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Preface 

In his autobiography, Bertrand Russell recalled the crisis of his youth: 
I 

There was a footpath leading across fields to New Southgate , and I used to 
go there alone to watch the sunset and contemplate suicide . I did not , how
ever, commit suicide , because I wished to know more of mathematics. 

Admittedly, few people find such absolute salvation in mathematics , 
but many appreciate its power and, more critically, its beauty_ This book 
is designed for those who would like to probe a bit more deeply into 
the long and glorious history of mathematics_ 

For disciplines as diverse as literature , music, and art, there is a tra
dition of examining masterpieces-the "great novels ,"  the "great sym
phonies , "  the "great paintings"-as the fittest and most illuminating 
objects of study. Books are written and courses are taught on precisely 
these topics in order to acquaint us with some of the creative milestones 
of the discipline and with the men and women who produced them. 

The present book offers an analogous approach to mathematics , 
where the creative unit is not the novel or symphony, but the theorem. 
Consequently, this is not a typical math book in that it does not provide 
a step-by-step development of some branch of the subject- Nor does it 
stress the applicability of mathematics in determining planetary orbits , 
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vi • JOURNEY THROUGH GENIUS 

in understanding the world of computers , or, for that matter, in balanc
ing your checkbook. Mathematics, of course, has been spectacularly suc
cessful in such applied undertakings . But it was not its worldly utility 
that led Euclid or Archimedes or Georg Cantor to devote so much of 
their energy and genius to mathematics . These individuals did not feel 
compelled to justify their work with utilitarian applications any more 
than Shakespeare had to apologize for writing love sonnets instead of 
cookbooks or Van Gogh had to apologize for painting canvases instead 
of billboards. 

In this book I shall explore a handful of the most important proofs
and the most ingenious logical arguments-from the history of mathe
matics, with emphasis on why the theorems were significant and how 
the mathematician resolved, once and for all ,  the pressing logical issue. 
Each chapter of Journey Through Genius has three primary components : 

The first is its historical emphasis. The "great theorems" on the 
pages ahead span more than 2300 years of human history. Before dis
cussing a particular result, I shall set the scene by describing the state of 
mathematics , and perhaps the state of the world generally, prior to the 
theorem. Like everything else, mathematics is created within the context 
of history, and it is of interest to place Cardano's solution of the cubic 
two years after the publication of Copernicus's heliocentric theory and 
two years before the death of England's Henry VI I I ,  or to emphasize the 
impact of the Restoration upon Cambridge University when a young 
scholar named Isaac Newton entered it in 1661. 

The second component is the biographical. Mathematics is the prod
uct of real ,  flesh-and-blood human beings whose lives may reflect the 
inspirational , the tragic, or the bizarre . The theorems contained here 
represent the work of a number of individuals , ranging from the gregar
ious Leonhard Euler to the pugnacious Johann Bernoulli to that most 
worldly of Renaissance characters , Gerolamo Cardano. Understanding 
something of the l ives of these diverse individuals can only enhance an 
appreciation of their work. 

The final component, and the primary focus of the book, is the cre
ativity evident in these "mathematical masterpieces . "  Just as one could 
not hope to understand a great novel without reading it, or to appreciate 
a great painting without seeing it, so one cannot really come to grips 
with a great mathematical theorem without a careful ,  step-by-step look 
at the proof. To acquire such an understanding requires a good bit of 
concentration and effort, and the chapters to follow are meant to serve 
as a guide in that undertaking. 

There is a remarkable permanence about these mathematical land
marks . In other disCiplines, the fads of today become the forgotten dis
cards of tomorrow. A little over a century ago, Sir Walter Scott was among 
the most esteemed writers in English literature; today, he is regarded 
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considerably less enthusiastically. In the twentieth century, superstars 
come and go with breathtaking speed, and ideas that seem destined to 
change the world often end up on the intellectual scrap heap. 

Mathematics , to be sure , is also subject to changes of taste . But a the
orem, correctly proved within the severe constraints of logic, is a theo
rem forever. Euclid's proof of the Pythagorean theorem from 300 B.C. has 
lost none of its beauty or validity with the passage of time . By contrast, 
the astronomical theories or medical practices of Alexandrian Greece 
have long since become archaiC ,  slightly amusing examples of primitive 
science . The nineteenth-century mathematician Hermann Hankel said it 
best : 

In most sciences one generation tears down what another has built, and 
what one has established another undoes . In mathematics alone each gen
eration adds a new story to the old structure . 

In this sense, as we examine the timeless mathematics of great mathe
maticians , we come to understand Oliver Heaviside's wonderfully apt 
observation: "Logic can be patient, for it is eternal . "  

A number of  factors have gone into the selection of  these few theo
rems to represent the best of mathematics . As noted, my chief consid
eration was to find arguments that were particularly inSightful or inge
nious. This, of course , introduces an element of personal taste , and I 
recognize that a different author would certainly generate a different list 
of great theorems . That aside , it is an extraordinary experience to 
behold, first-hand, the mathematician gliding through clever deductions 
and making the seemingly incomprehensible become clear. It has been 
said that talent is doing easily what others find difficult, but that genius 
is doing easily what others find impossible. As will be evident, there is 
much genius displayed on the pages ahead. Here are genuine classics
the Mona Lisas or Hamlets of mathematics . 

But other considerations influenced the choice of theorems. For one, 
I wanted to include samples from history's leading mathematicians . It 
was a must, for instance, to have selections from Euclid, Archimedes, 
Newton, and Euler. To overlook such figures would be like studying art 
history without mentioning the work of Rembrandt or Cezanne . 

Further, for the sake of variety, I have sampled different branches of 
mathematics . The propositions in the book come from the realms of 
plane geometry, algebra, number theory, analysis , and the theory of sets . 
The variety of these topics, and the occasional links and interplays 
among them, may add a note of freshness to this work. 

I also wanted to present important mathematical theorems, rather 
than merely clever little tricks or puzzles . Indeed, most of the results in 
the book either resolved long-standing problems in mathematics , or 
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generated even more profound questions for the future , or both. At the 
end of each chapter is an Epilogue, usually addressing an issue raised by 
the great theorem and following it as it echoes down through the history 
of mathematics. 

Then there is the question of level of difficulty. Obviously, mathe
matics has many great landmarks whose depth and complexity render 
them incomprehensible to all but experts . It would be foolish to include 
such results in a book aimed at the general , scientifically literate reader. 
The theorems that follow require only the tools of algebra and geometry, 
of the sort one acquires in a few high school courses. The two excep
tions are a brief use of the sine curve from trigonometry in discussing 
the work of Euler in Chapter 9 and an application of elementary integral 
calculus in the work of Newton in Chapter 7; many readers may already 
be acquainted with these topics , and for those who are not, there is a bit 
of explanation to smooth over the difficulty. 

I should stress that this is not a scholarly tome . There are certainly 
questions of great mathematical or historical subtlety that cannot be 
addressed in a work of this kind. While I have tried to avoid including 
false or historically inaccurate material , this was simply not the time nor 
place to investigate all facets of all issues. This book, after all, is meant 
for the popular, not the scientific, press . 

Along these lines, I must add a word about the authenticity of the 
proofs . In preparing the book, I have found it impossible to avoid the 
need for some compromise between the authors' original notation, ter
minology, and logical strategy and the requirement that the mathemati
cal material be understandable to the modern reader: A complete adher
ence to the originals would make some of these results very difficult to 
comprehend; yet a Significant deviation from the originals would conflict 
with my historical objectives. In general , I have tried to retain Virtually 
all of the spirit, and a good bit of the detail , of the original theorems. 
The modifications I have introduced seem to me to be no more serious, 
than, say, performing Mozart on modern instruments . 

And so, we are about to begin our journey through two millennia of 
mathematical landmarks . These results, old as they are , retain a freshness 
and display a sparkling virtuosity even after so many centuries. I hope 
that the reader will  be able to understand these proofs and to recognize 
what made them great . For those who succeed in this venture , I expect 
there will  be not only a sense of awe that comes from appreciating the 
greatness of others, but also a sense of personal satisfaction that one can, 
indeed, comprehend the works of a master. 

W. Dunham 
Columbus, Ohio 
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1 
Chapter 

Hippocrates' Quadrature 
of the Lune 

(ca. 440 B.C.) 

The Appearance of Demonstrative Mathematics 

Our knowledge of the very early development of mathematics is largely 
speculative , pieced together from archaeological fragments, architec
tural remains , and educated guesses. Clearly, with the invention of agri
culture in the years 1 5 ,000-10 ,000 B.C., humans had to address , in at least 
a rudimentary fashion, the two most fundamental concepts of mathe
matics: multiplicity and space . The notion of multiplicity, or "number," 
would arise when counting sheep or distributing crops; over the centu
ries, refined and extended by generations of scholars , these ideas 
evolved into arithmetic and later into algebra. The first farmers likewise 
would have needed insight into spatial relationships, primarily in regard 
to the areas of fields and pastures; such insights , carried down through 
hiStory, became geometry. From the beginnings of civilization, these 
two great branches of mathematics-arithmetic and geometry-would 
have coexisted in primitive form. 

This coexistence has not always been a harmonious one . A continu
ing feature of the history of mathematics has been the prevailing tension 
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between the arithmetic and the geometric. There have been times when 
one branch has overshadowed the other and when one has been 
regarded as logically superior to its more suspect counterpart. Then a 
new discovery, a new point of view, would turn the tables. It may come 
as a surprise that mathematics, like art or music or literature, has been 
subject to such trends in the course of its long and illustrious history. 

We find clear signs of mathematical development in the civilization 
of ancient Egypt. For the Egyptians, the emphasis was on the practical 
side of mathematics as a facilitator of trade, agriculture, and the other 
increasingly complex aspects of everyday life. Archaeological records 
indicate that by 2000 B.C. the Egyptians had a primitive numeral system 
as well as some geometric ideas about triangles, pyramids, and the like. 
There is a tradition, for instance, that Egyptian architects used a clever 
device for making right angles. They would tie 12 equally long segments 
of rope into a loop, as shown in Figure 1.1. Stretching five consecutive 
segments in a straight line from B to C and then pulling the rope taut at 
A, they thus formed a rigid triangle with a right angle BAG. This config
uration, laid upon the ground, allowed the workers to construct a perfect 
right angle at the corner of a pyramid, temple, or other bu ilding. 

Implicit in this construction is an understanding of the Pythagorean 
relationship of right triangles. That is, the Egyptians seemed to know 
that a triangle with sides of length 3, 4, and 5 must contain a right angle. 
Of course, Y + 42 = 9 + 16 = 25 = 52, and so we catch an early glimpse 
of one of the most important relationships in all of mathematics (see 
Figure 1.2). 

c 

A� _____ ...... __ ..... B 
FIGURE 1.1 
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A 

B '---------------a--------------� c 

FIGURE 1.2 

Technically, this Egyptian insight was not a case of the Pythagorean 
theorem itself, which states, "If f::.BAC is a right triangle,  then a2 = b2 + 
c2 . "  Rather, it was an example of the converse of the Pythagorean theo
rem: " If a2 = b2 + c2 , then f::.BAC is a right triangle ."  That is, for a prop
osition of the form " If P, then Q," the related statement " If Q, then P" 
is called the proposition's "converse . "  As we shall see , a perfectly true 
statement may have a false converse , but in the case of the famous 
Pythagorean theorem, both the proposition and its converse are valid. In 
fact, these will  be the "great theorems" in the next chapter. 

Although the Egyptians seemed to have some insight into the geom
etry of 3-4-5 right triangles, it is doubtful they possessed the broader 
understanding that, for instance, a 5 · 1 2 - 1 3  triangle or a 65·72 ·97 triangle 
likewise contains a right angle (since in each case a2 = b2 + c2) .  More 
critically, the Egyptians gave no indication of how they might prove this 
relationship . Perhaps they had some logical argument to support their 
observation about 3-4-5 triangles; perhaps they hit upon it purely by trial 
and error. In any case , the notion of proving a general mathematical 
result by a carefully crafted logical argument is nowhere to be found in 
Egyptian writings . 

The following example of Egyptian mathematics may be illuminat
ing: it is their approach to finding the volume of a truncated square pyr
amid-that is, a square pyramid with its top lopped off by a plane par
allel to the base (see Figure 1 .3) . Such a solid is today called the frustum 
of a pyramid. The technique for finding its volume appears in the so
called "Moscow Papyrus" from 1850 B.C.: 

If you are told: A truncated pyramid of 6 for the vertical height by 4 on the 
base by 2 on the top . You are to square this 4, result 16. You are to double 
4, result 8.  You are to square 2, result 4. You are to add the 16, the 8, and 
the 4, result 28. You are to take a third of 6, result 2 .  You are to take 28 twice , 
result 56. See, it is 56. You will  find it right. 
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4 FIGURE 1.3 

This is a most remarkable prescription, which indeed yields the cor
rect answer for the frustum's volume. Notice, however, what it does not 
do. It does not give a general formula to cover frusta of other dimen
sions. Egyptians would have to generalize from this particular case in 
order to determine the volume of a different-sized frustum, a process 
that could be a bit confusing. Far simpler and more concise is our mod
ern formula 

V= Ysh(d + ab + tl) 

where a is the side of the square on the bottom ,  b is the side of the 
square on the top, and h is the frustum 's height. Worse, there was no 
indication of why this Egyptian recipe provided the correct answer. 
Instead , a simple "You will find it right" sufficed. 

It is probably dangerous to draw sweeping conclusions from a par
ticular example, yet historians have noted that a dogmatic approach to 
mathematics was certainly in keeping with the authoritarian society that 
was pharaonic Egypt. Inhabitants of that ancient land were conditioned 
to give unquestioned obedience to their rulers. By analogy, when pre
sented with an authoritative mathematical technique that concluded 
"You will find it right," Egyptian subjects were hardly likely to demand 
a more thorough explanation of why it worked . In the land of the Phar
aoh, you did what you were told, whether in erecting a colossal temple 
or in solving a math problem. Those adamantly questioning the system 
would end up as mummies before their time . 

Another great ancient civilization-or, more precisely, civiliza-
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tions-flourished in Mesopotamia and produced mathematics signifi
cantly more advanced than that of Egypt. The Babylonians, for instance, 
solved fairly sophisticated problems with a definite algebraic character, 
and the existence of a clay tablet called Plimpton 322,  dated roughly 
between 1900 and 1 600 B.C., shows that they definitely understood the 
Pythagorean theorem in far more depth than their Egyptian counterparts; 
that is, the Babylonians recognized that a 5 - 12 - 13  triangle or a 65 -72-97 
triangle (and many more) was right . In addition, they developed a 
sophisticated place system for their numerals .  We, of course , are accus
tomed to a base- l0  numeral system, obviously derived from the 10 fin
gers of the human hand, so it may seem a bit odd that the Babylonians 
chose a base-60 system.  While no one speculates that these ancient peo
ple had 60 fingers, their choice of base can still be seen in our measure
ment of time (60 seconds per minute) and angles (6 X 60 · = 360 · in 
a circle) . 

But for all of their achievements, the Mesopotamians likewise 
addressed only the question of "how" while avoiding the much more 
significant issue of "why." Those seeking the appearance of a demon
strative mathematics-a theoretical , deductive system in which empha
sis was placed upon proving critical relationships-would have to look 
to a later time and a different place . 

The time was the first millennium B.C., and the place was the Aegean 
coasts of Asia Minor and Greece . Here there arose one of the most sig
nificant civilizations of history, whose extraordinary achievements would 
forever influence the course of western culture . Engaged in a thriving 
commerce, both within their own lands and across the Mediterranean, 
the Greeks developed into a mobile , adventuresome people , relatively 
prosperous and sophisticated, and considerably more independent in 
thought and action than the western world had seen before . These curi
ous, free-thinking merchants were much less likely to submit meekly to 
authority. Indeed, with the development of Greek democracy, the citi
zens became the authority (although it must be stressed that citizenship 
in the classical world was very narrowly defined). To such individuals, 
everything was open to debate and analysis, and ideas were not about to 
be accepted with a passive , unquestioning obedience . 

By 400 B.C., this remarkable civilization could already boast a rich, 
some would say unsurpassed, intellectual heritage . The epic poet 
Homer, the historians Herodotus and Thucydides, the dramatists Aes
chylus, Sophocles, and Euripides, the politician Pericles, and the philos
opher Socrates-these individuals had all left their marks as the fourth 
century B.C. began. Inhabitants of the modern world, where fame can 
fade so qUickly, may find it astonishing that these names have endured 
gloriously for over 2000 years . To this day, we admire their boldness in 
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subjecting Nature and the human condition to the penetrating light of 
reason.  Granted, it was reason still contaminated by large doses of super
stition and ignorance, but the Greek thinkers were profoundly success
ful .  If their conclusions were not always correct, the Greeks nonetheless 
sensed that theirs was the path that would lead from a barbarous past to 
an undreamed-of future . The term "awakening" is often used in describ
ing this special moment in history, and it is apt . Humankind was indeed 
arising from the slumber of thousands of centuries to confront this 
strange, mysterious world with Nature's most potent weapon-the 
human mind. 

Such was certainly the case with mathematics . Around 600 B.C. in the 
town of Miletus on the western coast of Asia Minor, there lived the great 
Thales (ca. 640-ca. 546 B.C.), one of the so-called "Seven Wise Men" of 
antiqUity. Thales of Miletus is generally credited with being the father 
of demonstrative mathematics, the first scholar who supplied the "why" 
along with the "how." As such, he is the earliest known mathematician . 

We have very little hard evidence about his life .  Indeed, he emerges 
from the mists of the past as a pseudo-mythical figure, and it is anybody's 
guess as to the truth of the exploits and discoveries attributed to him. 
Looking back seven centuries , the biographer Plutarch (A.D. 46-120) 
wrote that " . . .  at that time Thales alone had raised philosophy above 
mere practice into speculation. "  A noted mathematician and astronomer 
who somehow predicted the solar eclipse in 585 B.C., Thales, like the 
stereotypical scientist, was chronically absent-minded and incessantly 
preoccupied-according to legend, he once was strolling along, gazing 
upward at his beloved stars, when he tumbled into an open well .  

His "fatherhood" of  demonstrative mathematics notwithstanding, 
Thales never married. When Solon, a contemporary, asked why, Thales 
arranged a cruel ruse whereby a messenger brought Solon news of his 
son's death . According to Plutarch, Solon then 

. . . began to beat his head and to do and say all that is usual with men in 
transports of grief. But Thales took his hand, and, with a smile, said, "These 
things, Solon, keep me from marriage and rearing children, which are too 
great for even your constancy to support; however, be not concerned at the 
report, for it is a fiction. "  

Clearly, Thales was not the kindest of  people . A similar impression 
emerges from the story of a farmer who routinely tied heavy bags of salt 
on the back of his donkey when driving the beast to market. The clever 
animal quickly learned to roll over while fording a particular stream, 
thereby dissolving much of the salt and making his burden far lighter. 
Exasperated, the farmer went to Thales for advice, and Thales recom-
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mended that on the next trip to market the farmer load the donkey with 
sponges. 

It was certainly not kindness to man or beast that earned Thales his 
high reputation in mathematics . Rather, it was his insistence that geo
metric statements not be accepted simply because of their intuitive plau
sibility; instead they had to be subjected to rigorous, logical proof. This 
is no small legacy to leave the discipline of mathematics . 

What, precisely, are some of his theorems? Tradition holds that it was 
Thales who first proved the following geometric results : 

• Vertical angles are equal . 
• The angle sum of a triangle equals two right angles . 
• The base angles of an isosceles triangle are equal . 
• An angle inscribed in a semicircle is a right angle .  

In none of these cases do we have any record of his proofs, but we can 
speculate on their nature . For instance, consider the last proposition 
above . The proof given below is taken from Euclid's Elements, Book I I I ,  
Proposition 3 1 ,  but i t  i s  simple and direct enough to be a prime candi
date for Thales' own. 

THEOREM An angle inscribed in a semicircle is a right angle .  

PROOF Let a semicircle be  drawn with center 0 and diameter BC, and 
choose any point A on the semicircle (Figure 1.4) .  We must prove that 
LBAC is right. Draw line OA and consider MOB. Since OB and OA are 
radii of the semicircle , they have the same length, and so MOB is isos
celes. Hence, as Thales had previously proved, LARO and LBAO are 
equal (or, in modern terminology, congruent) ; call them both a. Like-

B -..... ------....I....------.w...� C 
FIGURE 1.4 ' 
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wise, in MOC, OA and OC have the same length, and so LOAC = LOCA; 
call them both {3. But, from the large triangle BAC, we see that 

2 right angles = LABC + LACB + LBAC 
= a + {3 + (a + (3) 
= 2a + 2{3 = 2 (a + (3) 

Hence, one right angle = %[2 right angles] =%[2 (a + (3) ] = a + {3 = 
LBAC. This is exactly what we were to prove . 

Q.E.D. 

(Note: It has become customary, upon the completion of a proof, to 
insert the letters "Q.E .D . , "  which abbreviate the Latin Quod erat 
demonstrandum [Which was to be proved] . This alerts the reader to the 
fact that the argument is over and we are about to set off in new 
directions.)  \ 

After Thales, the next major figure in Greek mathematics was Pythag
oras . Born in Samos around 572 B.C., Pythagoras lived and worked in the 
eastern Aegean, even, according to some legends, studying with the 
great Thales himself. But when the tyrant Polycrates assumed power in 
this region, Pythagoras fled to the Greek town of Crotona in southern 
Italy, where he founded a scholarly society now known as the Pythago
rean brotherhood. In their contemplation of the world about them, the 
Pythagoreans recognized the special role of "whole number" as the crit
ical foundation of all natural phenomena. Whether in music, or astron
omy, or philosophy, the central position of "number" was everywhere 
evident. The modern notion that the physical world can be understood 
by "mathematization" owes more than a little to this Pythagorean 
viewpoint. 

In the world of mathematics proper, the Pythagoreans gave us two 
great discoveries . One, of course, was the incomparable Pythagorean 
theorem . As with all other results from this distant time period, we have 
no record of the original proof, although the ancients were unanimous 
in attributing it to Pythagoras . In fact, legend says that a grateful Pythag
oras sacrificed an ox to the gods to celebrate the joy his proof brought 
to all concerned (except, presumably, the ox) . 

The other significant contribution of the Pythagoreans was received 
with considerably less enthusiasm, for not only did it defy intuition, but 
it also struck a blow against the pervasive supremacy of the whole num
ber. In modern parlance, they discovered irrational quantities, although 
their approach had the following geometric flavor: 

Two line segments, AB and CD, are said to be commensurable if 
there exists a smaller segment EFthat goes evenly into both AB and CD. 
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AS = p(EF) 

A B 

c D 

E F 
FIGURE 1.S 

That is, for some whole numbers p and q, AB is composed of p segments 
congruent to EFwhile CD is composed of q such segments (Figure 1 . 5) . 
Consequently, AB/ CD = p(Efl)/q (Efl) = p/q. (Here we are using the 
notation AB to stand for the length of segment AB) . Since p/ q is the ratio 
of two positive integers, we say that the ratio of the lengths of commen
surable segments is a "rational" number. 

Intuitively, the Pythagoreans felt that any two magnitudes are com
mensurable . Given two line segments, it seemed preposterous to doubt 
the existence of another segment EF dividing evenly into both, even if 
it took an extremely tiny EF to do the job. The presumed commensura
bility of segments was critical to the Pythagoreans, not only because they 
used this idea in their proofs about similar triangles but also because it 
seemed to support their philosophical stance on the central role of 
whole numbers . 

However, tradition credits the Pythagorean Hippasus with discover
ing that the side of a square and its diagonal ( GH and GI in Figure 1 .6) 
are not commensurable. That is, no matter how small one goes, there is 
no magnitude EF dividing evenly into both the square's side and its 
diagonal . 

This discovery had a number of profound consequences . Obviously, 
it shattered those Pythagorean proofs that rested upon the supposed 
commensurabil ity of all segments . It would be almost two centuries 
before the mathematician Eudoxus found a way to patch up the theory 
of similar triangles by devising alternative proofs that did not rely upon 
the concept of commensurability. Secondly, it had an unsettling impact 
upon the supremacy of whole numbers, for if not all quantities were 
commensurable, then whole numbers were somehow inadequate to rep
resent the ratios of all geometric lengths . Consequently, the discovery 
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firmly established the superiority of geometry over arithmetic in all sub
sequent Greek mathematics . In the Figure 1 .6 ,  for instance, the side and 
diagonal of the square are beyond suspicion as geometric objects . But , 
as numbers, they presented a major problem. For, if we imagine that the 
side of the square above has length 1 ,  then the Pythagorean theorem 
tells us that the length of the diagonal is Vz; and, since side and diag
onal are not commensurable, we see that Vz cannot be written as a ratio
nal number of the form pi q. Numerically, then, Vz is an " irrational , "  
whose arithmetic character i s  quite mysterious. Far better, thought the 
Greeks , to avoid the numerical approach altogether and concentrate on 
magnitudes simply as geometric entities . This preference for geometry 
over arithmetic would dominate a thousand years of Greek mathematics . 

A final result of the discovery of irrationals was that the Pythagoreans, 
incensed at all the trouble Hippasus had caused, supposedly took him 
far out upon the Mediterranean and tossed him overboard to his death . 
If true, the story indicates the dangers inherent in free thinking, even in 
the relatively austere discipline of mathematics. 

Thales and Pythagoras, while prominent in legend and tradition, are 
obscure , shadowy figures from the distant past . Our next individual , Hip
pocrates of Chios (ca . 440 B.C.) is a l ittle more solid. In fact, it is to him 
that we attribute the earliest mathematical-proof that has survived in rea
sonably authentic form. This will  be the subject of our first great 
theorem. 

Hippocrates was born on the island of Chios sometime in the fifth 
century B.C. This was,  of course, the same region that produced his illus
trious predecessors mentioned earlier. (Note in passing that Chios is not 
far from the island of Cos, where another "Hippocrates" was born about 
this time; it was Hippocrates of Cos-not our Hippocrates-who 
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became the father of Greek medicine and originator of the physicians' 
Hippocratic oath.) 

Of the mathematical Hippocrates, we have scant biographical infor
mation . Aristotle wrote that, while a talented geometer, he " . . .  seems 
in other respects to have been stupid and lacking in sense . "  This is an 
early example of the stereotype of the mathematician as being somewhat 
overwhelmed by the demands of everyday life .  Legend has it that Hip
pocrates earned this reputation after being defrauded of his fortune by 
pirates, who apparently took him for an easy mark. Needing to make a 
financial recovery, he traveled to Athens and began teaching, thus 
becoming him one of the few individuals ever to enter the teaching pro
fession for its financial rewards. 

In any case , Hippocrates is remembered for two signal contributions 
to geometry. One was his composition of the first Elements, that is, the 
first exposition developing the theorems of geometry precisely and log· 
ically from a few given axioms or postulates. At least, he is credited with 
such a work, for nothing remains of it today. Whatever merits his book 
had were to be eclipsed, over a century later, by the brilliant Elements 
of Euclid, which essentially rendered Hippocrates' writings obsolete . 
Sti l l ,  there is reason to believe that Euclid borrowed from his predeces
sor, and thus we owe much to Hippocrates for his great, if lost, treatise . 

The other significant Hippocratean contribution-his quadrature of 
the lune-fortunately has survived, although admittedly its survival is 
tenuous and indirect . We do not have Hippocrates' own work, but Eude
mus' account of it from around 335 B.C., and even here the situation is 
murky, because we do not really have Eudemus' account either. Rather, 
we have a summary by Simplicius from A.D. 530 that discussed the writ· 
ings of Eudemus, who, in turn , had summarized the work of Hippocra
tes . The fact that the span between Simplicius and Hippocrates is almost 
a thousand years-roughly the time between us and Leif Erikson-indi
cates the immense difficulty historians face when considering the math
ematics of the ancients . Nonetheless , there is no reason to doubt the 
general authenticity of the work in question. 

Some Remarks on Quadrature 

Before examining Hippocrates' lunes, we need to address the notion of 
"quadrature . " It is obvious that the ancient Greeks were enthralled by 
the symmetries, the visual beauty, and the subtle logical structure of 
geometry. Particularly intriguing was the manner in which the simple 
and elementary could serve as foundation for the complex and intricate. 
This will  become quite apparent in the next chapter as we follow Euclid 
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through the development of some very sophisticated geometric propo
sitions beginning with just a few basic axioms and postulates. 

This enchantment with building the complex from the simple was 
also evident in the Greeks' geometric constructions . For them, the rules 
of the game required that all constructions be done only with compass 
and (unmarked) straightedge . These two fairly unsophisticated tools
allowing the geometer to produce the most perfect, uniform one-dimen
sional figure (the straight line) and the most perfect, uniform two
dimensional figure (the circle)-must have appealed to the Greek sen
sibilities for order, simplicity, and beauty. Moreover, these constructions 
were within reach of the technology of the day in a way that, for instance ,  
constructing a parabola was not . Perhaps i t  is  accurate to suggest that the 
aesthetic appeal of the straight line and circle reinforced the central 
position of straightedge and compass as geometric tools while, con
versely and simultaneously, the physical availability of these tools 
enhanced the role to be played by straight lines and circles in the geom
etry of the Greeks . 

The ancient mathematicians were consequently committed to, and 
limited by, the output of these tools. As we shall see , even the seemingly 
unsophisticated compass and straightedge can produce, in the hands of 
ingenious geometers, a rich and varied set of constructions, from the 
bisection of l ines and angles, to the drawing of parallels and perpendic
ulars , to the creation of regular polygons of great beauty. But a consid
erably more challenging problem in the fifth century B.C. was that of the 
quadrature or squaring of a plane figure . To be precise : 

o The quadrature (or squaring) of a plane figure is the construction
using only compass and straightedge-of a square having area equal 
to that of the original plane figure . If the quadrature of a plane figure 
can be accomplished, we say that the figure is quadrable (or 
squarable) . 

That the quadrature problem appealed to the Greeks should come as 
no surprise . From a purely practical viewpoint, the determination of the 
area of an irregularly shaped figure is, of course, no easy matter. If such 
a figure could be replaced by an equivalent square, then determining the 
original area would have been reduced to the trivial matter of finding the 
area of that square . 

Undoubtedly the Greeks ' fascination with quadrature went far 
beyond the practical . For, if successfully accomplished, quadrature 
would impose the symmetric regularity of the square onto the asym
metric irregularity of an arbitrary plane figure . To those who sought a 
natural world governed by reason and order, there was much appeal in 
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the process of replacing the asymmetric by the symmetric ,  the imperfect 
by the perfect, the irrational by the rational . In this sense, quadrature 
represented not only the triumph of human reason, but also the inherent 
simplicity and beauty of the universe itself. 

Devising quadratures was thus a particularly fascinating problem for 
Greek mathematicians , and they produced clever geometric construc
tions to that end. As is often the case in mathematics, solutions can be 
approached in stages, by first squaring a reasonably "tame" figure and 
moving from there to the quadrature of more irregular, bizarre ones . The 
key initial step in this process is the quadrature of the rectangle, the pro
cedure for which appears as Proposition 14 of Book II of Euclid's Ele
ments, although it was surely known well before Euclid. We begin with 
this . 

STEP 1 Quadrature of the rectangle (Figure 1 .7) 

Let BCDE be an arbitrary rectangle. We must construct, with compass 
and straightedge only, a square having area equal to that of BCDE. With 
the straightedge, extend l ine BE to the right, and use the compass to 
mark off segment EF with length equal to that of ED--that is, EF = ED. 
Next, bisect BF at G (an easy compass and straightedge construction) ,  
and with center G and radius BG = FG, describe a semicircle as shown. 
Finally, at E, construct line EHperpendicular to BF, where H is the point 
of intersection of the perpendicular and the semicircle, and from there 
construct square EKLH. 

We now claim that the shaded square having side of length EH-a 
figure we have just constructed-has area equal to that of the original 
rectangle BCDE. 

L 

c 

B K 

FIGURE 1.7 
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To verify this claim requires a bit of effort. For notational conve
nience, let a, b, and c be the lengths of segments HG, EG, and EH, 
respectively. Since L::.GEH is a right triangle by construction, the Pythag
orean theorem gives us a2 = b2 + c\ or equivalently a2 - b2 = c2• Now 
clearly FG = BG = HG = a, since all are radii of the semicircle. Thus, 
EF = FG - EG = a - b and BE = BG + GE = a + b. It follows that 

Area (rectangle BCDE) = (base) X (height) 
= (BE) X (ED) 
= (BE) X (EF), since we constructed EF = ED 
= ( a  + b) ( a  - b) by the observations above 
= d - lT 
= c- = Area (square EKLH) 

Consequently, we have proved that the original rectangular area 
equals that of the shaded square which we constructed with compass 
and straightedge, and this completes the rectangle's quadrature . 

With this done , the steps toward squaring more irregular regions 
come quickly. 

STEP 2 Quadrature of the triangle (Figure 1 .8) 

Given L::.BCD, construct a perpendicular from D meeting BC at point 
E. Of course , we call DE the triangle 's "altitude" or "height" and know 
that the area of the triangle is �(base) X (height) = �(BC) X (DE) . If 
we bisect DE at F and construct a rectangle with GH = BC and HI = EF, 
we know that the rectangle 'S area is (H]) X ( GH) = (EF) X (Be) = 
�(DE) X (Be) = area ( L::.BCD) . But we then apply Step 1 to construct a 
square equal in area to this rectangle, and so the square's area is also that 
of L::.BCD. This completes the quadrature of the triangle .  

We next move to the following very general situation. 

D 

FIGURE 1.8 
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STEP 3 Quadrature of the polygon (Figure 1 .9) 

This time we begin with a general polygon, such as the one shown. 
By drawing diagonals, we subdivide it into a collection of triangles with 
areas B, C, and D, so that the total polygonal area is B + C + D. . 

Now triangles are known to be quadrable by Step 2 ,  so we can con
struct squares with sides h, c, and dand areas B, C, and D (Figure 1 . 10) . 
We then construct a right triangle with legs of length h and c, whose 
hypotenuse is of length x, where :xl = II + c2• Next, we construct a right 
triangle with legs of length x and d and hypotenuse y, where we have 
y = :xl + tf, and finally, the shaded square of side y (Figure 1 . 1 1 ) .  

Combining our facts, we see that 

y = :xl + tf = (II + c) + tf = B + C + D 

so that the area of the original polygon equals the area of the square 
having side y. 

This procedure clearly could be adapted to the situation in which the 
polygon was divided by its diagonals into four, five, or any number of 
triangles. No matter what polygon we are given (see Figure 1 . 1 2) , we 
can subdivide it into a set of triangles, square each one by Step 2 ,  and 
use these individual squares and the Pythagorean theorem to build a 

b 

FIGURE 1.10 
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FIGURE 1.11 

large square with area equal to that of the polygon. In short, polygons 
are quadrable. 

By an analogous technique we could likewise square a figure whose 
area was the difference between-and not the sum of-two quadrable 
areas . That is, suppose we knew that area E was the difference between 
areas F and G, and we had already constructed squares of sides jand g 
with areas as shown in Figure 1 . 1 3 .  Then we would construct a right 
triangle with hypotenuse jand leg g. We let e be the length of the other 
leg and construct a square with side e. We then have 

] "----. 

FIGURE 1.12 
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G g 

g 

Area (square) = £l = P - g = F - G = E 

so that area E is likewise quadrable . 
With the foregoing techniques, the Greeks of Hippocrates' day could 

square wildly irregular polygons . But this triumph was tempered by the 
fact that such figures are rectilinear-that is, their sides, although 
numerous and meeting at all sorts of strange angles , are merely straight 
lines . Far more challenging was the issue of whether figures with curved 
boundaries-the so-called curvilinear figures-were likewise quadra
ble . Initially, this must have seemed unlikely, for there is no obvious 
means to straighten out curved lines with compass and straightedge . It 
must therefore have been quite unexpected when Hippocrates of Chios 
succeeded in squaring a curvilinear figure known as a " lune" in the fifth 
century B.C. 

Great Theorem: The Quadrature of the Lune 

A lune is a plane figure bounded by two circular arcs-that is, a crescent . 
Hippocrates did not square all such figures but rather a particular lune 
he had carefully constructed. (As will  be shown in the Epilogue, this 
distinction seemed to be the source of some misunderstanding in later 
Greek geometry.) His argument rested upon three preliminary results : 

• The Pythagorean theorem 
• An angle inscribed in a semicircle is right. 
• The areas of two circles or semicircles are to each other as the 

squares on their diameters . 

Area (semicircle 1 )  cf 
= -

Area (semicircle 2) D2 
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The first two of these results were well known long before Hippoc
rates came upon the scene. The last proposition, on the other hand, is 
considerably more sophisticated. It gives a comparison of the areas of 
two circles or semicircles based on the relative areas of the squares con
structed on their diameters (see Figure 1.14). For instance, if one semi
circle has five times the diameter of another, the former has 25 times the 
area of the latter. This proposition presents math historians with a prob
lem, for there is widespread doubt that Hippocrates actually had a valid 
proof . He may well have thought he could prove it, but modern scholars 
generally feel that this theorem-which later appeared as the second 
proposition in Book XII of Euclid's Elements-presented logical diffi 
culties far beyond what Hippocrates would have been able to handle. (A 
derivation of this result is presented in Chapter 4.) 

That aside, we now consider Hippocrates' proof . Begin with a semi
circle having center 0 and radius AO = OB, as shown in Figure 1.15. 
Construct OC perpendicular to AB, with point C on the semicircle, and 
draw lines AC and Be. Bisect AC at D, and using AD as a radius and D as 
center, draw semicircle AEC, thus creating lune AECF, which is shaded 
in the diagram. 

Hippocrates' plan of attack was simple yet brilliant. He first had to 
establish that the lune in question had precisely the same area as the 
shaded MOe. With this behind him, he could then apply the known fact 
that triangles can be squared to conclude that the lune can be squared 
as well. The details of the classic argument follow: 

THEOREM Lune AECF is quadrable. 

PROOF Note that LACB is right since it is inscribed in a semicircle. Tri
angles AOCand BOCare congruent by the "Side-angIe-side" congruence 
scheme, and consequently AC = Be. We thus apply the Pythagorean the
orem to get 
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FIGURE 1.15 
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Because AB is the diameter of semicircle ACB, and AC is the diameter 
of semicircle AEC, we can apply the third principle above to get 

Area (semicircle AEC) (AC)2 CAGY 1 
Area (semicircle ACB) 

= 
(AB)2 = 

2 (AC)2 = '2 
In other words, semicircle AEC has half the area of semicircle ACB. 

But we now look at quadrant AFCD (a "quadrant" is a quarter of a 
circle) . Clearly this quadrant also has half the area of semicircle ACB, 
and we immediately conclude that 

Area (semicircle AEC) = Area (quadrant AFCD) 

Finally, we need only subtract from each of these figures their shared 
region AFCD, as in Figure 1 . 1 6 .  This leaves 

Area (semicircle AEC) - Area (region AFCD) 
= Area (quadrant AFCD) - Area (region AFCD) 

and a quick look at the diagram verifies that this amounts to 

Area (tune AECF) = Area (.t:.ACD) 

But, as we have seen, we can construct a square whose area equals 
that of the triangle , and thus equals that of the lune as well .  This is the 
quadrature we sought. 

Q.E.D. 
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Here indeed was a mathematical tri u mph. Look ing hack from his fifth 
century vantage point, the commentator Proclus (A . D .  4 1 0-485) would 
write that Hippocrates of Chios " . . .  squared the lune and made many 
other discoveries in geometry, being a man of genius when it came to 
constructions, if ever there was one . "  

Epilogue 

With Hippocrates' success at squaring the lune, Greek mathematicians 
must have been optimistic about squaring that most perfect curvilinear 
figure, the circle . The ancients devoted much time to this problem, and 
some later writers attributed an attempt to Hippocrates himself, although 
the matter is again clouded by the difficulties of assessing commentaries 
upon commentaries. Nonetheless, Simplicius, writing in the fifth cen
tury, quoted his predecessor Alexander Aphrodisiensis (ca . A . D .  2 1 0) as 
saying that Hippocrates had claimed that he could square the circle . 
Piecing together the evidence, we gather that this is the sort of argument 
Alexander had in mind : 

Begin with an arbitrary circle with diameter AB. Construct a large cir
cle with center 0 and a diameter CD that is twice AB. Within the larger 
circle, inscribe a regular hexagon by the known technique of letting 
each side be the circle's radius. That is, 

It is important to note that each of these segments, being the radius of 
the larger circle, also has length AB. Then, using the six segments as 
diameters, construct the six semicircles shown in Figure 1 .17 .  This gen-
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B 

FIGURE 1.17 

erates the shaded region composed of the six lunes and the circle upon 
AB. 

Next imagine decomposing the figure on the right in two different 
ways: first, as the regular hexagon CEFDGH plus the six semicircles; sec
ond, as the large circle plus the six lunes. Obviously these yield the same 
overall area since they arise from the decomposition of the same figure . 
But the six semicircles amount to three full circles, each with diameter 
equal to AB. Thus, 

Area (hexagon) + 3 Area (circle on AB) 
= Area (large circle) + Area (six lunes) 

Now the large circle ,  having twice the diameter, must have 22 = 4 times 
the area of its smaller counterpart. Hence, 

Area (hexagon) + 3 Area (circle on AB) 
= 4 Area (circle on AB) + Area (six lunes) 

and, subtracting "3 Area (circle on AB) " from both sides of this equa
tion, we get 

Area (hexagon) = Area (circle on AB) + Area (six lunes) or 

Area (circle on AB) = Area (hexagon) - Area (six lunes) 
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According to Alexander, Hippocrates then reasoned as follows: The 
hexagon, being a polygon, can be squared; each lune, from the preced
ing argument, can likewise be squared, and so, by the additive process, 
a square whose area is the sum of the half-dozen lunar areas can be con
structed. Thus, the circle on AB can be squared by the simple process of 
subtracting areas that we noted earlier. 

Unfortunately, there is a glaring flaw in this argument, as Alexander 
was quick to point out : the lune that Hippocrates squared in our great 
theorem was not constructed along the side of a regular inscribed hex
agon but rather along the side of an inscribed square. In other words, 
Hippocrates never provided a process for squaring the kind of lune that 
arose here . 

Most modern scholars doubt that a mathematician of Hippocrates' 
stature could have bumbled into such an error. It is more likely that 
Alexander or Simplicius or any of the other intermediaries who passed 
along Hippocrates' original argument garbled it in some manner. We 
will probably never know the whole story. Nonetheless, it is likely that 
this kind of reasoning supported the idea that the quadrature of the cir
cle should somehow be possible . If the preceding argument did not 
quite do the job, then maybe just a little more effort and a little more 
insight might have brought success . 

But it was not to be . For generations, for centuries, the challenge to 
square the circle went unmet, although not for any lack of trying. Count
less solutions were proposed involving a multitude of ingenious twists 
and turns. Yet in the end, each was found to contain an error . Gradually, 
mathematicians began to suspect that there was an intrinsic impossibility 
in the circle's quadrature with compass and straightedge . Of course , the 
mere lack of a correct argument, even after 2000 years of trying, did not 
establish its impossibility; perhaps mathematicians had just not been 
clever enough to find their way through the geometric thickets . Further, 
if the quadrature of the circle was impossible, this fact would have to be 
proved with all the logical rigor of any other theorem, and it was by no 
means clear how to go about such a proof. 

One point should be stressed. No one doubted that, given a circle, 
there exists a square of equal area . For instance, consider a given, fixed 
circle and a small square spot of light projecting on the page beside it, 
the square 's area being substantially less than that of the circle . If we 
continuously move the projector away from the page, thereby gradually 
increasing the area of the square image, we eventually arrive at a square 
whose area exceeds that of the circle . Appealing to the intuitive notion 
of "continuous growth, "  we can correctly conclude that at some inter
mediate instant, the area of the square exactly equaled the area of the 
circle . 
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But this is all beside the point. Remember that the crucial issue is not 
whether such a square exists, but whether it can be constructed with 
compass and straightedge . It is here that the difficulties appeared, for the 
geometer was limited to these two particular tools; moving spotlights 
around was simply against the rules . 

The problem of squaring the circle remained unresolved from the 
time of Hippocrates until just over a century ago . At last, in 1882 ,  the 
German mathematician Ferdinand Lindemann ( 1852-1939) succeeded 
in proving unequivocally that the quadrature of the circle was an impos
sibility. The technical details of his proof are quite advanced and go well 
beyond the scope of this book. However, the following is a brief syn
opsis of how it was that Lindemann answered this age-old question. 

He did it by translating the issue from the realm of geometry to the 
realm of number. If we imagine the collection of all real numbers, 
depicted in the schematic diagram in Figure 1 . 18 as being contained 
within the large rectangle, we can subdivide them into two exhaustive 
and mutually exclusive categories-the algebraic numbers and the tran
scendental numbers . 

By definition, a real number is algebraic if it is the solution to some 
polynomial equation 

where all the coefficients am an- I >  . . .  , a2 , a I ,  and ao are integers . Thus, 
the rational number % is algebraic since it is the solution of the polyno
mial equation 3x - 2 = 0; the irrational Vz is likewise algebraic since 
it satisfies r - 2 = 0; and even \/1 + 0) is algebraic since it satisfies 
x6 - z,x3 - 4 = O. Note that, in each case , these polynomials have inte
ger coefficients . 

Real Numbers 

Algebraic Transcendental 
Numbers Numbers 

e 1t  
Constructable 

Numbers 

FIGURE 1.18 
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Less formally, we can think of the algebraic numbers as the "easy" 
or "familiar" quantities encountered in arithmetic and elementary alge
bra. For instance, all whole numbers are algebraic, as are all fractions 
and their square roots , cube roots, and so on. 

By contrast, a number is transcendental if it is not algebraic-that is, 
if it is not the solution of any polynomial equation with integer coeffi
cients . Such numbers are much more complicated than their relatively 
simple algebraic cousins. By the very definition, it is clear that any real 
number is either algebraic or transcendental but not both . This is a stark 
dichotomy, rather like any person's being either a man or a woman, with 
no middle ground. 

Now begin with a unit length (that is, a length to represent the num
ber " I ") and keep track of what other lengths we can produce by 
straightedge and compass construction. It turns out that the totality of all 
possible constructible lengths, while vast, does not include every real 
number. For instance , starting from a length of 1 ,  we can construct 
lengths of 2, 3, 4, and so on, as well as rational lengths like �, %, l�ll and 
even irrational lengths involving only square roots, like y'2 or Vs. Fur
ther, if we can construct two magnitudes, we can construct their sum, 
difference, product, or quotient. Putting all of these operations together, 
we see that more complex expressions such as 

V 6 - 20 
1 + V 4 + \123 - \17 

are actually constructible lengths . 
This vast array of constructible numbers forms a subset of the alge

braic numbers, even as the collection of all bald men forms a subset of 
all men. As Figure 1 . 18 suggests , these constructible quantities are 
strictly embedded within the algebraic numbers . The crucial point is that 
no member of the transcendental numbers can be constructed with com
pass and straightedge . (If we stretch our analogy one step further, this 
corresponds to the statement that no woman will  be found among the 
bald men.) 

All of this was known at the time when Lindemann took up the prob
lem. Building on the efforts of his predecessors, particularly the brilliant 
French mathematician Charles Hermite ( 1822-1901 ) ,  Lindemann 
attacked the famous number 11'. (In elementary geometry we encounter 
11' as the ratio of a circle's circumference to its diameter; we shall have 
much more to say about this critical constant in Chapter 4 .) Lindemann's 
triumph was to prove that 11' is transcendental . In other words, 11' is not 
algebraiC and thus is not constructible .  This , in turn, tells us that Y; is 
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not constructible either, since if we could construct Y;, we could, with 
a few more swipes of the compass and straightedge, construct 7r as well .  

At first, this numerical discovery may seem to have little bearing on 
the geometry of circle-squaring, but we shall see that it provided the 
missing piece of the puzzle . 

TIlEOREM The quadrature of the circle is impossible 

PROOF Let us assume, for the sake of eventual contradiction, that circles 
can be squared . We get out our compass and easily construct a circle 
having radius r = 1 .  Its area is thus 7rr = 7r. If circles are quadrable, as 
we have temporarily assumed, then we employ our compass and 
straightedge, work feverishly slashing arcs and drawing lines , and even
tually, after only a finite number of such steps, end up with a square that 
also has area 7r, as indicated in Figure 1 . 1 9 .  In this process, we would 
have had to construct the square , which of course would require us to 
have constructed each of its four sides. Call the length of the square's 
side x. Then we see that 

7r = Area of circle = Area of square = X-

and so the length x = y; would be constructible with compass and 
straightedge . But, as we have noted, no such construction forY; is 
possible. 

What went wrong? Tracing back through the argument and looking 
for the source of our contradiction, we find it can only be the initial 
assumption, namely, that circles can be squared. As a consequence, we 
must reject this and conclude, once and for all ,  that the quadrature of 
the circle is a logical impossibility! 

Q.E.D. 

Lindemann's discovery, then, showed that squaring the circle-a 
quest that occupied mathematicians from Hippocrates ' day until modern 
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times-was a lost cause . All of the suggestive proofs, all of the promising 
clues starting with the quadrature of the lune, turned out to be illusory. 
Compass and straightedge alone are inadequate for turning circles into 
squares. 

And what did history have to say about lunes? Our great theo.rem 
above showed Hippocrates squaring a particular lune, and he managed 
to do two other kinds as well .  Thus, as of 440 B.C., three types of lunes 
were known to be quadrable . At this pOint, progress stopped for over 
two millennia until ,  in 177 1 ,  the great Leonhard Euler ( 1707-1783)
who will be  the object of our attention in  Chapters 9 and 10-found two 
more kinds of lunes that were squarable . There the matter rested until 
the twentieth century when N. G. Tschebatorew and A. W. Dorodnow 
proved that these five are the only squarable lunes! All other lunes , such 
as the one that generated Alexander's harsh criticism cited earlier, share 
with the circle the impossibility of being squared.  

So the final chapter in the story of Hippocrates and his lunes has been 
written, and it has been a rather perverse story at that . At first, intuition 
suggested that curved figures could not be squared with compass and 
straightedge . Hippocrates' lunes turned intuition upside down, and the 
search was on for quadratures galore . But, in the end, the negative 
results of Lindemann, Tschebatorew, and Dorodnow showed that intu
ition had not been so flawed after all . The quadrature of curvilinear fig
ures, far from being the norm, must forever remain the exception. 



2 
Chapter 

Euclid's Proof of the 
Pythagorean Theorem 

(ca. 300 B.C.) 

The Elements of Euclid 

A century and a half passed between Hippocrates and Euclid. During this 
span, Greek civilization grew and matured, enriched by the writings of 
Plato and Aristotle , of Aristophanes and Thucydides, even as it under
went the turmoil of the Peloponnesian Wars and the glory of the Greek 
empire under Alexander the Great . By 300 B .C . ,  Greek culture had spread 
across the Mediterranean world and beyond. In the West, Greece 
reigned supreme . 

The period from 440 B .C .  to 300 B .C .  saw a number of individuals con
tribute Significantly to the development of mathematics . Among these 
were Plato (427-347 B .C . )  and Eudoxus (ca . 408-355  B .C . ) , although only 
the latter was truly a mathematician . 

Plato, the great philosopher of Athens, deserves mention here not so 
much for the mathematics he created as for the enthusiasm and status he 
imparted to the subject. As a youth, Plato had studied in Athens under 
Socrates and is of course our primary source of information about his 
esteemed teacher. For a number of years Plato roamed the world, meet-
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ing the great thinkers and formulating his own philosophical positions . 
In 387 B. C . ,  he returned to his native Athens and founded the Academy. 
Devoted to learning and contemplation, the Academy attracted talented 
scholars from near and far, and under Plato's gUidance it became the 
intellectual center of the classical world. 

Of the many subjects studied at the Academy, none was more highly 
regarded than mathematics . The subject certainly appealed to Plato's 
sense of beauty and order and represented an abstract, ideal world 
unsullied by the humdrum demands of day-to-day existence . Moreover, 
Plato considered mathematics to be the perfect training for the mind, its 
logical rigor demanding the ultimate in concentration, cleverness, and 
care . Legend has it that across the arched entryway to his prestigious 
Academy were the words ' 'Let no man ignorant of geometry enter here . "  
Explicit sexism notwithstanding, this motto reflected the view that only 
those who had first demonstrated a mathematical maturity were capable 
of facing the intellectual challenge of the Academy. We might say that 
Plato regarded geometry as the ideal entrance requirement, the Scholas
tic Aptitude Test of his day. 

Although very little Original mathematics is now attributed to Plato, 
the Academy produced many capable mathematicians and one indisput
ably great one, Eudoxus of Cnidos . Eudoxus came to Athens about the 
time the Academy was being created and attended the lectures of Plato 
himself. Eudoxus' poverty forced him to l ive in Piraeus, on the outskirts 
of Athens, and make the daily round-trip journey to and from the Acad
emy, thus distinguishing him as one of the first commuters (although we 
are unsure whether he had to pay out -of-city-state tuition) . Later in his 
career, he traveled to Egypt and returned to his native Cnidos, all the 
while assimilating the discoveries of science and constantly extending 
its frontiers . Particularly interested in astronomy, Eudoxus devised com
plex explanations of lunar and planetary motion whose influence was 
felt until the Copernican revolution in the sixteenth century. Never will
ing to accept divine or mystical explanations for natural phenomena, he 
instead tried to subject them to observation and rational analysis . Thus, 
Sir Thomas Heath said of Eudoxus, "He was a man of science if ever 
there was one . "  

In mathematics, Eudoxus i s  remembered for two major contribu
tions . One was his theory of proportion, and the other his method of 
exhaustion . The former provided a logical victory over the impasse cre
ated by the Pythagoreans' discovery of incommensurable magnitudes . 
This impasse was especially apparent in geometric theorems about sim
ilar triangles, theorems that had initially been proved under the assump
tion that any two magnitudes were commensurable . When this assump
tion was destroyed, so too were the existing proofs of some of 
geometry's foremost theorems. What resulted is sometimes called the 
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" logical scandal" of Greek geometry. That is, while people stil l  believed 
that the theorems were correct as stated, they no longer were in posses
sion of sound proofs with which to support this belief. It was Eudoxus 
who developed a valid theory of proportions and thereby supplied the 
long-sought proofs . His theory, which must have brought a collective 
sigh of relief from the Greek mathematical world, is now most readily 
found in Book V of Euclid's Elements. 

Eudoxus' other great contribution, the method of exhaustion, found 
immediate application in the determination of areas and volumes of the 
more sophisticated geometric figures. The general strategy was to 
approach an irregular figure by means of a succession of known elemen
tary ones, each providing a better approximation than its predecessor. 
We can think, for instance, of a circle as being a totally curvilinear, and 
thus quite intractable, plane figure . But, if we inscribe within it a square , 
and then double the number of sides of the square to get an octagon, 
and then again double the number of sides to get a 16-gon, and so on, 
we will find these relatively simple polygons ever more closely approx
imating the circle itself. In Eudoxean terms, the polygons are "exhaust
ing" the circle from within . 

This process is , in fact, precisely how Archimedes determined the 
area of a circle, as we shall see in the great theorem of Chapter 4. It is 
to Eudoxus that he owed this fundamental logical tool .  In addition, 
Archimedes credited Eudoxus with using the method of exhaustion to 
prove that the volume of "any cone is one third part of the cylinder 
which has the same base with the cone and equal height," a theorem 
that is by no means trivial . The reader familiar with higher mathematics 
will  recognize in the method of exhaustion the geometric forerunner of 
the modern notion of " limit," which in turn lies at the heart of the cal
culus . Eudoxus' contribution was a significant one, and he is usually 
regarded as being the finest mathematician of antiquity next to the 
unsurpassed Archimedes himself. 

It was during the latter third of the fourth century B.C. that Alexander 
the Great emerged from Macedonia and set out to conquer the world. 
His conquests carried him to Egypt where , in 332 B.C., he established the 
city of Alexandria at the mouth of the Nile River. This city grew rapidly, 
reportedly reaching a population of half a million in the next three dec
ades . Of particular importance was the formation of the great Alexan
drian Library that soon supplanted the Academy as the world's foremost 
center of scholarship . At one point, the facility had over 600,000 papyrus 
rolls, a collection far more complete and astounding than anything the 
world had ever seen. Indeed, Alexandria would remain the intellectual 
focus of the Mediterranean world through the Greek and Roman periods 
until its final destruction in A . D .  64 1 at the hands of the Arabs . 

Among the scholars attracted to Alexandria around 300 B.C. was a man 
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named Euclid, who came to set up a school of mathematics . We know 
very little about his life either before or after his arrival on the African 
coast, but it appears that he received his training at the Academy from 
the followers of Plato . Be that as it may, Euclid's influence was so pro
found that virtually all subsequent Greek mathematicians had some con
nection or other with the Alexandrian School. 

What Euclid did that established him as one of the greatest names in 
mathematics history was to write the Elements. This work had a pro
found impact on Western thought as it was studied, analyzed, and edited 
for century upon century, down to modern times . It has been said that 
of all books from Western civilization, only the Bible has received more 
intense scrutiny than Euclid's Elements. 

The highly acclaimed Elements was simply a huge collection
divided into 13  books-of 465 propositions from plane and solid geom
etry and from number theory. Today, it is generally agreed that relatively 
few of these theorems were of Euclid's own invention. Rather, from the 
known body of Greek mathematics, he created a superbly organized 
treatise that was so successful and so revered that it thoroughly obliter
ated all preceding works of its kind . Euclid's text soon became the stan
dard . Consequently, a mathematician's reference to 1 .47 can only mean 
the 47th proposition of the first book of the Elements; there is no more 
need to say that we are talking about the Elements than there is to spec
ify that I Kings 7 :23 is referring to the Bible.  

Actually the parallel is quite accurate , for no book has come closer 
to being the "bible of mathematics" than Euclid's spectacular creation . 
Down through the centuries , over 2000 editions of the Elements have 
appeared, a figure that must make the authors of today's mathematics 
textbooks drool with envy. As noted, it was highly successful even in its 
own day. After the fall  of Rome, the Arab scholars carried it off to Bagh
dad, and when it reappeared in Europe during the Renaissance , its 
impact was profound. The work was studied by the great Italian scholars 
of the sixteenth century and by a young Cambridge student named Isaac 
Newton a century later. We have a passage from Carl Sandburg's biog
raphy of Abraham Lincoln that recounts how, when a young lawyer trying 
to sharpen his reasoning skills, the largely unschooled Lincoln 

. . .  bought the Elements of Euclid, a book twenty-three centuries old . . .  [It) 
went into his carpetbag as he went out on the circuit .  At night . . . he read 
Euclid by the l ight of a candle after others had dropped off to sleep. 

It has often been noted that Lincoln's prose was infleenced and enriched 
by his study of Shakespeare and the Bible . It is likewise obvious that 
many of his political arguments echo the logical development of a 
Euclidean proposition. 
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And Bertrand Russell ( 1872-1970) had his own fond memories of 
the Elements. In his autobiography, Russell penned this remarkable 
recollection : 

At the age of eleven,  I began Euclid, with my brother as tutor. This was one 
of the great events of my life ,  as dazzling as first love . 

As we consider the Elements in this chapter and the next, we should 
be aware that we proceed along paths that so many others have trod. 
Only a very few classics-the Iliad and Odyssey come to mind-share 
such a heritage . The propositions we shall examine were studied by 
Archimedes and Cicero, by Newton and Leibniz, by Napoleon and Lin
coln. It is a bit daunting to place oneself in this long, long line of 
students . 

Euclid's great genius was not so much in creating a new mathematics 
as in presenting the old mathematics in a thoroughly clear, organized, 
and logical fashion. This is no small accomplishment. It is important to 
recognize the Elements as more than just mathematical theorems and 
their proofs; after all ,  mathematicians as far back as Thales had been fur
nishing proofs of propositions . Euclid gave us a splendid axiomatic 
development of his subject, and this is a critical distinction . He began 
the Elements with a few basics: 23 definitions, 5 postulates, and 5 com
mon notions or general axioms . These were the foundations , the "giv
ens ,"  of his system. He could use them at any time he chose . From these 
basics, he proved his first proposition . With this behind him, he could 
then blend his definitions, postulates, common notions , and this first 
proposition into a proof of his second. And on it went. 

Consequently, Euclid did not just furnish proofs; he furnished them 
within this axiomatic framework. The advantages of such a development 
are significant. For one thing, it avoids circularity in reasoning. Each 
proposition has a clear, unambiguous string of predecessors leading 
back to the original axioms. Those familiar with computers could even 
draw a flow chart showing precisely which results went into the proof of 
a given theorem. This approach is far superior to "plunging in" to prove 
a proposition, for in such a case it is never clear which previous results 
can and cannot be used. The great danger from starting in the middle, 
as it were, is that to prove theorem A, one might need to use result B, 
which, it may turn out, cannot be proved without using theorem A itself. 
This results in a circular argument, the logical eqUivalent of a snake swal
lowing its own tai l ;  in mathematics it surely leads to no good. 

But the axiomatic approach has another benefit . Since we can clearly 
pick out the predecessors of any proposition, we have an immediate 
sense of what happens if we should alter or eliminate one of our basic 
postulates. If, for instance, we have proved theorem A without ever using 
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either postulate C or any result previously proved by means of postulate 
C, then we are assured that our theorem A remains valid even if postulate 
C is discarded. While this might seem a bit esoteric, just such an issue 
arose with respect to Euclid's controversial fifth postulate and led to one 
of the longest and most profound debates in the history of mathematics. 
This matter is examined in the Epilogue of the current chapter. 

Thus, the axiomatic development of the Elements was of major 
importance . Even though Euclid did not quite pull this off flawlessly, the 
high level of logical sophistication and his obvious success at weaving 
the pieces of his mathematics into a continuous fabric from the basic 
assumptions to the most sophisticated conclusions served as a model for 
all subsequent mathematical work. To this day, in the arcane fields of 
topology or abstract algebra or functional analYSiS, mathematicians will 
first present the axioms and then proceed, step-by-step, to build up their 
wonderful theories. It is the echo of Euclid, 23 centuries after he lived. 

Book I: Preliminaries 

In this chapter, we shall focus only on the first book of the Elements; 
subsequent books will be the topic of Chapter 3. Book I began abruptly 
with a list of definitions from plane geometry. (All Euclidean quotations 
are taken from Sir Thomas Heath's encyclopedic edition The Thirteen 
Books of Euclid 's Elements.) Among the first few definitions were : 

o Definition 1 A point is that which has no part. 

o Definition 2 A line is breadthless length . 

o Definition 4 A straight line is a line which lies evenly with the points 
on itself. 

Today's students of Euclid find these statements unacceptable and a 
bit quaint . Obviously, in any logical system, not every term can be 
defined, since definitions themselves are composed of terms, which in 
turn must be defined. If a mathematician tries to give a definition for 
everything, he or she is condemned to a huge circular jumble. What, for 
instance, did Euclid mean by "breadthless" ?  What is the technical mean
ing of lying "evenly with the points on itself"? 

From a modern viewpoint, a logical system begins with a few unde
fined terms to which all subsequent definitions relate . One surely tries 
to keep the number of these undefined terms to a minimum, but their 
presence is unavoidable . For modern geometers, then, the notions of 
"point" and "straight line" remain undefined. Statements such as 
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Euclid's may serve to convey some image in our minds, and this is not 
without merit; but as precise , logical definitions, these first few items are 
unsatisfactory. 

Fortunately, his later definitions were more successful .  A few of these 
figure prominently in our discussion of Book I and deserve comment. 

o Definition 10 When a straight line standing on another straight line 
makes the adjacent angles equal to one another, each of the equal 
angles is right and the straight line standing on the other is called a 
perpendicular to that on which it stands . 

It may come as a surprise to modern readers that Euclid did not 
define a right angle in terms of 90 0 ;  in fact, nowhere in the Elements is 
"degree" ever mentioned as a unit of angular measure . The only angular 
measure that plays any significant role in the book is the right angle ,  and 
as we can see , Euclid defined this as one of two equal adjacent angles 
along a straight line . 

o Definition 15 A circle is a plane figure contained by one line such that 
all the straight lines falling upon it from one point among those lying 
within the figure are equal to one another. 

Clearly, the "one point" within the circle is the circle's center, and the 
equal "straight lines" he referred to are the radii .  

In definitions 19 through 22 ,  Euclid defined triangles (plane figures 
contained by three straight lines) , quadrilaterals (those contained by 
four) , and such specific subclasses as equilateral triangles (triangles 
with three sides equal) and isosceles triangles (those with "two of its 
sides alone equal") . His final definition proved to be critical : 

o Definition 23 Parallel straight lines are straight lines which, being in 
the same plane and being produced indefinitely in both directions, do 
not meet one another in either direction . 

Notice that Euclid avoided defining parallels in terms of their being 
everywhere equidistant. His definition was far simpler and less fraught 
with logical pitfalls: parallels were simply lines in the same plane that 
never intersect . 

With the definitions behind him, Euclid gave a list of five postulates 
for his geometry. Recall ,  these were to be the givens,  the self-evident 
truths of his system. He certainly had to select them judiciously and to 
avoid overlap or internal inconsistency. 
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POSTIJLATE 1 [ It is possible] to draw a straight line from any point to any 
point. 

POSTIJLATE 2 [It is possible] to produce a finite straight line continuously 
in a straight line . 

A moment's thought shows that the first two postulates permitted pre
cisely the sorts of constructions one can make with an unmarked 
straightedge . For instance , if the geometer wanted to connect two 
points with a straight line-a task physically accomplished with a 
straightedge-then Postulate 1 provided the logical justification for 
doing so. 

POSTIJLATE 3 [It is possible] to describe a circle with any center and dis
tance (Le . ,  radius) . 

Here was the corresponding logical basis for pulling out a compass 
and drawing a circle, provided one first had a given point to be the center 
and a given distance to serve as radius . Thus , the first three postulates, 
together, justified all pertinent uses of the Euclidean tools. 

Or did they? Those who think back to their own geometry training 
will  recall an additional use of the compass, namely, as a means of trans
ferring a fixed length from one part of the plane to another. That is, given 
a line segment whose length was to be copied elsewhere, one puts the 
point of the compass at one end of the segment and the pencil tip at the 
other; then, holding the device rigidly, we lift the compass and carry it 
to the desired spot . I t  is a simple and highly useful procedure .  However, 
in playing by Euclid's rules, it was not permitted, for nowhere did he 
give a postulate allowing this kind of transfer of length . As a result, math
ematicians often refer to the Euclidean compass as "collapsible . "  That 
is, although it is perfectly capable of drawing Circles (as Postulate 3 guar
anteed) , upon lifting it from the plane, it falls shut, unable to remain 
open once it is removed. 

What is one to make of this situation? Why did Euclid not insert an 
additional postulate to support this very important transfer of lengths? 
The answer is simple: he did not need to assume such a technique as a 
postulate , for he proved it as the third proposition of Book I .  That is, 
Euclid introduced a clever technique for transferring lengths even if his 
compass "collapsed" upon lifting it from the page, and then he proved 
why his technique worked. It is to Euclid's great credit that he avoided 
assuming what he could in fact derive , and thereby kept his postulates 
to a bare minimum. 
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POSTULATE 4 All right angles are equal to one another. 

This postulate did not relate to a construction . Rather, it provided a 
uniform standard of comparison throughout Euclid's geometry. Right 
angles had been introduced in Definition 10 ,  and now Euclid was assum
ing that any two such angles, regardless of where they were situated in 
the plane, were equal .  With this behind him, Euclid arrived at by far the 
most controversial statement in Greek mathematics : 

POSTULATE 5 If a straight line falling on two straight lines make the inte
rior angles on the same side less than two right angles, the two straight 
lines, if produced indefinitely, meet on that side on which are the angles 
less than the two right angles. 

As shown in Figure 2 . 1 ,  this postulate is saying that if a + {3 < 2 right 
angles, then lines AB and CD meet toward the right. Postulate 5 is often 
called Euclid's parallel postulate . This is a bit of a misnomer, since actu· 
ally the postulate gave conditions under which two lines meet and thus, 
according to Definition 23, is more accurately called the nonparallel 
postulate . 

Clearly, this postulate was quite unlike the others . It was longer to 
state , required a diagram to understand, and seemed far from being a 
self-evident truth. The postulate appeared too complicated to be 
included in the same category as the innocuous "All right angles are 

FIGURE 2.1 
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equal . "  In fact, many mathematicians felt in their bones that the fifth 
postulate was,  in reality, a theorem. They sensed that, just as Euclid did 
not need to assume that lengths could be transferred with a compass, 
neither did he have to assume this postulate ; he should simply have 
been able to prove it from the more elementary properties of geometry. 
There is evidence that Euclid himself was a bit uneasy about this matter, 
for in his development of Book I he avoided using the parallel postulate 
as long as he could. That is, whereas he felt perfectly content to use any 
of his other postulates as early and often as he needed, Euclid put off the 
use of his fifth postulate through his first 28 propositions . As shown in 
the Epilogue, however, it was one thing to be skeptical of the need for 
such a postulate but quite another to furnish the actual proof. 

With this controversial statement behind him, Euclid completed his 
preliminaries with a list of five common notions . These too were meant 
to be self-evident truths but were of a more general nature , not specific 
to geometry. They were 

o Common Notion 1 Things which are equal to the same thing are also 
equal to one another. 

o Common Notion 2 If equals be added to equals, the wholes are equal . 

o Common Notion 3 If equals be subtracted from equals, the remainders 
are equal . 

o Common Notion 4 Things which coincide with one another are equal 
to one another. 

o Common Notion 5 The whole is greater than the part . 

Of these , only the fourth raised some eyebrows. Apparently, what 
Euclid meant by it was that, if one figure could be moved rigidly from 
one portion of the plane and then be placed down upon a second figure 
so as to coincide perfectly, then the two figures were equal in all 
aspects-that is, they had equal angles, equal sides, and so forth . It has 
long been observed that Common Notion 4, having something of a geo
metric character, belonged among the postulates. 

This, then, was the foundation of assumed statements upon which 
the entire edifice of the Elements was to be built. It is a good point at 
which to return to the young Bertrand Russell for another of his won
derful autobiographical confessions : 

I had been told that Euclid proved things, and was much disappointed that 
he started with axioms. At first, I refused to accept them unless my brother 
could offer me some reason for doing so, but he said, "If you don't accept 
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them, we cannot go on," and, as I wished to go on, I reluctantly admitted 
them. 

Book I : The Early Propositions 

With the preliminaries behind him, Euclid was ready to prove the first of 
48 propositions in Book I .  Only those propositions of particular interest 
or importance are discussed here , the goal being to arrive at Propositions 
1 .47 and 1 .48, which stand as the logical climax of the first book. 

If someone were about to develop geometry from a few selected axi
oms, what would be his or her very first proposition? For Euclid, it was 

PROPOSmON 1.1 On a given finite straight line, to construct an equilat
eral triangle. 

PROOF Euclid began with the given segment AB, as shown in Figure 2 . 2 .  
Using A as  center and AB as  radius ,  he  constructed a circle; then, with B 
as center and AB again as radius, he constructed a second circle . Both 
constructions, of course, made use of Postulate 3, and neither required 
the compass to remain open when lifted from the page . Letting C be the 
point where the circles intersect, Euclid invoked Postulate 1 to draw 
lines CA and CB and then claimed that �C was equilateral. For, by 
Definition 1 5 ,  AC = AB and BC = AB since these are radii of their 
respective circles. Then, since Common Notion 1 states that things equal 
to the same thing are themselves equal ,  we conclude that AC = AB = 
BC and so the triangle is equilateral by definition . 

. . . .. . . . 

A L.-_________ � B FIGURE 2.2 
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This was a very simple proof, using two postulates, one common 
notion, and two definitions, and at first glance it appears perfectly satis
factory. Unfortunately, the proof is flawed. Even the ancient Greeks, no 
matter how highly they regarded the Elements, were aware of the logical 
shortcomings of this first Euclidean argument. 

The problem resided in the point C, for how could Euclid prove that 
the two circles did, in fact, intersect at all? How did he know that they 
did not somehow pass through one another without meeting? Clearly, 
since this was his first proposition, he had not previously proved that 
they must meet . Moreover, nothing in his postulates or common notions 
spoke to this matter.  The only justification for the existence of the point 
C was that it showed up plainly in the diagram. 

But this was the rub.  For if there was one thing that Euclid wanted to 
banish from his geometry, it was the reliance on pictures to serve as 
proofs. By his own ground rules, the proof must rest upon the logic, 
upon the careful development of the theory from the postulates and 
common notions, with all conclusions ultimately dependent upon them. 
When he "let the picture do the talking," Euclid violated the very rules 
he had imposed upon himself. After all , if we are willing to draw con
clusions from the diagrams, we could just as well prove Proposition 1 . 1  
by observing that the triangle thus constructed looks equilateral . When 
we resort to such visual judgments, all is lost. 

Modern geometers have recognized the need for an additional pos
tulate , sometimes called the "postulate of continuity," as a justification 
for claiming that the circles do meet. Other postulates have been intro
duced to fill similar gaps appearing here and there in the Elements. 
Around the turn of the present century, the mathematician David Hilbert 
( 1862-1943) developed his geometry from a list of 20 postulates, 
thereby plugging the many Euclidean loopholes. As a result, in 1902 Ber
trand Russell gave this negative assessment of Euclid's work: 

His definitions do not always define, his axioms are not always indemonstra
ble, his demonstrations require many axioms of which he is quite uncon
scious. A valid proof retains its demonstrative force when no figure is drawn, 
but very many of Euclid's earlier proofs fail before this test . . .  The value of 
his work as a masterpiece of logic has been very grossly exaggerated. 

Admittedly, when he allowed himself to be led by the diagram and 
not the logic behind it, Euclid committed what we might call a sin of 
omission . Yet nowhere in all 465 propositions did he fall into a sin of 
commission . None of his 465 theorems is false . With minor modifica
tions in some of his proofs and the addition of some missing postulates, 
all have withstood the test of time. Those inclined to agree with Russell 's 
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indictment might first compare Euclid's record with that of Greek astron
omers or chemists or physicians. These scientists were truly primitive by 
modern standards, and no one today would rely on ancient texts to 
explain the motion of the moon or the workings of the liver. But, more 
often than not, we can rely on Euclid. His work stands as a remarkably 
timeless achievement . It did not, after all , depend on the collection of 
data or the creation of more accurate instruments . It rested squarely 
upon the keenness of reason, and of this Euclid had an abundance . 

Propositions 1 . 2  and 1 .3 cleverly established the previously men
tioned ability to transfer a length without an explicit postulate for 
moving a rigid compass, while Proposition 1 .4 was the first of Euclid's 
congruence schemes. In modern terms, this was the so-called side
angle-side or SAS congruence pattern, which readers should recall from 
their high school geometry courses .  It said that if two triangles have the 
two sides and included angle of one respectively equal to two sides and 
included angle of the other, then the triangles are congruent in all 
respects (Figure 2 .3) . 

In his proof, Euclid assumed that AB = DE, that AC = DF, and that 
LBAC = LEDF. Then, picking up t:.DEF and moving it over onto 
t:.ABC, he argued that the triangles coincided in their entirety. Such a 
proof by superposition has long since gone out of favor. After all, who is 
to say that, as figures move around the plane, they are not somehow 
deformed or distorted? Recognizing the danger here, Hilbert essentially 
made SAS his Axiom IV.6 .  

Proposition 1 . 5  stated that the base angles of an isosceles triangle are 
equal . This theorem came to be known as the "Pons Asinorum," or the 
bridge of fools. The name stemmed in part from Euclid's diagram, which 
vaguely resembled a bridge, and in part from the fact that many weaker 
geometry students could not follow its logic and thus could not cross 
over into the rest of the Elements. 

c F 
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The following proposition, 1 .6 ,  was the converse .of I .S in that it stated 
that if a triangle has base angles equal , then the triangle is isosceles. Of 
course , theorems and their converses are of great interest to logicians, 
and often after Euclid had proved a proposition, he would insert the 
proof of the converse even if it could have been omitted or delayed with
out otherwise damaging the logical flow of his work. 

Euclid's second congruence scheme for triangles-side-side-side or 
SSS-appeared as Proposition 1 .8 .  It stated that when two triangles have 
the three sides of one respectively equal to the three sides of the other, 
then their corresponding angles are likewise equal , 

Some constructions followed. Euclid demonstrated how to bisect a 
given angle (Proposition 1 .9) and a given segment (Proposition 1 . 10) 
with compass and straightedge. The subsequent twd results showed how 
to construct a perpendicular to a given line, where the perpendicular 
either met the line at a given point on it (Proposition 1 . 1 1 ) or was drawn 
downward from a point not on it (Proposition 1 . 1 2) .  

Euclid's next two theorems concerned the adjacent angles LABC and 
LABD, as shown in Figure 2 .4 .  In Proposition 1 . 13 ,  he proved that if CBD 
is a straight line, then these two angles sum to two , right angles; in 1 . 14 ,  
he proved the converse , namely, if  LABC and LAlJD sum to two right 
angles, then CBD is straight. He used this property of angles around a 
straight line in the simple yet important Proposition US.  

PROPOSmON I.15 I f  straight lines cut one another, they make the vertical 
angles equal to one another (Figure 2 .5) .  

PROOF Since AEB i s  a straight line, Proposition 1 . 1 3  guaranteed that 
LAEC and LCEB sum to two right angles. The same can be said for 
LCEB and LBED. Now, Postulate 4 stated that all right angles were equal, 
and this, along with Common Notions 1 and 2 yielded that LAEC + 
LCEB = LCEB + LBED. Then, subtracting LCEB from both and using 
Common Notion 3, Euclid concluded that the vertical angles LAEC and 
LBED were equal , as claimed. 

c 
FIGUU 2.4 
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Q.E.D. 
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This brings us to Proposition 1 . 16 ,  the so-called exterior angle theo
rem, and one of the most important in Book I .  

PROPOSmON 1.16 In any triangle ,  i f  one of the sides be produced, the 
exterior angle is greater than either of the interior and opposite angles . 

PROOF Given �C with BC extended to D, as shown in Figure 2 .6 ,  we 
must prove that LDCA is greater than either LCBA or LCAB. To begin, 
Euclid bisected AC at E, by 1 . 10 ,  and then drew line BE by his first pos
tulate . Postulate 2 allowed him to extend BE and he then constructed 
EF = EB by 1 . 3 .  His final construction was to draw FC. 

Looking at triangles AEB and CEF, Euclid noted that AE = eli by the 
bisection; that vertical angles Ll and L2 are equal by 1 . 1 5 ;  and that EB = 
EFby construction . Thus, the two triangles are congruent by 1 .4 (Le . ,  by 
SAS) , and it follows that LBAE equals LFCE. But LDCA is clearly greater 
than LFCE, since , by Common Notion 5 ,  the whole is greater than the 
part . Consequently, exterior LDCA exceeds opposite , interior LBAC. A 

A 

. . . . . . . 
B 
FIGURE 2.6 
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similar argument showed that LDCA was greater than LABC as well, and 
the proof was complete . 

Q.E.D. 

The exterior angle theorem was a geometric inequality. So too were 
the next few propositions in the Elements. For instance, Proposition 1 .20 
established that any two sides of a triangle are together greater than the 
remaining one. We are told that the Epicureans of ancient Greece 
thought very little of this theorem, since they regarded it as so trivial as 
to be self-evident even to an ass . That is, if a donkey stands at point A in 
Figure 2 .7  and its food is placed at point B, the beast surely knows by 
instinct that the direct route from A to B is shorter than going along the 
two sides from A to C and then from C to B. It has been suggested that 
Proposition 1 .20 is really a self-evident truth and thus should be included 
among the postulates. However, as with the collapsible compass , Euclid 
certainly did not want to assume a statement as a postulate if he could 
prove it as a proposition, and the actual proof he furnished for this the
orem was quite a nice bit of logic . 

A few more inequality propositions followed before Euclid arrived at 
the important 1 .26, his final congruence theorem. Here he first gave a 
proof of the angle-side-angle, or ASA, congruence scheme as a conse
quence of the SAS congruence of 1 .4 .  But, as the second part of 1 .26, 
Euclid gave a fourth, and final , congruence pattern, namely the "angle
angle-side" scheme . That is, he proved that, if L2 = L5 , L3 = L6 , and 
AB = DE in Figure 2 .8, then the triangles ABC and DEF are themselves 
congruent. 

At first, one is tempted to dismiss this as an immediate consequence 
of ASA. That is, we can easily see that L2 + L3 = L5 + L6 , and we could 
argue that 

Ll = 2 right angles - (L2 + L3) = 2 right angles - (L5 + L6) = L4 

c : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B FIGURE 2.7 
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The congruence would then revert to the ASA scheme, since we have 
established equality of the angles at either end of the equal sides AB and 
DE. 

This is a short proof; unfortunately, it is also fallacious . Euclid could 
not have inserted it at this juncture because he had yet to prove that the 
sum of the three angles of a triangle totals two right angles. Indeed, with· 
out this key theorem it might seem impossible to prove the AAS scheme 
at all .  But Euclid did, with the following elegant proof by contradiction . 

PROPOSmON 1.26 (!AS) If two triangles have the two angles equal to two 
angles respectively, and one side equal to one side , namely, . . .  that sub
tending one of the equal angles, they will  also have the remaining sides 
equal to the remaining sides and the remaining angle equal to the 
remaining angle . 

PROOF Consider Figure 2 .9 .  By hypothesis L2 = L5 , L3 = L6, and AB = 
DE. Euclid claimed that sides BC and EF must then be equal as well .  To 
prove this he assumed, on the contrary, that one side was longer than 
the other; for instance, suppose BC > EF. It was thus possible to con
struct segment BH equal in length to EF. Draw segment AH. 

c F 
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Now, since AB = DE and L2 = LS by assumption, and since BH = 
EF by construction, it follows by SAS that b.ABH and !::lDEF are congru
ent. Hence LAHB = L6 since they are corresponding angles of congruent 
figures. 

Euclid then focused on the small t:::.AHG. Note that both its exterior 
angle ARB and the opposite interior L3 were equal to L6 and hence were 
equal to one another. But Euclid had already proved in the important 
1 . 1 6 that an exterior angle must exceed an opposite , interior angle. This 
contradiction showed that his initial assumption that BC =F EFwas inva
lid. He concluded that these sides were , in fact, equal and thus the two 
original triangles ABC and DEF are congruent by SAS . 

Q.E.D 

Again, note the significance of this clever argument: the four congruence 
patterns SAS , SSS,  ASA, and AAS all hold without any reference to the 
angles of a triangle summing to two right angles. 

Proposition 1 .26 concluded the first part of Book I. Looking back, we 
see Euclid had accomplished much. Even though he had yet to use his 
parallel postulate , he had nonetheless established four congruence 
schemes,  investigated isosceles triangles, vertical angles, and exterior 
angles, and had carried out various constructions . But he had gone about 
as far as he could. The notion of parallels was about to enter the 
Elements. 

Book I: Parallelism and Related Topics 

PROPOsmON 1.27 If a straight line falling on two straight l ines make 
the alternate angles equal to one another, the straight lines will be 
parallel . 

PROOF Here, assuming that L1 = LZ in Figure 2 . 10 ,  Euclid had to estab
lish that lines AB and CD were parallel-that is, according to Definition 
23 he had to prove that these lines can never meet. Adopting an indirect 
argument, he assumed they intersected and sought a contradiction . That 
is, suppose AB and CD, if extended far enough, meet at point G. Then 
the figure EFG is a long, stretched-out triangle. But LZ , an exterior angle 
of !::lEFG, equals L1 ,  an opposite and interior angle of this same triangle. 
Again, this is impossible according to 1 . 1 6 ,  the exterior angle theorem. 
Hence we conclude that AB and CD never intersect, no matter how far 
they are extended. Since this is precisely Euclid's definition of these 
lines' being parallel , the proof is complete . 

Q.E.D. 
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Proposition 1 .27 broke the ice with regard to parallelism, but Euclid 
had yet again avoided the parallel postulate . This last, most controversial 
postulate finally made its appearance when Euclid proved the converse 
of 1 .27 in Proposition 1 .29.  

PlOPOSmON 1.29 A straight line falling on parallel straight lines makes 
the alternate angles equal to one another. 

PlOOF This time, Euclid assumed that AB and CD in Figure 2 . 1 1 are 
parallel lines and assetted that L1 = L2 . Again, his mode of attack was 
indirect. That is, he supposed that L1 ::F L2 and from there derived a 
logical contradiction. For, if these angles were not equal, then one must 

E 
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exceed the other, and we might as well assume L1 > 12 . By Proposition 
1 . 1 3  

2 right angles = L1 + LBGH > 12  + LBGH 

And here , at last, Euclid invoked Postulate 5 ,  a result precisely designed 
for just such a situation . Since L2 + LBGH < 2 right angles, his postulate 
allowed him to conclude that l ines AB and CD must meet toward the 
right, a blatant impossibility because of their assumed parallelism. 
Hence, by contradiction, Euclid had shown that L1 cannot exceed 12 ; an 
analogous argument established that L2 cannot be greater than L1 either. 
In short, alternate interior angles of parallel lines are equal . 

Q.E.D. 

As a corollary to the proof, Euclid easily deduced that the corre
sponding angles were likewise equal , that is, in Figure 2 . 1 1 ,  LEGB = 
L2 .  This followed since LEGB and L1 were vertical angles. 

Having at last indulged in the parallel postulate, Euclid now found it 
virtually impossible to break the habit. Of the remaining 20 propositions 
in Book I, all but one either used the postulate directly or used a prop
osition predicated upon it, the lone exception being Proposition 1 .3 1 ,  in 
which Euclid showed how to construct a parallel to a given line through 
a point not on the line . But the parallel postulate was certainly embed
ded in the theorem everyone had been waiting for: 

PROPOsmON 1.32 In any triangle . . . the three interior angles . . . are 
equal to two right angles . 

PROOF Given D..A.BC in Figure 2 . 1 2 ,  he drew CE parallel to side AB by 
Proposition 1 . 3 1  and extended BC to D. By Proposition 1 . 29-a conse
quence of the parallel postulate-he knew that L1 = L4 since they were 
alternate interior angles and also that 12 = L5 since these were the cor
responding angles of the parallel lines. The sum of the angles of D..A.BC 
was thus L1 + L2 + L3 = L4 + L5 + L3 = 2 right angles, since these 
formed the straight line BCD. In this manner, the famous result was 
proved. 

Q.E.D. 

From here, Euclid set his sights on bigger game. His next few prop
ositions dealt with the areas of triangles and parallelograms, and cul
minated in Proposition 1 .4 1 .  

PROPOsmON 1.41 If a parallelogram have the same base with a triangle 
and be in the same parallels, the parallelogram is double of the triangle . 
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This was the Greek way of saying that a triangle's area is half that of 
any parallelogram sharing the triangle 's base and having the same 
height. Since one such parallelogram is a rectangle and since the rectan
gle's area is (base) X (height) , we see that 1 .4 1  contained the modern 
formula Area (triangle) = �bh. 

However, Euclid did not think in such algebraic terms . Rather, he 
envisioned LlABC as literally having the same base as parallelo
gram ABDE and falling between the parallels AB and DE, as shown 
in Figure 2 . 1 3 .  Then, as Euclid proved, Area (parallelogram ABDE) = 
2 Area (LlABC) . 

A few propositions later, in 1 .46, Euclid showed how, given a line 
segment, to construct upon it a square . A square, of course, is a regular 
quadrilateral, since all of its sides and all of its angles are congruent. At 
first, this may sound like a trivial proposition, especially when one 
recalls that Book I began with the construction of an equilateral triangle, 
the regular three-sided figure . Yet a look at his proof shows why this had 
to be so long delayed. Much of the argument rested on properties of 
parallels, and these of course had to await the critical 1 .29.  So, whereas 
Euclid constructed regular triangles at the outset of Book I ,  he waited 
until nearly the end to do regular quadrilaterals. 

With these 46 propositions proved, Book I had but two to go . It 
appears that Euclid had saved the best for last . After all of these prelim
inaries, he was ready to tackle the Pythagorean theorem, surely one of 
the most significant results in all of mathematics. 

FIGURE 2.13 
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Great Theorem: The Pythagorean Theorem 

As already noted, this landmark was known well before Euclid's day, so 
he was by no means its discoverer. Yet he deserves credit for the partic
ular proof we are about to examine, a proof that many believe is original 
with Euclid. Its beauty is in the economy of its prerequisites; after all , 
Euclid had only his postulates, common notions, and first 46 proposi
tions-a rather lean tool-kit-from which to build a proof. Consider the 
topics in geometry that he had not yet addressed: the only quadrilaterals 
he had investigated were parallelograms; circles, by and large, were yet 
unexplored; and the highly important subject of similarity would not be 
mentioned until Book VI . It is surely possible to devise short proofs of 
the Pythagorean theorem by using similar triangles, but Euclid was 
unwilling to put off the proof of this major proposition until Book VI . 
He clearly wanted to reach the Pythagorean theorem as early and directly 
as possible, and thus he devised a proof that would become only the 
47th proposition of the Elements. In this light, one can see that much of 
what preceded it pointed toward the great theorem of Pythagoras, which 
served as a fitting climax to Book I .  

Before we plunge into the details, here i s  the result stated i n  Euclid's 
words and a preview of the very clever strategy he used to prove it: 

PlOPOSmON 1.47 In right-angled triangles, the square on the side sub
tending the right angle is equal to the squares on the sides containing 
the right angle. 

Note that Euclid's proposition was not about an algebraic equation 
a2 = b2 + c2, but about a geometriC phenomenon involving literal 
squares constructed upon the three sides of a right triangle. Euclid had 
to prove that the combined areas of the little squares upon AB and AC 
equaled the area of the large square constructed upon the hypotenuse 
BC, seen in Figure 2 . 1 4 .  To do this, he hit upon the marvelous strategy 
of starting at the vertex of the right angle and drawing line AI parallel to 
the side of the large square and splitting the large square into two rec
tangular pieces . Then Euclid proved the remarkable fact that the left
hand rectangle-that is, the one that with opposite corners at B and L
had area precisely equal to that of the square on AB; l ikewise, the right
hand rectangle 's area equaled that of the square on AC. It immediately 
followed that the large square, being the sum of the two rectangular 
areas, was l ikewise the sum of the areas of the sq\ilares! 

This general strategy was most ingenious, but it remained to supply 
the necessary details . Fortunately, Euclid had done all the spadework in 
his earlier propositions, so it was just a matter of carefully assembling 
the pieces. 
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PROOF By assumption, Euclid knew that LBAC was a right angle . He 
applied 1 .46 to construct the squares on the three sides, and used 1 .3 1  to 
draw AL through A and parallel to BD. He then drew lines AD and FC, 
for reasons that may at first appear mystifying but which should soon 
become apparent. 

It was critical for Euclid to establish that CA and AG lie on the same 
straight line . This he did by noting that LGAB was right by the construe· 
tion of the square, while LBAC was right by hypothesis. Since these two 
angles sum to two right angles, Proposition 1 . 14 guaranteed that GAC 
was itself a straight line . Interestingly, it was in proving this apparently 
minor technical point that he made his one and only use of the fact that 
LBAC is right. 

Now Euclid looked at the two slender triangles ABD and FBe. Their 
shorter sides-AB and FB, respectively-were equal since they were the 
sides of a square ; their longer sides-BD and BC-were equal for the 
same reason. And what about the corresponding included angles? Notice 
that LARD is the sum of LABC and the square 's right angle LCBD, while 
LFBC is the sum of LAnC and the square's right angle LFBA. Postulate 4 
stipulates that all right angles are equal , Common Notion 2 guarantees 
that sums of equals are equal, and thus LAnD = LFBe. Consequently, 
Euclid had established that the narrow triangles ABD and FBCwere con· 
gruent by SAS-that is, by 1 .4 ;  hence they have the same areas . 
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So far, so good. Next Euclid observed that �D and rectangle BDLM 
shared the same base (BD) and fell within the same parallels (BD and 
AL ) ,  and thus by 1 .4 1 ,  the area of BDLM was twice the area of �D. 
Similarly, t:::"FBC and square ABFG shared base BF. In addition, Euclid 
had taken pains to prove that GACwas a straight line, so the triangle .and 
the square both lay betweeQ parallels BFand GCj again by 1 .4 1 ,  the area 
of square ABFG was twice that of t:::"FBC. 

He combined these results and the previously established triangle 
congruence to conclude : 

Area (rectangle BDLM) = 2 Area (�D) 
= 2 Area (t:::"FBC) = Area (square ABFG) 

This was half of Euclid's mission. Next he proved that the area of 
rectangle CELM equaled that of square ACKH. This he did in similar fash
ion, first drawing AE and BK, next proving that BAH was a straight line , 
and then using SAS to prove the congruence of !:::"ACE and t:::"BCK. Again 
applying 1 .4 1 ,  Euclid deduced: 

Area (rectangle CELM) = 2 Area (!:::"ACE) 
= 2 Area (t:::"BCK) = Area (square ACKH) 

Finally, the Pythagorean theorem was at his fingertips, for 

Area (square BCED) 
= Area (rectangle BDLM) + Area (rectangle CELM) 
= Area (square ABFG) + Area (square ACKH) 

Q.E.D. 

Thus ended one of the most significant proofs in all of mathematics . 
The diagram Euclid used (Figure 2 . 14) has become justly famous . It is 
often called "the windmill" because of its resemblance to such a struc
ture . The windmill is evident on the page shown here , written in Latin, 
from a 1 566 edition of the Elements. Obviously, students over four cen
turies ago were grappling with this figure even as we ourselves have just 
done . 

Euclid's proof is not, of course , the only way to establish the Pythag
orean theorem. There are , in fact, hundreds of different versions, ranging 
from the highly ingenious to the dreadfully uninspired. (These include 
a proof devised by an Ohio Congressman named James A. Garfield, who 
went on to the U .S .  presidency.) Readers interested in sampling other 
arguments may wish to consult E. S. Loomis' book The Pythagorean 
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Proposition 1.47 from 1566 edition of the Elements (photograph courtesy of The Ohio 
State University Libraries) 

Proposition for a bewildering, if not mind-numbing, collection of hun
dreds upon hundreds of proofs of this remarkable theorem. 

Proposition 1 .47 marked the high point of Book I, but Euclid had a 
final result to prove, the converse of the Pythagorean theorem. Here 
again Euclid's ingenuity and economy were undeniable. Unfortunately, 
this proof is not so well known as it should be . In fact, while most stu
dents encounter a proof of the Pythagorean theorem at some point in 
their l ives, far fewer see a proof of the converse or, for that matter, are 
even sure of its validity. 

Two features of the proof deserve special mention. First, it is quite 
short, especially when compared to the argument we have just seen. Sec
ond, Euclid used the Pythagorean theorem in establishing its converse . 
While not unprecedented, this logical approach is at least worthy of 
note . Recall that in proving the two great propositions about parallels-
1 .27  and its converse 1 . 29-Euclid did not use one in the proof of the 
other. His approach to the converse of the Pythagorean theorem, how
ever, made them a definite sequential unit, with 1 .48 resting firmly upon 
the foundation of 1 .47 .  

PROPOsmON 1.48 If in a triangle the square on one of the sides be equal 
to the squares on the remaining two sides of the triangle,  the angle con
tained by the remaining two sides of the triangle is right. 

PROOF Euclid began with MBCand assumed that Be = AEf + AC2, as 
shown in Figure 2 . 1 5 .  He had to prove that LBAC was a right angle . 
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FIGURE 2.15 

To do this , Euclid first drew AE perpendicular to AC at A, by Propo
sition 1 . 1 1 .  He then constructed AD = AB, and drew CD. The heart of 
his argument now lay in proving that triangles BAC and DAC were 
congruent. 

Clearly, the two triangles shared side AC, and AD = AB by construc
tion. While we obviously cannot assert that LBAC is right (in fact, that is 
what the theorem is trying to establish) , we do know that LDAC is right 
by the construction of the perpendicular. Thus, Euclid was perfectly jus
tified in applying the Pythagorean theorem to right triangle DAC to 
deduce that 

by hypothesis 

But the equality of cfJ and Be implies the equality of CD and BC as 
wel l .  Hence L:::.DAC and L:::.BAC are congruent by SSS. As a consequence, 
LBAC and LDAC must be congruent. But the latter was constructed to be 
a right angle. Thus LBAC is a right angle as well .  

Q.E.D. 

Taken in tandem,  Propositions 1 .47 and 1 .48 completely characterize 
right triangles . Euclid has shown that a triangle is right if and only if the 
square on the hypotenuse equals the sum of the squares on the legs . 
These proofs were , and remain, an example of geometry at its best. 

Yet these two Pythagorean propositions are remarkable in another 
sense . It is one thing for Euclid to have proved them in such a fine fash
ion, but it is another thing for them to be true in the first place . There is 
no intuitive reason that right triangles should have such an intimate con
nection to the sums of squares. Unlike I .20, for instance, this is not a 
theorem whose truth is evident even to an ass . On the contrary, the 
Pythagorean theorem establishes a supremely odd fact, one whose odd-
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ness is unrecognized only because the result is so famous . This intrinsic 
strangeness was well expressed by Richard Trudeau in his book The 
Non-Euclidean Revolution. Trudeau observed that right angles are 
familiar, everyday entities that appear not only in the man-made world 
but also in Nature itself. What could be more "ordinary" or "natural" 
than right angles? And yet, says Trudeau : 

To me the Theorem of Pythagoras is very surprising . . . . "a2 = b2 + c2 . .  
. . .  evokes no visceral memories whatever . . .  Because the equation is 
abstract and precise , it is alien. I can't imagine what such a thing could pos
sibly have to do with everyday right angles. So, when the pall of familiarity 
l ifts, as it occasionally does, and I see the Theorem of Pythagoras afresh, I 
am flabbergasted. 

Epilogue 

Down through history, the most troubling feature of Book I of the Ele
ments was the controversial parallel postulate . The trouble arose not 
because anyone doubted that the parallel postulate had to be true. On 
the contrary, it was universally agreed that the postulate was a logical 
necessity. After all , geometry was an abstract way of describing the uni
verse-a kind of "pure physics" -and surely physical reality dictated the 
truth of the parallel postulate . 

Thus, it was not the necessity of Euclid's statement that was chal
lenged. Rather it was its classification as a postulate rather than as a prop
osition . The classical writer Proclus summed up this view with his com
ment, "This [Postulate 5] ought even to be struck out of the Postulates 
altogether; for it is a theorem . . . .  " 

This conviction was not surprising . First of all-and this may have 
really bothered the ancient geometers-the postulate sounded l ike a 
proposition, for its statement consumed the better part of a paragraph. 
Moreover, not only did Euclid seem to avoid using the postulate as long 
as he could, but he managed to prove some fairly sophisticated results 
without it. "If  his other postulates and common notions were rich 
enough to yield such theorems as I . 1 6  or I .27 or four different congru
ence schemes, "  so the reasoning went, "then surely they should like
wise imply the parallel postulate ." 

For what appeared to be very good reasons, the search was on for a 
derivation of Postulate 5 .  In seeking such a proof, mathematicians were 
free to use any of the other postulates or common notions, as well as 
Euclid's propositions 1 . 1  through I . 28,  none of which involved the state
ment in question . Uncounted mathematicians tried their hand at con-
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cocting a proof. Unfortunately, years of frustration became decades and 
then centuries of fai lure . The proof remained elusive . 

What geometers did in the process was to find a host of new results 
logically equivalent to the parallel postulate . It often happened that a 
purported proof of Postulate 5 required the mathematician to assume a 
seemingly obvious but hitherto unproven statement .  Unfortunately
and here lay the problem-the parallel postulate itself was necessary in 
order to derive this statement. To a logician, this says that both were 
really expressing the identical concept, and a "proof" of Postulate 5 that 
required the assumption of its logical equivalent was of course no proof 
at all .  

Four of the more famous equivalents of the parallel postulate appear 
below. It should be stressed that, had any one of these been proved from 
Postulates 1 through 4 ,  then Postulate 5 would likewise follow. 

• Proclus' axiom: If a line intersects one of two parallels, it 
must intersect the other also . 

• equidistance postulate: Parallel lines are everywhere 
equidistant. 

• Playfalr's postulate: Through a point not on a given line , 
there can be drawn one and only one line parallel to the given 
l ine . 

• the triangle postulate: The sum of the angles of a triangle is 
two right angles. 

These logical equivalents notwithstanding, the nature of the parallel 
postulate remained unresolved through the Renaissance . Whoever 
deduced the parallel postulate would have been guaranteed everlasting 
fame in the annals of mathematics . At times the proof seemed tantaliz
ingly close, yet it evaded the efforts of the world's finest mathematical 
minds . 

Then,  early in the nineteenth century, three mathematicians simul
taneously had the burst of insight necessary to see the matter in its true 
light. The first was the incomparable Carl Friedrich Gauss ( 1777-1855) , 
whose biography is delayed until Chapter 10 .  Gauss recast the issue in 
terms of the degree-measure of the angles of a triangle. Wanting to prove 
that triangles must contain 180 · ,  he assumed for the sake of argument 
that they did not. This left him with two alternatives : that triangles have 
more than 1 80 ·  in their angles or that they have less . He proceeded to 
investigate these two cases. 

Using the fact that l ines are infinitely long (an assumption that Euclid 
likewise had made impliCitly and that no one to that point had chal
lenged) , Gauss found that a triangle's angle sum exceeding 180 ·  led to 
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a logical contradiction . Thus, that case was effectively eliminated. If he 
could likewise dispense with the other case, he would have established, 
indirectly, the necessity of the parallel postulate . 

Beginning with the assumption that triangles have fewer than 180 ·  
in their angles , Gauss started deriving consequences. These turned out 
to be quite strange , seemingly bizarre and counter- intuitive (one is pre
sented shortly) . Yet nowhere did Gauss find the logical contradiction he 
sought . In 1824,  he summarized the situation by stating: 

. . .  that the angle sum of a triangle can 't be less than 180 ·  . . . this is . . .  the 
reef on which all the wrecks occur. 

Gradually, as Gauss delved more and more deeply into this peculiar 
geometry, he became convinced that no logical contradiction existed. 
Rather, he began to sense that he was developing not an inconsistent 
geometry but just an alternative one , a "non-Euclidean" geometry, in 
his words . Gauss said as much in a private letter of 1824 : 

The assumption that the sum of the three angles is less than 180 ·  leads to a 
curious geometry, quite different from ours, but thoroughly consistent, 
which I have developed to my entire satisfaction. 

This was a breathtaking statement. Yet Gauss, universally regarded as 
the foremost mathematician of his day, did not publicize his findings. 
Perhaps the burdens of fame figured in his decision, for he was certain 
the controversial nature of his position would cause an uproar that might 
jeopardize his lofty reputation. In an 1829 letter to a confidant, Gauss 
observed that he had no plans 

. . .  to work up my very extensive researches for publication, and perhaps 
they will never appear in my lifetime, for I fear the howl of the Boeotians if 
I speak my opinion out loud. 

While today's reader may miss a bit of this classical allusion, suffice it to 
say that being called a "Boeotian" is being labeled an unimaginative , 
crudely obtuse dullard. Obviously Gauss had little regard for the recep
tivity of the mathematical community to his new ideas . 

Next entered the Hungarian mathematician Johann Bolyai (1802-
1860) . Johann's father Wolfgang had been an associate of Gauss and had 
himself spent much of a l ifetime in a futile attempt to prove Euclid's 
postulate . In an age when sons often took the professions of their 
fathers-be they clergymen or cobblers or chefs-we have here the 
younger Bolyai taking from his father the rather esoteric career of trying 
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to derive the parallel postulate . Wolfgang, however, knew all too well 
the difficulties of such a career and wrote this strong warning to his son: 

You must not attempt this approach to parallels. I know this way to its very 

end. I have traversed this bottomless night, which extinguished aU light and 

joy of my life . . . .  I entreat you , leave the science of parallels alone . 

The young Johann Bolyai did not heed his father's advice. Much like 
Gauss, Johann came to recognize the crucial trichotomy involving the 
angle-sum of a triangle and tried to eliminate all but the case equivalent 
to the parallel postulate ; l ike Gauss , he was unsuccessful .  As Bolyai 
delved ever more deeply into the problem, he too arrived at the conclu
sion that Euclid's geometry had a logically valid competitor, and wrote 
in astonishment at his peculiar yet apparently consistent propositions, 
"Out of nothing, I have created a strange new universe ."  

Unlike Gauss, Johann Bolyai was not reluctant to publish his find
ings, and these appeared as an appendix to an 1832 work by his father. 
The elder Bolyai enthusiastically sent a copy of the book to his friend 
Gauss ; father and son could only have been surprised by Gauss' 
response: 

I f  I begin with the statement that I dare not praise [your son's] work, you 
will  of course be startled for a moment : but I cannot do otherwise; to praise 
it would amount to praising myself; for the entire content of the work, the 
path which your son has taken, the results to which he is led, coincide 
almost exactly with my own meditations which have occupied my mind for 
from thirty to thirty-five years . 

It is easy to see that Gauss hit his enthusiastic young admirer with a 
blast of cold water. To his credit, Gauss graciously described himself to 
be " . . .  overjoyed that it happens to be the son of my oid friend who 
outstrips me in such a remarkable way. " Sti l l ,  for Johann to learn that his 
greatest discovery had been sitting in Gauss' drawer for decades came 
as a severe blow to his ego . 

But Johann's ego had one more trial to endure, for it soon came to 
light that a Russian mathematician , Nikolai Lobachevski ( 1793-1856) , 
not only had traveled the same path as Gauss and Bolyai , but had pub
l ished his own account of non-Euclidean geometry in 1829-a full three 
years before . Lobachevski , however, had written his treatise in Russian , 
and it apparently had gone unnoticed in western Europe . We have here 
a phenomenon not uncommon in science , that of a discovery made 
simultaneously and independently by many individuals. As Wolfgang 
Bolyai so charmingly observed: 
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. . .  it seems to be true that many things have, as it were, an epoch in which 
they are discovered in several places simultaneously, just as the violets 
appear on all sides in springtime. 

The impact of these discoveries had barely struck home when yet 
another innovator, Georg Friedrich Bernhard Riemann ( 1 826-1866) , 
adopted a different viewpoint about the infinite length of geometric 
lines . It had been this infinitude that had allowed Gauss, Bolyai , and 
Lobachevski to eliminate the case in which triangles contained more 
than 180 · .  But was there a need to assume this infinitude at all? Euclid's 
second postulate asserted that a straight line could be continued in a 
straight line, but was this not assening simply that one never reached 
the end of a line? Riemann could easily imagine the case where lines
somewhat like circles-are of finite length yet have no "end ."  He put it 
this way: 

. . .  we must distinguish between unboundedness and infinite extent. . . . 
The unboundedness of space possesses . . .  a greater empirical certainty than 
any external experience. But its infinite extent by no means follows from 
this. 

When Riemann reexamined geometry under the assumption of 
unbounded but finite lines , the contradiction to a triangle 's exceeding 
180 ·  disappeared. Consequently, he developed another kind of non
Euclidean geometry, one in which the angles of a triangle sum to more 
than two right angles . Although different from both Euclid's and Bolyai 's ,  
Riemann's geometry was apparently just as consistent . 

Today, we recognize all four of these individuals as the originators 
of non-Euclidean geometry. It seems fair that, as pioneers, they should 
share the glory. But even their discoveries did not fully resolve the fun
damental issue of the parallel postulate . For, while they had developed 
their geometries to a high level of sophistication, it was merely a feeling 
in their bones, not a logical argument on paper, that supponed their con
tention that the new geometries were valid alternatives to Euclid's .  In 
spite of the strong convictions of Gauss, Bolyai, Lobachevski , and Rie
mann, the possibility remained that at some point in the future , a bril 
liant mathematician might yet derive a contradiction from the assump
tion that the angle sum of a triangle was less than, or more than, 1 80 · . 

Thus, the final chapter of this age-old story was written in 1 868 by 
the Italian Eugenio Beltrami ( 1835-1900) , who unequivocally proved 
that non-Euclidean geometry was as logically consistent as Euclid's own. 
That is, if a contradiction lurked somewhere in the geometry of Gauss, 
Bolyai ,  and Lobachevski , or in that of Riemann, then Beltrami showed 
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that a contradiction also had to exist in the geometry of Euclid. Since 
virtually everyone felt that Euclid's geometry was as consistent as could 
be, the conclusion was that non-Euclidean geometries were likewise as 
good as gold. Put another way, non-Euclidean geometry is not logically 
inferior to its older, Euclidean counterpart . 

To get some idea of the strange content of the Gauss/Bolyai/Loba
chevski brand of non-Euclidean geometry-that is, the kind where tri
angles have fewer than 180 ·  in their angles-consider the proofs of a 
pair of non-Euclidean results. The first involves another look at the con
gruence of triangles. of course, Euclid's congruence schemes, estab
l ished prior to his first use of Postulate 5 , remain valid in this non-Euclid
ean realm since they were proved without reference to anything but his 
other postulates and common notions . The surprising development is 
that, in Bolyai's geometry, there is yet another way to show congruence, 
namely "angle-angle-angle . "  

In Euclid's geometry, when two triangles have their angles respec
tively equal , we know the triangles are similar. They would have the 
same shape but need not be congruent; we could have, for example, a 
tiny equilateral triangle and a large equilateral triangle ,  non-congruent 
figures all of whose angles are equal . The non-Euclidean theorem that 
follows shows that no such thing is possible in this strange world. If two 
of Bolyai 's triangles have the same shape, they must have the same size! 

TIIEOREM (AAA) If two triangles have the three angles of one respec
tively equal to the three angles of the other, then the triangles are 
congruent . 

PROOF For triangles ABC and DEF in Figure 2 . 16 ,  assume that L1 = L4 ,  
LZ = LS , and L3 = L6 .  We assert that sides AB and DE must have the 
same length . To prove this , suppose for the sake of an eventual contra
diction that they differ in length, and without loss of generality we might 
as well assume that AB < DE. 

Construct DG = AB and, by 1 .23 ,  draw LDGH = LZ .  It is clear that 
D.ABC and b.DGH are congruent by ASA, and it follows that LDGH = 
LZ = LS and similarly LDHG = L3 = L6 .  

Now examine the lower quadrilateral EFHG. Since DGE and DHFare 
straight lines, we know by 1 . 1 3  that LEGH = ( 180 ·  - LDGH) = ( 180 "  
- LS) and that LFHG = ( 180 ·  - LDHG) = ( 180 ·  - L6) . Thus the 
measures of the four angles of quadrilateral EFHG sum to 

( 180 ·  - LS) + ( 180 ·  - L6) + L6 + LS = 360 · 

But now draw the diagonal GF through this quadrilateral . This 
divides it into two triangles, each of which has fewer than 180 ·  in its 
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angles by our basic non-Euclidean property; so the sum of all the angles 
in the two triangles must be less than 360 0 •  Yet this sum is precisely the 
combined total of the four angles in our quadrilateral , already shown to 
be equal to 360 0 • 

We have reached a contradiction. This means that the first step, in 
which we assumed AB '* DE, was erroneous. In short, these sides are 
equal in length. But then we get immediately that the original triangles 
ABCand DEFare congruent by ASA-that is , by Proposition 1 . 26-which 
is what we set out to show. 

Q.E.D. 

It is easy to draw a surprising corollary from this proposition : In non
Euclidean geometry, not all triangles have the same angle sum! This 
most fundamental property of Euclid's geometry-one that figured 
prominently in so much geometric reasoning-must be discarded when 
we move to the non-Euclidean domain.  For suppose we consider the 
two triangles shown in Figure 2 . 17 ,  each having angles a and fJ at their 
base , but with side AB much shorter than side DE. Now we assert that 

F c 

A B D "'--.L------II....--l E 
FIGURE 2.17 
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Ll cannot equal L2 .  For, if they were equal , the two triangles would be 
congruent by the just-proved AAA congruence scheme, an obvious 
impossibility since AB =F DE. Thus we see that the angle sum of one 
triangle-Ll + a + {j-is different from the angle sum of the other
L2 + a + {j. In short, knowing two angles of a non-Euclidean triangle 
is not sufficient to determine the third one . This result, and many others 
like it, indicate what Bolyai meant when he described his "strange new 
universe" and why so many felt that, just over the horizon, a logical con
tradiction must be waiting. But as it turned out, they were wrong. 

And where did these nineteenth century discoveries leave Euclid? 
On the one hand, his geometry was displaced as the only logically con
sistent description of space . Much to the surprise of virtually everyone, 
it turned out that the parallel postulate was not mandated by logic. 
Euclid assumed it, but there was no mathematical necessity to do so. 
Competing geometries, equally as valid, existed. 

Yet the net effect may be to enhance, not destroy, Euclid's reputation . 
For he , unlike so many who followed, did not fall into the trap of trying 
to prove the parallel postulate from the other self-evident truths, an 
endeavor, we now know, that is utterly doomed to failure .  Instead, he 
simply laid out his assumption where it properly belonged, as a postu
late . Euclid certainly could not have known about the alternative geom
etries that would be discovered two millennia in the future . Yet some
thing in his mathematician's intuition must have told him that this 
property was a separate , independent idea that needed its own postulate , 
no matter how wordy and complicated it sounded. Mathematicians 22 
centuries later proved that Euclid had been right all along . 



Chapter 

Euclid and the 
Infinitude of Primes 

(ca. 300 B.C.) 

The Elements, Books U-VI 

The 48 propositions of Book I of the Elements stand as a monument to 
Euclid's mathematical and organizational skills . Because it comes first, 
this book is certainly the best known and most studied part of the Ele
ments, but it is just one of 13  books into which the work was divided. 
Chapter 3 offers a quick tour of the rest of this classic text. 

Book I I  explored what we now call "geometric algebra ."  That is, it 
framed in geometric terms certain relationships that now are most easily 
translated into algebraic equations . Of course, the notion of algebra was 
foreign to the Greeks, and its appearance as a formal system lay centuries 
in the future . We can get a sense of Book II by citing a representative 
proposition , one whose statement at first glance appears rather convo
luted, but which upon closer examination emerges as a simple and well
known algebraiC formula. 

PROPOSITION 11.4 If a straight line be cut at random, the square on the 
whole is equal to the squares on the segments and twice the rectangle 
contained by the segments . 

61 
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PROOF Euclid began with line segment AB, cut at an arbitrary point C, 
as shown in Figure 3 . 1 . If we let AC = a and BC = b, then it is geo
metrically obvious that the area of "the square on the whole" -that is, 
(a + b)2-equals the sum of the areas of the squares on the two seg
ments-a2 + �-plus twice the area of the rectangle formed by the two 
segments-2 ab. In other words, 

( a  + b) 2 = d + � + 2 ab = d + 2 ab + � 

Q.E.D 

This , of course , is a famous identity encountered in the first year of alge
bra. Euclid approached it not as some algebraic expression but as a lit
eral geometric decomposition of the square upon AB into two smaller 
squares and two congruent rectangles. Yet the equivalence of his geo
metric statement and its algebraic counterpart is clear. Much of Book I I  
was of  this nature . I t  concluded with Proposition 1 1 . 1 4 ,  addressing 
the quadrature of general polygons, whose proof was examined in 
Chapter 1 .  

The third book contained 37 propositions about circles . Circles had 
been used in the constructions of Book I but had not themselves been 
the focus of the discussion . In Book I I I ,  Euclid proved the standard 
results about chords, tangents, and angles in circles. Proposition 1 1 1 . 1  
showed how to find the center of a given circle . Of  course, by Definition 
1 5 ,  every circle has a center, but for a circle already drawn upon the 
page, it is not immediately clear how to find that central point. Thus, 
Euclid provided the necessary construction . 

A� ________ 
a 

________ C.��b�� B 
b b 

a a 

a b FIGW 3.1 
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FIGURE 3.2 

In Proposition 1 1 1 . 18, Euclid gave a clever argument to prove that a 
tangent to a circle and the radius drawn to that point of tangency meet 
at right angles. A few propositions later, we find the important result, "In 
a circle, angles in the same segment are equal to one another. " That is, 
in Figure 3 .2  LBAD and LBED are congruent since both are contained in 
the segment of the circle BAED. In modern terminology, we would say 
that both intercept the same arc, namely, arc BD. 

Having proved this theorem, Euclid tackled the concept of a quadri
lateral inscribed within a circle, a figure often called a "cyclic quadrilat
eral . "  Although this result may appear somewhat specialized, it will fig
ure prominently in the great theorem of Chapter 5, and thus Euclid's 
simple proof is included here . 

PROPOSmON m.22 The opposite angles of quadrilaterals in circles are 
equal to two right angles.  

PROOF We begin with cyclic quadrilateral ABCD and draw the two diag
onals AC and BD, as shown in Figure 3 . 3 .  Note that L1 + L2 + LDAB = 
2 right angles, since these are the angles of I::!.ABD. But L1 = L3 since 
both intercept arc AD; and L2 = L4 since both intercept arc AB. Hence 

2 right angles = (L1 + LZ) + LDAB 
= (L3 + L4) + LDAB = LDCB + LDAB 

In other words, the opposite angles of the cyclic quadrilateral indeed 
add to two right angles, and the proof is complete . 

Q.E.D. 
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Later, Proposition 1 1 1 . 3 1  established that an angle inscribed in a 
semicircle is right, a proof presented in Chapter 1 .  In that regard, note 
that nowhere in his book on circles did Euclid address the issue of lunes, 
nor did Book I I I  contain the familiar results for a cirde's circumference 
( C  = 11'" D) or area (A = 1I'"r) .  A full treatment of these latter topics would 
have to await the arrival of Archimedes, as discussed in Chapter 4 .  

Euclid's fourth book dealt with inscribing and circumscribing certain 
kinds of geometric figures . As with all constructions in the Elements, he 
was limited to his compass and unmarked straightedge . These limita
tions aside , he nonetheless produced some fairly sophisticated results . 

For instance, Proposition IV.4 showed how to inscribe a circle within 
a given triangle, the key being to take as the circle's center the point 
where the bisectors of the angles of the triangle meet. In the next prop
osition , he showed how to circumscribe a circle about a given triangle ; 
this time, he located the center of the circle at the point where the per
pendicular bisectors of the sides meet. 

From there , Euclid considered the construction of regular polygons, 
all of whose sides are the same length and all of whose angles are con
gruent. These are "perfect" polygons whose symmetry and beauty cer
tainly appealed to the Greek imagination . 

Recall that Euclid had begun the Elements with the construction of a 
regular, or "equilateral , "  triangle , and in Proposition ! 1 .46 he had con
structed a square on a given segment. In Proposition IV. I I ,  Euclid 
expanded his repertoire by inscribing a regular pentagon in a circle , and 
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in Proposition IV. 1 5 ,  he inscribed a regular hexagon. The final construc
tion in this book was of the regular pentadecagon-that is, the regular 
I S -sided polygon-and his argument warrants a quick look. 

Within a given circle, Euclid inscribed both an equilateral triangle 
with side AC and a regular pentagon with side AB, each sharing a vertex 
at A (Figure 3.4) . As Euclid observed, arc AC is a third of the circle's 
circumference, while arc AB is a fifth of the same . Consequently, their 
difference , arc BC, intercepts � - � = �5 - %5 = �5 of the circumference . 
If we bisect the chord from B to C and draw the perpendicular outward 
from the chord's midpoint to point E on the circle, we shall have 
bisected arc Be. Thus, arc BE is one-fifteenth of the circle , and so chord 
BE is the length of the side of a regular pentadecagon. Copying 1 5  of 
these chords around the circle completes the construction . 

Euclid said no more about regular polygons in the Elements, but he 
clearly was aware that if one had constructed such a polygon, the bisec
tion procedure outlined above would produce regular polygons with 
twice as many sides . After constructing an equilateral triangle, Greek 
geometers could therefore produce regular polygons of 6, 1 2 , 24 , 48, . . .  
sides; starting from the square , they could generate regular polygons of 
8, 16 , 32 , 64 , . . .  Sides; from the regular pentagon would emerge regular 
10 - ,  20- ,  40- ,  . . .  -gons; and from Euclid's final construction, the penta-
decagon, would flow regular polygons of 30, 60, 1 20, . . .  sides . 

A 

FIGURE 3.4 
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This was quite a rich collection of constructible regular polygons, but 
obViously not all regular polygons appeared on this l ist. Nowhere , for 
instance, did Euclid mention constructing a regular 7-gon, or 9-gon, or 
1 7-gon, since these did not fit the neat "doubling" patterns above . One 
imagines that the Greeks put a lot of time and effort into trying to .con
struct other regular polygons, but apparently their efforts led nowhere . 
In fact, while Euclid did not explicitly say so, most subsequent mathe
maticians assumed that his were the only constructible regular polygons 
and that any others were simply beyond the capability of compass and 
straightedge. 

It was thus a shock of monumental proportions when the teenaged 
Carl Friedrich Gauss discovered how to construct a regular heptadeca
gon ( 17-gon) in 1796 . This discovery marked the young Gauss as a math
ematical genius of the first order. Gauss was introduced in the previous 
chapter with regard to his work in non-Euclidean geometry, and Chapter 
10 will return to this remarkably gifted mathematician . 

In summary, Books I through IV of the Elements addressed the 
essentials of triangles and polygons, of circles, and of the regular poly
gons . At this pOint, Euclid had done about as much geometry as he could 
without the highly useful notion of Similarity. As mentioned in Chapter 
1 ,  similarity arguments and the proportions they generate had received 
a fatal blow with the Pythagorean discovery of incommensurable mag
nitudes, and it was Eudoxus who finally plugged the logical hole with a 
satisfactory theory of proportions . Euclid devoted Book V of the Ele
ments to a development of Eudoxus' ideas . These proved so profound 
as to influence thinking about irrational numbers even into the nine
teenth century. However, many of the theorems of Book V are now sub
sumed into the properties of our real number system, a system which, 
for better or worse , we take for granted. This makes the rather tortured 
arguments of Book V a bit superfluous for our discussion, so we shall 
move on to Book VI . 

Here Euclid undertook a study of similar figures in plane geometry. 
His very definition of such figures was significant. 

o Definition VI.I Similar rectilineal figures are such as have their angles 
severally equal and the sides about the equal angles proportional . 

This was a double-edged definition, requiring both equal angles and 
proportional sides to guarantee similarity. In less technical terms, these 
two conditions embody what we mean when we say that two figures have 
the same shape . It is clear that , in general ,  both of these properties are 
necessary. For instance , the rectangle and square in Figure 3 . 5  have 
equal angles, but the non-proportionality of their sides distorts them into 
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different shapes. On the other hand, the square and rhombus have their 
sides in the same proportions-that is, l : l-but their differing angles 
give them quite different shapes as wel l .  

Interestingly, these dual requirements for similarity vanish when 
attention is restricted to the realm of triangles. Making use of the Eudox
ean theory of Book V, Euclid proved, in Proposition VI .4 ,  that if two tri
angles have their corresponding angles equal, then their corresponding 
sides must be proportional ; conversely, in Proposition V1 . 5 ,  he showed 
that if two triangles have their sides proportional, then their correspond
ing angles must be equal . In short, the whole matter Simplifies greatly 
for three-sided figures, since either of the two similarity conditions 
implies the other. Consequently, it comes as no surprise that triangles 
occupy the lion's share of Euclid's similarity arguments . 

One such result is the important Proposition V1 .8 .  

PROPOSmON VI.S If  in a right-angled triangle a perpendicular be drawn 
from the right angle to the base, the triangles adjoining the perpendic
ular are similar both to the whole and to one another. 

PROOF In l ight of the earlier propositions of Book VI , this was now 
quite simple . In Figure 3 .6 ,  6.BAC and 6.BDA both contain right angles, 
at LBAC and LBDA, respectively, and both share Lt .  By 1 .32 ,  their third 
angles are likewise equal . Similarity, and consequently the proportion
ality of the sides, then followed from VI .4 .  The similarity of triangles 
BAC and ADC, and that of the two smaller triangles BDA and ADC were 
proved in l ike manner. 

Q.E.D. 

With the thirty-third and final proposition of Book VI , Euclid had 
essentially completed his development of plane geometry. Yet, as often 
surprises those who regard the Elements as merely a geometry text, he 
stil l  had seven books to go. The topic that next fell under his scrutiny 
proved to be a gold mine for later mathematicians, with a history as rich 
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and glorious as any branch of the subject. It was the theory of numbers, 
and it is here that the next great theorem will be found. 

Number Theory in Euclid 

At first glance, one is tempted to dismiss the study of whole numbers as 
utterly trivial . After all ,  there seems to be l ittle challenge in such prob
lems as 1 + 1 = 2 or 2 + 1 = 3, especially when compared to the 
intricacies of plane geometry. But any sense of the superficiality of num
ber theory must soon be jettisoned, for this area of mathematics has gen
erated provocative and puzzling questions that have challenged gener
ations of mathematicians . And it is in Books VI I through IX of Euclid's 
Elements that we find our oldest significant development of the subject. 

Book VI I began with a list of 22 new definitions specific to the prop
erties of whole numbers . For instance, Euclid defined an even number 
to be one that is divisible into two equal parts and an odd number to be 
one that is not . A critical definition was that of a prime number, that is, 
a number greater than 1 that is divisible by (Euclid said, "measured by") 
only 1 and itself. For instance 2 ,  3 ,  5 ,  7, and 1 1  are primes . Non-prime 
numbers greater than 1 are called composite; each must have a divisor 
other than one and itself. The first few of these are 4, 6, 8, 9, 10 ,  and 1 2 .  
The number 1 ,  by the way, i s  neither prime nor composite . 

Further, Euclid defined a perJect number to be one which is the sum 
of its "parts" -that is, its proper divisors . Thus, the number 6 is perfect 
since its proper divisors are 1 ,  2 ,  and 3 (we exclude 6 as a divisor of 
itself, since we want only proper divisors) , and clearly 1 + 2 + 3 = 6 .  
The next perfect number i s  28 ,  for the sum of  its proper divisors i s  1 + 
2 + 4 + 7 + 14 = 28. On the other hand, a number l ike 1 5  fails to pass 
muster, since the sum of its proper divisors is 1 + 3 + 5 = 9 ::1= 1 5 ,  an 
obvious imperfection. Perfect numbers have long held a special fasci-
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nation for numerologists and other pseudoscientists , who never fail to 
find 6s and 28s turning up in the most important and suggestive places. 
Euclid, fortunately, confined his investigations of perfect numbers to 
their mathematical properties. 

Having defined his terms, Euclid got off to a fast start in the first two 
propositions of Book VII by establishing what has since come to be 
called "Euclid's algorithm. "  This is a sure-fire technique for finding the 
greatest of all the common divisors of two whole numbers . For a brief 
illustration of the algorithm in action, determine the greatest common 
divisor of the numbers 1387 and 3796 . 

Begin by dividing the smaller into the larger and keeping track of the 
remainder. In this case, 

3796 = ( 1387 X 2) + 1022 

Next divide the first remainder 1022 into the first divisor 1 387 to get 

1 387 = ( 1022 X 1 )  + 365 

Then repeat the process, this time dividing the second remainder 365 
into 1022 :  

1022 = (365 X 2) + 292 and then 

365 = (292 X 1) + 73 and finally 

292 = (73 X 4) 

at which point the remainder is O .  
Upon reaching a zero remainder, Euclid asserted that the previous 

remainder-in our example, 73-is the greatest common divisor of our 
two original numbers, 1 387 and 3796, and he gave a nice proof of this 
fact. Note that his procedure must eventually terminate , since the 
remainders-1022 ,  365 , 292, 73-are getting smaller and smaller. When 
dealing with whole numbers, the process certainly cannot go on forever; 
in fact, noting that the first remainder was 1022 ,  we can say with absolute 
certainty that it could at most take 1023 steps before the remainder was 
whittled away to 0 (of course , it actually took only five steps to do the 
job) . 

It is clear that Euclid's algorithm has concrete applications and is 
entirely automatic. It requires no particular insight or ingenuity to deter
mine the greatest common divisor of a pair of numbers; indeed, a com
puter can easily be programmed to carry out the process . Less clear, per
haps, is that Euclid's algorithm is also of immense theoretical 
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importance in number theory, where it remains a cornerstone of the 
subject. 

Euclid continued his development of number theory throughout 
Book VII .  Along the way, he came to the crucial Proposition VI 1 .30, 
which proved that, if a prime number p divides evenly into the proauct 
of numbers a and b, then the prime p must divide evenly into one (or 
both) of a and b, separately. For instance, the prime 17 divides evenly 
into 2720 = 34 X 80, and, sure enough, 1 7  divides into the first factor, 
34 . On the other hand, the composite number 1 2  divides evenly into 48 
= 8 X 6, but 1 2  fails to divide into either of the factors 8 or 6 separately. 
The trouble, of course, is that 12 is not a prime . 

Proposition VI I .31  will be of importance for the upcoming great the
orem. Euclid's proof, identical to that found in modern number theory 
texts, proceeded as follows. 

PROPOsmONVll.31 Any composite number is measured by [that is, divis
ible by] some prime number. 

PROOF Let A be a composite number. By definition of "composite ," 
there must be some smaller number B dividing evenly into A ,  where 
1 < B < A. Now either B is prime or it is not. If B is prime, then the 
original number A indeed has a prime divisor, as claimed. Otherwise , B 
is not prime and so has a divisor, say C, with 1 < C < B. If C is prime, 
we are done, for C divides evenly into B, and B divides evenly into A, so 
the prime C itself divides evenly into A. But what if C is composite? 
Then, it must have a proper divisor, D, and we continue our quest. 

In the worst case, we would keep getting nonprime divisors of 
descending size : 

A > B > C > D >  . . .  > 1 

But all of these are positive whole numbers . As Euclid correctly 
observed, we must reach a point at which the divisor we find is a prime, 
for " . . .  if [a prime divisor] is not found, an infinite series of numbers 
will measure the number A, each of which is less than the other: which 
is impossible in numbers ."  The impossibility, of course, arises simply 
because a decreasing chain of positive whole numbers can have only 
finitely many links . We thus can rest assured that the process concludes . 
The final number in the chain must be a prime as well as a divisor of all 
numbers before it, and in particular a divisor of the Original number A. 

Q.E.D. 

Both here and in his algorithm, Euclid exploited the key idea that, 
beginning with any whole number n, a decreasing sequence of positive 
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whole numbers less than n must be finite . This is certainly not true if we 
expand our horizons to fractions , for the descending sequence of posi
tive fractions 

� > � > x > % >  . . .  

goes on forever .  Alternately, if we allow negative whole numbers, a 
decreasing chain can be endless , as in: 

32 > 22 > 1 2 > 2 > - 8 > - 18 > - 28 > . . .  

But when we restrict our attention to the positive integers, as Euclid did, 
then such descending sequences must terminate in a finite number of 
steps , and herein lay the secret of many of his number theoretic 
deductions. 

When Euclid finished the last proof of Book VI I ,  he launched directly 
into Book VI I I  without the slightest hitch. In fact, there is no very good 
reason why his three number theoretic books could not have been 
merged into a single , albeit quite long, book of the Elements. Eventually 
he arrived at the important Proposition IX . 14 .  

PROPOsmON IX.14 If a number be  the least that i s  measured by prime 
numbers , it will  not be measured by any other prime number except 
those originally measuring it . 

Translated into modern terms, the proposition asserted that a number 
can be factored into the product of primes in only one fashion . That is, 
once we have factored ("measured") a number into primes, it is point
less to try to find a factorization into a different collection of primes, for 
no other primes can measure the original number. Today we call this the 
"unique factorization theorem" or alternately the "fundamental theorem 
of arithmetic ."  The latter name indicates its central role in number the
ory or, as the subject is sometimes called, the "higher arithmetic ."  

The unique factorization theorem is  used, for instance, in the follow
ing l ittle problem. Suppose we begin with the number 8 and decide to 
take successively higher powers: 82 = 64 , 83 = 5 1 2 ,  84 = 4096, 8s = 
32 ,786, and so forth. We intend to continue until we come to a number 
that ends with the digit "0 ."  The question is, will it take a hundred steps , 
or a thousand, or a million to yield such a number? 

A quick application of the unique factorization theorem reveals that 
our quest is utterly hopeless. For, suppose the process eventually 
yielded a number N ending in the digit O. On the one hand, since Nwas 
obtained by multiplying a sequence of 8s , we can factor it into a long 
string of 2s, since 8 = 2 X 2 X 2 .  However, if N ends with digit 0, then 
it is divisible by 10 and hence by the prime 5 .  But this is contradictory 
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since, as Euclid proved in IX . 14 ,  if N is factored into a string of 2s, then 
no other prime-in particular the prime 5-can divide evenly into N. In 
short, even if we keep multiplying 8s together for a million centuries, 
we can never get a number that ends in O .  

I t  should be  clear from many of the preceding propositions that 
primes play a central role in the theory of numbers . In particular, since 
any number beyond 1 is either itself a prime or can be written as the 
product of primes in a unique way, we can rightly regard the primes as 
the building blocks of the whole numbers . In this sense the primes from 
mathematics correspond to the atoms from elementary chemistry and 
deserve the same kind of intense scrutiny. 

Well before Euclid's day, mathematicians had listed the first primes, 
looking for patterns or other clues to their distribution . Just for refer
ence, the three dozen smallest primes are 

2 , 3 , 5 , 7, 1 1 , 1 3 , 17 , 19 , 23, 29, 3 1 , 37, 4 1 , 43,  
47, 53 , 59, 6 1 , 67, 7 1 , 73, 79, 83 , 89, 97, 10 1 ,  
103, 107, 109, 1 13 ,  1 27, 1 3 1 ,  137, 139 ,  149, 1 5 1  

No  particular patterns are immediately eVident, except for the obvious 
one that all primes except 2 are odd numbers (since all larger even num
bers have a factor of 2) . But a closer look suggests that the primes seem 
to be "spreading out" or getting scarcer as the numbers grow larger. For 
instance, there are eight primes between 2 and 20, but only four 
between 102 and 1 20 .  Further, note the gap of 1 3  consecutive composite 
numbers between 1 13 and 127 .  There is no such long gap among the 
first 100 numbers . 

It is fairly easy to devise an explanation for this apparent "thinning" 
of the primes. Clearly, when we look at small numbers-those in the 
teens or twenties-there are fewer POSSible factors since fewer numbers 
are less than these . By the time we consider larger numbers-such as 
numbers in the hundreds, or thousands, or millions-there is a multi
tude of smaller numbers to serve as potential divisors . To be prime, a 
number must have no smaller factors, and this is considerably less likely 
for a large number with so many possible divisors below it. 

In fact ,  if we track the primes far enough, we can find huge gaps 
among them. For instance, of the hundred numbers between 2 10 1  and 
2200, only ten are prime, and of the hundred between 10,000,001 and 
10,000 , 100,  only two are prime. It would probably have occurred to the 
Greeks, as it occurs to students today, that the primes may eventually run 
out. That is, the primes might finally become so scarce as to disappear 
altogether, with all subsequent numbers composite . 

If some evidence seemed to point in this direction, it was not enough 
to sway Euclid. On the contrary, in Proposition IX .20 he proved that, the 
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thinning notwithstanding, no finite collection of primes could possibly 
include all the primes there are . His is often called a proof of the " infin
itude of primes, "  for indeed he established that the set of all prime num
bers is not finite . Euclid's argument here is a genuine classic, a great 
theorem if ever there was one . In fact, it is sometimes cited as the finest 
example of a mathematical theorem that is at once simple , elegant, and 
extremely profound. The twentieth century British mathematician G. H . 
Hardy ( 1877-1947) , in his wonderful monograph A Mathematician 's 
Apology, called Euclid's proof " . . .  as fresh and significant as when it was 
discovered-two thousand years have not written a wrinkle on [it] . " 

Great Theorem: The Infinitude of Primes 

We have now seen all but one of the ingredients Euclid needed to con
struct his ingenious proof. What is missing is the very simple observation 
that if a whole number G divides evenly into both N and M, where N >  
M, then G surely divides evenly into their difference N - M. This is eas
ily seen, since G dividing into N means that N = G X A for some whole 
number A; and G dividing into M says that M = G X B for some whole 
number B. Thus N - M = G X A - G X B = G X (A - B) , and since 
A - B is itself a whole number, G clearly divides evenly into N - M. 
For instance, this says that the difference of two multiples of 5 is itself a 
multiple of 5 ;  the difference of two multiples of 8 is itself a multiple of 
8; and so on . 

With this obvious principle behind us, we are ready to attack Euclid's 
classic result. 

PROPOSITION IX.20 Prime numbers are more than any assigned multi
tude of prime numbers . 

Again, Euclid's peculiar terminology partially obscures the propOSition's 
meaning . What he was saying was, given any finite collection of prime 
numbers-that is, any "assigned multitude"-it is possible to find a 
prime not contained in this collection. In short, no finite set of primes 
could possibly exhaust all the primes. 

PROOF Euclid began with a finite batch of primes, say A, B, C, . . .  , D. 
His goal was to find a prime number different from all of these . As a first 
step toward this end, he formed the number N = (A X B X e x  . . .  X 
D) + 1 .  This number, being one more than the product of all the primes 
in his initial list, was clearly larger than any of those primes individually. 
Like any number greater than 1 ,  N is itself either prime or composite , 
and each of these cases required a separate examination. 
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CASE 1 Suppose N is prime . 

Since it is larger than A, B, C, . . . , D, then N itself is a new prime not 
included among the originals, and the proof in this case is completed. 

CASE 2 What if N is composite? 

By Proposition VI 1 . 3 1 ,  N must have a prime divisor, say G. Euclid then 
asserted-and here lay the heart of his reasoning-that G could not be 
among the original list of primes in his " assigned multitude . "  Suppose, 
for the sake of argument, that G = A. Then G surely divides evenly into 
the product A X B X e x  . . .  X D, while (as we have assumed in Case 
2) , G simultaneously divides evenly into N. Hence, G must also divide 
evenly into the difference of these numbers, that is, into 

N - (A X B X e x  . . .  x D) 
= (A X B X e x  . . .  x D) + 1 - (A X B X e x  . . .  x D) = 1 

But this is impossible, for the prime number G must be at least as big as 
2 ,  and no such number can divide evenly into 1 .  But the same situation 
exists if we imagined that G = B, or G = C, and so on. Thus, as Euclid 
claimed, the prime G is not included among A, B, C, . . . , D. 

Consequently, whether or not N is prime, a new prime can be found. 
Hence, any finite collection of primes can always be supplemented by 
yet another. 

Q.E.D. 

The thrust of Euclid's argument can be illustrated by considering two 
specific numerical examples. Suppose, for instance , that our original 
"assigned multitude" of primes was the set {2 , 3, 5}. Then the number N 
= (2 X 3 X 5) + 1 = 3 1  is itself a prime . Since 3 1  is clearly larger than 
the three primes 2, 3, and 5 with which we started, it is a new prime not 
contained in our original collection . This is exactly the situation covered 
in the first case . 

On the other hand, we might begin with primes {3 , 5 ,  7} so that N = 
(3 X 5 X 7) + 1 = 106.  Now, while 106 is surely bigger than 3 ,  5 ,  or 
7, it is not itself a prime . But, as the second case revealed, 106 must have 
a prime divisor-in this case 106 = 2 X 53, and both 2 and 53 serve as 
new primes not included in {3, 5 ,  7}. So, even when N is composite, we 
can augment our finite l ist with yet another prime . 

This proof will  always remain a mathematical classic. But Euclid was 
not quite done with his number-theoretic investigations . After proving a 
few rather uninspiring results, such as the fact that the difference of two 
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odd numbers is even, he concluded Book IX with a proposition about 
perfect numbers . He had defined these at the outset of Book VI I but then 
seemed to have forgotten about them completely. At last, they made 
their appearance . 

PROPOsmON IX.36 If as many numbers as we please beginning from a 
unit be set out continuously in double proportion, until the sum of all 
becomes prime , and if the sum multiplied into the last make some num
ber, the product will  be perfect. 

With the advantages of modern notation, we can express more precisely 
what Euclid meant: if we begin with 1 and add to it successively higher 
powers of 2 so the resulting sum 1 + 2 + 4 + 8 + . . .  + 2" is a prime 
number, then the number N = 2 " ( 1  + 2 + 4 + 8 + . . .  + 2n)-formed 
by multiplying the sum 1 + 2 + 4 + 8 + . . .  + 2 n  by its " last" summand 
2 "-must be perfect. 

We shall not look at Euclid's proof of this result but shall instead 
consider a specific example or two. For instance ,  1 + 2 + 4 = 7 is 
prime, and so , according to Euclid's theorem, the number N = 4 X 7 = 
28 is perfect. Of course , we have already verified this. Or, consider 1 + 
2 + 4 + 8 + 16  = 3 1 ,  a prime . Then N = 16  X 3 1  = 496 should be 
perfect. To see that it is , we list the proper divisors of 496-namely, 1 ,  
2 , 4 , 8 ,  16 , 3 1 , 62 , 1 24 and 248-and add them to get 496, as promised. 

Note in passing that numbers of the form 1 + 2 + 4 + . . .  + 2n need 
not be prime at all . For instance , 1 + 2 + 4 + 8 = 1 5  or 1 + 2 + 4 + 
8 + 16  + 32 = 63 are composite . Euclid's perfect number theorem 
applied only to those special cases where this sum indeed turns out to 
be a prime . Such primes, l ike 7 and 3 1 ,  are today called "Mersenne 
primes,"  in honor of the French Father Marin Mersenne ( 1 588-1648) , 
who discussed them in a 1644 paper. Because of their link to perfect 
numbers ,  Mersenne primes hold a particular fascination for number the
orists even to the present day. 

In any case , with his proof of Proposition IX.36, Euclid had given a 
very nice recipe for generating perfect numbers . We shall return to this 
topic and discuss its current status in the Epilogue. 

The Final Books of the Elements 

In Books VI I through IX, Euclid had proved a total of 102 propositions 
about whole numbers. Then, abruptly, he moved in a different direction 
in Book X, the longest and, in the opinion of many, the most mathe
matically sophisticated of the 1 3 .  In 1 1 5 propositions of Book X, Euclid 
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thoroughly addressed the issue of incommensurable magnitudes, topics 
that we today would translate into expressions involving square roots of 
real numbers . Many of these subtle results are technically intricate , 
involving concepts that need to be defined and examined with care . As 
an example, consider: 

PROPOSmON X.96 If an area be contained by a rational straight line and 
a sixth apotome, the side of the area is a straight line which produces 
with a medial area a medial whole. 

Obviously it would take some work to sort out the meaning of such 
terms as "apotome" and "medial" in order to make any sense of Euclid's 
statement, let alone to understand his subsequent proof. For modern 
readers, many of these propositions appear obsolete , ' concerned as they 
are with topics that are now easily handled within the 'systems of rational 
and irrational numbers . 

Books XI through XII I  cover the fundamentals of solid, or three
dimensional, geometry. The eleventh book, for instance ,  has 39 propo
sitions examining the solid geometry of intersecting planes, plane 
angles, and so on. One of its major results was Proposition X1 .2 1 ,  in 
which Euclid considered a "solid angle" -that is, a three-dimensional 
angle , such as the apex of a pyramid, formed by three or more plane 
angles meeting in a point. Euclid proved that the sum of the plane angles 
converging at this point is less than four right angles . Although we shall 
not examine Euclid's clever proof, we can easily believe its validity by 
recognizing that a solid angle containing four right angles-in modern 
terms 360 0 -in its plane angles would be "squashed flat" into a plane 
surface and thus be no angle at all .  Proposition XI . 2 1  will figure promi
nently in the very last result of the Elements very last book. 

If Book XI dealt with the elementary propositions of solid geometry, 
Book �II  probed much deeper. Here Euclid employed Eudoxus' 
method of exhaustion to address such issues as the volume of a cone . 

PROPOSmON XIUO Any cone is a third part of the cylinder which has 
the same base with it and equal height (Figure 3 .7) . 

We today would express this result as a formula. We know that a cylinder 
with radius r and height h has volume 7rrh, so Euclid was saying that 
the volume of a cone is �7rr h. His wonderful argument was a testament 
not only to Euclid's expository skills but to the great Eudoxus, who is 
credited with its initial discovery. Many years later, Archimedes would 
attribute this proposition to Eudoxus and observe that 
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. . .  though these properties were naturally inherent in the figures all along, 
yet they were in fact unknown to all the many able geometers who lived 
before Eudoxus, and had not been observed by anyone. 

Book XII  contained two other highly significant theorems that 
deserve mention . The first of these , Proposition XI I . 2 ,  was somewhat 
surprisingly about the circle, a plane figure . 

PROPOsmON xn.2 Circles are to one another as the squares on their 
diameters . 

We encountered this result earlier, when it was used in Hippocrates' 
quadrature of the lune . As noted then, the proposition provides a means 
of comparing two circular areas rather than of determining the area of a 
single circle by knowing its diameter or radius. 

Consider XI I . 2  in a slightly different light. For a pair of circles, one 
having area Al and diameter Db and the other having area A2 and diam
eter D2, we conclude that 

or equivalently 

This tells us that the ratio of a circle 's area to the square of its diameter 
is always the same-mathematicians would say the ratio is "constant"
regardless of what circle we are considering. This was a highly signifi
cant fact. Yet Euclid failed to give a numerical estimate for this constant 
or to relate ' it to other important constants one encounters in the study 
of circles. In short, for all its impressive power, Proposition XI I . 2  had 
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much room for improvement. We shall return to it later, with the 
improvement ably provided by Archimedes, as the great theorem of 
Chapter 4 .  

In a similar vein, the last proposition of  Book XII  established, via 
exhaustion, that "Spheres are to one another in triplicate ratio of their 
respective diameters . "  In modern terminology, this relativistic approach 
to spherical volume reduces to 

v; V; 
- = -

D� D� 

(Note that taking a "triplicate ratio" was the Greek expression for what 
we would call cubing.)  Here, there emerged another key constant-this 
time the ratio of spherical volume to the cube of the diameter-but 
again Euclid gave no hint of what the constant might be . The reader 
should not be surprised to learn that Archimedes would resolve this one 
too, in his undisputed masterpiece On the Sphere and the Cylinder of 
225 B.C. 

At last, we come to the thirteenth and final book of Euclid's Elements. 
Its 1 8  propositions consider the so-called "regular solids" of three
dimensional geometry and the beautiful relationships among them. A 
regular solid is one all of whose plane faces are congruent, regular 
polygons . The most familiar of these is the cube, a six-faced solid, each 
of whose faces is a regular quadrilateral-that is, a square . To the 
Greeks, the regular solids represented the epitome of beauty and sym
metry in three dimensions, and an understanding of these solids would 
thus have been an obvious priority. 

By Euclid's day, five such solids were known-the tetrahedron (a 
pyramid with equilateral triangles as each of its four faces) , the cube, the 
octahedron (with equilateral triangles as each of its eight faces) , the 
dodecahedron (with regular pentagons as each of its twelve faces) , and 
the most complicated of all ,  the icosahedron (a 20-faced solid with equi
lateral triangles as faces) . 

These aesthetically pleasing solids, shown in Figure 3 .8 ,  were fea
tured prominently in Plato's Timaeus from around 350 B.C. There Plato 
considered, among other things, the nature of the four "elements" 
thought to compose the world-fire, air, water, and earth. It was clear, 
said Plato, that these four elements are bodies and that all bodies are 
solids . Since the universe could only have been created out of perfect 
bodies, it seemed evident (to Plato, at any rate) that fire , air, water, and 
earth must be in the shape of regular solids . It only remained to deter
mine which element had which shape . 
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Tetrahedron Cube Octahedron 

Dodecahedron Icosahedron 
FIGURE 3.8 

Plato marshaled his evidence . In the process, he came up with such 
amusing pseudo mathematical statements as " . . .  air is to water as water 
is to earth . "  His final assignment was as fol lows. 

Fire is in the shape of the tetrahedron, for fire is the smallest, lightest, 
most mobile, and sharpest of the elements and the tetrahedron fits this 
description . Earth, said Plato, must be in the shape of the cube, the most 
stable of the five solids, while water, the most mobile and fluid of the 
e lements, must have as its shape, or "seed," the icosahedron, the solid 
most nearly spherical and thus most likely to roll easily. Air, somewhat 
intermediate in size ,  weight, and fluidity, is composed of octahedrons . 
"We must ," said Plato, "think of the individual units of all four bodies 
as being far too small to be visible, only becoming visible when massed 
together in large numbers ."  

Somewhat embarrassingly, this put Plato in the unenviable situation 
of having run out of elements but stil l  having a regular solid, the dodec
ahedron, left over. He lamely said this was the shape " . . .  which the god 
used for arranging the constellations on the whole heaven."  In other 
words, the dodecahedron somehow represented the shape of the uni
verse . Because of this fanciful  if not utterly bizarre theory in Timaeus, 
the regular solids have since been called the "platonic solids ."  Recalling 
that Euclid is thought to have studied at Plato's Athenian Academy, one 
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can surmise that these solids fascinated Euclid enough to warrant their 
inclusion as the climax of the Elements. 

As noted, geometers had long known of the existence of five regular 
solids . As the 465th and last proposition of the Elements, Euclid proved 
that there can be no others, that geometry had somehow dictated the 
number of such beautiful figures to be five, no more and no less . The 
simple proof relied on Proposition X1 .2 1 .  Euclid merely had to consider 
the kinds of polygons forming the faces of the regular solids, in light of 
the restriction that the sum of the plane angles composing any solid 
angle must be less than four right angles, or (in modern parlance) 360 · . 

Suppose each face of the regular solid is an equilateral triangle, so 
that each plane angle contained 60 · .  A solid angle, of course , must be 
formed by the intersection of three or more faces, so the minimal case 
is when three equilateral triangles form each vertex of the solid, for a 
total of 3 X 60 · = 180 · .  This precisely describes the tetrahedron. 

We could also have four equilateral triangles meeting at each vertex, 
for a total of 4 X 60 · = 240 · (the octahedron) ;  or we could have five at 
each vertex, for a total of 5 X 60 · = 300 · (the icosahedron) . But once 
we intersect six or more equilateral triangles at each vertex, the sum of 
the plane angles would be at least 6 X 60 · = 360 · ,  and this violates 
Proposition X1 .2 1 .  Thus, there are no other regular solids with equilat
eral triangles as faces . 

What about those whose faces are squares? Each angle of the square 
is, of course , 90 · , so three squares could intersect for a solid angle total
ing 3 X 90 · = 270 · ;  this is the cube . But if four or more squares formed 
a solid angle, the degree sum would again be at least 4 X 90 · = 360 · ,  
an impossibility. As a consequence, no other regular solids have square 
faces . 

Alternately, the faces may be regular pentagons. Since each interior 
angle of such a pentagon contains 108 · , there can be three (3 X 108 · 
= 324 · < 360 · )  but no more, forming a solid angle . The regular solid 
thus described is the dodecahedron. 

If we try to create one of these solids having as faces regular hexa
gons, heptagons, octagons, and so forth, then each plane angle will con
tain at least 1 20 ·  , so even by putting the minimum of three at each solid 
angle, we stil l  equal or exceed the limit of 360 · . In Euclid's words, "Nei
ther again will  a solid angle be contained by other polygonal figures 
[beyond the regular pentagon) by reason of the same absurdity. " 

To summarize , Euclid had shown that there can be no more than five 
regular solids-three with equilateral triangles as faces and one each 
with squares and regular pentagons as faces. No amount of effort or inge
nuity will  produce any more of these remarkable figures. 

With this, the Elements came to an end. It was, and has remained for 
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2300 years , an unsurpassed mathematical document. As with all great 
masterpieces, it can be read and reread and yet stil l  provide new insights 
into the genius of its creator. Even today, these ancient writings can be 
a source of endless enjoyment for those who take pleasure from the 
craftsmanship and ingenuity of an elegant mathematical argument. We 
can do no better than to quote again Sir Thomas Heath, who put it sim
ply, directly, and accurately: The Elements " . . .  is and will  doubtless 
remain the greatest mathematical textbook of all times . "  

Epilogue 

The great theorem of this chapter involved number theory, so this may 
be a good time to look ahead at some of the important and often trou
blesome problems that came to dominate this fascinating branch of 
mathematics . One of the genuine attractions of number theory is that 
conjectures simple enough to be understood by elementary school stu
dents nonetheless have been immune to the efforts of generations of the 
world's best mathematicians . It seems an especially perverse feature of 
this corner of mathematics . 

For instance, mathematicians have been intrigued by the phenome
non of "twin primes" -that is, consecutive primes that differ by 2. Exam
ples are 3 and 5, or 1 1  and 13 ,  or 10 1  and 103 .  Like the primes them
selves, the prime twins seem to be thinning out as we examine larger 
and larger tables of numbers . This suggests the obvious question, "Are 
there only finitely many twin prime pairs?" 

It is a simple question. Further, its similarity to the question Euclid 
settled 2300 years ago in Proposition IX .20 suggests an easy solution. 
Yet to this day no mathematician knows the answer. It may be, as most 
mathematicians suspect, that there is no limit to the number of twin 
primes, but so far no one has been able to prove this . Or it is possible 
that after a certain point we come to the very largest pair of twins, but 
no one has proved this either. The situation is, in short, as perplexing as 
it would have been to Euclid himself. This is a sobering and humbling 
thought . 

Number theory holds other tantalizing but unresolved puzzles. We 
have mentioned Euclid's proof that if the term in parentheses is a prime, 
then any number having the form 

2 n ( 1  + 2 + 4 + 8 + . . .  + 2 n) 

is perfect. He did not, however, claim that these were the only perfect 
numbers (although neither did he claim they were not) . Consequently, 
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mathematicians have tried to find perfect numbers other than those cov
ered by Euclid's formula. 

To date , the quest has been thoroughly unsuccessful .  In a posthu
mous paper, the eighteenth century mathematician Leonhard Euler 
proved that any even perfect number must have the form specified by 
Euclid. That is, if N is an even perfect number, then there exists a posi
tive integer n so that 

where the expression in parentheses must be a (Mersenne) prime . 
Between them, Euclid and Euler had completely solved the riddle of 

even perfect numbers . All that remained was to determine the form of 
the odd perfect numbers . Unfortunately, no one has ever found one . To 
this day, whether or not odd perfect numbers exist remains a complete 
mystery. This is not to say that people have not looked. Centuries of 
intense theoretical investigations, recently augmented by high-speed 
computers, have yet to turn up a whole number that is both odd and 
perfect, although that certainly does not mean there cannot be such 
numbers of unimaginable size . 

Mathematicians are stumped. They neither can find an odd perfect 
number nor can they prove that such a thing is impossible . This quan
dary raises an intriguing possibility, however. For, should someone 
someday furnish a proof that odd perfect numbers do not exist, then all 
perfect numbers would be even, and as Euler showed, all of these fit 
Euclid's pattern . In such an eventuality, the great Euclid, in 300 B.C., may 
have already spotted the pattern that generates the world's entire supply 
of perfect numbers . That would prove to be quite a remarkable turn of 
events . 

This chapter concludes with one of the most frustrating of all number 
theoretic questions , the so-called "Goldbach conjecture . "  It appeared in 
a 1742 letter of Christian Goldbach (1690-1764) , a mathematical enthu
siast whose chief claim to fame was that he sent his letter to Euler. Gold
bach surmised that any even number greater than or equal to 4 can be 
written as the sum of two primes . Euler tended to agree with Goldbach's 
assertion but had no inkling as to how to prove it. 

As with so many number theoretic puzzles, it is quite easy to check 
Goldbach's conjecture for small numbers . For instance 4 = 2 + 2 , 28 = 

23 + 5 ,  and 96 = 89 + 7 .  The conjecture is particularly tantalizing since 
it involves such utterly simple concepts . Its only technical terms are 
"even," "prime ,"  and "sum,"  and the meanings of these can be con
veyed even to young children in just a few minutes.' Yet the conjecture 
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has been unresolved since Goldbach mailed his letter two-and-a-half 
centuries ago . 

A peculiar contribution to this problem was made by a Soviet math
ematician, L. Schnirelmann. According to historian of mathematics How
ard Eves, Schnirelmann proved in 193 1  that any even number can be 
written as the sum of not more than 300,000 primes . Given that Gold
bach had conjectured that we only need two primes to do the job, Schni
reImann's proof fell  substantially short of the mark-299,998 primes 
short, to be exact . 

In a sense , Schnirelmann's 300,000 primes seem to mock the efforts 
of mathematicians . But they also suggest that, the Euclids and Eulers of 
history notwithstanding, there stil l  are plenty of great theorems waiting, 
with their eternal patience, for a proof. 



4 
Chapter 

Archimedes' Determination 
of Circular Area 
(ca. 225 B.C.) 

The Life of Archimedes 

Two to three generations separated Euclid from the next great mathe
matician on our agenda, the incomparable Archimedes of Syracuse 
(287-2 1 2  B .C) . By the end of his brilliant career, Archimedes had 
pushed mathematics well beyond the frontiers of Euclid's day. Indeed, 
the mathematical world would not see his like again for almost 2000 
years . 

We are fortunate to have a bit of information about Archimedes' life ,  
although, as with any details coming to us over so many generations, its 
literal validity can often be challenged. A number of his mathematical 
works, often prefaced by his own commentaries, have also survived. 
Taken together, these resources give us a picture of a much revered, 
somewhat eccentric genius who dominated the mathematical landscape 
of the classical world. 

Archimedes was born at Syracuse on the island of Sicily. His father is 
thought to have been an astronomer, and as a young boy, Archimedes 
developed a l ife- long interest in the study of the heavens. In his youth, 

84 
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Archimedes also spent some time in Egypt, where he appears to have 
studied at the great Library of Alexandria . This , of course , had been 
Euclid's base of operations, and Archimedes would naturally have been 
trained in the Euclidean tradition, a fact readily apparent in his own 
mathematical writings . 

During his time in the Nile Valley, Archimedes is said to have 
invented the so-called "Archimedean screw," a device for raising water 
from a low level to a higher one . Interestingly, this invention remains in 
use to this day. Its creation testifies to the dual nature of Archimedes ' 
genius : he could concern himself with practical , down-to-earth matters, 
or could delve into the most abstract, ethereal realms. In spite of Alex
andria's obvious appeal to one of his scholarly talents, Archimedes chose 
to return to his native Syracuse and there , as far as can be determined, 
spent the rest of his days . Although isolated in Syracuse, he maintained 
a wide correspondence throughout the Greek world, and particularly 
with scholars at Alexandria. It is through such correspondence that much 
Archimedean material has survived. 

His awesome mathematical talent was augmented by an ability to 
devote himself single-mindedly to any problem at hand in extraordinary 
periods of intense, focused concentration. At such times, the more mun
dane concerns of life were simply ignored. We learn from Plutarch that 
Archimedes would 

. . .  forget his food and neglect his person, to that degree that when he was 
occasionally carried by absolute violence to bathe or have his body anointed, 
he used to trace geometrical figures in the ashes of the fire ,  and diagrams in 
the oil on his body, being in a state of entire preoccupation, and, in the 
truest sense , divine possession with his love and delight in science . 

This passage portrays the stereotypically absent-minded mathemati 
cian, not to mention one to whom cleanliness was next to irrelevant. Of 
course , the most famous "absent-minded" story concerns the crown of 
King Hieron of Syracuse . The King, suspicious that his goldsmith had 
substituted some lesser alloy for the crown's gold, asked Archimedes to 
determine its true composition. As the story goes, Archimedes wrestled 
with the problem until one day (during what must have been one of his 
rare baths) he hit upon the solution. Jumping from the bath, he ran 
through the streets of Syracuse shouting "Eureka! Eureka! " Unfortu
nately, so absorbed was he in his wonderful discovery that he forgot to 
don his toga . What the townspeople thought at seeing their fellow citi
zen running stark naked in their midst is impossible to say. 

This tale may be fictitiOUS, but Archimedes' discovery of the funda
mental principles of hydrostatics is pure fact. He left us a treatise titled 
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On Floating Bodies developing his ideas in this area. Additionally, he 
advanced the science of optics and did pioneering work in mechanics, 
as is evident not only in his water pump but in his wonderful understand
ing of the workings of levers ,  pulleys, and compound pulleys. Plutarch 
included the story of a skeptical King Hieron doubting the power of 
these simple mechanical devices . The King asked for a practical dem
onstration, and Archimedes obliged in dramatic fashion . He selected 
one of the King's largest ships 

. . .  which could not be drawn out of the dock without great labour and many 
men; and, loading her with many passengers and a full freight, sitting him
self the while far off, with no great endeavour, but only holding the head of 
the pulley in his hand and drawing the cords by degrees, he drew the ship 
in a straight line, as smoothly and evenly as if she had been in the sea . 

Needless to say, the King was impressed.  Perhaps he sensed in this 
gifted scientist a valuable resource in the event that such engineering 
talents should be needed for more pressing matters . And indeed they 
were , when Rome, under the generalship of Marcellus, attacked Syra
cuse in 2 1 2  B.C. In the face of the Roman threat, Archimedes rose to the 
defense of his homeland by designing an array of weapons of great effec
tiveness . In the process, he became what can only be called a one-man 
military-industrial complex. 

In what fol lows, we continue to quote liberally from Plutarch's Life 
of Marcellus, written by the great Roman biographer almost three cen
turies after the fact. While it was Marcellus about whom Plutarch was 
ostensibly writing, his admiration for Archimedes was quite evident. 
These writings provide us with an intriguing-and certainly a very col
orful-account of Archimedes in action. 

"Marcellus moved with his whole army to Syracuse,"  Plutarch wrote, 
"and encamping near the wall ,  sent ambassadors into the city. " When 
the Syracusans refused to surrender, Marcellus opened his attack on the 
city walls, both on the land side with his troops and on the ocean side 
with 60 heavily armed galleys .  Marcellus was counting on " . . .  the abun
dance and magnificence of his preparations , and on his own previous 
glory," but he would prove no match for Archimedes. and his diabolical 
war machines. 

According to Plutarch, the Roman legions marched to the city walls, 
believing themselves to be invincible . 

But when Archimedes began to ply his engines, he at once shot against the 
land forces all sorts of missile weapons, and immense masses of stone that 

. came down with incredible noise and violence; against which no man could 
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stand; for they knocked down those upon whom they fell in heaps, breaking 
all their ranks and files. 

The Roman naval forces fared no better, for 

. . .  huge poles thrust out from the walls over the ships sunk some by the 
great weights which they let down from on high upon them; others they 
lifted up into the air by an iron hand or beak . . .  and, when they had drawn 
them up by the prow, and set them on end upon the poop, they plunged 
them to the bottom of the sea; or else the ships, drawn by engines within, 
and whirled about ,  were dashed against steep rocks that stood jutting out 
under the walls ,  with great destruction of the soldiers that were aboard 
them. 

Such destruction, related Plutarch,  was "a dreadful thing to behold,"  
and one is  inclined to agree . Under the circumstances, Marcellus 
thought it prudent to retreat . He withdrew both land and naval forces to 
regroup. Holding a council of war, the Romans decided upon a night 
assault, in the expectation that Archimedes' devilish weapons would be 
useless if the attackers slipped too close to the walls under the cover of 
darkness . Again , the Romans had an unpleasant surprise . The diligent 
Archimedes had arranged his devices for just such an eventuality, and no 
sooner had the Romans crept up close upon the fortifications than 
"stones came tumbling down perpendicularly upon their heads, and, as 
it were , the whole wall shot out arrows at them."  In response , the terri
fied Romans again retreated, only to come under attack from Archime
des' longer-range weapons, an attack that "inflicted a great slaughter 
among them." By this time, the vaunted Roman legions, "seeing that 
indefinite mischief overwhelmed them from no visible means, began to 
think they were fighting with the gods . "  

It i s  perhaps an understatement to  say that Marcellus had a serious 
morale problem. He demanded of his shaken troops a renewed courage 
to continue the assault, but the previously invincible Romans wanted no 
more of it . On the contrary, the soldiers " if they did but see a little rope 
or a piece of wood from the wall ,  instantly crying out, that there it was 
again, Archimedes was about to let fly some engine at them, they turned 
their backs and fled . "  Knowing that discretion is the better part of valor, 
Marcellus chose to abandon the direct assault. 

Instead, trying to starve the trapped Syracusans into surrender, the 
Romans began a long siege of the city. Time passed, with no change in 
the disposition of forces. Then, during a feast to Diana, the city inhabi
tants, "given up entirely to wine and sport ," became careless about 
guarding a section of the wall ,  and the opportunistic Romans saw their 
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chance. Their armies broke through the lightly guarded section and 
poured into the city in a vicious and destructive mood. Marcellus, sur
veying the beautiful town, is said to have wept in anticipation of the 
havoc that his men were sure to wreak. Indeed, history records that the 
Romans treated Syracuse no less harshly than they would treat Carthage 
some 66 years later. 

But it was the death of Archimedes that brought Marcellus his great
est sorrow, for he had come to respect his gifted antagonist. According 
to Plutarch,  

. . .  as  fate would have i t ,  intent upon working out some problem by a dia· 
gram, and having fixed his mind alike and his eyes upon the subject of his 
speculation, [Archimedes) never noticed the incursion of the Romans, nor 
that the city was taken. In this transport of study and contemplation, a sol· 
dier, unexpectedly coming up to him, commanded him to follow to Mar
cellus; which he declining to do before he had worked out his problem to 
a demonstration, the soldier, enraged, drew his sword and ran him through. 

Thus ended the life of Archimedes. He died, as he had lived, lost in 
thought about his beloved mathematics . We can regard him either as a 
martyr to his research or as a victim of his own preoccupied mind. In 
any case, mathematicians may come and mathematicians may go, but no 
other has had an end quite like this . 

For all of Archimedes' great weapons, for all of his practical inven
tions, his true love was pure mathematics . His levers and pulleys and 
catapults were mere trifles compared with the beautiful theorems he dis· 
covered. Again, we quote Plutarch :  

Archimedes possessed so  high a spirit, so  profound a soul ,  and such treas
ures of scientific knowledge, that though these inventions had now obtained 
him the renown of more than human sagacity, he yet would not deign to 
leave behind him any commentary or writing on such subjects ; but, repu
diating as sordid and ignoble the whole trade of engineering, and every sort 
of art that lends itself to mere use and profit, he placed his whole affection 
and ambition in those purer speculations where there can be no reference 
to the vulgar needs of life .  

It was his mathematics that would be his greatest legacy. In this 
arena, Archimedes stands unchallenged as the greatest mathematician of 
antiquity. His results , which survive in a dozen books and fragments , are 
of the highest quality and show a logical sophistication and polish that 
is truly astounding. Not surprisingly, he was very familiar with Euclid 
and proved to be a master of Eudoxus' method of exhaustion; to use 
Newton's charming phrase, Archimedes surely stood on the shoulders of 



ARCHIMEDES' DETERMINATION OF CIRCULAR AREA • 89 

giants . But past influences, great as they were, cannot adequately explain 
the amazing advances that Archimedes would bring to the discipline of 
mathematics .  

Great Theorem: The Area of the Circle 

Around 225 B.C., Archimedes produced a short treatise titled Measure
ment of a Circle, the first proposition of which gave a penetrating anal
ysis of circular area. Before addressing this classic work, however, we 
first need to examine what was known about circular areas when Archi
medes arrived upon the scene . 

Geometers of the time would have known that, regardless of the cir
cle in question, the ratio of the circumference of a circle to its diameter 
is always the same. In modern terminology, we would say that 

where C is the circumference and D is the diameter of the circles in 
Figure 4 . 1 . Put another way, the ratio of a circle's circumference to its 
diameter is constant, and modern mathematicians define 7r to be this 
ratio . (Note that the Greeks did not use the symbol in this context .) 
Thus , the formula 

C - = 7r  
D 

Circumference = c,  

FIGURE 4.1 

or its equivalent C = 7r D 

Circumference = Cz 
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is nothing more than the definition of the constant 11" as it arises in the 
comparison of two lengths-a circle's circumference and its diameter. 

But what about circular areas? As we have seen,  Proposition XII .2  of 
the Elements established that two circular areas are to each other as the 
squares on their diameters , and thus the ratio of circular area to the 
square of the diameter is constant . In modern terms, Euclid had proved 
that there is some constant k such that 

A 
D2 

== k or equivalently . A == kU 

All of this was fine as far as it went. But how do these constants relate to 
one another? That is, can one find a simple connection between the 
"one-dimensional" constant 11" (used in relating circumference to diam
eter) and the "two-dimensional" constant k (used in relating area to 
diameter) ? Apparently Euclid had found no such connection. 

But in his short yet elegant treatise Measurement of a Circle, Archi
medes proved what amounts to the modern formula for circular area 
involving 11". In doing this , he made the critical l ink between circumfer
ence (and hence 11") and circular area. His proof required two fairly direct 
preliminary results plus a rather sophisticated logical strategy called 
double reductio ad absurdum (reduction to absurdity) . 

We shall examine these preliminaries first. One concerned the area 
of a regular polygon with center 0, perimeter Q, and apothem h, where 
the apothem is the length of the l ine drawn from the polygon's center 
perpendicular to any of the sides . 

THEOREM The area of the regular polygon is �hQ. 

PlOOF Suppose the polygon in Figure 4 .2  has n sides, each of length b. 
Draw l ines from 0 to the vertices, thereby breaking it up into a collec
tion of n congruent triangles, each with height h (the apothem) and base 
b. Since each triangle has area �bh, 

Area (regular polygon) 
== �bh + �bh + . . .  + �bh, where the sum contains n terms 
== �h(b + b + . . .  + b) == �hQ 

since (b  + b + . . .  + b) is the perimeter. 
Q.E.D. 
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Perimeter = Q 

FIGURE 4.2 

That was quick enough. Archimedes' other preliminary was also well 
known in his day, and seems quite self-evident . It says that if we are 
given a circle, we can inscribe within it a square; Euclid himself gave 
this construction in Proposition IV.6 .  The square's area, of course , is less 
than that of the circle in which it was inscribed. By bisecting each side 
of the square , we can locate the vertices of a regular octagon inscribed 
within the circle. Of course, the octagon more nearly approximates the 
circle's area than the square did. If we again bisected to get a regular 16· 
gon, it would be closer to the circle in area than the octagon was . 

The process can be continued indefinitely. This is, in fact, the 
essence of Eudoxus' famous method of exhaustion alluded to earlier. 
Clearly the area of an inscribed polygon never equals that of the circle; 
there will  always be an excess of circle over inscribed polygon regard· 
less of the number of sides of the latter. But-and this was the key to 
the method of exhaustion-if we have any preassigned area, no matter 
how small ,  we can construct an inscribed regular polygon for which the 
difference between the circle's area and the polygon's is less than this 
preassigned amount. For instance, if we were given a preassigned area 
of %00 of a square inch, we could come up with a regular inscribed poly
gon for which 
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Area (circle) - Area (polygon) < �oo square inch 

That such a polygon might have hundreds or thousands of sides is imma
terial ; the crucial fact is that it exists. 

An analogous rule holds for circumscribed polygons . We can sum
marize both by saying that , for any given circle , we can find polygons
inscribed or circumscribed-whose areas are as close to the circle 's area 
as we want. It is the "close as we want" part of this that held the key to 
Archimedes' success . 

These , then, were his two preliminary propositions . Now a word is 
needed about the logical ploy he adopted for showing that one area 
equals another. In some ways this strategy is more sophisticated, or at 
least more devious , than any we have yet seen. Recall ,  for instance , how 
Euclid proved that the square on the hypotenuse equaled the sum of the 
squares on the legs : he attacked the matter directly, showing that the 
areas in question were the same. His proof, although extremely clever, 
was a frontal assault. 

But when Archimedes approached the far more complicated circular 
area, he employed an indirect attack.  He realized that, for any two quan
tities A and B, one and only one of the following cases holds : A < B or 
A > B or A = B. Wanting to prove that A = B, Archimedes would first 
make the assumption that A < B and from this derive a logical contra
diction, thereby eliminating the case as a possibility. Next, he would 
suppose that A > B, which again led him to a contradiction . With both 
of these options eliminated, there remained but one alternative , namely, 
that A and B are equal . 

This was his wonderful ,  indirect strategy-a " double reductio ad 
absurdum" since it reduced two of the three cases to a contradiction . 
While this may initially seem a bit roundabout, a little reflection shows 
it to be quite reasonable; eliminate two of the three possible cases and 
one is forced to conclude that the third is valid. Certainly no one used 
double reductio ad absurdum more deftly than Archimedes. 

With these preliminaries behind us, we can now watch a master at 
work in the first proposition from Measurement of a Circle: 

PROPOsmON 1 The area of any circle is equal to a right-angled triangle 
in which one of the sides about the right angle is equal to the radius , 
and the other to the circumference , of the circle .  

PROOF Archimedes began with two figures (Figure 4 .3) : a circle having 
center 0, radius r, and circumference C; and a right triangle having base 
of length C and height of length r. We denote by A the area of the circle 
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Circumference = C 
Area = A 

FIGURE 4.3 

C 

and by Tthe area of the triangle .  While the former is the object of Archi
medes ' proof, it is clear that the triangle's area is just T = �rC. 

The proposition claimed simply that A = T. To establish this by a 
double reductio ad absurdum proof, Archimedes needed to consider, 
and eliminate , the other two cases. 

CASE 1 Suppose A > T. 

This asserts that the circular area exceeds that of the triangle by some 
amount. In other words, the excess A - T is some positive quantity. 
Archimedes knew that, by inscribing a square within his circle and 
repeatedly bisecting its sides, he could arrive at a regular polygon 
inscribed within the circle whose area differs from the area of the circle 
by less than this positive amount A - T. That is, 

A - Area (inscribed polygon) < A - T 

Adding the quantity "Area (inscribed polygon) + T - A" to both sides 
of this inequality yields 

T < Area (inscribed polygon) 

But this is an inscribed polygon (Figure 4 .4) . Thus its perimeter Q is 
less than the circle 's circumference C, and its apothem h is certainly less 
than the circle's radius r. We conclude that 

Area (inscribed polygon) = �hQ < �rC = T 

Here Archimedes had reached the desired contradiction, for he had 
found both that T < Area (inscribed polygon) and that Area (inscribed 
polygon) < T. There is no logical recourse other than to conclude that 
Case 1 is impossible; the circle 's area cannot be more than the triangle's .  

This left him with the second case . 
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FIGURE 4.4 

CASE 2 Suppose A < T. 
This time Archimedes assumed that the circle 's area fell  short of the 

triangle 's ,  so that T - A represented the excess area of the triangle over 
the circle . We know that we can circumscribe about the circle a regular 
polygon whose area exceeds the circle 's area by less than this amount T 
- A. In other words, 

Area (circumscribed polygon) - A < T - A 

If we simply add A to both sides of the inequality, we conclude that 

Area (circumscribed polygon) < T 

But the circumscribed polygon (Figure 4 .5)  has its apothem h equal to 
the circle's radius r, while the polygon's perimeter Q obviously exceeds 
the circle's circumference C. Thus, 

Area (circumscribed polygon) = �hQ > �rC = T 

Again this is a contradiction, since the circumscribed polygon cannot 
be both less than and greater than the triangle in area. Archimedes con-
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FlGURE 4.S 
cluded that Case 2 was l ikewise impossible; the circle's area cannot be 
less than the triangle 's .  

As a consequence , Archimedes could write : "Since then the area of 
the circle is neither greater nor less than [the area of the triangle] , it is 
equal to it . "  

Q.E.D. 

This was his proof, a l ittle gem from the hand of an indisputably great 
mathematician. It strikes some people as odd that Archimedes proved 
the circle's area must equal that of the triangle by showing that it could 
be neither greater nor less . For those who find his argument a bit too 
indirect for their taste, a paraphrase of Hamlets Polonius is offered: 
"though this be madness, yet there is method of exhaustion in't . "  One 
is tempted to wonder how something this short and simple could have 
been overlooked by Hippocrates or Eudoxus or Euclid. But simplicity is 
most easily perceived in hindsight . In this regard, we again turn to Plu
tarch's characterization of Archimedes' mathematics: 

It is not possible to find in all geometry more difficult and intricate ques
tions , or more simple and lucid explanations . Some ascribe this to his nat
ural genius; while others think that incredible effort and toil produced these, 
to all appearances, easy and unlaboured results .  No amount of investigation 
of yours would succeed in attaining the proof, and yet, once seen, you 
immediately believe you would have discovered it; by so smooth and so 
rapid a path he leads you to the conclusion required. 
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Given that Archimedes had equated the area of the circle with that of 
a triangle , did he therefore accomplish the long-sought quadrature of the 
circle that we examined in Chapter I ?  The answer of course is "No," for 
we recall that a successful quadrature requires us to construct the recti 
linear figure of equal area. Archimedes' proof did not, nor did it claim 
to, give any inkling as to how to construct the triangle in question. There 
is, of course, no difficulty in constructing the leg of the triangle equaling 
the circle's radius; the snag occurs when one tries to construct the other 
leg equal to the triangle 's circumference . Since C = 11" D, constructing 
the circumference amounts to constructing 11". As we have seen, no such 
construction is possible. Archimedes' proof must not be construed as his 
attempt to square the circle ;  it was no such thing. 

All of this notwithstanding, the reader may yet fail to recognize the 
familiar formula for the area of a circle in Archimedes' theorem. After 
all ,  what he proved was that the area of a circle equaled that of a certain 
triangle .  As we shall see , this was a typical Archimedean device-to 
relate the area of an unknown figure with that of a simpler, known one . 
But more was going on than just this. For the triangle in question had as 
its base the circle's circumference, and this had two crucial implications . 
First , unlike Euclid, Archimedes had related a circle's area not to that of 
another circle (basically a "relativistic" approach) but to its own circum
ference and radius, as reflected in the equivalent triangle.  Then, by prov
ing that A = T = �rC, Archimedes had provided the link between the 
one-dimensional concept of circumference and the two-dimensional 
concept of area. Remembering that C = 1I"D = 211"r, we rephrase his the
orem as 

A = �rC = �r(211"r) = 1I"y;. 

and here emerges one of  geometry's most familiar and important 
formulas . 

It is also worth noting that Archimedes' bold proposition easily 
implied Euclid's relatively tame result that the areas of two circles are in 
the same ratio as the squares upon their diameters . That is, if we let one 
circle have area AI and diameter DI and a second circle have area A2 and 
diameter D2 , then Archimedes proved 

Hence 

AI 1I"Di/4 Di - = -- = -
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which is Euclid's theorem in a nutshell . So, this Archimedean proposi
tion had enough power to imply the Euclidean result as a trivial corol
lary. Such is the mark of a genuine mathematical advance . 

If we look back at the previous discussion, we can now determine 
the value of the constant k in the "Euclidean" expression A = kY. For, 
with Archimedes' discovery at hand, we know that 

Hence, 4 k  = 11', and so k = 11'/4 . In other words, Euclid's "two-dimen
sional" area constant is just a quarter of 11', the "one-dimensional" cir
cumference constant . Thus, his proposition brought the welcome news 
that we need not calculate two different constants . If we can just deter
mine the value of 11' from the circumference problem, it would also serve 
in the formula for circular area. 

This latter observation was not lost on Archimedes . In fact, as the 
third proposition of Measurement of a Circle, he derived just such a 
value. 

PROPOSmON 3 The ratio of the circumference of any circle to its diam
eter is less than 3� but greater than 31%1 . 

In modern notation, this says : 31%1 < 11' < 3�.  With these fractions 
converted to their decimal equivalents , Archimedes' result becomes 
3 . 140845 . . .  11' < 3 . 142857 . . . j hence , the constant 11' has been nailed 
down, to two decimal place accuracy, as 3 . 14 .  

That Archimedes came up with this estimate i s  another sign of  his 
powers . His plan of attack was again to use his ever-helpful inscribed 
and circumscribed regular polygons, except this time, instead of tracking 
down their areas, he was concentrating on their perimeters . He began 
with a regular hexagon inscribed in a circle (Figure 4 .6) . He knew well 
that each side of the hexagon equaled the circle's radius, whose length 
we can call r. Thus, 

circumference of circle perimeter of hexagon 6 r 11' =  > = - = 3  
diameter of circle diameter of circle 2 r 

Admittedly, this was a very crude estimate for 11', but Archimedes had 
just begun. He next doubled the number of sides of his inscribed poly
gon, to get a regular dodecagon whose perimeter he had to calculate . 
This is where he leaves modern mathematicians shaking their heads in 
wonder, for determining the dodecagon's perimeter required getting a 
numerical value for the square root of three. With our calculators and 



98 • JOURNEY THROUGH GENIUS 

FIGURE 4.6 

computers, this strikes us as no real obstacle, but in Archimedes ' time, 
not only were these devices unthinkable , but there was not even a good 
number system to facilitate such computations . Yet he emerged with the 
estimate 

265 V3 135 1  
1 53 < 

3 
< 780 

which is impressively close . 
From there , Archimedes continued, bisecting again to get a regular 

24·gon, then a regular 48-gon, and finally a regular 96-gon. At each stage, 
he needed to approximate sophisticated square roots, yet he never fal 
tered. When he reached the 96-gon, his estimate was 

circumference of circle 
11" =  

diameter of circle 
perimeter of regular 96-gon 6336 

3101 > > -- > m 
diameter of circle 2017� 

As if this were not enough, Archimedes then turned around and 
made similar estimates for regular circumscribed 12 -gons, 24-gons, 48-
gons, and 96-gons, leading him to his upper bound : for 11" of 3�. Such 
calculations , in the face of an absolutely terrible numeral system and 
without easy procedures for estimating the square roots he needed, pro-
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vide sure evidence of his awesome powers. These computations were 
the arithmetical counterpart of running the high-hurdles wearing a ball 
and chain. Yet by marshaling his enormous intellect and perseverance , 
he succeeded in giving the first scientific estimate of the critical constant 
'11' . As indicated in the Epilogue to this chapter, the quest for highly accu
rate estimates of this number has occupied mathematicians ever since . 

As it has come down to us, Measurement of a Circle contains only 
three propositions and covers only a few pages of text . Moreover, the 
second proposition is out of place and unsatisfactory, undoubtedly the 
result of bad copying, bad editing, or bad translating years , if not cen
turies, after Archimedes. On the surface ,  then, it seems unlikely that 
such a short work would carry the impact that it does . But considering 
that in its first proposition, Archimedes proved the famous formula for 
the area of a circle, and in its last, he gave a remarkable estimate for the 
number '11' , there is really no doubt why this little treatise had been held 
in such high regard by generations of mathematicians . It is not the quan
tity of pages but the quality of the mathematics , and by this criterion 
Measurement of a Circle stands as a genuine classic. 

Archimedes' Masterpiece: On tbe Spbere and tbe Cylinder 

The results just discussed constitute but a fraction of the mathematical 
legacy of Archimedes. He also wrote about the geometry of spirals and 
about conoids and spheroids, and he provided a remarkable means of 
finding the area under a parabola by summing a certain infinite geomet
ric series. This latter topic-finding areas under curves-is now treated 
in calculus courses ,  another indication (if one were needed) of how 
utterly far ahead of his time Archimedes was .  

But for al l  of these accomplishments, his undisputed masterpiece 
was an extensive, two-volume work titled On the Sphere and the Cylin
der. Here ,  with almost superhuman cleverness, he determined volumes 
and surface areas of spheres and related bodies, thereby achieving for 
three-dimensional solids what Measurement of a Circle had done for 
two-dimensional figures. It was a stunning triumph, one that Archimedes 
himself seems to have regarded as the apex of his career. 

We should first recall what the Greeks knew about the surface areas 
and volumes of three-dimensional bodies. As noted in the previous 
chapter, Euclid had proved that the volumes of two spheres are to each 
other as the cubes of their diameters ; in other words, there exists a "vol
ume constant" m so that 

Volume (sphere) = mD3 
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This was the Euclidean treatment of spherical volume. As to the sur
face area of a sphere , Euclid was utterly silent. Here again, a successful 
assault on the problem awaited Archimedes' On the Sphere and the 
Cylinder. 

This two-volume work had a familiar ring to it, insofar as it b€gan 
with a l ist of definitions and assumptions from which he derived ever 
more sophisticated theorems. In short, it was cast in the Euclidean mold. 
Its first proposition was the innocuous : " If a polygon be circumscribed 
about a circle, the perimeter of the circumscribed polygon is greater 
than the circumference of the circle . "  However, Archimedes qUickly 
moved in more sophisticated directions . Throughout, he was (at least to 
modern tastes) hampered by the lack of a concise algebraic notation. 
Unable to express his volumes and surface areas by si'mple formulas, he 
had to rely on statements such as : 

PROPOsmON 13 The surface of any right circular cylinder excluding the 
bases is equal to a circle whose radius is a mean proportional between 
the side of the cylinder and the diameter of the base . 

At first glance, this looks quite mysterious and unfamiliar, but it is in the 
phrasing, not the content, that the unfamiliarity lies. Without the benefit 
of algebra, Archimedes had to express his desired area-in this case that 
of a lateral surface of a right circular cylinder-as being equal to the 
area of a known figure-in this case, a circle (Figure 4 .7) . But which 
circle? Obviously Archimedes had to specify his equivalent circle, and 
that is where the statement about mean proportionals came in. 

In modern terminology, Archimedes was claiming that 

Lateral surface (cylinder of radius r and height h) 
= Area (circle of radius x) 

where h/ x = x/2 r. From this it follows quickly that x = 2 rh, and so we 
get the well-known formula: 

Lateral surface (cylinder) = Area (circle) = 7rX- = 27rrh 

Archimedes proceeded through a string of l ike-sounding proposi
tions as he approached his first major objective , the surface area of the 
sphere . Space does not allow us to follow him in his reasoning, but we 
can acknowledge his remarkable ingenUity. In l ight of our earlier exam
ination of his mathematics , the reader should not be surprised to learn 
that Archimedes again used the method of exhaustion . That is, he 
"exhausted" the sphere by approximating it from within and without by 
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cones and the frusta of cones, all of whose surface areas he had previ
ously determined. When the dust had settled, he had proved the 
remarkable 

PROPOsmON 33 The surface of any sphere is equal to four times the 
greatest circle in it. 

Archimedes completed the proof with his favorite logical tactic of 
double reductio ad absurdum; that is, he proved it impossible for the 
spherical surface to be more than four times the area of its greatest circle 
and also proved it impossible for it to be less than four times the area of 
its greatest circle. If we observe that the area of the "greatest circle" of 
the sphere-that is, the circle through the sphere's "equator"-is just 
1f'r, then we can translate Archimedes' formulation of this result-" the 
surface of the sphere is four times the area of its greatest circle" -into 
the modern-day formula 

Surface area (sphere) = 41f'r 

This i s  a very sophisticated piece of mathematics . The deftness with 
which Archimedes handled his concepts , the insights that he brought to 
bear, seem to anticipate the ideas of modern integral calculus. It is 
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readily apparent why Archimedes is regarded as the greatest mathema
tician of ancient times . 

But there is one other fact about this result that warrants a comment, 
namely, its utter strangeness. There is nothing intuitive about the sub
stantive fact that the surface of a sphere is exactly four times as large as 
the area of its greatest cross section . Why could it not have been 4 .01  
times as great? What is so magical about this number "four" to guarantee 
that if one were to paint the curving surface of a sphere, it would take 
precisely four times as much paint as it would to paint the great circle 
through the center? 

Archimedes himself addressed this peculiar, intrinsic property of the 
sphere in his introduction to On the Sphere and the Cylinder, which he 
wrote for a certain "Dositheus,"  presumably a mathematician at Alex
andria to whom Archimedes had sent the treatise . Archimedes noted that 
" . . .  certain theorems not hitherto demonstrated have occurred to me, 
and I have worked out the proofs of them."  First among those he men
tioned was " . . .  that the surface of any sphere is four times its greatest 
circle,"  and he went on to observe that such properties were 

. . . all along naturally inherent in the figures referred to, but remained 
unknown to those who were before my time engaged in the study of geom
etry. Having, however, now discovered that the properties are true . . .  , I 
cannot feel any hesitation in setting them side by side both with my former 
investigations and with those of the theorems of Eudoxus on solids which 
are held to be most irrefragably established . . .  

The comment provides an interesting glimpse of Archimedes' assess
ment of his work and its place in the development of mathematics . He 
did not hesitate to include himself alongside the great Eudoxus, for he 
surely was well aware of the extraordinary nature and quality of his own 
discoveries . But he also went out of his way to stress that he had not 
invented or created the fact that S = 41rr.  Rather, he had been fortunate 
enough to discover an intrinsic property of spheres, one that had existed 
since time immemorial even though it had been previously unknown to 
geometers . To Archimedes , mathematical relationships existed indepen
dent of the poor efforts of humans to decipher them. He himself had just 
been the individual fortunate enough to glimpse these eternal truths . 

If On the Sphere and the Cylinder had contained nothing but the 
previous theorem, it would have stood as a classic for all time. But he 
immediately turned his gaze toward spherical volume. After another 
intricate double reductio ad absurdum argument, Archimedes suc
ceeded in establishing 
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PROPOSmON 34 Any sphere is equal to four times the cone which has 
its base equal to the greatest circle in the sphere and its height equal to 
the radius of the sphere . 

Note that, again, Archimedes has expressed the volume of the sphere 
not as a simple algebraic formula but in terms of the volume of a simpler 
solid, in this case , a cone (Figure 4 .S) .  With just a bit of effort we can 
convert his verbal statement into its modern equivalent . 

That is, let r be the radius of the sphere . Then the "cone which has 
its base equal to the greatest circle in the sphere and its height equal to 
the radius of the sphere" is such that 

But Archimedes' Proposition 34 had proved that the volume of the 
sphere is four times as great as the volume of one of these cones, and 
this yields the famous formula 

Volume (sphere) = 4 Volume (cone) = %1I'r 

Among its benefits , this result clarifies the link between 11' and the 
"volume constant" m that arose from Euclid's Proposition XI I .  IS .  Refer
ring to our discussion above, we immediately see that 

%1I'r = Volume (sphere) = mD3 = m(2 r)3 = Smr 

FIGURE 4.8 
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and a l ittle algebra reveals that m = 7r/6. In this fashion, the pre·Archi
medean mystery regarding circumferences , circular areas , and spherical 
volumes was resolved. No longer were three different constants needed 
to address these three different matters ; all three rested upon knowledge 
of 7r. Archimedes had exhibited a stunning unity among them. 

Immediately upon completing his proofs of Propositions 33 and 34 , 
Archimedes restated his results in a particularly intriguing way. He con
sidered a cylinder circumscribed about the sphere , as shown in Figure 
4 .9 . He then asserted that the cylinder is half again as large as the sphere 
in both surface area and volume! In a certain sense, this was the climax 
of his whole work. It took his two great results and presented them in a 
simple fashion, expressing the complicated spherical surface and vol 
ume in terms of the correspondingly Simpler surface and volume of a 
related cylinder. This section will  conclude with a verification of Archi
medes' striking claim. 

First, notice that a cylinder circumscribed about a sphere of radius r 
itself has radius r and height h = 2 r. The cylinder's overall surface area 
is the sum of the lateral surface (as in Proposition 13) ,  as well as the 
circular areas of the top and bottom. Thus, 

total cylindrical surface = 27rrh + 7rr + 7rr 
= 27rr(2 r) + 27rr = 67rr 
= %(47rr) 
= %(spherical surface) 

which is precisely what Archimedes meant by saying that the cylinder 
was "half again" the sphere in surface area. 

h = 2r 

flGURE 4.9 



ARCHIMEDES'  DETERMINATION OF CIRCULAR AREA . 105 

And what about the corresponding volumes? For a general cylinder, 
we have V = 7rrh, which in this case becomes V = 7rr(2r) = 27rr. 
Thus, 

Cylindrical volume = 27r�  
= %(%7r�) = %(spherical volume) 

so that the cylinder was half again the sphere in volume . 
Thus, in one concise and remarkable statement, Archimedes had 

linked the sphere and the cylinder. It was this link that surely accounted 
for the title of the treatise we are examining. That Archimedes took par
ticular pride in this discovery was indicated by Plutarch's reference to 
Archimedes' choice of epitaph: 

His discoveries were numerous and admirable; but he is said to have 
requested his friends and relations that, when he was dead, they would 
place over his tomb a sphere contained in a cylinder, inscribing it with the 
ratio which the containing solid bears to the contained [ i .e . ,  the ratio 3 :2 ) .  

Interestingly, Cicero reported in his Tusculan Disputations that 
when in Syracuse he indeed came upon Archimedes' tomb. Admittedly, 
"a jumble of brambles and bushes" had grown up in the area, concealing 
everything. But Cicero knew what he was looking for and was under
standably excited when he recognized "a small column that emerged a 
little from the bushes : it was surmounted by a sphere in a cylinder. "  Hav
ing discovered the monument, he took pains to reverse the disrepair into 
which it had fallen. If true, Cicero had found the final resting place of 
the greatest of Greek mathematicians . In attempting to rescue the site 
from oblivion, Cicero not only paid homage to Archimedes but perhaps 
atoned somewhat for the brutality of his murderous Roman ancestors . 

One often hears of people who are ahead of their time . By this is 
usually meant a man or woman who anticipates the rest of the world by 
a decade or perhaps even a generation. But Archimedes was doing math
ematics whose brilliance would be unmatched for centuries! Not until 
the development of calculus in the latter years of the seventeenth cen
tury did people advance the understanding of volumes and surface areas 
of solids beyond its Archimedean foundation . It is certain that, regard
less of what future glories await the discipline of mathematics, no one 
will ever again be 2000 years ahead of his or her time. 

We can do no better than to end with Voltaire 's fitting and quite 
remarkable comment on the achievements of this great mathematician: 
"There is more imagination in the head of Archimedes than in that of 
Homer. "  
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Epilogue 

One legacy of Archimedes' Measurement of a Circle was the quest for 
ever more precise estimates of the critical constant we call 1r. The impor
tance of this ratio had been recognized long before Archimedes, 
although it was he who first subjected it to a scientific scrutiny. One 
interesting pre-Archimedean estimate can be inferred from a Biblical 
quotation about a circular "sea," that is, a large container for holding 
water: "Then He made the molten sea, ten cubits from brim to brim, 
while a line of 30 cubits measured it around" (I  Kings 7 :23) . 

From this we derive the value 1r = C/D = 30/10 = 3 .00, an estimate 
which, because of its great antiquity, is quite reasonable. (Of course , 
here we have a bone to pick with those who regard the Bible as accurate 
in all respects , since 3 .00 seriously underestimates 1r.) 

A better ancient estimate was that of the Egyptians . In the Rhind 
papyrus,  they used (4/3)4 = 256/81 = 3 . 1604938 . . .  as the ratio of C to 
D. These and other "pre-scientific" estimates represented the first phase 
in the estimation of 1r. As we have seen, Archimedes initiated the second 
phase . His geometric approach, employing the perimeters of inscribed 
and/or circumscribed regular polygons, was the method of choice for 
mathematicians until the mid-seventeenth century (yet another indica
tion that Archimedes was ahead of his time) . 

Around A.D. 150 the noted astronomer and mathematician Claudius 
Ptolemy of Alexandria provided an estimate for this ratio in his master
piece, the Almagest. This extensive work was a compilation of astronom
ical information, from the behavior of the sun and moon, to the motions 
of the planets, to the nature of the fixed stars in the heavens. Obviously, 
the precise measurements of celestial objects required a sophisticated 
mathematical underpinning, and for this reason, early in the Almagest 
Ptolemy developed his Table of Chords. 

He began with a circle whose diameter was divided into 1 20 equal 
parts . If each part has length p, then we can designate the diameter as 
120p, as shown in Figure 4 . 10 .  For any central angle a, Ptolemy wanted 
to find the length of chord AB subtended by this angle . For instance, the 
chord of a 60 · angle is just the length of the radius, which is 60p. 

This was an easy one . Finding the chord of 42� · is far less simple . 
But, using some clever reasoning and showing an Archimedean knack 
for computation, Ptolemy generated precisely such a table for all angles 
from W up to 180 "  in half-degree increments . 

Pertinent to our discussion, however, is the fact that he found the 
chord of 1 ·  to be (in modern decimal notation) 1 .0472p. Thus, the 
perimeter of a regular 36O-gon inscribed in this circle is 360 times as 
great, namely 376 .992p. Although the idea of using regular polygons is 
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A 1 20 p 
FIGURE 4.10 

clearly Archimedean, Ptolemy's 36o-sided figure furnished a much more 
accurate estimate than his predecessor's 96-gon. That is, 

7r = C :::::: perimeter of 360-gon = 376.992p = 3 . 14 16  
D diameter of  circle 1 20p 

In the centuries that followed, advances in the calculation of 
7r 

cen
tered in the non-Western cultures of China and India, cultures with bril 
l iant mathematical histories of their own. Thus we find the Chinese sci
entist Tsu Ch'ung-chih (430-501 )  using the estimate 355/1 13  = 
3 . 1 4 1 59292 . . .  around A.D. 480 ,  and the Hindu mathematician Bhaskara 
( 1 1 14-ca. 1 185) recommending 3927/1250 = 3 . 14 16  for accurate cal
culations around A.D. 1 150 .  

When Europe finally emerged from the mathematical stagnation of 
the Middle Ages, the pace of discovery accelerated.  By the late sixteenth 
century, with the work of such mathematicians as Simon Stevin ( 1548-
1620) , the modern decimal system had been established, and with it 
came easier, more accurate estimates of square roots . Thus, when the 
gifted French mathematician Francois Viete ( 1540-1603) tried his hand 
at estimating 

7r 
with Archimedes' technique, he could use regular poly

gons of 393,2 16  sides to get a value accurate to nine places . This 
required him to follow Archimedes' lead through the 96-gon, but then 
to double the number of sides a dozen more times . Even Archimedes 
would have withered under the constraints of his number system, but 
the decimal notation gave Viete the opening he needed. The basic 
insight was still Archimedes' but Viete had better tools. 

Early in the seventeenth century, a Dutch mathematician outdid all 
predecessors by finding 

7r 
correct to 35 places . His name was Ludolph 

van Ceulen, and he devoted years of effort to the task. Like Viete , 
Ludolph combined the new decimal system with the old Archimedean 
strategy, although rather than starting with a hexagon and doubling its 
number of sides, Ludolph began with a square . By the time he was fin-
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ish ed, he was handling regular polygons with 262 -or roughly 
4 ,610,000,000,000,000,000-sides! Needless to say, the perimeter of 
such a polygon differs very little from the circumference of the circle in 
which it is inscribed. 

The classical method of approximating 11' had carried mathematicians 
far. But later in the seventeenth century came a mathematical explosion 
of epic proportions, one of whose advances at last supplanted Archime
des' approach and pushed the search for 11' into its third phase . In the 
late 1660s, the young Isaac Newton applied his generalized binomial 
theorem and newly invented method of fluxions-that is, calculus-to 
get a very accurate estimate of 11' with relative ease; this is the great the
orem dealt with in Chapter 7. By 1674 , Newton's rival Gottfried Wilhelm 
Leibniz had discovered that the series 

1 - � + % - }II + � - Xl + Xa - Xs + . . .  

approaches the number 11'/4 as we carry the calculations ever farther 
along. Theoretically at least, we can extend the series of terms as far as 
we choose in order to get ever more accurate approximations to 11'/4 , and 
consequently to 11' itself. It is important to note that the series we must 
sum here is utterly predictable in its behavior; that is, no matter where 
we are in the series, it is easy to determine the next term. Suddenly, 
then, the matter of approximating 11' turned from the geometric problem 
it had been with Archimedes' regular polygons to a simple arithmetic 
problem of adding and subtracting numerical terms . This was a major 
change in perspective . 

Actually, the plot thickened at this point, since Leibniz 's series, while 
it did indeed approach the number 11'/4 , did so very slowly. For instance, 
even if we use the first 1 50 terms of the series, we get as an approxima
tion of 11' only 3 . 1 349 . . .  , which is disappointingly inaccurate given the 
number of computations involved. It is estimated that to get 100-place 
accuracy with this series, one would need more than 

100 ,000 ,000 ,000,000 ,000 ,000,000,000,000,000 ,000 ,000,000 ,000 ,000,000 

terms! So, while Leibniz's series foretold the new, arithmetic approach 
to estimating 11', it obviously had little practical use . 

The promise of infinite series was soon fulfilled as mathematicians 
such as Abraham Sharp ( 1651-1742) and John Machin ( 1680-175 1 )  
made clever modifications that generated much more rapidly converging 
series. Using these adjustments, Sharp found 11' correct to 71 places in 
1699, and Machin got 100 places seven years later. Moreover, their efforts 
proved far easier than those which had occupied poor Ludolph for much 
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of his life in squeezing out 35-place accuracy. It was clear that the series 
approach had rendered the classical method obsolete . 

Meanwhile there were developments on other fronts in mathemati
cians' attempts to understand this peculiar constant . Chief among these 
was the 1767 proof by Johann Heinrich Lambert ( 1728-1777) that 11" is 
an irrational number. We recall that the irrationals are those real num
bers that cannot be written as the quotient of two integers-that is, the 
irrationals are the numbers that are not fractions . It is fairly easy to show 
that constants l ike V2 or V3 are irrational, but it took until the eigh
teenth century for Lambert to prove that 11" belonged on this l ist . His dis
covery assumes particular importance when we recall that rational num
bers have decimal expansions that either terminate or exhibit a repeating 
pattern . For instance , the decimal for the rational number }9 is just . 1 25 .  
Alternately, the decimal for the rational � never stops, but at least it 
repeats in blocks of six places: 

� = . 142857142857142857142857 . . .  

If 11' were rational ,  it too would have to exhibit one of these behav
iors, and thus efforts to determine its decimal expansion would, after a 
certain amount of time , essentially be complete . Lambert's proof that 11" 
belonged among the irrational numbers guaranteed that the computa
tion of its decimal would forever remain unfinished business . 

As if this irrationality were not already bad enough, Ferdinand Lin
demann proved in 1882 that 11" is actually transcendental, as mentioned 
in Chapter 1 .  Not only did this discovery settle the issue of squaring the 
circle , but it meant that 11" could not emerge as any sort of elementary 
expression involving square roots , cube roots , and so on, of rational 
numbers . The results of Lambert and Lindemann showed that 11" is not 
among the "nice" numbers easily accessible to mathematical analysis. 
Yet the results of Archimedes from 225 B.C. had shown just as clearly that 
11' was one of the most important numbers of all .  

This history of 11" introduces one of the outstanding mathematicians 
of this century, Srinivasa Ramanujan ( 1887-1920) . Born in India to a 
family of limited means, Ramanujan enjoyed none of the benefits of for
mal mathematical training. He was largely self-taught, and this from just 
a few textbooks. Ramanujan's absorption with mathematics cost him 
dearly in his mastery of other subjects, and his formal education ended 
when he was unable to pass the requisite examinations in neglected 
courses. By 19 12 ,  he was reduced to a clerical job in Madras, supporting 
himself and his wife on a mere 30 pounds per year. It would have been 
very easy to write him off as a failure . 

Yet, despite such obstacles, this isolated genius was doing mathe-
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matical research of great originality and depth . After some urging, he 
wrote up a sampler of his discoveries and mailed them to three of Eng
land's foremost mathematicians. Two of them returned Ramanujan's 
unsolicited letter. Apparently they felt they had more pressing things to 
do than to respond to an unknown Indian clerk. 

The third, G .  H .  Hardy of Cambridge University, may have been 
tempted to follow the same course when he opened his morning mail 
on January 16, 1913 .  Ramanujan's communication, written in poor 
English and containing over 100 strange formulas without proofs of any 
kind, seemed to be the disordered ramblings of a crackpot from halfway 
around the world. Hardy put the letter aside . 

But, as the story goes, something about those mathematical formulas 
haunted him all that day. Many of the results were unlike anything Hardy 
had ever seen,  and Hardy was among the finest mathematicians in the 
world .  Gradually, it dawned upon him that these formulas " . . .  must be 
true, because if they were not true, no one would have had the imagi
nation to invent them."  Indeed, when he returned to his rooms and 
reexamined the morning's document, Hardy realized that this was the 
work of an enormous mathematical talent. 

Thus began the process of bringing Ramanujan to England. It was 
complicated by a staunch religious upbringing that placed restrictions 
on his mode of travel ,  his diet, and so on. But these problems were even
tually overcome, and Ramanujan arrived at Cambridge in 1914 .  

There followed an extraordinary half-decade of collaboration 
between Ramanujan and Hardy-the latter being a sophisticated, urbane 
Englishman possessing the best mathematical training the world could 
offer; the former being a "raw talent" of incredible power who nonethe
less had huge gaps in his mathematical knowledge. Sometimes Hardy 
had to instruct his young companion even as he would an ordinary 
undergraduate . At other times Ramanujan would astound him with 
never-before-seen mathematical results . 

Among the formulas that Ramanujan devised were many that gave 
rapid, highly accurate approximations to 11". Some of these appeared in 
an important 1914 paper; others were scrawled in his private notebooks 
(documents only now being made generally available to the world's 
eager mathematical community) . Even the simplest of these formulas 
would carry us too far afield, but suffice it to say that his insights have 
opened lines of investigation into far more efficient estimates of 11" .  

Unfortunately, Ramanujan's career, so improbable in its beginnings, 
came to a premature end. Far from home , in Cambridge during World 
War I, Ramanujan suffered a physical breakdown. Some attributed his 
decline to disease; others saw the cause as a serious vitamin defiCiency 
brought on by his severe dietary restrictions. In the hope of recovery, he 
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returned to India in 1919 ,  but the familiarity of home was unable to 
arrest his decline . On April 26, 1920, Ramanujan died, and the world 
lost, at age 32, one of its mathematical legends . 

We now rapidly bring our story to its modern conclusion by citing 
the amazing calculations of the Englishman William Shanks ( 1812-
1 882) , who determined 71" to 707 places in 1873 .  Shanks had used the 
series approach of Machin to get this startling level of accuracy, which 
stood as a standard for the next 74 years . But then, in 1946, his country
man D. F. Ferguson made the startling discovery that Shanks had erred 
after the 527th place of his great computation. Ferguson then kindly cor
rected the mistake and obtained 71" to 710  places. For those with less of 
an appetite for calculations, it is difficult to imagine undertaking a check 
upon a 707 -place number; more incredible is the persistence that would 
keep one going after finding no errors through 100 places, then 200 
places, then 500 places! Yet Ferguson's inexplicable perseverance did in 
fact pay off. 

In early 1947, the American J. W. Wrench added his own achieve
ment to this history by publishing 71" to 808 places. This seemed to be a 
bril liant new triumph-until the indefatigable Ferguson began checking 
this one too. Sure enough, he found a mistake in the 723rd place of 
Wrench's computation. The two men then joined forces and a year later 
provided 71" correct to 808 places. 

At this pOint, the tale enters its fourth and final phase . We have seen 
how people first estimated 71" by a sort of "rule of thumb";  next, Archi
medes introduced the method of inscribed and circumscribed polygons, 
which prevailed until the coming of calculus when arithmetical tech
niques involving infinite series took over. Finally, in 1949 the computer 
fundamentally revolutionized the calculations . In that year, the Army's 
ENIAC computer found 71" to 2037 places. It should be stressed that this 
was, by modern standards, an extremely primitive machine, one which 
filled rooms with wires and vacuum tubes and cranked out its results 
with excruciating slowness. Yet even this quaint old device managed to 
obliterate all previous human calculations, in one leap extending the 
decimal estimate by two-and-a-half times beyond 22 centuries of human 
achievement. Not even D. F. Ferguson was going to find an error in this 
one . Further, as computer technology improved, the number of decimal 
places grew at an unbelievable pace . By 1959, there were over 16 ,000 
places; by 1966, it had risen to a quarter of a million places, and by the 
late 1980s, supercomputers had pushed the expansion to somewhere 
over half a billion places, give or take a few million. 

Yet our fragile human egos need not be too severely damaged. For, 
while the computers are faster at calculations than any person can hope 
to be , it was mathematicians who programmed the machine and thereby 
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pointed it in the proper direction . The story of 11' is the story of a human, 
not a mechanical , triumph. And even in the late twentieth century, we 
must not forget that this journey had its mathematical beginnings in the 
short treatise Measurement of a Circle by the unsurpassed Archimedes 
of Syracuse . 



5 
Chapter 

Heron's Formula 
for Triangular Area 

(ca. A.D .  75) 

Classical Mathematics after Archimedes 

Archimedes cast a very long shadow across the mathematical landscape . 
Subsequent mathematicians of the classical period left their marks, but 
none even remotely measured up to the great Syracusan, an observation 
that became ever more obvious with the fall of Greek civilization and 
the simultaneous rise of Rome . It may be a bit simplistic ,  yet it is not 
without merit , to view Archimedes' death at the hands of a Roman cen
turion as a harbinger of what lay ahead. The Greeks, absorbed in their 
world of ideas, stood little chance before the military power of Rome; 
conversely, the Romans, absorbed with matters of political order and 
world conquest, had little regard for the abstract thinking so typical of 
the Greeks . Like Archimedes, the Greek tradition could not survive a 
new Roman order. 

Some dates may be helpful .  As we have seen, Syracuse fell to the 
Roman Marcellus in 2 1 2  B . C .  The three bloody Punic Wars ended with 
Rome's destruction of its rival Carthage in 146 B.C . ,  ensuring Roman con-

• 113 
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trol on both sides of the central Mediterranean, and that same year the 
last significant Greek city-state , Corinth, yielded to Roman power. A cen
tury later, Julius Caesar had conquered Gaul ,  and in 30 B .C . ,  after the 
unsuccessful stand of Anthony and Cleopatra, Egypt fell at the hands of 
Octavian . Even barbarian Britain came under Roman control in A.D .  30. 
Rome, now officially an empire , exercised an unprecedented domina
tion over the Western World. 

With Roman conquest came their sophisticated engineering projects : 
bridges, roads, and aqueducts traversed the European landscape . But the 
abstract, pure mathematics that had so fascinated Hippocrates, Euclid, 
and Archimedes was not to attain its former glory. 

One bright spot that remained was the great Library at Alexandria. 
Set in the midst of beautiful grounds and attracting the best minds from 
across the Mediterranean region, the Library must have been a most 
exciting place . It was there that a contemporary of Archimedes, the 
noted mathematician Eratosthenes (ca. 284-192 B.C .) , spent much of his 
life as the chief librarian . As befits one who held such a crucial scholarly 
post, Eratosthenes was an enormously prolific and widely read scholar, 
and to him are attributed works on pure mathematics, philosophy, geog
raphy, and especially astronomy-the last including' not only scholarly 
treatises but even a long poem, called Hermes, that put the fundamentals 
of astronomy into verse form! As with so many classical authors, most of 
Eratosthenes' writings are lost, and we must rely on later commentators' 
descriptions. But there seems to be no doubt that he was a major 
intellectual force in his day. Archimedes himself dedicated at least 
one work to Eratosthenes and regarded him as a man of considerable 
talent . 

Among Eratosthenes' contributions was his famous "sieve," a simple 
technique for finding prime numbers in a straightforward, algorithmic 
manner. To use the sieve to strain out the primes, we begin by writing 
down the consecutive positive integers , starting with 2. Noting 2 as the 
first prime, we then cross off all subsequent multiples of 2-namely, 4 ,  
6 , 8, 10 ,  and so on . Moving beyond 2 ,  the next integer that has not been 
eliminated is 3, which must be the second prime . All of its multiples, 
however, can now be eliminated, so we cross off 6 (although it is already 
out of the running) , 9, 1 2 ,  1 5 ,  and so on. Then we see that 4 is already 
gone, so our next prime is 5; with its inclusion in the list of primes, we 
eliminate its multiples 10 ,  1 5 ,  20, 25 ,  and so on. And so we proceed. 
Clearly, the numbers we cross out-being multiples of smaller inte
gers-are not primes; thus, these composites slip through the sieve.  On 
the other hand, primes will never fit through the mesh and thus will 
emerge as the only remaining numbers on our list: 
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2 , 3 ,"'- 5,'6.,. 7,'S..."l-Q., 11 , "N. 13, No.. � � 17, ts., 19, 
� i'i., �, 23 , � 2§., �, 2X, 2'1\, 29, 3\}., 31 , �, �, � �,  
�, 37 , �, � , � 41 , � 43, � � �, 47, � � � :N.., 
�, 53 , �, �, �, �, � 59 , � 61 , �, � �, � �, 67, 
�, 6Q, 7Q, 71 , �, 73, �,  �,  �, �, 7� 79, SQ, �, �, 83, �, �, 84, �, �, 89, 9Q, �, �, �, 9\, �, �, 97, �, �  

The sieve of Eratosthenes has yielded all primes below 100 in a perfectly 
automatic fashion . While it is clear that this process would bog down 
terribly in seeking all primes below, say, one hundred trillion, it should 
be noted that the modern computer can still get a great deal of mileage 
out of this ancient procedure . 

Eratosthenes' best-known scientific achievement may be his reported 
determination of the circumference of the earth. Much has been written 
about this calculation, and, lacking the original treatise On the Measure
ment of the Earth in which it appeared, we are a bit uncertain as to what 
Eratosthenes actually did. However, tradition suggests that he used some 
geographic data and a very simple piece of geometry as follows :  

In the Egyptian town of Syene, south of Alexandria near present-day 
Aswan, the sun stood directly overhead on the first day of summer. This 
was confirmed by the fact that an observer, peering down into a well at 
that moment, would be blinded by the reflected sun bouncing back up 
off the water. At the very same time on the very same day, a pole at Alex
andria cast a small shadow. Eratosthenes observed that the angle ex 
formed by the top of a pole and the line of its shadow was %0 of the angle 
in a complete circle (see Figure 5 . 1 ) .  Assuming that Alexandria was due 
north of Syene (which was more or less correct) and that the sun was so 
far from the earth that its rays arrive in parallel lines (another reasonable 
assumption) , Eratosthenes concluded by Proposition 1 .29 of the Ele
ments that the alternate interior angle LAOS was likewise equal to ex ,  
where 0 represented the center of the spherical earth, as shown in Fig
ure 5 . 1 .  The final piece of the puzzle was the known geographical fact 
that the distance between the two cities had been measured as 5000 
stades .  Consequently we have the proportion 

distance from Syene to Alexandria angle ex 
= --------=----------

earth's circumference total angle around circle 

That is, 5000 stades/circumference = 1/50 and so the earth's circumfer
ence is just 50 X 5000 = 250,000 stades. At this point, the reader 
undoubtedly is asking, "How long is a stade?" Again, we tread on fairly 
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· Sun 

S L--L _________ __ ----:-' . . . . . . . . . . . . . . . . o 

FIGURE 5.1 

thin ice by citing the estimate that one stade is 5 16 .73 feet. Using this 
number, we get the earth's circumference according to Eratosthenes as 
129 ,182 ,500 feet, or about 24 ,466 miles . The figure currently accepted is 
24 ,860 miles, so Eratosthenes was remarkably close . In fact, the estimate 
was so accurate that some scholars are skeptical of its authenticity, or at 
least agree with Sir Thomas Heath that Eratosthenes gave us "a surpris
ingly close approximation, however much it owes to happy accidents in 
the calculation ."  

Skepticism aside , Eratosthenes' reasoning is  noteworthy not only for 
its cleverness but also for the striking fact that he entertained no doubts 
whatever that our planet was a sphere . In striking contrast, European 
sailors some 1 5  centuries later would fear plunging off the edge of a flat 
earth. We sometimes forget that the ancient Greeks were fully aware of 
the earth's spherical shape, and if later sailors kept a keen eye peeled 
for the horizon's edge, it was a symptom not of knowledge yet to be 
acquired but of knowledge lost. 

Two other post-Archimedean mathematicians derserve mention . 
One was Apollonius (ca. 262-190 B .C . ) , another contemporary of Archi
medes who found his way to Alexandria to work in that rich, scholarly 
atmosphere . There , he produced his masterpiece , the Conics, an exten
sive treatment of the so-called conic sections-the ellipse, parabola, and 
hyperbola (Figure 5 .2) .  These curves had been extensively studied by 
Greek mathematicians , but Apollonius organized and systematized the 
previous work much as Euclid had done with his Elements. The Conics 
was written in eight books, the first four of which provided a general 
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introduction while the remaining ones treated more specialized matters . 
Of these , the eighth is now entirely lost. 

Even in classical times, Apollonius' work was recognized as the 
authoritative source on conics, and it was held in high regard when 
rediscovered during the Renaissance . When Johann Kepler 0571-1630) 
posed his groundbreaking theory that planets travel in elliptical orbits 
about the sun, the importance of the conics was affirmed. The ellipse, 
far from being merely a curiosity of Greek mathematics, had become the 
very path followed by the earth, and all of us who ride upon it. Then, 
almost a century later, the British scientist Edmund Halley, of comet 
fame, devoted years of his life to preparing the definitive edition of the 
Conics, so highly did he regard this piece of classical mathematics . 
Today, it stands, along with Euclid's Elements and the works of Archi
medes, as one of the genuine landmarks of Greek mathematics . 

Our final classical mathematician was responsible for the great the
orem of this chapter. He was Heron of (where else?) Alexandria . In 
some modern books he goes by the name of "Hero ,"  more because of 
the vicissitudes of translation than any pretentiousness on his part. 
Unfortunately, we know very l ittle about his life ,  and even the century 
in which he l ived is the subject of debate . It is certain that Heron came 
sometime after Apollonius, but determining more specific dates requires 
a talent for keen deduction most often found in detective novels. We 
shall go with Howard Eves and place Heron somewhere around A.D .  75 . 

Knowing little of his life ,  and not even positive that they are within 
1 50 years of his date , scholars nonetheless have a surprising amount of 
information about Heron's  mathematics . His interests tended to the 
practical rather than the theoretical , and many of his writings dealt with 
such useful  applications as mechanics, engineering, and measurement. 

parabola 

ellipse 

C �  
FIGURE S.2 



118 • JOURNEY THROUGH GENIUS 

Such an emphasis reflects rather well the contrast between Greek and 
Roman interests . For instance, Heron explained in his Dioptra how to 
dig tunnels through mountains and how to measure the amount of water 
flowing from a spring. In another work, he answered such mundane 
questions as "Why does a stick break sooner when one puts one's knees 
against it in the middle?" or "Why do people use pincers rather than the 
hand to draw a tooth?" 

Of interest here, however, is his proposition about the area of trian
gles. Like so many Heronian subjects, this clearly had its practical appli
cability, yet his proof was a wondrous piece of abstract geometric rea
soning. It appeared as Proposition 1 .8 of Heron's Metrica, a work with 
quite an interesting history. Mathematicians had long known of the exis
tence of this treatise, since it was mentioned by the commentator Euto
cius in the sixth century A.D. , but no traces of it existed. It seemed to be 
as lost as the dinosaurs when in 1 894 the mathematical historian Paul 
Tannery happened upon a fragment of the work in a thirteenth century 
Parisian manuscript. Better still ,  two years later R. Schl)ne found a com
plete manuscript in Constantinople . By such good fortune, the Metrica 
came into modern hands . 

Great Theorem: Heron's Formula for Triangular Area 

Heron's formula, as noted, concerns the area of a triangle . This may 
seem utterly unnecessary, for the standard formula-Area = �(base) X 
(height)-is simple, well known, and trivial to use . Yet it would be of 
little value in attacking the area of the triangle in Figure 5 .3 ,  since we 
have not been provided with its height . 

At the outset, it is critical to note that, once a triangle's three sides 
are given, its area is uniquely determined. This follows immediately 
from the SSS congruence scheme (Euclid, Proposition 1 .8) , for we know 
that any other triangle with sides equal to (for instance) 17 , 25 ,  and 26 
must be congruent to the one above and hence have precisely the same 

26 FIGURE 5.3 
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area. So, if we know the triangle's three sides, we also know that there 
is one and only one possible value for its area. 

But how can we find this value? The easiest approach, today as it was 
two thousand years ago, is to apply Heron's formula, which in modern 
notation states: 

If K is the area of a triangle having sides of length a, b, and c, then 

K =  ys(s - a) (s - b) (s - c) 

where s = �(a + b + c) is the so·called "semiperimeter" of the triangle . 

In Figure 5 .3 ,  s = �( 17  + 25 + 26) = 34 and so we find 

K = v'34 (34 - 17) (34 - 25) (34 - 26) = v'41616 = 204 

Notice that, in applying Heron's formula, knowing the triangle 's three 
sides is enough; we never need to determine its altitude . 

This is a very peculiar result which, at first glance, looks like nothing 
if not a misprint . The presence of the square root and semiperimeter 
seems odd, and the formula has no intuitive appeal whatever. But it is 
not just its strangeness that brings it to our attention as a great theorem. 
Rather, it is the proof that Heron furnished, which is at once extremely 
circuitous, extremely surprising, and extremely ingenious. In one sense, 
his argument is elementary in that it uses only very simple ingredients 
from plane geometry-that is, only the "elements" of the subject. Yet 
Heron displayed an astonishing geometric virtuosity in combining these 
elementary pieces into a remarkably rich and elegant proof that boasts 
one of the best surprise endings in mathematics. As with a good Agatha 
Christie novel ,  readers of Heron's proof can be within a few lines of the 
end and stil l  have no idea how the matter will be resolved. Yet we need 
not fear, for he ultimately brings the strands together in a wonderful 
climax. 

Before beginning the proof itself, we need to be aware of the prelim· 
inary results upon which Heron built his argument. The first two come 
from Euclid. 

PROPOSmON 1 The bisectors of the angles of a triangle meet at a point 
that is the center of the triangle's inscribed circle . 

This appeared as Proposition IV.4 of Euclid's Elements. The point where 
the three angle bisectors meet-that is, the center of the triangle 's 
inscribed circle-is called, quite appropriately, the incenter. 
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PROPOSmON 2 In a right-angled triangle, if a perpendicular is drawn 
from the right angle to the base, the triangles on each side of it are sim
ilar to the whole triangle and to one another. 

Readers will  recognize this as Proposition V1 .8 ,  which was examined in 
Chapter 3 .  

The next theorem, although fairly well known, appeared nowhere in 
Euclid. For the sake of completeness, its simple proof is included. 

PROPOsmON 3 In a right triangle ,  the midpoint of the hypotenuse is 
equidistant from the three vertices . 

PROOF Beginning with right triangle BAC (Figure 5.4) ,  bisect side AB 
at D and construct DM perpendicular to AB. Drawing MA, we claim that 
�MAD is congruent to �MBD, since AD = BD, LADM = LBDM, and of 
course DM = DM. Thus the SAS congruence scheme guarantees that 
MA = MB and that LMAD = LMBD. But we began with a right triangle. 
Hence, 

LACM = 1 right angle - LMBD = 1 right angle - LMAD = LAMC 

Thus �MAC is isosceles, and it fol lows that MC = MA. Since segments 
MA, MB, and MC all have the same length, we conclude that M, the mid
point of the hypotenuse , is equidistant from the three vertices of our 
right triangle . 

B 

A 1o...I.-____ � c 
FIGURE 5.4 

Q.E.D. 
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Our final two preliminaries deal with cyclic quadrilaterals, that is, 
quadrilaterals inscribed within a circle .  

PROPOsmON 4 I f  ARBO i s  a quadrilateral with diagonals AB and OH, 
and if LHAB and LHOB are right angles (as shown in Figure 5 .5) , then a 
circle can be drawn passing through the vertices A, 0, B, and H. 

PROOF This fairly specialized result follows immediately from the pre
vious one . That is, if we bisect BH at M, we observe that M is the mid
point of the hypotenuse of both right triangle BAH and right triangle 
BOH. Consequently, M is equidistant from points A, 0, B, and H, and so 
a circle centered at M and having radius MHwill pass through all four of 
the quadrilateral 's vertices . 

Q.E.D 

PROPOsmON 5 The opposite angles of a cyclic quadrilateral sum to two 
right angles . 

This appeared as Proposition 1 1 1 .22 of the Elements, and its proof was 
given in Chapter 3 .  

These five propositions may seem like a peculiar if not irrelevant 
tool-kit to bring to a proof about the area of general triangles. But they, 
along with a large dose of ingenuity, were just what Heron needed to 
prove the formula that now bears his name . 

TIlEOREM For a triangle haVing sides of length a, b, and c and area K, 
we have K = Vs(s - a) ( s - b) (s - c) , where s = �(a  + b + c) is 
the triangle's semi-perimeter. 

o 

A 

H 
FIGURE 5.5 
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PROOF Let ABC be an arbitrary triangle , configured $0 that side AB is at 
least as long as the other two. To make Heron's argument flow smoothly, 
we shall divide it into its three main parts . 

Part A Heron's very first step was something of a shocker, since he 
began by inscribing a circle within the triangle . This insight, to use the 
incenter of the triangle as a key element in determining its area, was an 
unexpected twist, for the properties of circles have no intuitive connec
tion with the area of a rectilinear figure such as a triangle .  Nonetheless, 
letting 0 be the center of the inscribed circle ,  and denoting its radius 
by r, we see that OD = OE = OF = r, as shown in Figure 5 .6 .  

Now we apply the simple formula for triangular area to get : 

Area (MOB) = %(base) X (height) = %(AB) X ( OD) = %cr 
Area (b.BOC) = %(base) X (height) = %(BC) X ( OE) = %ar 
Area (b.COA) = %(base) X (height) = %(AC) X ( OF) = %br 

Thus, K = Area (6.ABC) = Area (MOB) + Area (b.BOC) + 
Area (b.COA) , or ( a + b + c) 

K = %cr + %ar + %br = r 
2 

= rs 

Here we see Heron's l ink between the triangle 's  area, 1(, and its semi
perimeter, s. While this suggests that we are on the right track, much 
more work awaits . 

Part B We again refer to Figure 5 .6 and recall from our first preliminary 
that the process of inscribing circles began by bisecting the triangle 's 

G A c B 
FIGURE 5.6 
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three angles . Thus , MBC has been decomposed into three pairs of con
gruent triangles, namely 

MOD ,..., MOF, �BOD "'" �BOE, and �COE "'" �COF, 

where in each case the congruence follows by AAS (Euclid, Proposition 
1 . 26) . Then, by corresponding parts , we have 

AD = AP, BD = BE, and CE = CF 

while LAOD = LA OF, LBOD = LBOE, and LCOE = LCOF 

At this point, Heron extended the triangle's base AB to the point G, 
where AG = CEo He then argued that 

BG = BD + AD + AG = BD + AD + CE by construction 
= J.!! (2BD + 2AD + 2 CE) 
= J.!! [ (BD + BE) + (AD + Af) + ( CE + Crj] by congruence 
= J.!! [ (BD + AD) + (BE + CE) + (AP + Crj] 
= J.!! [AB + BC + AC ] = J.!!( c  + a + b) = s 

Consequently, Heron's segment BG had as its length the triangle's semi
perimeter, albeit "straightened out . "  Apparently, Heron wanted to have 
the semiperimeter before him, all in one piece . 

Knowing that BG = s, we easily derive 

s - c = BG - AB = AG 

s - b = BG - AC 
= (BD + AD + AG) - (AP + crj 
= (BD + AD + CE) - (AD + CE) = BD 

since AD = AP and AG = CE = CF. Likewise, 

s - a = BG - BC 
= (BD + AD + AG) - (BE + CE) 
= (BD + AD + CE) - (BD + CE) = AD 

since BD = BE and AG = CE. 
In short, the semiperimeter s and the quantities s - a, s - b, and s 

- c all appear as particular segments in the diagram. Again, this is sug
gestive since these are the components of the formula we seek to prove . 
What remained for Heron was to assemble these components to com
plete his argument. 
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G 

. .  M 
L :  

FIGURE 5.7 

Part C Again we begin with b.ABC and its inscribed circle, but we now 
need an extended diagram to illustrate Heron's reasoning (Figure 5 .7) . 
He drew OL perpendicular to OB, cutting AB at K Next, he constructed 
AM perpendicular to AB meeting OL at the point H, and finally he drew 
BH. 

The resulting quadrilateral AHBO should look familiar. By Proposi
tion 4 ,  it is, in fact, a cyclic quadrilateral and so, by Proposition 5 , we 
know that its opposite angles sum to two right angles . That is, 

LAHB + LAOB = two right angles 

Now examine the angles about the incenter O. By the congruences 
from part B, these reduce to three pairs of equal angles, so that 

2 a + 2 {j + 2 'Y = four right angles 
a + {j + 'Y = two right angles 

or equivalently 
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But fJ + 'Y = LAOB, and thus a + LAOB = two right angles = LAHB + 
LAOB. Hence a = LAHB, a seemingly insignificant fact that will turn out 
to be crucial in what follows. 

Heron next observed that b.COF is similar to b.BHA, for LCFO and 
LBAH are both right angles and, by the previous comment, a = LAHB. 
From this similarity, we derive the proportion 

AB CF AG 
= = = = -
AH OF r 

since CF = AG and OF = r. This is equivalent to the following equation, 
which we shall call C * ) . 

AB AH 
= = -
AG r 

(* ) 

Heron noted that b.KAH is likewise similar to b.KDO, for LKAH and 
LKDO are both right, while vertical angles LAKH and LDKO are equal. 
This similarity yields : 

AH OD r -= = � = =  
AK KD KD 

and thus - = =  
r KD 

Combining this last l ine with equation C* ) yields the key result, which 
we shall call C* * ) .  

AB AK 
= = =  
AG KD 

(* * )  

At this point, Heron's readers may be forgiven for suspecting that the 
mathematician was adrift, wandering aimlessly through an unending 
series of similar triangles . This feeling is by no means dispelled by his 
next step, which examined yet another pair of similar triangles . 

Heron looked at b.BOK with altitude OD = r. By preliminary Prop
osition 2 ,  we know that b.KDO is similar to b.ODB and thus 

KD r 
- = = or simply (KD) (BD) = r r BD (* . .  ) 

(The Greeks would simply say that r is the "mean proportional" 
between magnitudes KD and BD.) 
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At this pOint, Heron added 1 to each side of equation (* * ) to get 

AB AI( 
= + 1 = = + 1  
AG KD 

Over common denominators this becomes 

AB + AG AI( + KD BG AD --===--- = or simply = = = 
AG KD AG KD 

In this last equation, multiplication of the left-hand fraction by BG/ BG 
and the right-hand one by BD/ BD will certainly maintain the equality 
and yield 

(RG) (RG) (AD) (lID) 
= 

(AG) (BG) (KD) (BD) 

(liG) 2 (AD) (iiD) 
= 

(AG) (BG) r 

and so 

by (u * ) 

Cross-multiplying the previous equation gives us 

But at last Heron was ready to assemble this multitude of pieces to 
come rapidly and spectacularly to his desired end. We need only rec
ognize that the components of this last equation above are precisely the 
segments identified in Part B. Making the substitution gives: 

rs- = (s - c) (s) ( s - a) (s - b) = s(s - a) (s - b) (s - c) 

and so rs = V s( s - a) (s - b) (s  - c) 

But we recall from Part A that if K is the area of our triangle, then rs = 
K Thus a final substitution gives Heron's formula: 

K = Vs(s - a) (s  - b) (s - c) 
Q.E.D. 

Thus ended one of the cleverest proofs from elementary geometry, 
whose unexpected and apparently random wanderings were in fact 
always directed toward the desired end. This is certainly the most con
voluted proof we have encountered to date . It is difficult to imagine the 
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mental gyrations that would have led Heron to devise such a spectacu
larly devious argument. Recalling that he is sometimes known by the 
shorter version of his name, we may perhaps label his performance 
Hero- ic indeed. 

Epllogue 

Historians have turned up a curious fact about this remarkable formula. 
In an old Arabic manuscript written centuries after Heron, the IslamiC 
scholar Abu' l  Raihan Muh. al-Biruni credited this result not to Heron but 
to the illustrious Archimedes himself. We have no Archimedean writings 
to support this claim, but so extraordinary was his intellect that such a 
theorem would certainly have been within his reach. 

On the other hand, for reasons of sentiment more than historical 
accuracy, it may be best to allow Heron his moment in the sun. Crediting 
this result to Archimedes rather than Heron seems unnecessarily gen
erous to the former, whose reputation is already unsurpassed among 
classical mathematicians, and seems unnecessarily cruel to the latter, 
whose reputation rests so much upon it. 

As noted, Heron's formula has any number of practical applications . 
Surveyors who know the lengths of a three-sided lot can easily compute 
the area, and lots with four or more sides can easily be decomposed into 
triangular fragments for area determinations. But Heron's formula can 
also be used to yield an old friend, as we shall now see . 

Suppose we have a right triangle with hypotenuse of length a and 
legs of length b and c, as shown in Figure 5 .S. Here the semiperimeter 
is 

a + b + c 
s - · 

2 
and we find 

c 

b FIGURE S.S 
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a + b + c a + b + c 2a  - a  + b + c s - a = - a = - - = 
2 2 2 2 

Similarly 

s _ b = a - b + c  
2 and 

a + b - c  s - c = 
2 

Further,  a bit of algebra confirms that 

( a  + b + c) ( - a  + b + c) (a  - b + c) ( a  + b - c) 
= [ ( b  + c) + a] [ ( b + c) - a] [a - ( b - c) ] [a + ( b  - c)] 
= [ ( b + C) 2 - d] [d - ( b - C)2] 
= de b + C)2 - ( b  + c)2 ( b  - C)2 - d + deb  - C)2 

which simplifies to 2a2b2 + 2a2 c2 + 2 b2c2 - ( a4 + b4 + c4) . 
Thus , when we return to Heron's  formula, we get the area of the tri

angle to be 

K = V s( s - a) (s  - b) (s  - c) 

On the other hand, the area of the triangle above can be easily deter
mined as 

K = �(base) X (height) = �bc 

Equating these two expressions for K and squaring both sides gives us 

2dfi + 2dc + 2fic - ( d + b4 + c4) 
-

4 16 

which, with a cross-multiplication, becomes 
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Now, taking all terms to the left side and deftly grouping them yields 

or simply 

( Ii + c;2) Z  - 2 d ( 1i  + c;2) + d = 0 or even more simply 

[ ( Ii + c;2) - d]z = 0 

This , at long last, allows us to conclude that ( bZ + CZ) - aZ = 0, 
which reduces to the familiar- looking aZ = b2 + cZ • So , Heron's formula 
provides us with another proof of the Pythagorean theorem. Of course , 
this proof is incredibly more complicated than is necessary-rather like 
traveling from Boston to New York by way of Spokane-but nonetheless 
it is remarkable to find the Pythagorean theorem emerging, albeit rather 
indirectly, from Heron's curious result. 

Euclid, Archimedes, Eratosthenes, Apollonius, Heron-these and 
many other mathematicians had associations with the School of Alexan
dria, a center of scientific work that prevailed century after century dur
ing classical times. But even as the Roman Empire was not immortal , 
neither was this great facility. 

The Alexandrian Library remained active from its founding around 
300 B.C. until its closing by Christians in A.D.  529 (they objected to its 
huge collection of pagan documents) and its ultimate burning by the 
Arabs in A.D.  64 1 .  While many items were saved from the flames, much 
of classical civilization was forever lost in this conflagration. As with 
other lost monuments of the past-the treasures from the Great Pyramid 
of Cheops or the Temple of David in Jerusalem or the nearby Pharos of 
Alexandria-archaeologists today can only shrug their shoulders in 
numb frustration at the knowledge and beauty that are irretrievably 
gone . 

The focus of mathematical activity, so long centered at Alexandria, 
had shifted.  From A.D .  64 1 and for many, many centuries afterward, Ara
bian mathematicians would be the guardians of classical scholarship as 
well as mathematical innovators in their own right . Of course , the story 
of the Islamic Empire must begin with the life of Mohammed (A.D.  570-
632) , who rose from obscurity to become one of the pivotal figures in 
world history. A century and a half after Mohammed's death in Jerusa
lem,  the religion he had founded stretched from India, through Persia 
and the Middle East, across northern Africa, and on into southern Spain. 
As they spread geographically, the Islamic scholars eagerly assimilated 
the knowledge of the many civilizations with which they came in 
contact. 
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Among this knowledge was the mathematics of the Hindus in India, 
from which the so-called "Hindu-Arabic" numeral system arose. This 
system was so superior to that of the Romans that it has relegated the 
latter to clock faces, copyright dates, and Super Bowls. Had they done 
nothing else , the Arabs would long be remembered for promulgating 
this most useful numeral system. 

But of course, they did much more . In the early 800s, the Arabs began 
translating the Greek classics, as well as providing helpful commentaries 
on these works. The Elements was translated in A.D .  800, and Ptolemy's 
classic Syntaxis Mathematica followed a few decades later. This latter 
work, from around A.D.  1 50 ,  was the ultimate astronomical treatise of the 
classical world. Mimicking Euclid, it was composed of 1 3  books, includ
ing those on eclipses, on the sun, on the planets , and on the stars, as 
well as a Table of Chords mentioned in the Epilogue to Chapter 4. Ptol 
emy also spelled out in great detail his model of the solar system, an 
earth-centered model that would serve the needs both of science and of 
the human ego for 1400 years until the coming of a Polish thinker named 
Copernicus. The Arabs held Ptolemy's work in such high regard that they 
called it "AI magiste" -Arabic for "The Greatest" -and thus it is that we 
know it today under the title of the Almagest. 

Somewhat later, the great scholar Tabit ibn Qorra (826-901)  suc
ceeded in producing fine translations of Archimedes and Apollonius and 
rendering a very faithful translation of the Elements. The center of such 
Arabian scholarship was the city of Baghdad, in present-day Iraq, where 
there was established "The House of Wisdom, "  a beehive of scholarly 
activity that counted among its members a host of astronomers, mathe
maticians, and translators . The center of the matheniatical world-hav
ing previously resided at Plato's Academy and the Library of Alexan
dria-had now shifted to Baghdad, where it would remain for a very long 
time . 

Among the most important of the Arabian mathematicians was 
Mohammed ibn Musa al-Khowarizmi (ca. A.D .  825) . Borrowing from 
both East and West-that is, from both the Hindu mathematician Brah
magupta and the Greeks we have encountered thus far-al-Khowarizmi 
produced a treatise on algebra and arithmetic that would prove very 
influential . In  it, al-Khowarizmi illustrated the solution not only of linear 
(first-degree) equations but also of quadratic (second-degree) ones . 
That is, for the quadratiC equation ar + bx + c = 0, the solutions are 

x =  
- b  ± Yb2 - 4ac 

2 a  
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AI-Khowarizmi's presentation of this result was entirely verbal , with
out the concise algebraic symbolism we now employ. But if he did not 
give algebra its symbols, he gave it its name, at least indirectly. His major 
treatise was titled Hisab al-Jabr w 'al muqabalah. When this was trans
lated into Latin four centuries later, the title emerged as Ludus algebrae 
et almucgrabalaeque, and the shortened term "algebra" eventually 
stuck. 

There is debate as to the ultimate contributions of Arabian mathe
maticians. On the one hand, while they studied the work of such giants 
as Euclid and Archimedes, they never duplicated their glories. Nowhere 
in the Islamic works do we find the kind of quantum leaps of mathe
matical knowledge that so characterized the succession of Greek schol
ars . In particular, the Arabs simply did not regard "proof" as being at the 
heart of their mathematics , and in this sense mimicked the pre-Greek 
civilizations of the Near East. Because the Islamic mathematicians put 
less emphasis on proving their results in complete generality, no Arabian 
great theorem appears here . 

On the other hand, the Arab mathematicians did popularize a highly 
useful number system and contributed significantly to the problem of 
solving equations of various degrees . Moreover, in the words of Howard 
Eves, they were the "custodians of much of the world's intellectual pos
sessions" for the centuries when Europe slept. Without this great ser
vice, much of our knowledge of classical culture generally, and classical 
mathematics in particular, might have been forever lost . 

Eventually, the Arabs would relinquish their custodianship of Euclid 
and Archimedes, and these works would filter back into Europe . A chief 
impetus was, of course , the series of Crusades from the late-eleventh to 
mid-thirteenth centuries, in which the relatively backward Christian 
West met the relatively more sophisticated Islamic East. The Europeans 
failed to wrest the Holy Land from Moslem dominion but did return 
open-eyed at the high level of learning that existed among their 
enemies . 

Perhaps more significant was the Christian conquest of the Moors in 
Spain and Sicily. The great Spanish city of Toledo fell to the Christians 
in 10B5 , and Sicily was conquered a few years later. When the Europeans 
entered these defeated territories, they found the books and documents 
of the vanquished Arabs . With an unimagined world of knowledge at 
their fingertips and the abil ity to study it at their leisure , the Europeans 
began to discover the scholarship not only of their Islamic adversaries 
but of their classical ancestors . The effect was dramatic .  

Much of the impact of these classics-works by Plato and Arist9tle 
and of course Euclid-was felt in the emerging universities of Italy. The 
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first was founded at Bologna in 1088 and others soon followed at Padua, 
Naples , Milan , and elsewhere . Over the next century or two, the intel
lectual climate in Italy rose from its Medieval depths toward the heights 
we now call the Renaissance . 

And it was in sixteenth-century Italy that the Arabic transmissiop. of 
classical culture combined with the awakening talent of the Italian 
scholars to produce our next great theorem: the bizarre and incredible 
tale of the solution of the cubic equation by Gerolamo Cardano of Milan. 



6 
Chapter 

Cardano and the Solution of 
the Cubic 

( 1 545) 

A Horatio Algebra Story 

Without question, the last decades of the fifteenth century marked a time 
of great intellectual excitement in Europe . Western civilization had 
clearly awakened from the slumber of the Middle Ages. Johannes Guten
berg had invented his marvelous printing press in 1450, and books 
became available as never before . Universities at Bologna, Paris, Oxford, 
and elsewhere had become legitimate centers of higher education and 
scholarship. In Italy, Raphael and Michaelangelo were beginning 
extraordinary artistic careers while their older countryman, Leonardo da 
Vinci ,  was giving meaning to the term Renaissance man. 

It was not just the intellectual world whose horizons were expand
ing .  In the year 1492 , Christopher Columbus, a Genoa native, had dis
covered a new world far across the Atlantic Ocean. As much as anything, 
this discovery of the Americas stood as proof that contemporary civili
zation could extend the frontiers of knowledge beyond even the glori
ous legacy of the classical world. As the fifteenth century waned, there 
could be no doubt that Europe was on the threshold of great things . 

133 



134 • JOURNEY THROUGH GENIUS 

And so it was in mathematics. In the year 1494 , the Italian Luca 
Pacioli (ca. 1445- 1509) produced a volume titled Summa de Arithme
tiea. In it, Pacioli treated the standard mathematics of his day, with 
emphasis on solving both l inear and quadratic equations . Interestingly, 
he flirted with a primitive symbolic algebra by using co to denote the 
unknown quantity in his equations . This was short for eosa, the Italian 
word for "thing"-that is, the thing to be determined. It would be a cen
tury or more before algebra evolved into the symbolic system that we 
recognize today, but Summa de Arithmetiea had taken a step in this 
direction . 

Pacioli 's assessment of the cubic equation-that is, an equation of 
the form ar + b:i'- + . ex + d = O-was decidedly pessimistic . He had 
no idea how to solve the general cubic and expressed the belief that 
such a solution was as impossible , given the state of mathematics, as 
squaring the circle .  This observation, actually something of a challenge 
laid before the Italian mathematical community, set the stage for the 
remarkable tale that surrounds our next great theorem: the sixteenth
century Italian algebraists and their quest for the solution of the cubic. 

The story begins with SCipione del Ferro (1465-1 526) of the Univer
sity of Bologna. Taking up Pacioli 's challenge, the talented del Ferro 
discovered a formula that solved the so-called "depressed cubic . "  This 
is a third-degree equation that lacks its second degree, or quadratic, 
term. That is, the depressed cubic looks like ar + ex + d = O. Usually, 
we prefer to divide through by a and move the constant term to the right
hand side of the equal sign, so as to convert the depressed cubic to its 
standard form 

� + mx = n 

Renaissance Italians called this "cube and cosa equals number," for 
obvious reasons . Although he had mastered only this particular kind of 
cubic, del Ferro's algebraiC advance was significant, and we would 
expect him to have spread the word of his triumph far and wide . Actu
ally, he did nothing of the sort . The cubic's solution he kept an absolute 
secret! 

To understand such behavior-almost incomprehensible in the 
"publish or perish" world of today-we must consider the nature of the 
Renaissance university. There , academic appointments were by no 
means secure . Along with patronage and political influence, continued 
service depended on the ability to prevail in public challenges that 
could be issued from any quarter at any time . Mathematicians l ike del 
Ferro always had to be ready to do scholarly battle with challengers, and 
the consequence of a public humiliation could be disastrous to one's 
career. 
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Thus, a major new discovery was a powerful weapon. Should an 
opponent appear with a l ist of problems to be solved, del Ferro could 
counter with a l ist of depressed cubics . Even if del Ferro were stumped 
by some of his challenger's problems, he could feel confident that his 
cubics, baffiing to all but himself, would guarantee the downfall of his 
unfortunate adversary. 

Scipione apparently did a good job of keeping his solution secret 
throughout his life ,  and it was only on his deathbed that he passed it 
along to his student Antonio Fior (ca. 1506-?) . Although Fior was not so 
good a mathematician as his mentor, he rashly went on the offensive 
with his new-found weapon and in 1535 leveled a challenge at the noted 
Brescian scholar Niccolo Fontana ( 1499- 1557) . 

An unfortunate childhood calamity had shaped Fontana's l ife .  During 
the French attack on his home town in 1 5 12 ,  a soldier, sword in hand, 
had delivered a savage , slashing wound to the face of young Niccolo .  
According to legend, the boy survived only because a dog l icked the 
horrible gash. But if the medicinal effects of canine saliva saved his l ife, 
they could not save his speech. So disfigured was Niccolo Fontana that 
he could no longer speak with clarity. Tartaglia-the Stammerer
became his nickname, and it is by this rather cruel epithet that he is best 
known today. 

Physical deformities aside , Tartaglia was a gifted mathematician. In 
fact, he boasted that he could solve cubics of the form x' + mx2 = n
that is, cubics missing their linear terms-although Fior doubted that 
Tartaglia had such a method. When the challenge from Fior arrived, Tar
taglia sent him a l ist of 30 problems covering various mathematical top
ics . By contrast, Fior had provided a list of 30 "depressed cubics" and 
thereby placed Tartaglia in a bind. It was clearly a case of Fior's putting 
all his eggs into one basket; Tartaglia was either going to get a score of 
o or of 30 depending on whether or not he found the secret. 

Not surprisingly, Tartaglia began a frantic, round-the-clock attack on 
the depressed cubic . His frustrations mounted as the days passed and the 
critical deadline approached. Then, on the night of February 13 ,  1 535 ,  
with time almost exhausted, Tartagl ia discovered the solution . His 
intense efforts had paid off. He now could solve all of Fior's problems 
with ease , while his less gifted challenger turned in a dismal perfor
mance of his own. In a great public triumph, Tartaglia prevailed bril 
l iantly. His reward was to have been 30 lavish banquets provided by the 
hapless Fior, but Tartaglia, in a gesture of magnanimity, relieved his 
opponent of this commitment. The monetary savings to Fior must have 
been of l ittle value as compared to the total disgrace he had suffered; he 
quietly faded from the picture . 

But then entered perhaps the most bizarre character in the whole 
history of mathematics, Gerolamo Cardano ( 1501-1 576) of Milan . Car-
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dano had heard of the challenge and desired to learn more of the won
derful techniques of Tartaglia, the master of the cubic equation. Rather 
boldly, Cardano asked the Brescian to divulge the secret, and from there 
the story took unexpected and remarkable turns . 

Before following it to its conclusion, however, we should pause to 
examine the extraordinary life of Gerolamo Cardano. We are fortunate 
to have a first-person account in his autobiography De Vita Propria Liber 
(The Book of My Life) written in 1 575 . This book is awash with Cardano's 
recollections, peeves, and superstitions, not to mention a wealth of 
extremely peculiar anecdotes. More than most autobiographies, this one 
must be regarded skeptically; even so, it gives us a revealing glimpse of 
his turbulent life .  

Cardano began with a brief discussion of his forebears . His family 
tree may have included Pope Celestino IV, not to mention a distant cou
sin Angiolo, who, at the venerable age of eighty 

begot sons-infants feeble as if with their father's senility . . .  The eldest of 
these sons has lived to be seventy, and I hear that some of his children 
became giants . 

Then, in a chapter called "My Nativity, " Cardano revealed that 
"although various abortive medicines-as I have heard-were tried in 
vain" he survived, only to be "literally torn from my mother'S womb."  
This experience ieft him nearly dead, and a bath of warm wine was 
required to bring the infant Gerolamo back to life .  It appears that Car
dano may have been illegitimate , thus explaining his unwelcome arrival , 
and the associated stigma played a key role in his l ife's story. 

With such a shaky start, it should come as no surprise that Cardano 
was plagued with infirmities throughout his l ife .  In his autobiography, 
he never hesitated to describe these afflictions, often in complete if not 
disgusting detail .  He told of violent heart palpitations, of fluids oozing 
from the stomach and chest, of ruptures and hemorrhoids, not to men
tion a disease characterized by "an extraordinary discharge of urine" 
yielding up to 100 ounces (nearly a gallon) per day. He recorded an 
intense fear of high places, as well as "of places where there is any report 
of mad dogs having been seen." He experienced years of sexual impo
tence, which lasted until just before his marriage (certainly an example 
of good timing) . It was not unusual for Cardano to experience eight con
secutive nights of insomnia; at such times there was little he could do 
but "get up, walk around the bed, and count to a thousand many times. "  

On  those rare occasions when he  was not suffering from one of  his 
horrible ailments, Cardano would consciously inflict pain upon himself. 
He did so because "I considered that pleasure consisted in relief follow-
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ing severe pain" and, when not suffering physically, "a certain mental 
anguish overcomes me , so grievous that nothing could be more distress
ing ."  Consequently, 

I have hit upon a plan of biting my lips, of twisting my fingers , of pinching 
the skin of the tender muscles of my left arm until the tears come. 

Cardano was saying, more or less, that these self-inflicted tortures were 
desirable because it felt so good when he stopped. 

Fragile physical (and mental) health was not his only problem. After 
compiling an excellent record at the University of Padua on the way to 
becoming a physician, Cardano was refused permission to practice med
icine in his home of Milan. This refusal may have been due to his 
reputed illegitimacy or to his grating and bizarre personality, but what
ever its cause, it marked one of the low points in a life notable for its 
ups and downs. 

Rejected by Milan, Cardano moved to the small town of Sacco, near 
Padua, where he practiced medicine in the bucolic, if somewhat limit
ing, confines of country life .  One night in Sacco, he dreamt of a beautiful 
woman in white . As one who put great stock in the meaning of dreams, 
he was thus strongly affected when,  some time later, he encountered a 
woman exactly matching his dream apparition . At first, the poor Cardano 
despaired at the impossibil ity of courting her: 

If I, a pauper, marry a wife who has no dot save a troop of dependent broth
ers and sisters, I'm done for! I can scarcely pay my expenses as it is! If I 
should attempt an abduction, or try to seduce her, there would be plenty to 
spy upon me. 

Stil l ,  his love made marriage irresistible .  In 1 53 1 ,  he married Lucia Ban
darini, the woman of his dreams. 

As this episode suggests , dreams, omens, and portents figured prom
inently throughout Cardano's life .  He was an ardent astrologer, a wearer 
of amulets , and a seer of visions who predicted the future from thunder
storms. In addition, he often felt the presence of a protective spirit , or 
guardian angel ,  as he remarked in his autobiography: 

Attendant or guardian spirits . . .  are recorded as having favored certain men 
constantly-Socrates , Plotinus, Synesius, Dio, Flavius Josephus-and I 
include myself. All ,  to be sure , lived happily save Socrates and me . . .  

Apparently, he did not hesitate to carry on lively conversations with 
his attendant spirit. Says Oystein Ore ,  Cardano's  twentieth century biog-
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rapher, " In the face of such tales it is no wonder that some of his con
temporaries believed that he was not in his right mind." 

Another of his life- long interests was gambling. Cardano regularly 
indulged in games of chance, often earning substantial sums to supple
ment his income. Contritely, he acknowledged in his. autobiography 

. . .  as I was inordinately addicted to the chess-board and the dicing table, I 
know that I must rather be considered deserving of the severest censure . I 
gambled at both for many years; and not only every year, but-I say it with 
shame-every day. 

Fortunately, Cardano subjected this vice to a scientific scrutiny. His 
resulting Book on Games of Chance, published posthumously in 1663, 
was the first serious treatise on the mathematics of probability. 

And so, casting horoscopes, constantly gambling, beginning a family, 
Gerolamo Cardano spent the years from 1 526 to 1 532 in Sacco . But nei
ther his pocketbook nor his ego could endure the small-town atmo
sphere for long, and by 1 532 Cardano, with wife Lucia and son Giam
battista , was back in Milan, stil l  forbidden to practice medicine and 
ultimately conSigned to the poorhouse . 

Then, at last, fortune smiled upon him. Cardano began giving lec
tures on popular science that were especially well received by the edu
cated and nobility. He wrote successful treatises on topics ranging from 
medicine to religion to mathematics. In particular, in 1 536 he published 
an expose attacking the corrupt and inadequate practices of Italian doc
tors . This work, not surprisingly, was detested by the medical commu
nity but embraced by the public, and Cardano could be kept from prac
ticing medicine no longer. The College of Physicians in Milan 
grudgingly accepted him into their ranks in 1 539, and soon he shot to 
the top of his profession . By mid-century, Cardano was perhaps the most 
famous and sought-after doctor in Europe, one who treated the Pope and 
even traveled to Scotland-a long and arduous journey in those days
to care for the Archbishop of St. Andrew's .  

His days of triumph were not to last, for personal tragedies soon 
intervened. In 1 546, his wife died at age 3 1 ,  leaving Cardano with two 
sons and a daughter. Of these, the elder son, Giambattista, was Cardano's 
hope and joy. The boy proved quite bright, taking his medical degree in 
Pavia, and appeared to be following his father into a brilliant medical 
career. 

But disaster struck in the form of a "wild woman" (Cardano's words) .  
H e  related that , on the night of December 20, 1 557,  " . . .  when the 
desire (to sleep) was about to overcome me, my bed suddenly seemed 
to tremble , and with it the whole bed-chamber. " The next morning, Car-



CARDANO AND THE SOLUTION OF THE CUBIC • 139 

dano's inquiries revealed that no other townsperson had felt this noc
turnal quake, and Cardano took it as a very bad omen . No sooner had he 
reached this conclusion than his servant brought the unexpected news 
that Giambattista had married a woman "utterly without dowry or 
recommendation . ' , 

Indeed, the match proved to be an unfortunate one . Giambattista's 
wife bore three children, none of whom, she boasted, was Giambat
tista 's .  Such infidelity, openly flaunted, brought the young man to the 
breaking point. In retaliation, he prepared for her a cake laced with arse
nic. It did its job all too well ,  and Giambattista was arrested for murder. 
Cardano's tireless efforts and great reputation were to no avail; his 
beloved son was convicted and beheaded in early April 1 56o . 

"This was my supreme, my crowning misfortune ," the grieving Car
dano wrote . Despondent, he lost his friends, his career, and his zest for 
l ife .  Moreover, his other son, Aldo, was himself turning into a criminal , 
and Cardano actually was "obliged to have him imprisoned more than 
once ."  Heartbreak seemed to follow heartbreak. 

In 1 562,  he abandoned Milan, the city of his triumphs and tragedies, 
and accepted a position in medicine at the University of Bologna . With 
him he took Fazio, Giambattista's  son. Between the old man and the boy 
there developed a strong and loving relationship that perhaps, in his 
waning years, gave Cardano some of the joy that his own offspring had 
not. 

But the young boy and the new city did not bring tranquility into this 
stormy life .  In 1 570, Cardano was arrested and jailed on charges of her
esy. At the time, of course , the Church in Italy had adopted a hard line 
against the unorthodoxies of the Reformation, and it certainly found no 
comfort in Cardano's casting the horoscope of Jesus or writing the book 
In Praise of Nero about the hated, anti-Christian Roman emperor. 

Jailed and humiliated, the aging Cardano seemed to have met with 
his final disgrace. Yet, thanks to the testimonials of his illustrious friends 
and the leniency of the Church, Cardano soon got out of prison, went to 
Rome, and somehow wound up with a pension from the Pope! His was 
a "Horatio Algebra" story, if ever there was one . Thus resurrected, joined 
by his beloved grandson, Cardano spent his last years . Although an old 
man, he noted proudly in his autobiography that he stil l  possessed "four
teen good teeth, and one which is rather weak; but it will  last a long 
time, I think, for it stil l  does its share . "  Cardano spent his last years in 
relative tranquility and died quietly, after a very full life ,  on September 
20, 1 576. 

To the modern reader, Cardano remains a fascinating, if self-contra
dictory, character. He was incredibly prolific; his collected works' fill 
seven thousand pages and cover a bewildering array of topics, scientific 
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and otherwise . Yet even as he had one foot planted in the modern, ratio
nal world, he had another squarely planted in the superstitious irratio
nality of the Middle Ages. Looking back a century later, the great philos
opher and mathematician Gottfried Wilhelm Liebniz summed him up 
quite aptly: "Cardano was a great man with all his faults; without �hem, 
he would have been incomparable . "  

We now return to  the story of  the cubic equation, in  which Cardano 
was to play a major role .  Recall that, in 1 535 ,  Tartaglia of Brescia had 
soundly bested Antonio Fior by discovering the solution of certain kinds 
of cubics . Cardano was intrigued. Again and again he wrote to Tartaglia 
begging for the solution, and again and again he was rebuffed, with Tar
taglia vowing to write a book on the matter in his own good time . Ini
tially, Cardano reacted with anger, but eventually more soothing words 
brought Tartaglia to Milan as Cardano's guest . There , on March 25 , 1 539, 
Tartaglia revealed the secret of the depressed cubic-albeit written in 
cipher-to Cardano, who took the following solemn oath: 

I swear to you by the Sacred Gospel ,  and on my faith as a gentleman, not 
only never to publish your discoveries, if you tell them to me, but I also 
promise and pledge my faith as a true Christian to put them down in cipher 
so that after my death no one shall be able to understand them. 

A final character then appeared in this amazing drama. This was the 
young Ludovico Ferrari (1522- 1565) , who arrived at Cardano's door ask
ing for work. Cardano had that very day perceived a good omen in the 
incessant squawking of a magpie and thus eagerly took the boy in as a 
servant. It soon became clear that the young Ludovico was extraordinar
ily precocious. Their relationship quickly turned from master/servant to 
teacher/pupil and eventually, before Ferrari was 20 i  years old, to col
league/colleague. Cardano shared Tartaglia's secret with his bril liant 
young protege, and together the two of them made astounding progress . 

For instance , Cardano discovered how to solve the general cubic 
equation 

x + br + ex + d = 0,  

where the coefficients b, c,  and d may or may not be zero . Unfortunately, 
Cardano's work rested upon reducing the general cubic to a depressed 
form and thus ran up against his pledge of secrecy to Tartaglia. Mean
while, Ferrari succeeded in finding a technique for solving the quartic 
(or fourth degree) polynomial equation. This was a major discovery in 
algebra, but it depended upon reducing the quartic to a related cubic, 
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and again Cardano's oath forbade its publication. The two men, possess
ing the greatest algebraic discoveries of their time, were stymied. 

But then, in 1 543,  Cardano and Ferrari traveled to Bologna where 
they inspected the papers of Scipione del Ferro, with whom this whole 
long story had begun nearly three decades earlier. There, in del Ferro's 
own hand, was the solution to the depressed cubic. To Cardano, the 
implication was clear: he no longer was prohibited from publishing this 
result, since it was from del Ferro, and not from Tartaglia, that he would 
take his cue . The fact that both solutions were identical did not partic
ularly bother the eager Cardano. 

And so, in the year 1 545 ,  there appeared Cardano's mathematical 
masterpiece Ars Magna. To him, algebra was the "Great Art ," and the 
book represented a breathtaking advance over that which had been pre
viously known. Its 40 chapters begin with simple algebraic matters , but 
it is in Chapter XI ,  titled "On the Cube and First Power Equal to the 
Number," that the world at last saw the solution of the cubic. It is worth 
noting that Cardano prefaced this key chapter with the following: 

Scipio Ferro of Bologna well-nigh thirty years ago discovered this rule and 
handed it on to Antonio Maria Fior of Venice, whose contest with Niccolo 
Tartaglia of Brescia gave Niccolo occasion to discover it. He gave it to me in 
response to my entreaties, though withholding the demonstration . Armed 
with this assistance, I sought out its demonstration in [various] forms. This 
was very difficult. 

Cardano had thus given credit where credit was due ,  which satisfied 
everyone except Tartaglia. He, on the contrary, raged furiously about 
Cardano's deceit and treachery. In Tartaglia's eyes, Cardano had violated 
a sacred oath, pledged on his faith as a "true Christian," and was nothing 
more nor less than a vile scoundrel .  Accusations poured from Tartaglia's 
pen and were answered not by Cardano, who managed to stay above the 
fray, but by the tenacious and loyal Ferrari . The latter was known for his 
hot temper (he had lost a few fingers in an especially vicious fight) and 
lashed back vehemently. Accusatory, volatile letters flew between Bre
scia and Milan. For instance , in a 1 547 broadside , Ferrari blasted Tartag
lia as 

. . .  someone who spends the whole time . . .  on trifles . I promise you that if 
it were up to me to reward you , I would load you up so much with roots and 
radishes that you would never eat anything else in your life .  

(The last sentence is  a pun on the mathematical roots that permeate 
cubic problems.) 
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The conflict culminated in yet another public debate , this one 
between Tartaglia and Ferrari in Milan on August 10 ,  1 548. Tartaglia later 
made much of Cardano's absence, blaming him for a cowardly decision 
"to avoid being present at the dispute . "  However, the contest, held on 
Ferrari ' s  home turf, proved a failure for the visitor. Tartaglia blamed this 
on the rowdiness and partisanship of the crowd, whereas Ferrari natu
rally attributed the outcome to his own intellectual superiority. In any 
case , Tartaglia withdrew to return home, and Ferrari was proclaimed the 
brill iant victor. Mathematics historian Howard Eves, noting the hostile 
crowd and Ferrari's hot-headed reputation, says that Tartaglia may have 
been fortunate to escape alive . 

These , then, were the events surrounding the solution of the cubic, 
a story at once complex, lusty, and absurd. It now remains for us to con
sider the great theorem at the heart of this strange tale .  

Great Theorem: The Solution of the Cubic 

Upon examining Chapter XI of Ars Magna, the modern reader has two 
surprises in store . One is that Cardano gave not a general proof but a 
specific example of a depressed cubic, namely 

x + 6x = 20 

although in our discussion below we shall treat the more general 

x + mx = n 

The second is that his argument was purely geometrical , involving l iteral 
cubes and their volumes. Actually, the surprise here is minimized when 
we recall the primitive state of algebraic symbolism and the exalted posi
tion of Greek geometry among Renaissance mathematicians. 

The key result of Chapter XI is stated here in Cardano's own words, 
and his clever dissection of the cube is presented. His wordy "rule" for 
solving cubics at first sounds quite confusing, but recasting it in a more 
familiar, algebraic light shows that it does the job .  

TIlEOREM Rule to  solve r + mx = n: 

Cube one-third the coefficient of X; add to it the squa�e of one-half the con
stant of the equation; and take the square root of the whole .  You will dupli
cate [repeat] this, and to one of the two you add one-half the number you 
have already squared and from the other you subtract one-half the same . . .  
Then, subtracting the cube root of the first from the cube root of the second, 
the remainder which is left is the value of x. 
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PROOF Cardano imagined a large cube, having side AC, whose length 
we shall denote by t, as shown in Figure 6 . 1 .  Side AC is divided at B into 
segment BC of length u and segment AB of length t - u. Here t and u 
are serving as auxiliary variables whose values we must find. As the dia
gram suggests , the large cube can be sliced into six pieces, each of 
whose volumes we now determine : 

• a small cube in the lower front corner, with volume u3 
• a larger cube in the upper back corner, with volume ( t  - U) 3 
• two upright slabs, one facing front along AB and the other fac

ing to the right along DE, each with dimensions t - u by u 
by t (the length of the side of the big cube) and thus each with 
volume tu( t  - u) 

• a tal l  block in the upper front corner, standing upon the small 
cube, with volume u2( t - u) 

• a flat block in the lower back corner, beneath the larger cube, 
with volume u ( t  - U) 2 

Clearly the large cube's volume, f, equals the sum of these six com
ponent volumes . That is, 

f = u3 + ( t  - U) 3 + 2 tu ( t  - u) + u2( t  - u) + u( t  - U) 2 
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Some rearrangement of these terms yields 

( t  - U)3 + [2 tuC t - u) + ,re t - u) + u ( t  --0 U)2] = t - u3 

and factoring the comm'on ( t  - u) from the bracketed expression gives 

( t  - U)3 + C t - u) [2 tu + ,r + u ( t  - u)] = t ...... u3 

C t - U)3 + 3 tu ( t  - u) = t - u3 

or simply 

(* ) 

(The modern reader will notice that this equation can be derived 
instantly by simple algebra, without recourse to the arcane geometry of 
cubes and slabs. But this was not a route available to mathematicians in 
1 545 .) 

In (* ) we have arrived at an equation reminiscent of the original 
cubic r + mx = n. That is, if we let t - u = x, then (* ) becomes 
r + 3 tux = t - u3, and this instantly suggests that we set 

3 tu = m and t - u3 = n 

If we now can determine the quantities t and u in terms of m and n from 
the original cubic, then x = t - u will yield the solution we seek. 

Ars Magna does not present a derivation of these quantities. Rather, 
Cardano simply provided the specific rule for solVing the "Cube and 
Cosa Equal to the Number" that was cited above. Trying to decipher his 
purely verbal recipe is no easy feat and certainly makes one appreciate 
the concise , direct approach of a modern algebraic formula. Exactly what 
was Cardano saying in this passage? 

To begin, consider his two conditions on t and u, namely 

3 tu = m and t - u3 = n 

From the former, we see that u = m/3 t, and substituting this into the 
latter yields 

m3 
t - - = n 

27t 

Multiply both sides by t and rearrange terms to get the equation 

m3 
t - nt - - = 0 

27 
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At first, this appears to be no improvement whatever, for we have 
traded our original third-degree equation in x for a sixth-degree equa
tion in t. What saved the day, of course , was that the latter can be 
regarded as a quadratic equation in the variable f: 

rrr 
( f)2 - n( f) - - = 0 

27 

The quadratic formula, which had been available to mathematicians for 
centuries and which we mentioned in the Epilogue to the previous chap
ter, then yielded: 

n ±  

n 1 
= - + -

2 - 2 
�2 m3 

- + -
4 27 

Then, using only the positive square root, we have 

t =  
n �2 m3 
- +  - + -
2 4 27 

Now, we also know that u3 = f - n, and so we conclude that 

At last , we have the algebraic version of Cardano's rule for solving 
the depressed cubic x3 + mx = n, namely 

x = t - u 

= 
yn 

- +  
2 

�2 m3 
- + - -
4 27 

�2 m3 
- + -
4 27 

Q.E.D. 



----------------- -- --

146 • JOURNEY THROUGH GENIUS 

This expression is called a "solution by radicals" or an "algebraic 
solution" for the depressed cubic . That is, it involves only the original 
coefficients in the equation-that is, m and n-and the algebraic oper
ations of addition, subtraction, multiplication, division, and extraction of 
roots , used only finitely often .  A l ittle study shows that this formula 
yields precisely the same result as Cardano's verbal "Rule" stated above . 

Note that the key insight in Cardano's argument was to replace the 
solution of the cubic by the solution of a related quadratic equation (in 
f) . He thus found a way to lower the problem by "one degree" and to 
move from the unfamiliar turf of cubics to the well-known realm of 
quadratics . This very clever process suggested a path to follow in attack
ing equations of the fourth, fifth, and higher degrees well .  

As a concrete example ,  Cardano solved his prototype cubic x3 + 6x 
= 20 .  According to his recipe , he first cubed a third 6f the coefficient of 
x to get (� X 6)3 = 8; next he squared half of the constant term (that is, 
half of 20) to get 100, and then added the 8, yielding a sum of 108 whose 
square root he took. To this he both added and subtracted half of the 
constant term, to get 10 + Vl08 and - 10 + Vl08, and finally his solu
tion was the difference of cube roots of these two numbers : 

3 3 r---:-::--:----==!== X = '110 + Vl08 - V- lO + Vl08 

Of course , we could simply substitute m = 6 and n = 20 into the 
pertinent algebraic formula. This yields 

vr-:g� - + - = V108 
4 27 

and so 

3 3 r----:--:----.,,=;== X = '110 + Vl08 - V- lO + Vl08 

which is clearly a "solution by radicals . "  It may come as a surprise
easily checked by a hand calculator-that this sophisticated-looking 
expression is nothing more than the number "2" in disguise , as Cardano 

ICUbUS p. 6. rebus zqualis ).g. 
1 .  .a 0 .  
1.  I e. 

1 08_ 
�. IO�. p. 1 0. 
�. lOS .  m. I Q .  

ljI.. v. co. 1jto 1 0 8.  p. 1 0. 
m. ljI.. v. cu. ljI.. 1 0 8. m. 1 0 .  

-- -- -

CMdano's Rule for the cubic, from A1'5 M."a 
(photograph courtesy of Johnson 
Reprint Corporation) 
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correctly pointed out. One readily sees that x = 2 is indeed a solution 
of x' + 6x = 20 .  

Further Topics on Solving Equations 

Observe that, having found one solution to the cubic, we are now in a 
position to find any others . For instance , since x = 2 solves the specific 
equation above , we know that x - 2 is one factor of x' + 6x - 20, and 
long division will generate the other, second-degree factor . In this case , 
x' + 6x - 20 = (x - 2) (.x2 + 2x + 10) . The solutions to the original 
cubic thus arise from solving the linear and quadratic equations 

x - 2 = 0 and .x2 + 2x + 10 = 0 

which is easily done . (This particular quadratic has no real solutions , so 
the cubic has as its only real solution x = 2 . )  

To the modern reader, the next two chapters of Ars Magna seem 
superfluous. Cardano titled Chapter XI I  "On the Cube Equal to the First 
Power and Number"-that is, x' = mx + n-and Chapter XI I I  was "On 
the Cube and Number Equal to the First Power" -that is, x' + n = mx. 
Today, we would regard these as having already been adequately cov
ered by the formula above, for we would allow m and n to be negative . 
Mathematicians in the sixteenth century, however, demanded that all 
coefficients in the equation be positive . In other words, they regarded 
x' + 6x = 20 and x' + 20 = 6x not just as different equations, but as 
intrinsically different kinds of equations . Such squeamishness about 
negative numbers is hardly surprising, given Cardano's tendency to 
think in terms of three-dimensional cubes, where sides of negative 
length make no sense . Of course, avoiding negatives led to a prolifera
tion of cases and made Ars Magna conSiderably longer than we now find 
necessary. 

So, Cardano could solve the depressed cubic in any of its three ver
sions . But what about the general third-degree equation of the form 
ax' + b.x2 + ex + d = O? It was Cardano's great discovery that, by 
means of a suitable substitution, this equation could be replaced by a 
related, depressed cubic that was , of course, susceptible to his formula. 
Before examining this "depressing" process for the cubic, we might take 
a quick look at it in a more familiar setting-as applied to solving qua
dratic equations : 

Suppose yve begin with the general second-degree equation 

aX + bx + e = O where a -+ 0 
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To depress it-that is , to eliminate its first-power term-we introduce 
the new variable y by substituting x = y - bl2a  to get 

a (y -
2
�)2 +. b (y -

2
�) + c = 0 which gives 

( b tJ ) tJ 
a y - - y + - + by - - + c = O 

a 4d 2a  

tJ tJ 
ay - by + - + by - - + c = 0 

4a 2a  

or 

Then, canceling the by terms, we get the depressed quadratic 

Hence 

Finally 

tJ tJ 2tJ  tJ 4ac tJ - 4ac 
ay = -

2a -
-
4a 

- c = -4-a - -
4a -

-
4
-
a 

= --4-a
-

y = 
tJ - 4ac 

4d  
and y =  

± VtJ - 4ac 
2a  

b 
x = y - - = 

2a  
± V tJ - 4ac b - b ± V tJ - 4ac 

2a  2a 2a  

which is of course the quadratic formula once again. 
As this example suggests , depressing polynomials can prove quite 

useful .  With this in mind, we return to Cardano's attack on the general 
cubic. Here , the key substitution is x = Y - b/3a, which yields 

Upon expanding, this becomes 

(ay - by + :a y -
2�d) + ( bY - �� y + 9�) 

+ ( cy - ;:) + d = 0 
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There is but one critical observation we need to make regarding this 
blizzard of letters , namely, that the y terms will cancel out. Thus, the 
new cubic loses its second-degree term (as desired) . If we divide 
through by a, the resulting equation takes the form y + py = q. We 
solve this for y by Cardano's formula and from there have no difficulty 
in determining x = y - b/3a. 

To see this process in action, consider the cubic 

2x - 30,xZ + 162x - 350 = 0 

With the substitution x = y - b/3a = y - ( - 30/6) = y + 5 ,  we get 

2 (  y + 5)3 - 30( y + 5)2  + 162(  y + 5)  - 350 = 0 

which becomes 

21 + 1 2y - 40 = 0 or simply 1 + 6y = 20 

But this is, of course, the very depressed cubic we solved earlier, and so 
we know that y = 2. Hence x = y + 5 = 7, and this checks in the 
original equation. 

Ars Magna did not handle the general cubic quite so concisely as we 
did here . Instead, demanding only positive coefficients , Cardano had to 
wade through a string of different cases, such as "On the Cube, Square , 
and First Power Equal to the Number," "On the Cube Equal to the 
Square, First Power, and Number," "On the Cube and Number Equal to 
the Square and First Power," and so on. At last, 1 3  chapters after solving 
the depressed cubic, he brought the matter to its conclusion . The cubic 
had been solved. 

Or had it? Although Cardano's formula seemed to be an amazing tri
umph, it introduced a major mystery. Consider, for instance, the 
depressed cubic x - 1 5x = 4 .  

Using m = - 15 and n = 4 in  the formula developed above , we get 

x = �./2 + y- 1 2 1  - V- 2  + y- 1 21  

Obviously, i f  negative numbers were suspect in  the 1 500s, their square 
roots seemed absolutely preposterous,  and it was easy to dismiss this as 
an unsolvable cubic .  Yet it can easily be checked that the cubic above 
has three different and perfectly real solutions : x = 4 and x = - 2 ± 
V3. What was Cardano to make of such a situation-the so-called "irre
ducible case of the cubic"? He took a few half-hearted stabs at investi -
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gating what we now call " imaginary" or "complex" numbers but ulti
mately dismissed the whole enterprise as being "as subtle as it is 
useless . "  

I t  would be  another generation before Rafael Bombelli (ca. 1 526-
1 573) , in his 1 572 treatise Algebra, took the bold step of regarding imag
inary numbers as a necessary vehicle that would transport the mathe
matician from the real cubic equation to its real solutions; that is, while 
we begin and end in the familiar domain of real numbers, we seem com
pelled to move into the unfamiliar world of imaginaries to complete our 
journey. To mathematicians of the day, this seemed incredibly strange. 

We shall examine briefly what Bombelli did. Temporarily disregard
ing any latent prejudice against M, we cube the expression 2 + 
M to get 

(2 + M)3 = 8 + 12 M - 6 - M 
= 2 + 1 1 M  = 2 + Y- 1 2 1  

But if ( 2  + M)3 = 2 + Y - 1 2 1 ,  then it surely makes sense to say 
that 

\/2 + \/,- 1 2 1  = 2 + M 
Similarly, we can see that \/ - 2  + \/,- 1 2 1  = -2 + M. Then, 

reexamining the cubic ;x3 - 15x = 4 ,  Bombelli arrived at the solution 

x = \/2 + £TIl - \/ - 2  + \/'- Il1 
= (2 + M) - ( - 2 + M) = 4 

which is correct! 
Admittedly, Bombelli 's technique raised more questions than it 

resolved. For one thing, how does one know beforehand that 2 + 
M is going to be the cube root of 2 + Y - 1 2 1 ?  It would not be until 
the middle of the eighteenth century that L<:;onhard Euler could give a 
sure-fire technique for finding roots of complex numbers . Furthermore, 
what exactly were these imaginary numbers, and did they behave like 
their real cousins? 

It is true that the full importance of complex numbers did not 
become evident until the work of Euler, Gauss, and Cauchy more than 
two centuries later, and we shall meet this topic again in the Epilogue 
to Chapter 10 .  Still ,  Bombelli deserves credit for recognizing that such 
numbers have a role to play in algebra, and he thereby stands as the last 
in the line of the great Italian algebraists of the sixteenth century. 
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One point should be stressed here . Contrary to popular belief, imag
inary numbers entered the realm of mathematics not as a tool for solving 
quadratics but as a tool for solving cubics. Indeed, mathematicians 
could easily dismiss V - 12 1  when it appeared as a solution to X- + 1 2 1  
= 0 (for this equation clearly has no real solutions) . But they could not 
so easily ignore V - 12 1  when it played such a pivotal role in yielding 
the solution x = 4 for the previous cubic. So it was cubics, not quadrat
ics, that gave complex numbers their initial impetus and their now
undisputed legitimacy. 

We should make a final observation about Ars Magna. In Chapter 
XXXIX,  Cardano introduced the solution of the quartic with the words: 

There is another rule, more noble than the preceding. It is Lodovico Fer
rari 's, who gave it to me on my request. Through it we have all the solutions 
for equations of the fourth power. 

While the procedure is quite complicated, its two key steps should 
ring a bell :  

1 .  Beginning with a general quartic ax4 + bx3 + CX- + dx + e = 0, 
depress it using the substitution x = y - b/4 a and then divide through 
by a, to generate a depressed quartic in y. 

2 .  By cleverly introducing auxiliary variables, replace this quartic by 
a related cubic, which then can be solved using the techniques devel
oped above . Here again, Ferrari invoked the rule-of-thumb that the way 
to solve an equation of a given degree is to reduce it to the solution of 
an equation of one degree less. 

Those who were capable of reading through this, and all of the other 
discoveries in Ars Magna, must have been breathless by the time they 
finished. The art of equation solving had been taken to new heights , and 
Luca Pacioli 's original assessment that cubics, let alone quartics, were 
beyond the reach of algebra had been shattered. It is little wonder that 
Cardano ended his book with the enthusiastic and rather touching state
ment: "Written in five years, may it last as many thousands ."  

Epilogue 

One question that the Cardano-Ferrari work left unanswered was the 
algebraic solution of the quintic, or fifth-degree, equation . Their effbrts 
certainly suggested that such a solution by radicals was possible and 
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even gave an obvious hint as to how to begin. That is, faced with the 
quintic 

ax5 + bx4 + ex + dX + ex + f =  0 

introduce the transformation x = y - b/5 a  to depress it to 

y + my + ny + py + q = 0 

and then search for some auxiliary variables to reduce this to a quartic 
equation, which is known to be solvable by radicals . Such an argument 
was especially appealing not only because it mimicked the approach that 
had proved so successful in disposing of cubic and quartic equations, 
but also because, as was well known, any fifth-degree (or, indeed, any 
odd-degree) polynomial equation must have at least one real solution. 
This follows because the graphs of odd-degree equations look some
thing like that of the specific fifth-degree equation shown in Figure 6 .2 .  
That is, they rise ever higher as we move in  one direction along the x
axis and fall ever lower as we move in the other direction. Consequently, 
such functions must be positive somewhere and must be negative some
where else , and we conclude-using a result technically known as the 
intermediate value theorem-that the continuous graph must some
where cross the x-axis. In the diagram of the quintic above, e is such a 
pOint, and hence x = e is a solution to x5 - 4.x3 - xl + 4x - 2 = o .  A 

y 

FIGURE 6.2 
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similar argument guarantees that any odd-degree polynomial equation 
has (at least) one real solution . 

Note , however, that although the intermediate value theorem says 
that real solutions for quintics exist, it by no means gives them explicitly. 
It was the precise formula for such solutions that the algebraists who 
followed Ferrari were seeking. 

Alas , all efforts in this direction-and they were numerous-met 
with failure . A century passed, and another, yet no one could provide. a 
"solution by radicals" for the quintic. This came in spite of the fact that 
later mathematicians found a transformation to reduce the general quin
tic to one of the form 

r + pz = q  

If we called the earlier equation "depressed,"  this one must have been 
"utterly despondent . "  Yet even this highly Simplified quintic resisted the 
efforts of all who attacked it. The situation was frustrating, if not slightly 
scandalous. 

Then, in 1824, a young Norwegian mathematician, Niels Abel ( 1802-
1829) , shocked the mathematical world by showing that no "solution by 
radicals" was possible for fifth- or higher-degree equations. The search, 
in short, had been doomed from the start . Abel's proof, which c.an be 
found in D. E. Smith 's Source Book in Mathematics, is quite advanced 
and not at all easy to follow, yet it certainly stands as a landmark in math
ematics history. 

It is worth noting what Abel's result did and did not imply. He did 
not say that no quintic is solvable, for we obviously can get lucky and 
solve such equations as x5 

- 32 = 0, which clearly has the solution x 
= 2 .  Further, Abel did not deny that we might solve quintics using tech
niques other than the algebraic ones of adding, subtracting, multiplying, 
dividing, and extracting roots . Indeed, the general quintic can be solved 
by introducing entities called "elliptic functions, "  but these require 
operations conSiderably more complicated than those of elementary 
algebra. In addition, Abel's result did not preclude our approximating 
solutions for quintic equations as accurately as we-or our computers
wish. 

What Abel did do was prove that there exists no algebraic formula, 
involving only the coefficients of the original quintic equation, that will 
be a guaranteed generator of solutions . The analogue of the quadratic 
formula for second-degree equations and Cardano's formula for cubics 
simply does not exist-it is impossible to provide a universally effective 
means of finding solutions by radicals for quintics . 

The situation is reminiscent of that encountered when trying to 
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square the circle , for in both cases mathematicians are limited by the 
tools they can employ. For circle squaring, as noted in Chapter 1 , the 
compass and straightedge are simply not powerful enough to get the job 
done . Likewise, it is the restriction to "solutions by radicals" that ham
pers mathematicians in their pursuit of the quintic . The familiar opera
tions of algebra are incapable of taming something as wild as a fifth
degree equation. 

We seem to be on the brink of a paradox here, for although mathe
maticians know that quintics must have solutions, Abel showed that 
there is no algebraic way of finding them. But it is that modifier, alge
braic, that keeps us from plunging over the brink into mathematical 
chaos . Indeed, what Abel actually demonstrated was that algebra does 
have very definite limits, and for no obvious reason, these limits appear 
precisely as we move from the fourth to the fifth degree . 

Consequently, in a very real sense , we have come full circle. The 
pessimism of Luca Pacioli, obscured by the thrill of discovery in the six
teenth century, turned out to have been prophetic . When we move 
beyond fourth-degree equations, the unequivocal triumph of algebra is 
lost forever. 



Mathematics of the Heroic Century 

7 
Chapter 

A Gem from 
Isaac Newton 

(Late 1 660s) 

If the sixteenth century saw a qUickened pace of mathematical activity, 
the seventeenth would bring an absolute onslaught of innovation and 
discovery. It has come to be called the heroic century in the history of 
mathematics because of the intellectual giants who came and went dur
ing these productive years . 

At this time, the focus of activity shifted northward, from the talented 
Italian algebraists of the previous chapter to an array of French, German, 
and British thinkers . The causes of the shift were certainly many and, as 
with any human endeavor, involved a healthy dose of pure chance . But 
some scholars, in noting this phenomenon, have attached importance to 
the relative freedom of inquiry in northern Europe as contrasted with 
the harsh restrictions imposed by the Church in Italy. The fate of Galileo 
is the best-known case in point, the story of a scientist whose investiga
tions led him into topics unacceptable to the powerful religious author
ities of seventeenth-century Roman Catholicism. Galileo 's imprison
ment and forced disavowal would surely have chilled the intellectual 
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climate, and the entire episode constitutes one of the most ignoble 
chapters in the history of science . 

All was not freedom and openness in the north, yet the heritage of 
the Reformation seemed to favor the kind of unfettered inquiry that 
would loosen the intellect of a Kepler or Descartes or Newton. It is. pos
sible that , in attempting to impose an inflexible orthodoxy, the Church 
had condemned Italy to a second-class citizenship in science . 

It was not mathematics alone that was flourishing as the sixteenth 
century became the seventeenth. In 1607, the British settled at James
town, and the European colonization of the New World began in earnest. 
A few years before Jamestown, Galileo had investigated the motion of 
falling bodies with such care and ingenuity that he forever altered the 
nature of physics . Two years after Jamestown, the same Galileo turned 
the recently invented "spyglass" toward the heavens and launched mod
ern astronomy, even as he simultaneously began the journey that would 
lead to the personal crisis already mentioned. And, not to overlook the 
arts , we should recall that Cervantes wrote his monumental Don Quixote 
in 1605 ,  while in 160 1 an English playwright named William Shake
speare had written a play he titled Hamlet, Prince of Denmark. 

Obviously, cultural landmarks do not fit themselves neatly into 100-
year intervals ,  and it was in the latter years of the previous century that 
the first signs appeared of the mathematical revolution that was in store . 
A "heroic century" needs heroes, and we shall take a brief look at some 
of them . 

In the 1 590s , the French mathematician Francois Vi(�te published his 
influential In artem analyticam isagoge (usual translation : The Analytic 
Art) . VU�te 's approximation of 7r was mentioned in Chapter 4 ,  but it is 
this 1 591 work that stands as his masterpiece . In artem went a long way 
toward developing symbolic algebra, destined to become the "alphabet" 
of higher mathematics . Admittedly, Viete 's algebraic notation looks far 
from modern and seems unduly cumbersome and wordy for those accus
tomed to today's mathematics . For instance , Viete would write 

D in R - D in E aequabitur A quad 

as his version of our modern DR - DE = A 2 . Yet he made an important 
step toward the use of letters to deSignate quantities in an equation . 
Refined and extended in the decades ahead, algebraiC symbolism would 
transform the look-and the substance-of mathematics in the new 
century. 

Early in the 1600s , a pair of mathematicians from the British Isles, 
John Napier ( 1 550-1617) and Henry Briggs ( 1 561-163 1 ) ,  jointly intro
duced, perfected, and explOited the "logarithm," a concept having tre-
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mendous practical and theoretical significance. Logarithms have the 
remarkable property of simplifying such otherwise tedious computa
tions as multiplication, division, and the extraction of roots so that no 
scientist of sound mind would thereafter go about finding V234 .65 with
out the benefit of logarithms. In the next century, Pierre-Simon Laplace 
would observe that the logarithms of Napier and Briggs "by shortening 
the labors doubled the life of the astronomer."  Certainly, the coopera
tion between Briggs and Napier in this venture is noteworthy and stands 
in striking contrast to some of the bitter disputes and jealousies that 
would plague mathematics in the years to come . 

As the century progressed, three French mathematicians commanded 
the spotlight. One was Rene Descartes ( 1 596-1650) , a philosopher and 
mathematician whose 1637 Discours de la methode became a landmark 
in the history of philosophy. It was a treatise on "universal science" that 
both anticipated and spurred on the great scientific explosion that char
acterized the times . While the philosophical content of the Discours was 
widely discussed and hotly debated, it was an appendix, titled La geo

metrie, that most directly influenced the development of mathematics. 
There Descartes provided the first published account of what we now 
call analytic geometry. Like Vi(�te's algebraic notation, Descartes' ana
lytic geometry was far from modern in appearance, but it announced the 
marriage of algebra and geometry that would become indispensable in 
all subsequent mathematical work. 

When the Discours appeared, Blaise Pascal ( 1 623-1662) , although a 
youngster of 14 ,  was already attending meetings of senior French math
ematicians . He was on the brink of a spectacular, if short, mathematical 
career. Pascal was a brilliant child, of a kind one sometimes encounters 
in the history of mathematics . At age 16 ,  he had so impressed the mighty 
Descartes with his mathematical writings that the latter refused to 
believe that so young a boy was the author. Two years later, Pascal 
invented a calculating machine that stands as the very remote predeces
sor of the modern computer. Further, he made significant contributions 
to the theory of probability, thereby pushing the subject beyond the rudi
ments provided by Cardano a century before . 

In spite of his obvious talent for mathematics, Pascal devoted most 
of his adult life to questions of theology, and his work in this area is still 
regularly studied. A man who often perceived omens in events around 
him, Pascal concluded that God's plan for him did not include mathe
matics and dropped the subject entirely. However, while experiencing 
a particularly nagging toothache when he was 35 ,  Pascal let his thoughts 
wander to mathematics, and the pain disappeared. He took this as a heav
enly sign and made a quick but intensive return to mathematical 
research. Although this lasted barely a week, Pascal managed to discover 
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the fundamental properties of the cycloid curve, a topic discussed in the 
next chapter. With that, Pascal again abandoned mathematics, and in 
1662 , at the age of 39, he died. 

This brings us to perhaps the most remarkable of the triumvirate of 
Frenchmen who dominated the mathematical landscape in the mid-sev
enteenth century, Pierre de Fermat ( 1601-1665) of Toulouse . Fermat is 
notable for the many areas of mathematics in which he made significant 
discoveries. He created his own analytic geometry independent of-and 
perhaps earlier than-Descartes, and in some ways Fermat's approach to 
the topic was more "modern" than that of his famous contemporary. of 
course, Descartes was the first to publish a description of analytic geom
etry and thereby reaped more of the glory, but Fermat deserves equal 
credit for its creation . Likewise , a lively correspondence between Pascal 
and Fermat laid the previously mentioned foundation of probability the
ory in the 1650s. As if that were not enough, Fermat made great strides 
toward developing what we now call differential calculus. In some 
places, France in particular, he is sometimes accorded the honor of 
being a co-founder of the calculus, although most historians of mathe
matics, while recognizing his achievements, feel that this is going a bit 
too far. 

But it was in the area of number theory that Fermat left his most 
indelible mark. We have seen this topic before , with the writings of 
Euclid in Books VI I -IX of the Elements. One classic work on this subject 
was the Arithmetica of Diophantus (ca. A.D .  250?) . When this was redis
covered and translated during the Renaissance, it proved to be a very 
influential treatise . Fermat acquired a copy, devoured Diophantus' writ
ings , and soon was making profound discoveries of his own about the 
amazing properties of the whole numbers. 

It was common for him to state an intriguing result, and sometimes 
claim to have a valid proof, but rarely did he actually provide it. Thus it 
was the job of later mathematicians-and more often than not, this 
meant Euler-to furnish the missing verifications . As a result, mathe
matics historians are left with the dilemma of determining to whom the 
credit belonged-to Fermat, who had first stated the result and who may 
well have had a proof, or to Euler, who actually wrote down such an 
argument . 

By far the most intriguing of Fermat's "theorems" (the term is used 
gingerly since so many of his results were stated with an excess of con
fidence but an absence of prooO was triggered by the work of Diophan
tus . In his personal copy of the Arithmetica, Fermat scribbled a note in 
the margin beside Proposition 1 1 .8, a result about expressing a perfect 
square as the sum of two other perfect squares. Instances of such a 
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decomposition abound, as in 52 = 32 + 42 or 252 = 72 + 242 . Next to 
Diophantus' theorem, Fermat jotted these famous lines : 

But it is impossible to divide a cube into two cubes, or a fourth power 
[quadratoquadratumj into two fourth powers, or generally any power 
beyond the square into two like powers; of this I have found a remarkable 
demonstration. This margin is too narrow to contain it. 

In modern parlance , his jottings claimed that we can never find 
whole numbers a, b, and c and an exponent n > 3 for which an + if = 
cn. If he were correct, then the decomposition of a perfect square into 
the sum of two perfect squares was really something of a fluke; except 
for squares, said Fermat, numbers of a given power cannot be written as 
the sum of two smaller numbers of that same power. 

As usual, there was no proof. Fermat attributed this omission merely 
to the narrow margins on the page of the Diophantus text. If only he had 
had a blank page to work With, Fermat seemed to say, he would gladly 
have provided the wonderful demonstration he claimed to have discov
ered. Instead, as with most of his assertions, the task of finding a proof 
was left to posterity. 

In this case posterity is still looking, for Fermat's assertion remains 
to this day unresolved. Even Euler, who unraveled the mysteries of so 
many of Fermat's "theorems,"  could prove this assertion only for n = 3 
and n = 4 .  That is, Euler showed that indeed a cube cannot be written 
as the sum of two cubes, nor a fourth power as the sum of two fourth 
powers . But resolution of the general case , today popularly known as 
"Fermat's last theorem," is still anybody's guess. The betting odds seem 
to be that Fermat was correct in this, as in so many other of his unproved 
assertions. Nonetheless, no number theorist to date has managed to 
prove the result true, nor has anyone cooked up a counterexample to 
show it false . In this sense, then, calling it his last "theorem" is surely a 
bit premature . Should anyone resolve the issue-and even in the late 
twentieth century interest in the problem runs high-he or she will 
surely merit a page in all subsequent histories of mathematics . 

And so, if we were somehow to return to the summer of 1661 and 
survey the mathematical legacy of the seventeenth century, we would 
have much of Significance to behold. Algebraic notation, logarithms, ana
lytic geometry, probability, and the theory of numbers-all had come 
into their own, and the names of Viete , Napier, Descartes, Pascal , and 
Fermat would be justly revered. They were heroes indeed. Of course, no 
one on that summer's day would have paid the least attention to �he 
quiet beginning of a mathematical journey that would soon eclipse them 
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all . The journey was to commence at the beautiful Trinity College of 
Cambridge University. In the summer of 166 1 ,  a young lad from nearby 
Wools thorpe was about to begin his university career. He had previously 
shown promise , but much the same might have been said about the 
dozen or so equally obscure classmates with whom he began his Tril).ity 
experience . But this lad was on his way to become the supreme hero of 
the heroic century and, simultaneously, to change the way mankind 
would ever after look at the world. His name, of course , was Isaac 
Newton .  

A Mind Unleashed 

Newton was born on Christmas Day of 1642 ,  a dangerously premature 
infant frail and tiny enough to be put into "a quart pot ." Adding to his 
woes ,  his father had died in early October, so Newton's mother was left 
alone to care for the delicate newborn. Somehow, the baby overcame 
these initial dangers and the harsh Lincolnshire winter, and in the end 
Isaac would live to the impressive age of 84 . 

Although the physical hardships were overcome, those of a personal 
nature proved far more lasting. When Newton was three, his mother, 
Hannah Ayscough Newton, married Barnabas Smith, the 63-year-old rec
tor of a nearby village . Smith, although eager to have a young Wife, was 
not in the market for a 3-year-old as well .  Thus, when Newton's mother 
moved in with her new husband, young Isaac was left behind to be cared 
for by his grandmother. The pain of separation from his only surviving 
parent must have been overwhelming. Her proximity would have been 
sheer torture , for he could easily have climbed a tree and gazed out 
across the heath to see the village church spire where his mother and 
stepfather lived. Isaac, a child who had never known his father, had now 
lost his mother as well, not to the scourge of disease but to the cruelty 
of indifference . As we shall see , Newton would grow into a neurotic and 
misanthropic adult, one who rarely experienced the warm glow of 
human friendship. It is an easy matter to attribute such character traits to 
his abandonment by the one person about whom his world had 
revolved. 

As Isaac grew, he received a respectable grammar school education 
in the style of the day, which is to say an education heavy on the study 
of Latin and Greek. Outside the school, he kept largely to himself, occu
pying his time by reading or building various miniature devices of great 
charm and delicacy. It is said that he built a small · working Windmill 
driven by a mouse upon a treadmill; he made sundials and positioned 



A GEM FROM ISAAC NEWTON . 161 

them at various key points about his quarters ; or he took to attaching a 
lighted lantern to a high-flying kite on dark spring evenings, a phenom
enon that must have terrorized residents of the quiet English country
side _ Such activities indicate a very agile young mind not totally 
absorbed by the conjugation of Latin verbs _ They also presage the gifted 
experimental physicist whose practical laboratory devices would prove 
invaluable in the development of his theories. 

And so it was that Isaac Newton set off for Trinity College, Cam
bridge, in the summer of 166 1 .  At that time, the quiet town on the River 
Cam had already been a site of higher learning for 400 years, so it was 
an old and established institution in which Newton found himself. Cam
bridge had especially flourished earlier in the century, with the rise of 
Puritanism and Reformation zeal in England. It could boast everything 
from the King James translation of the Bible, to the architectural master
piece that was King's College Chapel, to that most Puritan of leaders, 
Oliver Cromwell, who hailed from nearby Huntingdon and had attended 
Sidney Sussex College of Cambridge until 1617 .  

When Newton arrived, much of this past glory was in  jeopardy, and 
the reasons were intimately linked to the vicissitudes of recent British 
history. In 1642 ,  the year of Newton's birth, the Puritans under Cromwell 
had brought to a successful conclusion their long campaign against the 
monarchy. Cromwell himself assumed control of the English govern
ment, an authority that became unquestioned when, in 1649, King 
Charles I was beheaded in Whitehall , London. The Royalists, whose base 
of support was anchored at Oxford University, were in temporary eclipse 
while the Puritans of Cambridge had their days of glory. 

These days were not to last, however. The Puritan Commonwealth 
proved to be little better, and perhaps even worse, than the monarchy it 
had replaced. When Cromwell died in 1658, no Puritan leader could fill 
the void, and British sentiment soon called for a return to kingly rule. 
Thus, in 1660 Charles II ,  son of the beheaded king, was placed upon the 
throne in what came to be known as the Restoration. Needless to say, 
this turned the tables. Cambridge University became a natural target for 
the suspicions and hostil ity of the newly empowered Royalists . When 
Newton arrived the year after the Restoration, the place was character
ized by political intrigue, patronage , and lethargy. It was far from an 
ideal situation . 

We who today revere Cambridge as one of the handful of truly great 
centers of learning may find hard to believe the state to which conditions 
had decayed in the 1660s. Professors were appointed for political or 
ecclesiastical reasons , and, for many, scholarship was simply irrelevant . 
There are records of faculty members who occupied their positions for 
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half a century without having a single student, or writing a single book, 
or giving a single lecture! Some, in fact, did not even live in the Cam
bridge area, and visited only infrequently. 

With such indifference among the professoriate , it is no surprise that 
the students were often equally immune to the pursuit of higher learn
ing. On paper, the university maintained the pretense of a vibrant intel
lectual life ,  heavily slanted toward the classical curriculum, for its schol
arly young men. In reality, Cambridge students indulged rather heavily 
in such activities as drinking at the ubiquitous pubs. It was certainly pos
sible, for student and professor alike , to coast through Cambridge with 
very little intellectual exertion . 

At first, Isaac Newton took the stated expectations at face value . He 
began the prescribed courses in Latin literature and Aristotelian philos
ophy but gradually abandoned the project, either because he realized 
that he knew more than his tutors , or because he recognized the irrele
vance of the moribund curriculum, or simply because it was clear that 
no one really cared whether or not he did the work. 

His colleagues at Trinity probably had the same reaction, but whereas 
they were likely to run off to a pub for their nightly carousing, Newton 
turned his attention elsewhere . He read voraciously and could be seen 
walking across the grounds in deep contemplation. When an idea had 
captured his interest, Newton could be impOSSibly single-minded and 
would often neglect to eat or sleep in favor of long bouts with an espe
cially intriguing problem. He also displayed, especially early in his Cam
bridge days, a streak of old-fashioned guilt, evident in the fact that he 
kept a l ist of his sins in a notebook. These included everything from a 
failure to pray often enough, to being inattentive at church services, to 
"having uncleane thoughts, words, actions, and dreamese . "  Certainly 
the Puritan strain ran deep, but one might expect as much from a soli
tary, introspective young man who grew up where (lind when he did. 

When not Sinning or writing about it, this ever-curious student would 
conduct experiments on the nature of light, color, and vision. For 
instance , he once stared at the sun for an excessively long period, then 
dutifully recorded the spots and flashes that affected his vision for days 
afterward; in fact ,  he had to confine himself to the darkness for some 
time to let the images gradually fade . On anothe'r occasion, curious 
about the effect of the eyeball 's shape in distorting and altering vision, 
he devised a particularly gruesome experiment with himself as subject. 
As Newton described it, he took a small stick, or "bodkin ,"  and pushed 
it 

betwixt my eye and ye bone as neare to ye backside of my eye as I could, 
and pressing my eye with ye end of it . . .  there appeared severall white , 
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darke , and coloured circles, which circles were plainest when I continued 
to rub my eye with a point of ye bodkin . . . .  

This disgusting procedure was illustrated by a drawing in Newton's hand 
showing the stick sliding under and behind his distorted eyeball, nicely 
labeled with letters from a to g. Clearly, this was no ordinary 
undergraduate . 

For all the deficiencies of Restoration Cambridge, it did possess a 
wonderful library, the very resource necessary for an inquiring mind of 
the first order. There is a story that, while at Sturbridge Fair in 1663, New· 
ton picked up a book on astrology. To help him understand its geometric 
diagrams, he decided he needed to acquaint himself with Euclid's Ele
ments. Interestingly, on his first reading he found this ancient text to be 
full of trivial and self-evident results (an opinion, by the way, which a 
mature Newton would abandon) . 

One striking thing about Newton's readings at this time was that he 
was not content to stick with the Greek classics . He devoured Descartes ' 
geometry, but only with great effort . He later recalled beginning the 
work and reading a few pages until utterly stumped. Then he would 
return to page 1 and begin anew, this time penetrating a bit further 
before the writings became incomprehensible. Again he would start 
over, and by this gradual process he plowed his way through La geo
metrie, without the assistance of a single tutor or professor. of course, 
given the sorry state of affairs among the staff and the classical flavor of 
the stated curriculum, he may have had difficulty finding anyone quali
fied to help . 

There was one Cambridge professor, however, who indeed had such 
qualifications . He was Isaac Barrow ( 1630-1677) , occupant of the pres
tigious Lucasian Chair of Mathematics . While Barrow was certainly not 
Newton's teacher in anything like a modern sense , he undoubtedly had 
some contact with the budding scholar and may have directed Newton 
to the major sources of contemporary mathematics . By reading and 
thinking constantly, Newton advanced from a fairly ordinary scientific 
and mathematical background to a mastery of the most up-to-date dis
coveries of the time . Having brought himself to the frontier, he was now 
ready to move into uncharted territory. 

In 1664 , Newton was promoted to the status of scholar at Trinity, thus 
acquiring a four-year period of financial support toward a master's 
degree . This promotion brought with it even greater freedom to follow 
his interests , and this freedom, combined with the solid background of 
his readings, was about to unleash one of the most extraordinary intel
lects in hiStory. More than ever, Newton applied his intense , almost 
unbelievable, powers of concentration to attack the problems before 
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him. In the twentieth century, the famous Cambridge economist John 
Maynard Keynes made this assessment of Newton's abilities : 

His peculiar gift was the power of holding continuously in his mind a purely 
mental problem unti1 he had seen straight through it. . . .  Anyone w:ho has 
ever attempted pure scientific or philosophical thought knows how one can 
hold a problem momentarily in one's mind and apply all one's powers of 
concentration to piercing through it, and how it will dissolve and escape and 
you find that what you are surveying is a blank. I believe that Newton could 
hold a problem in his mind for hours and days and weeks until it surren
dered to him its secret. 

Newton's own explanation of how he solved his wonderful problems 
was similar, if a bit more prosaic: "by thinking on them continuously. " 

In the feverish excitement of discovery, the next few years would see 
him ever more often working late into the night by the glimmer of can
dlelight, and it is said that his uncomplaining cat grew fat eating New· 
ton's untouched dinners . But missed meals and lost sleep were incon
sequential compared to the strides this young man was making. 

He had embarked upon what were probably the most productive two 
years that any thinker-certainly any 23-year-old thinker-has ever 
experienced. His days of triumph were spent in part at Cambridge and 
in part back at Woolsthorpe because of the closing of the university 
necessitated by an outbreak of the dreaded plague. Early in 1665, he dis
covered what we now call the "generalized binomial theorem," which 
became a major component of his subsequent mathematical works. Soon 
thereafter he came upon his "method of fluxions" -today better known 
by the name of differential calculus-and in 1666 had devised the 
" inverse method of fluxions" -that is, the integral calculus. In between, 
he formulated his groundbreaking theory of colors . But Newton recalled 
that there was more : 

. . .  the same year I began to think of gravity extending to ye orb of the Moon 
& . . . I deduced that the forces which keep the Planets in their Orbs must 
[be] reciprocally as the squares of their distances from the centers about 
which they revolve : & thereby compared the force requisite to keep the 
Moon in her Orb with the force of gravity at the surface of the earth, & found 
them to answer pretty nearly. 

These recollections , made half a century later by the aged Newton, 
described perfectly the embryonic theory of universal gravitation upon 
which, more than any other single achievement, rests his scientific fame. 
Surveying these discoveries, he observed with a remarkable candor and 
nonchalance : 
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All this was in the two plague years of 1665-1666. For in those days I was 
in the prime of my age for invention & minded Mathematicks & Philosophy 
more then at any time since . 

These two plague years have since come to be called Newton's anni 
mirabiles, or "wonderful years," and indeed they were . A popular leg
end says that during this time all of his theories emerged, complete and 
full-blown, from his fertile mind. This is surely an exaggeration, for in 
the years ahead Newton would continually refine and improve upon 
these theories . Yet the burst of creativity he exhibited in this short span 
of time did define and direct not only the research of his own lifetime 
but in a very substantial way the future of science itself. 

Today, it is easy to forget that Newton made these extraordinary dis
coveries as a totally anonymous Cambridge student . Professor R. S. West
fall ,  perhaps the foremost Newton biographer of our day, addressed this 
remarkable fact in the following memorable passage: 

[Newton's triumph] was a virtuoso performance that would have left the 
mathematicians of Europe breathless in admiration, envy, and awe. As it hap
pened, only one other mathematician in Europe, Isaac Barrow, even knew 
that Newton existed, and it is unlikely that in 1666 Barrow had any inkling 
of his accomplishment. The fact that he was unknown does not alter the 
other fact that the young man not yet twenty-four, without benefit of formal 
instruction, had become the leading mathematician of Europe . And the only 
one who really mattered, Newton himself, understood his position clearly 
enough. He had studied the acknowledged masters . He knew the limits they 
could not surpass . He had outstripped them all , and by far. 

As we have seen, the focus of mathematical scholarship has shifted 
from place to place throughout history, from the Pythagoreans at Cro
tona, to Plato's Athenian Academy, to Alexandria, to Baghdad, and then 
to the Renaissance Italy of Cardano and Ferrari. Incredibly, in the mid-
1 660s, it came to rest in the modest rooms of a Trinity College student, 
and wherever Newton was, there too was the mathematical center of the 
world.  

Newton's Binomial Theorem 

From his remarkable output, we can here examine only a tiny, tiny frac
tion. We shall start with the binomial theorem, Newton's first great math
ematical discovery. ParadOXically, it was not a "theorem" in the sense of 
Euclid or Archimedes in that Newton did not furnish a complete proof. 
Yet his insight and intuition served him well enough to devise the ger-
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mane formula and, as we shall see, apply it in the most wonderful 
fashion. 

The binomial theorem dealt with expanding expressions of the form 

( a  + b) n. With only simple algebra and adequate perseverance one 

obtains such formulas as 

( a  + b)2 = d + 2 ab + II 
( a  + b)3 = d + 3db + 3all + � 
( a  + b)4 = a4 + 4db + 6dll + 4 a� + b4 

and so on. Obviously it would be desirable to be able to find the coeffi
cient of a' b5 in the expansion of ( a  + b) 12 without going through the 
tedious calculations of actually multiplying ( a  + b) by itself a dozen 
times . The question of expanding the binomial had been raised, and 
solved, long before Newton was born. The Chinese mathematician Yang 
Hui knew the secret in the thirteenth century, although his work was 
unknown in Europe until relatively recent times. Viete likewise ran 
through binomial powers in Proposition XI of the Preliminary Notes of 
In artem. But it was Blaise Pascal who got his name attached to the great 
discovery. Pascal noted that the coefficients could be easily obtained 
from the array now known as "Pascal's triangle" :  

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
1 5 10 10 5 1 

1 6 1 5  20 1 5  6 1 
1 7 2 1  35 35 2 1  7 1 

and so on 

where each entry in the body of the triangle is obtained by adding the 
numbers in the row above to the left and right. Thus, according to Pascal, 
the next row would be 

1 8 28 56 70 56 28 8 1 

Note, for example, that the entry 56 arises from adding 2 1  + 35,  the 
numbers to the left and right in the previous row. 
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The link between Pascal's triangle and the expansion of ( a  + b)8 is 
immediate , since the last line of the triangle gives us the needed coef
ficients . That is, 

( a + b)8 = d + 8a'b  + 28(h) + 56a5 tJ  
+ 70tlb4 + 56dtr + 28d1f' + 8ab' + 11 

By extending the triangle a few more lines, we come upon 792 as the 
coefficient of a' b5 in the expansion of ( a  + b) 12 . The utility of the tri
angle is thus quite evident . 

The young Newton, when his thinking turned to the expansion of the 
binomial, was able to devise a formula for generating the binomial coef
ficients directly, without the tedious process of constructing the triangle 
down to the necessary row. Further, his inherent belief in the persis
tence of patterns suggested to him that the formula that correctly gen
erated coefficients for binomial powers like ( a  + b) 2 or ( a  + b)3 should 
work just as well for powers like (a + b) 1/2 or ( a  + b) -3 .  

Here a word about fractional and negative exponents is  needed. In 
an elementary algebra course , we learn that din = nVa while a - n = 
1/  an. While Newton may not have been the first to recognize these rela
tionships, he certainly made the most of them in conjunction with the 
binomial expansion of expressions like v'i+X or 1/(1  - r) . 

Newton's version of his binomial expansion is presented here as he 
explained it in a significant 1676 letter to his great contemporary Gott
fried Wilhelm Leibniz (a letter delivered via Henry Oldenberg of the 
Royal Society) . Newton wrote : 

(P + PQ ) mln = pmln + 
m AQ + 

m - n BQ 
n 2 n 

m - 2 n  m - 3 n  
+ 

3 n  eQ + 
4 n DQ + 

where P + PQ is the binomial to be conSidered; where m/ n is the power 
to which we shall raise the binomial "whether that power is integral or 
(so to speak) fractional, whether positive or negative" ;  and where A, B, 
e, and so on represent the immediately preceding terms in the 
expansion . 

For those who have seen the binomial expansion in modern guise , 
Newton's statement here may look perplexing and unfamiliar. But a 



168 • JOURNEY THROUGH GENIUS 

closer examination should resolve any questions. That is, we first notice 
that 

A = pmln 

m m 
B = - AQ = - pnlnQ 

n n 

and so on 

Then, applying Newton's formula and factoring the common pm/n from 
both sides of the equation, we arrive at 

P"'" ( !  
+ 

Q ) "'" = {P 
+ 

PQ ) "'" = pol" [ 1 + : Q 

+ (�) (� - 1 ) 
Q' 

+ (�) (� - 1 ) (� - 2) 
Q' 

+ . . .  ] 2 3 X 2 

Upon canceling pm/n, what remains is 

(! 
+ 

Q ) "'" = 1 
+ m 

Q 
+ (�) ( � - 1 ) 

Q' 
n 2 (:) (: - 1 ) ( : - 2) + 

Q3 
+ . 

3 X 2 
which may look a bit more familiar. 

We would do well to follow Newton's lead and use this in a few spe
cific examples. For instance, in expanding ( 1  

+ 
X)3 ,  we replace Q by x 

and min by 3 to get 
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(1 + X) 3 

= 1 + 3x + 
3 X 2 X-

+ 
3 X 2 X 1 X + 

3 X 2 X 1 X 0 
4 + . . . 

2 3 X 2  4 X 3 X 2  
x 

6 6 0 0 
= 1 + 3x + -

X-
+ - x + - X4 + - x + . . .  

2 6 24 1 20 
= 1 + 3x + 3x- + X 

Note that this is precisely the pattern generated by Pascal's triangle; 
moreover, since our original exponent was the positive integer 3, the 
expansion terminated after four terms. 

Quite a different phenomenon awaited Newton when the exponent 
was negative . As an example, in expanding (1 + X) -3 , his technique 
yields 

1 + ( - 3)x  + 
( - 3) ( - 4) X-

+ 
( - 3) ( - 4) ( - 5) 

x + . . .  
2 6 

or simply 

(1 + X) -3 = 1 - 3x + 6x- - lOx + 15x4 - . . .  

where the series on the right never terminates . Using the definition of 
the negative exponents , this equation becomes 

__ 
1 

__ = 1 - 3x + 6x- - lOx + 1 5� - . . .  
( 1  + X) 3 or equivalently 

___ 
1 
____ = 1 - 3x + 6x- - lOx + 1 5x4 - . . . 

1 + 3x + 3x- + x 

This result Newton checked by cross-multiplying and canceling to con
firm that indeed 

(1 + 3x + 3x- + x) (1  - 3x + 6x- - lOx + 1 5x4 - . . .  ) = 1 

Things became even more peculiar when he expanded an expres
sion like v'1'=X = ( 1  - X) lIZ . In this case , Q = - x  and m/ n = 1/2 ,  
so we get 
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To check this peculiar- looking formula, Newton multiplied the infinite 
series on the right by itself-in short, he squared it-as follows:  

( 1 - ! x - ! x - 1.- x - ..2.-. X4 - • • . ) ( 1 - ! x - ! x 
2 8 16  1 28 2 8 

-
1
1
6 

x -
1�8 

X4 -
• • •  ) = 1 - � x - � x 

- � x + � x 

_ ! x - 1.- x  + 1.- x  + 1.- x  - 1.- x  - . . .  
8 16  16 16  16 

= 1 - x + Ox + Ox + OX4 + . . . = 1 - x 

Hence 

which verified that 

1 1 1 5 Ii 
1 - - x - - x - - x  - - x - . . .  = vT=X 

2 8 16  1 2  

as Newton had claimed. 
"Extraction of roots are much shortened by this theorem," wrote 

Newton. That is, suppose we seek a decimal approximation to 0. First 
observe that 

and so 
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Now replace the square root by the first six terms in the binomial expan
sion labeled C* ) above, where of course 2/9 is playing the role of x. We 
thereby get 

. r- ( 1 1 1 5 7 ) 
v 7 ::::::: 3 1 - 9 - 162 - 1458 - 52488 - 472392 

= 2 .64576 . . .  

This result differs from the true value of V7 by only .00001 ,  which is 
certainly qUite impressive for using just six numerical terms. If we car
ried the binomial to more terms, we could guarantee greater accuracy of 
the estimation. Moreover, the same technique will provide approximate 
cube roots, fourth roots, and so on, since we could just as well apply the 
binomial theorem to expand {II - x = ( 1  - X) 1/3 and proceed as 
above . 

In one sense, there is nothing terribly surprising about the fact 
that V7 can be approximated by a sum of six fractions. The truly amazing 
thing about this whole procedure is that Newton's binomial theorem 
shows us precisely which fractions to use, and generates them in an 
utterly mechanical fashion, devoid of the need for any particular insight 
or ingenuity on our part . It was a remarkably efficient and clever way to 
get roots of any order. 

The binomial theorem is one of two prerequisites for the great the
orem we shall soon examine . The other is Newton's inverse fluxions, or 
what we today call integration. A thorough explanation of inverse flux
ions would carry us beyond the scope of this book and into the realm of 
calculus. However, we can state the key result in Newton's words and 
illustrate with an example or two. 

It appeared in De Analysi, a treatise Newton composed in the middle 
of 1669 but did not publish until 171 1 .  This was Newton's first extended 
treatment of his fluxional ideas, and he circulated it to a few mathemat
ical colleagues. We know, for instance, that Isaac Barrow saw it, for he 
wrote to an acquaintance on ]uly 20, 1669, that " . . .  a friend of mine . . .  
that hath a very excellent genius to these things, brought me the other 
day some papers . "  The very first rule that Barrow or any other reader of 
De Analysi would encounter was the following. 

Let the Base AB of any Curve AD have BD for its perpendicular Ordinate; 
and call AB = x, BD = y, and let a, b, C, etc . be given Quantities, and m 
and n whole Numbers . Then: 

Rule 1: If aX"/n = y, it shall be � Jlfm+nJ/n = Area ABD. 
m + n 
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O F  

A N A L Y S I S  
B Y 

Equations of an infinite Number of 
Terms. 

I . TH E General Method, which I had devifed fame confolerablt 'lime 
ago, for meafuring the �antity of Curves, by Means of Series, 
infinite in the Number of 'I'erms, is rather jhortly explained, 

than accurately demonfJrated in what follows. 
2 .  Let the Bale AB of any Curve AD have D 

BD for it's perpendicular Ordinate ; and call 
AB=x, BD=J, and let a, b, c, esc. be given 
�ntities, and 

m and n whole Numbers. 
Then 

The Q!!adrature of Simple Curves, 
R U L E I. 

tit m+" - an -
3 .  If ax" y ;  it fhall be m + n x " = Area ABO. 

B 

Newton's rule for finding areas under curves, from a 1745 translation of De Analyst 
(photograph courtesy of Johnson Reprint Corporation) 

In Figure 7 . 1 ,  Newton was finding the area above the horizontal axis, 
beneath the curve y = aX"ln, and as far to the right as the point x. 

an . .  According to Newton, this area was x(m+ niln . For mstance, If we 
m + n 

take the straight line y = x (Figure 7 .2) , where a = m = n = 1 ,  this 
formula yielded an area �r, which is easily verified by the formula for 
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FIGURE 7 •• 

triangular area = }2(base) X (height) . Similarly, the area under y = r 
between the origin and the point x is ":'+ 1/(2 + 1)  = r/3. 

Further, as Newton explained in Rule 2 of De Ana/ysi, " If the Value 
of y be made up of several such Terms, the Area likewise shall be made 
up of the Areas which result from every one of the Terms."  As an exam
ple , he noted that the area beneath the curve y = r + ;x312 is just 

These, then, were to be Newton's tools: the binomial theorem and 
this fluxional method of finding areas under certain curves. These tools 
served him well in attacking any number of extraordinary mathematical 
and physical problems, but we shall watch Newton employ them to shed 
an entirely new light on an age-old problem: the estimation of the value 
of 11'. In the Epilogue to Chapter 4 , we traced some of the history of this 

x 

FIGURE 7.2 
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famous number and recognized the contributions of scholars such as 
Archimedes, Viete , and Ludolph von Ceulen in determining 1r to ever 
greater accuracy. Sometime around 1670, the problem fell under the 
gaze of Isaac Newton. Armed with his wonderful new techniques, he was 
about to launch a brilliant attack on an old foe . 

Great Theorem: Newton's Approximation of 11" 

Newton had certainly mastered the concepts of analytic geometry, and 
he cast his work in this format. He began with a semicircle having its 
center C at (�, 0) and radius r = �, as shown in Figure 7.3 .  He knew that 
the circle's equation was 

(x - �)2 + ( y _ 0) 2 = �2 or XZ - x + � + y = �  

Simplifying and solving for y gives the equation of the upper semicircle 
as 

(Exactly why he chose this particular semicircle may seem a complete 
mystery, but its special utility will in the end become clear.) 

As shown earlier in equation (* ) , the expression (1 - X) 1/2 can be 
replaced by its binomial expansion, thus giving the equation of the semi· 
circle as 

y 

'-'-__ .....:...::=---_____ ......I...::E�4 x 
( 1 ,0) 

FlGUlE 7.3 
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y = x12( 1 - X) 1/2 2 1 1 1 5 7 
= Xl ( 1 - 2" x - 8 x -

16 
;x3 -

128 
x' -

256 
;x5 

- . • •  ) 

= Xl2 - .!. ;x3/2 - .!. ;x5/2 - � :il/2 _ _  
5

_ "m _ � Xl/2 _ • 

2 8 16  1 28 256 

And now, the genius of Isaac Newton becomes apparent. He let B be 
the point C�, 0) , as indicated in Figure 7 .3 , and drew BD perpendicular 
to the semicircle's diameter AB. He then attacked the shaded area ABD 
in two very different ways: 

1. Area (ADD) by fluxions As we have seen, Newton knew how 
to find the area under such a curve from its starting point at 0 rightward 
to the point x = �. That is, by Rules 1 and 2 of De Analyst, the shaded 
area was just 

� ;x3/2 - .!. (� ;x5/2) - .!. (� :il/2) - � (� ,,)/2) - . . . 

3 2 5 8 7 16 9 

= � ;x3/2 - .!. ;x5/2 - � i712 - � .x912 _ ..1.... Xl/2 - • • •  C* * )  
3 5 2 8  7 2  704 

evaluated for the value x = K The genius of his approach is that the 
resulting expression simplifies beautifully when we evaluate it, since 

(�r = (vi)' = �, (�r = (vi)' = ;2 ' and so on 

Thus we approximate the shaded Area (ABD) , using the first nine terms 
of series C* * ) , by 

1 1 1 1 5 - - - - -- - -- - ---
1 2  160 3584 36864 144 1 792 

429 

163208757248 
= .076773 10678 

2. Area (ADD) by geometry Newton next reexamined the prob
lem of the shaded area from a purely geometric perspective . He first 
determined the area of right triangle 6.DBG. Notice that the length of BC 
is �, while CD, being a radius, has length r = K A direct application of 
the Pythagorean theorem yielded 
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Hence, 

1 - - 1 ( 1 ) (V3) V3 
Area (ADBC) = - ( Be) X ( BD) = - - - = -. 2  2 4 4 32 

So far, so good. Next Newton wanted the area of the wedge- or pie
shaped sector ACD. To determine this area, he again referred to ADBC. 
With the length of BC being exactly half that of the hypotenuse CD, he 
recognized this as a familiar 30 · -60 · -90 · right triangle; in particular, 
LBCD was a 60 · angle . 

Again, one is struck by his penetrating insight, for by placing his per
pendicular at a point other than B, he would not have emerged with a 
simple 60 · angle when he needed it most . But, knowing that the angle 
of the sector was 60 · -that is, one-third of the 180 ·  angle forming the 
semicircle-Newton could see that the area of the sector was likewise a 
third of the area of the semicircle. In short, 

1 Area (sector) = - Area (semicircle) 3 2 = � G � r) = � [� � G) ] � 
= -24 

The perceptive reader, recalling that this great theorem was to have been 
Newton's approximation of �, may have been worrying about how and 
when this constant was ever going to enter the argument. At last, � has 
appeared in Newton's chain of reasoning, and there now remains just a 
final step or two to get a wonderfully efficient approximation of it. 

Thus , the geometric approach to the shaded area yields 

� V3 Area (ABD) = Area (sector) - Area (ADBe) = -4 - -2 32 
Equating this result with the fluxion/binomial theorem approxima
tion for the same shaded area from above, we have .07677310678 � 
�/24 - V3/32 and solving for � gives us the estimate 

� � 24 ( '076773 10678 + �) = 3 . 1 4 1 592668 . . .  
Q.E.D. 

The amazing thing about this estimate is that, with just nine terms of 
the binomial expansion, we have found � correct to seven decimal 
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places, and our estimate above differs from the true value of 1r by less 
than .000000014 .  This represents a major advance over the awesome cal 
culations of Viete or Ludolph mentioned in Chapter 4 .  In fact, the only 
real difficulty with this technique is the need for an accurate estimate of 
V3. But, as we have seen previously, Newton's binomial theorem han
dled the computation of square roots with ease . In short, this result 
clearly demonstrated the efficacy of his new mathematical discoveries in 
addressing an old problem with remarkable success . 

Newton's approximation of 1r is taken directly from his Methodus 
Fluxionum et Serierum Infinitarum, a treatise written in 1671  but not 
published for decades, that extended the fluxional ideas of De Analysi 
from a few years earlier. In Methodus, Newton presented the value of 1r 
to 16  decimal places, based on the 20-term binomial expansion 
ofvT=X. At one point, commenting on such approximations, he 
somewhat sheepishly confessed, "I am ashamed to tell you to how many 
places of figures I carried these computations , having no other business 
at the time ."  

Newton's shame notwithstanding, those who can appreciate the sub
tle beauty of mathematics will be grateful that no pressing business oth
erwise occupied his fertile mind while he " . . .  was in my prime age for 
invention and minded Mathematicks and Philosophy more then at any 
time since . "  

Epilogue 

These , then, were some of the fruits of Newton's student days at Trinity 
College during the plague years of the mid- 1660s . But Isaac had a life of 
three-score years yet to live, and it would carry the unhappy child of a 
small English village to astonishing heights of fame and influence . The 
end of this chapter charts the remainder of his remarkable odyssey. 

In 1668, Newton completed his master's degree and was elected a 
fellow of Trinity College . This meant that he could stay indefinitely in 
his academic post-with financial support-provided he took holy vows 
and remained unmarried. As if that were not prestigious enough, the fol
lowing year Isaac Barrow resigned the Lucasian chair of mathematics and 
successfully urged the appointment of Newton as his successor. There 
is a charming legend to the effect that Barrow abdicated the Lucasian 
chair because he recognized Newton as his mathematical superior and 
thus could not retain the chair in good conscience . Actually, Barrow's 
motives were a bit less magnanimous, for he was also a brilliant scholar 
of Greek and theology and was angling for a higher position in a some
what different line of work. In fact, having left the Lucasian chair, Barrow 
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soon landed the position of Chaplain to the King. Nonetheless, he was 
instrumental in getting the appointment for his young and rather 
unknown colleague. Barrow certainly knew excellence when he 
encountered it and heartily recommended Newton as " . . .  a fellow of 
our College , . . .  very young . . .  but of an extraordinary genius and 
proficiency. " 

Newton's duties as Lucasian professor were minimal . He was obliged 
neither to accept students nor to do any tutoring. The main job, besides 
picking up the substantial paycheck and remaining morally chaste , was 
to deliver regular lectures on mathematical topics . Those who imagine 
throngs of eager students flooding into the lecture hall to hear this great 
man will  be in for a surprise . Recall that Newton was not yet a name to 
be reckoned with outside of a very small circle, and that Cambridge stu
dents were not necessarily disposed to the intense intellectual life .  A 
contemporary recorded this account of Newton's Lucasian lectures : 

. . .  so few went to hear Him, & fewer yet understood him, that of times he 
did in a manner, for want of Hearers , read to ye Walls .  

The commentator added that Newton's lectures would last for half an 
hour except when there was no one at all in the audience; in that case 
he would stay only 1 5  minutes. 

If Newton was unsuccessful as a lecturer, his scientific output was 
prodigious. He made few friends, keeping to himself as an aloof and 
somewhat strange character of Trinity College .  An associate of many 
years recalled that there was but once that he saw Newton laugh. His 
mirth was prompted by an acquaintance who, examining a copy of 
Euclid, asked what conceivable value this decrepit old book might have . 
At this Newton roared with glee. 

One of the best pictures of Newton as professor came from his 
nephew Humphrey Newton, who wrote : 

He always kept close to his studyes, very rarely went a visiting, & had as few 
Visiters . . . .  I never knew him take any Recreation or Pastime, either in Rid
ing out to take ye Air, Walking, Bowling, or any other Exercise whatever, 
Thinking all Hours lost, that was not spent in his studyes . . . .  He very rarely 
went to Dine in ye Hall . . . & then, if He has not been minded, would go 
very carelessly, with Shooes down at Heels, Stockins unty'd, surplice on, & 
his Head scarcely comb'd.  

Nonetheless, his reputation began to grow, mainly through the cir
culation of such unpublished treatises as De Analysi or Metbodus. His 
first big public splash came in 1671 when he displayed his newly 
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invented reflecting telescope at a meeting of the Royal Society in Lon
don. This optical device was the perfect vehicle for combining Newton's 
theories of light and his practical ability at tinkering. The scientific com
munity applauded his efforts, and to this day reflecting telescopes, which 
rely on a mirror at the base rather than a heavy and unstable lens at the 
top, are the preferred instruments of optical astronomy. 

Flushed with the success of this invention, Newton soon submitted 
a paper on optics to the Royal Society. This time, however, his radical 
ideas were met with skepticism and derision from such noted scholars 
as Robert Hooke . Controversy, which is a common feature of the 
scholar's world, was anathema to Newton. Stung by the criticism, he 
withdrew deeper into his private world, refusing to publish or commu
nicate his ideas lest they ensnare him in further bickering with his less 
enlightened peers . This decision meant that brilliant scientific papers 
would lie unknown and unpublished in his desk drawer for decades. As 
the next chapter shows, this practice had disastrous consequences when, 
in subsequent years, he would claim priority for ideas-particularly the 
calculus-published first by others . 

As the 1670s progressed, Newton's interests turned away from math
ematics and physics . He devoted a great deal of time to alchemy, 
although we can see in his investigations the mind of a modern-day 
chemist at work. Less modern, perhaps , was his study of the Scriptures 
with an eye toward calculating the ages and dates of the prophets, the 
size of the Ark of the Covenant, and other such things . He spent untold 
hours meticulously analyzing the Bible in this fashion. One result of 
these researches may have been his rejection of the notion of Jesus as 
one of the Blessed Trinity-a�dd twist, given the name of the College 
at which he was employed. HIs views were radical enough to force Isaac 
to keep silent, at least as long as he held the Lucasian chair. 

This brings us to the year 1684 . It was then that Edmund Halley, who 
later became famous for the comet that bears his name, visited Newton 
and urged him to publish some of his awesome discoveries . As always , 
Newton was reluctant, but Halley's prodding, not to mention his bearing 
the costs of publication, persuaded Newton that the time was right. He 
caught fire , working diligently on what would be his scientific master
piece , a description of his researches into the laws of motion and the 
principle of universal gravitation . The work came out in 1687 with the 
title Philosophiae Naturalis Principia Mathematica. Here was the sys
tem of the universe , a precise mathematical derivation of the motions of 
the moon and planets , that explained the clockwork precision of all cre
ation, ticking to the orderly rhythms of Newton's wonderful equations . 
After Principia, science would never be the same . 

Principia was an enormous success . Although few could understand 
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all the intricacies of the text, people universally came to regard Newton 
as being an almost superhuman phenomenon. Many years later, the 
French mathematician Pierre-Simon Laplace would record the respect, 
the awe, and the envy he felt toward Newton's scientific discoveries ; 

Newton was the greatest genius that ever existed, and the most fortunate, 
for we cannot find more than once a system of the world to establish . 

The year following publication of the Principia was a pivotal one in 
British history. Late in 1688, James I I ,  the last of the Stuart kings, fled 
the throne, to be replaced by William I I I  and Mary I I .  The subsequent 
political reform, called the "Glorious Revolution," saw the influence of 
Parliament rise and that of the monarch simultaneously fal l .  Interest
ingly, the Member of Parliament sent in 1689 from Cambridge to West
minster was none other than the Lucasian professor, Isaac Newton. 

As a supporter of the new monarchs, Newton apparently made little 
impression on British government from his parliamentary seat. Nonethe
less, his life had surely taken a new direction . No longer the solitary, 
isolated scholar, he had now emerged into the pubUc arena in a manner 
inconceivable even a few years before . With the solid triumph of the 
Principia behind him, the Cambridge professor was becoming the Lon
don official .  He seemed to enjoy the change, making friends with such 
notables as John Locke and Samuel Pepys . Although in 1693 he suffered 
a brief nervous breakdown-- sometimes attributed to his common prac
tice of tasting the chemical compounds he used in his alchemy experi
ments-Newton was back on even keel by 1695 and a year later resigned 
the Lucasian chair and left Trinity College . It had been 35 years since he 
had arrived there as an ordinary undergraduate from Woolsthorpe , and 
those three-and-a-half decades had transformed this young man in a way 
that no one could have anticipated. 

And what did the ex-professor do then? With a favorable impression 
of public service and perhaps a growing realization that his days of sci
entific productivity were waning, Newton was ready to try something 
radically different . He thus accepted the position of Warden of the Mint 
in 1696. At that time, British coins were produced at the Tower of Lon
don, where the warden both lived and worked. By all accounts , Newton 
did a fine job at the Mint, overseeing a general recoinage of English cur
rency and mixing well with the financiers and bankers of the City of 
London. 

These years also gave Newton the opportunity to attend to his sci 
entific writings . In 1704 , he published his Opticks, a massive tome that 
did for his optical theories what the Principia had done for his law of 
gravitation. Interestingly, it was as an appendix to the Opticks that New-
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Isaac Newton as Lucasian Professor at Cambridge (photograph courtesy of Yerkes 
Observatory, University of Chicago) 

ton first published an account of his fluxional methods, a work called De 
Quadratura. Although he had developed these ideas four decades ear
lier, it was only in 1704 that the world saw them in print . Unfortunately, 
this was a bit too late . Mathematicians on the continent had published 
their own research on the calculus years before . Some continental math
ematicians reacted with indifference if not outright skepticism to New
ton's claim that the ideas he was now publishing were really 40 years 
old. 

Just prior to the Opticks, Newton had been elected president of the 
Royal Society. He brought to this position the same impressive admin
istrative skills that had become so evident at the Mint. Newton retained 
the position at the head of the Society until his death. 

Unmatched scientist, pre-eminent mathematician, public servant, 
and Royal Society president, Isaac Newton received the ultimate tribute 
of a knighthood from Queen Anne in 1705 . Fittingly, the ceremony 
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occurred at Trinity College, Cambridge. He still had 22 years to live with 
the honored title of "Sir Isaac. " 

He lived these years in London, dividing his time among duties at 
the Mint and the Royal Society, his scientific writings, and the trappings 
of influence in the British capital . These must have been heady years for 
Sir Isaac, and his power and reputation-not to mention his personal 
fortune-grew constantly. 

He lived to the age of 84 , and at his death in 1727, Isaac Newton was 
regarded as a national treasure, as indeed he was. Clearly the reigning 
scientist in Europe, his impact had been nothing short of revolutionary. 
In death he was accorded the signal honor of burial, along with kings 
and military heroes, in Westminster Abbey. Today, Newton's statue 
stands prominently, at the left-hand portal of the Abbey's great Choir 
Screen, visible to all who enter that revered place . 

The world was abundant in its praise of this man. for instance,  Alex
ander Pope, the great British poet, was moved to write : 

Nature and Nature's Laws lay hid in Night : 
God said, "Let Newton be" and all was light. 

Another famous poet, William Wordsworth, was a bit more restrained 
when he wrote of a night spent at Trinity College : 

And from my pillow, looking forth by light 
. 

Of moon or favouring stars, I could behold 
The antechapel where the statue stood 
Of Newton with his prism and silent face, 
The marble index of a mind for ever 
Voyaging through strange seas of Thought, alone. 

It would be difficult to overestimate the influence of this solitary voy
ager. One need only recall the world-view of Cardano from a century 
before-a peculiar blend of hard science and the most outlandish super
stition . At that time, the world was seen largely as ;m irrational place, 
with supernatural agencies intervening in everything from the appear
ance of comets to the daily calamities of life .  Newton, with his clockwork 
universe, removed the supernatural from Nature . His work described a 
rational world, one obeying fundamental laws which-and this was no 
small part of Newton's legacy-could be deciphered by mere mortals. 

It is interesting to observe that, 166 years after Newton's arrival at 
Cambridge, another British youth began his undergr�duate career at the 
University's Christ College, just a few blocks from Newton's old rooms 
at Trinity. The young Charles Darwin undoubtedly walked the same 
Cambridge streets that Newton had known so many years before . Like 
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Newton's portrait from the British 1-pound note 

Newton, Darwin was also reluctant to publish his discoveries, but when 
he put pen to paper, he wrote the 1859 classic Origin of Species, a mas
terpiece that did for biology what the Principia had done for physics . 
Even as Newton had made the physical world "natural," so did Darwin 
make the biological world "natural" in explaining the mechanism for 
the seemingly unexplainable dynamism of life on this planet . Both men 
influenced far, far more than mere science, and both saw their theories 
affect the human perception of reality in a profound and revolutionary 
fashion. Tocfay Darwin also lies in Westminster Abbey, a few feet from 
the Newton monument-two scientific giants , two Cambridge men who 
reached the top . 

Late in his life,  Isaac Newton looked back upon his remarkable intel
lectual adventure and graciously acknowledged that, if he had seen far
ther than others, it was because he had stood on the shoulders of giants . 
He was, of course , thinking of Viete , Galileo, Descartes, and other fig
ures of the heroic century. Now his own shoulders would be available 
for the scholars of future generations . In an often quoted, and quite strik-
ing reflection, Newton mused: 

. 

I do not know what I may appear to the world; but to myself I seem to have 
been only like a boy playing on the seashore, and diverting myself in now 
and then finding a smoother pebble or a prettier shell than ordinary, whilst 
the great ocean of truth lay all undiscovered before me. 

But perhaps we should leave him, finally at rest in Westminster 
Abbey, with this fitting epitaph: 

Mortals, congratulate yourselves that so great a man has lived for the honor 
of the human race . 



8 
Chapter 

The Bemoullis and the 
Harmonic Series 
( 1689) 

The Contributions of Leibniz 

While the solitary Isaac Newton was changing the face of mathematics 
from his Cambridge rooms, mathematicians on the European Continent 
were far from idle . Influenced by the work of Descartes, Pascal, and Fer
mat, continental mathematics flourished during the latter half of the sev
enteenth century. Its greatest practitioner by far was Gottfried Wilhelm 
Leibniz ( 1646-1716) . 

Often described as a universal genius, Leibniz mastered a bewilder
ing array of scholarly subjects and left his mark upon each. He began as 
a child prodigy with access to the sizable library of his father, a professor 
of moral philosophy. Young Gottfried made the most of this opportunity, 
teaching himself Latin and Greek at an early age and consuming the 
books on his father'S shelves so voraciously that he was ready to enter 
the University of Leipzig at the age of 1 5 .  He blazed through his univer
sity experience rapidly and, when barely 20, had completed his doctoral 
dissertation at Altdorf. 

Although on the brink of a promising academic career, Leibniz left 

184 
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the university to work for the Elector of Mainz, a potentate of one of the 
many small states into which Germany was then divided. On the job he 
examined certain complex legal matters , including a major reform of the 
Holy Roman Empire , while in his spare time he designed a calculating 
machine that was to multiply by repeated, rapid additions and divide by 
similarly rapid subtractions . Although the technology of the day limited 
the performance of such a device-an embarrassment to Leibniz, who 
had touted his machine's efficiency-the theory was solid and, eventu
ally, workable . 

In 1672,  Leibniz was sent from Germany to Paris as a high-level dip
lomat . He was intoxicated by the intellectual life of the French capital, 
and side trips to London and Holland brought the young genius into 
contact with such established scholars as Hooke , Boyle, van Leeuwen
hoek, and the philosopher Spinoza . Leibniz certainly found himself in a 
lively academic environment. Yet in 1672, even he would have admitted 
that his mathematical training was limited to the masterpieces of classi
cal times . Leibniz, with such talent and curiosity, needed a "crash 
course" on the current trends and directions of mathematics . 

Fortunately, he found the perfect opportunity in Paris. It came in the 
person of the Dutch scientist Christiaan Huygens ( 1629-1695) , who had 
been living in Paris under a pension from the Sun King, Louis XIV. Huy
gens' credentials were impressive . On the theoretical side,  he had done 
extensive work on mathematical curves, especially one known as the 
"cycloid. "  This is the path traced by a point fixed to the rim of a circle 
that is rolling along a horizontal path (see Figure 8 . 1 ) . His discoveries 
played a role in his design of the first successful pendulum clock, whose 
internal operations were intimately linked to cycloidal curves . 

Cycloid 

FIGURE S.1 
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As this invention suggests , Huygens was interested in areas other 
than pure mathematics . Indeed it is perhaps in physics and astronomy 
that he built his most enduring reputation, with his investigation of the 
laws of motion, his study of centrifugal forces, and his proposal of a 
sophisticated wave theoty of light . Moreover, Huygens was the fir�t to 
explain that the bizarre appendages appearing in telescopic views of the 
planet Saturn were actually rings . 

With such a scientific resource available on his !Parisian doorstep, it 
is little wonder that Leibniz sought out Huygens for advice on strength
ening his own mathematical training. It probably overstates the matter 
to suggest that Huygens was Leibniz's teacher, bot he did guide and 
direct the young diplomat in the study of current mathematical prob
lems, and certainly few teachers in history have had a student like Gott
fried Wilhelm Leibniz . 

One problem Huygens suggested to Leibniz was the determination 
of the sum of the reciprocals of the so-called triangular numbers . These 
are numbers that correspond to triangular arrays of objects , as shown in 
Figure 8 .2 .  The first such number is 1 ,  the second is 3, the third is 6, and 
in general the kth triangular number has the form k(k + 1)/2 .  Note that, 
in the game of bowling, the desire for a wedge-shaped array of pins at 
the end of the alley translates into a set of ten of them, an obvious "tri
angular number. "  

Huygens wanted Leibniz to evaluate the sum, not of the triangular 
numbers, but of their reciprocals. In short, he was challenging his young 
protege to determine the value S, where 

S = 1 + � + Xi + Xo + XS + �l + . . . . 

After some thought, Leibniz divided all terms by 2 to get 

�S = � + Xi + X2 + � + �o + . . . 

Triangular 
Numbers • 

• • • 

• • • • • • 

• • • • • • • • • • 

3 6 to 
FIGURE S.2 
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in which he noticed a striking pattern . For, he could replace the � that 
began the right-hand side by the equivalent 1 - �; next he could replace 
the � by � - �; the M2 by � - X; and so on . This transformed the expres
sion above into 

�s = (1 - �) + (� - �) + (� - X) + (X - �) + 

Leibniz then simply removed the parentheses and canceled with aban
don to get 

�s = 1 - � + � - � + � - X + X - � + . . . = 1 

But, if half of S is 1 ,  then S itself (the sum of the reciprocals of the tri
angular numbers) is evidently 2. In short, Leibniz had cleverly solved 
Huygens' challenge and found that 

1 + � + � + Mo + M5 + �1 + . . . . = 2 

Modern mathematicians voice certain reservations about his cavalier 
manipulations of infinite series in this argument, but no one can deny 
the basic ingenuity of his approach. 

This was just the beginning of Leibniz's mathematical insights . He 
soon applied his great talents to the same questions about tangents and 
areas that Newton had addressed a decade earlier. By the time Leibniz 
had left Paris in 1676, he had discovered for himself the fundamental 
principles of calculus. His four Parisian years had seen him rise from 
mathematical novice to mathematical giant . 

But even as these years lay the foundation for his enduring fame, they 
likewise lay the foundation for an enduring controversy. We recall that 
Isaac Newton's fluxions were known only to a select number of English 
mathematicians who had seen his hand-written manuscripts on the sub
ject. On a visit to London, to be inducted into Britain's Royal Society in 
1 673,  Leibniz saw some of these Newtonian documents and was greatly 
impressed. Later, in correspondence that was routed through Henry 
Oldenburg, the Royal Society secretary, Leibniz inquired further about 
Newton's discoveries, and the great Englishman answered, albeit in a 
somewhat veiled fashion, in two famous 1676 letters , now called the 
epistola prior and the epistola posterior. These Leibniz read intently. 

And so it was that, when Gottfried Wilhelm Leibniz published his first 
paper on this amaZing new mathematical method, his British counter
parts cried "foul ! "  The paper carried the lengthy title "Novo Methodus 
pro Maximis et Minimis, itemque tangentibus, qua nec fractas, nec irra
tionales quantitates moratur, et singulare pro illis calculi genus" ("A 
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New Method for Maxima and Minima, as well as Tangents, which is 
impeded neither by Fractional nor Irrational Quantities, and a Remark
able Type of Calculus for this") . It appeared in 1684 in the scholarly 
journal Acta Eruditorum, of which Leibniz happened to be editor. 

Thus the world learned the calculus from Leibniz and not from New
ton. Indeed, it was from the title of this paper that the subject took its 
name . But the British, champions of their countryman, asserted with 
varying degrees of tact that Leibniz had plagiarized the whole business . 
His visit to England, his familiarity with the quietly circulating Newto
nian manuscript, his exchange of letters-all convinced British partisans 
that the scoundrel Leibniz had stolen Newton's gloty. 

The bickering that followed does not constitute one of the more 
admirable chapters in the history of mathematics . At first, the two prin
cipals tried to stay above the fray, with subordinates battling on their 
behalf. Eventually, however, all parties ended up becoming involved, 
usually to no good end. Leibniz freely admitted his contact with New
tonian ideas through letters and manuscripts , but observed that these 
had given him only hints at results, not clear-cut methods ; these meth
ods Leibniz discovered for himself. 

Meanwhile, the English became increasingly furious. Worse (from 
the British viewpoint) , Leibniz's calculus caught on quickly in Europe 
and was amplified by some of his disciples , whereas the isolated Newton 
still refused to publish anything on the subject . Recall that Newton had 
written his first tract on fluxions in October 1666, almost two decades 
before Leibniz's paper rolled off the presses; yet it was not until 1 704 
that Newton published a specific account of his method in the appendix 
to his Opticks. De Analysi, a more thorough aCCOUl!lt of the subject that 
had been informally circulating in England's mathematical community 
at the time of Leibniz's 1673 visit, did not appear in print until 17 1 1 .  A 
full-blown development of Newton's ideas, carefully and fully written by 
the author in order to be "a compleat institution for the use of learners,"  
appeared only in  1736, a full nine years after S i r  Isaac's death! In fact, so 
tardy was Newton in publishing his mathematics that some of Leibniz 's 
more ardent supporters could claim that it was Newton who did the pla
giarizing from the already published works of Leibniz, and not vice 
versa. 

Clearly, the situation was a mess . In his book Philosophers at War, 
Rupert Hall gives a fascinating and detailed account of the charges and 
countercharges that flew back and forth across the Channel .  Today, now 
that the smoke has had almost three centuries to clear, it is recognized 
that both men deserve credit for independently developing virtually the 
same body of ideas . The simultaneous discovery of important concepts 
is not at all uncommon in science, as mentioned in the discussion of the 
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Gottfried Wilhelm Leibniz (photograph courtesy of The Ohio State 
University Libraries) 

origins of non-Euclidean geometry in Chapter 2. A century and a half 
after the Newton/Leibniz controversy, the biological world saw the 
simultaneous appearance of the theory of natural selection from Eng
lishmen Alfred Russel Wallace and Charles Darwin. In this latter 
instance , Darwin's enormously influential Origin oj Species contrasted 
with Wallace 's less ambitious writings and may account for Darwin's 
enduring fame . Further, the fact that the co-discoverers of evolution 
were both British eliminated the unfortunate nationalistic overtones of 
the Newton/Leibniz flare-up .  

When not engaged in the controversy over the origins of the calculus, 
Leibniz devoted his time to the remarkable variety of pursuits that had 
characterized his life .  He accepted a position with the Duke of Bruns
wick and attempted to trace that nobleman's distant genealogy. He 
became an expert in the Sanskrit language and the culture of China. Fur
ther, he continued to work in philosophy, a discipline that was always 
near to his heart . It was Leibniz who sought to develop a perfect system 
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of formal logic, based on an "alphabet of human thought" and governed 
by a carefully prescribed "rational calculus. " With such logical tools,  
Leibniz hoped that mankind could rid everyday life of its pervasive 
imprecision and irrationality. Of course , he never came close to suc
ceeding in what can only be called a grandiose plan, but his attempts 
constituted the first real steps toward what we today call "symbolic 
logiC . "  In particular, his use of algebraic formulas to denote logical state
ments was a significant advance beyond the verbal syllogisms of Greek 
logical theory. 

In 1700, Leibniz was a major force in the creation of the Berlin Acad
emy. This community of scholars , writers, and musicians was meant to 
bring to Berlin the greatest thinkers in Europe and thereby put that city 
on the intellectual map. Leibniz was honored by being named the 
Academy's preSident, a position he held for the remainder of his life .  

In spite of  the demands of  the Berlin Academy, his work proceeded. 
He continued his studies in logic and philosophy, while simultaneously 
advocating reforms in the world's religious and political structures that 
he hoped would bring true peace and harmony amof1g men. Ironically, 
his patron during these last years was a Hanoverian ndbleman who, upon 
the death of England's Queen Anne in 1714 ,  was tapped to become Bri
tain's King George I .  Leibniz longed to accompany King George to 
England and assume a position as official court historian, but George 
never extended the offer. It would certainly have prqved fascinating for 
the two protagonists in the calculus battle-Newton and Leibniz
simultaneously to have been living in London. Unfortunately, it was not 
to be . 

Leibniz died in 1716 .  Many friends and colleagues from the Hano
verian Court had gone to England; his own status had diminished some
what; and reports are that only a trusted servant attended the funeral of 
this great man. This stands in stark contrast to Newton's titanic reputa
tion in England, a reputation that, as noted in the previous chapter, led 
to his burial in the honored shrine of Westminster Abbey. While the apo
theosis of Newton was certainly justified, Leibniz deserved a similar 
glory of his own. 

In any comparison of the two great inventors of the calculus, one fact 
stands out. Newton, in a certain sense, took his fluxions with him to the 
grave . To his last day, the solitary, misanthropic Sir Isaac never sur
rounded himself with a crowd of talented disciples, eager to learn, 
refine, and extend his work. By contrast, it was Leibniz 's good fortune 
that two of his most enthusiastic followers were Jakob and Johann Ber
noulli of Switzerland, brothers who would become the major force 
behind disseminating and promoting the calculus throughout Europe . 
Their efforts, perhaps as much as those of Leibniz himself, gave the sub
ject the flavor and appearance that it retains to this day. 
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The Brothers Bernoulli 

Jakob Bernoulli (1654- 1705) , the elder of the two brothers, was a gifted 
mathematician who made important contributions to the calculus, to the 
summation of infinite series, and perhaps most notably to the emerging 
subject of probability. We have noted how this mathematical subdiscip
line got its start in the sixteenth century with the work of Cardano and 
how it grew in sophistication with the Fermat-Pascal correspondence in 
the mid-seventeenth century. The posthumous publication of Jakob's Ars 
Conjectandi in 171 3 ranks as the next milestone of probability theory. 
This massive work consolidated earlier discoveries and pushed the fron
tiers of the subject to new levels. It remains Jakob Bernoulli's 
masterpiece . 

Meanwhile, younger brother Johann (1667-1748) was building his 
own mathematical reputation. With undisguised zeal , Johann Bernoulli 
took it upon himself to spread Leibniz's calculus across the continent. 
Johann, frequently in correspondence with his German mentor, was ever 
ready to defend Leibniz's reputation in the controversy with the New
tonian British.  Recalling that Thomas Huxley earned the epithet "Dar
win's Bulldog" for stoutly defending the great naturalist from attacks of 
the religious community of the mid-nineteenth century, we might like
wise call Johann Bernoulli "Leibniz's Bulldog" for much the same rea
son. Like Huxley, Johann sometimes supported his client with an almost 
shocking intensity; also like Huxley, Johann ultimately succeeded in his 
mission. 

One of Johann's most important contributions came through his con
nections with the Marquis de I 'Hospital ( 1661-1704) . The latter was a 
French nobleman and amateur mathematician who very much wanted to 
learn this revolutionary new calculus . The marquis thus employed 
Johann Bernoulli to supply him with tracts on various aspects of the sub
ject, as well as to provide him with any new mathematical discoveries of 
note . In a sense , it appears that I 'Hospital bought the rights to Ber
noulli 's mathematical research. In 1696, I 'Hospital collected the Ber
noullian writings and published the first calculus text under the title 
Analyse des infiniment petits (Analysis of the Infinitely Small). Written 
in the vernacular rather than in Latin, the book was almost exclusively 
Bernoulli 's in all but the name on the title page . 

Down through history, there have been many illustrious brother 
teams. From Agamemnon and Menelaus of the Trojan War up to Wilbur 
and Orville Wright of aviation fame, the past is full of brothers working 
together to noble ends . Certainly, Jakob and Johann constitute mathe
matics' most important fraternal success story, but it must be noted that 
their relationship was far from harmonious . Quite the contrary, each 
became the other's fiercest competitor in mathematical matters, until 
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their attempts at one-upsmanship seem, in retrospect, almost comicaL 
There are times when the Bernoullis are more reminiscent of the Marx 
brothers than of history'S other famous siblings. 

Consider, for instance, the question of the catenary curve . This is the 
shape assumed by a chain, fixed at two points , and hanging under its own 
weight. In a 1690 paper, Jakob, the elder brother with the long-estab
lished reputation, posed the problem of determining the nature-that 
is, the equation-of such a curve . This problem had been in existence 
for a great many years-Galileo had surmised that the curve was a parab
ola-but the matter remained open. Jakob felt that the new, wonderful 
techniques of calculus might provide the key to its solution . 

Unfortunately, he got nowhere on this vexing problem. After a year's 
unsuccessful eifort, Jakob was chagrined to see the cotrect solution pub
lished by his young brother Johann. For his part, the upstart Johann 
could hardly be considered a gracious winner, as seen in his subsequent 
recollection of the incident : 

The efforts of my brother were without success; for i my part , I was more 
fortunate , for I found the skill (I say it without boasting, why should I con
ceal the truth?) to solve it in ful l .  _ . .  It is true that it cost me study that 
robbed me of rest for an entire night . . .  but the next morning, filled with 
joy, I ran to my brother, who was still struggling miserably with this Gordian 
knot without getting anywhere, always thinking, like Galileo, that the cate
nary was a parabola. Stop! Stop! I say to him, don't torture yourself any more 
to try to prove the identity of the catenary with the parabola, since it is 
entirely false . 

It is amusing to note the time required for Johann's successful solu
tion . To sacrifice the rest "of an entire night" on a problem that Jakob 
had wrestled with for a year qualifies as a first-class insult if ever there 
was one . 

In this chapter, we shall examine a great theorem in which both Ber
noullis (perhaps in the midst of a rare truce) had a hand. The issue in 
question was the nature of the so-called "harmonic series,"  an infinite 
series with a very peculiar property. While we have already seen Leib
niz's attack on a particular series, we should first make a few remarks 
about the question of infinite series in generaL 

In the seventeenth century, an infinite series was viewed merely as 
the sum of an endless collection of terms . Of course , there was no guar
antee that such a series would have a finite sum; if we consider an exam
ple like 1 + 2 + 3 + 4 + 5 + . . . ,  it is clear that, as we proceed along, 
the sum will grow in size beyond any finite quantity. We say that such a 
series "diverges to infinity. " 
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Johann Bernoulli (photograph Courtesy of Georg Olms Verlagsbuchhandlung) 

On the other hand, there are series of infinitely many terms that sum 
to a finite number, a phenomenon that may at first appear paradoxical 
but which, upon reflection, seems reasonable enough. For instance, 
when we write the familiar decimal expansion % = .3333333 . . . , we 
mean precisely 
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Leibniz's series cited above exhibits similar behavior, for the infinitely 
many terms in question sum to the (finite) number 2. We say such 
a series "converges," which means, in an infortilal sense , that its 
sum zeroes in on a particular number as we add ever more terms 
together. 

Undoubtedly, the most important convergent series in mathematics 
is the geometric series .  This is a series of the form 

where we insist that - 1  < a < 1 .  Thus, a geometric series is the sum 
of a and all of its higher powers. A "seventeenth-century style" argument 
to verify its convergence runs as follows:  

Let 5 = a + a2 + a3 + a4 + . . .  be the sum we are seeking. Mul
tiplying both sides of this equation by a, we see that a5 = a2 + a3 + 
a4 + as + . . " and subtracting one from the other yields 

5 - a 5  = (a + a2 + a3 + a4 + . . .  ) 
- (a2 + a3 + a4 + as + . . .  ) = a 

since all terms cancel but the first. Consequently, 5{ 1 - a) = a, and so 
5 = a/{1  - a) . But 5 was just the sum of the original geometric series . 
Hence we can conclude : 

For instance,  if a = �, we see that 

1 1 1 1 
- + - + - + - + 
3 9 27 81  

= -+--- = - = -
1 - � % 2 

To the mathematical sophisticate , this convergence argument pre
sents a naive treatment of infinite series, for a modern development of 
this topic is considerably more subtle. This proof also obscures the rea
son why we initially assumed that - 1  < a < 1 ,  although the need for 
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this assumption is suggested by the geometric series with a = 2 . In this 
case , a direct application of our formula yields : 

2 + 2z + 2' + 24 + . . . 
2 

= --
1 - 2 

In other words, 2 + 4 + 8 + 16  + . . . = - 2 ,  a "double absurdity, " 
both because the series clearly diverges to infinity and because, under 
no stretch of the imagination, could it add up to a negative number. The 
summation formula for geometric series, then, requires that a fall 
between -1  and 1. (A more detailed analysis of this matter is usually 
taken up in a course on calculus .) 

The two previous infinite series illustrate an important condition on 
the general question of convergence . For the first geometric series with 
a = �, the succeeding terms we added on- �, �7, �l, etc .-were getting 
closer and closer to zero; hence the amount by which the sums grew 
for each additional term was getting ever more negligible . On the 
other hand, for the geometric series with a = 2 ,  we added terms 
that were moving away from zero-4 , 8, 16 ,  and so forth-and whose 
increasing magnitudes prevented the sum from homing in on a single 
number. 

With these examples in mind, it would be quite reasonable to pose 
the following conjecture : an infinite series Xl + Xz + X, + X4 + . . . + 
X. + . . . converges to a finite quantity if and only if the individual 
terms X. themselves converge toward zero. As it turns out, half of this 
conjecture is true. That is, if the series converges to a finite sum, then 
the individual terms surely must get ever closer to zero . Put another way, 
we cannot hope to get an infinite number of terms to add to a finite sum 
unless the terms themselves become ever more negligible. 

Unfortunately, the converse fails .  That is, there are infinite series 
which, even though their individual terms melt away toward zero, have 
sums that grow toward infinity. This fact is by no means obvious , and it 
is precisely the content of the great theorem that follows. Upon exam
ining the harmonic series 1 + � + � + � + � + . . .  + 11k + . .  ' 

that is, the sum of the reciprocals of the positive integers-Johann Ber
noulli found that, whereas the individual terms clearly get closer and 
closer to zero, their sum nevertheless becomes infinite . 

Bernoulli had discovered what mathematicians now call a "patholog
ical counterexample" -that is, a specific example that seems so coun
terintuitive and bizarre as to warrant the label "pathological . "  Here is 
what is so unsettling about the harmonic series: one must add the first 
83 terms of the series before its sum exceeds 5, since 
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1 + � + % + X + % + . . .  + �2 = 4 .990020 . . .  <5 .00 while 

1 + � + % + X + % + . . .  + �8 = 5 .002068 . . .  > 5 .00 

Note the remarkable fact that each and every term of the harmonic series 
beyond this one is itself less than �8, and thus contributes very little to 
the overall sum. Consequently, we must add up another 144 terms just 
to get the sum to edge above 6. For this very slowly growing series to 
total 10 ,  we have to sum the first 1 2 ,367 terms, and for it to climb to a 
sum of 20 takes somewhere around a quarter of a billion terms! To think 
that the harmonic series could eventually surpass one hundred, or one 
thousand, or one trillion seems completely out of the question.  

But i t  does ! This is  what makes i t  pathological an:d what makes Ber
noulli 's theorem worthy of our attention . 

Great Theorem: The Divergence of the Harmonic Series 

Although this proof was concocted by Johann Bernoulli ,  it appeared in 
brother Jakob's 1689 Tractatus de seriebus infinitis ( Treatise on Infinite 
Series). With uncharacteristic fraternal affection, Jakob even prefaced the 
argument with an acknowledgment of his brother's priority. 

Johann had to show that the harmonic series diverged to infinity. The 
proof rested on Leibniz's summation of the convergent series � + % + 
X2 + �o + %0 + . . . = 1 ,  which we examined earlier in this chapter .  
This in itself is something of a surprise , for it is by no means clear how 
this well-behaved convergent series can shed light on the bizarre behav
ior of the harmonic series . Nonetheless , Johann Bernoulli reasoned as 
follows . 

TIlEOREM The harmonic series 1 + � + % + . . . + 1/  k + . . . is 
infinite . 

PROOF Introduce A = � + % + X + % + . . .  + 11k + . . " which 
is just the harmonic series lacking its first term. This series , 
" . . .  transformed into fractions whose numerators are 1 ,  2 ,  3 ,  4 ,  etc . , " 
becomes 

A = � + % + %2 + �o + %0 + 

which Johann noted for future reference . 
Next, he designated by Cthe series of Leibniz already cited, and from 

this constructed a string of related series by subtracting in succession �, 
}t, X2, �o, etc . This yielded 
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x V I� Summ. [eriei ;njinit, harmo,,;,e progrejfionA/ium , t + i + 
} + � + t &,. eft inft,"I ... 

Id primus deprehendit Frater :- inventa namque per przeed .. 

fumma feriei f + � + I� + 2� + T� , &c. vifurus porro, quid emer
geret ex iRa Cerie , of + t + r \.: + �� + -!o , &c. fi refolvererur me. 
thodo Prop. X I V. collegit p opofitionfs veritatem ex ab(urditate, 
manifefia , qUa! fequererur , fi fumma feriei harmonicz finita fiatue.· 
retur. Animadvenit: eni'm II 

Seriem A ,  f + t. + i + t + ! + h &c�, :0 ( fraaionibus fingulis: 
in alias , quarum numeratores funt, I , � , 3 ,  4 ,  &c. transmutatis ) 

Leriei B, f+6+1� + ::.t + T� +;;:1 , &c., Xl C+ D+ E+ F,&e.. 
c. f+f+li+2� +f�..,f-;;:� ,  &:c�. Xl per prrec. il' 
D +H- r + r + J ' .+ 1 & '  IY\ C' % IY\ % • • ' 6 12 "fo fo 4 2 '  co \AI - 2: \AI '2 t E + J + . + J + J 0. · 0 r J ')() G;', 

• • • 12 20 fo 42 , ",-c. :0 - 6' :0 T ' unde 
F .  • • • .' .' +i� + r� + 4\:" &c., :0 E - rl Xl !  fequi .. 

&c. :xl &c. J rur ,fe.. 
{riem G :O ,f J totum parti , Ii {Hmma lin ita. efTet� 

Egol 
Johann's divergence proof, from Jakob's TrtIdtIIIIs de serleIJus ifPlIIs, republished in 
1713 (photograph courtesy of The Ohio State University Libraries) 

C = � + � + �2 + �O + � + ' " = 1  

D = � + �2 + � + � + . . .  = C - � = 1 - � = � 

E = �2 + �o + � + " ' = D - � = � - � = �  

F = �o + � + · · ·  = E - �2 = � - �2 = � 

G = 

Johann now added down the two leftmost columns in this array of 
equations to get 

C + D + E + P + ' 

= � + (� + �) + (�2 + �2 + �2) + (� + � + � + �) + . . . 
= � + " + �2 + � + . . . = A from above 



198 • JOURNEY THROUGH GENIUS 

On the other hand, when summing down the leftmost and rightmost 
columns of the previous array, he found 

C +  D +  E +  F +  G +  . . . = 1 + � + � + � + � + . . . = 1 + A 

Thus, since C + D + E + F + G + . . . equals both A and t" + A, 
Johann could only conclude that 1 + A = A. As h� put it, "the whole 
equals the part ."  But obviously no finite quantity is equal to one more 
than itself. To Johann Bernoulli, this could mean only one thing: that 1 
+ A is an infinite quantity. And, since 1 + A was the gum of the harmonic 
series, his argument was complete . 

Q.E.D. 

There are points about this proof that today's mathematicians can 
justly criticize . Bernoulli treated infinite series "holistically" as individ
ual entities to be manipulated at will .  We now know that a great deal 
more care is required when attacking these mathematical objects . Fur
ther, his technique of proving divergence contrasts dramatically with the 
modern approach. Today's mathematician would proceed as follows: fix 
a whole number N (no matter how large) and show that the series must 
exceed N; then, since it surpasses any whole number, the series must 
diverge to infinity. But Johann did no such thing. Instead, he proved 
divergence simply by showing that A = 1 + A, to modern tastes a most 
peculiar way of establishing that a positive quantity is infinite . 

Before we become overly critical , we must acknowledge that Ber
noulli was writing a century and a half before a truly rigorous theory of 
series was developed. Moreover, in spite of all objections, one cannot 
deny the sheer cleverness of Johann's argument. It was a mathematical 
gem. 

At this point in the Tractatus, Jakob stressed the critical , and non
intuitive,  consequence of his brother'S proof by observing: " The sum of 
an infinite series whose final term vanishes perhaps is finite, perhaps infi
nite ."  Modern mathematicians cririge at his reference to the "final term" 
of an infinite series, for surely the nature of such series rules out any 
concluding term; however, his meaning is clear enough. He was high
lighting the fact that, even if the individmll terms of an infinite series 
approach zero, the sum of the series may yet be infinite . The harmonic 
series is the primary example of just this phenomenon, as Johann had 
shown. 

Perhaps it was the unexpectedness of this result that moved Jakob to 
pen this bit of mathematical verse : 

As the finite encloses an infinite series 
And in the unlimited limits appear, 
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So the soul of immensity dwells in minutia 
And in narrowest limits no limits inhere . 
What joy to discern the minute in infinity! 
The vast to perceive in the small, what divinity! 

The Challenge of the B��one 

With this and so many other contributions, the Bernoulli brothers left a 
significant mark upon the mathematics of their day. But one additional 
tale must be told of these cantankerous, competitive, and contentious 
brothers, a story that is surely one of the most fascinating from the entire 
history of mathematics. 

It began in June of 1696 when Johann Bernoulli published a chal
lenge problem in Leibniz's journal Acta Eruditorum. Obviously, a leg
acy of public challenges remained from the days of Fior and Tartaglia. 
Although the contests were now conducted in the sedate pages of schol
arly journals, they retained their power to make or break reputations, as 
Johann himself observed: 

. . .  it is known with certainty that there is scarcely anything which more 
greatly excites noble and ingenious spirits to labors which lead to the 
increase of knowledge than to propose difficult and at the same time useful 
problems through the solution of which, as by no other means, they may 
attain to fame and build for themselves eternal monuments among posterity. 

Johann's particular challenge was a good one . He imagined points A 
and B at different heights above the ground and not lying one directly 
above the other. There is certainly an infinitude of different curves con
necting these two points, from a straight line, to an arc of a circle, to any 
number of other wavy, undulating paths. Now imagine a ball rolling 
from A down to B along such a curve. The time it takes to complete the 
trip depends, of course , on the curve's shape . Bernoulli challenged the 
mathematical world to find that one particular curve AMB along which 
the ball will roll in the shortest time (see Figure 8.3) . He called this 
curve the "brachistochrone" from the Greek words for "shortest" and 
"time. "  

An obvious first guess i s  to take AMB a s  the straight line joining A and 
B. But Johann cautioned against this simplistic approach: 

. . .  to forestall hasty judgment, although the straight l ine AB is indeed the 
shortest between the points A and B, it nevertheless is not the path traversed 
in the shortest time. However the curve AMB, whose name I shall give if no 
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A 

B FIGURE S.3 

one else has discovered it before the end of this year, is one well-known to 
geometers. 

Johann gave the mathematical world until January 1 ,  1697, to come 
up with a solution. However, when his deadline arrived, he had received 
but one solution, from the "celebrated Leibniz," who 

has courteously asked me to extend the time limit to next Easter in order 
that in the interim the problem might be made public . . .  that no one might 
have cause to complain of the shortness of time allotted. I have not only 
agreed to this commendable request but I have decided to announce myself 
the prolongation and shall now see who attacks this excellent and difficult 
question and after so long a time finally masters it. 

Then, to be certain that no one misunderstood the problem, Johann 
repeated it: 

Among the infinitely many curves which join the two given points . . .  choose 
the one such that, if the curve is replaced by a thin tube or groove, and a 
small sphere placed in it and released, then this will pass from one point to 
the other in the shortest time. 

At this point, Johann waxed enthusiastic about the rewards of solving 
his brachistochrone problem. Recalling that he himself knew the solu
tion, one finds his remarks about the glories of mathematics a bit self
serving: 

Let who can seize quickly the prize which we have promised to the solver. 
Admittedly this prize is neither of gold nor silver, for these appeal only to 
base and venal souls . . . .  Rather, since virtue itself is its own most desirable 
reward and fame is a powerful incentive, we offer the prize, fitting for the 
man of noble blood, compounded of honor, praise, and approbation . . . .  
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In this passage , it sounds as though Johann was setting himself up 
for another triumph over poor Jakob . But he had a different target more 
squarely in his sights . Wrote Johann: 

. . .  so few have appeared to solve our extraordinary problem, even among 
those who boast that through special methods . . .  they have not only pene
trated the deepest secrets of geometry but also extended its boundaries in 
marvellous fashion; although their golden theorems, which they imagine 
known to no one , have been published by others long before . 

Could anyone doubt that the "golden theorems" he referred to were 
the techniques of fluxions, or that the object of his scorn was none other 
than Isaac Newton himself, a man who claimed to have known about 
calculus long before Leibniz had published it in 1684? Then, to leave no 
doubt about the explicit nature of his challenge , Johann put a copy in an 
envelope and mailed it off to England. 

Of course, in 1697, Newton was deeply involved with matters of the 
Mint, and, as he himself admitted, he no longer felt the agility of mind 
that characterized his mathematical heyday. Newton was then living in 
London with his niece , Catherine Conduitt, and she picks up the story: 

When the problem in 1697 was sent by Bernoulli-Sir I .  N. was in the midst 
of the hurry of the great recoinage and did not come home till four from the 
Tower very much tired, but did not sleep till he had solved it, which was by 
four in the morning. 

Even late in life and tired from a hectic day's work, Isaac Newton 
triumphed where most of Europe had failed! It was a remarkable display 
of the powers of the great British genius . He had clearly felt his reputa
tion and honor were on the line ; after all, both Bernoulli and Leibniz 
were waiting in the wings to publish their own solutions . So Newton 
rose to the occasion and solved the problem in a matter of hours . Some
what exasperated, he is reported at one point to have said, " I  do not love 
. . .  to be . . .  teezed by forreigners about Mathematical things. "  

Back i n  Europe , a s  Easter neared, a few solutions came into the hands 
of Johann Bernoulli .  The curve that everyone was seeking-one that "is 
well-known to geometers"-was none other than an upside-down 
cycloid. As we have noted, this important curve was studied by Pascal 
and Huygens, but neither of these mathematicians had realized that it 
would also serve as the curve of quickest descent. Johann wrote with 
characteristic hyperbole, " . . .  you will be petrified with astonishment 
when I say that precisely this cycloid . . . of Huygens is our required 
brachistochrone. ' , 
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On Easter, the challenge period had expired. AU together, Johann 
had received five solutions . There was his own and the: one from Leibniz. 
His brother Jakob came through (perhaps to Johann's dismay) with a 
third, and the Marquis de I 'Hospital added a fourth. Finally, there was a 
submission bearing an English postmark. Opening it, Johann foul}d the 
solution correct, although anonymous. He clearly had met his match in 
the person of Isaac Newton. Although unsigned, the solution bore the 
unmistakable signs of supreme genius. 

There is a legend-probably of dubious authenticity but nonetheless 
of great charm-that Johann, partially chastened, partially in awe, put 
down the unsigned document and knowingly remarked, "I recognize 
the lion by his paw. " 

Epilogue 

In describing Johann's proof of the divergence of the harmonic series, 
Jakob had begun, "/d primus deprebendit frater ' -that is, "My brother 
discovered it first ."  If Jakob thought that Johann was the first to grasp the 
strange behavior of this series, he was quite wrong, for at least two ear
lier mathematicians had proved its divergence . Their proofs differed 
from each other's and from Johann's argument above, yet each exhibited 
its own special cleverness . 

The earliest proof that the harmonic series diverges appeared in the 
work of Nicole Oresme (ca. 1323-1382) ,  a French scholar of the four
teenth century. Oresme wrote a remarkable book with the title Quaes
tiones super Geometriam Euclidis sometime around 1350 .  This is, of 
course, a very old document, predating Cardano's Ars Magna by two full 
centuries. Yet, in spite of its origins in what we might call the "Stone 
Age" of European mathematiCS, Oresme's work contained some very 
nice results . 

In particular, he addressed the nature of the harmonic series . Virtu
ally his entire argument follows: 

. . .  add to a magnitude of 1 foot: �, �, � foot, etc . ;  the sum of which is infinite . 
In fact, it is possible to form an infinite number of groups of terms with a 
sum greater than K Thus: � + � is greater than �; � + " + J.; + )k is greater 
than �; � + Xo + . . .  + X. is greater than �, etc. 

The reader may be forgiven for finding this a bit confusing. After all, 
the proof is entirely verbal ,  as one would expect for an argument written 
centuries before the appearance of symbolic algebra. Yet, with a bit of 
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"cleaning up," it becomes a remarkably simple and clever divergence 
proof. His insight was to replace groups of fractions in the . harmonic 
series by smaller fractions that sum to one-half. That is, he said: 

1 + � > � + � = 1 

1 + K + (}i + �) > 1 + (� + �) = % 
1 + � + }i + � + (� + � + � + }i) 

> % + (� + � + � .  + �) = % 
1 + � + . . .  + � .  + (� + �o + . . . + �6) 

> % + (�6 + . . . + �6) = % 

This process can be extended, so that, in general, for any whole num
ber k, 

1 1 1 + - + - + "  
2 3 

For instance, if k = 9, we see that 

1 k + 1 
+ - > --

2k 2 

1 1 1 1 1 
1 + - + - + . . .  + - = 1 + - + - + 

2 3 5 1 2  2 3 

1 9 + 1 
+ - > -- = 5  

29 2 

For k = 99, we get 

1 1 
1 + - + - + 

2 3 

and for k = 9999 we have 

+ 
2. 

> 
100 

= 50 
299 2 

1 1 1 9999 + 1 
1 + - + - + . . .  + - > = 5000 

2 3 29999 2 

So, by taking enough terms of the harmonic series, we can ensure 
that its sum exceeds 5 ,  or 50, or 5000, or in general any finite quantity. 
This guarantees that the entire harmonic series, being greater than any 
finite quantity, will diverge to infinity. Oresme's proof, clever, concise 
and easily remembered, is the one found in most modern mathematics 
texts . The Bernoullis, however, seem not to have been aware of its 
existence . 
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Johann Bernoulli had been anticipated by yet another mathemati
cian, the Italian Pietro Mengoli 0625-1 686) _ Mengoli's argument dates 
from 1647, and thus predated the Bernoullian proof by four dec�des. It 
was quite a simple argument, provided one first established a prelimi
nary result .  

1 1 1 3 
THEOREM If a > 1 ,  then -- + - + -- > - . 

a - I a a + l a 

PROOF Begin with the obvious fact that 2 a3 > 2 a3 - 2 a  = 2a(a2 - 1 )  
and divide both sides of  this inequality by a2( a2 - 1 )  to get 

Thus 

2 d  > 2 a ( ri  - 1 )  
ri ( ri  - 1 )  ri ( ri  - 1 )  

2 a  2 
or simply � > -

u- - 1 a 

_
1
_ + 

.!. 
+ _

1
_ = 

.!. 
+ 
(

_
1
_ + _

1_) 
a - I a a + l a a - I a + l 

= 
.!. 

+ 
2 a  

by a bit of algebra 
a ri - 1 
1 2 > - + - by the inequality above 
a a 
3 

= -
a 

Q.E.D. 

This proposition guarantees that, when adding the reciprocals of 
three consecutive whole numbers, the sum must exceed three times the 
reciprocal of the middle number. For instance,  as one can check 
numerically, 

� + }tI + Mo > " = � or � + �a + %4 > i%a = MI 

This was precisely the result that Mengoli needed to attack the har
monic series in his little proof from 1647 .  

THEOREM The harmonic series diverges to infinity. 
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PROOF Let H be the sum of the harmonic series. By grouping its terms 
and repeatedly applying the previous inequality, we find: 

H - 1 + (� + � + �) + (� + � + �) + (� + � + Mo) 
+ (MI + M2 + Ma) + . . . 

> 1 + (%) + 00 + (%) + (�.) + (�5) + . . . 
- 1 + 1 + � + � + � + � + � + � + � + � + ' "  
- 2 + (� + � + �) + (� + � + �) + (� + � + Mo) 

+ (MI + MI + Ma) + . . . 
> 2 + (%) + (%) + (%) + (�2) + (�5) + . . . 
- 2 + 1 + � + � + � + � + � + � + � + � +  . .  · - 3 + (� + � + �) + (� + � + �) + (� + � + Mo) 

+ (MI + M. + Ma) + . . . 

and so on. The beauty of Mengoli's argument is its self-replicating 
nature . Each time he applied his preliminary theorem to the harmonic 
series,  he encountered the harmonic series again, but this time aug
mented by one unit. As we look at the inequalities generated above, we 
see that H exceeds 1 ,  exceeds 2 ,  exceeds 3, and indeed, by repeating 
this process, exceeds any finite quantity at all. With Mengoli, we are left 
to conclude that the sum of the harmonic series must be infinite . 

Q.E.D. 

So, Johann's great theorem, although proved differently, had been 
discovered before him by both Oresme and Mengoli .  Moreover, imme
diately after he gave Johann's proof in Tractatus, Jakob presented his 
own proof of the divergence of the harmonic series . It too was a very 
elegant argument-somewhat advanced to be presented here
although its presence smacked of the mathematical combat that raged 
between these sibling rivals . 

In Tractatus, with the harmonic series behind him, Jakob next 
addressed the sum of the reciprocals of the squares of the whole num
bers . That is, he investigated 

1 1 1 
1 + - + - + . . .  + - + . . .  - 1  + � + � + M6 + ' "  

22 32 Ii 

He noticed that � < �, that � < �, that M. < Mo, and in general 

1 1 - < ----Ii k(k + 1)/2 



206 • JOURNEY THROUGH GENIUS 

Therefore, he reasoned that 

1 
1 + � + � + X6 + . . . + It + . . . < 1 + � + � + Xo + X5 + . . . 

2 . 
+ k(k 

+ 1 )  
+ . . .  = 2 (M + � + X2 + }2o + �  + . . .  ) = 2( 1 )  = 2 

where we have once again applied Leibniz's ubiquitous sum from the 
beginning of this chapter. In this fashion, Jakob had shown that the 
series in question converged to some finite quantity less than 2 .  This 
technique of establishing convergence is now called the "comparison 
test," for obvious reasons. Jakob's argument provided an early instance 
of the comparison test in action. 

Although they knew that this infinite series converged, the Bernoullis 
were unsuccessful in determining the exact value of its sum. Jakob 
reported his failure with the somewhat desperate plea: "If anyone finds 
and communicates to us that which up to now has eluded our efforts, 
great will be our gratitude ."  

Evaluating the series 1 + � + � + X6 + . . .  proved to  be  a very 
difficult matter, and it would take a genius beyond that of the Bernoullis 
to determine its elusive sum.  

Interestingly, the problem was finally solved in 1734 by a young man 
who had studied mathematics under Johann Bernoulli himself. In sum
ming this series, as in so many other areas of mathematics, this young 
man would turn out to surpass his teacher. In fact, he would surpass vir
tually everyone who ever put pencil to paper in a mathematical quest. 
This student was Leonhard Euler, author of our next great theorem. 



Chapter 

The Extraordinary Sums of 
Leonhard Euler 

(1 734) 

The Master of All Mathematical Trades 

The legacy of Leonhard Euler (pronounced "oiler") is unsurpassed in 
the long history of mathematics . In both quantity and quality, his 
achievements are overwhelming. Euler's collected works fill over 70 
large volumes, a testament to the genius of this unassuming Swiss citizen 
who changed the face of mathematics so profoundly. Indeed, one's first 
inclination, upon encountering the volume and quality of his work, is to 
regard his story as an exaggerated piece of fiction rather than hard his
torical fact. 

This remarkable individual was born in Basel,  Switzerland, in 1707. 
Not surprisingly, he showed signs of genius as a youth. Euler's father, a 
Calvinist preacher, managed to work out an arrangement whereby young 
Leonhard would study with the renowned Johann Bernoulli .  Euler later 
recalled these sessions with the master. The boy would work throughout 
the week and then, during an appointed hour on Saturday afternoons, 
would ask Bernoulli for help on the mathematical topics that had eluded 
him. Bernoulli, not always the most kind-hearted of men, may have ini-

207 
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tially shown some irritation at the shortcomings of his pupil ;  Euler, for 
his part, resolved to work as diligently as possible so as not to bother his 
mentor with unnecessary trifles. 

Grumpy or not, Johann Bernoulli soon recognized the talent he was 
nurturing. Soon Euler was publishing mathematical papers of high qual
ity, and at age 19 he won a prize from the French Academy for his bril
liant analysis of the optimum placement of masts on a ship . (It should 
be noted that, at this point in his life, Euler had never even seen an 
ocean-going vessel !)  

In 1727,  Euler was appointed to the St. Petersburg Academy in Rus
sia. At that time, the Russian establishment was trying to implement 
Peter the Great's dream of building an institution to rival the great acad
emies of Paris and Berlin. Among the scholars lured to Russia was Daniel 
Bernoulli ,  son of Johann, and it was through Daniel's influence that 
Euler obtained his employment. Oddly, with the positions in the natural 
sciences being filled, Euler's appointment was in the areas of medicine 
and physiology. But a position was a position, so Euler readily accepted. 
After a shaky start, including a peculiar stint as a medical officer in the 
Russian navy, Euler at last landed a mathematical chair in 1733 when 
Daniel Bernoulli ,  its previous occupant, vacated it to return to 
Switzerland. 

By then, Euler had already displayed the boundless energy and enor
mous creativity that would characterize his mathematical life .  Although 
Euler began losing sight in his right eye during the mid- 1730s and soon 
was virtually sightless in that eye, this physical impairment had no 
impact whatever on his scientific work. He continued unimpeded, solv
ing significant problems from such diverse mathematical arenas as 
geometry, number theory, and combinatorics, as well as applied areas 
such as mechaniCS, hydrodynamics, and optics . It is both poignant and 
somehow remarkably uplifting to imagine a man slipping into blindness 
yet explaining to the world the mysteries of optical light. 

In 174 1 ,  Euler left St. Petersburg to take a position in the Berlin Acad
emy under Frederick the Great. This move was based in part upon his 
distaste for the repressive nature of the Czarist system. Unfortunately, 
the Berlin situation also proved to be far from ideal. Frederick regarded 
Euler as too little the sophisticate, too much the quiet, unassuming 
scholar. The German king, in an insensitive reference to Euler's vision 
problems, called him a "mathematical cyclops . "  Such treatment, along 
with the petty controversies and political in-fighting of the Academy, led 
Euler back to St. Petersburg during the reign of Catherine the Great, and 
he remained there until his death 17 years later. 

Euler was described by contemporaries as a kind and generous man, 
one who enjoyed the simple pleasures of growing vegetables and telling 



THE EXTRAORDINARY SUMS OF LEONHARD EULER • 209 

Leonhard Euler (photograph courtesy of The Ohio State University 
Libraries) 
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stories to his brood of 13  children. In this regard, El.ller presents a wel
come contrast to the withdrawn, secretive Isaac NeWton, one of his very 
few mathematical peers . It is comfoning to know that genius of this 
order does not necessarily bring with it a neurotit personality. Euler 
even retained his good nature when, in 177 1 ,  he lost most of the vision 
in his normal eye . Almost totally blind and in some pain, Euler nonethe
less continued his mathematical writings unabated, by dictating his won
derful equations and formulas to an associate . Just as! deafness proved no 
obstacle to Ludwig von Beethoven a generation later, so blindness did 
not reduce the flow of mathematics from Leonhard Euler. 

Throughout his career, Euler was blessed with a memory that can 
only be called phenomenal . His number-theoretic investigatiOns were 
aided by the fact that he had memorized not onl� the first 100 prime 
numbers but also all of their squares, their cubes, and their fourth, fifth, 
and sixth powers . While others were digging throu�h tables or pulling 
out pencil and paper, Euler could simply recite from memory such quan
tities as 2414  or 3376. But this was the least of his acpievements. He was 
able to do difficult calculations mentally, some of these requiring him to 
retain in his head up to 50 places of accuracy! The frenchman Francois 
Arago said that Euler calculated without apparent effort, "just as men 
breathe, as eagles sustain themselves in the air , "  Yet this extraordinary 
mind still had room for a vast collection of memorized facts, orations, 
and poems, including the entire text of Virgil 's Aeneid, which Euler had 
committed to memory as a boy and still could recite flawlessly half a 
century later. No writer of fiction would dare to protide a character with 
a memory of this caliber. 

Pan of Euler'S well-deserved reputation rests upbn the textbooks he 
authored. While some of these were written at the highest level of math
ematical sophistication, he did not find it demeaninlg to write more ele
mentary books as well .  Perhaps his best-known text was the Introductio 
in Analysin Injinitorum of 1 748.  This classic matHematical exposition 
has been compared to Euclid's Elements in that it surveyed the discov
eries of earlier mathematicians, organized and cleaned up the proofs, 
and did the job so well as to render most previous writings obsolete . To 
the Introductio he added a volume on differential calculus in 1755 and 
three volumes on integral calculus in 1768-74 , thereby charting the gen
eral direction for mathematical analysis down to the present day. 

In all of his texts, Euler's exposition was quite lucid, and his mathe
matical notation was chosen so as to clarify, not obsture , the underlying 
ideas . Indeed, Euler's mathematical writings are the first that look truly 
modern to today's reader; this, of course, is not because he chose a mod
ern notation but because his influence was so pervasive that all subse
quent mathematicians adopted his style, notation, and format . Moreover, 
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he wrote with an understanding that not all his readers had his awesome 
ability for learning mathematics . Euler was not the stereotypical mathe
matician who sees deeply into the nature of his subject but finds it 
impossible to convey his ideas to others . On the contrary, he cared 
deeply about teaching . Condorcet, in a wonderful little phrase , said of 
Euler: "He preferred instructing his pupils to the little satisfaction of 
amazing them."  This is quite a compliment to a person who, if he had 
so chosen, could surely have amazed anyone with his mathematical 
prowess . 

Any discussion of Euler's mathematics somehow returns to his OPera 
Omnia, those 73 volumes of collected papers . These contain the 886 
books and articles-written variously in Latin, French, and German
that he produced during his career. His output was so huge and the pace 
of its production so rapid-even in the darkness of his later life-that a 
publication backlog is reported to have lasted 47 years after his death. 

As noted, Euler did not confine his work to pure mathematics . Rather, 
his opus contains papers on acoustics, engineering, mechanics, astron
omy, and even a three-volume treatise on optical devices such as tele
scopes and microscopes. Incredible as it sounds , it has been estimated 
that, if one were to collect all publications in the mathematical sciences 
produced over the last three-quarters of the eighteenth century, roughly 
one-third of these were from the pen of Leonhard Euler! 

Standing in a library before his collected works, one surveys shelf 
upon shelf of large volumes with a sense of disbelief. Contained in those 
thousands of pages are seminal papers that charted new directions for 
whole areas of mathematics, from the calculus of variations, to graph the
ory, to complex analysis, to differential equations . Virtually every branch 
of mathematics has theorems of major Significance that are attributed to 
Euler. Thus, we find the Euler triangle in geometry, the Euler character
istic in topology, and the Euler circuit in graph theory, not to mention 
such entities as the Euler constant, the Euler polynomials, the Euler inte
grals, and so on. And even this is but half the story, for a large number 
of mathematical results traditionally attributed to others were in fact dis
covered by Euler and appear neatly tucked away amid the huge body of 
his work. One wag has noted, not entirely in jest, that 

. . .  there is ample precedent for naming laws and theorems for persons 
other than their discoverers, else half of analysis would be named for Euler. 

Leonhard Euler died suddenly on September 7, 1 783 . Up until the 
end, he had been mathematically active, in spite of his blindness . 
Reportedly, he spent his last day playing with his grandchildren and -dis
cussing the latest theories about the planet Uranus. For Euler, the end 
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came quickly when, in Condorcet's phrase, "He ceased to calculate and 
to live . "  He is buried in St. Petersburg (now called Leningrad) , which 
had been his home, on and off, for so many happy years . 

1 1 1 1 
Great Theorem: Evaluating 

1 
+ '4 + 9 + 16 + 25 

1 
+ . . .  + kZ + 

From this enormous body of mathematics, it is difficult to select one or 
two representative theorems. That which follows was chosen for a num
ber of reasons . First, its history renders it an important and provocative 
result. Second, it was one of Euler's early triumphs, announced in 1734 
during his first years at St. Petersburg; by all accounts, it did much to 
solidify his reputation for mathematical genius . Finally, it provides an 
illustration not only of Euler's brilliance in solVing a problem that had 
stumped his predecessors, but also of his ability to turn an individual 
solution into a string of equally impressive and utterly unexpected ones . 
While no single theorem can encompass the genius of Leonhard Euler, 
the one we shall now examine illustrates his powers clearly. 

The problem is that with which we concluded Chapter 8. Recall that 
the Bernoullis, fresh from their triumph on the harmonic series, had 
examined the series 1 + � + � + XI + � + . . ' .  While they knew it 
summed to a number less than 2, they had no idea what this sum was . 
Apparently, the evaluation of this series mocked not only Jakob and 
Johann Bernoulli ,  but even Leibniz himself, not to mention the rest of 
the world's mathematical community. 

Euler would certainly have heard of this problem through his teacher 
Johann . He reported that his first attack on this series was simply to add 
up more and more of its terms in the hope of recognizing the sum. He 
carried this approximate sum to 20 places-no mean computational feat 
in the days before computers-and found that it was tending toward the 
number 1 .6449. Unfortunately, this number did not look at all familiar. 
Not to be deterred, he kept up his attack on the problem until finally he 
discovered the key to unlock its mystery. With obvious enthusiasm he 
wrote , " . . .  quite unexpectedly I have found an lelegant formula . . .  
depending on 71' . " 

To derive this elegant formula, Euler needed two tools. One was the 
so-called "sine function" from elementary trigonometry. A full dis
cussion of this important mathematical concept-usually written as 
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x 

FIGURE 9.1 

"sin x "-would carry us too far afield. However, anyone who has seen 
trigonometry or precalculus surely has met the well-known sine wave 
with its infinitely oscillating behavior. A graph of the function fex) = 
sin x appears in Figure 9 . 1  and lay at the heart of Euler's insight . 

Recalling that a function equals zero for precisely those values of x 
at which its graph cuts across the x-axis,  we see that sin x = ° for x = 
0, ± 11", ± 211", ± 311", ± 411", and so on . This infinite collection of x-values 
at which sin x equals zero reflects the repeating, periodic behavior of 
the sine function . 

This much information about the sine can be garnered from a basic 
trigonometry course . But if we add to our arsenal the power of calculus, 
the following formula emerges: 

X >? X' :Jt! 
sin x = x - - + - - - + - -

3 !  5 !  7 !  9 !  

Again, i t  is  not necessary to go through the derivation of the formula, 
although those who have studied Taylor series expansions in calculus 
will recognize it at once . Its importance was in providing Euler with a 
representation of sin x as an "infinitely long polynomiaL" 

This series for sin x needs a few words of explanation. First, the 
denominators involve the factorial notation common in certain branches 
of mathematics. By definition, 3! means 3 X 2 X 1 = 6; 5! = 5 X 4 X 
3 X 2 X 1 = 1 20;  and so on. Moreover, the expression for sin x will 
continue forever, with the powers on the x running through the 
sequence of odd integers, the denominators being the associated facto
rials , and the signs alternating between positive and negative . This is 
what we mean when we say we have written the sin x as an infinitely 
long polynomial . This was one of the clues Euler needed to solve the 
puzzle at hand. 

The other fact came not from the domain of trigonometry or calculus, 
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but from simple algebra. Since the Taylor series expansion for the sine 
function suggested an endless polynomial , Euler was drawn to examine 
the behavior of ordinary, finite polynomials and from there to make a 
bold extension to the infinite case . 

Suppose p(x) is a polynomial of degree n having as its n roots x = 
a, x = b, x = c, . . .  , and x = d; in other words, pea) = PC b) = P( c) 
= . . .  = p( d) = O. Suppose further that p(O) = 1 .  Then Euler knew 
that p(x) factors into the product of n linear terms as follows: 

p(x) = ( 1 - �) ( 1 - �) ( ( 1  - �) . . . ( 1 - �) 
It may be wise to look at the reasonableness of this general formula. 

We can see by direct substitution that 

Pea) = ( 1 - �) ( 1 - �) ( 1 - �) . . .  ( 1 - �) = 0 

since the first factor is just 1 - 1 = O .  Likewise, 

PC b) = ( 1 - �) ( 1 - �) ( 1 - �) . . .  ( 1 - �) = 0 

since now the second factor is 1 - 1 = O. Indeed, the expression for 
P(x) shows quite clearly that Pea) = PC b) = P( c) = . . . = P( d)  = 
0, as was desired. 

But there was another condition upon p(x) : we demanded that P(O) 
= 1 .  Fortunately, our formula comes through here as well ,  for 

p(O) = ( 1 - �) ( 1 - �) ( 1 - �) . . .  ( 1 - �) 
= ( 1 ) ( 1 ) ( 1 )  . . .  ( 1 )  = 1 

In short 

P(x) = ( 1 - �) ( 1 - �) ( 1 - �) . . .  ( 1 - �) 
has the properties we sought. 

As an example, suppose that P(x) is a cubic polynomial for which 
P(2) = p(3) = p(6) = 0 and P(O) = 1 .  Then we get the factorization 
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p(x) = ( 1  - �) ( 1  - �) ( 1  - �) = 1 - x + !.!  x - � .x3  
2 3 6 36 36 

and it can be easily checked that this cubic meets our conditions . 
Euler, contemplating this equation, decided that a similar rule would 

surely hold for "infinite polynomials . "  Like Newton, he was a great 
believer in the persistence of patterns, and if the pattern was valid for 
the finite case, why not extend it to the infinite one? Modern mathema
ticians know that this can be a dangerous practice, and the extension of 
formulas from the finite to the infinite can lead to enormous difficulties . 
Such an extension certainly is more subtle, and demands more care, than 
Euler gave it. Perhaps he was just lucky; perhaps his mathematical intu
ition was particularly strong. In any case , his bold extension paid off. 

These preliminary results may seem rather far removed from the ini
tial problem of summing 1 + � + � + Me + �5 + . . ' .  It took an insight 
of "Eulerian" proportions-which is to say an insight so profound as to 
be almost breathtaking-to tie all of the pieces together. 

PROOF Euler began by introducing the function 

X :J! X' ;Xl 
lex) = 1 - - + - - - + - - . . .  

3! 5 !  7! 9! 

To Euler, lex) was just an infinite polynomial with /(0) = 1 (as is 
immediately apparent) . Thus, it can be factored, in the manner devel
oped above, provided we determine the roots of the equation /ex) = O. 

To this end, observe that, for x ..;. 0 

.x3 x5 x' x9 x - - + - - - + - - · · ·  
3!  5 !  7!  9! 

= --�--�------�------x 
sin x 

x by the Taylor Expansion of sin x = --
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Therefore, so long as x is not 0 ,  solving lex) = ° amounts to solving 
sin x = 0, which (through a simple cross-multiplication) reduces to 

x 
solving sin x = 0 .  As we have seen, the sine function equals ° precisely 
for x = 0, x = ± 11', X = ± 211', and so on. But we mUst, of course , elim
inate x = ° from contention as a solution to lex) = 0,  since we have 
already noted that / (0) = 1 . In other words, the solutions of / (x) = ° 
are just x = ± 11', x = ± 211', x = ± 311', . . .  

With these considerations behind him, Euler factored /ex) as : 

= [ ( 1  - ;) ( 1 + ;) ] [ ( 1  -
2
:) 

( 1  + 
2
:) ] [ ( 1  - 3:) ( 1 + 3:) ] . . .  

which amounts to 

We shall call this the key equation . It is a most extraordinary result, 
for it equates an infinite sum with an infinite product. That is, the infinite 
series by which /(x) was originally defined has been equated to the infi
nite product on the right . To a mathematician of Euler's vision, this was 
highly suggestive . In fact, he was now on the brink of completing his 
proof, although many readers may stil l  be completely in the dark as to 
where his argument is leading.  

What Euler did was to imagine "multiplying out" the infinite product 
on the right side of the preceding equation and then collecting all terms 
having the same power of x. In so doing, the first tenm to appear would 
be the product of all of the Is and this, of course , is 1 .  To end up with a 
term in �, we would have to multiply the I s  from all but one of the 
factors by an � term from that remaining factor. Hence, Euler's "infinite 
multiplication" problem would result in the equation: 
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At last, the smoke begins to clear. That is, once Euler had multiplied 
out the infinite product to get two infinite sums equaling each other, 
nothing would be more natural than to equate the like powers of x. Note 
that both series begin with 1 .  Next comes the � term in each series, and 
so their coefficients must be equal . That is, 

. . .  ) 
Then, multiplying both sides by - 1 , observing that 3! = 6 on the left 
side , and factoring the common 11'2 out of the right side, Euler arrived at 

and a final cross-multiplication yielded the astounding fact that 

1 1 1 
1 + - + - + - +  . . .  4 9 16  6 

Q.E.D. 

Here, then, Leonhard Euler found the answer that had escaped math
ematicians for decades. Sure enough, the numerical value of 11'2/6 is 
1 .6449 . . .  , the approximate value Euler had originally determined. Note 
also that this sum is indeed less than 2, as Jakob Bernoulli had correctly 
deduced in 1689. 

But no one before Euler had the slightest inkling that the series 
summed to exactly one-sixth of 11'2 . What a bizarre result this is. For rea
sons buried deeply within the mathematics itself, the sum of the series 
in question turns out to be, of all things , a formula involving 11'. Since 11' 
is naturally associated with circles , but since numbers like 1 ,  4 ,  9, 16 
arise in conjunction with squares, an outcome linking the two could 
hardly have been anticipated. Even Euler was surprised by the answer. 
His formula was , and to this day remains , one of the most peculiar and 
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surprising in all of mathematics . This unexpectedness, combined with 
the very clever method of deriving it, makes Euler's proof a great theo
rem of the first rank. 

Epilogue 

The result just presented helped establish the repUtation of Leonhard 
Euler throughout the mathematical world. It was an undisputed triumph, 
and surely many lesser intellects would have been perfectly happy to sit 
back and rest on these very impressive laurels-but not Euler. Typical 
of his mathematics was the ability to mine any result for all it was worth. 
In the case of his wonderful sums, he had only scratched the surface . 

Euler returned to the fact that the infinite product he had generated 
in the key equation was equal to sin x/x, provided x oF O . Looking at the 
graph of the sine function in Figure 9 . 1 ,  one sees that sin x reaches a 
peak of 1 when x = 1r/2 .  So, upon substituting x = 1r/2 into the infinite 
product, we find that : 

which became 

or simply 

; = (�) G�) (��) (:!) . . .  
Upon taking reciprocals and factoring the right side , Euler had stumbled 
upon the formula: 

1r 2 X 2 X 4 X 4 X 6 x 6 X 8 X 8  . . .  - = 
2 1 X 3 X 3 X 5 X 5 X 7 X 7 X 9  . . .  

This expression, which gives 1r/2 as a huge quotient having the prod
uct of the even numbers in the numerator and the product of the odd 
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ones in the denominator, had been known to the Englishman John Wal· 
lis ( 1616-1703) , who derived it in a very different fashion as early as 
1 650 .  Thus, Euler had not so much discovered a new formula here as he 
had rediscovered it by his novel and obviously quite powerful use of 
infinite sums and infinite products . 

But Euler had more tricks up his sleeve . He realized that the tech· 
nique he developed to evaluate the series 1 + � + � + �6 + . . . was 
the key to evaluating even "wilder" series . For instance, suppose we 
wanted to sum the reciprocals of just the even squares: 

1 1 1 1 1 1 
- + - + - + - + - + . . .  + -- + 
4 16  36 64 100 (2k)2 

Euler simply factored out X and then referred to the "great theorem" to 
see that 

Then, Euler had no trouble summing the reciprocals of the odd perfect 
squares as well ,  since 

And still Euler pushed on, obviously exhilarated by his discoveries . 
He raised the question of summing the reciprocals of the fourth powers 
of the integers : 

Could he determine this one? 
Euler realized that he should return to the key equation and this time 

determine the coefficients of X4 from each side of the equality. But how 
does one go about finding the X4 term that emerges from the infinite 
multiplication on the right side of the key equation? This was no trivial 
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question. In answering it, Euler was again aided by his keen sense of 
pattern recognition and his faith that whatever holds for finite products 
can be safely extended to infinite products . 

In order to understand his reasoning, we shall first consider two sim· 
pIe but suggestive examples, keeping an eye on the resulting coefficients 
of X4 . First of all 

(1 - ax) ( 1  - bx) = 1 - ( a  + b)x + abx4 
= 1 - ( a  + b)x + � [ ( a  + b) 2  - (d + 1I) ]x4 

Secondly 

(1 - ax) ( l  - bx) ( 1  - ex) 
= 1 - ( a  + b + c)x + ( ab + ac + bc)x4 - (abc):/' 
= 1 - (a  + b + c)x + � [ ( a  + b + C)2 - (d + II + C)]X4 

- ( abc):/' 

These equations can be  checked directly simply by multiplying out the 
terms in square brackets on the right-hand sides. 

Note that a pattern has emerged-namely, when multiplying a series 
of factors like (1 - ar) ,  (1 - br) ,  ( 1  - cr) , and so on, the coefficient 
of X4 is half the difference between the square of the sum ( a  + b + c + 

- . . )  and the sum of the squares (a2 + b2 + c2 + . . . ) .  If this pattern 
holds for the product of two or three such factors, why not extend it to 
four, or five , or to an infinite number? Returning to the key equation, 
Euler enthusiastically did just that: 

Here we see that 1/11'2 corresponds to a, 1/411'2 corresponds to b, 
1/911'2 corresponds to c, and so on. Applying our observation about the 
coefficient of X4 thus yields: 
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Euler now considered the coefficients of X4 on both sides of this 
equation. The coefficient of X4 on the left side is just 1/5 !  = 1/ 120 .  The 
corresponding coefficient in the right-hand series is much more intricate 
but can be tidied up algebraically by factoring out common powers of 11" 
and using the conclusion of the great theorem above . That is, the coef
ficient of X4 on the right is 

Now the moment of truth was at hand. Euler simply equated these 
coefficients of X4 and solved the resulting equation as shown below: 

so 

Then a final cross multiplication yielded Euler's formula: 

Here Euler had discovered a genuinely odd result linking the recip
rocals of the perfect fourth powers with the fourth power of 11". Then, like 
a child with a newly found plaything, he exuberantly applied his remark
able techniques to sum even stranger series like :  
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1 
+ - +  II' 

'lr6 
= -

945 

and he kept at it for even exponents all the way to the phenomenal 

1 1 1 
1 + - + - + " ' + - +  

226 326 1i6 = 
1 3 1 5862 

r6 
1 1094481976030578125 

when even he finally tired of  this. Needless to  say, no one in  history had 
ever traveled these mathematical paths . No matter how frivolous they 
may appear from a practical standpoint, they were surely advances in 
human knowledge, discoveries of previously unsuspected relationships 
involving reciprocals of powers of whole numbers and that most impor
tant of constants, 'Ir. 

A question immediately comes to mind: What is the sum of the recip
rocals of the odd powers of the integers? For instance, can we evaluate 
the infinite series 

1 1 1 1 1 1 
1 + - + - + - +  . . .  = 1 + - + - + - +  . . .  

23 Y 43 8 27 64 

as well? Here even Euler was mute , and the past 200 years of mathemat
ical research have advanced our knowledge of such odd powers very lit
tle . It is easy to conjecture that the sum in question is of the form 
(PI q) 'lr3 for some fraction pi q, but to this day no one knows if this con
jecture is valid. 

Today, we recognize that Euler was not so precise in his use of the 
infinite as he should have been. His belief that finitely generated patterns 
and formulas automatically extend to the infinite case was more a matter 
of faith than of science, and subsequent mathematicians would provide 
scores of examples showing the folly of such hasty generalizations. In 
short, Euler could be convicted of giving insufficient attention to the log
ical foundations of his arguments . Yet such criticisms barely tarnish his 
reputation . Even though his approach to infinite series was naive , all of 
these wonderful sums have been subsequently verified by today's higher 
standards of logical rigor. 

These triumphs occupied just a few pages of the 70-odd volumes of 
his collected works_ In the next chapter, we shall take a look at Euler's 
brilliant contributions to a very different branch of mathematics-the 
field of number theory. 



10 
Chapter 

A Sampler of Euler's 
Number Theory 

( 1 736) 

The Legacy of Fermat 

We have seen Euler's success at evaluating complicated infinite series. 
This work falls within the mathematical subfield called "analysis ,"  where 
his discoveries were particularly important and profound. But we would 
be remiss not to examine a few of his contributions to the theory of num
bers, a branch of mathematics in which Euler's name ranks very near the 
top. We encountered number theory before, in Chapter 3 with Euclid's 
masterful proof of the infinitude of primes and in Chapter 7 with the 
tantalizing work of Pierre de Fermat, whose insightful commentaries and 
conjectures transformed the subject. As noted, Fermat was not forthcom
ing with the proofs, and in the century separating Fermat and Euler, little 
progress had been made toward verifying Fermat's assertions. This 
absence of progress may be explained in part by the excitement of the 
newly discovered calculus, which monopolized mathematical inquiry at 
the end of the seventeenth century, in part by the perceived lack of 
applications of number theory to any real-world phenomena, and in part 

113 
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by the humbling fact that Fermat's claims were too difficult for many 
mathematicians to tackle .  

Euler's enthusiasm for number theory was nurtured by Christian 
Goldbach, whose Goldbach conjecture we briefly met in the Epilogue 
to Chapter 3 .  Goldbach was fascinated by the subject of numbers, 
although his zeal far outstripped his talents . He and Euler maintained a 
steady correspondence, and it was Goldbach who initially brought many 
of Fermat's unproved statements to Euler's attention. Initially, Euler 
seemed less than enthusiastic about pursuing the subject, but a combi
nation of his own insatiable curiosity and Goldbach's persistence forced 
Euler to take a closer look. Before long, he was captivated by number 
theory in general and by Fermat's list of unproved statements in partic
ular. As observed by modern author and mathematician Andre Weil ,  " . . .  
a substantial part of Euler's [number theoretic] work consisted in no 
more, and no less, than getting proofs for Fermat's statements . "  Before 
he was done, Euler's number theory filled four large volumes of his 
Opera Omnia. It has been observed that, had he done nothing else in 
his scientific career, these four volumes would place him among the 
greatest mathematicians of history. 

For instance, Euler proved one of Fermat's fascinating assertions 
about those primes that can be written as the sum of two perfect squares. 
It is clear that, except for 2, all other primes are odd numbers . Of course, 
when we divide an odd number by 4 ,  we must get a remainder of either 
1 or 3 (since numbers that are exact multiples of 4, or two more than 
multiples of 4 ,  are even.) We can express this more succinctly by saying 
that, if p > 2 is prime, then either p = 4 k  + 1 or p = 4 k  + 3 for some 
whole number k. In 1640, Fermat had asserted that primes of the first 
type-that is, those that are one more than a multiple of 4-can be writ
ten as the sum of two perfect squares in one and only one way, while 
primes of the form 4k + 3 cannot be written as the sum of two perfect 
squares in any fashion whatever. 

This is a peculiar theorem. It says, for instance, that a prime like 193 
= (4 X 48) + 1 can be written as the sum of two squares in a unique 
way. In this case, it is easily verified that 193 = 144 + 49 = 1 22 + 72 
and that there is no other sum of squares totaling 193 .  On the other hand, 
the prime 199 = (4 X 49) + 3 cannot be written as the sum of two 
squares at all ,  which can likewise be checked by listing all the unsuc
cessful possibilities . We thus have a major split between the two types 
of (odd) primes in their expressibility as the sum of two squares. It is a 
property that is in no way expected or intuitively plausible . Yet Euler 
had proved it by 1747.  

We saw another example of Euler's number theoretic genius when 
his characterization of all even perfect numbers was discussed in the 
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Epilogue to Chapter 3. Related to this topic was his work with the so
called amicable numbers . These are a pair of numbers with the follow
ing property: the sum of all proper divisors of the first number exactly 
equals the second number while the sum of all proper divisors of the 
second likewise equals the first . Amicable pairs had been of interest as 
far back as classical times, when they were regarded by some as having 
a mystical ,  "extra-mathematical" significance . Even in the present day, 
they loom large in the pseudoscience of numerology because of their 
unusual reciprocal property. 

The Greeks were aware that the numbers 220 and 284 were amicable . 
That is, the proper divisors of 220 are 1 ,  2, 4, 5, 10 ,  1 1 ,  20, 22 ,  44, 55 ,  
and 1 10 ,  which add up to 284 ;  at  the same time, the divisors of 284 are 
1 , 2 , 4 ,  7 1 , and 142 ,  whose sum is 220. Unfortunately for numerologists, 
no other pair was known until Fermat demonstrated in 1636 that 17,296 
and 18,4 16  form a second such pair. [Actually, this pair had been discov
ered by the Arab mathematician al-Banna ( 1 256-1321 )  over three cen
turies earlier, but its existence remained unknown in the West when Fer
mat came upon the scene .] Then in 1638, Descartes, perhaps in an effort 
to upstage his countryman, proudly announced his discovery of a third 
pair, 9,363,584 and 9,437,056. 

So matters stood for a century until Euler turned his attention to the 
problem. Between 1747 and 1750, he found the pair 1 22 ,265 and 
1 39,815 as well as 57 other amicable pairs, thereby Single-handedly 
increasing the world's known supply by nearly 2000 percent! What hap
pened was that Euler had found a recipe for generating such numbers , 
and generate them he did. 

One of the most important of all of Fermat's assertions appeared in 
another letter of 1640. There he stated that, if a is any whole number 
and p is a prime that is not a factor of a, then p must be a factor of the 
number aP- 1 - 1 .  As was his irksome custom, Fermat announced that he 
had found a proof of this strange fact, but did not include it in the letter. 
Instead he told his correspondent, "I would send you the demonstration 
if I did not fear it being too long . "  

This result has since come to be known as the " little Fermat theo
rem."  For the prime p = 5 and the number a = 8, the theorem asserted 
that 5 divides evenly into 84 - 1 = 4096 - 1 = 4095;  obViously, this is 
true.  Similarly for the prime p = 7 and the number a = 17 ,  his result 
claimed that 7 divides evenly into 176 - 1 = 24 ,37,569 - 1 = 
24 , 1 37,568; this fact is far less obvious but equally true.  

How Fermat went about proving this we can only conjecture . A com
plete proof had to await Euler in 1736. We shall examine this argument 
in a moment. But first we should assemble the number-theoretic ingre
dients that Euler needed in order to cook up his proof: 
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(A) If p is a prime that divides evenly into the product a X b X c X 
. . X d, then p must divide evenly into (at least) one of the factors a, 

b, c, . . . , d. In everyday language, this says that if a prime divides a 
product, it must divide one of the factors . As we noted in Chapter 3 ,  
Euclid had proved this two millennia before Euler as  Proposition VI I .30 
of the Elements. 

(B) If P is a prime and a is any whole number, then the expression 

dJ-l + P - 1 cf-2 + (p - 1) (p - 2) cf-3 + . . .  
+ a 

2 X 1  3 X 2 X 1  

is a whole number as well .  
We shall not prove this statement but will instead investigate its truth 

for a particular example or two. For instance, if a = 13  and p = 7, then 
we find that 

6 6 5 + 6 X 5  4 .  6 X 5 X 4 3 1 3 
+ 

2 X 1 
1 3  

3 X 2 X 1 
1 3  + 

4 X 3 X 2 X 1 
1 3  

+ 6 X 5 X 4 X 3 
1 2 + 6 X 5 X 4 X 3 X 2 13  = 4826809 

5 X 4 X 3 X 2 X 1
3 

6 X 5 X 4 X 3 X 2 X 1  + 1 1 13879 + 142805 + 10985 
+ 

507 
+ 1 3  = 6094998 

which indeed is a whole number. What happened here was that all of 
the apparent fractions in the initial expression can¢eled out, and we 
were left with the sum of integers . Of course , it is not obvious that such 
a cancellation will always occur. Indeed, if we use a nonprime in place 
of p, we can run into trouble. For instance, with a = 13 and p = 4, we 
get 

1Y 
+ 

2 
� 

1
1Y 

+ 
3 
� � � 

1 
1 3  = 2 197 

+ 
253 .5 

+ 1 3  = 2463 .5  

which is  certainly not an integer. It i s  the primality of  p that keeps the 
expression integer-valued. 

The only other mathematical weapon that Euler needed was the 
binomial theorem applied to ( a  

+ 1 )P. Fortunately, he had read his 
Newton, so this was in his well-stocked arsenal . We shall approach his 
argument in a series of four steps, each leading directly to the next and 
ending with the little Fermat theorem: 

11IEOREM If P is prime and a is any whole number, then( a  
+ l)P -

(aP + 1 )  is evenly divisible by p. 
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PROOF Expanding the first expression by the binomial theorem yields 

( a  + l )P = [ d + pd-1 + pep -
1)  d-2 

2 X 1 

+ pep - l ) (p - 2) d-3 + . . . + pa + 1 ] 
3 X 2 X 1  

We substitute this expansion into the expression ( a  + 1 )P -
( aP + 1 ) ,  combine terms, and factor out p to get 

( a  + l )P - ( d + 1 )  

= [ d + d- I + pep - 1) d-2 + pep - 1) (p - 2) d-3 + . p 2 X 1  3 X 2 X 1  

+ pa + 1 ] - ( d + 1 )  

= d-1 + pep - 1) d-2 + pep - 1)  (p - 2) d-3 + . . .  + pa p 2 X 1  3 X 2 X 1  

= P [ d-1 + 
P - 1 d-2 + 

(p - 1) (p - 2) d-3 + . . . + a ] 
2 X 1  3 X 2 X 1  

But the term in the square brackets is a whole number, by observation 
(B) above . We have thus demonstrated that ( a  + l)P - ( d + 1 ) can be 
factored as the prime p times a whole number. In other words, p divides 
evenly into ( a  + l)P - ( d + 1 ) ,  as claimed. 

Q.E.D. 

This brings us to the second theorem in the sequence. 

TIIEOREM If P is prime and if d - a is evenly divisible by p, then so is 
(a + 1 )P - (a + 1 ) .  

PROOF The previous result guarantees that p divides evenly into 
( a  + 1 )P - ( d + 1 ) ,  and we have assumed that p also divides evenly 
into d 

-
a. Thus, p clearly divides evenly into the sum of these : 

[ ( a  + l )P - ( d + 1 ) ] + [d - a] = ( a  + l )P - d - 1 + d - a 
= ( a  + l)P - ( a  + 1)  

which is  what we were to prove. 
Q.E.D. 
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The previous result provided Euler with the key to proving the little 
Fermat theorem by a process called "mathematical induction . "  Induc
tion is a technique of proof ideally suited to propositions involving the 
whole numbers, for it exploits the "stairstep" nature of these numbers, 
where one follows immediately after its predecessor. Inductive proofs 
are much like climbing a (very tall) ladder. Our initial job is to step onto 
the ladder's first rung. We then must be able to go from the first rung to 
the second. That accomplished, we need to climb from the second 
to the third, then from the third to the fourth. If we have mastered the 
process of climbing from any rung to the next, the ladder is ours ! We are 
assured that there is no rung beyond our reach. So it was with Euler's 
inductive proof: 

1HEOREM If P is prime and a is any whole number, then p divides 
evenly into d' - a. 

PROOF Since this was a proposition about all whole numbers, Euler 
began by verifying it for the first whole number, a = 1 .  But this case is 
simple since d' - a = IP - 1 = 1 - 1 = 0, and p certainly divides 
evenly into 0 (in fact, every positive integer divides evenly into 0) . This 
put him onto the ladder. 

Now apply the preceding theorem with a = I-that is, having just 
established that p is a factor of IP- 1 ,  Euler could conclude that p was 
likewise a factor of 

( 1  + 1 )P - (1 + 1 )  = 2P - 2 

In other words, his result holds for a = 2 .  Cycling back through the 
previous proposition, we find that this implies that p divides evenly into 

(2 + 1 )P - (2 + 1) = 3P - 3 

Repeat the process to see that p divides evenly into 4P - 4 ,  and 5P - 5 ,  
and so on . Like climbing from one rung to the next, Euler could proceed 
up the ladder of whole numbers, assured that , for any whole number a, 
p is a factor of d' - a. 

Q.E.D. 

Finally, Euler was ready to give a proof of the little Fermat theorem. 
Having done the spadework above , he had an easy time of it: 

I1ITLE FERMAT 1HEOREM If P is prime and a is a whole number which 
does not have p as a factor, then p divides evenly into d'- l - 1 .  
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PROOF We have just shown that p divides evenly into 

tf - a = a[ tf-I - 1 ]  

Since p i s  a prime, (A) above implies that p must divide evenly into 
either a or tf-I - 1 (or both) . But we have assumed that p does not go 
evenly into the former, and we are forced to conclude that p does divide 
evenly into the latter. That is, p divides into tf-I - 1 .  This is the little 
Fermat theorem. 

Q.E.D. 

Euler's argument was a gem. He needed only relatively simple con
cepts; he included an inductive portion, so typical of proofs about whole 
numbers; he used a result as old as Euclid and another as fresh as the 
binomial theorem. To these ingredients , he added a liberal dose of his 
own genius, and out came the first demonstration of Fermat's previously 
stated, but hitherto unproven, little theorem. 

A brief aside is the surprising fact that this proposition has recently 
been applied to a real-world problem-namely, the design of some 
highly sophisticated encryption systems for transmitting classified mes
sages. This is not the first and certainly not the last case where an abstract 
theorem of pure mathematics has proved to have some very down-to
earth uses . 

Great Theorem: Euler's Refutation of Fermat's Conjecture 

For our purposes in this chapter, the preceding argument is prologue. It 
was in the context of another Fermat/Euler result that the chapter's great 
theorem appeared. Not surprisingly, the matter was brought to Euler's 
attention by his faithful correspondent Goldbach. In a letter of Decem
ber 1 ,  1729, Goldbach somewhat innocently asked, " Is Fermat's 
observation known to you , that all numbers 22n + 1 are primes? 
He said he could not prove it; nor has anyone else done so to my 
knowledge . " 

What Fermat purported to have found was a formula that always gen
erated primes. Clearly he was on target for the first few values of n. That 
is, if n = 1 ,  221 = 22 + 1 = 5 is prime; for n = 2 ,  we have 222 + 1 = 
24 + 1 = 17 ,  a prime; and likewise n = 3 and n = 4 yield primes 
28 + 1 = 257 and 2 16 + 1 = 65537. The next number in the sequence, 
when n = 5, is the monster 
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225 + 1 = 232 + 1 = 4 ,294 ,967 ,297 

which Fermat likewise suggested was a prime . Given Fermat's track rec
ord, there was no immediate reason to doubt his observation. On the 
other hand, any attempt to disprove Fermat's conjecture would require 
a mathematician to find a way to factor this 10-digit number into two 
smaller pieces; such a search could take months, and of course if Fermat 
were correct about the number's primality, the quest would ultimately 
prove fruitless . In short, there was every reason to accept Fermat at his 
word and go on to other business . 

But this was not for Leonhard Euler. Instead, he turned his attention 
to 4,294 ,967,297, and when the dust settled, Euler had successfully fac
tored it. Fermat had been wrong. Needless to say, Euler did not stumble 
upon the factors by accident . Like a detective who first eliminates the 
innocent by-standers from the true suspects in a case, so Euler devised 
a highly ingenious test that allowed him to eliminate at the outset all but 
a handful of potential divisors of 4 ,294 ,967,297. His extraordinary insight 
made the task ahead of him immeasurably simpler. 

Euler's line of attack began with an even number a (although, if the 
truth be known, he was thinking specifically of a = 2) and a prime p 
that is not a factor of a. He then wanted to determine the restrictions on 
this prime p if it did divide evenly into a + 1 ,  or into a2 + 1 ,  or a4 + 
1 ,  or in general into a2" + 1 .  Given the nature of Fermat's assertion, 
Euler was particularly interested in the case when n = 5. That is, what 
could he learn about prime factors of a32 + I ?  

I t  i s  a perverse twist of fate that the main result Euler used to refute 
Fermat's conjecture about 22" + 1 was none other than the little Fermat 
theorem itself. Put another way, Fermat had sown the seeds of his own 
downfall . Indeed, as we watch Euler reason his way through the great 
theorem below, we cannot help but admit that, in the right hands, a little 
Fermat goes a long way. 

TIIEOREM A Suppose a is an even number and p is a prime that is not a 
factor of a but that does divide evenly into a + 1 .  Then for some whole 
number k, p = 2 k  + 1 .  

PROOF This is quite simple . If a is even, then a + 1 is odd. Since we 
assumed that p divides evenly into the odd number a + 1 ,  P itself must 
be odd. Hence p - 1 is even and so p - 1 = 2 k for some whole number 
k. In other words, p = 2 k  + 1 .  

Q.E.D. 
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Consider a specific numerical example. If we start with the even 
number a = 20, then a + 1 = 2 1 ,  and the prime factors of 2 1-namely, 
3 and 7 -are indeed both of the form 2 k + 1 .  

The next step is more challenging: 

11IEOREM B Suppose a is an even number and p is a prime that is not a 
factor of a but such that p does divide evenly into a2 + 1 .  Then for some 
whole number k, p = 4k  + 1 .  

PROOF Since a is even, so is a2, and by Theorem A we know that any 
prime factor of a2 + I -in particular the number p-must be odd. That 
is, p is one more than a multiple of 2 .  

But what happens when we divide p by 4 ?  Obviously, any odd num
ber is either one more than a multiple of 4 or three more than a multiple 
of 4. Symbolically, we can say that p is either of the form 4k  + 1 or of 
the form 4k + 3 .  

Euler wanted to eliminate the latter possibility, and so for the sake of 
eventual contradiction, he supposed that p = 4k  + 3 for some whole 
number k. By hypothesis , p is not a divisor of a, and so the little Fermat 
theorem implies that p does divide evenly into 

On the other hand, we have assumed that p is a divisor of a2 + 1 ,  
and consequently p i s  also a divisor of the product 

( d  + 1 ) ( dk - dk-2 + dk-4 - • • •  + d - d + 1 ) .  

I t  can be checked algebraically that, upon multiplying out and cancel
ing terms, this complicated product reduces to the relatively simple 
a4k+2 + 1 .  

We have now concluded that p divides evenly into both a4k+2 + 1 
and a4k+2 - 1 .  Hence p must be a divisor of the difference 

( a4+2 + 1 )  - ( dk+2 - 1 )  = 2 

But this is a glaring contradiction, since the odd prime p cannot divide 
evenly into 2 .  The contradiction implies that p does not have the form 
4k  + 3 ,  as we assumed at the outset .  Since there is only one remaining 
alternative , we conclude that p must be of the form 4k + 1 for some 
whole number k. 

Q.E.D. 
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As before, a few examples are in order. If a = 1 2 , then a2 + 1 = 
144 + 1 = 145 = 5 X 29, and both 5 and 29 are primes of the form 
4k  + 1 (that is, one more than a multiple of 4) . Alternately, if a = 6B , 
then a2 + 1 = 4625 = 5 X 5 X 5 X 37, and again each of these prime 
factors is one more than a multiple of 4 .  

Next, Euler addressed prime factors of the number d2 + 1 = 
a4 + 1 .  

TIlEOREM C Suppose a is an even number and p is a prime that is not a 
factor of a but such that p does divide evenly into ·a4 + 1 .  Then for some 
whole number k, p = Bk + 1 .  

PROOF First note that a4 + 1 = ( a2)2 + 1 .  Consequently, we can apply 
Theorem B to deduce that p is one more than a multiple of 4 .  With this 
in mind, Euler inquired what would happen if p is divided not by 4 but 
by B. At first, we seem to encounter eight possibilities : 

p = Bk 
P = Bk + 1 
P = Bk + 2 
P = Bk + 3 
P = Bk + 4 
P = Bk  + 5 
P = Bk + 6 
p = Bk  + 7 

(Le . ,  p is a multiple of B) 
(Le . ,  p is one more than a multiple of B) 
(Le . ,  p is two more than a multiple of B) 
(Le . ,  p is three more than a multiple of B) 
(Le . ,  p is four more than a multiple of B) 
(Le . ,  p is five more than a multiple of B) 
(Le . ,  p is six more than a mUltiple of B) 
(Le . ,  p is seven more than a mUltiple of B) 

Fortunately-and this was at the heart of Euler's analysis-we can 
eliminate some of these as possible forms for p. First of all , we know that 
p must be odd (since it is a divisor of the odd number a4 + 1 ) ,  and so 
p cannot take the form Bk, Bk + 2, Bk + 4, or Bk + 6, all of which are 
clearly even. 

Moreover, Bk + 3 = 4 (2k) + 3 is three more than a multiple of 4, 
and we know from Theorem B that p cannot take this form. Likewise the 
number Bk + 7 = Bk + 4 + 3 = 4(2k + 1) + 3 is also three more than 
a multiple of 4, and it too is removed from consideration . 

So the only possible prime divisors of a4 + 1 are of the form Bk + 1 
or Bk + 5 .  But Euler succeeded in eliminating the latter case as follows: 

Suppose, for the sake of contradiction, that p = 8k + 5 for some 
whole number k. Then, since p is not a divisor of a, the little Fermat 
theorem says that p does divide evenly into 
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On the other hand, since p divides evenly into a4 + 1 ,  it surely divides 
evenly into 

( d + 1 ) (dk - dk-4 + d"-8 - dk- 12 + . . .  + d - d + 1 )  

and this product reduces algebraically to a8H4 + 1 .  But if p is a factor of 
both a8H4 + 1 and a8H4 - 1 ,  then p is a factor of their difference 

( dH4 + 1) - ( dH4 - 1) = 2 

and this is a contradiction since p is an odd prime. As a consequence, 
we see that p cannot have the form Sk + 5, and so the only possibility 
for p is, as the theorem asserted, Sk + 1 .  

Q.E.D. 

Again we consider a quick example . Take a = 8 as the even number 
in question. Then a4 + 1 = 4097, which factors into 17 X 24 1 , and both 
factors are one more than a multiple of S. 

From here , Euler established a few more cases in similar fashion, but 
for our purposes, the pattern should be clear. We can summarize all the 
previous work as follows.  For a an even number and p a prime, then 

if P divides evenly into a + 1 ,  p is of the form 2k  + 1 (Theorem A) 
if P divides evenly into a2 + 1 ,  P is of the form 4 k + 1 (Theorem B) 
if P divides evenly into a4 + 1 ,  p is of the form 8k + 1 (Theorem C) 
if P divides evenly into a8 + 1 ,  p is of the form 16k  + 1 
if P divides evenly into a16 + 1 , p is of the form 32k + 1 
if P divides evenly into a32 + 1 ,  P is of the form 64 k + 1 

In general,  if p divides evenly into a2" + 1 ,  then p = (2n+ 1 ) k + 1 for 
some whole number k. 

At last, we can return to Fermat's conjecture about the primality of 
2 32 + 1 .  We return, however, armed with very specific information about 
the nature of any prime factors this number might have . Rather than 
groping for factors , Euler could move rather quickly to the heart of the 
matter . 

THEOREM 232 + 1 is not prime . 

PROOF Since a = 2 is certainly even, the preceding work tells us that 
any prime factor of 232 + 1 must take the form p = 64 k + 1 ,  where k is 
a whole number. We thus can check these highly specialized numbers 
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individually to see if they (1) are prime and (2) divide evenly into 
4 ,294 ,967,297 (Euler did the latter by long division, although the mod
ern reader may want to use a calculator) : 

if k = 1 ,  64k + 1 = 65, which is not prime and thus need not be 
checked 

if k = 2, 64k + 1 = 1 29 = 3 X 43, again not a prime at all 
if k = 3, 64k + 1 = 1 93 ,  which is a prime but does not divide into 

232 + 1 
if k = 4 ,  64k + 1 = 257, a prime which also fails to divide into 232 + 1 
if k = 5 ,  64k + 1 = 32 1  = 3 X 107 ,  a non-prime which need not be 

checked 
if k = 6, 64k + 1 = 385 = 5 X 7 X 1 1 ,  so we move on 
if k = 7, 64k + 1 = 449, a prime which does not divide into 232 + 1 
if k = 8, 64 k + 1 = 5 1 3  = 3 X 3 X 3 X 19 ,  so go to the next case 
if k = 9, 64k + 1 = 577, a prime but not a factor of 232 + 1 

But, when Euler tried k = 10 ,  he hit paydirt. In this case we have p 
= (64 X 10) + 1 = 641 ,  a prime that-Io and behold-divides per
fectly into Fermat's number. That is, 

232 + 1 = 4 ,294,967,297 = 64 1 X 6,700,4 17  

Q.E.D. 

It is significant that the factor Euler found, 64 1 ,  was only the fifth 
number he tried. By carefully eliminating potential divisors of 232 + 1 ,  
he had so depleted the list of suspects that his task became almost trivial . 
It was a spectacular example of mathematical detective work. 

An interesting postscript is based on Euler's previously mentioned 
theorem that primes of the form 4k + 1 have a unique decomposition 
into the sum of two squares. First, we observe that 

232 + 1 = (22) (230) + 1 = 4(1073741824) + 1 

and so 232 + 1 indeed has the form 4 k + 1 .  But it is straightforward to 
check numerically that 

232 + 1 = 4,294 ,967,297 = 4 ,294 ,967,296 + 1 = 655362 + 1 2  

while simultaneously, 

232 + 1 = 4 ,294 ,967,297 = 4 18 , 16 1 ,60 1 + 3 ,876,805 ,696 
= 204492 + 622642 



A SAMPLER OF EULER'S NUMBER THEORY • 235 

Here we have decomposed the number 232 + 1 into the sum of two per
fect squares in two different ways . By Euler's criterion, this proves that 
232 + 1 cannot possibly be a prime, since primes of the form 4k  + 1 
have just one such decomposition. Thus, without finding any explicit fac
tors , we nonetheless have a wonderfully round-about verification that 
this huge number is composite . 

Fermat's assenion that 22" + 1 is prime for all whole numbers n is 
false for n = 5. What is the situation for larger values of n? For n = 6, 
it turns out that 

226 + 1 = 264 + 1 = 1 8,446,744,073 ,709,55 1 ,6 17  

i s  divisible by the prime p = 274 , 177 .  Not surprisingly, given the pattern 
Euler had discovered, p is of the form 1 28k + 1 ;  that is, p = ( 1 28 X 
2 142) + 1 .  Fermat was wrong again. 

The situation got even worse . By a very sophisticated argument, it 
was shown in 1905 that the next of Fermat's numbers-227 + 1 = 2128 + 
I -is also composite, although the proof did not provide an explicit divi
sor of this enormous number. Such a factor was not found until 197 1 ,  
and this factor alone runs to 17  digits . 

As of 1988, mathematicians know that 228 + 1 ,  229 + 1 ,  . . .  , 2221 + 1 
are all composite . Clearly, Fermat's sweeping conjecture about numbers 
of the form 22" + 1 has been-so to speak-swept under the rug. 
Whereas he assened that all of these numbers are prime, no such primes 
have yet been found for n > 5. In fact, many mathematicians would now 
surmise that none of these numbers is prime, except of course for Fer
mat's four primes corresponding to n = 1 , 2 , 3 ,  and 4. This would make 
his conjecture not just wrong, but very wrong indeed. 

With this we shall conclude our shon survey of Euler's number the
ory. As noted, the results on these pages give just the barest hint of 
Euler's enormous influence in the field. To be sure , he stood on the 
shoulders of talented predecessors, panicularly Fermat. But, by the time 
Euler was done , he had immeasurably enriched this branch of mathe
matics and established himself as a number theorist of the highest order. 

Epllogue 

The year Euler died, Carl Friedrich Gauss turned six years old. Already, 
the German boy had impressed his elders with his intellectual ability, 
and in the decades to come he would inherit Euler's mantle as the 
world's leading mathematician. 

Chapter 3 mentioned Gauss's earliest significant achievement, his 
discovery in 1796 that a regular 17 -sided polygon could be constructed 
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with compass and straightedge . This proof caused a sensation in the 
mathematical world, since no one from classical times forward had the 
least suspicion that such a construction was possible . We should let 
young Gauss speak for himself on this point: 

It is well known to every beginner in Geometry that various regular poly
gons can be constructed geometrically, namely the triangle, pentagon, 1 5 -
gon, and those which arise from these by  repeatedly doubling the number 
of sides . One had already got this far in Euclid's time, and it seems that one 
has persuaded oneself ever since that the domain of elementary geometry 
could not be extended . . . .  It seems to me then to be all the more remark
able that besides the usual polygons there is a collection of others which are 
constructible geometrically, e .g . ,  the 17-gon. 

Gauss, not yet 20 years old, had been able to see more deeply than 
Euclid, Archimedes, Newton, or anyone else who had ever thought 
about constructing regular polygons _ 

But he did more than demonstrate the constructibility of the regular 
17-gon, for Gauss determined that a regular polygoIil with N sides was 
constructible if N was a prime number of the form 22n + 1 .  Of course , 
as we have just seen, these are precisely Fermat's alleged primes. Some
how, this number theoretic topic turned out to be intimately linked to 
geometric constructions . As sometimes happens in mathematics , the dis
coveries and investigations in one branch of the subject-in this case in 
number theory-played a role in an apparently unrelated branch-geo
metric constructions of regular polygons . Of course , the key words here 
are "apparently unrelated. "  As a matter of fact, Gauss's work showed an 
undeniable relation indeed. 

His discovery, then, not only gave the world the constructibility of 
the regular 17-gons, since 222 + 1 = 17  is prime, but also of regular 
223 + 1 = 257-gons and even the stupendous 224 + 1 = 65537-gons! 
These constructions, of course , had absolutely no practical utility, but 
their very existence hinted yet again at the strange, unexpected world 
lurking beneath the familiar surface of Euclidean geometry. Gauss him
self was so proud of this discovery that, even after a lifetime of extraor
dinary mathematical achievement, he requested that a regular 17-gon be 
inscribed upon his tombstone . (Unfortunately, it was not .)  

Born in 1 777 in Brunswick, Carl Friedrich Gauss showed early and 
unmistakable signs of being an extraordinary youth. As a child of three , 
he was checking, and occasionally correcting, the books of his father'S 
business, this from a lad who could barely peer over the desk top into 
the ledger. A famous and charming story is told of Gauss's elementary 
school training. One of his teachers, apparently eager for a respite from 
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the day's lessons, asked the class to work quietly at their desks and add 
up the first hundred whole numbers . Surely this would occupy the little 
tykes for a good long time . Yet the teacher had barely spoken, and the 
other children had hardly proceeded past " I  + 2 + 3 + 4 + 5 = 15"  
when Carl walked up and placed the answer on  the teacher's desk. One 
imagines that the teacher registered a combination of incredulity and 
frustration at this unexpected turn of events, but a quick look at Gauss's 
answer showed it to be perfectly correct. How did he do it? 

First of all ,  it was not magic, nor was it the ability to add a hundred 
numbers with lightning speed. Rather, even at this young age, Gauss 
exhibited the penetrating insight that would remain with him for a life
time . As the story goes, he simply imagined the sum he sought-which 
we shall denote by 5-being written simultaneously in ascending and in 
descending order: 

5 =  1 + 2 + 3 + 4 +  

5 = 100 + 99 + 98 + 97 + 

. + 98 + 99 + 100 

' + 3 + 2 + 1 

Instead of adding these numbers horizontally across the rows, Gauss 
added them vertically down the columns. In so doing, of course , he got 

2 5  = 101  + 101  + 101  + . . .  + 101  + 101  

since the sum of each column i s  just 101 . But there are a hundred col
umns . Thus, 25 = 100 X 101  = 10 100, and so the sum of the first hun
dred whole numbers is just 

10100 
5 = 1 + 2 + 3 + . . . + 99 + 100 = -- = 5050 

2 

All of this went through Gauss' little head in a flash. It was clear that he 
was going to make a name for himself. 

Accelerating his youthful studies, and under the patronage of the 
much-impressed Duke of Brunswick, Gauss was in college at 15 and at 
the prestigious G5ttingen University three years later. It was while there 
that he made the extraordinary discovery about the 17-gons in 1796. This 
apparently was decisive in turning him to a career in mathematics; he 
had previously flirted with the idea of becoming a philologist, but the 
17-gon convinced him that, perhaps, he was meant to do math. 

In 1799, Gauss received his doctorate from the University of Helm
stadt for providing the first reasonably complete proof of what is now 
called the fundamental theorem of algebra. By its name alone we get 
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some sense of the theorem's importance . The proposition deals with the 
solutions of polynomial equations, obviously a fumdamental algebraic 
topic if ever there was one . 

Although versions appeared as early as the seventeenth century, the 
fundamental theorem of algebra was raised to prominence by the French 
mathematician Jean d'Alembert ( 17 17-1783) , who tried but failed to 
supply a proof in 1748. He stated the theorem as follows: Any polyno
mial with real coefficients can be factored into the product of real linear 
and/or real quadratic factors. For example, the factorization 

3xA + 5x + lOr + 20x - 8 = (3x - l ) (x + 2) (r + 4) 

illustrates the kind of decomposition d'Alembert had in mind. The real 
polynomial in question has been broken into simpler pieces : two linear 
and one quadratic . 

Anticipating a bit, we observe that we can further factor the qua
dratic expression, provided we allow ourselves the lUXUry of complex 
numbers . We have seen such numbers already in our discussion of the 
cubic equation, and they figure prominently in the subsequent history of 
the fundamental theorem of algebra. One can check that, if a, b, and c 
are real numbers with a *' 0, then 

ar + bx + c =  ax - x - ------( - b  + VII - 4 ac)( - b - VII- 4 ac) 2 2a  

Here the real quadratic ar + bx + c has been split into two rather 
unsightly linear factors . (The perceptive reader will see the quadratic 
formula at work in this factorization.)  

Of course, there is no guarantee that these linear factors are com
posed of real numbers, for if b2 - 4ac < 0, we plunge into the realm 
of imaginaries . In the specific example cited above, for instance, we can 
further decompose the quadratic term to get the complete factorization: 

3xA + 5x + lOr + 20x - 8 
= (3x - l ) (x + 2) (x - 2 v=1) (x + 2 v=1) 

This is complete in the sense that the real fourth-degree polynomial with 
which we began has been factored into the product of four linear fac
tors , certainly as far as any factorization can hope to proceed. From this 
vantage point, the fundamental theorem of algebra states that any real 
polynomial of degree n can be factored into n (perhaps complex) linear 
factors . 
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As hoted, d' Alembert recognized the importance of such a statement 
and made a stab at a proof. His stab, unfortunately, was wide of the mark. 
Perhaps to accord him the honor of trying, this result was long known 
as "d'Alembert's theorem," in spite of the fact that he came nowhere 
near proving it. This seems somewhat akin to renaming Moscow after 
Napoleon simply because he tried to reach it. 

So matters stood in the middle of the eighteenth century. Mathema
ticians were divided as to whether the result was true-Goldbach, for 
instance, doubted its validity-and even those who believed it were 
unsuccessful at furnishing the proof. Perhaps the closest anyone came 
was Leonhard Euler in a remarkable paper of 1749. 

Euler's "proof" exhibited his characteristic cleverness and ingenuity. 
It began well enough, as he correctly showed that real quartic or real 
quintic equations could be factored into real l inear or real quadratic 
components . But as he pursued this elusive theorem toward higher
degree polynomials, he found himself tangled in a thicket of over
whelming complexity. For instance , at one point he had to establish that 
a certain equation could be solved for an auxiliary variable u that he had 
previously introduced. Unfortunately, wrote Euler, "The equation which 
determines the values of the unknown u will necessarily be of the 
1 2870-th degree."  He tried to finesse it by a round-about argument, but 
he left his critics unconvinced. In short, while he made an admirable try, 
the fundamental theorem of algebra got the better of him. That even 
Euler suffered setbacks may bring some comfort to those with lesser 
mathematical abilities (a category that includes virtually everybody) . 

The fundamental theorem of algebra-the result that establishes the 
complex numbers as the ultimate realm for factoring polynomials-thus 
remained in a very precarious state . D'Alembert had not proved it; Euler 
had given only a partial proof. It was obviously in need of major attention 
to resolve its validity once and for all .  

This brings us  back to  Gauss's landmark dissertation with the long 
and deSCriptive title, "A New Proof of the Theorem That Every Integral 
Rational Algebraic Function [that is, every polynomial with real 
coefficients] Can Be Decomposed into Real Factors of the First or Second 
Degree . "  He began with a critical review of previous attacks upon this 
theorem. When addressing Euler's attempted proof, Gauss observed its 
shortcomings as lacking "the clarity which is required in mathematics . "  
This clarity he tried to provide, not only in  his dissertation but also in 
alternate proofs of the result he published in 1814 ,  1816 ,  and 1848. 

Today, this crucial theorem is viewed in somewhat more generality 
than in the early nineteenth century. We now transfer it entirely into the 
realm of complex numbers in this sense : the polynomial with which we 
begin no longer is required to have real coefficients . In general,  we con-
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sider nth-degree polynomials having real or complex coefficients , such 
as 

:i' + (6 V-l).t - (2 + V=l)r + 19  

In spite of  the apparent increase in  sophistication introduced by this 
modification, the fundamental theorem guarantees that even polynomi
als of this type can be factored into the product of n linear terms having, 
of course , complex coefficients . 

Gauss's next major work was in number theory, where he followed 
in the tradition of Euclid, Fermat, and Euler. In 1 801  he published his 
number-theoretic masterpiece , Disquisitiones Arithmeticae. Inciden
tally, he concluded this book with an extended discussion of construct
ing regular polygons-a discussion that hinged, quite unexpectedly, 
upon complex numbers-and the relationship of this construction to 
number theory. Throughout his life ,  this subject was always especially 
dear to Gauss, who once asserted that "Mathematics is the queen of the 
sciences, and the theory of numbers is the queen of mathematics . "  

Barely 30 years old, already having made landmark discoveries in 
geometry, algebra, and number theory, Carl Friedrich Gauss was 
appointed director of the Observatory at G5ttingen. He held this posi
tion for the rest of his life .  The job required him to consider the appli
cations of mathematics to the real world, a vastly different side of the 
subject from his beloved numbers. Yet here again he excelled. He was 
instrumental in determining the orbit of the asteroid Ceres; he carefully 
mapped the earth's magnetiC field; along with Wilhelm Weber, Gauss 
was an early student of magnetism, and physicists today call a unit of 
magnetic flux a "gauss" in his honor; Weber and Gauss likewise collab
orated on the invention of an electric telegraph some years before sim
ilar work on a more ambitious scale established the reputation of Samuel 
F .B .  Morse . Gauss's successes in pure mathematics were matched by his 
achievements in mathematical applications . Like Newton, he managed 
to succeed brilliantly in both spheres. 

One can draw other parallels between Gauss and Sir Isaac, and these 
fall as much in the domain of the psychologist aS i the mathematician . 
Both individuals were known as being rather icy and distant personali
ties , content to work in relative seclusion . Neither enjoyed teaching very 
much, although Gauss did direct the doctoral researches of some of the 
finest mathematicians the nineteenth century was to produce. 

In addition, both men avoided the specter of academic controversy. 
Recall that, as a young man, Newton seemed more willing to be boiled 
in oil than to undergo the torment of subjecting his work to public scru
tiny. Gauss likewise had qualms about clashing with the prevailing sci-



A SAMPLER OF EULER'S NUMBER THEORY . 241 

entific opinion, as was most evident in his discovery of non-Euclidean 
geometry. In the Epilogue to Chapter 2 ,  we noted his concern about the 
"howl of the Boeotians" if he made his revolutionary views on this sub
ject known. By the early 1 800s, Gauss had established himself as the 
world's leading mathematician . As such, he seemed particularly con
scious of the impact of his ideas and the intense scrutiny to which they 
would be subjected. To come forth with a brilliant proof of the funda
mental theorem of algebra was one thing, but to tell the world that tri 
angles may have fewer than 1 80 ·  was something else again. Gauss sim
ply refused to take such a stand. Like Newton, he folded up his 
wonderful discoveries and consigned them to the recesses of his desk. 

One side of this rigid, conservative man-a rather unexpected side 
at that-should not be overlooked. It concerns Gauss 's encouragement 
of Sophie Germain ( 1776-183 1 ) ,  a woman who had overcome a series 
of obstacles to rise to prominence in the mathematical world of the early 
nineteenth century. Her story illustrates, in no uncertain terms, the soci
etal attitude that the discipline of mathematics was no place for a 
woman. 

As a child, Germain had been fascinated by the mathematical works 
she found in her father's library. She was especially intrigued by Plu
tarch's description of the death of Archimedes, for whom mathematics 
was more vital than life itself. When she expressed an interest in study
ing the subject more formally, her parents responded in horror. Forbid
den to explore mathematics, Sophie Germain was forced to smuggle 
books into her room and read them by the candlelight . Her family, dis
covering these clandestine activities , removed her candles and, for good 
measure , removed her clothes as well in an attempt to discourage these 
nocturnal wanderings in a cold and dark room. It is a testament to Ger
main's love of mathematics , and perhaps to her physical endurance, that 
not even these extreme measures could keep her down. 

As she mastered ever more of the mathematics of her day, Germain 
was ready to move on to advanced topics . The very idea that she would 
attend class at college or university seemed preposterous, so she was 
forced to eavesdrop outside the classroom door, picking up what infor
mation she could and borrowing the lecture notes of sympathetic male 
colleagues within .  Few people have ever had a rockier route into the 
world of higher mathematics. 

And yet, Sophie Germain made it. In 1816 ,  her work was impressive 
enough that she won a prize from the French Academy for her penetrat
ing analysis of the nature of vibrations in elastic plates. In the process, 
she had disguised her identity with the pseudonym Antoine LeBlanc so 
as not to give away her unpardonable sin of being a woman. With this 
pen-name she also began writing to the world's foremost mathematician . 
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From the outset, Gauss was impressed with the talent of his French 
correspondent. LeBlanc had obviously read the Disquisitiones Arithme
ticae with care and offered certain generalizations and extensions of 
results contained therein . Then in 1807, the majestic Carl Friedrich 
Gauss learned the true identity of Sophie Germain . Obviously con
cerned by the impact of this news, she wrote Gauss what sounded a good 
deal like a confession : 

· . .  I have previously taken the name of M. LeBlanc in communicating to you 
those notes that, no doubt, do not deserve the indulgence with which you 
have responded . . . .  I hope that the information that I have today confided 
to you will not deprive me of the honour you have accorded me under a 
borrowed name, and that you will devote a few minutes to write me news 
of yourself. 

It may come as a surprise that Gauss answered with charity and 
understanding. He admitted to an "astonishment" at seeing his M.  
LeBlanc "metamorphosed" into Sophie Germain, then went on to reveal 
a deeper insight into the inequities of the mathemaUcal establishment: 

The taste for the abstract sciences in general and, above all, for the mysteries 
of numbers, is very rare : this is not surprising, since the charms of this sub· 
lime science in all their beauty reveal themselves only to those who have 
the courage to fathom them. But when a woman, because of her sex, our 
customs, and prejudices , encounters infinitely more obstacles than men in 
familiarizing herself with their knotty problems, yet overcomes these fetters 
and penetrates that which is most hidden, she doubtless has the most noble 
courage, extraordinary talent, and superior genius. 

Continuing in this vein, Gauss heaped praise upon her mathematical 
works which "have given me a thousand pleasures" But then he contin
ued, " I  ask you to take it as a proof of my attention if I dare add a remark 
to your last letter, "  and proceeded to point out a mistake in her reason
ing. Sophie Germain's mathematics could give Gauss untold pleasures, 
but the letter left little doubt as to who, in Gauss' mind, was the master. 

We should note that Sophie Germain had a productive career even 
with her identity revealed . In 183 1 ,  at the urging of Gauss himself, she 
was to have been awarded an honorary doctorate from Gottingen. This 
would have been a brilliant honor for a woman in early-nineteenth-cen
tury Germany. Unfortunately, her death prevented this honor from being 
bestowed. 

And what of Carl Friedrich Gauss? He lived to the age of 78, and 
death came, fittingly, at the Gottingen Observatory he had directed for 
almost half a century. By the end of his life ,  his reputation had assumed 
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Carl Friedrich Gauss (photograph courtesy of The Ohio 
State University Libraries) 

almost mythical proportions, and a reference to the Prince of Mathema
ticians meant Gauss and no other. 

But he himself had a different motto, one that aptly characterized his 
life and work: Pauca sed matura (Few but ripe) . Gauss was a man who 
published relatively little in his lifetime . The unpublished research 
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found among his papers would have made the reputation of a dozen 
mathematicians. Yet, always mindful of the great expectations his work 
raised, he chose not to publish a result until it was as perfect and flawless 
as could be . Gauss did not write as much as Euler, but when he wrote , 
the mathematical world was advised to take notice. The fruits he left 
behind-from the regular 17-gon, to the DisquisitiOnes, to the magnifi
cent fundamental theorem of algebra-were as ripe as any that mathe
matics is likely to see . 



1 1  
CHAPTER 

The Non-Denumerabillty 
of the Continuum 

( 1 874) 

Mathematics of the Nineteenth Century 

In a strange way, different centuries bring their own different emphases, 
their own different directions to the flow of mathematical thought. The 
eighteenth century clearly was the "century of Euler, " for he had no rival 
in dominating the scholarly landscape and providing a legacy for future 
generations . The nineteenth century, by contrast, had no single preem
inent mathematician, although it was blessed with an array of individuals 
who pushed the frontiers of the subject in dramatic and unexpected 
directions . 

If the 1 800s did not belong to a single mathematician, they did have 
a few overriding themes . It was the century of abstraction and general
ization, of a deeper analysis of the logical foundations of mathematics 
that underlay the wonderful theories of Newton and Leibniz and Euler. 
Mathematics charted a course ever more independent of the demands, 
and the limitations, of "physical reality" that had always tied the subject, 
in some significant way, to the natural sciences. 

This drift away from the constraints of the real world may have had 

245 
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as its declaration of independence the emergence of non-Euclidean 
geometry in the first third of the nineteenth century. In the Epilogue to 
Chapter 2, we encountered the "strange, new universe" that emerged 
when Euclid's parallel postulate was jettisoned and replaced by an alter
native statement. Suddenly, more than one parallel could be drawn 
through a point not on a line, similar triangles became congruent, and 
triangles no longer contained 180 · .  Yet for all of these seemingly para
doxical features, no one could find a logical contradiction in the non
Euclidean world. 

When Eugenio Beltrami established that non-Euclidean geometry 
was as logically consistent as Euclid's own, a bridge of sorts had been 
crossed.  Imagine, for instance, that Mathematician A had spent a career 
immersed in the study of Euclidean geometry while Mathematician B 
worked exclusively with the non-Euclidean variety. BOth persons would 
have been involved in tasks of equivalent logical validity. Yet the "real 
world" could not simultaneously be Euclidean and non-Euclidean; one 
of our mathematicians must have devoted a lifetime of effort to exploring 
a system that was not "real . "  Had he or she squandered a career? 

Increasingly in the nineteenth century, mathematicians came to feel 
that the answer was "No ."  Of course, either the physical universe was 
Euclidean or it was not, but the resolution of this problem should be left 
to the physicists . It was an empirical matter, one to be addressed by 
experimentation and close observation. But it was irrelevant to the log
ical development of these competing systems. To a mathematician 
engrossed in the strange and beautiful theorems of non-Euclidean 
geometry, the beauty was enough. There was no need for the physicist 
to tell the mathematician which geometry was "real . "  In the realm of 
logic, both were . 

Thus, the foundational question in geometry had a liberating effect, 
freeing mathematics from exclusive dependence on the phenomena of 
the laboratory. In this sense, we observe an interesUng parallel to the 
simultaneous liberation of art from a similar depend�nce on reality. As 
the nineteenth century began, the painter's canvas was what it had long 
been-a "window" through which the viewer looked to see an event or 
person of interest. The painter, of course, was free to set the mood, to 
choose the colors and determine the lighting, to emphasize some details 
while de-emphasizing others; yet ultimately the canvas would serve as a 
viewing screen through which to examine an instant �rozen in time. 

During the second half of the century, this attitude changed mark
edly. Under the influence of such great artists as Paul Cezanne, Paul Gau
guin, and Vincent Van Gogh, the canvas took on a life of its own. Painters 
could regard it as a two-dimensional field on which to ply their painterly 
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skills . Cezanne, for instance, felt free to distort the wonderful pears and 
apples of his still - l ives to enhance the overall effect. When he criticized 
the great impressionist Claude Monet as being only "an eye,"  Cezanne 
was stating that painters henceforth could regard their art as doing more 
than simply recording what the eye saw. 

Painting, in short, was declaring its independence from visual reality, 
even as mathematics was exhibiting its freedom from the physical world. 
The parallel is an interesting one, and certainly the philosophical thrust 
evident in the mathematics of Gauss, Bolyai, and Lobachevski-as well 
in the painting of Cezanne, Gauguin, and Van Gogh-has been long
lasting and profound. Their visions are still very much with us today. 

It must be noted, of course, that there is not a uniform approval of 
the direction which these developments have taken. Any casual visitor 
to an art museum in the late twentieth century is sure to hear disparaging 
remarks about the state of the visual arts , about huge canvases smeared 
with meaningless blobs of paint, about controversial and sometimes very 
expensive works that make no pretense whatever of reflecting a real 
scene . Patrons are known to grumble that modern artists have carried 
their liberation too far. They long for a familiar portrait or a comfortable 
landscape . 

In this sense , too, art and mathematics have run parallel courses. 
There are voices in the modern mathematical community that bemoan 
the state of mathematics today. While relishing the intellectual freedom 
bequeathed by the non-Euclidean revolution, mathematicians of the 
twentieth century carried their subject farther and farther from a contact 
with the real world, until their logical constructs became so abstract and 
arcane as to be unrecognizable by a physicist or engineer. To many, this 
trend has transformed mathematics into little more than a pointless exer
cise in chasing tiny symbols across the page . One of the most vocal crit
ics of this trend is mathematics historian Morris Kline, who wrote : 

Having formulated the abstract theOries, mathematicians turned away from 
the original concrete fields and concentrated on the abstract structures . 
Through the introduction of hundreds of subordinate concepts , the subject 
has mushroomed into a welter of smaller developments that have little rela
tion to each other or to the original concrete fields . 

Kline is suggesting that mathematics , in exploiting its hard-won free
dom from physics, has ventured too far from its roots and thus become 
a sterile, self- indulgent, inwardly directed discipline . His is a harsh crit
icism that the mathematical community must surely consider seriously. 

In response there can be made an intriguing argument that mathe-
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matical theories, no matter how seemingly abstract, often have surpris
ing applications to very solid, real-world phenomena. Even the non
Euclidean revolution, the subject that did so much to sever the bond 
between mathematics and reality, has found its way into modern physics 
books, for the relativistic theories of today's cosmologies rely heavily on 
a non-Euclidean model of the universe . Such a reliance was certainly not 
foreseen by the nineteenth-century mathematicians who investigated 
the subject for its own sake, yet it now forms a part of applied mathe
matics necessary for inclusion in the physicist's tool-kit. Abstract math
ematics can pop up in the strangest places . 

The debate continues . Eventually, historians may look at today's 
mathematics as having ventured too far from its ties to the real world. 
But it is inconceivable that mathematics will  ever assume a role entirely 
subservient to the needs of the other sciences . Mathematical freedom 
will forever be the legacy of the nineteenth century. 

While these issues arose from the creation of non-Euclidean geom
etry, another major battle was being fought over the logical foundations 
of the calculus. We recall that this subject had been formalized and cod
ified by Newton and Leibniz in the late seventeenth century and then 
exploi�ed by Leonhard Euler in the eighteenth . Yet these pioneers, and 
their talented mathematical contemporaries, had not paid adequate 
attention to the underpinnings of calculus . Like a skater gliding over thin 
ice, these mathematicians were sailing along gloriously, yet at any 
moment a crack in the foundations could spell disaster. 

That there was a problem had been clear for a very long time . It lay 
in the use of " infinitely large" and "infinitely small"  quantities so very 
essential to Newton's fluxions and Leibniz's calculus. One of the key 
ideas in all of calculus is that of " limit . "  In some f<l>rm or other, both 
differential and integral calculus-not to mention questions of series 
convergence and continuity of functions-rest upon this notion . 
The term "limit" is suggestive, with strong intuitive ties , and we regu
larly talk about the limit of our patience or the limit of our endurance . 
Yet when we try to make this idea logically precise , difficulties instantly 
arise . 

Newton gave it a try. His concept of a fluxion required him to look at 
the ratio of two quantities and then to determine what happened to this 
ratio as both quantities simultaneously moved toward zero . In modern 
terminology, he was describing the limit of the ratio of these quantities, 
although he used the somewhat more colorful term "ultimate ratio. "  To 
Newton, by the ultimate ratio of vanishing quantities 

. . .  is to be understood the ratio of the quantities , not before they vanish, 
nor after, but that with which they vanish. 
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Of course , this was little help as a mathematical definition. We may 
agree with Newton that the limit should not be tied to a ratio before they 
vanish, but what on earth did he mean by the ratio after they vanish? 
Newton, it seems, wanted to consider the ratio at the precise instant 
when both numerator and denominator became zero . Yet at that instant, 
the fraction % has no meaning. The situation was a logical morass . 

What did Leibniz have to contribute to the subject? He too needed to 
address the behavior of limits, and he tended to approach the matter 
through a discussion of "infinitely small quantities . "  By this he meant 
quantities that, while not zero, cannot be decreased further. Like the 
atoms of chemistry, his infinitely small quantities were the indivisible 
building blocks of mathematics, the next closest thing to zero . The 
philosophical problems with such an idea clearly troubled Leibniz ,  and 
he had to resort to such unintelligible statements as: 

It  will be sufficient if, when we speak of . . .  infinitely small quantities (Le . ,  
the very least of those within our knowledge) , i t  i s  understood that we mean 
quantities that are . . .  indefinitely smal l .  . . .  If anyone wishes to understand 
these [the infinitely small) as the ultimate things . . .  , it can be done . . .  , ay 
even though he think that such things are utterly impossible ;  it will be suf
ficient simply to make use of them as a tool that has advantages for the pur
pose of calculation, just as the algebraists retain imaginary roots with great 
profit. 

Besides noting Leibniz's bias against complex numbers, we can find 
in this statement an incredible amount of mathematical gibberish . The 
imprecision of ideas-particularly the very ideas that underlay his cal
culus-obviously caused Leibniz a great deal of anxiety. 

Already uneasy over the foundations of their subject, mathematicians 
got a solid dose of ridicule from a clergyman, Bishop George Berkeley 
( 1685-1753) . Bishop Berkeley, in his caustic essay The Analyst, or a Dis
course addressed to an Infidel Mathematician, derided those mathe
maticians who were ever ready to criticize theology as being based upon 
unsubstantiated faith, yet who embraced the calculus in spite of its foun
dational weaknesses . Berkeley could not resist letting them have it: 

All these points [of mathematics) , I say, are supposed and believed by certain 
rigorous exactors of evidence in religion, men who pretend to believe no 
further than they can see . . .  But he who can digest a second or third fluxion, 
a second or third differential, need not, methinks, be squeamish about any 
point in divinity. 

As if that were not devastating enough, Berkeley added the wonder
fully barbed comment: 
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And what are these fluxions? The velocities of evanescent increments. And 
what are these same evanescent increments? They are neither finite quanti· 
ties, nor quantities infinitely smal l ,  not yet nothing. May we not call them 
the ghosts of departed quantities . . .  ? 

Sadly, the foundations of the calculus had com� to this-to "ghosts 
of departed quantities . "  One imagines hundreds i of mathematicians 
squirming restlessly under this sarcastic phrase . 

Gradually the mathematical community had to address this vexing 
problem. Throughout much of the eighteenth century, they had simply 
been having too much success-and too much fun-in exploiting the 
calculus to stop and examine its underlying prin�iples. But growing 
internal concerns , along with Berkeley's external sniping, left them little 
choice . The matter had to be resolved. 

Thus we find a string of gifted mathematicians working on the foun
dational questions . The process of refining the idea of " limit" was an 
excruciating one, for the concept is inherently quite deep, requiring a 
precision of thought and an appreciation of the nature of the real num
ber system that is by no means easy to come by. Gradually, though, math
ematicians chipped away at this idea. By 182 1 ,  the Frenchman Augustin
Louis Cauchy ( 1789-1857) had proposed this definition: 

When the values successively attributed to a particular variable approach 
indefinitely a fixed value, so as to end by differing frqm it by as little as one 
wishes, this latter is called the limit of all the others . 

' 

Note that Cauchy's definition avoided such imprecise terms as "infi
nitely smal l . "  He did not get himself into the bind of determining what 
happened at the precise instant the variable reaches the limit. There are 
no ghosts of departed quantities here . Instead, he simply said that a fixed 
value is the limit of a variable if we can make the variable differ from the 
limit by as little as we wish . This so-called "l imit avoidance" definition 
of Cauchy removed the philosophical barriers as to what happened at 
that moment of reaching the limit. To Cauchy, the issue was irrelevant; 
all that mattered was that we could get as close to the limit as we wanted. 

What made Cauchy's definition so influential was that he went on to 
use it in proving the major theorems of calculus. With calculus predi
cated on this definition of limit, mathematicians had come a long way 
toward addressing the concerns of Bishop Berkeley. Yet even Cauchy's 
statement needed some fine-tuning. For one thing, it talked about the 
"approach" of one variable to a limit, and this conjured up vague ideas 
about motion; if we must rely on intuitive ideas about points moving 
around and approaching one another, are we any better off than we 
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were in just relying on the intuitive idea of "limit" itself? Secondly, Cau
chy's use of the term " indefinitely" seems a bit-well-indefinite ; clar
ification of the term is needed. Finally, his definition was simply too 
wordy; there was a need to replace words and phrases with clearly 
defined and utterly unambiguous symbols. 

And so, the last word in shoring up the foundations of the calculus
a process known by the tongue-twisting phrase "the arithmetization of 
the calculus"-was given by the German mathematician Karl Weierstrass 
( 18 15-1897) and his band of disciples . For the school of Weierstrass, to 
say that "L  is the limit of the function j(x) as x approaches a" meant 
precisely: 

for any E > 0, there exists a Ii > 0 so that, if 0 < I x - a I < Ii,  then 

If(x) - L I < E . 

One need not understand this definition in its entirety to recognize 
that it differed significantly from Cauchy's .  It was almost totally symbolic 
and nowhere required that any quantity move toward any other quantity. 
It was, in short, a static definition of the limit. Further, it was a far cry 
from the vague, almost amusing statements of Newton and Leibniz 
quoted earlier. Weierstrass's severely logical definition lacked some of 
the spice and charm of his predecessors ' ,  but it was mathematically 
solid. Upon this foundation, Weierstrass built the edifice of calculus that 
remains to the present day. 

cantor and the Challenge of the Infinite 

And yet, as so often happens in science , the resolution of one question 
merely opened the door to another. As mathematicians examined the 
calculus from this far more rigorous viewpoint, as they relied less and 
less upon intuitive concepts and more and more upon the ES and os of a 
Weierstrassian mathematics , they made some highly peculiar and unset
tling discoveries. 

For instance, consider the distinction between the rational and the 
irrational numbers . The former are all of the fractions, the numbers that 
can be represented as ratios of integers . When converted to decimals, 
rational numbers are easily spotted: their decimal expansions either ter
minate abruptly (for example , % = .375) or exhibit a block of digits that 
repeat over and over again forever (for example, :Xl = . 27272727 . . . ) .  
On the other hand, the irrationals are those real numbers which cannot 
be expressed as fractions . Well-known examples of irrationals are Vz or 
'Jr. For irrationals , the decimal expansion neither terminates nor features 
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a repeating block; instead, their decimals proceed endlessly, without a 
repetitive pattern . 

It is possible to show that both the rationals and the irrationals are 
densely distributed along the number line in the following sense : 
Between any two rational numbers, there lie infinitely many irrationals 
and, conversely, between any two irrationals are to be found infinitely 
many rationals. Consequently, it is easy to conclude that the real num
bers must be evenly divided between the two enormous, and roughly 
equivalent, families of rationals and irrationals . 

As the nineteenth century progressed, mathematical discoveries 
came to light indicating, to the contrary, that these two classes of num
bers did not carry equal weight . The discoveries often required very 
technical , very subtle reasoning . For instance , a fun�tion was described 
that was continuous (intuitively, unbroken) at each irrational point and 
discontinuous (broken) at each rational point; however, it was also 
proved that no function exists that is continuous at ! each rational point 
and discontinuous at each irrational point . Here was, a striking indicator 
that there was not a symmetry or balance between · the set of rationals 
and the set of irrationals. It showed that, in some fundamental sense, the 
rationals and irrationals were not interchangeable cdllections, but to the 
mathematicians of the day, it was unclear exactly wQat was going on. 

Considerations of this sort , reaching deep into the very nature of the 
real number system, were the impetus for the theorems we shall con
sider in this chapter. Cauchy, Weierstrass , and their colleagues had suc
cessfully placed the foundations of the calculus upon the more basic 
notion of " limits ,"  but mathematicians were coming to realize that some 
of the most important, and fundamental, questions of the calculus rested 
upon profound properties of sets. The man who would tackle this prob
lem, and in the process single-handedly create a mllrvelous set theory, 
was the sometimes maligned, sometimes paranoid genius Georg Ferdi
nand Ludwig Philip Cantor. 

Cantor was born in Russia in 1845 ,  but his family' moved to Germany 
when he was 12 .  Religion was an important component of the Cantor 
household. The elder Cantor had converted from Judaism to Protestant
ism, whereas his wife was born a Roman Catholic. With such an eclectic 
mix of religious perspectives, it is no surprise that young Georg devel
oped a lifelong interest in theological matters . Some of these , particu
larly those related to the nature of the infinite , would figure in Cantor's 
adult mathematics . 

In addition, Cantor's family showed a marked anistic streak. MUSic 
was highly revered, and Cantor had relatives who played in major sym
phonies . Georg himself was a respectable draftsman, and he left behind 
some pencil-and-paper drawing showing definite talent. In short, Cantor 
exhibited what might be called an "artistic" nature . 
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This sensitive young man excelled in mathematics and in 1867 com
pleted his doctorate at the University of Berlin, where he had studied 
with Weierstrass and had thoroughly absorbed the rigorous approach to 
calculus noted above. Cantor's research into the finer points of mathe
matical analysis led him more and more to consider the intrinsic differ
ences among various sets of numbers . In particular, he realized the 
importance of devising a means for comparing the sizes of sets. 

On a superficial level,  comparing sets for size is a trivial consequence 
of the ability to count. If asked, "Do you have as many fingers on your 
right hand as on your left?" one could simply count the fingers on each 
hand separately and, determining that there were five on each, answer 
in the affirmative . It seems obvious that the primitive technique of 
"counting" is prerequisite to the more sophisticated notion of "same 
size" or "equinumerosity." With a deceptively innocent observation, 
Georg Cantor turned this truism upside down. 

To see how he did this, imagine that we live in a culture whose math
ematical knowledge is so limited that people can count only as high as 
"three . "  In this case , we could not compare left- and right-hand fingers 
by counting them, since our number system does not carry us all the 
way to "five . "  Without the ability to count, is the determination of equi
numerosity beyond our reach? Not at all .  We could answer the question, 
not by trying to count fingers, but merely by placing our fingers together, 
left thumb against right thumb, left index against right index, and so on. 
This would exhibit a perfect one-to-one correspondence, and again we 
would answer, "Yes, we have as many left-hand fingers as right-hand 
ones ."  

Alternately, imagine an audience filtering into a large auditorium. To 
answer the question of whether there are as many spectators as seats , we 
could go through the tedious process of counting both audience and 
chairs and then compare our final counts . But instead, we could simply 
ask all in attendance to sit down. If each person had a seat and each seat 
had a person, the answer is "yes, "  since the very process of sitting has 
exhibited a perfect one-to-one correspondence . 

These examples illustrate the critical fact that we need not be able to 
count objects in sets in order to determine whether or not the sets are 
equinumerous. On the contrary, the notion of being equally numerous, 
seen in the light of one-to-one correspondences, becomes the more 
primitive , fundamental concept; counting, by contrast, is the more 
sophisticated, advanced one . 

Georg Cantor exploited this idea in the following definition: 

Two sets M and N are equivalent . . .  if it is possible to put them, by some 
law, in such a relation to one another that to every element of each one of 
them corresponds one and only one element of the other. 
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Modern mathematicians often say sets M and N have the "same 
power" or "same cardinality" if they meet Cantor's definition of equiv
alence above . But , terminology aside , the definition is a critical one 
since it in no way requires that sets M and N be finite; on the contrary, it 
applies equally well to sets containing infinitely many elements . 

With this, Cantor was moving into uncharted territory. Throughout 
the history of mathematics , the infinite had been regarded with a suspi
cious if not hostile eye , as a concept better let alone . From the time of 
the Greeks, up until Cantor's own century, philosophers and mathema
ticians had recognized only the "potential infinite ."  That is, they surely 
would agree that the set of whole numbers is infinite; we will never run 
out of them, and at any spot among these numbers, we have the ability 
to move on to the next bigger one . If we think, for instance , of writing 
down each whole number on a slip of paper and placing it into a (very 
large) bag, our process would go on endlessly. 

But Cantor's predecessors objected to the "completed infinite"-that 
is, to regarding this process as ever being finished or the bag as ever 
being ful l .  In the words of Carl Friedrich Gauss: 

· . . I protest above all against the use of an infinite quantity as a completed 
one , which in mathematics is never allowed. The Infinite is only a manner 
of speaking . . . .  

Cantor did not agree. He was perfectly willing to regard the bag of 
all whole numbers as a self-contained, completed entity to be compared 
with other infinite sets of objects . Unlike Gauss, he was unwilling to dis
miss " infinity" as merely a figure of speech. To Cantor, it was a solid, 
respectable mathematical concept worthy of the most profound intellec
tual examination . 

And so, armed only with these two fundamental premises-that 
equal cardinality of sets can be determined via one-to-one matchings 
and that the completed infinite was a valid concept-Georg Cantor set 
off on what would become one of the most exhilarating and demanding 
intellectual journeys of all time . It would lead down strange paths, and 
portions of the mathematical establishment were only too happy to rid
icule his efforts, but he persevered. In the end, Cantor had the talent, 
and the courage, to confront the infinite face-to-face in an absolutely 
unprecedented fashion. 

To begin, we shall let N = { I ,  2 ,  3 ,  . . . } be the set of natural numbers 
and let E = {2 ,  4, 6, . . . } be the set of even natural numbers . Note that 
we are regarding these as completed sets, in spite of their infinite 
natures . By Cantor's definition, the sets N and E are easily seen to have 
the "same cardinality" since we can exhibit a simple one-to-one corre
spondence between their members: 
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N: 

E: 

1 2 3 4 5 
: : : : : 
2 4 6 8 10  

n 
: 

2 n 

This correspondence clearly matches each element of N with one and 
only one even number (namely, its double) and conversely matches 
each even number with one and only one natural number (namely, its 
halO . To Cantor, it was clear that these infinite sets were of the same 
size . Of course, this seems paradoxical at the outset, for one imagines 
that there should be but half as many even numbers as whole numbers. 
Yet on what basis can we criticize Cantor's deduction? We either reject 
the notion of the completed infinite, somehow arguing that we cannot 
even consider the set of natural numbers as a self-contained entity; or 
we reject the ridiculously simple definition of equal cardinality. If we 
accept both of these premises, then the conclusion is inescapable : there 
are no fewer even numbers than natural numbers . 

Likewise , if Z = { . . .  -3, -2, - 1 ,  0, 1 , 2 , 3 ,  . . . } represents the set of 
all the integers-positive, negative, and zero-then we can see that N 
and Z have the same cardinality from the following one-to-one matching: 

N: 

Z: 

1 2 
: : 
o 1 

3 4 
: : 

- 1  2 

5 6 7 8 9 
: : : : : 

- 2  3 - 3  4 -4  

For this particular correspondence, i t  can b e  checked that each natural 
number n in N is matched with its counterpart 

in Z. 
At this pOint, Cantor was ready to make a bold move . He said that any 

set which could be put into a one-to-one correspondence with N was 
denumerable or countably infinite. More strikingly, he introduced a 
new "transfinite" cardinal number to represent the number of items in 
a denumerable set. The symbol he chose for this transfinite cardinal was 
No (read "aleph-naught") ,  after the first letter of the Hebrew alphabet. 

Here Cantor's study of infinite sets had led him to create a new num
ber, and a new kind of number. One imagines many of his contempo
raries shaking their heads in pity at the poor fellow who touted such 
absurd ideas . And yet, think again about the mathematically primitive 
culture whose people could only count to three . An innovative genius 
of that culture might, in a burst of insight, extend the number system 
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beyond its known bounds by introducing the new ca�dinal number five 
as follows: A set will be said to contain five elements if its members can 
be put into a one-to-one correspondence with the fingers of her right 
hand. 

Such a definition would work perfectly well .  It would provide an 
unambiguous way of determining when a set has five elements (pro
vided her hand remains intact) . In this sense, her fingers become the 
standard reference point for deciding whether sets have five elements . 
It all seems so very reasonable . 

This was precisely what Cantor did, except that he used the system 
N as the benchmark for extending our number system beyond the finite . 
For him, N was the prototypical set having No elements . Introducing the 
symbol M to mean "the cardinality of the set M," we see that 

What if we next examine the set Q of rational numbers? As we noted 
earlier, the rationals are densely distributed. In this sense , the rationals 
differ from the integers, which march in lockstep fashion across the line , 
each one unit away from its predecessor. In fact, between any two inte
gers-say, between 0 and I-there are infinitely many rationals . Thus, 
anyone would conjecture that the rationals are far more plentiful than 
the natural numbers . 

But Cantor showed that the set of rationals was denumerable; that is, 
Q = No. He did it by the simple expedient of proViding a one-to-one 
correspondence between the set of rationals and the set of natural num
bers . To see how he generated this correspondence, consider the ratio
nal numbers arranged in the following array: 

� o  
1 - 1 - 2 - 2 - 3  

�;�#� 
� -� % 
� /'  / X - X  � 

/ 
� - �  % 

-% % 

-� � 
-% % 

- 3  4 . . .  

- %  � . . .  

- %  % . . .  

-� � . . .  

-% % . . .  
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Note that all numbers in the first column have numerator of 1 ,  all in 
the second column have numerator of - 1 , and so on, while all numbers 
in the first row have denominator of 1 ,  all in the second row have 
denominator 2 ,  etc _ In short, given any fraction-for instance 13%91-we 
could locate it in the array by going down to the 191st row and running 
across (counting positives and negatives) to the 265th column. The 
array, then, contains all of Q with redundancy. 

But now we exhibit the matching by following the arrows up and 
down the diagonals, as indicated. This yields the correspondence : 

N: 

Q: 

1 2 3 4 5 
t t t t t 
o 1 % - 1  2 

6 7 8 
t t t 

- %  � X 

9 10  1 1  
t t t 

- �  - 2  3 

12  
t 
% 

13  14 . . .  
t t 

- X  % . . .  

Note that we skip any fraction that has already appeared (for example , 1 
= % = %, etc .) . Thus this scheme provides a means of matching each 
natural number with one and only one rational and, more surprisingly, 
of matching each rational with one and only one natural number. With 
Cantor's definition, the conclusion is immediate : There are as many 
rationals as natural numbers . 

At this point, it must have seemed that every infinite set was denu
merable, that is, capable of being matched with the positive integers . But 
in 1874 , the mathematical world learned otherwise in Cantor's scholarly 
paper with the prosaic title "Ueber eine Eigenschaft des Inbegriffes aller 
reellen algebraischen Zahlen" ("On a Property of the Collection of all 
Algebraic Numbers") . Here Cantor explicitly found a set that was not 
denumerably infinite . 

Scanning the unspectacular- looking title page shown here , one gets 
little sense of the revolutionary nature of this document. This stands in 
contrast to radical departures in the arts, which are often conspicuously 
innovative . Any layman who, in 1874 , had visited Paris to see the paint
ings of Claude Monet would have been struck by the "impressionist" 
techniques the artist had introduced. Even the casual observer would 
have seen in Monet's brushwork, in his rendering of light, a significant 
departure from the canvases of such predecessors as Delacroix or Ingres. 
Clearly something radical was going on. Yet in this mathematical land
mark of the same year, Georg Cantor had set out upon a course every bit 
as revolutionary. It is just that mathematics on the printed page lacks the 
immediate impact of a radical piece of art . 

The non-denumerable set Cantor found was the collection of all real 
numbers . In fact, his 1874 paper showed that no interval of real numbers, 
regardless of how small its length, could be put into a one-to-one cor-
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Ueber eine Eigenschaft des Inbegriffes aller reellen 
al�ebraischen Zahlen. 
(Von Herm Cantor in Halle a. s.) 

U nter emer reellen algebraischen Zahl wird allgemein eine reelle 
Zahlgrosse (1/ verstanden, welche einer nicht identischen Gleichung von der 
Form genngt : 

( 1 .) ao w� + al wx-l + . . .  + an = 0, 
wo n, ao, at> . . .  ax ganze Zahlen sind ; wir kOnnel1 uns hierbei die Zahlen 
n und ao positiv , die Coefficienten aOl ai, . . .  ax ohne gemeinschaftlichen 
Theiler und die Gleichung (1 .) irreductibel denken ; mit diesen Festsetzungen 
wird erreicht, dass nach den bekanntel1 Grundsatzen der Arithmetik und 
Algebra die Gleichung ( 1 .), welcher eine reelle algebraische Zahl geniigt, 
eine vOIlig bestimmte ist ; umgekehrt gehoren bekanl1tlich zu einer Gleichung 
von der Form (1 .) hochstens soviel reelle algebraische Zahlen w, welche 
ihr geniigen , als ihr Grad n angiebt. Die reellen algebraischen Zahlen 
bilden in ihrer Gesammtheit einen Inbegriff von Zahlgrossel1, welcher mit (w) 
bezeichnet werde ; es hat derselbe, wie aus einfachen Betrachtungen hervor
gebt, eine solche Beschaffenheit , dass in jeder Nahb irgend einer ge
dachten Zahl a unendlich viele Zahlen aus (w) liegen ; urn so auffallen
der diirfte daher fiir den ersten Anblick die Bemerkung sein , dass man 
den Inbegriff (w) dem Inbegriffe aller ganzen positiven Zahlen 11, welcher 
durch das Zeichen (JI) angedeutet werde, eindeutig zuordnen kann, so dass 
Zll jeder algebraischen Zahl w eine bestimmte ganze positive Zahl " und 
umgekehrt zu jeder positiven ganzen Zahl " eine vomg bestimmte reelle 
algebraische Zahl UJ gehort, dass also, urn mit anderen Worten dasselbe 
zu bezeichnen , der Inbegriff Cw) in der Form einer unendlichen gesetz
massigen Reihe : 

(2.) WI, W27 • • •  w, ' . . . 

Cantor's 1874 paper containing his first proof of the non-cienumerabilitj of the continuum 
(photograph courtesy of The Ohio State University Libraries) 

respondence with N. His Original proof took him into the realm of anal· 
ysis and required some relatively advanced mathematical tools . How
ever, in the year 189 1 ,  Cantor returned to this problem and provided the 
very simple proof that we shall examine . 
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( ) 
a b 

FIGURE 11.1 

Great Theorem: The Non�Denumerability of the Continuum 

Here a "continuum" means an interval of real numbers, and we intro
duce the notation (Figure 1 1 . 1 )  

(a, b) == the set of all real numbers x such that a < x < b 

In the proof below, the particular interval whose non-denumerability 
we shall establish is (0, 1 ) ,  the so-called "unit interval ."  Note that real 
numbers in this interval can be expressed as infinite decimals. For 
instance, 

1 3 � '2 = .50000000 . . . , U = .27272727 . . .  , and '4 = .78539816 . . . 

For technical reasons , we want to be careful to avoid two different dec
imal representations of the same number. For instance .50000 . . .  = � 
can also be written as .49999999 . . . In  such cases, we shall opt for the 
expansion ending in a string of zeros rather than a string of nines so that, 
under this convention, the decimal representation of any real number in 
(0 , 1 )  is unique. 

We can now take a look at Cantor's proof that (0 , 1 )  is not denumer
able . His was a reductio ad absurdum argument, beginning with the 
assumption that N and (0 , 1 )  can be matched in a one-to-one fashion and 
from this deriving a logical contradiction. It certainly ranks as a very 
great theorem. 

11IEOREM The interval of all real numbers between 0 and 1 is not 
denumerable . 

PROOF We assume that the interval (0 , 1 )  can be matched in a one-to
one fashion with N, and from this assumption we shall eventually derive 
a contradiction. In order to clarify Cantor's reasoning, we exhibit such a 
supposed correspondence as follows: 
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N real numbers in (0 , 12 
1 ++ XI = .371652 . . .  

2 ... X2 = . 500000 . . .  

3 ... X3 = . 142678 . . .  

4 ++ X4 = .000819  . . .  

5 ... Xs = .987676 . . .  

If this really were a one-to-one correspondence, then every real num
ber in (0, 1 )  would appear somewhere in the right-hand column, 
matched with a particular natural number on the left :  

Cantor now described a real number b, whose decimal expansion 
. bl b2 b3b4 bs . . .  b" . . .  we determine as follows: 

Choose bl (the first decimal place of b) to be any digit different 
from the first decimal place of XI and simultaneously not equal 
to 0 or 9 .  

Choose b2 (the second decimal place of b)  to be any digit dif
ferent from the second decimal place of X2 but not equal to 0 
or 9 .  

Choose b3 (the third decimal place of  b)  to  be any digit different 
from the third decimal place of X3 but not equal to 0 or 9 .  

Generally, choose b" (the nth decimal place of  b)  to  differ from 
the nth decimal place of X" but not equal to 0 or 9 .  

To help understand this process, refer to the specific matching above. 
The first decimal place of XI is "3 ,"  so we can choose bl = 4 ;  the second 
decimal place of Xz is "0 ,"  so we can choose hz = 1 ;  the third decimal 
place of X3 is "2 , "  so we take b3 = 3; the fourth decimal place of X4 is 
"8 ," so we take b4 = 7;  and so on. Thus, our number b looks like :  

Now we need only observe two simple , but contradictory, facts : 

( 1 )  b is a real number since it is an infinite decimal . Because of our 
prohibition on choosing Os or 9s , the number b cannot be .00000 . . .  = 
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o nor can it be -99999 _ _  . = 1 .  In other words, b must fall  strictly 
between 0 and 1 .  Consequently, b must appear somewhere in the right
hand column of our list above . 

but 

(2) b cannot appear anywhere among the numbers XI , X:2, X3, . . .  X", 
. . . , for certainly b o:j:. XI since b and XI differ in their first decimal place; 
and b o:j:. X:2, since b and X:2 differ in their second decimal place ; and gen
erally, b o:j:. X" since b and X" differ in the nth decimal place . 

Thus, while ( 1 )  tells us that b must be in the right-hand column, (2) 
simultaneously tells us it cannot be there since it has been "designed" 
explicitly not to match any of the numbers Xl t X2, . . . , Xm and so on. This 
logical impasse shows that our original assumption, namely, that a one
to-one correspondence exists between the natural numbers and all real 
numbers in the unit interval ,  was invalid. By contradiction, we must con
clude that such a correspondence is impossible, and consequently the 
set of all real numbers between 0 and 1 is not denumerable . 

Q.E.D. 

There is an additional reason for avoiding "9s" when selecting the 
digits of b. Reconsider the specific correspondence introduced above, 
but this time allow 9s to be used as the values of b" (provided, of course, 
they differ from the nth decimal place of x,,) . Then we could choose bl 
= 4 ,  b2 = 9 ,  b3 = 9, b4 = 9, and so on. As a consequence, our resulting 
number is b = .49999 . . . .  This, however, is precisely �, a number that 
does appear in the right-hand column as X2' The contradiction we 
sought-of determining a real number b not contained on the right-hand 
side-has thus vanished. But by taking the precaution of avoiding "9" in 
the construction of b, we eliminate the technical pitfall created by this 
dual representability of infinite decimals and the proof stands. 

Cantor himself was obviously quite pleased with this argument, 
which he called " . . .  remarkable . . .  because of its great simplicity." 
Note that he focused on those decimal places along the array's descend
ing diagonal-the first place of the first real number, the second place 
of the second real number, and so on. This technique thus acquired the 
name of Cantor's "diagonalization process . "  

I t  i s  essential to observe that our argument did not depend on the 
specific matching we introduced above for the purposes of illustration. 
The very same reasoning would show that no one-to-one correspon
dence is possible . 

Skeptical students often concede that Cantor found a number b not 
appearing on the original list but suggest the following remedy: Why not 
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simply place b opposite the natural number 1, and then move each num
ber on the list down one position? In this way, 2 would match with XI > 3 

would match with Xi, and so on. The contradiction Cantor reached 
would seem to have been eliminated, since b now appears atop the right
hand column. 

Unfortunately for the skeptic, Cantor could sit quietly until these 
adjustments in the list were completed and then, by repeating the diag
onal process with the new list, create a real number b' that appears 
nowhere on it. If our skeptic inserted h' at the beginning, we could diag
onalize again to get a missing hH • In short, a one-to-one matching 
between N and (0, 1 ) is impossible .  The skeptics must become believers. 

Thus Cantor had shown that many infinite sets�particularly the ratio
nal numbers-had cardinality No, but that the interval of real numbers 
between ° and 1 ,  while infinite, was somehow "more" infinite . Points in 
this interval are so abundant that they outnumber the positive integers . 

In this sense, there is nothing special about the unit interval (0, 1 ) .  
Given any finite interval (a, b) ,  we could introduce the function y = 
a + ( h  - a)x, which is a one-to-one correspondence matching the 
points of (O, l )-that is, the xs-with the points of ( a, b)-the ys, as 
shown in Figure 1 1 .2 .  This one-to-one matching guarantees that the 
intervals (0, 1 )  and (a, b) have the same (non-denumerable) cardinality. 
It is perhaps surprising to note that the cardinality of an interval is inde
pendent of the interval 's length; the set of all real , numbers between ° 
and 1 has no fewer members than the set of all real numbers between 2 
and 1000 (in this case the function y = 998x + 2 provides the desired 
one-to-one correspondence) . At first this seems counter-intuitive, but as 

y 

b ( l ,b) 

y = a + (b-a) x 

(O,a) 

----�----------�----------� x 

FIGURE 11.2 

---- -- --
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one gets used to the nature of infinite sets, one soon loses faith in the 
power of naive intuition . 

From here it is a small step to show that the set of all real numbers 
likewise is of the same cardinality as (0, 1 ) .  This time , a one-to-one 
matching is given by 

2x - 1 
Y = X - :Jt 

As the graph in Figure 1 1 .3 shows, to each x in (0, 1 )  has been associated 
a unique real number and, conversely, for each real number y, there is 
one and only one x in (0 , 1 ) matched with it. In short, this is the neces
sary one-to-one correspondence . 

We can now follow Cantor's lead and take another bold step. Just as 
N was used as the base set to introduce No as the first transfinite cardinal , 
so the interval (0, 1 )  will be the standard for defining a new, and larger, 
infinite cardinal . That is, we can define the cardinality of the unit interval 
to be c (a letter standing for "continuum") . Then the preceding discus
sions show that not only does (0, 1 )  have cardinality c, but any interval 
of finite length, as well as the set of all real numbers itself, has this same 
cardinality. Further, the non-denumerability of (0, 1 )  shows that c is a 
different cardinal than No. Cantor was thus on his way to constructing a 
hierarchy of transfinite numbers. 

All of these considerations began to shed light on the intrinsic dif
ference between the set of rationals and the set of irrationals-a differ
ence going far beyond the fact that the former can be expressed as ter-

y 
10 

+----+----�----+-_+ x 

·10 
FIGURE 1l.3 
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minating or repeating decimals and the latter can not. To see this more 
clearly, Cantor needed only one additional result: 

nmOREM U If B and C are denumerable sets and A is the set of all ele
ments belonging either to B or to C (or to both) , then A itself is denu
merable. (In this case , we say A is the union of B and C and write A = 
B U c.) 

PROOF The assumed denumerability of B and C guarantees the individ-
ual one-to-one correspondences : 

N: 1 2 3 4 N: 1 2 3 4 
t t t t and t t t t 

B: bl hz b3 b4 C: CI C2 C3 C4 

By jumping back and forth between the elements of B and C, we can 
generate a one-to-one matching between N and A = B U C: 

N: 1 
t 

A: bl 

2 3 4  5 6 7  8 
t t t t t t t 
CI hz C2 b3 C3 b4 C4 

so that A itself is denumerable. This shows that the union of two denu
merable sets is denumerable . 

Q.E.D. 

Now we can prove a major difference between the set of rationals and 
the set of irrationals : we have shown that the former is denumerable and 
we claim that the latter is not . For, suppose that the irrationals were, in 
fact, denumerably infinite . Then the union of all rationals-whose denu
merability we have proved-and all irrationals-whose denumerability 
we have just assumed-would likewise be a denumierable set by Theo
rem U. But this union is nothing other than the set of all real numbers, 
a non-denumerable set .  By contradiction, we conclude that the irration
als are too abundant to be put into a one-to-one correspondence with N. 

In less formal terms, this means that the irrationals far outnumber the 
rationals . The reason that there are far more real numbers than rationals 
can only be explained by the overwhelming abundance of the irrational 
numbers. Mathematicians sometimes say that "most" real numbers are 
irrational; the set of rationals, admittedly an infinitce collection of very 
important, densely distributed numbers, is nonetheless just a drop in the 
bucket. Suddenly a denumerable set among the real numbers seems 
insignificant, even though, in the case of the rationals, they had at first 
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appeared to be so plentiful .  Not so, said Cantor. In terms of cardinality, 
the rationals are really quite scarce. It is the irrationals that dominate the 
scene . 

These were strange theorems, arising out of the desire to probe the 
deeper secrets of the calculus. Cantor's work had certainly shed light on 
the intrinsic differences between sets of real numbers, and this could 
help explain some hitherto unexplainable phenomena. But if the origins 
of Cantor's work could be traced back to questions arising from the arith· 
metization of the calculus, his set theory was about to take on a dramatic 
life of its own, as we shall see in the next chapter. 

Epilogue 

All of this was startling enough, but Cantor's 1 874 paper contained one 
more astounding result. Having shown the non-denumerability of inter
vals, Cantor now applied this fact to a familiar and difficult question that 
had long exasperated mathematicians-the existence of transcendental 
numbers . 

We have just seen that the set of all real numbers can be subdivided 
into the relatively scarce rationals and the relatively abundant irrationals . 
But we recall from the Epilogue to Chapter 1 that real numbers can be 
split into two different exhaustive and mutually exclusive categories, the 
algebraic numbers and the transcendental numbers . 

The algebraic numbers seem to constitute a vast set . All of the ration· 
als are in it, as are all constructible magnitudes, as well as a multitude 
of irrationals, such as V2 or '9'5. The transcendental numbers, by con· 
trast , are extremely hard to come by. It was Euler who first speculated 
that transcendental numbers exist-that is, that not all real numbers are 
of the relatively tame algebraic variety-but the first example of a spe· 
cific transcendental number was only provided by the Frenchman Joseph 
Liouville in 1844 .  When Cantor approached this subject in 1874 , Linde· 
mann's proof that 1r was transcendental still lay almost a decade in the 
future . In other words, as Cantor was developing his theory of the infi· 
nite , there were very few transcendental numbers on the scene . Perhaps 
they constitute the exception among the real numbers and not the rule. 

However, Georg Cantor was becoming accustomed to turning excep· 
tions into rules, and he did so here . He first proved that the set of all 
algebraic numbers is denumerable. Armed with this fact, Cantor was 
ready to consider the seemingly rare transcendental numbers . 

He began with an arbitrary interval (a, b) .  He had proved that the 
algebraic numbers contained within this interval formed a denumerable 
set; if the transcendental numbers likewise were denumerable, then 
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(a, b) itself would be denumerable by Theorem U. But he had already 
shown that intervals are not denumerable .  This meant that the transcen
dentals must vastly outnumber the algebraic numbers in any interval! 

To put it differently, Cantor knew that there were far more real num
bers in (a, b) than could be accounted for by the relatively skimpy col
lection of algebraic numbers. Where were all these additional real num
bers coming from? They must be the transcendentals, which exist in 
overwhelming abundance . 

This was a genuinely provocative theorem. After all ,  at this point only 
a few non-algebraic numbers were known. Yet here was Georg Cantor 
confidently saying that it was the transcendentals that were in the vast 
majority, and he did so without exhibiting a single concrete example of 
a transcendental number! Instead, he "counted" the points of the inter
val and realized that the algebraic numbers contained within were 
responsible for only a small part of this count . It was a startl ingly indirect 
way to get at the existence of transcendentals. Eric Ttlmple Bell, a pop
ular writer on the history of mathematics, summarized the situation with 
the following poetic image: 

The algebraic numbers are spotted over the plane like stars against a black 
sky; the dense blackness is the firmament of the transcendentals. 

Such was the legacy of Cantor's single, landmark 1874 publication . A 
number of mathematicians, considering these results , shook their heads 
in amazement or outright skepticism. To mathematical conservatives , 
the comparisons of infinities seemed like the outrageous, romantic esca
pade of a young and slightly mystical scholar; asserting the abundance 
of the transcendentals without producing a single example of one was 
sheer folly. 

Georg Cantor heard these criticisms . But he believed passionately in 
the course he was following, and he was just getting started . What he 
had in store would make even these discoveries pale by comparison. 



12  
Chapter 

Cantor and the 
Transfinite Realm 

( 1 89 1  ) 

The Nature of Infinite Cardinals 

Where did Georg Cantor go from here? In the years following his 1874 
paper, Cantor looked ever more closely into the nature of infinite sets of 
points . His research took many directions and opened unexpected new 
doors, but it always featured his characteristic boldness and imagination 
in addressing previously unanswered-indeed, unasked-questions 
about the infinite . 

As soon as he realized that he could successfully define more than a 
single transfinite cardinal , Cantor needed to formalize the concept of 
" less than" for this new kind of number. For this purpose, it was reason
able to rely again on one-to-one correspondences, but, as should by now 
be clear, one must proceed with great care . 

Before pursuing this matter in the abstract, we should think again 
about our primitive society in which people could only count to three. 
Recall that a gifted member of this society had introduced five as the new 
cardinal number possessed by any set that could be put into a one-to
one correspondence with the fingers of her right hand. Now how might 

267 
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she go about showing that three is less than five? (To us this seems quite 
trivial , but we are used to counting beyond three) . Suppose , after some 
thought and a good deal of searching, she found a fellow with only three 
fingers-say, the thumb, index, and ring finger-on his right hand. She 
then could match all of his right-hand fingers with some of hers-that 
is, match their thumbs, index, and ring fingers-in a one-to-one fashion. 
This would leave two unmatched fingers on her right I hand, and this sur
plus of her fingers shows that five exceeds three. 

One could try to extend this definition to general sets by saying that 
the cardinality of set A is less than the cardinality of set B-written 
A < ii-if there is a one-to-one correspondence from all the elements 
of A to some of the elements of B. That is, if A can be matched with a 
subset of B in a one-to-one manner, then surely A would appear to have 
fewer members than B. 

Unfortunately, while this definition seems fine fot showing that 3 < 
5 ,  it is quite unsatisfactory when we move to infinite sets . Consider, for 
instance , the set of natural numbers, N, and the set of rationals, Q. It is 
easy to write down a one-to-one correspondence between all of N and a 
small subset of Q, namely, those positive fractions with numerator one : 

N: 1 2 3 4 5 6 
� * * � � � 

1 1 1 1 1 
Q: 1

2 3 4 5 6 

n 
� 
1 
n 

Yet we certainly do not want to use this matching to conclude that 
N < Q. In fact, we have already seen that there is a different one-to-one 
correspondence between all of N and all of Q, so that both sets have the 
same cardinality. At first glance , we seem to face an unpleasant dilemma. 

Cantor deftly found his way out of the quagmire by first introducing 
not the notion of " less than" but that of " less than ot equal to" :  

o Definition: I f  A and B are sets , then we say A < ii if there exists a one
to one correspondence from all of the points of A to a subset of the 
points of B. 

Note that the "subset" of the points of B may be all the points of B, in 

which case we would have A = ii. This,�f co�rse ,  is I1>erfectly consistent 
with the more inclusive statement that A < B. Furthermore , the match-
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ing above between all of N and part of Q merely shows that N < Q, 
which is not contradictory since both sets have cardinality No. 

Now Cantor could define what he meant by a strict inequality 
between the cardinalities of two sets : 

o Definition: A < B if A < B (as in the previous definition) but if there 
is no one-to-one correspondence between A and B. 

On the surface , this may seem utterly trivial, but a little thought shows 
that it hinges upon important properties of one-to-one correspondences. 
For, to show that A< B we must first find a one-to-one correspondence 
between all of A and part of B (thereby establishing that A < B) , 
and then show that there can be no one-to-one correspondence 
between all of A and all of B. The matter quickly becomes far from 
self-evident . 

Nonetheless, this definition does the job . For instance, it proves that 
3 < 5 for our primitive friends . That is, the matching of thumb, index, 
and ring finger to the corresponding fingers on the five-fingered right 
hand shows that 3 < 5 ;  however, there is no way to match all five of her 
fingers in a.one-to-one way with her colleague's three digits, and thus 
the cardinal numbers 3 and 5 are not equal . The conclusion is then that 
3 < 5 .  

Moving u p  to the infinite cardinals, this same logical approach suf
fices to show that No < c, for, we can easily provide a one-to-one match
ing between all of N and a subset of (0, 1 ) :  

N: 

(0, 1 ) :  

1 2 
� � 

3 4 
� � 

5 
� 

n 
� 

1 1 1 1 1 1 
1f' 21f' 31f' 41f' 51f' n1f' 

Hence, N !S (0 ,1) .  But Cantor's diagonal proof showed that no  one-to
one correspondence exists between these two sets . Thus, N "" (0, 1 ) .  
Together these facts lead u s  to conclude that N < (O , l )-that is, 
No < c. 

Cantor now had formulated a method for comparing the sizes of car
dinal numbers. Notice that an immediate consequence of this definition 
is the intuitively pleasing fact that, if A is a subset of B, then A < B. That 
is, we can surely match each point of A with itself, a one-to-one corre
spondence between all of A and a subset of B. Consequently, the car-
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dinality of a set is greater than or equal to the cardinality of any of its 
subsets . Amid a body of counter-intuitive results , this one seems 
comforting. 

With the ability to compare cardinalities , Cantor introduced an 
important, and from his viewpoint a very critical , assertion : 

- - - - --1- -
If A !5  B and if B !5  A then A = B 

If we restrict our attention to finite cardinals, this result appears quite 
routine . When dealing with transfinite cardinals, �ts obviousness van
ishes. Think carefully about what Cantor has proposed: If there is a one
to-one matching between all of A and part of B (that is, A: !5 Ii) and if 
there is an analogous matching between all of B and part of A (that is, 
Ii !5 A) , then we would like to conclude that a oqe-to-one correspon
dence exists between all of A and all of B (that is, iA: = Ii) . But where 
does one get this last correspondence? A little consideration reveals that 
this is a profound assertion indeed. 

Georg Cantor was convinced that this statement was true, perhaps 
indicating his faith in the "reasonableness" of his emerging set theory, 
yet he never was able to give a satisfactory proof of the result (a sure sign 
of its complexity) . Fortunately, the theorem was proved independently 
by two mathematicians, Ernst SchrlXler (in 1896) and Felix Bernstein (in 
1 898) . Because of its joint Origins, the result is tbday known as the 
"Schr5der-Bernstein theorem," although one also. finds it called the 
"Cantor-Bernstein theorem," or the "Cantor-Schr5der-Bernstein theo
rem," or other permutations of these names . Its appellation aside , the 
theorem is a useful tool in the study of transfinite cardinals .  

Although the proof is  beyond the scope of  this book, we can illustrate 
the theorem's power by determining the cardinality of the set I of all 
irrational numbers. We have seen in the previous chapter that the irra
tionals are not denumerable; that is, their cardinality' exceeds No. But we 
did not precisely determine that cardinality. To do so, we can use the 
Schr5der-Bernstein theorem. 

First, note that the irrationals form a subset of the real numbers, 
so our previous comments guarantee that i !5 c. On the other hand, 
consider the matching that takes each real number to an irrational 
defined as follows: If x = M. b1 b2b3b4 • • •  bn • • •  is a real number in its 
decimal form, where M is its integer part, we associate with x the real 
number 
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That is, we insert one 0 after our first digit, two Is after the second, three 
Os after the third, and so forth. For instance, the real number x = 
18 . 1 234567 . . . is matched with 

y = 18 . 102 1 1300041 1 1 150000061 1 1 1 1 17 . . .  

while the number x = - 7.25 - - 7.25000 . . .  is matched with 

y = - 7.205 1 1000001 1 1 100000001 1 1 1 1 1  . . . 

Regardless of which real number x we choose, the resulting y has a 
decimal expansion that neither terminates nor repeats, since we get ever 
longer blocks of consecutive Os and Is appearing in its expansion. Thus, 
the matching takes each real number x to an irrational number y. 

Moreover, the matching is one-to-one . For if we were given a result
ing y, say 5 .3041 1400071 1 1 1 1000002 . . .  , we could "unravel" it 
to the one and only possible x from which it came, in this case 
x = 5 .34471 2  . . . . We should observe that not every irrational num
ber ends up being matched with something. The irrational y = 
V2 - 1 .4 14 159 . . .  does not have the correct sequence of Os and Is in 
its decimal expansion to be the mate of any real number x under this 
matching. 

This one-to-one correspondence between all of the real numbers 
and some of the irrationals implies that c ::s i. But we have already noted 
that i < c and so by the Schr�der-Bernstein theorem we conclude that 
the cardinality of the set of irrationals is c, the same as the cardinality of 
the set of all real numbers. 

With this result, posed by Cantor and proved by SchrOder and Bern
stein, one of the great issues of transfinite cardinals was successfully 
resolved, but Georg Cantor was never one to run out of questions about 
his marvelous creation. Another was whether there existed any cardinals 
greater than c. Judging from his early correspondence, he sensed the 
answer was "yes" and thought he knew where to look for a more abun
dant set of points . 

To Cantor, the key to finding a larger cardinality than that possessed 
by the one-dimensional interval (0 , 1 )  was to look at the two-dimen
sional square bounded by (0, 1 )  on the x-axis and (0, 1 )  on the y-axiS, as 
illustrated in Figure 1 2 . 1 . Writing to his friend Richard Dedekind in Jan
uary of 1874 , Cantor asked whether these two sets, the interval and the 
square, could be put into a one-to-one correspondence . He was nearly 
certain that no such correspondence was possible between the two
dimensional square and the one-dimensional segment, for it seemed 
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clear that the former was far more abundant in points . Although con
structing a proof might be difficult, Cantor felt that an argument might 
be "almost superfluous. "  

Interestingly, this almost superfluous proof never materialized. Try 
as he might, Cantor failed to establish that it was impossible to match 
the interval and the square in a one-to-one manner. Then, in 1877, he 
found that his original intuition was entirely wrong. Such a correspon
dence does exist! 

For a proof of this surprising fact, we shall let S denote the square 
consisting of all ordered pairs (x,y) , where ° < x < 1 and ° < y < 1 .  
I t  is easy to produce a one-to-one correspondence between all of 
the unit interval and part of S by simply matching z in (0 , 1 ) with the 
ordered pair (z,�) in S. By our previous definition, we conclude that 
(0, 1 )  < S. 

On the other hand, for any point (x,y) in S, the individual coordi
nates x and y are themselves infinite decimals . That is, x = . a 1a2a3a4 . . .  
all . . .  and y = . b1 b2 b3 b4 • • •  bn . • . . As we did in Chapter 1 1 ,  we insist 
that these decimal expansions be unique-when confronting a number 
that can be represented as ending in either a string of Os or a string of 
9s, we shall use the former representation rather than the latter, so that 
we would express � by the decimal . 2000 . . .  rather than the eqUivalent. 
1999 . . .  

Having adopted this convention, we associate to each (x,y) in S the 
point z in (0, 1 )  defined by 
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For instance ,  the pair (2/1 1 ,  Yz/2) = ( . 1 8181818 . . .  , .70710678 . . . ) 
in the square would be matched with . 1 7801781 10861788 . . . on the 
interval simply by shufiling the decimal places together. Nothing could 
be simpler. Likewise, given any point in the interval that is matched with 
some point in S, we can easily unshufile to return to the unique ordered 
pair from which it came . That is, Z = .93440125  . . . must have as its 
predecessor in the square the pair 

(X,y) = ( .9402 . . .  , . 34 1 5  . . .  ) 

We note that under this correspondence not every point in the unit 
interval is the mate of some point in the square . For instance, the point 
Z = 6/55 = . 109090909 . . .  in (0, 1 )  would unshufile to the ordered pair 
( . 1 9999 . . .  , .0000 . . .  ) . But we had ruled out using . 1 999 . . . at all ,  
choosing instead the equivalent . 2000 . . .  ; even worse, the second coor
dinate .0000 . . .  = 0 does not fall strictly between 0 and 1 ,  so the unrav
eling process has taken us outside of S. In other words, 6/55 = 
. 10909090 . . .  is not matched with any point in the square . 

Nonetheless we have here a one-to-one matching between all the 
points of S and some of the points of (0, 1 ) ,  and we conclude that S < 
(0, 1 ) . This fact, coupled with the previous inequality that (0 , 1 )  < S, 
allows us to apply the Schr5der-Bernstein theorem to deduce that, 
indeed, S = (0 , 1 )  = c. 

This discussion shows that , in spite of the difference in dimension, 
the points of the square are no more abundant than the points in the 
interval . Both sets have cardinality c. To say the least , this was a surprise . 
Writing to Dedekind in 1877 to report this discovery, Cantor exclaimed, 
"I see it but I do not believe it! " 

So where does one look to find a transfinite cardinal larger than c? 
Cantor could easily show that a larger square , or even all the points in 
the entire plane, have the same cardinality as the unit interval (0, 1 ) .  
Even going to a three-dimensional cube did not increase the cardinality. 
It looked as though c might be the ultimate transfinite cardinal .  

But things proved very much otherwise . In 189 1 ,  Cantor succeeded 
in showing that larger transfinite cardinals exist, and exist in unbelieva
ble profusion . His result is today usually called Cantor's theorem. Given 
that he proved so many critical theorems in his career, the name given 
this one indicates the high regard in which it has come to be held. It is 
a result as stunning as any that set theory is likely to see. 
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Great Theorem: Cantor's Theorem 

To discuss the proof, we need to introduce an additional concept: 

o Definition: Given a set A, the power set of A, denoted by P(A] ,  is the 
set of all the subsets of A. 

This seems simple enough. For instance, if  A = {a, b, c} , then A has eight 
subsets, and the power set of A is the set containing these eight subsets, 
namely: 

P(A] = { { } , {a} , { b}, { c} , {a, b}, {a, c} , { b, c}, {a, b, c} } 

Note that the empty set, { } , and the set A itself are two of the elements 
of the power set; this is true regardless of which set A we consider. Note 
also that the power set is itself a set. This elementary fact is sometimes 
easy to overlook but played a key role in Cantor's thinking. 

Clearly, for our example above, the power set has cardinality greater 
than that of the set itself. That is, where A contains 3 elements, its power 
set contains 23 = 8 members . It is not hard to show that a 4-element set 
has 24 = 16 subsets ; a 5-element set has 25 = 32 subsets ; and generally 
an n-element set A has 2" subsets . We can express this symbolically by 
P(A] = 2n .  

But what happens if A is an infinite collection? Are infinite sets like
wise outnumbered by their power sets? It was Cantor's theorem that 
answered this provocative question: 

nmOREM If A is any set, then A < P(A] . 

PROOF To establish this result, we must rely on Cantor's definition of 
strict inequality between transfinite cardinals, as introduced earlier in 
this chapter. It is clear that we can easily find a one-to-one correspon
dence between A and a part of P(A] For, if A = {a, b, c, d, e, . . .  } , we 
can match the element a with the subset {a}, the element b with the 
subset { b} , and so on. Of course , these subsets {a}, { b} , { c} , . . . constitute 
just a small portion of the collection of all subsets of A, and so this one
to-one matching guarantees that A -< P(A] . 

That much was easy. It remains to show that A and P( A] do not have 
the same cardinality. To begin an indirect proof of this, we suppose the 
opposite and derive a contradiction . That is, assume there exists a one
to-one correspondence between all of A and all of P( A] . In order to fol 
low the argument from here , we would do well to introduce an example 
of such a supposed correspondence for the sake of later reference : 
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elements of P[A] 
elements of A (Le . ,  subsets of A) 

a < � {b, e} 

b < � {d} 

e < � {a, b, e, d}  

d < � { } 

e < � A 
I < � {a, eJ,g, . . .  } 

g < � {h, i,j, . . .  } 

This, then, is a hypothesized one-to-one correspondence matching 
all the elements of A with all of the elements of llA] .  Note that, under 
this matching, some elements of A belong to the subset with which they 
are matched; for instance ,  e is a member of the set {a, b, e, d} with which 
it is matched. On the other hand, some elements of A do not belong 
to their matching subsets ; for instance ,  a is not a member of its mate 
{b, e} .  

Strangely, this dichotomy provides the key to  reaching the proof's 
contradiction, for we now define the set B as follows : 

B is the set of each and every element of the original set A that 
is not a member of the subset with which it is matched. 

Referring to the i l lustrative correspondence above, we see that a 
belongs to B, as do b (since it is not an element of {d}) , d (which cer
tainly is not in the empty set) , and g (not a member of {h, i,j, . . .  }) . How
ever e, e, and Ifail to qualify as members of B since each is a member 
of, respectively, {a, b, e, d}, A itself, and {a, eJ,g . . .  } .  

In this manner, the set B = {a, b, d,g, . . .  } is generated. Of course , at 
its most basic B is simply a subset of the Original set A. Consequently, B 
belongs to the power set of A and thus must appear somewhere in the 
right-hand column of the matching shown. But we began by assuming 
that we had a one-to-one correspondence, and so we conclude that, in 
the left-hand column, there must be some element y in A that is matched 
with B: 
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y <E<----�> B 

So far, so good. But now we ask the fatal question: " Is y an element 
of B?" There are , of course , two possibilities : 

CASE 1 Suppose y is not an element of B. 

Then, by our initial definition of B as " . . .  each and every element of 
the original set A that is not a member of the subset with which it is 
matched," we see that y must indeed be granted membership in B, for 
y is, in this case , not a member of the set to which it is matched. 

In other words , if we begin by supposing that y is not in B, we are 
forced to conclude that y must be made a member of B. This is a clear 
contradiction, and we reject Case 1 as impossible . 

Case 2 Suppose y is an element of B.  

Again we refer to the membership criterion for B. Since Case 2 
assumes that y is in B, then y must meet the membership criterion; that 
is, y is not an element of the set to which it is matched. Alas , the set to 
which y is matched is B, and so y cannot be a member of set B .  

So ,  beginning with the assumption of Case 2 that y is  in B, we are 
immediately forced to conclude th:tt it is not. Again, a logical impasse 
has appeared.  

Something is  terribly wrong. Cases 1 and 2 ,  the only cases possible , 
both lead to contradictions . We conclude that somewhere in the argu
ment there lies an erroneous assumption. The problem, of course , is that 
we assumed at the outset that there was a one-to-one correspondence 
between A and P[A) . Our contradiction has clearly destroyed this 
assumption: no such correspondence can exist. 

Finally, combining our conclusions that A -< P[� but A *- P[A) ,  we 
have have proved Cantor's Theorem: for any set A, A < P[A) . 

Q.E.D. 

Perhaps a concrete example using a finite set will  show Cantor's 
genius in action . Let A = {a, b, c, d, e} and set up a matching between 
points of A and some members of its power set: 
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elements of A 
elements of its power set 

(i .e . ,  subsets of A) 

a �(------------------� ) 
b �(----------------� � 
c �(------------------� ) 
d �(-----------------? ) 
e �(------------------� ) 

{a, c} 
A 

{a, e} 

{d} 

{a, b, c, d}  

Recalling our definition of B as those points in A that do not belong 
to the set with which they are matched, we see that B = { c, e}. 

Cantor's critical observation is that B cannot appear in the right
hand column above, for the logic shows that there is no element to 
which it could possibly be matched. The wonder of Cantor's proof is 
that, for any proposed matching between A and P{A] ,  he cleverly 
described a member of the power set-namely, B-that cannot possibly 
be matched with any element of A. This instantly refutes the possibility 
of a one-to-one correspondence between a set and its power set. 

We need to pause and consider the implications of Cantor's theorem. 
He proved that, no matter what set one takes initially, its power set has 
strictly greater cardinality. In his own words: 

. . .  in place of any given set L another set M can be placed which is of greater 
power [cardinality] than L. 

Thus, to find the long-sought example of a set with cardinality greater 
than c, we do not look at squares in the plane or cubes in three-dimen
sional space . Instead, we take the set P{(0 , 1 ) ] ,  the set of all subsets of 
points in the interval (0 , 1 ) . By Cantor's theorem, c = (0 , 1 ) < P{(0,1 ) ] ,  
and we have found a larger transfinite cardinal .  

But now recall the essential fact that a power set is, at its most fun
damental,  just a set. Thus, the process can be repeated by considering 
the power set of P{(0 , 1 ) ] ,  that is, the set of all subsets of the set of all 
subsets of (0 , 1 ) . While this is surely a mind-boggling collection, the 
proof above shows that P{(0 , 1 ) ] < p{p{(0 , 1 ) ] ] .  

With this genie out of  the bottle , there was no stopping Georg Can
tor. For we clearly can repeat the process indefinitely, thereby generat
ing an increasing chain :  

No < c < P{(0, 1 ) ] < p{p{(0, 1 ) ]] < p{p{p{(0 , 1 ) ]] ] < . . .  
There is barely time to catch one's breath. Not only did Georg Cantor 

open the door to a first transfinite cardinal (No) and then to an even 
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larger size of infinity (c) ,  but this theorem, applied repeatedly, guaran
teed a never-ending chain of ever larger transfinite numbers. There was 
no end to them. 

It is an understatement to say that this conclusion, along with all of 
Cantor's profound results about the infinite, generated an outcry of 
opposition. Surely, he had pushed mathematics into unexplored terri
tory where it began to merge into the realms of philosophy and meta
physics. It is worth noting that the metaphysical implications of his 
mathematics were not lost upon Georg Cantor. According to Joseph 
Dauben, his foremost modern biographer, Cantor came to find a reli
gious Significance in his theory of transfinites, and regarded himself "not 
only as God's messenger, accurately recording, reporting, and transmit
ting the newly revealed theory of the transfinite numbers but as God's 
ambassador as well . "  Cantor himself wrote : 

I entertain no doubts as to the truths of the transfinites, which I recognized 
with God's help and which, in their diversity, I have studied for more than 
twenty years; every year, and almost every day brings me further in this 
science. 

As this passage suggests, religion became a focus of much of Cantor's 
thought. We recall the mixed religious backgrounds of his parents and 
can only imagine the rich diversity of theological discussions that must 
have filled the Cantor household. Perhaps this heightened his interest in 
such matters . In any case, religiOUS concerns would color much of his 
thinking, be it in mathematics or in other pursuits . 

Such an attitude on the part of this strange, mystical man did little to 
endear him to his critics . Those who objected to his radical theory of the 
infinite could advance an ad hominem argument against an individual 
who proclaimed his mathematics to be a message from God. Cantor 
probably did not help his image when, to this fascination with theolog
ical questions, he added a fervent interest in proving that Francis Bacon 
wrote the works of Shakespeare . This may have struck! colleagues as odd, 
but when he claimed to have uncovered information about the first Brit
ish king that "will not fail to terrify the English government as soon as 
the matter is published," a number of eyebrows must have been raised. 
It was getting hard not to regard Georg Cantor as some sort of kook. 

Yet there remained his mathematics. Conservative elements in his 
native Germany and elsewhere vociferously objected to his work, and 
bad feelings developed between Cantor and some very influential math
ematicians . Certainly these objections were not all of the reactionary, 
knee-jerk variety, for Cantor's mathematics raised genuinely baffling 
questions that deeply troubled even mathematicians of good wil l .  One 
such question is considered in the Epilogue. 
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Among Cantor's critics was Leopold Kronecker ( 1823-1891 ) ,  a pow
erful figure in the German mathematical community and a fixture at the 
acclaimed University of Berlin, the institution that had nurtured the 
famous Weierstrass and his illustrious students (including Cantor him
selO . Cantor had spent his professional career at the University of Halle , 
a far less prestigious institution than Berlin, where he longed for an 
appointment. He keenly felt the slight of being relegated to a lesser uni
versity and often attributed the state of affairs to Kronecker's persecu
tion. Attacks flew back and forth between Cantor and his opponents, with 
the former exhibiting fairly clear paranoid tendencies . In the process, 
Cantor managed to offend friend and foe alike, which hardly improved 
his chances of employment at Berlin. 

It may come as no surprise that Georg Cantor, l iving such a life of 
disappointment and grappling with the most arcane concepts of the infi
nite, suffered a number of bouts with mental illness . His first breakdown 
came in 1884 , when he was feverishly at work on a result known as the 
"continuum hypothesis ,"  to be examined shortly. A popular view holds 
that the stress of his mathematics, coupled with the persecution of Kro
necker and others, were responsible for his collapse . Modern analysis of 
the medical data rejects this as being overblown, for there are sugges
tions that Cantor exhibited a bipolar (that is, manic-depreSSive) psycho
sis, and breakdowns most likely would have occurred in any case . His 
attacks of mental illness may have been triggered by personal and math
ematical difficulties, but they appear to have been of a deeper, more fun
damental nature. 

Be that as it may, the bouts of instability continued and became more 
frequent . After a brief hospitalization in 1884 , Cantor recovered but 
remained deeply concerned that the disease could return . Amid his dis
appointments, mathematical and professional, there came a terrible 
blow with the unexpected death of his beloved son Rudolf in 1899. Can
tor was back in the neuropathic hospital in Halle in 1902 ,  and again in 
1904 , 1 907, and 191 1 .  Often his institutionalizations were followed, 
upon discharge, by periods of sitting at home immobile and silent. 

Cantor's was certainly a troubled life .  His death, on January 6, 1918, 
came while he was again hospitalized for his mental affliction . It was a 
sad end for a great mathematician. 

Looking back on the life and works of Georg Cantor, it is tempting 
to compare him to his contemporary from the world of art, Vincent Van 
Gogh. The two men had a certain physical resemblance . Cantor's father 
was highly religious, and Van Gogh's was a Dutch clergyman. Both were 
much drawn to artistic enterprises, enjoyed literature , and wrote poetry. 
We recall that Van Gogh, like Cantor, had an erratic, volatile personality 
that eventually alienated even friends such as Paul Gauguin. Both men 
were extremely intense, exhibiting a tremendous devotion to their cho-
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Georg cantor (photograph courtesy of 
The Ohio State University Libraries) 

sen work. And, of course, both men suffered from mental problems that 
not only saw them institutionalized but also weighed upon their minds 
as they contemplated recurring attacks in the future . 

Most of all ,  both Van Gogh and Cantor were revolutionaries . Just as 
Vincent in his brief and turbulent career managed to carry art beyond its 
impressionist boundaries, so too did Cantor move mathematics in pro
foundly new directions. Whatever is said about this great and troubled 
man, we cannot help but admire his courage in exploring the nature of 
the infinite in an absolutely original way. 

Cantor himself, despite his problems, never despaired over the value 
of his work. Discussing his controversial view of the infinite, he wrote : 

This view, which I consider to be the sole correct one , is held by only a few. 
While possibly I am the very first in history to take this position so explicitly, 
with all of its logical consequences, I know for sure that I shall not be the 
last! 

Indeed, he was not . Generations of mathematicians had probed the 
age-old questions of geometry, algebra, and number; theory, but Georg 
Cantor opened up new and unexpected vistas . Because he both asked 
and answered questions never before contemplated, iit is perhaps fitting 
that his work has been called the first truly original mathematics since 
the Greeks . 
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Epilogue 

We have alluded to certain matters of set theory that even Cantor's great 
genius left unresolved. One of the most perplexing of these was the 
appearance of inexplicable paradoxes-logicians use the term "antino
mies"-that arose from Cantor's discoveries . Perhaps the simplest of 
these logical quagmires follows instantly from Cantor's theorem. 

Suppose we collect together the set of all sets , and call it U (for "uni
versal set") . This is an inconceivably vast assemblage . It contains all sets 
of ideas , all sets of numbers , all sets of subsets of numbers , etc . Within 
U we would find each and every set that exists . In this sense, U cannot 
possibly be enlarged; it already contains all possible sets . 

But now we apply Cantor's Theorem to U. Cantor had proved that 
U < P[U] ,  which obviously implies that P[U] is overwhelmingly more 
vast than U itself. Here we have a contradiction appearing at the very 
core of Cantorian set theory. 

Cantor became aware of such antinomies in 1895 ,  and over the next 
decades the mathematical community tried to find a way to patch up the 
logical breach they had created. The final resolution of this affair 
required the formal axiomatization of set theory-even as Euclid had 
provided his axiomatic approach to geometry-in which the carefully 
chosen axioms prohibited just such paradoxes as these . Logically, this 
was no easy matter. But, in the end, the newly created "axiomatic set 
theory" more carefully controlled precisely what was and what was not 
a "set ."  Under this system, the "universal set" was not a set at all; it was 
excluded from the collection of objects that the axioms of set theory 
addressed. Thus, almost by magic, the paradox dissolved. 

This resolution was,  obviously, a compromise measure , an axiomatic 
attempt to carve away, with surgical precision, the troubling features of 
set theory while retaining all of the good points of Cantor's creation . 
Cantor's own, more informal approach is now called "naive set theory," 
to contrast it with the logical superstructure of axiomatic set theory. The 
latter now stands as a satisfactory, albeit rather abstruse and technical , 
foundation for the theory of sets . It represents a triumph of the senti 
ments expressed by mathematician David Hilbert, who-vowed, "No one 
will  expel us from the paradise that Cantor has created. " 

But there was another problem that Cantor had failed to resolve sat
isfactorily, and this concerned him at least as much as the appearance of 
paradoxes .  In fact, it occupied Cantor's attention year after year and is 
cited by some as playing a significant role in his periods of mental col 
lapse. The result is now known as Cantor's "continuum hypothesis . "  

It i s  quite simple to  state . The continuum hypothesis asserts that 
there is no transfinite cardinal falling strictly between No and c. In this 
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sense , it suggests that the cardinals No and c behave much like the whole 
numbers 0 and 1 .  These are the first two finite integers, and no other 
whole numbers can be inserted between them. Cantor's hypothesis sur
mised that an analogous role was played by his two transfinites . 

Put another way, the continuum hypothesis stated that any infinite 
subset of real numbers is either denumerable (in which case it has car
dinality No) or can be put into a one-to-one correspondence with (0, 1 )  
(in which case i t  has cardinality c) . There i s  no  intermediate possibility. 

Cantor wrestled with this problem incessantly throughout much of 
his mathematical career. One of his great assaults upon it came in 1884 , 
the year of his first nervous collapse . In August of that year, Cantor felt 
that his efforts had succeeded, and he wrote to a colleague, Gustav Mit
tag-Leffler, that he had proved it. But three months later, he wrote a fol 
low-up letter not only retracting his proof of August but also claiming he 
now had a proof that the continuum hypothesis was false . This radical 
shift in his views lasted one short day, after which he again wrote Mittag
Leffler conceding that both of his proofs had been flawed. Acknowledg
ing mathematical errors not once but twice, Cantor still had no idea 
whether his continuum hypothesis was true. 

If Cantor had proved this hypothesis, he could, for instance , have eas
ily determined the cardinality of the transcendental numbers, men
tioned in the Epilogue of the previous chapter. As sHown there , the tran
scendentals formed a non-denumerable subset of the reals and thus 
would be forced to have cardinality c. It would all have been so easy if 
only Cantor could have proved his continuum hypothesis . 

But he never did. In spite of Herculean efforts on his part, he went 
to his grave no closer to proving the result than he had been decades 
earlier. It became perhaps his life's greatest obsession and greatest 
frustration. 

It was not just Georg Cantor who sought the answer. In 1900, Hilbert 
looked across the broad spectrum of unanswered mathematical prob
lems and identified 23 of them as the critical challenges for mathemati
cians in the century ahead. First on the list was Cantor's continuum 
hypothesis, which Hilbert called a " . . .  very plausible theorem, which, 
nevertheless, in spite of the most strenuous efforts, no one has suc
ceeded in proving ."  

Much more strenuous effort would be expended before some light 
began to be shed on this simple-looking theorem of set theory. The great 
breakthrough came in 1940 from the pen of one of the twentieth cen
tury's most extraordinary mathematicians, Kurt Godel ( 1906-1978) . 
Godel ,  using the axiomatized version of set theory, proved that the con
tinuum hypothesis is logically consistent with the other axioms of the 
theory. That is, there was no way, beginning with the set-theoretic axi
oms, to disprove the continuum hypothesis . Had Cantor been alive , this 
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discovery would have cheered him immeasurably, for it seemed to indi
cate that he was on the right track. 

Or did it? GOdel 's result certainly did not prove the hypothesis. The 
question remained an open one until 1963. Then the mathematician 
Paul Cohen 0934-) of Stanford University showed that, beginning with 
the axioms of set theory, we could not prove the continuum hypothesis 
either. Combined with GOdel's work, this settled the question of the 
continuum hypothesis in a most surprising way: it was simply indepen
dent of the other principles of set theory. 

This should strike a distant, but familiar, bell . Over two thousand 
years before , Euclid had introduced his parallel postulate , and subse
quent generations expended untold effort in trying to derive it from geo
metry's other postulates . We subsequently learned that this was an 
impossible quest, for the parallel postulate is independent of these other 
principles; it can neither be established nor refuted, but stands apart, 
like an offshore island. 

Cantor's continuum hypothesis occupies an analogous position in 
the world of set theory. Its adoption becomes a matter of choice , not of 
necessity, based on the tastes of the mathematician in question . If we 
wish to explore a set theory where no transfinite cardinals fall between 
No and c, we are perfectly welcome to take the continuum hypothesis as 
a postulate and thereby fulfill our wish. If instead we prefer a different 
approach, we are likewise welcome to reject the continuum hypothesis . 
The parallel with Euclidean and non-Euclidean geometry is striking. 
This situation provides a remarkable link between one of our century's 
most famous problems and a classic from ancient Greece . It suggests 
that, even in mathematics, the more things change , the more they remain 
the same . 

And what of Georg Cantor's unresolved quest to prove the contin
uum hypothesis? In the light of GOdel's and Cohen's work in the twen
tieth century, we see that he faced not a difficult task but a hopeless one . 
This fact stands as a poignant, ironic postscript to the life of this troubled 
mathematician . 

Stil l ,  his failure in no way diminishes the legacy of Georg Cantor. We 
leave him with his own assessment, from 1 888, of his bold journey into 
the transfinite realm: 

My theory stands as firm as a rock; every arrow directed against it will return 
quickly to its archer. How do I know this? Because I have studied it from all 
sides for many years ; because I have examined all objections which have 
ever been made against the infinite numbers; and above all because I have 
followed its roots , so to speak, to the first infall ible cause of all created 
things . 
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Afterword 

With Cantor's transfinite cardinals roaring off to an infinitude of infini
ties , we finish our tour of great mathematical masterpieces . It has been 
a long journey-from Hippocrates of Chios to the twentieth century
but, I hope, an impressive one, with a remarkable cast of characters 
crossing our stage and performing brilliantly in the process . It is a story 
well worth the telling. 

G. H. Hardy, who appeared in the discussion of Ramanujan in Chap
ter 4, had a keen sense of the aesthetics of mathematical proof. Hardy 
contended that truly great theorems possess the three characteristics of 
economy, inevitability, and unexpectedness. I think these properties are 
well represented among the results we have examined. Euclid's proof of 
the infinitude of primes was as concise , elegant, and "economical" as 
anyone could ask. Johann Bernoulli 's array of infinite series led inevita
bly to the divergence of the harmonic series, so that, as was said of Archi
medes' mathematics, "once seen, you immediately believe you would 
have discovered it . "  And many of our propositions were extremely unex
pected, from the fact that lunes are quadrable, to the fact that cubics are 
solvable, to just about anything done by Georg Cantor. All in all , I hope 
that Hardy would have approved my selection of " great theorems . "  

For a valedictory, I offer two quotations, separated by fifteen centu
ries yet somehow conveying much the same idea. The first comes from 
the Greek commentator Proclus of the fifth century: 

285 



---------------------------------------- -

286 • JOURNEY THROUGH GENIUS 

This , therefore, is mathematics : she gives life to her own discoveries; she 
awakens the mind and purifies the intellect; she brings light to our intrinsic 
ideas; she abolishes the oblivion and ignorance which are ours by birth. 

Finally, I offer another observation from the twentieth century's Bertrand 
Russell ,  whose words began this book's Preface . Russell recognized 
beauty in mathematics and characterized it about as well as anyone 
could. I conclude with his comment, which I hope describes the read
er's reaction to these mathematical masterpieces . 

Mathematics, rightly viewed, possesses not only truth, but supreme beauty-
a beauty cold and austere , like that of sculpture , without appeal to any part 
of our weaker nature , without the gorgeous trappings bf painting or music, 
yet sublimely pure , and capable of a stern perfection stach as only the great
est art can show. 
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excerpt from Pierre-Simon Laplace, Burton, p .  383 . Page 182 :  poems from Pope 
and Wordsworth,  Fauvel and Gray, pp. 4 1 5-4 16 .  

Chapter 8:  The Bemoullls and the Harmonic Series 
Page 187:  The paper carried the lengthy title , Fauvel and Gray, pp. 428-434 . Page 
190:  only a trusted servant attended the funeral, Eves, p. 309. Page 192 :  excerpt 
from Johann Bernoulli ,  Kline, p. 473.  Pages 196-198: Bernoulli 's divergence 
proof, Dunham, p. 2 1 .  Page 198:  Jakob Bernoull i :  The sum of an infinite, Dun
ham, p.  2 2 .  Page 198-199 :  Bernoulli 's poem, Smith, p .  271 .  Page 199-201 :  
excerpts regarding Johann Bernoulli 's challenge : Smith, pp. 645-648. Page 201 :  
excerpt from Catherine Conduitt, Westfall , p .  582 . Page 20 1 :  Newton:  I do not 
love to be teezed, Westfall ,  p. 582 . Page 201 :  Johann Bernoulli :  . . .  you will be 
petrified, Smith, p. 649 .  Page 202 : excerpt from Nicole Oresme, Oresme, p. 76 . 
Page 206: Jakob Bernoull i :  If anyone finds, Dunham, p. 23 .  

Chapter 9 :  The Extraordinary Sums of Leonhard Euler 

Page 2 1 1 :  Condorcet: He preferred instructing, Alexanderson, p. 276. Page 2 1 1 :  
a publication backlog is reported, Eves, p .  328.  Page 2 1 1 :  . . .  there is ample prec-
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edent, Alexanderson, p .  316. Page 2 1 2 :  Euler: . . .  quite unexpectedly I have 
found, Weil ,  p. 261 .  Pages 2 1 5-2 17 :  Euler's summation formula, Euler, Vol .  14 ,  
pp. 83-85 . 

Chapter 10: A Sampler of Euler's Number Theory 

Page 224 :  Andre Weil :  a substantial part of Euler's work, Weil ,  p. 170 .  Page 225 :  
Pierre de Fermat: I would send you the demonstration, Ore, 1988, p .  272 . Page 
229: Christian Goldbach :  Is Fermat's observation known to you, Weil, p. 1 72 .  
Page 230-234 : Euler's refutation of Fermat's conjecture , Euler, Vol .  2, pp. 68-74 . 
Page 235 :  As of 1988, mathematicians know, Young and Bell, 1988. Page 236: 
excerpt from Carl Friedrich Gauss, Fauvel and Gray, p .  492. Page 239: Euler's 
"proof" exhibited, Struik, p .  99. Page 239: Leonhard Euler: The equation which 
determines, Euler, Vol .  6, p .  103. Page 239: Gauss : the clarity which is required, 
Fauvel and Gray, p. 491 . Page 242 : excerpt from Sophie Germain, Fauvel and 
Gray, p. 497. Page 242 :  excerpt from Gauss, Fauvel and Gray, p. 497. 

Chapter 11: The Non·DenumerabUity of the Continuum 

Page 247: excerpt from Morris Kline, Kline, p. 1 1 57 .  Page 248: excerpt from New· 
ton,  Struik, p. 299 .  Page 249: excerpt from Leibniz, Edwards, p. 264 . Page 249: 
excerpt from Berkeley, Smith , p .  630 . Page 250: excerpt from Bishop Berkeley, 
Smith, p. 633. Page 250 :  excerpt from Augustin-Louis Cauchy, Grattan-Guinness, 
p. 109. Page 253 :  excerpt from Georg Cantor, Cantor, p .  86 . Page 254 :  excerpt 
from Gauss, Dauben, p. 1 20 .  Pages 259-261 :  Cantor's non-denumerability proof, 
Fauvel and Gray, pp. 579-580 . Page 261 :  Cantor: . . .  remarkable . . .  because of 
its, Dauben, p. 166. Page 265 :  He first proved, Fauvel and Gray, p. 579. Page 266: 
excerpt from Eric Temple Bell ,  Bell ,  p .  569. 

Chapter 12: Cantor and the Transfinite Realm 
Page 273: Cantor: I see it but, Grattan-Guinness, p. 187.  Pages 274-276: proof of 
Cantor's theorem, Dauben, pp. 165- 167 .  Page 277: excerpt from Cantor, Dauben, 
p. 166 . Page 278: Joseph Dauben: not only as God's messenger, Dauben, p. 147.  
Page 278: excerpt from Cantor, Dauben, p .  147.  Page 280:  excerpt from Cantor, 
Gillispie, Vol .  3, p. 57 .  Page 281 : David Hilbert :  No one will expel ,  Kline, p .  
1003. Page 282 : Hilbert : . . .  very plausible theorem, Calinger, p .  66 1 .  Page 283: 
excerpt from Cantor, Dauben, p .  298. 
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