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Insights into Game Theory

Few branches of mathematics have been more influential in the

social sciences than game theory. In recent years, it has become an

essential tool for all social scientists studying the strategic behavior

of competing individuals, firms, and countries. However, the

mathematical complexity of game theory is often very intimidating

for students who have only a basic understanding of mathematics.

Insights into Game Theory addresses this problem by providing

students with an understanding of the key concepts and ideas of

game theory without using formal mathematical notation. The

authors use four very different topics (college admissions, social

justice and majority voting, coalitions and cooperative games, and a

bankruptcy problem from the Talmud) to investigate four areas of

game theory. The result is a fascinating introduction to the world of

game theory and its increasingly important role in the social

sciences.
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Preface

This book is a tour de force of what may be called “verbal

mathematics.” It demonstrates conclusively that mathematics is not

a matter of symbols and equations; rather, it may be characterized as

“precise reasoning that has considerable depth, complexity, or

sophistication.” The book is accessible to everyone who can think.

Also, it is a wonderful introduction to game theory; rather

than “explaining” what the theory is about, it simply does it. If

somebody came from Mars and wanted to know what we mean by

“music,” you could try to “explain” it; but it would be better to play

a Bach fugue, a Verdi aria, some Louis Armstrong jazz, and “Lucy in

the Sky with Diamonds.” The second alternative is what Gura and

Maschler do. Enjoy!

Robert J. Aumann



Introduction

Game theory is a relatively young branch of mathematics that goes

back to the publication of Theory of Games and Economic Behavior

by John von Neumann and Oskar Morgenstern in 1944.1

Game theory undertakes to build mathematical models and

draw conclusions from these models in connection with interactive

decision-making: situations in which a group of people not necessarily

sharing the same interests are required to make a decision.

The choice of the topics reflects our purpose: we wanted to

present material that does not require mathematical prerequisites

and yet involves deep game-theoretic ideas and some mathematical

sophistication. Thus, we ruled out topics from non-cooperative game

theory, which requires some knowledge of probability, matrices, and

point-set topology.

Broadly speaking, the topics chosen are all related to the various

meanings that can be given to the concept of “fair division.” The four

chapters illustrate this.

The first, “Mathematical Matching,” concerns, among other

things, the problem of assigning applicants to institutions of higher

learning. Each applicant ranks the universities according to his scale

of preferences. The institutions of higher learning, in turn, rank the

applicants for admission according to their own scale of preferences.

The question is how to effect the “matching” between the applicants

and the universities. The reader will discover that this problem leads

to unexpected solutions.

The second chapter, “Social Justice,” concerns social decision

rules. In a democratic society it is customary to make decisions by

1 Several “game-theoretic” topics had been discussed before this publication, but not
in any systematic way.
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a vote. The decision supported by the majority of voters is adopted.

But the reader will discover that “majority rule” does not always

yield clear-cut solutions. The attempt to find other voting rules raises

unexpected difficulties.

The third chapter, “The Shapley Value in Cooperative Games,”

addresses, among other things, the following problem: a group of peo-

ple come before an arbitrator and inform him of the expected profits

of every subgroup, as well as of the whole group, if the groups operate

independently. It seems that these data are sufficient for the arbitrator

to decide how to divide the profits if all the litigants operate jointly.

The fourth chapter, “Analysis of a Bankruptcy Problem from

the Talmud,” addresses the following problem: several creditors have

claims to an estate, but the total amount of the claims exceeds the

value of the estate. How should the estate be divided among the cred-

itors? In the chapter several solutions are accepted, two of which are

discussed in the Talmud.

As explained above, this book is not a textbook in game theory.

Rather, it is a collection of a few topics from the theory intended to

open a window onto a new and fascinating world of mathematical

applications to the social sciences. Our hope is that it will motivate

the reader to take a solid course in game theory.

One of the aims of the book is to acquaint the reader and the

student with “a different mathematics” – a mathematics that is not

buried under complicated formulas, yet contains deep mathematical

thinking. Another aim is to show that mathematics can efficiently

handle social issues. A third aim is to deepen the mathematical

thinking of the person who studies this book.

We believe that by studying the topics of this book, the

mathematical thinking of the student will be enriched.

This book selects a small number of topics and studies them in

depth. It shows the student of the social sciences how a mathematical

model can be constructed for real-life issues.

The chapters are independent. A teacher and a student can

choose one chapter or several and cover them in any order.
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In high schools, the book can be used by students on any pro-

gram track or as extracurricular material. The teacher can proceed to

the deeper parts of each chapter if she has a mathematically inclined

class or skip some of the proofs if the class cannot handle them. The

book can also be used by students who want to read independently or

under the guidance of a teacher beyond what is required in school.

At universities and colleges, the book can be used in courses

whose aim is to introduce general game-theoretic topics and deepen

mathematical thinking.

This book owes its origin to the PhD thesis of co-author Ein-Ya

Gura. We thank the Science Teaching Center at the Hebrew Uni-

versity of Jerusalem for permission to publish this translation from

Hebrew, the Center for the Study of Rationality for funding the trans-

lation, and the translator, Michael Borns, not only for the accuracy of

his translation, but for the competence of his editing. We thank James

Morrow for taking the time to read and comment on the manuscript,

Zur Shapira for recommending it to Cambridge University Press, and

Chris Harrison and the staff of Cambridge University Press for their

encouragement and help in bringing the book to its final form. Last,

but not least, we thank Robert Aumann for providing the impetus for

both the Hebrew and the English publication of this book.

Ein-Ya Gura and Michael Maschler,

The Hebrew University of Jerusalem,

April 2008



1 Mathematical Matching

1.1 introduction
In 1962 a paper by David Gale and Lloyd S. Shapley1 appeared at the

RAND Corporation, whose title, “College Admissions and the Sta-

bility of Marriage,” raised eyebrows. Actually, the paper dealt with a

matter of some urgency.

According to Gale,2 the paper owes its origin to an article in the

New Yorker, dated September 10, 1960, in which the writer describes

the difficulties of undergraduate admissions at Yale University. Then

as now, students would apply to several universities and admissions

officers had no way of telling which applicants were serious about

enrolling. The students, who had every reason to manipulate, would

create the impression that each university was their top choice, while

the universities would enroll too many students, assuming that many

of them would not attend. The whole process became a guessing game.

Above all, there was a feeling that actual enrollments were far from

optimal.

Having read the article, Gale and Shapley collaborated. First,

they defined the concept of stable matching, and then proved that

stable matching between students and universities always exists. This

and further developments will be discussed in this chapter.

For simplicity, Gale and Shapley started with the unrealistic

case in which there are exactly n universities and n applicants and

each university has exactly one vacancy. A more realistic description

of this case is a matching between men and women – hence the title

of their paper.

1 Gale, D. and Shapley, L. S. 1962. “College admissions and the stability of marriage,”
American Mathematical Monthly 69: 9–15.

2 Gale, D. 2001. “The two-sided matching problem: origin, development and current
issues,” International Game Theory Review 3: 237–52.
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1.2 the matching problem
Consider a community of men and women where the number of men

equals the number of women.

Objective: Propose a good matching system for the community.3 To

be able to propose such a system, we shall need relevant data about

the community. Accordingly, we shall ask every community mem-

ber to rank members of the opposite sex in accordance with his or

her preferences for a marriage partner. We shall assume that no man

or woman in the community is indifferent to a choice between two

or more members of the opposite sex.4 For example, if Al’s list of

preferences consists of Ann, Beth, Cher, and Dot, in that order, then

Al ranks Ann first, Beth second, Cher third, and Dot fourth.5 Again,

we shall assume that Al is not indifferent to a choice between two or

more of the four women on his list.

Example:

The men are Al, Bob, Cal, Dan.

The women are Ann, Beth, Cher, Dot.

Their list of preferences is:

Women’s Preferences: Men’s Preferences:

Ann Beth Cher Dot

Al 1 1 3 2

Bob 2 2 1 3

Cal 3 3 2 1

Dan 4 4 4 4

Ann Beth Cher Dot

Al 3 4 1 2

Bob 2 3 4 1

Cal 1 2 3 4

Dan 3 4 2 1

Explanation: The numbers in the table indicate what rank a man or

woman occupies in the order of preferences. For example, according

to the men’s ranking of the women, Al ranks Cher first, Dot second,

3 The meaning of “good” will become clear presently.
4 This assumption is introduced to simplify our task. In Section 1.10 we shall see how

to dispense with it.
5 If Al prefers Ann to Beth and Beth to Cher, it follows that he prefers Ann to Cher.

Accordingly, we may list all his preferences in a row.
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Ann third, and Beth last. And according to the women’s ranking of the

men, Cher ranks Bob first, Cal second, Al third, and Dan last. Thus

Al ranks Cher first, while Cher ranks Al just third. If we pair them

off, the match will not work out, if the first or second candidate on

Cher’s preference list agrees to be paired off with her.

Given everyone’s preferences, can you propose a matching system for

the community?

A Possible Proposal:⎛
⎜⎜⎝

Al Bob Cal Dan∣∣ ∣∣ ∣∣ ∣∣
Dot Ann Beth Cher

⎞
⎟⎟⎠

2 × 2 2 × 2 2 × 3 2 × 4

The numbers below each couple indicate what rank one member of a

couple assigns to the other member. The number on the left indicates

what rank the man assigns to the woman; the number on the right,

what rank the woman assigns to the man. (Verify it!)

Argument for the Proposal:

(1) No members of any couple rank each other first.

(2) No members of any couple rank each other 1 × 2 or 2 × 1.

(3) The members of two couples rank each other second.

(4) Cal can be paired off with Cher or Beth, but he prefers Beth.

(5) That leaves Dan and Cher, who can be paired off.

This is indeed a possible proposal, but it is not a good one.

Cher is displeased, because she is paired off with her last choice. She

can propose to Bob, but she will be turned down because she is his last

choice. She will fare no better with Cal, because she is his third choice

while he is paired off with his second choice. On the other hand, if

Cher proposes to Al, he will be very pleased, because she is his first

choice.

The proposal is rejected, because Cher and Al prefer each other to their

actual mates, and one can reasonably assume that they will reject the

matchmaker’s proposal.
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Another Possible Proposal: Let us try to pair off all the men with their

first choice.

Al’s first choice is Cher.

Bob’s first choice is Dot.

Cal’s first choice is Ann.

Dan’s first choice is Dot.

We see that there is a problem: both Bob and Dan prefer Dot. We can

try to pair off Dan with his second choice, Cher, but she is already

paired off with Al. Will Dan’s third choice work out? Dan’s third

choice is Ann, but she is already paired off with Cal. That leaves Dan

with his last choice, Beth.

⎛
⎜⎜⎝

Al Bob Cal Dan∣∣ ∣∣ ∣∣ ∣∣
Cher Dot Ann Beth

⎞
⎟⎟⎠

1 × 3 1 × 3 1 × 3 4 × 4

Three of the four men are paired off with their first choice. Do you

think this proposal will be accepted or rejected?

Still Another Possible Proposal: Now we shall try to pair off all the

women with their first choice. Is it possible?

Ann’s first choice is Al.

Beth’s first choice is Al.

Cher’s first choice is Bob.

Dot’s first choice is Cal.

We see that if we pair off Ann with her first choice, Al, then Beth

cannot be paired off with him too. We can pair off Beth with her

second choice, Bob, but he is already paired off with Cher. And Beth’s

third choice, Cal, is already paired off with Dot. Beth is therefore left

with her last choice, Dan.
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The new matching system is:⎛
⎜⎜⎝

Ann Beth Cher Dot∣∣ ∣∣ ∣∣ ∣∣
Al Dan Bob Cal

⎞
⎟⎟⎠

3 × 1 4 × 4 4 × 1 4 × 1

Three of the four women are paired off with their first choice. Will

they accept or reject this matching system?

Beth can fight this matching. For example, she can approach Bob and

suggest that they both reject this matching and form their own pair.

In so doing Beth gets her second choice – better than her fourth choice

– and Bob gets his third choice – better than his fourth choice. Thus,

the above matching will be rejected by Beth and Bob.

Exercise: Analyze the second proposal above and see whether it can

be rejected by any pair of men and women.

The first proposal was rejected, but we can turn the failed effort

to our advantage. Indeed, we have learned that a matching system

must satisfy the following requirement:

A matching system must be such that under it there cannot be found

a man and a woman who are not paired off with each other but prefer

each other to their actual mates.

Explanation: The matching system must be such that under it Ms. X

cannot be paired off with Mr. x and Ms. Y cannot be paired off with

Mr. y, when Ms. X prefers Mr. y to Mr. x and Mr. y prefers Ms. X to

Ms. Y.

Women:    ...   X   ...   Y   ...

Men:         ...    x   ...   y   ...

The figure indicates the “impossible” part of the system. Speci-

fically, the double arrow indicates that X prefers y to x and y prefers

X to Y.
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If couples X–x and Y–y were paired off according to the matchmaker’s

recommendation, then Ms. X could say to Mr. y, “You prefer me to

your actual mate and I prefer you to mine. Let’s leave them and pair

up.”

Discussion:

Will Ms. X and Mr. y pair themselves off with each other? Not neces-

sarily! Mr. y might say, “Yes, I prefer you, X, to Y, but I prefer Z to

you.”

If y is lucky and Z prefers him to her actual mate, then those two can

pair themselves off with each other. Otherwise, y’s best choice will be

X, whom he prefers to his actual mate. Either way, the matchmaker’s

recommendation will not be implemented.

Definition: A matching system is called stable if under it there cannot

be found a man and woman who are not paired off with each other

but prefer each other to their actual mates.

Example:

For simplicity, we substitute letters for names.

The men: a, b, c, d.

The women: A, B, C, D.

Preference Structure:

A B C D
a 1 2 4 2
b 2 4 2 1
c 3 1 1 3
d 4 3 3 4

A B C D
a 4 2 1 3
b 2 1 3 4
c 3 1 4 2
d 2 4 1 3

We have circled a stable matching system in the above preference

structure. Later we shall learn how to find such a system.⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
b c d a

⎞
⎟⎟⎠

2 × 2 1 × 1 1 × 3 3 × 2
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Note: The position of the circles in the two tables must be

identical.

Verification: Mr. c and Mr. d are paired off with their first choice,

so they need look no further. Mr. b prefers Ms. B to his actual mate,

Ms. A, but Ms. B will turn him down because he is her last choice.

Mr. a prefers Ms. B and Ms. C to his actual mate, D. If he proposes to

B, she will turn him down because he is her second choice and she is

paired off with her first choice. If he proposes to C, she too will turn

him down because he is her last choice.

Remark: When no man wants to deviate from the matchmaker’s rec-

ommendation, then it does not matter if a woman wants to change,

because she will not find a man who will agree to cooperate with her.

Thus, there is no further need to continue the verification.

1.3 exercises
1. Given the following preference structure, check whether the

proposed matching systems are stable. Support your answer.

Women: A, B, C. Men: a, b, c.

Women’s Preferences: Men’s Preferences:

A B C

a 1 1 1

b 2 2 2

c 3 3 3

A B C

a 1 2 3

b 1 2 3

c 1 2 3

i. ii.⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
a b c

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
a c b

⎞
⎟⎟⎠

2. Given the following preference structure, check whether the

proposed matching systems are stable.
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Women: A, B, C. Men: a, b, c.

Women’s Preferences: Men’s Preferences:

A B C

a 2 2 1

b 1 3 3

c 3 1 2

A B C

a 1 2 3

b 1 2 3

c 1 2 3

i. ii.⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
a b c

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
c a b

⎞
⎟⎟⎠

iii. iv.⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
b a c

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
b c a

⎞
⎟⎟⎠

3. Given the following preference structure of a community of four

men and four women:

Women: A, B, C, D. Men: a, b, c, d.

Women’s Preferences: Men’s Preferences:

A B C D

a 1 2 4 2

b 2 4 2 1

c 4 1 1 3

d 3 3 3 4

A B C D

a 4 2 1 3

b 2 1 3 4

c 3 1 4 2

d 2 4 1 3

(1) Is the matching system

⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
b c d a

⎞
⎟⎟⎠stable?

If so, explain. If not, indicate which couple(s) will not follow

the recommendation.

(2) Is the matching system

⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
b a d c

⎞
⎟⎟⎠ stable?
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If so, explain. If not, indicate which couple(s) will not follow

the recommendation.

(3) Using the above preference structure, propose a possible match-

ing system for this community and check its stability.

4. Given the following preference structure of a community of five

women and five men:

Women: A, B, C, D, E. Men: a, b, c, d, e.

Women’s Preferences: Men’s Preferences:

A B C D E

a 5 4 3 2 1

b 1 5 4 3 2

c 2 1 5 4 3

d 3 2 1 5 4

e 4 3 2 1 5

A B C D E

a 1 2 3 4 5

b 5 1 2 3 4

c 4 5 1 2 3

d 3 4 5 1 2

e 2 3 4 5 1

(1) Show that the following matching systems are all stable.

i. ii.⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
a b c d e

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
e a b c d

⎞
⎟⎟⎠

iii. iv.⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
d e a b c

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
c d e a b

⎞
⎟⎟⎠

(2) Find another matching system with a similar structure. Is it

stable?

(3) Verify that in this preference structure all preferences of the

women are the reverse of the preferences of the men. For exam-

ple, Ms. A is Mr. a’s first preference, while Mr. a is Ms. A’s last

preference.
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1.4 further examples
In this section we shall present several preference structures and check

whether there are any stable matching systems.

Example 1

The preference structure is:

A B

a 1 1

b 2 2

A B

a 1 2

b 1 2

There are two possible matching systems for a community of two men

and two women. Let us check whether they are stable.

i.                                  ii.

A        B                      A        B

b a a         b 

i. This matching system is unstable. The double arrow shows how

the system can be undermined.

ii. This matching system is stable because A and a are paired off

with their first choice and therefore will not deviate from the

matchmaker’s recommendation.

Example 2

The preference structure is:
A B

a 2 1

b 1 2

A B

a 1 2

b 1 2

The possible matching systems are:

i.                                  ii.

A        B                      A        B

b         a a         b 
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i. This matching system is stable because A and b are paired off

with their first choice and therefore will not deviate from the

matchmaker’s recommendation.

ii. This matching system is unstable because A and b are paired off

with their second choice and if they pair themselves off with each

other, they will be better off.

Example 3

The preference structure is:

A B

a 2 1

b 1 2

A B

a 1 2

b 2 1

The possible matching systems are:
i. ii.⎛
⎜⎜⎝

A B∣∣ ∣∣
b a

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B∣∣ ∣∣
a b

⎞
⎟⎟⎠

i. This matching system is stable because A and B are paired off with

their first choice and therefore will refuse to annul the match.

ii. This matching system is stable, too, because a and b are paired

off with their first choice and therefore will refuse to deviate from

the matchmaker’s recommendation.

This example shows that if one side (say, the men’s) obtains its first

choice, that is, if one side is satisfied with the match, then the other

side cannnot undermine the system, however dissatisfied it may be

with the match.

A stable matching system is not necessarily a system under

which everyone is satisfied. A matching system is stable when no

unmatched pair will find it beneficial to deviate from the matching

and form their own match. In other words, a stable matching sys-

tem serves the interests of the matchmaker, whose recommendation

will be honored, but it does not necessarily serve the interests of all

community members.
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Example 4

The preference structure is:

A B C

a 3 2 1

b 1 3 2

c 2 1 3

A B C

a 1 2 3

b 3 1 2

c 2 3 1

Two stable matching systems are straightforward in this example:

i. The men obtain their first choice:

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
a b c

⎞
⎟⎟⎠.

ii. The women obtain their first choice:

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
b c a

⎞
⎟⎟⎠.

There is also a third stable matching system, where men and women

all obtain their second choice:

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
c a b

⎞
⎟⎟⎠.

In fact, all those who try to obtain their first choice will be rejected

because they themselves are their favorite’s third choice. (Verify it!)

There are three other possible matching systems for the given

preference structure (see below). Show that they are all unstable.

i. ii. iii.⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
c b a

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
b a c

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
a c b

⎞
⎟⎟⎠

Explain why there is no other matching system.

Example 5: The Roommate Problem

We need to divide an even-numbered set of boys into pairs of room-

mates. Here again, a set of pairs will be called stable if in it there

cannot be found two boys who are not roommates but prefer each
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other to their actual roommates. We shall see that a stable division

does not always exist. In the following example there are three ways of

dividing the boys into pairs. But in each case the division is unstable.

a b c d

a – 1 2 3

b 2 – 1 3

c 1 2 – 3

d 1 2 3 –

The arrows indicate the pairs likely to undermine the division.

i.                         ii.                         iii.

a        b c

    d        c                c        d                  b        d

aa b

In this example d is everyone’s last choice, and therefore his

roommate will look for another roommate. In each case d’s roommate

will find a partner who likes him as his first choice, and therefore this

partner will agree to deviate from the proposed division.

To sum up, the last example shows that in the case of the room-

mate problem it is possible that no stable matching exists. On the

other hand, all the examples of the marriage problem provided thus

far have had a stable matching. Whether this is always the case in

marriage problems is not evident and requires either a proof or a

counter-example.

One can see the difference between the two cases: in the room-

mate problem you can pair any two members whereas in the marriage

problem you cannot pair any two members: namely, you cannot pair

any two women and you cannot pair any two men.

1.5 exercises
1. Is there a stable division of the set into pairs, given the following

preference structure of the boys? If so, provide an example. If not,
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show that no stable matching system exists by checking all the

possibilities.

a b c d

a – 1 2 3

b 3 – 1 2

c 1 2 – 3

d 2 3 1 –

2. Is there a stable division into pairs, given the following prefer-

ence structure? If so, provide an example. If not, show that no stable

matching system exists by checking all the possibilities.

a b c d

a – 3 1 2

b 2 – 1 3

c 2 3 – 1

d 1 3 2 –

3. Is there a stable division into pairs, given the preference structure

below? If so, provide an example.

a b c d

a – 2 3 1

b 1 – 3 2

c 3 2 – 1

d 1 2 3 –

4. Is there a stable division into pairs, given the following preference

structure? If so, provide an example.

a b c d

a – 1 3 2

b 2 – 1 3

c 2 1 – 3

d 2 3 1 –
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1.6 a procedure for finding stable matching
systems (the gale–shapley algorithm)

In connection with a procedure for finding stable matching systems,

three questions naturally arise:

1. Given a preference structure, is one always certain of finding a

stable matching system? Let us recall that a stable division does

not always exist for the roommate problem. Does a stable division

always exist for the matching problem?

2. How does one find a stable matching system?

3. Does only one stable matching system exist? (The answer is no; we

have already seen examples where more than one stable matching

system exists.)

In this section we shall answer the first question in the affirma-

tive, using a procedure that terminates in a stable matching system. In

so doing, we shall be in a position to answer also the second question.

The Gale–Shapley algorithm for finding a stable
matching system
First Stage: Every man turns to the woman who is first on his list and

proposes to her. Every woman who receives more than one proposal

selects her favorite from among those who propose to her and tells the

others that she will never marry them. Every man who is not rejected

is put on a “waiting list” of the woman to whom he proposed.

Second Stage: Every man who was rejected turns to the woman who

is second on his list and proposes to her. Every woman who receives

more than one proposal, including any proposals from the previous

stage, selects her favorite, and puts him on her waiting list. She

informs the others that they are rejected.

Third Stage: Every man who is rejected turns to the woman who is

next on his list – the second on his list if he was put on the waiting

list at a previous stage, or the third on his list if he was rejected twice.

Once again, every woman selects her favorite from among those who
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have proposed to her, including anyone on her waiting list from the

previous stage, puts him on the waiting list, and rejects the others.

The procedure continues – until such time as no man is rejected.

At that stage every man on a waiting list becomes a mate, and the

procedure terminates.

Later we shall prove that this procedure leads to a stable

matching system.

Example 1

The preference structure is:

A B C D

a 3 3 2 3

b 4 1 3 2

c 2 4 4 1

d 1 2 1 4

A B C D

a 1 2 3 4

b 1 4 3 2

c 2 1 3 4

d 4 2 3 1

Stage 1:
A B C D

a c d

b*

Mr. b, marked with an asterisk (*), is rejected. The others are

“waitlisted.”

Stage 2:
A B C D

a c d*

b

Mr. d is rejected (despite having been waitlisted at the previous stage).

Stage 3:
A B C D

a c* b

d

Mr. c is rejected.
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Stage 4:
A B C D

a* d b

c

Mr. a is rejected.

Stage 5:
A B C D

c d b

a*

Mr. a is rejected again.

Stage 6:
A B C D

c d a b

The procedure ends and the proposed matching system is:

⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
c d a b

⎞
⎟⎟⎠.

Exercise: Show that the above matching system is stable.

Example 2

The preference structure is:

A B C D

a 1 3 4 3

b 2 1 2 4

c 3 2 3 1

d 4 4 1 2

A B C D

a 1 2 3 4

b 1 2 4 3

c 1 2 4 3

d 4 1 2 3
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Stage 1:
A B C D

a d

b*

c*

b and c are rejected.

Stage 2:
A B C D

a d*

b

c*

c and d are rejected.

Stage 3:
A B C D

a b d c

The procedure ends and the proposed matching system is:

⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
a b d c

⎞
⎟⎟⎠.

1.7 exercises
1. Find a stable matching system for the following preference struc-

ture:, using the Gale–Shapley algorithm, when the men propose to the

women:

Women: A, B, C, D. Men: a, b, c, d.

A B C D

a 1 2 4 2

b 2 4 2 1

c 3 1 1 3

d 4 3 3 4

A B C D

a 4 2 1 3

b 2 1 3 4

c 3 1 4 2

d 2 4 1 3
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2. Find a stable matching system for the following preference struc-

ture, using the Gale–Shapley algorithm, when the women propose to

the men:

Women: A, B, C. Men: a, b, c.

A B C

a 3 2 3

b 2 3 1

c 1 1 2

A B C

a 1 2 3

b 1 2 3

c 2 1 3

3. Find a stable matching system for the following preference

structure (1) when the women propose to the men, and (2) when the

men propose to the women:

Women: A, B, C, D, E. Men: a, b, c, d, e.

A B C D E

a 5 4 4 5 1

b 4 5 5 4 2

c 3 2 3 2 3

d 2 3 1 1 4

e 1 1 2 3 5

A B C D E

a 1 2 3 4 5

b 1 2 4 3 5

c 2 1 3 5 4

d 4 2 1 5 3

e 4 3 2 1 5

1.8 a stable matching system always exists
In this section we shall prove that for any preference structure, there is

at least one stable matching system. We shall prove this in two stages.

First, we shall show that the procedure described in Section 1.6 must

terminate after a finite number of steps. Second, we shall show that

the final step in the procedure must be a stable matching system.

Theorem:

The Gale–Shapley algorithm terminates after a finite number of steps.

Discussion:

Before proceeding to the proof, let us mention why the theorem

is necessary. It might seem, at first glance, that the procedure of
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proposals and rejections will continue for an infinite number of steps.

It might also seem that one of the men will be rejected by all the

women he courts and ejected from the system. In that case one of the

women remains single too. In what follows we shall show that such

situations are impossible.

Proof:

(1) The number of men in the community equals the number of

women. Therefore, as long as there is a woman in the community

with more than one proposal, there is another woman without any

proposal.

(2) Once a woman has a proposal, she will always have one, because

someone will always be on her waiting list.

(3) When every woman has a proposal, every woman will have

exactly one proposal, because the number of men equals the

number of women. At this stage the procedure terminates, and

there remains only to show that it is indeed possible to get to

this stage.

(4) It is possible to get to the stage at which every woman has a pro-

posal, because at every stage the men propose to the women who

are next on their list; therefore they cannot backtrack and propose

again to the women who rejected them. Because there is a finite

number of men and women in the community, and no going back,

a stage must be reached at which every woman has a proposal.

Based on Step (3) of this proof, the procedure terminates at this

stage.

Theorem:

The Gale–Shapley algorithm terminates in a stable matching system.

Proof:

Let us consider a matching system that is an outcome of the Gale–

Shapley algorithm. We shall limit our attention to two couples in this

system.
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  ...   R   ...   S   ...

  ...    r  ...  s  ...

Suppose Mr. s prefers Ms. R to his actual mate, Ms. S. It must

be shown that Ms. R does not prefer Mr. s to Mr. r, and therefore

will refuse to be paired off with him if he suggests it. Indeed, if Mr. s

prefers Ms. R, then he must have proposed to her at one of the previ-

ous stages. But the fact that he is not paired off with her means that

she rejected him. Why was he rejected? Because at that stage Ms. R

had a proposal from another man whom she preferred to s (not neces-

sarily r). It is possible that at one of the later stages she rejected this

man whom she preferred, in favor of another man whom she preferred

even more, etc.

Eventually, Mr. r proposed, and Ms. R preferred him to all

the men who had proposed to her up to that stage, including Mr. s.

We have now proved that at the end of the Gale–Shapley algorithm

there cannot be found a man and a woman who are not paired off

with each other but prefer each other to their actual mates. The

conclusion is that the algorithm terminates in a stable matching

system.

1.9 the maximum number of courtship stages
in the gale–shapley algorithm

In the previous section we proved that the Gale–Shapley algorithm

terminates in a stable matching system after a finite number of

steps. We shall now clarify the maximum number of courtship stages

in the algorithm, when the number of men equals the number of

women.

Example:

A B

a 1 2

b 2 1

A B

a 1 2

b 1 2
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The courtship procedure of Mr. a and Mr. b:
A B

a

b*

b

Explanation: Mr. a’s and Mr. b’s first choice is Ms. A, so both men

propose to her at the first stage. Ms. A prefers Mr. a to Mr. b, so she

rejects b. At the second stage b proposes to Ms. B and the procedure

terminates in the matching system

⎛
⎜⎜⎝

A B∣∣ ∣∣
a b

⎞
⎟⎟⎠, which is stable.

The courtship procedure in a community of two men and two

women may take only one stage – if both men do not propose to the

same woman. In this case there are no rejections and the courtship

procedure terminates at the first stage.

To sum up: the courtship procedure in a community of two men

and two women will end after at most two stages, because at most one

man will be rejected at the first stage and he will find a partner at the

next stage.

The following examples are drawn from a community of three

men and three women.

Example 1
A B C

a 2 3 1

b 3 1 3

c 1 2 2

A B C

a 1 2 3

b 1 3 2

c 2 1 3

A B C

a c

b*

b
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The stable matching system

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
a c b

⎞
⎟⎟⎠ is obtained after two

stages: the first stage at which everyone proposes to his first choice,

and the second stage at which Mr. b, who was rejected at the previous

stage, proposes to his second choice. The procedure ends at this stage,

because previous to this stage Ms. C did not get a proposal, and by

now every woman has gotten a proposal.

Example 2
A B C

a 2 3 1

b 3 1 3

c 1 2 2

A B C

a 1 2 3

b 1 3 2

c 3 2 1

A B C

a c

b*

a c

b*

a b c

The stable matching system

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
a b c

⎞
⎟⎟⎠ is obtained after three

stages. There are only two rejections in the procedure: Mr. b is rejected

twice – at the first stage and at the second stage. Thus, the procedure

consists of three stages: the first stage at which everyone proposes to

his first choice and b is rejected, the second stage at which b proposes

to his second choice and is rejected, and the last stage at which b

proposes to his third choice and is not rejected, because previous to

this stage Ms. B did not get a proposal, and by now every woman has

gotten a proposal.
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Example 3
A B C

a 2 3 3

b 3 1 1

c 1 2 2

A B C

a 1 2 3

b 1 2 3

c 2 1 3

A B C

a c

b*

a c*

b

a* b

c

c b

a*

c b a

The stable matching system

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
c b a

⎞
⎟⎟⎠ is obtained after five

stages.

Explanation: Every man is rejected once: at the first stage every-

one proposes to his first choice and Mr. b is rejected; at the second

stage b proposes to his second choice and c is rejected; at the third

stage c proposes to his second choice and Mr. a is rejected; at the

fourth stage a proposes to his second choice and is rejected again.

At the next stage a proposes to his third choice, Ms. C, who does

not reject him, because previous to this stage she did not get a

proposal.

We shall show later that five is the maximum number of stages

needed in the case of three men and three women.

Before discussing the general case, let us consider an example

drawn from a community of four men and four women.
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Example:
A B C D

a 3 2 1 3

b 4 3 2 4

c 1 4 3 2

d 2 1 4 1

A B C D

a 1 2 3 4

b 1 2 3 4

c 3 1 2 4

d 2 3 1 4

A B C D

1) a c d

b*

2) a c* d

b

3) a b d*

c

4) a* b c

d

5) d b* c

a

6) d a c*

b

7) d* a b

c

8) c a* b

d

9) c d b*

a

10) c d a b

Explanation: At the first stage every man proposes to his first choice.

Every man is rejected twice, and, after each rejection, every man pro-

poses to his next choice. Thus are added eight more courtship stages.

Mr. b is rejected three times and therefore his proposal to his fourth

choice adds another stage. Thus the procedure consists of ten stages. In

a community of four men and four women, the maximum number of
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courtship stages in the Gale–Shapley algorithm is ten: the first stage,

plus four times two rejections of everyone, plus at most one additional

rejection of one man.

Theorem:

If the number of men in the community is n and the number of women

is n, then the maximum number of courtship stages is n2 − 2n + 2.

Proof: The algorithm terminates as soon as all the women get a

proposal, at which point each woman has exactly one proposal. A max-

imum number of stages is therefore achieved if at each stage only one

man is rejected and if one woman remains without a proposal after all

the men have proposed to all the women except for her; that is, they

propose to (n − 2) women, after the first stage. Since there are n men,

that takes n(n − 2) stages. Thus, the maximum number of stages can

be at most

1 + n(n − 2) + 1 = n2 − 2n + 2

first stage rejections last stage

The previous examples show that this maximum is actually

achieved for n = 3 and n = 4 (calculate!), and similar examples can be

constructed for each n.

1.10 generalization
I. The number of men does not equal the number of women
In every matching system obtained in a community where the num-

ber of men does not equal the number of women, there will be men

or, alternatively, women who are not paired off. The Gale–Shapley

algorithm and its conclusions can be generalized to this case.

Example:

Women: A, B, C, D, E. Men: a, b, c.

A B C D E

a 1 2 1 2 1

b 3 3 2 1 2

c 2 1 3 3 3

A B C D E

a 5 1 2 3 4

b 4 1 2 5 3

c 5 4 1 3 2
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(1) The Men Propose:
A B C D E

a c

b*

a c*

b

– a b – c

The procedure terminates in the matching system

⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
– a b – c

⎞
⎟⎟⎠.

A and D remain single.

(2) The Women Propose:
a b c

A* D B

C

E*

C D* B

E A*

C E B

D* A*

C E B*

A is out. D

C* E D

B

B E* D

C

B C D*

E

D is out. B C E
Here again, the procedure terminates in the matching system⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
– a b – c

⎞
⎟⎟⎠.
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Exercise:

Check whether the above matching system is stable. Your answer

should also take into account the women who are not paired off.

Exercise:

Prove that the Gale–Shapley algorithm always leads to a stable match-

ing system (even when the number of men does not equal the number

of women).

II. Existence of a preference list that does not include all
members of the opposite sex
In the following example, there are men who would rather be single

than be paired off with certain women. Similarly, there are women

who would rather be single than be paired off with certain men. In

such cases, the preference to stay single rather than be paired off with

a certain person is marked with a zero (0). We shall now show that

the Gale–Shapley algorithm can be generalized to this case too.

Example:

The preference list is:

Women: A, B, C. Men: a, b, c, d.

A B C

a 1 1 0

b 2 2 0

c 0 3 0

d 3 4 1

A B C

a 3 1 2

b 0 1 2

c 1 2 3

d 1 0 2

The Men Propose:

A B C

c* a

d b*

d a

b and c are out. c* b*

C is out. d a c*
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The matching system obtained is

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
d a –

⎞
⎟⎟⎠.

Show that even those who are left out cannot undermine the system.

III. Possible Indifference
Until now we have been looking at cases where every community

member has had a strict preference for members of the opposite sex. In

other words, no community member has been indifferent to a choice

between two or more members of the opposite sex. As we said in

Section 1.2, the assumption that there is no indifference was intro-

duced in order to simplify the procedure. We shall now see that this

requirement can be dropped.

Let us see what happens when indifference is allowed. A com-

munity member who is indifferent to a choice between two or more

members of the opposite sex and yet obliged to rank them in order

of preference might say: “My first choice is Ms. B; as for my second

choice, I am indifferent between A and D; as for my third choice, I am

indifferent between C and E; and my fourth choice is F.”

It turns out that there can be a stable matching system even

when there is indifference.

Definition:

A matching system is called stable if under it there cannot be found

a man and a woman who are not paired off with each other but prefer

each other to their actual mates.

Remark:

It follows from this definition that we assume that a man will not

leave his mate for another woman when he is indifferent between the

two, and a woman will not leave her mate for another man when she

is indifferent between the two.

Up to now we have made the assumption that the prefer-

ence order of each member contains no indifference. We can easily
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dispense with this constraint by assigning an arbitrary strict prefer-

ence whenever there is indifference.

Consider the following example:

Women: A, B, C. Men: a, b, c.

A B C

a 3 1 3

b 2 2 1

c 1 3 2

A B C

a 1 2 2

b 1 1 2

c 1 2 3

In this example, Mr. a’s first choice is Ms. A, but he is indifferent

to a choice between B and C, who occupy a lower rank in his order

of preferences. Mr. b’s first choice is A and B, but he is indifferent

to a choice between them; his second choice is Ms. C. There is no

indifference in the women’s preferences.

Let us try to follow the Gale–Shapley algorithm.

A          B          C

a

c

b

According to the preference structure, a and c propose to A, who

is their first choice, but b hesitates, because he prefers A and B

equally. To proceed any further, we need to arbitrarily change the

given preference structure to a preference structure in which there is

no indifference. Specifically, we need to let strict preferences stand

and replace indifference, wherever it occurs, by a strict preference.

For example:

A B C

a 3 1 3

b 2 2 1

c 1 3 2

A B C

a 1 3 2

b 2 1 3

c 1 2 3

Question: Why did we write 3 in b’s row of preferences?
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Given this preference structure, we can use the Gale–Shapley algo-

rithm to obtain a stable matching system.

In the male courtship procedure:

A B C

a* b

c

c b a

The stable matching system is

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
c b a

⎞
⎟⎟⎠.

Is this matching system stable in the original preference structure too?

Does the relation indicated below threaten the system’s

stability?

A        B        C

c         b         a 

Indeed, B prefers a to her actual mate, but a does not prefer B to C;

rather, he is indifferent to a choice between them. An examination

of all the possible relations reveals that deviation from the match-

maker’s recommendation is impossible. Thus, the system is stable in

the original preference structure too.

We shall now use another preference structure in which there

is no indifference. Here again, we shall let the original strict prefer-

ences stand and replace indifference, wherever it occurs, by a strict

preference. For example:

A B C

a 3 1 3

b 2 2 1

c 1 3 2

A B C

a 1 2 3

b 2 1 3

c 1 2 3
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We shall have the men propose according to the Gale–Shapley

algorithm.

A B C

a* b

1) c

c b*

2) a

c a

3) b*

c a b

The stable matching system is

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
c a b

⎞
⎟⎟⎠.

This matching system is stable in the original preference structure

too (verify it!).

Summary: To obtain a stable matching system, given a preference

structure in which there is indifference, one constructs an alternative

preference structure in which there is no indifference and finds a stable

matching system using the Gale–Shapley algorithm. This matching

system will be stable in the original preference structure too. Note

that the Gale–Shapley algorithm, which leads to one stable match-

ing system when there is no indifference, may lead to several stable

matching systems when there is indifference.

Claim: Every stable matching system in a “revised” preference struc-

ture in which there is no indifference is also stable in the original

preference structure in which there is indifference.

Proof: Let us assume, on the contrary, that the stable matching sys-

tem in the revised preference structure is unstable in the original

preference structure in which there is indifference. Now, according

to the original preference structure, there exist Ms. X and Mr. y

who are not paired off with each other but prefer each other to their
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actual mates. Because preference relations (in contrast to indifference

relations) do not change in the conversion to the revised preference

structure in which there is indifference, X and y prefer each other

to their actual mates in this preference structure too. Therefore,

this matching system is unstable in the revised preference structure,

which contradicts our assumption.

The contradiction proves that the assumption made at the beginning

of the proof is incorrect; therefore, the stable matching in the revised

preference structure is also stable in the original preference structure

where indifference occurs.

1.11 exercises
1. Given the following preference structure, find a stable match-

ing system using the Gale–Shapley algorithm when the men

propose:

Women: A, B, C. Men: a, b, c, d.

A B C

a 1 1 3

b 3 2 1

c 2 3 2

d 4 4 4

A B C

a 3 2 1

b 1 2 3

c 2 1 3

d 1 2 3

2. Given the following preference structure, find a stable matching

system using the Gale–Shapley algorithm (1) when the men propose,

and (2) when the women propose:

Women: A, B, C. Men: a, b, c, d.

A B C D E

a 3 1 1 1 2

b 2 2 0 2 1

c 1 3 2 0 0

A B C D E

a 1 3 2 5 4

b 1 2 0 3 4

c 3 2 1 0 0
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3. Given the following preference structure, find a stable match-

ing system using the Gale–Shapley algorithm, when the women

propose:

Women: A, B, C. Men: a, b, c, d.

A B C

a 1 1 0

b 2 0 1

c 3 2 3

d 4 0 2

A B C

a 0 0 1

b 3 1 2

c 2 1 0

d 2 3 1

4. A community consists of three women and three men. According

to the following preference structure, one man and one woman in

the community are indifferent to a choice between members of the

opposite sex.

Women: A, B, C. Men: a, b, c.

A B C

a 1 2 1

b 3 3 1

c 2 1 1

A B C

a 2 1 3

b 1 1 1

c 1 2 3

Determine whether each of the following matching systems is sta-

ble. If a system is unstable, find the couple(s) responsible for the

instability. If a system is stable, explain why.

i. ii.⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
c b a

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
c a b

⎞
⎟⎟⎠

iii. iv.⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
b c a

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
b a c

⎞
⎟⎟⎠
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v. vi.⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
a b c

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
a c b

⎞
⎟⎟⎠

Are there other possible matching systems in this community?

Support your answer.

5. A community consists of three women and three men. According

to the following preference structure, one of the men is indifferent to

a choice between all the women in the community:

Women: A, B, C. Men: a, b, c.

A B C

a 1 1 3

b 2 3 1

c 3 2 2

A B C

a 2 3 1

b 1 1 1

c 1 2 3

(1) Find a stable matching system using the Gale–Shapley algorithm.

(2) Find another stable matching system.

6. In the following preference structure Ms. B is indifferent to a choice

between all the men in the community. Find a stable matching sys-

tem for this preference structure when the men propose, assuming B’s

preferences are the following:

(1) B prefers a, d, b, c, in that order.

(2) B prefers d, c, b, a, in that order.

Is the same matching system obtained in both cases?

Women: A, B, C. Men: a, b, c, d.

A B C

a 1 1 2

b 2 1 1

c 0 1 3

d 0 1 0

A B C

a 3 1 2

b 1 2 0

c 2 1 0

d 0 1 0
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7. In the following preference structure Mr. a is indifferent to a choice

between Ms. A and Ms. B. Find a stable matching system in the

following two cases:

(1) a prefers A, B, C, D, in that order.

(2) a prefers B, A, C, D, in that order.

Check whether the same matching system is obtained in both cases,

using the Gale–Shapley algorithm when the men propose to the

women and vice versa.

Women: A, B, C, D. Men: a, b, c, d, e.

A B C D

a 0 3 1 1

b 3 4 2 0

c 1 0 3 3

d 0 1 4 2

e 2 2 5 0

A B C D

a 1 1 2 3

b 1 0 2 3

c 2 3 1 4

d 1 2 0 3

e 0 1 2 0

8. Find all stable matching systems obtained by the Gale–Shapley

algorithm when the men propose.

Women: A, B, C. Men: a, b, c.

A B C

a 2 2 3

b 1 1 1

c 1 2 2

A B C

a 1 1 2

b 2 3 1

c 2 1 2

9. Given the following preference structure, find a stable matching

system:

Women: A, B, C, D. Men: a, b, c, d.

A B C D

a 0 2 1 4

b 1 3 0 1

c 1 1 2 2

d 2 2 3 3

A B C D

a 1 1 2 0

b 3 1 2 2

c 1 2 3 4

d 0 1 2 0
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1.12 the gale–shapley algorithm and
the assignment problem

The matching problem discussed in the preceding sections, while

interesting, is of limited practical value. Real-life courtship behavior

bears little resemblance to the Gale–Shapley algorithm. For example,

in a real-life matching of n men and n women, the matches are made

haphazardly, not procedurally.

In this section we shall show that, by a slight generalization,

the Gale–Shapley algorithm can be of great value also in everyday

life. Indeed, the medical school admissions problem to which we now

turn our attention is only one example among many demonstrating

that mathematics can be used to solve real-life problems.

The medical school admissions problem
In many countries a large number of applicants seek admission to a

small number of medical schools. The competition for this limited

number of places poses several problems. Because the number of can-

didates is greater than the medical school admissions quotas, many

candidates apply to several medical schools. Imagine a situation in

which the number of applications submitted to the admissions office

of a certain medical school exceeds its admissions quota. In such a case

the admissions office must evaluate all applicants and decide which

ones to accept and which ones to reject. The medical school will offer

admission to some applicants if there are vacancies, and refuse admis-

sion to other (less-qualified) applicants even if there are vacancies.

A priori, the solution seems obvious: the medical school should

accept the most-qualified applicants until the desired quota is filled.

This solution fails the reality test, however, because one cannot

assume that all who are offered admission will not accept what in

their opinion are better offers from other medical schools. If they

do choose other medical schools, then the admissions quota of the

medical school in question will not be filled.

Therefore, we may propose another solution: the medical

school, to fill its desired quota, needs to offer admission to a number
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of applicants that is greater than that quota. But this solution is also

unsatisfactory, because if not enough students decline the offer the

number of acceptances might exceed the absorption capacity of the

institution.

Neither of these two outcomes can be improved, because the

admissions office lacks relevant data about the applicants:

(1) It is not known whether a given applicant has also applied

elsewhere.

(2) It is not known how each applicant ranks the medical schools to

which he has applied.

(3) It is not known which of the other medical schools will offer to

admit each applicant.

As a result of all this uncertainty, medical schools must prepare for

the possibility that the entering class will fail to meet the quota and

that only a portion of the students admitted will indeed be outstanding

students.

The usual admissions procedure poses problems for the appli-

cants as well:

(1) Not without good cause do applicants become suspicious when

asked to declare their order of preferences. For example, an appli-

cant who is asked to list in his application all other medical schools

applied to in order of preference may feel that by telling a medical

school it is, say, his third choice he will be hurting his chances of

being admitted.

(2) Assuming that medical schools draw up waiting lists, an applicant

may be informed that he is not admitted but may be admitted later

if a vacancy occurs. This situation poses new problems. Suppose

the applicant is accepted by one medical school and placed on the

waiting list of another that he prefers.

1. Should he play safe by accepting the first or take a chance that

the second will admit him later?
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2. Is it ethical to accept one school without informing the other

and then withdraw this acceptance because the second school

admits him later?

The source of the difficulties here described is the lack of data in the

admissions offices of the medical schools on the one hand, and the

(not wholly unfounded) suspicions of the applicants on the other.

One may ask how all this uncertainty relates to the matching

problem. As we shall see, a generalization of the Gale–Shapley algo-

rithm yields a stable solution, which removes all the above-mentioned

difficulties.

It is possible to solve these problems and assign applicants

among medical schools by means of an independent “placement

center,” where data is collected and assignments6 are made in the

following manner:

(i) Each applicant turns to the placement center and submits a list

of the medical schools that he is willing to accept, omitting only

those medical schools that he is unwilling to accept even if there

are vacancies.

(ii) Each applicant ranks the medical schools that he is willing to

accept in order of preference. (For convenience, we assume that

there are no instances of indifference; that is, there is a strict order

of preferences.) He then submits his ranking to the placement

center.

(iii) The placement center sends each medical school a list of all

applicants who applied to that medical school.

(iv) Each medical school announces its admissions quota.

(v) Each medical school submits to the placement center a list of

all applicants ranked in accordance with its own preferences

and informs the placement center which applicants will not be

admitted even if there are vacancies.

6 Assignment is the association of applicants and places. The problem considered in
this section is a special case of a more complicated assignment problem.
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Now, the placement center has all the necessary information to revise

each applicant’s preference order by omitting all the medical schools

that will never admit him. At this point, the procedure for the assign-

ment of applicants to medical schools can start by implementing the

Gale–Shapley algorithm as follows:

(a) All applicants are referred to the medical school of their first choice

according to the new preference order. The medical schools whose

number of applicants at this stage is less than or equal to their

quota remain on a waiting list. If the number of candidates is

greater than the quota, the applicants are selected according to

the preference order of the medical school until the quota is filled,

and any applicants left are rejected.

(b) The applicants who have been rejected are then referred to their

next-choice medical school. They are added to the list from

the previous stage. If the number is less than or equal to the

quota, all of them remain on the new waiting list. Otherwise,

they are selected according to the preference order of the med-

ical school until the quota is filled, and any applicants left are

rejected.

The procedure continues, until there are no more rejections. The pro-

cedure terminates when every applicant either is on a waiting list or

has been rejected by every medical school to which he is willing and

able to apply. At this point all the medical schools admit everyone

on their waiting list. The rest will not go to any medical school. The

assignment thus achieved is stable.

1.13 exerci ses
1. Given the following preference structure, find a stable assignment

of applicants to medical schools, using the Gale–Shapley algorithm.

Medical schools:
A – quota of 3

B – quota of 4

C – quota of 6
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Applicants: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o.

The preference structure:

a b c d e f g h i j k l m n o

A 1 5 2 4 3 10 6 9 11 7 8 14 12 13 15

B 1 4 2 3 6 14 5 13 12 11 7 8 9 15 10

C 5 2 1 14 6 12 13 7 8 9 10 11 15 3 4

a b c d e f g h i j k l m n o

A 1 3 1 1 2 2 3 2 2 3 1 1 2 2 1

B 2 1 3 2 1 3 2 1 3 1 2 3 1 3 2

C 3 2 2 3 3 1 1 3 1 2 3 2 3 1 3

2. Given five medical schools:

A – quota of 9

B – quota of 6

C – quota of 7

D – quota of 5

E – quota of 4

and twenty applicants: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p,

q, r, s, t.

Their preference structure is:

a b c d e f g h i j k l m n o p q r s t

A 8 9 1 0 0 0 2 3 0 6 4 5 0 0 10 0 0 0 0 7

B 1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 0

C 1 2 0 0 0 0 0 3 6 0 4 5 8 9 0 0 0 0 0 7

D 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1 2 3 5 0

E 2 3 0 4 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0

a b c d e f g h i j k l m n o p q r s t

A 1 0 2 1 2 1 5 1 0 2 1 1 0 0 0 0 0 4 1 1

B 2 0 3 0 1 0 1 2 0 0 2 2 4 0 0 0 1 0 2 0

C 3 0 4 0 3 0 2 3 0 0 3 3 1 1 1 0 0 1 3 2

D 0 1 5 0 0 2 3 4 0 0 4 0 2 2 0 1 0 2 4 0

E 0 2 1 0 0 3 4 0 1 1 5 0 3 0 0 0 0 3 5 0
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Find a stable assignment when medical schools “make bids” to

applicants, using the Gale–Shapley algorithm.

3. Given five medical schools:

A – quota of 3

B – quota of 2

C – quota of 1

D – quota of 3

E – quota of 1

and ten applicants: a, b, c, d, e, f, g, h, i, j.

Their preference structure is:

a b c d e f g h i j

A 10 5 1 4 2 7 3 6 8 9

B 10 5 1 4 2 7 3 6 8 9

C 10 5 1 4 2 7 3 6 8 9

D 10 5 1 4 2 7 3 6 8 9

E 10 5 1 4 2 7 3 6 8 9

a b c d e f g h i j

A 1 1 1 1 1 1 1 1 1 1

B 2 2 2 2 2 2 2 2 2 2

C 3 3 3 3 3 3 3 3 3 3

D 4 4 4 4 4 4 4 4 4 4

E 5 5 5 5 5 5 5 5 5 5

Find a stable assignment, using the Gale–Shapley algorithm:

(1) when applicants apply to medical schools.

(2) when medical schools make bids to applicants.

What is interesting about these two assignments?

4. Prove that applying the Gale–Shapley algorithm to the assign-

ment problem described in the previous section yields a stable

assignment.
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5. Describe how the Gale–Shapley algorithm can be used to

solve the assignment problem when medical schools make bids to

applicants.

1.14 optimality
It has been seen that some preference structures yield more than one

stable matching system. This raises a few questions.

(1) Is there one stable matching system that is everyone’s favorite?

Assuming that there is no indifference, the answer is no, because

if there are two stable matching systems, then at least one man

is paired off with a different woman in the second system, and

necessarily prefers one system to the other.

(2) Is there one stable matching system that is the men’s favorite?

Surprisingly, the answer is yes. The same goes for the women:

there is one stable matching system that is the women’s favorite.

We shall illustrate each of these points by way of example.

Example:

Given the following preference structure:

Women: A, B, C, D. Men: a, b, c, d.

A B C D

a 3 4 1 1

b 2 2 3 4

c 4 1 2 3

d 1 3 4 2

A B C D

a 2 1 4 3

b 3 2 1 4

c 2 4 3 1

d 4 2 1 3

When the men propose, the following matching system is obtained

by the Gale–Shapley algorithm (verify it!):

System 1:⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
a d b c

⎞
⎟⎟⎠
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When the women propose, the following matching system is obtained

by the Gale–Shapley algorithm (verify it!):

System 2:⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
d b c a

⎞
⎟⎟⎠

The following matching system, which is not obtained by the Gale–

Shapley algorithm, is stable too (verify it!):

System 3:⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
a b c d

⎞
⎟⎟⎠

There are no other stable matching systems for this preference

structure (verify it!).

In the following table, we include what preference ranking is assigned

to each man and woman in the above three stable systems.

Male Courtship Female Courtship Other System

A B C D : 3 3 3 3 1 2 2 1 3 2 2 2

a b c d : 2 1 1 2 3 2 3 4 2 2 3 3

System 1 System 2 System 3

Let us see which system each woman will prefer and which system

each man will prefer:

Ms. A will prefer System 2, because she gets her first choice there.

Ms. B will prefer System 2 or 3, because she gets her second choice

in both and her first choice in neither.

Ms. C will prefer System 2 or 3 for the same reason that Ms. B

prefers them.

Ms. D will prefer System 2, because she gets her first choice there.

Note: Systems 2 and 3, which are best for Ms. B and Ms. C, are equally

good for them. But only System 2 is best for all the women.
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A similar situation obtains among the men: in System 1, obtained by

the Gale–Shapley algorithm when the men propose, each man gets

the best choice that he can get in any stable matching system.

Again, it is worth noting that for Mr. a, System 3 is equally good.

The stress is on the word “equally”; that is, System 3 is as good as,

but not better than, System 1. Only System 1 is best for all the men.

To sum up: the matching system that is obtained when the

men propose is optimal for every man and the matching system that

is obtained when the women propose is optimal for every woman,

when “optimal” is defined as follows:

Definition:

A stable matching system is called optimal for a given man if he

is at least as well off under it as under any other stable matching

system. Similarly, a stable matching system is called optimal for a

given woman if she is at least as well off under it as under any other

stable matching system.

Note: We are comparing only stable matching systems. The system

in question must be stable, and bears comparison only to other sta-

ble matching systems. The satisfaction of a single individual with an

unstable matching system is irrelevant, because an unstable matching

system will not last and will be undermined by internal deviations.

Optimality Theorem:

For every preference structure, the matching system obtained by the

Gale–Shapley algorithm, when the men propose, is optimal for the

men. The matching system obtained by the Gale–Shapley algorithm,

when the women propose, is optimal for the women.

Preliminaries to the Proof of the Theorem:

For the sake of the proof, we define the following terms:

Definition:

Ms. K is called possible for Mr. k if there exists a stable matching

system in which they are paired off with each other.
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Definition:

Ms. K is called impossible for Mr. k if there does not exist a stable

matching system in which they are paired off with each other.

Note: To prove that Ms. K is possible for Mr. k, it is enough to indicate

one stable matching system in which they are paired off with each

other. However, to prove that Ms. K is impossible for Mr. k, it must

be shown that there is no stable matching system in which they are

paired off with each other.

Proof of the Theorem:

We shall prove the theorem for the case where the number of men and

women is equal, there is no indifference, and no community member

prefers staying single. We shall examine the procedure when the men

propose. The proof for the case where the women propose is obtained

by reversing the gender roles.

The theorem is proved if it is seen that every man rejected by a

woman is rejected only by a woman who is impossible for him; that

is, every man is rejected only by women with whom he cannot be

paired off in any case in a stable matching system.

If that is true, then every man, after proposing according to his

preferences, will eventually be paired off with the woman he prefers

most among the women possible for him, that is, with the woman he

prefers most among all the stable systems.

Claim:

In any male courtship procedure, if Mr. x is rejected by Ms. X, then

she is impossible for him.

Proof of the Claim:

Let us examine the first stage of the Gale–Shapley algorithm. All the

men propose to their first choice. Every woman who gets more than

one proposal selects her favorite from among those who have proposed

to her and informs him that he is on her waiting list, but makes him

no promises. She informs the others that they have been rejected.

Women who get no proposals at this stage wait for the next stage.
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We shall consider Ms. X, who at the first stage gets proposals

from Mr. x and Mr. y, and maybe others. Suppose she prefers x to y and

so rejects y. Then suppose there is an alternative matching system in

which Mr. y is paired off with Ms. X. This is represented below.

 X                     X     Y

 x

y*                     y     x

Let us examine the alternative matching system. X prefers x

to y; we know that at the first stage of the courtship procedure X

rejected y in preference to x. For his part, x prefers X to Y; indeed, X is

his first choice because he proposed to her already at the first stage of

the courtship procedure. Therefore, the alternative matching system

cannot be stable.

Thus we have proved that a man who is rejected at the first stage

is rejected by a woman who is impossible for him. Now we shall prove

that a man who is rejected at any stage of the procedure is rejected by

a woman who is impossible for him.

Suppose the contrary is true. That is, suppose there exists a stage

(of course, as we proved, it cannot be the first stage) at which a man

is rejected by a woman who is possible for him. Thus, there is a first

time that this happens. That is, up to this stage, all the women who

rejected men were impossible for those men and now, for the first

time, there comes along Ms. Z who rejects Mr. z because she prefers

Mr. w to him. But Z is possible for z; that is, there exists an alternative

stable matching system in which they are paired off, as shown below.

 Z                     Z     W

z*

w                      z      w

Men propose; 
z is rejected

Alternative stable
matching system

No doubt, Ms. Z prefers w to z, because she rejected z during

the courtship procedure. Because the alternative system is assumed

to be stable, w prefers W to Z. (Explain why!)
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If w prefers W to Z, then during the courtship procedure he pro-

posed to W before he proposed to Z, and if he then gets to Z, then he

was rejected by W. Hence w was already rejected at a previous stage by

a woman who was possible for him and therefore this is not the first

time that such a rejection has occurred, contrary to our assumption

that it is.

We have come up against a contradiction; the contradiction

proves that our assumption is wrong. The assumption was that there

exists a case where a woman rejects a man in spite of the fact that she

is possible for him. Thus, such a case does not exist. Therefore, we

have proved that every man who is rejected by a woman is rejected by

a woman who is impossible for him.

As we said, this conclusion completes the proof of the Optimal-

ity Theorem, according to which the matching system obtained by

the Gale–Shapley algorithm, when the men propose, is optimal for

the men. The proof of the second part of the Optimality Theorem is

similar.

We see, then, that when the men take the initiative to propose

and the women remain passive, the result is favorable to the men:

they obtain the best choices for themselves from among all the stable

systems. This result holds when the number of men is not equal to

the number of women, as well as for assignment problems of a more

general nature, such as the one described in Section 1.12 (p. 37).

In all these cases, the side that proposes obtains the most

favorable result from among all the stable results.

This is not the case when there is indifference. Let us examine

the example in Section 1.10, III (p. 30). Here there is indifference in

the original preference structure.

Women: A, B, C. Men: a, b, c.

A B C

a 3 1 3

b 2 2 1

c 1 3 2

A B C

a 1 2 2

b 1 1 2

c 1 2 3



1.15 exercises 49

To get a stable matching system, we have arbitrarily changed the orig-

inal preference structure to a preference structure in which there is

no indifference. We present two possibilities:

i.

A B C

a 3 1 3

b 2 2 1

c 1 3 2

A B C

a 1 3 2

b 2 1 3

c 1 2 3

ii.

A B C

a 3 1 3

b 2 2 1

c 1 3 2

A B C

a 1 2 3

b 2 1 3

c 1 2 3

If we implement the Gale–Shapley algorithm when the men propose,

we get two different stable matching systems:⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
c b a

⎞
⎟⎟⎠, for the first preference structure, and

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
c a b

⎞
⎟⎟⎠,

for the second.

Each of these systems is optimal for the revised preference structure

in which there is no indifference, but it cannot be said that they are

both optimal for the original structure. In the above example, the two

matching systems are equally good for Mr. a, because he is indifferent

to the choice between B and C, but the first system is better for Mr. b,

because he prefers B to C. Note that each matching system is optimal

for the revised preference structure in which there is no indifference,

but not necessarily for the original preference structure in which there

is indifference.

1.15 exercises
1. At the beginning of Section 1.14 (p. 43) we discussed a case

where there are two optimal matching systems for one man. Can a



50 mathematical matching

situation exist where there are two optimal matching systems for all

the men?

2. Consider the example at the beginning of Section 1.14.

(1) Are all the women possible for Mr. d? If not, which women are

impossible?

(2) Which women are possible for Mr. a?

(3) Which women are possible for more than one man? Which men

are they possible for?

3. Given the following preference structure:

Women: A, B, C. Men: a, b, c.

A B C

a 1 1 2

b 2 3 3

c 3 2 1

A B C

a 2 3 1

b 3 2 1

c 1 2 3

(1) Is A possible for a?

(2) Is A possible for b?

(3) Is B possible for b?

4. Given the following preference structure:

Women: A, B, C, D, E. Men: a, b, c, d, e.

A B C D E

a 1 4 4 1 3

b 4 5 2 2 4

c 2 2 3 3 1

d 3 3 1 4 5

e 5 1 5 5 2

A B C D E

a 3 4 1 2 5

b 5 1 4 2 3

c 3 4 5 1 2

d 3 2 4 5 1

e 2 3 1 4 5

(1) Find an optimal matching system for the men.

(2) Find an optimal matching system for the women.

(3) Is the same matching system obtained in both cases?
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5. Given the following preference structure:

Women: A, B, C. Men: a, b, c, d.

A B C

a 1 1 4

b 3 3 1

c 2 4 2

d 4 2 3

A B C

a 2 3 1

b 2 1 3

c 3 1 2

d 1 3 2

(1) Find an optimal matching system for the women.

(2) Find an optimal matching system for the men.

(3) Is the same matching system obtained in both cases?

6. Given the following preference structure:

Women: A, B, C. Men: a, b, c.

A B C

a 3 2 1

b 2 1 2

c 1 3 3

A B C

a 1 1 2

b 1 2 2

c 1 2 3

Find all the stable matching systems obtained by the Gale–Shapley

algorithm when the men propose. Are they optimal for the men in

the original preference structure too?

7. Given the following preference structure:

Women: A, B, C, D. Men: a, b, c, d.

A B C D

a 4 4 3 1

b 3 3 4 2

c 2 1 1 3

d 1 2 2 4

A B C D

a 1 1 2 2

b 1 2 3 4

c 2 1 4 3

d 2 3 1 4

(1) Find all the stable systems obtained by the Gale–Shapley algo-

rithm when the men propose to the women and vice versa.

(2) What can be concluded from these findings? (This will be further

discussed in the next section.)
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1.16 condition for the existence of a unique
stable matching system

In previous sections we looked at preference structures with more

than one stable matching system.

The male courtship procedure leads to a matching system at one

extreme, which favors the interests of the men. Similarly, the female

courtship procedure leads to a matching system at the other extreme,

which favors the interests of the women.

We have seen that, in general, there exist several stable match-

ings for a given preference structure. We shall now discuss cases where

a unique stable matching exists for a given preference structure.

Example:

Consider the preference structure discussed in Section 1.6, Example 1

(p. 16):

A B C D

a 3 3 2 3

b 4 1 3 2

c 2 4 4 1

d 1 2 1 4

A B C D

a 1 2 3 4

b 1 4 3 2

c 2 1 3 4

d 4 2 3 1

We found that when the men propose, the matching system

obtained is:⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
c d a b

⎞
⎟⎟⎠.

Now we shall apply the Gale–Shapley algorithm when the women

propose:

Stage 1:
a b c d

B D A*

C
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Stage 2:
a b c d

B D* C

A

Stage 3:
a b c d

B* A C

D

Stage 4:
a b c d

D A C*

B

Stage 5:
a b c d

C D A B

At this stage the algorithm terminates and the matching system

obtained is:⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
c d a b

⎞
⎟⎟⎠.

This is the same matching system that was obtained when the men

proposed.

Are there other stable matching systems?

It seems that it will be necessary to check twenty-three addi-

tional systems, but in fact this will not be necessary. There is a unique

stable matching system for the given preference structure. This is

derived from the following theorem:

Theorem:

Assuming that there is no indifference, if the male courtship proce-

dure and the female courtship procedure lead to the same matching

system, then there is a unique stable matching system for the given

preference structure.
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Proof: Let 1 denote the matching system obtained through the male

courtship procedure (the same system, as we said, that was obtained

through the female courtship procedure). Let 2 be a stable matching

system different from 1. We shall prove that System 2 cannot be stable.

System 2 is different because it has a couple (a, B) that does not appear

in System 1. In System 1, a is paired off with A and B with b.

A    B                      A    B

a     b  x      a     .....b

    System 1                 System 2 

Let x denote A’s mate in System 2, where x and a are not the

same person.

No doubt, a prefers A to B, because A is the optimal choice for

him and this choice is different from B, and because indifference was

assumed not to exist.

Similarly, A will prefer a to x, because a is the optimal choice

for her and this choice is different from x. It follows that this system

is unstable.

1.17 exercises

1. Is

⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
d c e a b

⎞
⎟⎟⎠ a unique stable matching system for the

following preference structure?

Women: A, B, C, D, E. Men: a, b, c, d, e.

A B C D E

a 5 4 5 4 5

b 4 5 4 5 3

c 1 1 3 3 1

d 2 3 1 1 2

e 3 2 2 2 4

A B C D E

a 1 5 2 4 3

b 4 1 2 5 3

c 5 1 2 3 4

d 1 2 3 5 4

e 2 4 1 3 5
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2. Is there a common optimal matching system for men and women

for the following preference structure?

Women: A, B, C, D. Men: a, b, c, d, e.

A B C D

a 0 1 1 5

b 1 5 3 1

c 0 2 2 4

d 3 4 0 2

e 2 3 4 3

A B C D

a 1 3 0 2

b 3 1 2 4

c 4 1 2 3

d 3 2 1 0

e 2 3 1 4

3. Is there a unique stable matching system for the following prefer-

ence structure?

Women: A, B, C. Men: a, b, c, d.

A B C

a 3 3 1

b 1 1 2

c 2 4 0

d 4 2 3

A B C

a 1 2 3

b 2 3 1

c 2 1 0

d 1 3 2

4. Is

⎛
⎜⎜⎝

A B C –∣∣ ∣∣ ∣∣ ∣∣
d c a b

⎞
⎟⎟⎠ a unique stable matching system for the fol-

lowing preference structure? If not, find another stable matching

system.

Women: A, B, C. Men: a, b, c, d.

A B C

a 1 4 3

b 2 3 4

c 0 2 2

d 3 1 1

A B C

a 2 3 1

b 0 2 1

c 1 2 3

d 1 3 2

1.18 discussion
Gale and Shapley were the first to ask whether their algorithm for

matching men and women was applicable to the college admissions
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problem. As they wrote in the conclusion of their paper, “In mak-

ing the special assumptions needed in order to analyze our problem

mathematically, we necessarily moved further away from the original

college admissions question, and eventually in discussing the mar-

riage problem, we abandoned reality altogether and entered the world

of mathematical make-believe. ... It was our opinion, too, however,

that some of the ideas introduced here might usefully be applied to

certain phases of the admissions problem.”

What Gale and Shapley did not know at the time was that the

Association of American Medical Colleges had already for ten years

been applying the Gale–Shapley algorithm to the task of assigning

interns to hospitals in the United States. By a process of trial and error

that spanned over half a century, the Association in 1951 adopted the

procedure, later rediscovered by Gale and Shapley, that was hospital-

optimal. A detailed description of this procedure can be found in Two-

Sided Matching by A. E. Roth and M. Sotomayor.7 The book contains

many extensions that evolved after the appearance of the paper by

Gale and Shapley.

1.19 review exercises
1. Given the preference structure:

A B C

a 1 2 4

b 2 1 1

c 3 3 2

d 4 4 3

A B C

a 1 2 3

b 1 2 3

c 2 3 1

d 3 1 2

Is

⎛
⎜⎜⎝

A B C –∣∣ ∣∣ ∣∣ ∣∣
a c d b

⎞
⎟⎟⎠ a stable matching system? Explain.

7 Roth, A. E. and Sotomayor, M. 1990. Two-sided matching: a study in game-theoretic
modeling and analysis. Cambridge: Cambridge University Press.
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2. Given the preference structure:

A B C D

a 2 4 2 3

b 1 1 3 2

c 3 2 4 4

d 4 3 1 1

A B C D

a 2 1 3 4

b 3 1 2 4

c 3 2 4 1

d 1 2 4 3

(1) Find a stable matching system using the Gale–Shapley algorithm

when the men propose.

(2) Is there a unique stable matching system for this preference

structure? Explain.

3. Given the preference structure:

A B C D E

a 1 1 2 3 3

b 2 3 1 1 2

c 3 2 3 2 1

A B C D E

a 2 1 3 4 5

b 3 1 2 5 4

c 3 1 4 2 5

(1) Find a stable matching system using the Gale–Shapley algorithm

when the women propose.

(2) Which women do not have a mate? Will these women remain

without a mate in every other stable matching? Support your

answer.

4. Given the preference structure:

A B C D

a 3 0 3 4

b 4 1 1 3

c 1 0 2 1

d 2 2 4 2

A B C D

a 1 2 0 0

b 1 3 2 4

c 0 1 2 3

d 3 1 2 4

Find a stable matching system.
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5. Given the preference structure:

A B C

a 3 2 1

b 1 1 2

c 2 1 3

A B C

a 1 1 2

b 2 1 3

c 3 2 1

(1) Find a stable matching system, using the Gale–Shapley algorithm

when the men propose to the women and vice versa.

(2) Do these two courtship procedures lead to two different stable

matching systems? If so, what are they?

6. Given the preference structure:

A B C

a 3 1 1

b 2 2 2

c 0 2 3

d 1 3 4

A B C

a 1 2 0

b 1 1 2

c 2 1 3

d 0 2 1

Find all possible stable matching systems, using the Gale–Shapley

algorithm.

7. Given the preference structure:

A B C D E

a 1 3 5 1 1

b 2 2 4 3 3

c 3 4 3 2 5

d 4 0 2 4 2

e 5 1 1 0 4

A B C D E

a 0 2 1 3 0

b 3 2 1 4 5

c 2 1 0 3 4

d 3 1 2 5 4

e 2 3 1 4 5

(1) Find an optimal matching system for the men.

(2) Show that for the above preference structure, this is the optimal

matching system for the women too.

(3) Are there other stable matching systems for the above preference

structure? Support your answer.



2 Social Justice

2.1 presentation of the problem
In democratic society, the prevalent method of decision-making is

majority rule. This method attempts to aggregate many individual

views and opinions into a single social decision.

Suppose there is a community of three voters who must make

a decision by choosing one of three alternatives (say, disarmament,

cold war, or open war). A society that behaves rationally will estab-

lish a preference order with regard to the three alternatives on the

basis of voter preferences, choosing the alternative that is the first

preference. If, for example, the society establishes a preference order

in which the first preference is disarmament, the second preference is

cold war, and the third preference is open war, the choice will be for

disarmament.

Majority rule is the natural way to make a social decision on

the basis of voter preferences.

Consider the following example, known as the “voting

paradox.”

A certain amount of the municipal budget is unspent and the city

council must decide how to invest it. It has three options: investment

in education, investment in security, investment in health. (The sum

is too small to divide feasibly among the three options.)

Sitting on the city council are representatives of three parties:

Left party: 3 members

Center party: 4 members

Right party: 5 members
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The parties’ list of preferences is:

Center (4) Left (3) Right (5)

health education security

security health education

education security health

The preferences are listed in the columns in descending order.

For example, the Right party prefers to invest the money in secu-

rity. Its second preference is investment in education, while its third

preference is investment in health.

It makes little sense to vote on all the alternatives together in

one vote. Such a vote would result in a decision to invest in secu-

rity (5 to 3 or 4), whereas there is a clear majority in favor of health

over security (7 to 5), because both the Left party and the Center

party prefer investment in health to investment in security. There-

fore, a proposal is adopted to vote on the different alternatives in pairs

(“pairwise voting”).

“Security” vs. “education” – the majority is in favor of “security”

(9 to 3).

“Security” vs. “health” – the majority is in favor of “health” (7 to 5).

In other words, the majority prefers “health” to “security,” and

it prefers “security” to “education.” It therefore seems that the

city council will prefer “health” to “security” and “security” to

“education.”

One may therefore conclude that the social preference is:

health

security

education

However, one of the council members calls for a vote on “health” vs.

“education.” Remarkably, it turns out that in the majority opinion,
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“education” is preferred to “health” (8 to 4). In this example, decision

by majority leads to the absurd:

health security education

security education health

The voting results show that health is preferred to security, security is

preferred to education, and education is preferred to health. We shall

formulate this using a preference symbol:

health � security � education � health

This relation is a cyclic preference relation because, for any alter-

native, there exists another alternative that is preferred to it. That

is, there is no most-preferred alternative and therefore majority rule

provides no clear guidance as to how to spend the budget.

This paradox has long been known. The French mathematician

and philosopher Marquis de Condorcet first noted it in 1785.

It seems that in this example majority rule, which establishes

a social preference on the basis of voter preferences, does not yield

rational behavior.

Let us consider another way of making a social decision. The

social decision on how to spend the rest of the budget will depend on

the relative power of the parties.

security 5
12

health 4
12

education 3
12

Explain why this proposal will be rejected by a majority.

Another option is that the social decision will be whatever the most

powerful party dictates.

security

education

health

Does this meet your intuition of a just decision?
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The question is whether there is a decision-making model for

society that can aggregate known personal preferences in a way that

will meet our intuitive demands for a just method of decision-making.

The American economist Kenneth Arrow1 tried to answer this

question. In this chapter we shall discuss the results of his research.

2.2 mathematical description
of the problem

In human society, different individuals are likely to have different

preference orders with regard to a choice of alternatives. We shall indi-

cate the alternatives by lowercase letters: x, y, z ..., and the individuals

by numbers: 1, 2, 3 ... .

The preference orders of the individuals in the society can be

arranged in columns, as in the following example:

1 2 3 4

x y x∼y t

y x z x∼z

z t t y

t z

In this example, 1’s first preference is alternative x, followed by y, and

so on. In contrast, 2’s first preference is alternative y, followed by x,

and so on. 3 is indifferent to a choice between x and y, but he wants

one of them to be his first preference. 4’s first preference is t, he is

indifferent to a choice between x and z, but he wants one of them to

be his second preference, and so on.

This way of listing preferences involves several implicit

assumptions, most of them reasonable.

Assumption A:

It is impossible for anyone to prefer x to x.

Assumption B: Transitivity of the preference relation

If someone prefers x to y and y to z, then he prefers x to z.

1 Arrow, K. J. 1951. Social choice and individual values. New York: J. Wiley
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From assumption A it follows that x cannot appear at different places

in the same column. From assumption B it follows that the listing of

preferences in descending order of importance describes the preference

order not only between two consecutive alternatives in the column,

but also between nonconsecutive alternatives in the column.

Assumption A is very intuitive. We would be puzzled were

someone to tell us that he prefers this chocolate cake to this same

chocolate cake. Assumption B, however, is less intuitive. For exam-

ple, why is it that one would not say that he prefers brownies to cake,

cake to ice cream, and ice cream to brownies?

In fact, experience shows that if someone is asked many

questions about his preferences, his answers often reveal a lack of

transitivity. The question is whether his answers reflect his actual

preference order or whether that is not the case because he has not

thought things through properly.

To summarize: when someone describes preferences that lack

transitivity, it is far from clear what he means by the word “prefer.”

For our part, we shall work from the assumption that everyone has a

preference order that confirms the transitivity property.

Assumption C: Asymmetry

If someone prefers x to y, then he does not prefer y to x.

When someone says that he prefers x to y, it is clear that he does not

prefer y to x.

This way of listing two or more alternatives in the same row in

a column of preferences involves additional implicit assumptions, all

tied to the concept of indifference. We shall formulate four of them:

Assumption D: The reflexive relation of indifference

It is impossible for anyone not to be indifferent between x and x.

Assumption E: The transitive relation of indifference

If someone is indifferent to a choice between x and y and he is indif-

ferent to a choice between y and z, then he is indifferent to a choice

between x and z.
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Assumption F:

If someone prefers x to y and is indifferent to a choice between y and z,

then he prefers x to z.

Assumption G:

If someone prefers y to x and is indifferent to a choice between y and z,

then he prefers z to x.

The following assumption is the most important.

Assumption H: The Completeness Assumption:

For any two alternatives x and y, there exists exactly one of the fol-

lowing preference orders: the preference for x over y, the preference

for y over x, indifference to a choice between x and y.

If this assumption did not exist, then there would be alternatives that

we would not know how to include in a preference order.

2.3 exercises
1. At the end of the school year the class committee still has a small

amount of money in its petty cash fund. The committee must decide

whether to return the money to the students, buy theater tickets

for the entire class, or use the money to organize an end-of-the-year

party. The amount of money at the committee’s disposal is enough to

finance only one of these objectives. There are three members on the

committee: 1, 2, 3.

The preference orders of the committee members with regard

to the alternatives are: Member 1 prefers returning the money to the

students to buying theater tickets, but prefers buying theater tickets

to organizing an end-of-the-year party. Member 2 prefers organizing

an end-of-the-year party to returning the money, but prefers buy-

ing theater tickets to organizing an end-of-the-year party. Member 3

prefers organizing an end-of-the-year party to buying theater tickets,

but prefers buying theater tickets to returning the money.

(1) Let x, y, and z be the alternatives. List the preference orders of

the committee members with regard to these alternatives.
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(2) What will be the social decision if it is decided to put the

alternatives to a pairwise majority vote?

2. Allen was asked what his fast food preferences were. His answer

was: “I prefer a pizza to a sandwich; I prefer a hamburger to a sandwich;

I prefer a burrito to a pizza; I prefer a taco to a hamburger; I prefer a

falafel to a burrito; I prefer a hamburger to a falafel.”

(1) Let p, s, h, b, t, and f (short for pizza, sandwich, hamburger,

burrito, taco, and falafel, respectively) be the different lunches

mentioned by Allen. Try to list Allen’s preferences in a column.

(2) Does the information given by Allen enable us to list his pre-

ferences in a column in a way that confirms all the assumptions

described in Section 2.2?

(3) Is there any superfluous information? If so, what?

3. Michael described how he spends his leisure hours. He prefers

movies to theater; he prefers theater to dancing; he prefers dancing

to a show; he prefers reading to concerts; he prefers TV to reading; he

prefers TV to theater; he prefers concerts to movies.

(1) Is it possible to list his preferences in a column that will

represent his taste in leisure activities?

(2) Is there any superfluous information? If so, what?

4. Sarah told us her music preferences. She prefers Bach to Mozart; she

prefers Brahms to Schumann; she is indifferent to a choice between

Schumann and Chopin; she is indifferent to a choice between Mozart

and Brahms.

What are Sarah’s preferences, when she must choose between

Bach and Chopin?

5. Jacob tells his son he is making eggs for breakfast and asks

him whether he would like his scrambled, hard-boiled, soft-boiled,

sunny-side up or sunny-side down. His son replies: “I prefer scrambled

to sunny-side up; I prefer sunny-side down to sunny-side up; I prefer
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sunny-side up to hard-boiled; I prefer hard-boiled to scrambled; I prefer

sunny-side down to soft-boiled.”

(1) Does Jacob have enough information to know his son’s first

preference?

(2) If this information is incomplete, what would you ask in order

to complete it?

(3) Does this information contradict any of the assumptions about

preference order? If so, indicate the contradiction.

6. Gail told her friends that she loves cinema. Her friends asked her,

“If you could take only one movie with you to a desert island, would

you take an action film, a horror film, a comedy, a western, or a

science-fiction film?”

Gail answered: “I prefer an action film to a horror film; I prefer a

science-fiction film to a horror film; I prefer a horror film to a comedy;

I prefer a science-fiction film to a western; I prefer a comedy to an

action film; I prefer a horror film to a western; I prefer a western to an

action film.”

(1) Given this information, try to determine what movie Gail

would take with her to a desert island.

(2) If this information is incomplete, ask Gail only the questions

needed to complete the information.

(3) Does Gail’s information contradict any of the assumptions

about preference order? If so, what is the contradiction?

7. A host is ready to offer his guest any of the following drinks: coffee,

tea, chocolate milk, cappuccino, milk. The guest’s preferences are:

he is indifferent to a choice between coffee and cappuccino; he is

indifferent to a choice between tea and milk; he prefers chocolate

milk to tea; he prefers cappuccino to chocolate milk.

(1) What will the host offer?

(2) What are the guest’s preferences, when he must choose between

coffee and milk?
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(3) What are the guest’s preferences, when he must choose between

cappuccino and tea?

2.4 social choice function
We have focused on decision-making in society when various alter-

natives are under discussion. The society can be a parliament, a city

council, a board of directors, and so on. Depending on the “society”

in question, the components of the society can be political parties,

corporations, individuals, and so on.

Every component of society has a complete preference order

with regard to the various alternatives under discussion that sat-

isfy Assumptions A–F. An aggregate of preference orders, compiled

as described in Section 2.2, is called a preference profile. For example:

1 2 3

x x∼t y

y z x

z y t

t z

Our task is to look for a decision rule that assigns to each preference

profile a preference order that will represent the social decision. In

mathematical terms, we are looking for a function, denoted f , that

assigns one preference order to each preference profile. Such a function

is called a social choice function.

Note: The task we set ourselves is not only to choose the most-

preferred alternative from among all alternatives under discussion,

but also to determine the preference order of the society with regard

to all the alternatives under discussion.

There is an advantage in knowing the whole preference order, rather

than knowing just the most-preferred alternative. Suppose we decide

that the order is
x
y
z

and then it turns out to be impossible to realize x;

in such a case it will be possible to choose y, with no need for a revote.
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Following are a few examples of social decision rules. First we

shall evaluate them against an intuitive standard of “justice.” Then we

shall present formal conditions for defining the concept of “justice.”

I. Majority Rule: f is a decision by a pairwise majority vote.

Example 1

f

⎛
⎜⎜⎜⎜⎝

x x t

y t z

z z y

t y x

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

x

t

z

y

⎞
⎟⎟⎟⎟⎠

Explanation: A look at the different pairs reveals that society will

prefer x to y, because two persons prefer x to y and only one prefers

something else. Grouping the preferences in pairs we get:

x x x z t t

y z t y z y

In the list of pairs we see that x is preferred to all the alternatives and

therefore society will rank it as the first preference. t is preferred to

all the alternatives except x and therefore it is ranked as the second

preference. This leaves z and y; between them, z is preferred to y,

and therefore y is ranked as the last preference. Thus we arrive at the

social decision above.

Example 2

f

⎛
⎜⎜⎜⎜⎝

x x∼y y

y t x

z z t

t z

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎝

x∼y

t

z

⎞
⎟⎟⎠

In this example society is indifferent to a choice between x and y,

because one individual prefers x to y and one individual prefers y to x,

while the third is indifferent to a choice between them. In the choice
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between t and z, two individuals prefer t to z and therefore society as

a whole prefers t to z. Everyone prefers x to t and thus we arrive at the

social decision above.

Example 3

f

⎛
⎜⎜⎝

x y z

y z x

z x y

⎞
⎟⎟⎠

In this example, discussed in Section 2.1 (p. 61), f gives no decisive

answer concerning the social decision. According to f :

x y z

y z x

Here, it is impossible to list the preferences in a column. In other

words, in this example majority rule does not yield a transitive

preference order.

Exercise: Given the following preference profiles, what will be the

social decision when the guiding rule is to decide by a pairwise

majority vote?

(1)

f

⎛
⎜⎜⎜⎜⎝

x t y

y x x

z z t

t y z

⎞
⎟⎟⎟⎟⎠ =

(2)

f

⎛
⎜⎜⎜⎜⎝

x∼y z t

t x z∼x

z t y

y

⎞
⎟⎟⎟⎟⎠ =
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II. Constant Function

f

(
any

profile

)
=

⎛
⎜⎜⎜⎜⎝

x

y

z

t

⎞
⎟⎟⎟⎟⎠

This function assigns the preference order

x
y
z
t

to every preference

profile without regard for the individual preferences of the com-

munity members. What do you think about this rule as a solution

for decision-making in a democracy?

III. Decision by a Dictator
According to this decision rule, a social decision is made in accordance

with the will of one individual (whose preferences are here listed in

the first column). We call him a dictator.

f

⎛
⎜⎜⎜⎜⎝

x t t

y z x

z y z

t x y

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

x

y

z

t

⎞
⎟⎟⎟⎟⎠

↑
dictator

Does this rule meet your intuition of justice in a democracy?

Exercise: Given the following preference profile, what will be the

social decision when the guiding rule is to decide in accordance with

the will of one individual (whose preferences are here listed in the

second column)?

f

⎛
⎜⎜⎜⎜⎝

x t x x

y z t y

z y y t

t x z z

⎞
⎟⎟⎟⎟⎠ =
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IV. Ill-defined “Rule”
The opinion of the first individual will decide in a choice between pairs

of alternatives x, y, and z. As for the pairs that include alternative t,

the opinion of the second individual will decide. For example:

Example 1

f

⎛
⎜⎜⎜⎜⎝

x t x

y x t

z z y

t y z

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

t

x

y

z

⎞
⎟⎟⎟⎟⎠

Example 2

f

⎛
⎜⎜⎜⎜⎝

x y x

y x t

z t y

t z z

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

x

y

t

z

⎞
⎟⎟⎟⎟⎠

It seems that this rule always leads to a social decision. But it is

not so.

What do you think will happen, given the following preference

profile?

Example 3

f

⎛
⎜⎜⎜⎜⎝

y x x

x t y

t y z

z z t

⎞
⎟⎟⎟⎟⎠ = ?!

What is unattractive about this rule?

Exercise: Given the following preference profiles, what will be the

social decision when the guiding rule is: the opinion of the first indi-

vidual will decide in a choice between pairs of alternatives x, y, and z;
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as for the pairs that include alternative t, the opinion of the second

individual will decide?

(1)

f

⎛
⎜⎜⎜⎜⎝

x y z

t x x

z t t

y z y

⎞
⎟⎟⎟⎟⎠ =

(2)

f

⎛
⎜⎜⎜⎜⎝

t t y

z x z

x y t

y z x

⎞
⎟⎟⎟⎟⎠ =

V. “Just” Rule
Here is a rule that seems just where a “society” of two individuals

is concerned. If, for example, both prefer x to y, then society prefers

x to y. However, if one prefers x to y and the other prefers y to x,

the social decision will be indifferent to a choice between x and y.

(We leave it to the reader to decide what the decision will be if one of

the individuals prefers x to y and the other is indifferent to a choice

between them, and what the decision will be if both are indifferent to

a choice between x and y.)

Let us see what society will decide in the following example:

f

⎛
⎜⎜⎝

x z

y x

z y

⎞
⎟⎟⎠ = ?

No doubt, society will decide that x is preferred to y, because this is

the unanimous opinion.

There is indifference to the choice between x and z and likewise

to the choice between y and z, because society is divided in its opinions

about these alternatives.
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We shall now try to formulate the example above as a social

decision:

x

y∼z∼x

But this is impossible, because (by the transitivity of prefer-

ence/indifference relations) x is preferred to x, which of course is

impossible.

Therefore, the “just” rule does not establish a social decision for every

preference profile.

Exercise 1: Given the following preference profiles, what will be the

social decision when the society consists of two individuals and the

guiding rule is: if two individuals prefer x to y, then society prefers

x to y; if they are divided in their opinions (that is, if one individual

prefers x to y and the other individual prefers y to x), then society will

be indifferent to a choice between x and y?

(1)

f

⎛
⎜⎜⎝

x z

z x

y y

⎞
⎟⎟⎠ =

(2)

f

⎛
⎜⎜⎝

z x

y y

x z

⎞
⎟⎟⎠ =

(3)

f

⎛
⎜⎜⎝

y y

x z

z x

⎞
⎟⎟⎠ =

(4)

f

⎛
⎜⎜⎝

z y

x z

y x

⎞
⎟⎟⎠ =
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Exercise 2: Given the following preference profiles, what will be the

social decision when the society consists of two individuals and the

guiding rule is: if two individuals prefer x to y, then society prefers x

to y; if both are indifferent to a choice between x and y, then society

is indifferent to a choice between x and y; if they are divided in their

opinions, then society is indifferent to a choice between x and y; and

if one individual prefers x to y and the other individual is indifferent

to a choice between them, then society prefers x to y?

(1)

f

(
x∼y x

z z∼y

)
=

(2)

f

⎛
⎜⎜⎝

z x

x∼y y

z

⎞
⎟⎟⎠ =

VI. Dependence on Irrelevant Alternatives
What is wrong with the following rule involving a society of three

individuals and three alternatives?

Rule: A decision must be made by majority rule; if the result is a cyclic

preference relation (p. 61), society must decide on the alternatives in

alphabetical order.

Consider the following two examples:

Example 1

f

⎛
⎜⎜⎝

x y z

y z x

z x y

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠

Explanation: Majority rule establishes a cyclic order

x
y
z
x

and therefore

the social decision is made according to alphabetical order.
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Example 2

f

⎛
⎜⎜⎝

y y y

x z z

z x x

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

y

z

x

⎞
⎟⎟⎠

The interesting thing about this rule is that insofar as alternatives

x and z are concerned, there is no difference between the preference

relations in the two examples (the first individual prefers x to z and

the other two prefer z to x). Nevertheless, the social decision between

x and z is different in the two cases. In the second example the pre-

ference order changes in favor of y. Indeed, in this example society

makes y its first preference. But the change in the place of y in the

preference order affects the social preference with regard to the choice

between x and z.

Is independence from irrelevant alternatives necessary or not?

Exercise: (1) Given the following preference profiles, what will be

the social decision when the guiding rule is to decide by a pairwise

majority vote; if the result is a cyclic preference relation, then society

will decide according to reverse alphabetical order?

(i)

f

⎛
⎜⎜⎝

y z x

z x y

x y z

⎞
⎟⎟⎠ =

(ii)

f

⎛
⎜⎜⎝

z z z

y x x

x y y

⎞
⎟⎟⎠ =

(2) What is the difference between preference profile (i) and preference

profile (ii)?

(3) How does this difference affect the social decision?

(4) Why is this decision rule not recommended?
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VII. Positive Association of Individual Preferences
and Social Preferences

What is wrong with the following rule involving a society in which

alternatives x and y are voted on pairwise?

Rule: If the majority that prefers x to y consists of an even number of

individuals, then society prefers x to y. If the majority that prefers x to

y consists of an odd number of individuals, then society prefers y to x.

Example 1

f

(
x x x x y

y y y y x

)
=

(
x

y

)

However,

Example 2

f

(
x x x x x

y y y y y

)
=

(
y

x

)

In the first example, four out of five individuals prefer x to y and

therefore, according to the rule, society prefers x to y.

In the second example, five out of five individuals prefer x to y

and therefore, according to the rule, society prefers y to x.

Does this rule meet your intuition of justice in a democracy?

Exercise: (1) Given the following preference profiles, what will be the

social decision when the guiding rule is: if the majority that prefers x

to y consists of an even number of individuals, then society prefers x

to y; if the majority that prefers x to y consists of an odd number of

individuals, then society prefers y to x?

(i)

f

⎛
⎜⎜⎝

x z y z x

y x x y z

z y z x y

⎞
⎟⎟⎠ =
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(ii)

f

⎛
⎜⎜⎝

x z x z x

y x y x z

z y z y y

⎞
⎟⎟⎠ =

(2) What is the difference between preference profile (i) and preference

profile (ii)?

(3) Is there a difference in the social preference in the two examples?

(4) Why is this decision rule not recommended?

2.5 axioms for the social choice function
In this section we shall try to find a social choice function without

the disadvantages discussed in Section 2.4.

First we shall formulate requirements for f ; then we shall look

for a function f that satisfies these requirements. These requirements

are called axioms, and they are the formal conditions for defining the

properties of a just decision rule.

Axiom 1: The Domain and Range of the Function
The domain of the function f is all possible preference profiles of the

components of society and its range is the preference orders with

regard to the alternatives under discussion; henceforth the image of

f will be called the “social preference.”

f

(
preference

profile

)
=

(
social

preference

)

This axiom prevents us from implementing the following rules dis-

cussed in Section 2.4: Rule I (the majority rule, p. 69, Example 3),

Rule IV (the “ill-defined” rule, p. 71, Example 3), and Rule V (the

“just” rule, p. 72).

In all these examples there were preference profiles for which

no social preference was obtained.
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Axiom 2: Positive Association of Individual Preferences and the
Social Preference

Let P and Q be two preference profiles in which preference or indif-

ference relations are the same for all pairs of alternatives except x

and y, but preference or indifference relations that concern x and y

“favor” x in Q. In this case, the social choice function f that concerns

x and y is either as good or better for x in Q.

Explanation: “Preference or indifference relations that concern x and

y favor x in Q” means that if an individual prefers x to y in P, then

he also prefers x to y in Q. If he is indifferent between x and y in

P, then either he is indifferent between x and y or he prefers x to y

in Q. If he prefers y to x in P, then either he prefers y to x, is indif-

ferent between y and x, or prefers x to y in Q. Similarly, “the social

choice function f that concerns x and y is either as good or better for x

in Q” means that if the social choice function f of preference profile P

determines that x is preferred to y, then the social choice function of

profile Q also determines that x is preferred to y. If the social choice

function f of preference profile P determines that x is indifferent to y,

then the social choice function of profile Q determines that either x

is indifferent to y or x is preferred to y.

Suppose members of a parliament declare their preference orders

with regard to all alternatives discussed on a given day, and it is

decided that alternative x is preferred to alternative y. On the fol-

lowing day the parliament members are asked again to declare their

preference orders with regard to the exact same alternatives. In their

new preference profile there is a change that affects only the pair of

alternatives x and y: some individuals now rank x higher in their pre-

ference order than they did on the day before. It would be strange if

after this change parliament decided that y was preferred to x. Axiom 2

aims at preventing such a possibility.

According to this axiom, if given a certain preference profile

the social decision is that x is preferred to y, then that will be the

decision all the more given a preference profile where none of the indi-

viduals rank x lower in their preference order relative to the original
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preference profile, assuming everything remains unchanged in every

pair of alternatives other than x and y.

Rule VII in Section 2.4 (p. 76) does not satisfy this axiom.

Axiom 3: Unanimous Decision
If all individuals in a society prefer x to y, then the social decision

will prefer x to y.

Explanation: It would be strange if everybody preferred x to y and f

established that y is preferred to x, or that there is indifference to a

choice between x and y. Axiom 3 aims at preventing such a possibility.

Rule II in Section 2.4 (p. 70) does not satisfy this axiom.

Axiom 4: Independence of Irrelevant Alternatives
The social choice function f concerning preference/indifference rela-

tions between x and y depends only on what members of society think

about the preference relation between x and y. What they think about

the association between z and t or even between x and t is irrelevant

to the association between x and y.

Explanation: Let us imagine a committee asked to elect a chairman.

There are two candidates for the position: candidate A and candi-

date B. It emerges from a discussion in which each committee member

declares his preference that A will be elected chairman. But someone

in the committee suddenly remembers that C is a candidate too. It

would be strange if the group then decided that B will be the chairman.

The presence or absence of candidate C is irrelevant to the decision

between candidates A and B.

Axiom 4 requires that the social choice function be such that

irrelevant alternatives will not affect the preferences under discussion.

Rule VI in Section 2.4 (p. 74) does not satisfy this axiom.

Axiom 5: Non-dictatorship
In a society of at least three individuals there is no dictator; that

is, there is no individual whose opinion decides all issues even if

everyone else opposes his opinion.
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Explanation: This axiom is concerned with an individual whose opin-

ion decides all issues. We prohibit such a possibility, but we certainly

permit an individual’s opinion to decide some issues. In that case he

is not a dictator.

Rule III in Section 2.4 (p. 70) does not satisfy this axiom.

2.6 exercises
1. A social choice function for a given preference profile is:

f

⎛
⎜⎜⎝

x z x

y x y

z y z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

y

x

z

⎞
⎟⎟⎠

Which axiom is not satisfied here?

2. (1) Find a social choice function for the following preference profile

according to a pairwise majority vote:

f

⎛
⎜⎜⎝

x y z

y z x

z x y

⎞
⎟⎟⎠ =

(2) Which axiom is not satisfied here?

3. (1) Find a social choice function for the following preference

profiles according to the following rule: if an odd num-

ber of people prefer x to y, society will prefer x to y; if

an even number of people prefer x to y, society will pre-

fer y to x. As for the other alternatives, they are decided

by a pairwise majority vote and in case of a tie there is

indifference.

f

⎛
⎜⎜⎜⎜⎝

x t z y

y x x x

z y y t

t z t z

⎞
⎟⎟⎟⎟⎠ =
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f

⎛
⎜⎜⎜⎜⎝

x t z x

y x x y

z y y t

t z t z

⎞
⎟⎟⎟⎟⎠ =

(2) Which axiom is not satisfied here?

4. (1) Find a social choice function for the following preference pro-

files according to the following rule: we are trying to decide by

a pairwise majority vote; if the outcome is a cyclic preference

relation, society decides according to reverse alphabetical order.

f

⎛
⎜⎜⎝

z y x

y x z

x z y

⎞
⎟⎟⎠ =

f

⎛
⎜⎜⎝

y y y

z x x

x z z

⎞
⎟⎟⎠ =

(2) What is the difference between the two preference profiles

above?

(3) Which axiom is not satisfied here?

5. A social choice function for a given preference profile is:

f

⎛
⎜⎜⎜⎜⎝

x t z y

y y x t

z z t x

t x y z

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

z

x

t

y

⎞
⎟⎟⎟⎟⎠

Which axiom is not satisfied here?

2.7 what follows from axioms 1–4?
In the previous sections we introduced several requirements for the

social choice function f . They are all simple and reasonable. We called

these requirements axioms. In this section we shall see what conclu-

sions can be drawn only from Axioms 1–4 concerning the function f .
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The Axioms:

1. The function f assigns a preference order, called a social preference,

to every preference profile.

2. The function f reflects a positive association between the prefer-

ences of the individuals in society and the social preference: if in a

certain preference profile f establishes the preference order x
y

and the

preference profile changes so that more individuals in society prefer

x to y, or y
x

becomes y∼x, then f establishes that x is preferred to y in

the new preference profile too.

3. The function f obeys a unanimous choice: if all the individuals in

society prefer x to y, f also establishes that x is preferred to y.

4. The function f establishes a preference between alternatives x and

y independently of any other alternatives; that is, what f establishes

depends on the preference orders of the individuals in society with

regard only to x and y.

Examples:

1. Given that f satisfies the above axioms, what will f establish as

the social preference if the preference profile of a society of three

individuals is:

1 2 3

x z x

y x z

z y y

t t t

Solution:

The function f will establish the preference order
x

y
because everybody

prefers it (unanimous decision axiom). For the same reason, f will

establish the preference relations z y x
t t t

; hence, by the unanimous

decision axiom, f will establish the preference orders x z y x
y t t t

.
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The independence of irrelevant alternatives axiom applies here

as well, because the preferences described above were established

independently of the preferences of the individuals in society with

regard to the other alternatives.

For example, x
y

is independent of the preference orders with

regard to z and t; z
t

is independent of the preference orders with regard

to x and y, and so on.

We still do not know what f will establish either with regard to

alternatives x and z or with regard to alternatives y and z, because

as far as these alternatives are concerned society is divided in its

opinions.

If we knew more properties of f , we could perhaps say more. For

example, if we assumed that f establishes the preference order y
z
, we

could conclude, by the transitivity property of the preference relation,

that f also establishes the preference order x
z
. That is, we would have

that x y z y x
y z t t t

, and therefore we could say that:

f

⎛
⎜⎜⎜⎜⎝

x z x

y x z

z y y

t t t

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

x

y

z

t

⎞
⎟⎟⎟⎟⎠

and thus establish f for this example.

2. Given that f satisfies the above axioms:

I. What will f establish if the preference profile in a society of three

individuals is:

1 2 3

x z x

z x y

y y z
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Solution:

By the unanimous decision axiom, we can say that f will establish as

the social preference that x is preferred to y, because all individuals

in society prefer it. Moreover, the independence of irrelevant alter-

natives axiom indirectly applies here, because this preference was

established independently of society’s preferences with regard to z.

The given preference profile does not enable us to say anything about

the social preference with regard to the pairs x, z or y, z, because soci-

ety is divided in its opinions with regard to these alternatives: some

individuals prefer one possibility and others prefer the other.

II. Given the same preference profile, what can you say about f if it is

known that f establishes that y is preferred to z?

Solution:

We know that: x y
y z

. By the transitivity of the preference relation, f

must also establish that x is preferred to z.

f

⎛
⎜⎜⎝

x z x

z x y

y y z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠

This example is of interest because it illustrates a prediction.

Although we did not know in advance what f would decide with regard

to alternatives x and z, we have managed to predict the social decision.

Remark:

If additional information were to reveal that, say, f establishes a pre-

ference for z over y, we would not be able to predict the social decision.

In this case the information would amount to x z
y y

, from which it is

impossible to conclude how f would order the pair of alternatives x, z.

3. Given that f satisfies all four axioms, describe what the social

decision will be given the following preference profile, if it is also
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known that f establishes a preference for y over z.

1 2 3

x z x

y x z

z y y

t t t

Solution:

In many cases it is possible to know what f establishes, like when

all individuals in society prefer a certain alternative to another

alternative (unanimous decision). Let us compile all the available

information:

x x y z y

y t t t z

The first four columns of preferences from the left were obtained by

the unanimous decision axiom. The last column is additional infor-

mation. According to the available information and by the transitivity

of the preference relation, we get x
z
. Now we have all the information

and we may conclude that:

f

⎛
⎜⎜⎜⎜⎝

x z x

y x z

z y y

t t t

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

x

y

z

t

⎞
⎟⎟⎟⎟⎠

2.8 exercises
1. (1) Describe the social decision given the following preference

profile:

1 2

x z

t x

y t

z y
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(2) If we know that f establishes a preference for x over z, what

will the social decision be?

(3) What other information must we have in order to know what

the social decision will be?

2. (1) Can we predict the social decision given the following prefer-

ence profile?

1 2 3

x z y

y x x

z y z

(2) If we know that the social decision establishes a preference for

x over y, what will the social choice function be?

(3) Can we predict the social decision given the following prefer-

ence profile if, besides the information in (2), we also know that

f establishes y
z
?

1 2 3

x x y

y z x

z y z

3. (1) Can we predict the social decision given the following prefer-

ence profile?

1 2 3

x x x

z z z

y y t

t t y

If so, state the social decision; if not, provide the missing information.

(2) Describe the social decision given the preference profile above,

when it is known that f establishes a preference for t over y.

(3) Describe the social decision given the preference profile above,

when it is known that f establishes a preference for y over t.
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2.9 arrow’s theorem
The present chapter opened with a discussion of the shortcomings of

majority rule as a principal method of social decision-making. The

question that was raised in light of these shortcomings was whether

it is possible to find another, “fair” way of making a social deci-

sion. In the course of this chapter we constructed a system of axioms,

that is, a system of intuitive requirements for a fair decision-making

procedure. The question now is whether there is a social decision

rule for all possible preference profiles that satisfies this system

of axioms.

Kenneth Arrow’s surprising answer is that there is no social

choice function that satisfies all the axioms! This means that every

social choice function we can think of will fail to satisfy at least one

of the axioms. In other words, there is an internal contradiction in the

system of axioms presented in this chapter.

In this section we shall prove Arrow’s theorem about the non-

existence of a social choice function that satisfies all the axioms. In the

course of the proof we shall see that any decision rule that does satisfy

Axioms 1–4 must be a dictatorial decision rule, which contradicts

Axiom 5, defined in Section 2.5 (p. 79).

For the proof, we assume that a decision rule satisfies Axioms

1–4.

Definition:

A set of individuals V is said to be decisive for the pair x
y

if, for every

preference profile in which everyone in V prefers x
y

and everyone else

prefers y
x
, the social choice function f establishes x

y
.

In other words, V is decisive for x
y

if f establishes x
y

whenever the

members of V have this preference and the other members have the

opposite preference.
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Note: If there is a dictator in the society, then he constitutes a decisive

set for every pair of alternatives (and not for just one pair).

Remark: According to the definition, V is decisive for x
y

if all members

of V prefer x
y

and all the other members prefer y
x
. But if some members

not in V prefer x
y

or x∼y, then this profile favors x
y

and by Axiom 2,

the social choice function will continue to favor x
y
. In any case, the

preference profile tends to favor x; therefore, by Axiom 2, the social

choice function will decide in favor of x
y
.

Is There a Decisive Set?

The answer is yes! The set of all individuals is no doubt a decisive set,

and not only for a certain pair x
y
, but for every pair, by the unanimous

decision axiom (Axiom 3).

Consider the set of all individuals that, as we said, is decisive

for every pair of alternatives. It might be possible for us to subtract

some individuals from the set, so that the remaining set will still

be decisive – if not for all pairs, then at least for one pair. We shall

keep subtracting individuals from the set, as long as there remains

a set of individuals that is decisive for some pair. We shall continue

the procedure until we have a set that is still decisive for some pair
x
y
, but from which no more individuals can be subtracted, because

that would result in a set that is not decisive for any pair of alterna-

tives. The smallest decisive set for any pair of alternatives is called a

minimal decisive set.2

2 This set cannot be the empty set, because if the empty set were decisive for the pair
x
y, the social choice function would establish x

y even if everyone preferred y
x, which

contradicts the unanimous decision axiom.
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Definition:

Set V is called a minimal decisive set if V is decisive for a certain pair
x
y

and if subtracting individuals from the set results in a set that is not

decisive for any pair of alternatives.

We have thus proved that there exists a minimal decisive set;

that is, there exists a set that is decisive for a certain pair x
y

and any

strict subset of it is not decisive for any pair of alternatives.

Let V be a minimal decisive set. We denote the pair for which

it is decisive by x
y
. Let j be a specific individual in V and let W be the

set consisting of the remaining individuals in V. We denote the set of

all individuals not in V by U. Now, consider the following preference

profile:

V︷ ︸︸ ︷
{j} W U

x z y

y x z

z y x

For this preference profile the social choice function f will establish

the preference relation x
y

, because all individuals in V = {j}∪W prefer

x to y and V is a decisive set for the pair x
y
.

The social choice function will not be able to establish z
y
,

because only the individuals in W prefer it and W is not a decisive

set, because V is the minimal decisive set. We apply here the inde-

pendence of irrelevant alternatives axiom (Axiom 4), which allows

us to rule out the possibility that the position of x in the preference

relations may affect the preference between y and z.

Hence, the social choice function will establish y
z

or y∼z.
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Since we already have x
y
, f will establish the preference relation

x
z
by the transitivity of the preference relation. But only j prefers it,

while everyone else prefers the contrary. Hence it follows by Axiom

4 that {j} constitutes a decisive set for the pair x
z
. But V is a minimal

decisive set and therefore W = ∅ and V={j}.

Moreover, because z denotes any alternative, it follows that {j}

is decisive for every pair of alternatives x
z
.

We have thus proved that if f satisfies Axioms 1–4, then there

exists a minimal decisive set consisting of a single individual and it

is decisive for the pairs x
z
for some x and any z. If no one remains

W = ∅.
Our task now is to show that a decisive set of one individual is

a dictator; that is, if V is a decisive set consisting of a single player,

then this player must be decisive for every pair of alternatives and not

only for pairs of the x
z
kind. As we said, {j} constitutes a decisive set

for every pair of the x
z

kind.

Consider the following preference profile:

{j} U

w z

x w

z x

f will establish x
z
, because {j} is decisive for these pairs.

f will also establish w
x
, because everyone prefers it.
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By the transitivity of the preference relation, f will establish w
z

; that

is, {j} is decisive for every pair of alternatives w
z

, when w �=x, z�=x.

Finally, consider the following preference profile:

{j} U

w z

z x

x w

f will establish w
z

when w�=x, z �=x, because {j} is decisive for w
z

. f will

establish z
x
, because everyone prefers it.

By the transitivity of the preference relation, f will establish w
x

.

But only j prefers it, and so {j} is a decisive set for w
x

.

Thus we have proved that:

{j} is decisive for x
z

for all z,

{j} is decisive for w
z

for all w and all z different from x, and

{j} is decisive for w
x

for all w.

Those are all the possibilities. Indeed, {j} is decisive for x
z

for all z, z �=x,

because z can be replaced by any alternative. Because {j} is decisive for
w
z

for all w and all z different from x, w and z can be replaced by any

alternative except x. As for the possibility w = x, we know that {j} is

decisive for x
z
. Also, {j} is decisive for w

x
for all w because w can be
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replaced by any alternative, and with that we have addressed all the

possibilities.

We can therefore sum up by saying that {j} is decisive for every

pair of alternatives and therefore j is a dictator!

To summarize, we started from the social choice function that

satisfies Axioms 1–4 and proved that it is necessarily a dictatorial rule,

which does not satisfy Axiom 5.

That is, there is no social choice function that satisfies the

system of Axioms 1–5 in its entirety.

2.10 what next?
Our aim throughout this chapter has been to find a social decision rule

that will satisfy our sense of fairness in a democratic society. This aim

was not achieved; what is more, it was proved that such a rule does

not exist!

What is to be done? What rule are we to follow in making deci-

sions? How is society to conduct its affairs? From all that has been

said in this chapter it follows that there are no satisfactory answers

to these questions. We must accept the fact that every decision rule

that is chosen will not satisfy at least one of Arrow’s axioms.

Arrow’s book, in which he proved the theorem that now bears

his name, stirred debate among social scientists over the impli-

cations of the impossibility of a satisfactory decision rule. Social

science philosophers suddenly realized that the question “What is

good for society?” is not always possible to answer. Arrow’s conclu-

sion brought about a radical change in many scientists’ perception of

the human world around us.

Arrow’s book also led to mathematical research. For example,

mathematicians wondered whether they could avoid contradicting

the axioms by restricting the domain of preference profiles. In fact,

narrower domains were established in which all five axioms could

be satisfied by appropriate social choice functions. There were also

proposals to integrate lotteries into decision rules: if, for example, it

were seen that majority rule leads to a cyclic preference relation, then
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it would be decided by casting lots between the preferences. We shall

not go into all that has been done in this area. We shall only note that

Arrow’s study spawned a huge literature, both theoretical and applied,

on this fascinating subject.

2.11 review exercises
1. Given the following preference profiles, what will the social choice

function be when the guiding rule is to decide by a pairwise majority

vote?

(1)

f

⎛
⎜⎜⎜⎜⎝

x t y

y x t

z z x

t y z

⎞
⎟⎟⎟⎟⎠ =

(2)

f

⎛
⎜⎜⎜⎜⎝

x∼t t x∼z

z x t

y y y

z

⎞
⎟⎟⎟⎟⎠ =

2. Given the following preference profiles, what will the social choice

function be when society consists of two individuals and the guiding

rule is: if both individuals prefer x to y, then society will prefer x to y;

if they are divided in their opinions, then society will be indifferent

to a choice between x and y; if both individuals are indifferent to a

choice between x and y, then society will be indifferent to a choice

between x and y; if one prefers x to y and the other is indifferent to a

choice between them, then society will prefer x to y?

(1)

f

⎛
⎜⎜⎝

x y

y z

z x

⎞
⎟⎟⎠ =
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(2)

f

⎛
⎜⎜⎝

x z

z x

y y

⎞
⎟⎟⎠ =

(3)

f

(
x∼y y

z x∼z

)
=

(4)

f

⎛
⎜⎜⎝

y x

z y∼z

x

⎞
⎟⎟⎠ =

3. (1) Given the following preference profiles, find a social choice

function by the following rule: if an even number of individuals

prefer x to y, then society will prefer x to y; if an odd number

of individuals prefer x to y, then society will prefer y to x. As

for the remaining alternatives, they are decided by a pairwise

majority vote and in the event of a tie there is indifference.

(i)

f

⎛
⎜⎜⎜⎜⎝

x z y t

y t x x

t x t y

z y z z

⎞
⎟⎟⎟⎟⎠ =

(ii)

f

⎛
⎜⎜⎜⎜⎝

x z t y

y x y x

z y x t

t t z z

⎞
⎟⎟⎟⎟⎠ =

(iii)

f

⎛
⎜⎜⎜⎜⎝

x z t y

y x x x

z y y t

t t z z

⎞
⎟⎟⎟⎟⎠ =
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(2) In each case, check whether any axiom is not satisfied. If

so, which?

4. Given the following preference profile, describe the social choice

function, when it is known that f establishes a preference for x over

t, and the remaining alternatives are decided by majority rule.

1 2 3

x t y

y x t

z z x

t y z

5. (1) Given the following preference profile, describe the social

choice function when the guiding rule is to decide by a pairwise

majority vote.

1 2 3

x y y

y x x

z z z

(2) What information needs to be added in order to predict the

social decision?

6. (1) Given the following preference profile, can the social decision

be determined when the guiding rule is to decide by a pairwise

majority vote?

1 2 3

x t z

y x t

z y x

t z y

(2) If it is known that the social decision establishes a preference

for y over z, is this information sufficient to predict the social

decision?
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(3) Given the following preference profile and the information

in (2), can the social decision be determined?

1 2 3

x z z

y x t

z y x

t t y



3 The Shapley Value in
Cooperative Games

3.1 introduction
Game theory has aroused interest both for its mathematical charac-

ter and for its many applications to the social sciences. Game theory

arises from social phenomena as opposed to physical phenomena. Peo-

ple act, sometimes against each other, sometimes for each other; their

interests lead them to conflict or cooperation. By contrast, atoms,

molecules, and stars crystallize, collide, and explode, but they do not

fight or cooperate. Thus, a mathematical theory was created whose

system of concepts is drawn from the social sciences.

The word “game” has different meanings for the layman and the

game theorist, but the different meanings have a common denomi-

nator: the game has players and the players must interact or make

decisions. As a result of the players’ actions, and perhaps also by

chance, the game will yield a certain outcome that is either a pun-

ishment or a reward for each one of the players. The word “player”

has an unconventional meaning in that it does not necessarily signify

an individual. A player can be a team, a corporation, or a state. It is

convenient to refer to a group of persons having a common identifying

interest and capable of making joint decisions as a single player. One

might say that a game is a situation involving several decision-making

bodies. Each decision-making body is a player.

Human interactions involve many aspects, such as the capa-

bilities of the players, their desires, their values, the role of the

environment in which they function, and so on. Game theory selects

a few of these aspects and constructs mathematical models, usu-

ally quite abstract. These models are analyzed and game theory then

attempts to provide recommendations for behavior and possible reso-

lutions of conflicts. As there are various issues that may be addressed,
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there may be various types of recommendations. Each such type is

called a solution concept.

In this chapter we shall study one class of games, called co-

operative transferable utility games. These are games that involve a

division of money among the players, and the rules of the game allow

for making binding agreements, namely, agreements that will be hon-

ored. We shall consider a single solution concept, called the Shapley

value, which can be regarded as a division of money that a judge or an

arbitrator is likely to recommend. This Shapley value also has other

interpretations which will be discussed subsequently.

3.2 cooperative games
Cooperative games are games in which players enter into mutually

binding agreements. For example, economic negotiations often con-

clude in a contract binding on all parties, and the parties are unlikely

to break the contract owing to the penalties attaching to such a

breach.

In contrast, non-cooperative games are games in which players

enter into nonbinding agreements. For example, political agreements,

like those between states, are generally nonbinding, and the parties

to a political agreement honor it only for as long as they see fit.

A large part of the theory of cooperative games deals with coali-

tion function games,1 whose essential features will be discussed in

this section.

The mathematical model of a cooperative game is the pair

(N; v), where N = {1, 2, 3, ..., n} is the set of players. The coalition

function v will be explained shortly.

Every subset of N is called a coalition and is denoted by a cap-

ital letter, S, for example. The expression “coalition S was formed”

appears often in the description of games. In theory, the meaning of

this expression is that all coalition members gave their consent to

1 More precisely, coalition function form games with side payments, because money
is often distributed among the players in these games.
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the formation of the coalition. In practice, this expression has various

meanings. We provide some examples:

1. I went to the store and asked for a loaf of bread (and the grocer

agreed to give it to me). We may say that from the moment this

(binding) agreement was made a coalition was formed between the

grocer and myself.

2. A group of political parties holding a majority after elections

decided to form a governing coalition until the next elections. The

formation of a coalition here consists of the agreement to share the

burden of power.

3. A group of investors decided to found a factory. The agreement

of these investors to found a factory means that a coalition was

formed between them.

Of course, coalitions usually do not take place in a vacuum. Coali-

tion building usually requires prolonged contact between the parties,

intensive negotiations, and a decision-making procedure suited to the

type of agreement (e.g., profit sharing). The analysis of how play-

ers decide to behave after the coalition is formed is the analysis of

solution concepts. We shall study these in the sequel.

In this chapter we assume that whenever a coalition S is formed,

an amount of money v(S) is generated.2 Thus, v is a function called the

“coalition function,” and it assigns a real number to every coalition.

The number v(S) is called the coalition worth of S.

Example:

An advertising agent approaches three individuals, 1, 2, and 3, and asks

them to sign an advertisement saying that they use “Sparkle” tooth-

paste. The agent says that he is interested in obtaining at least two sig-

natures. If 1 and 2 sign, the agent will pay them a total of $100. If 1 and

3 sign, the agent will pay them a total of $100. On the other hand, if 2

and 3 sign, the agent will only pay them a total of $50. If all three agree

2 We assume that v(S) is independent of the actions taken by the players not in S.
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to sign, the agent will pay them a total of $120. In this example, the

formation of a coalition means the agreement of its members to sign an

advertisement.

The mathematical model is:3

N = {1, 2, 3} v(1, 2) = 100
v(1, 3) = 100
v(2, 3) = 50
v(1, 2, 3) = 120
v(1) = v(2) = v(3) = 0
v(∅) = 0

0 0 0

1 2 3100 50

100

120
Remarks:

1. A set with one player is called a coalition too (a one-person coali-

tion), because a coalition is a subset of N and sets with one member

are also subsets of N.

2. In contrast to everyday language, in game theory it is convenient

to regard the empty set as a coalition and to assume that v(∅) = 0.

In discussing coalition games, we can focus on how players bar-

gain with each other over how to divide the payoff that they can

achieve in a game by banding together and joining forces in a

coalition.

We shall now present a possible example of negotiations

between players in the game described above:

Player 2 proposes an equal division to player 1:4 (50, 50, 0)

Player 3, who might get nothing, proposes to 1: (60, 0, 40)

3 For simplicity, we shall omit curly brackets and write v(1, 2) = 100, for example,
instead of the more precise v({1, 2}) = 100.

4 The figure in bold face indicates who made the proposal.
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Player 2 lowers his demands so he won’t be left out: (70, 30, 0)

Player 3 is prepared to settle for: (80, 0, 20)

Player 2 turns to player 3 and proposes: (0, 25, 25)

Player 3 is forced to compete and proposes: (70, 0, 30)

Player 2 suggests forming a coalition of all

participants with a payoff division of: (70, 20, 30)

If all players reach agreement at this stage, the game terminates, and

it is said that the outcome of the game is (70, 20, 30) and that the

coalition {1, 2, 3} was formed.

There is a rich theory that attempts to describe what outcomes

are likely to form, but it is beyond the scope of this book. Instead, we

address the question of what a judge or an arbitrator is likely to decide

if the three players bring the game before him and ask him to propose

a “fair” division.

3.3 important examples of coalition
function games

Example 1: Two-Person Bargaining Game

N = {1, 2} v(N) = 1

v(1)= v(2) = 0
00

1 2

1

In this game the players achieve nothing separately; that is, each

player achieves 0 separately. The two players will achieve 1 jointly, if

they agree to form a coalition together.

Example 2: Pure Bargaining Game

In this game there are n players who can achieve, say, 1, provided they

all participate; otherwise, they will achieve nothing. (Example 1 is a

special case in which n = 2.)

N = {1, 2, ..., n}.
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The coalition function of this game is:

v(S) =
{

1 S = N

0 S �= N, S ⊂ N

In the above formula, S represents any coalition whose members are

players in N, and v is defined for all subsets of N, that is, for all

coalitions of N.

Example 3: Buyer-Seller Exchange Game

Player 1 has a “spare” house that he is willing to sell at a reason-

able price. Player 2 is interested in buying the house. Under what

conditions will the deal be made?

This deal can be made only if the seller sets a lower worth on

the house than the buyer does, because in a deal both parties must

profit; otherwise, the deal will not be made.5

Suppose the worth of the house to the seller is $100,000; he

will not sell the house for less than this amount (but he hopes to get

a higher payment). Suppose the worth of the house to the buyer is

$150,000; he will not pay more than this amount (but he hopes to pay

less). The buyer sets a higher worth on the house because he needs a

place to live.

The deal can be made if the house is sold for, say, $120,000; the

seller will make a profit of $20,000, and the buyer will buy a house for

$120,000, which in his opinion is worth $150,000, so that he makes

a profit of $30,000.

When we translate this into a game we see that:

The seller owns a house: v(1) = 100, 000

The buyer owns no house: v(2) = 0

v(1, 2) = 120, 000 +
+(150, 000 − 120, 000) =
= 150, 000

5 If both players set the same worth on the house it is immaterial who will get the
house and who will remain with the money.
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0
1 2

150,000

100,000

Explanation: Forming a coalition in this case means making a sale.

After the sale, the seller has $120,000 and the buyer has a house which

he estimates to be worth $150,000 and for which he paid a lesser

amount; that is, he has $150,000 minus the amount he paid for the

house. This is the worth of the coalition.

Remark: The same function will be obtained even if the house is sold

for a different price, p, such that 100, 000 < p < 150, 000. Explain.

Example 4: Market Game with Two Sellers and One Buyer

There are three players in this game: two sellers and a buyer. Each

seller has one good, say a DVD, for which he paid $100, and offers to

sell it. The buyer sets a worth of $200 on the DVD. He is interested

in paying the lowest possible price for the DVD, and, of course, he is

unwilling to pay more than $200.

Let us calculate the coalition function.

N = {1, 2, 3}; players 1 and 2 are the sellers and player 3 is the buyer.

Seller 1 has a DVD worth $100 to him: v(1) = 100

Seller 2 has a DVD worth $100 to him: v(2) = 100

Buyer 3 does not have a DVD: v(3) = 0

Remark: The way this is written does not take into account money

or other assets that the players may have. We could have added their

worths but that would have had no effect on the solution that we shall

now propose.

How shall we establish the worth of coalition {1, 3}? If 1 and

3 decide to form a coalition, it is reasonable to assume that player 1
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will sell the DVD to player 3 for p dollars, when 100 < p < 200.

(Remember, the deal will be made only if both parties make a

profit, so p must be greater than 100 for the seller and less than

200 for the buyer.) At this stage, player 1 has p dollars in cash

and player 3 has a DVD which he estimates to be worth $200 and

for which he paid a lesser amount; that is, he has $200 minus the

amount that he paid for the DVD. Therefore, the worth of coalition

{1, 3} is:

v(1, 3) = p + (200 − p) = 200

The worth of coalition {2, 3} is established in exactly the same way as

the worth of coalition {1, 3}; that is, v(2, 3) = 200, assuming players 2

and 3 decide to strike a deal.

The worth of coalition {1, 2} is v(1, 2) = 200. This is a coalition

of two sellers in which each seller has a DVD valued at $100 and so

the coalition worth is $200.

How shall we establish the worth of coalition {1, 2, 3}? The

formation of coalition {1, 2, 3} denotes a procedure in which all

players take part. Such a procedure may be carried out as fol-

lows. Seller 1 says to seller 2: “Quit the game and don’t com-

pete with me. In return, I’ll pay you p dollars upon closing the

deal.” Then player 1 sells the DVD to buyer 3 for q dollars (of

course, q > p). After the sale, the players are left with the following

amounts:

Seller 1: the amount of (q − p) dollars.

Seller 2: the amount of p dollars and a DVD worth $100 to him, for a

total of (100 + p).

Buyer 3: the amount of (200 − q) dollars: a DVD worth $200 to him

minus the amount q that he paid for the DVD.

Therefore,

v(1, 2, 3) = (q − p) + (100 + p) + (200 − q) = 300.
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To summarize, the coalition function is:

v(1) = 100

v(2) = 100

v(3) = 0

v(1, 2) = 200

v(1, 3) = 200

v(2, 3) = 200

v(1, 2, 3) = 300

v(∅) = 0

100 100 0

1 2 3200 200

200

300

The coalition function describes the worth of all coalitions that can

be formed under the above-mentioned conditions.

3.4 exercises
1. A market game has two buyers and one seller. Seller 1 has a lap-

top whose worth for him is $2000 and he offers it for sale. Players 2

and 3 are two potential buyers who do not own a laptop. The worth

of the laptop is $2,800 for one buyer (player 2) and $3,000 for the

other buyer (player 3). Each buyer is interested in paying the lowest

possible price for the laptop and is of course unwilling to pay more

than the worth of the laptop to him. Describe the game in coalition

function form.

2. A glove-market game has three players: players 1 and 2 each have

a left-hand glove and player 3 has a right-hand glove. The worth of a

coalition is the amount that it will get for the gloves in its possession.

Every pair of gloves (left and right) can be sold in the market for $50.

A single glove cannot be sold in the market. Describe the game in

coalition function form.
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3. A game v describes a four-player market in which there are two

sellers and two buyers. Each seller has a good that he offers for sale

and whose worth for him is $100. Each buyer wants to buy a single

good whose worth for him is $150. The potential buyers do not have

a good like the one offered for sale. Describe the game in coalition

function form.

4. A glove-market game has five players: players 1, 2, and 3 each

have a left-hand glove and players 4 and 5 each have a right-hand

glove. The worth of a coalition is the amount that it will get for

the gloves in its possession. Every pair of gloves (left and right)

can be sold in the market for $100. Describe the game in coalition

function form.

3.5 additive games
A game (N; v) is called additive if

v(S ∪ T) = v(S) + v(T)

holds for every pair of disjoint coalitions S and T (namely,

S ∩ T = φ).

A game is additive if every pair of disjoint coalitions in it are

such that the members of any coalition obtain as a group exactly what

they would have obtained had they been acting separately. Additive

games are the most trivial games. In such games there is no incentive

to form a coalition because no coalition provides a surplus over what

its members can obtain on their own.

Example:

v(1) = 5 v(2) = 10 v(3) = 15

v(1, 2) = 15 v(1, 3) = 20 v(2, 3) = 25
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v(1, 2, 3) = 30

v(∅) = 0

Verify the additivity.

3.6 superadditive games
A game (N; v) will be called superadditive if

v(S ∪ T) ≥ v(S) + v(T)

holds for every pair of disjoint coalitions S and T (namely, S ∩ T = φ).

In other words, a superadditive game is a game in which every pair of

disjoint coalitions can obtain jointly at least as much as they could

have obtained if they had been acting separately. Or, to put it another

way, it is advantageous to form large coalitions.

This requirement seems natural enough, since the large coali-

tion is free to act as if it consisted of several coalitions.

The question is, how reasonable is it to assume superaddi-

tivity? The answer is that it depends on what real-life situation we

want to describe. In most social and economic situations the super-

additivity assumption is reasonable, but there are other situations in

which it is not – say a situation in which for certain reasons (personal,

political, racist, etc.) there are two groups that not only are not mutu-

ally beneficial, but one group harms the interests of the other group.

In such a case, where unity is counterproductive, the superadditivity

assumption is unreasonable. Another example is a situation in which

an antitrust law prohibits small firms from merging into a large firm.

In such a case a heavy fine might be imposed on the firms that merge

in violation of the law.

In a superadditive game,

v(S ∪ T) ≥ v(S) + v(T)

holds for every pair of disjoint coalitions S and T; this inequality

shows that for S and T there is an advantage to forming coali-

tion S ∪ T. In superadditive games it is advantageous to form the
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largest possible coalitions, so it may naturally be assumed that

the coalition N will form and the comprehensive payoff to its

members will be v(N). This comprehensive payoff will have to

be divided somehow among the members of coalition N – hence,

in such cases, we can assume that the final outcome will be a

payoff vector x = (x1, x2, x3, ..., xn) that satisfies

x1 + x1 + ... + xn = v(N).

x1 ≥ v(1), x2 ≥ v(2), ..., xn ≥ v(n).

Here, xi is the payment to player i. The first line, called group ratio-

nality, or efficiency, indicates that the grand coalition formed and its

worth was shared by all the players. The second line, called individual

rationality, indicates that each player i will participate only if he gets

at least what he could get by playing alone. We can sum up by say-

ing that at least for superadditive games, the solution of the game,

however it is obtained, should be in a set of payoff vectors.

Example:

v(1) = 6 v(2) = 18 v(3) = 12

v(1, 2) = 24 v(1, 3) = 20 v(2, 3) = 35

v(1, 2, 3) = 50 v(∅) = 0

Verify the superadditivity.

3.7 majority games
One of the election rules in a voting body defines which subsets of the

voting body are big enough to pass a decision, and which do not meet

this requirement. Those subsets that can pass a decision are called

winning coalitions. The coalitions that are not big enough to pass

a decision are called losing coalitions. Often, the winning coalitions

are those that have a majority.
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A voting body can be described as a coalition function game.

To illustrate this, we assign a worth 1 to every winning coalition and

a worth 0 to every losing coalition. In such games, the worth 1 is not

a monetary payment but a more abstract worth, namely, the ability

to pass decisions. The number 1 signifies that the winning coalition

can achieve whatever it wants. The number 0 signifies that the losing

coalition cannot guarantee itself anything.

Example 1: Three-player Majority Game

A class committee consists of three members. To pass a decision, the

agreement of two members is sufficient. Of course, the agreement

of all members is sufficient to pass a decision, while one committee

member alone is a minority.

The coalition function in this case is:

N = {1, 2, 3} v(1) = v(2) = v(3) = 0 v(∅) = 0

v(1, 2) = v(1, 3) = v(2, 3) = v(1, 2, 3) = 1

0 0 0

1 1

1

1

We can examine this game in two ways. One is to ask what coalitions

can be formed and how they are likely to share their worth. If coalition

{1, 2} is formed, the outcome will probably be (1/2, 1/2, 0). If coalition

{1, 3} is formed, the outcome will probably be (1/2, 0, 1/2). If coalition

{2, 3} is formed, the outcome will probably be (0, 1/2, 1/2).
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The other way to examine this game is to ask what a judge is

likely to decide if the class committee brings the game before him and

asks him to propose a “fair” distribution. The judge’s decision for this

game will likely be that the grand coalition should form and share its

worth equally. Thus, the outcome will be (1/3, 1/3, 1/3).

Example 2: Weighted Majority Game

In a voting body like a parliament, the players are parties and every

party has a certain number of representatives. A certain country

with three parties in its parliament obtained the following election

results:

Party 1: 5 representatives

Party 2: 3 representatives

Party 3: 7 representatives

The number of representatives of party i is called the “weight” of

party i. Let w denote the “weight” so that the weight of i is wi. In our

example, w1 = 5, w2 = 3, w3 = 7.

These weights are especially justified in parliaments in which

coalition disciplines are enforced, that is, in which it is mandatory

that all members of a party vote the same way when important issues

are considered. In such cases it is justified to call the party a player

and the number of its representatives its weight.

In general, a weighted majority game, written [q; w1, w2, ..., wn],
is a game (N; v), where w1 ≥ 0, w2 ≥ 0, ..., wn ≥ 0 and

v(S) = 1 if the sum of the weight of S is greater than

or equal to q

v(S) = 0 otherwise

The number q is called the quota of the game. It is the number of

weights a coalition must command in order to pass a decision.

In our example v(1) = v(2) = v(3) = 0, v(1, 2) = v(1, 3) =
= v(2, 3) = 1, and v(1, 2, 3) = 1.
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0 0 0

1 1

1

1

Thus, we can choose q = 8 and the game is [8; 5, 3, 7]. But we can also

choose q = 7 1
2 and the game is then [7 1

2 ; 5, 3, 7]. If, on the other hand,

one needs 2
3 of the total sum of weights in order to pass a decision then

q = 10 and the game is described as [10; 3, 5, 7].
A priori, not all weighted majority games result from real-life

elections. Take, for example, the weighted majority game [8; 3, 4, 5, 6].
Here both S = {1, 3} and T = {2, 4} are winning coalitions, as are many

others. Can we say that both S and T control all the rulings in a par-

liament? Similarly, [7; 2, 2, 2, 2, 2, 2] is a strange game, because both

{1, 2, 3} and {4, 5, 6} are losing coalitions. We therefore limit ourselves

to strong weighted majority games, where the quota is greater than

half of the sum of all the weights. Strong weighted majority games

satisfy the following properties:

1. An empty coalition is a losing coalition.

2. A coalition of all players is a winning coalition.

3. If S is a winning coalition, the coalition of players not in S is a

losing coalition.

4. If S is a losing coalition, the coalition of players not in S is a winning

coalition.

Exercise:

What is the coalition function of the game [9; 1, 7, 9]?
Answer:

Players 1 and 2 cannot pass a decision separately: v(1) = v(2) = 0

Player 3 can pass a decision separately: v(3) = 1

Players 1 and 2 together do not have enough

votes (explain): v(1, 2) = 0

v(∅) = 0 v(1, 3) = v(2, 3) = v(1, 2, 3) = 1
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Or, expressed as a figure:

0 0 1

0

1

1

1

Player 3 in this game is called a dictator because his consent is

necessary and sufficient to pass any decision.

3.8 exercises
1. Write the coalition function of each of the following weighted

majority games:

(1) [3; 2, 1, 1] (5) [9; 5, 5, 3, 4]
(2) [3; 2, 1, 1, 1] (6) [61; 61, 19, 20, 20]
(3) [8; 6, 2, 7] (7) [61; 50, 40, 30]
(4) [8; 5, 6, 4] (8) [61; 35, 35, 35, 15]

2. In the following games the required majority is not a simple major-

ity, but a decisive majority. In each of these games a two-thirds majo-

rity is needed to pass a decision. Given this condition, write the

coalition function of each of the following games:

(1) N = {1, 2, 3, 4, 5} w1 = w2 = 2 w3 = w4 = w5 = 1

(2) N = {1, 2, 3, 4} w1 = w2 = 5 w3 = 3 w4 = 4

(3) N = {1, 2, 3} w1 = 50 w2 = 40 w3 = 30

(4) N = {1, 2, 3, 4} w1 = w2 = w3 = 35 w4 = 15

3. Write the coalition function of the following game:

N = {1, 2, 3, 4}; a coalition is defined to be a winning coalition if and

only if it contains player 1 and there are at least 3 players.
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4. A player is called a veto player if he is in every winning coali-

tion; that is, a coalition cannot be a winning coalition unless it

contains him.

Are there veto players in the following weighted majority

games? Support your answer!

(1) [8; 1, 1, 1, 6]
(2) [7; 5, 5, 3]
(3) [61; 60, 20, 20, 20]
(4) [61; 59, 30, 21, 10]
(5) [10; 3, 3, 3, 9]

3.9 symmetric players
Example 1

Take the following game:

N = {1, 2, 3, 4} v(1) = v(2) = v(3) = v(4) = 0 v(∅) = 0

v(1, 2) = 8 v(2, 3) = 9

v(1, 3) = 9 v(2, 4) = 15

v(1, 4) = 15 v(3, 4) = 5

v(1, 2, 3) = 20 v(1, 3, 4) = 50

v(1, 2, 4) = 30 v(2, 3, 4) = 50

v(1, 2, 3, 4) = 60

The game can be seen to contain several pairs of coalitions of equal

worth:

v(1) = v(2) = 0

v(1, 3) = v(2, 3) = 9

v(1, 4) = v(2, 4) = 15

v(1, 3, 4) = v(2, 3, 4) = 50

What characterizes each pair of coalitions of equal worth is that one

coalition contains player 1 with additional players and the other coali-

tion contains player 2 with the same additional players. Thus, in each

coalition containing either player 1 or player 2, if we replace player 1

by player 2 or vice versa, the coalition worth will not change.



114 the shapley value in cooperative games

Question: Are the coalitions listed above the only ones that need to

be checked?

Answer: All other coalitions either contain both players, in which

case the replacement does not change the coalition, or, alternatively,

they do not contain either of the two players, in which case there is

no one to replace. (Verify!)

We can sum up by saying that in this game, in every coalition

containing either player 1 or player 2, the coalition worth does not

change when we replace one of these players with the other. In such

a case we say that players 1 and 2 are symmetric.

Example 2
N = {1, 2, 3, 4} v(1) = v(2) = 1 v(3) = v(4) = 0

v(1, 2) = 7 v(2, 3) = 7

v(1, 3) = 10 v(2, 4) = 6

v(1, 4) = 5 v(3, 4) = 5

v(1, 2, 3) = 20 v(1, 3, 4) = 25

v(1, 2, 4) = 30 v(2, 3, 4) = 40

v(1, 2, 3, 4) = 70 v(∅) = 0

In this game, too, there are pairs of coalitions of equal worth:

v(1) = v(2) = 1

v(3) = v(4) = 0

v(1, 2) = v(2, 3) = 7

v(1, 4) = v(3, 4) = 5

Question: Can players 1 and 3 replace each other in every coalition

that contains one of them?

Answer: No. Although player 1 can replace player 3 in coalition {2, 3}
and player 3 can replace player 1 in coalition {1, 2}, there are coali-

tions in which such a replacement changes the worth. For example,

v(1, 2, 4) �= v(2, 3, 4), v(1) �= v(3).
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Definition: Symmetric Players

Two players in a set N of players are called symmetric players in

the game (N; v) if they can replace each other in every coalition that

contains one of them; that is, if one player replaces the other, the

coalition worth does not change.

Formally, players i and j are called symmetric if for every S that

does not contain i and j there exists

v(S ∪ {i}) = v(S ∪ {j}).

In particular, it should hold if S = ∅, in which case v(i) = v(j).

3.10 exercises
1. Following is a list of games. Check each of them to see whether it

has symmetric players. If so, indicate who they are.

(1) N = {1, 2} v(N) = 1 v(1) = v(2) = 0

(2) N = {1, 2, ..., n} v(S) =
{

1 S = N

0 S �= N, S ⊂ N

(3) N = {1, 2, 3} v(1) = v(2) = 100 v(3) = 0

v(1, 2) = v(1, 3) = v(2, 3) = 200

v(1, 2, 3) = 300 v(∅) = 0

(4) N = {1, 2, 3} v(1) = v(2) = v(3) = 0 v(∅) = 0

v(1, 2) = v(1, 3) = v(2, 3) = v(1, 2, 3) = 1

(5) [3; 2, 1, 1, 1]
(6) N = {1, 2, 3, 4} v(1) = v(2) = 2 v(3) = v(4) = 0

v(1, 2) = 5 v(2, 3) = 6

v(1, 3) = 7 v(2, 4) = 5

v(1, 4) = 8 v(3, 4) = 7

v(1, 2, 3) = 20 v(2, 3, 4) = 15

v(1, 2, 4) = 10 v(1, 3, 4) = 20

v(1, 2, 3, 4) = 30 v(∅) = 0
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2. Identify the symmetric players in the following weighted majority

games:

(1) [8; 6, 2, 7]
(2) [9; 5, 5, 3, 4]
(3) [61; 61, 19, 20, 20]
(4) [61; 50, 40, 30]
(5) [61; 35, 35, 35, 15]

3.11 null players
Take the majority game [12; 1, 3, 7, 12]. We shall write it as a coalition

function:

v(1) = v(2) = v(3) = 0 v(4) = 1

v(1, 2) = 0 v(2, 3) = 0

v(1, 3) = 0 v(2, 4) = 1

v(1, 4) = 1 v(3, 4) = 1

v(1, 2, 3) = 0 v(1, 3, 4) = 1

v(1, 2, 4) = 1 v(2, 3, 4) = 1

v(1, 2, 3, 4) = 1 v(∅) = 0

We are interested in the worth of each coalition that contains player 1:

v(1) = 0 v(1, 2, 3) = 0

v(1, 2) = 0 v(1, 2, 4) = 1

v(1, 3) = 0 v(1, 3, 4) = 1

v(1, 4) = 1 v(1, 2, 3, 4) = 1

It can be seen that the participation of player 1 in any coalition does

not change the coalition worth. Let us withdraw player 1 from every

coalition that contains him and examine the worth of the resulting

coalitions:

v(∅) = 0 v(2, 3) = 0

v(2) = 0 v(2, 4) = 1

v(3) = 0 v(3, 4) = 1

v(4) = 1 v(2, 3, 4) = 1

When we compare this list to the previous one, we see that in this

game the withdrawal of player 1 from a coalition that contains him,
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or, alternatively, the participation of player 1 in any coalition, does

not change the coalition worth.

Formally, for every coalition S that does not contain player 1

v(S ∪ {1}) = v(S) is satisfied. A player whose presence or absence does

not change the coalition worth is called a null player.

Definition: Null Player

A player in a set N of players is called a null player if he does not

contribute anything through his participation in any coalition.

Formally, i is a null player if, for every S that does not contain i,

v(S ∪ {i}) = v(S)

is satisfied. In particular, for S = ∅, we obtain v(i) = 0.

3.12 exercises
1. (1) Identify the null players in the following game:

N = {1, 2, 3, 4} v(1) = v(2) = v(3) = v(4) = 0 v(∅) = 0

v(1, 2) = 0 v(1, 2, 3) = 10

v(1, 3) = 0 v(1, 2, 4) = 0

v(1, 4) = 0 v(1, 3, 4) = 0

v(2, 3) = 10 v(2, 3, 4) = 10

v(2, 4) = 0 v(1, 2, 3, 4) = 10

v(3, 4) = 0
(2) Does the answer change when v(1, 2, 3, 4) = 20 and for

every other coalition S, v(S) remains unchanged? (Support your

answer!)

2. (1) Identify the null players and the symmetric players in the

following game:
N = {1, 2, 3, 4} v(1) = v(2) = 0 v(3) = v(4) = 1 v(∅) = 0

v(1, 2) = 0 v(2, 3) = 1

v(1, 3) = 1 v(2, 4) = 1

v(1, 4) = 1 v(3, 4) = 2

v(1, 2, 3) = 1 v(2, 3, 4) = 2

v(1, 2, 4) = 1 v(1, 3, 4) = 2

v(1, 2, 3, 4) = 2
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(2) Does the answer change when the value of v(2) changes to

v(2) = 1 and everything else remains unchanged? Support your

answer!

3. Identify thenullplayers in the followingweightedmajoritygames:

(1) [61; 35, 35, 35, 15]
(2) [7; 5, 4, 3, 1]
(3) [10; 5, 5, 5, 2, 2]

3.13 the sum of games
The mathematical model of a cooperative game is the pair (N; v),

where N is a set of players and v is the coalition function that assigns

a real number to every coalition. An infinite number of games can be

assigned to a set of players N by means of different coalition functions.

Let us look, for example, at the following games assigned to the set

N = {1, 2, 3}.
The game (N; u) is:

u(1) = u(2) = u(3) = 0 u(∅) = 0

u(1, 2) = 10 u(1, 3) = 20 u(2, 3) = 30

u(1, 2, 3) = 40

0 0

10

20

30

40

0

The game (N; w) is:

w(1) = 5 w(2) = 10 w(3) = 15 w(∅) = 0

w(1, 2) = 20 w(1, 3) = 25 w(2, 3) = 30

w(1, 2, 3) = 35
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5 10

20

25

30

35

15

The game (N; v) is:
v(1) = 5 v(2) = 10 v(3) = 15 v(∅) = 0

v(1, 2) = 30 v(1, 3) = 45 v(2, 3) = 60

v(1, 2, 3) = 75

5 10

30

45

60

75

15

A look at the three games reveals that the game (N; v) is the sum of

the games (N; u) and (N; w), because the worth of every coalition in

game v is the sum of its worths in games u and w .

For example, the worth of coalition {1, 2} in game (N; u) is 10

and its worth in game (N; w) is 20, while its worth in the third

game is 30.

This example leads to the following definition:

Definition: The Sum of Two Games

The game (N; v) is called the sum of two games (N; u) and (N; w) if

for every coalition S from the set of players N (S ⊆ N)

v(S) = u(S) + w(S)



120 the shapley value in cooperative games

This definition is also correct in the other direction; that is, given any

game (N; v), it is possible to split it into two games whose sum is the

original game.

Example:

N = {1, 2, 3}

The coalition function is:

v(1) = 10 v(2) = 5 v(3) = 15 v(∅) = 0

v(1, 2) = 15 v(1, 3) = 30 v(2, 3) = 25

v(1, 2, 3) = 40

10 5

15

30

25

40

15

We shall examine some ways to split the game into two different

games whose sum is the original game. For example, the game (N; v)

can be expressed as a sum of the two games (N; w) and (N; u), as in

the following figure:

(1) 10 5 15

15 25

30

40

(N;v)

= +5 5 5

10 15

15

20

(N;u)

5 0 10

5 10

15

20

(N;w)
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w(1) = 5 u(1) = 5 thus w(1) + u(1) = 10 = v(1)

w(2, 3) = 15 u(2, 3) = 10 thus w(2, 3) + u(2, 3) = 25 = v(2, 3)

and so on.

Exercise:

Verify that in each of the given splits, for every coalition S,

v(S) = w(S) + u(S).

(2) 10

(N;v) (N;u) (N;w)

5 15

15 25

30

40

= +0 5 10

7 20

10

40

10 0

8 5

20

0

5

(3) 10 5 15

15 25

30

40

= +10 0

10 0

10

10

0 5

5 25

20

30

150

(N;v) (N;u) (N;w)

Exercise:

Find another way to split the original game into a sum of two games.

The concept of the sum of games enables us to create a new game

from two given games when the same set of players is involved, and,

conversely, to split a given game into two different games.

3.14 exercises
1. A game is split into two different games below. Supply the missing

values.
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10 5 15

20 25

30

40

= +3 5

10 10

10

20

0 5

12 15

20

30

50

2. Take the two games (N; v) and (N; w). Write the coalition function

of the sum of the games.

N = {1, 2, 3}
v(1) = v(2) = v(3) = 0

v(1, 2) = 15

v(1, 3) = v(2, 3) = 20 v(∅) = 0

v(1, 2, 3) = 30

w(1) = 5 w(2) = 0 w(3) = 5

w(1, 2)=5 w(1, 3)=15 w(2, 3)=10

w(1, 2, 3) = 40 w(∅) = 0

3. Take the game (N; v):

N = {1, 2, 3} v(1) = v(2) = 5 v(3) = 10 v(∅) = 0

v(1, 2) = 15 v(1, 3) = 20 v(2, 3) = 20

v(1, 2, 3) = 40

The game is split into the sum of the two games below so that in one

game player 1 is a null player.

(1) Supply the missing values of the second game.

5 5 10

15 20

20

40

= +0 5

5 15

10

15

0 5 510

(2) Is there a null player in the second game too?
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4. Take the game (N; v):

N = {1, 2, 3} v(1) = 10 v(2)=5 v(3) = 20 v(∅) = 0

v(1, 2) = 20 v(1, 3) = 30 v(2, 3) = 40

v(1, 2, 3) = 60

(1) Split the game into the sum of two games, so that in one game

players 2 and 3 are null players.

(2) Are there null players in the second game too?

5. Take the game (N; v):

N = {1, 2, 3} v(1) = 15 v(2) = 15 v(3) = 20 v(∅) = 0

v(1, 2) = 30 v(1, 3) = 40 v(2, 3) = 35

v(1, 2, 3) = 70

The game is split into the two games below, so that in one game

player 3 is a null player and players 1 and 2 are symmetric.

(1) Supply the missing values of the second game.

15 15 20

30 35

40

70

= +10 10

20 10

10

20

0 5

12 15

20

30

50

(2) Are there null players and/or symmetric players in the second

game too?

6. Take the game (N; v):

N = {1, 2, 3} v(1) = 6 v(2) = 6 v(3) = 12 v(∅) = 0

v(1, 2) = 12 v(1, 3) = 18 v(2, 3) = 24

v(1, 2, 3) = 30
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(1) Split the game, so that in one game players 1 and 3 are

symmetric players and player 2 is a null player.

(2) Are there null players and/or symmetric players in the second

game too?

7. Take the game (N; v):

N = {1, 2, 3} v(1) = 9 v(2) = 6 v(3) = 12 v(∅) = 0

v(1, 2) = 15 v(1, 3) = 24 v(2, 3) = 18

v(1, 2, 3) = 60

The game is split into the three games below, whose sum is the

original game. Supply the missing values.

9 6 12

15 18

24

60

= +3 3

6 3

6

20

0 3

6 9

9

20

6 + 3 3

6 6

9

20

60

8. Take the game (N; v):

N = {1, 2, 3} v(1) = 5 v(2) = 10 v(3) = 15 v(∅) = 0

v(1, 2) = 15 v(1, 3) = 25 v(2, 3) = 30

v(1, 2, 3) = 50

Split the game into three games whose sum is the original game.

3.15 the shapley value
For a game (N; v), one can ask several questions: Given that certain

coalitions formed, how should the players share the coalition worth

among themselves? How will an unbiased judge or an arbitrator divide

the proceeds if the players seek his advice? Each theory that attempts

to answer any of these questions is called a solution concept. In this
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chapter we shall deal with one solution concept6 called “the Shapley

value.” One of its aims is indeed to lay down rules that will enable an

unbiased judge to suggest an allocation of v(N) among the players.

We shall now present a simple system of four rules (axioms) and

we shall see that this system of axioms offers the judge an opportunity

to decide how to divide v(N) fairly among the players in any given

situation (in any game). We shall see that these axioms determine a

unique way to divide v(N) in every game.

The axioms presented below were first formulated in 1953 by

Lloyd Shapley, who showed that indeed they dictate to the judge

how to decide in every case. The division of payoffs according to this

decision is called the Shapley value.

Example 1
N = {1, 2, 3, 4} v(N) = 80

v(S) = 0, S �= N

All players in this game are symmetric. (Verify!) The judge will duly

take note of this and suggest an equal division of v(N) among the

players. Hence the outcome will be (20, 20, 20, 20).

This division is obtained from the following axioms:

Axiom 1

The total amount v(N) is divided among all the players.

This axiom is called the efficiency axiom, because in many games

v(N) is the largest amount of money the players can get by splitting

N into several coalitions. The axiom is reasonable, because the players

want to divide among themselves everything they can achieve in the

game when they unite, namely, exactly v(N).

Axiom 2

Symmetric players get equal payoffs.

This axiom is called the symmetry axiom for obvious reasons. It is

reasonable, because we seek a “fair” division that will be acceptable

6 Shapley, L. S. 1953. “A value for n-person games,” in Kuhn, H. and Tucker, A. W.
(eds.), Contributions to the theory of games II, Annals of Mathematics Studies 28.
Princeton: Princeton University Press, pp. 307–17
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to all players, thus avoiding unnecessary bargaining. A division of

payoffs of this sort, which does not discriminate between a player and

his equal, will be acceptable to everyone.

Example 2

N = {1, 2, 3} v(1) = v(2) = v(3) = 0 v(∅) = 0

v(1, 2) = 30 v(1, 3) = 0 v(2, 3) = 0

v(1, 2, 3) = 30

In this game, players 1 and 2 are symmetric players and player 3 is a

null player (verify it!). It is reasonable to assume that player 3 will get

nothing in the division of payoffs. Indeed, since he contributes noth-

ing, it is reasonable that he should get nothing. Hence the division of

payoffs in this game is (15, 15, 0).

We now present a third axiom.

Axiom 3

The payoff to a null player is zero.

The axiom is called the null player axiom. It is reasonable, because

it is to be expected that a player who contributes nothing should get

nothing.

Example 3

N = {1, 2} v(1) = 30 v(2) = 20 v(1, 2) = 80 v(∅) = 0

We shall split the game into a sum of three games.

u(1) = 30 u(2) = 0 u(1, 2) = 30

w(1) = 0 w(2) = 20 w(1, 2) = 20

τ(1) = 0 τ(2) = 0 τ(1, 2) = 30

2030

80

=

030

30

+

200

20

+

00

30

In game (N; u) player 2 is a null player, in game (N; w) player 1 is a null

player, while in game (N; τ) players 1 and 2 are symmetric players.

(Verify it!)
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Based on the axioms presented above, the division of payoffs for

each of the games is:

(N; u) − (30, 0)

(N; w) − (0, 20)

(N; τ) − (15, 15)

If we add up these sums, we get (45, 35), and that, we believe, is the

division that the judge should propose.

We have based the judge’s decision on the following axiom:

Axiom 4

If we split the original game into a sum of individual games, the

division of payoffs among the players in the original game should be

the sum of divisions obtained in the individual games.

We justify this axiom as follows. Let us imagine a situation where

the set of players plays separately in each individual game; in this

case the players will ultimately get the sum of payoffs that they get

in each individual game.

On the other hand, if we consider the collection of games as a

single game, we get a game whose coalition function is the sum of the

coalition functions of the individual games, because every coalition

can guarantee its worth in each individual game and, ultimately, it

guarantees the sum of these worths.

Example:

Here are two games:

0 0

20 40

30

50

0

50 70

20

60

0 00
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Let’s look at coalition {1, 2}. In the first game this coalition can guar-

antee itself 20, if the players decide to form such a coalition. In

the second game the coalition will be able to guarantee itself 50,

if such a coalition is formed. Ultimately, the coalition can guaran-

tee itself 70, if such a coalition is formed in both games. Similarly,

we can add up the worth of the remaining coalitions, and the game

obtained is:

0 0

70 110

50

110

0

Let us reformulate Shapley’s axioms concisely:

Efficiency axiom: v(N) is completely divided among all the players.

Symmetry axiom: If there are symmetric players in a game, they get

equal payoffs.

Null player axiom: If there is a null player in a game, he gets zero.

Additivity axiom: If (N; v) = (N; w) + (N; u), the value of the sum of

the two games equals the sum of the values of the two games.

Shapley, who formulated these axioms, proved that they establish a

unique value for every game. While proving the Shapley theorem is

beyond the scope of this book, we shall see how to find the value of a

game in the examples below.

Example:
N = {1, 2, 3} v(1) = 6 v(2) = 12 v(3) = 18

v(1, 2) = 30 v(1, 3) = 60 v(2, 3) = 90

v(1, 2, 3) = 120 v(∅) = 0
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There are no symmetric players and no null players in this game. The

game can be split into a sum of very simple games so that there will

be only null players and/or symmetric players in every game. We can

calculate the Shapley value of these games by the axioms above, and

then, by the additivity axiom, we can calculate the Shapley value of

the original game.

We now present one way of splitting the original game into

games in which there are only null players and/or symmetric

players.

6 12 18

30 90

60

120

= +6 0

6 0

6

6

0 12

12 12

0

12

0 + 0 0

0 18

18

18

18 + +0 0

12 0

0

12

00

++ 00

0 0

36

36

0 0

0 60

0

60

0 + 0 00

0 0

0

–24

0

Verify that the sum of all these games is indeed the original

game.

How is this split achieved?

First, we split the original game into two games.

6 12 18

30 90

60

120

= +6 0

6 0

6

6

0 12

24 90

54

114

180
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We then split the right-hand game into two games.

0 12 18

24 90

54

114

= +0 12

12 12

0

12

0 0

12 78

54

102

180

We can again split the right-hand game into two games.

0 0 18

12 78

54

102

= +0 0

0 18

18

18

0 0

12 60

36

84

018

And so on.

Exercise:

Split the right-hand game into two games and keep splitting the

games obtained until you have seven games, as in the example

above.

Explanation: The split presented above is not random. At every stage

we split the game into two games, one of which has a special prop-

erty; namely, it contains a coalition S such that v(T) = v(S) whenever

T contains S and v(T) = 0 for every other coalition. Such a game

is called a carrier game and the coalition S is called its carrier.

Formally,

Definition: A carrier game (N; v) is a game in which there is a coalition

S, called the carrier of the game, such that
v(T) = v(S), whenever S ⊆ T
v(T) = 0, otherwise.
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In the first three games the carriers are {1}, {2}, and {3}.
Let’s move on to the fourth game. The carrier coalition in

it is {1, 2}. The fourth game is obtained by splitting the following

game:

= +0 0

12 0

0

12

0 0

0 60

36

72

00 0

12 60

36

84

0 0

In this game the worth of coalition {1, 2} is 12 (v(1, 2) = 12). Hence the

worth of the carrier coalition in the fourth game is 12. The remaining

calculations are carried out similarly. Verify it!

Why did we split the game in this way? The Shapley value of

every component of the split can be calculated by the axioms, because

the carrier coalition players are symmetric players and the remaining

players are null players. For example, in the following game:

0 0

0 0

36

36

0

Players 1 and 3 are symmetric players and player 2 is a null player.

Hence the Shapley value of the game is (18, 0, 18).

If we examine the diagram of the split, we can calculate the

following values:
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(6, 0, 0)

(0, 12, 0)

(0, 0, 18)

(6, 6, 0)

(18, 0, 18)

(0, 30, 30)

(−8, −8, −8)

(22, 40, 58)

Ultimately, by the additivity axiom, the value obtained is the Shapley

value of the original game.

Exercise:

We now present another way of splitting the same game. Here again

there are only null players and symmetric players in every component.

(1) Verify that the sum of games is the original game.

(2) Calculate the Shapley values of all the games and show that an

identical value is obtained for the original game.

0 0 0

30 0

0

30

+ 0 0 0

0 0

60

60

+ 0 0 0

0 90

0

90

+ 0 0 0

0 0

0

–60

+

6 0 0

6 0

6

6

+ 0 12 0

12 12

0

12

+ 0 0 18

0 18

18

18

+ 0 0 0

–18 0

0

–18

++

0 0 0

0 –30

0

–30

+ 0 0 0

0 0

–24

–24

+ 0 0 0

0 0

0

36

+
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The result obtained – identical value – derives from the theorem

proved by Shapley, according to which the aforementioned system

of axioms establishes a unique value.

3.16 exercises
1. Calculate the Shapley value of the two-player bargaining game.

N = {1, 2} v(1) = v(2) = 0 v(1, 2) = 1 v(∅) = 0

2. Calculate the Shapley value of the three-player majority game.

N = {1, 2, 3} v(1) = v(2) = v(3) = 0 v(∅) = 0

v(1, 2) = v(1, 3) = v(2, 3) = v(1, 2, 3) = 1

3. Calculate the Shapley value of the following weighted majority

games:

(1) [61; 61, 19, 20, 20]
(2) [8; 5, 6, 4]
(3) [61; 35, 35, 35, 15]

4. Calculate the Shapley value of the following game:

N = {1, 2, 3} v(1) = v(2) = 100 v(3) = 0 v(∅) = 0

v(1, 2) = v(1, 3) = v(2, 3) = 200

v(1, 2, 3) = 300

5. Calculate the Shapley value of the following game:

N = {1, 2, 3} v(1) = 6 v(2) = 12 v(3) = 18

v(1, 2) = 12 v(1, 3) = 12 v(2, 3) = 24

v(1, 2, 3) = 48 v(∅) = 0

3.17 dissolving a partnership
In this section we shall discuss the following real-life conflict7: we

shall consider a joint enterprise whose owners decide to sell and divide

7 Maschler, M. 1982. “The worth of a cooperative enterprise to each member,” in
Diestler, M., Furst, E. and Schwodiauer, G. (eds.), Games, economic dynamics and
time series analysis. New York: Springer, pp. 67–73
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its worth among themselves. How ought they to share the proceeds of

the sale? One often-used method is to divide the proceeds in propor-

tion to the investments of the partners. Variants of this method are

employed in various ways in different firms. Another method is based

on a principle often employed in “enterprises” consisting of a husband

and wife who decide to seek a divorce settlement. According to this

method, the wife takes back everything she brought to the marriage,

the husband takes back everything he brought to the marriage, and

the rest is divided equally between them. The question is whether

this procedure can be generalized to a case of more than two partners.

To generalize a “marriage enterprise,” let N = {1, 2, ..., n} be a

set of partners in an enterprise with joint ownership of its assets. As

long as the enterprise operates, these assets serve its needs and all

profits are divided among the partners in a way that need not concern

us here (we do not rule out the possibility that the profits are divided

in accordance with the arguments in the sequel). Now, the partners

decide to dissolve and we are concerned with the division of assets

among them. The situation is that some players contributed part of

their assets to the enterprise, which they are entitled to claim back

when the enterprise is dissolved. Also, some groups of partners have

assets that they brought to the enterprise and ought to claim back and,

of course, some assets were acquired by all the partners and should be

distributed to all the partners. Of course, there are also claims against

the assets that developed during the years when the enterprise was

active and the partners are responsible for them. How can we take

into account all of these factors when the enterprise is dissolved and

sold in the market?

We shall now discuss a special case. A joint enterprise of three

partners – 1, 2, and 3 – consists of a garage, a gas station, an auto

accessories store, a restaurant, and an auto parts store. The history of

the enterprise is as follows: the garage owner, 1, formed a partnership

with the gas station owner, 2. The two worked together for a while and

since their business prospered they bought an auto accessories store,

run by a worker hired to serve the customers. Later, their neighbor,

the restaurant owner, 3, joined the partnership, and the three opened
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an auto parts store. Unfortunately, differences of opinion arose among

the partners, making it impossible for them to continue the partner-

ship, and they agreed to sell everything and dissolve the partnership.

Notice that 1 would remain the garage owner, 2 the gas station owner;

similarly, 1 and 2 own the auto accessories store, and so on.

{1} → {garage} {2} → {gas station}
{3} → {restaurant} {1, 2} → {auto accessories store}
{1, 3} → ∅ {2, 3} → ∅ {1, 2, 3} → {auto parts store}

We can clearly see that each individual partner has an asset and that

partners 1 and 2 together have a joint asset. Partners 1 and 3 have no

joint asset, partners 2 and 3 have no joint asset, partners 1, 2, and 3

have a joint asset and thus they have a joint enterprise composed of

several assets.

We shall now model the situation as a game (N; v), where v(S)

is the price that can be obtained in the market for the set of all assets

that belong to all subsets of S, including S itself.

The worth is measured in fixed monetary units. We have chosen

to base the definition of v(S) on the set of all assets that belong to all

subsets of S, rather than on the set of all assets that belong to just

S. It is possible, for example, that a higher price will be obtained if

all assets of all subsets of S are sold together as a package and not

as separate items. It follows that when v(S) is claimed by S, then it

is necessary to decide on its division among the members of S. This

division must take into account the claims v(R) for R ⊆ S.

The coalition function in the case at hand could be:

v(1) = 30 v(2) = 12 v(3) = 6 v(1, 2) = 36

v(1, 3) = 36 v(2, 3) = 30 v(1, 2, 3) = 90 v(∅) = 0

Explanation: The garage can be sold in the market for $30,000. Sim-

ilarly, the gas station and the restaurant can be sold separately for

$12,000 and $6,000, respectively. The worth of coalition {1, 2} is the

worth of a package consisting of the garage, the gas station, and the

auto accessories store. Note that v(1, 2) < v(1) + v(2) even though
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this package contains the separate assets of 1 and 2. The reason is that

there is a large mortgage on the auto accessories store for which both

1 and 2 are responsible.

A higher price can be obtained for the gas station and the restau-

rant if those assets are sold as a package and not as separate items. This

is why

v(2, 3) > v(2) + v(3).

We can provide similar explanations for the other coalition worths.

In order to describe the procedure for dividing the value of the

joint enterprise among the partners in a way that is similar to the

divorce settlement, we start with a numerical example. As men-

tioned, the partners want to liquidate the joint enterprise and divide

the value, 90, among themselves. We shall attempt to solve this as

follows.

Player 3, let us say, claims his share, namely, the value of the

restaurant; the restaurant is sold and he gets 6. We need to subtract 6

from every coalition containing player 3, because every such coalition

contains the asset of the restaurant. Thus, we get a new game:

u(1) = 30 u(2) = 12 u(3) = 0 u(1, 2) = 36

u(1, 3) = 30 u(2, 3) = 24 u(1, 2, 3) = 84

Suppose coalition {1, 2} claims its share, namely, the worth of all

assets belonging to {1, 2} and its subsets. The coalition gets 36, which

is divided equally between players 1 and 2. We subtract 36 from every

coalition containing {1, 2}, and thus we get a new game:

w(1) = 30 w(2) = 12 w(3) = 0 w(1, 2) = 0

w(1, 3) = 30 w(2, 3) = 24 w(1, 2, 3) = 48

We subtract 36 from v(1, 2, 3) as well, because all assets of coalition

{1, 2} and its subsets are included in the worth of {1, 2, 3}.
Suppose 1 now claims his share, 30, which is the worth of the

garage. But the garage was sold already at the previous stage, when

{1, 2} claimed its share, because {1} ⊂ {1, 2}. We shall solve this prob-

lem as follows: we give player 1 the value of the garage, 30, and we
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place a debt of 30 on every coalition containing 1.We get the following

game:

p(1) = 0 p(2) = 12 p(3) = 0 p(1, 2) = −30

p(1, 3) = 0 p(2, 3) = 24 p(1, 2, 3) = 18

And so on.

The following table presents a possible liquidation that leads to a final

division of payoffs of (39, 27, 24).

coalition worth division

claimant game {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} 1 2 3

{3} v 30 12 6 36 36 30 90 0 0 0

{1,2} u 30 12 0 36 30 24 84 0 0 6

{1} w 30 12 0 0 30 24 48 18 18 0

{2} p 0 12 0 –30 0 24 18 30 0 0

{2,3} 0 0 0 –42 0 12 6 0 12 0

{1,2,3} 0 0 0 –42 0 0 –6 0 6 6

{1,2} 0 0 0 –42 0 0 0

{1,2,3} 0 0 0 0 0 0 42 –21 –21 0

0 0 0 0 0 0 0 14 14 14

39 27 24

–2–2–2

The procedure presented in the table above thus generalizes the

divorce settlement, because every partner takes back what he brought

to the partnership, while the rest is divided equally among all part-

ners. Yet the procedure raises a few questions: Does every sequence

of events (claims) lead to the same division of payoffs? Is the pro-

cedure necessarily finite? Is a division of v(N) always obtained?

We shall answer these questions shortly, but first we shall present

another sequence of events – the shortest possible sequence – which

is obtained when first all the one-player coalitions claim their worth,

then all the two-player coalitions claim their worth, and finally the

grand coalition claims its worth.
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This sequence of events, originally offered by John C. Harsanyi,8

is presented in the following table:

coalition worth division

claimant game {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} 1 2 3

{1} v 30 12 6 36 36 30 90 0 0 0

{2} u 0 12 6 6 6 30 60 30 0 0

{3} w 0 0 6 –6 6 18 48 0 12 0

{1,2} p 0 0 0 –6 0 12 42 0 0 6

{2,3} 0 0 0 0 0 12 48 –3 –3 0

{1,2,3} 0 0 0 0 0 0 36 0 6 6

0 0 0 0 0 0 0 12 12 12

39 27 24

The fact that the final division of payoffs is exactly the same as before

is an indication that this procedure is interesting. Later we shall see

that the final division of payoffs is the Shapley value of the original

game.

In words, the rule for dissolving a partnership is:

Split the original game into a sequence of games, where the divisions

of payoffs are obtained as follows: in any game a certain coalition

whose worth according to the coalition function is not zero claims

its worth, which is divided equally among the members of that

coalition.

The next game in the sequence is obtained as follows: subtract

the worth of the claiming coalition from the worth of every coalition

containing the claiming coalition and if a coalition does not con-

tain the claiming coalition, then its worth according to the coalition

function does not change, and so on.

The procedure terminates when the worth of every coalition is

zero, and the final division of payoffs is the amount of money that

accumulates over all the stages.

We shall prove that this procedure is valid by the following two

theorems.

8 Harasanyi, J. C. 1959. “A bargaining model for the cooperative n-person game,” in
Tucker, A. W. and Luce, R. D. (eds), Contributions to the theory of games IV, Annals
of Mathematics Studies 40. Princeton: Princeton University Press, pp. 325–55
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Theorem:

The procedure for dissolving a partnership terminates in a finite

number of steps.

Proof:

When a coalition claims its worth, its worth in the next game is

zero. The claiming coalition can again obtain a worth that is not

zero only if one of its non-zero subcoalitions (i.e., whose worth is

not zero) claims its worth. Suppose the procedure is infinite; in this

case there exists at least one coalition that claims its worth infinitely

many times. Accordingly, there exists a minimal coalition S that

claims its worth infinitely many times as well. But this can happen

only if one of its non-zero subcoalitions claims its worth infinitely

many times, which contradicts the minimality of S. The contradiction

shows that the assumption that the procedure is infinite is false; that

is, a procedure for dissolving a partnership must terminate in a finite

number of steps.

Theorem:

No matter what sequence is chosen for the procedure for dissolving

a partnership, the final division of payoffs is the Shapley value of the

game (N; v).

The proof of the theorem requires the use of many symbols, so we

shall not undertake it here. Instead, we shall clarify the idea of the

proof by way of example.

Consider the example at the beginning of the section (p. 135).

v(1) = 30 v(2) = 12 v(3) = 6 v(1, 2) = 36

v(1, 3) = 36 v(2, 3) = 30 v(1, 2, 3) = 90 v(∅) = 0

30 12

36 30

36

90

6
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Suppose the coalition {2, 3} claims its worth. We shall split the original

game into a sum of two games:

30 12 6

36 30

36

90

= 0 0 0

0 30

0

30

+ 30 12 6

36 0

36

60

In the left-hand game, players 2 and 3 are symmetric and player 1 is a

null player. Hence, 2 and 3 each get 15 and player 1 gets 0. Hence, the

payoff (0, 15, 15) is the Shapley value of the left-hand game, but it is

also the division of payoffs according to the procedure for dissolving

a partnership.

If we present it in a table, it will look like this:

coalition worth

claimant game {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} 1 2 3

{2,3} v 30 12 6 36 36 30 90 0 0 0
v1 0 0 0 0 0 30 30 0 15 15
u 30 12 6 36 36 0 60

division

The game u is actually the difference between the two games v and v1.

u = v − v1 ⇐⇒ v = v1 + u

As was said above, v1 is a game in which players 2 and 3 are symmet-

ric players and player 1 is a null player. Therefore, the Shapley value

of the game is (0, 15, 15), and that is precisely the division of payoffs.

When coalition {2, 3} claims its worth, they get the worth of their

asset and divide it equally between themselves. In this way, every

row in the table is obtained from the previous one. Hence, the proce-

dure described above is actually the splitting of the original game into

several carrier games in which all members of the carrier coalition
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are symmetric and the others are null players. Therefore, the final

division of payoffs is the sum of the Shapley values of those games.

We have thus seen that if a joint enterprise is liquidated accord-

ing to the procedure proposed above, the division of the proceeds of

the sale of the enterprise among the partners is identical to the Shap-

ley value of the game. That is, if we are obliged to find a fair division

among partners of a joint enterprise that is about to be liquidated,

then a division based on the Shapley value of the game is a reasonable

proposal for such a division.

3.18 exercises
1. A joint enterprise of three partners, 1, 2, and 3, consists of a travel

agency, a car rental agency, a tour company, a souvenir shop, and

a delivery service. The owner of the car rental agency, 1, forms a

partnership with the owner of the travel agency, 2. Later the two

purchase a souvenir shop, which they let their wives run. The owner of

the tour company, 3, enters into a partnership with 2 and the two open

a delivery service. Now 3 enters into the comprehensive partnership

and the enterprise is the operation of all these businesses together.

Remark: We need to remember that v(S) is the price that coalition

S can achieve in the market for all the assets that belong either to

it or to its subcoalitions. We shall describe the game in terms of the

coalition function:

v(1) = 20 v(2) = 30 v(3) = 10 v(1, 2) = 40

v(1, 3) = 0 v(2, 3) = 30 v(1, 2, 3) = 60 v(∅) = 0

At a certain stage the joint enterprise starts losing money and the

partners decide to liquidate it.

Calculate how much each of the partners will get from the sale of

the whole enterprise, if they carry out the division according to the

procedure for dissolving a partnership.

2. A joint enterprise consists of a perfume store, a clothing store, a

jewelry store, and a leather goods store. The owner of the perfume
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store, 1, partnered up with the owner of the clothing store, 2, and

when their business prospered, they bought a jewelry store. Later they

were joined by the owner of the leather goods store, 3. Afterwards,

disagreements arose among the partners and they decided to dissolve

the partnership.

Calculate how much each of the partners will get if the money is

divided according to the procedure for dissolving a partnership and if

the coalition function is:

v(1) = 18 v(2) = 36 v(3) = 42 v(1, 2) = 60

v(1, 3) = 0 v(2, 3) = 0 v(1, 2, 3) = 72 v(∅) = 0

3. Find the Shapley value of the following game using the procedure

for dissolving a partnership.

N = {1, 2, 3} v(1) = 6 v(2) = 6 v(3) = 12 v(∅) = 0

v(1, 2) = 18 v(1, 3) = 24 v(2, 3) = 0 v(1, 2, 3) = 60

4. Calculate the Shapley value of the following game using the

procedure for dissolving a partnership.

N = {1, 2, 3, 4}
v(1) = 24 v(2) = 48 v(3) = 24 v(4) = 72

v(1, 2) = 96 v(2, 3) = 144 v(1, 4) = 120 v(1, 3) = 0

v(2, 4) = 0 v(3, 4) = 0

v(1, 3, 4) = 168 v(1, 2, 3) = 0 v(1, 2, 4) = 0

v(2, 3, 4) = 0 v(1, 2, 3, 4) = 240 v(∅) = 0

3.19 the shapley value as the average
of players’ marginal contributions

Consider the following game:

N = {1, 2, 3}
v(1) = 6 v(2) = 12 v(3) = 18 v(∅) = 0

v(1, 2) = 30 v(1, 3) = 60 v(2, 3) = 90 v(1, 2, 3) = 120
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6 12

30 90

60

120

18

In Section 3.15 we found that the Shapley value of this game is

(22, 40, 58).

In this section we shall look at another way of finding the

Shapley value.9

Let us start by imagining a procedure in which three players

enter a room in any order. Each player that enters the room receives

his marginal contribution to the coalition of players waiting for him

in the room.

Example:

Suppose the players enter the room in the order (2, 3, 1); that is, first

player 2 enters the empty room. Before he entered there was an empty

coalition in the room, whose worth was 0; after he enters, coalition

{2} is in the room, whose worth is 12, so 2 receives his marginal

contribution, which is 12 units (12 − 0).

Player 3 enters the room second. Player 2 is already in the room,

so, together with player 3, coalition {2, 3} is obtained, whose worth is

90. The worth of the coalition that was in the room before 3 arrived

was 12, while the worth of the new coalition that is obtained upon

3’s arrival is 90. Therefore, 3’s marginal contribution is 90 − 12 = 78,

which is what player 3 gets.

Player 1 enters the room third and joins coalition {2, 3}, which

is already in the room. When 1 arrives coalition {1, 2, 3} is obtained,

whose worth is 120; the worth of coalition {2, 3}, which was in the

9 Shapley, L. S. 1953. “A value for n-person games,” in Kuhn, H. and Tucker, A. W.
(eds.), Contributions to the theory of games II, Annals of Mathematics Studies 28.
Princeton: Princeton University Press, pp. 307–17
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room beforehand was 90. Therefore, player 1’s marginal contribution

to the coalition is 120 − 90 = 30 and he gets this contribution.

Summary:

marginal contribution of player

order of entry into room 1 2 3
 2                 3                 1 30 12 78

The summary above refers only to a certain order, namely,

(2, 3, 1).

The procedure that we shall present below refers to a ran-

dom order, where all possible orders have the same probability. The

Shapley value is the expectation of the players in this procedure, that

is, the average of the payoffs that they receive.

Let’s reexamine the game described above. There are three

players in the game and so there are 6 (= 3!) possible orders.

marginal contribution

order of entry into room 1 2 3
 1                 2                 3 6 24 90
 1                 3                 2 6 60 54
 2                 3                 1 30 12 78
 2                 1                 3 18 12 90
 3                 1                 2 42 60 18
 3                 2                 1 30 72 18

132 240 348

The Shapley value of the game is:(
132
6 , 240

6 , 348
6

)
= (22, 40, 58).

Theorem:

The Shapley value of player i is the average of his marginal contribu-

tions that are paid out over all the possible orders.

The proof of the theorem goes beyond the scope of this book, but the

theorem is of great importance, because it represents another aspect

of the Shapley value.
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Example: Two-Player Market Game

N = {1, 2} v(1) = 2 v(2) = 3 v(1, 2) = 10

marginal contribution

possible orders 1 2

 1                 2 

 2                 1 

2 8

7 3

9 11

The Shapley value of the game is
(

9
2 , 11

2

)
.

Example: Market with Two Buyers and Two Sellers

N = {1, 2, 3, 4} v(1) = v(2) = 100 v(3) = v(4) = 0

v(1, 2) = 200 v(3, 4) = 0

v(1, 3) = v(1, 4) = v(2, 3) = v(2, 4) = 150

v(1, 2, 3) = v(1, 2, 4) = 250

v(1, 3, 4) = v(2, 3, 4) = 150

v(1, 2, 3, 4) = 300

There are 4 players in the game and so there are 24 (4!) possible orders.

We shall list all the possible orders along with player 1’s

marginal contribution.

order marg. cont. order marg. cont.

1234 100(= 100 − 0) 3124 150(= 150 − 0)

1243 100(= 100 − 0) 3142 150(= 150 − 0)

1324 100(= 100 − 0) 3214 100(= 250 − 150)

1342 100(= 100 − 0) 3241 150(= 300 − 150)

1423 100(= 100 − 0) 3421 150(= 300 − 150)

1432 100(= 100 − 0) 3412 150(= 150 − 0)

2134 100(= 200 − 100) 4123 150(= 150 − 0)

2143 100(= 200 − 100) 4132 150(= 150 − 0)

2314 100(= 250 − 150) 4213 100(= 250 − 150)

2341 150(= 300 − 150) 4231 150(= 300 − 150)

2413 100(= 250 − 150) 4321 150(= 300 − 150)

2431 150(= 300 − 150) 4312 150(= 150 − 0)
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The total of player 1’s marginal contributions over all the orders is

3000. The average of player 1’s marginal contributions is 3000
24 = 125.

Players 1 and 2 are symmetric (verify it!), and so, by the sym-

metry axiom, the average of player 2’s marginal contributions is

125 too.

The total payoff to players 1 and 2 is 250.

v(1, 2, 3, 4) = 300 and so, by the efficiency axiom, 50 units

of the payoff are left over to divide between players 3 and 4. Play-

ers 3 and 4 are symmetric too, so the amount of the payoff for

each is 25.

To summarize, the Shapley value of the game is (125, 125, 25, 25).

3.20 exercises
1. Calculate the Shapley value as the average of players’ marginal

contributions for the following games:

(1) Market game with two sellers and one buyer:

N = {1, 2, 3} v(1) = 100 v(2) = 100 v(3) = 0 v(∅) = 0

v(1, 2) = 200 v(1, 3) = 200 v(2, 3) = 200

v(1, 2, 3) = 300

(2)

N = {1, 2, 3} v(1) = 0 v(2) = v(3) = 6 v(∅) = 0

v(1, 2) = 12 v(1, 3) = 6 v(2, 3) = 18

v(1, 2, 3) = 24

(3) Three-player weighted majority game:

[3; 2, 1, 1]
(4)

N = {1, 2, 3}
v(1) = 6 v(2) = 12 v(3) = 18 v(∅) = 0

v(1, 2) = 12 v(1, 3) = 12 v(2, 3) = 24

v(1, 2, 3) = 48
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2. Calculate the Shapley value of the following game:

N = {1, 2} v(1) = a v(2) = b v(∅) = 0

v(1, 2) = c

3. Calculate the Shapley value of the following games in two ways:

(1) by dissolving a partnership;

(2) by the average of players’ marginal contributions.

(i) N = {1, 2, 3} v(1) = 10 v(2) = 5 v(3) = 0

v(1, 2) = 18 v(1, 3) = 10 v(2, 3) = 6

v(1, 2, 3) = 20 v(∅) = 0

(ii) N = {1, 2, 3} v(1) = v(2) = 5 v(3) = 0 v(∅) = 0

v(1, 2) = 10 v(1, 3) = v(2, 3) = 5

v(1, 2, 3) = 10

(iii) N = {1, 2, 3}
v(1)=6 v(2)=v(3)=12 v(∅) = 0

v(1, 2) = v(1, 3) = 18 v(2, 3) = 24

v(1, 2, 3) = 30

(iv) N = {1, 2, 3, 4}
v(1) = v(2) = v(3) = 5 v(4) = 0 v(∅)=0

v(1, 4) = v(2, 4) = v(3, 4) = 5

v(1, 2) = 10 v(1, 3) = v(2, 3) = 15

v(1, 2, 3) = 20 v(1, 2, 4) = 10 v(1, 3, 4) = 15

v(2, 3, 4) = 15

v(1, 2, 3, 4) = 20

(v) N = {1, 2, 3, 4}
v(1) = v(2) = 6 v(3) = v(4) = 12 v(∅) = 0

v(1, 2) = 12 v(3, 4) = 24

v(1, 4) = v(2, 4) = 18 v(1, 3) = v(2, 3) = 18

v(1, 2, 3) = v(1, 2, 4) = 30

v(1, 3, 4) = v(2, 3, 4) = 24

v(1, 2, 3, 4) = 36
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3.21 the shapley value as a player’s
index of power in weighted
majority games

In Section 3.7 we discussed weighted majority games whose general

form is:

[q; w1, w2, ..., wn]
w1, w2, ..., wn are the weights of the players. The weights are nonneg-

ative numbers. q is the quota and we assume that it is greater than

half the sum of the weights and less than or equal to the sum of the

weights.

A coalition is called a winning coalition in such a game if the

sum of the weights of its members is greater than q or equal to q.

Otherwise, the coalition is called a losing coalition.

The coalition function of such a game is:

v(S) =
{
1 if S is winning

0 if S is losing

Exercise: Given an election for a city council, an interesting question

arises: What is the political “strength” of each party? Any theory that

attempts to measure such strength is called a power index.

One inclination is to say that a good index of power for a player

i is the number of votes wi he received in the election. This is not

a satisfying definition. First, it is not influenced by the quota q. But

more fundamentally, the game representation (N; v) shows that the

above suggestion is meaningless, because various weighted majority

games of the form [q; w1, ..., wn] lead to the same game (N; v). We

shall see shortly that the Shapley value of the representation (N; v) is

a reasonable definition of the index of power of that representation.

This index is known as the Shapley–Shubik power index.10

First, we shall illustrate by way of example that a player’s elec-

toral power (i.e., his weight) is not a good index of his power in the

game.

10 Shapley, L. S. and Shubik, M. 1954. “A method for evaluation of the distribution of
power in a committee system,” The American Political Science Review 48: 787–92
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Example:

Consider the game:

[8; 7, 1, 7]

In this example, the power of the second player exactly equals the

power of the rest of the players, although he has only one representa-

tive while the others each have 7 representatives. To pass a decision, a

two-player coalition is necessary. Indeed, the coalition function of the

game is:

v(S) =
{

0 if S is empty or has 1 player

1 if S has 2 or 3 players

We see, then, that no preference exists for one of the players, 1 or 2 or

3, and all the players are symmetric (verify it!).

By the efficiency and symmetry axioms the Shapley value of the

game is (1
3 , 1

3 , 1
3 ).

The Shapley value shows that the players’ power in the game is

equal, although their electoral representation is different.

The question is whether the Shapley value constitutes a good

index of the players’ power in other weighted majority games.

In this section we shall see that, in a certain sense, it does. We

shall ask what we mean by the Shapley value in weighted majority

games. As we know, the Shapley value of every player is the average

of his marginal contributions over all possible orders.

We shall start with the game [10; 5, 8, 2, 3] and calculate the

marginal contributions of all players when the order is 1, 2, 3, 4. Player

1’s marginal contribution in this order is 0, because {1} is a losing coali-

tion. Player 2’s marginal contribution in this order is 1, because {1, 2}
is a winning coalition. Player 3’s marginal contribution in this order is

0, because in joining {1, 2} player 3 does not increase its worth. Player

4’s marginal contribution in this order is also 0, because in joining

{1, 2, 3} player 4 does not increase its worth. (Explain!)

We thus see that, in this order, player 2’s marginal contribution

is 1 and the rest of the players’ marginal contribution is 0.
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Player 2 will be called a pivotal player in this order.

Let’s try another order, say 3, 4, 1, 2:

Player 3’s marginal contribution is 0.

Player 4’s marginal contribution is 0.

Player 1’s marginal contribution is 1.

Player 2’s marginal contribution is 0.

We see that, in this order, player 1 is the only player whose contribu-

tion is 1. The other players’ marginal contribution is 0. Player 1 is a

pivotal player in this order.

In any weighted majority game there is exactly one pivotal

player in every order. This is the player who in joining a coalition

turns it from a losing coalition to a winning coalition. Before he joined

the coalition, the players who were before him in order did not con-

tribute anything to the coalition worth; after he joins the coalition,

the players who come after him in order do not contribute anything

to the coalition worth.

To summarize: a player is called a pivotal player in a certain

order, if his marginal contribution in that order is 1.

Theorem:

In a weighted majority game, there is exactly one pivotal player in

every order.

Proof: First we shall see that there is a player who by joining the players

who were before him turns a losing coalition to a winning coalition.

According to the properties of the coalition function in a weighted

majority game, an empty coalition is a losing coalition. Then the

players join it one after the other, in a given order. If, during this pro-

cedure, not one of the players turns the coalition of the players who

were before him to a winning coalition, then the set of all players is

a losing coalition, which contradicts a property of the coalition func-

tion, according to which the set of all players is a winning coalition.

The contradiction proves the existence of a player who by joining the

coalition of the players who were before him turns it from a losing
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coalition to a winning coalition. The marginal contribution of this

player is 1. The marginal contribution of all the players who were

before him is 0 and the marginal contribution of all the players who

were after him is 0. Hence this player is the only pivotal player.

As we know, a player’s Shapley value is the average of his

marginal contributions over all the possible orders. We can therefore

summarize the above in the following theorem:

Theorem:

In a weighted majority game of n players, a player’s Shapley value is:

Frequency with which player is

pivotal over all possible orders
= number of times player is pivotal

number of possible orders (n!).
Let us calculate the Shapley–Shubik power index of player 1 in the

game [10; 5, 8, 2, 3]:
• When he is first, his marginal contribution is 0. (Explain!) There are

6 such orders.

• When he is second, his marginal contribution is 1 only if player 2

is before him. There are two such orders (2, 1, 3, 4; 2, 1, 4, 3).

• When he is third, his marginal contribution is 1 only if player 2 is

after him. (Explain!) There are two such orders.

• When he is fourth, his marginal contribution is 0. There are six such

orders.

Hence, the Shapley–Shubik index of player 1 is 4
24 = 1

6 .

Exercise: Calculate the Shapley–Shubik index of all players in the

game above.

Setting aside the Shapley–Shubik index for a moment, let

us consider the following practical situation modeled on the game

[10; 5, 8, 2, 3].
There is a city council in which four parties are represented by

5, 8, 2, and 3 representatives, respectively. How shall we estimate the

power of, say, the first party?

One way to estimate a party’s power is to check how frequently

the party’s vote is needed to pass a law.
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Suppose that a certain law is proposed to the city council and

support for it is split as follows:

Party 2 Party 3 Party 1 Party 4

strongly in favor in favor undecided opposed

In this case the vote of party 1 is not needed, because the support of

parties 2 and 3 is sufficient for a decision in favor of the law.

Note that under this arrangement party 1 is not a pivotal player.

Suppose that the amount of support for another law is split as

follows:

Party 2 Party 1 Party 3 Party 4

in favor undecided opposed strongly opposed

In this case party 1 needs to be persuaded to support the law, because

its vote is needed to establish a majority in favor of the law. Party 2

will definitely try to persuade party 1 to support the law.

Note that under this arrangement party 1 is a pivotal player.

Since we do not know in advance what laws will be proposed, we

shall introduce the following assumption, which may be reasonable

in many cases.

Assumption:11

Several different laws will be proposed, such that every possible

order, which represents an amount of support, has an equal chance

of occurrence.

We shall think of the possible orders as if they were a deck of

cards, such that every time we shuffle the deck every order has an

equal chance of occurrence.

It follows from this assumption that how frequently a party’s

vote is needed to establish a majority in favor of any law exactly equals

how frequently the party constitutes a pivotal player over all possible

orders.

11 This assumption is unreasonable when, for example, the proposed laws are of a
political character and the players are parties with well-defined political platforms.
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It is reasonable to measure the party’s strength by this frequency

and it follows that the Shapley–Shubik index in a weighted majority

game is a reasonable index of the parties’ power.

3.22 exercises
Calculate the Shapley–Shubik index in the following games:

1. [10; 7, 5, 4, 3]
2. [12; 4, 4, 9, 5]
3. [17; 7, 8, 9, 9]
4. [7; 4, 2, 2, 2, 2]
5. [5; 3, 3, 1, 1, 1]
6. [9; 4, 4, 2, 2, 2, 2]
7. [6; 3, 1, 1, 1, 1, 1, 1, 1]

3.23 the shapley–shubik index as an index
for the analysis of parliamentary
phenomena

Take, for example, a parliament that consists of five parties. One

party has 40 representatives and each of the other four parties has 20

representatives. The game is [61; 40, 20, 20, 20, 20].
Calculate the Shapley–Shubik index of player 1:

• When he is first, he is not a pivotal player so his marginal

contribution is 0.

• When he is second, he is not a pivotal player so his marginal

contribution is 0.

• When he is third, he is a pivotal player so his marginal contribu-

tion is 1. There are 4! such orders. Indeed, when player 1 is third,

there are four players left. One of them can be placed in one of four

positions. For each such placement, another can be placed in three

positions. For each such placement, the third has only two options

and after he is placed, the fourth has only a single option. Alto-

gether, we have 4 · 3 · 2 · 1 = 4! possible arrangements, when player

1 is third.
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• When he is fourth, he is a pivotal player so his marginal contribution

is 1. There are 4! such orders.

• When he is fifth, he is not a pivotal player so his marginal

contribution is 0.

Therefore, the Shapley-Shubik index of player 1 is 4!+4!
5! = 48

120 = 2
5 .

Players 2, 3, 4, and 5 are symmetric, so their Shapley-Shubik

index is equal. By the efficiency axiom, v(N) = 1 needs to be divided

among all the players. Hence, the Shapley-Shubik index of the game

is: (
2
5 , 3

20 , 3
20 , 3

20 , 3
20

)
.

We shall examine several other cases in which there is one party

with 40 representatives and the number of other, smaller parties grows

each time.

1. [61; 40, 10, 10, 10, 10, 10, 10, 10, 10].
The Shapley-Shubik index of the game is:(

4
9 , 5

72 , 5
72 , 5

72 , 5
72 , 5

72 , 5
72 , 5

72 , 5
72

)
.

2. [61; 40, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8].
The Shapley-Shubik index of the game is:(

5
11 , 3

55 , 3
55 , 3

55 , 3
55 , 3

55 , 3
55 , 3

55 , 3
55 , 3

55 , 3
55

)
.

3. q = 61 w1 = 40 w2 = w3 = . . . = w17 = 5.

The Shapley-Shubik index is
(

8
17 , 9

272 . . . , 9
272

)
.

4. q = 61 w1 = 40 w2 = w3 = . . . = w21 = 4.

The Shapley-Shubik index is
(

10
21 , 11

420 . . . , 11
420

)
.

5. q = 61 w1 = 40 w2 = w3 = . . . = w41 = 2.

The Shapley–Shubik index is
(

20
41 , 21

1640 . . . , 21
1640

)
.

6. q = 61 w1 = 40 w2 = w3 = . . . = w81 = 1.

The Shapley–Shubik index is
(

40
81 , 41

6480 . . . , 41
6480

)
.
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In each case there is one big party which has 1
3 of the representatives.

We see that the greater the number of small parties, the greater the

strength of the big party, which approaches 1
2 .12

1
3 < 0.4 < 0.44 < 0.45 < 0.47 < 0.476 < 0.487 < 0.49

At the same time, the small parties have little power compared with

their electoral power. In the first game, for example, a small party has

8.3% of the representatives, while its power according to the Shapley–

Shubik index is 6.9%.

In the fourth game, each small party has 3.3% of the represen-

tatives and its power is 2.6%.

This is a general phenomenon: if there is one big party and a large

number of small parties, then usually the big party has more power

than one would expect on the basis of the number of its representatives

alone. The greater the disunity of the small parties, the greater the

power of the big party.

If the number of representatives in the big party is 45 and the

number of small parties increases, we see that the power of the big

party approaches 60%.

We shall calculate the Shapley–Shubik index in another situa-

tion and see that this time we get a less expected result.

Consider the possibility that an alternative to the big party is

established, such that there will be two big parties in parliament, and

assume that each of the parties has 40 representatives, while the rest

of the representatives are divided among 5 parties, such that each one

has 8 representatives.

The Shapley–Shubik index of the game [61; 40, 40, 8, 8, 8, 8, 8] is:(
2
7

,
2
7

,
3
35

,
3
35

,
3
35

,
3
35

,
3
35

)
.

It turns out that while each big party has 40
120 ∼ 33% of the votes,

its power is only 2
7 ∼ 29%. Similarly, while each small party has

12 Milnor, J. and Shapley, L. S. 1961. “Values of large games II: oceanic games,” The
Rand Corporation, Memorandum RM-2649
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8
120 ∼ 7% of the votes, it controls 3

35 ∼ 9% of the power. Put dif-

ferently, a representative of a big party controls 1
40 · 0.29% ∼ 0.7%,

whereas a representative of a small party controls 1
8 · 9% ∼ 1.125% –

almost twice as much!

In this case, the increase in the small parties’ power is precisely

the result of their disunity. In other words, if the small parties were

united, then we would have 3 symmetric players, so the small parties

would hold 33% of the power after uniting, compared to about 43% of

the power in a situation of disunity. Moreover, the greater the disunity

of the small parties, the greater their power: if they are very small,

the power of each of the big parties decreases to 25%, while the small

parties hold about 50% of the power. In this case we can say, therefore,

that in disunity there is strength; in unity, weakness.

3.24 exercises
Calculate the Shapley–Shubik index of the following games:

1. q = 61 w1 = 45 w2 = w3 = ... w16 = 5

2. q = 61 w1 = 45 w2 = w3 = ... w26 = 3

3. q = 61 w1 = 45 w2 = w3 = ... w76 = 1

4. q = 61 w1 = w2 = 40 w3 = w4 = ... w12 = 4

5. q = 61 w1 = w2 = 40 w3 = w4 = ... w22 = 2

6. q = 61 w1 = w2 = 40 w3 = w5 = ... w42 = 1

3.25 the security council
The Security Council has fifteen members: the five Big Powers (United

States, Russia, France, England, and China) which are permanent

members and have veto power, and ten small states which are rotating

members elected by the General Assembly for two-year terms. Each

Council member has one vote. Decisions on all matters require at

least nine votes; decisions on substantive matters require in addition

the concurring votes of all five permanent members. No important

decision can be made without the agreement of the five permanent
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members. A negative vote by a permanent member constitutes a veto.

An abstention is not considered a veto in most cases.

Using the Shapley–Shubik index we can see how veto power

is implemented; that is, we can see what the power of a permanent

member of the Security Council is, and compare it to the power of a

rotating member.

Consider the Security Council as a weighted majority game

whose five permanent members are symmetric and whose ten small

states are symmetric. It follows that in calculating the Shapley–

Shubik index we have to consider only two different values. (Explain!)

We check the aggregate power of all the small states, namely,

the number of orders in which a small state is a pivotal player, divided

by the number of all orders.

An order in which a small state is a pivotal player occurs if and

only if seven small states come last in the order. (Explain, using the

following figure.)

↓
. . . . . . . . . . . . . . .

↑
Big Powers & pivotal player small states

small states small state

To obtain all such orders one has to choose seven small states out of

ten and then calculate the number of cases with this combination.

The number of combinations of seven small states from ten is

given by the formula

(10
7

) = 10!
(10−7)!·7! = 10!

3!·7!

(Here k! = 1 × 2 × 3 × ... × k.)
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For each such order we can permute, in any way we wish, the order

of the last seven states, as well as the order of the first eight states.

Thus, the number of all 10!
3!·7!orders has to be multiplied by 7! · 8!. Con-

sequently, the number of orders in which seven small states come

last is

10!·7!·8!
3!·7! = 10!·8!

3!
Thus, the aggregate power of the small states is

10!·8!
3!·15! ≈ 0.0186 = 1.86%

(since 15! is the number of all orders). Therefore, the index of power

of a single small state is

0.0186
10 = 0.00186 = 0.186%

and the aggregate of power of permanent members is equal to

100% − 1.86% = 98.14%.

Consequently, the index of power of a single permanent member is

equal to

98.14
5 ≈ 19.63%.

3.26 exercises
1. What would be the power of all the small states if a simple majority

were customary in the Security Council, that is, if at least eight votes

including the concurring votes of the five permanent members were

necessary to pass a resolution?

2. Until 1965, the Security Council consisted of eleven members: five

permanent members – the five Big Powers – and six rotating mem-

bers – the small states. In this makeup of the Security Council a major-

ity of seven was required to pass a resolution. What was the aggregate
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power of the small states in this situation? What was the power of

each permanent member?

3. What is the aggregate power of the small states in a Security Council

of eleven members if a simple majority is required to pass a resolution,

that is, if at least six votes are sufficient including the concurring votes

of the five permanent members?

3.27 cost games
The focus of this chapter has been the mathematical model of the

cooperative game (N; v), where N is the set of players and v is the

coalition function that assigns to each coalition S a real number v(S)

which is the total payoff that coalition S will get if its members decide

to form it.

Similarly, we can construct a mathematical model for a cooper-

ative game (N; c), where N is the set of players and c is the coalition

function that assigns to each coalition S a real number c(S) which is,

instead, the total cost that coalition S will pay if its members decide

to form it.

Example:

A cable TV station wants to connect customers into a network.

Network connections can be described in a graph called a “tree.”13

The cost of establishing each arc in the network appears in the figure

above the arc. The players appear in the vertices of the tree. (A vertex

with no players is called a “junction.”)

Consider the game (N; c) when N = {1, 2, 3}. The total cost

that coalition S will incur if only its members connect to the station

is c(S).

13 A connected graph is a figure consisting of vertices and arcs such that a path is
traced in arcs from one vertex to another. A connected graph is called a tree if it
contains no cycles, i.e., if a unique path is traced in arcs from one vertex to another
such that no arc is traced more than once.
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1

3
24

182 12

Junction

Station

6

We see from the tree that the game has the following coalition

function:

N = {1, 2, 3} c(1) = 24 c(2) = 18 c(3) = 48 c(∅) = 0

c(1, 2) = 36 c(1, 3) = 48 c(2, 3) = 60

c(1, 2, 3) = 60

If all three connect to the network, that is, if coalition N = {1, 2, 3}
forms, then it can be asked how the total cost should be distributed

among them. One answer is the Shapley value of the game.

We shall calculate the Shapley value as the average of the

players’ marginal contributions.

1 2 3

1 2 3 24 12 24

1 3 2 24 12 24

2 1 3 18 18 24

2 3 1 0 18 42

3 1 2 0 12 48

3 2 1 0 12 48

66 84 210

The Shapley value of the game is (11, 14, 35).

Interestingly, these numbers can be obtained by a different rule:

Divide the cost of each arc equally among the players who use the

arc. Indeed, implementing this rule we get:
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1 2 3

Everyone uses the first segment: 2 2 2

Only player 2 uses the segment costing 12: 0 12 0

Only players 1, 3 use the segment costing 18: 9 0 9

Only player 3 uses the segment costing 24: 0 0 24

Total: 11 14 35

This rule is valid for every tree game. It enables us to compute the

Shapley value for tree games with many players easily. The proof of

this rule falls outside the scope of this book.

Example:

A cable TV station wants to connect nine customers to its network.

Network connections are described in the following tree graph and

as in the previous example the cost of establishing each arc in the

network appears above the arcs and the players appear in the vertices

of the tree. In the game N = {1, 2, ..., 9}, as in the previous example,

c(S) is the total cost that coalition S incurs if only its members connect

to the station.

3

7
6

302 18

Station

1

27

6

4

5

3
5

9

8 9
8 4

Even writing the coalition function involves 29 = 512 worths, and

so the number of all possible orders needed to compute the Shapley

value is virtually incalculable. Using the above rule is much easier.
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1 2 3 4 5 6 7 8 9

All (players) use the first seg-

ment:

3 3 3 3 3 3 3 3 3

Only 2, 4, 5 use the segment

costing 18:

6 6 6

Only 4 uses the segment

costing 3:

3

Only 5 uses the segment

costing 5:

5

Only 3, 6, 7, 8, 9 use the seg-

ment costing 30:

6 6 6 6 6

Only 7 uses the segment

costing 6:

6

Only 6, 8, 9 use the segment

costing 9:

3 3 3

Only 8 uses the segment

costing 8:

8

Only 9 uses the segment

costing 4:

4

3 9 9 12 14 12 15 20 16

The Shapley value of the game is (3, 9, 9, 12, 14, 12, 15, 20, 16).

Discussion Question: Review all the axioms that establish the Shap-

ley value of a game and determine whether they make sense in

reference to a cost game.

3.28 exercises
1. A cable TV station wants to connect three new customers to its net-

work. The connections to the network are described in the following

tree graph:

2

3
5

101
5

Junction

Station

30
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Calculate the distribution of the costs among the three players

according to the Shapley value.

2. A cable TV station wants to connect three new customers to its net-

work. The connections to the network are described in the following

tree graph:

2 10

Junction

Station

18

1

24

312

Calculate the distribution of the costs among the three players if all

three decide to connect to the network.

3. A cable TV station wants to connect six new customers to its net-

work. The connections to the network are described in the following

tree graph:

3

6
7

102 15

Station

1

36

4

5

5
6

Calculate the distribution of the costs among the six players if all six

decide to connect to the network.

4. Residents of towns near a city are responsible for maintenance of

the roads linking them to the city. The following tree describes the

data. Each town is represented by a vertex and the number of res-

idents appears in the vertex. The monthly cost of maintenance for

each section of road appears above the arc of the tree.
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3

5
30

00

40
005 2000

Junction

3000

city

A B

C

Calculate the distribution of the costs among all residents, using the

Shapley value.

5. A special case of the tree game is the airport game. A runway is

divided into three sections. The first section is for the use of light

aircraft and the cost of establishing it is $120,000. Medium aircraft

need a longer runway and the cost of establishing the extra section

is $60,000. Heavy aircraft need an even larger runway and the cost of

establishing the additional section is $20,000. This is presented in the

following figure:

Terminal HM1

M2

M3

L1, L2

20,00060,000120,000

Suppose there are two light aircraft L1, L2, three medium aircraft M1,

M2, M3, and one heavy aircraft H at this airport. Every landing is

considered a “player.” The coalition function c(S) is the cost of the

runway needed to serve all players in S.

(1) Calculate: c(L1) = c(L1, L2) = c(L1, H) = c(M1, M2, H) =
(2) Calculate the distribution of costs among all flights according to

the Shapley value.

3.29 review exercises
1. Given the game [61; 40, 40, 30, 10]:

(1) Write the game as a coalition function.

(2) Are there any symmetric players? If so, which ones?
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(3) Is there a null player? If so, which one?

(4) Calculate the Shapley–Shubik power index for the game.

2. Given the game (N; v):

N = {1, 2, 3}
v(1) = 6 v(2) = 6 v(3)=12 v(∅) = 0

v(1, 2) = 18 v(2, 3) = 12 v(1, 3)=24 v(1, 2, 3) = 42

(1) Split the game into two games, such that in one of the games

players 1 and 2 are symmetric and player 3 is a null player.

(2) Is there a null player and/or symmetric players in the second

game too?

3. Calculate the Shapley–Shubik index of the following game:

[4; 3, 1, 1, 1].

4. Calculate the Shapley value of the following game:

N = {1, 2, 3}
v(1) = v(2) = 50 v(3) = 0 v(∅) = 0

v(1, 2) = v(1, 3) = v(2, 3) = 100

v(1, 2, 3) = 150

5. Find the Shapley value by the procedure for dissolving a partnership.

N = {1, 2, 3}
v(1) = v(2) = 12 v(3) = 18 v(∅) = 0

v(1, 2) = 18 v(1, 3) = 24 v(2, 3) = 30

v(1, 2, 3) = 60

6. Calculate the Shapley–Shubik index as the average of players’

marginal contributions in the following game: [4; 3, 2, 1, 1].
7. Calculate the Shapley value of the following game:

N = {1, 2, 3}
v(1) = 6 v(2) = 12 v(3) = 18 v(∅) = 0

v(1, 2) = 18 v(1, 3) = 24 v(2, 3) = 30

v(1, 2, 3) = 42

8. Calculate the Shapley–Shubik index of the following game:

[8; 3, 3, 2, 2, 2, 2].



4 Analysis of a Bankruptcy
Problem from the Talmud

4.1 introduction
Many times one encounters a bankruptcy situation where there are

claims against a given estate and the sum of the claims against the

estate exceeds its worth. In such situations one would like to know

what would be a “fair” way of dividing the estate among the claimants.

Unfortunately, there is no clear-cut answer to this question.

What seems fair in one case may seem less so in another. In this

chapter we shall encounter several solutions, each shedding light on

the “real world” and each applicable under certain circumstances.

We start with a curious method of division that has its origin in

the Talmud,1 which represents still another fair division. It involves a

man who married three women and promised them in their marriage

contract the sums of 100, 200, and 300 units of money to be given

to them upon his death. The man died but his estate amounted to

less than 600 units. The Mishna, attributed to Rabbi Nathan (tractate

Ketubot 93a), treats the cases in which the estate was worth 100, 200,

and 300 units of money. The recommendation in the Mishna is given

in the following table.

100 200 300
100 331/3 50   50
200 331/3 75 100
300 331/3 75 150

Estate

Claims

This recommendation of Rabbi Nathan seems strange. Why

equal division if the estate is small? Why proportional division if the

estate is worth 300 units? Most strangely, how did Rabbi Nathan reach

1 An ancient document that forms the basis for Jewish religious, criminal, and civil
law. It consists of the Mishna, which is its core, and the Gemara, which discusses
the Mishna and expands on it. The Mishna was put into definitive form about 1800
years ago and the Gemara was sealed about 200 years later.
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the division for the case in which the estate is worth 200? Above all,

what should the rule be if the worth of the estate were different and

if there were more widows?

Indeed, for many years this passage was not understood, and

different rules of division were adopted by different rabbinic scholars.

Some thought that this division reflected special circumstances whose

description was neglected. Another thought that there was a spelling

mistake. The wording of the Talmud itself suggests that this recom-

mendation was not adopted, and that a different law was applied. One

important rabbinic scholar, Hai Gaon, expressed the opinion that there

might be some relation between this rule and the rule for dividing a

garment between two claimants (see Section 4.2). However, Rabbi Hai

Gaon did not explain the relation, and eventually retracted his opinion.

Despite myriad discussions among various scholars, no solid

explanation was found until quite recently. Two game theorists,

R. J. Aumann and M. Maschler, examined the rule. They decided to

translate the three bankruptcy problems into game models and see if

known solution concepts would yield the results stated in the Mishna.

To their surprise, they found that one solution concept, called the

nucleolus, gave precisely the numbers of the above table. It seemed

that, finally, an explanation of Rabbi Nathan’s recommendation had

been found. There was only one “minor” problem: the nucleolus was

invented by D. Schmeidler2 in 1969. It was absolutely inconceivable

that Rabbi Nathan knew what the nucleolus was.3 There had to be

another explanation for the numbers in the table. A hint was found in

a paper by the game theorist A. I. Sobolev, who provided a system of

axioms that characterize the nucleolus.4 One of these axioms, called

consistency, was the right clue.

2 Schmeidler, D. 1969. “The nucleolus of a characteristic function game,” SIAM
Journal of Applied Mathematics 17: 1163–70

3 A description of the nucleolus is beyond the scope of this book.
4 Sobolev, A. I. 1975. “The characterization of optimality principles in cooperative

games by functional equations,” in Vorobiev, N. N. (ed.), Matematicheskie Metody
v Socialnix Naukax 6. Academy of Sciences of the Lithuanian S. S. R., Vilnius, pp.
94–151
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In this chapter we explain the concept of consistency and show

how it yields a reasonable explanation of Rabbi Nathan’s table. More-

over, it shows clearly how similar problems with more creditors and

various claims can be resolved.5

To understand this explanation we first have to understand

another, simpler Mishna rule involving a contested garment.

4.2 the contested garment
The following Mishna appears in the Talmud (tractate Bava Metzia 2a):

“Two hold a garment; both claim it all. Then the one is awarded half,

the other half. Two hold a garment; one claims it all, the other claims

half. Then the one is awarded 3/4, the other 1/4.”

We shall now discuss the claims and the decision of this Mishna.

In the first case, both sides claim the whole garment and the decision

establishes that in this case each claimant gets half the length of the

garment.

The second case is of much greater interest to us. The one claims

the whole garment and the other claims half. In this case the decision

establishes that the claimant to the whole garment receives 3/4 of it

and the claimant to half the garment receives 1/4.

How was this division reached? Rabbi Shlomo Yitzhaki (Rashi)

interprets the decision as follows. The claimant to half the garment

“concedes ... that half belongs to the other, so that the dispute revolves

solely around the other half. Consequently, ... each of them receives

half the disputed amount.” Thus it is decided that the division shall

be 3/4 and 1/4.

In this section we shall generalize the problem to other cases.

Example 1

The garment is worth 100 units of money.

One claims that his share of the garment is 50 units.

The other claims that his share of the garment is 80 units.

How should they divide it?

5 Aumann, R. J. and Maschler, M. 1985. “Game-theoretic analysis of a bankruptcy
problem from the Talmud,” Journal of Economic Theory 36: 195–213
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Solution:

The claimant to 50 units of money declares in effect that he has no

claim to the second 50 units, and, as far as he is concerned, the other

claimant can have them. The claimant to 80 units declares that he has

no claim to the remaining 20 units, and, as far as he is concerned, the

first claimant can have them. Thus uncontested, 70 of the 100 units

are divided. The division therefore revolves around the remaining 30

units of money, which are to be divided equally between the two. The

description of the division is as follows.

Value of garment 100

The two claims 80 50

————–

Uncontested division 50 20

Equal division of remainder 15 15

— —

65 35

The claimant to 50 units gets 35 and the claimant to 80 units gets 65.

Example 2

A man has two creditors; one’s claim is 300, the other’s, 90. The

man’s estate is worth 120 units. This is a bankruptcy problem. We

shall solve it according to the “contested-garment” principle.6

Estate 120

Claims 90 300

—————

Uncontested division 0 30

Equal division of remainder 45 45

— —

45 75

6 We are taking the position that any claim greater than the estate should be truncated
to the size of the estate since there is nothing more to divide.
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Answer:

The claimant to 300 units gets 75 and the claimant to 90 units

gets 45.

A new element appears in Example 2. One of the debts exceeds the

total amount available for distribution. It is worth noting that the

creditors address their claims to the debtor and not to each other.

The claimant to 90 units has no claim on the remaining 30 units. As

far as he is concerned, those 30 units can be paid to the other cre-

ditor. On the other hand, the claimant to 300 units in effect claims

the entire estate. Unfortunately for him, he cannot claim more than

that amount, because there is no additional property. As far as he

is concerned, there is no money left that he does not claim, and

so, from his standpoint, there is nothing left for the other claimant,

which explains the 0 that appears in the column of the claimant

to 90 units.

Mathematical generalization:
The estate is E.

The creditors claim d1 and d2.

d1 + d2 > E; otherwise there is nothing to prevent full repayment of

the debt.

Division of the estate is as follows.

Estate E

Claims d1 d2

———————————————————

Uncontested

division

(E − d2)+ (E − d1)+

Equal division of

remainder

E−(E−d1)+−(E−d2)+
2

E−(E−d1)+−(E−d2)+
2

————————– ————————–
E−(E−d1)++(E−d2)+

2
E+(E−d1)+−(E−d2)+

2
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Explanation: The plus sign (+) in the expression (E−d1)+ or (E−d2)+
means that the expression has a value of zero if E−d1 < 0 or E−d2 < 0.

4.3 exercises
1. A garment is worth 150 units of money. One claims 75 units,

the other claims 100 units. How should they divide the garment,

according to the contested-garment principle?

2. A garment is worth 200 units. One claims 120 units, the other

claims 180 units. How should they divide the garment, according to

the contested-garment principle?

3. A man goes bankrupt and his entire estate at the time of

bankruptcy is worth 200 units. The man has two creditors; one’s

claim is 300 units, the other’s, 200 units. How should they

divide the estate between them, according to the contested-garment

principle?

4. A man goes bankrupt and his entire estate at the time of bankruptcy

is worth 300 units. The man has two creditors; one’s claim is 250

units, the other’s, 130 units. How should they divide the estate

between them, according to the contested-garment principle?

5. A man dies, leaving an estate worth 500 units. The deceased has

two creditors; one’s claim is 400 units, the other’s, 300 units. The

division of the estate between them is as follows.

Estate 500

Claims 300 400

—————–

Division of estate 150 350

Is this division made according to the contested-garment principle?

If not, divide the estate according to the contested-garment principle.

6. A man dies, leaving an estate worth 200 units. The deceased has two

creditors; one’s claim is 100 units, the other’s, 150 units. What should
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the return on their claims be according to the contested-garment

principle?

7. An estate is divided as follows; check whether the division is made

according to the contested-garment principle.

Estate 400

Claims 200 350

—————–

Division of estate 125 275

4.4 a physical interpretation of the
contested-garment principle

In this section, we construct a set of vessels that imitate the shares of

the creditors according to the contested-garment principle, following

Kaminski.7 Consider, for example, an estate with two claims: 100

and 200. Then imagine two vessels of differing sizes, representing

these two claims, into which we pour fluid representing the estate.

As shown in Diagrams 1–4, each vessel is composed of two parts

connected by a narrow neck. The volume of each part of a vessel

is equal to half the claim of the corresponding creditor. The two

vessels are connected by a narrow pipe. We assume that the vol-

umes of the necks and the pipe are negligible and considered zero.

They serve merely to transfer liquid. We take care that the base

areas of the two vessels are equal and that their heights are also

equal. Since the claims d1 and d2 in this diagram satisfy d1 < d2,

we achieve equal height by constructing a longer neck for the first

vessel.

We represent the estate E as a fluid whose volume is equal to E.

We pour this fluid into one of the vessels and note that the fluid will

stay in the vessels, because E ≤ d1 + d2.

The fluid (estate) that has been poured into one of the vessels

now makes its way through the narrow connecting passage into the

7 Kaminski, M. M. 2000. “Hydraulic rationing,” Mathematical Social Sciences 40:
131–55
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other vessel, ultimately reaching the same level in the two vessels.

This simple physical phenomenon is known as “water seeks its own

level.” We submit that the amount of fluid in each of the two vessels

will then be precisely what the creditor that corresponds to the vessel

is entitled to, under the contested-garment principle. We shall call

this the Rule of Linked Vessels.

Let us look at some specific examples.

1. The estate is 80 and the debts are 100 and 200.

50

50

100

100

Diagram 1

The fluid that has been poured into one of the vessels makes its

way through the narrow connecting passage into the other vessel,

ultimately reaching the same level in the two vessels.

If we divide the estate of 80 between two creditors of 100 and

200 according to the contested-garment principle it will be:

Estate 80

Claims 100 200

Uncontested sum 0 0

Contested sum 40 40

—————–

Division of estate 40 40

This is exactly what is in the two vessels.
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2. The estate is 140 and the debts are 100 and 200.

50

50

100

100

Diagram 2

We pour the fluid (estate) and in this case the bottom part of the

smaller vessel is full but the fluid does not reach the top part (see

diagram). In this case the estate is more than the smaller claim but

less than the bigger. When we pour a volume of 140 into the vessels,

one vessel will be half filled and the other will be occupied by 90 units

of fluid, as we see in the diagram. Computation of the division of E

among the creditors is provided below, and we see that it corresponds

exactly to the diagram.

Estate 140

Claims 100 200

Uncontested sum 0 40

Contested sum 50 50
—————–

Division of estate 50 90

3. The estate is 180 and the debts are 100 and 200.

50

50

100

100

Diagram 3
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We pour the fluid and in this case, too, the bottom part of the smaller

vessel is full but the fluid does not reach the top part. The estate is

more than the smaller claim but still less than the bigger one. Here,

the fluid occupies only half of the small vessel and 130 units of the

other vessel (for a total of 180 units).

The division according to the contested-garment principle cor-

responds to the diagram as the following calculation shows.

Estate 180

Claims 100 200

Uncontested sum 0 80

Contested sum 50 50

—————–

Division of estate 50 130

4. The estate is 240 and the debts are 100 and 200.

50

50

100

100

Diagram 4

In this case the fluid reaches the top part of both vessels. The sum

of the debts is equal to 300 and the estate is equal to 240. There is

a shortage of 60 units of fluid which are represented as empty parts

of 30 units in each vessel. This shows that both upper halves of the

vessels will be filled with fluid.

Computation of the division of the estate in accordance with

the contested-garment principle, shown below, corresponds exactly

to the diagram.
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Estate 240

Claims 100 200

Uncontested sum 40 140

Contested sum 30 30

—————–

Division of estate 70 170

These examples illustrate the fact that for two creditors the

construction of the vessels corresponds exactly to the division of an

estate E in accordance with the contested-garment principle between

two creditors whose claims d1 and d2 satisfy d1 + d2 ≥ E.

This correspondence works in two directions:

1. If we pour the fluid into the vessels and let it seek its own level,

the amount of fluid in each vessel will be equal to the amount of

fluid prescribed by the contested-garment principle.

2. If we disconnect the vessels and pour into each separately the

amount of fluid prescribed by the contested-garment principle and

then reconnect the vessels, the fluid will not flow from one vessel

into the other, since it will already have reached the same height

in both vessels.

4.5 exercises
1. An important way of dividing an estate E among n creditors who

claim d1, d2, ..., dn is to divide E among the creditors in proportion to

their debts; namely, creditor i will get

di

d1 + d2 + ... + dn
· E

Describe a set of vessels and their links that illustrate such a division.

2. A company is owned by three shareholders. The first shareholder

owns preferred shares whose nominal value total d1 and the other

two own regular shares whose nominal values are d2 and d3. In case

of bankruptcy, worth E of the company is distributed to the owners
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according to the following rule. First, the first owner gets the nominal

value of his shares, as long as E > d1. Otherwise, he gets E. The rest,

if any remains, is distributed to creditors 2 and 3 in proportion to

their shares d2 and d3. Construct vessels that demonstrate how any E

satisfying E ≤ d1 + d2 + d3 is divided.

3. Given an estate E and creditors claiming d1 and d2, d1 + d2 ≥ E.

Prove that the vessel construction always yields the same division

as the contested-garment principle. Hint: We provided four examples

above. Construct a general proof for the four examples.

4.6 a bankruptcy problem from
the talmud

The Mishna tells of a man with three wives who in their marriage

contracts are bequeathed sums of 100, 200, and 300 dinars, respec-

tively. According to the law, these sums are to be paid out to the

women when their husband dies. Unfortunately, the husband dies

and it turns out that his estate totals less than 600. How should the

estate be divided among the widows? The Mishna of Rabbi Nathan

discusses three cases:

(i) The estate is 100;

(ii) The estate is 200;

(iii) The estate is 300.

His ruling is presented in the following table:

100 200 300
100 331/3 50   50
200 331/3 75 100
300 331/3 75 150

Estate

Claims

According to the table, there is equal division among the widows when

the estate is 100, there is proportional division among the widows

when the estate is 300, but the division is by no means clear when
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the estate is 200: 50 units to the widow with the marriage contract

for 100 and 75 units to each of the other two widows.

Let us consider, for example, the division of the estate among

the widows in the second case, where the estate is 200.

200
100 50
200 75
300 75

Estate

Claims

Let us choose any two widows: the first and the third, for example.

The two together get 125 from Rabbi Nathan. What happens if they

divide this sum according to the contested-garment principle?

Estate 125

Claims 100 300

—————

Uncontested division 0 25

Equal division of remainder 50 50

— —

50 75

According to the contested-garment principle, the claimant to 100

dinars should get 50 and the claimant to 300 dinars should get

75. Those are the precise amounts Rabbi Nathan specified for the

widows!

Now let us check the division of the estate between the widows

with marriage contracts of 200 and 300. The two together get 150 from

Rabbi Nathan. According to the contested-garment principle:

Estate 150

Claims 200 300

—————

Uncontested division 0 0

Equal division of remainder 75 75

— —

75 75
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According to the contested-garment principle, they should each get

75. Those are the precise amounts Rabbi Nathan specified for the

widows!

A similar calculation shows that if the contested-garment prin-

ciple is applied to the amount that the widows with marriage contracts

for 100 and 200 received together, then they get the precise amounts

Rabbi Nathan specified for them (verify this!).

We showed that the division of the estate (50, 75, 75) is con-

sistent with the contested-garment principle. Any two widows

who share the amount distributed to them in accordance with the

contested-garment principle will discover that they get precisely what

Rabbi Nathan gave them to begin with.

The remaining cases presented in the table (p. 177) are also con-

sistent with this principle. (In the exercises below you will be asked

to verify this.)

It will be proved in Section 4.8 that these are the only numbers

consistent with the contested-garment principle. Suppose someone

proposes to divide an estate of 200 as (40, 60, 100). Let us check what

amount is received by the first widow and the second widow. The two

together get 100. Suppose now that the widows are strong believers

in the contested-garment principle. Together they received 100. One

claims 100 and the other claims 200 units. How should they divide

the money that Rabbi Nathan allocated to them? According to the

contested-garment principle, they ought to get the following amounts:

Estate 100

Claims 100 200

—————

Uncontested division 0 0

Equal division of remainder 50 50

— —

50 50

According to the contested-garment principle, they should get (50,50).

Therefore, the first widow will not agree to the proposal above and she
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will ask for more. In other words, the proposal is not consistent with

the contested-garment principle.

Let us now check the division of the estate between the second

widow and the third widow. According to the proposal above, the two

together get 160. According to the contested-garment principle, they

ought to get the following amounts:

Estate 160

Claims 200 300

—————

Uncontested division 0 0

Equal division of remainder 80 80

— —

80 80

Thus, according to the contested-garment principle, they ought to

get (80,80). In this case, therefore, the third widow will not agree

to the proposed sum and she will oppose it. Thus the widows will

oppose the proposal and it will not be implemented. Every time there

is a proposal to divide the estate differently than (50,75,75), there will

be at least one pair of widows who will find the proposal inconsistent

with the contested-garment principle. Only the division (50,75,75) is

consistent with the contested-garment principle for each of the three

pairs of widows.

4.7 exercises
Note to Exercises 3, 4, 5, and 9: To verify that a solution is consistent

with the contested-garment principle, one has to check all the pairs.

To conclude that the solution is not consistent with the contested-

garment principle, it is enough to find one pair for which the solution

is not consistent.

1. An estate is worth 100 units and the claims are 100, 200, and 300

units. Check whether the decision of Rabbi Nathan for each pair of

widows is consistent with the contested-garment principle.
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2. An estate is worth 300 units and the claims are 100, 200, and 300

units. Check whether the decision of Rabbi Nathan for each pair of

widows is consistent with the contested-garment principle.

3. An estate is worth 300 units and the claims are 100, 200, and

300 units. There is a proposal to divide it (80, 90, 130) between three

widows. Check whether the sum that every pair of widows receives

is different from the sum consistent with the contested-garment

principle. (See note above.)

4. An estate is worth 300 units and the claims are 100, 200, and 300

units. There is a proposal to divide it (80, 100, 120) between three

widows who claim 100, 200, and 300 units. Check whether there is a

pair of widows for whom there is no difference between dividing the

estate according to this proposal and dividing the estate according to

the contested-garment principle. (See note above.)

5. An estate is worth 200 units and the claims are 100, 200, and 300

units. There is a proposal to divide it (50, 70, 80) between three widows

who claim 100, 200, and 300 units. In this case there is only one pair

of widows who will oppose the proposal. Which pair is it? (See note

above.)

6. A man with an estate worth 400 units goes bankrupt. There

are three creditors with claims of 150, 200, and 350 units, respec-

tively. There is a proposal to divide the estate (75, 100, 225) between

the creditors. Check whether this proposal is consistent with the

contested-garment principle for every pair of creditors.

7. A man with an estate worth 120 units goes bankrupt. There are

three creditors with claims of 50, 90, and 130 units, respectively.

Is the proposal to divide the estate (25, 45, 50) consistent with the

contested-garment principle for every pair of creditors?

8. A man with an estate worth 500 units goes bankrupt. There are

three creditors with claims of 150, 250, and 300 units, respectively.

The division of the estate is (100, 150, 250). In this case one pair of

creditors will get their share of the division according to the contested-

garment principle. Which pair is it?
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9. A man with an estate worth 200 units goes bankrupt. There are

four creditors with claims of 50, 100, 150, and 200 units, respectively.

Check whether the proposal to divide the estate (25, 50, 62 1
2 , 62 1

2 )

is consistent with the contested-garment principle for every pair of

creditors. (See note above.)

10. A man with an estate of 500 units goes bankrupt. There are four

creditors with claims of 100, 150, 250, and 350 units, respectively.

Is the proposal to divide the estate (75, 125, 150, 150) consistent with

the contested-garment principle for every pair of creditors?

4.8 existence and uniqueness
In the previous sections we studied a specific example from the

Talmud and learned that it is a solution that is consistent with the

contested-garment principle. Three questions now come to mind.

1. Does there always exist a solution that is consistent with the

contested-garment principle? For example, perhaps there is an estate

that is bankrupt and its worth has to be shared by 15 creditors whose

claims are such that no matter how they share the estate, there will

always be two creditors who will find out that what they were offered

does not satisfy the contested-garment principle.

2. Is the solution always unique? For example, perhaps there is

an eight-person bankruptcy case in which there are two ways to

share the estate and both are consistent with the contested-garment

principle.

3. What is the solution? Take a five-person bankruptcy situation, with

an estate and debts of a given size. How can we find exactly what share

each creditor should get that is consistent with the contested-garment

principle?

In this section we shall answer questions 1 and 2 affirmatively.

The last question will be addressed in Section 4.9.
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Theorem:

For any number of claimants and an estate in a bankruptcy situation,

there always exists a share of the bankrupt estate that is consistent

with the contested-garment principle.

Proof: Let E be an estate and let d1, d2, ..., dn be the non-negative

claims against the estate demanded by creditors 1, 2, ..., n. To be a

bankruptcy situation, it must be that

E ≤ d1 + d2 + ... + dn.

To see this, construct n vessels as described in Section 4.4 and connect

them as shown in Diagram 5 (done for the case n = 3).

d1 d2 d3

d1

2

d1

2

d2

2

d2

2
d3

2

d3

2

Diagram 5

Make sure that the heights as well as the base areas of the three vessels

are equal. Now pour E units of fluid into the vessels. The fluid will not

overflow the vessels, because E ≤ d1 +d2 + ...+dn. Let the fluid settle

according to the law of “water seeks its own level.” Disconnect the

pipes connecting the vessels. You get the separate vessels as shown

in Diagram 6.
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d1 d2 d3

d1

2

d1

2

d2

2

d3

2

d3

2

d2

2

Diagram 6

We claim that the amount of fluid in each vessel represents the share

of each corresponding creditor. Note that the fluid reaches the same

height in all three vessels.

Take any two vessels i and j and connect them (Diagram 7).

d3

 2

d1

 2

d1

 2

d3

 2

Diagram 7

Notice that the fluid does not flow from one vessel into the other,

because the height of the fluid in both vessels is already the same.

Thus, the fluid in vessels i and j obeys the Rule of Linked Vessels.

This proves that the share that we propose is consistent with the

contested-garment principle.
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Theorem:

There is only one way to share the estate E with creditors d1, d2, ..., dn

that is consistent with the contested-garment principle and it is the

one described in the previous theorem.

Proof: Let e1, e2, ..., en be a share of E that is consistent with the

contested-garment principle. Consider the vessels as before but do

not connect them as of yet (Diagram 8).

e1,e2,e3

d1

2

d1

2

d2

2

d2

2
d3

2

d3

2

Diagram 8

Pour amounts of fluid e1, e2, ..., en into vessels 1, 2, ..., n. Take any two

vessels i and j and connect them (Diagram 9).

Diagram 9

e2 e3
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The fluid will be at the same level because the solution (e1, e2, ..., en)

is consistent with the contested-garment principle. This is true for

every pair of vessels, so the fluid is at the same height in all of them.

(Explain.) Now connect all the vessels and you see that no fluid will

flow from one vessel into the others (Diagram 10 for the case n = 3).

Diagram 10

e1

d1 d2 d3

e2 e3

This shows that a consistent contested-garment principle must be as

described in the previous theorem.

4.9 divisions consistent with the
contested-garment principle

At this point one may ask what the recommended division should

be if the estate is not necessarily worth 100, 200, or 300 units. In

this section we shall present a law for the division of an estate that

is worth less than the sum of its claims. We shall discuss the case of

three widows with marriage contracts of 100, 200, and 300 when the

values of the estate are different from these. From the rule that we

shall establish it will be clear how to extend it to any claims and any

number of creditors.

The following table (Table 1) describes three cases where the

law is enforced, when the estate has an upper bound of 300.
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Table 1:

150 250 300
100 α   50     50   50      50   50
200 α   50 50+β 100    100 100
300 α   50 50+β 100 100+γ 150

Estate
Claims

Explanation: When the estate is small, it is divided equally among

the widows (first column from left). Every unit of money that comes

from the estate is divided equally among the widows. That is, it is

divided equally among them until the first widow obtains half of

her marriage contract (second column from left). At this stage the

estate is 150.

From this stage on, each additional unit of money is divided

equally between the second widow and the third widow (third column

from left). That is, each additional unit is divided equally between the

second widow and the third widow until the second widow obtains

half of her marriage contract. At this stage the estate is 250. From this

stage on, each additional unit of money is given to the third widow

only (fifth column from left). That is, each additional unit is given to

the third widow until she obtains half of her marriage contract. The

estate at this stage is 300.

The following table describes the enforcement of the law when

the estate exceeds 300 units, but does not exceed 600 units.

Table 2:

300 350 450 600
100   50       50   50       50   50 100–α 100
200 100     100 100 150–β 150 200–α 200
300 150 200–γ 200 250–β 250 300–α 300

Estate
Claims

Explanation: In this case we examine the losses. When the estate is

600 units (or more), there is no problem in dividing it; each widow
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obtains her marriage contract (first column from right). When the

estate is under 600 units, the widows incur equal losses (second

column from right). That is, they incur equal losses until the first

widow loses half of her marriage contract. At this stage the estate

is 450 units. From this stage on, each additional loss is divided

equally between the second widow and the third widow only (fourth

column from right), until the second widow loses half of her mar-

riage contract. The estate at this stage is 350 units. From this

stage on, only the third widow incurs losses (sixth column from

right), until she loses half of her marriage contract and the estate is

300 units.

Now we shall check the second column in Table 2, when

γ = 15.

335
100 50
200 100
300 185

Estate

Claims

We conclude by verifying that this division indeed obeys the

contested-garment principle.

150 235 285

100 200 100 300 200 300

————— ————— —————

0 50 0 135 0 85

50 50 50 50 100 100

— — — — — —

50 100 50 185 100 185

This law can easily be generalized to cases where the claims are

different and the number of claimants is greater.
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Example 1

There are four creditors with claims of 120, 140, 200, and 250 units

of money, respectively. The estate that is divided to cover the debt is

worth only 300 units. How should they divide the estate according to

the law described above?

Solution: The total amount of claims in this case is 710 units. The

estate supposed to cover the debt is worth 300 units; i.e., it is less

than half the total amount of claims. It will be helpful, therefore, to

consult Table 1.

Let us complete the table as described above, until we exceed the

amount of 300 units.

240 270 330
120   60   60   60
140   60   70   70
200   60   70 100
250   60   70 100

Estate
Claims

We exceed the amout of 300 units when we divide each addi-

tional unit equally between the two last claimants. Thus, we shall

deduct the surplus amount, when it is evenly divided between

the two.

The division obtained is (60, 70, 85, 85).

Exercise: Check whether the amount received by the first claimant

and the third claimant in this division is consistent with the

contested-garment principle.

Example 2

There are four creditors with claims of 120, 140, 200, and 250 units of

money, respectively. The estate to be divided is 420 units. How can

the estate be divided in a way that is consistent with the contested-

garment principle?

Solution: In this case, the estate to be divided is greater than half the

amount of the debts (710 ÷ 2 = 355). We are concerned, therefore,
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with the losses and it will be helpful to consult Table 2, which we

shall complete from right to left:

380 440 470 710
120   60   60   60 120
140   70   70   80 140
200 100 130 140 200
250 150 180 190 250

Estate
Claims

In the last column we have obtained less than the total amount at

our disposal to divide; i.e., we have deducted too much from the third

claimant and the fourth claimant. We must divide 420; hence it is

necessary to add 40 units, which are divided equally between the last

two claimants. The requested division, therefore, is (60, 70, 120, 170).

For example, let us check whether the second claimant and the

fourth claimant have received amounts consistent with the contested-

garment principle.

240

140 250

—————

0 100

70 70

— —

70 170

Thus, our check shows consistency with the contested-garment

principle.

Summary: In this section we introduced a procedure for the division of

an estate among creditors. Implementation of this procedure requires

partial completion of a table – in terms of profits, if the estate is less

than half the amount of the claims, and in terms of losses, if the estate

is greater than half the amount of the claims. One completes the table,

until one gets the correct division. The reader can ascertain that the
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procedure described above imitates the liquid poured into the vessels.

This proves the following theorem:

Theorem:

The procedure for the division of an estate described above results

in the end in a division consistent with the contested-garment prin-

ciple for every pair of creditors. By any other division there will be

at least one pair of creditors for whom the amounts received are not

consistent with the contested-garment principle.

On the basis of this theorem, every outcome of this procedure is

contested-garment-consistent.

4.10 exercises
1. A man dies, leaving an estate worth 500 units of money. The

deceased has three widows with marriage contracts of 100, 200, and

300 units, respectively. Divide the estate among the widows, such

that the division is contested-garment-consistent.

2. Divide an estate worth 300 units among three widows with claims

of 50, 100, and 200 units, respectively, such that the division is

contested-garment-consistent.

3. Divide an estate worth 230 units among four widows with claims

of 50, 100, 150, and 200 units, respectively, such that the division is

contested-garment-consistent.

4. Divide an estate worth 350 units among four widows with claims

of 80, 120, 160, and 200 units, respectively, such that the division is

contested-garment-consistent.

5. Divide an estate worth 800 units of money among six widows with

claims of 50, 100, 150, 200, 250, and 300 units, respectively, such that

the division is contested-garment-consistent.

6. Divide an estate worth 400 units among five widows with claims of

70, 100, 160, 220, and 300 units, respectively, such that the division

is contested-garment-consistent.
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7. Check whether the (25, 75, 125, 175) division of an estate worth 400

units among four widows with claims of 50, 100, 150, and 200 units,

respectively, is contested-garment-consistent.

8. Check whether the (50, 100, 150, 200, 200) division of an estate

worth 700 units among five widows with claims of 75, 125, 200, 250,

and 300 units, respectively, is contested-garment-consistent.

9. The following table presents divisions of an estate in various

amounts for four creditors. (The upper row represents the different

estates and the left-hand column represents the different claims.)

Check whether all the divisions in the table are contested-garment-

consistent. Indicate which divisions are not contested-garment-

consistent.

100 150 200 300 400
  50   25   37.5   25   25   25
100   25   37.5   50   50   75
200   25   37.5   62.5 100 150
300   25   37.5   62.5 125 150

Estate
Claims

4.11 consistency
Let us return to Example 2 in Section 4.9. This example involves

four creditors with claims and a division of the estate among them as

follows.

420

120 60

140 70

200 120

250 170

The question is, assuming the amount received by three of the four

claimants (say, the first, third, and fourth, who together get 350 units)

is divided according to the contested-garment principle, is the same

division obtained as when the estate is divided among three of the

four claimants?
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The answer to this question is positive and can be proved in two

ways.

First Proof: The part of the estate paid by the three claimants is the

same as in the original problem and in the three-person problem,

namely, 350 units. The division of this sum is consistent with the

contested-garment principle for any pair of players, and, in particular,

for any pair in the three-person problem. Thus, the solution for the

four-person problem, restricted to the three-person problem, is indeed

consistent with the contested-garment principle.

Second Proof: We construct the appropriate table until we have two

adjacent columns: one with the estate above 350 units and one with

the estate below 350 units.

310 390 570

120 60 60 120

200 100 140 200

250 150 190 250

In this range deduction takes place only between the last two

claimants. From 350 units we still have to deduct 40 units, to

be divided equally between these claimants. We get the division

(60, 120, 170), which is exactly what all three creditors received in

the four-person problem.

The above example is a special case of the following theorem:

Theorem:

If a set of creditors divides an estate according to the contested-

garment principle, then each subset that divides the amount that its

members obtained in the original division, while respecting the orig-

inal claims and according to the contested-garment principle, will

get precisely the same division that they obtained in the original

division.
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We can summarize the theorem as follows:

A division according to the contested-garment principle is a division

that is consistent for any number of its participants (and not just for

any two participants).

4.12 exercises
1. (1) Divide an estate worth 550 units of money among four credi-

tors with claims of 50, 150, 200, and 300 units, respectively,

according to the contested-garment principle.

(2) Check whether the total amount received by the claimants to

50, 200, and 300 units will be divided among them in the same

way if it is divided among the three of them according to the

contested-garment principle.

2. (1) Divide an estate worth 400 units among six creditors with

claims of 50, 80, 100, 140, 200, and 250 units, respectively,

according to the contested-garment principle.

(2) Check whether the total amount received by the claimants to

80, 140, 200, and 250 units will be divided among them in the

same way if it is divided among the four of them according to

the contested-garment principle.

3. (1) Divide an estate worth 900 units among six creditors with

claims of 100, 150, 200, 260, 300, and 320 units, respectively,

according to the contested-garment principle.

(2) Check whether the total amount received by the claimants to

100, 200, and 300 units will be divided among them in the same

way if it is divided among the three of them according to the

contested-garment principle.

4.13 rif’s law of division
The Rif (Rabbi Yitzhak Alfasi) proposed another law of division, later

adopted by Rambam (Rabbi Moshe Ben Maimon). According to this

law, every unit of money is divided equally among all claimants,

until the claimant with the smallest claim gets his full amount. Each
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additional unit of money is divided equally among the remaining cred-

itors, until the claimant with the smallest claim at this stage gets his

full amount, and so on.

Example:

 300 500 600
100 α  100 100 100 100 100
200 α  100 100+β 200 200 200
300 α  100 100+β 200 200+γ 300

Estate
Claims

Explanation: Equal division occurs until the first claimant receives her

claim (the 300-column). Then, the other claimants receive additional

equal amounts until the second claimant receives her claim (the 500-

column). At that stage, the last claimant receives the remainder of the

estate, but not more than his claim (the 600-column).

Suppose now that the estate is 350 units. To divide it, we con-

struct the above table up to and inclusive of the 500-column (explain)

and we see that the division must be (100, 125, 125).

Is Rif’s law of division consistent? That is, will every subset

of claimants that divides the total received by the claimants in the

original division according to Rif’s law, get the same amounts? Let us

check how much the first claimant and the third claimant get when

the estate is 350. The two together got 225. We shall divide this sum

between them according to Rif’s law.

200   225
100 100   100
300 100   125

Estate
Claims

Explanation: First, we divided 100 units for each of the two claimants.

The first got his full amount. The rest was given to the second

claimant.

We see that in this case there is consistency between the first

and third creditors.
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Exercise: Check whether there is consistency between the first and

second creditors, and between the second and third creditors.

It can be proved that Rif’s law of division is indeed consistent;

i.e., for any subset, if we distribute among its members the total pay-

offs they received together in the original division according to Rif’s

law, the same division will be obtained.

4.14 exercises
1. Divide an estate worth 275 units among four creditors with claims

of 50, 100, 150, and 200 units, respectively, according to Rif’s law.

2. Divide an estate worth 400 units among four creditors with claims

of 50, 100, 150, and 200 units, respectively, according to Rif’s law.

3. (1) Divide an estate worth 790 units among five creditors with

claims of 100, 150, 200, 250, and 300 units, respectively,

according to Rif’s law.

(2) Check whether the division according to Rif’s law is consistent,

say, for a group of creditors with claims of 150, 250, and 300

units, respectively.

4. (1) Divide an estate worth 400 units among five creditors with

claims of 40, 60, 80, 120, and 150 units, respectively, according

to Rif’s law.

(2) Check whether the division according to Rif’s law is consistent,

say, for a group of creditors with claims of 40, 60, 80, and 150

units, respectively.

4.15 proportional division
In the world of finance it is customary to divide an estate in proportion

to the investments.

Example:

Four partners founded a company that later closed due to financial

difficulties. We divide its market value – $555,000 – among the
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partners proportionally to their shares in the company, which are 40,

60, 120, and 150, respectively.

When the total number of shares in the company is 40 + 60 + 120 +
150 = 370:

The first gets: 555·40
370 = 60

The second gets: 555·60
370 = 90

The third gets: 555·120
370 = 180

The fourth gets: 555·150
370 = 225

Question: Is the law of proportional division consistent?

Answer: Let’s check for the first three shareholders, who received

60 + 90 + 180 = 330. We divide this amount proportionally among

them. When their shares are 40 + 60 + 120 = 220, then:

The first gets: 330·40
220 = 60

The second gets: 330·60
220 = 90

The third gets: 330·120
220 = 180

Thus, the amounts the shareholders obtain are precisely those they

got in the original division.

It is easy to prove that the proportional division is also

a consistent solution. Any subset of players who examine the

amounts distributed to them will find them proportional to their

claims.

4.16 o’neill’s law of division
O’Neill presents another interesting law.8 Consider, for example,

a case where the estate is worth 250 units and the claims are 100,

200, and 300 units, respectively. The creditors rush to the bank or

to wherever the estate is disbursed. The first to arrive gets his claim

8 O’Neill, B. 1982. “A problem of rights arbitration from the Talmud,” Mathematical
Social Sciences 2: 345–71
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in full, because no other claims have been presented. The second to

arrive gets his claim in full or in part, depending on the amount of

money left over from the first claim, and so on. Every creditor to

arrive gets his claim in full or in part, until the estate is depleted. The

amount each creditor gets depends, of course, on the order of arrival.

O’Neill’s law proposes that, instead of holding a race, each cred-

itor compute all he can get according to the order of his arrival, over

all possible orders. The amount each creditor gets in the end will be

the average of the amounts received in all possible orders.

The estate is 250:

1 claims 100:

2 claims 200:

3 claims 300:

    1     2     3
123 100 150     0
132 100     0 150
213   50 200     0
231     0 200   50
312     0     0 250
321     0     0 250

(250, 550, 700) 

CreditorsOrder 
of arrival

:6 = (412/3, 912/3, 1162/3)

The final division is the average of the amounts, namely,(
41 2

3 , 91 2
3 , 116 2

3

)
.

Is O’Neill’s law consistent?

Let us consider, say, the first and third creditors. They together

received 158 1
3 , while their claims are 100 and 300, respectively. The

division according to O’Neill’s law will be as follows.

The estate is 158 1
3 :

1 claims 100:

2 claims 300:
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    1     2
12 100   581/3
21     0 1581/3

Creditors

:2 = (50, 1081/3)(100, 2162/3)

Order 
of arrival

According to the law the creditors will get (50, 108 1
3 ), which is not

the original division. We see that this law of division does not satisfy

the consistency property.

Every bankruptcy problem of the kind we have discussed up

until now can be translated to an (N; v) game where N is the set of

creditors and the coalition function is defined as:

v(S) = [estate minus amount of claims of creditors who are not in S]+

Explanation: The amount due to the individuals in S without any

division is the sum that is left over from the estate after the creditors

who are not in S receive their claims in full. Thus the creditors in S can

guarantee themselves this amount. If the difference between the two

amounts is negative, then we set v(S) = 0, and that is the meaning of

the plus sign in the formula above.

Let us now translate the example above to an (N; v) game: the

estate totals 250 units and creditors 1, 2, and 3 claim 100, 200, and

300 units, respectively.

N = {1, 2, 3}
v(1) = [250 − (200 + 300)]+ = 0

v(2) = [250 − (100 + 300)]+ = 0

v(3) = [250 − (100 + 200)]+ = 0

v(1, 2) = [250 − 300]+ = 0

v(1, 3) = [250 − 200]+ = 50

v(2, 3) = [250 − 100]+ = 150

v(1, 2, 3) = [250 − 0]+ = 250

v(∅) = [250 − 250]+ = 0
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The game can be presented in the following figure:

0 0

0 150

50

250

0

We calculate the Shapley value of the game.

    1     2      3
123     0     0  250
132     0 200    50
213     0     0  250
231 100     0  150
312   50 200      0
321 100 150      0

(250, 550, 700)

Creditors
Orders

:6 = (412/3, 912/3, 1162/3)

We see that the Shapley value of this game is precisely O’Neill’s

solution.

4.17 exercises
1. Divide an estate worth 400 units among three creditors with claims

of 100, 200, and 300 units, respectively, according to O’Neill’s law.

2. Divide an estate worth 500 units among four creditors with

claims of 100, 150, 200, and 250 units, respectively, according to

O’Neill’s law.

3. There is a bankruptcy problem in which an estate is worth 500

units and the claims are 100, 300, and 400 units, respectively. Trans-

late the problem to a coalition game and calculate the Shapley value

of the game. Show that the O’Neill procedure leads to the same

division.
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4. There is a bankruptcy problem in which an estate is worth 700

units and the claims are 200, 250, 300, and 400 units, respectively.

Translate the problem to a coalition game and calculate the Shapley

value of the game. Show that the O’Neill procedure leads to the same

division.

5. (1) Divide an estate worth 200 units among four creditors with

claims of 50, 100, 150, and 200 units, respectively, according

to O’Neill’s law.

(2) Show that the law is not consistent by checking a pair of

creditors.

6. (1) Divide an estate worth 300 units among four creditors with

claims of 80, 120, 200, and 280 units, respectively, according

to O’Neill’s law.

(2) Translate the problem to a coalition game.

(3) Show that O’Neill’s law is not consistent by checking three

creditors.

4.18 discussion
In this chapter we presented four different laws for dividing an estate

among creditors when the total amount of the claims against the

estate exceeds the value of the estate. Note that some of them apply

to various situations in real life. For example, the proportional law

applies when a company of shareholders goes bankrupt. O’Neill’s

“running to the bank” solution, which is also the Shapley value of an

appropriate coalition function, can be understood as an a priori expec-

tation in those cases where the players actually run to the bank and

there is no way of telling in advance in what order they will arrive

there. The Talmudic law of Rabbi Nathan can be considered desir-

able when the players want to share equally the contested part of the

debts.

Can we say which solution is superior to the others? Obviously

not, because each of them is considered better suited to a particular

case.
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Since we cannot say that any one solution is absolutely superior,

which solution should we recommend when a new real-life situation

arises? Even if each solution sheds light on different aspects of the

case, we usually have to decide on a single solution. How does one

make this choice? That is, what criteria should guide one’s choice in

preferring any one solution to the others in a given real-life case? We

can only provide guidelines:

(a) Look at the axioms and properties that characterize each solu-

tion and see which axioms better fit the reality. For example,

the requirement of consistency is sometimes appealing, and it is

this requirement that gives rise to the proportional solution, the

Talmudic solution of Rabbi Nathan, and others.

(b) Look at the behavior of the players in real life. For example, per-

haps they do “run to the bank,” in which case O’Neill’s solution,

which is also the Shapley value, yields an a priori expectation on

the final settlement.

(c) In complex situations, offer the players a simpler problem to which

they can suggest an intelligent solution, say, a two-person case,

and try to learn from their choice what aspects of the simpler prob-

lem they focus on. Then generalize to the more complex real-life

case.

Broadly speaking, all the chapters in this book represent

attempts at reaching a decision in a conflict situation and in each

of them we show the difficulties when trying to define a “superior”

solution. The first chapter on matching presents a “weak” condition

of stability, which nevertheless yields many matchings. One of them

is best for the men and another is best for the women. The second

chapter tries to reach a decision by voting and we saw that a fair voting

rule is not always possible. The third chapter has probably the most

successful solution. It provides a solution for an unbiased arbitrator,

by supplying axioms that seem fair. However, somewhat different

axioms, not covered in this book, yield different solutions. Finally,
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the fourth chapter, which considers the case of bankruptcy conflicts,

shows that even in this simple case a superior solution cannot be

defined.

In conclusion, we see that various solutions are well tailored

to many real situations, but there is no single solution that fits all

situations. Each solution sheds some light on the reality.

4.19 review exercises
1. A man dies, leaving an estate worth 500 units of money.

The deceased has two creditors; one claims 350 units and the other

claims 300 units. How will the estate be divided between them

according to the contested-garment principle, Rif’s law of division,

proportional division, and O’Neill’s law of division?

2. A man with an estate worth 1000 units goes bankrupt. The bankrupt

man has four creditors with claims of 200, 300, 400, and 500 units of

money, respectively. Divide the estate among the creditors according

to the contested-garment principle, Rif’s law of division, proportional

division, and O’Neill’s law of division.

3. (1) Divide an estate worth 800 units among six creditors with

claims of 50, 100, 150, 200, 250, and 300 units, respec-

tively, according to the contested-garment principle, Rif’s law

of division, and proportional division.

(2) Check whether the total amount received by the creditors with

claims of 50, 150, 250, and 300 units will be divided according

to the divisions specified in 3(1).

4. (1) Divide an estate worth 700 units among four creditors with

claims of 100, 200, 250, and 350 units of money, respec-

tively, according to the contested-garment principle, Rif’s law

of division, and proportional division.

(2) Check whether the division is consistent for a group of creditors

with claims of 100, 250, and 350 units, respectively, for the

divisions specified in 4(1).
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5. There is a bankruptcy problem in which an estate is 800 units

and the claims are 200, 300, and 400 units, respectively. Translate

the problem to a coalition game and calculate the Shapley value

of the game. Show that the O’Neill procedure leads to the same

division.



Appendix Answers to
the Exercises

a.1 chapter 1
1.3

1. i. Stable

1. ii. Unstable

2. i. Unstable

2. ii. Unstable

2. iii. Unstable

2. iv. Stable

3. (1) Stable

3. (2) Unstable (Bc)

4. (1) i. Stable. All men get their first choice.

4. (1) ii. Stable. All men get their second choice and every one of

them is the fifth choice of his first choice.

4. (1) iii. Stable. All men and women get their third choice and every

move will worsen their situation.

4. (1) iv. Stable. All women get their second choice and every one of

them is the fifth choice of her first choice.

4. (2) The preference structure is cyclic, such that there is one move

in both the men’s and the women’s choices, but the move in

every case is in the opposite direction. For example, all the

men’s first choices are women who ranked them fifth and all

the men’s second choices are women who ranked them fourth,

and so on.
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1.5

1. Yes⎛
⎜⎜⎝

a b∣∣ ∣∣
c d

⎞
⎟⎟⎠

2. No

3. Yes⎛
⎜⎜⎝

a b∣∣ ∣∣
d c

⎞
⎟⎟⎠

4. Yes⎛
⎜⎜⎝

a b∣∣ ∣∣
d c

⎞
⎟⎟⎠

1.7

1. ⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
b c d a

⎞
⎟⎟⎠

2. ⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
b c a

⎞
⎟⎟⎠

3. (1)⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
b c d e a

⎞
⎟⎟⎠
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3. (2)

⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
b c d e a

⎞
⎟⎟⎠

1.11

1. ⎛
⎜⎜⎝

A B C –∣∣ ∣∣ ∣∣ ∣∣
b c a d

⎞
⎟⎟⎠

2. (1)

⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
b c a – –

⎞
⎟⎟⎠

2. (2)

⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
c b a – –

⎞
⎟⎟⎠

3. ⎛
⎜⎜⎝

A B C –∣∣ ∣∣ ∣∣ ∣∣
d c b a

⎞
⎟⎟⎠

4. (i) Unstable (Aa)

4. (ii) Stable

4. (iii) Unstable (Ac)

4. (iv) Unstable (Bc)

4. (v) Unstable (Bc)
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4. (vi) Stable

No other matching system exists. For a community of 3 × 3 there are

3! = 6 matching systems.

5. (1)⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
a c b

⎞
⎟⎟⎠

5. (2)⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
b c a

⎞
⎟⎟⎠

6. (1)⎛
⎜⎜⎝

A B C – –∣∣ ∣∣ ∣∣ ∣∣ ∣∣
b a – d c

⎞
⎟⎟⎠

6. (2)⎛
⎜⎜⎝

A B C –∣∣ ∣∣ ∣∣ ∣∣
b d a c

⎞
⎟⎟⎠

7. (1) Male courtship:⎛
⎜⎜⎝

A B C D – –∣∣ ∣∣ ∣∣ ∣∣ ∣∣
c d a – b e

⎞
⎟⎟⎠

We get the same matching system in female courtship.

7. (2) We get the same matching system in male courtship as in 7 (1).

We get the same matching system again in female courtship.
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8. ⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
a c b

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
c a b

⎞
⎟⎟⎠

9. ⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
c d a b

⎞
⎟⎟⎠

1.13

1.

⎛
⎜⎜⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
a,c b,e i,n,l

d k,g j,o,h

⎞
⎟⎟⎟⎟⎠

m, f are out.

2.

⎛
⎜⎜⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
a,c,h,j e,g m,n p,r b

k,l,t s

⎞
⎟⎟⎟⎟⎠

d, f, i, o, q are out.

3. (1)

⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
c,e,g b,d h i,j a

⎞
⎟⎟⎠

(2) The same division is obtained as in 3(1).
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1.15

2. (1) Not all women are possible for Mr. d. Ms. C is impossible for

Mr. d.

2. (2) The women possible for Mr. a are A and D.

2. (3) Ms. A is possible for a and d.

Ms. C is possible for b and c.

Ms. D is possible for a, c, and d.

3. (1) A is impossible for a.

3. (2) A is possible for b.

3. (3) B is possible for b.

4. (1)

⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
e b a c d

⎞
⎟⎟⎠

4. (2)⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
d e b a c

⎞
⎟⎟⎠

4. (3) No

5. (1)⎛
⎜⎜⎝

A B C –∣∣ ∣∣ ∣∣ ∣∣
a d b c

⎞
⎟⎟⎠

5. (2) The same matching system is obtained as in 5(1).

6. (1) (2)⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
c b a

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
c a b

⎞
⎟⎟⎠
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System (1) is not optimal for the men in the original system,

because system (2) is better for Mr. a who prefers B to C.

7. (1)⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
b c d a

⎞
⎟⎟⎠

1.17

1. Yes

2. No

Optimal system for men:

⎛
⎜⎜⎝

A B C D –∣∣ ∣∣ ∣∣ ∣∣ ∣∣
e c b a d

⎞
⎟⎟⎠

Optimal system for women:

⎛
⎜⎜⎝

A B C D –∣∣ ∣∣ ∣∣ ∣∣ ∣∣
b a c e d

⎞
⎟⎟⎠

3. No

4. No⎛
⎜⎜⎝

A B C –∣∣ ∣∣ ∣∣ ∣∣
a c d b

⎞
⎟⎟⎠

1.19

1. No
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2. (1)⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
a b c d

⎞
⎟⎟⎠

2. (2) Yes

3. (1)⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
– a b c –

⎞
⎟⎟⎠

3. (2) The women who remain without a mate are A and E. They will

remain without a mate in every case.

4. ⎛
⎜⎜⎝

A B C D∣∣ ∣∣ ∣∣ ∣∣
a d b c

⎞
⎟⎟⎠

5. (1) The system obtained in male courtship is⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
a b c

⎞
⎟⎟⎠

and in female courtship:⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
c b a

⎞
⎟⎟⎠

5. (2) In male courtship the same system is obtained in every case

but in female courtship the following system is also obtained:⎛
⎜⎜⎝

A B C∣∣ ∣∣ ∣∣
b c a

⎞
⎟⎟⎠
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6. ⎛
⎜⎜⎝

A B C –∣∣ ∣∣ ∣∣ ∣∣
a b c d

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B C –∣∣ ∣∣ ∣∣ ∣∣
d a b c

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A B C –∣∣ ∣∣ ∣∣ ∣∣
b a c d

⎞
⎟⎟⎠

7. (1)⎛
⎜⎜⎝

A B C D E∣∣ ∣∣ ∣∣ ∣∣ ∣∣
c b e a d

⎞
⎟⎟⎠

7. (3) No

a.2 chapter 2
2.3

1. (1) x: return money to students

y: buy theater tickets

z: organize end-of-year party

1 2 3

x y z

y z y

z x x

1. (2)⎛
⎜⎜⎝

y

z

x

⎞
⎟⎟⎠

2. (1) p: pizza

s: sandwich

h: hamburger

b: burrito

t: taco

f: falafel
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

h

f

b

p

s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2. (2) Yes

2. (3) The superfluous information, which derives from the transitiv-

ity of the preference relation, is
z

y
.

3. (1) x: movies

y: theater

z: dancing

p: show

q: reading

r: concert

w: TV

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w

q

r

x

y

z

p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3. (2) The superfluous information, which derives from the transitiv-

ity of the preference relation, is
w

y
.

4. Sarah prefers Bach to Chopin.

5. (1) First preference: sunny-side down.

5. (2) There is not enough information to place the soft-boiled egg in

the preference order. It is necessary to ask what the preference
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is between a soft-boiled egg and a hard-boiled egg and between

a soft-boiled egg and an egg sunny-side up.

5. (3) It contradicts assumption A, because by transitivity of the

preference relation we get a preference for sunny-side up over

sunny-side up.

6. (1) First preference: science fiction.

6. (2) What is preferred: (i) comedy or western?

(ii) comedy or science-fiction film?

6. (3) There is a contradiction: action film is preferred to horror film,

but we derive the opposite from the transitivity of the prefer-

ence relation. Similarly, horror film is preferred to western, but

we derive the opposite from the transitivity of the preference

relation.

7. (1) Coffee or cappuccino.

7. (2) Coffee

7. (3) Cappuccino

2.4

I. (1)

⎛
⎜⎜⎜⎜⎝

x

y

t

z

⎞
⎟⎟⎟⎟⎠

I. (2) No decision

III. ⎛
⎜⎜⎜⎜⎝

t

z

y

x

⎞
⎟⎟⎟⎟⎠

IV. (1) No decision
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IV. (2)⎛
⎜⎜⎜⎜⎝

t

z

x

y

⎞
⎟⎟⎟⎟⎠

V. Ex. 1 (1)(
x∼z

y

)

V. Ex. 1 (2)(
x∼y∼z

)
V. Ex. 1 (3)(

y

x∼z

)

V. Ex. 1 (4) No decision

V. Ex. 2 (1)⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠

V. Ex. 2 (2) No decision

VI. (1)

(i)⎛
⎜⎜⎝

z

y

x

⎞
⎟⎟⎠

(ii) ⎛
⎜⎜⎝

z

x

y

⎞
⎟⎟⎠
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VI. (2) Preference structure (ii) is in favor of z.

VI. (3) In fact, the society prefers z above all, but there is a change

in its preferences with regard to x and y, even though there

is no change in its preferences with regard to them in the

preference structure.

VI. (4) We do not recommend this rule, because the bias in favor of

z will effect changes in subjects that are not relevant.

VII. (1)

(i)⎛
⎜⎜⎝

y

z

x

⎞
⎟⎟⎠

(ii)⎛
⎜⎜⎝

y

z

x

⎞
⎟⎟⎠

VII. (2) Everyone in structure (ii) prefers x to y.

VII. (3) There is no difference in society’s preference.

VII. (4) We do not recommend this rule, because even though every-

one prefers x to y, society prefers y to x.

2.6

1. The unanimous decision axiom

2. (1) No decision

2. (2) Axiom 1, according to which a social preference exists for every

preference profile.

3. (1)⎛
⎜⎜⎝

x

y

z∼t

⎞
⎟⎟⎠
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⎛
⎜⎜⎝

y

x

z∼t

⎞
⎟⎟⎠

3. (2) The unanimous decision axiom

4. (1)⎛
⎜⎜⎝

z

y

x

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y

x

z

⎞
⎟⎟⎠

4. (2) The second profile is biased in favor of y.

4. (3) The independence of irrelevant alternatives axiom

5. The non-dictatorship axiom

2.8

1. (1) No decision is possible.

1. (2) Still no decision.

1. (3) There is not enough information about couple y, z and/or

couple t, z.

2. (1) The social decision cannot be predicted.

2. (2) There still is not enough information.

2. (3)

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠

3. (1) No decision
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3. (2)

⎛
⎜⎜⎜⎜⎝

x

z

t

y

⎞
⎟⎟⎟⎟⎠

3. (3)

⎛
⎜⎜⎜⎜⎝

x

z

y

t

⎞
⎟⎟⎟⎟⎠

2.11

1. (1) No decision

1. (2)⎛
⎜⎜⎜⎜⎝

x

t

z

y

⎞
⎟⎟⎟⎟⎠

2. (1) No decision

2. (2)(
x∼z

y

)

2. (3)⎛
⎜⎜⎝

y

x

z

⎞
⎟⎟⎠

2. (4) No decision

3. (1) i. No decision. Axiom 1 is not satisfied.
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3. (1) ii.


x

y

z∼t




3. (1) iii.


y

x

z∼t




3. (2) Axiom 2 is not satisfied.

4. 


x

y

t

z




5. (1) No decision

5. (2) There is not enough information regarding couple x, y.

6. (1) No

6. (2) No

6. (3)


x

y

z

t




a.3 chapter 3
3.4

1. v(1) = 2000 v(2) = v(3) = 0 v(∅) = 0

v(2, 3) = 0 v(1, 2) = 2800 v(1, 3) = 3000

v(1, 2, 3) = 3000
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2. v(1) = v(2) = v(3) = 0

v(1, 2) = 0 v(1, 3) = v(2, 3) = 50

v(1, 2, 3) = 50

3. v(1) = v(2) = 100 v(3) = v(4) = 0

v(1, 2) = v(3, 4) = 0

v(1, 3) = v(1, 4) = v(2, 3) = v(2, 4) = 150

v(1, 2, 4) = v(1, 2, 3) = 250

v(2, 3, 4) = v(1, 3, 4) = 150

v(1, 2, 3, 4) = 300

4. v(1) = v(2) = v(3) = v(4) = v(5) = 0

v(1, 2) = v(1, 3) = v(2, 3) = v(4, 5) = 0

v(1, 4) = v(1, 5) = v(2, 4) = v(2, 5) = v(3, 4) = v(3, 5) = 100

v(1, 2, 3) = 0

v(1, 2, 4) = v(1, 2, 5) = v(1, 3, 4) = v(1, 3, 5) = v(2, 3, 4) =
= v(2, 3, 5) = v(3, 4, 5) = v(1, 4, 5) = v(1, 2, 5) = 100

v(1, 2, 3, 4) = v(1, 2, 3, 5) = 100

v(1, 2, 4, 5) = v(1, 3, 4, 5) = v(2, 3, 4, 5) = 200

v(1, 2, 3, 4, 5) = 200

3.8

1. (1)

v(1) = v(2) = v(3) = 0

v(2, 3) = 0 v(1, 2) = v(1, 3) = v(1, 2, 3) = 1

1. (2)

v(1) = v(2) = v(3) = v(4) = 0

v(2, 3) = v(2, 4) = v(3, 4) = 0

v(1, 2) = v(1, 3) = v(1, 4) = v(1, 2, 3) = v(1, 2, 4) =
= v(1, 3, 4) = v(2, 3, 4) = v(1, 2, 3, 4) = 1

1. (3)
v(1) = v(2) = v(3) = 0

v(1, 2) = v(1, 3) = v(2, 3) = v(1, 2, 3) = 1
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1. (4)

v(1) = v(2) = v(3) = 0

v(1, 2) = v(1, 3) = v(2, 3) = v(1, 2, 3) = 1

1. (5)

v(1) = v(2) = v(3) = v(4) = 0

v(1, 3) = v(2, 3) = v(3, 4) = 0

v(1, 2) = v(1, 4) = v(2, 4) = 1

v(1, 2, 3) = v(1, 2, 4) = v(2, 3, 4) = v(1, 3, 4) = v(1, 2, 3, 4) = 1

1. (6)

v(1) = 1 v(2) = v(3) = v(4) = 0

v(2, 3, 4) = 0 v(2, 3) = v(2, 4) = v(3, 4) = 0

v(1, 2) = v(1, 3) = v(1, 4) = 1

v(1, 2, 3) = v(1, 2, 4) = v(1, 3, 4) = v(1, 2, 3, 4) = 1

1. (7)

v(1) = v(2) = v(3) = 0

v(1, 2) = v(1, 3) = v(2, 3) = v(1, 2, 3) = 1

1. (8)

v(1) = v(2) = v(3) = v(4) = 0

v(1, 4) = v(2, 4) = v(3, 4) = 0

v(1, 2) = v(1, 3) = v(2, 3) = 1

v(1, 2, 3) = v(1, 2, 4) = v(2, 3, 4) = v(1, 3, 4) = v(1, 2, 3, 4) = 1

2. (1) [5; 2, 2, 1, 1, 1]
v(1) = v(2) = v(3) = v(4) = v(5) = 0

v(1, 2) = v(1, 3) = v(1, 4) = v(1, 5) = v(2, 3) =
= v(2, 4) = v(2, 5) = v(3, 4) = v(3, 5) = v(4, 5) = 0

v(1, 2, 3) = v(1, 2, 4) = v(1, 2, 5) = 1

v(2, 3, 4) = v(2, 3, 5) = v(2, 4, 5) = v(3, 4, 5) = 0

v(1, 3, 4) = v(1, 3, 5) = v(1, 4, 5) = 0

v(1, 2, 3, 4) = v(1, 2, 3, 5) = v(1, 3, 4, 5) =
= v(1, 2, 4, 5) = v(2, 3, 4, 5) = v(1, 2, 3, 4, 5) = 1

2. (2) [12; 5, 5, 3, 4]
v(1) = v(2) = v(3) = v(4) = 0

v(1, 2) = v(1, 3) = v(1, 4) = v(2, 3) = v(2, 4) = v(3, 4) = 0
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v(1, 2, 3) = v(1, 2, 4) = v(1, 3, 4) = v(2, 3, 4) = 1

v(1, 2, 3, 4) = 1

2. (3) [80; 50, 40, 30]
v(1) = v(2) = v(3) = 0

v(2, 3) = 0 v(1, 2) = v(1, 3) = v(1, 2, 3) = 1

2. (4) [80; 35, 35, 35, 15]
v(1) = v(2) = v(3) = v(4) = 0

v(1, 2) = v(1, 3) = v(1, 4) = v(2, 3) = v(2, 4) = v(3, 4) = 0

v(1, 2, 3) = v(1, 2, 4) = v(1, 3, 4) = v(2, 3, 4) = 1

v(1, 2, 3, 4) = 1

3. v(1) = v(2) = v(3) = v(4) = 0

v(1, 2) = v(1, 3) = v(1, 4) = v(2, 3) = v(2, 4) = v(3, 4) = 0

v(1, 2, 3) = v(1, 2, 4) = v(1, 3, 4) = 1 v(2, 3, 4) = 0

v(1, 2, 3, 4) = 1

4. (1) Yes

4. (2) No

4. (3) Yes

4. (4) No

4. (5) Yes

3.10

1. (1) Players 1 and 2 are symmetric.

1. (2) All n players are symmetric.

1. (3) Players 1 and 2 are symmetric.

1. (4) All players are symmetric.

1. (5) Players 3 and 4 are symmetric.

1. (6) There are no symmetric players.

2. (1) All players are symmetric.

2. (2) Players 1 and 2 are symmetric.

2. (3) Players 2, 3, and 4 are symmetric.

2. (4) All players are symmetric.

2. (5) Players 1, 2, and 3 are symmetric.
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3.12

1. (1) Players 1 is a null player.

1. (2) In this case, player 1 is not a null player.

2. (1) Players 1 and 2 are null players; players 3 and 4 are symmetric.

2. (2) In this case, players 1 and 2 are not null players.

3. (1) Player 4 is a null player.

3. (2) Player 4 is a null player.

3. (3) Players 4 and 5 are null players.

3.14

1.

10 5 20

20 40

30

60

= 10 0

10 20

10

10

+ 0 5 20

10 20

20

50

0

2. (v + w)(1) = 5 (v + w)(2) = 0 (v + w)(3) = 5

(v + w)(1, 2) = 20 (v + w)(1, 3) = 35 (v + w)(2, 3) = 30

(v + w)(1, 2, 3) = 70

3. (1)

5 0 0

10 5

10

25

3. (2) No
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4. (1)

10 10 5

20 25

30

50

= 3 5

8 10

10

20

+ 7 5 5

12 15

20

30

0

4. (2) No

5. (1)

5 5 20

10 25

30

50

5. (2) No

6. (1)

6 6 12

12 24

18

30

= 6 0

6 6

12

12

+ 0 6 6

6 18

6

18

6

6. (2) Yes; players 2 and 3 are symmetric and 1 is a null player.
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7.

3 3 6

6 9

9

20

+ 3 0

3 6

9

20

6

3.16

1.
(

1
2 , 1

2

)
2.

(
1
3 , 1

3 , 1
3

)
3. (1) (1, 0, 0, 0)

3. (2)
(

1
3 , 1

3 , 1
3

)
3. (3)

(
1
3 , 1

3 , 1
3 , 0

)
4.

(
116 2

3 , 116 2
3 , 66 2

3

)
5. (11, 14, 23)

3.18

1.
(
16 2

3 , 36 2
3 , 6 2

3

)
2. (27, 36, 9)

3. (74, 30, 62, 74)

4. (26, 14, 20)

3.20

1. (1)
(
116 2

3 , 116 2
3 , 66 2

3

)
1. (2) (3, 12, 9)

1. (3)
(

2
3 , 1

6 , 1
6

)
1. (4) (11, 14, 23)

2.
( c

2 , c
2

)
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3. (i)
(
11 5

6 , 7 1
3 , 5

6

)
3. (ii) (5, 5, 0)

3. (iii) (6, 12, 12)

3. (iv)
(
6 2

3 , 6 2
3 , 6 2

3 , 0
)

3. (v) (8, 8, 10, 10)

3.22

1.
(

1
2 , 1

6 , 1
6 , 1

6

)
2.

(
1
6 , 1

6 , 1
2 , 1

6

)
3.

(
1
6 , 1

6 , 1
3 , 1

3

)
4.

(
2
5 , 3

20 , 3
20 , 3

20 , 3
20

)
5.

(
3
10 , 3

10 , 2
15 , 2

15 , 2
15

)
6.

(
13
60 , 13

60 , 17
120 , 17

120 , 17
120 , 17

120

)
7.

(
3
8 , 5

56 , 5
56 , 5

56 , 5
56 , 5

56 , 5
56 , 5

56

)
3.24

1.
(

9
16 , 7

240 , ..., 7
240

)
2.

(
15
26 , 11

650 , ..., 11
650

)
3.

(
45
76 , 31

5700 , ..., 31
5700

)
4.

(
3
11 , 3

11 , 1
22 , ..., 1

22

)
5.

(
11
42 , 11

42 , 1
42 , ..., 1

42

)
6.

(
21
82 , 21

82 , 1
82 , ..., 1

82

)
3.26

1. 10! · 8!
2! · 15! = 1

143 ∼ 0.7%
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2. 6! · 6!
1! · 11! = 1

77 ∼ 1.29%

3. 6! · 5!
11! = 1

462 ∼ 0.2%

3.28

1. (15, 15, 20)

2. (6, 28, 30)

3. (6, 11, 11, 16, 17, 18)

4. (1400, 1400, 1400, 1400, 1400, 1500, 1500, 1500, 2100, 2100,

2100, 2100, 2100)

5. (1) c(L1) = 120, 000 c(L1, L2) = 120, 000 c(L1, H) = 200, 000

c(M1, M2, H) = 200, 000

5. (2) (200, 200, 350, 350, 350, 550)

3.29

1. (1)

v(1) = v(2) = v(3) = v(4) = 0

v(1, 2) = 1 v(1, 3) = 1 v(1, 4) = 0 v(2, 3) = 1 v(2, 4) = 0

v(3, 4) = 0 v(1, 2, 3) = 1 v(1, 2, 4) = 1 v(2, 3, 4) = 1

v(1, 3, 4) = 1 v(1, 2, 3, 4) = 1
1. (2) Yes. X1 = X2 = X3.

1. (3) Yes. Player 4.

1. (4)
(

1
3 , 1

3 , 1
3 , 0

)
2. (1)

6 6 12

18 12

24

42

= 6 6

12 12

12

12

+ 0 0 12

6 0

12

30

0
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2. (2) No

3.
(

3
4 , 1

12 , 1
12 , 1

12

)
4.

(
58 1

3 , 58 1
3 , 33 1

3

)
5. (16, 19, 25)

6.
(

1
3 , 1

6 , 1
4 , 1

4

)
7. (2) (8, 14, 20)

8.
(

11
60 , 11

60 , 17
120 , 17

120 , 17
120 , 17

120

)

a.4 chapter 4
4.3

1.
(
87 1

2 , 62 1
2

)
2. (130, 70)

3. (100, 100)

4. (210, 90)

5. No; (200, 300)

6. (125, 75)

7. Yes

4.7

1. Yes

2. Yes

3. Yes

4. Yes. The widows with marriage contracts of 200 and 300 units,

respectively.

5. The couple with marriage contracts of 200 and 300 units,

respectively.
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6. Yes

7. Yes

8. The creditors with claims of 150 and 300 units, respectively.

9. Yes

10. No

4.10

1.
(
66 2

3 , 166 2
3 , 266 2

3

)
2.

(
33 1

3 , 83 1
3 , 183 1

3

)
3. (25, 50, 75, 80)

4.
(
40, 63 1

3 , 103 1
3 , 143 1

3

)
5. (25, 55, 105, 155, 205, 255)

6. (35, 50, 80, 110, 125)

8. No

9. The division in the second and fifth columns in the table are

inconsistent.

4.12

1. (1)
(
25, 108 1

3 , 158 1
3 , 258 1

3

)
1. (2) Yes

2. (1) (25, 40, 50, 70, 100, 115)

2. (2) Yes

3. (1) (50, 75, 123 3
4 , 183 3

4 , 223 3
4 , 243 3

4 )

3. (2) Yes

4.14

1. (50, 75, 75, 75)
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2. (50, 100, 125, 125)

3. (1) (100, 150, 180, 180, 180)

4. (1) (40, 60, 80, 110, 110)

4.17

1.
(
66 2

3 , 116 2
3 , 216 2

3

)
2. (50, 100, 150, 200)

3. v(1) = v(2) = v(3) = 0 v(1, 2) = 100

v(1, 3) = 200 v(2, 3) = 400 v(1, 2, 3) = 500(
83 1

3 , 183 1
3 , 233 1

3

)
4.

(
116 2

3 , 150, 183 1
3 , 250

)
v(1) = v(2) = v(3) = v(4) = 0 v(1, 2) = 0

v(1, 3) = 50 v(2, 3) = 100 v(1, 4) = 150 v(2, 4) = 200

v(3, 4) = 250 v(1, 2, 3) = 300 v(1, 2, 4) = 400

v(1, 3, 4) = 450

v(2, 3, 4) = 500 v(1, 2, 3, 4) = 700

5. (1)
(
20 5

6 , 37 1
2 , 62 1

2 , 79 1
6

)
6. (1)

(
35, 51 2

3 , 91 2
3 , 121 2

3

)
6. (2) v(1) = v(2) = v(3) = v(4) = 0

v(1, 2) = v(1, 3) = v(1, 4) = v(2, 3) = 0

v(2, 4) = 20 v(3, 4) = 100 v(1, 2, 3) = 20

v(1, 2, 4) = 100 v(1, 3, 4) = 180 v(2, 3, 4) = 220

v(1, 2, 3, 4) = 300

4.19

1. (225, 275), (250, 250) ,
(
230 10

13 , 269 3
13

)
,
(
225, 275

)
2. (100, 200, 300, 400),

(
200, 266 2

3 , 266 2
3 , 266 2

3

)
,(

142 6
7 , 214 2

7 , 285 5
7 , 357 1

7

)
,
(
141 2

3 , 208 1
3 , 270 5

6 , 379 1
6

)
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3.
(
25, 50, 93 3

4 , 143 3
4 , 218 3

4 , 268 3
4

)
,(

50, 100, 150, 166 2
3 , 166 2

3 , 166 2
3

)
,(

38 2
21 , 76 4

21 , 114 6
21 , 152 8

21 , 190 10
21 , 228 12

21

)
4. (1) (100, 200, 200, 200), (100, 200, 200, 200),(

77 7
9 , 155 5

9 , 194 4
9 , 272 2

9

)
5. v(1) = 100 v(2) = 200 v(3) = 300 v(1, 2) = 400

v(1, 3) = 500 v(2, 3) = 600 v(1, 2, 3) = 800(
166 2

3 , 266 2
3 , 366 2

3

)
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