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This book is intended for a one- or two-semester course in discrete mathemat-

ics. Such a course is typically taken by mathematics, mathematics education,
and computer science majors, usually in their sophomore year. Calculus is not
a prerequisite for using this book. Consequently, even freshmen with sufficient
maturity could use it. Additionally, the second half of the book can be used for
an introductory course in combinatorics and graph theory. The basic organiza-
tion of the book can be seen in the Contents.

For those designing a one-semester course that covers the core material, the
following sections accommodate this approach and make up half of the sections
of this book.

Sections Topic

1.1-1.5 Logic and Sets

2.1-2.5 Basic Proof Writing

3.1,3.2 Divisibility, Primes, and Integer Division
4144 Sequences, Summations, and Induction
51,5.3,54 Basic Relations and Functions

6.1-6.3 Fundamentals of Counting

8.1-8.4 Fundamentals of Graph Theory

10.1 Trees

A two-semester course may most naturally be set to follow Part I and then
Part II, each in order. However, there is sufficient flexibility that other organi-
zational choices may be made as well. The dependence among the chapters of
this book is roughly reflected in the following figure.!

TNote that portions of Chapter 5 are needed in the later chapters. For example, the discussion of
bijections in Section 5.4 is needed in Section 8.3 when graph isomorphisms are introduced, and
the discussion of logarithms is needed in Section 10.4 when growth rates of functions are
compared.
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Preface

The central topic of Part I of the book is learning how to write proofs. We be-
lieve that basic set theory is the best area in which to learn how to write proofs.
The connection between properties of sets and the rules of logic (e.g., between
De Morgan'’s laws for sets and De Morgan’s laws for logic) is so strong that
many of the proofs seem to write themselves. This should help students as they
learn how to write proofs. After this introduction, we move to number theory,
which serves both as a source of interesting applications and as the second set-
ting in which to write proofs. This move also sets up the introduction to proofs
by induction, presented in Chapter 4. That introduction is spread over three
sections to mitigate the difficulties with induction proofs that many students
experience.

In Part II, the emphasis shifts to computations and problem solving. How-
ever, we still call on our ability to prove things and to think logically. For exam-
ple, to conclude that a graph has connectivity 3, it is necessary to do two things.
First, a disconnecting set of size 3 must be presented. Second, an argument must
be given showing that the removal of fewer than three vertices will not discon-
nect the graph. The focus of Part II is on combinatorics and graph theory.

Chapter 0 is a single section that should take approximately one class to
cover. Some users might even skip it or assign it as reading. However, it is in-
cluded to emphasize the link between Parts I and II.

A conscious effort has been made to give suggestive names to the theorems in
this book whenever reasonable, with the common names used whenever possi-
ble (e.g., the Rational Roots Theorem and the Binomial Theorem). Consequently,
theorems may be referred to by name rather than by an unenlightening number.
The names should remind the reader of the content of the theorem and hence re-
duce the amount of page flipping. The index gives page references for use when
desired.

The approximately 3500 exercises throughout this book have been purpose-
fully structured. Students are provided a rich supply of straightforward exer-
cises before they encounter those that stretch their thinking. Several exercises
that are very much like the examples in the text are included. These provide
the students with ample opportunity to sharpen their teeth before moving on to
bigger prey. Beyond the exercises that reinforce the central concepts, there are
many that explore further both the theory and the applications of these concepts.
Exercises that may be particularly challenging are marked with a star, .
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Solutions are provided in the back of the book for the odd-numbered exer-
cises from each section and all of the exercises from the review sections.
Consequently, a balance is sought between the odd and even exercises. That is,
each odd-numbered exercise is generally followed by a similar even-numbered
exercise. Instructors wanting to assign homework without solution references
can assign the even problems. Students can use the odd exercises to help them
with the even ones. Note that an answer listed in the back may be more brief
than that required by the exercise. In particular, exercises demanding proofs are
often answered in the back with sketches. Students are expected to flesh out the
answer given to obtain the answer requested.

Two appendices containing background material are also provided. In Ap-
pendix A, we list the fundamental properties of real numbers and integers that
are assumed throughout the book. Appendix B describes the pseudocode in
which algorithms are presented throughout the book.

Strengths of Discrete Mathematics

= Range, depth, and quantity of exercises and applications, including
additional problems that provide extra challenge, give instructors flexible
assignment options.

= Mathematics is written with rigor and precision. Definitions and theorems
are consistently and clearly highlighted.

= Solid foundation in learning how to write proofs.

= Engaging writing style makes the presentation especially appealing to
students.

= Hundreds of worked-out examples feature a wide variety of applications to
illustrate concepts and enhance understanding.

Supplements

Online Instructor Resource Guide

Available on the Instructor Website through HM MathSPACE®, complete solu-
tions are provided to all exercises in the text. The guide also includes a test bank
with over 400 test items.

Digital Figures and Definitions

Available on the Instructor Website through HM MathSPACE, selected figures,
definitions, and theorems from the text are provided in convenient PowerPoint®
slides.

Print Student Solutions Manual

Solutions to odd-numbered section exercises and all the review exercises in a
printed format. The manual also includes a valuable chapter review and sum-
mary of key definitions. Available through your college bookstore.
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CHAPTER O

Representing Numbers

THROUGHOUT THIS BOOK, we encounter binary sequences, whose terms have
only two possible values. In Part |, we consider sequences of Boolean variables; the
terms of such sequences can take on either the value True or the value False (briefly T
or F). For example, in Part Il, sequences of coin flips are considered. There, each coin
flip results in either Heads or Tails (briefly H or T). Both of these types of sequences
have the same structure as a sequence whose terms are either 1 or 0. Such sequences
are used to store data in computers, since a 1 can be represented by the presence of
an electrical signal, and a O by its absence. In that setting, each term is called a bit,
which is short for binary digit.

The primary aim of this chapter is to study sequences of 1’s and O’s and learn how
each nonnegative integer can be represented by such a sequence. The key to
understanding how integers can be so represented is to recall how numbers are
ordinarily written in the decimal system.

Decimal (Base Ten)

When we see numbers written as 3527 and 60,409, we know their values because
we understand them to be represented in a familiar form. The decimal system,
or base ten place system, for numbers is taught in elementary school. For exam-
ple, in the number 3527, we learn that 7 is the units digit, 2 is the tens digit, 5 is
the hundreds digit, and 3 is the thousands digit. That is,

3527 = (3)1000 + (5)100 + (2)10 + (7)1
= (3)10° + (5)10% + (2)10" + (7)10°.
Similarly,
60409 = (6)10* + (0)10° + (4)10? + (0)10" + (9)10°.

In the sums above, the exponent on the base ten starts at 0 for the rightmost
term and increases by 1 as we move from right to left. In base ten, only the
digits 0, 1, ..., 9 are used. The place system then allows any nonnegative integer
value to be specified. The reason why base ten is used is simply that we have
ten fingers. However, the method of this numbering system can be used for any
base s > 2, where s is an integer.

Base s

As we will be able to prove in Section 4.5, the system used to represent num-
bers in base ten can be generalized to represent numbers in any integer base
s > 2. To write integers in base s, digits representing 0,1, ..., s — 1 are needed.

1



2 CHAPTER 0 = Representing Numbers

EXAMPLE 0.1

If s < 10, then the familiar symbols are used (and s, s +1, ..., 9 are discarded).
If s >10, then symbols for the values 10,11, ..., s —1 need to be chosen. For
example, for s = 16 (the hexadecimal system), the convention is to use the digits
0,1,...,9a,b,c,d,e, f. That is, ten is represented by a, eleven is represented
by b, and so on.

In base s, a nonnegative integer 7 is represented in the form

n = adyx_1 ---dido, (in base s)

where the digits ay, ax_1, ..., a1, ap represent elements from the set {0, 1, ...,
s — 1}. The corresponding value of n is determined by the equation

n= aksk + ak_lsk’l +--- 4+ a1s1 + aoso.

Our primary focus here is on the base s=2. That is, we focus on binary
numbers. However, some other related and important bases are also explored.

Binary (Base Two)

For binary numbers, 0 and 1 are the only digits used to represent nonnegative
integers. We start by practicing the skill of reading binary numbers.

Determine the decimal value of the following binary numbers.
(a) 110101.

(1)2° + (1)2* + (0)2° + (1)22 4 (0)2' + (1)2° =
32+16+0+44+0+4+1=53
(in base ten)

(b) 01101110.

(027 + (1)2° 4 (1)2° + (0)2* + (1)2° + (1)2% + (1)2' 4 (0)2° =
0+64+32+0+8+4+2+0=110
(in base ten) ]

Note in Example 0.1(b) that the base ten result is 110. When working with
multiple bases, it is important to specify the base in which a number is repre-
sented. Otherwise, a number like 110 could be mistakenly interpreted as binary.
Note also in Example 0.1(b) that the first digit 0 does not contribute to the value
of the integer. Only the digits starting from the leftmost nonzero digit contribute
to the result. However, sometimes padding a number with zeros to the left to
obtain some fixed length is convenient. Table 1 lists the values of all the 3-digit

Binary Numbers | Base Ten Values
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

Table 1 All 3-Digit Binary Numbers
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binary numbers. There are 8 = 2% binary numbers with 3 digits. In general, there
are 2" binary numbers with n digits.

Connecting Parts I and II

The numerical values of binary sequences provide a natural way to order them.
For Boolean sequences, identifying T with 1 and F with 0 gives each sequence
a numerical value. Similarly, a sequence of coin flips can be given a numerical
value by identifying H with 1 and T with 0. Consequently, this provides a sys-
tematic way to list all Boolean sequences and all sequences of coin flips of some
fixed length n. Under our identifications, Table 2 lists the possible sequences of
length 3 (in increasing order). In Part I of this book, we study problems related to
the second column of Table 2. In Part II, we study problems related to the third
column of Table 2. The basic notion of binary numbers provides a link between
these two considerations.

Binary Numbers | Boolean Values | Coin Flips
000 FFF TTT
001 FFT TTH
010 FTF THT
011 FIT THH
100 TFF HTT
101 TFT HTH
110 TTF HHT
111 TTT HHH

Table 2 Binary Sequences of Length 3

Expressing Numbers in Alternative Bases

So far we have learned how to convert from binary to decimal, but we should
also be aware of how to go in the other direction. For this, there is a simple algo-
rithm that involves integer division and the computation of remainders. After
we develop sufficient proof-writing skills, in the exercises in Section 4.5, we will
be asked to prove the validity of the method we now introduce in Example 0.2.

Determine the binary representations of the following numbers given in
decimal.

a) 49.
@ To start, we perform a sequence of divisions by 2, in which each
resulting quotient is the number divided by 2 in the subsequent step.
49/2=24 remainder 1
24/2=12 remainder 0
12/2=6 remainder 0
6/2=3 remainder 0
3/2=1 remainder 1
1/2=0 remainder 1

The sequence of divisions is terminated when the quotient 0 is obtained.
The binary representation is then given by listing the remainders in
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EXAMPLE 0.4

reverse order. In this case, the binary representation of 49 is
110001.
Note that
(1)2° + (1)2* 4 (0)2° 4 (0)22 + (0)2" + (1)2° = 2° 4 2 420 = 49.
(b) 72.
72/2=36 remainder 0
36/2=18 remainder 0
18/2=9 remainder 0
9/2=4 remainder 1
4/2=2 remainder 0
2/2=1 remainder 0
1/2=0 remainder 1

The binary representation of 72 is

1001000.
Note that

(1)2° 4 (0)2° + (0)2* + (1)2° + (0)2* + (0)2' + (0)2° =20 +2° =72. m

Any nonnegative integer can be written in binary by following the procedure
from Example 0.2. As we shall further prove in Section 4.5, for any integer s > 2,
the base s representation of a number is obtained by a sequence of divisions
by s. In the general case, the remainders are values from 0,1, ..., s — 1, which
are appropriate for base s digits. After the quotient 0 is obtained, the base s
representation is given by listing the sequence of remainders in reverse order.

Octal (Base Eight) and Hexadecimal (Base Sixteen)

Two number systems related to binary are of particular importance in computer
science. The octal system represents numbers in base eight, and the hexadecimal
system uses base sixteen. By using the appropriate value of the base s, we can
determine the values of numbers expressed using these systems just as in any
other.

The decimal value of the hexadecimal number 3ce0 is found to be 15584.

(3)16° + (12)16* + (14)16" + (0)16° =
12288 + 3072 + 224 + 0 = 15584
(in base ten)

Recall that c represents twelve and e represents fourteen in hexadecimal. ]

To convert from decimal to these number systems, we use the general pro-
cedure described after Example 0.2.

Writing the decimal number 93 in octal is accomplished by a sequence of
divisions by 8.
93/8=11 remainder 5
11/8=1 remainder 3
1/8=0 remainder 1

Thus 135 is the octal representation of the decimal number 93. ]
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The utility of the octal and hexadecimal systems and their connection to the
binary system derives from the fact that their bases are powers of two. This
makes it particularly easy to convert between binary and either of these systems.
For example, since 16 = 2, the hexadecimal digits of a number are obtained by
grouping the binary digits into blocks of size 4, starting from the right.

The binary number 1110110101 is written in hexadecimal as 3b5.

00111011 0101
——
3 b 5
The left-most block is padded to its left with zeros to give it size 4. Since 1011
is the binary representation of eleven, the hexadecimal digit for the middle
block is b. |

The hexadecimal system represents number using fewer digits than the bi-
nary system. Since a human can more easily parse 305 than 1110110101, when
binary data in a computer is printed out for human interpretation, it is often
converted to a more readable system such as hexadecimal.

Exercises

In Exercises 1 through 10, convert the given binary numbers to decimal.
1. 1010 2. 1001

3. 10111 4. 11010

5. 101110 6. 110010

7. 1001011 8. 1011011

9. 10101011 10. 11110000

In Exercises 11 through 20, write in binary the numbers given in decimal.
11. 59 12. 73

13. 84 14. 95

15. 117 16. 230

17. 304 18. 500

19. 1024 20. 4096

21. List all of the possible outcomes from a sequence of 4 coin flips.

22. List all of the possible assignments to a sequence of 4 Boolean variables.

Other Bases

In Exercises 23 through 28, convert the numbers given in octal to decimal.
23. 163 24. 274

25. 3217 26. 2164

27. 40510 28. 50072

In Exercises 29 through 32, convert the numbers given in hexadecimal to
decimal.

29. dc9 30. 2ab
31. 5a7e 32. b63d
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In Exercises 33 through 36, write in octal the numbers given in decimal.

33.
35.

59 34. 84
117 36. 230

In Exercises 37 through 42, write in hexadecimal the numbers given in decimal.

37.
39.
41.

59 38. 84
117 40. 230
44252 42. 43962

In Exercises 43 through 46, write the given binary number in (a) octal and
(b) hexadecimal.

43.
45.
47.
48.
49.
50.

1100110011. 44. 11100011001.
101100110001011. 46. 11011000001100111.
Write the octal number 47 in binary.

Write the octal number 162 in binary.

Write the hexadecimal number acc in binary.

Write the hexadecimal number fda in binary.

Questions for Thought

51.
52.
53.
*54.
*55.
*56.

57.
58.
*59.

*60.

*61.

*62.

What number is expressed in binary by a one followed by m zeros?
What number is expressed in binary by m consecutive ones?
Describe the binary expression of 4".

How is multiplication by 8 accomplished with a binary number?
How can a binary number be tested for divisibility by 4?

How can an alternating sum of the digits of a binary number be used
to test for divisibility by 3? For example, 1011 has alternating sum
—14+0-1+1=-1,and 10101 has alternatingsum1 —-0+4+1—-0+4+1=3.

What number is expressed in octal by m consecutive sevens?

What number is expressed in octal by m consecutive ones?

How can the sum of the digits of an octal number be used to test for
divisibility by 7?

How can an alternating sum of the digits of an octal number be used to test
for divisibility by 9?

How would you convert from octal to hexadecimal without using
decimal?

If a number written in binary reads the same frontwards and backwards,
will this symmetry remain when it is written in hexadecimal? Explain.

*Exercises that may be particularly challenging are marked with a star.
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CHAPTER 1

Logic and Sets

IN THIS CHAPTER, we lay the conceptual and notational foundation for much of the
book, especially Part I. Mathematical reasoning and arguments are based on the rules
of logic. Time must be spent learning those rules and eliminating misconceptions that
do not follow them. For example, we need to be familiar with the mathematical meaning
of the word or, in contrast with the phrase exclusive or, which is sometimes intended in
common uses.

The notation that needs to be introduced is primarily set notation. This is first
presented somewhat informally. It is considered in a more precise way after logic and
quantifiers are formally established. However, we do not venture beyond a somewhat
naive approach to set theory.

Throughout the chapter, we consider some applications. Digital circuit design is our
featured application of logic. A discussion of software implementation of sets is also
highlighted.

1.1

EXAMPLE 1.1

Statement Forms and Logical Equivalences

Our goal in Part I is to learn how to prove statements. However, before we can
undertake this, we must study statements and their structure. Consequently,
much of our work here involves truth tables and logic identities. As a closely
related application, we further consider digital circuits, since their underlying
structure is the same as that of statements.

DEFINITION 1.1

A statement is a sentence that is either true or false, but not both.

It is easy to construct examples of statements. Of course, our primary focus
will be on those of a mathematical nature.

The following sentences are statements.
(@2+2=4
(b)2+2#4.
(c) \/Z=2and \/§>2.
(d) The sine function is periodic and 2 is an integer.
(e) 10 > 210 or 21° > 102.
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PART | = Proofs

(f) Ife > 2, thene? > 4.
(8) /1 is a real number. -

In Example 1.1, it turns out that sentences (a), (c), (e), and (f) are true state-
ments, while (b), (d), and (g) are false. In some cases, such as (a), the truth or
falsehood might be obvious. However, in other cases, such as (f), we see the
need to understand various forms that statements might have, such as if-then
statements. A study of these forms is taken up immediately after the following
example showing that not every sentence is a statement.

The following sentences are not statements.

(a) What is the sum 2 + 2?
(b) Evaluate the sum 2 + 2.
(c) This sentence is false.

Sentence (a) is a question, and (b) can either be performed or not, but neither
can be true or false. The point is that, in particular, a statement must be a
declarative sentence. Sentence (c) warrants a bit more thought, since it is a
declarative sentence, so the problem must be in assigning it a value of true or
false. If (c) were true, then what it says would be false. If (c) were false, then
what it says would be true. Hence, (c) can be neither true nor false. ]

Statement Forms

We are interested in studying statements. However, insight is gained by step-
ping back and examining their forms. In Example 1.1, both (c) and (d) are state-
ments of the form “p and q,” where p and g represent statements. In (c),

p —_“ \/1 — 2'//
q —“ \/5 - 2'17
In (d),
p = “The sine function is periodic.”
g = “2m is an integer.”
Although statements (c) and (d) are different, their forms are the same.
Formally, we say that (c) and (d) both have the statement form
pAg.
Here, the word and is denoted by the symbol A, and p and g are statement vari-
ables. The most basic statement forms are listed in Table 1.1. General statement
forms, or logical expressions, can be built from these, as we shall see. The def-

initions of the basic logical operations —, A, v, and — can be expressed by pre-
senting truth tables for the statement forms listed in Table 1.1. A truth table

Form | Translation
-p not p (negation of p)
pAgq | pandg

pvq | porg

p — q | if p then g (p implies q)

Table 1.1 Basic Statement Forms
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for a logical expression is a table that displays how the truth or falsehood of
the statement variables involved in the expression affect the truth or falsehood
of the expression. The truth table defining the operator — is given in Table 1.2.
The truth tables for A, v, and — are combined in Table 1.3. Notice in Tables 1.2
and 1.3 that if F and T are replaced by 0 and 1, respectively, then the portion
of the tables corresponding to the input variables represents binary numbers
listed in increasing order. This ordering is not required in truth tables but is used
throughout this book for consistency. Variables, such as statement variables, that
can only take on one of two possible values (e.g., T or F) are called Boolean
variables and are named after the English mathematician George Boole (1815-
1864), who pioneered their use.

py—p
F| T
TI| F

Table 1.2 Truth Table Defining —

Pla| pPha|pPVa|P—4

F|F F F T
F|T F T T
T|F F T F
T|T T T T

Table 1.3 Truth Table Defining A, V, and —

We see in Table 1.3 that p A g is true precisely when both p and g are true.
Notice that p Vv g is true if p is true or if q is true, and that it is also true if both
p and g are true. In fact, it suffices to say that p Vv g is false precisely when both
p and q are false. The if-then, or conditional, statement form p — g is meant
to reflect whether the truth of p implies (or forces) the truth of . Consequently,
p — q is false if and only if p is true and g is false. Notice that p — g is true
whenever p is false. In that case, we say that p — g is vacuously true. Only in
the other case, when p is true, does the truth of g matter.

In logical expressions involving more than one operation, the order of op-
erations must be understood. The order of precedence of the basic operations
listed from highest to lowest is

-
7

AV,

—.

The operations A and V are listed on the same line because they are considered
to be equal in precedence. Of course, any desired order of operations can be
forced by using parentheses. For example, —p A g should be understood to mean
(—p) Ag and not —=(p A g).

Remark 1.1 In programming languages such as C++, it is commonly
specified that A, which is denoted && in C++, has higher precedence
than v, which is denoted | | in C++. Consequently, p && q || ¢
would be interpreted as (p A q) v r. However, in applications such as
Microsoft Excel, it is impossible to enter an expression of the form

p Aq Vv r without explicitly entering it either as (p Aq) Vror p A (g V).
The syntax used in Excel is discussed in Example 1.4. That the order of
operations matters is illustrated in Example 1.8.
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EXAMPLE 1.3

EXAMPLE 1.4

Make a truth table for the statement form p A g — 7.

Solution. The order of precedence dictates that p A ¢ is performed first and
that the operation — is performed last. In fact, in making a truth table, it is
often helpful to include intermediate columns reflecting intermediate steps in
the computation.

plg|r| PAqg| pPNg—T

F|F|F F T

F|F|T F T

F|T|F F T

F|T|T F T

T F|F F T

T F | T F T

T|T|F T F

T T|T T T |

Spreadsheet software, such as Microsoft Excel, can be used to generate truth
tables. In Excel, T and F need to be written out as TRUE and FALSE, respectively.
The basic operations —, A, and Vv are accomplished using the logical functions
NOT, AND, and OR, respectively. A way to accomplish — is discussed after
Example 1.10.

Make a truth table for the statement form —(p Vv q).

Solution. Here we demonstrate how a truth table could be set up using Excel.

A B C D
p q pVvg | ~(pVe
FALSE | FALSE | FALSE | TRUE

TRUE | FALSE | TRUE | FALSE

1
2
3 | FALSE | TRUE | TRUE | FALSE
4
5| TRUE | TRUE | TRUE | FALSE

For example, the values in cells C2 and D2 are obtained by the formulas C2 =
OR(A2, B2) and D2 = NOT(C2), respectively. The rest of columns C and D are
easily filled in using copy and paste. ]

There are other operations that are used for convenience but are defined in
terms of the basic operations.

DEFINITION 1.2
(@) The exclusive or operation @ is defined by
p@q=(pVva)r—=(prg).
(b) The if and only if operation < is defined by
poqg={p—=>91Gq—>p.

Note that iff is also used to denote <.
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Pla| pDq|pre—g
F F| F T
F T| T F
T F| T F
TIT| F T

Table 1.4 Truth Table Defining & and <

The truth tables for @ and <> are combined in Table 1.4. Note that p & g is
different from p v g in that p @ g is false when both p and g are true. Although
exclusive or is sometimes what is intended in English when or is used, as in
“Do you want hamburgers or pizza for dinner?”, we must carefully distinguish
between Vv and & here. The truth of p <> g holds precisely when p and g have
the same truth values.

DEFINITION 1.3

(a) A tautology is a statement form that is always true. We denote a tautology

by t.

(b) A contradiction is a statement form that is always false. We denote a
contradiction by f.

A statement whose form is a tautology or contradiction is also said to be a tautology
or contradiction, respectively.

(a) p v —p is a tautology.
Solution. In the truth table

Pl op| PV
T T
F T

es]

—~

all of the entries in the column for p v —p are T.
(b) p A —p is a contradiction.

Solution. In the truth table

Pl P PATP

F | T F
T| F F
all of the entries in the column for p A —p are F. ]

Logical Equivalences

Just as we have identities in algebra, such asa + b = b + a, there are identities
among logical expressions. They are based on an equivalence between statement
forms, which we now define.
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DEFINITION 1.4

Two statement forms p and g are logically equivalent, written p = g, if and only if
the statement form p < ¢ is a tautology. We write p # g when p and g are not
logically equivalent.

Verfythat ~(p — 0) = p A g

Solution.

q| ~p—=@ | pAq || (p—= ) < (pA—g)

Hm a4
H A 34

F
F
T
F

o= oo

Since (—=(p — q)) <> (p A —q) is a tautology, we conclude that
~(p—>a)=pr—.

It would also suffice to confirm that =(p — g) and p A —¢ have the same truth
tables. ]

Example 1.6 tells us how to negate an if-then statement (an and statement is
obtained).

DCNIHS A The negation of

“If Alyssa is using tax preparation software, then her tax returns will be
accurate.”

is
“Alyssa is using tax preparation software, and her tax returns will not be
accurate.” =

Example 1.8 shows that the statement form p A g Vv r is ambiguous. Paren-
theses are necessary to specify an intended order of operations.

Verify that p A (g vVr) Z(pAg) V.

Solution. Consider the following truth table.

plglr|lgVr| pANqg| pAN@Vr)| (pA@Vr || (pAN@GVr)—(pANgVr)
F| F | F F F F F T
F F|T T F F T F
F| T F T F F F T
F T |T T F F T F
T|F|F F F F F T
T F|T T F T T T
T|T|F T T T T T
TIT|T T T T T T
Since (p A (g v 1)) < ((p Aq) Vv r)is not a tautology, we conclude that

pA@Vvr)#(pAqg)Vr.
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Of course, we can also see that p A (g vV r) and (p A q) V r have different truth
tables. |

As mentioned in Examples 1.6 and 1.8, two statement forms can be seen to
be, or not to be, logically equivalent by comparing their truth tables.

Verify that p & = (p A =0) V (= A ).

Solution.
Pla|~P| | PN | PAq || PDq | (pPA2V (2pAg)
FIF| T T F F F F
F|T| T | F F T T T
T F| F | T T F T T
T|T| F | F F F F F
Since p @ g and (p A —q) V (—=p A q) have the same truth tables, we conclude
that
po&qg=(pr=qV(=pArg). L
Verfy that 5 = .
Solution.
P4 P P9 PV
F|F| T T T
F|T| T T T
T|F| F F F
T|TI| F T T

Since p — g and —p Vv g have the same truth tables, we conclude that
p — q = _|p \ q . |

Example 1.10 gives an alternative expression for an if-then statement form.
Since Excel and other spreadsheet software do not have built-in logical functions
for —, this alternative expression is useful. Namely, p — g can be entered as
OR(NOT(p), q)-

The if-then statement form p — g is present frequently in statements we
study and wish to prove. Consequently, it is important to understand some rel-
atives of such a form.

DEFINITION 1.5
Given the statement form p — g,
(a) its converse is g — p.
(b) its contrapositive is =g — —p.

(c) itsinverse is —p — —g.
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DA EER  Verify that an if-then statement is not logically equivalent to its converse but is

EXAMPLE 1.12

THEOREM 1.1

logically equivalent to its contrapositive.

Solution.
P\’JH_‘P _“JHP—"H‘J—’P\_“J—’ﬁP
F | F T T T T T
F|T T F T F T
T|F F T F T F
T T T T T

In the truth table, the columns for p — g and g — p are different, whereas the
columns for p — g and =g — —p are the same. Hence,

p—>qg#qg—>p and p—q=-q— —p. ™

The converse of an if-then statement is important in that p < g combines
p — g and its converse g — p. In Example 1.11, we see that p — g is logically
equivalent to its contrapositive =g — —p. In fact, this equivalence turns out to
be a very useful tool, which we exploit in Section 2.4. The inverse is notable in
that it is the contrapositive of the converse.

Consider the statement “If a solution exists, then the program terminates.”

(a) Its converse is “If the program terminates, then a solution exists.”

(b) Its contrapositive is “If the program does not terminate, then a solution
does not exist.”

(c) Its inverse is “If a solution does not exist, then the program does not
terminate.” [ |

If we take the statement in Example 1.12 to be true, then its contrapositive
must also be true. However, its converse and inverse need not be true. For ex-
ample, the relevant program might be designed to terminate after examining
finitely many possible solutions and finding none.

Logical equivalences are useful for manipulating and simplifying logical ex-
pressions. Theorem 1.1 lists some of the basic logical equivalences that can be
used to construct others.

Basic Logical Equivalences
Let p, q, and r be statement variables. Then, the following logical equivalences hold:
(@) ——p=p Double Negative
(b) (pAg)Ar=pA(gArT) Associativity
(pva)vr=pvigvr)
(0) PAG=gAp Commutativity
pva=qVvp
(d) pA(gVvr)y=(pAqg)Vv(pAr) Distributivity
pv@an=(pvarlpvr)
(e) =(pAg)=—-pV—g De Morgan’s Laws
=(pva)=-pnr—q
(f) If p - g, then[p Ag = p] Absorption Rules
If p — g, then[pVvg=gq]
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Interactions with Tautologies and Contradictions
Let p be a statement variable. Then, the following logical equivalences hold.:
@ —t=f (b) pnt=p
—f=t pvi=t
© prf=f @ pr-p=f
pv i =Pp pv-op=t
@ t—>p=p ® p—>f=-p
p—>t=t i —p=t

A theorem or proposition is a statement that has been verified to be true.
Verification of the identities in Theorems 1.1 and 1.2 is left for the exercises.
Beyond verification, however, it is important to internalize those identities. Only
by having some understanding of the identities can one remember them and be
able to use them efficiently and in complicated situations. The first four iden-
tities in Theorem 1.1 are easy to accept if one thinks of the obvious algebraic
analogs involving the arithmetic operations —, -, and +. For example, the first
distributivity rule is analogous to the arithmetic distributivity rule

a-(b+c)=(a-b)+(a-c). (1.1)

Moreover, the obvious generalizations of (1.1) to more than the two summands
b and c also has an analog in logical equivalences. The one shortcoming of this
analogy is that the second distributivity rule in Theorem 1.1 does not have an
arithmetic analog.

The associativity rules imply that expressions like p Ag Arand pv g vr
are unambiguous, whereas we already saw in Example 1.8 that p A g V 7 is
ambiguous. From the associativity rules, it follows that general n-fold A and v
statement forms

PIAPLAPIA--Apy, and prVpaVpzV---Vp,

may be computed by associating the terms (with parentheses) to reflect any
desired order of operations. For example, the association

prA(p2 A(ps A A pn))

shows one such choice in which the computation is performed right to left.

De Morgan’s Laws were discovered by the English mathematician Augustus
De Morgan (1806-1871) and are the rules that tell us how to negate A and v
statement forms. Thinking about when such statement forms are false should
make De Morgan’s Laws seem more natural. De Morgan’s Laws, like each of
parts (b) through (e) of Theorem 1.1, have obvious analogs in more variables.

The Absorption Rules in Theorem 1.1 are perhaps the most subtle. We will
explore their utility in Example 1.15 below. The identities in Theorem 1.2, on the
other hand, should be easier to verify and internalize. In the next few examples,
the identities from Theorems 1.1 and 1.2 as well as others are used to verify more
identities.
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Verify that (p Aq AFY)V(PAGA—T)=pAg.

Solution.

(pAgAar)vipagna—-r)={(pAg)Ar)V((pAg)A—r) Associativity
=(pAq)A(rvVv-r) Distributivity
=(pArq) At Theorem 1.2(d)
=pAg Theorem 1.2(b) m
Verify that pAqg — —rv—=s = rAs - —pVv—q.
Solution.
pAqg——rV-os=(pAg)— (—rv-s) Precedence

=—(-r Vv -s) - =(pAg) Example 1.11

= (-t A=) = (mp VvV q) De Morgan’s Law

=(rAs)— (mpV—q) Double Negative

=rAs—> —pVv—q Precedence |

(Basic Absorption Rules). Verify the logical equivalences
@ pr(pvr)=p.
b)(gAr)va=q.
Solution.

(a) We use the first Absorption Rule with g = p v r. It is easy to verify that
p — p Vr is atautology. From Theorem 1.2(e), it follows that the
instance of the Absorption Rule

(p—=>pvr)—>(pnrlpvr)=p)

is equivalent to p A (p v r) = p, the desired result.

(b) We use the second Absorption Rule with p = g A 7. Since it is easy to
verify that g Ar — g = t, again Theorem 1.2(e) reduces the instance of
the Absorption Rule

(@Ar—q)—>((gnrr)Vvg=q)
to the desired result.

Digital Circuits

The basic logic we have considered can be applied to computer hardware
design. A digital circuit is a piece of electronic hardware that takes input from
electrical signals Pi, P, ..., P, and produces output signals Si, S, ..., Sy
determined by those inputs. Figure 1.1 depicts the general structure of a digital
circuit that might represent a computer chip. Each signal P; and S; stores a bit

Py — — S
P, Digital [ 52
. circuit
P,— —,,

Figure 1.1 The Structure of a Digital Circuit
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of data, which may be turned either on or off and can therefore be represented
by either a 1 or a 0, respectively. To simplify our study, we shall consider only
digital circuits with a single output signal S.

The action of a particular digital circuit, say with input signals P, Q, R and
output signal S, may be recorded in an input-output table specifying exactly
how the inputs determine the output. Such a table is shown in Table 1.5 and
has an obvious connection to a truth table if we replace 1 by T and 0 by F.
With this strong similarity to logic, it should not be surprising that complex
digital circuits can be built from very basic circuits, called gates, which corre-
spond to basic logical operations. The basic gates that we shall consider are the
Inverter (or NOT gate), the AND gate, and the OR gate. These are displayed
and defined in Table 1.6 and correspond to the basic logical operations —, A,
and V, respectively. The basic gates can be used to build a circuit such as the one
displayed in Figure 1.2. Note that wires may be split to feed signals to more than

Input Output
P|Q|R S
0/ 0/]O0 0
001 1
0/1,0 0
0/1]1 1
1,00 0
1101 0
1/1/]0 1
1111 1

Table 1.5 An Input-Output Table

Gate Inverter AND OR
P — P
Symbol || P S AND S S
Y b 0 — 0
Input- Pl s Pl Ql s Pl Qs
Output 011 0 010 0 010
Table 110 0/ 10 0111
1,0 0 110 1
11111 1111
Table 1.6 Basic Gates
:_ _________________________________________________ a
|
e - :
Q0 — AND } — S
| B !
| |
| ) OR |
R } |
L e o e e -

Figure 1.2 The Inside of a Digital Circuit
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one gate. Such a splitting is marked in our diagrams with the symbol e. Other
crossings without such a marking reflect no interaction of the wires and may be
unavoidable when drawing more complicated circuits.

We are now ready to analyze the inner workings of a particular digital circuit
built from basic gates.

DA EIER  Trace the circuit pictured in Figure 1.2 to determine an expression for the

output in terms of the input, and make an input-output table.

5 a
| -P |
P —L— o -P\/ !
! W’ o) Q) NPV OAPVR
0 — AND — S
! — :
| |
i D o (P R) i
R I
L J

Figure 1.3 Tracing the Digital Circuit from Figure 1.2

Solution. The steps of our trace are shown in Figure 1.3. At the output of each
gate, we list the logical value of the wire obtained by applying the operation of
the gate. Eventually, we discover the expression for S. It is

(=PVvQ)A(PVR)=S.

The input-output table for this expression, and thus for the circuit, is the one
shown in Table 1.5. L]

We see in Example 1.16 that a digital circuit corresponds to a logical expres-
sion specifying the output in terms of the input. Consequently, given such an
expression, we ought to be able to design a circuit that realizes it.

D CNIJEEES  Draw a digital circuit that realizes the expression

(PA=QAR)V(QA—R)=S.

Solution. An appropriate circuit is displayed in Figure 1.4.

Figure 1.4 A Circuit Realizing (P A—QA RV (QA—=R) =S m
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SECTION 1.1 Lxercises

In Exercises 1 through 4, determine whether the given sentence is a statement.
If so, then determine whether it is true or false.

1. —lisan integer. 2. 1+2+4+3=5.
3. Ifm > 0, then compute /7.
4. The negation of this sentence is false.

In Exercises 5 through 10, make truth tables for the given statement forms.

5. pv—q. 6. —pA(gvVv-r).
7. —p—(qAT). 8 (pv—q)—r.
9. (p—>q)vr. 10. pv (—q — 1).

In Exercises 11 through 14, use spreadsheet software, such as Microsoft Excel, to
generate truth tables for the two given statement forms. In what rows do they
differ? These can be done by hand, as well.

11. pv—gand p - —q. 12. —=p Ag and —=(p A q).

13. p—>(gvr)andp — (gVv—-r). 14. =pA(qgVvr)and —p A(g Vv —r).
15. Show that p — p is a tautology.

16. Show that p A (7 V —p) A —q is a contradiction.

In Exercises 17 through 34, verify the stated logical equivalences.

17. (a) Double Negative (Theorem 1.1(a)): =—p = p.
(b) Theorem1.2(a): =t = fand —~f =¢.

18. (@) Theorem12(b): pAt=pandpVvi=t.
(b) Theorem1.2(c): pA f= fandpV f =p.

19. Theorem1.2(e):t > p=pand p - t =1

20. Theorem1.2(e): p — f=—pand f - p =t

21. pvg=-(—pA—q). 22. pAg=—(—-pV—q).

23. p—>pvg=t 24. pAg - p=t

25. Associativity of Aand vV: (p Aq) AT =p A(g AT)and
(pva)vr=pvigvr).

26. Commutativity of Aand VipAg=gApandpvg=gqVp.

27. Associativityof @: (p ®q) @r=p @ (g ®r).

28. Commutativity of ®: p @ g =g @ p.

29. Distributivity with Aand v: p A (g vr)=(pAq) v (p Ar)and
pv@nr)=(pvarlpvr).

30. Distributivity with Aand @: p A (g @r) = (p Aq) @ (p AT). Also see
Exercise 37.

31. De Morgan’s Laws: ~(p Aq) = —p VvV —~gand —(p vV q) = —p A —q.

32. Absorption Rules: (p — q) = (pAg < p)and (p = q) = (pV q < q)
are tautologies.

33. =(p®q)=p<q.

34. The inverse of an if-then statement is equivalent to its converse. That is,

(mp—>—q)=q—p.
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In Exercises 35 through 40, determine whether the given statement forms are
logically equivalent. Justify your answers.

35. (p—>¢q)—>randp - (g —>7r). 36. (p<qg)<randp < (g <71).
37. p® (g Ar)and (p®g) A(p®r). 38. =(p@®q)and —p A —q.

39. p®gand ~p & —q. 40. ~(p®g)and =p ® 4.

In Exercises 41 through 48, for the given if-then statement (form), find and
simplify its (a) converse, (b) contrapositive, (c) inverse, and (d) negation.
41. p — —q. 42. =p — —q.

43. pA—q — 7. 4. p—qVv-r.

45. If Ted’s average is less than 60, then Ted fails.

46. If Ilia can afford the car, then Ilia is buying the car.

47. 1f George feels well, then George is going to a movie or going dancing.
48. If Anna is failing history and psychology, then Anna is not graduating.
49. Find the negation of p v —q.

50. Find the negation of —p A —q.

51. Negate the statement “Helen’s average is at least 90, and Helen is getting
an A.”

52. Negate the statement “Raphael is not smiling, but Raphael is bluffing.”
53. Verify the logical equivalence p Aq — r =—-p Vv (g — r) by
(a) making a truth table.
*(b) using the result from Example 1.10 and other identities.
54. Verify the logical equivalence (p — q) = (p Ar) =p A(q — 1) by
(a) making a truth table.
*(b) using the result from Example 1.10 and other identities.

In Exercises 55 through 62, verify the stated logical equivalences, not by
making a truth table, but by using already established identities.

55. pA(qVvrvs)=(pAq)V(pAar)V(pAs).

56. ~(pVvqgVvr)y=—-pA—-qA-r.

57. (pAqA=r)V(PA—GgAT)=pA(g D).

58. (p AqA—T)V(PA—GA—T)=pA—T.

59. pA(=(@Ar)=(pA—g)Vv(pA-r).

60. —(pVv(gAr)=—(pVvg)Vv—(pVr).

*61. (pAg)V(PAGAT)=PpAg. *62. (pvg)A(pVvgVvr)y=pvVvyg.
*63. Show that the operation —, together with any one of the operations A, v,

and —, can be used to generate the other two.
Hint: Example 1.10 accomplishes part of this.

*64. Can the operation Vv be generated from the operations &, —, and A?
Explain.

In Exercises 65 through 68: (a) Trace the pictured circuit to determine an
expression for the output in terms of the input. (b) Make an input-output table.

*Exercises that may be particularly challenging are marked with a star.
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(c) Could the same input-output table be accomplished by a circuit using
fewer basic gates? Explain.

65.

OR

66.

|
1
|
NOT |
|
|
|

68.

0
R

In Exercises 69 through 72, draw a circuit that realizes the given expressions.
69. -(PAQ)VvVR=S. 70. =(P v (QAR)) =S.
71. P ® Q = S. Accomplish this by

(a) using the defining formula for @ in Definition 1.2.

(b) using the characterization of @ given in Example 1.9.

Which method uses fewer gates?
72. (@) P — Q = S by using the characterization of — given in Example 1.10.

(b) P < Q = S by using the idea from part (a).

1.2

Set Notation

Since our interest is in studying mathematical statements, the language of sets is
needed. This section therefore gives an informal introduction to set theory. Our
main goal here is to gain familiarity with some standard notation and concepts.
A more formal consideration of sets is given in Section 1.4.

A set is a collection of objects that are referred to as the elements of the set.
If Ais asetand x is an element of A, then we write x € A. If x is not an element
of A, then we write x ¢ A. Two important sets with which we work a great deal
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are Z, the set of integers, and R, the set of real numbers. We have
.., 2¢€¢7, -1€Z, 0€Z, 1€z, 2€7Z, ...,

but \/i ¢ 7. Of course, ﬁ € R, but \/jl ¢ R. The set of rational numbers Q
(and the fact that /2 ¢ Q) is considered in Chapter 3.

The most basic way to express a set is in list notation, in which the elements
of the set are listed between braces. For example, the set S of integers from 1 to
5 can be denoted by

5§=1{1,23,4,5}.
The set T consisting of the real numbers —1, 0, and 1 is given by
T={-1,01}.

A more powerful means of expressing sets is provided by set builder nota-
tion that takes the form

{x:p(x)}, (1.2)

in which p(x) is a sentence involving the variable x. The notation in (1.2) ex-
presses the set of all x such that p(x) is a true statement. That is, an element x
earns membership in the set if and only if p(x) holds for that x. For example, the
set S of integers from 1 to 5 can be expressed in set builder notation as

S={n:neZand1l<n<5}.
The set T of real numbers that are their own cubes can be expressed as
T={x:xeRand x> = x}.

The two different expressions for the sets S and T given above raise the issue
of characterizing when two sets should be considered the same.

DEFINITION 1.6 Set Equality (Informal Version)

Two sets Aand B are said to be equal, written A = B, if and only if Aand B contain
exactly the same elements.

A set is completely determined 