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Preface

The eternal mystery of the world is its comprehensibility.

Albert Einstein

Mathematics without natural history is sterile, but natural history
without mathematics is muddled.

John Maynard Smith

Game theory is central to understanding the dynamics of life forms in

general, and humans in particular. Living creatures not only play games but

also dynamically transform the games they play and have thereby evolved

their unique identities. For this reason, the material in this book is foun-

dational to all the behavioral sciences, from biology, psychology, and eco-

nomics to anthropology, sociology, and political science. Disciplines that
slight game theory are the worse—indeed, much worse—for it.

We humans have a completely stunning capacity to reason and to apply

the fruits of reason to the transformation of our social existence. Social

interactions in a vast array of species can be analyzed with game theory,

yet only humans are capable of playing a game after being told its rules.

This book is based on the appreciation that evolution and reason interact in
constituting the social life and strategic interaction of humans.

Game theory, however, is not everything. This book systematically re-

futes one of the guiding prejudices of contemporary game theory. This is

the notion that game theory is, insofar as human beings are rational, suf-

ficient to explain all of human social existence. In fact, game theory is

complementary to ideas developed and championed in all the behavioral

disciplines. Behavioral scientists who have rejected game theory in reac-
tion to the extravagant claims of some of its adherents may thus want to

reconsider their positions, recognizing the fact that, just as game theory

without broader social theory is merely technical bravado, so social theory

without game theory is a handicapped enterprise.

The reigning culture in game theory asserts the sufficiency of game the-

ory, allowing game theorists to do social theory without regard for either
the facts or the theoretical contributions of the other social sciences. Only

xiii
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the feudal structure of the behavioral disciplines could possibly permit the

persistence of such a manifestly absurd notion in a group of intelligent and
open-minded scientists. Game theorists act like the proverbial “man with a

hammer” for whom “all problems look like nails.” I have explicitly started

this volume with a broad array of social facts drawn from behavioral de-

cision theory and behavioral game theory to disabuse the reader of this

crippling notion. Game theory is a wonderful hammer, indeed a magical

hammer. But, it is only a hammer and not the only occupant of the social
scientist’s toolbox.

The most fundamental failure of game theory is its lack of a theory of

when and how rational agents share mental constructs. The assumption that

humans are rational is an excellent first approximation. But, the Bayesian

rational actors favored by contemporary game theory live in a universe of

subjectivity and instead of constructing a truly social epistemology, game

theorists have developed a variety of subterfuges that make it appear that ra-
tional agents may enjoy a commonality of belief (common priors, common

knowledge), but all are failures. Humans have a social epistemology, mean-

ing that we have reasoning processes that afford us forms of knowledge and

understanding, especially the understanding and sharing of the content of

other minds, that are unavailable to merely “rational” creatures. This social

epistemology characterizes our species. The bounds of reason are thus not
the irrational, but the social.

That game theory does not stand alone entails denying methodological

individualism, a philosophical position asserting that all social phenomena

can be explained purely in terms of the characteristics of rational agents, the

actions available to them, and the constraints that they face. This position is

incorrect because, as we shall see, human society is a system with emergent

properties, including social norms, that can no more be analytically derived

from a model of interacting rational agents than the chemical and biological

properties of matter can be analytically derived from our knowledge of the

properties of fundamental particles.

Evolutionary game theory often succeeds where classical game theory

fails (Gintis 2009). The evolutionary approach to strategic interaction helps

us understand the emergence, transformation, and stabilization of behav-
iors. In evolutionary game theory, successful strategies diffuse across pop-

ulations of players rather than being learned inductively by disembodied ra-

tional agents. Moreover, reasoning is costly, so rational agents often do not

even attempt to learn optimal strategies for complicated games but rather
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copy the behavior of successful agents whom they encounter. Evolutionary

game theory allows us to investigate the interaction of learning, mutation,
and imitation in the spread of strategies when information processing is

costly.

But evolutionary game theory cannot deal with unique events, such as

strangers interacting in a novel environment or Middle East peace negoti-

ations. Moreover, by assuming that agents have very low-level cognitive

capacities, evolutionary game theory ignores one of the most important of
human capacities, that of being able to reason. Human society is an evolved

system, but human reason is one of the key evolutionary forces involved.

This book champions a unified approach based on modal logic, epistemic

game theory, and social epistemology as an alternative to classical and a

supplement to evolutionary game theory.

This approach holds that human behavior is most fruitfully modeled as

the interaction of rational agents with a social epistemology, in the con-
text of social norms that act as correlating devices that choreograph social

interaction. This approach challenges contemporary sociology, which re-

jects the rational actor model. My response to the sociologists is that this

rejection is the reason sociological theory has atrophied since the death of

Talcott Parsons in 1979. This approach also challenges contemporary so-

cial psychology, which not only rejects the rational actor model but also
generally delights in uncovering human “irrationalities.” My response to

the social psychologists is that this rejection accounts for the absence of a

firm analytical base for the discipline, which must content itself with a host

of nanomodels that illuminate highly specific aspects of human functioning

with no analytical linkages among them.

The self-conceptions and dividing lines among the behavioral disciplines
make no scientific sense. How can there be three separate fields, sociology,

anthropology, and social psychology, for instance, studying social behav-

ior and organization? How can the basic conceptual frameworks for the

three fields, as outlined by their respective Great Masters and as taught to

Ph.D. candidates, have almost nothing in common? In the name of sci-

ence, these arbitrarities must be abolished. I propose, in the final chapter,

a conceptual integration of the behavioral sciences that is analytically and
empirically defensible and could be implemented now were it not for the

virtually impassible feudal organization of the behavior disciplines in the

contemporary university system, the structure of research funding agencies
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that mirror this feudal organization and interdisciplinary ethics that value

comfort and tradition over the struggle for truth.
Game theory is a tool for investigating the world. By allowing us to

specify carefully the conditions of social interaction (player characteristics,

rules, informational assumptions, payoffs), its predictions can be tested and

the results can be replicated in different laboratory settings. For this rea-

son, behavioral game theory has become increasingly influential in setting

research priorities. This aspect of game theory cannot be overstressed be-
cause the behavioral sciences currently consist of some fields where theory

has evolved virtually without regard for the facts and others where facts

abound and theory is absent.

Economic theory has been particularly compromised by its neglect of the

facts concerning human behavior. This situation became clear to me in the

summer of 2001, when I happened to be reading a popular introductory

graduate text on quantum mechanics, as well as a leading graduate text on
microeconomics. The physics text began with the anomaly of blackbody

radiation, which could not be explained using the standard tools of electro-

magnetic theory. In 1900, Max Planck derived a formula that fit the data

perfectly, assuming that radiation was discrete rather than continuous. In

1905, Albert Einstein explained another anomaly of classical electromag-

netic theory, the photoelectric effect, using Planck’s trick. The text contin-
ued, page after page, with new anomalies (Compton scattering, the spectral

lines of elements of low atomic number, etc.) and new, partially success-

ful models explaining the anomalies. In about 1925, this culminated with

Heisenberg’s wave mechanics and Schrödinger’s equation, which fully uni-

fied the field.

By contrast, the microeconomics text, despite its beauty, did not contain
a single fact in the whole thousand-page volume. Rather, the authors built

economic theory in axiomatic fashion, making assumptions on the basis of

their intuitive plausibility, their incorporation of the “stylized facts” of ev-

eryday life, or their appeal to the principles of rational thought. A bounty

of excellent economic theory was developed in the twentieth century in this

manner. But, the well has run dry. We will see that empirical evidence chal-

lenges the very foundations of both classical game theory and neoclassical
economics. Future advances in economics will require that model-building

dialogue with empirical testing, behavioral data-gathering, and agent-based

models.



Preface xvii

A simple generalization can be made: decision theory has developed valid

algorithms by which people can best attain their objectives. Given these
objectives, when people have the informational prerequisites of decision

theory, yet fail to act as predicted, the theory is generally correct and the

observed behavior faulty. Indeed, when deviations from theoretical pre-

dictions are pointed out to intelligent individuals, they generally agree that

they have erred. By contrast, the extension of decision theory to the strate-

gic interaction of Bayesian decision makers has led to a limited array of
useful principles and when behavior differs from prediction, people gener-

ally stand by their behavior.

Most users of game theory remain unaware of this fact. Rather, the con-

temporary culture of game theory (as measured by what is accepted without

complaint in a journal article) is to act as if epistemic game theory, which

has flourished in the past two decades, did not exist. Thus, it is virtually uni-

versal to assume that rational agents play mixed strategies, use backward
induction and more generally, play a Nash equilibrium. When people do

not conform to these expectations, their rationality is called into question,

whereas in fact, none of these assumptions can be successfully defended.

Rational agents just do not behave the way classical game theory predicts,

except in certain settings such as anonymous market interactions.

The reason for the inability of decision theory to extend to strategic in-
teraction is quite simple. Decision theory shows that when a few plausible

axioms hold, we can model agents as having beliefs (subjective priors) and

a utility function over outcomes such that the agents’ choices maximize the

expected utility of the outcomes. In strategic interaction, nothing guaran-

tees that all interacting parties have mutually consistent beliefs. Yet, as we

shall see, a high degree of intersubjective belief consistency is required to
ensure that agents play appropriately coordinated strategies.

The behavioral sciences have yet to adopt a serious commitment to link-

ing basic theory and empirical research. Indeed, the various behavioral

disciplines hold distinct and incompatible models of human behavior, yet

their leading theoreticians make no attempt to adjudicate these differences

(see chapter 12). Within economics there have been stunning advances in

both theory and empirical data in the past few decades, yet theoreticians and
experimentalists retain a hostile attitude to each other’s work. This bizarre

state of affairs must end.

It is often said that the mathematical rigor of contemporary economic the-

ory is due to the economists’ “physics envy.” In fact, physicists generally
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judge models according to their ability to account for the facts, not their

mathematical rigor. Physicists generally believe that rigor is the enemy of
creative physical insight and they leave rigorous formulations to the mathe-

maticians. The economic theorists’ overvaluation of rigor is a symptom of

their undervaluation of explanatory power. The truth is its own justification

and needs no help from rigor.

Game theory can be used very profitably by researchers who do not know

or care about mathematical intricacies but rather treat mathematics as but
one of several tools deployed in the search for truth. I assert then that

my arguments are correct and logically argued. I will leave rigor to the

mathematicians.

In a companion volume, Game Theory Evolving (2009), I stress that un-

derstanding game theory requires solving lots of problems. I also stress

therein that many of the weaknesses of classical game theory have beauti-

ful remedies in evolutionary game theory. Neither of these considerations
is dealt with in The Bounds of Reason, so I invite the reader to treat Game
Theory Evolving as a complementary treatise.

The intellectual environments of the Santa Fe Institute, the Central Eu-

ropean University (Budapest), and the University of Siena afforded me the

time, resources, and research atmosphere to complete The Bounds of Rea-

son. I would also like to thank Robert Aumann, Robert Axtell, Kent Bach,
Kaushik Basu, Pierpaolo Battigalli, Larry Blume, Cristina Bicchieri, Ken

Binmore, Samuel Bowles, Robert Boyd, Adam Brandenburger, Songlin

Cai, Colin Camerer, Graciela Chichilnisky, Cristiano Castelfranchi, Rosaria

Conte, Catherine Eckel, Jon Elster, Armin Falk, Ernst Fehr, Alex Field, Urs

Fischbacher, Daniel Gintis, Jack Hirshleifer, Sung Ha Hwang, David Laib-

son, Michael Mandler, Stephen Morris, Larry Samuelson, Rajiv Sethi, Gia-
como Sillari, E. Somanathan, Lones Smith, Roy A. Sorensen, Peter Vander-

schraaf, Muhamet Yildiz, and Eduardo Zambrano for helping me with par-

ticular points. Thanks especially to Sean Brocklebank and Yusuke Narita,

who read and corrected the entire manuscript. I am grateful to Tim Sulli-

van, Seth Ditchik, and Peter Dougherty, my editors at Princeton University

Press, who persevered with me in making this volume possible.



1

Decision Theory and Human Behavior

People are not logical. They are psychological.

Anonymous

People often make mistakes in their maths.
This does not mean that we should abandon
arithmetic.

Jack Hirshleifer

Decision theory is the analysis of the behavior of an individual facing

nonstrategic uncertainty—that is, uncertainty that is due to what we term

“Nature” (a stochastic natural event such as a coin flip, seasonal crop loss,
personal illness, and the like) or, if other individuals are involved, their

behavior is treated as a statistical distribution known to the decision maker.

Decision theory depends on probability theory, which was developed in

the seventeenth and eighteenth centuries by such notables as Blaise Pascal,

Daniel Bernoulli, and Thomas Bayes.

A rational actor is an individual with consistent preferences (�1.1). A
rational actor need not be selfish. Indeed, if rationality implied selfishness,

the only rational individuals would be sociopaths. Beliefs, called subjective

priors in decision theory, logically stand between choices and payoffs. Be-

liefs are primitive data for the rational actor model. In fact, beliefs are the

product of social processes and are shared among individuals. To stress the

importance of beliefs in modeling choice, I often describe the rational actor

model as the beliefs, preferences and constraints model, or the BPC model.
The BPC terminology has the added attraction of avoiding the confusing

and value-laden term “rational.”

The BPC model requires only preference consistency, which can be de-

fended on basic evolutionary grounds. While there are eminent critics of

preference consistency, their claims are valid in only a few narrow areas.

Because preference consistency does not presuppose unlimited information-
processing capacities and perfect knowledge, even bounded rationality (Si-

1



2 Chapter 1

mon 1982) is consistent with the BPC model.1 Because one cannot do be-

havioral game theory, by which I mean the application of game theory to the
experimental study of human behavior, without assuming preference con-

sistency, we must accept this axiom to avoid the analytical weaknesses of

the behavioral disciplines that reject the BPC model, including psychology,

anthropology, and sociology (see chapter 12).

Behavioral decision theorists have argued that there are important areas in

which individuals appear to have inconsistent preferences. Except when in-
dividuals do not know their own preferences, this is a conceptual error based

on a misspecification of the decision maker’s preference function. We show

in this chapter that, assuming individuals know their preferences, adding in-

formation concerning the current state of the individual to the choice space

eliminates preference inconsistency. Moreover, this addition is completely

reasonable because preference functions do not make any sense unless we

include information about the decision maker’s current state. When we are
hungry, scared, sleepy, or sexually deprived, our preference ordering ad-

justs accordingly. The idea that we should have a utility function that does

not depend on our current wealth, the current time, or our current strate-

gic circumstances is also not plausible. Traditional decision theory ignores

the individual’s current state, but this is just an oversight that behavioral

decision theory has brought to our attention.
Compelling experiments in behavioral decision theory show that humans

violate the principle of expected utility in systematic ways (�1.7). Again,

is must be stressed that this does not imply that humans violate preference

consistency over the appropriate choice space but rather that they have in-

correct beliefs deriving from what might be termed “folk probability theory”

and make systematic performance errors in important cases (Levy 2008).
To understand why this is so, we begin by noting that, with the exception

of hyperbolic discounting when time is involved (�1.4), there are no re-

ported failures of the expected utility theorem in nonhumans, and there are

some extremely beautiful examples of its satisfaction (Real 1991). More-

over, territoriality in many species is an indication of loss aversion (Chap-

ter 11). The difference between humans and other animals is that the latter

are tested in real life, or in elaborate simulations of real life, as in Leslie
Real’s work with bumblebees (1991), where subject bumblebees are re-

1Indeed, it can be shown (Zambrano 2005) that every boundedly rational individual is

a fully rational individual subject to an appropriate set of Bayesian priors concerning the

state of nature.
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leased into elaborate spatial models of flowerbeds. Humans, by contrast,

are tested using imperfect analytical models of real-life lotteries. While it
is important to know how humans choose in such situations, there is cer-

tainly no guarantee they will make the same choices in the real-life situa-

tion and in the situation analytically generated to represent it. Evolutionary

game theory is based on the observation that individuals are more likely to

adopt behaviors that appear to be successful for others. A heuristic that says

“adopt risk profiles that appear to have been successful to others” may lead
to preference consistency even when individuals are incapable of evaluating

analytically presented lotteries in the laboratory.

In addition to the explanatory success of theories based on the BPC

model, supporting evidence from contemporary neuroscience suggests that

expected utility maximization is not simply an “as if” story. In fact, the

brain’s neural circuitry actually makes choices by internally representing

the payoffs of various alternatives as neural firing rates and choosing a
maximal such rate (Shizgal 1999; Glimcher 2003; Glimcher and Rusti-

chini 2004; Glimcher, Dorris, and Bayer 2005). Neuroscientists increas-

ingly find that an aggregate decision making process in the brain synthe-

sizes all available information into a single unitary value (Parker and New-

some 1998; Schall and Thompson 1999). Indeed, when animals are tested

in a repeated trial setting with variable rewards, dopamine neurons appear
to encode the difference between the reward that the animal expected to

receive and the reward that the animal actually received on a particular trial

(Schultz, Dayan, and Montague 1997; Sutton and Barto 2000), an evalua-

tion mechanism that enhances the environmental sensitivity of the animal’s

decision making system. This error prediction mechanism has the drawback

of seeking only local optima (Sugrue, Corrado, and Newsome 2005). Mon-
tague and Berns (2002) address this problem, showing that the orbitofrontal

cortex and striatum contain a mechanism for more global predictions that in-

clude risk assessment and discounting of future rewards. Their data suggest

a decision-making model that is analogous to the famous Black-Scholes

options-pricing equation (Black and Scholes 1973).

The existence of an integrated decision-making apparatus in the human

brain itself is predicted by evolutionary theory. The fitness of an organism
depends on how effectively it make choices in an uncertain and varying en-

vironment. Effective choice must be a function of the organism’s state of

knowledge, which consists of the information supplied by the sensory inputs

that monitor the organism’s internal states and its external environment. In



4 Chapter 1

relatively simple organisms, the choice environment is primitive and is dis-

tributed in a decentralized manner over sensory inputs. But in three separate
groups of animals, craniates (vertebrates and related creatures), arthropods

(including insects, spiders, and crustaceans), and cephalopods (squid, oc-

topuses, and other mollusks), a central nervous system with a brain (a cen-

trally located decision-making and control apparatus) evolved. The phylo-

genetic tree of vertebrates exhibits increasing complexity through time and

increasing metabolic and morphological costs of maintaining brain activity.
Thus, the brain evolved because larger and more complex brains, despite

their costs, enhanced the fitness of their carriers. Brains therefore are in-

eluctably structured to make consistent choices in the face of the various

constellations of sensory inputs their bearers commonly experience.

Before the contributions of Bernoulli, Savage, von Neumann, and other

experts, no creature on Earth knew how to value a lottery. The fact that

people do not know how to evaluate abstract lotteries does not mean that
they lack consistent preferences over the lotteries that they face in their daily

lives.

Despite these provisos, experimental evidence on choice under uncer-

tainty is still of great importance because in the modern world we are in-

creasingly called upon to make such “unnatural” choices based on scientific

evidence concerning payoffs and their probabilities.

1.1 Beliefs, Preferences, and Constraints

In this section we develop a set of behavioral properties, among which

consistency is the most prominent, that together ensure that we can model
agents as maximizers of preferences.

A binary relation ˇA on a set A is a subset of A � A. We usually write

the proposition .x; y/ 2 ˇA as x ˇA y. For instance, the arithmetical

operator “less than” (<) is a binary relation, where .x; y/ 2 < is normally

written x < y.2 A preference ordering �A on A is a binary relation with

the following three properties, which must hold for all x; y; z 2 A and any
set B :

1. Complete: x �A y or y �A x;

2. Transitive: x �A y and y �A z imply x �A z;

2See chapter 14 for the basic mathematical notation used in this book. Additional

binary relations over the set R of real numbers include >, <, �, D, �, and ¤, but C is not

a binary relation because x C y is not a proposition.
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3. Independent of irrelevant alternatives: For x; y 2 B , x �B y if and

only if x �A y.

Because of the third property, we need not specify the choice set and can

simply write x � y. We also make the behavioral assumption that given

any choice set A, the individual chooses an element x 2 A such that for all
y 2 A, x � y. When x � y, we say “x is weakly preferred to y.”

The first condition is completeness, which implies that any member of A

is weakly preferred to itself (for any x in A, x � x). In general, we say

a binary relation ˇ is reflexive if, for all x, x ˇ x. Thus, completeness

implies reflexivity. We refer to � as “weak preference” in contrast with

“strong preference” �. We define x � y to mean “it is false that y � x.”
We say x and y are equivalent if x � y and y � x, and we write x ' y.

As an exercise, you may use elementary logic to prove that if � satisfies the

completeness condition, then � satisfies the following exclusion condition:

if x � y, then it is false that y � x.

The second condition is transitivity, which says that x � y and y � z

imply x � z. It is hard to see how this condition could fail for anything
we might like to call a preference ordering.3 As a exercise, you may show

that x � y and y � z imply x � z, and x � y and y � z imply x � z.

Similarly, you may use elementary logic to prove that if � satisfies the

completeness condition, then ' is transitive (i.e., satisfies the transitivity

condition).

The third condition, independence of irrelevant alternatives (IIA) means

that the relative attractiveness of two choices does not depend upon the
other choices available to the individual. For instance, suppose an individual

generally prefers meat to fish when eating out, but if the restaurant serves

lobster, the individual believes the restaurant serves superior fish, and hence

prefers fish to meat, even though he never chooses lobster; thus, IIA fails.

When IIA fails, it can be restored by suitably refining the choice set. For

instance, we can specify two qualities of fish instead of one, in the preceding
example. More generally, if the desirability of an outcome x depends on

the set A from which it is chosen, we can form a new choice space ��,

elements of which are ordered pairs .A; x/, where x 2A��, and restrict

choice sets in �� to be subsets of �� all of whose first elements are equal.

In this new choice space, IIA is trivially satisfied.

3The only plausible model of intransitivity with some empirical support is regret theory

(Loomes 1988; Sugden 1993). Their analysis applies, however, only to a narrow range of

choice situations.
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When the preference relation � is complete, transitive, and independent

of irrelevant alternatives, we term it consistent. If � is a consistent prefer-
ence relation, then there will always exist a preference function such that

the individual behaves as if maximizing this preference function over the

set A from which he or she is constrained to choose. Formally, we say

that a preference function u WA! R represents a binary relation � if, for

all x; y 2 A, u.x/ � u.y/ if and only if x � y. We have the following

theorem.

THEOREM 1.1 A binary relation � on the finite set A of payoffs can be

represented by a preference function uWA!R if and only if � is consistent.

It is clear that u.	/ is not unique, and indeed, we have the following the-

orem.

THEOREM 1.2 If u.	/ represents the preference relation � and f .	/ is a

strictly increasing function, then v.	/ D f .u.	// also represents �. Con-

versely, if both u.	/ and v.	/ represent �, then there is an increasing func-

tion f .	/ such that v.	/ D f .u.	//.

The first half of the theorem is true because if f is strictly increasing, then

u.x/ > u.y/ implies v.x/ D f .u.x// > f .u.y//D v.y/, and conversely.
For the second half, suppose u.	/ and v.	/ both represent �, and for any

y 2 R such that v.x/ D y for some x 2 X , let f .y/ D u.v�1.y//, which

is possible because v is an increasing function. Then f .	/ is increasing

(because it is the composition of two increasing functions) and f .v.x// D
u.v�1.v.x/// D u.x/, which proves the theorem.

1.2 The Meaning of Rational Action

The origins of the BPC model lie in the eighteenth century research of

Jeremy Bentham and Cesare Beccaria. In his Foundations of Economic

Analysis (1947), economist Paul Samuelson removed the hedonistic as-
sumptions of utility maximization by arguing, as we have in the previous

section, that utility maximization presupposes nothing more than transitiv-

ity and some harmless technical conditions akin to those specified above.

Rational does not imply self-interested. There is nothing irrational about

caring for others, believing in fairness, or sacrificing for a social ideal. Nor

do such preferences contradict decision theory. For instance, suppose a man
with $100 is considering how much to consume himself and how much to
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give to charity. Suppose he faces a tax or subsidy such that for each $1

he contributes to charity, he is obliged to pay p dollars. Thus, p > 1

represents a tax, while 0 < p < 1 represents a subsidy. We can then treat

p as the price of a unit contribution to charity and model the individual

as maximizing his utility for personal consumption x and contributions to

charity y, say u.x; y/ subject to the budget constraint xCpyD100. Clearly,

it is perfectly rational for him to choose y>0. Indeed, Andreoni and Miller

(2002) have shown that in making choices of this type, consumers behave
in the same way as they do when choosing among personal consumption

goods; i.e., they satisfy the generalized axiom of revealed preference.

Decision theory does not presuppose that the choices people make are

welfare-improving. In fact, people are often slaves to such passions as

smoking cigarettes, eating junk food, and engaging in unsafe sex. These

behaviors in no way violate preference consistency.

If humans fail to behave as prescribed by decision theory, we need not
conclude that they are irrational. In fact, they may simply be ignorant or

misinformed. However, if human subjects consistently make intransitive

choices over lotteries (e.g., �1.7), then either they do not satisfy the axioms

of expected utility theory or they do not know how to evaluate lotteries. The

latter is often called performance error. Performance error can be reduced

or eliminated by formal instruction, so that the experts that society relies
upon to make efficient decisions may behave quite rationally even in cases

where the average individual violates preference consistency.

1.3 Why Are Preferences Consistent?

Preference consistency flows from evolutionary biology (Robson 1995).

Decision theory often applies extremely well to nonhuman species, includ-

ing insects and plants (Real 1991; Alcock 1993; Kagel, Battalio, and Green

1995). Biologists define the fitness of an organism as its expected number
of offspring. Assume, for simplicity, asexual reproduction. A maximally

fit individual will then produce the maximal expected number of offspring,

each of which will inherit the genes for maximal fitness. Thus, fitness max-

imization is a precondition for evolutionary survival. If organisms maxi-

mized fitness directly, the conditions of decision theory would be directly

satisfied because we could simply represent the organism’s utility function
as its fitness.
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However, organisms do not directly maximize fitness. For instance, moths

fly into flames and humans voluntarily limit family size. Rather, organisms
have preference orderings that are themselves subject to selection according

to their ability to promote fitness (Darwin 1872). We can expect preferences

to satisfy the completeness condition because an organism must be able to

make a consistent choice in any situation it habitually faces or it will be

outcompeted by another whose preference ordering can make such a choice.

Of course, unless the current environment of choice is the same as
the historical environment under which the individual’s preference sys-

tem evolved, we would not expect an individual’s choices to be fitness-

maximizing, or even necessarily welfare-improving.

This biological explanation also suggests how preference consistency

might fail in an imperfectly integrated organism. Suppose the organism has

three decision centers in its brain, and for any pair of choices, majority rule

determines which the organism prefers. Suppose the available choices are
A, B , and C and the three decision centers have preferences A � B � C ,

B � C � A, andC � A � B , respectively. Then when offeredA orB , the

individual chooses A, when offered B or C , the individual chooses B , and

when offered A and C , the individual chooses C . Thus A � B � C � A,

and we have intransitivity. Of course, if an objective fitness is associated

with each of these choices, Darwinian selection will favor a mutant who
suppresses two of the three decision centers or, better yet, integrates them.

1.4 Time Inconsistency

Several human behavior patterns appear to exhibit weakness of will, in the

sense that if there is a long time period between choosing and experienc-

ing the costs and benefits of the choice, individuals can choose wisely, but

when costs or benefits are immediate, people make poor choices, longrun

payoffs being sacrificed in favor of immediate payoffs. For instance, smok-
ers may know that their habit will harm them in the long run, but cannot

bear to sacrifice the present urge to indulge in favor of the far-off reward

of a healthy future. Similarly, a couple in the midst of sexual passion may

appreciate that they may well regret their inadequate safety precautions at

some point in the future, but they cannot control their present urges. We

call this behavior time-inconsistent.4

4For an excellent survey of empirical results in this area, see Frederick, Loewenstein,

and O’Donoghue (2002).
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Are people time-consistent? Take, for instance, impulsive behavior. Ec-

onomists are wont to argue that what appears to be impulsive—cigarette
smoking, drug use, unsafe sex, overeating, dropping out of school, punching

out your boss, and the like—may in fact be welfare-maximizing for people

who have high time discount rates or who prefer acts that happen to have

high future costs. Controlled experiments in the laboratory cast doubt on

this explanation, indicating that people exhibit a systematic tendency to

discount the near future at a higher rate than the distant future (Chung and
Herrnstein 1967; Loewenstein and Prelec 1992; Herrnstein and Prelec 1992;

Fehr and Zych 1994; Kirby and Herrnstein 1995; McClure et al. 2004).

For instance, consider the following experiment conducted by Ainslie and

Haslam (1992). Subjects were offered a choice between $10 on the day of

the experiment or $11 a week later. Many chose to take the $10 without

delay. However, when the same subjects were offered $10 to be delivered

a year from the day of the experiment or $11 to be delivered a year and a
week from the day of the experiment, many of those who could not wait

a week right now for an extra 10%, preferred to wait a week for an extra

10%, provided the agreed-upon wait was one year in the future.

It is instructive to see exactly where the consistency conditions are vio-

lated in this example. Let x mean “$10 at some time t” and let y mean “$11

at time t C 7,” where time t is measured in days. Then the present-oriented
subjects display x � y when t D 0, and y � x when t D 365. Thus the ex-

clusion condition for � is violated, and because the completeness condition

for � implies the exclusion condition for �, the completeness condition

must be violated as well.

However, time inconsistency disappears if we model the individuals as

choosing over a slightly more complicated choice space in which the dis-
tance between the time of choice and the time of delivery of the object cho-

sen is explicitly included in the object of choice. For instance, we may write

x0 to mean “$10 delivered immediately” and x365 to mean “$10 delivered a

year from today,” and similarly for y7 and y372. Then the observation that

x0 � y7 and y372 � x365 is no contradiction.

Of course, if you are not time-consistent and if you know this, you should

not expect that your will carry out your plans for the future when the time
comes. Thus, you may be willing to precommit yourself to making these

future choices, even at a cost. For instance, if you are saving in year 1 for a

purchase in year 3, but you know you will be tempted to spend the money
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in year 2, you can put it in a bank account that cannot be accessed until the

year after next. My teacher Leo Hurwicz called this the “piggy bank effect.”
The central theorem on choice over time is that time consistency results

from assuming that utility is additive across time periods and that the in-

stantaneous utility function is the same in all time periods, with future util-

ities discounted to the present at a fixed rate (Strotz 1955). This is called

exponential discounting and is widely assumed in economic models. For in-

stance, suppose an individual can choose between two consumption streams
x D x0; x1; : : : or y D y0; y1; : : :. According to exponential discounting,

he has a utility function u.x/ and a constant ı 2 .0; 1/ such that the total

utility of stream x is given by5

U.x0; x1; : : :/ D

1X
kD0

ıku.xk/: (1.1)

We call ı the individual’s discount factor. Often we write ı D e�r where
we interpret r > 0 as the individual’s one-period continuously compounded

interest rate, in which case (1.1) becomes

U.x0; x1; : : :/ D

1X
kD0

e�rku.xk/: (1.2)

This form clarifies why we call this “exponential” discounting. The indi-

vidual strictly prefers consumption stream x over stream y if and only if

U.x/ > U.y/. In the simple compounding case, where the interest accrues
at the end of the period, we write ı D 1=.1C r/, and (1.2) becomes

U.x0; x1; : : :/ D

1X
kD0

u.xk/

.1C r/k
: (1.3)

Despite the elegance of exponential discounting, observed intertempo-

ral choice for humans appears to fit more closely the model of hyperbolic

discounting (Ainslie and Haslam 1992; Ainslie 1975; Laibson 1997), first

observed by Richard Herrnstein in studying animal behavior (Herrnstein,
Laibson, and Rachlin 1997) and reconfirmed many times since (Green et

al. 2004). For instance, continuing the previous example, let zt mean

5Throughout this text, we write x 2 .a; b/ for a < x < b, x 2 Œa; b/ for a � x < b,

x 2 .a; b� for a < x � b, and x 2 Œa; b� for a � x � b.
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“amount of money delivered t days from today.” Then let the utility of zt be

u.zt/ D z=.t C 1/. The value of x0 is thus u.x0/ D u.100/ D 10=1 D 10,
and the value of y7 is u.y7/ D u.117/ D 11=8 D 1:375, so x0 � y7.

But u.x365/ D 10=366 D 0:027 while u.y372/ D 11=373 D 0:029, so

y372 � x365.

There is also evidence that people have different rates of discount for dif-

ferent types of outcomes (Loewenstein 1987; Loewenstein and Sicherman

1991). This would be irrational for outcomes that could be bought and sold
in perfect markets, because all such outcomes should be discounted at the

market interest rate in equilibrium. But, of course, there are many things

that people care about that cannot be bought and sold in perfect markets.

Neurological research suggests that balancing current and future payoffs

involves adjudication among structurally distinct and spatially separated

modules that arose in different stages in the evolution of H. sapiens (Tooby

and Cosmides 1992; Sloman 2002; McClure et al. 2004). The long-term
decision-making capacity is localized in specific neural structures in the

prefrontal lobes and functions improperly when these areas are damaged,

despite the fact that subjects with such damage appear to be otherwise com-

pletely normal in brain functioning (Damasio 1994). H. sapiens may be

structurally predisposed, in terms of brain architecture, to exhibit a system-

atic present orientation.
In sum, time inconsistency doubtless exists and is important in model-

ing human behavior, but this does not imply that people are irrational in

the weak sense of preference consistency. Indeed, we can model the be-

havior of time-inconsistent rational individuals by assuming they maxi-

mize their time-dependent preference functions (O’Donoghue and Rabin,

1999a,b, 2000, 2001). For axiomatic treatment of time-dependent prefer-
ences, see Ahlbrecht and Weber (1995) and Ok and Masatlioglu (2003). In

fact, humans are much closer to time consistency and have much longer

time horizons than any other species, probably by several orders of mag-

nitude (Stephens, McLinn, and Stevens 2002; Hammerstein 2003). We do

not know why biological evolution so little values time consistency and long

time horizons even in long-lived creatures.

1.5 Bayesian Rationality and Subjective Priors

Consider decisions in which a stochastic event determines the payoffs to
the players. Let X be a set of prizes. A lottery with payoffs in X is a
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function pWX!Œ0; 1� such that
P

x2X p.x/ D 1. We interpret p.x/ as the

probability that the payoff is x 2 X . If X D fx1; : : : ; xng for some finite
number n, we write p.xi/ D pi .

The expected value of a lottery is the sum of the payoffs, where each

payoff is weighted by the probability that the payoff will occur. If the lottery

l has payoffs x1; : : : ; xn with probabilities p1; : : : ; pn, then the expected

value EŒl� of the lottery l is given by

EŒl� D

nX
iD1

pixi :

The expected value is important because of the law of large numbers (Feller

1950), which states that as the number of times a lottery is played goes to

infinity, the average payoff converges to the expected value of the lottery

with probability 1.

Consider the lottery l1 in figure 1.1(a), where p is the probability of win-

ning amount a and 1
p is the probability of winning amount b. The ex-
pected value of the lottery is then EŒl1� D pa C .1 
 p/b. Note that we

model a lottery a lot like an extensive form game—except that there is only

one player.

Consider the lottery l2 with the three payoffs shown in figure1.1(b). Here

p is the probability of winning amount a, q is the probability of winning

amount b, and 1
p
q is the probability of winning amount c. The expected
value of the lottery is EŒl2� D pa C qb C .1
 p 
 q/c.

A lottery with n payoffs is given in figure 1.1(c). The prizes are now

a1; : : : ; an with probabilities p1; : : : ; pn, respectively. The expected value

of the lottery is now EŒl3� D p1a1 C p2a2 C . . . C pnan.

a1

a2

an�1

an

�

p1

p2

pn�1

pn

a

b

c

�

p

q

1 
 p 
 q

a

b

�
l1

p

1 
 p

(a) (b) (c)

l2 l3

Figure 1.1. Lotteries with two, three, and n potential outcomes.

In this section we generalize the previous argument, developing a set of
behavioral properties that yield both a utility function over outcomes and a
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probability distribution over states of nature, such that the expected utility

principle holds. Von Neumann and Morgenstern (1944), Friedman and
Savage (1948), Savage (1954), and Anscombe and Aumann (1963) showed

that the expected utility principle can be derived from the assumption that

individuals have consistent preferences over an appropriate set of lotteries.

We outline here Savage’s classic analysis of this problem.

For the rest of this section, we assume � is a preference relation (�1.1). To

ensure that the analysis is not trivial, we also assume that x � y is false for
at least some x; y 2 X . Savage’s accomplishment was to show that if the

individual has a preference relation over lotteries that has some plausible

properties, then not only can the individual’s preferences be represented

by a utility function, but also we can infer the probabilities the individual

implicitly places on various events, and the expected utility principle holds

for these probabilities.

Let � be a finite set of states of nature. We call A � � events. Let L be
a set of lotteries, where a lottery is a function � W�!X that associates with

each state of nature ! 2 � a payoff �.!/ 2 X . Note that this concept of a

lottery does not include a probability distribution over the states of nature.

Rather, the Savage axioms allow us to associate a subjective prior over each

state of nature !, expressing the decision maker’s personal assessment of

the probability that ! will occur. We suppose that the individual chooses
among lotteries without knowing the state of nature, after which Nature

chooses the state ! 2 � that obtains, so that if the individual chose lottery

� 2 L, his payoff is �.!/.

Now suppose the individual has a preference relation � over L (we use

the same symbol � for preferences over both outcomes and lotteries). We

seek a set of plausible properties of � over lotteries that together allow us
to deduce (a) a utility function u WX !R corresponding to the preference

relation � over outcomes in X ; (b) a probability distribution p W�! R

such that the expected utility principle holds with respect to the preference

relation � over lotteries and the utility function u.	/; i.e., if we define

E� ŒuIp� D
X
!2�

p.!/u.�.!//; (1.4)

then for any �; � 2 L,

� � � ” E� ŒuIp� > E�ŒuIp�:

Our first condition is that � � � depends only on states of nature where �
and � have different outcomes. We state this more formally as follows.
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A1. For any �; �; � 0; �0 2 L, let A D f! 2 �j�.!/ ¤ �.!/g.

Suppose we also have A D f! 2 �j� 0.!/ ¤ �0.!/g. Suppose
also that �.!/ D � 0.!/ and �.!/ D �0.!/ for ! 2 A. Then

� � � , � 0 � �0.

This axiom says, reasonably enough, that the relative desirability of two

lotteries does not depend on the payoffs where the two lotteries agree. The
axiom allows us to define a conditional preference � �A �, where A � �,

which we interpret as “� is strictly preferred to �, conditional on event A,”

as follows. We say � �A � if, for some � 0; �0 2 L, �.!/ D � 0.!/ and

�.!/ D �0.!/ for ! 2 A, � 0.!/ D �0.!/ for ! … A, and � 0 � �0. Because

of A1, this is well defined (i.e., � �A � does not depend on the particular

� 0; �0 2 L). This allows us to define �A and �A in a similar manner. We
then define an event A � � to be null if � �A � for all �; � 2 L.

Our second condition is then the following, where we write � D xjA to

mean �.!/ D x for all ! 2 A (i.e., � D xjA means � is a lottery that pays

x when A occurs).

A2. If A � � is not null, then for all x; y 2 X , � D xjA �A � D
yjA , x � y.

This axiom says that a natural relationship between outcomes and lotteries

holds: if � pays x given event A and � pays y given event A, and if x � y,
then � �A �, and conversely.

Our third condition asserts that the probability that a state of nature occurs

is independent of the outcome one receives when the state occurs. The diffi-

culty in stating this axiom is that the individual cannot choose probabilities

but only lotteries. But, if the individual prefers x to y, and if A;B � � are

events, then the individual treatsA as more probable than B if and only if a

lottery that pays x when A occurs and y when A does not occur is preferred
to a lottery that pays x when B occurs and y when B does not. However,

this must be true for any x; y 2 X such that x � y, or the individual’s

notion of probability is incoherent (i.e., it depends on what particular pay-

offs we are talking about—for instance, wishful thinking, where if the prize

associated with an event increases, the individual thinks it is more likely to

occur). More formally, we have the following, where we write � D x; yjA
to mean “�.!/ D x for ! 2 A and �.!/ D y for ! … A.”
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A3. Suppose x � y, x0 � y 0, �; �; � 0; �0 2 L, and A;B � �.

Suppose that � D x; yjA, � D x0; y 0jA, � 0 D x; yjB , and
�0 D x0; y 0jB . Then � � � 0 , � � �0.

The fourth condition is a weak version of first-order stochastic domi-

nance, which says that if one lottery has a higher payoff than another for

any event, then the first is preferred to the second.

A4. For any event A, if x � �.!/ for all ! 2 A, then � D xjA �A

�. Also, for any event A, if �.!/ � x for all ! 2 A, then

� �A � D xjA.

In other words, if for any event A, � D x on A pays more than the best �

can pay on A, then � �A �, and conversely.

Finally, we need a technical property to show that a preference relation

can be represented by a utility function. We say nonempty sets A1; : : : ; An

form a partition of set X if the Ai are mutually disjoint (Ai \ Aj D ; for

i ¤ j ) and their union is X (i.e., A1 [ : : : [ An D X ). The technical
condition says that for any �; � 2 L, and any x 2 X , there is a partition

A1; : : : ; An of � such that, for each Ai , if we change � so that its payoff

is x on Ai , then � is still preferred to �, and similarly, for each Ai , if we

change � so that its payoff is x on Ai , then � is still preferred to �. This

means that no payoff is “supergood,” so that no matter how unlikely an

event A is, a lottery with that payoff when A occurs is always preferred to
a lottery with a different payoff when A occurs. Similarly, no payoff can be

“superbad.” The condition is formally as follows.

A5. For all �; � 0; �; �0 2 L with � � �, and for all x 2 X , there

are disjoint subsets A1; : : : ; An of � such that [iAi D � and

for any Ai (a) if � 0.!/ D x for ! 2 Ai and � 0.!/ D �.!/ for
! … Ai , then � 0 � �, and (b) if �0.!/ D x for ! 2 Ai and

�0.!/ D �.!/ for s … Ai , then � � �0.

We then have Savage’s theorem.

THEOREM 1.3 Suppose A1–A5 hold. Then there is a probability function

p on � and a utility function uWX!R such that for any �; � 2 L, � � �

if and only if E� ŒuIp� > E�ŒuIp�.

The proof of this theorem is somewhat tedious; it is sketched in Kreps 1988.



16 Chapter 1

We call the probability p the individual’s Bayesian prior, or subjective

prior and say that A1–A5 imply Bayesian rationality, because the they
together imply Bayesian probability updating.

1.6 The Biological Basis for Expected Utility

Suppose an organism must choose from action set X under certain condi-

tions. There is always uncertainty as to the degree of success of the various

options inX , which means essentially that each x 2 X determines a lottery
that pays i offspring with probability pi .x/ for i D 0; 1; : : : ; n. Then the

expected number of offspring from this lottery is  .x/ D
Pn

j D1 jpj .x/.

Let L be a lottery on X that delivers xi 2 X with probability qi for

i D 1; : : : ; k. The probability of j offspring givenL is then
Pk

iD1 qipj .xi /,

so the expected number of offspring given L is

nX
j D1

j

kX
iD1

qipj .xi/ D

kX
iD1

qi

kX
iD1

jpj .xi / D

kX
iD1

qi .xi /; (1.5)

which is the expected value theorem with utility function  .	/. See also

Cooper (1987).

1.7 The Allais and Ellsberg Paradoxes

Although most decision theorists consider the expected utility principle ac-
ceptably accurate as a basis of modeling behavior, there are certainly well

established situations in which individuals violate it. Machina (1987) re-

views this body of evidence and presents models to deal with them. We

sketch here the most famous of these anomalies, the Allais paradox and

the Ellsberg paradox. They are, of course, not paradoxes at all but simply

empirical regularities that do not fit the expected utility principle.

Maurice Allais (1953) offered the following scenario. There are two
choice situations in a game with prizes x D $2,500,000, y D $500,000,

and z D $0. The first is a choice between lotteries � D y and � 0 D
0:1xC 0:89y C 0:01z. The second is a choice between � D 0:11yC 0:89z

and �0 D 0:1x C 0:9z. Most people, when faced with these two choice

situations, choose � � � 0 and �0 � �. Which would you choose?

This pair of choices is not consistent with the expected utility principle.
To see this, let us write uh D u.2500000/, um D u.500000/, and ul D
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u.0/. Then if the expected utility principle holds, � � � 0 implies um >

0:1uh C 0:89um C 0:01ul , so 0:11um > 0:10uh C 0:01ul , which implies
(adding 0:89ul to both sides) 0:11um C 0:89ul > 0:10uh C 0:9ul , which

says � � �0.

Why do people make this mistake? Perhaps because of regret, which does

not mesh well with the expected utility principle (Loomes 1988; Sugden

1993). If you choose � 0 in the first case and you end up getting nothing,

you will feel really foolish, whereas in the second case you are probably
going to get nothing anyway (not your fault), so increasing the chances of

getting nothing a tiny bit (0.01) gives you a good chance (0.10) of winning

the really big prize. Or perhaps because of loss aversion (�1.9), because

in the first case, the anchor point (the most likely outcome) is $500,000,

while in the second case the anchor is $0. Loss-averse individuals then

shun � 0, which gives a positive probability of loss whereas in the second

case, neither lottery involves a loss, from the standpoint of the most likely
outcome.

The Allais paradox is an excellent illustration of problems that can arise

when a lottery is consciously chosen by an act of will and one knows that

one has made such a choice. The regret in the first case arises because if

one chose the risky lottery and the payoff was zero, one knows for certain

that one made a poor choice, at least ex post. In the second case, if one
received a zero payoff, the odds are that it had nothing to do with one’s

choice. Hence, there is no regret in the second case. But in the real world,

most of the lotteries we experience are chosen by default, not by acts of

will. Thus, if the outcome of such a lottery is poor, we feel bad because of

the poor outcome but not because we made a poor choice.

Another classic violation of the expected utility principle was suggested
by Daniel Ellsberg (1961). Consider two urns. Urn A has 51 red balls and

49 white balls. Urn B also has 100 red and white balls, but the fraction of

red balls is unknown. One ball is chosen from each urn but remains hidden

from sight. Subjects are asked to choose in two situations. First, a subject

can choose the ball from urn A or urn B , and if the ball is red, the subject

wins $10. In the second situation, the subject can choose the ball from urn

A or urn B , and if the ball is white, the subject wins $10. Many subjects
choose the ball from urn A in both cases. This violates the expected utility

principle no matter what probability the subject places on the probability p

that the ball from urn B is white. For in the first situation, the payoff from

choosing urnA is 0:51u.10/C0:49u.0/ and the payoff from choosing urnB
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is .1
p/u.10/Cpu.0/, so strictly preferring urnAmeans p > 0:49. In the

second situation, the payoff from choosing urn A is 0:49u.10/C 0:51u.0/

and the payoff from choosing urn B is pu.10/ C .1 
 p/u.0/, so strictly

preferring urn A means p < 0:49. This shows that the expected utility

principle does not hold.

Whereas the other proposed anomalies of classical decision theory can be

interpreted as the failure of linearity in probabilities, regret, loss aversion,

and epistemological ambiguities, the Ellsberg paradox strikes even more
deeply because it implies that humans systematically violate the following

principle of first-order stochastic dominance (FOSD).

Let p.x/ and q.x/ be the probabilities of winning x or more in

lotteries A and B , respectively. If p.x/ � q.x/ for all x, then

A � B .

The usual explanation of this behavior is that the subject knows the prob-

abilities associated with the first urn, while the probabilities associated with
the second urn are unknown, and hence there appears to be an added degree

of risk associated with choosing from the second urn rather than the first. If

decision makers are risk-averse and if they perceive that the second urn is

considerably riskier than the first, they will prefer the first urn. Of course,

with some relatively sophisticated probability theory, we are assured that

there is in fact no such additional risk, it is hardly a failure of rationality for
subjects to come to the opposite conclusion. The Ellsberg paradox is thus

a case of performance error on the part of subjects rather than a failure of

rationality.

1.8 Risk and the Shape of the Utility Function

If � is defined over X , we can say nothing about the shape of a utility func-

tion u.	/ representing � because, by theorem 1.2, any increasing function

of u.	/ also represents �. However, if � is represented by a utility function

u.x/ satisfying the expected utility principle, then u.	/ is determined up to

an arbitrary constant and unit of measure.6

6Because of this theorem, the difference between two utilities means nothing. We thus

say utilities over outcomes are ordinal, meaning we can say that one bundle is preferred to

another, but we cannot say by how much. By contrast, the next theorem shows that utilities

over lotteries are cardinal, in the sense that, up to an arbitrary constant and an arbitrary

positive choice of units, utility is numerically uniquely defined.
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Figure 1.2. A concave utility function

THEOREM 1.4 Suppose the utility function u.	/ represents the preference

relation � and satisfies the expected utility principle. If v.	/ is another

utility function representing �, then there are constants a; b 2 R with a > 0

such that v.x/ D au.x/C b for all x 2 X .

For a proof of this theorem, see Mas-Collel, Whinston, and Green (1995,

p. 173).

If X D R, so the payoffs can be considered to be money, and utility

satisfies the expected utility principle, what shape do such utility functions
have? It would be nice if they were linear in money, in which case expected

utility and expected value would be the same thing (why?). But generally

utility is strictly concave, as illustrated in figure 1.2. We say a function

u WX !R is strictly concave if, for any x; y 2 X and any p 2 .0; 1/, we

have pu.x/ C .1 
 p/u.y/ < u.px C .1 
 p/y/. We say u.x/ is weakly

concave, or simply concave, if u.x/ is either strictly concave or linear, in
which case the above inequality is replaced by pu.x/ C .1 
 p/u.y/ D
u.px C .1 
 p/y/.

If we define the lottery � as paying x with probability p and y with

probability 1 
 p, then the condition for strict concavity says that the ex-

pected utility of the lottery is less than the utility of the expected value of

the lottery, as depicted in figure 1.2. To see this, note that the expected

value of the lottery is E D px C .1 
 p/y, which divides the line seg-
ment between x and y into two segments, the segment xE having length

.pxC .1
p/y/
 x D .1
p/.y 
 x/ and the segment Ey having length

y
 .pxC .1
p/y/ D p.y
x/. Thus, E divides Œx; y� into two segments

whose lengths have the ratio .1
 p/=p. From elementary geometry, it fol-

lows that B divides segment ŒA; C � into two segments whose lengths have

the same ratio. By the same reasoning, point H divides segments ŒF;G�
into segments with the same ratio of lengths. This means that point H has
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the coordinate value pu.x/C .1
p/u.y/, which is the expected utility of

the lottery. But by definition, the utility of the expected value of the lottery
is at D, which lies above H . This proves that the utility of the expected

value is greater than the expected value of the lottery for a strictly concave

utility function. This is know as Jensen’s inequality.

What are good candidates for u.x/? It is easy to see that strict concav-

ity means u00.x/ < 0, providing u.x/ is twice differentiable (which we

assume). But there are lots of functions with this property. According to
the famous Weber-Fechner law of psychophysics, for a wide range of sen-

sory stimuli and over a wide range of levels of stimulation, a just noticeable

change in a stimulus is a constant fraction of the original stimulus. If this

holds for money, then the utility function is logarithmic.

We say an individual is risk-averse if the individual prefers the expected

value of a lottery to the lottery itself (provided, of course, the lottery does

not offer a single payoff with probability 1, which we call a sure thing). We
know, then, that an individual with utility function u.	/ is risk-averse if and

only if u.	/ is concave.7 Similarly, we say an individual is risk-loving if he

prefers any lottery to the expected value of the lottery, and risk-neutral if he

is indifferent between a lottery and its expected value. Clearly, an individual

is risk-neutral if and only if he has linear utility.

Does there exist a measure of risk aversion that allows us to say when
one individual is more risk-averse than another, or how an individual’s risk

aversion changes with changing wealth? We may define individual A to be

more risk-averse than individual B if whenever A prefers a lottery to an

amount of money x, B will also prefer the lottery to x. We say A is strictly

more risk-averse than B if he is more risk-averse and there is some lottery

that B prefers to an amount of money x but such that A prefers x to the
lottery.

Clearly, the degree of risk aversion depends on the curvature of the utility

function (by definition the curvature of u.x/ at x is u00.x/), but because

u.x/ and v.x/ D au.x/C b (a > 0) describe the same behavior, although

v.x/ has curvature a times that of u.x/, we need something more sophis-

7One may ask why people play government-sponsored lotteries or spend money at

gambling casinos if they are generally risk-averse. The most plausible explanation is that

people enjoy the act of gambling. The same woman who will have insurance on her

home and car, both of which presume risk aversion, will gamble small amounts of money

for recreation. An excessive love for gambling, of course, leads an individual either to

personal destruction or to wealth and fame (usually the former).
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ticated. The obvious candidate is �u.x/ D 
u00.x/=u0.x/, which does not

depend on scaling factors. This is called the Arrow-Pratt coefficient of ab-

solute risk aversion, and it is exactly the measure that we need. We have

the following theorem.

THEOREM 1.5 An individual with utility function u.x/ is more risk-averse

than an individual with utility function v.x/ if and only if �u.x/ > �v.x/

for all x.

For example, the logarithmic utility function u.x/ D ln.x/ has Arrow-

Pratt measure �u.x/ D 1=x, which decreases with x; i.e., as the indi-

vidual becomes wealthier, he becomes less risk-averse. Studies show that

this property, called decreasing absolute risk aversion, holds rather widely

(Rosenzweig and Wolpin 1993; Saha, Shumway, and Talpaz 1994; Nerlove
and Soedjiana 1996). Another increasing concave function is u.x/ D xa

for a 2 .0; 1/, for which �u.x/ D .1
a/=x, which also exhibits decreasing

absolute risk aversion. Similarly, u.x/ D 1 
 x�a (a > 0) is increasing

and concave, with �u.x/ D 
.a C 1/=x, which again exhibits decreasing

absolute risk aversion. This utility has the additional attractive property that

utility is bounded: no matter how rich you are, u.x/ < 1.8 Yet another can-
didate for a utility function is u.x/ D 1
 e�ax for some a > 0. In this case

�u.x/ D a, which we call constant absolute risk aversion.

Another commonly used term is coefficient of relative risk aversion,

�u.x/ D �u.x/=x. Note that for any of the utility functions u.x/ D ln.x/,

u.x/ D xa for a 2 .0; 1/, and u.x/ D 1 
 x�a (a > 0), �u.x/ is constant,

which we call constant relative risk aversion. For u.x/ D 1
e�ax (a > 0),

we have �u.x/ D a=x, so we have decreasing relative risk aversion.

1.9 Prospect Theory

A large body of experimental evidence indicates that people value payoffs
according to whether they are gains or losses compared to their current

status quo position. This is related to the notion that individuals adjust to

an accustomed level of income, so that subjective well-being is associated

more with changes in income rather than with the level of income. See, for

instance, Helson (1964), Easterlin (1974, 1995), Lane (1991, 1993), and

8If utility is unbounded, it is easy to show that there is a lottery that you would be

willing to give all your wealth to play no matter how rich you are. This is not plausible

behavior.
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Oswald (1997). Indeed, people appear to be about twice as averse to tak-

ing losses as to enjoying an equal level of gains (Kahneman, Knetsch, and
Thaler 1990; Tversky and Kahneman 1981b). This means, for instance, that

an individual may attach zero value to a lottery that offers an equal chance

of winning $1000 and losing $500. This also implies that people are risk-

loving over losses while they remain risk-averse over gains (�1.8 explains

the concept of risk aversion). For instance, many individuals choose a 25%

probability of losing $2000 rather than a 50% chance of losing $1000 (both
have the same expected value, of course, but the former is riskier).

More formally, suppose an individual has utility function v.x
r/, where

r is the status quo (his current position), and x represents a change from

the status quo. Prospect theory, developed by Daniel Kahneman and Amos

Tversky, asserts that (a) there is a “kink” in v.x 
 r/ such that the slope of

v.	/ is two to three times as great just to the left of x D r as to the right;

(b) that the curvature of v.	/ is positive for positive values and negative
for negative values; and (c) the curvature goes to zero for large positive

and negative values. In other words, individuals are two to three times

more sensitive to small losses than they are to small gains, they exhibit

declining marginal utility over gains and declining absolute marginal utility

over losses, and they are very insensitive to change when all alternatives

involve either large gains or large losses. This utility function is exhibited
in figure 1.3.

v.0/

Money x

psychic

v.x 
 r/

�

r

value
payoff

Figure 1.3. Loss aversion according to prospect theory

Experimental economists have long known that the degree of risk aver-

sion exhibited in the laboratory over small gambles cannot be explained by
standard expected utility theory, according to which risk aversion is mea-
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sured by the curvature of the utility function (�1.8). The problem is that

for small gambles the utility function should be almost flat. This issue has
been formalized by Rabin (2000). Consider a lottery that imposes a $100

loss and offers a $125 gain with equal probability p D 1=2. Most subjects

in the laboratory reject this lottery. Rabin shows that if this is true for all

expected lifetime wealth levels less than $300,000, then in order to induce

a subject to sustain a loss of $600 with probability 1/2, you would have to

offer him a gain of at least $36,000,000,000 with probability 1/2. This is,
of course, quite absurd.

There are many regularities in empirical data on human behavior that fit

prospect theory very well (Kahneman and Tversky 2000). For instance,

returns on stocks in the United States have exceeded the returns on bonds

by about 8 percentage points, averaged over the past 100 years. Assum-

ing investors are capable of correctly estimating the shape of the return

schedule, if this were due to risk aversion alone, then the average individ-
ual would be indifferent between a sure $51,209 and a lottery that paid

$50,000 with probability 1/2 and paid $100,000 with probability 1/2. It is,

of course, quite implausible that more than a few individuals would be this

risk-averse. However, a loss aversion coefficient (the ratio of the slope of

the utility function over losses at the kink to the slope over gains) of 2.25 is

sufficient to explain this phenomenon. This loss aversion coefficient is very
plausible based on experiments.

In a similar vein, people tend to sell stocks when they are doing well but

hold onto stocks when they are doing poorly. A kindred phenomenon holds

for housing sales: homeowners are extremely averse to selling at a loss and

sustain operating, tax, and mortgage costs for long periods of time in the

hope of obtaining a favorable selling price.
One of the earliest examples of loss aversion is the ratchet effect discov-

ered by James Duesenberry, who noticed that over the business cycle, when

times are good, people spend all their additional income, but when times

start to go bad, people incur debt rather than curb consumption. As a result,

there is a tendency for the fraction of income saved to decline over time. For

instance, in one study unionized teachers consumed more when next year’s

income was going to increase (through wage bargaining) but did not con-
sume less when next year’s income was going to decrease. We can explain

this behavior with a simple loss aversion model. A teacher’s utility can be

written as u.ct 
 rt /C st.1C �/, where ct is consumption in period t , st

is savings in period t , � is the rate of interest on savings, and rt is the ref-
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erence point (status quo point) in period t . This assumes that the marginal

utility of savings is constant, which is a very good approximation. Now
suppose the reference point changes as follows: rtC1 D ˛rt C .1 
 ˛/ct ,

where ˛ 2 Œ0; 1� is an adjustment parameter (˛ D 1 means no adjustment

and ˛ D 0 means complete adjustment to last year’s consumption). Note

that when consumption in one period rises, the reference point in the next

period rises, and conversely.

Now, dropping the time subscripts and assuming the individual has in-
come M , so c C s D M , the individual chooses c to maximize

u.c 
 r/C .M 
 c/.1C �/:

This gives the first order condition u0.c 
 r/ D 1 C �. Because this must
hold for all r , we can differentiate totally with respect to r , getting

u00.c 
 r/
dc

dr
D u00.c 
 r/:

This shows that dc=dr D 1 > 0, so when the individual’s reference point

rises, his consumption rises an equal amount.
One general implication of prospect theory is a status quo bias, according

to which people often prefer the status quo over any of the alternatives but

if one of the alternatives becomes the status quo, that too is preferred to

any of the alternatives (Kahneman, Knetsch, and Thaler 1991). Status quo

bias makes sense if we recognize that any change can involve a loss, and

because on the average gains do not offset losses, it is possible that any one
of a number of alternatives might be preferred if it is the status quo. For

instance, if employers make joining a 401k savings plan the default posi-

tion, almost all employees join. If not joining is made the default position,

most employees do not join. Similarly, if the state automobile insurance

commission declares one type of policy the default option and insurance

companies ask individual policyholders how they would like to vary from

the default, the policyholders tend not to vary, no matter what the default is
(Camerer 2000).

Another implication of prospect theory is the endowment effect (Kahne-

man, Knetsch, and Thaler 1991), according to which people place a higher

value on what they possess than they place on the same things when they

do not possess them. For instance, if you win a bottle of wine that you

could sell for $200, you may drink it rather than sell it, but you would
never think of buying a $200 bottle of wine. A famous experimental result
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exhibiting the endowment effect was the “mug” experiment described by

Kahneman, Knetsch and Thaler (1990). College student subjects given cof-
fee mugs with the school logo on them demand a price two to three times

as high to sell the mugs as those without mugs are willing to pay to buy

the mugs. There is evidence that people underestimate the endowment ef-

fect and hence cannot appropriately correct for it in their choice behavior

(Loewenstein and Adler 1995).

Yet another implication of prospect theory is the existence of a framing

effect, whereby one form of a lottery is strictly preferred to another even

though they have the same payoffs with the same probabilities (Tversky

and Kahneman 1981a). For instance, people prefer a price of $10 plus a

$1 discount to a price of $8 plus a $1 surcharge. Framing is, of course,

closely associated with the endowment effect because framing usually in-

volves privileging the initial state from which movements are assessed.

The framing effect can seriously distort effective decision making. In par-
ticular, when it is not clear what the appropriate reference point is, decision

makers can exhibit serious inconsistencies in their choices. Kahneman and

Tversky give a dramatic example from health care policy. Suppose we face

a flu epidemic in which we expect 600 people to die if nothing is done.

If program A is adopted, 200 people will be saved, while if program B is

adopted, there is a 1/3 probability 600 will be saved and a 2/3 probability
no one will be saved. In one experiment, 72% of a sample of respondents

preferred A to B. Now suppose that if program C is adopted, 400 people

will die, while if program D is adopted there is a 1/3 probability nobody

will die and a 2/3 probability 600 people will die. Now, 78% of respon-

dents preferred D to C, even though A and C are equivalent in terms of the

probability of each final state, and B and D are similarly equivalent. How-
ever, in the choice between A and B, alternatives are over gains, whereas

in the choice between C and D, the alternatives are over losses, and people

are loss-averse. The inconsistency stems from the fact that there is no natu-

ral reference point for the decision maker, because the gains and losses are

experienced by others, not by the decision maker himself.

The brilliant experiments by Kahneman, Tversky, and their coworkers

clearly show that humans exhibit systematic biases in the way they make
decisions. However, it should be clear that none of the above examples

illustrates preference inconsistency once the appropriate parameter (cur-

rent time, current position, status quo point) is admitted into the preference

function. This point is formally demonstrated in Sugden (2003). Sugden
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considers a preference relation of the form f � gjh, which means “lot-

tery f is weakly preferred to lottery g when one’s status quo position is
lottery h.” Sugden shows that if several conditions on this preference re-

lation, most of which are direct generalizations of the Savage conditions

(�1.5), obtain, then there is a utility function u.x; z/ such that f � gjh if

and only if EŒu.f; h/� � EŒu.g; h/�, where the expectation is taken over the

probability of events derived from the preference relation.

1.10 Heuristics and Biases in Decision Making

Laboratory testing of the standard economic model of choice under un-

certainty was initiated by the psychologists Daniel Kahneman and Amos
Tversky. In a famous article in the journal Science, Tversky and Kahneman

(1974) summarized their early research as follows:

How do people assess the probability of an uncertain event or

the value of an uncertain quantity? . . . people rely on a lim-

ited number of heuristic principles which reduce the complex

tasks of assessing probabilities and predicting values to simpler

judgmental operations. In general, these heuristics are quite

useful, but sometimes they lead to severe and systematic er-
rors.

Subsequent research has strongly supported this assessment (Kahneman,

Slovic, and Tversky 1982; Shafir and Tversky 1992; Shafir and Tversky

1995). Although we still do not have adequate models of these heuristics,

we can make certain generalizations.

First, in judging whether an event A or object A belongs to a class or pro-

cess B , one heuristic that people use is to consider whether A is represen-

tative of B but consider no other relevant facts, such as the frequency of B .
For instance, if informed that an individual has a good sense of humor and

likes to entertain friends and family, and asked if the individual is a profes-

sional comic or a clerical worker, people are more likely to say the former.

This is despite the fact that a randomly chosen person is much more likely

to be a clerical worker than a professional comic, and many people have a

good sense of humor, so there are many more clerical workers satisfying
the description than professional comics.
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A particularly pointed example of this heuristic is the famous Linda the

Bank Teller problem (Tversky and Kahneman 1983). Subjects are given the
following description of a hypothetical person named Linda:

Linda is 31 years old, single, outspoken, and very bright. She
majored in philosophy. As a student, she was deeply concerned

with issues of discrimination and social justice and also partic-

ipated in antinuclear demonstrations.

The subjects were then asked to rank-order eight statements about Linda

according to their probabilities. The statements included the following two:

Linda is a bank teller.
Linda is a bank teller and is active in the feminist movement.

More than 80% of the subjects—graduate and medical school students with

statistical training and doctoral students in the decision science program

at Stanford University’s business school—ranked the second statement as

more probable than the first. This seems like a simple logical error be-

cause every bank teller feminist is also a bank teller. It appears, once again,

that subjects measure probability by representativeness and ignore baseline
frequencies.

However, there is another interpretation according to which the subjects

are correct in their judgments. Let p and q be properties that every member

of a population either has or does not have. The standard definition of “the

probability that member x is p” is the fraction of the population for which

p is true. But an equally reasonable definition is “the probability that x is
a member of a random sample of the subset of the population for which

p is true.” According to the standard definition, the probability of p and q

cannot be greater than the probability of p. But, according to the second, the

opposite inequality can hold: x might be more likely to appear in a random

sample of individuals who are both p and q than in a random sample of

the same size of individuals who are p. In other words, the probability that

a randomly chosen bank teller is Linda is probably much lower than the
probability that a randomly chosen feminist bank teller is Linda. Another

way of expressing this point is that the probability that a randomly chosen

member of the set “is a feminist bank teller” may be linda is greater than

the probability that a randomly chosen member of the set “is a bank teller,”

is Linda.

A second heuristic is that in assessing the frequency of an event, peo-
ple take excessive account of information that is easily available or highly
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salient, even though a selective bias is obviously involved. For this rea-

son, people tend to overestimate the probability of rare events because such
events are highly newsworthy while nonoccurrences are not reported. Thus,

people worry much more about dying in an accident while flying than they

do while driving, even though air travel is much safer than automobile

travel.

A third heuristic in problem solving is to start from an initial guess, cho-

sen for its representativeness or salience, and adjust upward or downward
toward a final figure. This is called anchoring because there is a tendency

to underadjust, so the result is too close to the initial guess. Probably as

a result of anchoring, people tend to overestimate the probability of con-

junctions (p and q) and underestimate the probability of disjunctions (p or

q).

For an instance of the former, a person who knows an event occurs with

95% probability may overestimate the probability that the event occurs 10
times in a row, suggesting a probability of 90%. The actual probability is

about 60%. In this case the individual starts with 95% and does not adjust

downward sufficiently. Similarly, if a daily event has a failure one time in

a thousand, people will underestimate the probability that a failure occurs

at least once in a year, suggesting a figure of 5%. The actual probability is

30.5%. Again, the individual starts with 0.1% and doesn’t adjust upward
enough.

A fourth heuristic is that people prefer objective probability distributions

to subjective distributions derived from applying probabilistic principles,

such as the principle of insufficient reason, which says that if you are com-

pletely ignorant as to which of several outcomes will occur, you should

treat them as equally probable. For example, if you give a subject a prize
for drawing a red ball from an urn containing red and white balls, the sub-

ject will pay to have the urn contain 50% red balls rather than contain an

indeterminate percentage of red balls. This is the famous Ellsberg paradox,

analyzed in �1.7.

Choice theorists often express dismay over the failure of people to apply

the laws of probability and conform to normative decision theory. Yet, peo-

ple may be applying rules that serve them well in daily life. It takes many
years of study to feel at home with the laws of probability, the understand-

ing of which is the product of the last couple of hundred years of scientific

research. Moreover, it is costly, in terms of time and effort, to apply these

laws even if we know them. Of course, if the stakes are high enough, it is
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worthwhile to make the effort or engage an expert who will do it for you.

But generally, as Kahneman and Tversky suggest, we apply a set of heuris-
tics that more or less get the job done. Among the most prominent heuristics

is simply imitation: decide what class of phenomenon is involved, find out

what people normally do in that situation, and do it. If there is some mech-

anism leading to the survival and growth of relatively successful behaviors,

and if the problem in question recurs with sufficient regularity, the choice-

theoretic solution will describe the winner of a dynamic social process of
trial, error, and imitation.

Should we expect people to conform to the axioms of choice theory—

transitivity, independence from irrelevant alternatives, the sure-thing prin-

ciple, and the like? Where we know that individuals are really optimizing,

and have expertise in decision theory, we doubtless should. But this applies

only to a highly restricted range of actions. In more general settings we

should not. We might have recourse to Darwinian analysis, demonstrat-
ing that under the appropriate conditions individuals who are genetically

constituted to obey the axioms of choice theory are better fit to solve gen-

eral decision-theoretic problems and hence will emerge triumphant through

an evolutionary dynamic. But human beings did not evolve facing general

decision-theoretic problems. Rather, they faced a few specific decision-

theoretic problems associated with survival in small social groups. We may
have to settle for modeling these specific choice contexts to discover how

our genetic constitution and cultural tools interact in determining choice

under uncertainty.



2

Game Theory: Basic Concepts

High-rationality solution concepts in game theory can
emerge in a world populated by low-rationality agents.

Young (1998)

The philosophers kick up the dust and then complain that
they cannot see.

Bishop Berkeley

2.1 The Extensive Form

An extensive form game G consists of a number of players, a game tree, and

a set of payoffs. A game tree consists of a number of nodes connected by

branches. Each branch connects a head node to a distinct tail node. If b is

a branch of the game tree, we denote the head node of b by bh, and the tail
node of b by bt .

A path from node a to node a0 in the game tree is a connected sequence

of branches starting at a and ending at a0.1 If there is a path from node a to

node a0, we say a is an ancestor of a0, and a0 is a successor to a. We call

the number of branches between a and a0 the length of the path. If a path

from a to a0 has length 1, we call a the parent of a0, and a0 is a child of a.
We require that the game tree have a unique node r , called the root node,

that has no parent, and a set T of nodes, called terminal nodes or leaf nodes,

that have no children. We associate with each terminal node t 2 T (2 means

“is an element of”), and each player i , a payoff �i.t/ 2 R (R is the set of

real numbers). We say the game is finite if it has a finite number of nodes.

We assume all games are finite unless otherwise stated.
We also require that the graph of G have the following tree property.

There must be exactly one path from the root node to any given terminal

1Technically, a path is a sequence b1; : : : ; bk of branches such that bh
1 D a, bt

i D bh
iC1

for i D 1; : : : ; k 
 1, and bt
k

D a0; i.e., the path starts at a, the tail of each branch is the

head of the next branch, and the path ends at a0. The length of the path is k.

30
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node in the game tree. Equivalently, every node except the root node has

exactly one parent.
Players relate to the game tree as follows. Each nonterminal node is

assigned to a player who moves at that node. Each branch b with head node

bh represents a particular action that the player assigned to that node can

take there, and hence determines either a terminal node or the next point of

play in the game—the particular child node bt to be visited next.2

If a stochastic event occurs at a node a (for instance, the weather is good
or bad, or your partner is nice or nasty), we assign the fictitious player

Nature to that node, the actions Nature takes representing the possible out-

comes of the stochastic event, and we attach a probability to each branch of

which a is the head node, representing the probability that Nature chooses

that branch (we assume all such probabilities are strictly positive).

The tree property thus means that there is a unique sequence of moves

by the players (including Nature) leading from the root node to any specific
node of the game tree, and for any two nodes there is at most one sequence

of player moves leading from the first to the second.

A player may know the exact node in the game tree when it is his turn

to move, or he may know only that he is at one of several possible nodes.

We call such a collection of nodes an information set. For a set of nodes to

form an information set, the same player must be assigned to move at each
of the nodes in the set and have the same array of possible actions at each

node.

We also require that if two nodes a and a0 are in the same information set

for a player, the moves that player made up to a and a0 must be the same.

This criterion is called perfect recall, because if a player never forgets his

moves, he cannot make two different choices that subsequently land him in
the same information set.3

A strategy si for player i is a choice of an action at every information

set assigned to i . Suppose each player i D 1; : : : ; n chooses strategy si .

We call s D .s1; : : : ; sn/ a strategy profile for the game, and we define the

payoff to player i , given strategy profile s, as follows. If there are no moves

2Thus, if p D .b1; : : : ; bk/ is a path from a to a0, then starting from a, if the actions

associated with bj are taken by the various players, the game moves to a0.
3Another way to describe perfect recall is to note that the information sets Ni for

player i are the nodes of a graph in which the children of an information set � 2 Ni are

the �0 2 Ni that can be reached by one move of player i , plus some combination of moves

of the other players and Nature. Perfect recall means that this graph has the tree property.
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by Nature, then s determines a unique path through the game tree and hence

a unique terminal node t 2 T . The payoff �i.s/ to player i under strategy
profile s is then defined to be simply �i .t/.

Suppose there are moves by Nature, by which we mean that at one or

more nodes in the game tree, there is a lottery over the various branches

emanating from that node rather than a player choosing at that node. For

every terminal node t 2 T , there is a unique path pt in the game tree from

the root node to t . We say pt is compatible with strategy profile s if, for
every branch b on pt , if player i moves at bh (the head node of b), then si
chooses action b at bh. If pt is not compatible with s, we write p.s; t/ D 0.

If pt is compatible with s, we define p.s; t/ to be the product of all the

probabilities associated with the nodes of pt at which Nature moves along

pt , or 1 if Nature makes no moves along pt . We now define the payoff to

player i as

�i .s/ D
X
t2T

p.s; t/�i .t/: (2.1)

Note that this is the expected payoff to player i given strategy profile s,

assuming that Nature’s choices are independent, so that p.s; t/ is just the

probability that path pt is followed, given strategy profile s. We generally

assume in game theory that players attempt to maximize their expected
payoffs, as defined in (2.1).

0,00,0 4,66,45,00,5 1,14,4
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Bob BobBob
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Figure 2.1. Evaluating payoffs when Nature moves

For example, consider the game depicted in figure 2.1. Here, Nature

moves first, and with probability pl D 0:6 chooses B where the game be-

tween Alice and Bob is known as the Prisoner’s Dilemma (�2.10), and with

probability pl D 0:4 chooses S , where the game between Alice and Bob
is known as the Battle of the Sexes (�2.8). Note that Alice knows Nature’s
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move, because she has separate information sets on the two branches where

Nature moves, but Bob does not, because when he moves, he does not know
whether he is on the left- or right-hand branch.

Alice’s strategies can be written LL, LR, RL, and RR, where LL means

choose L whatever Nature chooses, RR means choose R whatever Nature

chooses, LR means chose L when Nature chooses B, and choose R when

Nature chooses S, and finally, RL means choose R when Nature chooses B

and choose L when Nature chooses S. Similarly we can write Bob’s choices
as uu, ud, du, and dd, where uu means choose u whatever Alice chooses,

dd means choose d whatever Alice chooses, ud means chose u when Alice

chooses L, and choose d when Alice chooses R, and finally, and du means

choose d when Alice chooses L and choose u when Alice chooses R.

Let us write, �A.x; y; z/ and �B.x; y; z/ for the payoffs to Alice and

Bob, respectively, when Alice plays x 2 fLL;LR;RL;RRg, Bob plays

y 2 fuu; ud; du; dd g and Nature plays z 2 fB;Sg. Then, using the above
parameter values, (2.1) gives the following equations.

�A.LL; uu/ D pu�A.LL; uu;B/C pr�A.LL; uu; S/

D 0:6.4/C 0:4.6/ D 4:8I

�B.LL; uu/ D pu�B.LL; uu;B/C pr�B.LL; uu; S/

D 0:6.4/C 0:4.4/ D 4:0I

The reader should fill in the payoffs at the remaining nodes.

2.2 The Normal Form

The strategic form or normal form game consists of a number of players, a
set of strategies for each of the players, and a payoff function that associates

a payoff to each player with a choice of strategies by each player. More

formally, an n-player normal form game consists of

a. A set of players i D 1; : : : ; n.
b. A set Si of strategies for player i D 1; : : : ; n. We call s D .s1; : : : ; sn/,

where si 2 Si for i D 1; : : : ; n, a strategy profile for the game.4

c. A function �i WS ! R for player i D 1; : : : ; n, where S is the set of

strategy profiles, so �i.s/ is player i’s payoff when strategy profile s is

chosen.

4Technically, these are pure strategies because in �2.3 we will consider mixed strategies

that are probabilistic combinations of pure strategies.
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Two extensive form games are said to be equivalent if they correspond to

the same normal form game, except perhaps for the labeling of the actions
and the naming of the players. But given an extensive form game, how ex-

actly do we form the corresponding normal form game? First, the players

in the normal form are the same as the players in the extensive form. Sec-

ond, for each player i , let Si be the set of strategies for that player, each

strategy consisting of the choice of an action at each information set where

i moves. Finally, the payoff functions are given by equation (2.1). If there
are only two players and a finite number of strategies, we can write the

payoff function in the form of a matrix.

As an exercise, you should work out the normal form matrix for the game

depicted in figure 2.1.

2.3 Mixed Strategies

Suppose a player has pure strategies s1; : : : ; sk in a normal form game. A

mixed strategy for the player is a probability distribution over s1; : : : ; sk;

i.e., a mixed strategy has the form

	 D p1s1 C : : : C pksk;

where p1; : : : ; pk are all nonnegative and
Pn

1 pj D 1. By this we mean

that the player chooses sj with probability pj , for j D 1; : : : ; k. We call
pj the weight of sj in 	 . If all the pj ’s are zero except one, say pl D 1, we

say 	 is a pure strategy, and we write 	 D sl . We say that pure strategy sj
is used in mixed strategy 	 if pj > 0. We say a strategy is strictly mixed

if it is not pure, and we say that it is completely mixed if all pure strategies

are used in it. We call the set of pure strategies used in a mixed strategy 	i

the support of 	i .

In an n-player normal form game where player i has pure-strategy set Si

for i D 1; : : : ; n, a mixed-strategy profile 	 D .	1; : : : ; 	n/ is the choice of a

mixed strategy 	i by each player. We define the payoffs to 	 as follows. Let

�i.s1; : : : ; sn/ be the payoff to player i when players use the pure strategy

profile .s1; : : : ; sn/, and if s is a pure strategy for player i , let ps be the

weight of s in 	i . Then we define

�i.	/ D
X

s12S1

: : :
X

sn2Sn

ps1
ps2
: : :psn

�i.s1; : : : ; sn/:

This is a formidable expression, but the idea behind it is simple. We assume
the players’ choices are made independently, so the probability that the
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particular pure strategies s1 2 S1; : : : ; sn 2 Sn will be used is simply the

product ps1
: : :psn

of their weights, and the payoff to player i in this case is
just �i.s1; : : : ; sn/. We get the expected payoff by multiplying and adding

up over all n-tuples of mixed strategies.

2.4 Nash Equilibrium

The concept of a Nash equilibrium of a game is formulated most easily in

terms of the normal form. Suppose the game has n players, with strategy

sets Si and payoff functions �i WS! R, for i D 1; : : : ; n, where S is the
set of strategy profiles. We use the following very useful notation. Let 
Si

be the set of mixed strategies for player i and let 
�S D
Qn

iD1 
Si , be the

mixed-strategy profiles for the game. If 	 2 
�S , we write 	i for the i th

component of 	 (i.e., 	i is player i’s mixed strategy in 	 ). If 	 2 
�S and

�i 2 
Si , we write

.	�i ; �i / D .�i; 	�i / D

8<
:
.�1; 	2; : : : ; 	n/ if iD1

.	1; : : : ; 	i�1; �i ; 	iC1; : : : ; 	n/ if 1<i <n.

.	1; : : : ; 	n�1; �n/ if iDn

In other words, .	�i ; �i/ is the strategy profile obtained by replacing 	i with

�i for player i .

We say a strategy profile 	� D .	�
1 ; : : : ; 	

�
n / 2 
�S is a Nash equilibrium

if, for every player i D 1; : : : ; n and every 	i 2 
Si , we have �i .	
�/ �

�i.	
�
�i ; 	i/; i.e., choosing 	�

i is at least as good for player i as choosing
any other 	i given that the other players choose 	�

�i . Note that in a Nash

equilibrium, the strategy of each player is a best response to the strategies

chosen by all the other players. Finally, notice that a player could have

responses that are equally good as the one chosen in the Nash equilibrium—

there just cannot be a strategy that is strictly better.

The Nash equilibrium concept is important because in many cases we can

accurately (or reasonably accurately) predict how people will play a game
by assuming they will choose strategies that implement a Nash equilibrium.

In dynamic games that model an evolutionary process whereby successful

strategies drive out unsuccessful ones over time, stable stationary states are

always Nash equilibria. Conversely, Nash equilibria that seem implausible

are often unstable equilibria of an evolutionary process, so we would not

expect to see them in the real world (Gintis 2009). Where people appear to
deviate systematically from implementing Nash equilibria, we sometimes
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find that they do not understand the game, or that we have misspecified the

game they are playing or the payoffs we attribute to them. But, in important
cases, as we shall see in later chapters, people simply do not play Nash

equilibria at all.

2.5 The Fundamental Theorem of Game Theory

John Nash showed that every finite game has a Nash equilibrium in mixed

strategies (Nash 1950). More concretely, we have the following theorem.

THEOREM 2.1 Nash Existence Theorem. If each player in an n-player

game has a finite number of pure strategies, then the game has a (not nec-

essarily unique) Nash equilibrium in (possibly) mixed strategies.

The following fundamental theorem of mixed-strategy equilibrium devel-

ops the principles for finding Nash equilibria. Let 	 D .	1; : : : ; 	n/ be a

mixed-strategy profile for an n-player game. For any player i D 1; : : : ; n,

let 	�i represent the mixed strategies used by all the players other than
player i . The fundamental theorem of mixed-strategy Nash equilibrium

says that 	 is a Nash equilibrium if and only if, for any player i D 1; : : : ; n

with pure-strategy set Si ,

a. If s; s0 2 Si occur with positive probability in 	i , then the payoffs to s

and s0 when played against 	�i , are equal.

b. If s occurs with positive probability in 	i and s0 occurs with zero prob-

ability in 	i , then the payoff to s0 is less than or equal to the payoff to

s, when played against 	�i .

The proof of the fundamental theorem is straightforward. Suppose 	 is
the player’s mixed strategy in a Nash equilibrium that uses s with proba-

bility p > 0 and s0 with probability p0 > 0. If s has a higher payoff than

s0 when played against 	�i , then i’s mixed strategy that uses s with prob-

ability (p C p0), does not use s0, and assigns the same probabilities to the

other pure strategies as does 	 has a higher payoff than 	 , so 	 is not a best

response to 	�i . This is a contradiction, which proves the assertion. The
rest of the proof is similar.
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2.6 Solving for Mixed-Strategy Nash Equilibria

a1; a2 b1; b2

d1; d2c1; c2D

U

L RThis problem asks you to apply the general

method of finding mixed-strategy equilibria in

normal form games. Consider the game at the

right. First, of course, you should check for

pure-strategy equilibria. To check for a com-

pletely mixed-strategy equilibrium, we use the
fundamental theorem (�2.5). Suppose the column player uses the strategy

	 D ˛L C .1 
 ˛/R (i.e., plays L with probability ˛). Then, if the row

player uses both U and D, they must both have the same payoff against 	 .

The payoff to U against 	 is ˛a1 C .1
 ˛/b1, and the payoff to D against

	 is ˛c1 C .1
 ˛/d1. Equating these two, we find

˛ D
d1 
 b1

d1 
 b1 C a1 
 c1

:

For this to make sense, the denominator must be nonzero and the right-hand

side must lie between zero and one. Note that the column player’s strategy

is determined by the requirement that the row player’s two strategies be

equal.

Now suppose the row player uses strategy � D ˇU C .1 
 ˇ/D (i.e.,
plays U with probability ˇ). Then, if the column player uses both L and

R, they must both have the same payoff against � . The payoff to L against

� is ˇa2 C .1 
 ˇ/c2, and the payoff to R against � is ˇb2 C .1 
 ˇ/d2.

Equating these two, we find ˇ D .d2 
 c2/=.d2 
 c2 C a2 
 b2/.

Again, for this to make sense, the denominator must be nonzero and the

right-hand side must lie between zero and one. Note that now the row

player’s strategy is determined by the requirement that the column player’s
two strategies be equal.

a. Suppose the above really is a mixed-strategy equilibrium. What are the
payoffs to the two players?

b. Note that to solve a 2 � 2 game, we have checked for five different

configurations of Nash equilibria—four pure and one mixed. But there

are four more possible configurations, in which one player uses a pure

strategy and the second player uses a mixed strategy. Show that if there

is a Nash equilibrium in which the row player uses a pure strategy (say

UU ) and the column player uses a completely mixed strategy, then any

strategy for the column player is a best response to UU .
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c. How many different configurations are there to check for in a 2 � 3

game? In a 3 � 3 game? In an n �m game?

2.7 Throwing Fingers


1; 1 1;
1

c2

c2

c1

c1

1;
1 
1; 1

Alice
BobAlice and Bob each throws one (c1) or two (c2) fin-

gers simultaneously. If they are the same, Alice

wins; otherwise, Bob wins. The winner takes $1

from the loser. The normal form of this game is
depicted to the right. There are no pure-strategy

equilibria, so suppose Bob uses the mixed strategy

	 that consists of playing c1 with probability ˛ and

c2 with probability 1 
 ˛. We write this as 	 D ˛c1 C .1 
 ˛/c2. If Al-

ice uses both c1 and c2 with positive probability, they both must have the

same payoff against 	 , or else Alice should drop the lower-payoff strat-

egy and use only the higher-payoff strategy. The payoff to c1 against
	 is ˛ 	 1C .1
 ˛/.
1/ D 2˛ 
 1, and the payoff to c2 against 	 is

˛.
1/C .1
˛/1 D 1
2˛. If these are equal, then ˛ D 1=2. Similar

reasoning shows that Alice chooses each strategy with probability 1/2. The

expected payoff to Alice is then 2˛
 1 D 1
 2˛ D 0, and the same is true

for Bob.

2.8 The Battle of the Sexes

2,1

0,0

g o

0,0

1,2

g

o

Alfredo
ViolettaVioletta and Alfredo love each other so much

that they would rather be together than apart.

But Alfredo wants to go gambling, and Vi-

oletta wants to go to the opera. Their pay-

offs are described to the right. There are

two pure-strategy equilibria and one mixed-

strategy equilibrium for this game. We will show that Alfredo and Violetta
would be better off if they stuck to either of their pure-strategy equilibria.

Let ˛ be the probability of Alfredo going to the opera and let ˇ be the

probability of Violetta going to the opera. Because in a strictly mixed-

strategy equilibrium the payoff from gambling and from going to the opera

must be equal for Alfredo, we must have ˇ D 2.1 
 ˇ/, which implies

ˇ D 2=3. Because the payoff from gambling and from going to the opera
must also be equal for Violetta, we must have 2˛ D 1 
 ˛, so ˛ D 1=3.
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The payoff of the game to each is then

2

9
.1;2/C

5

9
.0;0/C

2

9
.2;1/ D

�
2

3
;
2

3

�

because both go gambling .1=3/.2=3/ D 2=9 of the time, both go to the

opera .1=3/.2=3/ D 2=9 of the time, and otherwise they miss each other.

Both players do better if they can coordinate because (2,1) and (1,2) are

both better than (2/3,2/3).

2.9 The Hawk-Dove Game

H D

H

D

z; z v; v

0,0 v=2; v=2

Consider a population of birds that fight over

valuable territory. There are two possible strate-

gies. The hawk (H ) strategy is to escalate battle

until injured or your opponent retreats. The dove
(D) strategy is to display hostility but retreat be-

fore sustaining injury if your opponent escalates. The payoff matrix is given

in the figure, where v > 0 is the value of territory, w > v is the cost of in-

jury, and z D .v
w/=2 is the payoff when two hawks meet. The birds can

play mixed strategies, but they cannot condition their play on whether they

are player 1 or player 2, and hence both players must use the same mixed
strategy.

As an exercise, explain the entries in the payoff matrix and show that

there are no symmetric pure-strategy Nash equilibria. The pure strategy

pairs (H,D) and (D,H) are Nash equilibria, but they are not symmetric, so

cannot be attained assuming, as we do, that the birds cannot which is player

1 and which is player 2. There is only one symmetric Nash equilibrium, in
which players do not condition their behaviors on whether they are player

1 or player 2. This is the game’s unique mixed-strategy Nash equilibrium,

which we will now analyze.

Let ˛ be the probability of playing hawk. The payoff to playing hawk

is then �h D ˛.v 
 w/=2C .1 
 ˛/v, and the payoff to playing dove is

�d D ˛.0/ C .1 
 ˛/v=2. These two are equal when ˛� D v=w, so the

unique symmetric Nash equilibrium occurs when ˛ D ˛�. The payoff to
each player is thus

�d D .1 
 ˛/
v

2
D
v

2

�w 
 v

w

�
:
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Note that when w is close to v, almost all the value of the territory is dis-

sipated in fighting, while for very high w, very little value is lost. This is
known as “mutually assured destruction” in military parlance. Of course, if

there is some possibility of error, where each player plays hawk by mistake

with positive probability, then you can easily show that mutually assured

destruction may have a very poor payoff.

2.10 The Prisoner’s Dilemma

R,R

P ,P

S ,T

T ,S

C

C D

D

Alice and Bob can each earn a profit R if they both

cooperate (C ). However, either can defect by work-

ing secretly on private jobs (D), earning T > R, but

the other player will earn only S < R. If both defect,

however, they will each earn P , where S < P < R.

Each must decide independently of the other whether to choose C or D.
The game tree is depicted in the figure on the right. The payoff T stands

for “temptation” (to defect on a partner), S stands for “sucker” (for coop-

erating when your partner defected), P stands for “punishment” (for both

defecting), and R stands for “reward” (for both cooperating). We usually

assume also that SCT < 2R, so there is no gain from taking turns playing

C and D.

Let ˛ be the probability of playing C if you are Alice and let ˇ be the
probability of playingC if you are Bob. To simplify the algebra, we assume

P D 1, R D 0, T D 1 C t , and S D 
s, where s; t > 0. It is easy to

see that these assumptions involve no loss of generality because adding a

constant to all payoffs or multiplying all payoffs by a positive constant does

not change the Nash equilibria of the game. The payoffs to Alice and Bob

are now

�A D ˛ˇ C ˛.1 
 ˇ/.
s/C .1
 ˛/ˇ.1C t/C .1
 ˛/.1 
 ˇ/.0/;

�B D ˛ˇ C ˛.1 
 ˇ/.1C t/C .1
 ˛/ˇ.
s/C .1
 ˛/.1 
 ˇ/.0/;

which simplify to

�A D ˇ.1C t/ 
 ˛.s.1 
 ˇ/C ˇt/;

�B D ˛.1C t/ 
 ˇ.s.1
 ˛/ C ˛t/:

It is clear from these equations that �A is maximized by choosing ˛ D 0 no

matter what Bob does, and similarly �B is maximized by choosing ˇ D 0,
no matter what Alice does. This is the mutual defect equilibrium.
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As we shall see in �3.5, this is not the way many people play this game in

the experimental laboratory. Rather, people very often prefer to cooperate,
provided their partners cooperate as well. We can capture this phenomenon

by assuming that there is a psychic gain �A > 0 for Alice and �B > 0 for

Bob when both players cooperate, above the temptation payoff T D 1C t .

If we rewrite the payoffs using this assumption, we get

�A D ˛ˇ.1C t C �A/C ˛.1 
 ˇ/.
s/

C.1
 ˛/ˇ.1C t/C .1 
 ˛/.1
 ˇ/.0/

�B D ˛ˇ.1C t C �B/C ˛.1 
 ˇ/.1C t/

C.1
 ˛/ˇ.
s/C .1 
 ˛/.1 
 ˇ/.0/;

which simplify to

�A D ˇ.1C t/ 
 ˛.s 
 ˇ.s C �A//

�B D ˛.1C t/ 
 ˇ.s 
 ˛.s C �B//:

The first equation shows that if ˇ > s=.s C �A/, then Alice plays C , and

if ˛ > s=.s C �B/, then Bob plays C . If the opposite equalities hold, then

both play D.

2.11 Alice, Bob, and the Choreographer

l r

u

d

5,1

1,5

0,0

4,4

Alice
BobConsider the game played by Alice and Bob, with

the normal form matrix shown to the right. There are
two Pareto-efficient pure-strategy equilibria: (1,5)

and (5,1). There is also a mixed-strategy equilibrium

with payoffs (2.5,2.5), in which Alice plays u with

probability 0.5 and Bob plays l with probability 0.5.

If the players can jointly observe a choreographer who signals ul and

dr , each with probability 1/2, Alice and Bob can then achieve the payoff

(3,3) by obeying the choreographer; i.e. by playing .u; l/ if they see ul
and playing .d; r/ if they see dr . Note that this is a Nash equilibrium of

a larger game in which the choreographer moves first and acts as Nature.

This is a Nash equilibrium because each players chooses a best response to

the move of the other, assuming the other carries out the choreographer’s

directive. This situation is termed a correlated equilibrium of the original

game (Aumann 1974). The commonly observable event on which their
behavior is conditioned is called a correlating device.
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A more general correlated equilibrium for this game can be constructed

as follows. Consider a choreographer who would like to direct Alice to play
d and Bob to play l so the joint payoff .4; 4/ could be realized. The prob-

lem is that if Alice obeys the choreographer, then Bob has an incentive to

choose r , giving him a payoff of 5 instead of 4. Similarly, if Bob obeys the

choreographer, then Alice has an incentive to choose u, giving her a payoff

of 5 instead of 4. The choreographer must therefore be more sophisticated.

Suppose the choreographer has three states. In !1, which occurs with
probability ˛1, he advises Alice to play u and Bob to play l. In !2, which

occurs with probability ˛2, the choreographer advises Alice to play d and

Bob to play l. In !3, which occurs with probability ˛3, the choreographer

advises Alice to play d and Bob to play r . We assume Alice and Bob know

˛1, ˛2, and ˛3 D 1 
 ˛1 
 ˛2, and it is common knowledge that both

have a normative predisposition (see chapter 7) to obey the choreographer

unless they can do better by deviating. However, neither Alice nor Bob
can observe the state ! of the choreographer, and each hears only what the

choreographer tells them, not what the choreographer tells the other player.

We will find the values of ˛1, ˛2, and ˛3 for which the resulting game has

a Pareto-efficient correlated equilibrium.

Note that Alice has knowledge partition Œf!1g; f!2; !3g� (�1.5), meaning

that she knows when !1 occurs but cannot tell whether the state is !2 or
!3. This is because she is told to move u only in state !1 but to move d

in both states !2 and !3. The conditional probability of !2 for Alice given

f!2; !3g is pA.!2/ D ˛2=.˛2 C˛3/, and similarly pA.!3/ D ˛3=.˛2 C˛3/.

Note also that Bob has knowledge partition Œf!3g; f!1; !2g� because he is

told to move r only at !3 but to move l at both !1 and !2. The conditional

probability of !1 for Bob given f!1; !2g is pB.!1/ D ˛1=.˛1 C ˛2/, and
similarly pB.!2/ D ˛2=.˛1 C ˛3/.

When !1 occurs, Alice knows that Bob plays l, to which Alice’s best

response is u. When !2 or !3 occurs, Alice knows that Bob is told l by

the choreographer with probability pA.!2/ and is told r with probability

pA.!3/. Thus, despite the fact that Bob plays only pure strategies, Alice

knows she effectively faces the mixed strategy l played with probability

˛2=.˛2C˛3/ and r played with probability ˛3=.˛2C˛3/. The payoff to u in
this case is 5˛2=.˛2C̨ 3/, and the payoff to d is 4˛2=.˛2C̨ 3/C̨ 3=.˛2C˛3/.

If d is to be a best response, we must thus have ˛1 C 2˛2 � 1.

Turning to the conditions for Bob, when !3 occurs, Alice plays d so

Bob’s best response is r . When !1 or !2 occurs, Alice plays u with
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probability pB.!1/ and d with probability pB.!2/. Bob chooses l when

˛1 C 4˛2 � 5˛2. Thus, any ˛1 and ˛2 that satisfy 1 � ˛1 C 2˛2 and
˛1 � ˛2 permit a correlated equilibrium. Another characterization is

1 
 2˛2 � ˛1 � ˛2 � 0.

What are the Pareto-optimal choices of ˛1 and ˛2? Because the correlated

equilibrium involves !1 ! .u; l/, !2 ! .d; l/, and !3 ! .d; r/, the

payoffs to .˛1; ˛2/ are ˛1.5; 1/ C ˛2.4; 4/ C .1 
 ˛1 
 ˛2/.1; 5/, which

simplifies to .1C4˛1 C3˛2; 5
4˛1 
˛2/, where 1
2˛2 � ˛1 � ˛2 � 0.
This is a linear programming problem. It is easy to see that either ˛1 D
1
 2˛2 or ˛1 D ˛2 and 0 � ˛2 � 1=3. The solution is shown in figure 2.2.

Bob

Alice

5

4

3

2

1

543210

(5,1)

�
10
3
; 10

3

�
(1,5)

�

�

�

Figure 2.2. Alice, Bob, and the choreographer

The pair of straight lines connecting (1,5) to (10/3,10/3) to (5,1) is the

set of Pareto-optimal points. Note that the symmetric point (10/3,10/3)

corresponds to ˛1 D ˛2 D ˛3 D 1=3.

2.12 An Efficiency-Enhancing Choreographer

Consider an n-player game in which each player can choose an integer in

the range k D 1; : : : ; 10: Nature chooses an integer k in this range, and if

all n players also choose k, each has payoff 1. Otherwise, each has payoff
0. Nature also supplies to any agent who inquires (one sample per agent)

a noisy signal that equals the true value with probability p > 0:10. A

best response for each player is to sample the signal and choose a number

equal to the signal received. The payoff is pn. For a correlated equilibrium,

suppose there is a social rule that obligates the youngest player to reveal his

choice. There is then a correlated equilibrium in which each player follows
the youngest player’s choice, and the payoff to each player is now p. For
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instance, when p D 90% and n D 25, the Nash equilibrium payoff is 0.071,

which is only 8% of the value of the correlated equilibrium payoff.
This example shows that there may be huge gains to groups that manage

to find an appropriate correlating device.

2.13 The Correlated Equilibrium Solution Concept

The correlated equilibrium concept will be studied further in chapter 7. This

solution concept has been neglected in classical game theory, although we

will show that it is a more natural solution concept than the Nash equilib-

rium. This is because the correlated equilibrium directly addresses the cen-

tral weaknesses of the Nash equilibrium concept: its lack of a mechanism

for choosing among various equally plausible alternatives, for coordinating
the behaviors of players who are indifferent among several pure strategies,

and for providing incentives for players to follow the suggested strategy

even when they may have private payoffs that would lead self-regarding

agents to do otherwise (�6.3, 6.4).

Game theorists have not embraced the correlated equilibrium concept be-

cause it appears to require an active social agency, in the form of the chore-

ographer, that cannot be accounted for within game theory. We will argue
that therein lies the true power of the correlated equilibrium concept: it

points away from game theory to a larger, complementary, social episte-

mology, that will be explored in chapters 7 and 12.
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Game Theory and Human Behavior

God is crafty, but He is not malicious.
Albert Einstein

My motive for doing what I am going to do is simply personal re-
venge. I do not expect to accomplish anything by it.

Theodore Kaczynski (the Unabomber)

Game theory is multiplayer decision theory where the choices of each
player affect the payoffs to other players, and the players take this into ac-

count in their choice behavior. In this chapter we address the contribution

of game theory to the design of experiments aimed at understanding the

behavior of individuals engaged in strategic interaction. We call this be-

havioral game theory.

Game theory is a general lexicon that applies to all life forms. Strategic
interaction neatly separates living from nonliving entities and defines life it-

self. Strategic interaction is the sole concept commonly used in the analysis

of living systems that has no counterpart in physics or chemistry.

Game theory provides the conceptual and procedural tools for studying

social interaction, including the characteristics of the players, the rules

of the game, the informational structure, and the payoffs associated with
particular strategic interactions. The various behavioral disciplines (eco-

nomics, psychology, sociology, politics, anthropology, and biology) are

currently based on distinct principles and rely on distinct types of data.

However, game theory fosters a unified analytical framework available to

all the behavioral disciplines. This facilitates cross-disciplinary informa-

tion exchange that may eventually culminate in a degree of unity within the

behavioral sciences now enjoyed only by the natural sciences (see chap-
ter 12). Moreover, because behavioral game-theoretic predictions can be

systematically tested, the results can be replicated by different laboratories

(Plott 1979; Smith 1982; Sally 1995). This turns social science into true

science.

Behavioral game theory presumes the BPC model, as developed in �1.1.

Experiments subject individuals to a variety of game settings, including
diverse payoffs, informational conditions, and constraints on action, and

45
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deduce their underlying preferences from their behavior. This would be

impossible if the individuals were not maximizing consistent preferences.
Chapter 1 showed that the deviations that human subjects exhibit from the

prescriptions of normative decision theory, while important, are compatible

with preference consistency plus performance error.

3.1 Self- a nd Other-Regarding Preferences

This chapter deals with the interplay of self-regarding and other-regarding

behavior. By a self-regarding actor we mean a player i in a game G who

maximizes his own payoff �i as defined in �2.1. A self-regarding actor

thus cares about the behavior of and payoffs to the other players only inso-
far as these impact his own payoff �i . The term “self-regarding” is more

accurate than “self-interested” because an other-regarding individual is still

acting to maximize utility and so can be described as self-interested. For

instance, if I get great pleasure from your consumption, my gift to you may

be self-interested, even though it is surely other-regarding. We can avoid

confusion (and much pseudophilosophical discussion) by employing the
self-regarding/other-regarding terminology.

One major result of behavioral game theory is that when modeling mar-

ket processes with well-specified contracts, such as double auctions (sup-

ply and demand) and oligopoly, game-theoretic predictions assuming self-

regarding actors are accurate under a wide variety of social settings

(Kachelmaier and Shehata 1992; Davis and Holt 1993). In such market set-
tings behavioral game theory sheds much new light, particularly in dealing

with price dynamics and their relationship to buyer and seller expectations

(Smith and Williams 1992).

The fact that self-regarding behavior explains market dynamics lends cre-

dence to the practice in neoclassical economics of assuming that individuals

are self-regarding. However, it by no means justifies “Homo economicus”

because many economic transactions do not involve anonymous exchange.
This includes employer-employee, creditor-debtor, and firm-client relation-

ships. Nor does this result apply to the welfare implications of economic

outcomes (e.g., people may care about the overall degree of economic in-

equality and/or their positions in the income and wealth distribution), to

modeling the behavior of taxpayers (e.g., they may be more or less honest

than a self-regarding individual, and they may prefer to transfer resources
toward or away from other individuals even at an expense to themselves)
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or to important aspects of economic policy (e.g., dealing with corruption,

fraud, and other breaches of fiduciary responsibility).
A second major result is that when contracts are incomplete and individ-

uals can engage in strategic interaction, with the power to reward and pun-

ish the behavior of other individuals, game-theoretic predictions based on

the self-regarding actor model generally fail. In such situations, the char-

acter virtues (including, honesty, promise keeping, trustworthiness, and

decency), as well as both altruistic cooperation (helping others at a cost
to oneself) and altruistic punishment (hurting others at a cost to oneself)

are often observed. These behaviors are particularly common in a social

dilemma, which is an n-player Prisoner’s Dilemma—a situation in which

all gain when all cooperate but each has a personal incentive to defect, gain-

ing at the expense of the others (see, for instance, �3.9).

Other-regarding preferences were virtually ignored until recently in both

economics and biology, although they are standard fare in anthropology,
sociology, and social psychology. In economics, the notion that enlight-

ened self-interest allows individuals to cooperate in large groups goes back

to Bernard Mandeville’s “private vices, public virtues” (1924 [1705]) and

Adam Smith’s “invisible hand” (2000 [1759]). The great Francis Ysidro

Edgeworth considered self-interest “the first principle of pure economics”

(Edgeworth 1925, p. 173). In biology, the selfishness principle has been
touted as a central implication of rigorous evolutionary modeling. In The

Selfish Gene (1976), for instance, Richard Dawkins asserts “We are sur-

vival machines—robot vehicles blindly programmed to preserve the selfish

molecules known as genes. . . . Let us try to teach generosity and altruism,

because we are born selfish.” Similarly, in The Biology of Moral Systems

(1987, p. 3), R. D. Alexander asserts that “ethics, morality, human conduct,
and the human psyche are to be understood only if societies are seen as

collections of individuals seeking their own self-interest.” More poetically,

Michael Ghiselin (1974) writes: “No hint of genuine charity ameliorates

our vision of society, once sentimentalism has been laid aside. What passes

for cooperation turns out to be a mixture of opportunism and exploitation.

. . . Scratch an altruist, and watch a hypocrite bleed.”

The Darwinian struggle for existence may explain why the concept of
virtue does not add to our understanding of animal behavior in general, but

by all available evidence, it is a central aspect of human behavior. The

reasons for this are the subject of some speculation (Gintis 2003a,2006b),

but they come down to the plausible insight that human social life is so
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complex, and the rewards for prosocial behavior so distant and indistinct,

that adherence to general rules of propriety, including the strict control of
such deadly sins as anger, avarice, gluttony, and lust, is individually fitness-

enhancing (Simon 1990; Gintis 2003a).

One salient behavior in social dilemmas revealed by behavioral game

theory is strong reciprocity. Strong reciprocators come to a social dilemma

with a propensity to cooperate (altruistic cooperation), respond to cooper-

ative behavior by maintaining or increasing their level of cooperation, and
respond to noncooperative behavior by punishing the “offenders,” even at a

cost to themselves and even when they cannot reasonably expect future per-

sonal gains to flow therefrom (altruistic punishment). When other forms of

punishment are not available, the strong reciprocator responds to defection

with defection.

The strong reciprocator is thus neither the selfless altruist of utopian the-

ory, nor the self-regarding individual of traditional economics. Rather, he
is a conditional cooperator whose penchant for reciprocity can be elicited

under circumstances in which self-regard would dictate otherwise. The pos-

itive aspect of strong reciprocity is commonly known as gift exchange, in

which one individual behaves more kindly than required toward another

with the hope and expectation that the other will treat him kindly as well

(Akerlof 1982). For instance, in a laboratory-simulated work situation in
which employers can pay higher than market-clearing wages in hopes that

workers will reciprocate by supplying a high level of effort (�3.7), the gen-

erosity of employers was generally amply rewarded by their workers.

A second salient behavior in social dilemmas revealed by behavioral

game theory is inequality aversion. The inequality-averse individual is will-

ing to reduce his own payoff to increase the degree of equality in the group
(whence widespread support for charity and social welfare programs). But

he is especially displeased when placed on the losing side of an unequal

relationship. The inequality-averse individual is willing to reduce his own

payoff if that reduces the payoff of relatively favored individuals even more.

In short, an inequality-averse individual generally exhibits a weak urge

to reduce inequality when he is the beneficiary and a strong urge to re-

duce inequality when he is the victim (Loewenstein, Thompson, and Baz-
erman 1989). Inequality aversion differs from strong reciprocity in that the

inequality-averse individual cares only about the distribution of final pay-

offs and not at all about the role of other players in bringing about this
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distribution. The strong reciprocator, by contrast, does not begrudge others

their payoffs but is sensitive to how fairly he is treated by others.
Self-regarding agents are in common parlance called sociopaths. A so-

ciopath (e.g., a sexual predator, a recreational cannibal, or a professional

killer) treats others instrumentally, caring only about what he derives from

an interaction, whatever the cost to the other party. In fact, for most people,

interpersonal relations are guided as much by empathy (and hostility) as

by self-regard. The principle of sympathy is the guiding theme of Adam
Smith’s great book, The Theory of Moral Sentiments, despite the fact that

his self-regarding principle of the “invisible hand” is one of the central in-

sights of economic theory.

We conclude from behavioral game theory that one must treat individuals’

objectives as a matter of fact, not logic. We can just as well build models of

honesty, promise keeping, regret, strong reciprocity, vindictiveness, status

seeking, shame, guilt, and addiction as of choosing a bundle of consumption
goods subject to a budget constraint (�12.8), (Gintis 1972a,b, 1974, 1975;

Becker and Murphy 1988; Bowles and Gintis 1993; Becker 1996; Becker

and Mulligan 1997). ,

3.2 Methodological Issues in Behavioral Game Theory

Vernon Smith, who was awarded the Nobel prize in 2002, began running

laboratory experiments of market exchange in 1956 at Purdue and Stanford

universities. Until the 1980s, aside from Smith, whose results supported
the traditional theory of market exchange, virtually the only behavioral dis-

cipline to use laboratory experiments with humans as a basis for modeling

human behavior was social psychology. Despite the many insights afforded

by experimental social psychology, its experimental design was weak. For

instance, the BPC model was virtually ignored and game theory was rarely

used, so observed behavior could not be analytically modeled, and exper-

iments rarely used incentive mechanisms (such as monetary rewards and
penalties) designed to reveal the real, underlying preferences of subjects.

As a result, social psychological findings that were at variance with the

assumptions of other behavioral sciences were widely ignored.

The results of the Ultimatum Game (Güth, Schmittberger, and Schwarze

1982) changed all that (�3.6), showing that in one-shot games that preserved

the anonymity of subjects, people were quite willing to reject monetary re-
wards that they considered unfair. This, and a barrage of succeeding experi-
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ments, some of which are analyzed below, did directly challenge the widely

used assumption that individuals are self-regarding. Not surprisingly, the
first reaction within the disciplines was to criticize the experiments rather

than to question their theoretical preconceptions. This is a valuable reaction

to new data, so we shall outline the various objections to these findings.

First, the behavior of subjects in simple games under controlled circum-

stances may bear no implications for their behavior in the complex, rich,

temporally extended social relationships into which people enter in daily
life. We discuss the external validity of laboratory experiments in �3.15.

Second, games in the laboratory are unusual, so people do not know how

best to behave in these games. They therefore simply play as they would in

daily life, in which interactions are repeated rather than one-shot, and take

place among acquaintances rather than being anonymous. For instance,

critics suggest that strong reciprocity is just a confused carryover into the

laboratory of the subject’s extensive experience with the value of building
a reputation for honesty and willingness to punish defectors, both of which

benefit the self-regarding actor. However, when opportunities for reputa-

tion building are incorporated into a game, subjects make predictable strate-

gic adjustments compared to a series of one-shot games without reputation

building, indicating that subjects are capable of distinguishing between the

two settings (Fehr and Gächter 2000). Postgame interviews indicate that
subjects clearly comprehend the one-shot aspect of the games.

Moreover, one-shot, anonymous interactions are not rare. We face them

frequently in daily life. Members of advanced market societies are engaged

in one-shot games with very high frequency—virtually every interaction

we have with strangers is of this form. Major rare events in people’s lives

(fending off an attacker, battling hand to hand in wartime, experiencing a
natural disaster or major illness) are one-shots in which people appear to

exhibit strong reciprocity much as in the laboratory. While members of the

small-scale societies we describe below may have fewer interactions with

strangers, they are no less subject to one-shots for the other reasons men-

tioned. Indeed, in these societies, greater exposure to market exchange led

to stronger, not weaker, deviations from self-regarding behavior (Henrich

et al. 2004).
Another indication that the other-regarding behavior observed in the lab-

oratory is not simply confusion on the part of the subjects is that when

experimenters point out that subjects could have earned more money by be-

having differently, the subjects generally respond that of course they knew
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that but preferred to behave in an ethically or emotionally satisfying man-

ner rather than simply maximize their material gain. This, by the way, con-
trasts sharply with the experiments in behavioral decision theory described

in chapter 1 where subjects generally admitted their errors.

Recent neuroscientific evidence supports the notion that subjects punish

those who are unfair to them simply because this gives them pleasure. de-

Quervain et al. (2004) used positron emission tomography to examine the

neural basis for the altruistic punishment of defectors in an economic ex-
change. The experimenters scanned the subjects’ brains while they learned

about the defector’s abuse of trust and determined the punishment. Punish-

ment activated the dorsal striatum, which has been implicated in the pro-

cessing of rewards that accrue as a result of goal-directed actions. More-

over, subjects with stronger activations in the dorsal striatum were willing

to incur greater costs in order to punish. This finding supports the hypothe-

sis that people derive satisfaction from punishing norm violations and that
the activation in the dorsal striatum reflects the anticipated satisfaction from

punishing defectors.

Third, it may be that subjects really do not believe that conditions of

anonymity will be respected, and they behave altruistically because they

fear their selfish behavior will be revealed to others. There are several prob-

lems with this argument. First, one of the strict rules of behavioral game re-
search is that subjects are never told untruths or otherwise misled, and they

are generally informed of this fact by experimenters. Thus, revealing the

identity of participants would be a violation of scientific integrity. Second,

there are generally no penalties that could be attached to being discovered

behaving in a selfish manner. Third, an exaggerated fear of being discov-

ered cheating is itself a part of the strong reciprocity syndrome—it is a psy-
chological characteristic that induces us to behave prosocially even when

we are most attentive to our selfish needs. For instance, subjects might feel

embarrassed and humiliated were their behavior revealed, but shame and

embarrassment are themselves other-regarding emotions that contribute to

prosocial behavior in humans (Bowles and Gintis 2004; Carpenter et al.

2009). In short, the tendency of subjects to overestimate the probability

of detection and the costs of being detected are prosocial mental processes
(H. L. Mencken once defined “conscience” as ”the little voice that warns

us that someone may be looking”). Fourth, and perhaps most telling, in

tightly controlled experiments designed to test the hypothesis that subject-

experimenter anonymity is important in fostering altruistic behavior, it is
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found that subjects behave similarly regardless of the experimenter’s knowl-

edge of their behavior (Bolton and Zwick 1995; Bolton, Katok, and Zwick
1998).

A final argument is that while a game may be one-shot and the players

may be anonymous to one another, they nonetheless remember how they

played a game, and they may derive great pleasure from recalling their gen-

erosity or their willingness to incur the costs of punishing others for being

selfish. This is quite correct and probably explains a good deal of non-self-
regarding behavior in experimental games.1 But this does not contradict the

fact that our behavior is other-regarding! Rather, it affirms that it may be

in one’s personal interest to engage in other-regarding acts. Only for so-

ciopaths are the set of self-regarding acts and the set of self-interested acts

the same.

In all the games described below, unless otherwise stated, subjects were

college students who were anonymous to one another, were paid real
money, were not deceived or misled by the experimenters, and they were

instructed to the point where they fully understood the rules and the payoffs

before playing for real.

3.3 An Anonymous Market Exchange

By neoclassical economics I mean the standard fare of microeconomics

courses, including the Walrasian general equilibrium model, as developed

by Kenneth Arrow, Gérard Debreu, Frank Hahn, Tjalling Koopmans, and

others (Arrow 1951; Arrow and Hahn 1971; Koopmans 1957). Neoclas-

sical economic theory holds that in a market for a product, the equilibrium
price is at the intersection of the supply and demand curves for the good.

It is easy to see that at any other point a self-regarding seller could gain

by asking a higher price, or a self-regarding buyer could gain by offering a

lower price. This situation was among the first to be simulated experimen-

tally, the neoclassical prediction virtually always receiving strong support

(Holt 1995). Here is a particularly dramatic example, provided by Holt,
Langan, and Villamil (1986) (reported by Charles Holt in Kagel and Roth,

1995).

1William Shakespeare understands this well when he has Henry V use the following

words to urge his soldiers to fight for victory against a much larger French army: “Whoever

lives past today . . . will rouse himself every year on this day, show his neighbor his scars,

and tell embellished stories of all their great feats of battle. These stories he will teach his

son and from this day until the end of the world we shall be remembered.”
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In the Holt-Langan-Villamil experiment there are four “buyers” and four

“sellers.” The good is a chip that the seller can redeem for $5.70 (unless it is
sold) but a buyer can redeem for $6.80 at the end of the game. In analyzing

the game, we assume throughout that buyers and sellers are self-regarding.

In each of the first five rounds, each buyer was informed, privately, that

he could redeem up to 4 chips, while 11 chips were distributed to sellers

(three sellers were given 3 chips each, and the fourth was given 2 chips).

Each player knew only the number of chips in his possession, the number
he could redeem, and their redemption value, and did not know the value

of the chips to others or how many they possessed or were permitted to

redeem. Buyers should be willing to pay up to $6.80 per chip for up to 4

chips each, and sellers should be willing to sell a chip for any amount at

or above $5.70. Total demand is thus 16 for all prices at or below $6.80,

and total supply is 11 chips at or above $5.70. Because there is an excess

demand for chips at every price between $5.70 and $6.80, the only point of
intersection of the demand and supply curves is at the price p D $6:80. The

subjects in the game, however, have absolutely no knowledge of aggregate

demand and supply because each knows only his own supply of or demand

for chips.
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Figure 3.1. The double auction. The size of the circle is proportional to the number

of trades that occurred at the stated price.

The rules of the game are that at any time a seller can call out an asking

price for a chip, and a buyer can call out an offer price for a chip. This
price remains “on the table” until it is accepted by another player, or a
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lower asking price is called out, or a higher offer price is called out. When

a deal is made, the result is recorded and that chip is removed from the
game. As seen in figure 3.1, in the first period of play, actual prices were

about midway between $5.70 and $6.80. Over the succeeding four rounds

the average price increased until in period 5 prices were very close to the

equilibrium price predicted by neoclassical theory.

In period 6 and each of the succeeding four periods, buyers were given

the right to redeem a total of 11 chips, and each seller was given 4 chips. In
this new situation, it is clear (to observers who know these facts, though not

the subjects in the experiment) that there is now an excess supply of chips

at each price between $5.70 and $6.80, so supply and demand intersect pre-

cisely at $5.70. While sellers, who previously made a profit of about $1.10

per chip in each period, must have been delighted with their additional sup-

plies of chips, succeeding periods witnessed a steady fall in price until in

the tenth period the price is close to the neoclassical prediction, and now
buyers are earning about $1.10 per chip. We see that even when agents

are completely ignorant of macroeconomics conditions of supply and de-

mand, they can move quickly to a market-clearing equilibrium under the

appropriate conditions.

3.4 The Rationality of Altruistic Giving

There is nothing irrational about caring for others. But do preferences for

altruistic acts entail transitive preferences as required by the notion of ra-
tionality in decision theory? Andreoni and Miller (2002) showed that in

the case of the Dictator Game, they do. Moreover, there are no known

counterexamples.

In the Dictator Game, first studied by Forsythe et al. (1994), the exper-

imenter gives a subject, called the Dictator, a certain amount of money

and instructs him to give any portion of it he desires to a second, anony-

mous, subject, called the Receiver. The Dictator keeps whatever he does
not choose to give to the Receiver. Obviously, a self-regarding Dictator

will give nothing to the Receiver. Suppose the experimenter gives the Dic-

tator m points (exchangeable at the end of the session for real money) and

tells him that the price of giving some of these points to the Receiver is

p, meaning that each point the Receiver gets costs the giver p points. For

instance, if pD 4, then it costs the Dictator 4 points for each point that he
transfers to the Receiver. The Dictator’s choices must then satisfy the bud-
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get constraint �s C p�o D m, where �s is the amount the Dictator keeps

and �o is the amount the Receiver gets. The question, then, is simply, is
there a preference function u.�s; �o/ that the Dictator maximizes subject

to the budget constraint �s C p�o D m? If so, then it is just as rational,

from a behavioral standpoint, to care about giving to the Receiver as to care

about consuming marketed commodities.

Varian (1982) showed that the following generalized axiom of revealed

preference (GARP) is sufficient to ensure not only rationality but that
individuals have nonsatiated, continuous, monotone, and concave utility

functions—the sort expected in traditional consumer demand theory. To de-

fine GARP, suppose the individual purchases bundle x.p/ when prices are

p. We say consumption bundle x.ps/ is directly revealed to be preferred to

bundle x.pt / if psx.pt / � psx.ps/; i.e., x.pt / could have been purchased

when x.ps/ was purchased. We say x.ps/ is indirectly revealed to be pre-

ferred to x.pt / if there is a sequence x.ps/D x.p1/; x.p2/; : : : ; x.pk/D
x.pt /, where each x.pi / is directly revealed preferred to x.piC1/ for

i D 1; : : : ; k
1. GARP then is the following condition: if x.ps/ is in-

directly revealed to be preferred to x.pt /, then ptx.pt / � ptx.ps/; i.e.,

x.ps/ does not cost less than x.pt / when x.ps/ is purchased.

Andreoni and Miller (2002) worked with 176 students in an elementary

economics class and had them play the Dictator Game multiple times each,
with the price p taking on the values p D 0:25; 0:33; 0:5; 1; 2; 3; and 4,

with amounts of tokens equaling mD 40; 60; 75; 80, and 100. They found

that only 18 of the 176 subjects violated GARP at least once and that of

these violations, only four were at all significant. By contrast, if choices

were randomly generated, we would expect that between 78% and 95% of

subjects would have violated GARP.
As to the degree of altruistic giving in this experiment, Andreoni and

Miller found that 22.7% of subjects were perfectly selfish, 14.2% were per-

fectly egalitarian at all prices, and 6.2% always allocated all the money so

as to maximize the total amount won (i.e., when p > 1, they kept all the

money, and when p < 1, they gave all the money to the Receiver).

We conclude from this study that, at least in some cases, and perhaps in

all, we can treat altruistic preferences in a manner perfectly parallel to the
way we treat money and private goods in individual preference functions.

We use this approach in the rest of the problems in this chapter.
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3.5 Conditional Altruistic Cooperation

Both strong reciprocity and inequality aversion imply conditional altru-

istic cooperation in the form of a predisposition to cooperate in a social

dilemma as long as the other players also cooperate, although they have dif-

ferent reasons: the strong reciprocator believes in returning good for good,
whatever the distributional implications, whereas the inequality-averse in-

dividual simply does not want to create unequal outcomes by making some

parties bear a disproportionate share of the costs of cooperation.

Social psychologist Toshio Yamagishi and his coworkers used the Pris-

oner’s Dilemma (�2.10) to show that a majority of subjects (college students

in Japan and the United States) positively value altruistic cooperation. In

this game, let CC stand for “both players cooperate,” let DD stand for
“both players defect,” let CD stand for “I cooperate but my partner de-

fects,” and let DC stand for “I defect and my partner cooperates.” A self-

regarding individual will exhibit DC � CC � DD � CD (check it),

while an altruistic cooperator will exhibit CC � DC � DD � CD (for

notation, see �1.1); i.e. the self-regarding individual prefers to defect no

matter what his partner does, whereas the conditional altruistic cooperator
prefers to cooperate so long as his partner cooperates. Watabe et al. (1996),

using 148 Japanese subjects, found that the average desirability of the four

outcomes conformed to the altruistic cooperator preferences ordering. The

experimenters also asked 23 of the subjects if they would cooperate if they

already knew that their partner was going to cooperate, and 87% (20) said

they would. Hayashi et al. (1999) ran the same experiment with U.S. stu-
dents with similar results. In this case, all the subjects said they would

cooperate if their partners were already committed to cooperating.

While many individuals appear to value conditional altruistic coopera-

tion, the above studies did not use real monetary payoffs, so it is unclear

how strongly these values are held, or if they are held at all, because sub-

jects might simply be paying lip service to altruistic values that they in fact

do not hold. To address this issue, Kiyonari, Tanida and Yamagishi (2000)
ran an experiment with real monetary payoffs using 149 Japanese university

students. The experimenters ran three distinct treatments, with about equal

numbers of subjects in each treatment. The first treatment was a standard

“simultaneous” Prisoner’s Dilemma, the second was a “second-player” sit-

uation in which the subject was told that the first player in the Prisoner’s

Dilemma had already chosen to cooperate, and the third was a “first-player”
treatment in which the subject was told that his decision to cooperate or de-
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fect would be made known to the second player before the latter made his

own choice. The experimenters found that 38% of the subjects cooperated
in the simultaneous treatment, 62% cooperated in the second player treat-

ment, and 59% cooperated in the first-player treatment. The decision to co-

operate in each treatment cost the subject about $5 (600 yen). This shows

unambiguously that a majority of subjects were conditional altruistic coop-

erators (62%). Almost as many were not only cooperators, but were also

willing to bet that their partners would be (59%), provided the latter were
assured of not being defected upon, although under standard conditions,

without this assurance, only 38% would in fact cooperate.

3.6 Altruistic Punishment

Both strong reciprocity and inequality aversion imply altruistic punishment

in the form of a predisposition to punish those who fail to cooperate in a

social dilemma. The source of this behavior is different in the two cases:

the strong reciprocator believes in returning harm for harm, whatever the

distributional implications, whereas the inequality-averse individual wants
to create a more equal distribution of outcomes even at the cost of lower

outcomes for himself and others. The simplest game exhibiting altruistic

punishment is the Ultimatum Game (Güth, Schmittberger, and Schwarze

1982). Under conditions of anonymity, two player are shown a sum of

money, say $10. One of the players, called the Proposer, is instructed to

offer any number of dollars, from $1 to $10, to the second player, who
is called the Responder. The Proposer can make only one offer and the

Responder can either accept or reject this offer. If the Responder accepts

the offer, the money is shared accordingly. If the Responder rejects the

offer, both players receive nothing. The two players do not face each other

again.

There is only one Responder strategy that is a best response for a self-

regarding individual: accept anything you are offered. Knowing this, a
self-regarding Proposer who believes he faces a self-regarding Responder,

offers the minimum possible amount, $1, and this is accepted.

However, when actually played, the self-regarding outcome is almost

never attained or even approximated. In fact, as many replications of this

experiment have documented, under varying conditions and with varying

amounts of money, Proposers routinely offer Responders very substantial
amounts (50% of the total generally being the modal offer) and Respon-
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ders frequently reject offers below 30% (Güth and Tietz 1990; Camerer

and Thaler 1995). Are these results culturally dependent? Do they have
a strong genetic component or do all successful cultures transmit similar

values of reciprocity to individuals? Roth et al. (1991) conducted the Ulti-

matum Game in four different countries (United States, Yugoslavia, Japan,

and Israel) and found that while the level of offers differed a small but

significant amount in different countries, the probability of an offer being

rejected did not. This indicates that both Proposers and Responders share
the same notion of what is considered fair in that society and that Proposers

adjust their offers to reflect this common notion. The differences in level

of offers across countries, by the way, were relatively small. When a much

greater degree of cultural diversity is studied, however, large differences in

behavior are found, reflecting different standards of what it means to be fair

in different types of societies (Henrich et al. 2004).

Behavior in the Ultimatum Game thus conforms to the strong reciprocity
model: fair behavior in the Ultimatum Game for college students is a 50–

50 split. Responders reject offers under 40% as a form of altruistic pun-

ishment of the norm-violating Proposer. Proposers offer 50% because they

are altruistic cooperators, or 40% because they fear rejection. To support

this interpretation, we note that if the offers in an Ultimatum Game are

generated by a computer rather than by the Proposer, and if Responders
know this, low offers are rarely rejected (Blount 1995). This suggests that

players are motivated by reciprocity, reacting to a violation of behavioral

norms (Greenberg and Frisch 1972). Moreover, in a variant of the game

in which a Responder rejection leads to the Responder getting nothing but

allows the Proposer to keep the share he suggested for himself, Respon-

ders never reject offers, and proposers make considerably smaller (but still
positive) offers (Bolton and Zwick 1995). As a final indication that strong

reciprocity motives are operative in this game, after the game is over, when

asked why they offered more than the lowest possible amount, Proposers

commonly said that they were afraid that Responders will consider low of-

fers unfair and reject them. When Responders rejected offers, they usually

claimed they want to punish unfair behavior. In all of the above experiments

a significant fraction of subjects (about a quarter, typically) conformed to
self-regarding preferences.
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3.7 Strong Reciprocity in the Labor Market

Gintis (1976) and Akerlof (1982) suggested that, in general, employers pay

their employees higher wages than necessary in the expectation that work-

ers will respond by providing higher effort than necessary. Fehr, Gächter,
and Kirchsteiger (1997) (see also Fehr and Gächter 1998) performed an ex-

periment to validate this legitimation or gift exchange model of the labor

market.

The experimenters divided a group of 141 subjects (college students who

had agreed to participate in order to earn money) into “employers” and

“employees.” The rules of the game are as follows. If an employer hires

an employee who provides effort e and receives a wage w, his profit is
� D 100e 
 w. The wage must be between 1 and 100, and the effort is

between 0.1 and 1. The payoff to the employee is then u D w
c.e/, where

c.e/ is the cost of effort function shown in figure 3.2. All payoffs involve

real money that the subjects are paid at the end of the experimental session.

We call this the Experimental Labor Market Game.
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Figure 3.2. The Cost-of-effort schedule in Fehr, Gächter, and Kirchsteiger (1997).

The sequence of actions is as follows. The employer first offers a “con-
tract” specifying a wage w and a desired amount of effort e�. A contract is

made with the first employee who agrees to these terms. An employer can

make a contract .w; e�/ with at most one employee. The employee who

agrees to these terms receives the wagew and supplies an effort level e that

need not equal the contracted effort e�. In effect, there is no penalty if the

employee does not keep his promise, so the employee can choose any effort
level, e 2 Œ0:1; 1�, with impunity. Although subjects may play this game
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several times with different partners, each employer-employee interaction

is a one-shot (nonrepeated) event. Moreover, the identity of the interacting
partners is never revealed.

If employees are self-regarding, they will choose the zero-cost effort

level, e D 0:1, no matter what wage is offered them. Knowing this, employ-

ers will never pay more than the minimum necessary to get the employee

to accept a contract, which is 1 (assuming only integer wage offers are per-

mitted).2 The employee will accept this offer and will set e D 0:1. Because
c.0:1/ D 0, the employee’s payoff is u D 1. The employer’s payoff is

� D 0:1 � 100 
 1 D 9.

In fact, however, this self-regarding outcome rarely occurred in this ex-

periment. The average net payoff to employees was u D 35, and the more

generous the employer’s wage offer to the employee, the higher the effort

provided. In effect, employers presumed the strong reciprocity predisposi-

tions of the employees, making quite generous wage offers and receiving
higher effort, as a means to increase both their own and the employee’s pay-

off, as depicted in figure 3.3. Similar results have been observed in Fehr,

Kirchsteiger, and Riedl (1993, 1998).
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Figure 3.3. Relation of contracted and delivered effort to worker wage (141 sub-

jects). From Fehr, Gächter, and Kirchsteiger (1997).

Figure 3.3 also shows that, though most employees are strong reciproca-

tors, at any wage rate there still is a significant gap between the amount of

2This is because the experimenters created more employees than employers, thus en-

suring an excess supply of employees.
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effort agreed upon and the amount actually delivered. This is not because

there are a few “bad apples” among the set of employees but because only
26% of the employees delivered the level of effort they promised! We con-

clude that strong reciprocators are inclined to compromise their morality to

some extent.

To see if employers are also strong reciprocators, the authors extended

the game by allowing the employers to respond reciprocally to the actual

effort choices of their workers. At a cost of 1, an employer could increase or
decrease his employee’s payoff by 2.5. If employers were self-regarding,

they would of course do neither because they would not (knowingly) in-

teract with the same worker a second time. However, 68% of the time,

employers punished employees who did not fulfill their contracts, and 70%

of the time, employers rewarded employees who overfulfilled their con-

tracts. Employers rewarded 41% of employees who exactly fulfilled their

contracts. Moreover, employees expected this behavior on the part of their
employers, as shown by the fact that their effort levels increased signif-

icantly when their bosses gained the power to punish and reward them.

Underfulfilling contracts dropped from 71% to 26% of the exchanges, and

overfulfilled contracts rose from 3% to 38% of the total. Finally, allowing

employers to reward and punish led to a 40% increase in the net payoffs

to all subjects, even when the payoff reductions resulting from employer
punishment of employees are taken into account.

We conclude from this study that subjects who assume the role of em-

ployee conform to internalized standards of reciprocity even when they

are certain there are no material repercussions from behaving in a self-

regarding manner. Moreover, subjects who assume the role of employer

expect this behavior and are rewarded for acting accordingly. Finally, em-
ployers reward good behavior and punish bad behavior when they are al-

lowed, and employees expect this behavior and adjust their own effort lev-

els accordingly. In general, then, subjects follow an internalized norm not

because it is prudent or useful to do so, or because they will suffer some

material loss if they do not, but rather because they desire to do this for its

own sake.

3.8 Altruistic Third-Party Punishment

Prosocial behavior in human society occurs not only because those directly
helped and harmed by an individual’s actions are likely to reciprocate in
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kind but also because there are general social norms that foster prosocial

behavior and many people are willing to bestow favors on someone who
conforms to social norms, and to punish someone who does not, even if they

are not personally helped or hurt by the individual’s actions. In everyday

life, third parties who are not the beneficiaries of an individual’s prosocial

act, help the individual and his family in times of need, preferentially trade

favors with the individual, and otherwise reward the individual in ways

that are not costly but are nonetheless of great benefit to the cooperator.
Similarly, third parties who have not been personally harmed by the selfish

behavior of an individual refuse aid even when it is not costly to do so, shun

the offender, and approve of the offender’s ostracism from beneficial group

activities, again at low cost to the third party but at high cost to the offender.

It is hard to conceive of human societies operating at a high level of effi-

ciency in the absence of such third-party reward and punishment. Yet, self-

regarding actors will never engage in such behavior if it is at all costly. Fehr
and Fischbacher (2004) addressed this question by conducting a series of

third-party punishment experiments using the Prisoner’s Dilemma (�2.10)

and the Dictator Game (�3.4). The experimenters implemented four exper-

imental treatments in each of which subjects were grouped into threes. In

each group, in stage 1, subject A played a Prisoner’s Dilemma or the Dic-

tator Game with subject B as the Receiver, and subject C was an outsider
whose payoff was not affected by A’s decision. Then, in stage two, subject

C was endowed with 50 points and allowed to deduct points from subject

A such that every 3 points deducted from A’s score cost C 1 point. In the

first treatment, TP-DG, the game was the Dictator Game, in which A was

endowed with 100 points, and could give 0, 10, 20, 30, 40, or 50 points to

B , who had no endowment.
The second treatment (TP-PD) was the same, except that the game was

the Prisoner’s Dilemma. Subjects A and B were each endowed with 10

points, and each could either keep the 10 points or transfer them to the other

subject, in which case the points were tripled by the experimenter. Thus, if

both cooperated, each earned 30 points, and if both defected, each earned

10 points. If one cooperated and one defected, however, the cooperator

earned 0 points and the defector earned 40 points. In the second stage, C
was given an endowment of 40 points, and was allowed to deduct points

from A and/or B , just as in the TP-DG treatment.

To compare the relative strengths of second- and third-party punishment

in the Dictator Game, the experimenters implemented a third treatment,
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S&P-DG. In this treatment, subjects were randomly assigned to player A

and player B , and A-B pairs were randomly formed. In the first stage of
this treatment, each A was endowed with 100 points and each B with none,

and the A’s played the Dictator Game as before. In the second stage of

each treatment, each player was given an additional 50 points, and the B

players were permitted to deduct points from A players on the same terms

as in the first two treatments. S&P-DG also had two conditions. In the S

condition, a B player could punish only his own Dictator, whereas in the T
condition, a B player could punish only an A player from another pair, to

which he was randomly assigned by the experimenters. In the T condition,

each B player was informed of the behavior of the A player to which he

was assigned.

To compare the relative strengths of second and third-party punishment in

the Prisoner’s Dilemma, the experimenters implemented a fourth treatment,

S&P-PG. This was similar to the S&P-DG treatment, except that now they
played the Prisoner’s Dilemma.3

In the first two treatments, because subjects were randomly assigned to

positions A, B , and C , the obvious fairness norm is that all should have

equal payoffs (an equality norm). For instance, if A gave 50 points to

B and C deducted no points from A, each subject would end up with 50

points. In the Dictator Game treatment, TP-DG, 60% of third parties (C s)
punished Dictators (As) who give less than 50% of the endowment to Re-

ceivers (Bs). Statistical analysis (ordinary least squares regression) showed

that for every point an A kept for himself above the 50-50 split, he was

punished an average 0.28 points by C ’s, leading to a total punishment of

3 � 0:28 D 0:84 points. Thus, a Dictator who kept the whole 100 points

would have 0:84� 50 D 42 points deducted by C ’s, leaving a meager gain
of 8 points over equal sharing.

The results for the Prisoner’s Dilemma treatment, TP-PD, was similar,

with an interesting twist. If one partner in the A-B pair defected and the

other cooperated, the defector would have on average 10.05 points deducted

by C s, but if both defected, the punished player lost only an average of 1.75

points. This shows that third parties (C s) cared not only about the intentions

of defectors but also about how much harm they caused and/or how unfair
they turned out to be. Overall, 45.8% of third parties punished defectors

3The experimenters never used value-laden terms such as “punish” but rather used

neutral terms, such as “deduct points.”
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whose partners cooperated, whereas only 20.8% of third parties punished

defectors whose partners defected.
Turning to the third treatment (S&P-DG), second-party sanctions of self-

ish Dictators were found to be considerably stronger than third-party sanc-

tions, although both were highly significant. On average, in the first con-

dition, where Receivers could punish their own Dictators, they imposed a

deduction of 1.36 points for each point the Dictator kept above the 50-50

split, whereas they imposed a deduction of only 0.62 point per point kept
on third-party Dictators. In the final treatment, S&P-PD, defectors were

severely punished by both second and third parties, but second-party pun-

ishment was again found to be much more severe than third-party punish-

ment.. Thus, cooperating subjects deducted on average 8.4 points from a

defecting partner, but only 3.09 points from a defecting third party.

This study confirms the general principle that punishing norm violators

is very common but not universal, and that individuals are prone to be more
harsh in punishing those who hurt them personally, as opposed to violating

a social norm that hurts others than themselves.

3.9 Altruism and Cooperation in Groups

A Public Goods Game is an n-person game in which, by cooperating, each

individual A adds more to the payoff of the other members than A’s cost of

cooperating, but A’s share of the total gains he creates is less than his cost

of cooperating. By not contributing, the individual incurs no personal cost
and produces no benefit for the group. The Public Goods Game captures

many social dilemmas, such as voluntary contribution to team and commu-

nity goals. Researchers (Ledyard 1995; Yamagishi 1986; Ostrom, Walker,

and Gardner 1992; Gächter and Fehr 1999) uniformly found that groups

exhibit a much higher rate of cooperation than can be expected assuming

the standard model of the self-regarding actor.

A typical Public Goods Game consists of a number of rounds, say 10.
In each round, each subject is grouped with several other subjects—say

3 others. Each subject is then given a certain number of points, say 20,

redeemable at the end of the experimental session for real money. Each

subject then places some fraction of his points in a “common account” and

the remainder in the subject’s “private account.” The experimenter then tells

the subjects how many points were contributed to the common account and
adds to the private account of each subject some fraction, say 40%, of the
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total amount in the common account. So if a subject contributes his whole

20 points to the common account, each of the 4 group members will receive
8 points at the end of the round. In effect, by putting the whole endowment

into the common account, a player loses 12 points but the other 3 group

members gain in total 24 (8 times 3) points. The players keep whatever is

in their private accounts at the end of the round.

A self-regarding player contributes nothing to the common account.

However, only a fraction of the subjects in fact conform to the self-regarding
model. Subjects begin by contributing on average about half of their en-

dowments to the public account. The level of contributions decays over the

course of the 10 rounds until in the final rounds most players are behaving

in a self-regarding manner. This is, of course, exactly what is predicted

by the strong reciprocity model. Because they are altruistic contributors,

strong reciprocators start out by contributing to the common pool, but in

response to the norm violation of the self-regarding types, they begin to
refrain from contributing themselves.

How do we know that the decay of cooperation in the Public Goods

Game is due to cooperators punishing free riders by refusing to contribute

themselves? Subjects often report this behavior retrospectively. More com-

pelling, however, is the fact that when subjects are given a more constructive

way of punishing defectors, they use it in a way that helps sustain cooper-
ation (Orbell, Dawes, and Van de Kragt 1986, Sato 1987, and Yamagishi

1988a, 1988b, 1992).

For instance, in Ostrom, Walker, and Gardner (1992) subjects in a Public

Goods Game, by paying a “fee,” could impose costs on others by “fining”

them. Because fining costs the individual who uses it but the benefits of

increased compliance accrue to the group as a whole, the only subgame
perfect Nash equilibrium in this game is for no player to pay the fee, so no

player is ever punished for defecting, and all players defect by contribut-

ing nothing to the public account. However, the authors found a signifi-

cant level of punishing behavior. The experiment was then repeated with

subjects being allowed to communicate without being able to make bind-

ing agreements. In the framework of the self-regarding actor model, such

communication is called cheap talk and cannot lead to a distinct subgame
perfect equilibrium. But in fact such communication led to almost perfect

cooperation (93%) with very little sanctioning (4%).

The design of the Ostrom-Walker-Gardner study allowed individuals to

engage in strategic behavior because costly punishment of defectors could
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increase cooperation in future periods, yielding a positive net return for the

punisher. What happens if we remove any possibility of punishment being
strategic? This is exactly what Fehr and Gächter (2000) studied.

Fehr and Gächter (2000) set up an experimental situation in which the

possibility of strategic punishment was removed. They used 6- and 10-

round Public Goods Games with groups of size 4, and with costly punish-

ment allowed at the end of each round, employing three different meth-

ods of assigning members to groups. There were sufficient subjects to run
between 10 and 18 groups simultaneously. Under the Partner treatment,

the four subjects remained in the same group for all 10 periods. Under the

Stranger treatment, the subjects were randomly reassigned after each round.

Finally, under the Perfect Stranger treatment, the subjects were randomly

reassigned but assured that they would never meet the same subject more

than once.
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Figure 3.4. Average contributions over time in the Partner, Stranger, and Per-

fect Stranger Treatments when the punishment condition is played first (Fehr and

Gächter 2000).
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Fehr and Gächter (2000) performed their experiment for 10 rounds with

punishment and 10 rounds without. Their results are illustrated in figure 3.4.
We see that when costly punishment is permitted, cooperation does not de-

teriorate, and in the Partner game, despite strict anonymity, cooperation in-

creases almost to full cooperation even in the final round. When punishment

is not permitted, however, the same subjects experienced the deterioration

of cooperation found in previous Public Goods Games. The contrast in

cooperation rates between the Partner treatment and the two Stranger treat-
ments is worth noting because the strength of punishment is roughly the

same across all treatments. This suggests that the credibility of the punish-

ment threat is greater in the Partner treatment because in this treatment the

punished subjects are certain that, once they have been punished in previous

rounds, the punishing subjects are in their group. The prosociality impact

of strong reciprocity on cooperation is thus more strongly manifested, the

more coherent and permanent the group in question.4

Many behavioral game theorists have found that, while altruistic punish-

ment increases participation, it often leads to such a high level of punish-

ment that overall average payoffs, net of punishment, are low (Carpenter

and Matthews 2005; Page, Putterman, and Unel 2005; Casari and Luini

2007; Anderson and Putterman 2006; Nikiforakis 2008). Some have in-

terpreted this as showing that strong reciprocity “could not have evolved,”
or “is not an adaptation.” It is more likely, however, that the problem is

with the experiments themselves. These experiments attempt to refute the

standard “homo economicus” model of the self-regarding actor and do not

attempt to produce realistic punishment scenarios in the laboratory. In fact,

the motive for punishing norm violators is sufficiently strong as to lower

overall payoffs when not subject to some social regulation. In real soci-
eties, there tends to be collective control over the meting out of punishment,

and the excessive zeal of individual punishers is frowned upon and socially

punished. Indeed, in one of the rare studies that allowed groups to regu-

late punishment, Ertan, Page, and Putterman (2005) found that groups that

voted to permit only punishment of below-average or of average and below-

average contributors achieved significantly higher earnings than groups not

using punishment.

4In Fehr and Gächter (2002), the experimenters reverse the order of the rounds with

and without punishment to be sure that the decay in the “without punishment” phase was

not due to its occurring at the end rather than at the start of the game. It was not.
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3.10 Inequality Aversion

The inequality-averse individual exhibits a weak urge to reduce inequality

when on top and a strong urge to reduce inequality when on the bottom

(Loewenstein, Thompson, and Bazerman 1989). Since the advent of hier-

archical societies based on settled agriculture, societies have attempted to

inculcate in their less fortunate members precisely the opposite values—
subservience to and acceptance of the status quo. The widely observed

distaste for relative deprivation is thus probably a genetically based behav-

ioral characteristic of humans. Because small children spontaneously share

(even the most sophisticated of nonhuman primates, such as chimpanzees,

fail to do this), the urge of the fortunate to redistribute may also be part of

human nature, though doubtless a weaker impulse in most of us.
Support for inequality aversion comes from the anthropological literature.

H. sapiens evolved in small hunter-gatherer groups. Contemporary groups

of this type, although widely dispersed throughout the world, display many

common characteristics. This commonality probably reflects their common

material conditions. From this and other considerations we may tentatively

infer the social organization of early human society from that of these con-

temporary foraging societies (Woodburn 1982; Boehm 1982, 2000).
Such societies have no centralized structure of governance (state, judi-

cial system, church, Big Man), so the enforcement of norms depends on

the voluntary participation of peers. There are many unrelated individuals,

so cooperation cannot be explained by kinship ties. Status differences are

very circumscribed, monogamy is widely enforced,5 members who attempt

to acquire personal power are banished or killed, and there is widespread
sharing of large game and other food sources that are subject to substantial

stochasticity, independent of the skill and/or luck of the hunters. Such con-

ditions are, of course, conducive to the emergence of inequality aversion.

We model inequality aversion following Fehr and Schmidt (1999). Sup-

pose the monetary payoffs to n players are given by � D .�1; : : : ; �n/. We

take the utility function of player i to be

ui .�/ D �i 

˛i

n 
 1

X
�j >�i

.�j 
 �i/ 

ˇi

n 
 1

X
�j <�i

.�i 
 �j /: (3.1)

5Monogamy in considered to be an extremely egalitarian institution for men because it

ensures that virtually all adult males will have a wife.
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A reasonable range of values for ˇi is 0 � ˇi < 1. Note that when n D 2

and �i > �j , if ˇi D 0:5, then i is willing to transfer income to j dollar
for dollar until �i D �j , and if ˇi D 1 and i has the highest payoff, then i

is willing to throw away money (or give it to the other players) at least until

�i D �j for some player j . We also assume ˇi < ˛i , reflecting the fact

that people are more sensitive to inequality when on the bottom than when

on the top.

We shall show that with these preferences we can reproduce some of the
salient behaviors in the Ultimatum and Public Goods games, where fairness

appears to matter, as well as in market games, where it does not.

Consider first the Ultimatum Game. Let y be the share the Proposer offers

the Responder, so the Proposer gets x D 1 
 y. Because n D 2, we can

write the two utility functions as

u.x/ D

�
x 
 ˛1.1
 2x/ x � 0:5

x 
 ˇ1.2x 
 1/ x > 0:5
(3.2)

v.y/D

�
y 
 ˛2.1
 2y/ y � 0:5

y 
 ˇ2.2y 
 1/ y > 0:5
(3.3)

We have the following theorem.

THEOREM 3.1 Suppose the payoffs in the Ultimatum Game are given by

(3.2) and (3.3) and ˛2 is uniformly distributed on the interval Œ0; ˛��. Writ-

ing y� D ˛�=.1C 2˛�/, we have the following:

a. If ˇ1 > 0:5, the Proposer offers y D 0:5.

b. If ˇ1 D 0:5, the Proposer offers y 2 Œy�; 0:5�.
c. If ˇ1 < 0:5, the Proposer offers y�.

In all cases the Responder accepts. We leave the proof, which is straight-

forward, to the reader.

Now suppose we have a Public Goods Game G with n � 2 players.

Each player i is given an amount 1 and decides independently what share
xi to contribute to the public account, after which the public account is

multiplied by a number a, with 1 > a > 1=n, and shared equally among

the players. Because 1 > a, contributions are costly to the contributor, and

because na > 1, the group benefits of contributing exceed the costs, so

contributing is a public good. The monetary payoff for each player then

becomes �i D 1 
 xi C a
Pn

j D1 xj , and the utility payoffs are given by
(3.1). We then have the following theorem.
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THEOREM 3.2 In the n-player Public Goods Game G,

a. If ˇi < 1 
 a for player i , then contributing nothing to the public

account is a dominant strategy for i (a strategy is dominant for player

i if it is a best response to any strategy profile of the other players).

b. If there are k > a.n 
 1/=2 players with ˇi < 1 
 a, then the only

Nash equilibrium is for all players to contribute nothing to the public

account.

c. If there are k < a.n 
 1/=2 players with ˇi < 1 
 a and if all players

i with ˇi > 1 
 a satisfy k=.n 
 1/ < .a C ˇi 
 1/=.˛i C ˇi /, then

there is a Nash equilibrium in which the latter players contribute all

their money to the public account.

Note that if a player has a high ˇ and hence could possibly contribute, but
also has a high ˛ so the player strongly dislikes being below the mean, then

condition k=.n
1/ < .aCˇi 
1/=.˛i Cˇi/ in part (c) of the theorem will

fail. In other words, cooperation with defectors requires that contributors

not be excessively sensitive to relative deprivation.

The proof of this theorem is a bit tedious but straightforward and will be

left to the reader (or consult Fehr and Schmidt 1999). We prove only part
(c). We know from part (a) that players i with ˇi < 1
awill not contribute.

Suppose ˇi > 1 
 a and assume all other players satisfying this inequality

contribute all their money to the public account. By reducing his contribu-

tion by ı > 0, player i saves .1 
 a/ı directly and receives k˛iı=.n 
 1/

in utility from the higher returns compared to the noncontributors, minus

.n
 k 
 1/ıˇi=.n
 1/ in utility from the lower returns compared with the
contributors. The sum must be nonpositive in a Nash equilibrium, which

reduces to the inequality in part (c).

Despite the fact that players have egalitarian preferences given by (3.1)

if the game played has sufficiently marketlike qualities, the unique Nash

equilibrium may settle on the competitive equilibrium however unfair this

appears to be to the participants. Consider the following theorem.

THEOREM 3.3 Suppose preferences are given by (3.1) and that $1 is to be

shared between player 1 and one of the players i D 2; : : : ; n who sub-

mit simultaneous bids yi for the share they are willing to give to player 1.

The highest bid wins, and among equal highest bids, the winner is drawn

at random. Then, for any set of .˛i ; ˇi /, in every subgame perfect Nash

equilibrium player 1 receives the whole $1.
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The proof is left to the reader. Show that at least two bidders will set their

yi’s to 1, and the seller will accept this offer.

3.11 The Trust Game

In the Trust Game, first studied by Berg, Dickhaut, and McCabe (1995),

subjects are each given a certain endowment, say $10. Subjects are then

randomly paired, and one subject in each pair, Alice, is told she can trans-

fer any number of dollars, from 0 to 10, to her (anonymous) partner, Bob,

and keep the remainder. The amount transferred will be tripled by the ex-

perimenter and given to Bob, who can then give any number of dollars back

to Alice (this amount is not tripled). If Alice transfers a lot, she is called
“trusting,” and if Bob returns a lot to Alice, he is called “trustworthy.” In

the terminology of this chapter, a trustworthy player is a strong reciproca-

tor, and a trusting player is an individual who expects his partner to be a

strong reciprocator.

If all individuals have self-regarding preferences, and if Alice believes

Bob has self-regarding preferences, she will give nothing to Bob. On the
other hand, if Alice believes Bob can be trusted, she will transfer all $10

to Bob, who will then have $40. To avoid inequality, Bob will give $20

back to Alice. A similar result will obtain if Alice believes Bob is a strong

reciprocator. On the other hand, if Alice is altruistic, she may transfer some

money to Bob, on the grounds that it is worth more to Bob (because it

is tripled) than it is to her, even if she does not expect anything back. It
follows that several distinct motivations can lead to a positive transfer of

money from Alice to Bob and then back to Alice.

Berg, Dickhaut, and McCabe (1995) found that, on average, $5.16 was

transferred from Alices to Bobs and on average, $4.66 was transferred back

from Bobs to Alices. Furthermore, when the experimenters revealed this

result to the subjects and had them play the game a second time, $5.36

was transferred from Alices to Bobs, and $6.46 was transferred back from
Bobs to Alices. In both sets of games there was a great deal of variabil-

ity: some Alices transferring everything and some transferring nothing, and

some Bobs more than fully repaying their partners, and some giving back

nothing.

Note that the term “trustworthy” applied to Bob is inaccurate because Bob

never, either explicitly or implicitly, promised to behave in any particular
manner, so there is nothing concrete that Alice might trust him to do. The
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Trust Game is really a strong reciprocity game in which Alice believes with

some probability that Bob is a sufficiently motivated strong reciprocator
and Bob either does or does not fulfill this expectation. To turn this into

a real Trust Game, the second player should be able to promise to return

a certain fraction of the money passed to him. We investigate this case in

�3.12.

To tease apart the motivations in the Trust Game, Cox (2004) imple-

mented three treatments, the first of which, treatment A, was the Trust
Game as described above. Treatment B was a Dictator Game (�3.8) exactly

like treatment A, except that now Bob could not return anything to Alice.

Treatment C differs from treatment A in that each Alice was matched one-

to-one with an Alice in treatmentA, and each Bob was matched one-to-one

with a Bob in treatment A. Each player in treatment C was then given an

endowment equal to the amount his corresponding player had after the A-

to-B transfer, but before theB-to-A transfer in treatmentA. In other words,
in treatment C , the Alice group and the Bob group have exactly what they

had under treatment A, except that Alice now had nothing to do with Bob’s

endowment, so nothing transferred from Bob to Alice could be accounted

for by strong reciprocity.

In all treatments, the rules of the game and the payoffs were accurately

revealed to the subjects. However, in order to rule out third-party altruism
(�3.8), the subjects in treatment C were not told the reasoning behind the

sizes of their endowments. There were about 30 pairs in each treatment,

each treatment was played two times, and no subject participated in more

than one treatment. The experiment was run double-blind (subjects were

anonymous to one another and to the experimenter).

In treatment B , the Dictator Game counterpart to the Trust Game, Alice
transferred on average $3.63 to player B , as opposed to $5.97 in treatment

A. This shows that $2.34 of the $5.97 transferred to B in treatment A

can be attributed to trust, and the remaining $3.63 to some other motive.

Because playersA and B both have endowments of $10 in treatmentB this

other motive cannot be inequality aversion. This transfer may well reflect

a reciprocity motive of the form, “If someone can benefit his partner at a

cost that is low compared to the benefit, he should do so, even if he is on
the losing end of the proposition.” But we cannot tell from the experiment

exactly what the $3.63 represents.

In treatment C , the player B Dictator Game counterpart to the Trust

Game, player B returned an average of $2.06, as compared with $4.94 in
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treatment A. In other words, $2.06 of the original $4.94 can be interpreted

as a reflection of inequality aversion, and the remaining $2.88 is a reflection
of strong reciprocity.

Several other experiments confirm that other-regarding preferences de-

pend on the actions of individuals and not simply on the distribution of

payoffs, as is the case with inequality aversion. Charness and Haruvy

(2002), for instance, developed a version of the gift exchange labor mar-

ket described in �3.7 capable of testing self-regarding preferences, pure al-
truism, inequality aversion, and strong reciprocity simultaneously. Strong

reciprocity had by far the greatest explanatory value.

3.12 Character Virtues

Character virtues are ethically desirable behavioral regularities that indi-

viduals value for their own sake, while having the property of facilitating

cooperation and enhancing social efficiency. Character virtues include hon-

esty, loyalty, trustworthiness, promise keeping, and fairness. Unlike such

other-regarding preferences as strong reciprocity and empathy, these char-
acter virtues operate without concern for the individuals with whom one

interacts. An individual is honest in his transactions because this is a de-

sired state of being, not because he has any particular regard for those with

whom he transacts. Of course, the sociopath “Homo economicus” is honest

only when it serves his material interests to be so, whereas the rest of us are

at times honest even when it is costly to be so and even when no one but us
could possibly detect a breach.

Common sense, as well as the experiments described below, indicate that

honesty, fairness, and promise keeping are not absolutes. If the cost of

virtue is sufficiently high, and the probability of detection of a breach of

virtue is sufficiently small, many individuals will behave dishonestly. When

one is aware that others are unvirtuous in a particular region of their lives

(e.g., marriage, tax paying, obeying traffic rules, accepting bribes), one is
more likely to allow one’s own virtue to lapse. Finally, the more easily

one can delude oneself into inaccurately classifying an unvirtuous act as

virtuous, the more likely one is to allow oneself to carry out such an act.

One might be tempted to model honesty and other character virtues as

self-constituted constraints on one’s set of available actions in a game, but

a more fruitful approach is to include the state of being virtuous in a certain
way as an argument in one’s preference function, to be traded off against
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other valuable objects of desire and personal goals. In this respect, character

virtues are in the same category as ethical and religious preferences and are
often considered subcategories of the latter.

Numerous experiments indicate that most subjects are willing to sacri-

fice material rewards to maintain a virtuous character even under condi-

tions of anonymity. Sally (1995) undertook a meta-analysis of 137 ex-

perimental treatments, finding that face-to-face communication, in which

subjects are capable of making verbal agreements and promises, was the
strongest predictor of cooperation. Of course, face-to-face interaction vio-

lates anonymity and has other effects besides the ability to make promises.

However, both Bochet, Page, and Putterman (2006) and Brosig, Ockenfels,

and Weimann (2003) report that only the ability to exchange verbal infor-

mation accounts for the increased cooperation.

A particularly clear example of such behavior is reported by Gneezy

(2005), who studied 450 undergraduate participants paired off to play three
games of the following form, all payoffs to which were of the form .b; a/,

where player 1, Bob, receives b and player 2, Alice, receives a. In all

games, Bob was shown two pairs of payoffs, A:(x; y) and B :(z;w) where

x, y, z, and w are amounts of money with x < z and y > w, so in all cases

B is better for Bob and A is better for Alice. Bob could then say to Alice,

who could not see the amounts of money, either “Option A will earn you
more money than option B ,” or “Option B will earn you more money than

option A.” The first game was A:(5,6) vs. B :(6,5) so Bob could gain 1 by

lying and being believed while imposing a cost of 1 on Alice. The second

game was A:(5,15) vs. B :(6,5), so Bob could gain 1 by lying and being

believed, while still imposing a cost of 10 on Alice. The third game was

A:(5,15) vs. B :(15,5), so Bob could gain 10 by lying and being believed,
while imposing a cost of 10 on Alice.

Before starting play, Gneezy asked the various Bobs whether they ex-

pected their advice to be followed. He induced honest responses by promis-

ing to reward subjects whose guesses were correct. He found that 82% of

Bobs expected their advice to be followed (the actual number was 78%). It

follows from the Bobs’ expectations that if they were self-regarding, they

would always lie and recommend B to Alice.
The experimenters found that, in game 2, where lying was very costly

to Alice and the gain from lying was small for Bob, only 17% of Bobs

lied. In game 1, where the cost of lying to Alice was only 1 but the gain to

Bob was the same as in game 2, 36% of Bobs lied. In other words, Bobs
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were loathe to lie but considerably more so when it was costly to Alices. In

game 3, where the gain from lying was large for Bob and equal to the loss to
Alice, fully 52% of Bobs lied. This shows that many subjects are willing to

sacrifice material gain to avoid lying in a one-shot anonymous interaction,

their willingness to lie increasing with an increased cost to them of truth

telling, and decreasing with an increased cost to their partners of being

deceived. Similar results were found by Boles, Croson, and Murnighan

(2000) and Charness and Dufwenberg (2004). Gunnthorsdottir, McCabe,
and Smith (2002) and Burks, Carpenter, and Verhoogen (2003) have shown

that a socio-psychological measure of “Machiavellianism” predicts which

subjects are likely to be trustworthy and trusting.

3.13 The Situational Character of Preferences

This chapter has deepened the rational actor model, allowing it to apply

to situations of strategic interaction. We have found that preferences are

other-regarding as well as self-regarding. Humans have social preferences

that facilitate cooperation and exchange, as well as moral preferences for
such personal character virtues as honesty and loyalty. These extended

preferences doubtless contribute to longrun individual well-being (Konow

and Earley 2008). However, social and moral preferences are certainly not

merely instrumental, because individuals exercise these preferences even

when no longrun benefits can accrue.

Despite this deepening of rational choice, we have conserved the notion
that the individual has an immutable underlying preferences ordering that

entails situationally specific behaviors, depending on the particular strate-

gic interaction involved. Our analysis in �7.8, however, is predicated upon

the denial of this immutability. Rather, we suggest that generally a social

situation, which we call a frame, is imbued with a set of customary social

norms that individuals often desire to follow simply because these norms

are socially appropriate in the given frame. To the extent that this occurs,
preferences themselves, and not just their behavioral implications, are sit-

uationally specific. The desire to conform to the moral and conventional

standards that people associate with particular social frames thus represents

a meta-preference that regulates revealed preferences in specific social sit-

uations.

We present two studies by Dana, Cain, and Dawes (2006) that illus-
trate the situational nature of preferences and the desire to conform to so-
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cial norms (which we term normative predisposition in chapter 7). The

first study used 80 Carnegie-Mellon University undergraduate subjects who
were divided into 40 pairs to play the Dictator Game (�3.4), one member

of each pair being randomly assigned to be the Dictator, the other to be the

Receiver. Dictators were given $10, and asked to indicate how many dol-

lars each wanted to give the Receiver, but the Receivers were not informed

they were playing a Dictator Game. After making their choices, but before

informing the Receivers about the game, the Dictators were presented with
the option of accepting $9 rather than playing the game. They were told

that if a Dictator took this option, the Receiver would never find out that the

game was a possibility and would go home with their show-up fee alone.

Eleven of the 40 Dictators took this exit option, including 2 who had

chosen to keep all of the $10 in the Dictator Game. Indeed, 46% of the

Dictators who had chosen to give a positive amount to their Receivers took

the exit option in which the Receiver got nothing. This behavior is not
compatible with the concept of immutable preferences for a division of

the $10 between the Dictator and the Receiver because individuals who

would have given their Receiver a positive amount in the Dictator Game

instead gave them nothing by avoiding playing the game, and individuals

who would have kept the whole $10 in the Dictator Game were willing to

take a $1 loss not to have to play the game.
To rule out other possible explanations of this behavior, the authors exe-

cuted a second study in which the Dictator was told that the Receiver would

never find out that a Dictator Game had been played. Thus, if the Dictator

gave $5 to the Receivers, the latter would be given the $5 but would be

given no reason why. In this new study, only 1 of 24 Dictators chose to take

the $9 exit option. Note that in this new situation, the same social situation
between Dictator and Receiver obtains both in the Dictator Game and in the

exit option. Hence, there is no difference in the norms applying to the two

options, and it does not make sense to forfeit $1 simply to have the game

not called a Dictator Game.

The most plausible interpretation of these results is that many subjects

felt obliged to behave according to certain norms when playing the Dictator

Game, or violated these norms in an uncomfortable way, and were willing
to pay simply not to be in a situation subject to these norms.
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3.14 The Dark Side of Altruistic Cooperation

The human capacity to cooperate in large groups by virtue of prosocial

preferences extends not only to exploiting nature but also to conquering

other human groups as well. Indeed, even a slight hint that there may be

a basis for inter-group competition induces individuals to exhibit insider

loyalty and outsider hostility (Dawes, de Kragt, and Orbell 1988; Tajfel
1970; Tajfel et al. 1971; Turner 1984). Group members then show more

generous treatment to in-group members than to out-group members even

when the basis for group formation is arbitrary and trivial (Yamagishi, Jin,

and Kiyonari 1999; Rabbie, Schot, and Visser 1989).

An experiment conducted by Abbink et al. (2007), using undergraduate

students recruited at the University of Nottingham, is an especially dramatic
example of the tendency for individuals willingly to escalate a conflict well

beyond the point of serving their interests in terms of payoffs alone. Ex-

perimenters first had pairs of students i D 1; 2 play the following game.

Each individual was given 1000 points and could spend any portion of it,

xi , on “armaments.” The probability of player i winning was then set to

pi D xi=.x1 C x2/.

We can find the Nash equilibrium of this game as follows. If player 1
spends x1, then the expenditure of player 2 that maximizes the expected

payoff is given by

x�
2 D

p
1000x1 
 x1:

The symmetric Nash equilibrium sets x�
1 D x�

2 , which gives x�
1 D x�

2 D
250. Indeed, if one player spends more than 250 points, the other player’s

best response is to spend less than 250 points.

Fourteen pairs of subjects played this game in pairs for 20 rounds, each

with the same partner. The average per capita armament expenditure started

at 250% of the Nash equilibrium in round 1 and showed some tendency to

decline, reaching 160% of the Nash level after 20 rounds.

The experimenters also played the same game with 4 players on each
team, where each player on the winning team received 1000 points. It is

easy to show that now the Nash equilibrium has each team spending 250

points on armaments. To see this, we write player 1’s expected payoff as

1000
P4

iD1 xiP8
iD1

:
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Differentiating this expression, setting the result to zero, and solving for x1

gives

x1 D
p
1000.x5 C x6 C x7 C x8/ 


8X
iD2

xi :

Now, equating all the xi ’s to find the symmetric equilibrium, we find x�
i D

62:5 D 250=4. In this case, however, the teams spent about 600% of the

optimum in the first few periods, and this declined fairly steadily to 250%

of the optimum in the final few periods.

This experiment showcases the tendency of subjects to overspend vastly

for competitive purposes, although familiarity with the game strongly

dampens this tendency, and had the participants played another 20 periods,
we might have seen an approach to best response behavior.

However, the experimenters followed up the above treatments with an-

other in which, after each round, players were allowed to punish other

players based on the level of their contributions in the previous period. The

punishment was costly, three tokens taken from the punishee costing the

punisher one token. This, of course, mirrors the Public Goods Game with
costly punishment (�3.9), and indeed this game does have a public goods

aspect since the more one team member contributes, the less the best re-

sponse contribution of the others, because the optimal total contribution of

team members is 250, no matter how it is divided up among the members.

In this new situation, competition with punishment, spending started at

640% of the best response level, rose to a high of 1000% of this level, and

settled at 900% of the best response level in period 7, showing no tendency
to increase or decrease in the remaining 13 periods. This striking behavior

shows that the internal dynamics of altruistic punishment are capable of

sustaining extremely high levels of combat expenditure far in excess of

the material payoff-maximizing level. While much more work in this area

remains to be done, it appears that the same prosocial preferences that allow

humans to cooperate in large groups of unrelated individuals are also turned
into the goal of mutual self-destruction with great ease.

3.15 Norms of Cooperation: Cross-Cultural Variation

Experimental results in the laboratory would not be very interesting if they

did not aid us in understanding and modeling real-life behavior. There are

strong and consistent indications that the external validity of experimen-
tal results is high. For instance, Binswanger (1980) and Binswanger and
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Sillers (1983) used survey questions concerning attitudes towards risk and

experimental lotteries with real financial rewards to successfully predict the
investment decisions of farmers. Glaeser et al. (2000) explored whether ex-

perimental subjects who trusted others in the Trust Game (�3.11) also be-

haved in a trusting manner with their own personal belongings. The authors

found that experimental behavior was a quite good predictor of behavior

outside the laboratory, while the usual measures of trust, based on survey

questions, provided virtually no information. Genesove and Mayer (2001)
showed that loss aversion determined seller behavior in the 1990s Boston

housing market. Condominium owners subject to nominal losses set selling

prices equal to the market rate plus 25% to 35% of the difference between

their purchase price and the market price and sold at prices 3% to 18% of

this difference. These findings show that loss aversion is not confined to

the laboratory but affects behavior in a market in which very high financial

gains and losses can occur.
Similarly, Karlan (2005) used the Trust Game and the Public Goods

Game to predict the probability that loans made by a Peruvian microfi-

nance lender would be repaid. He found that individuals who were trust-

worthy in the Trust Game were less likely to default. Also, Ashraf, Karlan,

and Yin (2006) studied Phillipino women, identifying through a baseline

survey those women exhibited a lower discount rate for future relative to
current tradeoffs. These women were indeed significantly more likely to

open a savings account, and after 12 months, average savings balances in-

creased by 81 percentage points for those clients assigned to a treatment

group based on their laboratory performance, relative to those assigned to

the control group. In a similar vein, Fehr and Goette (2007) found that in a

group of bicycle messengers in Zürich, those and only those who exhibited
loss aversion in a laboratory survey also exhibited loss aversion when faced

with real-life wage rate changes. For additional external validity studies,

see Andreoni, Erard, and Feinstein (1998) on tax compliance (�3.4), Bew-

ley (2000) on fairness in wage setting, and Fong, Bowles, and Gintis (2005)

on support for income redistribution.

In one very important study, Herrmann, Thöni, and Gächter (2008) had

subjects play the Public Goods Game with punishment (�3.9) with 16 sub-
ject pools in 15 different countries with highly varying social characteris-

tics (one country, Switzerland, was represent by two subject pools, one in

Zurich and one in St. Gallen). To minimize the social diversity among sub-
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ject pools, they used university students in each country. The phenomenon

they aimed to study was antisocial punishment.
The phenomenon itself was first noted by Cinyabuguma, Page, and Put-

terman (2004), who found that some free riders, when punished, responded

not by increasing their contributions, but rather by punishing the high con-

tributors! The ostensible explanation of this perverse behavior is that some

free riders believe it is their personal right to free-ride if they so desire,

and they respond to the “bullies” who punish them in a strongly reciprocal
manner—they retaliate against their persecutors. The result, of course, is a

sharp decline in the level of cooperation for the whole group.

Figure 3.5. Countries judged highly democratic (political rights, civil liberties,

press freedom, low corruption) by the World Democracy Audit engage in very

little antisocial punishment, and conversely. (Statistics from Herrmann, Thöni,

and Gächter, 2008.)

This behavior was later reported by Denant-Boemont, Masclet, and Nous-

sair (2007) and Nikiforakis (2008), but because of its breadth, the Her-

rmann, Thöni, and Gächter study is distinctive for its implications for so-

cial theory. They found that in some countries, antisocial punishment was
very rare, while in others it was quite common. As can be seen in fig-
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ure 3.5, there is a strong negative correlation between the amount of anti-

punishment exhibited and the World Development Audit’s assessment of
the level of democratic development of the society involved.

Figure 3.6 shows that a high level of antisocial punishment in a group

translates into a low level of overall cooperation. The researchers first ran

10 rounds of the Public Goods Game without punishment (the N condi-

tion), and then another 10 rounds with punishment (the P condition). The

figures show clearly that the more democratic countries enjoy a higher av-
erage payoff from payoffs in the Public Goods Game.

Figure 3.6. Antisocial punishment leads to low payoffs (Statistics from Herrmann,

Thöni, and Gächter, Online Supplementary Material, 2008).

How might we explain this highly contrasting social behavior in uni-
versity students in democratic societies with advanced market economies

on the one hand, and more traditional societies based on authoritarian and

parochial social institutions on the other? The success of democratic mar-

ket societies may depend critically upon moral virtues as well as material

interests, so the depiction of economic actors as “homo economicus” is as

incorrect in real life as it is in the laboratory. These results indicate that
individuals in modern democratic capitalist societies have a deep reservoir



82 Chapter 3

of public sentiment that can be exhibited even in the most impersonal in-

teractions with unrelated others. This reservoir of moral predispositions is
based upon an innate prosociality that is a product of our evolution as a

species, as well as the uniquely human capacity to internalize norms of so-

cial behavior. Both forces predispose individuals to behave morally, even

when this conflicts with their material interests, and to react to public dis-

approbation for free-riding with shame and penitence rather than antisocial

self-aggrandizement.
More pertinent to the purposes of behavioral game theory, this experiment

shows that laboratory games can be deployed to shed light on real-life social

regularities that cannot be explained by participant observation or cross-

country statistical analysis alone.
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Rationalizability and Common Knowledge of

Rationality

Men tracht un Got lacht
(Mortals scheme and God laughs)

Yiddish proverb

To determine what a rational player will do in a game, eliminate strategies

that violate the cannons of rationality. Whatever is left we call rationaliz-

able. We show that rationalizability in normal form games is equivalent to

the iterated elimination of strongly dominated strategies, and the epistemo-

logical justification of rationalizability depends on the common knowledge

of rationality (Tan and Werlang 1988).

If there is only one rationalizable strategy profile, it must be a Nash equi-
librium, and it must be the choice of rational players, provided there is

common knowledge of rationality.

There is no plausible set of epistemic conditions that imply the common

knowledge of rationality. This perhaps explains the many non-obvious, in-

deed perplexing, arguments surrounding the iterated elimination of strongly

dominated strategies, some of which are presented and analyzed below.

4.1 Epistemic Games

The Nash equilibrium criterion (�2.4) does not refer to the knowledge or

beliefs of players. If players are Bayesian rational (�1.5), however, they

then have beliefs concerning the behavior of the other players, and they
maximize their expected utility by choosing best responses given these be-

liefs. Thus, to investigate the implications of Bayesian rationality, we must

incorporate beliefs into the description of the game.

An epistemic game G consists of a normal form game with players i D
1; : : : ; n and a finite pure-strategy set Si for each player i , so S D

Qn
iD1 Si

is the set of pure-strategy profiles for G, with payoffs �i WS!R. In addition,
G includes a set of possible states � of the game, a knowledge partition Pi

83
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of � for each player i , and a subjective prior (�1.5) pi.	I!/ over � that is

a function of the current state !. A state ! specifies, possibly among other
aspects of the game, the strategy profile s used in the game. We write this

s D s.!/. Similarly, we write si D si .!/ and s�i D s�i .!/.

The subjective priorpi .	I!/ represents the i’s beliefs concerning the state

of the game, including the choices of the other players, when the actual

state is !. Thus, pi .!
0I!/ is the probability i places on the current state

being ! 0 when the actual state is !. Recall from �1.6 that a partition of
a set X is a set of mutually disjoint subsets of X whose union is X . We

write the cell of the partition Pi containing state ! as Pi!, and we interpret

Pi! 2 Pi as the set of states that i considers possible (i.e., among which

i cannot distinguish) when the actual state is !. Therefore, we require

that Pi! D f! 0 2 �jpi .!
0j!/ > 0g. Because i cannot distinguish among

states in the cell Pi! of his knowledge partitionPi , his subjective prior must

satisfy pi .!
00I!/ D pi.!

00I! 0/ for all ! 00 2 � and all ! 0 2 Pi!. Moreover,
we assume a player believes the actual state is possible, so pi .!j!/ > 0 for

all ! 2 �.

If .!/ is a proposition that is true or false at ! for each ! 2 �, we write

Œ � D f! 2 �j .!/ D trueg; i.e., Œ � is the set of states for which  is

true.

The possibility operator Pi has the following two properties: for all
!;! 0 2 �,

(P1) ! 2 Pi!

(P2) ! 0 2 Pi! ) Pi!
0 D Pi!

P1 says that the current state is always possible (i.e., pi .!j!/ > 0/, and P2

follows from the fact that Pi is a partition: if ! 0 2 Pi!, then Pi!
0 and Pi!

have nonempty intersection, and hence must be identical.

We call a set E � � an event, and we say that player i knows the event E

at state ! if Pi! � E; i.e., ! 0 2 E for all states ! 0 that i considers possible
at !. We write KiE for the event that i knows E.

Given a possibility operator Pi , we define the knowledge operator Ki by

KiE D f!jPi! � Eg:

The most important property of the knowledge operator is KiE � E; i.e.,

if an agent knows an event E in state ! (i.e., ! 2 KiE/, then E is true in
state ! (i.e., ! 2 E/. This follows directly from P1.
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We can recover the possibility operator Pi! for an individual from his

knowledge operator Ki , because

Pi! D
\

fEj! 2 KiEg: (4.1)

To verify this equation, note that if ! 2 KiE, then Pi! � E, so the left
hand side of (4.1) is contained in the right hand side. Moreover, if ! 0 is

not in the right hand side, then ! 0 … E for some E with ! 2 KiE, so

Pi! � E, so ! 0 … Pi!. Thus the right hand side of (4.1) is contained in

the left.

To visualize a partition P of the universe into knowledge cells Pi!, think

of the universe � as a large cornfield consisting of a rectangular array of

equally spaced stalks. A fence surrounds the whole cornfield, and fences
running north/south and east/west between the rows of corn divide the field

into plots, each completely fenced in. States ! are cornstalks. Each plot is

a cell Pi! of the partition, and for any event (set of cornstalks) E, KiE is

the set of plots completely contained in E (Collins 1997).

For example, suppose � D S D
Qn

iD1 Si , where Si is the set of pure

strategies of player i in a game G. Then, P3t D fsD .s1; : : : ; sn/2�js3 D
t 2S3g is the event that player 3 uses pure strategy t . More generally, if Pi is

i’s knowledge partition, and if i knows his own choice of pure strategy but

not that of the other players, each P 2 Pi has the form Pit DfsD .t; s�i/ 2
S jt 2 Si ; s�i 2 S�ig. Note that if t; t 0 2 Si , then t ¤ t 0 ) Pit \ Pit 0 D ;
and [t2Si

Pit D�, so Pi is indeed a partition of �.

If Pi is a possibility operator for i , the sets fPi!j! 2 �g form a partition
P of�. Conversely, any partitionP of� gives rise to a possibility operator

Pi , two states ! and ! 0 being in the same cell iff ! 0 2 Pi!. Thus, a

knowledge structure can be characterized by its knowledge operator Ki ,

by its possibility operator Pi , by its partition structure P , or even by the

subjective priors pi .	j!/.
To interpret the knowledge structure, think of an event as a set of possible

worlds in which some proposition is true. For instance, suppose E is the
event “it is raining somewhere in Paris” and let ! be a state in which Alice is

walking through the Jardin de Luxembourg where it is raining. Because the

Jardin de Luxembourg is in Paris, ! 2E. Indeed, in every state ! 0 2 PA!

that Alice believes is possible, it is raining in Paris, so PA! � E; i.e., Alice

knows that it is raining in Paris. Note that PA! ¤ E, because, for instance,

there is a possible world ! 0 2E in which it is raining in Montmartre but not
in the Jardin de Luxembourg. Then, ! 0 … PA!, but !2E.
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Since each state ! in epistemic game G specifies the players’ pure strategy

choices s.!/D .s1.!/; : : : ; sn.!// 2 S , the players’ subjective priors must
specify their beliefs �!

1 ; : : : ; �
!
n concerning the choices of the other players.

We have �!
i 2 
S�i , which allows i to assume other players’ choices are

correlated. This is because, while the other players choose independently,

they may have communalities in beliefs that lead them independently to

choose correlated strategies.

We call �!
i player i’s conjecture concerning the behavior of the other

players at !. Player i’s conjecture is derived from i’s subjective prior by

noting that Œs�i � Ddef Œs�i .!/ D s�i � is an event, so we define �!
i .s�i / D

pi .Œs�i �I!/, where Œs�i � � � is the event that the other players choose

strategy profile s�i . Thus, at state !, each player i takes the action si .!/ 2
Si and has the subjective prior probability distribution �!

i over S�i . A

player i is deemed Bayesian rational at ! if si .!/ maximizes �i .si ; �
!
i /,

where
�i.si ; �

!
i / Ddef

X
s�i 2S�i

�!
i .s�i /�i.si ; s�i /: (4.2)

In other words, player i is Bayesian rational in epistemic game G if his

pure-strategy choice si .!/ 2 Si for every state ! 2 � satisfies

�i .si.!/; �
!
i / � �i.si ; �

!
i / for si 2 Si : (4.3)

We take the above to be the standard description of an epistemic game,

so we assume without comment that if G is an epistemic game, then the

players are i D 1; : : : ; n, the state space is �, the strategy profile at ! is

s.!/, the conjectures are �!
i , i’s subjective prior at ! is pi.	j!/, and so on.

4.2 A Simple Epistemic Game

Suppose Alice and Bob each choose heads (h) or tails (t), neither observing

the other’s choice. We can write the universe as � D fhh; ht; th; ttg, where

xy means Alice chooses x and Bob chooses y. Alice’s knowledge partition

is then PA D ffhh; htg; fth; ttgg, and Bob’s knowledge partition is PB D
ffhh; thg; fht; ttgg. Alice’s possibility operator PA satisfies PAhh D PAht D
fhh; htg and PAth D PAtt D fth; ttg, whereas Bob’s possibility operator PB

satisfies PBhh D PB th D fhh; thg and PBht D PB tt D fht; ttg.

In this case, the event “Alice chooses h” is Eh
A D fhh; htg, and because

PAhh;PAht � E, Alice knowsEh
A whenever Eh

A occurs (i.e., Eh
A D KiE

h
A).

The eventEh
B expressing “Bob chooses h” isEh

B D fhh; thg, and Alice does
not know Eh

B because at th Alice believes tt is possible, but tt … Eh
B .
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4.3 An Epistemic Battle of the Sexes

2,1

0,0

g o

0,0

1,2

g

o

Alfredo
ViolettaConsider the Battle of the Sexes (�2.8), de-

picted to the right. Suppose there are four

types of Violettas, V1; V2; V3; V4, and four

types of Alfredos, A1; A2; A3; A4. Violetta

V1 plays t1 D o and conjectures that Alfredo
chooses o. Violetta V2 plays t2 Dg and con-

jectures that Alfredo chooses g. Violetta V3 plays t3 D g and conjectures

that Alfredo plays his mixed-strategy best response. Finally, Violetta V4

plays t4 D o and conjectures that Alfredo plays his mixed-strategy best re-

sponse. Correspondingly, Alfredo A1 plays s1 D o and conjectures that

Violetta chooses o. Alfredo A2 plays s2 D g and conjectures that Violetta

plays g. Alfredo A3 plays s3 D g and conjectures that Violetta plays her
mixed-strategy best response. Finally, Alfredo A4 plays s4 Do and conjec-

tures that Violetta plays her mixed-strategy best response.

A state of the game is !ij D .Ai ; Vj ; si ; tj /, where i; j D 1; : : : ; 4. We

write !A
ij D Ai , !

V
ij D Vj , !s

ij D si , !
t
ij D tj .

Define EA
i D f!ij 2 �j!A

ij D Aig and EV
i D f!ij 2 �j!V

ij D Vj g.

Then, EA
i is the event that Alfredo’s type is Ai , andEV

j is the event that Vi-

oletta’s type is Vj . Since each type is associated with a given pure strategy,

Alfredo’s knowledge partition is fEA
i ; i D 1; : : : ; 4g and Violetta’s knowl-

edge partition is fEV
i ; i D 1; : : : ; 4g.

Note that both players are Bayesian rational at each state of the game

because each strategy choice is a best response to the player’s conjecture.

Also, a Nash equilibrium occurs at !11, !22, !33 and !44, although at only

the first two of these are the players’ conjectures correct. Of course, there

is no mixed-strategy Nash equilibrium, because each player chooses a pure
strategy in each state. However, if we define a Nash equilibrium in con-

jectures at a state as a situation in which each player’s conjecture is a best

response to the other player’s conjecture, then !i i is a Nash equilibrium in

conjectures for i D 1; : : : ; 4, and !34 and !43 are also equilibria in conjec-

tures. Note that in this case, if Alfredo and Violetta have common priors

and mutual knowledge of rationality, their choices form a Nash equilibrium
in conjectures. We will generalize this in theorem 8.2.
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4.4 Dominated and Iteratedly Dominated Strategies

We say s0
i 2 Si is strongly dominated by si 2 Si if, for every 	�i 2 
�S�i ,

�i.si ; 	�i/ > �i .s
0
i ; 	�i /. We say s0

i is weakly dominated by si if, for every
	�i 2 
�S�i , �i .si ; 	�i / � �i.s

0
i ; 	�i / and for at least one choice of 	�i ,

the inequality is strict. A strategy may fail to be strongly dominated by

any pure strategy but may nevertheless be strongly dominated by a mixed

strategy (�4.11).

C

4,4D

M

L C

2,11,4

2,1 4,4D

C RL

M

U

4,12,1

3,10,2

1,4

2,3

2,1 4,4 3,2D
D 3,24,42,1

1,4 2,1 4,1M

RCL

D 4,42,1
CL

Figure 4.1. The iterated elimination of strongly dominated strategies

Having eliminated dominated strategies for each player, it often turns
out that a pure strategy that was not dominated at the outset is now dom-

inated. Thus, we can undertake a second round of eliminating dominated

strategies. Indeed, this can be repeated until no remaining pure strategy

can be eliminated in this manner. In a finite game, this occurs after a finite

number of rounds and always leaves at least one pure strategy remaining

for each player. If strongly (respectively, weakly) dominated strategies are

eliminated, we call this the iterated elimination of strongly (respectively,

weakly) dominated strategies. We call a pure strategy eliminated by this

procedure an iteratedly dominated strategy.

Figure 4.1 illustrates the iterated elimination of strongly dominated strate-

gies. First, U is strongly dominated by D for player 1. Second, R is

strongly dominated by 0:5LC0:5C for player 2 (note that a pure strategy

in this case is not dominated by any other pure strategy, but is strongly
dominated by a mixed strategy). Third, M is strongly dominated by D,
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and finally, L is strongly dominated by C . Note that fD,C g is indeed the

unique Nash equilibrium of the game.

4.5 Eliminating Weakly Dominated Strategies

It seems completely plausible that a rational player will never use a weakly

dominated strategy, since it cannot hurt, and can possibly help, to switch

to a strategy that is not weakly dominated. However, this intuition is faulty

for many reasons that will be explored in the sequel. We begin with an
example, due to Rubinstein (1991), that starts with the Battle of the Sexes

game G (�2.8), where if players choose gg, Alfredo gets 3 and Violetta gets

1, if they choose oo, Alfredo gets 1 and Violetta gets 3, and if they choose

og or go, both get nothing. Now, suppose Alfredo says to Violetta before

they make their choices, “I have the option of throwing away 1 before I

choose, if I so desire.” Now the new game GC is shown in figure 4.2.

�

� �

� � � �

Alfredo

Violetta

g

g o

o

g o

3,1 1,30,0 0,0

�

	 


� �  �

Alfredo

Violetta

g

g o

o

g o

2,1 0,3
1,0 
1,0

�

No Throw
Away

Throw
Away

Alfredo

Figure 4.2. Battle of the Sexes with money burning

This game has many Nash equilibria. Suppose apply the iterated elimina-

tion of weakly dominated strategies to the normal form of this game. The
normal form is shown in figure 4.3, where nx means “don’t burn, choose x,”

bx means “burn money (throw away 1) and choose x,” gg means “choose

g,” oomeans “choose o,” gomeans “choose g if Alfredo does not burn and

choose o if Alfredo burns,” and og means “choose o if Alfredo does not

burn and choose g if Alfredo burns.”

Let us assume rational players reject weakly dominated strategies, and as-
sume it is common knowledge that Alfredo and Violetta are rational. Then,
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gg go og oo

ng

no

bg

bo

3,1 0,0


1; 0 0,3

3,1 0,0

1,3
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1; 0

0,3

0,0 1,3

2,1 
1; 0

0,0


1; 0

Figure 4.3. Normal form of the Battle of the Sexes with money burning

bo is weakly dominated by ng, so Alfredo will not use bo. But then Vi-

oletta knows Alfredo is rational, so she eliminates bo from the running,

after which oo is weakly dominated by og. Since Violetta is rational, she

eliminates og, after which go is weakly dominated by gg, so Violetta elim-

inates these two strategies. Since Alfredo knows Violetta has eliminated
these strategies, then no is weakly dominated by bg, so Alfredo eliminates

no. But, Violetta then knows that Alfredo has made this elimination, so og

is weakly dominated by gg, and she eliminates og. But, Alfredo knows

this as well, so now bg is weakly dominated by ng, leaving only the Nash

equilibrium (ng,gg). Thus, we have found that a purely hypothetical pos-

sibility that Alfredo might burn money, although he never does, allows him
to enjoy the high-payoff Nash equilibrium in which he earns 3 and Violetta

earns 1.

Of course, this result is not plausible. The fact that Alfredo has the ca-

pacity to do something bizarre, like burning money, should not lead rational

players inexorably to choose an asymmetric equilibrium favoring Alfredo.

The culprit here is the assumption of common knowledge of rationality, or
the assumption that rational agents eliminate weakly dominated strategies,

or both.

4.6 Rationalizable Strategies

Suppose G is an epistemic game. We denote the set of mixed strategies with

support in S as
�S D
Qn

iD1 
Si , where
Si is the set of mixed strategies

for player i . We denote the mixed strategy profiles of all j¤ i by 
�S�i .

In �1.5, we found that an agent whose choices satisfy the Savage axioms

behaves as if maximizing a preference function subject to a subjective prior
over the states of nature. We tailor this definition to epistemic game theory
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by saying that player i is rational at state ! if his pure strategy si .!/ is a

best response to his conjecture �!
i of the other players’ strategies at !, as

expressed in equation 4.3. Since a strongly dominated strategy can never

be a best response, it follows that a rational player never uses a strongly

dominated strategy. Moreover, if i knows that j is rational and hence never

uses a strongly dominated strategy, then i can eliminate pure strategies in Si

that are best responses only to strategies in 
�S�i that do not use strongly

dominated pure strategies in S�i . Moreover, if i knows that j knows that
k is rational, then i knows that j will eliminate pure strategies that are best

responses to k’s strongly dominated strategies, and hence i can eliminate

pure strategies that are best replies only to j ’s eliminated strategies. And

so on. Pure strategies that survive this back-and-forth iterated elimination

of pure strategies are call rationalizable (Bernheim 1984; Pearce 1984).

One elegant formal characterization of rationalizable strategies is in terms

of best response sets. In epistemic game G, we say a set X D
Qn

iD1 Xi ,
where each Xi � Si , is a best response set if, for each i and each xi 2 Xi ,

i has a conjecture ��i 2 
X�i such that xi is a best response to ��i , as

defined by (4.3). It is clear that the union of two best response sets is also

a best response set, so the union of all best response sets is a maximal best

response set. We define a strategy to be rationalizable if it is a member of

this maximal best response set.
Note that the pure strategies for each player used with positive probability

in a Nash equilibrium form a best response set in which each player con-

jectures the actual mixed-strategy choice of the other players. Therefore,

any pure strategy used with positive probability in a Nash equilibrium is

rationalizable. In a game with a completely mixed Nash equilibrium (�2.3),

it follows that all strategies are rationalizable.
This definition of rationalizability is not constructive; i.e., knowing the

definition does not tell us how to find the set that satisfies it. The following

construction leads to the same set of rationalizable strategies. Let S0
i D Si

for all i . Having defined Sk
i for all i and for k D 0; : : : ; r
1, we define

S r
i to be the set of pure strategies in S r�1

i that are best responses to some

conjecture �i 2 
S r�1
�i . Since S r

i � S r�1
i for each i and there is only

a finite number of pure strategies, there is some r > 0 such that S r
i D

S r�1
i , and clearly for any l > 0, we then have S r

i D S rCl
i . We define i’s

rationalizable strategies as S r
i .

These constructions refer only obliquely to the game’s epistemic con-

ditions, and in particular to the common knowledge of rationality (CKR)
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on which the rationalizability criterion depends. CKR obtains when each

player is rational, each knows the others are rational, each knows the others
know the others are rational, and so on. There is a third construction of

rationalizability that makes its relationship to common knowledge of ratio-

nality more transparent.

Let s1; : : : ; sn be the strategy profile chosen when �1; : : : ; �n are the play-

ers’ conjectures. The rationality of player i requires that si maximize i’s

expected payoff, given �i . Moreover, because i knows that j is rational, he
knows that sj is a best response, given some probability distribution over

S�j —namely, sj is a best response to �j . We say �i is first-order consis-

tent if �i places positive probability only on pure strategies of j that have

the property of being best responses, given some probability distribution

over S�j . By the same reasoning, if i places positive probability on the

pair sj ; sk , because i knows that j knows that k is rational, i knows that

j ’s conjecture is first-order consistent, and hence i places positive prob-
ability only on pairs sj ; sk where j is first-order consistent and j places

positive probability on sk . When this is the case, we say that i’s conjecture

is second-order consistent. Clearly, we can define consistency of order r

for all positive integers r , and a conjecture that is r-consistent for all r is

simply called consistent. We say s1; : : : ; sn is rationalizable if there is some

consistent set of conjectures �1; : : : ; �n that places positive probability on
s1; : : : ; sn.

I leave it to the reader to prove that these three constructions define the

same set of rationalizable strategies.

4.7 Eliminating Strongly Dominated Strategies

Consider the constructive approach to rationalizability developed in �4.6.

It is clear that a strongly dominated strategy will be eliminated in the first

round of the rationalizability construction if and only if it is eliminated in

the first round of the iterated elimination of strongly dominated strategies.
This observation can be extended to each successive stage in the construc-

tion of rationalizable strategies, which shows that all strategies that survive

the iterated elimination of strongly dominated strategies are rationalizable.

Are there other strategies that are rationalizable? The answer is that strongly

dominated strategies exhaust the set of rationalizable strategies, given our

assumption that players can have correlated conjectures. For details, see
Bernheim (1984) or Pearce (1984).
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4.8 Common Knowledge of Rationality

We will now define CKR formally. Let G be an epistemic game. For conjec-

ture �i 2 
S�i , define argmaxi.�i/ D fsi 2 Si jsi maximizes �i .s
0
i ; �i /g;

i.e., argmaxi.�i/ is the set of i’s best responses to the conjecture �i . Let

Bi.X�i/ be the set of pure strategies of player i that are best responses

to some mixed-strategy profile 	�i 2 X�i � S�i ; i.e., Bi.X�i/ D fsi 2
Si j.9�i 2
�X�i / si 2 argmaxi .�i/g. We abbreviate �.Œsj .!/ D sj �/ > 0

as �.sj / > 0, and �.Œs�i .!/ D s�i �/ > 0 as �.s�i / > 0. We define

K1
i D Œ.8j ¤ i/�!

i .sj / > 0 ) sj 2 Bj .S�j /�: (4.4)

K1
i is thus the event that i conjectures that a player j chooses sj , only if sj

is a best response for j . In other words, K1
i is the event that i knows the

other players are rational.
Suppose we have defined Kk

i for k D 1; : : : ; r
1. We define

Kr
i D Kr�1

i \ Œ.8j ¤ i/�!
i .sj / > 0 ) sj 2 Bj .K

r�1
j /�:

Thus,K2
i is the event that i knows that every player knows that every player

is rational. Similarly, Kr
i is the event that i knows that every chain of r

recursive “j knows that k.” We defineKr D \iK
r
i , and if ! 2 Kr , we say

there is mutual knowledge of degree r . Finally, we define the event CKR as

K1 D

n\
r�1

Kr :

Note that in an epistemic game, CKR cannot simply be assumed and is

not a property of the players or of the informational structure of the game.

This is because CKR generally holds only in certain states and fails in other

states. For example, in chapter 5, we prove Aumann’s famous theorem

stating that in a generic extensive form game of perfect information, where

distinct states are associated with distinct choice nodes, CKR holds only
at nodes on the backward induction path (�5.11). The confusion surround-

ing CKR generally flows from attempting to abstract from the epistemic

apparatus erected to define CKR and then to consider CKR to be some

“higher form” of rationality that, when violated, impugns Bayesian ratio-

nality itself. There is no justification for such reasoning. There is nothing

irrational about the failure of CKR. Nor is CKR some sort of “ideal” ra-
tionality that “boundedly rational” agents lamentably fail to attain. CKR
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is, unfortunately, just something that seemed might be plausible and useful,

but turned out to have too many implausible and troublesome implications
to be worth saving.

4.9 Rationalizability and Common Knowledge of Rationality

We will use the following characterization of rationalizability (�4.6). Let
S0

i D Si for all i and define S0 D
Qn

iD1 S
0
i and S0

�i D
Q

j ¤i S
0
j . Having

defined Sk and Sk
�i for all i and for k D 0; : : : ; r
1, we define S r

i D
Bi.S

r�1
�i /. Then, S r D

Qn
iD1 S

r
i and S r

�i D
Q

j ¤i S
r
j . We call S r the set of

pure strategies that survive r iterations of the elimination of unrationalizable
strategies. Since S r

i � S r�1
i for each i and there is only a finite number of

pure strategies, there is some r>0 such that S r
i D S r�1

i , and for any l > 0,

we then have S r
i D S rCl

i . We define i’s rationalizable strategies as S r
i .

THEOREM 4.1 For all players i and r � 1, if ! 2 Kr
i and �!

i .s�i/ > 0,

then s�i 2 S r
�i .

This implies that if there is mutual knowledge of degree r at !, and i’s

conjecture at ! places strictly positive weight on s�i , then s�i survives r
iterations of the elimination of unrationalizable strategies.

To prove this theorem, let ! 2 K1 and suppose �!
i .sj / > 0. Then, sj 2

Bj .S�j /, and therefore sj 2 S1
j , using the conjecture that maximizes sj in

Bj .S�i/. Since this is true for all j ¤ i , �!.s�i / > 0 implies s�i 2 S1
�i .

Now suppose we have proved the theorem for k D 1; : : : ; r and let ! 2
KrC1

i . Suppose �!
i .sj / > 0. We will show that ! 2 S rC1

j . By the inductive

hypothesis and the fact that ! 2 KrC1
i � Kr

i , we have sj 2 S r
j , so sj is

a best response to some �j 2 S r
�j . But then sj 2 S rC1

j by construction.

Since this is true for all j ¤ i , if �!
i .s�i / > 0, then s�i 2 S rC1

�i .

4.10 The Beauty Contest

In his overview of behavioral game theory Camerer (2003) summarizes

a large body of evidence in the following way: “Nearly all people use one

step of iterated dominance. . . . However, at least 10% of players seem to use

each of two to four levels of iterated dominance, and the median number of

steps of iterated dominance is two.” (p. 202) Camerer’s observation would
be unambiguous if the issue were decision theory, where a single agent
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faces a nonstrategic environment. But in strategic interaction, the situation

is more complicated. In the games reported in Camerer (2003), players
gain by using one more level of backward induction than the other players.

Hence, players must assess not how many rounds of backward induction

the others are capable of but rather how many the other players believe

that other players will use. There is obviously an infinite recursion here,

with little hope that considerations of Bayesian rationality will guide one

to an answer. All we can say is that a Bayesian rational player maximizes
expected payoff using a subjective prior over the expected number of rounds

over which his opponents use backward induction. The Beauty Contest

Game (Moulin 1986) is crafted to explore this issue.

In the Beauty Contest Game, each of n > 2 players chooses a whole

number between 0 and 100. Suppose the average of these n numbers is k.

Then, the players whose choices are closest to 2k=3 share a prize equally.

It is obviously strongly dominated to choose a number greater than 2=3 �
100  67 because such a strategy has payoff 0, whereas the mixed strategy

playing 0 to 67 with equal probability has a strictly positive payoff. Thus,

one round of eliminating strongly dominated strategies eliminates choices

above 67. A second round of eliminating strongly dominated strategies

eliminates choices above .2=3/2 � 100  44. Continuing in this manner,

we see that the only rationalizable strategy is to choose 0. But this is a
poor choice in real life. Nagel (1995) studied this game experimentally

with various groups of size 14 to 16. The average number chosen was 35,

which is between two and three rounds of iterated elimination of strongly

dominated strategies. This again conforms to Camerer’s generalization, but

in this case, of course, people play the game far from the unique Nash

equilibrium of the game.

4.11 The Traveler’s Dilemma

Consider the following game Gn, known as the Traveler’s Dilemma (Basu
1994). Two business executives pay bridge tolls while on a trip but do not

have receipts. Their superior tells each of them to report independently an

integral number of dollars between 2 and n on their expense sheets. If they

report the same number, each will receive this much back. If they report

different numbers, each will get the smaller amount, plus the low reporter

will get an additional $2 (for being honest) and the high reporter will lose
$2 (for trying to cheat).
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6; 2

5; 1

0; 4

0; 4

4; 0
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4; 04; 0

0; 4

5; 1

1; 5

1; 5 2:6

Figure 4.4. The Traveler’s Dilemma

Let sk be strategy report k. Figure 4.4 illustrates the game G5. Note first

that s5 is only weakly dominated by s4, but a mixed strategy s2 C .1
/s4
strongly dominates s5 whenever 1=2 >  > 0. When we eliminate s5
for both players, s3 only weakly dominates s4, but a mixed strategy s2 C
.1 
 /s3 strongly dominates s4 for any  > 0. When we eliminate s4
for both players, s2 strongly dominates s3 for both players. Hence .s2; s2/

is the only strategy pair that survives the iterated elimination of strongly

dominated strategies. It follows that s2 is the only rationalizable strategy,

and the only Nash equilibrium as well.

The following exercise asks you to show that for n > 3, sn in the game
Gn is strongly dominated by a mixed strategy of s2; : : : ; sn�1.

a. Show that for any n > 4, sn is strongly dominated by a mixed strategy

	n�1 using only sn�1 and s2.
b. Show that eliminating sn in Gn gives rise to the game Gn�1.
c. Use the above reasoning to show that for any n > 2, the iterated elimi-

nation of strongly dominated strategies leaves only s2, which is thus the

only rationalizable strategy and hence also the only Nash equilibrium

of Gn.

Suppose n D 100. It is not plausible to think that individuals would
actually play 2,2 because by playing a number greater than, say, 92, they

are assured of at least 90.

4.12 The Modified Traveler’s Dilemma

One might think that the problem is that pure strategies are dominated by

mixed strategies, and as we will argue in chapter 6, rational agents have no

incentive to play mixed strategies in one-shot games.

However, we can change the game a bit so that 2,2 is the only strategy
profile that survives the iterated elimination of pure strategies strictly dom-
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inated by pure strategies. In figure 4.5, I have added 1% of s2 to s4 and 2%

of s2 to s3, for both players.

6:04; 2:00

5:08; 1:00

0:02; 4:00

0:04; 4:00

4:00; 0:04

s4 s5s3

s2

s2

s3

s4

s5

2:00; 2:00

3:08; 3:08

4:04; 4:04

5:00; 5:00

4:00; 0:004:00; 0:02

0:00; 4:00

5:08; 1:04

1:04; 5:08

1:00; 5:08 2:00; 6:04

Figure 4.5. The Modified Traveler’s Dilemma

It is easy to check that now s4 strictly dominates s5 for both players, and

when s5 is eliminated, s3 strictly dominates s4 for both players. When s4 is

eliminated, s2 strictly dominates s3.

This method will extend to a Modified Traveler’s Dilemma of any size.

To implement this, let

f .m; q/ D

( q 
 2 q < m

q q D m

mC 2 q > m

;

and define

�.2; q/ D f .2; q/ for q D 2; : : : ; n

�.m; q/ D
X

kD3;lD2;:::;n

f .m; q/C f .2; q/
n 
 k

4.nC 1/

It is easy to show that this Modified Traveler’s Dilemma is strictly

dominance-solvable and that the only rationalizable strategy again has pay-

off 2,2. Yet, it is clear that for large n, rational players would likely choose
a strategy with a payoff near n. This shows that there is something fun-

damentally wrong with the rationalizability criterion. The culprit is the

CKR, which is the only questionable assumption we made in defining ra-

tionalizability. It is not irrational to choose a high number in the Modified

Traveler’s Dilemma, and indeed doing so is likely to lead to a high payoff

compared to the game’s only rationalizable strategy. However, doing so is
not compatible with the common knowledge of rationality.
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4.13 Global Games

Alice

Bob

4,4

x,x

D

D

C

C

x,0

0,x

Suppose Alice and Bob can cooperate (C ) and earn

4, but by defecting (D) either can earn x, no matter

what the other player does. However, if one player

cooperates and the other does not, the cooperator

earns 0. Clearly, if x > 4, D is a strictly dominant

strategy, and if x < 0, C is a strictly dominant strategy. If 0 < x < 4, the
players have a Pareto-optimal strategy C in which they earn 4, but there is

a second Nash equilibrium in which both players play D and earn x < 4.

Suppose, however, that x is private information, each player receiving an

imperfect signal �i D x C Oi that is uniformly distributed on the interval

Œx 
 =2; x C =2�, where OA is distributed independently of OB . We can

then demonstrate the surprising result that, no matter how small the error
 is, the resulting game has a unique rationalizable strategy, which is to

play C for x < 2 and D for x > 2. Note that this is very far from the

Pareto-optimal strategy, no matter how small the error.

To see that this is the only Nash equilibrium, note that a player surely

chooses C when � < 
=2, andD when � > 4C=2, so there is a smallest

cutoff x� such that, at least in a small interval around x�, the player chooses
D when � < x� and C when � > x�. For a discussion of this and other

details of the model, see Carlsson and van Damme (1993), who invented

and analyzed this game, which they term a global game. By the symmetry

of the problem, x� must be a cutoff for both players. If Alice is at the cutoff,

then with equal probability Bob is above or below the cutoff, so he plays D

and C with equal probability. This means that the payoff for Alice playing

D is x� and for playing C is 2. Because these must be equal if Alice is to
have cutoff x�, it follows that x� D 2. Thus, there is a unique cutoff and

hence a unique Nash equilibrium x� D 2.

To prove that x� D 2 is the unique rationalizable strategy, suppose Alice

chooses cutoff xA and Bob chooses xB as a best response. Then when

Bob receives the signal �B D xB , he knows Alice’s signal is uniformly

distributed on ŒxB 
 ; xB C �. To see this, let Oi be player i’s signal error,
which is uniformly distributed on Œ
=2; =2�. Then

�B D x C OB D �A 
 OA C OB :

Because 
OA C OB is the sum of two random variables distributed uniformly

on Œ
=2; =2�, �B must be uniformly distributed on Œ
; �. It follows that
the probability that Alice’s signal is less than xA is q � .xA 
xB C/=.2/,
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provided this is between zero and one. Then, xB is determined by equating

the payoff from D and C for Bob, which gives 4q D xB . Solving for xB ,
we find that

xB D
2.xA C /

2C 
D xA 


.xA 
 2/

2C 
: (4.5)

The largest candidate for Alices cutoff is xA D 4, in which case Bob will

choose cutoff f1 � 4
 2=.2C /. This means that no cutoff for Bob that

is greater than f1 is a best response for Bob, and therefore no such cutoff is

rationalizable. But then the same is true for Alice, so the highest possible

cutoff is f1. Now, using (4.5) with xA D f1, we define f2 D 2.f1C/=.2C
/, and we conclude that no cutoff greater than f2 is rationalizable. We can

repeat this process as often as we please, each iteration k defining fk D
2.fk�1 C /=.2C /. Because the ffkg are decreasing and positive, they

must have a limit, and this must satisfy the equation f D 2.f C/=.2C/,
which has the solution f D 2. Another way to see this is to calculate fk

explicitly. We find that

fk D 2C 2

�
2

2C 

�k

;

which converges to 2 as k ! 1, no matter how small  > 0 may be. To

deal with cutoffs below x D 2, note that (4.5) must hold in this case as

well. The smallest possible cutoff is x D 0, so we define g1 D 2=.2C /,

and gk D 2.gk�1 C /=.2C / for k > 1. Then, similar reasoning shows
that no cutoff below gk is rationalizable for any k � 1. Moreover the fgkg
are increasing and bounded above by 2. The limit is then given by solving

g D 2.gC /=.2C /, which gives g D 2. Explicitly, we have

gk D 2 
 2

�
2

2C 

�k

;

which converges to 2 as k ! 1. This proves that the only rationalizable

cutoff is x� D 2.
When the signal error is large, the Nash equilibrium of this game is plau-

sible, and experiments show that subjects often settle on behavior close to

that predicted by the model. However, the model predicts a cutoff of 2 for

all  > 0 and a jump to cutoff 4 for  D 0. This prediction is not veri-

fied experimentally. In fact, subjects tend to treat public information and

private information scenarios the same and tend to implement the payoff-
dominant outcome rather than the less efficient Nash equilibrium outcome
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(Heinemann, Nagel, and Ockenfels 2004; Cabrales, Nagel, and Armenter

2007).

4.14 CKR Is an Event, Not a Premise

Rational agents go through some process of eliminating unrationalizable

strategies. CKR implies that players continue eliminating as long as there

is anything to eliminate. By contrast, as we have seen, the median number

of steps of iterated dominance found in experiments is 2, and few player

use more than 4 (Camerer 2003). This evidence indicates that CKR does

not hold in the games analyzed in this chapter. Yet, it is easy to construct

games in which we would expect CKR to hold. For instance, consider
the following Benign Centipede Game. Alice and Bob take turns for 100

rounds. In each round r <100, the player choosing can cooperate, in which

case we continue to the next round, or the player can quit, in which case

each player has a payoff of .1
r=100/ dollars and the game is over. If both

players cooperate for all 100 rounds, each player gets $10.

CKR for this game implies Alice and Bob will both choose 100, and they
will each earn $10. For, in the final round, because Bob is rational, he will

choose to continue, to earn $10 as opposed to .1
100=100/ D 0 dollars by

quitting. Since Alice knows that Bob is rational, she knows she will earn

$10 by continuing, as opposed to $0:01 by quitting. Now, in round 98, Bob

earns $0:02 by quitting, which is more than he could earn by continuing and

having Alice quit, in which case he would earn $0:01. However, Bob knows
that Alice knows that Bob is rational, and Bob knows that Alice is rational.

Hence, Bob knows that Alice will continue, so he continues in round 98.

The argument is valid back to round 1, so CKR implies cooperation on each

round.

There is little doubt that real-life players will play the strategy dictated

by CKR in this case, although they do not in the Beauty Contest Game, the

Traveler’s Dilemma, and many other such games. Yet, there are no epis-
temic differences in what the players know about each other in the Benign

Centipede Game as opposed to the other games discussed above. Indeed,

CKR holds in the Benign Centipede Game because players will continue to

the final round in this game, and not vice-versa.

It follows from this line of reasoning that the notion that CKR is a premise

concerning the knowledge agents have about one another is false. Rather,
CKR is an event in which a strategy profile chosen by agents may or may
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not be included. Depending upon the particular game played, and under

identical epistemic conditions, CKR may or may not hold.
I have stressed that a central weakness of epistemic game theory is the

manner in which it represents the commonality of knowledge across indi-

viduals. Bayesian rationality itself supplies no analytical principles that are

useful in deducing that two individuals have mutual, much less common,

knowledge of particular events. We shall later suggest epistemic principles

that do give rise to common knowledge (e.g., theorem 7.2), but these do
not include common knowledge of rationality. To my knowledge, no one

has ever proposed a set of epistemic conditions that jointly imply CKR.

Pettit and Sugden (1989) conclude their critique of CKR by asserting that

“the situation where the players are ascribed common knowledge of their

rationality ought strictly to have no interest for game theory.” (p. 182)

Unless and until someone comes up with a epistemic derivation of CKR

that explains why it is plausible in the Benign Centipede Game but not in
the Beauty Contest game, this advice of Pettit and Sugden deserves to be

heeded.

For additional analysis of CKR as a premise, see �5.13.
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Extensive Form Rationalizability

The heart has its reasons of which reason
knows nothing.

Blaise Pascal

The extensive form of a game is informationally richer than the normal

form since players gather information that allows them to update their sub-

jective priors as the game progresses. For this reason, the study of rational-

izability in extensive form games is more complex than the corresponding

study in normal form games. There are two ways to use the added infor-

mation to eliminate strategies that would not be chosen by a rational agent:
backward induction and forward induction. The latter is relatively exotic

(although more defensible) and will be addressed in chapter 9. Backward

induction, by far the most popular technique, employs the iterated elimina-

tion of weakly dominated strategies, arriving at the subgame perfect Nash

equilibria—the equilibria that remain Nash equilibria in all subgames. We

shall call an extensive form game generic if it has a unique subgame perfect
Nash equilibrium.

In this chapter we develop the tools of modal logic and present Robert

Aumann’s famous proof (Aumann 1995) that CKR implies backward in-

duction. This theorem has been widely criticized, as well as widely misin-

terpreted. I will try to sort out the issues, which are among the most im-

portant in contemporary game theory. I conclude that Aumann is perfectly
correct, and the real culprit is CKR itself.

5.1 Backward Induction and Dominated Strategies

Backward induction in extensive form games with perfect information (i.e.,

where each information set is a single node) operates as follows. Choose

any terminal node � 2 T and find the parent node of this terminal node,

say node �. Suppose player i chooses at � and suppose i’s highest payoff

at � is attained at terminal node � 0 2 T . Erase all the branches from � so �
becomes a terminal node and attach the payoffs from � 0 to the new terminal

102
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node �. Also, record i’s move at �, so you can specify i’s equilibrium

strategy when you have finished the analysis. Repeat this procedure for all
the terminal nodes of the original game. When you are done, you will have

an extensive form game that is one level less deep than the original game.

Now repeat the process as many times as possible. If the resulting game

tree has just one possible move at each node, then when you reassemble the

moves you have recorded for each player, you will have a Nash equilibrium.

We call this backward induction because we start at the terminal nodes of
the game and move backward. Note that if players move at more than a sin-

gle node, backward induction eliminates weakly dominated strategies, and

hence can eliminate Nash equilibria that use weakly dominated strategies.

Moreover, backward induction is prima facie much stronger than normal

form rationalizability (�4.6), which is equivalent to the iterated elimination

of strongly dominated strategies.

�

Bob

Alice

9,1

c

w
�

�

����

Bob

Alice

5,34,49,10,0

cwcw

cw

�	




Bob Bob

�

� 

w c

c w

9,1 4,4

Alice

Bob

� �

Figure 5.1. An example of backward induction

For an example of backward induction, consider figure 5.1. We start

with the terminal node labeled (0,0) and follow it back to the Bob node on
the left. At this node, w is dominated by c because 1 > 0, so we erase

the branch where Bob plays w and its associated payoff. We locate the

next terminal node in the original game tree, (4,4), and follow back to the

Bob node on the right. At this node, c is dominated by w, so we erase

the dominated node and its payoff. Now we apply backward induction

to this smaller game tree—this time, of course, it’s trivial. We find the
first terminal node, (9,1), that leads back to Alice’s choice node. Here c
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is dominated, so we erase that branch and its payoff. We now have our

solution: Alice chooses w, Bob chooses cw, and the payoffs are (9,1).
It is clear from this example that by using backward induction and hence

eliminating weakly dominated strategies, we have eliminated the Nash

equilibrium c;ww. This is because when we assume Bob plays c in re-

sponse to Alice’sw, we eliminate the weakly dominated strategies ww and

wc for Bob. We call c;ww an incredible threat. Backward induction elim-

inates incredible threats.

5.2 Subgame Perfection

Let � be an information set of an extensive form game G that consists of a

single node. Let H be the smallest collection of nodes including � such that

if h0 is in H, then all of the successor nodes of h0 are in H and all nodes in

the same information set as h0 are in H. We endow H with the information

set structure, branches, and payoffs inherited from G, the players in H being

the subset of players of G who move at some information set of H. It is clear
that H is an extensive form game. We call H a subgame of G.

If H is a subgame of G with root node �, then every pure-strategy profile

of G that reaches � has a counterpart sH in H, specifying that players in H

make the same choices with sH at a node in H as they do with sG at the

same node in G. We call sH the restriction of sG to the subgame H. Suppose

	G D ˛1s1 C : : : C ˛ksk (
P

i ˛i D1) is a mixed strategy of G that reaches
the root node � of H, and let I � f1; : : : ; kg be the set of indices such

that i 2 I iff si reaches h. Let ˛ D
P

i2I ˛i . Then, 	H D
P

i2I .˛i=˛/si
is a mixed strategy defined on H, called the restriction of 	G to H. We

have ˛ > 0 because 	G reaches �, and the coefficient ˛i=˛ represents the

probability of playing si , conditional on reaching h.

It is clear that if sG is a pure-strategy Nash equilibrium for a game G

and if H is a subgame of G whose root node is reached using sG , then the
restriction sH of sG to H must be a Nash equilibrium in H. However, if

the root node of H is not reached by sG , then the restriction of sG to H

need not be a Nash equilibrium. This is because if a node is not reached

by sG , then the payoff to the player choosing at that node does not depend

on his choice in G, but it may depend on his choice in H. We say a Nash

equilibrium of an extensive form game is subgame perfect if its restriction
to every subgame is a Nash equilibrium of the subgame.
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It is easy to see that a simultaneous move game has no proper subgames

(a game is always a subgame of itself; we call the whole game an improper

subgame), because all the nodes are in the same information set for at least

one player. Similarly, a game in which Nature makes the first move also

has no proper subgames if there is at least one player who does not know

Nature’s choice.

At the other extreme, in a game of perfect information (i.e., for which all

information sets are singletons), every nonterminal node is the root node
of a subgame. This allows us to find the subgame perfect Nash equilibria

of such games by backward induction, as described in �5.1. This line of

reasoning shows that, in general, backward induction consists of the iterated

elimination of weakly dominated strategies and eliminates all nonsubgame

perfect Nash equilibria.

5.3 Subgame Perfection and Incredible Threats
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The game to the right has a Nash equilibrium in pure
strategies Rr , in which Alice earns 2 and Bob earns

1. This equilibrium is subgame perfect because in the

subgame starting with Bob’s choice at �B , r is payoff-

maximizing for Bob. This equilibrium is also the one

chosen by backward induction. However, there is a

second Nash equilibrium,Ll, in which Alice earns 1 and Bob earns 5. Bob

much prefers this equilibrium, and if he can somehow induce Alice to be-
lieve that he will play l, her best response isL. However Bob communicates

to Alice his intention to play l, if Alice believes Bob is rational, she knows

he in fact will play r if the game actually reaches �B . Thus, Ll is thought

to be an implausible Nash equilibrium, whereas the subgame perfect Nash

equilibrium is held in high regard by game theorists.

5.4 The Surprise Examination

A group of game theorists once took an intensive Monday-through-Friday

logic course. After several weeks, the professor announced that there would

be a surprise examination one day the following week. Each student thought

to himself, “The exam cannot be given next Friday because then it would

not be a surprise.” Each then concluded that, for similar reasons, the exam

could not be given next Thursday, next Wednesday, next Tuesday, or next
Monday. Each student thus concluded that the professor was mistaken.
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The professor gave the exam the next Tuesday, and all of the students were

surprised.
This is one version of a famous logic problem called the Surprise Ex-

amination or the Hanging Paradox. For an overview of the many proposed

solutions to the problem, see Chow (1998). Interpretations vary widely, and

there is no single accepted solution. There are a number of cogent analyses

using standard logic and modal logic to show that the professor’s statement

is impermissively self-referential or self-contradictory, and because a false
statement can validly imply anything, there is no paradox in the professor’s

prediction being correct.

Backward induction indicates that the exam cannot be given. But, if a

student believes this, then it will be a surprise no matter what day it is

given. Thus, the incoherence of backward induction should convince a

rational student that the professor’s prediction is indeed reasonable. But,

what exactly is incoherent about backward induction? I present this paradox
to indicate the danger of using the informal logic of backward induction.

We develop a more analytically precise approach below.

5.5 The Common Knowledge of Logicality Paradox

Let us say an agent is logical in making inferences concerning a set of

propositions if the agent rules out all statements that are inconsistent with

this set. We then define common knowledge of logicality (CKL) for a set

i D 1; : : : ; n of agents in the usual way: for any set of integers i1; : : : ; ik 2
Œ1; : : : ; n�, i1 knows that i2 knows that . . . knows that ik�1 knows that ik is

logical.

A father has $690,000 to leave to his children, Alice and Bob, who do

not know the size of his estate. He decides to give one child $340,000 and

the other $350,000, each with probability 1/2. However, he does not want

one child to feel slighted by getting a smaller amount, at least during his

lifetime. So, he tells his children: “I will randomly pick two numbers, with-
out replacement, from a set S � Œ1; : : : ; 100�, assign to each of you ran-

domly one of these numbers, and give you an inheritance equal to $10,000

times the number you have been assigned. Knowing the number assigned to

you will not allow you to conclude for sure whether you will inherit more

or less than your sibling.” The father, confident of the truth of his state-

ment, which we take to be common knowledge for all three individuals,
sets S D f34; 35g.
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Alice ponders this situation, reasoning as follows, assuming common

knowledge of logicality: “Father knows that if 1 2 S or 100 2 S , then
there is a positive probability one of these numbers will be chosen and as-

signed to me, in which case I would be certain of the relative position of my

inheritance.” Alice knows her father knows she is logical, so she knows that

1 … S and 100 … S . But Alice reasons that her father knows that she knows

that he knows that she is logical, so she concludes that her father knows

that he cannot include 2 or 99 in S . But Alice know this as well, by CKL,
so she reasons that her father cannot include 3 or 98 in S . Completing this

recursive argument, Alice concludes that S must be empty.

However, the father gave one child the number 34 and the other 35, nei-

ther child knowing for sure which had the higher number. Thus, the father’s

original assertion was true, and Alice’s reasoning was faulty. We conclude

that common knowledge of logicality is false in this context. CKL fails

when the father includes 35 in S , because this is precluded by CKL.
CKL appears prima facie to be an innocuous extension of logicality and

indeed usually is not even mentioned in such problems, but, in fact, it leads

to faulty reasoning and must be rejected. In this regard, CKL is much like

CKR, which also appears to be an innocuous extension of rationality but in

fact is often counterindicated.

5.6 The Repeated Prisoner’s Dilemma
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Suppose Alice and Bob play the Prisoner’s Dilemma,

one stage of which is shown to the right, 100 times.
Common sense tells us that players will cooperate for

at least 95 rounds, and this is indeed supported by

experimental evidence (Andreoni and Miller 1993).

However, a backward induction argument indicates that players will defect

in the very first round. To see this, note that the players will surely defect

in round 100. But then, nothing they do in round 99 can help prolong the

game, so they will both defect in round 99. Repeating this argument 99
times, we see that they will both defect on round 1.

Although in general backward induction removes weakly iterated domi-

nated strategies, in this case it removes only strongly iteratedly dominated

strategies, so the only rationalizable strategy, according to the analysis of

the previous chapter, is the universal defect Nash equilibrium. This presents

a problem for the rationalizability concept that is at least as formidable as
in the case of the normal form games presented in the previous chapter.
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In this case, however, the extensive form provides an argument as to why

the logic of backward induction is compromised. The backward induction
reasoning depends on CKR in precisely the same manner as in the previous

chapter. However, in the current case, the first time either player chooses C ,

both players know that CKR is false. At the terminal nodes of the Repeated

Prisoner’s Dilemma, players have chosen C many times. Therefore, we

cannot assume CKR at the terminal nodes because these nodes could not be

reached given CKR. This critique of backward induction has been made by
Binmore (1987), Bicchieri (1989), Pettit and Sugden (1989), Basu (1990),

and Reny (1993), among others.

The critique, however, is incorrect. The backward induction argument is

simply a classic example of reductio ad adsurdum: assume a proposition

and then show that the proposition is false. In this case, we assume CKR

and we show by reductio that the 100th round will not be reached. There is

no flaw in this argument. It is incoherent to base a critique of the proposition
that CKR implies backward induction on what would happen if CKR were

false.

The misleading attractiveness of this flawed critique of the proposition

that CKR implies backward induction lies in the observation that the first

time either player chooses C , both players know that CKR is false, and

hence they are free to devise a modus operandi that serves their interests
for the remainder of the game. For instance, both may employ the tit-for-

tat strategy of playing C in one round and copying one’s partner’s previous

move in each subsequent round, except for playing universalD as the game

nears the 100th round termination point.

This argument is completely correct but is not a critique of the proposi-

tion that CKR implies backward induction. Indeed, assuming CKR, neither
player will choose C in any period.

As I shall argue below, the problem with backward induction is that CKR

is not generally a permissible assumption, and hence backward induction

cannot be justified on rationality grounds.

5.7 The Centipede Game

In Rosenthal’s Centipede Game, Alice and Bob start out with $2 each and

alternate rounds. In the first round, Alice can defect (D) by stealing $2

from Bob, and the game is over. Otherwise, Alice cooperates (C ) by not
stealing, and Nature gives her $1. Then Bob can defect (D) and steal $2
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from Alice, and the game is over, or he can cooperate (C ), and Nature gives

him $1. This continues until one or the other defects or until 100 rounds
have elapsed. The game tree is illustrated in figure 5.2.

Formally, the reduced normal form of the Centipede Game can be de-

scribed as follows. Alice chooses an odd number ka between 1 and 101,

and Bob chooses an even number kb between 2 and 100, plus either C or

D if kb D 100. The lower of the two choices, say k�, determines the

payoffs. If k� D 100, the payoff from .k�; C / D .52; 52/ and the payoff
from .k�;D/ D .50; 53/. Otherwise, if k� is an odd number, the pay-

offs are .4 C .k� 
 1/=2; .k� 
 1/=2/, and if k� is even, the payoffs are

.k�=2; 3 C k�=2/. You can check that these choices generate exactly the

payoffs as described above.

To determine the strategies in this game, note that Alice and Bob each has

50 places to move, and in each place each can play D or C . We can thus

describe a strategy for each as a sequence of 50 letters, each of which is a
D or a C . This means there are 250 D 1125899906842624 pure strategies

for each. Of course, the first time a player playsD, what he does after that

does not affect the payoff of the game, so the only payoff-relevant question

is at what round, if any, a player first playsD. This leaves 51 strategies for

each player.

We can apply backward induction to the game, finding that in the unique
subgame perfect Nash equilibrium of this game, both players defect the

first time they get to choose. To see this, note that in the final round Bob

will defect, and hence Alice will defect on her last move. But then Bob

will defect on his next-to-last move, as will Alice on her next-to-last move.

Similar reasoning holds for all rounds, proving that Bob and Alice will

defect on their first move in the unique subgame perfect equilibrium.
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Figure 5.2. Rosenthal’s Centipede Game

Now, of course, common sense tells you that this is not the way real

players would act in this situation, and empirical evidence corroborates this
intuition (McKelvey and Palfrey 1992). It may seem that the culprit is
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subgame perfection because backward induction finds only subgame per-

fect equilibria. This, however, is not the problem. The culprit is the Nash
equilibrium criterion itself because in any Nash equilibrium Alice defects

in round 1.

While backward induction does not capture how people really play the

Centipede Game, normal form rationalizability does a better job because it

suggests that cooperating until near the end of the game does not conflict

with CKR. This is because all pure strategies for Bob are normal form ra-
tionalizable except kb D .100;C/, as are all pure strategies for Alice except

ka D 101 (i.e., cooperate in every round). To see this, we can show that

there is a mixed-strategy Nash equilibrium of the game where Bob uses

kb D 2 and any one of his other pure strategies except (100,C ), and Alice

uses ka D 1. This shows that all pure strategies for Bob except (100,C ) are

rationalizable. Alice’s ka D 101 is strictly dominated by a mixed strategy

using ka D 99 and ka D 1, but each of her other pure strategies is a best
response to some rationalizable pure strategy of Bob. This shows that these

pure strategies of Alice are themselves rationalizable.

This does not explain why real people cooperate until near the end of the

game, but it does show that it does not conflict with CKR in the normal

form game to do so. This is little consolation, however, since cooperat-

ing becomes compatible with CKR only by ignoring information that the
players surely have—namely, that embodied in the extensive form structure

of the game. In the context of this additional information, CKR certainly

implies the validity of the backward induction argument, and hence of the

assertion that CKR ensures defection on round 1.

5.8 CKR Fails Off the Backward Induction Path

A1 B2 A3
� � �

d3d2d1

a3a2a1

1,0 0,2 3,1

2,2

Figure 5.3. A short Centipede Game

This section presents a formal epistemic argument supporting the con-

tention that CKR is violated off the subgame perfect game path in a generic
extensive form game. This is the thrust of Aumann’s (1995) general proof
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that CKR implies backward induction, but here we present the proof for a

very simple game where the intuition is relatively clear. Figure 5.3 depicts a
very short Centipede Game (�5.7) played by Alice (A) and Bob (B), where

Alice moves at A1 and A3 and Bob moves at B2. Let RA and RB stand for

“Alice is rational,” and “Bob is rational,” respectively, let KA and KB be

knowledge operators, and let �A and �B be the payoffs to Alice and Bob,

respectively. We will have much more to say in later chapters concern-

ing what it means to be rational and what it means to assert that an agent
“knows something.” For now, we simply assume that a rational agent al-

ways chooses a best response, we assume Kp ) p (i.e., if an agent knows

something, then it is true), and we assume Kp ^ K.p ) q/ ) Kq (i.e., if

an agent knows p and also knows that p implies q, then the agent knows q).

We assume that both players know all the rules of the game, and since the

game is one of perfect information, when the game is at a particular node,

it is common knowledge that this is the case.
We have A3 ^RA ) d3, which we read, “at node A3, if Alice is rational,

then she will choose d3.” This is true because a3 ) .�A D 2/, and d3 )
.�A D 3/, and since these implications simply follow from the rules of

the game, they are known to Alice, so KA.a3 ) .�A D 2// ^ KA.d3 )
.�A D 3//. This assertion implies A3 ^ RA ) d3. Now, if Bob knows

that Alice is rational, and if the rules of the game are common knowledge,
then a2 ) KBa2 ) KBd3 ) KB.�B D 1/. Moreover, d2 ) KBd2 )
KB.�B D 3/, so B2 ^ RB ^ KBRA ) d2. Now, if Alice knows that

Bob is rational at A1 and that Bob knows that she is rational at B2, then

KA.a1 ) d2/, so KA.a1 ) .�A D 0//. However, KA.d1 ) .�A D 1//.

Hence, since Alice is rational at A1, she will choose d1. In short, we have

RA ^ KA.RB ^ KBRA/ ) d1: (5.1)

We have thus shown that if there are two levels of mutual knowledge

of rationality, then the backward induction solution holds. But this pre-

supposes that the set of assumptions is consistent; i.e., it assumes that we

cannot also prove from these assumptions that Alice will play a1. Note that
if Alice plays a1, then the premise of (5.1) is false, and Bob knows this,

which says that

:KBRA _ :KBKARB _ :KBKAKBRA: (5.2)

In words, if Alice chooses a1, then Bob does not know Alice is rational,
or Bob does not know that Alice knows that Bob is rational, or Bob does



112 Chapter 5

not know that Alice knows that Bob knows that Alice is rational. One level

of mutual knowledge, which imply KBRA, eliminate the first alternative,
and two levels, which implies KBKARB , eliminates the second alterative.

Thus, if Alice chooses a1, it must be the case that :KBKAKBRA; i.e., Al-

ice’s choice violates third level mutual knowledge of rationality and hence

violates common knowledge of rationality.

We conclude that no node after the first can be attained while conserving

more than two levels of mutual knowledge of rationality. Nor is there any-
thing special about this game. As we expressed in the previous section and

will prove in �5.11, in all finite extensive form games of perfect informa-

tion with unique subgame perfect equilibria, the only nodes in the game at

which common knowledge of rationality can hold are along the backward

induction path of play. In the current case, there are just two such nodes,

the root node and the first terminal node.

5.9 How to Play the Repeated Prisoner’s Dilemma
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In cases where a stage game is repeated a finite number
of times, it is reasonable to assume Bayesian rational-

ity (�1.5), avoid backward induction, and use decision

theory to determine player behavior. Consider, for in-

stance, the Prisoner’s Dilemma (�2.10), the stage game

of which is shown to the right with T > R > P > S , repeated until one

player defects or 100 rounds have been played. Backward induction implies

that both players will defect in the very first round, and indeed, this is the
only Nash equilibrium of the game. However, player 1 may say to himself,

“If my partner and I both play D, we will each earn only P . I am willing

to cooperate for at least 95 rounds, and if my partner is smart, he will also

be willing to cooperate for many rounds. I suspect my partner will reason

similarly. Thus we stand to earn on the order of 95R. If I am wrong about

my partner, I will lose only S 
P , so it’s worth a try, because if I am right,
I will go home with a tidy bundle.”

More formally, suppose I conjecture that my partner will cooperate up to

round k and then defect, with probability gk . Then, I will choose a round

m to defect in that maximizes the expression

�m D

m�1X
iD1

..i 
 1/RC S/gi C ..m
 1/RC P /gm (5.3)

C ..m
 1/RC T /.1
Gm/;
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where Gm D g1 C : : : C gm. The first term in this expression repre-

sents the payoff if my partner defects first, the second term if we de-
fect simultaneously, and the final term if I defect first. In many cases,

maximizing this expression suggests cooperating for many rounds for all

plausible probability distributions. For instance, suppose gk is uniformly

distributed in the rounds m D 1; : : : ; 99. Suppose, for concreteness,

.T;R;P; S/ D .4; 2; 1; 0/. Then, you can check by using equation (5.3)

that it is a best response to cooperate up to round 98. Indeed, suppose you
expect your opponent to defect in round 1 with probability 0.95 and other-

wise defect with equal probability on any round from 2 to 99. Then it is still

optimal to defect in round 98. Clearly, the backward induction assumption

is not plausible unless you think your opponent is highly likely to be an

obdurate backward inductor.

The reasoning dilemma begins if I then say to myself, “My partner is just

as capable as I am of reasoning as above, so he will also cooperate at least
up to round 98. Thus, I should set m D 97. But, of course, my partner

also knows this, so he will surely defect in round 96, in which case I should

surely defect in round 95.” This sort of self-contradictory reasoning shows

that there is something faulty in the way we have set up the problem. If the

fgkg distribution is reasonable, then I should use it. It is self-contradictory

to use this distribution to show that it is the wrong distribution to use. But
my rational partner will know this as well, and I suspect he will revert to

the first level of analysis, which says to cooperate at least up to round 95.

Thus, we two rational folks will cooperate for many rounds in this game

rather than play the Nash equilibrium.

Suppose, however, that it is common knowledge that both I and my part-

ner have the same Bayesian priors (�1.5) concerning when the other will
defect. This is sometimes called Harsanyi consistency (Harsanyi 1967).

Then, it is obvious that we will both defect at our first opportunity because

the backward induction conclusion now follows from a strictly Bayesian ar-

gument: the only prior that is compatible with common knowledge of com-

mon priors is defection in round 1. However, there is no plausible reason

for us to assume Harsanyi consistency in this case.

This argument reinforces our conclusion that there is nothing sacrosanct

about CKR. Classical game theorists commonly argue that rationality re-

quires that agents use backward induction, but this is simply not the case.

If two players are rational and they know both are rational, and if each

knows the other’s conjecture, then they will play the unique Nash equilib-
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rium of the game (�8.4). But, as we have seen, we may each reasonably

conclude that we do not know the other’s conjecture, but we know enough
to cooperate for many rounds.

5.10 The Modal Logic of Knowledge

The Savage model in decision theory is agnostic as to how an agent’s sub-
jective prior is acquired. How people play a game depends on their beliefs

about the beliefs of the other players, including their beliefs about others’

beliefs about the players, and so on. To deal analytically with this situa-

tion, we develop a formal model of what it means to say that an individual

“knows” a fact about the world.

The states of nature consist of a finite universe � of possible worlds,
subsets of which are called events. Event E occurs at state ! if ! 2 E.

When Alice is in state !, she knows only that she is in a subset PA! � � of

states; i.e., PA! is the set of states Alice considers possible when the actual

state is !. We say that Alice knows the event E at state ! if PA! � E

because for every state ! 0 that Alice knows is possible, ! 0 2 E.

Given a possibility operator P, we define a corresponding knowledge op-

erator K by KE D f!jP! � Eg. Note that KE is an event consisting
of all states at which the individual knows E. It is easy to check that the

knowledge satisfies the following properties:

(K1) K� D � omniscience

(K2a) K.E \ F / D KE \ KF

(K2b) E � F ) KE � KF

(K3) KE � E knowledge

(K4) KE D KKE transparency

(K5) :K:KE � KE negative introspection

where :, means “not”; i.e., logical negation. Note that K2a implies K2b.

To see this, assume K2a and E � F . Then, KE D K.E \ F / D KE \
KF , so KE � KF , which proves K2b. Property K3, often called the
axiom of knowledge, asserts that what is known must be true (if we drop

this principle, we get a model of belief rather than knowledge) and follows

directly from P1. Property K4, called the axiom of transparency, says that

if you know something, then you know that you know it. Property K5

says that if you do not know something, then you know that you do not

know it. This is not a very intuitive statement, but it allows us to specify
the properties of the knowledge operator syntactically without regard to
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its semantic interpretation in terms of possible worlds and the possibility

operator P!. We show that K5 follows from P1 and P2 by extending the
definition of the P operator from states to events by PE D

S
!2E P!,

then the knowledge and possibilities operators are dual in the sense that

:K:E D PE and :P:E D KE for any event E � �. To see the first,

:K:E D f!jP! �n:Eg D f!jP! \E ¤ ;g

D f! 0j! 0 2 [!2EP!g D PE:

To see the second, suppose ! 2 :P:E. We must show P! � E. If
this is false, then P! \ :E ¤ ;, which implies ! 2 P:E, which is a

contradiction. To prove K5, which can be written PKE � KE, suppose

! 2 PKE. Then P! � KE, so ! 2 KE. This argument can be reversed

to prove equality.

As we saw in �4.1, we can recover the possibility operator P! for an

individual from his knowledge operator K because

P! D
\

fEj! 2 KEg: (5.4)

To verify this equation, note that if ! 2 KE, then P! � E, so the left-hand

side of (5.4) is contained in the right-hand side. Moreover, if ! 0 is not in

the right-hand side, then ! 0 … E for some E with ! 2 KE, so P! � E, so

! 0 … P!. Thus, the right-hand side of (5.4) is contained in the left.
We say an event E is self-evident to an agent if he knows E at each state

! 2 E. Thus, E is self-evident exactly when KE D E, which means

P! � E for every ! 2 E. Clearly, � itself is self-evident, and if E and

F are self-evident, then E \ F is self-evident. Thus, for each state !, P!

is the minimal self-evident event containing !. Every self-evident event is

the union of minimal self-evident events. The minimal self-evident events
coincide with the cells of the partition P .

5.11 Backward Induction and Extensive Form CKR

In this section we show how a little modal logic can clarify issues concern-

ing rational behavior and choice. We take the case of backward induction,

presenting Aumann’s (1995) proof that common knowledge of rationality

in generic extensive form games of perfect information is possible only at

nodes of the game tree that lie along the backward induction path of play.

Consider a finite generic extensive form epistemic game of perfect infor-
mation G (a game is generic if, for each player, no two payoffs at terminal
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nodes are equal). A pure-strategy profile s assigns an action sv at each non-

terminal node v. Indeed, if si is the pure-strategy profile of player i and if
i moves at v, then sv D sv

i . We denote by b the unique backward induction

strategy profile. Thus, if player i moves at node v, then

�v
i .b/ > �

v
i .b=a

v/ for av ¤ bv; (5.5)

where �v
i .s/ is the payoff of strategy profile s to player i , starting from

node v (even if, starting from the beginning of the game, v would not be

reached), and s=tv denotes the strategy profile s for the player who chooses

at v, replacing his action sv
i with action t at v.

To specify Bayesian rationality in this framework, suppose players

choose pure strategy profile s.!/ in state !. We then say i is Bayesian

rational if, for every node v at which i chooses and for every pure strategy
ti 2 Si , we have

Ri � :Kif! 2 �j�v
i .s=ti / > �

v
i .s/gI (5.6)

i.e., i does not know that there is a better strategy than si .!/ at v. Common
knowledge of rationality, which we write as CKR, means Ri is common

knowledge for all players i . Note that this definition is somewhat weaker

than Bayesian rationality, which requires that agents have subjective priors

over events and maximize utility subject to these priors.

Let I v � � be the event that bv is chosen at node v. Thus

I v D f! 2 �js.!/v D bvg; (5.7)

so the event I that the backward induction path is chosen is simply

I D \vI
v:

The assertion that common knowledge of rationality implies backward in-

duction is then simply expressed as

THEOREM 5.1 CKR � I:

Proof: We first show that at every terminal node v, CKR � I v . We have

CKR � Ri � :Kif! 2 �j�v
i .s=bi/ > �

v
i .s/g

D :Kif! 2 �j�v
i .b/ > �

v
i .b=si/g

D :Kif! 2 �jsv
i ¤ bvg D :Ki:I

v :
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The first line follows from (5.6) with ti D bi . The second line follows from

the fact that v is a terminal node at which i chooses, so �v
i .b/ D �v

i .s=bi /

and �v
i .s/ D �v

i .b=si /.

Because i chooses at v, I v is a union of cells of i’s knowledge par-

tition, so I v is self-evident to i , and hence I v D KiI
v . Thus we

have CKR � :Ki:KiI
v . By negative introspection (K5), this implies

CKR � ::KiI
v D KiI

v D I v.

This argument proves that at every state compatible with CKR, players
must make the backward induction move at each terminal node. Note that

this argument does not commit what we called in chapter 5 the “fallacy of

backward induction” because this argument does not assume that a terminal

node is reached that could not be reached if players used backward induc-

tion. Indeed, this argument does not assume anything about which nodes

are reached or not reached.

The rest of the proof proceeds by mathematical induction. Assume that
CKR � Iw for all nodes w that follow a node v, where player i chooses.

We can then write CKR � KiI
>v D \w>vKiI

w , wherew > v means that

node w follows node v in the game tree. We then have

Ri � :Kif! 2 �j�v
i .s=bi / > �

v
i .s/g;

by (5.6) with ti D bi . Now�v
i .s/ depends only on sv and s>v , the restriction

of s to the nodes following v. Thus, we can write

Ri \ I>v � :Kif! 2 �j�v
i .b/ > �

v
i .b=sv/g \ I>v D :Ki:I

v \ I>v;

where the first inclusion follows from the fact that for! 2 I>v , �v
i .s=bi/ D

�v
i .b/ and �v

i .s/ D �v
i .b=sv/. Thus,

CKR � Ri \ I>v � :Ki:I
v \ I>v � I v \ I>v;

where the argument for the final inclusion is as before.

This theorem does not claim that rational agents will always play the sub-

game perfect equilibrium. Rather, it claims that if a player makes a move to

a node that is not along the backward induction path of play, then common
knowledge of rationality cannot obtain at that node or at any subsequent

node of the game tree. There is nothing irrational about a player making

such a move, as he may have some notion as to how rational agents will

play the game based on considerations other than CKR.

Another way of saying this is that CKR is an event, not a premise (�4.14).

In some cases CKR holds, not because CKR implies the outcome, but rather
because the outcome implies CKR.
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5.12 Rationality and Extensive Form CKR

Between 1987 and 1993, several influential papers questioned the classical

game-theoretic argument that in an extensive form game of perfect informa-

tion with a single subgame perfect Nash equilibrium, rational agents must

play this equilibrium. Aumann (1995) was seen by many game theorists as

a futile and inadequate response to these critics in defense of the conven-
tional wisdom. The central criticism of Aumann’s analysis was stated as

follows by Binmore (1996):

What keeps a rational player on the equilibrium path is his eval-

uation of what would happen if he were to deviate. But, if he

were to deviate, he would behave irrationally. Other players

would then be foolish if they were not to take this evidence
of irrationality into account in planning their responses to the

deviation. . . . Aumann . . . is insistent that his conclusions say

nothing whatever about what players would do if vertices of the

game tree off the backward-induction path were to be reached.

But, if nothing can be said about what would happen off the

backward-induction path, then it seems obvious that nothing
can be said about the rationality of remaining on the backward-

induction path.” (p. 135)

Similarly, Ben-Porath (1997) asserts that

Aumann assumes that in every vertex x there is common

knowledge that a player will play rationally in the subgame
that starts at x. This is assumed even for vertices x that cannot

be reached if there is CKR at the beginning. Thus, the assump-

tion is that a player i will ignore the fact that another player j

behaved in a way which is consistent with CKR. (p. 43)

One correction is clearly in order. If a rational player were to deviate from

the equilibrium path, says Binmore, “he would behave irrationally.” The
correct statement is that if a player deviated from the equilibrium path,

he would violate CKR, not rationality. That said, although there may be

versions of CKR that are vulnerable to this critique, Aumann’s version,

presented in �5.11, is not.

This argument should not be seen, however, as a defense of CKR. Au-

mann himself, in all his writings, states clearly that CKR is not dictated
by the norms of social interaction among rational agents. CKR is not a
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strengthening of Bayesian rationality. Rather, CKR is a powerful and of-

ten highly implausible assumption concerning the communality of mental
representations across Bayesian rational agents.

A major attraction of epistemic game theory lies in its allowing us to

replace arguments about where a proposition  is true and false in a game

by an analysis of the set of states ! 2 � in which  .!/ holds. Thus,

the conclusion of Aumann’s argument, equation (5.1), must be read as “In

every state ! in which CKR holds, the backward induction path is chosen
by s.!/.” Similarly, “CKR fails off the backward induction path” should be

read “In every state ! for which s.!/ is not the backward induction path,

CKR fails.”

The bottom line is that the critics, from Binmore (1987) to Reny (1993)

are correct in stating that rationality does not imply backward induction.

But Aumann (1995) is also correct in stating that in every state where CKR

holds, the backward induction path is followed.

5.13 On the Nonexistence of CKR

The proof that CKR implies backward induction in Aumann (1995) is fol-

lowed by the proof of the following theorem.

THEOREM 5.2 In every game of perfect information, there is a knowledge

system such that CKR¤;.

The proof is trivial. Assume � has exactly one state, in which each agent’s
strategy is the backward induction strategy.

The more interesting question, however, is: What are the characteristics

of knowledge systems for which CKR¤ ;, and are there plausible knowl-

edge systems for which � D CKR? The answers to these questions are, to

my knowledge, unknown.

It is easy, however, to construct a realistic epistemic game in which

CKRD ;. For instance, consider the situation described in �5.9. The game
is the 100-round Repeated Prisoner’s Dilemma, and each player has a sub-

jective prior that includes a probability distribution over the strategies of

the potential partners and chooses a strategy that maximizes his expected

payoff subject to this conjecture. Unless all players’ conjectures lead to de-

fecting in round 1, CKRD ; for this epistemic game. Nothing, of course,

constrains rational agents to hold such a pattern of conjectures, so CKRD ;
should be considered the default situation.
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More generally, in any epistemic game that has a perfect information ex-

tensive form and a unique subgame perfect Nash equilibrium s�, the priors
pi .	j!/ fully determine the probability each player places on the occurrence

of s� namely, pi .Œs D s��j!/. This is surely zero unless si .!/ D s�. More-

over, we must have pi.Œs D s��j!/ D 1 if ! 2 CKR, which is a restriction

on subjective priors that has absolutely no justification in general, although

it can be justified in certain cases (e.g., the one- or two-round Prisoner’s

Dilemma or the game in �5.3).
It might be suggested that a plausible strategy selection mechanism epis-

temically justified by some principle other than CKR might succeed in se-

lecting out the subgame perfect equilibrium—for instance, extensive form

rationality as proposed by Pearce (1984) and Battigalli (1997). However,

this selection mechanism is not epistemically grounded at all. There are al-

ternative, epistemically grounded selection mechanisms for extensive form

games, such as Fudenberg, Kreps, and Levine (1988), Börgers (1994), and
Ben-Porath (1997), but these mechanisms do not justify backward induc-

tion.
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The Mixing Problem: Purification and

Conjectures

God does not play dice with the universe.

Albert Einstein

Economic theory stresses that a proposed mechanism for solving a co-

ordination problem assuming self-regarding agents is plausible only if it
is incentive compatible: each agent should find it in his interest to behave

as required by the mechanism. However, a strictly mixed-strategy Nash

equilibrium 	� D .	�
1 ; : : : ; 	

�
n / fails to be incentive compatible, because

a self-regarding agent i is indifferent to any mixed strategy in the support

of 	�
i . This chapter deals with the solution to this problem. We conclude

that, while ingenious justifications of the incentive compatibility of mixed-

strategy Nash equilibria have been offered, they fail except in a large ma-
jority of cases. We suggest that the solution lies in recognizing both the

power of social norms, and of a human other-regarding psychological pre-

disposition to conform to social norms even when it is costly to do so.

6.1 Why Play Mixed Strategies?

In Throwing Fingers (�2.7), there is a unique mixed-strategy Nash equilib-

rium in which both players choose each of their pure strategies with prob-

ability 1/2. However, if both pure strategies have equal payoffs against the

mixed strategy of the other player, Why bother randomizing? Of course,

this problem is perfectly general. By the fundamental theorem (�2.5), any
mixed strategy best response consists of equal-payoff pure strategies, so

why should a player bother randomizing? Moreover, this argument holds

for all other players as well. Therefore, no player should expect any other

player to randomize. This is the mixing problem.

We assume that the game is played only once (this is called a one-shot

game, even though it could be an extensive form game with many moves
by each player, as in chess), so there is no past history on which to base

121
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an inference of future play, and each decision node is visited at most once,

so a statistical analysis during the course of the game cannot be carried
out. If the stage game itself consists of a finite repetition of a smaller stage

game, as in playing Throwing Fingers n times, one can make a good case

for randomizing in the stage game. But only a small fraction of games have

such form.

One suggestion for randomizing is that perhaps it is easier for an oppo-

nent to discover a pure-strategy choice on your part than a mixed-strategy
choice (Reny and Robson 2004). Indeed, when Von Neumann and Morgen-

stern (1944) introduced the concept of a mixed strategy in zero-sum games,

they argued that a player would use this strategy to “protect himself against

having his intentions found out by his opponent.” (p. 146) This defense is

weak. For one thing, it does not hold at all for many games, such as Battle

of the Sexes (�2.8), where a player gains when his partner discovers his

pure-strategy move. More important, if there are informational processes,
reputation effects, or other mechanisms whereby the agents’ “types” can be

known or discovered, this should be formally modeled in the specification

of the game.

Finally, it is always costly to randomize because one must have some so-

phisticated mental algorithm modeling the spinning of a roulette wheel or

other randomizing device, so mixed strategies are in fact strictly more costly
to implement than pure strategies. In general, we do not discuss implemen-

tation costs, but in this case they play a critical role in evaluating the relative

costs of playing a mixed-strategy best response or any of the pure strategies

in its support. Hence the mixing problem: why bother randomizing?

There have been two major approaches to solving the mixing problem.

The first approach, which we develop in �6.2, is due to Harsanyi (1973).
Harsanyi treats mixed-strategy equilibria as limit cases of slightly perturbed

“purified” games with pure-strategy equilibria. This remarkable approach

handles many simple games very nicely but fails to extend to more com-

plex environments. The more recent approach, which uses interactive epis-

temology to define knowledge structures representing subjective degrees of

uncertainty, is due to Robert Aumann and his coworkers. This approach,

which we develop in �6.5, does not predict how agents will actually play
because it determines only the conjectures each player has of the other

players’ strategies. It follows that this approach does not solve the mixing

problem. However, in �6.6, we show that a simple extension of the Au-

mann conjecture approach is valid under precisely the same conditions as
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Harsanyi purification, with the added attractions of handling pure-strategy

equilibria (�6.6) and applying to cases where payoffs are determinate.
Our general conclusion, which is fortified by two examples below, is that

purification is possible in some simple games but not in the sorts of games

that apply to complex social interaction, such as principal-agent models

or repeated games. Yet, such complex models generally rely on mixed

strategies. Thus, game theory alone is incapable of explaining such complex

social interactions even approximately and even in principle. This provides
one more nail in the coffin of methodological individualism (�8.8).

6.2 Harsanyi’s Purification Theorem

D

U

1,3

0,
1

RL


1,0

0,0

To understand Harsanyi’s (1973) defense of the mixed-

strategy Nash equilibrium in one-shot games, consider

the game to the right, which has a mixed-strategy equi-

librium .	�
1 ; 	

�
2 / D .3U=4 C D=4;L=2 C R=2/. Be-

cause player 1, Alice, is indifferent between U andD, if

she had some personal idiosyncratic reason for slightly preferring U to D,
she would play pure strategyU rather than the mixed strategy 	�

1 . Similarly,

some slight preference forR would lead player 2, Bob, to play pure strategy

R. The mixed-strategy equilibrium would then disappear, thus solving the

mixing problem.

D

U

1,3

�1,
1

RL


1,�2

�1,�2

To formalize this, let � be a random vari-
able uniformly distributed on the interval

Œ
1=2; 1=2� (in fact, � could be any bounded

random variable with a continuous density)

and suppose that the distribution of payoffs from U for the population

of player 1’s is 2 C �1, and the distribution of payoffs from L for the

population of player 2’s is 1 C �2, where �1 and �2 are independently

distributed as � . Suppose Alice and Bob are chosen randomly from their
respective populations of player 1’s and player 2’s to play the game, and

each knows only the distribution of payoffs to their partners. Suppose

Alice uses U with probability ˇ and Bob uses L with probability ˛. You

can check that Bob infers that the payoff from U for Alice is distributed as

�U D �1, and that the payoff fromD for Alice is �D D 1
2˛. Similarly,

Alice infers that the payoff from L for Bob is �L D �2, and the payoff
from R for Bob is �R D 3 
 4ˇ.
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Now, ˇ is the probability �U > �D, which is the probability that �1 >

.1 
 2˛/=, which gives

˛ D PŒ�L > �R� D P

	
�B >

3 
 4ˇ





D
8ˇ 
 6C 

2
(6.1)

ˇ D PŒ�U > �D� D P

	
�A >

1 
 2˛





D
4˛ 
 2C 

2
: (6.2)

Solving these simultaneously for ˛ and ˇ, we find

˛ D
1

2





8 
 2
ˇ D

3

4



2

4.8
 2/
; (6.3)

This is our desired equilibrium. Now, this looks like a mixed-strategy equi-
librium, but it is not. The probability that an Alice randomly chosen from

the population chooses pure strategy U is ˇ, and the probability that a Bob

randomly chosen from the population chooses pure strategy L is ˛. Thus,

for instance, if an observer measured the frequency with which player 1’s

chose U , he would arrive at a number near ˛, despite the fact that no player

1 ever randomizes. Moreover, when  is very small, .˛; ˇ/  .	�
1 ; 	

�
2 /.

Thus, if we observed a large number of pairs of agents playing this game,

the frequency of playing the various strategies would closely approximate

their mixed-strategy equilibrium values.

To familiarize himself with this analysis, the reader should derive the

equilibrium values of ˛ and ˇ, assuming that player i’s idiosyncratic pay-

off is uniformly distributed on the interval Œai ; bi �, i D 1; 2, and show that
˛ and ˇ tend to the mixed-strategy Nash equilibrium as  ! 0. Then,

he should find the purified solution to Throwing Fingers (�2.7) assuming

player 1 favors H with probability �1, where �1 is uniformly distributed

on Œ
0:5; 0:5� and player 2 favorsH with probability �2, where �2 is uni-

formly distributed on [0,1], and then show that as ! 0, the strategies in

the perturbed game move to the mixed-strategy equilibrium.

Govindan, Reny, and Robson (2003) present a very general statement
and elegant proof of Harsanyi’s purification theorem. They also correct

an error in Harsanyi’s original proof (see also van Damme 1987, ch. 5).

The notion of a regular equilibrium used in the theorem is the same as that

of a hyperbolic fixed point in dynamical systems theory (Gintis 2009) and

is satisfied in many simple games with isolated and strictly perfect Nash

equilibria (meaning that if we add very small errors to each strategy, the
equilibrium is displaced only a small amount).
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The following theorem is weakened a bit from Govindan, Reny, and Rob-

son (2003) to make it easier to follow. Let G be a finite normal form game
with pure-strategy set Si for player i , i D 1; : : : ; n, and payoffs ui WS!R,

where S D
Qn

iD1 Si is the set of pure-strategy profiles of the game.

A Nash equilibrium s is strict if there is a neighborhood of s (considered

as a point in n-space) that contains no other Nash equilibrium of the game.

The distance between equilibria is the Euclidean distance between the strat-

egy profiles considered as points in RjSj (jS j is the number of elements in
S ). Another way of saying this is that a Nash equilibrium is strict if the

connected component of Nash equilibria to which it belongs consists of a

single point.

Suppose for each player i and each pure-strategy profile s 2 S , there is

a random perturbation �i.s/ with probability distribution �i such that the

actual payoff to player i from s 2 S is ui .s/ C �i.s/, where  > 0 is a

small number. We assume the �i are independent, and each player knows
only his own outcomes f�i.s/js 2 Sig. We have the following theorem.

THEOREM 6.1 Suppose 	� is a regular mixed-strategy Nash equilibrium

of G. Then, for every ı > 0, there is an  > 0 such that the perturbed game

with payoffs fui .s/C�i.s/js2Sg has a strict Nash equilibrium O	 within 

of 	�.

6.3 A Reputational Model of Honesty and Corruption

Consider a society in which sometimes people are Needy, and sometimes
others help the Needy. In the first period, a pair is selected randomly, one

being designated Needy and the other Giver. Giver and Needy then play a

stage game G in which if Giver helps, a benefit b is conferred on Needy at

a cost c to Giver, where 0<c<b; or, if Giver defects, both players receive

0. In each succeeding period, Needy from the previous period becomes

Giver in the current period. Giver is paired with a new, random Needy, and

the game G is played by the new pair. If we assume that helping behavior
is public information, there is a Nash equilibrium of the following form,

provided the discount factor ı is sufficiently close to unity. At the start of

the game, each player is labeled “in good standing.” In every period Giver

helps if and only if his partner Needy is in good standing. Failure to do so

puts a player “in bad standing,” where he remains for the rest of the game.

To see that this is a Nash equilibrium in which every Giver helps in every
period for ı sufficiently close to 1, let vc be the present value of the game
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to a Giver, and let vb be the present value of the game for an individual

who is not currently Giver or Needy. Then we have vc D
cCıvb and vb D
p.bCıvc/C.1
p/ıvb, where p is the probability of begin chosen as Needy.

The first equation reflects the fact that a Giver must pay c now and becomes

a candidate for Needy in the next period. The second equation expresses

the fact that a candidate for Needy is chosen with probability p and then

gets b, plus is Giver in the next period, and with probability 1
p remains

a candidate for Needy in the next period. If we solve these two equations
simultaneously, we find that vc > 0 precisely when ı > c=.cCp.b
c//.
Because the right hand side of this expression is strictly less than 1, there

is a range of discount factors for which it is a best response for a Giver to

help, and thus remain in good standing.

Suppose, however, the informational assumption is that each new Giver

knows only whether his partner Needy did or did not help his own partner in

the previous period. If Alice is Giver and her partner Needy is Bob, and Bob
did not help when he was Giver, it could be because when he was Giver,

Carole, his Needy partner, had defected when she was Giver, or because

Bob failed to help Carole even though she had helped Donald, her previous

Needy partner when she was Giver. Because Alice cannot condition her

action on Bob’s previous action, Bob’s best response is to defect on Carole,

no matter what she did. Therefore, Carole will defect on Donald, no matter
what he did. Thus, there can be no Nash equilibrium with the pure strategy

of helping.

This argument extends to the richer informational structure where a Giver

knows the previous k actions for any finite k. Here is the argument for

kD2, which the reader is encouraged to generalize. Suppose the last five

players are Alice, Bob, Carole, Donald, and Eloise, in that order. Alice can
condition her choice on the actions taken by Bob, Carole, and Donald, but

not on Eloise’s action. Therefore, Bob’s best response to Carole will not

be conditioned on Eloise’s action, and hence Carole’s response to Donald

will not be conditioned on Eloise’s action. So, finally, Donald’s response

to Eloise will not be conditioned on her action, so her best response is to

defect when she is Giver. Thus, there is no helping Nash equilibrium.

Suppose, however, back in the kD1 case, that instead of defecting uncon-
ditionally when facing a Needy who has defected improperly, a Giver helps

with probability p D 1
 c=b and defects with probability 1
 p. The gain

from helping unconditionally is then b 
 c, while the gain from following

this new strategy is p.b
 c/C .1
p/pb, where the first term is the proba-
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bility p of helping times the reward b in the next period if one helps minus

the cost c of helping in the current period, and the second term is the prob-
ability 1 
 p of defecting times the probability p that you will be helped

anyway when your are Needy, times the benefit b. Equating this expression

with b 
 c, the cost of helping unconditionally, we get p D 1
 c=b, which

is a number strictly between zero and one and hence a valid probability.

Consider the following strategy. In each round, Giver helps if his partner

helped in the previous period, and otherwise helps with probability p and
defects with probability 1
p. With this strategy each Giver i is indifferent

to helping or defecting, because helping costs i the amount c when he is

Giver but i gains b when he is Needy, for a net gain of b 
 c. However,

defecting costs zero when Giver, but gives bp D b 
 c when he is Needy.

Because the two actions have the same payoff, it is incentive-compatible

for each Giver to help when his partner Needy helped, and to defect with

probability p otherwise. This strategy thus gives rise to a Nash equilibrium
with helping in every period.

The bizarre nature of this equilibrium is clear from the fact that there is no

reason for any player to follow this strategy as opposed to any other since

all strategies have the same payoff. So, for instance, if you slightly favor

some players (e.g., your friends or coreligionists) over others (e.g., your

enemies and religious infidels), then you will help the former and defect on
the latter. But then, if this is generally true, each player Bob knows that he

will be helped or not by Alice independent of whether he helps Carole when

she is Needy, so Bob has no incentive to help Carole. In short, if we add a

small amount of “noise” to the payoffs in the form of a slight preference for

some potential partners over others, there is no longer a Nash equilibrium

with helping. Thus, this repeated game model with private signals cannot
be purified (Bhaskar 1998b).

However, if players receive a subjective payoff from following the rules

(we term this a normative predisposition in chapter 7) greater than the

largest subjective gain from helping a friend or loss from defecting on an

enemy, complete cooperation can be reestablished even with private signals.

Indeed, even more sophisticated models can be constructed in which Alice

can calculate the probability that the Giver with whom she is paired when
she is Needy will condition his action on hers, a calculation that depends on

the statistical distribution of her friends and enemies and on the statistical

distribution of the strength of the predisposition to observe social norms.

For certain parameter ranges of these variables, Alice will behave “merito-
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cratically,” and for others, she will act “corruptly” by favoring friends over

enemies.

6.4 Purifying Honesty and Corruption

Suppose police are hired to apprehend criminals, but only the word of the

police officer who witnessed the transgression is used to determine the pun-

ishment of the offender—there is no forensic evidence involved in the judg-

ment, and the accused has no means of self-defense. Moreover, it costs the

police officer a fixed amount f to file a criminal report. How can this soci-
ety erect incentives to induce the police to act honestly?

Let us assume that the society’s elders set up criminal penalties so that

it is never profitable to commit a crime, provided the police are honest.

The police, however, are self-regarding and so have no incentive to report

a crime, which costs them f . If the elders offer the police an incentive w

per criminal report, the police will file zero reports for w < f and as many
as possible for w>f . However, if the elders set wDf , the police will be

indifferent between reporting and not reporting a crime, and there will be

a Nash equilibrium at which the officers report all crimes they observe and

none others.

This Nash equilibrium cannot be purified. If there are small differences in

the cost of filing a report or if police officers derive small differences in util-
ity from reporting crimes, depending on their relationship to the perpetrator,

the Nash equilibrium will disappear. We can foresee how this model could

be transformed into a full-fledged model of police honesty and corruption

by adding effective monitoring devices, keeping tabs on the reporting rates

of different officers, and the like. We could also add a in the form of a

police culture favoring honesty or condemning corruption, and explore the

interaction of moral and material incentives in controlling crime.

6.5 Epistemic Games: Mixed Strategies as Conjectures

Let G be an epistemic game where each player i has a subjective prior

pi .	I!/. We say a probability distribution p over the state space � is a

common prior for G if, for each player i and for each P 2 Pi , p.P / > 0

and i’s subjective prior pi.	jP / satisfies pi .!jP / D p.!/=p.P / for ! 2
P .
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The sense in which conjectures solve the problem of why agents play

mixed strategies is given by the following theorem due to Aumann and
Brandenburger (1995), which we will prove in �8.7.

THEOREM 6.2 Let G be an epistemic game with n > 2 players. Suppose

the players have a common prior p and it is commonly known at ! 2 �

that �! is the set of conjectures for G. Then, for each j D 1; : : : ; n, all

i¤j induce the same conjecture 	j .!/ D �!
j about j ’s conjectured mixed

strategy, and 	.!/ D .	1.!/; : : : ; 	n.!// form a Nash equilibrium of G.

Several game theorists have suggested that this theorem resolves the prob-
lem of mixed-strategy Nash equilibria. In their view, each player chooses a

pure strategy, but there is a Nash equilibrium in player conjectures (see, for

instance, �4.3). However, the fact that player conjectures are mutual best

responses does not permit us to deduce anything concerning the relative fre-

quency of player pure-strategy choices except that pure strategies not in the

support of the equilibrium mixed strategy will have frequency zero. This
suggested solution to the mixing problem is thus incorrect, assuming one

cares about explaining behavior, not just conjectures in people’s heads.

There are many stunning indications of contemporary game theorists’

disregard for explaining behavior, but perhaps none more stunning than the

complacency surrounding the acceptance of this argument. The method-

ological commitment behind this complacency was eloquently expressed

by Ariel Rubinstein in his presidential address to the Econometric Society
(Rubinstein 2006). “As in the case of fables, models in economic theory

. . . are not meant to be testable. . . . a good model can have an enormous

influence on the real world, not by providing advice or by predicting the

future, but rather by influencing culture.” It is hard not be sympathetic with

Rubinstein’s disarming frankness, despite his being dead wrong: the value

of a model is its contribution to explaning reality, not its contribution to
society’s stock of pithy aphorisms.

6.6 Resurrecting the Conjecture Approach to Purification

Harsanyi purification is motivated by the notion that payoffs may have a

statistical distribution rather than being the determinate values assumed in

classical game theory. Suppose, however, that payoffs are indeed determi-

nate, but the conjectures (�6.5) of individual players have a statistical distri-

bution around the game’s mixed-strategy equilibrium values. In this case,
the epistemic solution to the mixing problem might be cogent. Indeed, as
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we shall see, the assumption of stochastic conjectures has advantages over

the Harsanyi assumption of stochastic payoffs. This avenue of research has
not been studied in the literature, to my knowledge, but it clearly deserves

to be explored.

Consider the Battle of the Sexes (�2.8) and suppose that Alfredos in the

population go to the opera with mean probability ˛, but the conjecture as to

˛ by the population of Violettas is distributed as ˛C�V . Similarly, suppose

that Violettas in the population go to the opera with mean probability ˇ, but
the conjecture as to ˇ by the population of Alfredos is distributed as ˇC�A.

Let �A
o and �A

g be the expected payoffs to a random Alfredo chosen from

the population from going to the opera and from gambling, respectively, and

let �V
o and �V

g be the expected payoff to a random Violetta chosen from the

population from going to the opera and from gambling, respectively. An

easy calculation shows that

�A
o 
 �A

g D 3ˇ 
 2C 3�A;

�V
o 
 �V

g D 3˛ 
 1C 3�V :

Therefore,

˛ D PŒ�A
o > �A

g � D P

	
�A >

2 
 3ˇ

3



D
6ˇ 
 4C 3

6
; (6.4)

ˇ D PŒ�V
o > �V

g � D P

	
�V >

1 
 3˛

3



D
6˛ 
 2C 3

6
: (6.5)

If we assume that the beliefs of the agents reflect the actual state of the two

populations, we may solve these equations simultaneously, finding

˛� D
1

3
C



6.1C /
; ˇ� D

2

3





6.1C /
(6.6)

Clearly, as !0, this pure-strategy equilibrium tends to the mixed-strategy

equilibrium of the stage game (2/3,1/3), as prescribed by the purification
theorem.

However, note that our calculations in arriving at (6.6) assumed that

˛; ˇ 2 .0; 1/. This is true, however, only when

1

3




2
< ˛ <

1

3
C


2
;

2

3




2
< ˇ <

2

3
C


2
: (6.7)
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Suppose, however, that ˛ < 1=3 
 =2. Then, all Violettas choose gam-

bling, to which gambling is any Alfredo’s best response. In this case, the
only equilibrium is ˛ D ˇ D 0. Similarly, if ˛ > 1=3 C =6, then all

Violettas choose opera, so all Alfredos choose opera, and we have the pure-

strategy Nash equilibrium ˛ D ˇ D 1. This approach to solving the mixing

problem has the added attraction that it yields an approximation not only

to the mixed-strategy equilibrium for some statistical distribution of beliefs

but also to one or another of the two pure-strategy equilibria with other
distributions of beliefs.



7

Bayesian Rationality and Social Epistemology

Social life comes from a double source, the likeness of consciences
and the division of social labor.

Emile Durkheim

There is no such thing as society. There are individual men and
women, and there are families.

Margaret Thatcher

At least since Schelling (1960) and Lewis (1969), game theorists have in-

terpreted social norms as Nash equilibria. More recent contributions based

upon the idea of social norms as selecting among Nash equilibria include

Sugden (1986), Elster (19891,b), Binmore (2005), and Bicchieri (2006).

There are two problems with this approach. The first is that the conditions

under which rational individuals play a Nash equilibrium are extremely de-
manding (theorem �8.4), and are not guaranteed to hold simply because

there is a social norm specifying a particular Nash equilibrium. Second, the

most important and obvious social norms do not specify Nash equilibria

at all, but rather are devices that implement correlated equilibria (�2.11,

�7.5).

Informally, a correlated equilibrium of an epistemic game G is a Nash
equilibrium of a game GC, in which G is augmented by an initial move by

a new player, whom we call the choreographer, who observes a random

variable � on a probability space .�; p/, and issues a “directive” fi.�/ 2
Si to each player i as to which pure strategy to choose. Following the

choreographer’s directive is a best response for each player, if other players

also follow the choreographer’s directives.

This chapter uses epistemic game theory to expand on the notion of so-
cial norms as choreographer of a correlated equilibrium, and to elucidate

the socio-psychological prerequisites for the notion that social norms im-

plement correlated equilibria.

The correlated equilibrium is a much more natural equilibrium criterion

than the Nash equilibrium, because of a famous theorem of Aumann (1987),

who showed that Bayesian rational agents in an epistemic game G with a
common subjective prior play a correlated equilibrium of G (�2.11–2.13).

132



Bayesian Rationality and Social Epistemology 133

Thus, while rationality and common priors do not imply Nash equilibrium,

these assumptions do imply correlated equilibrium and as we shall see, so-
cial norms act not only as choreographer, but also supply the epistemic

conditions for common priors.

In a correlated equilibrium, rational players have no incentive to deviate

from the instructions of the choreographer, but if the correlated equilibrium

involves multiple strategies with equal payoffs, they have no incentive to

follow them either. If a correlated equilibrium can be purified (see chap-
ter 6), each agent effectively has a strict preference to follow the directives

of the choreographer. However, in most complex games purification fails

(�6.3, �6.4), in which case, as we shall see, we must assume that agents

have a normative predisposition towards following the choreographer’s in-

structions unless they have alternatives with strictly higher payoffs.

The isomorphism between correlated equilibrium and Bayesian rational-

ity with common priors assumes that the choreographer has at least as much
information as any player. This means that all information is public, an as-

sumption that is violated in many practical cases. For instance, each agent’s

payoff might consist of a public component that is known to the choreog-

rapher and a private component that reflects the idiosyncrasies of the agent

and is unknown to the choreographer. Suppose the maximum size of the

private component in any state for an agent is ˛, but the agent’s inclination
to follow the choreographer has strength greater than ˛. Then, the agent

continues to follow the choreographer’s directions whatever the state of his

private information. Formally, we say an individual has an ˛-normative

predisposition towards conforming to the social norm if he strictly prefers

to play his assigned strategy so long as all his pure strategies have payoffs

no more than ˛ greater than when following the choreographer. We call an
˛-normative predisposition a social preference because it facilitates social

coordination but violates self-regarding preferences for ˛ > 0. There are

evolutionary reasons for believing that humans have evolved such social

preferences for fairly high levels of ˛ in a large fraction of the population

through gene-culture coevolution (Gintis 2003a).

7.1 The Sexes: From Battle to Ballet

Suppose there is a social norm specifying that when choosing between

opera and gambling, the male of the pair decides on Monday through Fri-
day, and the female on the weekend. This norm choreographs a correlated
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equilibrium in which Alfredo and Violetta go to the opera if and only if it

is a weekend. Assuming that their planned meeting occurs equally likely
on each day of the week, Alfredo’s payoff is 2.5=7/C 1.2=7/ D 12=7 and

Violetta’s is 1.5=7/C 2.2=7/ D 9=7. This correlated equilibrium is not a

Nash equilibrium of the underlying game and, like the pure-strategy Nash

equilibria of the game, it is Pareto-efficient.

7.2 The Choreographer Trumps Backward Induction

Suppose Alice and Bob play the 100-round repeated Prisoner’s Dilemma
under conditions of common knowledge of rationality. They thus defect

on every round (�5.12). They then discover a choreographer who chooses

a number k, with 1 � k � 99, and with probability 1/2 advises Alice to

cooperate up to the kth round and Bob to cooperate up to the 1Ckth round,

and with probability 1/2, reverses the advice to Alice and Bob. Both players

are advised to defect forever after the first defection.

Assuming that both Alice and Bob believe that each has probability
�.k/D 1=2 of having the lower number when advised to defect on the kth

round, we can show that this is a correlated equilibrium with cooperation

up to round k
1. Suppose Bob takes the choreographer’s advice, cooperat-

ing up to the suggested round, and then defecting thereafter. Then, Alice’s

payoff from cooperating, assuming the payoffs to the prisoner’s dilemma

stage game are t > r > p > s (corresponding to 4 > 3 > 1 > 0 in �5.6),
is given by

1

2
Œr.k 
 1/C t C .n 
 k/p�C

1

2
Œr.k 
 2/C s C .n 
 k C 1/p�

D r.k 
 2/C
s C t C p C r

2
C .n
 k/p:

If Alice disobeys the choreographer, she can only possibly gain by defecting

either one or two rounds earlier. The payoff to defecting on round k 
 1 is

1

2
Œr.k 
 2/C t C .n
 k C 1/p�C

1

2
Œr.k 
 2/C .n
 k C 2/p�

D r.k 
 2/C
t

2
C .n 
 k C 1/p:

The payoff to obeying the choreographer rather than defecting one round
earlier is thus .r C s 
 p/=2 > 0. If Alice defects two rounds earlier, her
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payoff is r.k
3/C t C .n
kC2/p, which is less than obeying, provided

r 
 p > .t 
 s/=4. Thus, given this inequality (which clearly holds for the
game in �5.6), we have a correlated equilibrium. If k is large, this correlated

equilibrium has a high payoff, despite CKR.

7.3 Property Rights and Correlated Equilibrium

The Hawk-Dove-Game (�2.9) is an inefficient way to allocate property

rights, especially if the cost of injury w is not much larger than the value v
of the property. To see this, note that players choose hawk with probability

v=w, and you can check that the ratio of the payoff to the efficient payoff

v=2 is 1 
 v=w. When w is near v, this is close to zero.

The Hawk-Dove-Game is thus a beautiful example of the Hobbesian state

of nature, where life is nasty, brutish, and short (Hobbes 1968[1651]). How-

ever, suppose some members of the population institute a social norm re-
specting property rights, based on the fact that whenever two players have

a property dispute, one of them must have gotten there first, and the other

must have come later. We may call the former the “incumbent” and the

latter the “contester.”

Note that if all individuals obey the property rights social norm, then

there can be no efficiency losses associated with the allocation of property.
To show that we indeed have a correlated equilibrium, it is sufficient to

show that if we add to the Hawk-Dove-Game a new strategy, P , called the

property strategy, that always plays hawk when incumbent and dove when

contester, then property is a best response to itself. When we add P to the

normal form matrix of the game, we get the Hawk-Dove-Property Game de-

picted in figure 7.1. Note that the payoff to property against property, v=2,

is greater than 3v=4
w=4, which is the payoff to hawk against property,
and is also greater than v=4, which is the payoff to dove against property.

Therefore, property is a strict Nash equilibrium. It is also efficient, because

there is never a hawk-hawk confrontation in the property correlated equi-

librium, so there is never any injury.

The property strategy is not a Nash equilibrium of the Hawk-Dove-Game,

but is a correlated equilibrium of the larger social system with the property
norm. This example will be elaborated upon in chapter 11.
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H D

H

D

.v 
w/=2 v

0 v=2

B

3v=4 
 w=4

v=4

B .v 
w/=4 3v=4 v=2

Figure 7.1. The Hawk-Dove-Property Game

7.4 Convention as Correlated Equilibrium

The town of Pleasantville has one traffic intersection, one road going north-

south and the other east-west. If an east-west car meets a north-south car
at the intersection and both stop, one is randomly chosen to go first across

the intersection and the second follows, with an average loss of time of one

second each. If one car stops and the other goes, only the car that stopped

will lose a second. If they both go, however, they may crash, so there is an

expected loss of c > 1 for each.

There is clearly a unique symmetrical Nash equilibrium to this game, in

which each car goes with probability ˛ D 1=c and the expected payoff
to each player is 
1; that is, they do no better than both waiting. How-

ever, there is an obvious social norm in which one car, say the east-west

car, always goes, and north-sound car always waits. This is now a corre-

lated equilibrium that implements an asymmetric Nash equilibrium of the

underlying game.

With these examples in mind, we can tackle the underlying theory.

7.5 Correlated Strategies and Correlated Equilibria

We will use epistemic game theory (�6.5) to show that if players are

Bayesian rational in an epistemic game G and have a common prior over�,
the strategy profiles s W�!S that they play form a correlated equilibrium

(Aumann 1987). The converse also holds: for every correlated equilibrium

of a game, there is an extension to an epistemic game G with a common

prior p 2 � such that in every state ! it is rational for all players to carry

out the move indicated by the correlated equilibrium.

Informally, a correlated equilibrium of an epistemic game G is a Nash
equilibrium of a game GC, which is G augmented by an initial move by
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Nature, who observes a random variable � on a probability space .�; p/

and issues a directive fi.�/ 2 Si to each player i as to which pure strategy
to choose. Following Nature’s directive is a best response, if other players

also follow Nature’s directives, provided players have the common prior p.

The intuition behind the theorem is that in an epistemic game, the state

space � includes all information concerning the players’ actions, so com-

mon priors imply that all agents agree as to the probability distributions

over the actions they will take. Hence, assuming each agent i has a single
best response si .!/ in every state ! (i.e., the equilibrium is a strict cor-

related equilibrium), the move of each player is known to the others, and

because the agents are rational, each must then play a best response to the

actions of the others.

Formally, a correlated strategy of epistemic game G consists of a finite

probability space .�; p/, where p 2 
�, and a function f W�!S . If we

think of a choreographer who observes � 2 � and directs players to choose
strategy profile f .�/, then we can identify a correlated strategy with a prob-

ability distribution Qp 2 
S , where, for s 2 S , Qp.s/ D p.Œf .�/ D s�/ is

the probability that the choreographer chooses s. We call Qp the distribution

of the correlated strategy. Any probability distribution on S that is the dis-

tribution of some correlated strategy f is called a correlated distribution.

Suppose f 1; : : : ; f k are correlated strategies and let ˛ D .˛1; : : : ; ˛k/ be
a lottery (i.e., ˛i � 0 and

P
i ˛i D 1). Then, f D

P
i ˛if

i is also a corre-

lated strategy defined on f1; : : : ; kg��. We call such an f a convex sum of

f 1; : : : ; f k . Any convex sum of correlated strategies is clearly a correlated

strategy. It follows that any convex sum of correlated distributions is itself

a correlated distribution.

Suppose 	 D .	1; : : : ; 	n/ is a Nash equilibrium of a game G, where for
each i D 1; : : : n;

	i D

niX
kD1

˛kiski

where ni is the number of pure strategies in Si and ˛ki is the weight

given by 	i on the kth pure strategy ski 2 Si . Note that 	 thus de-

fines a probability distribution Qp on S such that Qp.s/ is the probabil-

ity that pure strategy profile s 2 S will be chosen when mixed strategy

profile 	 is played. Then, Qp is a correlated distribution of an epistemic

game associated with G, which we will call G as well. To see this, de-
fine �i as a set with ni elements f�1i ; : : : ; �ni ig and define pi 2 
Si that
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places probability ˛ki on �ki . Then, for s D .s1; : : : ; sn/ 2 S , define

p.s/ D
Qn

iD1 pi .si/. Now, define � D
Qn

iD1 �i and let f W � ! S be
given by f .�k11; : : : ; �knn/ D .sk11; : : : ; sknn/. It is easy to check that f

is a correlated strategy with correlated distribution Qp. In short, every Nash

equilibrium is a correlated strategy, and hence any convex combination of

Nash equilibria is a correlated strategy.

If f is a correlated strategy, then �i ı f is a real-valued random variable

on .�; p/ with an expected value Ei Œ�i ı f �, the expectation taken with
respect to p. We say a function gi W�!Si is measurable with respect to

fi if fi.�/ D fi.�
0/, then gi.�/ D gi .�

0/. Clearly, player i can choose to

follow gi .�/ when he knows fi .�/ iff gi is measurable with respect to fi .

We say that a correlated strategy f is a correlated equilibrium if for each

player i and any gi W�!Si that is measurable with respect to fi , we have

Ei Œ�i ı f � � Ei Œ�i ı .f�i ; gi /�:

A correlated equilibrium induces a correlated equilibrium probability dis-

tribution on S , whose weight for any strategy profile s 2 S is the proba-

bility that s will be chosen by the choreographer. Note that a correlated

equilibrium of G is a Nash equilibrium of the game generated from G by

adding Nature, whose move at the beginning of the game is to observe the

state of the world � 2 �, and to indicate a move fi.�/ for each player i

such that no player has an incentive to do other than comply with Nature’s
recommendation, provided that the other players comply as well.

7.6 Correlated Equilibrium and Bayesian Rationality

THEOREM 7.1 If the players in epistemic game G are Bayesian rational at

!, have a common prior p, and each player i chooses si .!/ 2 Si in state

!, then the distribution of s D .s1; : : : ; sn/ is a correlated equilibrium dis-

tribution given by correlating device f on probability space .�; p/, where

f .!/ D s.!/ for all ! 2 �.

To prove this theorem, we identify the state space for the correlated strat-

egy with the state space � of G, and the probability distribution on the state

space with the common prior p. We then define the correlated strategy

f W�!S by setting f .!/ D .s1.!/; : : : ; sn.!//, where si .!/ is i’s choice

in state ! (�6.5). Then, for any player i and any function gi W�!Si that is
Pi-measurable (i.e., that is constant on cells of the partition Pi ), because i
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is Bayesian rational, we have

EŒ�i.s.!//j!� � EŒ�i .s�i.!/; gi.!//j!�:

Now, multiply both sides of this inequality by p.P / and add over the dis-
joint cells P 2 Pi , which gives, for any such gi ,

EŒ�i .s.!//� � EŒ�i .s�i.!/; gi.!//�:

This proves that .�; f .!// is a correlated equilibrium. Note that the con-

verse clearly holds as well.

7.7 The Social Epistemology of Common Priors

De gustibus, we are told, non est disputandum: the decision theorist does
not question the origin or content of preferences. The Savage axioms, for

instance, assume only a few highly general regularities of choice behavior

(�1.5). However, we have seen that when we move from individual decision

theory to epistemic game theory, this vaunted tolerance is no longer tenable.

In its place we require common priors and sometimes, as we shall see, even

common knowledge of conjectures (�8.1).

Common priors must be the result of a common process of belief forma-
tion. The subjectivist interpretation of probability (di Finetti 1974; Jaynes

2003) is persuasive as a model of human behavior but is a partial view

because it cannot explain why individuals agree on certain probabilities.1

For standard explanations of common priors, we must turn to the fre-

quency theories of von Mises (1981) and others or to the closely related

propensity theory of Popper (1959), which interpret probability as the long-
run frequency of an event or its propensity to occur at a certain rate. John

Harsanyi (1967) has been perhaps the most eloquent proponent of this ap-

proach among game theorists, promoting the Harsanyi doctrine, which

states that all differences in probability assessments among rational indi-

viduals must be due to differences in the information they have received. In

fact, however, the Harsanyi doctrine applies only under a highly restricted
set of circumstances.

1Savage’s axiom A3 (see p. 15) suggests that there is something supraindividual about

probabilities. This axiom says that the probability associated with an event must not de-

pend on the desirability of the payoff contingent upon the event occurring. There is no

reason why this should be the case unless there is some supraindividual standard for as-

sessing probabilities.
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Despite lack of agreement concerning the philosophical grounding of

probabilistic statements (von Mises 1981; de Laplace 1996; Gillies 2000;
Keynes 2004), there is little disagreement concerning the mathematical

laws of probability (Kolmogorov 1950). Moreover, modern science is pub-

lic and objective: except at the very cutting edge of research, there is broad

agreement among scientists, however much they differ in creed, culture, or

personal predilections.

This line of reasoning suggests that there is a basis for the formation of
common priors to the extent that the event in question is what we may call

a natural occurrence, such as “the ball is yellow,” that can be inferred from

first-order sense data. We say a natural occurrence is mutually accessible to

a group of agents when this first-order sense data is accessible to all mem-

bers of the group, so that if one member knows N , then he knows that all

the other members know N . For instance, if i and j are both looking at

the same yellow ball, if each sees the other looking at the ball, and if each
knows the other has normal vision and is not delusional, then the ball’s

color is mutually accessible: i knows that j knows that the ball is yellow,

and conversely. In short, we can assume that a social situation involving a

set of individuals can share an attentive state concerning a natural occur-

rence such that, in a joint attentive state, the natural occurrence is mutually

accessible (Tomasello 1999; Lorini, Tummolini, and Herzig 2005).
When we add to this sense data the possibility of joint attentive states

of symmetric reasoners (�7.8), common knowledge of natural occurrences

becomes plausible (theorem 7.2).

But higher-order epistemic constructs, such as beliefs concerning the in-

tentions, beliefs, and prospective actions of other individuals, beliefs about

the natural world that cannot be assessed through individual experience,
as well as beliefs about suprasensory reality, do not fall into this category

(Morris 1995; Gul 1998; Dekel and Gul 1997). How, then, do such higher-

order constructs become commonly known?

The answer is that members of our species, H. sapiens, have the capac-

ity to conceive that other members have minds and respond to experience

in a manner parallel to themselves—a capacity that is extremely rare and

may be possessed by humans alone (Premack and Woodruff 1978). Thus,
if agent i believes something, and if i knows that he shares certain envi-

ronmental experiences with agent j , then i knows that j probably believes

this thing as well. In particular, humans have cultural systems that provide
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natural occurrences that serve as symbolic cues for higher-order beliefs and

expectations. Common priors, then, are the product of common culture.
The neuropsychological literature on how minds know other minds deals

with mirror neurons, the human prefrontal lobe, and other brain mecha-

nisms that facilitate the sharing of knowledge and beliefs. From the view-

point of modeling human behavior, these facilitating mechanisms must be

translated into axiomatic principles of strategic interaction. This is a huge

step to take for game theory, which has never provided a criterion of any

sort for knowledge or beliefs.

7.8 The Social Epistemology of Common Knowledge

We have seen that we must add to Bayesian rationality the principle of

normative predisposition to have a social epistemology sufficient to assert

that rational agents with common priors, in the presence of the appropriate

choreographer, will choose to play a correlated equilibrium. We now study

the cognitive properties of agents sufficient to assert that social norms can

foster common priors.
Many events are defined in part by the mental representations of the in-

dividuals involved. For instance, an individual may behave very differently

if he construes an encounter as an impersonal exchange as opposed to a

comradely encounter. Mental events fail to be mutually accessible because

they are inherently private signals. Nevertheless, there are mutually acces-

sible events N that reliably indicate social events E that include the states
of mind of individuals in the sense that for any individual i , if i knows N ,

then i knows E (Lewis 1969; Cubitt and Sugden 2003).

For instance, if I wave my hand at a passing taxi in a large city, both I

and the driver of the taxi will consider this an event of the form “hailing a

taxi.” When the driver stops to pick me up, I am expected to enter the taxi,

give the driver an address, and pay the fare at the end of the trip. Any other

behavior would be considered bizarre.
By an indicator we mean an event N that specifies a social event E to all

individuals in a group; i.e., for any individual i , KiN ) KiE. Indicators

are generally learned by group members through acculturation processes.

When one encounters a novel community, one undergoes a process of learn-

ing the various indicators of a social event specific to that community. In

behavioral game theory an indicator is often called a frame of the social
event it indicates, and then the framing effect includes the behavioral im-
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plications of expectations cued by the experimental protocols themselves.

We define individual i as a symmetric reasoner with respect to individual

j for an indicator N of event E if, whenever i knows N , and i knows that

j knowsN , then i knows that j knowsE; i.e., KiN ^ Ki KjN ) KiKjE

(Vanderschraaf and Sillari 2007). We say the individuals in the group are

symmetric reasoners if, for each i; j in the group, i is a symmetric reasoner

with respect to j .
Like mutual accessibility, joint attentive states, and indicators, symmetric

reasoning is an addition to Bayesian rationality that serves as a basis for

the concordance of beliefs. Indeed, one may speculate that our capacity for

symmetric reasoning is derived by analogy from our recognition of mutual

accessibility. For instance, I may consider it just as clear that I am hailing a

taxi as that the vehicle in question is colored yellow, and has a lighted sign

saying “taxi” on the roof.

THEOREM 7.2 Suppose individuals in a group are Bayesian rational sym-

metric reasoners with respect to the mutually accessible indicator N of E.

If it is mutual knowledge that the current state ! 2N , then E is common

knowledge at !.

Proof: Suppose Pi! � N for all i . Then, for all i , Pi! � E because N

indicates E. For any i; j , because N is mutually accessible, ! 2 KiKjN ,

and because i is a symmetric reasoner with respect to j , ! 2 Ki KjE. Thus,

we have Pi! � KjE for all i; j (the case iDj holding trivially). Thus, N

is an indicator of KjE for all j . Applying the above reasoning to indicator

KkE, we see that ! 2 KiKj KkE for all i , j , and k. All higher levels of
mutual knowledge are obtained similarly, proving common knowledge.

COROLLARY 7.2.1 Suppose in state ! that N is a mutually accessible

natural occurrence for a group of Bayesian rational symmetric reasoners.

Then N is common knowledge in state !.

Proof: When ! 2 N occurs, N is mutually known since N is a natural

occurrence. Obviously, N indicates itself, so the assertion follows from

theorem 7.2.

Note that we have adduced common knowledge of an event from simpler

epistemic assumptions, thus affording us some confidence that the com-

mon knowledge condition has some chance of realization in the real world.
This is in contrast to common knowledge of rationality, which is taken as
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primitive data and hence has little plausibility. Communality of knowledge

should always be derived from more elementary psychological and social
regularities.

7.9 Social Norms

We say an event E is norm-governed if there is a social norm N .E/ that

specifies socially appropriate behavior N .E/ � S , N .E/ ¤ ;, where S

is the strategy profile set for an epistemic game. Note that we allow appro-

priate behavior to be correlated. How does common knowledge of a social
situation E affect the play of a game G? The answer is that each player i

must associate a particular social norm N .E/ with E that determines ap-

propriate behavior in the game, i must be confident that other players also

associate N .E/ withE, i must expect that others will choose to behave ap-

propriately according to N .E/, and behaving appropriately must be a best

response for i given all of the above.
Suppose E indicates N .E/ for players because the players belong to a

society in which common culture specifies that when a game G is played

and event E occurs, then appropriate behavior is given by N .E/. Suppose

players are symmetric reasoners with respect to E. Then, reasoning similar

to theorem 7.2 shows that N .E/ is common knowledge. We then have the

following theorem.

THEOREM 7.3 Given epistemic game G with normatively predisposed

players who are symmetric reasoners, suppose E is an indicator of so-

cial norm N .E/. Then, if appropriate behavior according to N .E/ is a

correlated equilibrium for G, the players will choose the corresponding

correlated strategies.

7.10 Game Theory and the Evolution of Norms

Social norms cannot be explained as a product of the interaction of Bayesian
rational agents. Rather, as developed in chapters 10–12, social norms are

explained by sociobiological models of gene-culture coevolution (Cavalli-

Sforza and Feldman 1973; Boyd and Richerson 1985). Humans have

evolved psychological predispositions that render social norms effective.

Social evolution (Cavalli-Sforza and Feldman 1981; Dunbar 1993; Richer-

son and Boyd 2004) has favored the emergence both of social norms and
human predispositions to follow social norms, to embrace common priors,
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and to recognize common knowledge of many events. Nor is this process

limited to humans, as the study of territoriality in various nonhuman species
makes clear (Gintis 2007b). The culmination of this process is a pattern of

human attributes that can likely be subjected to axiomatic formulation much

as we have done with the Savage axioms.

The notion of a social norm as a choreographer is only the first step in

analyzing social norms—the step articulating the linkage between Bayesian

rationality and game theory on the one hand, and macro-social institutions
and their evolution on the other. We can add the dimension of coercion

to the concept of a social norm by attaching rewards and punishments to

behaviors based on their relationship to socially approved behavior. We

can also treat social norms as strongly prosocial under some conditions,

meaning that individuals prefer to follow these norms even when it is not in

their personal interest to do so, provided others do the same (˛-normative

predisposition). Finally, we may be able to use a model of the social norm
linkage to develop a theory of the evolution of norms, a task initiated by

Binmore (1993, 1998, 2005).

7.11 The Merchants’ Wares

s1 s2

s1

s2

2,2 0,0

1,10,0

Consider the coordination game G with the normal

form matrix shown to the right. There are two pure-

strategy equilibria: (2,2) and (1,1). There is also a

mixed-strategy equilibrium with payoffs (1/3,1/3) in

which players choose s1 with probability 1/3. There
is no principle of Bayesian rationality that would lead the players to coor-

dinate on the higher-payoff, or any other, Nash equilibrium.

There are two obvious social norms in this case: “when participating in

a pure coordination game, choose the strategy that gives players the maxi-

mum (respectively, minimum) common payoff.” The following is a plausi-

ble social norm that leads to a convex combination of the two coordinated

payoffs.
There are two neighboring tribes whose members produce and trade ap-

ples and nuts. The members of one tribe wear long gowns, while the mem-

bers of the other tribe wear short gowns. Individuals indicate a willingness

to trade by visually presenting their wares, the quality of which is either

1 or 2, known prior to exchange to the seller but not to the buyer. After

exchanging goods, both parties must be satisfied or the goods are restored
to their original owners and no trade is consummated. The social norm N
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that governs exchange is “never try to cheat a member of your own tribe,

and always try to cheat a member of the other tribe.”
We assume that, when two individuals meet, the visibility of their wares,

F , represents a mutually accessible natural occurrence that is an indica-

tor that the appropriate social norm is N , conforming to which is a best

response for both parties. If both have long robes or short robes, N indi-

cates that they each give full value 2, while if their robe styles differ, each

attempts to cheat the other by giving partial value 1. Because all individ-
uals have a normative predisposition and this is common knowledge, each

follows the norm, as either trade is better than no trade. A trade is thus con-

summated in either case. The expected payoff to each player is 2pC.1
p/,
where p is the probability of meeting a trader from one’s own tribe.

This analysis illustrates several key points. First, as we will see in �8.1,

there are very straightforward sufficient conditions for two rational agents

to play a Nash equilibrium (theorem 8.2): mutual knowledge of rationality,
mutual knowledge of the game and its payoffs, and mutual knowledge of

conjectures (what the other player will choose).

In The Merchants’ Wares Problem it is clear that the problem is: Where

does mutual knowledge of conjectures come from? As I have stressed,

there is nothing in the theory of rational choice that permits us to conclude

that two rational agents share beliefs concerning each other’s beliefs about
each other’s beliefs. Rather, each player forms conjectures concerning the

other’s likely behavior, and the other’s likely conjectures, from his social

knowledge—in this case, from the common mores of the two tribes and

from mutual knowledge that each knows the mores of the two tribes.

The conclusion is that there is no reason to posit that rational agents will

choose the Pareto-superior equilibrium because we have seen that some-
times they do not. It is not reason but humanity that leads us to believe

that the Pareto-superior equilibrium is obvious. We humans, by virtue of

our gene-culture coevolutionary history and our civilized culture, harbor

a default frame that says, “in a coordination game, unless you have some

special information that suggests otherwise, conjecture that the other player

also considers the frame to be a default frame and reasons as you do, and

choose the action that assumes your partner is trying to do well by you.”
We will return to this point in chapter 12, where we locate it as part of an

evolutionary epistemology.
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Common Knowledge and Nash Equilibrium

Where every man is Enemy to every man . . . the life of man is soli-
tary, poore, nasty, brutish, and short.

Thomas Hobbes

In the case of any person whose judgment is really deserving of
confidence, how has it become so? Because he has kept his mind
open to criticism of his opinions . . . .

John Stuart Mill

This chapter applies the modal logic of knowledge developed in �4.1 and

�5.10 to explore sufficient conditions for a Nash equilibrium in two-player
games (�8.1). We then expand the modal logic of knowledge to multiple

agents and prove a remarkable theorem, due to Aumann (1976), that asserts

that an event that is self-evident for each member of a group is common

knowledge (�8.3).

This theorem is surprising because it appears to prove that individuals

know the content of the minds of others with no explicit epistemological
assumptions. We show in �8.4 that this theorem is the result of implicit epis-

temological assumptions involved in construction of the standard semantic

model of common knowledge, and when more plausible assumptions are

employed, the theorem is no longer true.

Aumann’s famous agreement theorem is the subject of �8.7, where we

show that the Aumann and Brandenburger (1995) theorem, which supplies

sufficient conditions for rational agents to play a Nash equilibrium in multi-
player games, is essentially an agreement theorem. Because there is no

principle of Bayesian rationality that gives us the commonality of beliefs

on which agreement depends, our analysis entails the demise of method-

ological individualism, a theme explored in �8.8.

8.1 Conditions for a Nash Equilibrium in Two-Player Games

Suppose that rational agents know one another’s conjectures (�4.1) in state

!, so that for all i and j ¤ i ,if �!
i .s�i/ > 0 and sj 2 Sj is player j ’s

pure strategy in s�i , then sj is a best response to his conjecture �!
j . We

146
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then have a genuine “equilibrium in conjectures,” as now no agent has an

incentive to change his pure strategy choice si , given the conjectures of the
other players. We have the following theorem.

THEOREM 8.1 Let G be an epistemic game players who are Bayesian ra-

tional at !, and suppose that in state ! each player i knows the others’

actions s�i .!/. Then s.!/ is a Nash equilibrium.

PROOF: To prove this theorem, which is due to Aumann and Branden-

burger (1995), note that for each i , i knows the other players’ actions at
!, so �!

i .s�i/ D 1, which implies s�i .!/ D s�i by K3, and i’s Bayesian

rationality at ! then implies si .!/ is a best response to s�i .

We say a Nash equilibrium in conjectures .�!
1 ; : : : ; �

!
n / occurs at ! if for

each player i , si .!/ is a best response to �!
i , and for each i , �!

i 2 
�S�i .

We then have the following theorem.

THEOREM 8.2 Suppose G is a two-player game, and at ! 2 �, for i D
1; 2, j ¤ i .

a. Each player knows the other is rational: i.e., 8! 0 2 Pi!, sj .!
0/ is a

best response to �!0

j ;

b. Each player knows the other’s beliefs; i.e., Pi! � f! 0 2 �j�!0

j D �!
j g.

Then, the mixed-strategy profile .	1; 	2/ D .�!
2 ; �

!
1 / is a Nash equilibrium

in conjectures.

PROOF: To prove the theorem, which is due to Aumann and Brandenburger

(1995) and Osborne and Rubinstein (1994), suppose s1 has positive weight

in 	1 D �!
2 . Because �!

2 .s1/ > 0, there is some ! 0 such that ! 0 2 P2! and

s1.!
0/ D s1. By (a) s1 is a best reply to �!0

1 , which is equal to �!
1 by (b).

Thus s1 is a best reply to 	2 D �!
1 , and a parallel argument shows that s2 is

a best reply to 	1, so .	1; 	2/ is a Nash equilibrium.

8.2 A Three-Player Counterexample

Unfortunately theorem 8.2, which says that Bayesian rationality and mu-

tual knowledge of conjectures imply Nash equilibrium, does not extend to

three or more players. For example figure 8.1 shows a game where Al-

ice chooses the row (U;D), Bob chooses the column (L;R), and Carole
chooses the matrix (E;W ) (this example is due to Osborne and Rubinstein,
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3,0,0

0,2,00,0,0

3,2,0

2,3,0

W E

RL

D

U U

D

L R

0,0,00,3,0

2,0,0

Figure 8.1. Alice, Bob and Carole

1994, p. 79). Note that every strategy of Carole’s is a best response be-

cause her payoff is identically zero. We assume there are seven states, so

� D f!1; : : : ; !7g, as depicted in figure 8.2. States !1 and !7 represent

Nash equilibria. There are also two sets of mixed-strategy Nash equilibria.
In the first, Alice plays D, Carole plays 2=5W C 3=5E, and Bob plays

anything (Carole’s strategy is indeed specified by the condition that it gives

Bob equal payoffs for all strategies), while in the second, Bob plays L,

Carole plays 3=5W C 2=5E, and Alice plays anything (this time, Carole’s

strategy is specified by the condition that it equalizes all Alice’s payoffs).

!1 !2 !3 !4 !5 !6 !7

P 32/95 16/95 8/95 4/95 2/95 1/95 32/95

s1 U D D D D D D

s2 L L L L L L R

s3 W E W E W E E

PA f!1g f!2 !3g f!4 !5g f!6g f!7g

PB f!1 !2g f!3 !4g f!5 !6g f!7g

PC f!1g f!2g f!3g f!4g f!5g f!6g f!7g

Figure 8.2. Information structure for the Alice, Bob, and Carole Game. Note that

P is the probability of the state, si is i ’s choice in the corresponding state, and Pi

is the knowledge partition for individual i .

Because there is a common prior (the P row in figure 8.2) and every

state is in the corresponding cell of partition for each player (the last three
rows in the figure), these are true knowledge partitions. Moreover, the pos-

terior probabilities for the players are compatible with the knowledge op-

erators for each player. For instance, in state !4, PA!4 D f!4; !5g, and

the conditional probability of !4, given PA!4, is 2/3, and that of !5 is 1/3.

Therefore, Alice’s conjecture for Bob is �
!4

AB D L, and for Carole it is

�
!4

AC D 2=3E C 1=3W . Alice’s move at !4, which is D, is therefore a
best response, with a payoff of 2 as opposed to the payoff of 2/3 earned
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from playing U against L and 2=3E C 1=3W . Moreover, Alice knows

that Carole is rational at !4 (trivially, because her payoff does not depend
on her move). Alice knows Bob’s beliefs at !4 because Bob could be in

PB partition cell f!3; !4g or f!5; !6g, in both of which he believes Alice

plays D and Carole plays 2=3W C 1=3E. She also knows that Bob plays

L in both cells, and Bob is rational because L pays off 2 against D and

2=3W C 1=3E, as opposed to a payoff of 2/3 from playing R. Similarly,

at !4, PB!4 D f!3; !4g, so Bob knows that Alice is in PA partition cell
f!2; !3g or f!4; !5g, in both of which Alice knows that Bob plays L and

Carole plays 2=3EC1=3W . Thus, Bob knows Alice’s beliefs and that Alice

is rational in playing D. Similar reasoning shows that Carole knows Alice

and Bob’s beliefs and that they are rational at !4. Thus, all the conditions

of the previous theorem are satisfied at !4 but, of course, the conjectures at

!4 do not form a Nash equilibrium because �
!4

AB D L and �
!4

BA D D are

not part of any Nash equilibrium of the game.
The reason theorem 8.2 does not extend to this three-player game is that

Alice and Bob have different conjectures as to Carole’s behavior, which is

possible because Carole has more than one best response to Alice and Bob.

They both know Carole is rational, and they both know Carole believes

�!
C D fD;Lg for ! 2 f!2; : : : ; !5g. However, these conditions do not

determine Carole’s mixed strategy. Thus, mutual knowledge of rationality
and beliefs is not sufficient to ensure that a Nash equilibrium will be played.

8.3 The Modal Logic of Common Knowledge

Suppose we have a set of n agents, each of whom has a knowledge operator

Ki , i D 1; : : : ; n. We say E � � is a public event if E is self-evident for

all i D 1; : : : ; n. By K1, � is a public event, and if E and F are public

events, so is E \ F , by K2a. Hence, for any ! 2 �, there is a minimal
public event P�! containing !; namely the intersection of all public events

containing !.

We can construct P�! as follows. First, let

P1
�! D

[
j 2N

Pj!; (8.1)

which is the set of states that are possible for at least one agent at !. Now,

! is possible for all players i from every state ! 0 2 P1
�!, but an arbitrary

! 0 2 P1
�! is possible for some player i at !, although not necessarily for
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all. So, P1
�! may not be a public event. Thus, we define

P2
�! D

[
fP1

�!
0j! 0 2 P1

�!g; (8.2)

which is the set of states that are possible for some agent at some state in

P1
�!; i.e., this is the set of states that are possible for some agent from some

state ! 0 that is possible for some (possibly other) agent at !. Using similar
reasoning, we see that any state in P1

� is possible for any player i and any

state ! 0 2 P2
�, but there may be states in P2

�! that are possible for one

or more agents but not for all agents. In general, having defined Pi
�! for

i D 1; : : : ; k 
 1, we define

Pk
�! D

[
fP1

�!
0j! 0 2 Pk�1

� !g: (8.3)

Finally, we define

P�! D

1[
kD1

Pk
�!: (8.4)

This is the set of states ! 0 such that there is a sequence of states ! D
!1; !2; : : : ; !k�1; !k D ! 0 such that !rC1 is possible for some agent at !r

for r D 0; : : : ; r 
 1. Of course, this is really a finite union because � is a

finite set. Therefore, for some k, Pk
�! D PkCi

� ! for all i � 1.
We can show that P�! is the minimal public event containing !. First,

P�! is self-evident for each i D 1; : : : ; n because for every ! 0 2 P�!,

! 0 2 Pk
�! for some integer k � 1, so Pi!

0 � PkC1
� ! � P�!. Hence P�!

is a public event containing !. Now let E be any public event containing

!. Then, E must contain Pi! for all i D 1; : : : ; n, so P1
�! � E. Assume

we have proven P
j
�! � E for j D 1; : : : ; k. Because Pk

�! � E and E is a

public event, then PkC1
� ! D P1

�.P
k
�!/ � E. Thus, P�! � E.

The concept of a public event can be defined directly in terms of the

agents’ partitions P1; : : : ;Pn. We say partition P is coarser than partition

Q if every cell of Q lies in some cell of P , and we say P is finer than Q

if Q is coarser than P . The public event partition P� corresponding to P�

is then the finest common coarsening of the partitions P1; : : : ;Pn of the

individual players.

To visualize these concepts, we return to the cornfield analogy (�4.1).

To coarsen a partition, simply remove one or more fence segments, and

then to be tidy, repeatedly remove any fence segments that have either end
unconnected to another segment. To refine (i.e., make finer) a partition,
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simply partition one or more of its cells. If the field has two partitions,

visualize one with fence segments colored red and the other with fence
segments colored blue. Where the fence segments intersect, let them share

a common fence pole. Where a red and a blue fence segment separate

the same cornstalks, including the fence segments surrounding the whole

cornfield, merge them into red and blue striped fence segments. The finest

common coarsening of the two partitions is then the partition formed by

removing all fence segments that are of only one color.
This visualization extends directly to the public event partition corre-

sponding to the knowledge partitions in an n-player game. We give each

player’s fence partition a distinctive color, and we allow two or more agents

to share fence segments by applying multiple colors to shared segments.

We allow fence segments of different agents to pass through one another

by placing a common fence pole at a point of intersection. Now, remove

all fence segments that have fewer than n colors. What remains is the pub-
lic event partition. Alternatively, the minimal public event P�! containing

state ! consists of the states that can be attained by walking from ! to any

state in the field, provided one never climbs over a fence shared by all the

players.

Clearly the operator P� satisfies P1. To show that it also satisfies P2,

suppose ! 0 2 P�!. Then, by construction, P�!
0 � P�!. To show that

P�!
0 D P�!, note that ! 0 2 Pk

�! for some k. Therefore, by construction,

there is a sequence ! D !1; !2; : : : ; !k�1; !k D ! 0 such that!j C1 2 Pij!j

for some ij 2 n for j D 1; : : : ; k 
 1. However, reversing the order of the

sequence shows that ! 2 P�!
0. Therefore, P�! D P�!

0. This proves that

P2 holds, so P� has all the properties of a possibility operator.

It follows that P� is a possibility operator. We define a public event oper-
ator K� as the knowledge operator corresponding to the possibility operator

P�, so K�E D f!jP�! � Eg. We can then define an event E as a public

event at ! 2 � if P�! � E. Thus, E is a public event if and only if E is

self-evident to all players at each ! 2 E. Also, E is a public event if and

only ifE is the union of minimal public events of the form P�!. Moreover,

K5 shows that if E is a public event, then at every ! 2 E everyone knows

that E is a public event at !.
In the standard treatment of common knowledge (Lewis 1969; Aumann

1976), an event is common knowledge if everyone knows E, everyone

knows that everyone knowsE, and so on. A public event is always common

knowledge, and conversely. To see this, suppose E is a public event. Then,
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for any i; j; k D 1; : : : ; n, KiE D E, Kj KiE D KjE D E, KkKj KiE D
KkE D E, and so on. Thus, all events of the form KkKj : : :KiE are self-
evident for k, so E is common knowledge. Conversely, suppose that for

any sequence i; j; : : : ; k D 1; : : : ; n, KiKj : : :KkE � E. Then, for any

! 2 E, because Pi! � E, we have P1
�! � E, where P1

� is defined in (8.1).

We also have KiP
1
�! � E because KiKjE � E for i; j D 1; : : : ; n, so

P2
�! � E from (8.2). From (8.3), we now see that Pk

�! � E for all k, so

P�! � E. Therefore E is the union of public events and hence is a public
event.

E

� !
PA!

PB!

PB!
0

� ! 0

Figure 8.3. The case where, at !, Bob knows that Alice knows E.

Figure 8.3 shows the situation where Alice knows E at !, because her
minimal self-evident event PA! at ! lies within E. Moreover PA! inter-

sects two of Bob’s minimal self-evident events, PB! and PB!
0. Because

both of PB! and PB!
0 lie within E, Bob knows that Alice knows that E at

! (and at every other state in PA!).

8.4 The Commonality of Knowledge

We have defined a public event as an event that is self-evident to all players.

We then showed that an eventE is public if and only if it is common knowl-

edge. It appears, then, that at a public event there is a perfect commonality

of knowledge: players know a great deal about what other players know.
Where does this knowledge come from? The answer is that we have tacitly

assumed that the way each individual partitions� is known to all, not in the

formal sense of a knowledge operator but rather in the sense that an expres-

sion of the form Ki KjE makes sense and means “i knows that j knows

that E.” Formally, to say that i knows that j knows E at ! means that at

every state ! 0 2 Pj!, Pi!
0 � E. But i knows that this is the case only if

he knows Pj!, which allows him to test Ki!
0 � E for each ! 0 2 Pj!.
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For example, suppose Alice, Bob, and Carole meet yearly on a certain

date at a certain time to play a game G. Suppose, by chance, all three
happen to be in Dallas, Texas, the day before, and although they do not see

each other, each witnesses the same highly unusual event x. We define the

universe � D f!;! 0g, where the unusual even occurs in ! but not in ! 0.

Then, PA! D PB! D PC! D f!g, and hence KA! D KB! D KC! D
f!g. Thus ! is self-evident to all three individuals, and hence ! is a public

event. Therefore at !, Alice knows that Bob knows that Carole knows !,
and so on. But, of course, this is not the case. Indeed, none of the three

individuals is aware that the others know the event x.

The problem is that we have misspecified the universe. Suppose an event

! is a four-vector, the first entry of which is either x or :x (meaning

“not x”) and the other three are “true” or “false,” depending on whether

Alice, Bob, and Carole, respectively, knows or does not know whether

x occurred. The universe � now has 16 distinct states, and the state
! that actually occurred is ! D Œx; true, true, true]. However, now

PA! D f! 0 2 �j! 0Œ1� D x ^ ! 0Œ2� D trueg. Therefore, the state ! is

now not self-evident for Alice. Indeed, the smallest self-evident event PA!

for Alice at ! in this case is � itself!

This line of reasoning reveals a central lacuna in epistemic game theory:

its semantic model of common knowledge assumes too much. Economists
have been misled by the elegant theorem that says mutual self-evidence im-

plies common knowledge into believing that the axioms of rational choice

imply something substantive concerning the commonality of knowledge

across agents. They do not. Indeed, there is no formal principle specifying

conditions under which distinct individuals attribute the same truth value to

a proposition p with empirical content (we can assume rational agents all
agree on mathematical and logical tautologies) or have a mental represen-

tation of the fact that others attribute truth value to p. We address this be-

low by sketching the attributes of what we have termed mutually accessible

events (�7.8).

8.5 The Tactful Ladies

While walking in a garden, Alice, Bonnie, and Carole encountered a violent

thunderstorm and were obliged to duck hastily into a restaurant for tea.

Carole notices that Alice and Bonnie have dirty foreheads, although each
is unaware of this fact. Carole is too tactful to mention this embarrassing
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situation, which would surely lead them to blush, but she observes that, like

her, each of the two ladies knows that someone has a dirty forehead but is
also too tactful to mention this fact. The thought occurs to Carole that she

also might have a dirty forehead, but there are no mirrors or other detection

devices handy that might help resolve her uncertainty.

At this point, a little boy walks by the three young ladies’ table and ex-

claims, “I see a dirty forehead!” After a few moments of awkward silence,

Carole realizes that she has a dirty forehead and blushes.
How is this feat of logical deduction possible? Certainly, it is mutually

known among the ladies that at least one of them has a dirty forehead, so

the little boy did not inform any of them of this fact. Moreover, each lady

can see that each of the other ladies sees at least one dirty forehead, so it is

mutually known that each lady knew the content of the little boy’s message

before he delivered it. However, the little boy’s remark does inform each

lady that they all know that they all know that one of them has a dirty
forehead. This is something that none of the ladies knew before the little

boy’s announcement. For instance, Alice and Bonnie each knows she might

not have a dirty forehead, so Alice knows that Bonnie might believe that

Carole sees two clean foreheads, in which case Alice and Bonnie know that

Carole might not know that there is at least one dirty forehead. Following

the little boy’s announcement, however, and assuming the other ladies are
logical thinkers (which they must be if they are Bayesian decision makers),

Carole’s inference concerning the state of her forehead is unavoidable.

To see why, suppose Carole does not have a dirty forehead. Carole then

knows that Alice sees one dirty forehead (Bonnie’s), so Alice has learned

nothing from the little boy’s remark. But Carole knows that Bonnie sees

that Carole’s forehead is not dirty, so if Bonnie’s forehead is not dirty, then
Alice would see two clean foreheads, and the little boy’s remark would

have implied that Alice knows that she is the unfortunate possessor of a

dirty forehead. Because Alice did not blush, Carole knows that Bonnie

would have concluded that she herself must have a dirty forehead and would

have blushed. Because Bonnie did no such thing, Carole knows that her

assumption that she has a clean forehead is false.

To analyze this problem formally, suppose � consists of eight states of
the form ! D xyz, where x; y; z 2 fd; cg are the states of Alice, Bonnie,

and Carole, respectively, and where d and c stand for “dirty forehead” and

“clean forehead,” respectively. Thus, for instance, ! D ccd is the state

of the world where Carole has a dirty forehead but Alice and Bonnie both
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have clean foreheads. When Carole sits down to tea, she knows EC D
fddc; dddg, meaning she sees that Alice and Bonnie have dirty foreheads,
but her own forehead could be either clean or dirty. Similarly, Alice knows

EA D fcdd; dddg and Bonnie knowsEB D fdcd; dddg. Clearly, no lady

knows her own state. What does Bonnie know about Alice’s knowledge?

Because Bonnie does not know the state of her own forehead, she knows

that Alice knows the event “Carole has a dirty forehead,” which is EBA D
fcdd; ddd; ccd; dcdg. Similarly, Carole knows that Bonnie knows that
Alice knows ECBA D fcdd; ddd; ccd; dcd; cdc; ddc; ccc; dccg D �.

Assuming Carole has a clean forehead, she knows that Bonnie knows

that Alice knows E 0
CBA D fcdc; ddc; dcc; cccg. After the little boy’s

announcement, Carole then knows that Bonnie knows that Alice knows

E00
CBA D fcdc; ddc; dccg, so if Bonnie did not have a dirty forehead, she

would know that Alice knows E00
BA D fdccg, so Bonnie would conclude

that Alice would blush. Thus, Bonnie’s assumption that she herself has a
clean forehead would be incorrect, and she would blush. Because Bonnie

does not blush, Carole knows that her assumption that she herself has a

clean forehead is incorrect.
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Figure 8.4. The Tactful Ladies Problem

There is an instructive visual way to approach the problem of the Tactful
Ladies Problem, due to Fagin et al. (1995) and illustrated in figure 8.4.
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Think of each of the ladies as owning one of the three axes in this figure,

each corner of the cube representing one of the eight states of the world. The
endpoints of lines parallel to an axis represent minimal self-evident events

for the lady owning that axis; i.e., the lady in question cannot determine

whether her own forehead is dirty.

Because the endpoints of every line segment represent a minimal self-

evident event for one of the ladies, a node is reachable from another pro-

vided there is some path along the lines of the graph, connecting the first
to the second. What, for instance, does it mean that ccc is reachable from

ddd along the arrows in panel FA of the figure? First, at ddd , Alice be-

lieves cdd is possible, at cdd , B believes ccd is possible, and at ccd , C

believes that ccc is possible. In other words, at ddd , Alice believes that it

is possible that B believes that it is possible that C believes that ccc might

be the true state. Indeed, it is easy to see that any sequence of moves around

the cube corresponds to some statement of the form “x believes it is pos-
sible that y believes it is possible that . . . , and so on. We define an event

E � � as a public event, or common knowledge, if every state ! 2 E is

reachable from every other in this manner. Clearly, the only public event is

� itself.

When the little boy announces b (that someone has a dirty forehead),

assuming this statement is taken as truthful, then the three ladies all know
that ccc cannot occur, so we can delete all the paths from some state to ccc.

The result is shown in pane FB of the figure. Now, if dcc were the state,

Alice would know she has a dirty forehead, and because she apparently

does not know this, we can delete the lines terminating in dcc, leading to

pane FC in the figure. Now, at ddc or cdc, Bonnie would know she has

a dirty forehead, so we can delete the lines connecting to these two nodes.
This leaves the nodes depicted in pane FD. Clearly, Carole knows at this

event that she has a dirty forehead, but Alice and Bonnie do not.

8.6 The Tactful Ladies and the Commonality of Knowledge

The Tactful Ladies Problem involves many unstated epistemological asser-

tions going far beyond the common knowledge of rationality involved in the

conclusion that Carole knows the state of her forehead. Let us see exactly

what they are.

Let xi be the condition that i has a dirty forehead and let ki be the knowl-
edge operator for i , where i D A;B;C , standing for Alice, Bonnie, and
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Carole, respectively. When we write i , we mean any i D A;B;C , and

when we write i; j , we mean any i; j D A;B;C , with j ¤ i , and when
we write i; j;m we mean i; j;mDA;B;C and i¤j ¤m¤ i . Let yi be the

condition that i blushes. The six symbols xi and yi represent the possible

states of affairs in a state space �. Let E be the event prior to the little

boy’s exclamation b D xA _ xB _ xC .

The statement of the problem tells us that xi 2 E and kixj 2 E; i.e.,

each lady sees the forehead of the other two ladies, but not her own. The
problem also asserts that kixi ) yi 2 E (a lady who knows she has a dirty

forehead will blush), and yi ) kjyi 2 E. It is easy to check that these

conditions are compatible with :kixi 2 E; i.e., no lady knows the state of

her own forehead at event E. These conditions also imply that kib 2 E

(each lady knows the little boy’s statement is true).

While the problem intends that kixj ) kikmxj 2 E (i.e., if i knows

that j has a dirty forehead, she then knows that m knows this as well), this
implication does not follow from any principle of rationality, so we must

include it as a new principle. The concept needed is that of a mutually

accessible natural occurrence. The mutual accessibility of xi to j and m

may appear to be a weak assumption, but in fact it is the first time we have

made a substantive assertion that one agent knows that another agent knows

something. With this assumption, kikjb 2 E follows—each lady knows the
others know b holds inE (recall that b is the little boy’s statement that ccc

is false). To see this, note that kixj ) kikmxj ) kikmb, which is true for

all i and m ¤ i .

LetE0 be the state of knowledge following the exclamation b D xA_xB _
xC , which we assume is common knowledge. To prove that in E0 one of the

ladies (e.g., Carole) blushes, we will assume that yi is mutually accessible
to j;m, and j is a symmetric reasoner with respect to m concerning event

yi .

The reasoning following the little boy’s statement can be summarized

as follows. We will show that if Carole assumes :xC at any state in E 0,

she will arrive at a contradiction. Assuming :xC is true and b is common

knowledge, we have kCkB.:xB ) kA:xB ) kA.:xB ^ :xC ^ b/ )
kAxA ) yA/ ) kCkByA ) kCyA, which is false in E0. Thus in E0,
kCkBxB ) kCyB , which is not true at any state in E0. Hence xC is true in

E 0, and since Carole knows the current state is in E0, kCxC , she blushes.
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8.7 Agreeing to Disagree

In a four-page paper buried in the Annals of Statistics, Robert Aumann

(1976) proved a remarkable theorem. He showed that if two agents have

the same priors concerning an event, if they update their priors using their

private knowledge of the current state !, and if their posterior probabilities

are common knowledge, then these posterior probabilities must be equal. In
short, two rational agents with common priors cannot “agree to disagree”

even though the information upon which each bases his updating can be

quite different. I will call any theorem with this conclusion an agreement

theorem. Aumann commented “We publish this observation with some dif-

fidence, because once one has the appropriate framework, it is mathemat-

ically trivial.” (p. 1236) It is valuable to understand this theorem and its
generalizations because, as it turns out, the common knowledge conditions

for a Nash equilibrium are such as to entail an agreement theorem among

the agents as to how they will play the game.

Suppose Alice and Bob have a common prior p over �, where p.!/ > 0

for all ! 2 �. Suppose the actual state is !˛, leading Alice to update

the probability of an event E from p.E/ to pA.E/ D p.EjPA!˛/ D a

and leads Bob to update p.E/ to pB.E/ D p.EjPB!˛/ D b. Then, if
pA.E/ D a and pB.E/ D b are common knowledge, we must have a D b.

Thus, despite the fact that Alice and Bob may have different information

(PA!˛ ¤ PB!˛), their posterior probabilities cannot disagree if they are

common knowledge.

To see this, suppose the minimal public event containing !˛ is K!˛
� D

PA!1 [ : : : [ PA!k , where each of the PA!i is a minimal self-evident
event for Alice. Because the event pA.E/ D a is common knowledge,

it is constant on K!˛
� , so for any j , a D pA.E/ D p.EjPA!j / D

p.E \ PA!j /=p.PA!j /, so p.E \ PA!j / D ap.PA!j /. Thus,

pA.E \ K!˛

� / D p.E \ [iPA!i/ D p.[iE \ PA!i/

D
X

i

p.E \ PA!i/ D a
X

i

p.PA!i/ D ap.K!˛

� /:

However, by similar reasoning, pA.E \ K!˛
� / D bp.K!˛

� /. Hence, a D b.

It may seem that this theorem would have limited applicability because

when people disagree, their posterior probabilities are usually private in-

formation. But suppose Alice and Bob are risk-neutral, each has certain
financial assets, they agree to trade these assets, and there is a small cost
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to trading. Let E be the event that the expected value of Alice’s assets is

greater than the expected value of Bob’s assets. If they agree to trade, then
Alice believes E with probability 1 and Bob believes E with probability 0,

and this is indeed common knowledge, because their agreement indicates

that they desire to trade. This is a contradictory situation, which proves that

Alice and Bob cannot agree to trade.

Because in the real world people trade financial assets every day in huge

quantities, this proves that either common knowledge of rationality or com-
mon priors must be false. In fact, both are probably false. As I argued

in �5.11, a rational agent violates CKR whenever such a violation will in-

crease his expected payoff, a situation that is often the case where the sub-

game perfect equilibrium has relatively low payoffs for the players (�5.9,

5.7). Moreover, there is little reason to believe that the Harsanyi doctrine

(�7.7) holds with respect to stock market prices (Kurz 1997).

We can generalize Aumann’s argument considerably. Let f .P / be a real
number for every P � �. We say f satisfies the sure-thing principle on

� if, for all P;Q � � with P \ Q D ;, if f .P / D f .Q/ D a, then

f .P [ Q/ D a. For instance, if p is a probability distribution on � and

E is an event, then the posterior probability f .X/ D p.EjX/ satisfies

the sure-thing principle, as does the expected value f .X/ D EŒxjX� of a

random variable x given X � �. We then have the following agreement

theorem (Collins 1997):

THEOREM 8.3 Suppose that for each agent i D 1; : : : ; n, fi satisfies the

sure-thing principle on � and suppose it is common knowledge at ! that

fi D si . Then fi .K
!
� / D si for all i , where K!

� is the cell of the common

knowledge partition that contains !.

PROOF: To prove this theorem, note that K!
� is the disjoint union of i’s

possibility sets Pi!
0 and that fi D si on each of these sets. Hence, by the

sure-thing principle, fi D si on K!
� .

COROLLARY 8.3.1 Suppose agents i D 1; : : : ; n have a common prior on

�, indicating an event E has probability p.E/. Suppose each agent i now

receives private information that the actual state ! is in Pi!. Then, if

the posterior probabilities si D p.EjPi!/ are common knowledge, s1 D
: : : D sn.

COROLLARY 8.3.2 Suppose rational, risk-neutral agents i D 1; : : : ; n

have the same subjective prior p on �, and each has a portfolio of assets
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Xi , all of which have equal expected value Ep.X1/ D : : : D Ep.Xn/, and

there is a small trading cost  > 0, so no pair of agents desires to trade. In

state !, where agents have posterior expected values Ep.Xi jPi!/, it cannot

be common knowledge that an agent desires to trade.

Finally, we come to our sought-after relationship between common

knowledge and Nash equilibrium:

THEOREM 8.4 Let G be an epistemic game with n > 2 players, and let

�! D �!
1 ; : : : ; �

!
n be a set of conjectures. Suppose the players have a

common prior p, all players are rational at ! 2 �, and it is commonly

known at ! that � is the set of conjectures for the game. Then, for each

j D 1; : : : ; n, all iDj induce the same conjecture 	j .!/ about j ’s action,

and .	1.!/; : : : ; 	n.!// form a Nash equilibrium of G.

The surprising aspect of this theorem is that if conjectures are common

knowledge, they must be independently distributed. This is true, essen-

tially, because it is assumed that a player’s prior �!
i is independent of his

own action si .!/. Thus, when strategies are common knowledge, they can

be correlated, but their conditional probabilities given ! must be indepen-
dently distributed.

PROOF: To prove this theorem, we note that, by (8.3), � D �!
1 ; : : : ; �

!
n

are common knowledge at !, and hence .	1.!/; : : : ; 	n.!// are uniquely

defined. Because all agents are rational at !, each si.!/ maximizes

EŒ�i .si ; �
!
i /�. It remains only to show that the conjectures imply that agent

strategies are uncorrelated. Let F D f! 0j�!0

jis common knowledgeg.
Because ! 2 F and p.P!/ > 0, we have p.F / > 0. Now, let

Q.a/ D P.Œs�jF / and Q.si/ D P.Œsi �jF /, where in general we define

Œx� D f! 2 �jx.!/ D xg for some variable function x W�! R (thus,

Œs� D f! 2 �js.!/ D sg/: Note that Q.a/ D P.Œs� \ F /=P.F /.

Now, let Hi D Œsi � \ F . Because F is commonly known and Œsi � is

known to i , Hi is known to i . Hence Hi is the union of minimal i-

known events of the form Pi!
0, and p.Œsi � \ Pi!

0/ D �!
i .s�i/p.Pi!

0/.
Adding up over all the P!0

i comprising Hi (a disjoint union), we conclude

P.Œs� \ F / D P.Œs�i � \ H/ D �!
i .s�i /P.Hi/ D �!

i .s�i /Q.si/P.F /.

Dividing by P.F /, we get Q.a/ D �!
i .s�i /Q.si/ D Q.s�i/Q.si/.

It remains to prove that if Q.a/DQ.s�i/Q.si/ for all iD1; : : : ; n, then

Q.a/D Q.s1/ 	 	 	Q.sn/. This is clearly true for n D 1; 2. Suppose it is

true for nD1; 2; : : : ; n
 1. Starting withQ.a/DQ.s1/Q.s�1/, where aD
.s1; : : : ; sn/, we sum over si , gettingQ.s�n/DQ.s1/Q.s2; : : : ; sn�1/. Sim-
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ilarly,Q.s�i/DQ.si/Q.s2; : : : ; si�1; siC1; : : : ; sn�1/ for any iD1; : : : ; n

1. By the induction hypothesis, Q.s�n/ D Q.s1/Q.s2/ 	 	 	Q.sn�1/, so
Q.a/DQ.s1/ 	 	 	Q.sn/.

Theorem 8.4 indicates that common priors and common knowledge of

conjectures are the epistemic conditions we need to conclude that rational

agents will implement a Nash equilibrium. The question, then, is under

what conditions are common priors and common knowledge of conjectures

likely to be instantiated in real-world strategic interactions?

8.8 The Demise of Methodological Individualism

There is a tacit understanding among classical game theorists that no infor-
mation other than the rationality of the agents should be relevant to analyz-

ing how they play a game. This understanding is a form of methodological

individualism, a doctrine that holds that social behavior consists of the in-

teraction of individuals, so nothing beyond the characteristics of individuals

is needed, or even permitted, in modeling social behavior.

The most prominent proponent of methodological individualism was
Austrian school economist and philosopher Ludwig von Mises, in his book

Human Action, first published in 1949. While most of Austrian school eco-

nomic theory has not stood the test of time, methodological individualism

has, if anything, grown in stature among economists, especially since the

“rational expectations” revolution in macroeconomic theory (Lucas 1981).

“Nobody ventures to deny,” writes von Mises, “that nations, states, mu-
nicipalities, parties, religious communities, are real factors determining the

course of human events.” He continues: “Methodological individualism,

far from contesting the significance of such collective wholes, considers it

as one of its main tasks to describe and to analyze their becoming and their

disappearing, their changing structures, and their operation.” Von Mises’ ar-

guments in favor of this principle involve an appeal neither to social theory

nor social fact. Rather, he asserts, “a social collective has no existence and
reality outside of the individual members’ actions. . . . the way to a cogni-

tion of collective wholes is through an analysis of the individuals’ actions.”

(p. 42).

This defense, of course, is merely a restatement of the principle. A pass-

ing familiarity with levels of explanation in natural science shows that it

is not prima facie plausible. A computer, for instance, is composed of a
myriad of solid-state and other electrical and mechanical devices, but stat-
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ing that one can successfully model the operation of a computer using only

models of the behavior of these underlying parts is just false, even in princi-
ple. Similarly, eukaryotic cells are composed of a myriad of organic chem-

icals, yet organic chemistry does not supply all the tools for modeling cell

dynamics.

We learn from modern complexity theory that there are many levels of

physical existence on earth, from elementary particles to human beings,

each level solidly grounded in the interaction of entities at a lower level,
yet having emergent properties that are ineluctably associated with the dy-

namic interaction of its lower-level constituents, yet are incapable of being

explained on a lower level. The panoramic history of life synthesis of bi-

ologists Maynard Smith and Szathmáry (1997) elaborates this theme that

every major transition in evolution has taken the form of a higher level of

biological organization exhibiting properties that cannot be deduced from

its constituent parts. Morowitz (2002) extends the analysis to emergence in
physical systems. Indeed, the point should not be mystifying because there

is nothing preventing the most economical model of a phenomenon from

being the model itself (Chaitin 2004). Adding emergent properties as fun-

damental entities in the higher-level model thus may permit the otherwise

impossible: the explanation of complex phenomena.

Epistemic game theory suggests that the conditions ensuring that individ-
uals play a Nash equilibrium are not limited to their personal characteristics

but rather include their common characteristics, in the form of common pri-

ors and common knowledge. We saw (theorem 7.2) that both individual

characteristics and collective understandings, the latter being irreducible to

individual characteristics, are needed to explain common knowledge. It is

for this reason that methodological individualism is incorrect when applied
to the analysis of social life.

Game theory has progressed by accepting no conceptual constructs above

the level of the individual actor, as counseled by methodological individual-

ism. Social theory operating at a higher level of aggregation, such as much

sociological theory, has produced important insights but has not developed

an analytical core on which solid cumulative explanatory progress can be

based. The material presented here suggests the fruitfulness of dropping
methodological individualist ideology but carefully articulating the analyt-

ical linkages between individually rational behavior and the social institu-

tions that align the beliefs and expectations of individuals, making possible

effective social intercourse.
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Methodological individualism is inadequate, ultimately, because human

nature in general, and human rationality in particular, are products of bio-
logical evolution. The evolutionary dynamic of human groups has produced

social norms that coordinate the strategic interaction of rational individu-

als and regulate kinship, family life, the division of labor, property rights,

cultural norms, and social conventions. It is a mistake (the error of method-

ological individualism) to think that social norms can be brought within the

purview of game theory by reducing a social institution to the interaction
of rational agents.
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Reflective Reason and Equilibrium Refinements

If we allow that human life can be governed by reason, the possibil-
ity of life is annihilated.

Leo Tolstoy

If one weight is twice another, it will take half as long to fall over a
given distance.

Aristotle, On the Heavens

In previous chapters, we have stressed the need for a social epistemology

to account for the behavior of rational agents in complex social interactions.

However, there are many relatively simple interactions in which we can use
some form of reflective reason to infer how individuals will play. Since

reflective reason is open to the players as well as to us, in such cases we

expect Nash equilibria to result from play. However, in many cases there

are a plethora of Nash equilibria, only some of which will be played by

reasonable agents.

A Nash equilibrium refinement of an extensive form game is a criterion
that applies to all Nash equilibria that are deemed reasonable but fails to

apply to other Nash equilibria that are deemed unreasonable, based on our

informal understanding of how rational individuals might play the game. A

voluminous literature has developed in search of an adequate equilibrium

refinement criterion. A number of criteria have been proposed, including

subgame perfect, perfect, perfect Bayesian, sequential, and proper equi-
librium (Harsanyi 1967; Myerson 1978; Selten 1980; Kreps and Wilson

1982; Kohlberg and Mertens 1986), which introduce player error, model

beliefs off the path of play, and investigate the limiting behavior of per-

turbed systems as deviations from equilibrium play go to zero.1

I present a new refinement criterion that better captures our intuitions and

elucidates the criteria we use implicitly to judge a Nash equilibrium as rea-

sonable or unreasonable. The criterion does not depend on counterfactual

1Distinct categories of equilibrium refinement for normal-form games, not addressed

in this chapter, are focal point (Schelling 1960; Binmore and Samuelson 2006), and risk

dominance (Harsanyi and Selten 1988) criteria. The perfection and sequential criteria are

virtually coextensive (Blume and Zame 1994) and extend the subgame perfection criterion.

164
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or disequilibrium beliefs, trembles, or limits of nearby games. I call this the

local best response (LBR) criterion. The LBR criterion appears to render
the traditional refinement criteria superfluous.

The traditional refinement criteria are all variants of subgame perfection

and hence suffer from the fact that there is generally no good reason for

rational agents to choose subgame perfect strategies in situations where

CKR cannot be assumed. The LBR criterion, by contrast, is a variant of

forward induction, in which agents infer from the fact that a certain node in
the game tree has been attained that certain future behaviors can be inferred

from the fact that the other players are rational.

We assume a finite extensive form game G of perfect recall, with players

i D 1; : : : ; n and a finite pure-strategy set Si for each player i , so S D
S1�	 	 	�Sn is the set of pure-strategy profiles for G, with payoffs �i WS!R.

Let S�i be the set of pure-strategy profiles of players other than i and let


�S�i D
Q

j ¤i 
Sj be the set of mixed strategies over S�i . Let N be the
set of information sets of G and let Ni be the information sets where player

i chooses.

A behavioral strategy p at an information set � is a probability distri-

bution over the actions A� available at �. We say p is part of a strategy

profile 	 if p is the probability distribution over A� induced by 	 . We say

a mixed-strategy profile 	 reaches an information set � if a path through
the game tree that occurs with strictly positive probability, given 	 , passes

through a node of �.

For player i and �2Ni , we call �� 2 
�S�i a conjecture of i at �. If ��

is a conjecture at �2Ni and j ¤ i , we write ��
� for the marginal distribution

of �� on �2Nj , so ��
� is i’s conjecture at � of j ’s behavioral strategy at �.

LetN� be the set of Nash equilibrium strategy profiles that reach informa-
tion set � and let N � be the set of information sets reached when strategy

profile 	 is played. For � 2 N� , we write p�
� for the behavioral strategy at

� (i.e., the probability distribution over the choices A� at �) induced by � .

We say a set of conjectures f��j� 2 N g supports a Nash equilibrium 	 if,

for any i and any � 2 N � \ Ni , 	i is a best response to �� .

We say a Nash equilibrium 	 is an LBR equilibrium if there is a set of

conjectures f��j�2N g supporting 	 with the following properties: (a) For
each i , each j ¤ i , each � 2 Ni , and each � 2 Nj , if N� \ N� ¤ ;, then

��
� Dp�

� for some � 2N� \N�; and (b) If player i choosing at � has several

choices that lead to different information sets of the other players (we call

such choices decisive), i chooses among those with the highest payoff.
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We can state the first condition verbally as follows. An LBR equilibrium

is a Nash equilibrium 	 supported by a set of conjectures of players at
each information set reached, given 	 , where players are constrained to

conjecture only behaviors on the part of other players that are part of a

Nash equilibrium.

9.1 Perfect, Perfect Bayesian, and Sequential Equilibria

rl

L

Alice

�

�

�

�

�

R
Bob

1,5

0,0 2,1

�2

�1

The traditional refinement criteria can be understood

as reactions to a problem appearing in the game to the

right. This game has two Nash equilibria, Ll and Rr .

The former, however, includes an incredible threat be-
cause if Bob is rational, when he is faced with a choice

at �B , he will surely choose r rather than l. If Alice

believes Bob is rational, she will not find Ll plausible and will play R, to

which r is Bob’s best response.

Selten (1975) treated this as a problem with subgame perfection (�5.2).

He noted that if we assume that there is always a small positive probability
that a player will make a wrong move and choose a random action at each

information set (called a tremble) then all nodes of the game tree must be

visited with positive probability, and only subgame-perfect equilibria will

remain. Selten defines an equilibrium 	 as perfect if, for any ı>0, there is

an >0 such that every instance of the game plus trembles of size less than

 has a Nash equilibrium within ı of 	 . Clearly, in the game above, Rr is
the only perfect equilibrium.

One weakness of this solution is that the Ll equilibrium is unreasonable

even if there is zero probability of a tremble. A more pertinent equilibrium

refinement, a perfect Bayesian equilibrium (Fudenberg and Tirole 1991),

directly incorporates beliefs in the refinement. Let N be the set of informa-

tion sets of the game. A Nash equilibrium 	 determines a behavioral strat-

egy p� for all � 2 N (i.e., a probability distribution over the actions A�

at �). An assessment � is defined to be a probability distribution over the

nodes at each information set �. An assessment must be consistent with the

behavior strategy fp�j� 2N g. Consistency means that if 	 reaches � 2 N

and x is a node in �, then �.x/ must equal the probability of reaching x,

given 	 . On an information set not reached, given 	 , � can be defined

arbitrarily. We say 	 is a perfect Bayesian equilibrium if there is a consis-
tent assessment � such that, for every player i and every information set �
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where i chooses, p� maximizes i’s payoff when played against p�� , using

the probability weights given by � at �.2

This is a rather complicated definition, but the intuition is clear. A Nash

equilibrium is perfect Bayesian if there are consistent beliefs rendering each

player’s choice at every information set payoff-maximizing. Note that for

the game above, the equilibrium Ll is not perfect Bayesian because at �B

Bob’s payoff from r is greater than his payoff from l.

Perhaps the most influential refinement criterion other than subgame per-
fect is the sequential equilibrium (Kreps and Wilson 1982). This criterion

is a hybrid of perfect and perfect Bayesian. Rather than allowing arbitrary

assessments off the path of play (i.e., where the Nash equilibrium does not

reach with positive probability), the sequential equilibrium approach per-

turbs the strategy choices using some pattern of errors and requires that the

assessment at an information set off the path of play be the limit of assess-

ment in the perturbed game as the error rate goes to zero. If the pattern
of errors is chosen appropriately, Bayes’ rule plus 	 uniquely determine a

limit assessment � at all nodes, which is the limit of consistent assessments

as the error rate goes to zero. We say 	 is a sequential equilibrium if there

is a limit assessment � such that, for every player i and every information

set � where i chooses, p� maximizes i’s payoff when played against p�� ,

using the probability weights given by � at �.

9.2 Incredible Threats
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Bob

a,5

0,0 2,1

�2

�1

In the game to the right, first suppose a D 3. All Nash

equilibria have the form .L; 	B/ for an arbitrary mixed

strategy 	B for Bob. At �A, any conjecture for Alice
supports all Nash equilibria. Since no Nash equilib-

rium reaches �B , there are no constraints on Alice’s

conjecture. At �B , Bob’s conjecture must put proba-

bility 1 on L, and any 	B for Bob is a best response to this conjecture.

Thus, all .L; 	B/ equilibria satisfy the LBR criterion. While only one of

these equilibria is subgame perfect, none involves an incredible threat, and
hence there is no reason a rational Bob would choose one strategy profile

over another. This is why all satisfy the LBR criterion.

2We define p�� as the behavioral strategies at all information sets other than � given

by � .
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Now, suppose a D 1 in the figure. The Nash equilibria are now .R; r/

and .L; 	B/, where 	B.r/ � 1=2. Alice conjectures r for Bob because this
is the only strategy at �B that is part of a Nash equilibrium. Because R is

the only best response to r , the .L; 	B/ are not LBR equilibria. Bob must

conjectureR for Alice because this is her only choice in a Nash equilibrium

that reaches �B . Bob’s best response is r . Thus .R; r/, the subgame perfect

equilibrium, is the unique LBR equilibrium.

Note that this argument does not require any out-of-equilibrium belief or
error analysis. Subgame perfection is assured by epistemic considerations

alone; i.e., a Nash equilibrium in which Bob plays l with positive probabil-

ity is an incredible threat.

One might argue that subgame perfection can be defended because there

is, in fact, always a small probability that Alice will make a mistake and

play R in the aD 3 case. However, why single out this possibility? There

are many possible imperfections that are ignored in passing from a real-
world strategic interaction to the game depicted in the above figure, and

they may work in different directions. Singling out the possibility of an

Alice error is thus arbitrary. For instance, suppose l is the default choice

for Bob, in the sense that it costs him a small amount d to decide to choose

r over l, and suppose it costs Bob B to observe Alice’s behavior. The new

decision tree is depicted in figure 9.1.
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�

�
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2,1

�
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Figure 9.1. Adding an infinitesimal decision cost for Bob

In this new situation, Bob may choose not to observe Alice’s choice (i),
with payoffs as before and with Bob choosing l by default. But if Bob

chooses to view (v), he pays inspection cost B , observes Alice’s choice,

and shifts to the nondefault r when she accidentally plays R, at cost d . If

Alice plays R with probability A, it is easy to show that Bob will choose

to inspect only if A � B=.1 
 d/.

The LBR criterion is thus the correct refinement criterion for this game.
Standard refinements fail by accepting only subgame perfect equilibria
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whether or not there is any rational reason to do so (e.g., that the equi-

librium involves an incredible threat). The LBR criterion gets to the heart
of the matter, which is expressed by the argument that when there is an

incredible threat, if Bob gets to choose, he will choose the strategy that

gives him a higher payoff, and Alice knows this. Thus Alice maximizes by

choosing R, not L. If there is no incredible threat, Bob can choose as he

pleases.

In the remainder of this chapter, I compare the LBR criterion with tra-
ditional refinement criteria in a variety of typical game contexts. I address

where and how the LBR criterion differs from traditional refinements, and

which criterion better conforms to our intuition of rational play. For illus-

trative purposes, I include some cases where both perform equally well.

Mainly, however, I treat cases where the traditional criteria perform poorly

and the LBR criterion performs well. I am aware of no cases where the

traditional criteria perform better than the LBR criterion. Indeed, I know
of no cases where the LBR criterion, possibly strengthened by other epis-

temic criteria, does not perform well, assuming our intuition is that a Nash

equilibrium will be played. My choice of examples follows Vega-Redondo

(2003). I have tested the LBR criterion for all of Vega-Redondo’s examples,

and many more, but present only a few of the more informative examples

here.
The LBR criterion shares with the traditional refinement criteria the pre-

sumption that a Nash equilibrium will be played, and indeed, in every exam-

ple in this chapter, I would expect rational players to choose an LBR equi-

librium (although this expectation is not backed by empirical evidence).

In many games, however, such as Rosenthal’s Centipede Game (Rosen-

thal 1981), Basu’s Traveler’s Dilemma (Basu 1994), and Carlsson and van
Damme’s Global Games (Carlsson and van Damme 1993), both our intu-

ition and the behavioral game-theoretic evidence violate the presumption

that rational agents play Nash equilibria. The LBR criterion does not apply

to these games.

Many games have multiple LBR equilibria, only a strict subset of which

would be played by rational players. Often, epistemic criteria supplemen-

tary to the LBR criterion single out this subset. In this chapter, I use the
principle of insufficient reason and what I call the principle of honest com-

munication to this end.
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9.3 Unreasonable Perfect Bayesian Equilibria
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Figure 9.2. Only the equilibrium BbV is reasonable, but there is a connected set

of Nash equilibria, including the pure strategy AbU , all members of which are

perfect Bayesian.

Figure 9.2 depicts a game in which all Nash equilibria are subgame per-

fect and perfect Bayesian, but only one is reasonable, and this is the only
equilibrium that satisfies the LBR criterion. The game has two sets of equi-

libria. The first, A, chooses A with probability 1 and 	B.b/	C .V / � 1=2,

which includes the pure-strategy equilibrium AbU , where 	A, 	B , and 	C

are mixed strategies of Alice, Bob, and Carole, respectively. The second is

the strict Nash equilibriumBbV . Only the latter is a reasonable equilibrium

in this case. Indeed, while all equilibria are subgame perfect because there
are no proper subgames, and AbU is perfect Bayesian if Carole believes

Bob chose a with probability at least 2/3, it is not sequential because if

Bob actually gets to move, he chooses b with probability 1 because Carole

chooses V with positive probability in the perturbed game.

The forward induction argument for the unreasonability of the A equilib-

ria is as follows. Alice can ensure a payoff of 1 by playing A. The only

way she can secure a higher payoff is by playing B and having Bob play b
and Carole play V . Carole knows that if she gets to move, Alice must have

chosen B , and because choosing b is the only way Bob can possibly secure

a positive payoff, Bob must have chosen b, to which V is the unique best

response. Thus, Alice deduces that if she chooses B , she will indeed secure

the payoff 2. This leads to the equilibrium BbV .

To apply the LBR criterion, note that the only moves Bob and Carole use
in a Nash equilibrium where they get to choose (i.e., that reaches one of their
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information sets) are b and V , respectively. Thus, Alice must conjecture

this, to which her best response is B . Bob conjectures V , so choose b,
and Carole conjectures b, so chooses V . Therefore, only BbV is an LBR

equilibrium.

9.4 The LBR criterion picks out the sequential equilibrium

C B

A

b

�

�

�

�
Alice

�

�

b

� �

a a

0,2


2,0 1,1 
1,
1 2,1

Bob

The figure to the right depicts another ex-

ample where the LBR criterion rules out

unreasonable equilibria that pass the sub-
game perfection and perfect Bayesian cri-

teria, but sequentiality and the LBR crite-

rion are equally successful in this case. In

addition to the Nash equilibriumBa, there

is a set A of equilibria in which Alice plays

A with probability 1 and Bob plays b with probability at least 2/3. Equilib-

ria in the set A are not sequential, but Ba is sequential. The LBR criterion
requires that Alice conjecture that Bob plays a if he gets to choose because

this is Bob’s only move in a Nash equilibrium that reaches his information

set. Alice’s only best response to this conjecture is B . Bob must conjecture

B because this is the only choice by Alice that is part of a Nash equilibrium

and reaches his information set, and a is a best response to this conjecture.

Thus, Ba is an LBR equilibrium, and the others are not.

9.5 Selten’s Horse: Sequentiality vs. the LBR criterion

Selten’s Horse is depicted in figure 9.3. This game shows that sequentiality

is neither strictly stronger than nor strictly weaker than the LBR criterion

since the two criteria pick out distinct equilibria in this case.

There is a connected component M of Nash equilibria given by

M D f.A; a; p	�C .1
 p	/�/j0 � p	 � 1=3g;

where p	 is the probability that Carole chooses �, all of which, of course,

have the same payoff (3,3,0). There is also a connected component N of
Nash equilibria given by

N D f.D; paa C .1
 pa/d; �/j1=2 � pa � 1g;

where pa is the probability that Bob chooses a, all of which have the same
payoff (4,4,4).
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Figure 9.3. Selten’s Horse

The M equilibria are sequential, but the N equilibria are not even perfect

Bayesian since if Bob were given a choice, his best response would be d ,

not a. Thus, the standard refinement criteria select the M equilibria as
reasonable.

The only Nash equilibrium in which Carole gets to choose is in the set

N , where she plays �. Hence, for the LBR criterion, Alice and Bob must

conjecture that Carole chooses �. Also, a is the only choice by Bob that

is part of a Nash equilibrium that reaches his information set. Thus, Alice

must conjecture that Bob plays a and Carole plays �, so her best response
is D. This generates the equilibrium Da�. At Bob’s information set, he

must conjecture that Carole plays �, so a is a best response. Thus, only the

pure strategy Da� in the N component satisfies the LBR criterion.

Selten’s Horse is thus a case where the LBR criterion chooses an equilib-

rium that is reasonable even though it is not even perfect Bayesian, while

the standard refinement criteria choose an unreasonable equilibrium in M.
The M equilibria are unreasonable because if Bob did get to choose, he

would conjecture that Carole plays �, because that is her only move in a

Nash equilibrium where she gets to move, and hence violates the LBR con-

dition of choosing an action that is part of a Nash equilibrium that reaches

his choice node. However, if he is rational, he will violate the LBR criterion

and play d , leading to the payoff (5,5,0). If Alice conjectures that Bob will

play this way, she will play a, and the outcome will be the non-Nash equi-
libriumAa�. Of course, Carole is capable of following this train of thought,

and she might conjecture that Alice and Bob will play non-Nash strategies,

in which case, she could be better off playing the non-Nash � herself. But,

of course, both Alice and Bob might realize that Carole might reason in

this manner. And so on. In short, we have here a case where the sequential

equilibria are all unreasonable, but there are non-Nash choices that are as
reasonable as the Nash equilibrium singled out by the LBR criterion.
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9.6 The Spence Signaling Model
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Figure 9.4. The LBR criterion rejects an unreasonable pooling equilibrium

figure 9.4 represents the famous Spence signaling model (Spence 1973).

Alice is either a low quality worker (L) with probability pD1=3 or a high

quality worker (H ) with probability pD 2=3. Only Alice knows her own
quality. Bob is an employer who has two types of jobs to offer, one for an

unskilled worker (U ) and the other for a skilled worker (S ). If Bob matches

the quality of a hire with the skill of the job, his profit is 10; otherwise, his

profit is 5. Alice can invest in education (Y ) or not (N ). Education does

not enhance Alice’s skill, but if Alice is low quality, it will cost her 10 to

be educated, while if she is high quality, it will cost her nothing. Education
is thus purely a signal, possibly indicating Alice’s type. Finally, the skilled

job pays 6 more than the unskilled job, the uneducated high-quality worker

earns 2 more than the uneducated low-quality worker in the unskilled job,

and the base pay for a low quality, uneducated worker in an unskilled job is

12. This gives the payoffs listed in figure 9.4.

This model has a separating equilibrium in which Alice gets an education

only if she is high quality and Bob assigns educated workers to skilled jobs
and uneducated workers to unskilled jobs. In this equilibrium, Bob’s pay-

off is 10 and Alice’s payoff is 17.33 prior to finding out whether she is of

low or high quality. Low-quality workers earn 12, and high-quality workers

earn 20. There is also a pooling equilibrium in which Alice never gets an

education and Bob assigns all workers to skilled jobs. Indeed, any combi-

nation of strategies SS (assign all workers to skilled jobs) and SU (assign
uneducated workers to skilled jobs and educated workers to unskilled jobs)
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is a best response for Bob in the pooling equilibrium. In this equilibrium,

Bob earns 8.33 and Alice earns 19.33. However, uneducated workers earn
18 in this equilibrium and skilled workers earn 20.

Both sets of equilibria are sequential. For the pooling equilibrium, con-

sider a completely mixed-strategy profile 	n in which Bob chooses SS with

probability 1
1=n. For large n, Alice’s best response is not to be educated,

so the approximate probability of being at the top node at of Bob’s right-

hand information set �r is approximately 1/3. In the limit, as n ! 1, the
probability distribution over �t computed by Bayesian updating approaches

(1/3,2/3). Whatever the limiting distribution over the left-hand information

set �l (note that we can always ensure that such a limiting distribution ex-

ists), we get a consistent assessment in which SS is Bob’s best response.

Hence the pooling equilibrium is sequential.

For the separating equilibrium, suppose Bob chooses a completely mixed

strategy 	n with the probability of US (allocate uneducated workers to un-
skilled jobs and educated workers to skilled jobs) equal to 1 
 1=n. Al-

ice’s best response is NY (only a high-quality Alice gets and education),

so Bayesian updating calculates probabilities at �r as placing almost all the

weight on the top node, and at Bob’s left-hand information set �l , almost

all weight is placed on the bottom node. In this limit, we have a consis-

tent assessment in which Bob believes that only high-quality workers get
an education, and the separating equilibrium is Bob’s best response given

this belief.

Both Nash equilibria specify that Bob choose S at �l
B , so Alice must

conjecture this, and that Alice choose N at L, so Bob must conjecture this.

It is easy to check that .NN; SS/ and .NY;US/ thus both satisfy the LBR

criterion.

9.7 Irrelevant Node Additions

Kohlberg and Mertens (1986) use figure 9.5 with 1 < x � 2 to show that an
irrelevant change in the game tree can alter the set of sequential equilibria.

We use this game to show that the LBR criterion chooses the reasonable

equilibrium in both panels, while the sequential criterion does so only if we

add an “irrelevant” node, as in the right panel of figure 9.5. The reasonable

equilibrium in this case is ML, which is sequential. However, TR is also

sequential in the left panel. To see this, let f	A.T /; 	A.B/; 	A.M/g D
f1 
 10; ; 9g and f	B.L/; 	B.R/g D f; 1 
 g. These converge to T
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Figure 9.5. The only reasonable equilibrium for 1 < x � 2 is ML, which is

sequential and satisfies the LBR criterion. However, the unreasonable equilibrium

TR is sequential in the left panel, but not the right, when an “irrelevant” node is

added.

andR, respectively, and the conditional probability of being at the left node

of �2 is 0.9, so Bob’s mixed strategy is a distance  from a best response.

In the right panel, however,M strictly dominates B for Alice, so TR is no

longer sequential.
To apply the LBR criterion, note that the only Nash equilibrium allow-

ing Bob to choose is ML, which gives Alice a payoff of 3, as opposed to

a payoff of 2 from choosing T . Therefore, conjecturing this, Alice max-

imizes her payoff by allowing Bob to choose; i.e., ML is the only LBR

equilibrium.

9.8 Improper Sequential Equilibria
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Consider the game to the right. There are

two Nash equilibria, Fb and Aa. These

are also sequential equilibria since if Al-

ice intends F , but if the probability that B

is chosen by mistake is much greater than

the probability that A is chosen, then b is

a best response. Conversely, if the prob-
ability of choosing A by mistake is much

greater than the probability that B is chosen by mistake, then a is a best

response. Since B is the more costly mistake for Alice, the proper equi-

librium concept assumes it occurs very infrequently compared to the A

mistake, Bob will play a when he gets to move, so Alice should chose

A. Therefore, Aa is the only proper equilibrium according to the Myerson
(1978) criterion.
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To see that Aa is the only LBR equilibrium of the game, note that the

only Nash equilibrium that reaches Bob’s information set is Aa. The LBR
criterion therefore stipulates that Alice conjecture that Bob chooses a, to

which her best response is A.

The reader will note how simple and clear this justification is of Aa

by comparison with the properness criterion, which requires an order-of-

magnitude assumption concerning the rate at which trembles go to zero.

9.9 Second-Order Forward Induction
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Figure 9.6. The Money Burning Game

Figure 9.6 depicts the famous Money Burning Game analyzed by Ben-
Porath and Dekel (1992), illustrating second-order forward induction. By

“burning money” (to the amount of 1), Alice can ensure a payoff of 2,

so if she does not burn money, she must expect a payoff greater than 2.

This induces Alice’s Battle of the Sexes partner to act favorably toward her,

giving her a payoff of 3.

The set of Nash equilibria can be described as follows. First, there is YB,

in which Alice plays Y b (do not burn money and choose favoring Bob)
and Bob chooses any mixture of BB (play B no matter what Alice did)

and SB (play S if Alice played X and play B if Alice played Y ). This

set represents the Pareto-optimal payoffs favoring Bob. The second is YS ,

in which Alice plays Ys (don’t burn money and choose favoring Alice),

and Bob chooses any mixture of BS (play B against X and S against Y )

and SS (play S no matter what). This set represents the Pareto-optimal
payoffs favoring Alice. The third is XS , in which Alice plays Xs and
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Bob chooses any mixed-strategy combination of SB and SS in which the

former is played with probability � 1=2. This is the money-burning Pareto-
inferior Battle-of-the-Sexes equilibrium favoring Bob. The fourth set is the

set M in which Alice plays Y and then .1=4/bC .3=4/s and Bob chooses

any mixed strategy that leads to the behavioral strategy .3=4/B C .1=4/S .

Second-order forward induction selects out YS .

All equilibria are sequential and result from two different orders in elimi-

nating weakly dominated strategies. The only Nash equilibrium where Bob
chooses at �2l involves choosing S there. Thus, Alice conjectures this, and

knows that her best response compatible with �2l is Xs, which gives her a

payoff of 2. There are three sets of Nash equilibria where Alice chooses Y .

In one, she chooses Y b and Bob chooses B , giving her a payoff of 2. In

the second, she chooses Ys and Bob chooses S , giving her a payoff of 3. In

the third, Alice and Bob play the Battle-of-the-Sexes mixed-strategy equi-

librium, with a payoff of 3/2 for Alice. Each of these is compatible with a
conjecture of by that Bob plays a Nash strategy. Hence, her highest payoff

is with Ys. Because Y is decisive and includes a Nash equilibrium, where

Alice plays Ys, with a higher payoff for Alice than any Nash equilibrium

using X , when Bob moves at �2r , the LBR criterion stipulates that he con-

jectures this, and hence his best response is S . Thus, Alice must conjecture

that Bob plays S when she plays Y , to which Ys is the only best response.
Thus, YSs is the only LBR equilibrium.

9.10 Beer and Quiche Without the Intuitive Criterion
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2,00,
13,01,
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Bob Bob
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Figure 9.7. The Real Men Don’t Eat Quiche Game
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Figure 9.7 depicts perhaps the most famous example arguing the impor-

tance of beliefs in equilibrium refinement, the Cho and Kreps (1987) Real
Men Don’t Eat Quiche Game. It also illustrates the well-known intuitive

criterion, which is complementary to sequentiality. However, the LBR cri-

terion singles out the reasonable equilibrium without recourse to an addi-

tional criterion.

This game has two sets of (pooling) Nash equilibria. The first is Q, in

which Alice playsQQ (Q if wimp,Q if strong) and Bob uses any mixture
of DN (play D against B and play N against Q) and NN (play N no

matter what) that places at least weight 1/2 on DN . The payoff to Alice is

21/10. The second is B, in which Alice plays BB (B if wimp, B if strong)

and Bob uses any mixture of ND (play N against B and play D against

Q) and NN that places at least weight 1/2 on ND. The payoff to Alice is

29/10.

The Cho and Kreps (1987) intuitive criterion notes that by playing QQ,
Alice earns 21/10, while by playing BB, she earns 29/10. Therefore, a

rational Alice will choose BB . To find the LBR equilibrium, we note that

both the B and the Q equilibria satisfy the first LBR conditions. Moreover,

B is decisive with respect to Q and has a higher payoff for Alice. Thus, the

only LBR equilibria are the B.

9.11 An Unreasonable Perfect Equilibrium
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Figure 9.8. Perfection is not sensible, but the LBR criterion is

The game in figure 9.8, taken from McLennan (1985), has a strict Nash

equilibrium atRlU and an interval of sequential equilibriaL of the formLr

and D with a probability of at least 3/4. The L equilibria are “unintuitive”
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for many reasons. Perhaps the simplest is forward induction. If Carole gets

to move, either Alice played R or Bob played l. In the former case, Alice
must have expected Carole to play U , so that her payoff would be 3 instead

of 2. If Bob moved, he must have moved l, in which case he also must

have expected Carole to move U , so that his payoff would be 2 instead of

1. Thus, U is the only reasonable move for Carole.

For the LBR criterion, note that L is ruled out since the only Nash equi-

librium reaching Carole’s information set uses U with probability 1. The
RlU equilibrium, however, satisfies the LBR criterion.

9.12 The Principle of Insufficient Reason
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The figure to the right, due to Jeffery

Ely (private communication) depicts a

game for which the only reasonable

Nash equilibria form a connected com-

ponent A in which Alice plays A and

Bob plays a with probability 	B.a/ 2
Œ1=3; 2=3�, guaranteeing Alice a payoff

of 0. There are two additional equilib-

ria, Ca and Bb, and there are states at Alice’s information set that are con-

sistent with each of these equilibria. At Bob’s choice information set, all

conjectures 	A for Alice with 	A.A/ < 1 are permitted. Thus, all Nash

equilibria are LBR equilibria. However, by the principle of insufficient rea-

son and the symmetry of the problem, if Bob gets to move, each of his
moves is equally likely. Thus, it is only reasonable for Alice to assume

	B.a/ D 	B.b/ D 1=2, to which A is the only best response.

9.13 The Principle of Honest Communication
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It is easy to check that the coordination game to
the right has three Nash equilibria, each of which

satisfies all traditional refinement criteria, and all

are LBR equilibria as well. Clearly, however,

only Ll is a reasonable equilibrium for rational

players. One justification of this equilibrium is

that if we add a preliminary round of communication, if each player com-
municates a promise to make a particular move, and if each player believes
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in the principle of honest communication (according to which players keep

their promises unless they can benefit by violating these promises and being
believed), then each will promise to play L or l, and they will keep their

promises.

9.14 Induction: Forward is Robust, Backward is Fragile

The LBR criterion is an improvement of refinement criteria meant to render

other standard refinement criteria superfluous. However, the LBR criterion

is not an impediment to standard game-theoretic reasoning. If a game has a

unique Nash equilibrium, this will be both a subgame perfect and an LBR

equilibrium. If a game has a non-subgame perfect equilibrium with an in-

credible threat, this cannot be an LBR equilibrium because in an LBR equi-
librium, players never conjecture incredible threats. In a repeated game, it

is reasonable to argue, as does the LBR criterion, that players maximize at

every information set they reach. We do not need the extra baggage of the

sequential equilibrium concept to justify this assumption.

The LBR criterion supplies a rigorous and insightful equilibrium refine-

ment criterion. Moreover, it clarifies the meaning of an “intuitively reason-

able” equilibrium as being one in which players conjecture that other play-
ers use actions that are part of Nash equilibria and choose actions them-

selves that maximize their payoffs subject to such conjectures.
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The Analytics of Human Sociality

The whole earth had one language. Men said, “Come, let us build
ourselves a city, and a tower with its top in the heavens.” The
Lord said, “Behold, they are one people, and they have all one
language. Nothing will now be impossible for them. Let us go
down and confuse their language.” The Lord scattered them over
the face of the earth, and they ceased building the city.

Genesis 11:1

An economic transaction is a solved political problem. Economics
has gained the title of Queen of the Social Sciences by choosing
solved political problems as its domain.

Abba Lerner

10.1 Explaining Cooperation: An Overview

It is often said that sociology deals with cooperation and economics deals

with competition. Game theory, however, shows that cooperation and com-

petition are neither distinct nor antithetical. Cooperation involves align-

ing the beliefs and incentives of agents with distinct interests, competition

among groups requires cooperation within these groups, and competition
among individuals may be mutually beneficial.

A major goal of economic theory is to show the plausibility of wide-scale

cooperation among self-regarding individuals. In an earlier period, this

endeavor centered on the Walrasian model of general market equilibrium,

culminating in the celebrated fundamental theorem of welfare economics

(Arrow and Debreu 1954; Debreu 1959; Arrow and Hahn 1971). However,

the theorem’s key assumption that market exchange can be enforced at zero
cost to the exchanging parties is often violated (Arrow 1971; Bowles and

Gintis 1993; Gintis 2002; Bowles 2004).

The game theory revolution replaced reliance on exogenous enforcement

with repeated game models in which punishment of defectors by cooper-

ators secures cooperation among self-regarding individuals. Indeed, when

a game G is repeated an indefinite number of times by the same players,
many of the anomalies associated with finitely repeated games (4.11, �5.1,

181
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5.7) disappear. Moreover, Nash equilibria of the repeated game arise that

are not Nash equilibria of G. The exact nature of these equilibria is the
subject of the folk theorem (�10.3), which shows that when self-regarding

individuals are Bayesian rational, have sufficiently long time horizons, and

there is adequate public information concerning who obeyed the rules and

who did not, efficient social cooperation can be achieved in a wide variety

of cases.

The folk theorem requires that each action taken by each player carry a
signal that is conveyed to the other players. We say a signal is public if all

players receive the same signal. We say the signal is perfect if it accurately

reports the player’s action. The first general folk theorem that does not rely

on incredible threats was proved by Fudenberg and Maskin (1986) for the

case of perfect public signals (�10.3).

We say a signal is imperfect if it sometimes mis-reports a player’s action.

An imperfect public signal reports the same information to all players, but
it is at times inaccurate. The folk theorem was extended to imperfect public

signals by Fudenberg, Levine, and Maskin (1994), as will be analyzed in

�10.4.

If different players receive different signals, or some receive no signal at

all, we say the signal is private. The case of private signals has proved much

more daunting than that of public signals, but folk theorems for private
but near-public signals (i.e., where there is an arbitrarily small deviation 

from public signals) have been developed by several game theorists, includ-

ing Sekiguchi (1997), Piccione (2002), Ely and Välimäki (2002), Bhaskar

and Obara (2002), Hörner and Olszewski (2006), and Mailath and Morris

(2006). It is difficult to assess how critical the informational requirements

of these folk theorems are because generally the theorem is proved for “suf-
ficiently small ,” with no discussion of the actual order of magnitude in-

volved.

The question of the signal quality required for efficient cooperation to ob-

tain is especially critical when the size of the game is considered. Generally,

the folk theorem does not even mention the number of players, but in most

situations in real life, the larger the number of players participating in a

cooperative endeavor, the lower the average quality of the cooperation-vs.-
defection signal because generally a player observes only a small number

of other players with a high degree of accuracy, however large the group

involved. We explore this issue in �10.4, which illustrates the problem by

applying the Fudenberg, Levine, and Maskin (1994) framework to the Pub-
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lic Goods Game (�3.9) which in many respects is representative of contexts

for cooperation in humans.

10.2 Bob and Alice Redux

5,5

8;
3

C


3; 8

0,0

D

C

D

Suppose Bob and Alice play the Prisoner’s Dilemma
shown on the right. In the one-shot game there is only

one Nash equilibrium, in which both parties defect.

However, suppose the same players play the game at

times t D 0; 1; 2; : : :. This is then a new game, called

a repeated game, in which the payoff to each is the sum of the payoffs over

all periods, weighted by a discount factor ı with 0 < ı < 1. We call the

game played in each period the stage game of a repeated game in which at
each period the players can condition their moves on the complete history

of the previous stages. A strategy that dictates cooperating until a certain

event occurs and then following a different strategy, involving defecting and

perhaps otherwise harming one’s partner, for the rest of the game is called

a trigger strategy.

Note that we have exactly the same analysis if we assume that players
do not discount the future, but in each period the probability that the game

continues for at least one more period is ı. In general, we can think of

ı as some combination of the discount factor and the probability of game

continuation.

We show that the cooperative solution (5,5) can be achieved as a subgame

perfect Nash equilibrium of the repeated game if ı is sufficiently close to
unity and each player uses the trigger strategy of cooperating as long as the

other player cooperates and defecting forever if the other player defects in

one round. To see this, consider a repeated game that pays 1 now and in

each future period to a certain player and the discount factor is ı. Let x be

the value of the game to the player. The player receives 1 now and then gets

to play exactly the same game in the next period. Because the value of the

game in the next period is x, its present value is ıx. Thus, x D 1C ıx, so
x D 1=.1
 ı/.

Now suppose both agents play the trigger strategy. Then, the payoff to

each is 5=.1 
 ı/. Suppose a player uses another strategy. This must in-

volve cooperating for a number (possibly zero) of periods, then defecting

forever; for once the player defects, his opponent will defect forever, the

best response to which is to defect forever. Consider the game from the
time t at which the first player defects. We can call this t D 0 without loss
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of generality. A player who defects receives 8 immediately and nothing

thereafter. Thus, the cooperate strategy forms a Nash equilibrium if and
only if 5=.1
 ı/ � 8, or ı � 3=8. When ı satisfies this inequality, the pair

of trigger strategies is also subgame perfect because the situation in which

both parties defect forever is Nash subgame perfect.

This gives us an elegant solution to the problem, but in fact there are lots

of other subgame perfect Nash equilibria for this game. For instance, Bob

and Alice can trade off defecting on each other as follows. Consider the
following trigger strategy for Alice: alternate C;D;C; : : : as long as Bob

alternates D;C;D; : : : . If Bob deviates from this pattern, defect forever.

Suppose Bob plays the complementary strategy: alternate D;C;D; : : : as

long as Alice alternatesC;D;C; : : : . If Alice deviates from this pattern, de-

fect forever. These two strategies form a subgame perfect Nash equilibrium

for ı sufficiently close to unity.

To see this, note that the payoffs are now 
3; 8;
3; 8; : : : for Alice and
8;
3; 8;
3; : : : for Bob. Let x be the payoffs to Alice. Alice gets 
3
today and 8 in the next period and then gets to play the game all over again

starting two periods from today. Thus, x D 
3C 8ı C ı2x. Solving this,

we get x D .8ı
3/=.1
 ı2/. The alternative is for Alice to defect at some

point, the most advantageous time being when it is her turn to get 
3. She

then gets 0 in that and all future periods. Thus, cooperating forms a Nash
equilibrium if and only if x � 0, which is equivalent to 8ı 
 3 � 0, or

ı � 3=8.

For an example of a very unequal equilibrium, suppose Bob and Alice

agree that Bob will play C;D;D;C;D;D; : : : and Alice will defect when-

ever Bob is supposed to cooperate, and vice versa. Let vB be the value of

the game to Bob when it is his turn to cooperate, provided he follows his
strategy and Alice follows hers. Then, we have

vB D 
3C 8ı C 8ı2 C vBı
3;

which we can solve, getting vB D .8ı2 C 8ı 
 3/=.1 
 ı3/. The value to

Bob of defecting is 8 now and 0 forever after. Hence, the minimum discount

factor such that Bob will cooperate is the solution to the equation vB D 8,

which gives ı  0:66. Now let vA be the value of the game to Alice when it
is her first turn to cooperate, assuming both she and Bob follow their agreed

strategies. Then we have

vA D 
3 
 3ı C 8ı2 C vAı
3;
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which gives vA D .8ı2 
 3ı
 3/=.1
 ı3/. The value to Alice of defecting

rather than cooperating when it is her first turn to do so is then given by
vA D 8, which we can solve for ı, getting ı  0:94. With this discount

factor, the value of the game to Alice is 8, but vB  72:47, so Bob gains

more than nine times as much as Alice.

10.3 The Folk Theorem

The folk theorem is so called because no one knows who first thought of

it—it is just part of the folklore of game theory. We shall first present a

stripped-down analysis of the folk theorem with an example and provide a
more complete discussion in the next section.

Consider the stage game in �10.2. There is a subgame perfect Nash equi-

librium in which each player gets zero. Moreover, neither player can be

forced to receive a negative payoff in the repeated game based on this

stage game because at least zero can be assured simply by playing D.

Also, any point in the region OEABCF in figure 10.1 can be attained in
the stage game, assuming the players can agree on a mixed strategy for

each. To see this, note that if Bob uses C with probability ˛ and Al-

ice uses C with probability ˇ, then the expected payoff to the pair will

be .8ˇ 
 3˛; 8˛ 
 3ˇ/, which traces out every point in the quadrilateral

OEABCF for ˛; ˇ 2 Œ0; 1�. Only the points in OABC are superior to the

universal defect equilibrium (0,0), however.
Consider the repeated game R based on the stage game G in �10.2. The

folk theorem says that under the appropriate conditions concerning the co-

operate/defect signal available to players, any point in the region OABC

can be sustained as the average per-period payoff of a subgame perfect

Nash equilibrium of R, provided the discount factors of the players are

sufficiently near unity.

More formally, consider an n-player game with finite strategy sets Si for
i D 1; : : : ; n, so the set of strategy profiles for the game is S D

Qn
iD1 Si .

The payoff for player i is �i .s/, where s 2S . For any s 2S , we write s�i

for the vector obtained by dropping the i th component of s, and for any

i D 1; : : : ; n, we write .si ; s�i / D s. For a given player j , suppose the

other players choose strategies m
j
�j such that j ’s best response m

j
j gives

j the lowest possible payoff in the game. We call the resulting strategy
profile mj the maximum punishment payoff for j . Then, ��

j D �j .m
j / is
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Figure 10.1. The folk theorem: any point in the region OABC can be sustained

as the average per-period payoff the subgame perfect Nash equilibrium of the re-

peated game based on the stage game in �10.2.

j ’s payoff when everyone else “gangs up on him.” We call

�� D .��
1 ; : : : ; �

�
n / (10.1)

the minimax point of the game. Now define

… D f.�1.s/; : : : ; �n.s//js 2 S; �i.s/ � ��
i ; i D 1; : : : ; ng;

so … is the set of strategy profiles in the stage game with payoffs at least as

good as the maximum punishment payoff for each player.

This construction describes a stage game G for a repeated game R with

discount factor ı, common to all the agents. If G is played in periods t D
0; 1; 2; : : : , and if the sequence of strategy profiles used by the players is
s.1/; s.2/; : : : , then the payoff to player j is

Q�j D

1X
tD0

ıt�j .s.t//:

Let us assume that information is public and perfect, so that when a player

deviates from some agreed-upon action in some period, a signal to this

effect is transmitted with probability 1 to the other players. If players can

use mixed strategies, then any point in … can be attained as payoffs to R

by each player using the same mixed strategy in each period. However, it
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is not clear how a signal indicating deviation from a strictly mixed strategy

should be interpreted. The simplest assumption guaranteeing the existence
of such a signal is that there is a public randomizing device that can be seen

by all players and that players use to decide which pure strategy to use,

given that they have agreed to use a particular mixed strategy. Suppose, for

instance, the randomizing device is a circular disk with a pointer that can

be spun by a flick of the finger. Then, a player could mark off a number of

regions around the perimeter of the disk, the area of each being proportional
to the probability of using each pure strategy in a given mixed strategy to

be used by that player. In each period, each player flicks his pointer and

chooses the appropriate pure strategy, this behavior is recorded accurately

by the signaling device, and the result is transmitted to all the players.

With these definitions, we have the following, where for � 2 …, 	i.�/ 2

Si is a mixed strategy for player i such that �i.	1; : : : ; 	n/ D �i .

THEOREM 10.1 Folk Theorem. Suppose players have a public randomiz-

ing device and the signal indicating cooperation or defection of each player

is public and perfect. Then, for any � D .�1; : : : ; �n/ 2 …, if ı is suffi-

ciently close to unity, there is a Nash equilibrium of the repeated game such

that �j is j ’s payoff for j D1; : : : ; n in each period. The equilibrium is ef-

fected by each player i using 	i .�/ as long as no player has been signaled

as having defected, and by playing the minimax strategy m
j
i in all future

periods after player j is first detected defecting.

The idea behind this theorem is straightforward. For any such � 2 …,

each player j uses the strategy 	j .�/ that gives payoffs � in each period,

provided the other players do likewise. If one player deviates, however, all

the other players play the strategies that impose the maximum punishment

payoff on j forever. Because �j � ��
j , player j cannot gain from deviating

from 	j .�/, so the profile of strategies is a Nash equilibrium.

Of course, unless the strategy profile .m
j
1; : : : ; m

j
n/ is a Nash equilibrium

for each j D 1; : : : ; n, the threat to minimax even once, let alone forever,

is not a credible threat. However, we do have the following theorem.

THEOREM 10.2 The folk theorem with subgame perfection. Suppose y D
.y1; : : : ; yn/ is the vector of payoffs in a Nash equilibrium of the underlying

one-shot game and � 2 … with �i � yi for i D 1; : : : ; n. Then, if ı

is sufficiently close to unity, there is a subgame perfect Nash equilibrium

of the repeated game such that �j is j ’s payoff for j D 1; : : : ; n in each

period.
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To see this, note that for any such � 2 …, each player j uses the strategy sj
that gives payoffs � in each period, provided the other players do likewise.
If one player deviates, however, all the players play the strategies that give

payoff vector y forever.

10.4 The Folk Theorem with Imperfect Public Information

An important model due to Fudenberg, Levine, and Maskin (1994) extends

the Folk Theorem to many situations in which there is public imperfect

signaling. Although their model does not discuss the n-player Public Goods

Game, we shall here show that this game does satisfy the conditions for

applying this theorem.
We shall see that the apparent power of the folk theorem in this case

comes from letting the discount factor ı go to 1 last, in the sense that for

any desired level of cooperation (by which we mean the level of intended,

rather than realized cooperation), for any group size n and for any error

rate , there is a ı sufficiently near unity that this level of cooperation can

be realized. However, given ı, the level of cooperation may be quite low
when n and  are relatively small. Throughout this section, we shall assume

that the signal imperfection takes the form of players defecting by accident

with probability  and hence failing to provide the benefit b to the group

although they expend the cost c.

The Fudenberg, Levine, and Maskin stage game consists of players i D
1; : : : ; n, each with a finite set of pure actions a1; : : : ; ami

2 Ai . A vector
a 2 A �

Qn
j D1Ai is called a pure-action profile. For every profile a 2 A,

there is a probability distribution yja over the m possible public signals

Y . Player i’s payoff, ri .ai; y/, depends only on his own action and the

resulting public signal. If �.yja/ is the probability of y 2 Y given profile

a 2 A, i’s expected payoff from a is given by

gi.a/ D
X
y2Y

�.yja/ri.ai ; y/:

Mixed actions and profiles, as well as their payoffs, are defined in the usual

way and denoted by Greek letters, so ˛ is a mixed-action profile and �.yj˛/
is the probability distribution generated by mixed action ˛.

Note that in the case of a simple Public Goods Game, in which each

player can cooperate by producing b for the other players at a personal cost
c, each action set consists of two elements fC;Dg. We will assume that
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players choose only pure strategies. It is then convenient to represent the

choice of C by 1 and D by 0. Let A be the set of strings of n zeros and
ones, representing the possible pure strategy profiles of the n players, the

kth entry representing the choice of the kth player. Let �.a/ be the num-

ber of ones in a 2 A and write ai for the i th entry in a 2 A. For any

a 2 A, the random variable y 2 Y represents the imperfect public informa-

tion concerning a 2 A. We assume defections are signaled correctly, but

intended cooperation fails and appears as defection with probability  > 0.
Let �.yja/ be the probability that signal y 2 A is received by players when

the actual strategy profile is a 2 A. Clearly, if yi > ai for some i , then

�.yja/ D 0. Otherwise,

�.yja/ D �.a/��.y/.1
 /�.y/ for �.y/ � �.a/: (10.2)

The payoff to player i who chooses ai and receives signal y is given by

ri .ai ; yja/ D b�.y/.1
 /
 aic. The expected payoff to player i is just

gi .a/ D
X
y2Y

�.yja/ri.ai ; y/ D b�.a/.1
 / 
 aic: (10.3)

Moving to the repeated game, we assume that in each period t D 0; 1; : : :,

the stage game is played with public outcome yt 2 Y . The sequence

fy0; : : : ; ytg is thus the public history of the game through time t , and we

assume that the strategy profile f	 tg played at time t depends only on this

public history (Fudenberg, Levine, and Maskin show that allowing agents
to condition their play on their previous private profiles does not add any

additional equilibrium payoffs). We call a profile f	 tg of public strategies

a perfect public equilibrium if, for any period t and any public history up

to period t , the strategy profile specified for the rest of the game is a Nash

equilibrium from that point on. Thus, a public perfect equilibrium is a sub-

game perfect Nash equilibrium implemented by public strategy profiles.

The payoff to player i is then the discounted sum of the payoffs from each
of the stage games.

The minimax payoff to player i is the largest payoff i can attain if all the

other players collude to choose strategy profiles that minimize i’s maximum

payoff—see (10.1). In the Public Goods Game, the minimax payoff is zero

for each player because the worst the other players can do is universally

defect, in which case i’s best action is to defect himself, giving payoff
zero. Let V � be the convex hull of stage game payoffs that dominate the



190 Chapter 10

minimax payoff for each player. A player who intends to cooperate and

pays the cost c (which is not seen by the other players) can fail to produce
the benefit b (which is seen by the other players) with probability  > 0. In

the two-player case, V � is the quadrilateral ABCD in figure 10.2, where

b� D b.1
 /
 c is the expected payoff to a player if everyone cooperates.

�

�

Payoff 1

�

Payoff 2
�.
c; b.1 
 //

.b.1
 /;
c/

.b�; b�/

A

B

C

D

�

�

Figure 10.2. Two-player Public Goods Game

The folk theorem in Fudenberg, Levine, and Maskin(1994, p. 1025) is

then as follows.1 We say W � V � is smooth if W is closed and convex,

has a nonempty interior, and is such that each boundary point v 2 W has a

unique tangent hyperplanePv that varies continuously with v (e.g., a closed

ball with center interior to V �). Then, ifW � V � is smooth, there is a ı < 1

such that for all ı satisfying ı � ı < 1, each point in W corresponds to a
strict perfect public equilibrium with a discount factor ı, in which a pure-

action profile is played in each period. In particular, we can choose W to

have a boundary as close as we might desire to v� � .b�; : : : b�/, in which

case the full cooperation payoff can be approximated as closely as desired.

The only condition of the theorem that must be verified in the case of the

Public Goods Game is that the full cooperation payoff v� D fb�; : : : ; b�g
be on the boundary of an open set of payoffs in Rn, assuming players can

used mixed strategies. Suppose player i cooperates with probability xi , so

the payoff to player i is vi D �i 
 cxi , where

�i D b

nX
j D1

xj 
 xi :

1I am suppressing two conditions on the signal y that are either satisfied trivially or are

irrelevant in the case of a Public Goods Game.
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If J is the Jacobian of the transformation x ! v, it is straightforward to

show that

detŒJ � D .
1/nC1.b 
 c/

�
b

n 
 1
C c

�n�1

;

which is nonzero, proving the transformation is not singular.

The method of recursive dynamic programming used to prove this theo-

rem in fact offers an equilibrium construction algorithm, or rather a collec-

tion of such algorithms. Given a set W � V �, a discount factor ı, and a
strategy profile ˛, we say ˛ is enforceable with respect to W and ı if there

is a payoff vector v 2 Rn and a continuation function w WY !W such that,

for all i ,

vi D .1 
 ı/gi.ai ; ˛�i /C ı
X
y2Y

�.yjai; ˛�i /wi.y/

for all aiwith ˛i .ai/ > 0; (10.4)

vi � .1 
 ı/gi.ai ; ˛�i /C ı
X
y2Y

�.yjai; ˛�i /wi.y/

for all aiwith ˛i .ai/ D 0: (10.5)

We interpret the continuation function as follows. If signal y 2 Y is ob-

served (the same signal will be observed by all, by assumption), each player

switches to a strategy profile in the repeated game that gives player i the

long-run average payoff wi.y/. We thus say that fw.y/y2Y g enforces ˛

with respect to v and ı and that the payoff v is decomposable with respect

to ˛, W , and ı. To render this interpretation valid, we must show that
W � E.ı/, whereE.ı/ is the set of average payoff vectors that correspond

to equilibria when the discount factor is ı.

Equations (10.4) and (10.5) can be used to construct an equilibrium. First,

we can assume that equations (10.4) and (10.5) are satisfied as equalities.

There are then two equations for jY j D 2n unknowns fwi.y/g for each

player i . To reduce the underdetermination of the equations, we shall seek

only pure strategies that are symmetric in the players, so no player can con-
dition his behavior on having a particular index i . In this case, that wi.y/

depends only on whether or not i signaled cooperate, and the number of

other players who signaled cooperate. This reduces the number of strate-

gies for a player at this point from 2n to 2.n 
 1/. In the interest of max-

imizing efficiency, we assume that in the first period all players cooperate,

and as long as y indicates universal cooperation, players continue to play
and all cooperate.
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To minimize the amount of punishment meted out in the case of observed

defections while satisfying (10.4) and (10.5), we first assume that if more
than one agent signals defect, all continue to cooperate. If there is a single

defection, this is punished by all the players defecting an amount that just

satisfies the incentive compatibility equations (10.4) and (10.5). There is,

of course, no assurance that this will be possible, but if so, there will be a

unique punishment � that is just sufficient to deter a self-regarding player

from intentionally defecting. This level of � is determined by using (10.2)
and (10.3) to solve (10.4) and (10.5) using the parameters for the Public

Goods Game. The calculations are quite tedious, but the solution for � in

terms of the model parameters is

� D
c.1
 ı/

ı.1 
 /n�1.1
 n/
: (10.6)

Note that � does not depend on b. This is because the amount of punishment

must induce a player to expend only the cost c. The fraction of a period of

production entailed by a given � does, of course, depend on b. Note also

that (10.6) holds only for n < 1. We deal with the more general case
below.

We can now calculate v D vi.8i/, the expected one-period payoff.

Again, the calculations are tedious, but we find

v D b.1 
 /
 c 

nc.1
 ı/

1 
 n
: (10.7)

This shows that when n approaches unity, the efficiency of cooperation
plummets.

The above solution is meaningful only when n < 1. Suppose k is a pos-

itive integer such that k
1 � n < k. An extension of the above argument

shows that if no punishment is meted out unless exactly k defections are

signaled, then (10.7) becomes

v D b.1 
 /
 c 

nc.1
 ı/

k 
 n
: (10.8)

Again, for ı sufficiently close to unity, we can approximate Pareto-

efficiency as closely as desired.

By inspecting (10.4) and (10.5), we can gain some insight into what the
folk theorem is really saying in this case. When n is large, punishment
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is kept down by requiring several defections to trigger the punishment, in

which case the punishment continues over several periods during which
payoffs are zero. However, with positive probability when cooperation re-

sumes there will be few defections, and if ı is near unity, the sum of the

payoffs over these rare periods of cooperation will be high, so the second

term in (10.4) will be large. Moreover, for ı near unity, the first term, repre-

senting the expected current period payoff, is near zero, so the present value

of cooperation will be determined by the second term as ı ! 1. There is
clearly no sense in which this can be considered a solution to the problem

of cooperation in large groups.

10.5 Cooperation with Private Signaling

Repeated game models with private signals, including Bhaskar and Obara

(2002), Ely and Välimäki (2002), and Piccione (2002), are subject to the cri-

tique of the previous section, but private signaling models are complicated

by the fact that no sequential equilibrium can support full cooperation, so

strictly mixed strategies are necessary in equilibrium. To see this, consider
the first period. If each player uses the full cooperation strategy, then if a

player receives a defection signal from another player, with probability 1

this represents a bad signal rather than an intentional defection. Thus, with

very high probability, no other member received a defection signal. There-

fore, no player will react to a defect signal by defecting, and hence the

always-defect strategy will have a higher payoff than the always-cooperate
strategy. To deal with this problem, all players defect with positive proba-

bility in the first period.

Now, in any Nash equilibrium, the payoff for any two pure strategies

used with positive probability by a player must have equal payoffs against

the equilibrium strategies of the other players. Therefore, the probability of

defecting must be chosen so that each player is indifferent between cooper-

ating and defecting at least in the first round. Sekiguchi (1997) and Bhaskar
and Obara (2002) accomplish this by assuming players randomize in the

first round and play the grim trigger strategy in each succeeding round—

cooperate as long as you receive a signal that your partner cooperated in the

previous round, and after receiving a defect signal, defect yourself in each

succeeding round. After the first round, it is possible that a defect signal

really means a player defected because that player, who is also playing a
trigger strategy, could have received a defect signal in the previous round.
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This model is plausible when the number n of players is small, especially

for nD2. However, when the error rate approaches 1=n, the model becomes
inefficient because the probability of at least one agent receiving a defect

signal approaches unity, so the expected number of rounds in the game is

close to 1, where the benefits of game repetition disappear. Moreover, it

is true in most cases that the quality of the private signal deteriorates with

increasing group size (e.g., if each individual receives a signal from a fixed

maximum number of other players). As Bhaskar and Obara (2002) show,
we can improve the performance of the model by “restarting” cooperation

with a positive probability in each round after cooperation has ceased, but

this only marginally improves efficiency because this process does not in-

crease the incentive for players to cooperate in any given round.

Ely and Välimäki (2002) have developed a different approach to the prob-

lem, following the lead of Piccione (2002), who showed how to achieve co-

ordination in a repeated game with private information without the need for
the sort of belief updating and grim triggers used by Sekiguchi, Bhaskar,

and Obara. They construct an equilibrium in which at every stage, each

player is indifferent between cooperating and defecting no matter what his

fellow members do. Such an individual is thus willing to follow an arbitrary

mixed strategy in each period, and the authors show that there exists such a

strategy for each player that ensures close to perfect cooperation provided
individuals are sufficiently patient and the errors are small.

One problem with this approach is that it uses mixed strategies in every

period, and unless the game can be purified (�6.2), there is no reason for

players to play such strategies or to believe that their partners will do so.

Bhaskar (2000) has shown that most repeated game models that use mixed

strategies cannot be purified, and Bhaskar, Mailath, and Morris (2004) have
shown that purification is generally impossible in the Ely-Välimäki ap-

proach to the Prisoner’s Dilemma when the signal is public. The case of

private signals is much more difficult, and there is no known example of

purification in this case.

Without a choreographer, there is no mechanism that coordinates the ac-

tivities of large numbers of people so as to implement a repeated game

equilibrium with private information. It follows that the issue of whether
or not such games, the Nash equilibria of which invariably require strictly

mixed strategies, can be purified is not of fundamental importance. Never-

theless, it is useful to note that there are no examples of purification of such

games, and at least two examples of the impossibility of purification. These
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examples, due to Bhaskar (1998, 2000), make it clear why purification is

not likely: the Nash equilibria in repeated games with private information
are engineered so that players are indifferent between acting on informa-

tion concerning defection and ignoring such information. A slight change

in payoffs, however, destroys this indifference, so players behave the same

way whatever signal they receive. Such behavior is not compatible with a

cooperative Nash equilibrium.

It might be thought that the lack of purification is not a fatal weakness,
however, because we have already shown that the social instantiation of a

repeated game model requires a choreographer, and there is no reason, at

least in principle, that a social norm cannot implement a mixed strategy 	

by suggesting each of the pure strategies in the support of 	 with a probabil-

ity equal to its weight in 	 . This idea is, however, incorrect, as we exhibited

in �6.3. Unless players have a sufficiently strong normative predisposition,

small random changes in payoffs induce players to deviate from the chore-
ographer’s suggestion. The lack of purification for these models is virtually

fatal—they cannot be socially instantiated.

10.6 One Cheer For the Folk Theorem

The folk theorem is the most promising analytically rigorous theory of hu-

man cooperation in the behavioral sciences. Its strength lies in its transfor-

mation of Adam Smith’s “invisible hand” into an analytical model of ele-

gance and clarity. The folk theorem’s central weakness is that it is only

an existence theorem with no consideration of how the Nash equilibria
whose existence it demonstrates can actually be instantiated as a social pro-

cess. Certainly, these equilibria cannot be implemented spontaneously or

through a process of player learning. Rather, as we have stressed throughout

this book, strategic interaction must be socially structured by a choreogra-

pher—a social norm with the status of common knowledge, as outlined in

chapter 7.

This weakness is analytically trivial but scientifically monumental. Cor-
recting it both strengthens repeated game models and suggests how they

may be empirically tested—namely, by looking for the choreographer and,

where it cannot be found, determining what premise of the repeated game

model is violated and proposing an alternative model. Recognizing the

normative dimension of social cooperation has the added benefit of ex-

plaining why repeated game models have virtually no relevance beyond our
own species (Clements and Stephens 1995; Stephens, McLinn, and Stevens
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2002; Hammerstein 2003), the reason being that normative behavior is ex-

tremely primitive, at best, for nonhuman species.
A second weakness of repeated game theory is its preoccupation with

situations in which players are almost perfectly future-oriented (i.e., use a

discount factor close to unity) and the noise in the system (e.g., signaling

stochasticity or player error) is arbitrarily small. The reason for this preoc-

cupation is simple: the folk theorem with self-regarding agents fails when

agents are present-oriented, signals are imperfect, or players are likely to
err.

The correct response to this weakness is to (a) observe how cooperation

really occurs in society and (b) alter the characteristics of the repeated game

model to incorporate what one has discovered. We learn from biology that

there are huge gains in cooperation for an organism, but the challenges of

coordinating behavior and keeping defection to manageable levels are ex-

treme and are solved only by rare genetic innovation (Maynard Smith and
Szathmáry 1997). The notion that human cooperation has a strong biolog-

ical element, as stressed in chapter 3, is in line with this general biological

point. We present in this chapter, for illustrative purposes, a model of coop-

eration based on observed characteristics of humans that are not captured

by Bayesian rationality or by the social epistemology developed in earlier

chapters (�10.7).
Both common observation and behavioral experiments suggest that hu-

mans are disposed to behave in prosocial ways when raised in appropri-

ate cultural environments (Gintis 2003a). This disposition includes having

other-regarding preferences, such as empathy for others, and the predispo-

sition to embrace cooperative norms and to punish violators of these norms

even at personal cost. It also includes upholding such character virtues
as honesty, promise keeping, trustworthiness, bravery, group loyalty, and

considerateness. Finally, it includes valuing self-esteem and recognizing

that self-esteem depends on how one is evaluated by those with whom we

strategically interact. Without these prosocial, biologically rooted traits,

human language could not have developed, because there would then have

been no means of maintaining veridical information transmission. With-

out high-quality information, efficient cooperation based on repeated game
Nash equilibria would be impossible. Indeed, it is probably rare that infor-

mation is of sufficient quality to sustain the cooperation of self-regarding

actors.
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10.7 Altruistic Punishing in the Public Goods Game

This section develops a model of cooperation in the Public Goods Game

in which each agent is motivated by self-interest, unconditional altruism,

and strong reciprocity, based on Carpenter et al. (2009). We investigate the

conditions for a cooperative equilibrium, as well as how the efficiency of

cooperation depends on the level of altruism and reciprocity. We show that
if there is a stable interior equilibrium (i.e., including both cooperation and

shirking), an increase in either altruism or reciprocity motives will generate

higher efficiency.

Consider a group of size n > 2, where member i supplies an amount of

effort 1
	i 2 Œ0; 1�. We call 	i the level of shirking of member i and write

N	 D
Pn

j D1 	j=n for the average level of shirking. We assume that working
at level 1 
 	i adds q.1 
 	i/ dollars to the group output, where q > 1,

while the cost of working is a quadratic function s.1 
 	i / D .1 
 	i/
2=2.

We call q the productivity of cooperation. We assume the members of the

group share their output equally, so member i’s payoff is given by

�i D q.1 
 N	/ 
 .1
 	i /
2=2: (10.9)

The payoff loss for each member of the group from one member shirking

is ˇ D q=n. We assume 1=n < ˇ < 1.

We assume member i can impose a cost on j ¤ i with monetary equiv-

alent sij at cost ci .sij / to himself. The cost sij results from public criti-

cism, shunning, ostracism, physical violence, exclusion from desirable side

deals, or another form of harm. We assume ci .0/ D c0
i .0/ D c00

i .0/ D 0

and ci .sij / is increasing and strictly convex for all i; j when sij > 0.

Member j ’s cooperative behavior bj depends on j ’s level of shirking and

the harm that j inflicts on the group, which we assume is public knowledge.

Specifically, we assume

bj D ˇ.1 
 2	j /: (10.10)

Thus, 	j D 1=2 is the point at which i evaluates j ’s cooperative behavior

as neither good nor bad.

To model cooperative behavior with social preferences, we say that indi-

vidual i’s utility depends on his own material payoff �i and the payoff �j

to other individuals j ¤ i according to

ui D �i C
X
j ¤i

Œ.ai C �ibj /.�j 
 sij / 
 ci .sij /� 
 si.	i/ (10.11)
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where si.	i/ D
P

j ¤i sj i .	i/ is the punishment inflicted upon i by other

group members and �i � 0. The parameter ai is i’s level of unconditional
altruism if ai > 0 and unconditional spite if ai < 0, and �i is i’s strength

of reciprocity motive, valuing j ’s payoffs more highly if j conforms to i’s

concept of good behavior, and conversely (Rabin 1993; Levine 1998). If

�i and ai are both positive, the individual is termed a strong reciprocator,

motivated to reduce the payoffs of an individual who shirks even at a cost

to himself.
Players maximize (10.11), and because bj can be negative, this may lead

i to increase his shirking 	i and/or to punish j by increasing sij in response

to a higher level of shirking by j . This motivation for punishing a shirker

values the punishment per se rather than the benefits likely to accrue to the

punisher if the shirker responds positively to the punishment. Moreover,

members derive utility from punishing the shirker, not simply from observ-

ing that the shirker was punished. This means that punishing provides a
warm glow rather than being instrumental towards affecting j ’s behavior

(Andreoni 1995; Casari and Luini 2007).

This model requires only that a certain fraction of group members be re-

ciprocators. This is in line with the evidence from behavioral game theory

presented in chapter 3, which indicates that in virtually every experimental

setting a certain fraction of the subjects do not act reciprocally, because they
are self-regarding or they are purely altruistic. Note also that the punish-

ment system could elicit a high level of cooperation, yet a low level of net

material payoff. This is because punishment is not strategic in this model.

In real societies, the amount of punishment of shirkers is generally socially

regulated, and punishment beyond the level needed to secure compliance is

sanctioned (Wiessner 2005).
In this model, i will choose s�

ij .	j / to maximize utility in (10.11), giving

rise to the first-order condition (assuming an interior solution)

c0
i .s

�
ij / D �iˇ.2	j 
 1/ 
 ai : (10.12)

If �i > 0 and

	j � 	0
i D

1

2

	
ai

�iˇ
C 1



; (10.13)

the maximization problem has a corner solution in which i does not punish.
For �i > 0 and 	j > 	0

i , denoting the right-hand side of (10.12) by � and
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differentiating (10.12) totally with respect to any parameter x, we get

ds�
ij

dx
D
@�

@x

1

c00
i .s

�
ij /
: (10.14)

In particular, setting x D ai , x D �i , x D 	j , x D ˇ and x D n in turn in

(10.14), we have the following theorem.

THEOREM 10.3 For �i > 0 and 	j > 	0
i , the level of punishment by i

imposed on j , s�
ij , is (a) decreasing in i’s unconditional altruism ai; (b)

increasing in i’s reciprocity motive, �i ; (c) increasing in the level 	j of j ’s

shirking; (d) increasing in the harm ˇ that j inflicts upon i by shirking;

and (e) decreasing in group size.

The punishment sj .	j / inflicted upon j by the group is given by

sj .	j / D
X
i¤j

s�
ij .	j /; (10.15)

which is then differentiable and strictly increasing in 	j over some range,

provided there is at least one reciprocator i (�i > 0).

The first-order condition on 	i from (10.11) is given by

1 
 	i 
 ˇ D ˇ
X
j ¤i

.ai C �ibj /C s0
i.	i/; (10.16)

so i shirks up to such a point that the net benefits of shirking (the left-hand

side) equal i’s valuation of the costs imposed on others by his shirking (the

first term on the right-hand side) plus the marginal cost of shirking entailed
by the increased level of punishment that i may expect. This defines i’s op-

timal shirking level 	�
i for all i and hence closes the model, assuming the

second-order conditions s00
i .	i/>
1. Whether there is an interior solution

depends on the array of parameters of the problem. For instance, if reci-

procity is very weak, there could be complete shirking by every player, or if

very strong, zero shirking by every player. We assume an interior solution
to investigate the comparative statics of the problem.

The average shirking rate of i’s partners is given by

N	�i D
1

n 
 1

X
j ¤i

	j :



200 Chapter 10

We say that i’s partners shirk on balance if N	i > 1=2 and work on balance

if the opposite inequality holds. We then have the following theorem, which
is proved in Carpenter et al. (2009):

THEOREM 10.4 Suppose there is an stable interior equilibrium under a

best response dynamic. Then (a) an increase in i’s unconditional altruism

ai leads i to shirk less; and (b) an increase in i’s reciprocity motive �i

leads i to shirk more when i’s partners shirk on balance and to shirk less

when i’s partners work on balance.

While this is a simple one-shot model, it could easily be developed into

a repeated game model in which some of the parameters evolve endoge-

nously and where reputation effects strengthen the other-regarding motives
on which the above model depends.

10.8 The Failure of Models of Self-Regarding Cooperation

Providing a plausible game-theoretic model of cooperation among self-
regarding agents would vindicate methodological individualism (�8.8), and

render economic theory virtually independent of, and foundational to, the

other behavioral disciplines. In fact, this project is not a success. A fully

successful approach is likely to require a psychological model of social

preferences and a social epistemology, as well as an analysis of social norms

as correlating devices that choose among a plethora of Nash equilibria and
choreograph the actions of heterogeneous agents into a harmonious opera-

tional system.
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The Evolution of Property Rights

Every Man has a property in his own Person. This no Body has any
Right to but himself. The Labour of his Body, and the Work of his
Hands, we may say, are properly his.

John Locke

This chapter illustrates the synergy among the rational actor model, game

theory, the socio-psychological theory of norms and gene-culture coevolu-
tion (�7.10), highlighting the gains that are possible when ossified disci-

plinary boundaries are shattered. The true power of game-theoretic anal-

ysis becomes manifest only when we cast our theoretical net beyond the

strictures of methodological individualism (�8.8). The underlying model is

taken from Gintis (2007b). A general case for the methodological approach

followed in this chapter is presented in chapter 12.

Authors tracing back to the origins of political liberalism have treated
property rights as a social norm the value of which lies in reducing conflict

over rights of incumbency (Schlatter 1973). Our analysis of the bourgeois

strategy as a social norm effecting an efficient correlated equilibrium em-

bodies this classical notion (�7.3). However, we argued in chapter 7 that

a social norm is likely to be fragile and unstable unless individuals gen-

erally have a normative predisposition to conform. We here interpret the
well-known phenomena of loss-aversion and the endowment effect (�1.9)

as highly rational forms of normative predisposition. In this case, the norm

is shared with many species of animals as well, in the form of territoriality.

11.1 The Endowment Effect

The endowment effect is the notion that people value a good that they pos-

sess more highly than they value the same good when they do not possess

it (�1.9). Experimental studies (�11.2) have shown that subjects exhibit a

systematic endowment effect. The endowment effect is widely considered
to be an instance of human irrationality. We suggest here that the endow-

201
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ment effect is not only rational, but also is the basis of key forms of human

sociality, including respect for property rights.
Because the endowment effect is an aspect of prospect theory (�1.9), it

can be modeled by amending the standard rational actor model to include

an agent’s current holdings as a parameter. The endowment effect gives

rise to loss-aversion, according to which agents are more sensitive to losses

than to gains (�1.7). We show here that the endowment effect can be mod-

eled as respect for property rights in the absence of legal institutions en-
suring third-party contract enforcement (Jones 2001; Stake 2004). In this

sense, preinstitutional “natural” property rights have been observed in many

species in the form of recognition of territorial possession. We develop a

model loosely based on the Hawk-Dove Game (�2.9) and the War of At-

trition (Maynard Smith and Price 1973) to explain the natural evolution of

property rights.

We show that if agents in a group exhibit the endowment effect for an in-
divisible resource, then property rights for that resource can be established

on the basis of incumbency, assuming incumbents and those who contest

for incumbency are of equal perceived fighting ability.1 The enforcement of

these rights is then carried out by the agents themselves, so no third-party

enforcement is needed. This is because the endowment effect leads the in-

cumbent to be willing to expend more resources to protect his incumbency
than an intruder will be willing to expend to expropriate the incumbent. For

simplicity, we consider only the case where the marginal benefit of more

than one unit of the resource is zero (e.g., a homestead, a spider’s web, or a

bird’s nest).

The model assumes the agents know the present value �g of incumbency,

as well as the present value �b of nonincumbency, measured in units of bio-
logical fitness. We assume utility and fitness coincide, except for one situa-

tion, described below: this situation explicitly involves loss aversion, where

the disutility of loss exceeds the fitness cost of loss. When an incumbent

faces an intruder, the intruder determines the expected value of attempting

to seize the resource, and the incumbent determines the expected value of

contesting vs. ceding incumbency when challenged. These conditions will

not be the same, and in plausible cases there is a range of values of �g=�b

1The assumption of indivisibility is not very restrictive. In some cases it is naturally

satisfied, as in a nest, a web, a dam, or a mate. In others, such as a hunter’s kill, a fruit tree,

a stretch of beach for an avian scavenger, it is simply the minimum size worth fighting

over rather than dividing and sharing.
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for which the intruder decides not to fight and the incumbent decides to

fight if challenged. We call this a (natural) property equilibrium. In a prop-
erty equilibrium, since the potential contestants are of equal power, it must

be the case that individuals are loss-averse, the incumbent being willing to

expend more resources to hold the resource than the intruder is to seize it.

Of course, �g and�b are generally endogenous in a fully specified model.

Their values depend on the supply of the resource relative to the number of

agents, the intrinsic value of the resource, the ease of finding an unowned
unit of the resource, and the like.

In our model of decentralized property rights, agents contest for a unit of

an indivisible resource, contests may be very costly, and in equilibrium, in-

cumbency determines who holds the resource without costly contests. Our

model, however, fills in critical gaps in the Hawk-Dove Game. The central

ambiguity of the Hawk-Dove Game is that it treats the cost of contesting

as exogenously given and taking on exactly two values, high for hawk and
low for dove. Clearly, however, these costs are in large part under the con-

trol of the agents themselves and should not be considered exogenous. In

our model, the level of resources devoted to a contest is endogenously de-

termined, and the contest itself is modeled explicitly as a modified War of

Attrition, the probability of winning being a function of the level of re-

sources committed to combat. One critical feature of the War of Attrition
is that the initial commitment of a level of resources to a contest must be

behaviorally ensured by the agent, so that the agent will continue to contest

even when the costs of doing so exceed the fitness benefits. Without this

precommitment, the incumbent’s threat of “fighting to the death” would not

be credible (i.e., the agent would abandon the chosen best response when

it came time to use it). From a behavioral point of view, this precommit-
ment can be summarized as the incumbent having a degree of loss aversion

leading his utility to differ from his fitness.

Our fuller specification of the behavioral underpinnings of the Hawk-

Dove Game allows us to determine the conditions under which a property

equilibrium will exist while its corresponding antiproperty equilibrium (in

which a new arrival rather than the first entrant always assumes incum-

bency) does not exist. This aspect of our model is of some importance
because the inability of the Hawk-Dove Game to favor property over an-

tiproperty is a serious and rarely addressed weakness of the model (but see

Mesterton-Gibbons 1992).
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11.2 Territoriality

The endowment effect, according to which a good is more highly prized

by an agent who is in possession of the good than by one who is not, was

first documented by the psychologist Daniel Kahneman and his cowork-

ers (Tversky and Kahneman 1991; Kahneman et al. 1991; Thaler 1992).
Thaler describes a typical experimental verification of the phenomenon as

follows. Seventy-seven students at Simon Fraser University were randomly

assigned to one of three conditions, seller, buyer, or chooser. Sellers were

given a mug with the university logo (selling for $6.00 at local stores) and

asked whether they would be willing to sell at a series of prices ranging

from $0.25 to $9.25. Buyers were asked whether they would be willing

to purchase a mug at the same series of prices. For each price, choosers
were asked to choose between receiving a mug or receiving that amount of

money. The students were informed that a fraction of their choices, ran-

domly chosen by the experimenter, would be carried out, thus giving the

students a material incentive to reveal their true preferences. The average

buyer price was $2.87, while the average seller price was $7.12. Choosers

behaved like buyers, being on average indifferent between the mug and
$3.12. The conclusion is that owners of the mug valued the object more

than twice as highly as nonowners.

The aspect of the endowment effect that promotes natural property rights

is known as loss aversion: the disutility of giving up something one owns

is greater than the utility associated with acquiring it. Indeed, losses are

commonly valued at about twice that of gains, so that to induce an indi-
vidual to accept a lottery that costs $10 when one loses (which occurs with

probability 1/2), it must offer a $20 payoff when one wins (Camerer 2003).

Assuming that an agent’s willingness to combat over possession of an ob-

ject is increasing in the subjective value of the object, owners are prepared

to fight harder to retain possession than non-owners are to gain possession.

Hence there will be a predisposition in favor of recognizing property rights

by virtue of incumbency, even where third-party enforcement institutions
are absent.

We say an agent owns something, or is incumbent, if the agent has exclu-

sive access to it and the benefits that flow from this privileged access. We

say ownership (incumbency) is respected if it is rarely contested and, when

contested, generally results in ownership remaining with the incumbent.

The dominant view in Western thought, from Hobbes, Locke, Rousseau,
and Marx to the present, is that property rights are a human social con-
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struction that emerged with the rise of modern civilization (Schlatter 1973).

However, evidence from studies on animal behavior, gathered mostly in the
past quarter-century, has shown this view to be incorrect. Various territorial

claims are recognized in nonhuman species, including butterflies (Davies

1978), spiders (Riechert 1978), wild horses (Stevens 1988), finches (Senar,

Camerino, and Metcalfe 1989), wasps (Eason, Cobbs, and Trinca 1999),

nonhuman primates (Ellis 1985), lizards (Rand 1967), and many others

(Mesterton-Gibbons and Adams 2003). There are, of course, some obvi-
ous forms of incumbent advantage that partially explain this phenomenon:

the incumbent’s investment in the territory may be idiosyncratically more

valuable to the incumbent than to a contestant or the incumbent’s famil-

iarity with the territory may enhance its ability to fight. However, in the

above-cited cases, these forms of incumbent advantage are unlikely to be

important. Thus, a more general explanation of territoriality is needed.

In nonhuman species, that an animal owns a territory is generally estab-
lished by the fact that the animal has occupied and altered the territory (e.g.,

by constructing a nest, burrow, hive, dam, or web, or by marking its lim-

its with urine or feces). In humans there are other criteria of ownership,

but physical possession and first to occupy remain of great importance, as

expressed by John Locke in the epigraph for this chapter.

Since property rights in human society are generally protected by law and
property rights are enforced by complex institutions (judiciary and police),

it is natural to view property rights in animals as a categorically distinct phe-

nomenon. In fact, however, decentralized, self-enforcing types of property

rights, based on behavioral propensities akin to those found in nonhuman

species (e.g., the endowment effect), are important for humans and arguably

lay the basis for more institutional forms of property rights. For instance,
many developmental studies indicate that toddlers and small children use

behavioral rules similar to those of animals is recognizing and defending

property rights (Furby 1980).

How respect for ownership has evolved and how it is maintained in an

evolutionary context is a challenging puzzle. Why do loss aversion and the

endowment effect exist? Why do humans fail to conform to the smoothly

differentiable utility function assumed in most versions of the rational actor
model? The question is equally challenging for nonhumans, although we

are so used to the phenomenon that we rarely give it a second thought.

Consider, for instance, the sparrows that built a nest in a vine in my gar-

den. The location is choice, and the couple spent days preparing the struc-
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ture. The nest is quite as valuable to another sparrow couple. Why does

another couple not try to evict the first? If they are equally strong, and both
value the territory equally, each has a 50% chance of winning the territorial

battle. Why bother investing if one can simply steal (Hirshleifer 1988)? Of

course, if stealing were profitable, then there would be no nest building, and

hence no sparrows, but that heightens rather than resolves the puzzle.

One common argument, borrowed from Trivers (1972), is that the original

couple has more to lose since it has already put a good deal of effort into
the improvement of the property. This, however, is a logical error that has

come to be known as the Concorde or the sunk cost fallacy (Dawkins and

Brockmann 1980; Arkes and Ayton 1999): to maximize future returns, an

agent ought consider only the future payoffs of an entity, not how much the

agent has expended on the entity in the past.

The Hawk-Dove Game was offered by Maynard Smith and Parker (1976)

as a logically sound alternative to the sunk cost argument. In this game
Hawks and Doves are phenotypically indistinguishable members of the

same species, but they act differently in contesting ownership rights to a

territory. When two Doves contest, they posture for a bit, and then each

assumes the territory with equal probability. When a Dove and a Hawk

contest, however, the Hawk takes the whole territory. Finally, when two

Hawks contest, a terrible battle ensues, and the value of the territory is less
than the cost of fighting for the contestants. Maynard Smith showed that,

assuming that there is an unambiguous way to determine who first found

the territory, there is an evolutionarily stable strategy in which all agents

behave like Hawks when they are first to find the territory, and like Doves

otherwise.

The Hawk-Dove Game is an elegant contribution to explaining the en-
dowment effect, but the cost of contesting for Hawks and the cost of display

for Doves cannot plausibly be taken as fixed and exogenously determined.

Indeed, it is clear that Doves contest in the same manner as Hawks, ex-

cept that they devote fewer resources to combat. Similarly, the value of the

ownership is taken as exogenous, when in fact it depends on the frequency

with which ownership is contested, as well as on other factors. As Grafen

(1987) stresses, the costs and benefits of possession depend on the state of
the population, the density of high-quality territories, the cost of search,

and other variables that might well depend on the distribution of strategies

in the population.
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First, however, it is instructive to consider the evidence for a close asso-

ciation, as Locke suggested in his theory of property rights, between own-
ership and incumbency (physical contiguity and control) in children and

nonhuman animals.

11.3 Property Rights in Young Children

Long before they become acquainted with money, markets, bargaining, and
trade, children exhibit possessive behavior and recognize the property rights

of others on the basis of incumbency.2 In one study (Bakeman and Brown-

lee 1982), participant observers studied a group of 11 toddlers (12 to 24

months old) and a group of 13 preschoolers (40 to 48 months old) at a

day care center. The observers found that each group was organized into

a fairly consistent linear dominance hierarchy. They then cataloged pos-

session episodes, defined as situations in which a holder touched or held
an object and a taker touched the object and attempted to remove it from

the holder’s possession. Possession episodes averaged 11.7 per hour in the

toddler group and 5.4 per hour in the preschool group.

For each possession episode, the observers noted (a) whether the taker

had been playing with the object within the previous 60 seconds (prior pos-

session), (b) whether the holder resisted the take attempt (resistance), and
(c) whether the take was successful (success). They found that success

was strongly and about equally associated with both dominance and prior

possession. They also found that resistance was positively associated with

dominance in the toddlers and negatively associated with prior possession

in the preschoolers. They suggest that toddlers recognize possession as a

basis for asserting control rights but do not respect the same rights in others.
Preschoolers, more than twice the age of the toddlers, use physical proxim-

ity both to justify their own claims and to respect the claims of others. This

study was replicated and extended by Weigel (1984).

11.4 Respect for Possession in Nonhuman Animals

In a famous paper, Maynard Smith and Parker noted that if two animals
are competing for some resource (e.g., a territory), and if there is some dis-

cernible asymmetry (e.g., between an owner and a later-arriving animal),

then it is evolutionarily stable for the asymmetry to settle the contest con-

2See Ellis (1985) for a review and an extensive bibliography of research in this area.
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ventionally, without fighting. Among the findings of the many animal be-

haviorists who put this theory to the test, perhaps none is more elegant and
unambiguous than that of Davies (1978), who studied the speckled wood

(Pararge aegeria), a butterfly found in the Wytham Woods, near Oxford,

England. Territories for this butterfly are shafts of sunlight breaking through

the tree canopy. Males occupying these spots enjoyed heightened mating

success, and on average only 60% of the males occupied the sunlit spots

at any one time. A vacant spot was generally occupied within seconds, but
an intruder at an already occupied spot was invariably driven away even if

the incumbent had occupied the spot for only a few seconds. When Davies

“tricked” two butterflies into thinking each had occupied the sunny patch

first, the contest between the two lasted, on average, 10 times as long as the

brief flurry that occurred when an incumbent chased off an intruder.

Stevens (1988) found a similar pattern of behavior among the feral horses

occupying the sandy islands of the Rachel Carson Estuarine Sanctuary near
Beaufort, North Carolina. In this case, it is freshwater that is scarce. Af-

ter heavy rains, freshwater accumulates in many small pools in low-lying

wooded areas, and bands of horses frequently stop to drink. Stevens found

that there were frequent encounters between bands of horses competing for

water at these temporary pools. If a band approached a water hole occupied

by another band, a conflict ensued. During 76 hours of observation, Stevens
observed 233 contests, of which the resident band won 178 (80%). In nearly

all cases of usurpation, the intruding band was larger than the resident band.

These examples, and many others like them, support the presence of an en-

dowment effect and suggest that incumbents are willing to fight harder to

maintain their positions than intruders are to usurp the owner.

Examples from nonhuman primates exhibit behavioral patterns in re-
specting property rights much closer to those of humans. In general, the

taking of an object held by another individual is a rare event in primate

societies (Torii 1974). A reasonable test of the respect for property in pri-

mates with a strong dominance hierarchy is the likelihood of a dominant

individual refraining from taking an attractive object from a lower-ranking

individual. In a study of hamadryas baboons (Papio hamadryas), for in-

stance, Sigg and Falett (1985) handed a food can to a subordinate who was
allowed to manipulate it and eat from it for 5 minutes before a dominant

individual who had been watching from an adjacent cage was allowed to

enter the subordinate’s cage. A takeover was defined as the rival taking

possession of the can before 30 minutes had elapsed. They found that (a)
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males never took the food can from other males; (b) dominant males took

the can from subordinate females two-thirds of the time; and (c) dominant
females took the can from subordinate females one-half of the time. With

females, closer inspection showed that when the difference in rank was one

or two, females showed respect for the property of other females, but when

the rank difference was three or greater, takeovers tended to occur.

Kummer and Cords (1991) studied the role of proximity in respect for

property in long-tailed macaques (Macaca fascicularis). As in the Sigg
and Falett study, they assigned ownership to a subordinate and recorded

the behavior of a dominant individual. The valuable object in all cases

was a plastic tube stuffed with raisins. In one experiment, the tube was

fixed to an object in half the trials and completely mobile in the other half.

They found that with the fixed object, the dominant rival took possession

in all cases and very quickly (median 1 minute), whereas in the mobile

condition, the dominant rival took possession in only 10% of cases, and
then only after a median delay of 18 minutes. The experiment took place in

an enclosed area, so the relative success of the incumbent was not likely due

to an ability to flee or hide. In a second experiment, the object was either

mobile or attached to a fixed object by a stout 2- or 4-meter rope. The results

were similar. A third case, in which the nonmobile object was attached to

a long dragline that permitted free movement by the owner, produced the
following results. Pairs of subjects were studied under two conditions, one

where the rope attached to the dragline was 2 meters in length and a second

where the rope was 4 meters in length. In 23 of 40 trials, the subordinate

maintained ownership with both rope lengths, and in 6 trials the dominant

rival took possession with both rope lengths. In the remaining 11 trials, the

rival respected the subordinate’s property in the short rope case but took
possession in the long-rope case. The experimenters observed that when a

dominant attempted to usurp a subordinate when other group members were

around, the subordinate screamed, drawing the attention of third parties,

who frequently forced the dominant individual to desist.

In Wild Minds (2000), Marc Hauser relates an experiment run by Kum-

mer and his colleagues concerning mate property, using four hamadryas

baboons, Joe, Betty, Sam, and Sue. Sam was let into Betty’s cage while Joe
looked on from an adjacent cage. Sam immediately began following Betty

around and grooming her. When Joe was allowed entrance into the cage,

he kept his distance, leaving Sam uncontested. The same experiment was

repeated with Joe being allowed into Sue’s cage. Joe behaved as Sam had
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in the previous experiment, and when Sam was let into the cage, he failed

to challenge Joe’s proprietary rights with respect to Sue.
No primate experiment, to my knowledge, has attempted to determine

the probability that an incumbent will be contested for ownership by a rival

who is, or could easily become, closely proximate to the desired object.

This probability is likely very low in most natural settings, so the contests

described in the papers cited in this section are probably rather rare in prac-

tice. At any rate, in the model of respect for property developed in the next
section, we will make informational assumptions that render the probability

of contestation equal to zero in equilibrium.

11.5 Conditions for a Property Equilibrium

Suppose that two agents, prior to fighting over possession, simultaneously

precommit to expending a certain level of resources in the contest. As in

the War of Attrition (Bishop and Cannings 1978), a higher level of resource
commitment entails a higher fitness cost but increases the probability of

winning. We assume throughout this chapter that the two contestants, an

incumbent and an intruder, are ex ante equally capable contestants in that

the costs and benefits of battle are symmetric in the resource commitments

so (owner) and su (usurper) of the incumbent and the intruder, respectively,

and so; su 2 Œ0; 1�. To satisfy this requirement, we let pu D sn
u=.s

n
u Csn

o / be
the probability that the intruder wins, where n > 1. Note that a larger n im-

plies that resource commitments are more decisive in determining victory.

We assume that combat leads to injury ˇ 2 .0; 1� to the losing party with

probability pd D .so C su/=2, so s D ˇpd is the expected cost of combat

for both parties.

We use a territorial analogy throughout, some agents being incumbents
and others being migrants in search of either empty territories or occupied

territories that they may be able to occupy by displacing current incum-

bents. Let �g be the present value of being a currently uncontested incum-

bent and let �b be the present value of being a migrant searching for a ter-

ritory. We assume throughout that �g > �b > 0. Suppose a migrant comes

upon an occupied territory. Should the migrant contest, the condition under

which it pays an incumbent to fight back is then given by

�c � pd .1
 pu/�g C pdpu.1
 ˇ/.1 
 c/�b

C.1 
 pd /.1
 pu/�g C .1 
 pd /pu�b.1
 c/ > �b.1
 c/:
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The first term in �c is the product of the probabilities that the intruder loses

(1 
 pu) and sustains an injury (pd ) times the value �g of incumbency,
which the incumbent then retains. The second term is the product of the

probabilities that the incumbent loses (pu), sustains an injury (pd ), survives

the injury (1 
 ˇ), and survives the passage to migrant status (1 
 c) times

the present value �b of being a migrant. The third and fourth terms are the

parallel calculations when no injury is sustained. This inequality simplifies

to
�g

�b.1
 c/

 1 >

sn
u

sn
o

s: (11.1)

The condition for a migrant refusing to contest for the territory, assuming

the incumbent will contest if the migrant does, is

�u � pd .pu�g C .1 
 pu/.1
 ˇ/.1
 c/�b/ (11.2)

C.1
 pd /.pu�g C .1
 pu/�b.1 
 c// < �b.1
 c/:(11.3)

This inequality reduces to

sn
o

sn
u

s >
�g

�b.1 
 c/

 1: (11.4)

A property equilibrium occurs when both inequalities obtain

sn
o

sn
u

s >
�g

�b.1 
 c/

 1 >

sn
u

sn
o

s: (11.5)

An incumbent who is challenged chooses so to maximize �c and then

contests if and only if the resulting ��
c > �b.1 
 c/, since the latter is the

value of simply leaving the territory. It is easy to check that @�c=@so has

the same sign as

�g

�b.1 
 c/



�
soˇ

2n.1
 pu/
C 1 
 s

�
:

The derivative of this expression with respect to so has the same sign as

.n 
 1/ˇ�b=.1
 pu/, which is positive. Moreover, when so D 0, @�c=@so
has the same sign as

�g

�b.1
 c/

 1C

suˇ.1
 c/

2
;
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which is positive. Therefore, @�c=@so is always strictly positive, so so D 1

maximizes �c .
In deciding whether or not to contest, the migrant chooses su to maximize

�u and then contests if this expression exceeds �b.1
 c/. But @�u=@su has

the same sign as

�g

�b.1 
 c/



�
s 
 1C

suˇ

2npu

�
;

which is increasing in su and is positive when su D 0, so the optimal su D
1. The condition for not contesting the incumbent is then

�g

�b.1
 c/

 1 < ˇ: (11.6)

In this case, the condition (11.4) for the incumbent contesting is the same

as (11.6) with the inequality sign reversed.
By an antiproperty equilibrium we mean a situation where intruders al-

ways contest and incumbents always relinquish their possessions without a

fight.

THEOREM 11.1 If �g > .1C ˇ/�b.1 
 c/, there is a unique equilibrium

in which an migrant always fights for possession and an incumbent always

contests. When the reverse inequality holds, there exists both a property

equilibrium and an antiproperty equilibrium.

Theorem 11.1 implies that property rights are more likely to be recognized
when combatants are capable of inflicting great harm on one another, so ˇ

is close to its maximum of unity, or when migration costs are very high, so

c is close to unity.

Theorem 11.1 may apply to a classic problem in the study of hunter-

gatherer societies, which are important not only in their own right but also

because our ancestors lived uniquely in such societies until about 10,000

years ago, and hence their social practices have doubtless been a major en-
vironmental condition to which the human genome has adapted (Cosmides

and Tooby 1992). One strong uniformity across current-day hunter-gatherer

societies is that low-value foodstuffs (e.g., fruits and small game) are con-

sumed by the families that produce them, but high-value foodstuffs (e.g.,

large game and honey) are meticulously shared among all group mem-

bers. The standard argument is that high-value foodstuffs exhibit a high
variance, and sharing is a means of reducing individual variance. But an
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alternative with much empirical support is the tolerated theft theory that

holds that high-value foodstuffs are worth fighting for (i.e., the inequality
in theorem 11.1 is satisfied), and the sharing rule is a means of reducing the

mayhem that would inevitably result from the absence of secure property

rights to high-value foodstuffs (Hawkes 1993; Blurton Jones 1987; Betzig

1997; Bliege Bird and Bird 1997; Wilson 1998a).3

The only part of theorem 11.1 that remains to be proved is the existence

of an antiproperty equilibrium. To see this, note that such an equilibrium
exists when �c < �b.1 
 c/ and �u > �b.1 
 c/, which, by the same

reasoning as above, occurs when

sn
u

sn
o

>
�g

�b.1 
 c/

 1 >

sn
o

sn
u

s: (11.7)

It is easy to show that if the incumbent contests, then both parties will set

su D so D 1, in which case the condition for the incumbent to do better by

not contesting is exactly what it is in the property equilibrium.

The result that there exists an antiproperty equilibrium exactly when there

is a property equilibrium is quite unrealistic since few, if any, antiproperty

equilibria have been observed. Our model, of course, shares this anomaly
with the Hawk-Dove Game, for which this weakness has never been an-

alytically resolved. In our case, however, when we expand our model to

determine �g and �g , the antiproperty equilibrium generally disappears.

The problem with the above argument is that we cannot expect �g and �b

to have the same values in a property and in an antiproperty equilibrium.

11.6 Property and Antiproperty Equilibria

To determine �g and �b , we must flesh out the above model of incumbents

and migrants. Consider a field with many patches, each of which is indivis-

ible and hence can have only one owner. In each time period, a fertile patch

yields a benefit b > 0 to the owner and dies with probability p > 0, forcing

its owner (should it have one) to migrate elsewhere in search of a fertile
patch. Dead patches regain their fertility after a period of time, leaving the

fraction of patches that are fertile constant from period to period. An agent

who encounters an empty fertile patch invests an amount v 2 .0; 1=2/ of

3For Theorem 11.1 to apply, the resource in question must be indivisible. In this case,

the “territory” is the foodstuff that delivers benefits over many meals, and the individuals

who partake of it are temporary occupiers of the territory.
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fitness in preparing the patch for use and occupies the patch. An agent suf-

fers a fitness cost c > 0 each period he is in the state of searching for a
fertile patch. An agent who encounters an occupied patch may contest for

ownership of the patch according to the War of Attrition structure analyzed

in the previous section.

Suppose there are np patches and na agents. Let r be the probability

of finding a fertile patch and let w be the probability of finding a fertile

unoccupied patch. If the rate at which dead patches become fertile is q,
which we assume for simplicity does not depend on how long a patch has

been dead, then the equilibrium fraction f of patches that are fertile must

satisfy npfp D np.1
 f /q, so f D q=.p C q/. Assuming that a migrant

finds a new patch with probability �, we then have r D f�. If � is the

fraction of agents that are incumbents, then writing ˛ D na=np, we have

w D r.1 
 ˛�/: (11.8)

Assuming the system is in equilibrium, the number of incumbents whose

patches die must be equal to the number of migrants who find empty

patches, or na�.1 
 p/ D na.1 
 �/w. Solving this equation gives �,
which is given by

˛r�2 
 .1
 p C r.1C ˛//� C r D 0: (11.9)

It is easy to show that this equation has two positive roots, exactly one lying
in the interval .0; 1/.

In a property equilibrium, we have

�g D b C .1
 p/�g C p�b.1 
 c/; (11.10)

and

�b D w�g.1 
 v/C .1 
w/�b.1
 c/: (11.11)

Note that the cost v of investing and the cost c of migrating are interpreted
as fitness costs and hence as probabilities of death. Thus, the probability

of a migrant becoming an incumbent in the next period is w.1 
 v/, and

the probability of remaining a migrant is .1 
 w/. This explains (11.11).

Solving these two equations simultaneously gives equilibrium values of in-

cumbency and nonincumbency:

��
g D

b.c.1
 w/C w/

p.c.1
 vw/C vw/
; (11.12)

��
b D

b.1 
 v/w

p.c.1
 vw/C vw/
: (11.13)
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Note that �g ; �b > 0 and

��
g

��
b


 1 D
c.1 
w/C wv

w.1
 v/
: (11.14)

By theorem 11.1, the assumption that this is a property equilibrium is sat-

isfied if and only if this expression is less than ˇ, or

c.1 
w/C wv

w.1
 v/
< ˇ: (11.15)

We have the following theorem.

THEOREM 11.2 There is a strictly positive migration cost c� and a cost of

injury ˇ�.c/ for all c < c� such that a property equilibrium holds for all

c < c� and ˇ > ˇ�.c/.

To see this, note that the left hand side of (11.15) is less than 1 precisely

when c < c� D hboxdefw.1
 2v/=.1
w/. We then set ˇ�.c/ equal to the

left hand side of (11.15), ensuring that ˇ�.c/ < 1.

This theorem shows that, in addition to our previous result, a low fight-
ing cost and a high migration cost undermine the property equilibrium, a

high probability w that a migrant encounters an incumbent undermines the

property equilibrium, and a high investment v has the same effect.

Suppose, however, that the system is in an antiproperty equilibrium. In

this case, letting qu be the probability that an incumbent is challenged by

an intruder, we have

�g D b C .1
 p/.1
 qu/�g C .p.1
 qu/C qu/�b.1
 c/ (11.16)

and

�b D w�g.1
 v/C .r 
w/�g C .1 
 r/�b.1
 c/: (11.17)

Solving these equations simultaneously gives

��
g D

b.c.1
 r/ C r/

..p.1
 qu/C qu//.vw C c.1 
 vw//
; (11.18)

��
b D

b.r 
 vw/

...p.1
 qu/C qu//.vw C c.1
 vw///
: (11.19)
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Also, �g ; �b > 0 and

��
g

��
b


 1 D
c.1
 r/C vw

r 
 vw
: (11.20)

Note that r 
 vw D r.1 
 v.1 
 ˛�// > 0. We must check whether a

nonincumbent mutant who never invests, and hence passes up empty fertile

patches, would be better off. In this case, the present value of the mutant,

�m, satisfies

�m 
 ��
b D .r 
w/��

g C .1
 r C w/��
b .1 
 c/ 
 ��

b

D
bw.v.r 
w/
 c.1 
 v.1 
 r C 2///

.p.1 
 qu/C qu/.vw C c.1 
 vw//
:

It follows that if
v �

c

.r 
 w/.1
 c/C c
; (11.21)

then the mutant behavior (not investing) cannot invade, and we indeed have

an anti-equilibrium. Note that (11.21) has a simple interpretation. The

denominator in the fraction is the probability that a search ends either in
death or in finding an empty patch. The right side is therefore the expected

cost of searching for an occupied patch. If the cost v of investing in a

empty patch is greater than the expected cost of waiting to usurp an already

productive (fertile and invested in) patch, no agent will invest. We have the

following theorem.

THEOREM 11.3 There is an investment cost v� 2 .0; 1/ such that an an-

tiproperty equilibrium exists if and only if v � v�. v� is an increasing

function of the migration cost c.

To see this, note that the right hand side of (11.21) lies strictly between 0

and 1, and is strictly increasing in c.

If (11.21) is violated, then migrants will refuse to invest in an empty fer-
tile patch. Then (11.9), which implicitly assumes that a migrant always

occupies a vacant fertile patch, is violated. We argue as follows. Assume

the system is in the antiproperty equilibrium as described above and, not-

ing the failure of (11.21), migrants begin refusing to occupy vacant fertile

patches. Then, as incumbents migrate from newly dead patches, � falls,

and hence w rises. This continues until (11.21) is satisfied as an equality.
Thus, we must redefine an antiproperty equilibrium as one in which (11.9)
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is satisfied when (11.21) is satisfied; otherwise, (11.21) is satisfied as an

equality and (11.9) is no longer satisfied. Note that in the latter case the
equilibrium value of � is strictly less than in the property equilibrium.

THEOREM 11.4 Suppose (11.21) is violated when � is determined by

(11.9). Then the antiproperty equilibrium exhibits a lower average pay-

off than the property equilibrium.

The reason is simply that the equilibrium value of � is lower in the an-

tiproperty equilibrium than in the property equilibrium, so there will be on

average more migrants and fewer incumbents in the antiproperty equilib-
rium. But incumbents earn positive return b per period, while migrants

suffer positive costs c per period.

Theorem 11.4 helps to explain why we rarely see antiproperty equilibria

in the real world, If two groups differ only in that one plays the property

equilibrium and the other plays the antiproperty equilibrium, the former

will grow faster and hence displace the latter, provided that there is some
scarcity of resources leading to a limitation on the combined size of the two

groups.

This argument does not account for property equilibria in which there

is virtually no investment by the incumbent. This includes the butterfly

(Davies) and feral horse (Stevens) examples, among others. In such cases,

the property and antiproperty equilibria differ in only one way: the identity

of the patch owner changes in the latter more rapidly than in the former. It
is quite reasonable to add to the model a small cost ı of ownership change,

for instance, because the intruder must physically approach the patch and

engage in some sort of display before the change in incumbency can be ef-

fected. With this assumption, the antiproperty equilibrium again has a lower

average payoff than the property equilibrium, so it will be disadvantaged in

a competitive struggle for existence.
The next section shows that if we respecify the ecology of the model

appropriately, the unique equilibrium is precisely the antiproperty equilib-

rium.

11.7 An Antiproperty Equilibrium

Consider a situation in which agents die unless they have access to a fertile

patch at least once every n days. While having access, they reproduce at

rate b per period. A agent who comes upon a fertile patch that is already
owned may value the patch considerably more than the current owner, since



218 Chapter 11

the intruder has, on average, less time to find another fertile patch than the

current owner, who has a full n days. In this situation, the current owner
may have no incentive to put up a sustained battle for the patch, whereas the

intruder may. The newcomer may thus acquire the patch without a battle.

Thus, there is a plausible antiproperty equilibrium.

To assess the plausibility of such a scenario, note that if �g is the fitness

of the owner of a fertile patch and �b.k/ is the fitness of a nonowner who

has k periods to find and exploit a fertile patch before dying, then we have
the recursion equations

�b.0/ D 0; (11.22)

�b.k/ D w�g C .1
 w/�b.k 
 1/ for k D 1; : : : ; n; (11.23)

where r is the probability that a nonowner becomes the owner of a fertile

patch, either because it is not owned or because the intruder costlessly evicts

the owner. We can solve this, giving

�b.k/ D �g.1 
 .1 
 r/k/ for k D 0; 1; : : : n: (11.24)

Note that the larger k and the larger r , the greater the fitness of a intruder.

We also have the equation

�g D b C .1 
 p/�g C p�g.n/; (11.25)

where p is the probability the patch dies or the owner is costlessly evicted

by an intruder. We can solve this equation, finding

�g D
b

p.1
 r/n
: (11.26)

Note that the larger b, the smaller p, the larger r , and the larger n, the

greater the fitness of the owner.
As in the previous model, assume the intruder devotes resources su 2

Œ0; 1� and the incumbent devotes resources so 2 Œ0; 1� to combat. With

the same notation as above, we assume a fraction fo of incumbents are

contesters, and we derive the conditions for an incumbent and an intruder

who has discovered the owner’s fertile patch to conform to the antiproperty

equilibrium. When these conditions hold, we have fo D 0.
Let �c be the fitness value of contesting rather than simply abandoning

the patch. Then we have

�c D s.1 
 pu/�g C .1
 s/..1
 pu/�g C pu�b.n//
 �b.n/;
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which reduces to

�c D
�g

2

�
s2

u C so.2C su/

so C su
.1 
 r/n 
 su

�
: (11.27)

Moreover, �c is increasing in so, so if the owner contests, he will set 	o D 1,

in which case the condition for contesting being fitness-enhancing for the

owner then becomes

su C 2=su C 1

1C su
.1 
 r/n > 1: (11.28)

Now let �u.k/ be the fitness of a nonowner who must own a patch before

k periods have elapsed and who comes upon an owned fertile patch. The

agent’s fitness value of usurping is

�u.k/ D .1
 f /�g C f .spu�g

C.1
 s/.pu�g C .1 
 pu/�b.k 
 1///
 �b.k 
 1/:

The first term in this equation is the probability that the owner does not

contest times the intruder’s gain if this occurs. The second term is the

probability that the owner does contest times the gain if the owner does

contest. The final term is the fitness value of not usurping. We can simplify

this equation to

�u.k/ D �g

so.1
 f /C su

so C su
: (11.29)

This expression is always positive and is increasing in su and decreasing

in so, provided fo > 0. Thus, the intruder always sets su D 1. Also,

as one might expect, if fo D 0, the migrant usurps with probability 1, so
�u.k/ D �g . At any rate, the migrant always contests, whatever the value

of fo. The condition (11.28) for not contesting, and hence for there to be a

globally stable antiproperty equilibrium, becomes

2.1 
 r/n < 1; (11.30)

which will be the case if either r or n is sufficiently large. When (11.30)

does not hold, there is an antiproperty equilibrium.

The antiproperty equilibrium is not often entertained in the literature, al-

though Maynard Smith (1982) describes the case of the spider Oecibus civi-

tas, where intruders virtually always displace owners without a fight. More
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informally, I observe the model in action every summer’s day at my bird

feeders and bathers. A bird arrives, eats or bathes for a while, and if the
feeder or bath is crowded, is then displaced, without protest, by another

bird, and so on. It appears that, after having eaten or bathed for a while, it

simply is not worth the energy to defend the territory.

11.8 Property Rights as Choreographer

Humans share with many other species a predisposition to recognize prop-

erty rights. This takes the form of loss aversion: an incumbent is prepared

to commit more vital resources to defending his property, ceteris paribus,

than an intruder is willing to commit to taking the property. The major pro-

viso is that if the property is sufficiently valuable, a property equilibrium
will not exist (theorem 11.1).

History is written as though property rights are a product of modern civ-

ilization, a construction that exists only to the extent that it is defined and

protected by judicial institutions operating according to legal notions of

ownership. However, it is likely that property rights in the fruits of one’s

labor has existed for as long as humans have lived in small hunter-gatherer

clans, unless the inequality in theorem 11.1 holds, as might plausibly be the
case for big game. The true value of modern property rights, if the argu-

ment in this chapter is valid, lies in fostering the accumulation of property

even when �g > .1 C ˇ/�b.1 
 c/. It is in this sense only that Thomas

Hobbes may have been correct in asserting that life in an unregulated state

of nature is “solitary, poor, nasty, brutish, and short.” But even so, it must

be recognized that modern notions of property are built on human behav-
ioral propensities that we share with many species of nonhuman animals.

Doubtless, an alien species with a genetic organization akin to that of our

ants or termites would find our notions of individuality and privacy curious

at best and probably incomprehensible.
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The Unification of the Behavioral Sciences

Each discipline of the social sciences rules comfortably within its own
chosen domain: : : so long as it stays largely oblivious of the others.

Edward O. Wilson

The combined assumptions of maximizing behavior, market equilib-
rium, and stable preferences, used relentlessly and unflinchingly, form
the heart of the economic approach

Gary Becker

While scientific work in anthropology, and sociology and political
science will become increasingly indistinguishable from economics,
economists will reciprocally have to become aware of how constrain-
ing has been their tunnel vision about the nature of man and social
interaction.

Jack Hirshleifer

The behavioral sciences include economics, anthropology, sociology,

psychology, and political science, as well as biology insofar as it deals with

animal and human behavior. These disciplines have distinct research foci,

but they include four conflicting models of decision making and strategic

interaction, as determined by what is taught in the graduate curriculum and

what is accepted in journal articles without reviewer objection. The four
are the psychological, the sociological, the biological, and the economic.

These four models are not only different, which is to be expected given

their distinct explanatory aims, but are also incompatible. That is, each

makes assertions concerning choice behavior that are denied by the others.

This means, of course, that at least three of the four are certainly incorrect,

and I will argue that in fact all four are flawed but can be modified to pro-

duce a unified framework for modeling choice and strategic interaction for
all of the behavioral sciences. Such a framework would then be enriched in

different ways to meet the particular needs of each discipline.

In the past, cross-disciplinary incoherence was tolerated because dis-

tinct disciplines dealt largely with distinct phenomena. Economics dealt

with market exchange. Sociology dealt with stratification and social de-

viance. Psychology dealt with brain functioning. Biology, failing to follow
up on Darwin’s insightful monograph on human emotions (Darwin 1998),

221
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avoided dealing with human behavior altogether. In recent years, however,

the value of transdisciplinary research in addressing questions of social the-
ory has become clear, and sociobiology has become a major arena of sci-

entific research. Moreover, contemporary social policy involves issues that

fall squarely in the interstices of the behavioral disciplines, including sub-

stance abuse, crime, corruption, tax compliance, social inequality, poverty,

discrimination, and the cultural foundations of market economies. Incoher-

ence is now an impediment to progress.
My framework for unification includes five conceptual units: (a) gene-

culture coevolution; (b) the sociopsychological theory of norms; (c) game

theory, (d) the rational actor model; and (e) complexity theory. Gene-

culture coevolution comes from the biological theory of social organiza-

tion (sociobiology) and is foundational because H. sapiens is an evolved,

highly social, biological species. The sociopsychological theory of norms

includes fundamental insights from sociology and social psychology that
apply to all forms of human social organization, from hunter-gatherer to

advanced technological societies. These societies are the product of gene-

culture coevolution but have emergent properties (�8.8), including social

norms and their psychological correlates/prerequisites, that cannot be de-

rived analytically from the component parts of the system—in this case the

interacting agents (Morowitz 2002).
Game theory includes four related disciplines: classical, behavioral, epis-

temic, and evolutionary game theory, the first three of which have been de-

veloped in this book. The fourth, evolutionary game theory, is a macro-

level analytical apparatus allowing biological and cultural evolution to be

mathematically modeled.

The rational actor model (�1.1, 1.5) is the most important analytical con-
struct in the behavioral sciences operating at the level of the individual.

While gene-culture coevolutionary theory is a form of ultimate explanation

that does not predict, the rational actor model provides a proximate descrip-

tion of behavior that can be tested in the laboratory and in real life and is

the basis of the explanatory success of economic theory. Classical, epis-

temic, and behavioral game theory make no sense without the rational actor

model, and behavioral disciplines, such as anthropology and sociology, as
well as social and cognitive psychology, that have abandoned this model

have fallen into theoretical disarray.

Behavioral economists and psychologists have taken aim at the rational

actor model in the belief that experimental results contradict rationality.
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Showing that this view is wrong has been a constant theme of this book.

The behaviorists’ error is partly due to their having borrowed a flawed con-
ception of rationality from classical game theory, partly due to their inter-

preting the rational actor model too narrowly, and partly due to an exuberant

but unjustified irreverence for received wisdom.

Complexity theory is needed because human society is a complex adap-

tive system with emergent properties that cannot now be, and perhaps

never will be, fully explained starting with more basic units of analysis.
The hypothetico-deductive methods of game theory and the rational ac-

tor model, and even gene-culture coevolutionary theory, must therefore be

complemented by the work of behavioral scientists who deal with society

in more macrolevel, interpretive terms, and develop insightful schemas that

shed light where analytical models cannot penetrate. Anthropological and

historical studies fall into this category, as well as macroeconomic policy

and comparative economic systems. Agent-based modeling of complex dy-
namical systems is also useful in dealing with emergent properties of com-

plex adaptive systems.

The above principles are not meant to revolutionize research in any dis-

cipline. Indeed, they build on existing strengths, and they imply change

only in the areas of overlap among disciplines. For instance, a psychologist

working on visual processing, or an economist working on futures markets,
or an anthropologist documenting food-sharing practices, or a sociologist

gauging the effect of dual parenting on children’s educational attainment

might gain little from knowing that a unified model of decision making un-

derlies all the behavioral disciplines. On the other hand, a unified model of

human choice and strategic interaction might foster innovations that come

to pervade the discipline, even in these relatively hermetically sealed areas.

12.1 Gene-Culture Coevolution: The Biological Model

The centrality of culture and complex social organization to the evolution-
ary success of H. sapiens implies that individual fitness in humans de-

pends on the structure of social life. Since culture is limited and facilitated

by human genetic propensities, it follows that human cognitive, affective,

and moral capacities are the product of an evolutionary dynamic involv-

ing the interaction of genes and culture. This dynamic is known as gene-

culture coevolution (Cavalli-Sforza and Feldman 1982; Boyd and Richer-
son 1985; Dunbar 1993; Richerson and Boyd 2004). This coevolutionary
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process has endowed us with preferences that go beyond the self-regarding

concerns emphasized in traditional economic and biological theory and em-
brace a social epistemology facilitating the sharing of intentionality across

minds, as well as such non-self-regarding values as a taste for cooperation,

fairness, and retribution, the capacity to empathize, and the ability to value

honesty, hard work, piety, toleration of diversity, and loyalty to one’s refer-

ence group.

Gene-culture coevolution is the application of sociobiology, the general
theory of the social organization of biological species, to species that trans-

mit culture without informational loss across generations. An intermediate

category is niche construction, which applies to species that transform their

natural environment to facilitate social interaction and collective behavior

(Odling-Smee, Laland, and Feldman 2003).

The genome encodes information that is used both to construct a new

organism and to endow it with instructions for transforming sensory inputs
into decision outputs. Because learning is costly and error-prone, efficient

information transmission ensures that the genome encodes all aspects of

the organism’s environment that are constant or that change only slowly

through time and space. By contrast, environmental conditions that vary

rapidly can be dealt with by providing the organism with the capacity to

learn.
There is an intermediate case, however, that is efficiently handled nei-

ther by genetic encoding nor by learning. When environmental conditions

are positively but imperfectly correlated across generations, each genera-

tion acquires valuable information through learning that it cannot transmit

genetically to the succeeding generation because such information is not

encoded in the germ line. In the context of such environments, there is a
fitness benefit to the transmission of epigenetic information concerning the

current state of the environment.1 Such epigenetic information is quite com-

mon (Jablonka and Lamb 1995) but achieves its highest and most flexible

form in cultural transmission in humans and to a considerably lesser extent

in other primates (Bonner 1984; Richerson and Boyd 1998). Cultural trans-

mission takes the form of vertical (parents to children), horizontal (peer

to peer), and oblique (elder to younger), as in Cavalli-Sforza and Feldman
(1981), prestige (higher status influencing lower status), as in Henrich and

Gil-White (2001), popularity-related as in Newman, Barabasi, and Watts

1An epigenetic mechanism is any nongenetic intergenerational information transmis-

sion mechanism, such a cultural transmission in humans.
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(2006), and even random population-dynamic transmission, as in Shennan

(1997) and Skibo and Bentley (2003).
The parallel between cultural and biological evolution goes back to Hux-

ley (1955), Popper (1979), and James (1880)—see Mesoudi, Whiten, and

Laland (2006) for details. The idea of treating culture as a form of epi-

genetic transmission was pioneered by Richard Dawkins, who coined the

term “meme” in The Selfish Gene (1976) to represent an integral unit of in-

formation that could be transmitted phenotypically. There quickly followed
several major contributions to a biological approach to culture, all based on

the notion that culture, like genes, could evolve through replication (inter-

generational transmission), mutation, and selection.

Cultural elements reproduce themselves from brain to brain and across

time, mutate, and are subject to selection according to their effects on the

fitness of their carriers (Parsons 1964; Cavalli-Sforza and Feldman 1982).

Moreover, there are strong interactions between genetic and epigenetic ele-
ments in human evolution, ranging from basic physiology (e.g., transforma-

tion of the organs of speech with the evolution of language) to sophisticated

social emotions, including empathy, shame, guilt, and revenge seeking (Za-

jonc 1980, 1984).

Because of their common informational and evolutionary character, there

are strong parallels between genetic and cultural modeling (Mesoudi,
Whiten, and Laland 2006). Like biological transmission, cultural trans-

mission occurs from parents to offspring, and like cultural transmission,

which occurs horizontally between unrelated individuals, in microbes and

many plant species, genes are regularly transferred across lineage bound-

aries (Jablonka and Lamb 1995; Rivera and Lake 2004; Abbott et al. 2003).

Moreover, anthropologists reconstruct the history of social groups by an-
alyzing homologous and analogous cultural traits, much as biologists re-

construct the evolution of species by the analysis of shared characters and

homologous DNA (Mace and Pagel 1994). Indeed, the same computer pro-

grams developed by biological systematists are used by cultural anthropol-

ogists (Holden 2002; Holden and Mace 2003). In addition, archaeologists

who study cultural evolution have a similar modus operandi as paleobiol-

ogists who study genetic evolution (Mesoudi, Whiten, and Laland 2006).
Both attempt to reconstruct lineages of artifacts and their carriers. Like pa-

leobiology, archaeology assumes that when analogy can be ruled out, simi-

larity implies causal connection by inheritance (O’Brian and Lyman 2000).

Like biogeography’s study of the spatial distribution of organisms (Brown
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and Lomolino 1998), behavioral ecology studies the interaction of ecolog-

ical, historical, and geographical factors that determine the distribution of
cultural forms across space and time (Smith and Winterhalder 1992).

Perhaps the most common critique of the analogy between genetic and

cultural evolution is that the gene is a well-defined, discrete, independently

reproducing and mutating entity, whereas the boundaries of the unit of cul-

ture are ill-defined and overlapping. In fact, however, this view of the gene

is simply outdated. Overlapping, nested, and movable genes discovered
in the past 35 years have some of the fluidity of cultural units, whereas

quite often the boundaries of a cultural unit (a belief, icon, word, technique,

stylistic convention) are quite delimited and specific. Similarly, alternative

splicing, nuclear and messenger RNA editing, cellular protein modifica-

tion, and genomic imprinting, which are quite common, quite undermine

the standard view of the insular gene producing a single protein and sup-

port the notion of genes having variable boundaries and having strongly
context-dependent effects.

Dawkins added a second fundamental mechanism of epigenetic infor-

mation transmission in The Extended Phenotype (1982), noting that or-

ganisms can directly transmit environmental artifacts to the next genera-

tion in the form of such constructs as beaver dams, beehives, and even so-

cial structures (e.g., mating and hunting practices). The phenomenon of a
species creating an important aspect of its environment and stably transmit-

ting this environment across generations, known as niche construction, it

a widespread form of epigenetic transmission (Odling-Smee, Laland, and

Feldman 2003). Moreover, niche construction gives rise to what might

be called a gene-environment coevolutionary process since a genetically

induced environmental regularity becomes the basis for genetic selection,
and genetic mutations that give rise to mutant niches will survive if they are

fitness-enhancing for their constructors.

An excellent example of gene-environment coevolution is seen in the

honey bee, which developed a complex division of labor in the hive, in-

cluding a eusocial division of labor in which only a few individuals are

permitted to reproduce on behalf of the whole social community, despite

the fact that relatedness in the hive is generally quite low, because of mul-
tiple queen matings, multiple queens, queen deaths. The social structure of

the hive is transmitted epigenetically across generations, and the honey bee
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genome is an adaptation to the social structure laid down in the distant past

(Gadagkar 1991; Seeley 1997; Wilson and Holldobler 2005).2

Gene-culture coevolution in humans is a special case of gene-

environment coevolution in which the environment is culturally constituted

and transmitted (Feldman and Zhivotovsky 1992). The key to the success

of our species in the framework of the hunter-gatherer social structure in

which we evolved is the capacity of unrelated, or only loosely related,

individuals to cooperate in relatively large egalitarian groups in hunting
and territorial acquisition and defense (Boehm 2000; Richerson and Boyd

2004). While contemporary biological and economic theory have attempted

to show that such cooperation can be effected by self-regarding rational

agents (Trivers 1971; Alexander 1987; Fudenberg, Levine, and Maskin

1994), the conditions under which this is the case are highly implausible

even for small groups (Boyd and Richerson 1988; Gintis 2005). Rather,

the social environment of early humans was conducive to the development
of prosocial traits, such as empathy, shame, pride, embarrassment, and

reciprocity, without which social cooperation would be impossible.

Neuroscientific studies exhibit clearly the genetic basis for moral behav-

ior. Brain regions involved in moral judgments and behavior include the

prefrontal cortex, the orbitalfrontal cortex, and the superior temporal sul-

cus (Moll et al. 2005). These brain structures are virtually unique to, or
most highly developed in humans and are doubtless evolutionary adapta-

tions (Schulkin 2000). The evolution of the human prefrontal cortex is

closely tied to the emergence of human morality (Allman, Hakeem, and

Watson 2002). Patients with focal damage to one or more of these areas ex-

hibit a variety of antisocial behaviors, including the absence of embarrass-

ment, pride, and regret (Beer et al. 2003; Camille 2004), and sociopathic
behavior (Miller et al. 1997). There is a likely genetic predisposition under-

lying sociopathy. Sociopaths comprise 3% to 4% of the male population,

but they account for between 33% and 80% of the population of chronic

criminal offenders in the United States (Mednick et al. 1977).

It is clear from this body of empirical information that culture is directly

encoded in the human brain, which of course is the central claim of gene-

culture coevolutionary theory.

2A social species is one that has a division of labor and cooperative behavior. A euso-

cial species is a social species that has a reproductive division of labor; i.e., some females,

such as queen bees, produce offspring, while other females, such as worker bees, raise the

queen’s offspring.
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12.2 Culture and Physiology of Human Communication

Consider, for instance, communication through language and complex fa-

cial expressions, which exists in more than rudimentary form only in hu-

mans. The gene-culture coevolutionary development of human commu-

nication is particularly clear because it left a strong fossil record. On an
evolutionary time-scale, when a form of human communication became

prevalent among hunter-gatherers, this new cultural form became the new

environment within which new genetic mutations were evaluated for their

fitness effects. Humans thus underwent massive physiological changes to

facilitate speaking, understanding speech, and communicating with facial

expressions.

To this end, regions in the human motor cortex expanded to carry out
speech production in the evolution of Homo sapiens. Nerves and muscles

to the mouth, larynx, and tongue became more numerous to handle the

complexities of speech (Jurmain et al. 1997). Parts of the cerebral cortex,

Broca’s and Wernicke’s areas, which do not exist or are small in other pri-

mates, evolved to permit grammatical speech and comprehension (Camp-

bell, Loy and Cruz-Uribe 2005).
The most dramatic changes in human physiology involve speech produc-

tion. Adult modern humans have a larynx low in the throat, “a position

that allows the throat to serve as a resonating chamber capable of a greater

number of sounds” (Relethford 2007). The first hominids that have skeletal

structures supporting this laryngeal placement are the Homo heidelbergen-

sis, who lived from 800,000 to 100,000 years ago. In addition, the produc-
tion of consonants requires a short oral cavity, whereas our nearest primate

relatives have much too long an oral cavity to produce most consonants.

The position of the hyoid bone, which is a point of attachment for a tongue

muscle, developed in Homo sapiens in a manner permitting highly precise

and flexible tongue movements. Another indication that the tongue has

evolved in hominids to facilitate speech is the size of the hypoglossal canal,

an aperture that permits the hypoglossal nerve to reach the tongue muscles.
This aperture is much larger in Neanderthals, and humans than in early

hominids and non-human primates (Campbell, Loy, and Cruz-Uribe 2005).

Human facial nerves and musculature have also evolved to facilitate com-

munication. This musculature is present in all vertebrates, but except in

mammals, it serves feeding and respiratory functions (Burrows 2008). In

mammals, this mimetic musculature attaches to skin in the face, thus per-
mitting the subtle and accurate facial communication of such emotions as
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fear, surprise, disgust, and anger. In most mammals, however, a few wide

sheet-like muscles are involved, rendering fine informational differentiation
impossible. In primates, by contrast, this musculature divides into many in-

dependent muscles with distinct points of attachment to the epidermis and

distinct ennervation, thus permitting higher bandwidth facial communica-

tion. Humans have the most highly developed facial musculature among

vertebrates by far, with a degree of involvement of lips and eyes that is not

present in any other species.
There is little doubt but that other human traits, such as empathy, shame,

pride, embarrassment, reciprocity, and vengeance, traits without which so-

cial cooperation would be impossible, are the product of gene-culture co-

evolution. Unfortunately, such traits are less likely to leave a clear trace in

the fossil record.

12.3 Biological and Cultural Dynamics

The analysis of living systems includes one concept that is not analytically

represented in the natural sciences: that of a strategic interaction in which
the behavior of agents is derived by assuming that each is choosing a best

response to the actions of other agents. The study of systems in which

agents choose best responses and in which such responses evolve dynami-

cally is called evolutionary game theory.

A replicator is a physical system capable of drawing energy and chemical

building blocks from its environment to make copies of itself. Chemical
crystals, such as salt, have this property, but biological replicators have the

additional ability to assume a myriad of physical forms based on the highly

variable sequencing of their chemical building blocks. Biology studies the

dynamics of such complex replicators using the evolutionary concepts of

replication, variation, mutation, and selection (Lewontin 1974).

Biology plays a role in the behavioral sciences much like that of physics

in the natural sciences. Just as physics studies the elementary processes that
underlie all natural systems, so biology studies the general characteristics

of survivors of the process of natural selection. In particular, genetic repli-

cators, the epigenetic environments to which they give rise, and the effect

of these environments on gene frequencies account for the characteristics

of species, including the development of individual traits and the nature

of intraspecific interaction. This does not mean, of course, that behavioral
science in any sense can be reduced to biological laws. Just as one cannot
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deduce the character of natural systems (e.g., the principles of inorganic and

organic chemistry, the structure and history of the universe, robotics, plate
tectonics) from the basic laws of physics, similarly, one cannot deduce the

structure and dynamics of complex life forms from basic biological princi-

ples. But, just as physical principles inform model creation in the natural

sciences, so must biological principles inform all the behavioral sciences.

Within population biology, evolutionary game theory has become a fun-

damental tool. Indeed, evolutionary game theory is basically population bi-
ology with frequency-dependent fitnesses. Throughout much of the twen-

tieth century, classical population biology did not employ a game-theoretic

framework (Fisher 1930; Haldane 1932; Wright 1931). However, Moran

(1964) showed that Fisher’s fundamental theorem, which states that as long

as there is positive genetic variance in a population, fitness increases over

time, is false when more than one genetic locus is involved. Eshel and

Feldman (1984) identified the problem with the population genetics model
in its abstraction from mutation. But how do we attach a fitness value to

a mutant? Eshel and Feldman (1984) suggested that payoffs be modeled

game-theoretically on the phenotypic level and that a mutant gene be as-

sociated with a strategy in the resulting game. With this assumption, they

showed that under some restrictive conditions, Fisher’s fundamental theo-

rem could be restored. Their results were generalized by Liberman (1988),
Hammerstein and Selten (1994), Hammerstein (1996), Eshel, Feldman, and

Bergman (1998), and others.

The most natural setting for genetic and cultural dynamics is game-

theoretic. Replicators (genetic and/or cultural) endow copies of themselves

with a repertoire of strategic responses to environmental conditions, in-

cluding information concerning the conditions under which each is to be
deployed in response to the character and density of competing replica-

tors. Genetic replicators have been well understood since the rediscovery of

Mendel’s laws in the early twentieth century. Cultural transmission also ap-

parently occurs at the neuronal level in the brain, in part through the action

of mirror neurons (Williams et al. 2001; Rizzolatti et al. 2002; Meltzhoff

and Decety 2003). Mutations include replacement of strategies by modi-

fied strategies, and the “survival of the fittest” dynamic (formally called a
replicator dynamic) ensures that replicators with more successful strategies

replace those with less successful strategies (Taylor and Jonker 1978).

Cultural dynamics, however, do not reduce to replicator dynamics. For

one thing, the process of switching from lower- to higher-payoff cultural
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norms is subject to error, and with some positive frequency, lower-payoff

forms can displace higher-payoff forms (Edgerton 1992). Moreover, cul-
tural evolution can involve a conformist predisposition (Henrich and Boyd

1998; Henrich and Boyd 2001; Guzman, Sickert, and Rowthorn 2007), as

well as oblique and horizontal transmission (Cavalli-Sforza and Feldman

1981; Gintis 2003b).

12.4 The Theory of Norms: The Sociological Model

Complex social systems generally have a division of labor, with distinct

social positions occupied by individuals specially prepared for their roles.

For instance, a beehive has workers, drones, and queens, and workers can
be nurses, foragers, or scouts. Preparation for roles is by gender and larval

nutrition. Modern human society has a division of labor characterized by

dozens of specialized roles, appropriate behavior within which is given by

social norms, and individuals are actors who are motivated to fulfill these

roles through a combination of material incentives and normative commit-

ments.
The centrality of culture in the social division of labor was clearly ex-

pressed by Emile Durkheim (1933 [1902]), who stressed that the great mul-

tiplicity of roles (which he called organic solidarity) required a common-

ality of beliefs (which he called collective consciousness) that would per-

mit the smooth coordination of actions by distinct individuals. This theme

was developed by Talcott Parsons (1937), who used his knowledge of eco-
nomics to articulate a sophisticated model of the interaction between the

situation (role) and its inhabitant (actor). The actor/role approach to social

norms was filled out by Erving Goffman (1959), among others.

The social role has both normative and positive aspects. On the posi-

tive side, the payoffs—rewards and penalties—associated with a social role

must provide the appropriate incentives for actors to carry out the duties as-

sociated with the role. This requirement is most easily satisfied when these
payoffs are independent of the behavior of agents occupying other roles.

However, this is rarely the case. In general, as developed in chapter 7, so-

cial roles are deeply interdependent and can be modeled as the strategy sets

of players in an epistemic game, the payoffs to which are precisely these

rewards and penalties, the choices of actors then forming a correlated equi-

librium for which the required commonality of beliefs is provided by a so-
ciety’s common culture. This argument provides an analytical link uniting
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the actor/role framework in sociological theory with game-theoretic models

of cooperation in economic theory.
Appropriate behavior in a social role is given by a social norm that spec-

ifies the duties, privileges, and normal behavior associated with the role.

In the first instance, social norms have an instrumental character devoid

of normative content, serving merely as informational devices that coordi-

nate the behavior of rational agents (Lewis 1969; Gauthier 1986; Binmore

2005; Bicchieri 2006). However, in most cases, high level performance
in a social role requires that the actor have a personal commitment to role

performance that cannot be captured by the self-regarding “public” payoffs

associated with the role (see chapter 7 and Conte and Castelfranchi, 1999).

. This is because (a) actors may have private payoffs that conflict with

the role’s public payoffs, inducing them to behave counter to proper role-

performance (e.g., corruption, favoritism, aversion to specific tasks); (b)

the signal used to determine the public payoffs may be inaccurate and un-
reliable (e.g., the performance of a teacher, physician, scientist, or business

executive cannot be fully objectively assessed at reasonable cost); and (c)

the public payoffs required to gain compliance by self-regarding actors may

be higher than those required when there is at least partial reliance upon the

personal commitment of role incumbents; i.e., it may be less costly to use

personally committed rather than purely materially motivated agents when
performance cannot be easily measured (Bowles 2008). In such cases, self-

regarding actors who treat social norms purely instrumentally behave in a

socially inefficient manner (�6.3, 6.4).

The normative aspect of social roles flows from these considerations.

First, to the extent that social roles are considered legitimate by incum-

bents, they place an intrinsic ethical value on role performance. We call
this the normative predisposition associated with role occupancy (see chap-

ter 7). Second, human ethical predispositions include character virtues,

such as honesty, trustworthiness, promise keeping, and obedience, that may

increase the value of conforming to the duties associated with role incum-

bency (�3.12). Third, humans are also predisposed to care about the es-

teem of others even when there can be no future reputational repercussions

(Masclet et al. 2003) and take pleasure in punishing others who have vio-
lated social norms (Fehr and Fischbacher 2004). These ethical traits by no

means contradict rationality (�12.6), because individuals trade off these val-

ues against material reward, and against each other, just as described in the
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economic theory of the rational actor (Andreoni and Miller 2002; Gneezy

and Rustichini 2000).
The sociopsychological theory of norms can thus resolve the contradic-

tions between the sociological and economic models of social cooperation,

retaining the analytical clarity of game theory and the rational actor model

while incorporating the collective, normative, and cultural characteristics

stressed in psychosocial models of norm compliance.

12.5 Socialization and the Internalization of Norms

Society is held together by moral values that are transmitted from gener-

ation to generation by the process of socialization. These values are in-
stantiated through the internalization of norms (Parsons 1967; Grusec and

Kuczynski 1997; Nisbett and Cohen 1996; Rozin et al. 1999), a process in

which the initiated instill values into the uninitiated (usually the younger

generation) through an extended series of personal interactions, relying on

a complex interplay of affect and authority. Through the internalization of

norms, initiates are supplied with moral values that induce them to conform
to the duties and obligations of the role positions they expect to occupy. The

internalization of norms, of course, presupposes a genetic predisposition to

moral cognition that can be explained only by gene-culture coevolution.

Internalized norms are accepted not as instruments for achieving other

ends but rather as arguments in the preference function that the individual

maximizes. For instance, an individual who has internalized the value of
speaking truthfully does so even in cases where the net payoff to speaking

truthfully would otherwise be negative. Such fundamental human emotions

as shame, guilt, pride, and empathy are deployed by the well-socialized

individual to reinforce these prosocial values when tempted by the imme-

diate pleasures of such deadly sins as anger, avarice, gluttony, and lust. It

is tempting to treat some norms as constraints rather than objectives, but

virtually all norms are violated by individuals under some conditions, in-
dicating that there are tradeoffs, such as those explored in �3.12 and �3.4,

that could not exist were norms merely constraints on action.

The human openness to socialization is perhaps the most powerful form

of epigenetic transmission found in nature. This epigenetic flexibility in

considerable part accounts for the stunning success of the species H. sapiens

because when individuals internalize a norm, the frequency of the desired
behavior is higher than if people follow the norm only instrumentally—i.e.,
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when they perceive it to be in their best interest to do so on other grounds.

The increased incidence of prosocial behaviors is precisely what permits
humans to cooperate effectively in groups (Gintis et al. 2005).

There are, of course, limits to socialization (Tooby and Cosmides 1992;

Pinker 2002), and it is imperative to understand the dynamics of the emer-

gence and abandonment of particular values, which in fact depend on their

contribution to fitness and well-being, as economic and biological theory

would suggest (Gintis 20031,b). Moreover, there are often swift, society-
wide value changes that cannot be accounted for by socialization theory

(Wrong 1961; Gintis 1975). However, socialization theory has an impor-

tant place in the general theory of culture, strategic learning, and moral

development.

One of the more stunning indications of the disarray of the behavioral

sciences is the fact that the internalization of norms does not appear in the

economic and biological models of human behavior.

12.6 Rational Choice: The Economic Model

General evolutionary principles suggest that individual decision making for

members of a species can be modeled as optimizing a preference function.

Natural selection leads the content of preferences to reflect biological fit-

ness. The principle of expected utility extends this optimization to stochas-

tic outcomes. The resulting model is called the rational actor model in
economics, although there is some value to referring to it as the beliefs,

preferences, and constraints (BPC) model, thus avoiding the often mislead-

ing connotations attached to the term “rational.”

For every constellation of sensory inputs, each decision taken by an or-

ganism generates a probability distribution over outcomes, the expected

value of which is the fitness associated with that decision. Since fitness

is a scalar variable, for each constellation of sensory inputs, each possible
action the organism might take has a specific fitness value, and organisms

whose decision mechanisms are optimized for this environment choose the

available action that maximizes this value. This argument was presented

verbally by Darwin (1872) and is implicit in the standard notion of “sur-

vival of the fittest,” but formal proof is recent (Grafen 1999, 2000, 2002).

The case with frequency-dependent (nonadditive genetic) fitness has yet to
be formally demonstrated, but the informal arguments are compelling.
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Given the state of its sensory inputs, if an organism with an optimized

brain chooses action A over action B when both are available, and chooses
action B over action C when both are available, then it will also choose

action A over action C when both are available. Thus, choice consistency

follows from basic evolutionary dynamics. The rational actor model is often

presented as though it applies only when actors possess extremely powerful

information-processing capacities. As we saw in chapter 1, in fact, the basic

model depends only on choice consistency, the expected utility theorem
being considerably more demanding.

Four caveats are in order. First, individuals do not consciously maximize

something called “utility,” or anything else. Second, individual choices,

even if they are self-regarding (e.g., personal consumption) are not nec-

essarily welfare-enhancing. Third, preferences must have some stability

across time to be theoretically useful, but preferences are ineluctably a

function of an individual’s current state, and beliefs can change dramat-
ically in response to immediate sensory and social experiences. Finally,

beliefs need not be correct nor need they be updated correctly in the face of

new evidence, although Bayesian assumptions concerning updating can be

made part of consistency in elegant and compelling ways (Jaynes 2003).

The rational actor model is the cornerstone of contemporary economic

theory and in the past few decades has become the heart of the biological
modeling of animal behavior (Real 1991; Alcock 1993; Real and Caraco

1986). Economic and biological theory thus have a natural affinity: the

choice consistency on which the rational actor model of economic theory

depends is rendered plausible by evolutionary theory, and the optimization

techniques pioneered in economics are routinely applied and extended by

biologists in modeling the behavior of nonhuman organisms. I suggest be-
low that this is due to the routine choice paradigm that applies in economics

and biology, as opposed to the deliberative choice paradigm that applies in

cognitive psychology.

Perhaps the most pervasive critique of the BPC model is that put for-

ward by Herbert Simon (1982), holding that because information process-

ing is costly and humans have a finite information-processing capacity, in-

dividuals satisfice rather than maximize and hence are only boundedly ratio-

nal. There is much substance to this view, including the importance of in-

cluding information-processing costs and limited information in modeling

choice behavior and recognizing that the decision on how much informa-

tion to collect depends on unanalyzed subjective priors at some level (Win-
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ter 1971; Heiner 1983). Indeed, from basic information theory and quantum

mechanics, it follows that all rationality is bounded. However, the popular
message taken from Simon’s work is that we should reject the BPC model.

For instance, the mathematical psychologist D. H. Krantz (1991) asserts,

“The normative assumption that individuals should maximize some quan-

tity may be wrong. . . . People do and should act as problem solvers, not

maximizers.” This is incorrect. In fact, as long as individuals are involved

in routine choice (see �12.14) and hence have consistent preferences, they
can be modeled as maximizing an objective function subject to constraints.

This point is lost on even such capable researchers as Gigerenzer and Sel-

ten (2001), who reject the “optimization subject to constraints” method on

the grounds that individuals do not in fact solve optimization problems.

However, just as billiards players do not solve differential equations in

choosing their shots, so decision makers do not solve Lagrangian equa-

tions, even though in both cases we may use such optimization models to
describe their behavior. Of course, as stressed by Gigerenzer and Selten

(2001), from an analytical standpoint, generalizing the rational actor model

may not be the best way to capture the heuristics of decision making in

particular areas.

12.7 Deliberative Choice: The Psychological Model

The psychological literature on decision making is rich and multifaceted,

traditional approaches being augmented in recent years by neural net theory
and evidence from neuroscientific data on brain functioning (Kahneman,

Slovic, and Tversky 1982; Baron 2007; Oaksford and Chater 2007; Hinton

and Sejnowski 1999; Newell, Lagnado, and Shanks 2007; Juslin and Mont-

gomery 1999; Bush and Mosteller 1955; Gigerenzer and Todd 1999; Betch

and Haberstroh 2005; Koehler and Harvey 2004). There does not yet exist

a unitary model underlying the psychological understanding of judgment

and decision making, doubtless because the mental processes involved are
so varied and complex.

The sorts of decision making studied by psychologists include the for-

mation of long-term goals, which are evaluated according to the value if

attained, the range of probable costs, and the probability of goal attain-

ment. All three dimensions of goal formation have inherent uncertainties,

so among the strategies of goal choice is the formation of subgoals with the
aim of reducing these uncertainties. The most complex of human decisions
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tend to involve goals that arise infrequently in the course of a life, such as

choosing a career, whether to marry and to whom, how many children to
have, and how to deal with a health threat, where the scope for learning

from mistakes is narrow. Psychologists also study how people make deci-

sions based on noisy single- or multidimensional data under conditions of

trial-and-error learning.

The difficulty in modeling a deliberative choice is exacerbated by the fact

that, because of the complexity of such decisions, much human decision
making has a distinctly group dynamic, in which some individuals experi-

ment and other imitate the more successful of the experimenters (Bandura

1977). This dynamic cannot be successfully modeled on the individual

level.

By contrast, the rational actor model applies to choice situations where

ambiguities are absent, the choice set is clearly delineated, and the payoffs

are unmediated, so that no deliberation is involved beyond the comparison
of feasible alternatives. Accordingly, most psychologists working in this

area accept the rational actor model as the appropriate model of choice be-

havior in this realm of routine choice, yet recognize that there is no obvious

way to extend the model to the more complex situations they study. For

instance, Newell, Lagnado, and Shanks (2007) assert, “We view judgment

and decision making as often exquisitely subtle and well-tuned to the world,
especially in situations where we have the opportunity to respond repeat-

edly under similar conditions where we can learn from feedback.” (p. 2)

There is thus no deep conceptual divide between the psychological ap-

proach to decision making and the economic approach. While in some

important areas, human decision makers appear to violate the consistency

condition for rational choice, in virtually all such cases, as we suggested
in �1.9, consistency can be restored by assuming that the current state of

the agent is an argument of the preference structure. Another possible chal-

lenge to preference consistency is preference reversal in the choice of lot-

teries. Lichtenstein and Slovic (1971) were the first to find that in many

cases, individuals who prefer lotteryA to lotteryB are nevertheless willing

to take less money for A than for B . Reporting this to economists several

years later, Grether and Plott (1979) asserted, “A body of data and theory
has been developed. . . [that] are simply inconsistent with preference the-

ory. . . (p. 623). These preference reversals were explained several years

later by Tversky, Slovic, and Kahneman (1990) as a bias toward the higher

probability of winning in a lottery choice and toward the higher maximum
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amount of winnings in monetary valuation. However, the phenomenon has

been documented only when the lottery pairs A and B are so close in ex-
pected value that one needs a calculator (or a quick mind) to determine

which would be preferred by an expected value maximizer. For instance,

in Grether and Plott (1979) the average difference between expected values

of comparison pairs was 2.51% (calculated from table 2, p. 629). The cor-

responding figure for Tversky, Slovic, and Kahneman (1990) was 13.01%.

When the choices are so close to indifference, it is not surprising that inap-
propriate cues are relied upon to determine choice, as would be suggested

by the heuristics and biases model (Kahneman, Slovic, and Tversky 1982)

favored by behavioral economists and psychologists.

The expected utility model (�1.5) is closer to the concerns of psychol-

ogists because it deals with uncertainty in a fundamental way, and apply-

ing Bayes’ rule certainly may involve complex deliberations. The Ellsberg

paradox is an especially clear example of the failure of the probability rea-
soning behind the expected utility model. Nevertheless the model has a

considerable body of empirical support, so the basic modeling issue is to be

able to say clearly when the expected utility theorem is likely to be violated,

and to supply an alternative model outside this range (Newell, Lagnado, and

Shanks 2007; Oaksford and Chater 2007).

I conclude that there should be a basic synergy between the rational actor
model when dealing with routine choice and the sorts of models developed

by psychologists to explain complex human deliberation, goal formation,

and learning.

12.8 Application: Addictive Behavior

Substance abuse appears to be irrational. Abusers are time inconsistent and

their behavior is welfare-reducing. Moreover, even draconian increases in

the penalties for illicit substance use lead to the swelling of prison popula-

tions rather than abandonment of the sanctioned activity. Because rational
actors generally trade off among desired goals, this curious phenomenon

has led some researchers to reject the BPC model out of hand.

However, the BPC model remains the most potent tool for analyzing sub-

stance abuse on a societywide level. The most salient target of the critics has

been the “rational addiction” model of Becker and Murphy (1988). While

this model does have some shortcomings, its use of the rational actor model
is not among them. Indeed, empirical research supports the contention that
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illicit drugs respond normally to market forces. For instance, Saffer and

Chaloupka (1999) estimated the price elasticities of heroin and cocaine us-
ing a sample of 49,802 individuals from the National Household Survey

of Drug Abuse to be 1.70 and 0.96, respectively. These elasticities are in

fact quite high. Using these estimates, the authors judge that lower prices

flowing from the legalization of these drugs would lead to an increase of

about 100% and 50% in the quantities of heroin and cocaine consumed,

respectively.
How does this square with the observation that draconian punishments do

not squelch the demand altogether? Gruber and Köszegi (2001), who use

the rational actor model but do not assume time consistency, explain this by

showing that drug users exhibit the commitment and self-control problems

typical of time-inconsistent agents, for whom the possible future penalties

have a highly attenuated deterrent value in the present. This behavior may

be welfare-reducing, but the rational actor model does not presume that
preferred outcomes are necessarily welfare-improving.

12.9 Game Theory: The Universal Lexicon of Life

Game theory is a logical extension of evolutionary theory. To see this, sup-

pose there is only one replicator, deriving its nutrients and energy from

nonliving sources. The replicator population will then grow at a geometric

rate until it presses upon its environmental inputs. At that point, mutants

that exploit the environment more efficiently will outcompete their less effi-
cient conspecifics and with input scarcity, mutants will emerge that “steal”

from conspecifics who have amassed valuable resources. With the rapid

growth of such predators, mutant prey will devise means of avoiding preda-

tion, and predators will counter with their own novel predatory capacities.

In this manner, strategic interaction is born from elemental evolutionary

forces. It is only a conceptual short step from this point to cooperation

and competition among cells in a multicellular body, among conspecifics
who cooperate in social production, between males and females in a sexual

species, between parents and offspring, and among groups competing for

territorial control.

Historically, game theory did not emerge from biological considerations

but rather from strategic concerns in World War II (Von Neumann and

Morgenstern 1944; Poundstone 1992). This led to the widespread cari-
cature of game theory as applicable only to static confrontations of rational
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self-regarding agents possessed of formidable reasoning and information-

processing capacity. Developments within game theory in recent years,
however, render this caricature inaccurate.

Game theory has become the basic framework for modeling animal be-

havior (Maynard Smith 1982; Alcock 1993; Krebs and Davies 1997) and

thus has shed its static and hyperrationalistic character, in the form of evo-

lutionary game theory (Gintis 2009). Evolutionary and behavioral game

theory do not require the formidable information-processing capacities of
classical game theory, so disciplines that recognize that cognition is scarce

and costly can make use of game-theoretic models (Young 1998; Gintis

2009; Gigerenzer and Selten 2001). Thus, agents may consider only a re-

stricted subset of strategies (Winter 1971; Simon 1972), and they may use

rule-of-thumb heuristics rather than maximization techniques (Gigerenzer

and Selten 2001). Game theory is thus a generalized schema that permits

the precise framing of meaningful empirical assertions but imposes no par-
ticular structure on the predicted behavior.

12.10 Epistemic Game Theory and Social Norms

Economics and sociology have highly contrasting models of human inter-

action. Economics traditionally considers individuals to be rational, self-

regarding payoff maximizers, while sociology considers individuals to be

highly socialized, other-regarding, moral agents who strive to fill social

roles and whose self-esteem depends on the approbation of others. The
project of unifying the behavioral sciences must include a resolution of

these inconsistencies in a manner that preserves the key insights of each.

Behavioral game theory helps us adjudicate these disciplinary differ-

ences, providing experimental data supporting the sociological stress on

moral values and other-regarding preferences, and also supports the eco-

nomic stress on rational payoff maximization. For instance, most individu-

als care about reciprocity and fairness as well as personal gain (Gintis et al.
2005), value such character virtues as honesty for their own sake (Gneezy

2005), care about the esteem of others even when there can be no future

reputational repercussions (Masclet et al. 2003), and take pleasure in pun-

ishing others who have hurt them (deQuervain et al. 2004). Moreover, as

suggested by socialization theory, individuals have consistent values, based

on their particular sociocultural situations, that they apply in the labora-
tory even in one-shot games under conditions of anonymity (Henrich et al.
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2004; Henrich et al. 2006). This body of evidence suggests that sociologists

would benefit from reincorporating the rational actor model into sociologi-
cal theory, and economists broaden their concept of human preferences.

A second discrepancy between economics and sociology concerns the

contrasting claims of game theory and the sociopsychological theory of

norms in explaining social cooperation. Our exposition of this area in chap-

ter 7 can be interpreted in the larger context of the unity of the behavioral

sciences as follows.
The basic model of the division of labor in economic theory is the Wal-

rasian general equilibrium model, according to which a system of flexi-

ble prices induces firms and individuals to supply and demand goods and

services in such amounts that all markets clear in equilibrium (Arrow and

Debreu 1954). However, this model assumes that all contracts among in-

dividuals can be costlessly enforced by a third party, such as the judicial

system. In fact, however, many critical forms of social cooperation are not
mediated by a third-party enforceable contract but rather take the form of

repeated interactions in which an informal, but very real, threat of rupturing

the relationship is used to induce mutual cooperation (Fudenberg, Levine,

and Maskin 1994; Ely and Välimäki 2002). For instance, an employer hires

a worker who works hard under the threat of dismissal not the threat of an

employer lawsuit.
Repeated game theory thus steps in for economists to explain forms of

face-to-face cooperation that do not reduce to simple price-mediated mar-

ket exchanges. Repeated game theory shows that in many cases the activity

of many individuals can be coordinated, in the sense that there is a Nash

equilibrium ensuring that no self-regarding player can gain by deviating

from the strategy assigned to him by the equilibrium, assuming other play-
ers also use the strategies assigned to them (�10.4). If this theory were

adequate, which most economists believe is the case, then there would be

no role for the sociopsychological theory of norms, and sociological theory

would be no more that a thick description of a social mechanism analyti-

cally accounted for by repeated game theory.

However, repeated game theory with self-regarding agents does not solve

the problem of social cooperation (�10.6). When the group consists of more
than two individuals and the signal indicating how well a player is perform-

ing his part is imperfect and private (i.e., players receive imperfectly corre-

lated signals about another player’s behavior), the efficiency of cooperation

may be quite low, and the roles assigned to each player will be extremely
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complex mixed strategies that players have no incentive to use (�10.5). As

we suggested in chapter 7, the sociopsychology of norms can step in at this
point to provide mechanisms that induce individuals to play their assigned

parts. A social norm may provide the rules for each individual in the di-

vision of labor, players may have a general predilection for honesty that

allows them to consolidate their private signals concerning another player’s

behavior into a public signal that can be the bases for coordinated collec-

tive punishment and reward, and players may have a personal normative
predisposition towards following the social roles assigned to them. The so-

ciological and economic forces thus complement rather than contradict one

another.

A central analytical contribution to this harmonization of economics and

sociology was provided by Robert Aumann (1987), who showed that the

natural concept of equilibrium in game theory for rational actors who share

common beliefs is not the Nash equilibrium but the correlated equilibrium.
A correlated equilibrium is the Nash equilibrium in the game formed by

adding to the original game a new player, whom I call the choreographer

(Aumann calls this simply a “correlating device”), who samples the proba-

bility distribution given by the players (common) beliefs and then instructs

each player what action to take. The actions recommended by the chore-

ographer are all best responses to one another, conditional on their having
been simultaneously ordered by the choreographer, so self-regarding play-

ers can do no better than to follow the choreographer’s advice.

Sociology, and more generally sociobiology (see chapter 11), then come

in not only by supplying the choreographer, in the form of a complex of

social norms, but also by supplying cultural theory to explain why players

might have a common set of beliefs, without which the correlated equilib-
rium would not exist. Cognitive psychology explains the normative predis-

position that induces players to take the advice of the choreographer (i.e.,

to follow the social norm) when in fact there might be many other actions

with equal, or even higher, payoff that the player might have an inclination

to choose.

12.11 Society as a Complex Adaptive System

The behavioral sciences advance not only by developing analytical and

quantitative models but also by accumulating historical, descriptive, and
ethnographic evidence that pays heed to the detailed complexities of life in
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the sweeping array of wondrous forms that nature reveals to us. Historical

contingency is a primary focus for many students of sociology, anthropol-
ogy, ecology, biology, politics, and even economics. By contrast, the natural

sciences have found little use for narrative alongside analytical modeling.

The reason for this contrast between the natural and the behavioral sci-

ences is that living systems are generally complex, dynamic adaptive sys-

tems with emergent properties that cannot be fully captured in analytical

models that attend only to local interactions. The hypothetico-deductive
methods of game theory, the BPC model, and even gene-culture coevolu-

tionary theory must therefore be complemented by the work of behavioral

scientists who adhere to more historical and interpretive traditions, as well

as that of researchers who use agent-based programming techniques to ex-

plore the dynamic behavior of approximations to real-world complex adap-

tive systems.

A complex system consists of a large population of similar entities (in our
case, human individuals) who interact through regularized channels (e.g.,

networks, markets, social institutions) with significant stochastic elements,

without a system of centralized organization and control (i.e., if there is a

state, it controls only a fraction of all social interactions and is itself a com-

plex system). A complex system is adaptive if it undergoes an evolutionary

(genetic, cultural, agent-based, or other) process of reproduction, mutation,
and selection (Holland 1975). To characterize a system as complex adaptive

does not explain its operation and does not solve any problems. However, it

suggests that certain modeling tools are likely to be effective that have lit-

tle use in a noncomplex system. In particular, the traditional mathematical

methods of physics and chemistry must be supplemented by other modeling

tools such as agent-based simulation and network theory.
The stunning success of modern physics and chemistry lies in their ability

to avoid or control emergence. The experimental method in natural science

is to create highly simplified laboratory conditions under which modeling

becomes analytically tractable. Physics is no more effective than economics

or biology in analyzing complex real-world phenomena in situ. The vari-

ous branches of engineering (electrical, chemical, mechanical) are effective

because they re-create in everyday life artificially controlled, noncomplex,
nonadaptive environments in which the discoveries of physics and chem-

istry can be directly applied. This option is generally not open to most be-

havioral scientists, who rarely have the opportunity of “engineering” social

institutions and cultures.
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12.12 Counterpoint: Biology

Biologists are generally comfortable with three of the five principles laid

out in the introduction to this chapter. Only gene-culture coevolution and
the sociopsychology of norms have generated significant opposition.

Gene-culture coevolutionary theory has been around only since the 1980s

and applies to only one species—H. sapiens. Not surprisingly, many socio-

biologists have been slow to adopt it and have deployed a formidable array

of population biology concepts toward explaining human sociality in more

familiar terms—especially kin selection (Hamilton 1964) and reciprocal al-

truism (Trivers 1971). The explanatory power of these models convinced a
generation of researchers that what appears to be altruism— personal sac-

rifice on the behalf of others—is really just long-run self-interest, and that

elaborate theories drawn from anthropology, sociology, and economics are

unnecessary to explain human cooperation and conflict.

Richard Dawkins, for instance, in The Selfish Gene (1989 [1976]), asserts,

“We are survival machines—robot vehicles blindly programmed to preserve
the selfish molecules known as genes.. . . This gene selfishness will usually

give rise to selfishness in individual behavior.” Similarly, in The Biology of

Moral Systems (1987), R. D. Alexander asserts, “Ethics, morality, human

conduct, and the human psyche are to be understood only if societies are

seen as collections of individuals seeking their own self-interest.. . . ” (p.

3) In a similar vein, Michael Ghiselin (1974) writes, “No hint of genuine
charity ameliorates our vision of society, once sentimentalism has been laid

aside. What passes for cooperation turns out to be a mixture of opportunism

and exploitation.. . . Scratch an altruist, and watch a hypocrite bleed” (p.

247)

Evolutionary psychology, which has been a major contributor to human

sociobiology, has incorporated the kin selection/reciprocal altruism per-

spective into a broadside critique of the role of culture in society (Barkow,
Cosmides, and Tooby 1992) and of the forms of group dynamics upon

which gene-culture coevolution depends (Price, Cosmides, and Tooby

2002). I believe these claims have been effectively refuted (Richerson and

Boyd 2004; Gintis et al. 2009), although the highly interesting debate in

population biology concerning group selection has been clarified but not

completely resolved (Lehmann and Keller 2006; Lehmann et al. 2007; Wil-
son and Wilson 2007).
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12.13 Counterpoint: Economics

Economists generally believe in methodological individualism, a doctrine

claiming that all social behavior can be explained by strategic interactions
among agents. Were this correct, gene-culture coevolution would be un-

necessary, complexity theory would be irrelevant, and the sociopsycholog-

ical theory of norms could be derived from game theory. We concluded in

chapter 8, however, that methodological individualism is contradicted by

the evidence.

Economists also generally reject the idea of society as a complex adap-
tive system, on grounds that we may yet be able to tweak the Walrasian

general equilibrium framework, suitably fortified by sophisticated mathe-

matical methods, so as to explain macroeconomic activity. In fact, there

has been virtually no progress in general equilibrium theory since the mid-

twentieth-century existence proofs (Arrow and Debreu 1954). Particularly

noteworthy has been the absence of any credible stability model (Fisher
1983). Indeed, the standard models predict price instability and chaos (Saari

1985; Bala and Majumdar 1992). Moreover, analysis of excess demand

functions suggests that restrictions on preferences are unlikely to entail the

stability of Walrasian price dynamics (Sonnenschein 1972, 1973; Debreu

1974; Kirman and Koch 1986).

My response to this sad state of affairs has been to show that agent-based
models of generalized exchange, based on the notion that the economy is a

complex nonlinear dynamical system, exhibit a high degree of stability and

efficiency (Gintis 2006, 2007a). There does not appear to be any serious

doctrinal impediment to the use of agent-based modeling in economics.

12.14 Counterpoint: Psychology

Decision theory, based on the rational actor model, represents one of the

great scientific achievements of all time, beginning with Bernoulli and Pas-

cal in the seventeenth and eighteenth centuries and culminating in the work
of Ramsey, de Finetti, Savage, and von Neumann and Morgenstern in the

early and middle years of the twentieth century. Its preeminence in the be-

havioral disciplines that deal with human choice, especially its position as

the keystone of modern economic theory, however, has led to an extreme

level of empirical scrutiny of decision theory. Because I include the rational

actor model as one of my five organizing principles for the unification of
the behavioral sciences, this critique deserves careful consideration.
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The most salient critique has taken inspiration from the brilliant series of

experiments by Daniel Kahneman and Amos Tversky. These researchers
have documented several key and systematic divergences between the nor-

mative principle of decision theory and the actual choices of intelligent,

educated individuals (see chapter 1). Such phenomena as loss aversion, the

base rate fallacy, framing effects, and the conjunction fallacy must be added

to the traditional paradoxes of Allais and Ellsberg as representing funda-

mental aspects of human decision making that fall outside the purview of
traditional decision theory (�1.7).

Psychologists have used these contributions improperly to mount a sus-

tained attack on the rational actor model, leading many researchers to reject

traditional decision theory and seek alternatives lying quite outside the ra-

tional actor tradition, in such areas as computer modeling of neural nets

and neuroscientific studies of brain functioning. This dismissal of tradi-

tional decision theory may be emotionally satisfying, but it is immature,
short-sighted, and scientifically destructive. There is no alternative to the

traditional decision-theoretic model on the horizon, and there is not likely

to be one, for one simple reason: the theory is mostly correct, and where it

fails, the principles accounting for failure are complementary to, rather than

destructive of, the standard theory. For instance, the documented inconsis-

tencies in the traditional rational actor model can be handled effectively
by assuming that the preference function has the current state of the indi-

vidual as an argument, so all assessments are of deviations from the status

quo ante. Prospect theory, for which Kahneman was awarded the Nobel

prize, is precisely of this form, as is the treatment of time inconsistency

and regret phenomena. In other cases, by assuming that individuals have

other-regarding preferences (which laboratory evidence strongly supports),
we rupture the traditional prejudice that rationality implies selfishness.

My suggestion for resolving the conflict between psychological and eco-

nomic models of decision making has four points. First, the two disciplines

should recognize the distinction between deliberative and routine decision

making. Second, psychology should introduce the evolution of routine de-

cision making into its core framework, based on the principle that the brain

is a fitness-enhancing adaptation. Third, deliberative decision making is
an adaptation to the increased social complexity of primates and hominid

groups. Finally, routine decision making shades into deliberative decision

making under conditions that are only imperfectly known but are of great

potential importance for understanding human choice.
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12.15 The Behavioral Disciplines Can Be Unified

In this chapter, I have proposed five analytical tools that together serve

to provide a common basis for the behavioral sciences. These are gene-

culture coevolution, the sociopsychological theory of norms, game theory,

the rational actor model, and complexity theory. While there are doubtless

formidable scientific issues involved in providing the precise articulations
between these tools and the major conceptual tools of the various disci-

plines, as exhibited, for instance, in harmonizing the socio-psychological

theory of norms and repeated game theory, these intellectual issues are

likely to be dwarfed by the sociological issues surrounding the semifeu-

dal nature of modern behavioral disciplines, which renders even the most

pressing reform a monumental enterprise. If these institutional obstacles
can be overcome, the behavioral disciplines can be rendered mutually con-

sistent and reinforcing.
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Summary

This above all: to thine own self be true,
And it must follow, as the night the day,
Thou canst not then be false to any man.

Shakespeare

In a long book with many equations, it is easy to become mired in details

and hence miss the big picture. This chapter is a summary of the book’s

main points.

� Game theory is an indispensable tool in modeling human behavior.
Behavioral disciplines that reject or peripheralize game theory are

theoretically handicapped.
� The traditional equilibrium concept in game theory, the Nash equi-

librium, is implemented by rational actors only if they share beliefs

as to how the game will be played.
� The rational actor model includes no principles entailing the com-

munality of beliefs across individuals. For this reason, the complex

Nash equilibria that arise in modeling the coordination of behavior

in groups do not emerge spontaneously from the interaction of ratio-

nal agents. Rather, they require a higher-level correlating device, or

choreographer.
� Hence, the Nash equilibrium is not the appropriate equilibrium con-

cept for social theory.
� The correlated equilibrium is the appropriate equilibrium concept for

a set of rational individuals having common priors. The appropriate

correlating devices may be broadly identified with social norms.
� Social systems are complex adaptive dynamical systems. Social

norms are among the emergent properties of such systems. Social
norms range from simple conventions (e.g., vocabulary and traf-

fic signals) to complex products of gene-culture coevolution (e.g.,

territoriality and property rights). Complex norms may be taught,

learned, and internalized, but individuals must be genetically predis-

posed to recognize and obey social norms.
� There is thus a social epistemology based on the specific character

of the evolved human brain, as well as the operation of culturally

248
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specific social institutions that effect the commonality of beliefs in

humans.
� Even with a commonality of beliefs and a social norm choreograph-

ing a correlated equilibrium, self-regarding individuals do not have

incentives to play correlated equilibria. Rather, humans are other-

regarding: they are predisposed to obey social norms even when it is

costly to do so. We term this a normative predisposition.

� The behavioral disciplines today have four incompatible models of
human behavior. The behavioral sciences must develop a unified

model of choice that eliminates these incompatibilities and that can

be specialized in different ways to meet the heterogeneous needs of

the various disciplines.

� The Bounds of Reason contributes to the task of unifying the be-

havioral sciences by showing that game theory needs a broader so-

cial theory to have explanatory power, and that social theory without
game theory is seriously compromised.

� The bounds of reason are not forms of irrationality but rather forms

of sociality.
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Table of Symbols

fa; b; xg Set with members a, b and x

fxjp.x/g The set of x for which p.x/ is true

p ^ q, p _ q,:p p and q, p or q, not p

iff If and only if

p ) q p implies q

p , q p if and only if q

.a; b/ Ordered pair: .a; b/ D .c; d/ iff a D c and b D d

a 2 A a is a member of the set A

A �B f.a; b/ja 2 A and b 2 Bg

R The real numbers

Rn The n-dimensional real vector space

.x1; : : : ; xn/ 2 Rn An n-dimensional vector

f WA!B A function b D f .a/, where a 2 A and b 2 B

f .	/ A function f where we suppress its argument

f �1.y/ The inverse of function y D f .x/Pb
xDa f .x/ f .a/C 	 	 	 C f .b/

S1 � 	 	 	 � Sn f.s1; : : : sn/jsi 2 Si ; i D 1; : : : ngQn
iD1 Si S1 � 	 	 	 � Sn


S Set of probability distributions (lotteries) over S


�
Q

i Si …i
Si (set of mixed strategies)

Œa; b�,.a; b/ fx 2 Rja � x � bg,fx 2 Rja < x < bg

Œa; b/,.a; b� fx 2 Rja � x < bg,fx 2 Rja < x � bg

A [ B fxjx 2 A or x 2 Bg

A \ B fxjx 2 A and x 2 Bg

[˛A˛ fxjx 2 A˛ for some ˛g

\˛A˛ fxjx 2 A˛ for all ˛g

A � B A ¤ B ^ .x 2 A ) x 2 B/

A � B x 2 A ) x 2 B

Ddef Equal by definition

Œ � f! 2 �j .!/ is trueg

f ı g.x/ f .g.x//
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Symbols for Chapter 11

ˇ 2 .0; 1� Amount of injury from combat

� 2 .0; 1� Fraction of agents who are incumbents

�g Present value of being a currently uncontested incumbent

�b Present value of being a migrant searching for a territory

� 2 .0; 1� Probability that a migrant locates a patch

b Benefit from incumbency

c 2 .0; 1� Fitness cost associated with territorial search

f 2 .0; 1� Fraction of patches that are fertile

fo 2 .0; 1� Fraction of incumbents who contest

n Number of days agent can live without incumbency

np Number of patches

na Number of agents

p 2 .0; 1� Probability of patch death

q 2 .0; 1� Probability of a dead patch becoming fertile

qu 2 .0; 1� Probability incumbency is challenged by an intruder

r 2 .0; 1� Probability of finding a fertile patch

v 2 .0; 1� Cost of investing in a newly fertile patch

w 2 .0; 1� Probability of finding a fertile unoccupied patch

pd 2 .0; 1� Probability of combat leading to injury

pu 2 .0; 1� Probability that intruder wins the contest

s D2 .0; 1� Expected injury from combat

so 2 .0; 1� Resources committed to combat by incumbent

su 2 .0; 1� Resources committed to combat by intruder
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