼ 10, h ¼ 30, and � ¼ 3.14159:

V ¼ 3:14159� 102 � 30

¼ 3:14159� 100� 30

¼ 9424:77
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One liter is the volume of a cube measuring 10 centimeters, or 0.1 meter, on

an edge (believe it or not!). Thus, there are 1000 liters in a cubic meter. This

means that the amount of water the tower can hold, in liters, is equal to

9424.77 � 1000, or 9,424,770.

PROBLEM 8-3

A circus tent is shaped like a right circular cone. Its diameter is 50 meters and

the height at the center is 20 meters. How much canvas is in the tent? Express

the answer to the nearest square meter.

SOLUTION 8-3

Use the formula for the lateral surface area, S, of the right circular cone:

S ¼ �rðr2 þ h2Þ1=2

We know that the diameter is 50 meters, so the radius is 25 meters. Therefore,

r ¼ 25. We also know that h ¼ 20. Let � ¼ 3.14159. Then:

S ¼ 3:14159� 25� ð252 þ 202Þ1=2

¼ 3:14159� 25� ð625þ 400Þ1=2

¼ 3:14159� 25� 10251=2

¼ 3:14159� 25� 32:0156

¼ 2514:4972201

There are 2514 square meters of canvas, rounded off to the nearest square

meter.

Other Solids
There exists an incredible variety of geometric solids that have curved sur-

faces throughout. Here, we’ll look at three of the most common: the sphere,

the ellipsoid, and the torus.

THE SPHERE

Consider a specific point P in 3D space. The surface of a sphere S consists of

the set of all points at a specific distance or radius r from point P. The interior

of sphere S, including the surface, consists of the set of all points whose

distance from point P is less than or equal to r. The interior of sphere S,
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not including the surface, consists of the set of all points whose distance from

P is less than r.

SURFACE AREA OF SPHERE

Imagine a sphere S having radius r as shown in Fig. 8-11. The surface area,

A, of the sphere is given by:

A ¼ 4�r2

VOLUME OF SPHERE

Imagine a sphere S as defined above and in Fig. 8-11. The volume, V, of the

solid enclosed by the sphere is given by:

V ¼ 4�r3=3

This volume applies to the interior of sphere S, either including the surface or

not including it, because the surface has zero volume.

THE ELLIPSOID

Let E be a set of points that forms a closed surface. Then E is an ellipsoid if

and only if, for any plane X that intersects E, the intersection between E and

X is either a single point, a circle, or an ellipse.
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Figure 8-12 shows an ellipsoid E with center point P and radii r1, r2, and r3
as specified in a 3D rectangular coordinate system with P at the origin. If r1,

r2, and r3 are all equal, then E is a sphere, which is a special case of the

ellipsoid.

VOLUME OF ELLIPSOID

Imagine an ellipsoid whose semi-axes are r1, r2, and r3 (Fig. 8-12). The

volume, V, of the enclosed solid is given by:

V ¼ 4�r1r2r3=3

THE TORUS

Imagine a ray PQ, and a small circle C centered on point Q whose radius is

less than half of the distance between points P and Q. Suppose ray PQ, along

with the small circle C centered at point Q, is rotated around its end point, P,

so that point Q describes a circle that lies in a plane perpendicular to the

small circle C. The resulting set of points in 3D space, ‘‘traced out’’ by circle

C, is a torus.

Figure 8-13 shows a torus T thus constructed, with center point P. The

inside radius is r1 and the outside radius is r2. The torus is sometimes infor-

mally called a ‘‘donut.’’
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SURFACE AREA OF TORUS

Imagine a torus with an inner radius of r1 and an outer radius of r2 as shown

in Fig. 8-13. The surface area, A, of the torus is given by:

A ¼ �
2ðr2 þ r1Þðr2 � r1Þ

VOLUME OF TORUS

Let T be a torus as defined above and in Fig. 8-13. The volume, V, of the

enclosed solid is given by:

V ¼ �
2ðr2 þ r1Þðr2 � r1Þ

2
=4

PROBLEM 8-4

Suppose a football field is to be covered by an inflatable dome that takes the

shape of a half-sphere. If the radius of the dome is 100 meters, what is the

volume of air enclosed by the dome in cubic meters? Find the result to the

nearest 1000 cubic meters.

SOLUTION 8-4

First, find the volume V of a sphere whose radius is 100 meters, and then

divide the result by 2. Let � ¼ 3.14159. Using the formula with r ¼ 100 gives

this result:
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V ¼ ð4� 3:14159� 1003Þ=3

¼ ð4� 3:14159� 1,000,000Þ=3

¼ 4,188,786:667 . . .

Thus V/2 ¼ 4,188,786.667/2 ¼ 2,094,393.333. Rounding off to the nearest

1000 cubic meters, we get 2,094,000 cubic meters as the volume of air

enclosed by the dome.

PROBLEM 8-5

Suppose the dome in the previous example is not a half-sphere, but instead is

a half-ellipsoid. Imagine that the height of the ellipsoid is 70 meters above its

center point, which lies in the middle of the 50-yard line at field level. Suppose

that the distance from the center of the 50-yard line to either end of the dome,

as measured parallel to the sidelines, is 120 meters, and the distance from the

center of the 50-yard line, as measured along the line containing the 50-yard

line itself, is 90 meters. What is the volume of air, to the nearest 1000 cubic

meters, enclosed by this dome?

SOLUTION 8-5

First, consider the radii r1, r2, and r3 in meters, with respect to the center

point, as follows:

r1 ¼ 120

r2 ¼ 90

r3 ¼ 70

Then use the formula for the volume V of an ellipsoid with these radii:

V ¼ ð4� 3:14159� 120� 90� 70Þ=3

¼ ð4� 3:14159� 756,000Þ=3

¼ 3,166,722:72

Thus V/2 ¼ 3,166,722.72/2 ¼ 1,583,361.36. Rounding off to the nearest 1000

cubic meters, we get 1,583,000 cubic meters as the volume of air enclosed by

the half-ellipsoidal dome.

Quiz
Refer to the text in this chapter if necessary. A good score is eight correct.

Answers are in the back of the book.
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1. What is the approximate volume of a circular cone whose base has an

area of 30 square units and a height of 10 units?

(a) 100 cubic units

(b) 150 cubic units

(c) 300 cubic units

(d) There is not enough information given here to calculate it

2. Consider the earth to be a perfect sphere 12,800 kilometers in dia-

meter. What is the approximate surface area of the earth based on this

figure?

(a) 515 million square kilometers

(b) 2059 million square kilometers

(c) 1.1 trillion square kilometers

(d) 8.8 trillion square kilometers

3. What is the set of points representing the intersection of a torus with a

plane containing its center?

(a) A pair of non-concentric circles

(b) A pair of concentric circles

(c) A pair of non-concentric ellipses

(d) More information is needed to answer this question

4. A rectangular prism has

(a) six edges, all of which are the same length

(b) eight edges of various lengths

(c) six faces, all of which are the same shape

(d) none of the above

5. If all other factors are held constant, the surface area of a torus

depends on all of the following except

(a) its inner radius

(b) its outer radius

(c) the difference between the squares of its inner and outer radii

(d) its orientation in space

6. If all other factors are held constant, the volume of a parallelepiped

depends on

(a) the height

(b) the width

(c) the ratio of the height to the width

(d) more than one of the above

7. In a circular cylinder, the height is equal to

(a) the radius of either the base or the top multiplied by 2�
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(b) the distance between the planes containing the base and the top

(c) the distance between the center of the base and the center of the

top

(d) the distance along any straight line in the object’s periphery

8. The volume of a rectangular prism is equal to

(a) the sum of the lengths of its edges

(b) the product of the lengths of its edges

(c) the sum of the surface areas of its faces

(d) the product of the surface areas of its faces

9. The faces of a tetrahedron

(a) are all triangles

(b) are all quadrilaterals

(c) are all triangles or quadrilaterals

(d) all lie in the same plane

10. Imagine a cube with edges measuring 10 meters each. Suppose a pyr-

amid is carved from this cube, such that the base of the pyramid

corresponds to one of the faces of the cube, and the apex of the

pyramid is at the center of the face of the cube opposite the base.

What is the approximate volume of the pyramid?

(a) 1000 cubic meters

(b) 707 cubic meters

(c) 333 cubic meters

(d) There is not enough information given here to calculate it
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CHAPTER
9

Vectors and
Cartesian

Three-Space

Cartesian three-space, also called rectangular three-space or xyz-space, is

defined by three number lines that intersect at a common origin point. At

the origin, each of the three number lines is perpendicular to the other two.

This makes it possible to pictorially relate one variable to another. Most

three-dimensional (3D) graphs look like lines, curves, or surfaces.

Renditions are enhanced by computer graphics programs.

The approach here is similar to that of Chapter 6. You will need to know

middle-school algebra to understand the material in this chapter.

A Taste of Trigonometry
Before we proceed further, let’s get familiar with some basic trigonometry. In

particular, let’s look at angle notation and the sine, cosine, and tangent

functions.
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IT’S GREEK TO US

Mathematicians and scientists often use Greek letters to represent angles.

The most common symbol for an angle is an italicized, lowercase Greek

theta (pronounced ‘‘THAY-tuh’’). It looks like a numeral zero leaning to

the right, with a horizontal line through it (�).

When writing about two different angles, a second Greek letter is used

along with �. Most often, it is the italicized, lowercase letter phi (pronounced

‘‘fie’’ or ‘‘fee’’). It looks like a lowercase English letter o leaning to the right,

with a forward slash through it (�). Numeric or variable subscripts are some-

times used along with the Greek symbols, so don’t be surprised if you see

angles denoted �1, �2, �3 or �x, �y, �z.

THE UNIT CIRCLE

Consider a circle in the Cartesian xy-plane with the following equation:

x2 þ y2 ¼ 1

This equation represents a unit circle because it is centered at the origin and

has a radius of one unit. Let � be an angle whose apex is at the origin, and

that is measured counterclockwise from the x axis, as shown in Fig. 9-1.

Suppose this angle corresponds to a ray that intersects the unit circle at
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some point P ¼ (x0,y0). Then we can define three mathematical functions,

called circular functions, of the angle � in a simple way.

THE SINE FUNCTION

In Fig. 9-1, let ray OP be defined as the ray from the origin (point O) passing

outward through point P on the unit circle. Imagine this ray at first pointing

right along the x axis, and then turning around and around in a counter-

clockwise direction. As the ray turns, the point P, represented by coordinates

(x0,y0), revolves around the unit circle.

Imagine what happens to the value of y0 during one complete revolution of

the ray: it starts out at y0 ¼ 0, then increases until it reaches y0 ¼ 1 after P has

gone 908 or �/2 rad around the circle (� ¼ 908 ¼ �/2 rad). After that, y0
begins to decrease, getting back to y0 ¼ 0 when P has gone 1808 or � rad

around the circle (� ¼ 1808 ¼ � rad). As P continues on its counterclockwise

trek, y0 keeps decreasing until, at � ¼ 2708 ¼ 3�/2 rad, the value of y0 reaches

its minimum of –1. After that, the value of y0 rises again until, when P has

gone completely around the circle, it returns to y0 ¼ 0 for � ¼ 3608 ¼ 2� rad.

The value of y0 is defined as the sine of the angle �. The sine function is

abbreviated sin, so we can state this simple equation:

sin � ¼ y0

THE COSINE FUNCTION

Look again at Fig. 9-1. Imagine, once again, a ray OP from the origin out-

ward through point P on the circle, pointing right along the x axis, and then

rotating in a counterclockwise direction.

What happens to the value of x0 during one complete revolution of the

ray? It starts out at x0 ¼ 1, then decreases until it reaches x0 ¼ 0 when � ¼ 908

¼ �/2 rad. After that, x0 continues to decrease, getting down to x0 ¼ –1 when

� ¼ 1808 ¼ � rad. As P continues counterclockwise around the circle, x0
begins to increase again; at � ¼ 2708 ¼ 3�/2 rad, the value gets back up to x0
¼ 0. After that, x0 increases further until, when P has gone completely

around the circle, it returns to x0 ¼ 1 for � ¼ 3608 ¼ 2� rad.

The value of x0 is defined as the cosine of the angle �. The cosine function

is abbreviated cos. So we can write this:

cos � ¼ x0
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THE TANGENT FUNCTION

Once again, refer to Fig. 9-1. The tangent (abbreviated tan) of an angle � is

defined using the same ray OP and the same point P ¼ (x0, y0) as is done with

the sine and cosine functions. The definition is:

tan � ¼ y0=x0

Because we already know that sin � ¼ y0 and cos � ¼ x0, we can express the

tangent function in terms of the sine and the cosine:

tan � ¼ sin �=cos �

This function is interesting because, unlike the sine and cosine functions, it

‘‘blows up’’ at certain values of �. Whenever x0 ¼ 0, the denominator of

either quotient above becomes zero. Division by zero is not defined, and that

means the tangent function is not defined for any angle � such that cos � ¼ 0.

Such angles are all the odd multiples of 908 (�/2 rad).

PROBLEM 9-1

What is tan 458? Do not perform any calculations. You should be able to

infer this without having to write down a single numeral, and without using a

calculator.

SOLUTION 9-1

Draw a diagram of a unit circle, such as the one in Fig. 9-1, and place ray OP

such that it subtends an angle of 458 with respect to the x axis. That angle is

the angle of which we want to find the tangent. Note that the ray OP also

subtends an angle of 458 with respect to the y axis, because the x and y axes

are perpendicular (they are oriented at 908 with respect to each other), and

458 is exactly half of 908. Every point on the ray OP is equally distant from

the x and y axes; this includes the point (x0, y0). It follows that x0 and y0 must

be the same, and neither of them is zero. From this, we can conclude that

y0/x0 ¼ 1. According to the definition of the tangent function, therefore,

tan 458 ¼ 1.

Vectors in the Cartesian Plane
A vector is a mathematical expression for a quantity with two independent

properties: magnitude and direction. The direction, also called orientation, is

defined in the sense of a ray, so it ‘‘points’’ somewhere. Vectors are used to

represent physical variables such as distance, velocity, and acceleration.
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Conventionally, vectors are denoted by boldface letters of the alphabet. In

the xy-plane, vectors a and b can be illustrated as rays from the origin (0,0) to

points (xa,ya) and (xb,yb) as shown in Fig. 9-2.

EQUIVALENT VECTORS

Occasionally, a vector is expressed in a form that begins at a point other than

the origin (0,0). In order for the following formulas to hold, such a vector

must be reduced to so-called standard form, where it begins at the origin. This

can be accomplished by subtracting the coordinates (x0,y0) of the starting

point from the coordinates of the end point (x1,y1). For example, if a vector

a* starts at (3,–2) and ends at (1,–3), it reduces to an equivalent vector a in

standard form:

a ¼ fð1� 3Þ; ½�3� ð�2Þ�g

¼ ð�2;�1Þ

Any vector a* that is parallel to a, and that has the same length and the

same direction (or orientation) as a, is equal to vector a. A vector is defined

solely on the basis of its magnitude and its direction (or orientation). Neither

of these two properties depends on the location of the end point.
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MAGNITUDE

The magnitude (also called the length, intensity, or absolute value) of vector a,

written |a| or a, can be found in the Cartesian plane by using a distance

formula resembling the Pythagorean theorem:

jaj ¼ ðx2a þ y2aÞ
1=2

DIRECTION

The direction of vector a, written dir a, is the angle �a that vector a subtends

as expressed counterclockwise from the positive x axis:

dir a ¼ �a

The tangent of the angle �a is equal to ya/xa. Therefore, �a is equal to

the inverse tangent, also called the arctangent (abbreviated arctan or tan–1)

of ya/xa. Therefore:

dir a ¼ �a ¼ arctan ðya=xaÞ ¼ tan�1ðya=xaÞ

By convention, the angle �a is reduced to a value that is at least zero, but less

than one full counterclockwise revolution. That is, 08 � �a < 3608 (if the

angle is expressed in degrees), or 0 rad � �a < 2� rad (if the angle is expressed

in radians).

SUM

The sum of two vectors a and b, where a ¼ (xa,ya) and b ¼ (xb,yb), is given by

the following formula:

aþ b ¼ ½ðxa þ xbÞ; ðya þ ybÞ�

This sum can be found geometrically by constructing a parallelogram with a

and b as adjacent sides. Then a þ b is the diagonal of this parallelogram (Fig.

9-2).

MULTIPLICATION BY SCALAR

To multiply a vector by a scalar (an ordinary real number), the x and y

components of the vector are both multiplied by that scalar. If we have a

vector a ¼ (xa,ya) and a scalar k, then

ka ¼ ak ¼ ðkxa; kyaÞ
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Multiplication by a scalar changes the length of a vector. If the scalar is

positive, the direction of the product vector is the same as that of the original

vector. If the scalar is negative, the direction of the product vector is opposite

that of the original vector. If the scalar is zero, the product vector vanishes.

DOT PRODUCT

Let a ¼ (xa,ya) and b ¼ (xb,yb). The dot product, also known as the scalar

product and written a * b, of two vectors a and b is a real number (that is, a

scalar) given by the formula:

a � b ¼ xaxb þ yayb

PROBLEM 9-2

What is the sum of a ¼ (3, –5) and b ¼ (2,6)?

SOLUTION 9-2

Add the x and y components together independently:

aþ b ¼ ½ð3þ 2Þ; ð�5þ 6Þ�

¼ ð5,1Þ

PROBLEM 9-3

What is the dot product of a ¼ (3, –5) and b ¼ (2,6)?

SOLUTION 9-3

Use the formula given above for the dot product:

a � b ¼ ð3� 2Þ þ ð�5� 6Þ

¼ 6þ ð�30Þ

¼ �24

PROBLEM 9-4

What happens if the order of the dot product is reversed? Does the value

change?

SOLUTION 9-4

No. The value of the dot product of two vectors does not depend on the

order in which the vectors are ‘‘dot-multiplied.’’ This can be proven in the

general case using the formula above. Let a ¼ (xa,ya) and b ¼ (xb,yb). First

consider the dot product of a and b (pronounced ‘‘a dot b’’):

a � b ¼ xaxb þ yayb
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Now consider the dot product b * a:

b � a ¼ xbxa þ ybya

Because ordinary multiplication is commutative – that is, the order in which

the factors are multiplied doesn’t matter – we can convert the above formula

to this:

b � a ¼ xaxb þ yayb

But xaxb þ yayb is the expansion of a * b. Therefore, for any two vectors a

and b, it is always true that a * b ¼ b * a.

Three Number Lines
Figure 9-3 illustrates the simplest possible set of rectangular 3D coordinates.

All three number lines have equal increments. (This is a perspective illustra-

tion, so the increments on the z axis appear distorted. A true 3D rendition

would have the positive z axis perpendicular to the page.) The three number

lines intersect at their zero points.
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The horizontal (right-and-left) axis is called the x axis; the vertical (up-

and-down) axis is called the y axis, and the page-perpendicular (in-and-out)

axis is called the z axis. In most renditions of rectangular 3D coordinates, the

positive x axis runs from the origin toward the viewer’s right, and the nega-

tive x axis runs toward the left. The positive y axis runs upward, and the

negative y axis runs downward. The positive z axis comes ‘‘out of the page,’’

and the negative z axis extends ‘‘back behind the page.’’

ORDERED TRIPLES AS POINTS

Figure 9-4 shows two specific points, called P and Q, plotted in Cartesian

three-space. The coordinates of point P are (–5,–4,3), and the coordinates of

point Q are (3,5,–2). Points are denoted as ordered triples in the form (x,y,z),

where the first number represents the value on the x axis, the second number

represents the value on the y axis, and the third number represents the value

on the z axis. The word ‘‘ordered’’ means that the order, or sequence, in

which the numbers are listed is important. The ordered triple (1,2,3) is not the

same as any of the ordered triples (1,3,2), (2,1,3), (2,3,1), (3,1,2), or (3,2,1),

even though all of the triples contain the same three numbers.
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In an ordered triple, there are no spaces after the commas, as there are in

the notation of a set or sequence. The rule is the same as that for ordered

pairs.

VARIABLES AND ORIGIN

In Cartesian three-space, there are usually two independent-variable coordi-

nate axes and one dependent-variable axis. The x and y axes represent inde-

pendent variables; the z axis represents a dependent variable whose value is

affected by both the x and the y values.

In some scenarios, two of the variables are dependent and only one is

independent. Most often, the independent variable in such cases is x.

Rarely, you’ll come across a situation in which none of the values depends

on either of the other two, or when a correlation, but not a true mathematical

relation, exists among the values of two or all three of the variables. Plots of

this sort usually look like ‘‘swarms of points,’’ representing the results of

observations, or values predicted by some scientific theory.

DISTANCE BETWEEN POINTS

Suppose there are two different points P ¼ (x0,y0,z0) and Q ¼ (x1,y1,z1) in

Cartesian three-space. The distance d between these two points can be found

using this formula:

d ¼ ½ðx1 � x0Þ
2 þ ðy1 � y0Þ

2 þ ðz1 � z0Þ
2�1=2

PROBLEM 9-5

What is the distance between the points P ¼ (–5,–4,3) and Q ¼ (3,5,–2)

illustrated in Fig. 9-4? Express the answer rounded off to three decimal

places.

SOLUTION 9-5

We can plug the coordinate values into the distance equation, where:

x0 ¼ �5

x1 ¼ 3

y0 ¼ �4

y1 ¼ 5

z0 ¼ 3

z1 ¼ �2
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Therefore:

d ¼ f½3� ð�5Þ�2 þ ½5� ð�4Þ�2 þ ð�2� 3Þ2g1=2

¼ ½82 þ 92 þ ð�5Þ2�1=2

¼ ð64þ 81þ 25Þ1=2

¼ 1701=2

¼ 13:038

Vectors in Cartesian Three-Space
A vector in Cartesian three-space is the same as a vector in the Cartesian

plane, except that there is more ‘‘freedom’’ in terms of direction. This makes

the expression of direction in 3D more complicated than is the case in 2D. It

also makes vector arithmetic a lot more interesting!

EQUIVALENT VECTORS

In Cartesian three-space, vectors a and b can be denoted as arrow-tipped line

segments from the origin (0,0,0) to points (xa,ya,za) and (xb,yb,zb), as shown

in Fig. 9-5. This, like all three-space drawings in this chapter, is a perspective

illustration. Both vectors in this example point in directions on the reader’s

side of the plane containing the page. In a true 3D model, both of them

would ‘‘stick up out of the paper at an angle.’’

In Fig. 9-5, both vectors a and b have their end points at the origin. This is

the standard form of a vector in any coordinate system. In order for the

following formulas to hold, vectors must be expressed in standard form. If a

given vector is not in standard form, it can be converted by subtracting the

coordinates (x0,y0,z0) of the starting point from the coordinates of the end

point (x1,y1,z1). For example, if a vector a* starts at (4,7,0) and ends at

(1,–3,5), it reduces to an equivalent vector a in standard form:

a ¼ ½ð1� 4Þ; ð�3� 7Þ; ð5� 0Þ�

¼ ð�3;�10,5Þ

Any vector a*, which is parallel to a and has the same length as a, is equal

to vector a, because a* has the same magnitude and the same direction as a.

Similarly, any vector b*, which is parallel to b and has the same length as b, is
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defined as being equal to b. As in the 2D case, a vector is defined solely on the

basis of its magnitude and its direction. Neither of these two properties

depends on the location of the end point.

DEFINING THE MAGNITUDE

When the end point of a vector a is at the origin, the magnitude of a, written

|a| or a, can be found by a three-dimensional extension of the Pythagorean

theorem for right triangles. The formula looks like this:

jaj ¼ ðx2a þ y2a þ z2aÞ
1=2

The magnitude of any vector a in standard form is simply the distance of the

end point from the origin. Note that the above formula is the distance for-

mula for two points, (0,0,0) and (xa,ya,za).

DIRECTION ANGLES AND COSINES

The direction of a vector a in standard form can be defined by specifying the

angles �x, �y, and �z that the vector a subtends relative to the positive x, y,

and z axes respectively (Fig. 9-6). These angles, expressed in radians as an

ordered triple (�x,�y,�z), are the direction angles of a.
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Sometimes the cosines of these angles are used to define the direction of a

vector a in 3D space. These are the direction cosines of a:

dir a ¼ ð�,�,�Þ

� ¼ cos �x

� ¼ cos �y

� ¼ cos �z

For any vector a in Cartesian three-space, the sum of the squares of the

direction cosines is always equal to 1. That is

�
2 þ �

2 þ �
2 ¼ 1

Another way of expressing this is:

cos2�x þ cos2 �y þ cos2 �z ¼ 1

where the expression cos2 � means (cos �)2.
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SUM

The sum of vectors a ¼ (xa,ya,za) and b ¼ (xb,yb,zb) in standard form is given

by the following formula:

aþ b ¼ ½ðxa þ xbÞ; ðya þ ybÞ; ðza þ zbÞ�

This sum can, as in the two-dimensional case, be found geometrically by

constructing a parallelogram with a and b as adjacent sides. The sum a þ

b is the diagonal of the parallelogram. This is shown in Fig. 9-7. (The par-

allelogram appears distorted because of the perspective of the drawing.)

MULTIPLICATION BY SCALAR

In three-dimensional Cartesian coordinates, let vector a be defined by the

coordinates (xa,ya,za) when reduced to standard form. Suppose a is multi-

plied by a positive real scalar k. Then the following equation holds:

ka ¼ kðxa,ya,zaÞ ¼ ðkxa,kya,kzaÞ

If a is multiplied by a negative real scalar –k, then:

�ka ¼ �kðxa,ya,zaÞ ¼ ð�kxa,� kya,� kzaÞ
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Suppose the direction angles of a are represented by the ordered triple

(�xa,�ya,�za). Then the direction angles of ka are the same; they are also

(�xa,�ya,�za). The direction angles of –ka are all changed by 1808 (� rad).

The direction angles of –ka are obtained by adding or subtracting 1808

(� rad) to each of the direction angles for ka, so that the results are all

at least 08 (0 rad) but less than 3608 (2� rad).

DOT PRODUCT

The dot product, also known as the scalar product and written a * b, of

vectors a ¼ (xa,ya,za) and b ¼ (xb,yb,zb) in standard form is a real number

given by the formula:

a � b ¼ xaxb þ yayb þ zazb

The dot product can also be found from the magnitudes |a| and |b|, and the

angle � between vectors a and b as measured counterclockwise in the plane

containing them both:

a � b ¼ jajjbj cos �

CROSS PRODUCT

The cross product, also known as the vector product and written a � b, of

vectors a ¼ (xa,ya,za) and b ¼ (xb,yb,zb) in standard form is a vector perpen-

dicular to the plane containing a and b. Let � be the angle between vectors a

and b as measured counterclockwise in the plane containing them both, as

shown in Fig. 9-8. The magnitude of a � b is given by the formula:

ja� bj ¼ jajjbj sin �

In the example shown, a � b points upward at a right angle to the plane

containing both vectors a and b. If 08 < � < 1808 (0 < � < �), you can use

the right-hand rule to ascertain the direction of a � b. Curl your fingers in the

direction that �, the angle between a and b, is defined. Extend your thumb.

Then a � b points in the direction of your thumb.

When 1808 < � < 3608 (� rad < � < 2� rad), the cross-product vector

reverses direction because its magnitude becomes negative. This is demon-

strated by the fact that, in the above formula, sin � is positive when 08 < � <

1808 (0 rad < � < � rad), but negative when 1808 < � < 3608 (� rad < � <

2� rad).
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UNIT VECTORS

Any vector a, reduced to standard form so its starting point is at the origin,

ends up at some point (xa,ya,za). This vector can be broken down into the

sum of three mutually perpendicular vectors, each of which lies along one of

the coordinate axes as shown in Fig. 9-9:

a ¼ ðxa,ya,zaÞ

¼ ðxa,0; 0Þ þ ð0; ya; 0Þ þ ð0,0,zaÞ

¼ xað1,0,0Þ þ yað0,1,0Þ þ zað0,0,1Þ

The vectors (1,0,0), (0,1,0), and (0,0,1) are called unit vectors because their

length is 1. It is customary to name these vectors i, j, and k, because they

come in handy:

ð1,0,0Þ ¼ i

ð0,1,0Þ ¼ j

ð0,0,1Þ ¼ k

Therefore, the vector a shown in Fig. 9-9 breaks down this way:

a ¼ ðxa,ya,zaÞ ¼ xaiþ yajþ zak

PROBLEM 9-6

Break the vector b ¼ (–2,3,–7) down into a sum of multiples of the unit

vectors i, j, and k.
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SOLUTION 9-6

This is a simple process—almost trivial—but envisioning it requires a keen

‘‘mind’s eye.’’ If you have any trouble seeing this in your imagination, think

of i as ‘‘one unit of width going to the right,’’ j as ‘‘one unit of height going

up,’’ and k as ‘‘one unit of depth coming towards you.’’ Here we go:

b ¼ ð�2,3,� 7Þ

¼ �2� ð1,0,0Þ þ 3� ð0,1,0Þ þ ½�7� ð0,0,1Þ�

¼ �2iþ 3jþ ð�7Þk

¼ �2iþ 3j� 7k

Planes
The equation of a flat geometric plane in Cartesian 3D coordinates is some-

what like the equation of a straight line in Cartesian 2D coordinates.
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CRITERIA FOR UNIQUENESS

A geometric plane in space can be uniquely defined according to any of the

following criteria:

� Three points that do not all lie on the same straight line
� A point in the plane and a vector perpendicular to the plane
� Two intersecting straight lines
� Two parallel straight lines

GENERAL EQUATION OF PLANE

The simplest equation for a plane is derived on the basis of the second of the

foregoing criteria: a point in the plane and a vector normal (perpendicular) to

the plane. Figure 9-10 shows a planeW in Cartesian three-space, a point P ¼

(x0,y0,z0) in plane W, and a vector (a,b,c) ¼ ai þ bj þ ck that is normal to

planeW. The vector (a,b,c) in this illustration is shown originating at point P,

and not at the origin, because this particular plane does not contain the

origin (0,0,0). The values x ¼ a, y ¼ b, and z ¼ c for the vector are never-

theless based on its standard form.
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vector (a,b,c) normal to the plane. Dashed portions of the coordinate axes are

‘‘behind’’ the plane.



When these things about a plane are known, we have enough information

to uniquely define it and write its equation as follows:

aðx� x0Þ þ bðy� y0Þ þ cðz� z0Þ ¼ 0

In this form of the equation for a plane, the constants a, b, and c are called

the coefficients. The above equation can also be written in this form:

axþ byþ czþ d ¼ 0

where

d ¼ –(ax0 þ by0 þ cz0) ¼ –ax0 – by0 – cz0

PLOTTING A PLANE

In order to draw a graph of a plane based on its equation, it is sufficient to

obtain the points where the plane crosses each of the three coordinate axes.

The plane can then be visualized, based on these points.

Not all planes cross all three of the axes in Cartesian xyz-space. If a plane

is parallel to one of the axes, it does not cross that axis; it may cross one or

both of the others. If a plane is parallel to the plane formed by two of the

three axes, then it crosses only the axis to which it is not parallel. Any plane

in Cartesian three-space must, however, cross at least one of the coordinate

axes at some point.

PROBLEM 9-7

Draw a graph of the plane W represented by the following equation:

�2x� 4yþ 3z� 12 ¼ 0

SOLUTION 9-7

The x-intercept, or the point where the plane W intersects the x axis, can be

found by setting y ¼ 0 and z ¼ 0 and solving the resulting equation for x. Call

this point P:

�2x� 4� 0þ 3� 0� 12 ¼ 0

�2x� 12 ¼ 0

�2x ¼ 12

x ¼ 12=ð�2Þ ¼ �6
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Therefore,

P ¼ ð�6,0,0Þ

The y-intercept, or the point where the plane W intersects the y axis, can be

found by setting x ¼ 0 and z ¼ 0 and solving the resulting equation for y. Call

this point Q:

�2� 0� 4yþ 3� 0� 12 ¼ 0

�4y� 12 ¼ 0

�4y ¼ 12

y ¼ 12=ð�4Þ ¼ �3

Therefore,

Q ¼ ð0,� 3,0Þ

The z-intercept, or the point where the plane W intersects the z axis, can be

found by setting x ¼ 0 and y ¼ 0 and solving the resulting equation for z. Call

this point R:

�2� 0� 4� 0þ 3z� 12 ¼ 0

3z� 12 ¼ 0

3z ¼ 12

z ¼ 12=3 ¼ 4

Therefore,

R ¼ ð0,0,4Þ

These three points are shown in the plot of Fig. 9-11. The plane can be

envisioned, based on this data. (The dashed axes are ‘‘behind’’ the plane.)

PROBLEM 9-8

Suppose a plane contains the point (2,–7,0) and a normal vector to the plane

at this point is 3i þ 3j þ 2k. What is the equation of this plane?

SOLUTION 9-8

The vector 3i þ 3j þ 2k is equivalent to (a,b,c) ¼ (3,3,2). We have one point

(x0,y0,z0) ¼ (2,–7,0). Plugging these values into the general formula for the

equation of a plane gives us the following:
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aðx� x0Þ þ bðy� y0Þ þ cðz� z0Þ ¼ 0

3ðx� 2Þ þ 3½y� ð�7Þ� þ 2ðz� 0Þ ¼ 0

3ðx� 2Þ þ 3ðyþ 7Þ þ 2z ¼ 0

3x� 6þ 3yþ 21þ 2z ¼ 0

3xþ 3yþ 2zþ 15 ¼ 0

Straight Lines
Straight lines in Cartesian three-space present a more complicated picture

than straight lines in the Cartesian coordinate plane. This is because there is

an added dimension, making the expression of the direction more complex.

But all linear equations, no matter what the number of dimensions, have one

thing in common: they can be reduced to a form where no variable is raised

to any power other than 0 or 1.

SYMMETRIC-FORM EQUATION

A straight line in Cartesian three-space can be represented by a ‘‘three-way’’

equation in three variables. This equation is known as a symmetric-form
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equation. It takes the following form, where x, y, and z are the variables,

(x0,y0,z0) represents the coordinates of a specific point on the line, and a, b,

and c are constants:

ðx� x0Þ=a ¼ ðy� y0Þ=b ¼ ðz� z0Þ=c

This requires that none of the three constants a, b, or c be equal to zero.

If a ¼ 0 or b ¼ 0 or c ¼ 0, the result is a zero denominator in one of the

expressions, and division by zero is not defined.

DIRECTION NUMBERS

In the symmetric-form equation of a straight line, the constants a, b, and c

are known as the direction numbers. If we consider a vector m with its end

point at the origin and its ‘‘arrowed end’’ at the point (x,y,z) ¼ (a,b,c), then

the vector m is parallel to the line denoted by the symmetric-form equation.

We have:

m ¼ aiþ bjþ ck

where m is the three-dimensional equivalent of the slope of a line in the

Cartesian plane. This is shown in Fig. 9-12 for a line L containing a point

P ¼ (x0,y0,z0).
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PARAMETRIC EQUATIONS

There are infinitely many vectors that can satisfy the requirement for m. If t is

any nonzero real number, then tm ¼ (ta,tb,tc) ¼ tai þ tbj þ tck will work just

as well as m for the purpose of defining the direction of a line L. This gives us

an alternative form for the equation of a line in Cartesian three-space:

x ¼ x0 þ at

y ¼ y0 þ bt

z ¼ z0 þ ct

The nonzero real number t is called a parameter, and the above set of equa-

tions is known as a set of parametric equations for a straight line in xyz-space.

In order for an entire line (straight, and infinitely long) to be defined on this

basis of parametric equations, the parameter t must be allowed to range over

the entire set of real numbers, including zero.

PROBLEM 9-9

Find the symmetric-form equation for the line L shown in Fig. 9-13.
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SOLUTION 9-9

The line L passes through the point P ¼ (–5,–4,3) and is parallel to the vector

m ¼ 3i þ 5j – 2k. The direction numbers of L are the coefficients of the vector

m, that is:

a ¼ 3

b ¼ 5

c ¼ �2

We are given a point P on L such that:

x0 ¼ �5

y0 ¼ �4

z0 ¼ 3

Plugging these values into the general symmetric-form equation for a line in

Cartesian three-space gives us this:

ðx� x0Þ=a ¼ ðy� y0Þ=b ¼ ðz� z0Þ=c

½x� ð�5Þ�=3 ¼ ½y� ð�4Þ�=5 ¼ ðz� 3Þ=ð�2Þ

ðxþ 5Þ=3 ¼ ðyþ 4Þ=5 ¼ ðz� 3Þ=ð�2Þ

PROBLEM 9-10

Find a set of parametric equations for the line L shown in Fig. 9-13.

SOLUTION 9-10

This involves nothing more than rearranging the values of x0, y0, z0, a, b, and

c in the symmetric-form equation, and rewriting the data in the form of

parametric equations. The results are:

x ¼ �5þ 3t

y ¼ �4þ 5t

z ¼ 3� 2t

Quiz
Refer to the text in this chapter if necessary. A good score is eight correct.

Answers are in the back of the book.

1. The dot product (3,5,0) * (–4,–6,2) is equal to

(a) the scalar quantity –4

(b) the vector (–12,–30,0)
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(c) the scalar quantity –42

(d) a vector perpendicular to the plane containing them both

2. What does the graph of the equation y ¼ 3 look like in Cartesian

three-space?

(a) A plane perpendicular to the y axis

(b) A plane parallel to the xy plane

(c) A line parallel to the y axis

(d) A line parallel to the xy plane

3. Suppose vector d in the Cartesian plane begins at exactly (1,1) and

ends at exactly (4,0). What is dir d, expressed to the nearest degree?

(a) 3428

(b) 188

(c) 08

(d) 908

4. Suppose a line is represented by the equation (x – 3)/2 ¼ (y þ 4)/5 ¼

z� 1. Which of the following is a point on this line?

(a) (–3,4,–1)

(b) (3,–4,1)

(c) (2,5,1)

(d) There is no way to determine such a point without more informa-

tion

5. Let iPQR be a right triangle whose hypotenuse measures exactly 1

unit in length, and whose other two sides measure p meters and q

meters, as shown in Fig. 9-14. Let � be the angle whose apex is

point P. Which of the following statements is true?

(a) sin � ¼ p/q

(b) sin � ¼ cos �

(c) tan � ¼ tan �

(d) cos � ¼ 1/(tan �)
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6. With reference to Fig. 9-14, the Pythagorean theorem can be used to

demonstrate that

(a) sin � þ cos � ¼ 1

(b) tan � – tan � ¼ 1

(c) (sin �)2 þ (cos �)2 ¼ 1

(d) (sin �)2 – (cos �)2 ¼ 1

7. What is the cross product (2i þ 0j þ 0k) � (0i þ 2j þ 0k)?

(a) 0i þ 0j þ 0k

(b) 2i þ 2j þ 0k

(c) 0i þ 0j þ 4k

(d) The scalar 0

8. What is the sum of the two vectors (3,5) and (–5,–3)?

(a) (0,0)

(b) (8,8)

(c) (2,2)

(d) (–2,2)

9. If a straight line in Cartesian three-space has direction defined by m ¼

0i þ 0j þ 3k, we can surmise

(a) that the line is parallel to the x axis

(b) that the line lies in the yz plane

(c) that the line lies in the xy plane

(d) none of the above

10. Suppose a plane passes through the origin, and a vector normal to the

plane is represented by 4i – 5j þ 8k. The equation of this plane is

(a) 4x – 5y þ 8z ¼ 0

(b) –4x þ 5y – 8z ¼ 7

(c) (x – 4) ¼ (y þ 5) ¼ (z – 8)

(d) impossible to determine without more information
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CHAPTER
10

Alternative
Coordinates

Cartesian coordinates do not represent the only way that points can be

located on a plane or in 3D space. In this chapter we’ll look at polar, lati-

tude/longitude, cylindrical, and spherical schemes.

Polar Coordinates
Two versions of the polar coordinate plane are shown in Figs. 10-1 and 10-2.

The independent variable is plotted as an angle � relative to a reference axis

pointing to the right (or ‘‘east’’), and the dependent variable is plotted as a

distance (called the radius) r from the origin. A coordinate point is thus

denoted in the form of an ordered pair (�,r).

THE RADIUS

In any polar plane, the radii are shown by concentric circles. The larger the

circle, the greater the value of r. In Figs. 10-1 and 10-2, the circles are not
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labeled in units. You can do that for yourself. Imagine each concentric

circle, working outward, as increasing by any number of units you want.

For example, each radial division might represent one unit, or five units, or

10, or 100.
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Fig. 10-1. The polar coordinate plane. The angle � is in degrees, and the radius r is in uniform

increments.

Fig. 10-2. Another form of the polar coordinate plane. The angle � is in radians, and the

radius r is in uniform increments.



THE DIRECTION

Direction can be expressed in degrees or radians counterclockwise from a

reference axis pointing to the right or ‘‘east.’’ In Fig. 10-1, the direction � is in

degrees. Figure 10-2 shows the same polar plane, using radians to express the

direction. (The ‘‘rad’’ abbreviation is not used, because it is obvious from the

fact that the angles are multiples of �.) Regardless of whether degrees or

radians are used, the angular scale is linear. The physical angle on the graph

is directly proportional to the value of �.

NEGATIVE RADII

In polar coordinates, it is all right to have a negative radius. If some point is

specified with r< 0, we multiply r by –1 so it becomes positive, and then add

or subtract 1808 (� rad) to or from the direction. That’s like saying, ‘‘Go 10

kilometers east’’ instead of ‘‘Go minus 10 kilometers west.’’ Negative radii

must be allowed in order to graph figures that represent functions whose

ranges can attain negative values.

NON-STANDARD DIRECTIONS

It’s okay to have non-standard direction angles in polar coordinates. If the

value of � is 3608 (2� rad) or more, it represents more than one complete

counterclockwise revolution from the 08 (0 rad) reference axis. If the direc-

tion angle is less than 08 (0 rad), it represents clockwise revolution instead of

counterclockwise revolution. Non-standard direction angles must be allowed

in order to graph figures that represent functions whose domains go outside

the standard angle range.

PROBLEM 10-1

Provide an example of a graphical object that can be represented as a func-

tion in polar coordinates, but not in Cartesian coordinates.

SOLUTION 10-1

Recall the definitions of the terms relation and function from Chapter 6.

When we talk about a function f, we can say that r ¼ f(�). A simple function

of � in polar coordinates is a constant function such as this:

fð�Þ ¼ 3

Because f(�) is just another way of denoting r, the radius, this function tells us

that r ¼ 3. This is a circle with a radius of 3 units.
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In Cartesian coordinates, the equation of the circle with radius of 3 units is

more complicated. It looks like this:

x2 þ y2 ¼ 9

(Note that 9 ¼ 32, the square of the radius.) If we let y be the dependent

variable and x be the independent variable, we can rearrange the equation of

the circle to get:

y ¼ �ð9� x2Þ1=2

If we say that y ¼ g(x) where g is a function of x in this case, we are mistaken.

There are values of x (the independent variable) that produce two values of y

(the dependent variable). For example, when x ¼ 0, y ¼ � 3. If we want to

say that g is a relation, that’s fine, but we cannot call it a function.

Some Examples
In order to get a good idea of how the polar coordinate system works, let’s

look at the graphs of some familiar objects. Circles, ellipses, spirals, and

other figures whose equations are complicated in Cartesian coordinates can

often be expressed much more simply in polar coordinates. In general, the

polar direction � is expressed in radians. In the examples that follow, the

‘‘rad’’ abbreviation is eliminated, because it is understood that all angles are

in radians.

CIRCLE CENTERED AT ORIGIN

The equation of a circle centered at the origin in the polar plane is given by

the following formula:

r ¼ a

where a is a real-number constant greater than 0. This is illustrated in

Fig. 10-3.

CIRCLE PASSING THROUGH ORIGIN

The general form for the equation of a circle passing through the origin and

centered at the point (�0,r0) in the polar plane (Fig. 10-4) is as follows:

r ¼ 2r0 cos ð� � �0Þ
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ELLIPSE CENTERED AT ORIGIN

The equation of an ellipse centered at the origin in the polar plane is given by

the following formula:

r ¼ ab=ða2 sin2 � þ b2 cos2 �Þ1=2

where a and b are real-number constants greater than 0.
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Fig. 10-3. Polar graph of a circle centered at the origin.

Fig. 10-4. Polar graph of a circle passing through the origin.



In the ellipse, a represents the distance from the origin to the curve as

measured along the ‘‘horizontal’’ ray � ¼ 0, and b represents the distance

from the origin to the curve as measured along the ‘‘vertical’’ ray � ¼ �/2.

This is illustrated in Fig. 10-5. The values 2a and 2b represent the lengths of

the semi-axes of the ellipse; the greater value is the length of the major semi-

axis, and the lesser value is the length of the minor semi-axis.

HYPERBOLA CENTERED AT ORIGIN

The general form of the equation of a hyperbola centered at the origin in the

polar plane is given by the following formula:

r ¼ ab=ða2 sin2 � � b2 cos2 �Þ1=2

where a and b are real-number constants greater than 0.

Let D represent a rectangle whose center is at the origin, whose vertical

edges are tangent to the hyperbola, and whose vertices (corners) lie on the

asymptotes of the hyperbola (Fig. 10-6). Let a represent the distance from the

origin to D as measured along the ‘‘horizontal’’ ray � ¼ 0, and let b represent

the distance from the origin to D as measured along the ‘‘vertical’’ ray � ¼

�/2. The values 2a and 2b represent the lengths of the semi-axes of the hyper-

bola; the greater value is the length of themajor semi-axis, and the lesser value

is the length of the minor semi-axis.
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LEMNISCATE

The general form of the equation of a lemniscate centered at the origin in the

polar plane is given by the following formula:

r ¼ a ðcos 2�Þ1=2

where a is a real-number constant greater than 0. This is illustrated in Fig.

10-7. The area A of each loop of the figure is given by:

A ¼ a2

THREE-LEAFED ROSE

The general form of the equation of a three-leafed rose centered at the origin

in the polar plane is given by either of the following two formulas:

r ¼ a cos 3�

r ¼ a sin 3�

where a is a real-number constant greater than 0. The cosine version of the

curve is illustrated in Fig. 10-8A. The sine version is illustrated in Fig. 10-8B.
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FOUR-LEAFED ROSE

The general form of the equation of a four-leafed rose centered at the origin

in the polar plane is given by either of the following two formulas:

r ¼ a cos 2�

r ¼ a sin 2�

where a is a real-number constant greater than 0. The cosine version is

illustrated in Fig. 10-9A. The sine version is illustrated in Fig. 10-9B.

SPIRAL

The general form of the equation of a spiral centered at the origin in the polar

plane is given by the following formula:

r ¼ a�

where a is a real-number constant greater than 0. An example of this type of

spiral, called the spiral of Archimedes because of the uniform manner in

which its radius increases as the angle increases, is illustrated in Fig. 10-10.
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CARDIOID

The general form of the equation of a cardioid centered at the origin in the

polar plane is given by the following formula:

r ¼ 2að1þ cos �Þ
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Fig. 10-8. (A) Polar graph of a three-leafed rose with equation r ¼ a cos 3�. (B) Polar graph

of a three-leafed rose with equation r ¼ a sin 3�.



where a is a real-number constant greater than 0. An example of this type of

curve is illustrated in Fig. 10-11.

PROBLEM 10-2

What is the value of the constant, a, in the spiral shown in Fig. 10-10? What is

the equation of this spiral? Assume that each radial division represents 1 unit.
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Fig. 10-9. (A) Polar graph of a four-leafed rose with equation r ¼ a cos 2�. (B) Polar graph of

a four-leafed rose with equation r ¼ a sin 2�.



SOLUTION 10-2

Note that if � ¼ �, then r ¼ 2. Therefore, we can solve for a by substituting

this number pair in the general equation for the spiral. We know that (�,r) ¼

(�,2), and that is all we need. Proceed like this:

r ¼ a�

2 ¼ a�

2=� ¼ a
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Fig. 10-10. Polar graph of a spiral; illustration for Problem 10-2.

Fig. 10-11. Polar graph of a cardioid; illustration for Problem 10-3.



Therefore, a ¼ 2/�, and the equation of the spiral is r ¼ (2/�)� or, in a

somewhat simpler form without parentheses, r ¼ 2�/�.

PROBLEM 10-3

What is the value of the constant, a, in the cardioid shown in Fig. 10-11?

What is the equation of this cardioid? Assume that each radial division

represents 1 unit.

SOLUTION 10-3

Note that if � ¼ 0, then r ¼ 4. We can solve for a by substituting this number

pair in the general equation for the cardioid. We know that (�,r) ¼ (0,4), and

that is all we need. Proceed like this:

r ¼ 2að1þ cos �Þ

4 ¼ 2að1þ cos 0Þ

4 ¼ 2að1þ 1Þ

4 ¼ 4a

a ¼ 1

This means that the equation of the cardioid is r ¼ 2(1 þ cos �) or, in a

simpler form without parentheses, r ¼ 2 þ 2 cos �.

Compression and Conversion
Here are a couple of interesting things, one of which serves the imagination,

and the other of which has extensive applications in science and engineering.

GEOMETRIC POLAR PLANE

Figure 10-12 shows a polar plane on which the radial scale is graduated

geometrically. The point corresponding to 1 on the r axis is halfway between

the origin and the outer periphery, which is labeled 1 (the ‘‘infinity’’ sym-

bol). Succeeding integer points are placed halfway between previous integer

points and the outer periphery. In this way, the entire polar coordinate plane

is depicted within a finite open circle.

The radial scale of this coordinate system can be expanded or compressed

by multiplying all the values on the r axis by a constant. This allows various

relations and functions to be plotted, minimizing distortion in particular
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regions of interest. Distortion relative to the conventional polar coordinate

plane is greatest near the periphery, and is least near the origin.

This ‘‘geometric axis compression’’ scheme can also be used with the axes

of rectangular coordinates in two or three dimensions. It is not often seen in

the literature, but it can be interesting because it provides a ‘‘view to infinity’’

that other coordinate systems do not.

POLAR VS CARTESIAN CONVERSIONS

Figure 10-13 shows a point P ¼ (x0,y0) ¼ (�0,r0) graphed on superimposed

Cartesian and polar coordinate systems. If we know the Cartesian coordi-

nates, we can convert to polar coordinates using these formulas:

�0 ¼ arctan ðy0=x0Þ if x0 > 0

�0 ¼ 1808þ arctan ðy0=x0Þ if x0 < 0 ðfor �0 in degreesÞ

�0 ¼ �þ arctan ðy0=x0Þ if x0 < 0 ðfor �0 in radiansÞ

r0 ¼ ðx20 þ y20Þ
1=2

We can’t have x0 ¼ 0 because that produces an undefined quotient. If a value

of �0 thus determined happens to be negative, add 3608 or 2� rad to get the

‘‘legitimate’’ value.

Polar coordinates are converted to Cartesian coordinates by the following

formulas:
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x0 ¼ r0 cos �0

y0 ¼ r0 sin �0

These same formulas can be used, by means of substitution, to convert

Cartesian-coordinate relations to polar-coordinate relations, and vice versa.

The generalized Cartesian-to-polar conversion formulas look like this:

� ¼ arctan ðy=xÞ if x > 0

� ¼ 1808þ arctan ðy=xÞ if x < 0 ðfor � in degreesÞ

� ¼ �þ arctan ðy=xÞ if x < 0 ðfor � in radiansÞ

r ¼ ðx2 þ y2Þ1=2

The generalized polar-to-Cartesian conversion formulas are:

x ¼ r cos �

y ¼ r sin �

When making a conversion from polar to Cartesian coordinates or vice versa,

a relation that is a function in one system may be a function in the other, but

this is not always true.
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division represents one unit. Each division on the x and y axes also represents one

unit.



PROBLEM 10-4

Consider the point (�0,r0) ¼ (1358,2) in polar coordinates. What is the (x0,y0)

representation of this point in Cartesian coordinates?

SOLUTION 10-4

Use the conversion formulas above:

x0 ¼ r0 cos �0

y0 ¼ r0 sin �0

Plugging in the numbers gives us these values, accurate to three decimal

places:

x0 ¼ 2 cos 1358 ¼ 2� ð�0:707Þ ¼ �1:414

y0 ¼ 2 sin 1358 ¼ 2� 0:707 ¼ 1:414

Thus, (x0,y0) ¼ (–1.414,1.414).

The Navigator’s Way
Navigators and military people use a form of coordinate plane similar to that

used by mathematicians. The radius is more often called the range, and real-

world units are commonly specified, such as meters (m) or kilometers (km).

The angle, or direction, is more often called the azimuth, heading, or bearing,

and is measured in degrees clockwise from north. The basic scheme is shown

in Fig. 10-14. The azimuth is symbolized � (the lowercase Greek alpha), and

the range is symbolized r.

WHAT IS NORTH?

There are two ways of defining ‘‘north,’’ or 08. The more accurate, and thus

the preferred and generally accepted, standard uses geographic north. This is

the direction you would travel if you wanted to take the shortest possible

route over the earth’s surface to the north geographic pole. The less accurate

standard uses magnetic north. This is the direction indicated by the needle in a

magnetic compass.

For most locations on the earth’s surface, there is some difference between

geographic north and magnetic north. This difference, measured in degrees, is

called the declination. Navigators in olden times had to know the declination

for their location, when they couldn’t use the stars to determine geographic
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north. Nowadays, there are electronic navigation systems such as the Global

Positioning System (GPS) that make the magnetic compass irrelevant, pro-

vided the equipment is in working order. (Most oceangoing vessels still have

magnetic compasses on board, just in case of a failure of the more sophisti-

cated equipment.)

STRICT RESTRICTIONS

In navigator’s polar coordinates, the range can never be negative. No navi-

gator ever talks about traveling –20 km on a heading of 2708, for example,

when they really mean to say they are traveling 20 km on a heading of 908.

When working out certain problems, it’s possible that the result might con-

tain a negative range. If this happens, the value of r should be multiplied by

�1 and the value of � should be increased or decreased by 1808 so the result is

at least 08 but less than 3608.

The azimuth, bearing, or heading must likewise conform to certain values.

The smallest possible value of � is 08 (representing geographic north). As you

turn clockwise as seen from above, the values of � increase through 908 (east),

1808 (south), 2708 (west), and ultimately approach, but never reach, 3608

(north again).
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Fig. 10-14. The navigator’s polar coordinate plane. The bearing � is in degrees, and the range

r is in arbitrary units.



We therefore have these restrictions on the ordered pair (�,r):

08 � � < 3608

r � 0

MATHEMATICIAN’S POLAR VS NAVIGATOR’S POLAR

Sometimes it is necessary to convert from mathematician’s polar coordinates

(let’s call them MPC for short) to navigator’s polar coordinates (NPC), or

vice versa. When making the conversion, the radius of a particular point, r0,

is the same in both systems, so no change is necessary. But the angles differ.

If you know the direction angle �0 of a point in MPC and you want to find

the equivalent azimuth �0 in NPC, first be sure �0 is expressed in degrees, not

radians. Then you can use either of the following conversion formulas,

depending on the value of �0:

�0 ¼ 908� �0 if 08 � �0 � 908

�0 ¼ 4508 � �0 if 908 < �0 < 3608

If you know the azimuth �0 of a distant point in NPC and you want to find

the equivalent direction angle �0 in MPC, then you can use either of the

following conversion formulas, depending on the value of �0:

�0 ¼ 908� �0 if 08 � �0 � 908

�0 ¼ 4508 � �0 if 908 < �0 < 3608

NAVIGATOR’S POLAR VS CARTESIAN

Now suppose that you want to convert from NPC to Cartesian coordinates.

Here are the conversion formulas for translating the coordinates for a point

(�0,r0) in NPC to a point (x0,y0) in the Cartesian plane:

x0 ¼ r0 sin �0

y0 ¼ r0 cos �0

These are similar to the formulas you use to convert MPC to Cartesian

coordinates, except that the roles of the sine and cosine function are reversed.

In order to convert the coordinates of a point (x0,y0) in Cartesian co-

ordinates to a point (�0,r0) in NPC, use these formulas:

CHAPTER 10 Alternative Coordinates 221



�0 ¼ arctan ðx0=y0Þ if y0 > 0

�0 ¼ 1808þ arctan ðx0=y0Þ if y0 < 0

r0 ¼ ðx20 þ y20Þ
1=2

We can’t have y0 ¼ 0, because that produces an undefined quotient. If a value

of �0 thus determined happens to be negative, add 3608 to get the ‘‘legiti-

mate’’ value. These are similar to the formulas for converting Cartesian

coordinates to MPC.

PROBLEM 10-5

Suppose a radar set, that uses NPC, indicates the presence of a hovering

object at a bearing of 3008 and a range of 40 km. If we say that a kilometer

is the same as a ‘‘unit,’’ what are the coordinates (�0,r0) of this object in

mathematician’s polar coordinates? Express �0 in both degrees and radians.

SOLUTION 10-5

We are given coordinates (�0,r0) ¼ (3008,40). The value of r0, the radius, is

the same as the range, in this case 40 units. As for the angle �0, remember the

conversion formulas given above. In this case, because �0 is greater than 908

and less than 3608:

�0 ¼ 4508� �0

¼ 4508� 3008 ¼ 1508

Therefore, (�0,r0) ¼ (1508,40). To express �0 in radians, recall that there are

2� radians in a full 3608 circle, or � radians in a 1808 angle. Note that 1508 is

exactly 5/6 of 1808. Therefore, �0 ¼ 5�/6 rad, and we can say that (�0,r0) ¼

(1508,40) ¼ (5�/6,40). We can leave the ‘‘rad’’ off the angle designator here.

When units are not specified for an angle, radians are assumed.

PROBLEM 10-6

Suppose you are on an archeological expedition, and you unearth a stone on

which appears a treasure map. The map says ‘‘You are here’’ next to an X,

and then says, ‘‘Go north 40 paces and then west 30 paces.’’ Suppose that

you let west represent the negative x axis of a Cartesian coordinate system,

east represent the positive x axis, south represent the negative y axis, and

north represent the positive y axis. Also suppose that you let one ‘‘pace’’

represent one ‘‘unit’’ of radius, and also one ‘‘unit’’ in the Cartesian system.

If you are naı̈ve enough to look for the treasure and lazy enough so you insist

on walking in a straight line to reach it, how many paces should you travel,

and in what direction, in navigator’s polar coordinates? Determine your

answer to the nearest degree, and to the nearest pace.
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SOLUTION 10-6

Determine the ordered pair in Cartesian coordinates that corresponds to the

imagined treasure site. Consider the origin to be the spot where the map was

unearthed. If we let (x0,y0) be the point where the treasure should be, then 40

paces north means y0 ¼ 40, and 30 paces west means x0 ¼ –30:

ðx0,y0Þ ¼ ð�30,40Þ

Because y0 is positive, we use this formula to determine the bearing or head-

ing �0:

�0 ¼ arctan ðx0=y0Þ

¼ arctan ð�30=40Þ

¼ arctan � 0:75

¼ �378

This is a negative angle, so to get it into the standard form, we must add 3608:

�0 ¼ �378þ 3608 ¼ 3608� 378

¼ 3238

To find the value of the range, r0, use this formula:

r0 ¼ ðx20 þ y20Þ
1=2

¼ ð302 þ 402Þ1=2

¼ ð900þ 1600Þ1=2

¼ 25001=2

¼ 50

This means (�0,r0) ¼ (3238,50). Proceed 50 paces, approximately north by

northwest. Then, if you have a shovel, go ahead and dig!

Alternative 3D Coordinates
Here are some coordinate systems that are used in mathematics and science

when working in 3D space.
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LATITUDE AND LONGITUDE

Latitude and longitude angles uniquely define the positions of points on the

surface of a sphere or in the sky. The scheme for geographic locations on the

earth is illustrated in Fig. 10-15A. The polar axis connects two specified
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Fig. 10-15. (A) Latitude and longitude coordinates for locating points on the earth’s surface.

(B) Declination and right ascension coordinates for locating points in the sky.



points at antipodes on the sphere. These points are assigned latitude � ¼ 908

(north pole) and � ¼ –908 (south pole). The equatorial axis runs outward

from the center of the sphere at a 908 angle to the polar axis. It is assigned

longitude � ¼ 08.

Latitude � is measured positively (north) and negatively (south) relative to

the plane of the equator. Longitude � is measured counterclockwise (posi-

tively) and clockwise (negatively) relative to the equatorial axis. The angles

are restricted as follows:

� 908 � � � 908

� 1808 < � � 1808

On the earth’s surface, the half-circle connecting the 08 longitude line with the

poles passes through Greenwich, England (not Greenwich Village in New

York City!) and is known as the Greenwich meridian or the prime meridian.

Longitude angles are defined with respect to this meridian.

CELESTIAL COORDINATES

Celestial latitude and celestial longitude are extensions of the earth’s latitude

and longitude into the heavens. The same set of coordinates used for geo-

graphic latitude and longitude applies to this system. An object whose celes-

tial latitude and longitude coordinates are (�,�) appears at the zenith in the

sky (directly overhead) from the point on the earth’s surface whose latitude

and longitude coordinates are (�,�).

Declination and right ascension define the positions of objects in the sky

relative to the stars. Figure 10-15B applies to this system. Declination (�) is

identical to celestial latitude. Right ascension (�) is measured eastward from

the vernal equinox (the position of the sun in the heavens at the moment

spring begins in the northern hemisphere). The angles are restricted as fol-

lows:

� 908 � � � 908

08 � � < 3608

HOURS, MINUTES, AND SECONDS

Astronomers use a peculiar scheme for right ascension. Instead of expressing

the angles of right ascension in degrees or radians, they use hours, minutes,

and seconds based on 24 hours in a complete circle (corresponding to the 24
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hours in a day). That means each hour of right ascension is equivalent to 158.

As if that isn’t confusing enough, the minutes and seconds of right ascension

are not the same as the fractional degree units by the same names more often

encountered. One minute of right ascension is 1/60 of an hour or 1=
4 of a

degree, and one second of right ascension is 1/60 of a minute or 1/240 of a

degree.

CYLINDRICAL COORDINATES

Figures 10-16A and 10-16B show two systems of cylindrical coordinates for

specifying the positions of points in three-space.

In the system shown in Fig. 10-16A, we start with Cartesian xyz-space.

Then an angle � is defined in the xy-plane, measured in degrees or radians

(but usually radians) counterclockwise from the positive x axis, which is

called the reference axis. Given a point P in space, consider its projection

P 0 onto the xy-plane. The position of P is defined by the ordered triple (�,r,h).

In this ordered triple, � represents the angle measured counterclockwise

between P 0 and the positive x axis in the xy-plane, r represents the distance

or radius from P 0 to the origin, and h represents the distance, called the

altitude or height, of P above the xy-plane. (If h is negative, then P is

below the xy-plane.) This scheme for cylindrical coordinates is preferred by

mathematicians, and also by some engineers and scientists.

In the system shown in Fig. 10-16B, we again start with Cartesian xyz-

space. The xy-plane corresponds to the surface of the earth in the vicinity of

the origin, and the z axis runs straight up (positive z values) and down

(negative z values). The angle � is defined in the xy-plane in degrees (but

never radians) clockwise from the positive y axis, which corresponds to geo-

graphic north. Given a point P in space, consider its projection P 0 onto the

xy-plane. The position of P is defined by the ordered triple (�,r,h), where �

represents the angle measured clockwise between P 0 and geographic north, r

represents the distance or radius from P 0 to the origin, and h represents the

altitude or height of P above the xy-plane. (If h is negative, then P is below

the xy-plane.) This scheme is preferred by navigators and aviators.

SPHERICAL COORDINATES

Figures 10-17A to 10-17C show three systems of spherical coordinates for

defining points in space. The first two are used by astronomers and aerospace

scientists, while the third one is of use to navigators and surveyors.
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In the scheme shown in Fig. 10-17A, the location of a point P is defined by

the ordered triple (�,�,r) such that � represents the declination of P, � repre-

sents the right ascension of P, and r represents the distance or radius from P

to the origin. In this example, angles are specified in degrees (except in the

case of the astronomer’s version of right ascension, which is expressed in

hours, minutes, and seconds as defined earlier in this chapter).

Alternatively, the angles can be expressed in radians. This system is fixed

relative to the stars.
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Fig. 10-16. (A) Mathematician’s form of cylindrical coordinates for defining points in

three-space. (B) Astronomer’s and navigator’s form of cylindrical coordinates

for defining points in three-space.



Instead of declination and right ascension, the variables � and � can

represent celestial latitude and celestial longitude respectively, as shown in

Fig. 10-17B. This system is fixed relative to the earth, rather than relative to

the stars.

There’s yet another alternative: � can represent elevation (the angle above

the horizon) and � can represent the azimuth (bearing or heading), measured
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Fig. 10-17. (A) Spherical coordinates for defining points in three-space, where the angles

represent declination and right ascension. (B) Spherical coordinates for defining

points in three-space, where the angles represent celestial latitude and longitude.



clockwise from geographic north. In this case, the reference plane corre-

sponds to the horizon, not the equator, and the elevation can range between,

and including, –908 (the nadir, or the point directly underfoot) and þ908 (the

zenith, or the point directly overhead). This is shown in Fig. 10-17C. In a

variant of this system, the angle � is measured with respect to the zenith,

rather than the horizon. Then the range for this angle is 08 � � � 1808.

PROBLEM 10-7

What are the celestial latitude and longitude of the sun on the first day of

spring, when the sun lies in the plane of the earth’s equator?

SOLUTION 10-7

The celestial latitude of the sun on the first day of spring (March 21, the

vernal equinox) is 08, which is the same as the latitude of the earth’s equator.

The celestial longitude depends on the time of day. It is 08 (the Greenwich

meridian) at high noon in Greenwich, England or any other location at 08

longitude. From there, the celestial longitude of the sun proceeds west at the

rate of 158 per hour (3608 per 24 hours).

PROBLEM 10-8

Suppose you stand in a huge, perfectly flat field and fly a kite on a string 500

meters long. The wind blows directly from the east. The point on the ground

directly below the kite is r meters away from you, and the kite is 400 meters
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above the ground. If your body represents the origin and the units of a

coordinate system are one meter in size, what is the position of the kite in

the cylindrical coordinate scheme preferred by navigators and aviators?

SOLUTION 10-8

The position of the kite is defined by the ordered triple (�,r,h), where �

represents the angle measured clockwise from geographic north to a point

directly under the kite, r represents the radius from a point on the ground

directly under the kite to the origin, and h represents the distance (height or

altitude) of the kite above the ground. Because the wind blows from the east,

you know that the kite must be directly west of the origin (represented by

your body), so � ¼ 2708. The kite is 400 meters off the ground, so h ¼ 400.

The value of r can be found by the Pythagorean theorem:

r2 þ 4002 ¼ 5002

r2 þ 160,000 ¼ 250,000

r2 ¼ 250,000� 160,000

r2 ¼ 90,000

r ¼ ð90,000Þ1=2 ¼ 300

Therefore, (�,r,h) ¼ (2708,300,400) in the system of cylindrical coordinates

preferred by navigators and aviators.

Quiz
Refer to the text in this chapter if necessary. A good score is eight correct.

Answers are in the back of the book.

1. In spherical coordinates, the position of a point is specified by

(a) two angles and a distance

(b) two distances and an angle

(c) three distances

(d) three angles

2. Suppose a point has the coordinates (�,r) ¼ (�,3) in the conventional

(or mathematician’s) polar scheme. It is implied from this that the

angle is

(a) negative

(b) expressed in radians
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(c) greater than 3608

(d) ambiguous

3. Suppose a point has the coordinates (�,r) ¼ (�/4,6) in the mathema-

tician’s polar scheme. What are the coordinates (�,r) of the point in

the navigator’s polar scheme?

(a) They cannot be determined without more information

(b) (�458,6)

(c) (458,6)

(d) (1358,6)

4. Suppose we are given the simple relation g(x) ¼ x. In Cartesian coor-

dinates, this has the graph y ¼ x. What is the equation that represents

the graph of this relation in the mathematician’s polar coordinate

system?

(a) r ¼ �

(b) r ¼ 1/�, where � 6¼ 08

(c) � ¼ 458, where r can range over the entire set of real numbers

(d) � ¼ 458, where r can range over the set of non-negative real

numbers

5. Suppose we set off on a bearing of 1358 in the navigator’s polar

coordinate system. We stay on a straight course. If the starting

point is considered the origin, what is the graph of our path in

Cartesian coordinates?

(a) y ¼ x, where x � 0

(b) y ¼ 0, where x � 0

(c) x ¼ 0, where y � 0

(d) y ¼ –x, where x � 0

6. The direction angle in the navigator’s polar coordinate system is mea-

sured

(a) in a clockwise sense

(b) in a counterclockwise sense

(c) in either sense

(d) only in radians

7. The graph of r ¼ –3� in the mathematician’s polar coordinate system

looks like

(a) a circle

(b) a cardioid

(c) a spiral

(d) nothing; it is undefined
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8. Suppose you see a balloon hovering in the sky over a calm ocean. You

are told that it is at azimuth 308, that it is 3500 meters above the ocean

surface, and that the point directly underneath it is 5000 meters away

from you. This information is an example of the position of the bal-

loon expressed in a form of

(a) Cartesian coordinates

(b) cylindrical coordinates

(c) spherical coordinates

(d) celestial coordinates

9. Suppose we are given a point and told that its Cartesian coordinate is

(x,y) ¼ (0,–5). In the mathematician’s polar scheme, the coordinates of

this point are

(a) (�,r) ¼ (3�/2,5)

(b) (�,r) ¼ (3�/2,–5)

(c) (�,r) ¼ (–5,3�/2)

(d) ambiguous; we need more information to specify them

10. Suppose a radar unit shows a target that is 10 kilometers away in a

southwesterly direction. It is moving directly away from us. When its

distance has doubled to 20 kilometers, what has happened to the x and

y coordinates of the target in Cartesian coordinates? Assume we are

located at the origin.

(a) They have both increased by a factor equal to the square root of 2

(b) They have both doubled

(c) They have both quadrupled

(d) We need to specify the size of each unit in the Cartesian coordi-

nate system in order to answer this question
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CHAPTER
11

Hyperspace and
Warped Space

Some of the concepts in this chapter are among the most esoteric in all of

mathematics, with far-reaching applications. Hyperspace (space of more than

three dimensions) and warped space can be envisioned even by young chil-

dren. Some people who think they are not mathematically inclined find non-

Euclidean geometry interesting, perhaps because some of it resembles science

fiction.

Cartesian n-Space
As we have seen, the rectangular (or Cartesian) coordinate plane is defined by

two number lines that intersect perpendicularly at their zero points. The lines

form axes, often called the x axis and the y axis. Points in such a system are

identified by ordered pairs of the form (x,y). The point defined by (0,0) is

called the origin. Cartesian three-space is defined by three number lines that

intersect at a single point, corresponding to the zero point of each line, and
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such that each line is perpendicular to the plane determined by the other two

lines. The lines form axes, representing variables such as x, y, and z. Points

are defined by ordered triples of the form (x,y,z). The origin is the point

defined by (0,0,0). What about Cartesian four-space? Or five-space? Or

infinity-space?

IMAGINE THAT!

A system of rectangular coordinates in four dimensions—Cartesian four-

space or 4D space—is defined by four number lines that intersect at a single

point, corresponding to the zero point of each line, and such that each of the

lines is perpendicular to the other three. The lines form axes, representing

variables such as w, x, y, and z. Alternatively, the axes can be labeled x1, x2,

x3, and x4. Points are identified by ordered quadruples of the form (w,x,y,z) or

(x1,x2,x3,x4). The origin is defined by (0,0,0,0). As with the variables or

numbers in ordered pairs and triples, there are no spaces after the commas.

Everything is all scrunched together.

At first you might think, ‘‘Cartesian four-space isn’t difficult to imagine,’’

and draw an illustration such as Fig. 11-1 to illustrate it. But when you start

trying to plot points in this system, you’ll find out there is a problem. You

can’t define points in such a rendition of four-space without ambiguity. There
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are too many possible values of the ordered quadruple (w,x,y,z), and not

enough points in 3D space to accommodate them all. In 3D space as we

know it, four number lines such as those shown in Fig. 11-1 cannot be

oriented so they intersect at a single point with all four lines perpendicular

to the other three.

Imagine the point in a room where the walls meet the floor. Unless the

building has an unusual architecture or is sagging because of earth move-

ment, there are three straight line segments defined by this intersection. One

of the line segments runs up and down between the two walls, and the other

two run horizontally between the two walls and the floor. The line segments

are all mutually perpendicular at the point where they intersect. They are like

the x, y, and z axes in Cartesian three-space. Now think of a fourth line

segment that has one end at the intersection point of the existing three line

segments, and that is perpendicular to them all. Such a line segment can’t

exist in ordinary space! But in four dimensions, or hyperspace, it can. If you

were a 4D creature, you would not be able to understand how 3D creatures

could possibly have trouble envisioning four line segments all coming

together at mutual right angles.

Mathematically, we can work with Cartesian four-space, even though it

cannot be directly visualized. This makes 4D geometry a powerful mathema-

tical tool. As it turns out, the universe we live in requires four or more

dimensions in order to be fully described. Albert Einstein was one of the

first scientists to put forth the idea that the ‘‘fourth dimension’’ exists.

TIME-SPACE

You’ve seen time lines in history books. You’ve seen them in graphs of

various quantities, such as temperature, barometric pressure, or the Dow

Jones industrial average plotted as functions of time. Isaac Newton, one of

the most renowned mathematicians in the history of the Western world,

imagined time as flowing smoothly and unalterably. Time, according to

Newtonian physics, does not depend on space, nor space on time.

Wherever you are, however fast or slow you travel, and no matter what

else you do, the cosmic clock, according to Newtonian (or classical) physics,

keeps ticking at the same absolute rate. In most practical scenarios, this

model works quite well; its imperfections are not evident. It makes the

time line a perfect candidate for a ‘‘fourth perpendicular axis.’’ Nowadays

we know that Newton’s model represents an oversimplification; some folks

might say it is conceptually flawed. But it is a good approximation of reality

under most everyday circumstances.
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Mathematically, we can envision a time line passing through 3D space,

perpendicular to all three spatial axes such as the intersections between two

walls and the floor of a room. The time axis passes through three-space at

some chosen origin point, such as the point where two walls meet the floor in

a room, or the center of the earth, or the center of the sun, or the center of the

Milky Way galaxy.

In four-dimensional (4D) Cartesian time-space (or simply time-space), each

point follows its own time line. Assuming none of the points is in motion with

respect to the origin, all the points follow time lines parallel to all the other

time lines, and they are all constantly perpendicular to three-space.

Dimensionally reduced, this sort of situation can be portrayed as shown in

Fig. 11-2.

POSITION VS MOTION

Things get more interesting when we consider the paths of moving points in

time-space. Suppose, for example, that we choose the center of the sun as the

origin point for a Cartesian three-space coordinate system.
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Imagine that the x and y axes lie in the plane of the earth’s orbit around

the sun. Suppose the positive x axis runs from the sun through the earth’s

position in space on March 21, and thence onward into deep space (roughly

towards the constellation Virgo for you astronomy buffs). Then the negative

x axis runs from the sun through the earth’s position on September 21

(roughly through Pisces), the positive y axis runs from the sun through the

earth’s position on June 21 (roughly toward the constellation Sagittarius),

and the negative y axis runs from the sun through the earth’s position on

December 21 (roughly toward Gemini). The positive z axis runs from the sun

toward the north celestial pole (in the direction of Polaris, the North Star),

and the negative z axis runs from the sun toward the south celestial pole. Let

each division on the coordinate axes represent one-quarter of an astronomical

unit (AU), where 1 AU is defined as the mean distance of the earth from the

sun (about 150,000,000 kilometers). Figure 11-3A shows this coordinate sys-

tem, with the earth on the positive x axis, at a distance of 1 AU. The

coordinates of the earth at this time are (1,0,0) in the xyz-space we have

defined.

Of course, the earth doesn’t remain fixed. It orbits the sun. Let’s take away

the z axis in Fig. 11-3A and replace it with a time axis called t. What will the

earth’s path look like in xyt-space, if we let each increment on the t axis

represent exactly one-quarter of a year? The earth’s path through this dimen-

sionally-reduced time-space is not a straight line, but instead is a helix as

shown in Fig. 11-3B. The earth’s distance from the t axis remains nearly

constant, although it varies a little because the earth’s orbit around the sun

is not a perfect circle. Every quarter of a year, the earth advances 908 around

the helix.

Some Hyper Objects
Now that we’re no longer bound to 3D space, let’s put our newly empowered

imaginations to work. What are 4D objects like? How about five dimensions

(5D) and beyond?

TIME AS DISPLACEMENT

When considering time as a dimension, it is convenient to have some uni-

versal standard that relates time to spatial displacement. How many kilo-

meters are there in one second of time? At first this seems like a ridiculous
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Fig. 11-3. (A) A Cartesian coordinate system for the position of the earth in 3D space. (B) A

dimensionally reduced Cartesian system for rendering the path of the earth

through 4D time-space.



question, akin to asking how many apples there are in a gallon of gasoline.

But think of it like this: time and displacement can be related by speed in a

sensible way, as long as the speed is known and is constant.

Suppose someone tells you, ‘‘Jimsville is an hour away from Joesville.’’

You’ve heard people talk like this, and you understand what they mean. A

certain speed is assumed. How fast must you go to get from Jimsville to

Joesville in an hour? If Jimsville and Joesville are 50 kilometers from each

other, then you must travel 50 kilometers per hour in order to say that they

are an hour apart. If they are only 20 kilometers apart, then you need only

travel 20 kilometers per hour to make the same claim.

Perhaps you remember the following formula from elementary physics:

d ¼ st

where d is the distance in kilometers, s is the speed of an object in kilometers

per hour, and t is the number of hours elapsed. Using this formula, it is

possible to define time in terms of displacement and vice versa.

UNIVERSAL SPEED

Is there any speed that is universal, and that can be used on that basis as an

absolute relating factor between time and displacement? Yes, according to

Albert Einstein’s famous relativity theory. The speed of light in a vacuum,

commonly denoted c, is constant, and it is independent of the point of view of

the observer (as long as the observer is not accelerating at an extreme rate or

in a super-intense gravitational field). This constancy of the speed of light is a

fundamental principle of the theory of special relativity. The value of c is very

close to 299,792 kilometers per second; let’s round it off to 300,000 kilometers

per second. If d is the distance in kilometers and t is the time in seconds, the

following formula is absolute in a certain cosmic sense:

d ¼ ct ¼ 300,000t

According to this model, the moon, which is about 400,000 kilometers

from the earth, is 1.33 second-equivalents distant. The sun is about 8.3 min-

ute-equivalents away. The Milky Way galaxy is 100,000 year-equivalents in

diameter. (Astronomers call these units light-seconds, light-minutes, and light-

years.) We can also say that any two points in time that are separated by one

second, but that occupy the same xyz coordinates in Cartesian three-space,

are separated by 300,000 kilometer-equivalents along the t axis.

At this instant yesterday, if you were in the same location as you are now,

your location in time-space was 24 (hours per day) � 60 (minutes per hour)�
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60 (seconds per minute) � 300,000 (kilometers per second), or 25,920,000,000

kilometer-equivalents away. This mode of thinking takes a bit of getting used

to. But after a while, it starts to make sense, even if it’s a slightly perverse sort

of sense. It is, for example, just about as difficult to jump 25,920,000,000

kilometers in a single bound, as it is to change what happened in your room

at this time yesterday.

The above formula can be modified for smaller distances. If d is the

distance in kilometers and t is the time in milliseconds (units of 0.001 of a

second), then:

d ¼ 300t

This formula also holds for d in meters and t in microseconds (units of

0.000001, or 10�6, second), and for d in millimeters (units of 0.001 meter)

and t in nanoseconds (units of 0.000000001, or 10�9, second). Thus we might

speak of meter-equivalents, millimeter-equivalents, microsecond-equivalents, or

nanosecond-equivalents.

THE FOUR-CUBE

Imagine some of the simple, regular polyhedra in Cartesian four-space. What

are their properties? Think about a four-cube, also known as a tesseract. This

is an object with several identical 3D hyperfaces, all of which are cubes. How

many vertices does a tesseract have? How many edges? How many 2D faces?

How many 3D hyperfaces? How can we envision such a thing to figure out

the answers to these questions?

This is a situation in which time becomes useful as a fourth spatial dimen-

sion. We can’t make a 4D model of a tesseract out of toothpicks to examine

its properties, and few people (if any) can envision such a thing. But we can

imagine a cube that pops into existence for a certain length of time and then

disappears a little later, such that it ‘‘lives’’ for a length of time equivalent to

the length of any of its spatial edges, and does not move during its existence.

Because we have defined an absolute relation between time and displacement,

we can graph a tesseract in which each edge is, say, 300,000 kilometer-equiva-

lents long. It is an ordinary 3D cube that measures 300,000 kilometers along

each edge. It pops into existence at a certain time t0 and then disappears

1 second later, at t0 þ 1. The sides of the cube are each 1 second-equivalent in

length, and the cube ‘‘lives’’ for 300,000 kilometer-equivalents of time.

Figure 11-4A shows a tesseract in dimensionally reduced form. Each divi-

sion along the x and y axes represents 100,000 kilometers (the equivalent of

1/3 second), and each division along the t axis represents 1/3 second (the
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equivalent of 100,000 kilometers). Figure 11-4B is another rendition of this

object, illustrated as two 3D cubes (in perspective) connected by dashed lines

representing the passage of time.

THE RECTANGULAR FOUR-PRISM

A tesseract is a special form of the more general figure, known as a rectan-

gular four-prism or rectangular hyperprism. Such an object is a 3D rectangular

prism that abruptly comes into existence, lasts a certain length of time, dis-

appears all at once, and does not move during its ‘‘lifetime.’’ Figure 11-5
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rendition of a tesseract, portraying time as lateral motion.



shows two examples of rectangular four-prisms in dimensionally reduced

time-space.

Suppose the height, width, depth, and lifetime of a rectangular hyper-

prism, all measured in kilometer-equivalents, are h, w, d, and t, respec-

tively. Then the 4D hypervolume of this object (call it V4D), in quartic

kilometer-equivalents, is given by the product of them all:

V4D ¼ hwdt

The mathematics is the same if we express the height, width, depth, and

lifetime of the object in second-equivalents; the 4D hypervolume is then

equal to the product hwdt in quartic second-equivalents.

IMPOSSIBLE PATHS

Certain paths are impossible in Cartesian 4D time-space as we’ve defined it

here. According to Einstein’s special theory of relativity, nothing can travel

faster than the speed of light. This restricts the directions in which line seg-

ments, lines, and rays can run when denoting objects in motion.

Consider what happens in 4D Cartesian time-space when a light bulb is

switched on. Suppose the bulb is located at the origin, and is surrounded by

millions of kilometers of empty space. When the switch is closed and the bulb

is first illuminated, photons (particles of light) emerge. These initial, or lead-

ing, photons travel outward from the bulb in expanding spherical paths. If we
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dimensionally reduce this situation and graph it, we get an expanding circle

centered on the time axis, which, as time passes, generates a cone as shown in

Fig. 11-6. In true 4D space this is a hypercone or four-cone. The surface of the

four-cone is 3D: two spatial dimensions and one time dimension.

Imagine an object that starts out at the location of the light bulb, and then

moves away from the bulb as soon as the bulb is switched on. This object

must follow a path entirely within the light cone defined by the initial photons

from the bulb. Figure 11-6 shows one plausible path and one implausible

path.

GENERAL TIME-SPACE HYPERVOLUME

Suppose there is an object—any object—in 3D space. Let its spatial volume

in cubic kilometer-equivalents be equal to V3D. Suppose that such an object

pops into existence, lasts a certain length of time t in kilometer-equivalents,

and then disappears. Suppose that this object does not move with respect to
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the light cone represent speeds greater than c (the speed of light) and are therefore

implausible.



you, the observer, during its ‘‘lifetime.’’ Then its 4D time-space hypervolume

V4D is given by this formula:

V4D ¼ V3Dt

That is to say, the 4D time-space hypervolume of any object is equal to its

spatial volume multiplied by its lifetime, provided the time and displacement

are expressed in equivalent units, and as long as there is no motion involved.

If an object moves, then a correction factor must be included in the above

formula. This correction factor does not affect things very much as long as

the speed of the object, call it s, is small compared with the speed of light c.

But if s is considerable, the above formula becomes:

V4D ¼ V3Dt ð1� s2=c2Þ1=2

The correction factor, (1 – s2/c2)1/2, is close to 1 when s is a small fraction of c,

and approaches 0 as s approaches c. This correction factor derives from the

special theory of relativity. (It can be proven with the help of the Pythagorean

theorem. The proof is not complicated, but getting into it here would take us

off the subject. Let’s just say that objects are ‘‘spatially squashed’’ at extreme

speeds, and leave it at that.)

In this context, speed s is always relative. It depends on the point of view

from which it is observed, witnessed, or measured. For speed to have mean-

ing, we must always add the qualifying phrase ‘‘relative to a certain obser-

ver.’’ In these examples, we envision motion as taking place relative to the

origin of a 3D Cartesian system, which translates into lines, line segments, or

rays pitched at various angles with respect to the time axis in a 4D time-space

Cartesian system.

If you’re still confused about kilometer-equivalents and second-equiva-

lents, you can refer to Table 11-1 for reference. Keep in mind that time

and displacement are related according to the speed of light:

d ¼ ct

where d is the displacement (in linear units), t is the time (in time units), and c

is the speed of light in linear units per unit time. Using this conversion

formula, you can convert any displacement unit to an equivalent time inter-

val, and any time unit to an equivalent displacement.

PROBLEM 11-1

How many second-equivalents are there in 1 kilometer?

SOLUTION 11-1

We know that the speed of light is 300,000 kilometers per second, so it takes

1/300,000 of a second for light to travel 1 kilometer. That is approximately
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0.00000333 seconds or 3.33 microseconds. One kilometer is 0.00000333

second-equivalents, or 3.33 microsecond-equivalents.

Beyond Four Dimensions
There is no limit to the number of dimensions that can be defined using the

Cartesian scheme. There can be any positive whole number of dimensions.

Time can be (but does not have to be) one of them.
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Table 11-1. Some displacement and time equivalents. Displacement equivalents are

accurate to three significant figures.

DISPLACEMENT EQUIVALENT TIME EQUIVALENT

9,460,000,000,000 kilometers 1 year

25,900,000,000 kilometers 1 solar day

1,079,000,000 kilometers 1 hour

150,000,000 kilometers

(1 astronomical unit)

500 seconds

(8 minutes, 20 seconds)

18,000,000 kilometers 1 minute

300,000 kilometers 1 second

300 kilometers 0.001 second (1 millisecond)

1 kilometer 0.00000333 second (3.33 microseconds)

300 meters 0.000001 second (1 microsecond)

1 meter 0.00000000333 second

(3.33 nanoseconds)

300 millimeters 0.000000001 second (1 nanosecond)

1 millimeter 0.00000000000333 second

(3.33 picoseconds)



CARTESIAN N-SPACE

A system of rectangular coordinates in five dimensions defines Cartesian five-

space. There are five number lines, all of which intersect at a point corre-

sponding to the zero point of each line, and such that each of the lines is

perpendicular to the other four. The resulting axes can be called v, w, x, y,

and z. Alternatively they can be called x1, x2, x3, x4, and x5. Points are

identified by ordered quintuples such as (v,w,x,y,z) or (x1,x2,x3,x4,x5). The

origin is defined by (0,0,0,0,0).

A system of rectangular coordinates in Cartesian n-space (where n is any

positive integer) consists of n number lines, all of which intersect at their zero

points, such that each of the lines is perpendicular to all the others. The axes

can be named x1,x2,x3, ..., and so on up to xn. Points in Cartesian n-space can

be uniquely defined by ordered n-tuples of the form (x1,x2,x3,...,xn).

Imagine a tesseract or a rectangular four-prism that pops into existence at

a certain time, does not move, and then disappears some time later. This

object is a rectangular five-prism. If x1, x2, x3, and x4 represent four spatial

dimensions (in kilometer-equivalents or second-equivalents) of a rectangular

four-prism in Cartesian four-space, and if t represents its ‘‘lifetime’’ in the

same units, then the 5D hypervolume (call it V5D) is equal to the product of

them all:

V5D ¼ x1x2x3x4t

This holds only as long as there is no motion. If there is motion, then the

relativistic correction factor must be included.

DIMENSIONAL CHAOS

There is nothing to stop us from dreaming up a Cartesian 25-space in which

the coordinates of the points are ordered 25-tuples (x1,x2,x3,...,x25), none of

which are time. Alternatively, such a hyperspace might have 24 spatial

dimensions and one time dimension. Then the coordinates of a point

would be defined by the ordered 25-tuple (x1,x2,x3,...,x24,t).

Some cosmologists—scientists who explore the origin, structure, and evo-

lution of the cosmos—have suggested that our universe was ‘‘born’’ with 11

dimensions. According to this hypothesis, not all of these dimensions can be

represented by Cartesian coordinates. Some of the axes are ‘‘curled up’’ or

compactified as if wrapped around tiny bubbles. Some mathematicians have

played with objects that seem to be 2D in some ways and 3D in other ways.

How many dimensions are there in the complicated surface of a theoretical
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foam, assuming each individual bubble is a sphere of arbitrarily tiny size and

with an infinitely thin 2D surface? Two dimensions? In a way. Three? In a

way. How about two and a half ?

The examples we have looked at here are among the simplest. Imagine the

possible ways in which a 4D parallelepiped might exist, or a 4D sphere. How

about a 5D sphere, or a 7D ellipsoid ? Let your mind roam free. But don’t

think about this stuff while driving, operating heavy equipment, cycling, or

walking across a street in traffic.

DISTANCE FORMULAS

In n-dimensional Cartesian space, the shortest distance between any two

points can be found by means of a formula similar to the distance formulas

for 2D and 3D space. The distance thus calculated represents the length of a

straight line segment connecting the two points.

Suppose there are two points in Cartesian n-space, defined as follows:

P ¼ ðx1,x2,x3; . . . ;xnÞ

Q ¼ ðy1,y2,y3; . . . ynÞ

The length of the shortest possible path between points P and Q, written

|PQ|, is equal to either of the following:

jPQj ¼ ½ðy1 � x1Þ
2 þ ðy2 � x2Þ

2 þ ðy3 � x3Þ
2 þ � � � þ ðyn � xnÞ

2�1=2

jPQj ¼ ½ðx1 � y1Þ
2 þ ðx2 � y2Þ

2 þ ðx3 � y3Þ
2 þ � � � þ ðxn � ynÞ

2�1=2

PROBLEM 11-2

Find the distance |PQ| between the points P ¼ (4,�6,�3,0) and Q ¼

(�3,5,0,8) in Cartesian four-space. Assume the coordinate values to be

exact; express the answer to two decimal places.

SOLUTION 11-2

Assign the numbers in these ordered quadruples the following values:

x1 ¼ 4

x2 ¼ �6

x3 ¼ �3

x4 ¼ 0

y1 ¼ �3

y2 ¼ 5

y3 ¼ 0

y4 ¼ 8

Then plug these values into either of the above two distance formulas. Let’s

use the first formula:
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jPQj ¼ fð�3� 4Þ2 þ ½5� ð�6Þ�2 þ ½0� ð�3Þ�2 þ ð8� 0Þ2g1=2

¼ ½ð�7Þ2 þ 112 þ 32 þ 82�1=2

¼ ð49þ 121þ 9þ 64Þ1=2

¼ 2431=2

¼ 15:59

PROBLEM 11-3

How many vertices are there in a tesseract?

SOLUTION 11-3

Imagine a tesseract as a 3D cube that lasts for a length of time equivalent to

the linear span of each edge. When we think of a tesseract this way, and if we

think of time as flowing upward from the past toward the future, the tesseract

has a ‘‘bottom’’ that represents the instant it is ‘‘born,’’ and a ‘‘top’’ that

represents the instant it ‘‘dies.’’ Both the ‘‘bottom’’ and the ‘‘top’’ of the

tesseract, thus defined, are cubes. We know that a cube has eight vertices.

In the tesseract, there are twice this many vertices. The eight vertices of the

‘‘bottom’’ cube and the eight vertices of the ‘‘top’’ cube are connected with

line segments that run through time.

Another way to envision this is to portray a tesseract as a cube-within-a-

cube (Fig. 11-7). This is one of the most popular ways that illustrators try to

draw this strange 4D figure. It isn’t a true picture, of course, because the

‘‘inner’’ and the ‘‘outer’’ cubes in a real tesseract are the same size. But this

rendition demonstrates that there are 16 vertices in the tesseract. Look at Fig.

11-7 and count them!
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PROBLEM 11-4

What is the 4D hypervolume, V4D, of a rectangular four-prism consisting of a

3D cube measuring exactly 1 meter on each edge, that ‘‘lives’’ for exactly 1

second, and that does not move? Express the answer in quartic kilometer-

equivalents and in quartic microsecond-equivalents.

SOLUTION 11-4

We must find the 4D hypervolume of a 3D cube measuring 1 � 1 � 1 meter

(whose 3D volume is therefore 1 cubic meter) that ‘‘lives’’ for 1 second of

time.

To solve the first half of this problem, note that light travels 300,000

kilometers in one second, so the four-prism ‘‘lives’’ for 300,000, or 105, kilo-

meter-equivalents. That can be considered its length. Its cross section is a

cube measuring 1 meter, or 0.001 kilometer, on each edge, so the 3D volume

of this cube is 0.001 � 0.001 � 0.001 ¼ 0.000000001 ¼ 10–9 cubic kilometers.

Therefore, the 4D hypervolume (V4D) of the rectangular four-prism in

quartic kilometer-equivalents is:

V4D ¼ 300,000� 0:000000001

¼ 3� 105 � 10�9

¼ 3� 10�4

¼ 0:0003 quartic kilometer-equivalents

To solve the second half of the problem, note that in 1 microsecond, light

travels 300 meters, so it takes light 1/300 of a microsecond to travel 1 meter.

The 3D volume of the cube in cubic microsecond-equivalents is therefore

(1/300)3 ¼ 1/27,000,000 ¼ 0.00000003704 ¼ 3.704 � 10�8. The cube lives for

1 second, which is 1,000,000, or 106, microseconds. Therefore, the 4D hyper-

volume V4D of the rectangular four-prism in quartic microsecond-equivalents

is:

V4D ¼ 0:00000003704� 1,000,000

¼ 3:704� 10�8 � 106

¼ 3:704� 10�2

¼ 0:03704 quartic microsecond-equivalents

PROBLEM 11-5

Suppose the four-prism described in the previous problem moves, during its

brief lifetime, at a speed of 270,000 kilometers per second relative to an

observer. What is its 4D hypervolume (V4D) as seen by that observer?
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Express the answer in quartic kilometer-equivalents and in quartic micro-

second-equivalents.

SOLUTION 11-5

The object moves at 270,000/300,000, or 9/10, of the speed of light relative to

the observer. If we let s represent its speed, then s/c ¼ 0.9, and s2/c2 ¼ 0.81.

We must multiply the answers to the previous problem by the following

factor:

ð1� s2=c2Þ1=2

¼ ð1� 0:81Þ1=2

¼ 0:191=2

¼ 0:436

This gives us:

V4D ¼ 0:0003� 0:436 ¼ 0:0001308 quartic kilometer-equivalents

V4D ¼ 0:03704� 0:436 ¼ 0:01615 quartic microsecond-equivalents

Parallel Principle Revisited
Conventional geometry is based on five axioms, also called postulates, that

were first stated by a Greek mathematician named Euclid who lived in the

3rd century B.C. Everything we have done in this book so far—even the

theoretical problems involving four dimensions—has operated according to

Euclid’s five axioms. We have been dealing exclusively with Euclidean

geometry. That is about to change.

EUCLID’S AXIOMS

Let’s state explicitly the things Euclid believed were self-evident truths.

Euclid’s original wording has been changed slightly, in order to make the

passages sound more contemporary. Examples of each postulate are shown

in Fig. 11-8.

� Any two points P and Q can be connected by a straight line segment

(Fig. 11-8A)
� Any straight line segment can be extended indefinitely and contin-

uously to form a straight line (Fig. 11-8B)
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� Given any point P, a circle can be defined that has that point as its

center and that has a specific radius r (Fig. 11-8C)
� All right angles are congruent; that is, they have equal measure (Fig.

11-8D)
� Suppose two lines L and M lie in the same plane and both lines are

crossed by a transversal line N. Suppose the measures of the adjacent

interior angles x and y sum up to less than 1808 (� rad). Then lines L

andM intersect on the same side of line N as angles x and y are defined

(Fig. 11-8E)

THE PARALLEL POSTULATE

The last axiom stated above is known as Euclid’s fifth postulate. It is logically

equivalent to the following statement that has become known as the parallel

postulate:
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� Let L be a straight line, and let P be some point not on L. Then there

exists one and only one straight line M, in the plane defined by line L

and point P, that passes through point P and that is parallel to line L

This axiom—and in particular its truth or untruth—has received enormous

attention. If the parallel postulate is denied, the resulting system of geometry

still works. People might find it strange, but it is logically sound! Geometry

doesn’t need the parallel postulate. There are two ways in which the parallel

postulate can be denied:

� There is no line M through point P that is parallel to line L
� There are two or more lines M1, M2, M3, . . . through point P that are

parallel to line L

When either of these postulates replaces the parallel postulate, we are dealing

with a system of non-Euclidean geometry. In the 2D case, it is a non-

Euclidean surface. Visually, such a surface looks warped or curved. There

are, as you can imagine, infinitely many ways in which a surface can be non-

Euclidean.

GEODESICS

In a non-Euclidean universe, the concept of ‘‘straightness’’ must be modified.

Instead of thinking about ‘‘straight lines’’ or ‘‘straight line segments,’’ we

must think about geodesics.

Suppose there are two points P and Q on a non-Euclidean surface. The

geodesic segment or geodesic arc connecting P and Q is the set of points

representing the shortest possible path between P and Q that lies on the

surface. If the geodesic arc is extended indefinitely in either direction on

the surface beyond P and Q, the result is a geodesic.

The easiest way to imagine a geodesic arc is to think about the path that a

thin ray of light would travel between two points, if confined to a certain 2D

universe. The extended geodesic is the path that the ray would take if allowed

to travel over the surface forever without striking any obstructions. On the

surface of the earth, a geodesic arc is the path that an airline pilot takes when

flying from one place to another far away, such as from Moscow, Russia to

Tokyo, Japan (neglecting takeoff and landing patterns, and any diversions

necessary to avoid storms or hostile air space).

When we re-state the parallel postulate as it applies to both Euclidean and

non-Euclidean surfaces, we must replace the term ‘‘line’’ with ‘‘geodesic.’’

Here is the parallel postulate given above, modified to cover all contingen-

cies.
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MODIFIED PARALLEL POSTULATE

Two geodesics G and H on a given surface are parallel if and only if they do

not intersect at any point. Let G be a geodesic, let X be a surface, and let P be

some point not on geodesic G. Then one of the following three situations

holds true:

� There is exactly one geodesic H on the surface X through point P that

is parallel to geodesic G
� There is no geodesicH on the surface X through point P that is parallel

to geodesic G
� There are two or more geodesics H1, H2, H3, . . . on the surface X

through point P that are parallel to geodesic G

NO PARALLEL GEODESICS

Now imagine a universe in which there is no such thing as a pair of parallel

geodesics. In this universe, if two geodesics that ‘‘look’’ parallel on a local

scale are extended far enough, they eventually intersect. This type of non-

Euclidean geometry is called elliptic geometry. It is also known as Riemannian

geometry, named after Georg Riemann, a German mathematician who lived

from 1826 until 1866 and who was one of the first mathematicians to recog-

nize that geometry doesn’t have to be Euclidean.

A universe in which there are no pairs of parallel geodesics is said to have

positive curvature. A surface with positive curvature is warped in the same

sense, no matter how the axis is oriented. Examples of 2D universes with

positive curvature are the surfaces of spheres, oblate (flattened) spheres, and

ellipsoids.

Figure 11-9 is an illustration of a sphere with a triangle and a quadrilateral

on the surface. The sides of polygons in non-Euclidean geometry are always

geodesic arcs, just as, in Euclidean geometry, they are always straight line

segments. The interior angles of the triangle and the quadrilateral add up to

more than 1808 and 3608, respectively. The measures of the interior angles of

an n-sided polygon on a Riemannian surface always sum up to more than the

sum of the measures of the interior angles of an n-sided polygon on a flat

plane.

On the surface of the earth, all the lines of longitude, called meridians,

are geodesics. So is the equator. But latitude circles other than the equator,

called parallels, are not geodesics. For example, the equator and the parallel

representing 108 north latitude do not intersect, but they are not both

geodesics.
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MORE THAN ONE PARALLEL GEODESIC

Now consider a surface in which there can be two or more geodesics through

a point, parallel to a given geodesic. This form of non-Euclidean geometry is

known as hyperbolic geometry. It is also called Lobachevskian geometry,

named after Nikolai Lobachevsky, a Russian mathematician who lived

from 1793 until 1856.

A Lobachevskian universe is said to have negative curvature. A surface

with negative curvature is warped in different senses, depending on how the

axis is oriented. Examples of 2D universes with negative curvature are

extended saddle-shaped and funnel-shaped surfaces.

Figure 11-10 is an illustration of a negatively curved surface containing a

triangle and a quadrilateral. On this surface, the interior angles of the triangle

and the quadrilateral add up to less than 1808 and 3608, respectively. The

measures of the interior angles of a polygon on a Lobachevskian surface

always sum up to less than the sum of the measures of the interior angles

of a similar polygon on a flat plane.

Curved Space
The observable universe seems, upon casual observation, to be Euclidean. If

you use lasers to ‘‘construct’’ polygons and then measure their interior angles
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with precision lab equipment, you’ll find that the angle measures add up

according to the rules of Euclidean geometry. The conventional formulas

for the volumes of solids such as the pyramid, cube, and sphere hold per-

fectly, as far as anyone can tell. Imagine a 3D space in which these rules do

not hold! This is called curved 3D space, warped 3D space, or non-Euclidean

3D space. It is the 3D analog of a non-Euclidean 2D surface.

GRAVITY WARPS SPACE

There is evidence that the 3D space in which we live is not perfectly

Euclidean. Gravitational fields produce effects on light beams that suggest

a Lobachevskian sort of warping—a negative curvature—of 3D space. Under

ordinary circumstances this warping is so subtle that we don’t notice it, but it

has been detected by astronomers using sensitive equipment, and in excep-

tional cases it can be directly observed.

The behavior of light from distant stars has been carefully observed as the

rays pass close to the sun during solar eclipses. The idea is to find out whether

or not the sun’s gravitational field, which is strong near the surface, bends

light rays in the way that we should expect if space has negative curvature.

Early in the 20th century, Albert Einstein predicted that such bending could
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be observed and measured, and he calculated the expected angular changes

that should be seen in the positions of distant stars as the sun passes almost

directly in front of them. Repeated observations have shown Einstein to be

correct, not only as to the existence of the spatial curvature, but also to its

extent as a function of distance from the sun. As the distance from the sun

increases, the spatial warping decreases. The greatest amount of light-beam

bending occurs when the photons graze the sun’s surface.

In another experiment, the light from a distant, brilliant object called a

quasar is observed as it passes close to a compact, dark mass that astrono-

mers think is an intense source of gravitation known as a black hole. The

light-bending is much greater near this type of object than is the case near the

sun. The rays are bent enough so that multiple images of the quasar appear,

with the black hole at the center. One peculiar example, in which four images

of the quasar appear, has been called a gravitational light cross.

Any source of gravitation, no matter how strong or weak, is attended by

curvature of the 3D space in its vicinity, such that light rays follow geodesic

paths that are not straight lines. Which causes which? It is a chicken-and-egg

mystery. Does spatial curvature cause gravitation, or do gravitational fields

cause warping of space? Are both effects the result of some other phenom-

enon that has yet to be defined and understood? Such questions are of

interest to astronomers and cosmologists. For the mathematician, it is

enough to know that the curvature exists and can be defined. It’s more

than a product of someone’s imagination.

THE ‘‘HYPERFUNNEL’’

The curvature of space in the presence of a strong gravitational field has been

likened to a funnel shape (Fig. 11-11), except that the surface of the funnel is

3D rather than 2D, and the entire object is 4D rather than 3D. When the

fourth dimension is defined as time, the mathematical result is that time flows

more slowly in a gravitational field than it does in interstellar or intergalactic

space. This has been experimentally observed.

The shortest distance in 3D space between any two points near a gravita-

tional source is a geodesic arc, not a straight line segment. Curvature of space

caused by gravitational fields always increases the distances between points in

the vicinity of the source of the gravitation. The shortest path between any

two points in non-Euclidean space is always greater than the distance would

be if the space between the points were Euclidean. As the intensity of the

gravitation increases, the extent of the spatial curvature also increases. There

is some effect, theoretically, even when gravity is weak.
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Any particle that has mass is surrounded by its own gravitational field, so

the earth has its own shallow ‘‘gravitational hyperfunnel.’’ So does the moon;

so do asteroids; so do meteoroids and space dust particles. What about the

shape of space on an intergalactic scale? Does the entire universe, containing

all the stars, galaxies, quasars, and other stuff that exists, have a geometric

shape? If so, is it Riemannian, Lobachevskian, or flat?

Quiz
Refer to the text in this chapter if necessary. A good score is eight correct.

Answers are in the back of the book.

1. Suppose there are two points P and Q in deep space, separated by

exactly 1 second-equivalent (or 1 light-second). At point P there is a

space traveler with a powerful pulsed laser. At point Q there is a

mirror oriented so the space traveler can shine the laser at it and see

the reflected pulse exactly 2 seconds later. Suppose an extremely dense,

dark neutron star passes almost (but not quite) between points P and

Q, producing a pronounced negative curvature of space in the region.

If the space traveler shines the laser toward point Q while the neutron

star is near the line of sight, the return pulse will

(a) be seen after exactly 2 seconds

(b) be seen after a little more than 2 seconds

(c) be seen after a little less than 2 seconds

(d) never be seen
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2. If there are no pairs of parallel geodesics on a surface, that surface is

(a) Lobachevskian

(b) Euclidean

(c) four-dimensional

(d) Riemannian

3. Einstein’s ‘‘four-sphere’’ cosmic model describes a universe with

(a) finite volume and finite radius

(b) finite volume and infinite radius

(c) infinite volume and finite radius

(d) infinite volume and infinite radius

4. Considered with respect to the speed of light, one second-equivalent

represents a distance of about

(a) 300,000 meters

(b) 300,000,000 meters

(c) 300,000,000,000 meters

(d) 300,000,000,000,000 meters

5. If the universe is portrayed as Cartesian four-space with three spatial

dimensions and one time dimension, then the 4D path of a stationary

point that ‘‘lasts forever’’ is

(a) a straight line

(b) a circle

(c) a helix

(d) a spiral

6. How many line-segment edges does a rectangular four-prism have?

(a) 16

(b) 24

(c) 32

(d) 48

7. The distance between (0,0,0,0,0,0) and (1,1,1,1,1,1) in Cartesian six-

space is

(a) equal to 1

(b) equal to the square root of 2

(c) equal to the sixth root of 2

(d) equal to the square root of 6

8. Suppose a light bulb is switched on, and the photons travel outward in

ever-expanding spherical paths, as depicted in the dimensionally

reduced drawing of Fig. 11-6. In this graph, the flare angle of the
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cone (the angle between the positive t axis and any ray extending from

the origin outward along the cone’s surface) is

(a) 308

(b) 458

(c) 908

(d) impossible to determine without more information

9. The 4D hypervolume of a rectangular four-prism consisting of a cube

measuring 200,000 kilometers on each edge, and whose life is repre-

sented by a single point in time, is equal to

(a) zero

(b) 2/3 of a second-equivalent

(c) 4/9 of a second-equivalent

(d) 8/27 of a second-equivalent

10. Suppose P and Q are points on a surface that is positively curved. The

length of the line segment PQ in 3D space

(a) is the same as the length of the geodesic PQ

(b) is greater than the length of the geodesic PQ

(c) is less than the length of the geodesic PQ

(d) might be equal to, less than, or greater than the length of the

geodesic PQ, depending on the locations of P and Q
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Test: Part Two

Do not refer to the text when taking this test. You may draw diagrams or use

a calculator if necessary. A good score is at least 38 correct. Answers are in

the back of the book. It’s best to have a friend check your score the first time,

so you won’t memorize the answers if you want to take the test again.

1. Two straight lines that are not parallel, and that do not lie in the same

plane, are called

(a) orthogonal

(b) perpendicular

(c) non-Euclidean

(d) normal

(e) skew

2. The equation of the unit circle in polar coordinates is

(a) r ¼ �

(b) r ¼ 1

(c) r ¼ 0

(d) � ¼ 1

(e) � ¼ 0

3. The tangent function y ¼ tan x is defined for all the following values

of x except:
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(a) x ¼ 08

(b) x ¼ 458

(c) x ¼ 908

(d) x ¼ 1358

(e) x ¼ 1808

4. Suppose a vector a begins at the point (2,3) and ends at the point

(�5,6). In standard form, this vector is

(a) a ¼ (�3,9)

(b) a ¼ (7,�3)

(c) a ¼ (�10,18)

(d) a ¼ (0,0)

(e) none of the above

5. Refer to Fig. Test 2-1. Suppose that all the flat faces of the 3D figure

are parallelograms, but none of the angles x, y, and z are right angles.

If this is the case, we can nevertheless truthfully say that the figure is

(a) a parallelogram

(b) a rhombus

(c) a rectangular prism

(d) a parallelepiped

(e) none of the above

6. Refer to Fig. Test 2-1. Imagine that the lengths of the edges s1, s2, and

s3 remain constant. Suppose the angles x, y, and z are all right angles

at first, but they uniformly and gradually decrease as the 3D object is

‘‘squashed down.’’ What happens to the volume of the 3D object?

(a) It increases

(b) It remains constant

Fig. Test 2-1. Illustration for Questions 5, 6, and 7 in the test for Part Two.
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(c) It decreases

(d) Nothing, because the scenario described is impossible

(e) We can’t say without more information

7. Refer to Fig. Test 2-1. The overall surface area, A, of the 3D object

shown is given by the following equation:

A ¼ 2s1s2 sin xþ 2s1s3 sin yþ 2s2s3 sin z

where sin x represents the sine of angle x, sin y represents the sine

of angle y, and sin z represents the sine of angle z. Suppose we start

with a situation where x, y, and z are all right angles. Then, without

changing the lengths s1, s2, or s3, we ‘‘squash’’ the object so all three

angles x, y, and z measure 308. What happens to the overall surface

area of the object?

(a) It does not change

(b) It decreases by a factor of 2

(c) It decreases by a factor of 4

(d) It decreases by a factor of 8

(e) We can’t say without more information

8. The graph of 4r ¼ 3� in the mathematician’s polar coordinate system

looks like

(a) a spiral

(b) a cardioid

(c) a circle

(d) a three-leafed rose

(e) a four-leafed rose

9. The distance between (0,0,0,0,0) and (1,1,1,1,1) in Cartesian five-space

is

(a) equal to 1

(b) equal to the square root of 2

(c) equal to the fifth root of 2

(d) equal to the square root of 5

(e) equal to the fifth root of 5

10. In order to uniquely define a point in 4D time-space

(a) four coordinates in time must be identified

(b) four coordinates in space must be identified

(c) three coordinates in space and one coordinate in time must be

specified
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(d) three coordinates in time and one coordinate in space must be

specified

(e) two coordinates in time and two coordinates in space must be

specified

11. Suppose two non-perpendicular planes intersect. The angle at which

the planes intersect can be defined in two ways: as an acute angle u or

as an obtuse angle v. If u and v are expressed in radians, then

(a) u þ v ¼ 1

(b) u þ v ¼ �/2

(c) u þ v ¼ �

(d) u þ v ¼ 2�

(e) none of the above

12. Refer to Fig. Test 2-2. The coefficients a, b, and c of vector m ¼ (a,b,c),

which is normal (perpendicular) to planeW, are sufficient to uniquely

determine

(a) the equation of plane W

(b) the orientation of plane W

(c) whether or not plane W passes through the origin

(d) all of the above (a), (b), and (c)

(e) none of the above (a), (b), or (c)

Fig. Test 2-2. Illustration for Questions 12, 13, and 14 in the test for Part Two.
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13. Refer to Fig. Test 2-2. Suppose we know the coefficients a, b, and c of

vector m ¼ (a,b,c), which is normal to planeW. Suppose we also know

the coordinates (x0,y0,z0) of point P. This information is sufficient to

uniquely determine

(a) the equation of plane W

(b) the orientation of plane W

(c) whether or not plane W passes through the origin

(d) all of the above (a), (b), and (c)

(e) none of the above (a), (b), or (c)

14. Refer to Fig. Test 2-2. Suppose we know the coefficients a, b, and c of

vector m ¼ (a,b,c), which is normal to planeW. Suppose we also know

the coordinates (x0,y0,z0) of point P. Now, imagine that we multiply

all the values a, b, and c by �1, obtaining the vector –m ¼ (–a,–b,–c).

Let the resulting plane, which is determined by the point P and which

is normal to the vector �m, be called plane X. Which of the following

is true?

(a) Planes X and W are perpendicular

(b) Planes X and W are distinct, but parallel

(c) Planes X and W coincide

(d) Plane X cannot be defined because there are infinitely many

possibilities

(e) Plane X cannot exist

15. Suppose two planes intersect at an angle of 1408. This is the less

common of two ways the intersection angle can be expressed. The

more common value for the intersection angle of these two planes is

(a) 408

(b) –408

(c) –1408

(d) 2208

(e) none of the above

16. The dot product of the vectors a ¼ (2,4,–1) and b ¼ (–5,1,2) in

Cartesian xyz-space is equal to

(a) the scalar quantity –8

(b) the vector (–10,4,–2)

(c) the scalar quantity 80

(d) a vector perpendicular to the plane containing a and b

(e) a vector in the plane containing a and b

17. Suppose the spherical coordinates of a certain object in the sky are

specified as (�,�,r), where � is its elevation with respect to the plane of
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the horizon, � is its azimuth, and r is its radius (distance from us).

Imagine that the object flies horizontally away from us, traveling at

the same heading as its azimuth as we see it (so � remains constant).

What happens to � and r?

(a) The value of � approaches 0, while r increases without limit

(b) The values of � and r both approach 0

(c) The value of � increases without limit, while r approaches 0

(d) The values of � and r both increase without limit

(e) None of the above

18. Suppose the spherical coordinates of a certain object in the sky are

specified as (�,�,r), where � is its elevation with respect to the plane of

the horizon, � is its azimuth, and r is its radius (distance from us).

Imagine that the object flies straight away from us. What happens to

� and r?

(a) The value of � approaches 0, while r increases without limit

(b) The values of � and r both approach 0

(c) The value of � increases without limit, while r approaches 0

(d) The values of � and r both increase without limit

(e) None of the above

19. Considered with respect to the speed of light, one minute-equivalent

represents a distance of about

(a) 18,000 kilometers

(b) 180,000 kilometers

(c) 1,800,000 kilometers

(d) 18,000,000 kilometers

(e) 180,000,000 kilometers

20. The faces (including the base) of a rectangular pyramid are all

(a) triangles

(b) squares

(c) rectangles

(d) rhombuses

(e) plane polygons

21. Suppose there are two planes X and Y such that, for all lines L passing

through both X and Y, the acute angle between L and X has the same

measure as the acute angle between L and Y. From this information, it

is reasonable to suppose that

(a) planes X and Y are perpendicular

(b) planes X and Y are non-Euclidean

(c) planes X and Y are parallel
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(d) there are no lines parallel to either plane X or plane Y

(e) there are no lines perpendicular to either plane X or plane Y

22. How many straight line-segment edges does a tesseract (or four-cube)

have?

(a) 16

(b) 24

(c) 32

(d) 48

(e) 96

23. What is the 4D hypervolume of a tesseract (or four-cube) measuring 1

meter-equivalent on each edge? (Call the standard unit of 4D hyper-

volume a quartic meter-equivalent.)

(a) 1 quartic meter-equivalent

(b) 4 quartic meter-equivalents

(c) 16 quartic meter-equivalents

(d) 64 quartic meter-equivalents

(e) It is impossible to say without more information

24. What is the 5D hypervolume of a five-cube measuring 1 meter-equiva-

lent on each edge? (Call the standard unit of 5D hypervolume a quintic

meter-equivalent.)

(a) 1 quintic meter-equivalent

(b) 5 quintic meter-equivalents

(c) 25 quintic meter-equivalents

(d) 125 quintic meter-equivalents

(e) It is impossible to say without more information

25. Given a slant circular cone whose base has radius r and whose height,

expressed between the apex and the plane containing the base, is h, the

volume V is given by the following formula:

V ¼ �r2h=3

Let K1 and K2 be slant circular cones. Suppose the radius of K2 is twice

as great as the radius of K1, but the height of K2 is only half the height

of K1. Which of the following statements is true?

(a) The volume of K2 is four times the volume of K1

(b) The volume of K2 is twice the volume of K1

(c) The volume of K1 is four times the volume of K2

(d) The volume of K1 is twice the volume of K2

(e) The volumes of K1 and K2 are the same
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26. Refer to Fig. Test 2-3. If the rectangular coordinates x0 and y0 of point

P are both doubled, what happens to the value of r0?

(a) It increases by a factor of the square root of 2

(b) It doubles

(c) It quadruples

(d) It does not change

(e) This question cannot be answered without more information

27. Refer to Fig. Test 2-3. If the rectangular coordinates x0 and y0 of point

P are both doubled, what happens to the value of �0?

(a) It increases by a factor of the square root of 2

(b) It doubles

(c) It is multiplied by –1

(d) It does not change

(e) It increases by � rad

28. Refer to Fig. Test 2-3. If the rectangular coordinates x0 and y0 of point

P are both multiplied by –1, what happens to the value of �0?

(a) It increases by a factor of the square root of 2

(b) It doubles

(c) It is multiplied by –1

Fig. Test 2-3. Illustration for Questions 26, 27, and 28 in the test for Part Two.
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(d) It does not change

(e) It increases by � rad

29. What is the volume of a rectangular prism that is 200 millimeters high,

700 millimeters wide, and 500 millimeters deep?

(a) 1.4 square meters

(b) 1.4 cubic meters

(c) 0.07 square meters

(d) 0.07 cubic meters

(e) None of the above

30. A donut-shaped geometric solid is called a

(a) right circular cylinder

(b) frustum of a cylinder

(c) bent circular cylinder

(d) truncated ellipsoid

(e) none of the above

31. A single, specific line can be contained within

(a) one and only one plane

(b) parallel planes

(c) at most two planes

(d) at most three planes

(e) infinitely many planes

32. The entire polar coordinate plane, showing all possible points with

angular values from 08 to 3608 and radial values corresponding to any

non-negative real number, can be portrayed within a finite circular

region by

(a) using a logarithmic angular scale

(b) using a logarithmic radial scale

(c) geometric compression of the angular scale

(d) geometric compression of the radial scale

(e) no known means

33. The height, or altitude, in cylindrical coordinates is expressed

(a) in linear units, perpendicular to the plane in which the direction

angle is expressed

(b) in linear units, in the plane in which the direction angle is

expressed

(c) in linear units, in a direction parallel to the direction in which the

radius is expressed.

(d) in degrees, as an angle relative to the horizon

(e) in radians, as an angle relative to the horizon
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34. The direction angle in the mathematician’s polar coordinate system is

expressed

(a) in a clockwise sense

(b) in a counterclockwise sense

(c) in either sense

(d) only in radians

(e) only in degrees

35. An example of a negatively curved 2D surface is

(a) the surface of a sphere

(b) the surface of an ellipsoid

(c) the surface of a tesseract

(d) the surface of a four-sphere

(e) none of the above

36. The product of the vectors a ¼ (–3,0,4) and b ¼ (2,1,–5) in Cartesian

xyz-space is equal to

(a) the scalar quantity –26

(b) the scalar quantity –1

(c) the vector (–6,0,–20)

(d) the vector (–1,1,–1)

(e) this problem cannot be solved without more information

37. The sum of the vectors a ¼ (–3,0,4) and b ¼ (2,1,–5) in Cartesian xyz-

space is equal to

(a) the scalar quantity –26

(b) the scalar quantity –1

(c) the vector (–6,0,–20)

(d) the vector (–1,1,–1)

(e) this problem cannot be solved without more information

38. Given a slant circular cylinder whose base has radius r and whose

height, expressed between the top and the plane containing the base,

is h, the volume V is given by the following formula:

V ¼ �r2h

Let C1 and C2 be slant circular cylinders. Suppose the radius of C2 is

four times as great as the radius of C1, but the height of C2 is only 1/16

the height of C1. Which of the following statements is true?

(a) The volume of C2 is four times the volume of C1

(b) The volume of C2 is twice the volume of C1

(c) The volume of C1 is four times the volume of C2
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(d) The volume of C1 is twice the volume of C2

(e) The volumes of C1 and C2 are the same

39. Let X be a plane. Suppose a line O, which is not normal to plane X,

intersects plane X at some point S as shown in Fig. Test 2-4. Let N be

a line normal to plane X, passing through point S. Let Y be the plane

determined by the intersecting lines N and O. Let L be the line formed

by the intersection of planes X and Y. LetM be a line in plane X that

passes through point S, but is different from line L. The angle between

line O and plane X is the same as

(a) the angle between line O and line L

(b) the angle between line O and line M

(c) the angle between line O and plane Y

(d) the angle between line L and line M

(e) the angle between line L and line N

40. Examine Fig. Test 2-4. Suppose lines L, M, and N are all mutually

perpendicular, like the axes of Cartesian xyz-space, and they all inter-

sect at point S. Also suppose line L is common to both planes X and

Y. If line M is in plane X and line N is in plane Y, then

(a) planes X and Y are parallel

(b) planes X and Y are obtuse

(c) planes X and Y are skew

(d) planes X and Y are acute

(e) planes X and Y are perpendicular

Fig. Test 2-4. Illustration for Questions 39 and 40 in the test for Part Two.
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41. Two intersecting lines define a single

(a) line

(b) ray

(c) plane

(d) triangle

(e) quadrilateral

42. The faces of a parallelepiped are all

(a) triangles

(b) squares

(c) rectangles

(d) rhombuses

(e) parallelograms

43. If a straight line in Cartesian xyz-space has direction defined by m ¼ 2i

þ 2j þ 2k, we can surmise

(a) that the line is parallel to the x axis

(b) that the line is parallel to the y axis

(c) that the line is parallel to the z axis

(d) that the line is not parallel to the x axis, the y axis, or the z axis

(e) that the line passes through the origin

44. The smaller of the two definable angles between a line and a plane has

a measure that can range anywhere between 0 rad and

(a) �/4 rad

(b) �/2 rad

(c) � rad

(d) 3�/2 rad

(e) 2� rad

45. Imagine two vectors in Cartesian xyz-space. Suppose vector a begins

at the origin and ends at the point (xa,ya,za) ¼ (2,3,5). Suppose vector

b begins at point (1,1,1) and ends at the point (xb,yb,zb) ¼ (3,4,6).

What can we say about these two vectors?

(a) They are parallel to each other, but they are not equivalent

(b) They are equivalent, but they are not parallel to each other

(c) They are equivalent, and they are parallel to each other

(d) They are parallel to each other, but they point in opposite direc-

tions

(e) They are skewed with respect to each other

46. A significant difference between the mathematician’s polar coordinate

plane and the navigator’s polar coordinate plane is

(a) that the radii are measured in opposite directions
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(b) that the direction angles are expressed in opposite senses

(c) that one scheme uses linear units, and the other does not

(d) that the radii are expressed in degrees in one scheme, and in

radians in the other scheme

(e) nothing; there is no difference between the two systems

47. In the dimensionally reduced illustration Fig. Test 2-5 showing the

earth’s path through time-space, each vertical division represents 1=
4 of

a year, or approximately 91.3 days. Suppose the vertical scale is chan-

ged so that the pitch of the helix becomes only half as great (as if it

were a spring compressed by a factor of 2). Further suppose that the

horizontal scales remain unchanged. Then each vertical division repre-

sents

(a) approximately 22.8 days

(b) approximately 45.7 days

(c) approximately 91.3 days

(d) approximately 183 days

(e) approximately 365 days

48. In the dimensionally reduced illustration Fig. Test 2-5 showing the

earth’s path through time-space, each vertical division represents 1=
4 of

a year, or approximately 91.3 days. Suppose the x and y scales are

both changed so that the radius of the helix becomes twice as great.

Fig. Test 2-5. Illustration for Questions 47 and 48 in the test for Part Two.
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Further suppose that the vertical scale remains unchanged. Then each

vertical division represents

(a) approximately 22.8 days

(b) approximately 45.7 days

(c) approximately 91.3 days

(d) approximately 183 days

(e) approximately 365 days

49. Suppose there are two ellipsoids E1 and E2 that have identical propor-

tions, but the radii of E2 are all exactly four times the radii of E1.

Suppose V1 is the volume of E1, and V2 is the volume of E2. Which, if

any, of the following equations (a), (b), (c), or (d) is true?

(a) V2 ¼ 4V1

(b) V2 ¼ 8V1

(c) V2 ¼ 16V1

(d) V2 ¼ 32V1

(e) None of the above equations (a), (b), (c), or (d) is true

50. The distance between a point and a plane is expressed along

(a) a line passing through the point and parallel to the plane

(b) a line passing through the point and skewed relative to the plane

(c) a line passing through the point and normal to the plane

(d) a line passing through the point and contained in the plane

(e) none of the above
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274

Final Exam

Do not refer to the text when taking this test. You may draw diagrams or use

a calculator if necessary. A good score is at least 75 correct. Answers are in

the back of the book. It’s best to have a friend check your score the first time,

so you won’t memorize the answers if you want to take the test again.

1. Imagine two triangles such that their corresponding sides have equal

lengths as you proceed around them both in the same direction. These

two triangles are

(a) isosceles

(b) non-Euclidean

(c) equilateral

(d) directly congruent

(e) symmetrical

2. Suppose a rhombus has diagonals of equal length. From this we can

conclude that the rhombus is

(a) a rectangle

(b) irregular

(c) a square

(d) a trapezoid

(e) none of the above
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3. Look at Fig. Exam-1. Which, if any, of the following statements (a),

(b), (c), or (d) is true?

(a) iPSR is an equilateral triangle

(b) Line segments PS and SR are equally long

(c) iPSR is congruent to iPSQ

(d) ffQPS ¼ ffQSP

(e) None of the above statements is true

4. In Fig. Exam-1, the measure of ffRQS is

(a) equal to 2� rad minus the sum of the measures of ffPSQ and

ffRSQ

(b) equal to 1808 minus the measure of ffPQS

(c) equal to twice the measure of ffPSQ

(d) equal to half the sum of the measures of ffPSQ and ffRSQ

(e) not equal to anything described above

5. Fill in the blank: In Fig. Exam-1, line QS is _______ line segment PR.

(a) parallel to

(b) congruent to

(c) a perpendicular bisector of

(d) a parallel bisector of

(e) in a different plane than

6. The formula for the interior area, A (in square units) of a regular

polygon with n sides of length s is:

A ¼ ðns2=4Þ cot ð1808=nÞ

What is the interior area of a regular heptagon (7-sided polygon) with

sides each measuring 1.000 meter in length? You may use a calculator

Fig. Exam-1. Illustration for Questions 3, 4, and 5 in the final exam.
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to determine this. Express the answer to two decimal places. The

cotangent (cot) of an angle is equal to the cosine (cos) divided by

the sine (sin).

(a) 0.84 square meters

(b) 3.63 square meters

(c) 5.32 square meters

(d) 8.33 square meters

(e) 10.00 square meters

7. Refer to Fig. Exam-2. If r1 ¼ r2, then

(a) the interior area of the figure is equal to �r
2
2

(b) the interior area of the figure is equal to 2r22
(c) the perimeter of the figure is equal to 2r1
(d) the perimeter of the figure is equal to �r2
(e) none of the above

8. In Fig. Exam-2, the ratio of r1, the length of the major semi-axis, to r2,

the length of the minor semi-axis, is called the

(a) elongation

(b) eccentricity

(c) ellipticity

(d) deviation

(e) oblongation

9. Refer to Fig. Exam-2. The interior area, A, of the ellipse is given by:

A ¼ �r1r2

Based on this formula, if the length of the major semi-axis of an ellipse

is tripled, what must happen to the length of the minor semi-axis in

order for the interior area to remain the same?

Fig. Exam-2. Illustration for Questions 7, 8, and 9 in the final exam.
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(a) We cannot say, because the formula does not contain enough

information

(b) The minor semi-axis must become 1/3 as great

(c) The minor semi-axis must become 1/6 as great

(d) The minor semi-axis must become 1/9 as great

(e) The minor semi-axis must become 1/27 as great

10. In Euclidean plane geometry, how many points are required to

uniquely define a single straight line?

(a) None

(b) One

(c) Two

(d) Three

(e) Four

11. Imagine that you have a telescope equipped with a camera. You focus

on a distant, triangular sign and take a photograph of it. Then you

triple the magnification of the telescope and, making sure the whole

sign fits into the field of view of the camera, you take another photo-

graph. When you get the photos developed, you see triangles in each

photograph. No matter what else might be true about this scenario,

we can conclude for certain that the two triangles in the photographs

must be

(a) equilateral

(b) symmetrical

(c) non-Euclidean

(d) isosceles

(e) none of the above

12. A rhombus is a geometric figure in which

(a) all the sides are equally long

(b) all the angles have the same measure

(c) the sum of the measures of the interior angles is 7208

(d) no two points lie in the same plane

(e) at least one of the sides is infinitely long

13. Refer to Fig. Exam-3. What is the equation of line L?

(a) –x þ y – 5 ¼ 0

(b) –x þ y þ 5 ¼ 0

(c) x þ y þ 5 ¼ 0

(d) –2x þ 3y – 1 ¼ 0

(e) 2x – 3y þ 1 ¼ 0
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14. Refer to Fig. Exam-3. What is the equation of line M?

(a) 3x – y ¼ 0

(b) x – 3y þ 6 ¼ 0

(c) x þ 3y þ 6 ¼ 0

(d) –x þ 3y þ 6 ¼ 0

(e) –3x – 3y ¼ 0

15. Refer to Fig. Exam-3. Imagine curves L and M as infinitely long,

straight lines. Do these lines intersect? If so, what are the coordinates

(x0,y0) of their intersection point?

(a) The lines intersect at (x0,y0) ¼ (–21,–11)

(b) The lines intersect at (x0,y0) ¼ (–21/2,–11/2)

(c) The lines intersect at (x0,y0) ¼ (–10,–5)

(d) The lines intersect, but more information is needed to figure out

where

(e) The lines do not intersect

16. What is the distance r between the points (–3,–3) and (–6,–7) on the

Cartesian plane?

(a) r ¼ 3

(b) r ¼ 4

(c) r ¼ 5

(d) r ¼ (–9,–10)

(e) r ¼ (3,4)

Fig. Exam-3. Illustration for Questions 13, 14, and 15 in the final exam.
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17. Examine Fig. Exam-4. Suppose planes Y and Z are parallel, and they

intersect plane X in lines L andM, respectively. Suppose line PQ is in

plane X, and is perpendicular to both lines L andM. Suppose line RS

is in plane Y, and is perpendicular to line L. Suppose line TU is in

plane Z, and is perpendicular to line M. Let V and W be intersection

points among the lines, as shown. From these facts, we can conclude

that

(a) ffPWT ¼ ffPVS

(b) ffPWT ¼ ffQVR

(c) ffPWT ¼ ffQVS

(d) ffPWT ¼ ffQWT

(e) ffPWT ¼ ffUWP

18. In Fig. Exam-4, assume all of the conditions described in Question 17

hold true. Which of the following are corresponding angles?

(a) ffPWT and ffWVR

(b) ffPWT and ffWVS

(c) ffQWU and ffQWT

(d) ffQWU and ffQVR

(e) ffQVS and ffPVR

19. Vertical (that is, opposite) dihedral angles between two intersecting

planes always have measures that

(a) add up to 908

Fig. Exam-4. Illustration for Questions 17 and 18 in the final exam.
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(b) add up to 1808

(c) add up to 3608

(d) are the same

(e) none of the above

20. A cube has

(a) 6 faces, 12 edges, and 12 vertices

(b) 6 faces, 8 edges, and 8 vertices

(c) 6 faces, 12 edges, and 8 vertices

(d) 8 faces, 8 edges, and 8 vertices

(e) 8 faces, 12 edges, and 12 vertices

21. In cylindrical coordinates, the position of a point is defined according

to

(a) two angles and a distance

(b) two distances and an angle

(c) three distances

(d) three angles

(e) none of the above

22. The equation x2 þ y2 ¼ 1 can be used to define

(a) the exponential function

(b) the logarithmic function

(c) the cosine function

(d) the hyperbolic function

(e) none of the above

23. The tangent function y ¼ tan x is defined for all the following values

of x except:

(a) x ¼ 08

(b) x ¼ 458

(c) x ¼ 908

(d) x ¼ 1358

(e) x ¼ 1808

24. Imagine a vector a that has magnitude of 3 and points straight up

(elevation 908), and a vector b that has magnitude 4 and points toward

the western horizon (azimuth 2708, elevation 08). The cross product of

a and b, written a � b, is

(a) a scalar equal to 12

(b) a scalar equal to 0

(c) a vector with magnitude 12, pointing toward the west but above

the horizon
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(d) a vector with magnitude 12, pointing toward the southern horizon

(e) impossible to determine without more information

25. Imagine a vector a that has magnitude of 3 and points straight up

(elevation 908), and a vector b that has magnitude 4 and points toward

the western horizon (azimuth 2708, elevation 08). The dot product of a

and b, written a * b, is

(a) a scalar equal to 12

(b) a scalar equal to 0

(c) a vector with magnitude 12, pointing toward the west but above

the horizon

(d) a vector with magnitude 12, pointing toward the southern hori-

zon.

(e) impossible to determine without more information

26. When using a drafting compass and straight edge to perform a geo-

metric construction, you must

(a) not make use of any calibrated scales

(b) always use a pen, not a pencil, to make markings on the paper

(c) use both instruments at least once

(d) never draw circles of arbitrary radius

(e) never draw line segments of arbitrary length

27. A circle is a specific type of

(a) polygon with infinitely many sides

(b) ellipse

(c) cone

(d) parabola

(e) none of the above

28. Refer to Fig. Exam-5. The top and the base of the figure are circles,

with center points P and Q, as shown. This object is called a

(a) trapezoidal cone

(b) trapezoidal cylinder

(c) frustum of a cone

(d) partial cone

(e) truncated cylinder

29. Let S be the slant surface area of the object in Fig. Exam-5, that is, the

area not including the base or the top. Let s be the slant height, r1 be

the radius of the circular top, and r2 be the radius of the circular base.

Let P be the center of the circular top, and Q be the center of the
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circular base. Let h be the height of the figure. The value of S is given

by the following formula:

S ¼ �sðr1 þ r2Þ

where � is approximately equal to 3.14159. What happens to the slant

surface area if all the dimensions of this object are doubled?

(a) It does not change

(b) It doubles

(c) It becomes four times as great

(d) It becomes eight times as great

(e) It is impossible to say without more information

30. Refer to Fig. Exam-5. Suppose that r2 ¼ 2r1. Imagine some plane X

that contains the line segment connecting points P and Q. The inter-

section between plane X and the surface of the object, including the

base and the top, is

(a) a triangle

(b) a rhombus

(c) a rectangle

(d) a parallelogram

(e) none of the above

31. Suppose a triangle has a base length of 10 meters and a height of 6

meters. The interior area of this triangle is

(a) approximately 7.75 square meters

(b) 20 square meters

Fig. Exam-5. Illustration for Questions 28, 29, and 30 in the final exam.
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(c) 30 square meters

(d) 60 square meters

(e) impossible to determine without more information

32. Suppose a triangle has a base length of 10 meters, and the other two

sides both measure 8 meters in length. How long is the line segment

that joins the midpoints of the sides that are 8 meters long?

(a) 2 meters

(b) 4 meters

(c) 5 meters

(d) 8 meters

(e) This question cannot be answered without more information

33. Suppose a triangle has a base length of 7 meters, and the other two

sides both measure 11 meters in length. The line segment that joins the

midpoints of the sides that are 11 meters long is

(a) perpendicular to those two sides

(b) parallel to those two sides

(c) normal to the base

(d) isosceles to the base

(e) parallel to the base

34. When two planes intersect, the measures of the adjacent dihedral

angles defined by the intersection add up to

(a) 908

(b) 1808

(c) 2708

(d) 3608

(e) 5408

35. Consider the mean radius of the earth to be 6371 kilometers. Consider

the mean radius of the sun to be 696,000 kilometers. The volume of

the sun is

(a) approximately 109 times the volume of the earth

(b) approximately 11,900 times the volume of the earth

(c) approximately 1,300,000 times the volume of the earth

(d) approximately 142,000,000 times the volume of the earth

(e) impossible to determine without more information

36. Imagine a torus T whose inner radius is half its outer radius. Suppose

a line L passes through the center point of T. The intersection of L and

T is

(a) four points
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(b) three points

(c) two points

(d) the empty set (no points)

(e) impossible to determine without more information

37. A vector that begins at the origin of a coordinate system, and points

outward in a specific direction (or orientation) from there, is said to be

(a) in unit form

(b) in zero form

(c) in real-number form

(d) in Euclidean form

(e) in standard form

38. Suppose we set off on a bearing of 908 in the navigator’s polar coor-

dinate system. We stay on a straight course. If the starting point is

considered the origin, what is the graph of our path in Cartesian

coordinates?

(a) y ¼ x, where x # 0

(b) y ¼ 0, where x � 0

(c) x ¼ 0, where y � 0

(d) y ¼ x, where x � 0

(e) None of the above

39. Skew lines

(a) are parallel, but they intersect each other

(b) are orthogonal, but they do not intersect each other

(c) are not parallel, and they lie in different planes

(d) are not parallel, but they lie in a single plane

(e) none of the above

40. If two lines intersect and are perpendicular, then they

(a) lie in different planes

(b) are parallel

(c) are geodesics on a sphere

(d) lie in the same plane

(e) have a common center point

41. Consider a circle C that is inscribed by a regular polygon S having n

sides, and that is circumscribed by a regular polygon T, also having n

sides. As n increases without limit, what happens to the perimeters of

S and T ?

(a) Their ratio approaches 1:1

(b) Their difference becomes greater and greater
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(c) Their product approaches 1

(d) Their ratio approaches 1:�

(e) Their ratio approaches 1:2�

42. What is the slope of the line represented by the equation y – 2 ¼

4(x þ 5)?

(a) –2

(b) 2

(c) 4

(d) 5

(e) 20

43. Right ascension is measured eastward from the position of the sun in

the heavens on approximately

(a) March 21

(b) June 21

(c) September 21

(d) December 21

(e) the middle of the period of daylight

44. Right ascension, declination, and radius together comprise a scheme

of

(a) polar coordinates

(b) Cartesian coordinates

(c) spherical coordinates

(d) cylindrical coordinates

(e) logarithmic coordinates

45. The 3D surface of a 4D sphere (or four-sphere) is an example of

(a) a 2D space

(b) a finite but unbounded 3D space

(c) an infinite but bounded 3D space

(d) a finite, bounded 3D space

(e) none of the above

46. What are the points, if any, at which the circle x2 þ (y – 1)2 ¼ 1

intersects the y axis?

(a) It is impossible to tell without more information

(b) (0,0) and (0,2)

(c) (0,0) and (0,–2)

(d) (0,0)

(e) There are none
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47. A triangle on a surface can have interior angles, each of whose

measure is between

(a) 0 rad and 1 rad

(b) 0 rad and �/2 rad

(c) 0 rad and � rad

(d) 0 rad and 2� rad

(e) � rad and 2� rad

48. Each interior angle of a regular hexagon measures

(a) �/6 rad

(b) �/3 rad

(c) �/2 rad

(d) 2�/3 rad

(e) 3�/2 rad

49. The time equivalent of 1000 kilometers, using the speed of light

(300,000,000 meters per second) as a standard, is approximately

(a) 333 second-equivalents

(b) 33.3 second-equivalents

(c) 3.33 second-equivalents

(d) 0.333 second-equivalents

(e) none of the above

50. Suppose there is a geodesic L on a surface S. Let P be some point near,

but not on, the geodesic L. Suppose there exist infinitely many geo-

desicsM1,M2,M3, . . . on the surface S that pass through point P and

do not intersect geodesic L. From this we know that

(a) the surface S is non-Euclidean

(b) the geodesic L is a circle

(c) the geodesic L is an ellipse

(d) the surface S is a sphere

(e) the set of circumstances described is impossible

51. Imagine an infinitely long, stationary, straight line that has always

existed, exists at this moment, and always will exist in the future. In

4D Euclidean time-space, the path of this line is

(a) a line

(b) a half-plane

(c) a plane

(d) a sphere

(e) a tesseract

Final Exam286



52. Suppose that two straight lines intersect, forming four angles. The two

angles opposite each other are called

(a) interior angles

(b) supplementary angles

(c) complementary angles

(d) alternate angles

(e) vertical angles

53. In Fig. Exam-6, suppose the measure of ffQPR is 508. The other two

interior angles have measures x and y. Which of the following state-

ments can be made with certainty?

(a) x þ y ¼ 2� rad

(b) x þ y ¼ � rad

(c) x – y ¼ �/2 rad

(d) x – y ¼ 508

(e) x þ y ¼ 1308

54. In Fig. Exam-6, suppose the measure of angle y is exactly 908, the

length of side r is exactly 10 meters, and the length of side p is exactly

8 meters. The length of side q is

(a) approximately 1.732 meters

(b) approximately 1.414 meters

(c) exactly 6 meters

(d) exactly 4 meters

(e) impossible to determine without more information

55. Given any three distinct points, they cannot form a triangle if

(a) each one is equidistant from the other two

(b) they lie on different lines

(c) they all lie on the surface of the same sphere

(d) they all lie on the perimeter of the same circle

(e) they all lie on the same line

Fig. Exam-6. Illustration for Questions 53 and 54 in the final exam.
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56. A plane region that does not include its boundary is called

(a) indefinite

(b) non-Euclidean

(c) open

(d) closed

(e) non-contiguous

57. Refer to Fig. Exam-7. The values a, b, and c are

(a) the coordinates of a point on line L

(b) the variables in the equation of line L

(c) the solutions of line L

(d) the direction numbers of line L

(e) none of the above

58. In the situation shown by Fig. Exam-7, suppose the values of a, b, and

c are all multiplied by �1. How will vector m and line L be related

then?

(a) They will be parallel to each other

(b) They will be perpendicular to each other

(c) They will be skewed with respect to each other

(d) They will intersect each other

(e) It is impossible to say without more information

Fig. Exam-7. Illustration for Questions 57, 58, and 59 in the final exam.
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59. In the scenario of Fig. Exam-7, what can we say about any point

(x,y,z) on line L?

(a) Its coordinates are x ¼ x0 þ a, y ¼ y0 þ b, and z ¼ z0 þ c

(b) Its coordinates are x ¼ x0 – a, y ¼ y0 – b, and z ¼ z0 – c

(c) Its coordinates are x ¼ x0 þ at, y ¼ y0 þ bt, and z ¼ z0 þ ct, where

t is a real number

(d) Its coordinates are x ¼ tx0, y ¼ ty0, and z ¼ tz0, where t is a real

number

(e) None of the above

60. Which of the following (a), (b), (c), or (d), if any, represents the same

point on the Cartesian plane as the ordered pair (–0.5,1.7)?

(a) (–5,17)

(b) (1.7,–0.5)

(c) (–1/2,17/10)

(d) (5,–17)

(e) None of the above

61. Let � be the measure of an interior angle in a regular polygon. What is

the range of possible values for �?

(a) 0 rad # � # 2� rad

(b) 0 rad < � < 2� rad

(c) 0 rad # � # �/2 rad

(d) 0 rad < � < �/2 rad

(e) None of the above

62. The distance between (2,3,4,5) and (6,7,8,9) in Cartesian 4D hyper-

space is

(a) equal to 2

(b) equal to 4

(c) equal to 8

(d) equal to 16

(e) equal to 32

63. Suppose a geometric object in the mathematician’s polar coordinate

plane is represented by the equation � ¼ �/4. The object is

(a) a circle

(b) a hyperbola

(c) a parabola

(d) a straight line

(e) a spiral
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64. Imagine a stationary circle that has always existed, exists at this

moment, and always will exist in the future. In 4D Euclidean time-

space, the path of this circle, not including the points in its interior,

is

(a) a hollow, infinitely long cylinder

(b) a solid, infinitely long cylinder

(c) a hollow sphere

(d) a solid sphere

(e) none of the above

65. Refer to Fig. Exam-8. What is the polar equation of the circle shown

in this graph?

(a) x2 þ y2 þ a2

(b) x2 – y2 ¼ a2

(c) r ¼ a

(d) r ¼ �

(e) � ¼ a

66. Refer to Fig. Exam-8. What is the Cartesian-plane equation of the

circle shown in this graph?

(a) x2 þ y2 ¼ a2

(b) x2 – y2 ¼ a2

(c) r ¼ a

(d) r ¼ �

(e) � ¼ a

Fig. Exam-8. Illustration for Questions 65, 66, and 67 in the final exam.
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67. Refer to Fig. Exam-8. Suppose the radius of the circle is doubled.

What is the equation of the resulting circle in polar coordinates?

(a) x2 þ y2 ¼ 4a2

(b) x2 – y2 ¼ 4a2

(c) r ¼ 2a

(d) r ¼ 2�

(e) � ¼ 2a

68. Suppose a line segment is bisected, and then the resulting line seg-

ments are bisected, and then the resulting line segments are bisected.

How many times can this process, in theory, be repeated?

(a) Until the bisection produces individual points

(b) Forever

(c) It depends on the length of the initial line segment

(d) It depends on whether or not the end points are considered part of

the initial line segment

(e) It depends on whether or not the initial line segment is straight

69. Suppose there are two spheres S1 and S2, and the radius of S2 is

exactly four times the radius of S1. Suppose A1 is the surface area

of S1, and A2 is the surface area of S2. Which, if any, of the following

equations (a), (b), (c), or (d) is true?

(a) A2 ¼ 4A1

(b) A2 ¼ 8A1

(c) A2 ¼ 16A1

(d) A2 ¼ 32A1

(e) None of the above equations (a), (b), (c), or (d) is true

70. Suppose X is a plane, and P is a point. How many lines can exist that

are normal to plane X and that pass through P?

(a) None

(b) One

(c) Two

(d) Infinitely many

(e) It depends on whether or not P is in plane X

71. In a right circular cone, a line segment that connects the apex (top)

and the center of the base

(a) has a length equal to the radius of the base

(b) has a length equal to half the radius of the base

(c) has a length equal to twice the radius of the base

(d) has a length equal to the circumference of the base

(e) is perpendicular to the plane containing the base

Final Exam 291



72. Suppose you draw a line L and a point P near that line. Then you drop

a perpendicular from point P to line L, and let Q be the point where

the perpendicular intersects the line. Then you draw a point R on line

L, different from point Q. The points P, Q, and R lie at the vertices of

(a) a right triangle

(b) an equilateral triangle

(c) an isosceles triangle

(d) a congruent triangle

(e) none of the above

73. The distance between two parallel planes

(a) is expressed along lines contained within both planes

(b) is expressed along lines normal to both planes

(c) is expressed along lines that intersect neither plane

(d) varies with location

(e) cannot be defined

74. Let L be a line parallel to a plane X. How many lines can exist in plane

X that are skew to line L?

(a) None

(b) One

(c) Two

(d) Three

(e) Infinitely many

75. A pyramid with a square base has

(a) four faces in all

(b) five faces in all

(c) four or five faces in all

(d) slant faces that are all rectangles

(e) faces that are all congruent

76. If rotational sense is an important consideration in the expression of

an angle �, the counterclockwise sense usually indicates

(a) � ¼ 08

(b) � < 08

(c) � > 08

(d) –� rad < � < � rad

(e) –1808 < � < 1808

77. In the dimensionally reduced illustration Fig. Exam-9, the pitch of the

cone (that is, the angle between the cone surface and the þt axis)

depicts

Final Exam292



(a) the path of a single photon through time-space

(b) the hyperspace locations of the photons that came from the bulb

at the instant it was switched on

(c) the hyperspace locations of all the photons that have come from

the bulb since the instant it was switched on

(d) the speed of light

(e) the rate at which the observer travels through time

78. In the dimensionally reduced illustration Fig. Exam-9, imagine some

plane X that is parallel to the xy-plane and that passes through the

cone, so the set of points representing the intersection between plane X

and the cone surface (not including the interior of the cone) is a circle.

This circle represents

(a) the path of a single photon through time-space

(b) the hyperspace locations of the photons that came from the bulb

at the instant it was switched on

(c) the hyperspace locations of all the photons that have come from

the bulb since the instant it was switched on

(d) the speed of light

(e) the rate at which the observer travels through time

Fig. Exam-9. Illustration for Questions 77, 78, and 79 in the final exam.
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79. In the dimensionally reduced illustration Fig. Exam-9, imagine some

plane X that is parallel to the xy-plane and that passes through the

cone, so the set of points representing the intersection between plane X

and the cone (including the interior of the cone) is a disk. This disk

represents

(a) the path of a single photon through time-space

(b) the hyperspace locations of the photons that came from the bulb

at the instant it was switched on

(c) the hyperspace locations of all the photons that have come from

the bulb since the instant it was switched on

(d) the speed of light

(e) the rate at which the observer travels through time

80. Which of the following equations represents a parabola in Cartesian

coordinates?

(a) y ¼ 3x

(b) x2 þ y2 ¼ 1

(c) x2 – y2 ¼ 1

(d) y ¼ 3x2 þ 2x – 5

(e) x ¼ –2y þ 5

81. A triangle cannot be both

(a) isosceles and equilateral

(b) isosceles and right

(c) acute and obtuse

(d) Euclidean and equilateral

(e) Eucidean and isosceles

82. An uncalibrated drafting compass and a pencil, without a straight

edge, can be used to

(a) construct a line segment connecting two defined points

(b) construct a line segment passing through a single defined point

(c) construct an arc centered at a defined point

(d) construct a triangle connecting three defined points

(e) none of the above

83. An uncalibrated straight edge and a pencil, without a compass, can be

used to

(a) drop a perpendicular to a line from a defined point not on that

line

(b) construct an arc centered at a defined point

(c) construct an arc passing through a defined point
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(d) construct a parallel to a line, passing through a defined point not

on that line

(e) none of the above

84. Imagine a triangle with interior angles measuring 308, 608, and 1008.

What can be said about this triangle?

(a) It must be a right triangle

(b) It must be a non-Euclidean triangle

(c) It must be an isosceles triangle

(d) It must be a congruent triangle

(e) It must be an acute triangle

85. Consider an arc of a circle measuring 2 radians. Suppose the radius of

the circle is 1 meter. What is the area of the circular sector defined by

this arc?

(a) 1=
2 square meter

(b) 1 square meter

(c) 1/� square meter

(d) 2/� square meter

(e) � square meters

86. Suppose that a straight section of railroad crosses a straight stretch of

highway. The acute angle between the tracks and the highway center

line measures exactly 708. What is the measure of the obtuse angle

between the tracks and the highway center line?

(a) This question cannot be answered without more information

(b) 708

(c) 908

(d) 1108

(e) 2908

87. Suppose we are told two things about a quadrilateral: first, that it is a

rhombus, and second, that one of its interior angles measures 708. The

measure of the angle adjacent to the 708 angle is

(a) 208

(b) 708

(c) 908

(d) 1508

(e) none of the above

88. Suppose the coordinates of a point in the mathematician’s polar plane

are specified as (�,r) ¼ (–�/4,2). This is equivalent to the coordinates

(a) (�/4,2)

(b) (3�/4,2)

Final Exam 295



(c) (5�/4,2)

(d) (7�/4,2)

(e) none of the above

89. Suppose the cylindrical coordinates of a certain object in the sky are

specified as (�,r,h), where � is its azimuth as expressed in the plane of

the horizon, r is its horizontal distance from us (also called its distance

downrange), and h is its altitude with respect to the plane of the

horizon. Imagine that the object flies directly away from us, so r is

doubled but � remains constant. What happens to h?

(a) It does not change

(b) It doubles

(c) It becomes four times as great

(d) If becomes half as great

(e) It becomes one-quarter as great

90. Suppose the cylindrical coordinates of a certain object in the sky are

specified as (�,r,h), where � is its azimuth as expressed in the plane of

the horizon, r is its horizontal distance from us (also called its distance

downrange), and h is its altitude with respect to the plane of the

horizon. Imagine that the object flies straight up vertically into

space, perpendicular to the plane containing the horizon, so h

increases without limit. What happens to � and r?

(a) Both � and r remain unchanged

(b) � approaches 908, while r increases without limit

(c) � remains unchanged, while r increases without limit

(d) � increases without limit, while r remains unchanged

(e) It is impossible to answer this without more information

91. What is the slope m of the graph of the equation y ¼ 3x2?

(a) m ¼ 3

(b) m ¼ –3

(c) m ¼ 1/3

(d) m ¼ –1/3

(e) None of the above

92. Suppose we are told that a plane quadrilateral has diagonals that

bisect each other. We can be certain that this quadrilateral is

(a) a square

(b) a rhombus

(c) a rectangle

(d) a parallelogram

(e) irregular

Final Exam296



93. Suppose L is a line and P is a point not on L. Then there is one, but

only one, line M through P, such that M is parallel to L. This state-

ment is an axiom that holds true on

(a) the surface of a flat plane

(b) the surface of a sphere

(c) any surface with positive curvature

(d) any surface with negative curvature

(e) any surface

94. Refer to Fig. Exam-10. Suppose two rays intersect at point P (drawing

A). You set down the non-marking tip of a compass on P, and con-

struct an arc from one ray to the other, creating intersection points R

and Q (drawing B). Then, you place the non-marking tip of the com-

pass onQ, increase its span somewhat from the setting used to generate

arc QR, and construct a new arc. Next, without changing the span of

the compass, you set its non-marking tip onR and construct an arc that

intersects the arc centered atQ. Let S be the point at which the two arcs

intersect (drawing C). Finally, you construct ray PS, as shown at D.

Which of the following statements (a), (b), (c), or (d) is true?

(a) ffRPS and ffSPQ have equal measure

(b) ffPQS is a right angle

(c) ffPRS is a right angle

Fig. Exam-10. Illustration for Questions 94, 95, and 96 in the final exam.
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(d) Line segment PS is twice as long as line segment RQ

(e) None of the above statements (a), (b), (c), or (d) is true

95. In the situation shown by Fig. Exam-10, and according to the descrip-

tion given in the previous question, which of the following statements

is true?

(a) Points R, P, and Q lie at the vertices of an isosceles triangle

(b) Points R, P, and S lie at the vertices of a right triangle

(c) Points R, P, and Q lie at the vertices of an equilateral triangle

(d) Quadrilateral RPQS is a trapezoid

(e) Quadrilateral RPQS is a parallelogram

96. In the situation shown by Fig. Exam-10, and according to the descrip-

tion given in the previous question, consider the triangle whose ver-

tices are points R, P, and S. Also consider the triangle whose vertices

are points P, Q, and S. These two triangles

(a) are directly congruent

(b) are inversely congruent

(c) are both right triangles

(d) are both isosceles triangles

(e) do not resemble each other in any particular way

97. Refer to Fig. Exam-11. The perimeter, B, of quadrilateral PQRS is

given by which of the following formulas?

(a) B ¼ 2d þ 2e

(b) B ¼ ed

(c) B ¼ 2f þ 2g

(d) B ¼ fg

(e) None of the above

98. Refer to Fig. Exam-11. Suppose line segments PQ and SR are parallel

to each other, and the line segment whose length is m bisects both line

segments PS and QR. Based on this information, which of the follow-

ing is true?

(a) m ¼ fd/2

(b) m ¼ (f þ d)/2

(c) m ¼ eg/2

(d) m ¼ (e þ g)/2

(e) None of the above

Final Exam298



99. Refer to Fig. Exam-11. Suppose line segments PQ and SR are parallel

to each other, and the line segment whose length is m bisects both line

segments PS and QR. Based on this information, which of the follow-

ing statements (a), (b), (c), or (d) is not necessarily true?

(a) Quadrilateral PQRS is a trapezoid

(b) The line segment whose length is m is parallel to line segments PQ

and SR

(c) The distances e and g are equal

(d) The distance h cannot be greater than the distance e or the dis-

tance g

(e) All of the statements (a), (b), (c), and (d) are true

100. Which of the following criteria can be used to establish the fact that

two triangles are directly congruent?

(a) All three corresponding sides must have equal lengths

(b) All three corresponding angles must have equal measures

(c) The Pythagorean theorem must hold for both triangles

(d) Both triangles must be right triangles

(e) Both triangles must have the same perimeter

Fig. Exam-11. Illustration for Questions 97, 98, and 99 in the final exam.
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81. c 82. c 83. e 84. b 85. b

86. d 87. e 88. d 89. b 90. a

91. e 92. d 93. a 94. a 95. a

96. b 97. e 98. b 99. c 100. a
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INDEX

abscissa, 99, 102
acute triangle, 30
alternate exterior angles

for intersecting lines, 13–14
for intersecting planes, 153

alternate interior angles

for intersecting lines, 13
for intersecting planes, 151–153

analytic geometry, 8
angle

acute, 6–7
bisecting, in construction, 92–94
constructions involving, 90–94

obtuse, 6–7
reflex, 6–7
reproducing, in construction, 90–92

right, 6–7, 33
straight, 6–7

angle addition, 10

angle–angle–angle (AAA), 28–29
angle bisection, 8
angle notation, 7–8
angle–angle–side (AAS), 28

angle–side–angle (ASA), 27
angle subtraction, 10
arc, in construction, 80, 82

arctangent, 184
arithmetic mean, 49
astronomical unit (AU), 237

asymptote, 210–211
azimuth, 219, 228–229

bearing, 219, 228–229
black hole, 256

cardioid, 213–216
Cartesian five-space, 246

Cartesian four-space, 234–235
Cartesian n-space, 233–237, 246–247
Cartesian plane, 97–121, 217–219, 221–222

Cartesian three-space, 179–202, 235
Cartesian time-space, 236
Cartesian 25-space, 246

celestial latitude, 224–225
celestial longitude, 224–225
circle

denoting, in construction, 80, 82

equation of, 112–115, 208–209
interior area of, 68–69
perimeter of, 68

properties of, 67–69
circular function, 65
circular sector

interior area of, 72
perimeter of, 72

circumference, 67–68

circumscribed regular polygon
interior area of, 71
perimeter of, 71, 73–74

closed-ended ray, 5

closed line segment, 5
coefficient, 197
compass, draftsman’s, 77

complementary angles, 12
cone

definition of, 166

right circular, 167–169
slant circular, 169

congruent triangles, 23–24

conic section, 67
constant function, 207
construction, 76–96
corresponding angles

for intersecting lines, 13–14
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corresponding angles (Contd.)
for intersecting planes, 154

cosine function, 181

cross product of vectors, 193–194
cube

definition of, 162
surface area of, 163

volume of, 163
curved space, 254–257
cylinder

definition of, 166
right circular, 169–170
slant circular, 170–171

cylindrical coordinates, 226–227

declination
in astronomy, 224–225

in navigation, 219–220
in spherical coordinates, 227–228

dependent variable, 99, 188, 208

direct congruence criteria, 26–30
direct similarity criteria, 26–30
direction angles, 190–191

direction cosines, 191
direction in polar coordinates, 207
direction numbers, 200

direction of vector, 182–184
directly congruent triangles, 23–34, 26–30
directly similar triangles, 22, 26–30
displacement and time equivalents, table of, 245

distance addition, 9–10
distance between points, 188
distance formulas, 247–248

distance notation, 4
distance subtraction, 9–10
dot product of vectors, 185–186, 193

drafting triangle, 77
draftsman’s compass, 77

Einstein, Albert, 235, 239, 255–256

elevation, 228–229
ellipse

definition of, 67

ellipticity of, 69–70
equation of, 209–210
interior area of, 69

ellipsoid
definition of, 173–174

volume of, 174
elliptic geometry, 253
ellipticity, 69–70

equations, pairs of, 115–119
equatorial axis, 225
equilateral triangle, 32–33
equivalent vector, 183, 189–190

Euclid, 250
Euclidean geometry, 3
Euclid’s axioms, 250–252

Euclid’s fifth postulate, 251–252
exterior angle, 64

faces of polyhedron, 160
facets of polyhedron, 160

foam, 247
four-cone, 243
four-cube, 240–241

four-leafed rose, 212, 214
function

constant, 207
definition of, 100–103, 207–208

circular, 65
trigonometric, 65

general quadrilateral
definition of, 43

geodesic, 252
geodesic arc, 252
geodesic segment, 252

geographic north, 219, 229
geometric polar plane, 216–217
Global Positioning System (GPS), 220

gravitational light cross, 256
Greenwich meridian, 224–225, 228

half line, 5
half-open line segment, 5

half plane, 140–141
heading, 219, 228–229
hexagon, 59
hours of right ascension, 225–226

hyperbolic geometry, 254
hypercone, 243
hyperface, 240

‘‘hyperfunnel,’’ 256–257
hyperspace, 138
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hypervolume, 242–244
hypotenuse, 33, 99, 100

independent variable, 99, 188, 208
inscribed regular polygon

interior area of, 70–73
perimeter of, 70

interior angle, 21–22, 34, 44, 63–64
interior area

of circle, 68–69

of circular sector, 72
of circumscribed regular polygon, 71
of inscribed regular polygon, 70–73

of regular polygon, 66
of triangle, 35

intersecting line and plane, 144–146
intersecting line principle, 139

intersecting lines
alternate exterior angles for, 13–14
alternate interior angles for, 14

vertical angles for, 12
intersecting planes

adjacent angles between, 143

alternate exterior angles for, 153
alternate interior angles for, 151–153
angles between, 143–144, 148–149

corresponding angles for, 154
definition of, 141
vertical angles for, 151

inversely congruent triangles, 23–24

inversely similar triangles, 22
irrational number, 68
irregular quadrilateral

definition of, 43
isosceles triangle, 31–32

kilometer-equivalent, 239–240

latitude
definition of, 224–225

lemniscate, 211–212
light cone, 243
light-minute, 239

light-second, 239
light-year, 239
line

in Cartesian three-space, 199–202
denoting, in construction, 80–81

direction numbers of, 200
notion of, 3–6, 137–138
parallel to plane, 147

parametric equations for, 201–202
plane perpendicular to, 147
symmetric-form equation of, 199–200

line and point principle, 139

line segment
bisecting, in construction, 85–86
closed, 4–5

drawing, in construction, 78–79
half-open, 4–5
open, 4–5

reproducing, in construction, 84–85
linear equation

finding, based on graph, 107–108
point-slope form of, 105–107

slope-intercept form of, 104–105
standard form of, 103–104

Lobachevskian geometry, 254

Lobachevsky, Nikolai, 254
longitude

definition of, 224–225

magnetic north, 219
magnitude of vector, 182–184, 189

major diagonal, 45–46
mathematician’s polar coordinates, 221
meridian, 253
meter-equivalent, 240

microsecond-equivalent, 240
midpoint principle, 5
millimeter-equivalent, 240

minor diagonal, 45
minute-equivalent, 239
minutes of right ascension, 225–226

nadir, 229
nanosecond-equivalent, 240

negative curvature, 254
Newton, Isaac, 235
non-convex octagon, 60–61
non-Euclidean geometry, 15, 252

non-Euclidean surface, 252
normal

to line, 8

to plane, 144, 146
number lines, 97–98
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obtuse angle, 6–7
obtuse triangle, 31

octagon
non-convex, 60–61
regular, 61

open-ended ray, 5
open line segment, 5
ordered n-tuple, 246
ordered pair, 98

ordered quadruple, 234
ordered quintuple, 246
ordered triple, 187

ordered 25-tuple, 246
ordinate, 99, 102
orientation of vector, 182–184

origin, 99, 234
orthogonal lines, 8

pairs of equations, solving, 115–119
parabola, 101, 108–112

parallel, 253
parallel lines

construction of, 87–90

defined, 11
skew, 142
in 3D space, 141–142

parallel planes
defined, 150
distance between, 151

parallel postulate
definition of, 251–252
modified, 253

parallel principle

for lines, 15
for lines and planes, 155
for planes, 155

parallelepiped
definition of, 164
surface area of, 164–165

volume of, 165–166
parallelogram

bisection of diagonals, 46
definition of, 41–42

diagonals of, 45
interior area of, 51
method of adding vectors, 183, 192

perimeter of, 51
parametric equations, 201

pentagon, 58–59
perimeter

of circle, 68–69

of circular sector, 72
of circumscribed regular polygon, 71, 73–74
of inscribed regular polygon, 70
of regular polygon, 64–65

of triangle, 34–35
perpendicular, dropping, 86–88
perpendicular bisector

definition of, 9
construction of, 85–86

perpendicular planes, 144

perpendicular principle, 9
perpendicular ray, construction of, 86–87
perpendicularity, 8–9, 15–16
photon, 242

pi, 68
plane

in Cartesian three-space, 195–199

criteria for uniqueness, 196
general equation of, 196–197
line parallel to, 147

normal line to, 144
notion of, 138
perpendicular to line, 147

plotting, 197–199
regions, 140

plane geometry, 3
point

defining, in construction, 78
notion of, 3–6, 137–138

point–point–point principle, 25

polar coordinates, 205–223, 216–219, 219–223
polygon

interior area of, 50–56

many-sided, 60–61
perimeter of, 51–56
regular, 60

polyhedron definition of, 160

positive curvature, 253
prime meridian, 225
prism, rectangular

definition of, 163–164
surface area of, 163–164
volume of, 164

pyramid
definition of, 161–162
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pyramid (Contd.)
surface area of, 162
volume of, 162

Pythagoras, theorem of
in Cartesian three-space, 190
in relativity, 244
for triangles, 34, 100

quadratic equation, 108–112
quadrilateral, 39–57

quartic kilometer-equivalent, 242
quartic second-equivalent, 242
quasar, 256

radian, 6–7
radius

negative, 207

in polar coordinates, 205–207
in spherical coordinates, 227–228

ray

closed-ended, 5
denoting, in construction, 79–80
open-ended, 5

rectangle
definition of, 41–42, 46–47
diagonals of, 47

interior area of, 52
perimeter of, 52

rectangular five-prism, 246
rectangular four-prism, 241–242

rectangular hyperprism, 241
rectangular prism

definition of, 163–164

surface area of, 163–164
volume of, 164

rectangular 3D coordinates, 186

reference axis, 225–226
regular hexagon, 59
regular octagon, 60
regular pentagon, 58–59

regular polygon
defined, 60
interior area of, 66

perimeter of, 64–65
relation, 100–103, 207–208
relativity, 239, 242, 244

rhombus
definition of, 41

diagonals of, 48
interior area of, 52
perimeter of, 51–52

Riemann, Georg, 253
Riemannian geometry, 253
right angle, 6–7, 33
right ascension

definition of, 224–225
hours, minutes, and seconds, 225–226
in spherical coordinates, 227–228

right circular cone
definition of, 167
frustum of, 168–169

surface area of, 167
volume of, 168

right circular cylinder
definition of, 169–170

surface area of, 170
volume of, 170

right-hand rule for vectors, 193

right triangle, 33

scalar, 184

scalar product of vectors, 185, 193
second-equivalent, 239
seconds of right ascension, 225–226

semi-axis, 210–211
side–angle–angle (SAA), 28
side–angle–side (SAS), 26–27

side–side–side (SSS), 26, 35
similar triangles, 22
simultaneous equations, 115–119
sine function, 181

skew lines, 142
slant circular cone

definition of, 169

volume of, 169
slant circular cylinder

definition of, 170–171

volume of, 171
slope, 104–105
space, 138
sphere

definition of, 172–173
surface area of, 173
volume of, 173

spherical coordinates, 226–229
spiral, 212–214, 215
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square
construction of, 89, 90
definition of, 41

interior area of, 53
perimeter of, 53

straight angle, 6–7
straight edge, 77

supplementary angles, 12
symmetric-form equation, 199–200

tangent function, 182
tesseract, 240–241, 248
tetrahedron

definition of, 160–161
regular, 161
surface area of, 161
volume of, 161

theorem of Pythagoras, 34
three-leafed rose, 211, 213
three-point principle, 138

time and displacement equivalents, 245
time line, 235
time-space, 235–238

time-space hypervolume, 243–244
torus

definition of, 174–175

surface area of, 175
volume of, 175

transversal, 49–50
trapezoid

definition of, 42–43
interior area of, 53–54
median of, 49

median with transversal, 49–50
perimeter of, 53
within triangle, 48–49

triangle
acute, 30
definition of, 20–21
drafting, 77

equilateral, 32–33
interior area of, 35
isosceles, 31–32

naming of, 21
obtuse, 31
perimeter of, 34–35

right, 33
sides of, 21

trigonometric function, 65

trigonometry, 65, 179–182
‘‘two-by-two’’ equations, 116
two-point principle, 4

unit circle, 180–181

unit vector, 194–195

variable
dependent, 99, 188, 208

independent, 99, 188, 208
vector

in Cartesian plane, 182–184
in Cartesian three-space, 189–195

cross product of two, 193–194
definition of, 182
direction of, 182–104

dot product of two, 185–186, 193
equivalent, 183, 189–190
magnitude of, 182–184, 190

multiplication by scalar, 184–185, 192–193
orientation of, 182–184
right-hand rule for, 193

scalar product of two, 185, 193
standard form of, 183, 189
sum of two, 184, 192
unit, 194–195

vector product of two, 193
vernal equinox, 224–225, 228
vertical angles

for intersecting lines, 12
for intersecting planes, 151

vertices, 21

x axis, 97, 187
xyt-space, 237
xyz-space, 186

y axis, 98, 187

year-equivalent, 239

z axis, 187
zenith, 229
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