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Preface

This book is intended for a one- or two-semester course in discrete mathemat-
ics. Such a course is typically taken by mathematics, mathematics education,
and computer science majors, usually in their sophomore year. Calculus is not
a prerequisite for using this book. Consequently, even freshmen with sufficient
maturity could use it. Additionally, the second half of the book can be used for
an introductory course in combinatorics and graph theory. The basic organiza-
tion of the book can be seen in the Contents.

For those designing a one-semester course that covers the core material, the
following sections accommodate this approach and make up half of the sections
of this book.

Sections Topic

1.1–1.5 Logic and Sets
2.1–2.5 Basic Proof Writing
3.1, 3.2 Divisibility, Primes, and Integer Division
4.1–4.4 Sequences, Summations, and Induction
5.1, 5.3, 5.4 Basic Relations and Functions
6.1–6.3 Fundamentals of Counting
8.1–8.4 Fundamentals of Graph Theory
10.1 Trees

A two-semester course may most naturally be set to follow Part I and then
Part II, each in order. However, there is sufficient flexibility that other organi-
zational choices may be made as well. The dependence among the chapters of
this book is roughly reflected in the following figure.1

1Note that portions of Chapter 5 are needed in the later chapters. For example, the discussion of
bijections in Section 5.4 is needed in Section 8.3 when graph isomorphisms are introduced, and
the discussion of logarithms is needed in Section 10.4 when growth rates of functions are
compared.

v



vi Preface

1

3

109

4

6 8

7

5

2

The central topic of Part I of the book is learning how to write proofs. We be-
lieve that basic set theory is the best area in which to learn how to write proofs.
The connection between properties of sets and the rules of logic (e.g., between
De Morgan’s laws for sets and De Morgan’s laws for logic) is so strong that
many of the proofs seem to write themselves. This should help students as they
learn how to write proofs. After this introduction, we move to number theory,
which serves both as a source of interesting applications and as the second set-
ting in which to write proofs. This move also sets up the introduction to proofs
by induction, presented in Chapter 4. That introduction is spread over three
sections to mitigate the difficulties with induction proofs that many students
experience.

In Part II, the emphasis shifts to computations and problem solving. How-
ever, we still call on our ability to prove things and to think logically. For exam-
ple, to conclude that a graph has connectivity 3, it is necessary to do two things.
First, a disconnecting set of size 3 must be presented. Second, an argument must
be given showing that the removal of fewer than three vertices will not discon-
nect the graph. The focus of Part II is on combinatorics and graph theory.

Chapter 0 is a single section that should take approximately one class to
cover. Some users might even skip it or assign it as reading. However, it is in-
cluded to emphasize the link between Parts I and II.

A conscious effort has been made to give suggestive names to the theorems in
this book whenever reasonable, with the common names used whenever possi-
ble (e.g., the Rational Roots Theorem and the Binomial Theorem). Consequently,
theorems may be referred to by name rather than by an unenlightening number.
The names should remind the reader of the content of the theorem and hence re-
duce the amount of page flipping. The index gives page references for use when
desired.

The approximately 3500 exercises throughout this book have been purpose-
fully structured. Students are provided a rich supply of straightforward exer-
cises before they encounter those that stretch their thinking. Several exercises
that are very much like the examples in the text are included. These provide
the students with ample opportunity to sharpen their teeth before moving on to
bigger prey. Beyond the exercises that reinforce the central concepts, there are
many that explore further both the theory and the applications of these concepts.
Exercises that may be particularly challenging are marked with a star, �.
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Solutions are provided in the back of the book for the odd-numbered exer-
cises from each section and all of the exercises from the review sections.
Consequently, a balance is sought between the odd and even exercises. That is,
each odd-numbered exercise is generally followed by a similar even-numbered
exercise. Instructors wanting to assign homework without solution references
can assign the even problems. Students can use the odd exercises to help them
with the even ones. Note that an answer listed in the back may be more brief
than that required by the exercise. In particular, exercises demanding proofs are
often answered in the back with sketches. Students are expected to flesh out the
answer given to obtain the answer requested.

Two appendices containing background material are also provided. In Ap-
pendix A, we list the fundamental properties of real numbers and integers that
are assumed throughout the book. Appendix B describes the pseudocode in
which algorithms are presented throughout the book.

Strengths of Discrete Mathematics
■ Range, depth, and quantity of exercises and applications, including

additional problems that provide extra challenge, give instructors flexible
assignment options.

■ Mathematics is written with rigor and precision. Definitions and theorems
are consistently and clearly highlighted.

■ Solid foundation in learning how to write proofs.
■ Engaging writing style makes the presentation especially appealing to

students.
■ Hundreds of worked-out examples feature a wide variety of applications to

illustrate concepts and enhance understanding.

Supplements
Online Instructor Resource Guide
Available on the Instructor Website through HM MathSPACE®, complete solu-
tions are provided to all exercises in the text. The guide also includes a test bank
with over 400 test items.

Digital Figures and Definitions
Available on the Instructor Website through HM MathSPACE, selected figures,
definitions, and theorems from the text are provided in convenient PowerPoint®

slides.

Print Student Solutions Manual
Solutions to odd-numbered section exercises and all the review exercises in a
printed format. The manual also includes a valuable chapter review and sum-
mary of key definitions. Available through your college bookstore.
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C H A P T E R 0

Representing Numbers

THROUGHOUT THIS BOOK, we encounter binary sequences, whose terms have

only two possible values. In Part I, we consider sequences of Boolean variables; the

terms of such sequences can take on either the value True or the value False (briefly T

or F). For example, in Part II, sequences of coin flips are considered. There, each coin

flip results in either Heads or Tails (briefly H or T). Both of these types of sequences

have the same structure as a sequence whose terms are either 1 or 0. Such sequences

are used to store data in computers, since a 1 can be represented by the presence of

an electrical signal, and a 0 by its absence. In that setting, each term is called a bit,

which is short for binary digit.

The primary aim of this chapter is to study sequences of 1’s and 0’s and learn how

each nonnegative integer can be represented by such a sequence. The key to

understanding how integers can be so represented is to recall how numbers are

ordinarily written in the decimal system.

Decimal (Base Ten)
When we see numbers written as 3527 and 60,409, we know their values because
we understand them to be represented in a familiar form. The decimal system,
or base ten place system, for numbers is taught in elementary school. For exam-
ple, in the number 3527, we learn that 7 is the units digit, 2 is the tens digit, 5 is
the hundreds digit, and 3 is the thousands digit. That is,

3527 = (3)1000+ (5)100+ (2)10+ (7)1
= (3)103 + (5)102 + (2)101 + (7)100.

Similarly,

60409 = (6)104 + (0)103 + (4)102 + (0)101 + (9)100.

In the sums above, the exponent on the base ten starts at 0 for the rightmost
term and increases by 1 as we move from right to left. In base ten, only the
digits 0, 1, . . . , 9 are used. The place system then allows any nonnegative integer
value to be specified. The reason why base ten is used is simply that we have
ten fingers. However, the method of this numbering system can be used for any
base s ≥ 2, where s is an integer.

Base s
As we will be able to prove in Section 4.5, the system used to represent num-
bers in base ten can be generalized to represent numbers in any integer base
s ≥ 2. To write integers in base s, digits representing 0, 1, . . . , s − 1 are needed.

1



2 C H A P T E R 0 ■ Representing Numbers

If s ≤ 10, then the familiar symbols are used (and s, s + 1, . . . , 9 are discarded).
If s > 10, then symbols for the values 10, 11, . . . , s− 1 need to be chosen. For
example, for s = 16 (the hexadecimal system), the convention is to use the digits
0, 1, . . . , 9, a , b, c, d , e , f . That is, ten is represented by a , eleven is represented
by b, and so on.

In base s, a nonnegative integer n is represented in the form

n = akak−1 · · · a1a0, (in base s)

where the digits ak , ak−1, . . . , a1, a0 represent elements from the set {0, 1, . . . ,
s − 1}. The corresponding value of n is determined by the equation

n = aksk + ak−1sk−1 + · · · + a1s1 + a0s0.

Our primary focus here is on the base s= 2. That is, we focus on binary
numbers. However, some other related and important bases are also explored.

Binary (Base Two)
For binary numbers, 0 and 1 are the only digits used to represent nonnegative
integers. We start by practicing the skill of reading binary numbers.

EXAMPLE 0.1 Determine the decimal value of the following binary numbers.

(a) 110101.

(1)25 + (1)24 + (0)23 + (1)22 + (0)21 + (1)20 =
32+ 16+ 0+ 4+ 0+ 1 = 53

(in base ten)

(b) 01101110.

(0)27 + (1)26 + (1)25 + (0)24 + (1)23 + (1)22 + (1)21 + (0)20 =
0+ 64+ 32+ 0+ 8+ 4+ 2+ 0 = 110

(in base ten) ■

Note in Example 0.1(b) that the base ten result is 110. When working with
multiple bases, it is important to specify the base in which a number is repre-
sented. Otherwise, a number like 110 could be mistakenly interpreted as binary.
Note also in Example 0.1(b) that the first digit 0 does not contribute to the value
of the integer. Only the digits starting from the leftmost nonzero digit contribute
to the result. However, sometimes padding a number with zeros to the left to
obtain some fixed length is convenient. Table 1 lists the values of all the 3-digit

Binary Numbers Base Ten Values

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

Table 1 All 3-Digit Binary Numbers
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binary numbers. There are 8 = 23 binary numbers with 3 digits. In general, there
are 2n binary numbers with n digits.

Connecting Parts I and II
The numerical values of binary sequences provide a natural way to order them.
For Boolean sequences, identifying T with 1 and F with 0 gives each sequence
a numerical value. Similarly, a sequence of coin flips can be given a numerical
value by identifying H with 1 and T with 0. Consequently, this provides a sys-
tematic way to list all Boolean sequences and all sequences of coin flips of some
fixed length n. Under our identifications, Table 2 lists the possible sequences of
length 3 (in increasing order). In Part I of this book, we study problems related to
the second column of Table 2. In Part II, we study problems related to the third
column of Table 2. The basic notion of binary numbers provides a link between
these two considerations.

Binary Numbers Boolean Values Coin Flips

000 FFF TTT
001 FFT TTH
010 FTF THT
011 FTT THH
100 TFF HTT
101 TFT HTH
110 TTF HHT
111 TTT HHH

Table 2 Binary Sequences of Length 3

Expressing Numbers in Alternative Bases
So far we have learned how to convert from binary to decimal, but we should
also be aware of how to go in the other direction. For this, there is a simple algo-
rithm that involves integer division and the computation of remainders. After
we develop sufficient proof-writing skills, in the exercises in Section 4.5, we will
be asked to prove the validity of the method we now introduce in Example 0.2.

EXAMPLE 0.2 Determine the binary representations of the following numbers given in
decimal.

(a) 49.
To start, we perform a sequence of divisions by 2, in which each
resulting quotient is the number divided by 2 in the subsequent step.

49/2= 24 remainder 1
24/2= 12 remainder 0
12/2= 6 remainder 0

6/2= 3 remainder 0
3/2= 1 remainder 1
1/2= 0 remainder 1

The sequence of divisions is terminated when the quotient 0 is obtained.
The binary representation is then given by listing the remainders in
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reverse order. In this case, the binary representation of 49 is
110001.

Note that
(1)25 + (1)24 + (0)23 + (0)22 + (0)21 + (1)20 = 25 + 24 + 20 = 49.

(b) 72.

72/2= 36 remainder 0
36/2= 18 remainder 0
18/2= 9 remainder 0

9/2= 4 remainder 1
4/2= 2 remainder 0
2/2= 1 remainder 0
1/2= 0 remainder 1

The binary representation of 72 is
1001000.

Note that
(1)26 + (0)25 + (0)24 + (1)23 + (0)22 + (0)21 + (0)20 = 26 + 23 = 72. ■

Any nonnegative integer can be written in binary by following the procedure
from Example 0.2. As we shall further prove in Section 4.5, for any integer s ≥ 2,
the base s representation of a number is obtained by a sequence of divisions
by s. In the general case, the remainders are values from 0, 1, . . . , s − 1, which
are appropriate for base s digits. After the quotient 0 is obtained, the base s
representation is given by listing the sequence of remainders in reverse order.

Octal (Base Eight) and Hexadecimal (Base Sixteen)
Two number systems related to binary are of particular importance in computer
science. The octal system represents numbers in base eight, and the hexadecimal
system uses base sixteen. By using the appropriate value of the base s, we can
determine the values of numbers expressed using these systems just as in any
other.

EXAMPLE 0.3 The decimal value of the hexadecimal number 3ce0 is found to be 15584.

(3)163 + (12)162 + (14)161 + (0)160 =
12288+ 3072+ 224+ 0 = 15584

(in base ten)

Recall that c represents twelve and e represents fourteen in hexadecimal. ■

To convert from decimal to these number systems, we use the general pro-
cedure described after Example 0.2.

EXAMPLE 0.4 Writing the decimal number 93 in octal is accomplished by a sequence of
divisions by 8.

93/8= 11 remainder 5
11/8= 1 remainder 3
1/8= 0 remainder 1

Thus 135 is the octal representation of the decimal number 93. ■
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The utility of the octal and hexadecimal systems and their connection to the
binary system derives from the fact that their bases are powers of two. This
makes it particularly easy to convert between binary and either of these systems.
For example, since 16 = 24, the hexadecimal digits of a number are obtained by
grouping the binary digits into blocks of size 4, starting from the right.

EXAMPLE 0.5 The binary number 1110110101 is written in hexadecimal as 3b5.

0011︸︷︷︸
3

1011︸︷︷︸
b

0101︸︷︷︸
5

The left-most block is padded to its left with zeros to give it size 4. Since 1011
is the binary representation of eleven, the hexadecimal digit for the middle
block is b. ■

The hexadecimal system represents number using fewer digits than the bi-
nary system. Since a human can more easily parse 3b5 than 1110110101, when
binary data in a computer is printed out for human interpretation, it is often
converted to a more readable system such as hexadecimal.

Exercises
In Exercises 1 through 10, convert the given binary numbers to decimal.
1. 1010 2. 1001
3. 10111 4. 11010
5. 101110 6. 110010
7. 1001011 8. 1011011
9. 10101011 10. 11110000

In Exercises 11 through 20, write in binary the numbers given in decimal.
11. 59 12. 73
13. 84 14. 95
15. 117 16. 230
17. 304 18. 500
19. 1024 20. 4096
21. List all of the possible outcomes from a sequence of 4 coin flips.
22. List all of the possible assignments to a sequence of 4 Boolean variables.

Other Bases
In Exercises 23 through 28, convert the numbers given in octal to decimal.
23. 163 24. 274
25. 3217 26. 2164
27. 40510 28. 50072

In Exercises 29 through 32, convert the numbers given in hexadecimal to
decimal.

29. dc9 30. 2ab

31. 5a7e 32. b63d
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In Exercises 33 through 36, write in octal the numbers given in decimal.
33. 59 34. 84
35. 117 36. 230

In Exercises 37 through 42, write in hexadecimal the numbers given in decimal.
37. 59 38. 84
39. 117 40. 230
41. 44252 42. 43962

In Exercises 43 through 46, write the given binary number in (a) octal and
(b) hexadecimal.
43. 1100110011. 44. 11100011001.
45. 101100110001011. 46. 11011000001100111.
47. Write the octal number 47 in binary.
48. Write the octal number 162 in binary.
49. Write the hexadecimal number acc in binary.
50. Write the hexadecimal number fda in binary.

Questions for Thought
51. What number is expressed in binary by a one followed by m zeros?
52. What number is expressed in binary by m consecutive ones?
53. Describe the binary expression of 4n.

�54. How is multiplication by 8 accomplished with a binary number?
�55. How can a binary number be tested for divisibility by 4?
�56. How can an alternating sum of the digits of a binary number be used

to test for divisibility by 3? For example, 1011 has alternating sum
−1+ 0− 1+ 1 = −1, and 10101 has alternating sum 1− 0+ 1− 0+ 1 = 3.

57. What number is expressed in octal by m consecutive sevens?
58. What number is expressed in octal by m consecutive ones?

�59. How can the sum of the digits of an octal number be used to test for
divisibility by 7?

�60. How can an alternating sum of the digits of an octal number be used to test
for divisibility by 9?

�61. How would you convert from octal to hexadecimal without using
decimal?

�62. If a number written in binary reads the same frontwards and backwards,
will this symmetry remain when it is written in hexadecimal? Explain.

∗Exercises that may be particularly challenging are marked with a star.
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C H A P T E R 1

Logic and Sets

IN THIS CHAPTER, we lay the conceptual and notational foundation for much of the

book, especially Part I. Mathematical reasoning and arguments are based on the rules

of logic. Time must be spent learning those rules and eliminating misconceptions that

do not follow them. For example, we need to be familiar with the mathematical meaning

of the word or, in contrast with the phrase exclusive or, which is sometimes intended in

common uses.

The notation that needs to be introduced is primarily set notation. This is first

presented somewhat informally. It is considered in a more precise way after logic and

quantifiers are formally established. However, we do not venture beyond a somewhat

naı··ve approach to set theory.

Throughout the chapter, we consider some applications. Digital circuit design is our

featured application of logic. A discussion of software implementation of sets is also

highlighted.

1.1 Statement Forms and Logical Equivalences
Our goal in Part I is to learn how to prove statements. However, before we can
undertake this, we must study statements and their structure. Consequently,
much of our work here involves truth tables and logic identities. As a closely
related application, we further consider digital circuits, since their underlying
structure is the same as that of statements.

DEFINITION 1.1

A statement is a sentence that is either true or false, but not both.

It is easy to construct examples of statements. Of course, our primary focus
will be on those of a mathematical nature.

EXAMPLE 1.1 The following sentences are statements.

(a) 2+ 2 = 4.
(b) 2+ 2 �= 4.
(c)
√

4 = 2 and
√

5 > 2.
(d) The sine function is periodic and 2π is an integer.
(e) 102 > 210 or 210 > 102.

9
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(f) If e > 2, then e2 > 4.
(g)
√−1 is a real number. ■

In Example 1.1, it turns out that sentences (a), (c), (e), and (f) are true state-
ments, while (b), (d), and (g) are false. In some cases, such as (a), the truth or
falsehood might be obvious. However, in other cases, such as (f), we see the
need to understand various forms that statements might have, such as if-then
statements. A study of these forms is taken up immediately after the following
example showing that not every sentence is a statement.

EXAMPLE 1.2 The following sentences are not statements.

(a) What is the sum 2+ 2?
(b) Evaluate the sum 2+ 2.
(c) This sentence is false.

Sentence (a) is a question, and (b) can either be performed or not, but neither
can be true or false. The point is that, in particular, a statement must be a
declarative sentence. Sentence (c) warrants a bit more thought, since it is a
declarative sentence, so the problem must be in assigning it a value of true or
false. If (c) were true, then what it says would be false. If (c) were false, then
what it says would be true. Hence, (c) can be neither true nor false. ■

Statement Forms
We are interested in studying statements. However, insight is gained by step-
ping back and examining their forms. In Example 1.1, both (c) and (d) are state-
ments of the form “p and q ,” where p and q represent statements. In (c),

p = “
√

4 = 2.”

q = “
√

5 > 2.”

In (d),

p = “The sine function is periodic.”
q = “2π is an integer.”

Although statements (c) and (d) are different, their forms are the same.
Formally, we say that (c) and (d) both have the statement form

p ∧ q .

Here, the word and is denoted by the symbol ∧, and p and q are statement vari-
ables. The most basic statement forms are listed in Table 1.1. General statement
forms, or logical expressions, can be built from these, as we shall see. The def-
initions of the basic logical operations ¬, ∧, ∨, and → can be expressed by pre-
senting truth tables for the statement forms listed in Table 1.1. A truth table

Form Translation

¬p not p (negation of p)
p ∧ q p and q

p ∨ q p or q

p → q if p then q (p implies q )

Table 1.1 Basic Statement Forms
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for a logical expression is a table that displays how the truth or falsehood of
the statement variables involved in the expression affect the truth or falsehood
of the expression. The truth table defining the operator ¬ is given in Table 1.2.
The truth tables for ∧, ∨, and→ are combined in Table 1.3. Notice in Tables 1.2
and 1.3 that if F and T are replaced by 0 and 1, respectively, then the portion
of the tables corresponding to the input variables represents binary numbers
listed in increasing order. This ordering is not required in truth tables but is used
throughout this book for consistency. Variables, such as statement variables, that
can only take on one of two possible values (e.g., T or F) are called Boolean
variables and are named after the English mathematician George Boole (1815–
1864), who pioneered their use.

p ¬ p

F T
T F

Table 1.2 Truth Table Defining ¬
p q p ∧ q p ∨ q p → q

F F F F T
F T F T T
T F F T F
T T T T T

Table 1.3 Truth Table Defining ∧, ∨, and →
We see in Table 1.3 that p ∧ q is true precisely when both p and q are true.

Notice that p ∨ q is true if p is true or if q is true, and that it is also true if both
p and q are true. In fact, it suffices to say that p ∨ q is false precisely when both
p and q are false. The if-then, or conditional, statement form p → q is meant
to reflect whether the truth of p implies (or forces) the truth of q . Consequently,
p → q is false if and only if p is true and q is false. Notice that p → q is true
whenever p is false. In that case, we say that p → q is vacuously true. Only in
the other case, when p is true, does the truth of q matter.

In logical expressions involving more than one operation, the order of op-
erations must be understood. The order of precedence of the basic operations
listed from highest to lowest is

¬,
∧, ∨,
→.

The operations ∧ and ∨ are listed on the same line because they are considered
to be equal in precedence. Of course, any desired order of operations can be
forced by using parentheses. For example,¬p∧ q should be understood to mean
(¬p) ∧ q and not ¬( p ∧ q ).

Remark 1.1 In programming languages such as C++, it is commonly
specified that ∧, which is denoted && in C++, has higher precedence
than ∨, which is denoted || in C++. Consequently, p && q || r
would be interpreted as ( p ∧ q ) ∨ r . However, in applications such as
Microsoft Excel, it is impossible to enter an expression of the form
p ∧ q ∨ r without explicitly entering it either as ( p ∧ q ) ∨ r or p ∧ (q ∨ r ).
The syntax used in Excel is discussed in Example 1.4. That the order of
operations matters is illustrated in Example 1.8.
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EXAMPLE 1.3 Make a truth table for the statement form p ∧ q → r.

Solution. The order of precedence dictates that p ∧ q is performed first and
that the operation→ is performed last. In fact, in making a truth table, it is
often helpful to include intermediate columns reflecting intermediate steps in
the computation.

p q r p ∧ q p ∧ q → r

F F F F T
F F T F T
F T F F T
F T T F T
T F F F T
T F T F T
T T F T F
T T T T T ■

Spreadsheet software, such as Microsoft Excel, can be used to generate truth
tables. In Excel, T and F need to be written out as TRUE and FALSE, respectively.
The basic operations ¬, ∧, and ∨ are accomplished using the logical functions
NOT, AND, and OR, respectively. A way to accomplish → is discussed after
Example 1.10.

EXAMPLE 1.4 Make a truth table for the statement form ¬( p ∨ q ).

Solution. Here we demonstrate how a truth table could be set up using Excel.

A B C D

1 p q p ∨ q ¬( p ∨ q)

2 FALSE FALSE FALSE TRUE

3 FALSE TRUE TRUE FALSE

4 TRUE FALSE TRUE FALSE

5 TRUE TRUE TRUE FALSE

For example, the values in cells C2 and D2 are obtained by the formulas C2 =
OR(A2, B2) and D2 = NOT(C2), respectively. The rest of columns C and D are
easily filled in using copy and paste. ■

There are other operations that are used for convenience but are defined in
terms of the basic operations.

DEFINITION 1.2

(a) The exclusive or operation ⊕ is defined by

p ⊕ q = ( p ∨ q ) ∧ ¬( p ∧ q ).

(b) The if and only if operation↔ is defined by

p ↔ q = ( p → q ) ∧ (q → p).

Note that iff is also used to denote↔.
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p q p ⊕ q p ↔ q

F F F T
F T T F
T F T F
T T F T

Table 1.4 Truth Table Defining ⊕ and ↔

The truth tables for ⊕ and ↔ are combined in Table 1.4. Note that p ⊕ q is
different from p ∨ q in that p ⊕ q is false when both p and q are true. Although
exclusive or is sometimes what is intended in English when or is used, as in
“Do you want hamburgers or pizza for dinner?”, we must carefully distinguish
between ∨ and ⊕ here. The truth of p ↔ q holds precisely when p and q have
the same truth values.

DEFINITION 1.3

(a) A tautology is a statement form that is always true. We denote a tautology
by t.

(b) A contradiction is a statement form that is always false. We denote a
contradiction by f .

A statement whose form is a tautology or contradiction is also said to be a tautology
or contradiction, respectively.

EXAMPLE 1.5 (a) p ∨ ¬p is a tautology.

Solution. In the truth table

p ¬ p p ∨ ¬ p

F T T
T F T

all of the entries in the column for p ∨ ¬p are T .
(b) p ∧ ¬p is a contradiction.

Solution. In the truth table

p ¬ p p ∧ ¬ p

F T F
T F F

all of the entries in the column for p ∧ ¬p are F. ■

Logical Equivalences
Just as we have identities in algebra, such as a + b = b + a , there are identities
among logical expressions. They are based on an equivalence between statement
forms, which we now define.
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DEFINITION 1.4

Two statement forms p and q are logically equivalent, written p ≡ q , if and only if
the statement form p ↔ q is a tautology. We write p �≡ q when p and q are not
logically equivalent.

EXAMPLE 1.6 Verify that ¬( p → q ) ≡ p ∧ ¬q .

Solution.

p q ¬q p → q ¬( p → q) p ∧ ¬q (¬( p → q)) ↔ ( p ∧ ¬q)

F F T T F F T
F T F T F F T
T F T F T T T
T T F T F F T

Since (¬( p → q )) ↔ ( p ∧ ¬q ) is a tautology, we conclude that

¬( p → q ) ≡ p ∧ ¬q .

It would also suffice to confirm that ¬( p → q ) and p ∧ ¬q have the same truth
tables. ■

Example 1.6 tells us how to negate an if-then statement (an and statement is
obtained).

EXAMPLE 1.7 The negation of
“If Alyssa is using tax preparation software, then her tax returns will be
accurate.”

is
“Alyssa is using tax preparation software, and her tax returns will not be
accurate.” ■

Example 1.8 shows that the statement form p ∧ q ∨ r is ambiguous. Paren-
theses are necessary to specify an intended order of operations.

EXAMPLE 1.8 Verify that p ∧ (q ∨ r ) �≡ ( p ∧ q ) ∨ r .

Solution. Consider the following truth table.

p q r q ∨ r p ∧ q p ∧ (q ∨ r) ( p ∧ q) ∨ r ( p ∧ (q ∨ r)) ↔ (( p ∧ q) ∨ r)

F F F F F F F T
F F T T F F T F
F T F T F F F T
F T T T F F T F
T F F F F F F T
T F T T F T T T
T T F T T T T T
T T T T T T T T

Since ( p ∧ (q ∨ r )) ↔ (( p ∧ q ) ∨ r ) is not a tautology, we conclude that

p ∧ (q ∨ r ) �≡ ( p ∧ q ) ∨ r.
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Of course, we can also see that p ∧ (q ∨ r ) and ( p ∧ q ) ∨ r have different truth
tables. ■

As mentioned in Examples 1.6 and 1.8, two statement forms can be seen to
be, or not to be, logically equivalent by comparing their truth tables.

EXAMPLE 1.9 Verify that p ⊕ q ≡ ( p ∧ ¬q ) ∨ (¬p ∧ q ).

Solution.

p q ¬ p ¬q p ∧ ¬q ¬ p ∧ q p ⊕ q ( p ∧ ¬q) ∨ (¬ p ∧ q)

F F T T F F F F
F T T F F T T T
T F F T T F T T
T T F F F F F F

Since p ⊕ q and ( p ∧ ¬q ) ∨ (¬p ∧ q ) have the same truth tables, we conclude
that

p ⊕ q ≡ ( p ∧ ¬q ) ∨ (¬p ∧ q ). ■

EXAMPLE 1.10 Verify that p → q ≡ ¬p ∨ q .

Solution.

p q ¬ p p → q ¬ p ∨ q

F F T T T
F T T T T
T F F F F
T T F T T

Since p → q and ¬p ∨ q have the same truth tables, we conclude that

p → q ≡ ¬p ∨ q . ■

Example 1.10 gives an alternative expression for an if-then statement form.
Since Excel and other spreadsheet software do not have built-in logical functions
for →, this alternative expression is useful. Namely, p→ q can be entered as
OR(NOT(p), q ).

The if-then statement form p→ q is present frequently in statements we
study and wish to prove. Consequently, it is important to understand some rel-
atives of such a form.

DEFINITION 1.5

Given the statement form p → q ,

(a) its converse is q → p.

(b) its contrapositive is ¬q → ¬p.

(c) its inverse is ¬p → ¬q .
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EXAMPLE 1.11 Verify that an if-then statement is not logically equivalent to its converse but is
logically equivalent to its contrapositive.

Solution.
p q ¬ p ¬q p → q q → p ¬q → ¬ p

F F T T T T T
F T T F T F T
T F F T F T F
T T F F T T T

In the truth table, the columns for p → q and q → p are different, whereas the
columns for p → q and ¬q → ¬p are the same. Hence,

p → q �≡ q → p and p → q ≡ ¬q → ¬p. ■

The converse of an if-then statement is important in that p ↔ q combines
p → q and its converse q → p. In Example 1.11, we see that p → q is logically
equivalent to its contrapositive ¬q → ¬p. In fact, this equivalence turns out to
be a very useful tool, which we exploit in Section 2.4. The inverse is notable in
that it is the contrapositive of the converse.

EXAMPLE 1.12 Consider the statement “If a solution exists, then the program terminates.”

(a) Its converse is “If the program terminates, then a solution exists.”
(b) Its contrapositive is “If the program does not terminate, then a solution

does not exist.”
(c) Its inverse is “If a solution does not exist, then the program does not

terminate.” ■

If we take the statement in Example 1.12 to be true, then its contrapositive
must also be true. However, its converse and inverse need not be true. For ex-
ample, the relevant program might be designed to terminate after examining
finitely many possible solutions and finding none.

Logical equivalences are useful for manipulating and simplifying logical ex-
pressions. Theorem 1.1 lists some of the basic logical equivalences that can be
used to construct others.

THEOREM 1.1 Basic Logical Equivalences

Let p, q , and r be statement variables. Then, the following logical equivalences hold:

(a) ¬¬p ≡ p Double Negative

(b) ( p ∧ q ) ∧ r ≡ p ∧ (q ∧ r ) Associativity
( p ∨ q ) ∨ r ≡ p ∨ (q ∨ r )

(c) p ∧ q ≡ q ∧ p Commutativity
p ∨ q ≡ q ∨ p

(d) p ∧ (q ∨ r ) ≡ ( p ∧ q ) ∨ ( p ∧ r ) Distributivity
p ∨ (q ∧ r ) ≡ ( p ∨ q ) ∧ ( p ∨ r )

(e) ¬( p ∧ q ) ≡ ¬p ∨ ¬q De Morgan’s Laws
¬( p ∨ q ) ≡ ¬p ∧ ¬q

(f) If p → q , then [p ∧ q ≡ p] Absorption Rules
If p → q , then [p ∨ q ≡ q ]



C H A P T E R 1 ■ Logic and Sets 17

THEOREM 1.2 Interactions with Tautologies and Contradictions

Let p be a statement variable. Then, the following logical equivalences hold:

(a) ¬t ≡ f (b) p ∧ t ≡ p
¬ f ≡ t p ∨ t ≡ t

(c) p ∧ f ≡ f (d) p ∧ ¬p ≡ f
p ∨ f ≡ p p ∨ ¬p ≡ t

(e) t → p ≡ p (f) p → f ≡ ¬p
p → t ≡ t f → p ≡ t

A theorem or proposition is a statement that has been verified to be true.
Verification of the identities in Theorems 1.1 and 1.2 is left for the exercises.
Beyond verification, however, it is important to internalize those identities. Only
by having some understanding of the identities can one remember them and be
able to use them efficiently and in complicated situations. The first four iden-
tities in Theorem 1.1 are easy to accept if one thinks of the obvious algebraic
analogs involving the arithmetic operations −, ·, and +. For example, the first
distributivity rule is analogous to the arithmetic distributivity rule

a · (b + c) = (a · b) + (a · c). (1.1)

Moreover, the obvious generalizations of (1.1) to more than the two summands
b and c also has an analog in logical equivalences. The one shortcoming of this
analogy is that the second distributivity rule in Theorem 1.1 does not have an
arithmetic analog.

The associativity rules imply that expressions like p ∧ q ∧ r and p ∨ q ∨ r
are unambiguous, whereas we already saw in Example 1.8 that p ∧ q ∨ r is
ambiguous. From the associativity rules, it follows that general n-fold ∧ and ∨
statement forms

p1 ∧ p2 ∧ p3 ∧ · · · ∧ pn and p1 ∨ p2 ∨ p3 ∨ · · · ∨ pn

may be computed by associating the terms (with parentheses) to reflect any
desired order of operations. For example, the association

p1 ∧ ( p2 ∧ ( p3 ∧ · · · ∧ pn))

shows one such choice in which the computation is performed right to left.
De Morgan’s Laws were discovered by the English mathematician Augustus

De Morgan (1806–1871) and are the rules that tell us how to negate ∧ and ∨
statement forms. Thinking about when such statement forms are false should
make De Morgan’s Laws seem more natural. De Morgan’s Laws, like each of
parts (b) through (e) of Theorem 1.1, have obvious analogs in more variables.

The Absorption Rules in Theorem 1.1 are perhaps the most subtle. We will
explore their utility in Example 1.15 below. The identities in Theorem 1.2, on the
other hand, should be easier to verify and internalize. In the next few examples,
the identities from Theorems 1.1 and 1.2 as well as others are used to verify more
identities.
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EXAMPLE 1.13 Verify that ( p ∧ q ∧ r ) ∨ ( p ∧ q ∧ ¬r ) ≡ p ∧ q .

Solution.

( p ∧ q ∧ r ) ∨ ( p ∧ q ∧ ¬r ) ≡ (( p ∧ q ) ∧ r ) ∨ (( p ∧ q ) ∧ ¬r ) Associativity

≡ ( p ∧ q ) ∧ (r ∨ ¬r ) Distributivity

≡ ( p ∧ q ) ∧ t Theorem 1.2(d)

≡ p ∧ q Theorem 1.2(b) ■

EXAMPLE 1.14 Verify that p ∧ q → ¬r ∨ ¬s ≡ r ∧ s → ¬p ∨ ¬q .

Solution.

p ∧ q → ¬r ∨ ¬s ≡ ( p ∧ q ) → (¬r ∨ ¬s) Precedence

≡ ¬(¬r ∨ ¬s) → ¬( p ∧ q ) Example 1.11

≡ (¬¬r ∧ ¬¬s) → (¬p ∨ ¬q ) De Morgan’s Law

≡ (r ∧ s) → (¬p ∨ ¬q ) Double Negative

≡ r ∧ s → ¬p ∨ ¬q Precedence ■

EXAMPLE 1.15 (Basic Absorption Rules). Verify the logical equivalences

(a) p ∧ ( p ∨ r ) ≡ p.
(b) (q ∧ r ) ∨ q ≡ q .

Solution.

(a) We use the first Absorption Rule with q = p ∨ r . It is easy to verify that
p → p ∨ r is a tautology. From Theorem 1.2(e), it follows that the
instance of the Absorption Rule

( p → p ∨ r ) → ( p ∧ ( p ∨ r ) ≡ p)
is equivalent to p ∧ ( p ∨ r ) ≡ p, the desired result.

(b) We use the second Absorption Rule with p = q ∧ r . Since it is easy to
verify that q ∧ r → q ≡ t, again Theorem 1.2(e) reduces the instance of
the Absorption Rule

(q ∧ r → q ) → ((q ∧ r ) ∨ q ≡ q )
to the desired result. ■

Digital Circuits
The basic logic we have considered can be applied to computer hardware
design. A digital circuit is a piece of electronic hardware that takes input from
electrical signals P1, P2, . . . , Pn and produces output signals S1, S2, . . . , Sm

determined by those inputs. Figure 1.1 depicts the general structure of a digital
circuit that might represent a computer chip. Each signal Pi and Sj stores a bit

Digital
circuit

P1

P2

Pn

S1

S2
...

...

Sm

Figure 1.1 The Structure of a Digital Circuit
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of data, which may be turned either on or off and can therefore be represented
by either a 1 or a 0, respectively. To simplify our study, we shall consider only
digital circuits with a single output signal S.

The action of a particular digital circuit, say with input signals P, Q, R and
output signal S, may be recorded in an input-output table specifying exactly
how the inputs determine the output. Such a table is shown in Table 1.5 and
has an obvious connection to a truth table if we replace 1 by T and 0 by F .
With this strong similarity to logic, it should not be surprising that complex
digital circuits can be built from very basic circuits, called gates, which corre-
spond to basic logical operations. The basic gates that we shall consider are the
Inverter (or NOT gate), the AND gate, and the OR gate. These are displayed
and defined in Table 1.6 and correspond to the basic logical operations ¬, ∧,
and ∨, respectively. The basic gates can be used to build a circuit such as the one
displayed in Figure 1.2. Note that wires may be split to feed signals to more than

Input Output

P Q R S

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Table 1.5 An Input-Output Table

Gate Inverter AND OR

Symbol P SNOT

P

Q
SAND

P

Q
SOR

Input-
Output
Table

P S

0 1
1 0

P Q S

0 0 0
0 1 0
1 0 0
1 1 1

P Q S

0 0 0
0 1 1
1 0 1
1 1 1

Table 1.6 Basic Gates

P

SQ

R

OR
AND

OR

NOT

Figure 1.2 The Inside of a Digital Circuit
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one gate. Such a splitting is marked in our diagrams with the symbol •. Other
crossings without such a marking reflect no interaction of the wires and may be
unavoidable when drawing more complicated circuits.

We are now ready to analyze the inner workings of a particular digital circuit
built from basic gates.

EXAMPLE 1.16 Trace the circuit pictured in Figure 1.2 to determine an expression for the
output in terms of the input, and make an input-output table.

P

S

¬P
(¬P � Q)

(P � R)

Q

R

OR
AND

OR

(¬P � Q) � (P � R)
NOT

Figure 1.3 Tracing the Digital Circuit from Figure 1.2

Solution. The steps of our trace are shown in Figure 1.3. At the output of each
gate, we list the logical value of the wire obtained by applying the operation of
the gate. Eventually, we discover the expression for S. It is

(¬P ∨ Q) ∧ ( P ∨ R) = S.

The input-output table for this expression, and thus for the circuit, is the one
shown in Table 1.5. ■

We see in Example 1.16 that a digital circuit corresponds to a logical expres-
sion specifying the output in terms of the input. Consequently, given such an
expression, we ought to be able to design a circuit that realizes it.

EXAMPLE 1.17 Draw a digital circuit that realizes the expression

( P ∧ ¬Q ∧ R) ∨ (Q ∧ ¬R) = S.

Solution. An appropriate circuit is displayed in Figure 1.4.

P

S
Q

R

AND
OR

AND

AND

NOT

NOT

Figure 1.4 A Circuit Realizing (P ∧ ¬ Q ∧ R) ∨ ( Q ∧ ¬R) = S ■
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SECTION 1.1 Exercises
In Exercises 1 through 4, determine whether the given sentence is a statement.
If so, then determine whether it is true or false.
1. −1 is an integer. 2. 1+ 2+ 3 = 5.
3. If π > 0, then compute

√
π .

4. The negation of this sentence is false.

In Exercises 5 through 10, make truth tables for the given statement forms.
5. p ∨ ¬q . 6. ¬p ∧ (q ∨ ¬r ).
7. ¬p → (q ∧ r ). 8. ( p ∨ ¬q ) → r .
9. ( p → q ) ∨ r . 10. p ∨ (¬q → r ).

In Exercises 11 through 14, use spreadsheet software, such as Microsoft Excel, to
generate truth tables for the two given statement forms. In what rows do they
differ? These can be done by hand, as well.
11. p ∨ ¬q and p → ¬q . 12. ¬p ∧ q and ¬( p ∧ q ).
13. p → (q ∨ r ) and p → (q ∨ ¬r ). 14. ¬p ∧ (q ∨ r ) and ¬p ∧ (q ∨ ¬r ).
15. Show that p → p is a tautology.
16. Show that p ∧ (q ∨ ¬p) ∧ ¬q is a contradiction.

In Exercises 17 through 34, verify the stated logical equivalences.
17. (a) Double Negative (Theorem 1.1(a)): ¬¬p ≡ p.

(b) Theorem 1.2(a): ¬t ≡ f and ¬ f ≡ t.
18. (a) Theorem 1.2(b): p ∧ t ≡ p and p ∨ t ≡ t.

(b) Theorem 1.2(c): p ∧ f ≡ f and p ∨ f ≡ p.
19. Theorem 1.2(e): t → p ≡ p and p → t ≡ t.
20. Theorem 1.2(e): p → f ≡ ¬p and f → p ≡ t.

21. p ∨ q ≡ ¬(¬p ∧ ¬q ). 22. p ∧ q ≡ ¬(¬p ∨ ¬q ).
23. p → p ∨ q ≡ t. 24. p ∧ q → p ≡ t.

25. Associativity of ∧ and ∨: ( p ∧ q ) ∧ r ≡ p ∧ (q ∧ r ) and
( p ∨ q ) ∨ r ≡ p ∨ (q ∨ r ).

26. Commutativity of ∧ and ∨: p ∧ q ≡ q ∧ p and p ∨ q ≡ q ∨ p.
27. Associativity of ⊕: ( p ⊕ q ) ⊕ r ≡ p ⊕ (q ⊕ r ).
28. Commutativity of ⊕: p ⊕ q ≡ q ⊕ p.
29. Distributivity with ∧ and ∨: p ∧ (q ∨ r ) ≡ ( p ∧ q ) ∨ ( p ∧ r ) and

p ∨ (q ∧ r ) ≡ ( p ∨ q ) ∧ ( p ∨ r ).
30. Distributivity with ∧ and ⊕: p ∧ (q ⊕ r ) ≡ ( p ∧ q ) ⊕ ( p ∧ r ). Also see

Exercise 37.
31. De Morgan’s Laws: ¬( p ∧ q ) ≡ ¬p ∨ ¬q and ¬( p ∨ q ) ≡ ¬p ∧ ¬q .
32. Absorption Rules: ( p → q ) → ( p ∧ q ↔ p) and ( p → q ) → ( p ∨ q ↔ q )

are tautologies.
33. ¬( p ⊕ q ) ≡ p ↔ q .
34. The inverse of an if-then statement is equivalent to its converse. That is,

(¬p → ¬q ) ≡ q → p.
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In Exercises 35 through 40, determine whether the given statement forms are
logically equivalent. Justify your answers.
35. ( p → q ) → r and p → (q → r ). 36. ( p ↔ q ) ↔ r and p ↔ (q ↔ r ).
37. p ⊕ (q ∧ r ) and ( p⊕q ) ∧ ( p⊕r ). 38. ¬( p ⊕ q ) and ¬p ∧ ¬q .
39. p ⊕ q and ¬p ⊕¬q . 40. ¬( p ⊕ q ) and ¬p ⊕ q .

In Exercises 41 through 48, for the given if-then statement (form), find and
simplify its (a) converse, (b) contrapositive, (c) inverse, and (d) negation.
41. p → ¬q . 42. ¬p → ¬q .
43. p ∧ ¬q → r . 44. p → q ∨ ¬r .

45. If Ted’s average is less than 60, then Ted fails.
46. If Ilia can afford the car, then Ilia is buying the car.
47. If George feels well, then George is going to a movie or going dancing.
48. If Anna is failing history and psychology, then Anna is not graduating.
49. Find the negation of p ∨ ¬q .
50. Find the negation of ¬p ∧ ¬q .
51. Negate the statement “Helen’s average is at least 90, and Helen is getting

an A.”
52. Negate the statement “Raphael is not smiling, but Raphael is bluffing.”
53. Verify the logical equivalence p ∧ q → r ≡ ¬p ∨ (q → r ) by

(a) making a truth table.
�(b) using the result from Example 1.10 and other identities.

54. Verify the logical equivalence ( p → q ) → ( p ∧ r ) ≡ p ∧ (q → r ) by

(a) making a truth table.
�(b) using the result from Example 1.10 and other identities.

In Exercises 55 through 62, verify the stated logical equivalences, not by
making a truth table, but by using already established identities.
55. p ∧ (q ∨ r ∨ s) ≡ ( p ∧ q ) ∨ ( p ∧ r ) ∨ ( p ∧ s).
56. ¬( p ∨ q ∨ r ) ≡ ¬p ∧ ¬q ∧ ¬r .
57. ( p ∧ q ∧ ¬r ) ∨ ( p ∧ ¬q ∧ r ) ≡ p ∧ (q ⊕ r ).
58. ( p ∧ q ∧ ¬r ) ∨ ( p ∧ ¬q ∧ ¬r ) ≡ p ∧ ¬r .
59. p ∧ (¬(q ∧ r )) ≡ ( p ∧ ¬q ) ∨ ( p ∧ ¬r ).
60. ¬( p ∨ (q ∧ r )) ≡ ¬( p ∨ q ) ∨ ¬( p ∨ r ).

�61. ( p ∧ q ) ∨ ( p ∧ q ∧ r ) ≡ p ∧ q . �62. ( p ∨ q ) ∧ ( p ∨ q ∨ r ) ≡ p ∨ q .
�63. Show that the operation ¬, together with any one of the operations ∧, ∨,

and→, can be used to generate the other two.
Hint: Example 1.10 accomplishes part of this.

�64. Can the operation ∨ be generated from the operations ⊕, ¬, and ∧?
Explain.

In Exercises 65 through 68: (a) Trace the pictured circuit to determine an
expression for the output in terms of the input. (b) Make an input-output table.

∗Exercises that may be particularly challenging are marked with a star.



C H A P T E R 1 ■ Logic and Sets 23

(c) Could the same input-output table be accomplished by a circuit using
fewer basic gates? Explain.
65.
P

SQ OR
AND

NOT

66.

P
S

Q
AND

NOT

67.

OR

Q

P
S

R
AND

NOT

68.

OR

OR

Q

P

S

R

AND

NOT

In Exercises 69 through 72, draw a circuit that realizes the given expressions.
69. ¬( P ∧ Q) ∨ R = S. 70. ¬( P ∨ (Q ∧ R)) = S.

71. P ⊕ Q = S. Accomplish this by

(a) using the defining formula for ⊕ in Definition 1.2.

(b) using the characterization of ⊕ given in Example 1.9.

Which method uses fewer gates?
72. (a) P → Q = S by using the characterization of→ given in Example 1.10.

(b) P ↔ Q = S by using the idea from part (a).

1.2 Set Notation
Since our interest is in studying mathematical statements, the language of sets is
needed. This section therefore gives an informal introduction to set theory. Our
main goal here is to gain familiarity with some standard notation and concepts.
A more formal consideration of sets is given in Section 1.4.

A set is a collection of objects that are referred to as the elements of the set.
If A is a set and x is an element of A, then we write x ∈ A. If x is not an element
of A, then we write x �∈ A. Two important sets with which we work a great deal
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are Z, the set of integers, and R, the set of real numbers. We have

. . . , −2 ∈ Z, −1 ∈ Z, 0 ∈ Z, 1 ∈ Z, 2 ∈ Z, . . . ,

but
√

2 �∈ Z. Of course,
√

2 ∈ R, but
√−1 �∈ R. The set of rational numbers Q

(and the fact that
√

2 �∈ Q) is considered in Chapter 3.
The most basic way to express a set is in list notation, in which the elements

of the set are listed between braces. For example, the set S of integers from 1 to
5 can be denoted by

S = {1, 2, 3, 4, 5}.
The set T consisting of the real numbers −1, 0, and 1 is given by

T = {−1, 0, 1}.
A more powerful means of expressing sets is provided by set builder nota-

tion that takes the form

{x : p(x)}, (1.2)

in which p(x) is a sentence involving the variable x. The notation in (1.2) ex-
presses the set of all x such that p(x) is a true statement. That is, an element x
earns membership in the set if and only if p(x) holds for that x. For example, the
set S of integers from 1 to 5 can be expressed in set builder notation as

S = {n : n ∈ Z and 1 ≤ n ≤ 5}.
The set T of real numbers that are their own cubes can be expressed as

T = {x : x ∈ R and x3 = x}.
The two different expressions for the sets S and T given above raise the issue

of characterizing when two sets should be considered the same.

DEFINITION 1.6 Set Equality (Informal Version)

Two sets A and B are said to be equal, written A= B, if and only if A and B contain
exactly the same elements.

A set is completely determined by the elements it contains. The two expres-
sions for the set S given above clearly describe the same set. In the case of the
two expressions for T , a straightforward algebraic computation verifies that

{x : x ∈ R and x3 = x} = {−1, 0, 1}.
When listing the elements of a set between curly braces, it is important to

understand that neither order nor repetition matters. For example,

{2, 4, 1, 3, 5} = {1, 2, 3, 4, 5} and
{−1, 0, −1, 1, 0} = {−1, 0, 1}.

That equalities like these hold is a consequence of the definition of set equality.
Many of the sets we consider will contain only real numbers. There are some

important relatives of Z and R for which there is some standard notation.
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DEFINITION 1.7 We define the following sets.
natural numbers N ={n : n ∈ Z and n ≥ 0}
positive integers Z+ = {n : n ∈ Z and n > 0}
negative integers Z− = {n : n ∈ Z and n < 0}
positive real numbers R+ = {x : x ∈ R and x > 0}
negative real numbers R− = {x : x ∈ R and x < 0}

The appropriate way to express the relationship between a set such as N and
the set Z is to say that N is a subset of Z.

DEFINITION 1.8 Subsets (Informal Version)

Let A and B be sets.

(a) We say that A is a subset of B, denoted A⊆ B, if and only if every element
of A is also an element of B.

(b) When it is not the case that A⊆ B, we write A � B.

(c) If A⊆ B and B contains at least one element that A does not, then we say
that A is a proper subset of B and write A⊂ B.

EXAMPLE 1.18 We have the following subset relations:

(a) Z+ ⊆ Z.
(b) Z+ ⊂ Z, since −1 ∈ Z and −1 �∈ Z+.
(c) Z ⊆ R.
(d) R ⊆ R.
(e) {1, 3, 5} ⊆ {1, 2, 3, 4, 5}.
(f) {2} ⊂ {2, 4}, since 4 ∈ {2, 4} and 4 �∈ {2}.
(g) {2, 5, Z, 5, 2, R} ⊆ {Z, 2, 3, 5, R}.

Notice that the set on the left is {2, 5, Z, R}.
(h) {{1}, {1, 2}, {3}} ⊆ {{1}, {2}, {3}, {1, 2}}.

The elements {1}, {1, 2}, and {3} of the set on the left are also elements of
the set on the right. ■

It is important to notice the distinction between the relations ∈ and ⊆. This
can be especially subtle since sets themselves can be elements of other sets, as
we saw in parts (g) and (h) of Example 1.18.

EXAMPLE 1.19 We have the following relations:

(a) 1 ∈ {1, 2, 3}.
(b) {1} �∈ {1, 2, 3} but {1} ⊆ {1, 2, 3}.
(c) {1} ∈ {{1}, {2}, 3} but {1} � {{1}, {2}, 3} since 1 �∈ {{1}, {2}, 3}.
(d) {{2}, 3} ⊆ {{1}, {2}, 3}.
(e) 2 �∈ {{1}, {2}, 3} but {2} ∈ {{1}, {2}, 3} and {{2}} ⊆ {{1}, {2}, 3}.
(f) 1 ∈ Z but 1 �= Z and 1 � Z.
(g) 1 ∈ {1} but 1 �= {1} and 1 � {1}. ■
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Parts (a) and (b) of Example 1.19 illuminate the difference between the num-
ber 1 and the set {1} containing just the number 1. In general, a set of the form
{x} is called singleton x and should not be confused with the element x alone.

Intervals are examples of subsets of R that are important enough to warrant
their own notation.

DEFINITION 1.9 Interval Notation

Given real numbers a and b, we define the following intervals.
(a , b) = {x : a < x < b}
[a , b] = {x : a ≤ x ≤ b}
[a , b) = {x : a ≤ x < b}
(a , b] = {x : a < x ≤ b}

(a ,∞) = {x : a < x}
[a ,∞) = {x : a ≤ x}

(−∞, b) = {x : x < b}
(−∞, b] = {x : x ≤ b}

The set notation used in Definition 1.9 is actually not complete. For example,
the set description of the interval (a , b) should more precisely be

{x : x ∈ R and a < x < b}.
This description makes clear what is implicitly assumed in Definition 1.9: that
x represents a real number. In Definition 1.9, it is assumed that we are working
in the context of the set of real numbers, although that is not explicitly stated.

Implicitly assuming a certain context is common in mathematical notation.
When we work with a collection of sets, it is often the case that all of those sets
are subsets of some bigger set called the universal set (or universe of consider-
ation) for that particular context. Throughout this book we use U to represent
the universal set for any particular context. For example, in Definition 1.9, it is
understood that U = R. The intervals are understood to be subsets of R, and
that need not be repeatedly stated. Similarly, when we work with sets like

{1, 2, 3}, {−4, −2, 0, 2, 4}, N, or Z−,

it may be understood that U = Z.
Examples of sets such as the intervals (0, 0) and [1, 0] bring up the issue of

handling a set that does not contain any elements.

DEFINITION 1.10

The empty set, denoted ∅, is the unique set that contains no elements.

Any set that does contain at least one element is said to be nonempty. The
fact that there is only one set with no elements (and hence ∅ is well-defined) is
a consequence of the definition of set equality and is proved in Section 2.4. Also
proved there is the fact that the empty set is a subset of every other set.

THEOREM 1.3 ∅ Is Smallest

Given any set A, we have ∅ ⊆ A.

One of the basic properties of a set is the number of elements in it.
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DEFINITION 1.11 Cardinality (Informal Version)

The cardinality of a set A, denoted |A|, is the number of elements in A.

Cardinality is introduced formally in Section 5.6. Our informal understand-
ing suffices until then.

EXAMPLE 1.20 We compute the following cardinalities:

(a) |{1, 2, 3}| = 3.
(b) |{0, 2, 4, 6, 8}| = 5.
(c) |{2, 3, 2, 4, 5, 3}| = 4,

since repeated elements count only once and we are therefore counting
the number of elements in the set {2, 3, 4, 5}.

(d) |{n : n ∈ Z and 3 ≤ n ≤ 13}| = 11,
since there are 11 elements in the set {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.

(e) |{x : x ∈ R and x2 − 3x − 1 = 0}| = 2,

since the set consists of the two roots
3+
√

13

2 and
3−
√

13

2 .

(f) |∅| = 0. Moreover, the definition of ∅ implies that

|A| = 0 if and only if A= ∅.
(g) |{∅}| = 1,

since ∅ is the only element.
(h) |{{∅}}| = 1,

since {∅} is the only element. ■

In determining the cardinality of a set, the first issue to address is whether
or not there is a finite number of elements.

DEFINITION 1.12 Finiteness (Informal Version)

A set A is said to be finite if and only if |A| is a natural number. A set that is not
finite is said to be infinite.

EXAMPLE 1.21 Determining finiteness.

(a) All of the sets in Example 1.20 are finite.
(b) N and Z are infinite.
(c) R is infinite.
(d) If a < b, then (a , b) is infinite. ■

A more formal consideration of the notions of cardinality, finite, and infinite
is given in Section 5.6.

Paradoxes
A presentation of sets that is too informal can lead to some undesired inconsis-
tencies. In 1903, the English mathematician Bertrand Russell (1872–1970) came
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up with a paradox showing that one cannot be too cavalier with set builder no-
tation {x : p(x)}. He presented such an example that cannot possibly be a set.

EXAMPLE 1.22 (Russell’s Paradox). Let

P = {S : S is a set and S �∈ S}. (1.3)

Can P be a set?

Solution. Assume that P is a set. Under the assumption that P is a set, it
makes sense to explore whether or not P ∈ P .

First, consider the possibility that P �∈ P . In that case, we have the conditions

P is a set and P �∈ P,

which earn P membership in P as described by (1.3). Hence, P ∈ P . Of course
this is inconsistent with our supposition that P �∈ P .

Second, consider the possibility that P ∈ P . In that case, P fails to satisfy the
conditions to be a member of P as described by (1.3). Hence, P �∈ P . Again,
this is inconsistent with our supposition that P ∈ P .

Under the assumption that P is a set, the question of whether or not P ∈ P
cannot be answered. Hence, P cannot be a set. ■

A version of Russell’s Paradox that involves the same type of paradox, yet
is more accessible to the layperson, is the Librarian’s Dilemma.

EXAMPLE 1.23 (Librarian’s Dilemma). A librarian is organizing those books in the library that
are indexes of books in the library. After noticing that some of those books list
themselves and others do not, the librarian decides to start an index book
listing all of those index books that do not list themselves. Should this new
index book list itself?

Solution. If the new index book lists itself, then it is no longer an index book
that lists only those index books that do not list themselves. If the new book
does not list itself, then it is no longer an index book that lists all those index
books that do not list themselves (since it has excluded itself). The question of
whether or not the book should list itself cannot be answered. ■

Subsequent to Russell’s Paradox, mathematicians eliminated such problems
from set theory by restricting conditions of the form p(x) that can be used in
the expression of a set {x : p(x)} and by giving a careful axiomatic development
of set theory. That is, they specified a list of basic assumptions, called axioms,
from which all propositions in set theory are required to follow. This book does
not concern itself with the intricacies involved in those issues, since the expres-
sions and sets that we will consider shall steer far from the potential problem
areas of naı··ve set theory. However, we mention one axiom that saves us most of
the time.

Axiom (The Subset Axiom).
Any subset of a set is also a set.

The Subset Axiom protects us from difficulties, because the sets that we con-
sider are subsets of some already well-defined universal set. In particular, most
of the sets that we consider are subsets of U = R.
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Software Implementation of Sets
Sets are fundamental objects in mathematics, and, as we have noted, an under-
lying feature of a set is the lack of a fixed ordering of its elements. Objects whose
elements do have a specified order, such as ordered pairs, must be industriously
built upon the foundations of set theory. Formally, an object as simple as the or-
dered pair (x, y) is defined by the more complicated set construction {{x}, {x, y}}.
Although, in this book, we do not delve into the formal development of objects
as intuitively simple as ordered lists, it is interesting to note a contrast here with
computer science.

In a computer, the most natural container for a collection of objects is one
that retains an ordering of those objects, as in an array or list. This is true for the
same reason that when we write down a set in list notation, we must write down
the elements in some order; elements are entered and stored in a computer in
some order. If we want a data structure in a computer that behaves like a set,
then some effort must be made to strip away that order. We close this section
by considering some examples of how and how well this might be addressed in
computer software.

Mathematica is computer software that, in particular, can be used as a sym-
bolic calculator. Although it does not have a data type that acts exactly like a set,
it does have the type list, which can mimic a set in some ways. Lists are entered
using set-like notation.

In[1]:= A = {4,2,2,1}

Out[1]= {4,2,2,1}

However, lists can have repeated elements, and the order in which elements are
entered is retained as part of the structure. Using the equality test ==, we can
see this distinction.

In[3]:= A == {4,2,1}

Out[3]= False

In[4]:= A == {1,2,2,4}

Out[4]= False

Nonetheless, we can test for the membership of an element in a list as we would
for a set.

In[5]:= MemberQ[A,2]

Out[5]= True

The size of a list does count element repetitions.

In[6]:= Length[A]

Out[6]= 4

The empty list is entered as {} and has 0 elements.
The programming language C++ has a container class called a set, which has

many of the features one would want. Since the syntax used and overhead re-
quired are rather complicated, we shall only mention some available functions
and not present detailed coding. For example, the Boolean functions equal()
and includes()test whether two input sets are related by = and ⊆, respec-
tively. Emphasizing the structure of a set, the function insert() adds a given
element to a given set but changes nothing if that element is already in the set.
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Similarly, erase() deletes an element, if possible. The number of elements in a
set is returned by the function size(). Difficulties with repeated elements and
orderings of elements are not present. However, specifically, a set is an exam-
ple of what is called a sorted associative container class in C++. Thus there is
some ordering that is buried in the internal implementation of a set; each set
has an associated comparison function (like less than) and a construct called an
iterator that is used to traverse the elements of the set. Therefore, only abstractly
is a set truly like a set.

Maple is mathematical software similar to Mathematica, but it handles sets
much more seamlessly. Sets are represented using curly braces.

> A := {4,2,2,1} ;

{1,2,4}

Note that sets do not retain repeated elements, and Maple automatically selects
a preferred ordering in which to list the elements. The ordering is dealt with
internally and is not a concern of the user. In contrast, lists in Maple are repre-
sented using square brackets and retain repeats and ordering. Thus, tests for set
equality behave as we would like.

> evalb(A = {4,2,1}) ;

true

The same is true for tests of membership.

> member(2,A) ;

true

Also, cardinality is counted correctly.

> nops(A) ;

3

The empty set is entered as {}.
Using Mathematica and Maple to explore various set relations is taken up in

the exercises.

SECTION 1.2 Exercises
In Exercises 1 through 4, determine whether the stated equality is true or false.
1. {1, 2, 3} = {3, 2, 1}. 2. {2, 3, 4} = {4, 3, 2, 1}.
3. {2, 2, 2, 2} = {2, 2}. 4. {1, 2, 3, 2} = {1, 2, 3}.
In Exercises 5 through 12, express the given sets in set notation. In each case,
use either list notation or set builder notation, whichever is more convenient.
5. The set consisting of the elements 2, 4, 6.
6. The set consisting of the elements 0, −1, −4, −9.
7. The set consisting of the elements {1}, {4}.
8. The set consisting of the elements 1, 2, {3}.
9. The set of real solutions to the equation x3 − 4x2 + 5x − 6 = 0.
10. The set of integers greater than or equal to 100.
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11. The set of integers less than −10.
12. The set of real numbers x such that x4 − x2 − 1 is negative.

In Exercises 13 through 20, express the given sets in interval notation.

13. R+. 14. R−.
15. {0}. 16. {1}.
17. The set of real numbers x such that x > 1.
18. The set of real numbers x such that 3 ≤ x < 7.
19. The set of real numbers x such that −1 < x and 1 > x.
20. The set of real numbers x such that x < π .

In Exercises 21 through 28, determine whether the stated relations are true
or false.

21.
√

2 ∈ R. 22. N ∈ Z.

23. {1} ∈ Z. 24. 0 ⊆ Z.
25. {2} ⊆ {1, 2, 3}. 26. 1 ∈ {{1}, {2}, {3}}.
27. ∅ ∈ {∅}. 28. ∅ ⊆ {∅}.
In Exercises 29 through 34, list which of the relations ∈, ⊂, ⊆, = can replace the
symbol �.
29. {1} � {1, 2}. 30. 2 � {1, 2}.
31. {6, 7, 8} � {8, 7, 6}. 32. {9} � {9, {9, 10}}.

�33. {3} � {3, {3}, {{3}}}. �34. {4, 5} � {{4}, {5}}.
In Exercises 35 through 42, determine whether the given set is finite or infinite.
If it is finite, then find its cardinality.
35. A= {1, 3, 5, 7, 9}. 36. B = {x : x ∈ R and x4 = 16}.
37. C = [5, 6]. 38. D = {x : x ∈ R and x2 > 2}.
39. E = {n : n ∈ N and n ≤ 8}. 40. F = {n : n ∈ Z− and n ≤ 1

2 }.
�41. G = {∅, {∅}}. �42. H = {{{∅}}}.
In Exercises 43 and 44, discover a paradox by trying to answer the included
question.

�43. Barber Puzzle. A male town barber shaves each man and only those men
in the town who do not shave themselves. Does the barber shave himself?

�44. A Television Producer’s Nightmare. Some television shows advertise
themselves and others do not. A television producer decides to create a
show advertising all shows that do not advertise themselves. Should this
show advertise itself?

In Exercises 45 through 48, use Mathematica to perform the given tasks.
45. Experiment with == for testing list equality. Specifically, what happens

when {1,2,{2,1}} and {1,2,{1,2}} are compared?
46. Experiment with MemberQ for testing list membership. Specifically,

determine whether {} is a member of {{}}?
47. Experiment with Length for counting the size of a list. Specifically, find

the size of {{},{}}.
48. How can we test whether or not a given list A is empty?
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In Exercises 49 through 52, use Maple to perform the given tasks.
49. Experiment with evalb for testing set equality. Specifically, what happens

when {1,2,{2,1}} and {1,2,{1,2}} are compared?
50. Experiment with member for testing set membership. Specifically,

determine whether {} is a member of {{}}?
51. Experiment with nops for counting the size of a set. Specifically, find the

size of {{},{}}.
52. How can we test whether or not a given set A is empty?

1.3 Quantifiers
The truth or falsehood of the expression

x > 2 and x2 is an integer (1.4)

depends on the value of x. If x is replaced by
√

7, then (1.4) becomes true. If
x is replaced by π , then (1.4) is false. This section concerns expressions of the
form p(x), like (1.4), that depend on a free (or unbound) variable x from some
universe of consideration U . Besides replacing x by a specific value, another way
to form a statement from p(x) is with the addition of a quantifier. Specifically,
we introduce the quantifiers ∀ and ∃.

DEFINITION 1.13 Universal Statements

The statement

∀ x ∈ U , p(x)

is defined to be true if and only if, for every value of x ∈ U , the statement p(x)
holds. Consequently, it is false if and only if there is some x ∈ U for which p(x)
does not hold. The quantifier ∀ is read as “for every,” “for all,” or “for any.”

EXAMPLE 1.24 Write the following universal statements efficiently using quantifiers and
standard notation.

(a) Every real number is greater than 2 and its square is an integer.

Solution.
∀ x ∈ R, x > 2 and x2 ∈ Z.

(b) The square of every real number is nonnegative.

Solution.

∀ x ∈ R, x2 ≥ 0.

(c) For every real number x, if x is negative, then |x| = −x.

Solution.

∀ x ∈ R, if x < 0, then |x| = −x.

(d) The square of every odd integer is even.

Solution.
∀ n ∈ Z, if n is odd, then n2 is even.



C H A P T E R 1 ■ Logic and Sets 33

(e) For all real numbers x with 2 ≤ x ≤ 5, we have 4 ≤ x2 ≤ 25.

Solution.
∀ x ∈ [2, 5], x2 ∈ [4, 25].

(f) For all positive real numbers x, if x < −3, then x3 = −1000.

Solution.
∀ x ∈ R+, if x < −3, then x3 = −1000. ■

Note that in some cases, a statement can be simplified by restricting the uni-
verse of consideration. For example, the statement in part (c) of Example 1.24
can be written as

∀ x ∈ R−, |x| = −x.

Similarly, part (d) could be written as
∀ odd integers n, n2 is even.

The statements in (b), (c), (e) and (f) are all true, whereas the statements in (a)
and (d) are false. For (d), the statement fails when n = 1, for example. That is,
the statement

If 1 is odd, then 12 is even
is false. For (f), we say that such a universal if-then statement is vacuously true
since its hypothesis (here “x < −3”) is false for every x in the universal set
(here “R+”).

DEFINITION 1.14 Existential Statements

The statement
∃ x ∈ U such that p(x)

is defined to be true if and only if there exists some x ∈ U such that the statement
p(x) holds. Consequently, it is false if and only if, for every x ∈ U , p(x) does not
hold. The quantifier ∃ is read as “there exists,” “there is,” or “there are.”

EXAMPLE 1.25 Write the following existential statements efficiently using quantifiers and
standard notation.

(a) There exists a real number whose square is 2.

Solution.
∃ x ∈ R such that x2 = 2.

(b) There is a real zero for the polynomial x3 − 2x2 + x − 2.

Solution.
∃ x ∈ R such that x3 − 2x2 + x − 2 = 0.

(c) The equation 5x2 = 40 has an integer solution.

Solution.
∃ x ∈ Z such that 5x2 = 40. ■

In Example 1.25, statements (a) and (b) are true. For (b), x = 2 provides
the desired solution. On the other hand, statement (c) is false, since the only
solutions, namely ±√8, are not integers.



34 P A R T I ■ Proofs

In the statements of the forms seen in Definitions 1.13 and 1.14, we say that
the variable x in the expression p(x) has been bound by its respective quanti-
fier. A statement may involve multiple quantifiers and, consequently, multiple
bound variables.

EXAMPLE 1.26 Write the following statements efficiently using quantifiers and standard
notation.

(a) For every real number x and every integer n, the product nx is a real
number.

Solution.
∀ x ∈ R, ∀ n ∈ Z, nx ∈ R.

(b) The sum of any two real numbers is a real number.

Solution.
∀ x ∈ R, ∀ y ∈ R, x + y ∈ R.

When two ∀ quantifiers have the same domain of consideration, as is
the case here, the shorthand

∀ x, y ∈ R, x + y ∈ R

can be used.
(c) The quotient of any two integers is an integer if the denominator is

nonzero.

Solution.

∀ m, n ∈ Z, if m �= 0, then
n

m
∈ Z.

(d) There exist two distinct integers with the same cube.

Solution.
∃m, n ∈ Z such that m �= n and m3 = n3.

(e) Every positive real number has a positive square root.

Solution.
∀ x ∈ R+, ∃ y ∈ R+ such that y2 = x.

(f) Every polynomial with real coefficients that has odd degree must have a
real zero.

Solution.
∀ polynomials f with real coefficients,
if f has odd degree, then ∃ x ∈ R such that f (x) = 0.

Statements (a), (b), (e), and (f) are true, while statements (c) and (d) are false.
For (c), if m = 2 and n = 1, then 1

2 �∈ Z. For (d), taking cube roots shows that
the equality m3 = n3 forces m = n. Statement (f) is a consequence of the
Intermediate Value Theorem from calculus. ■

Remark 1.2 (Order of Quantifiers).
In statement (e) of Example 1.26, the order of the quantifiers is very
important. If that order is switched, then the statement

∃ y ∈ R+ such that ∀ x ∈ R+, y2 = x

is obtained. This says,



C H A P T E R 1 ■ Logic and Sets 35

“There is a positive real number whose square equals every positive
real number”

and is clearly false. In general, the statements

∀ x, ∃ y such that p(x, y)

and

∃ y such that ∀ x, p(x, y)

are not logically equivalent. The order of the quantifiers matters. How-
ever, if a statement starts with a sequence of quantifiers such that all are
∀ or all are ∃ , then order does not matter. It is this last observation that
allows us to use shorthand notation like ∀ x, y ∈ U and ∃ x, y ∈ U .

Real Functions. As an application of quantifiers, we use quantified statements
to carefully define some properties of and operations on real functions familiar
from precalculus. Somewhat informally, a real function is a rule that assigns to
each real number (given as input) a unique real number (as output). Functions
are considered more generally and more formally in Chapter 5. Until Chapter 5,
all real functions are considered to be defined on the entire set of real num-
bers. Examples illustrating the various properties in Definition 1.15 are shown in
Figure 1.5.
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Figure 1.5 Illustrating Properties of Real Functions
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DEFINITION 1.15 Properties of Real Functions

A real function f is said to be

(a) constant if

∃ c ∈ R such that ∀ x ∈ R, f (x) = c.

(b) increasing if

∀ x, y ∈ R, if x < y, then f (x) < f (y).

(c) decreasing if

∀ x, y ∈ R, if x < y, then f (x) > f (y).

(d) nondecreasing if

∀ x, y ∈ R, if x ≤ y, then f (x) ≤ f (y).

(e) nonincreasing if

∀ x, y ∈ R, if x ≤ y, then f (x) ≥ f (y).

(f) periodic if

∃ p ∈ R+ such that ∀ x ∈ R, f (x + p) = f (x).

(g) bounded above if

∃ M ∈ R such that ∀ x ∈ R, f (x) ≤ M.

(h) bounded below if

∃ L ∈ R such that ∀ x ∈ R, f (x) ≥ L .

We say that f is bounded if f is both bounded above and bounded below.

An alternative characterization of constant functions is presented in the
exercises.

DEFINITION 1.16 Operations on Real Functions

Given a real number c and real functions f and g, we define

(a) the constant multiple c f by

∀ x ∈ R, (c f )(x) = c · f (x).

(b) the product f · g by

∀ x ∈ R, ( f · g)(x) = f (x) · g(x).

(c) the sum f + g by

∀ x ∈ R, ( f + g)(x) = f (x) + g(x).

(d) the composite f ◦ g by

∀ x ∈ R, ( f ◦ g)(x) = f (g(x)).

Exponents can be used to denote the product of a function with itself. Thus, f 2

denotes the product f · f . For example, sin2(x) denotes sin(x) sin(x). The difference
f − g is defined to be f + (−g). The function f + c denotes the sum of f and the
function whose constant value is c.
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Negating Quantified Statements
There is an important connection between the quantifiers ∀ and ∃ that arises
when quantified statements are negated.

PROPOSITION 1.4 Negating ∀ and ∃.

(a) ¬ [∀ x ∈ U , p(x)] ≡ ∃ x ∈ U such that ¬p(x)

(b) ¬ [∃ x ∈ U such that p(x)] ≡ ∀ x ∈ U , ¬p(x)

Proposition 1.4 follows from the definitions of the quantifiers ∀ and ∃. The
result should also be intuitively reasonable. If it is not true that everything goes
right, then there is something that goes wrong. If it is not true that something
goes right, then everything goes wrong.

EXAMPLE 1.27 Negate the following statements:

(a) The square of every real number is nonnegative.

Solution.

¬[∀ x ∈ R, x2 ≥ 0] ≡ ∃ x ∈ R such that x2 < 0.

There is a real number whose square is negative.
(b) There exists an integer whose square is 2.

Solution.

¬[∃n ∈ Z such that n2 = 2] ≡ ∀n ∈ Z, n2 �= 2.

The square of every real number is not equal to 2.

In (a), the given statement is true, so its negation is false. In (b), the given
statement is false, so its negation is true. ■

Statements involving multiple quantifiers can be negated as well. In fact,
Proposition 1.4 can be used to do so.

EXAMPLE 1.28 Negate the following statements:

(a) The product of any real number and any integer is a real number.

Solution.

¬ [∀ x ∈ R, ∀ n ∈ Z, nx ∈ R] ≡ ∃ x ∈ R such that ¬ [∀ n ∈ Z, nx ∈ R]

≡ ∃ x ∈ R such that ∃n ∈ Z such that nx �∈ R.

Even though the domains of consideration for the consecutive ∃ quan-
tifiers are different, this statement may be written more simply as

∃ x ∈ R and n ∈ Z such that nx �∈ R.

There are a real number and an integer whose product is not a real
number.
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(b) ∀ x ∈ R+, ∃ y ∈ R+ such that y2 = x.

Solution.

¬[∀ x ∈ R+, ∃ y ∈ R+ such that y2 = x]
≡ ∃ x ∈ R+ such that ¬[∃ y ∈ R+ such that y2 = x]
≡ ∃ x ∈ R+ such that ∀ y ∈ R+, y2 �= x.

(c) ∃n ∈ Z+ such that ∀m ∈ Z, mn > 0.

Solution.

¬[∃n ∈ Z+ such that ∀m ∈ Z, mn > 0] ≡ ∀ n ∈ Z+, ¬[∀m ∈ Z, mn > 0]
≡ ∀ n ∈ Z+, ∃m ∈ Z such that mn ≤ 0.

(d) Every word in this book is illegible.

Solution.
There is a word in this book that is legible.

Statements (a) and (b) are true. Statement (c) is false, as can be seen by con-
sidering m = 0. Statement (d) is false, since it could be read. ■

The process of negating quantified statements can be described simply as
toggling the quantifiers and negating the subsequent sentence.

Interactive Software for Analyzing Quantified Statements
Tarski’s World [2] is software designed to provide students with an interactive
environment in which to study logic. It is named after the Polish mathemati-
cian Alfred Tarski (1902–1983) and enables students to analyze sentences based
upon a world that consists of tetrahedrons, cubes, and dodecahedrons placed on
an 8 × 8 grid. Although the software can provide a three-dimensional view of
each world, we shall employ the option of taking a two-dimensional bird’s-eye
view, in which the shapes appear as triangles, squares, and pentagons, respec-
tively. The expressions associated with a given world are built from basic logi-
cal operations together with certain “atomic” assertions that can be made about
the world’s objects. For example, Tet(x) is the assertion that object x is a tetra-
hedron. Similarly defined are Cube, Dodec, Small, Medium, and Large, where
the three different sizes can be seen in the three cubes in Figure 1.6. Sizes can
be compared with Smaller and Larger, where the appropriate relation should
be read between its two input variables, and the shapes need not be the same.
For example, Smaller(x, y) reads “x is smaller than y.” This same reading con-
vention is applied to the relative-position comparisons BackOf, FrontOf, LeftOf,
and RightOf. However, these refer only to the rows or columns of the given ob-
jects. Thus BackOf(x, y) reads, “x is in back of y” and means that the row con-
taining x is in back of (i.e., pictured over) the row containing y; they need not be
in the same column. The = relation can also be used as usual. When objects in
the world are labeled, those values are considered constants and may be used
in place of variables in any of the “atomic” assertions.

EXAMPLE 1.29 Given the world displayed in Figure 1.6, for each given expression, determine
whether there are any unbound variables and, if not, whether the sentence is
true or false.
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a

b

Figure 1.6 World for Example 1.29

(a) ∃ x (Smaller(x, y) ∧ ∃ y Tet(y)).
(b) ∀ x LeftOf(x, b).
(c) ∀ x (FrontOf(x, a ) ∨ ¬Medium(x)).

Solution.

(a) The variable y in Smaller(x, y) is unbound, and thus this expression is
not a statement. Even though ∃ y does appear in the expression, its
occurrence after the initial reference to y leaves that portion unbound.

(b) The only variable x is appropriately bound by a universal quantifier.
Although b is the rightmost object in the world, this statement is false
only because it fails when x is replaced by b itself.

(c) There are no unbound variables, and this is a true statement. The two
objects that are not in front of a are not medium in size. ■

Appendix A lists some basic properties of the sets of integers and real num-
bers. Those properties are expressed there using quantifiers and other standard
notation that has been encountered thus far. Consequently, the reader is now
encouraged to study the properties listed in Appendix A. Those properties are
used freely throughout the book.

SECTION 1.3 Exercises
In Exercises 1 through 10, write the following statements efficiently using
quantifiers and standard notation. Note that each statement is true.
1. There is an integer whose reciprocal is also an integer.
2. Every integer power of 2 is a real number.
3. For every real number x, x2 + 1 is positive.
4. There is an integer n such that 2n = 1024.
5. There is a natural number n such that, for every real number x, xn is

nonnegative.
6. For any real number x, there is a real number y such that x + y = 0.
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7. There is a real number x such that, for every real number y with
2 ≤ y ≤ 3, we have 1 ≤ xy < 2.

8. For every integer n < 0, there is an integer m such that mn > 0.
9. There are real numbers x and y such that x + y ∈ Z and xy �∈ Z.
10. The product of any two natural numbers is a natural number.
11. Express the fact that the exponential function f (x) = ex is increasing in a

precise statement using quantifiers.
12. Express the fact that the function f (x) = 2−x is decreasing in a precise

statement using quantifiers.

In Exercises 13 through 20, negate the given statements. Also, determine
whether the original statement or its negation is true.
13. ∀ x ∈ [−2, 2], x3 ∈ [0, 8].
14. ∃n ∈ Z− such that 5n+ 2 > 1.
15. ∀ x ∈ R+, if x2 > 4 then x > 2.
16. ∀ x ∈ (−∞, −4), if 3

√
x > 0 then x = −5.

17. ∃n ∈ Z such that ∀m ∈ Z, nm < 1.
18. ∀ x ∈ R, ∃ y ∈ R such that xy ∈ Z.
19. ∀m, n ∈ Z, m+ n ∈ Z.
20. ∃m, n ∈ Z such that 9m− 7n = 1.

For Exercises 21 through 32, negate the given statements.
21. There is an integer whose reciprocal is also an integer.
22. Every integer power of 2 is a real number.
23. For every real number x, x2 + 1 is positive.
24. There is an integer n such that 2n = 1024.
25. There is a natural number n such that, for every real number x, xn is

nonnegative.
26. For any real number x, there is a real number y such that x + y = 0.
27. There is a real number x such that, for every real number y with

2 ≤ y ≤ 3, we have 1 ≤ xy < 2.
28. For every integer n < 0, there is an integer m such that mn > 0.
29. There are real numbers x and y such that x + y ∈ Z and xy �∈ Z.
30. The product of any two natural numbers is a natural number.
31. Every student at Harvard University is over the age of 17.
32. There is a planet in our solar system that contains intelligent life.

Exercises 33 through 36 state some popular sayings. If one of them is not the
truth, then its negation must be the truth. Negate each statement.
33. Every truly great accomplishment is at first impossible.
34. All students take calculus.
35. There is no such thing as bad publicity.
36. For everything there is a season.
37. The definition of a constant function is given in Definition 1.15.

(a) Negate that definition.



C H A P T E R 1 ■ Logic and Sets 41

(b) An alternative way to characterize constant functions is to say that a
real function f is constant if

∀ x, y ∈ R, f (x) = f (y).

Negate this characterization.
38. Zero and Roots

A real function is said to have a root if it takes on the value 0. Express this
definition precisely using quantifiers.

In Exercises 39 through 44, let f denote a real function, and negate the corre-
sponding quantified statements given in Definition 1.15.

39. f is increasing. 40. f is decreasing.

41. f is nondecreasing. 42. f is nonincreasing.

43. f is bounded above. 44. f is bounded below.

�45. Determine whether the statement “∀ x ∈ R, x2 < 0 → 2x > 1” is true or
false, and explain why.

�46. Determine whether the statement “∀ x ∈ R, x < 3 → x2 ≥ 0” is true or
false, and explain why.

47. Explain why the statement “∀ x ∈ U , p(x)” is equivalent to an “and”
statement when |U | = 2.

48. Explain why the statement “∃ x ∈ U such that p(x)” is equivalent to an
“or” statement when |U | = 2.

�49. Explain why Proposition 1.4 is equivalent to De Morgan’s Laws when
|U | = 2.

�50. Are there conditions under which the statements “∀ x, ∃ y such that
p(x, y)” and “∃ y such that ∀ x, p(x, y)” would be logically equivalent?

Consider the following world, understood in the format of Tarski’s World. For
each expression in Exercises 51 through 56, determine whether there are any
unbound variables and, if not, whether the sentence is true or false.

a

c

b

51. Small(x) → ∃ y RightOf(y, x). 52. ∀ x FrontOf(b, x).
53. ∃ x LeftOf(x, a ). 54. ∃ x (Larger(x, y)∧Tet(y)).

�55. ∀ x ∀ y (Dodec(x) → Smaller(x, y)).
�56. ∀ x ∀ y ((Smaller(x, y) ∧ ¬Cube(y)) → Tet(y)).
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1.4 Set Operations and Identities
With quantified statements at our disposal, sets can be explored in more depth.
To start, the definitions of set equality and subsets can now be given more
precisely.

DEFINITION 1.17 Set Equality and Subsets

Given sets A and B whose elements come from some universal set U ,

(a) we say that A equals B, written A= B, if and only if

∀ x ∈ U , x ∈ A↔ x ∈ B.

(b) we say that A is a subset of B, written A⊆ B, if and only if

∀ x ∈ U , x ∈ A→ x ∈ B.

The notations � and ⊂ are already clearly defined in Definition 1.8.

For a set A in a universal set U , the assertion

A= {x : x ∈ U and p(x)} (1.5)

is equivalent to

∀ x ∈ U , x ∈ A↔ p(x). (1.6)

We now introduce five basic set operations, one at a time, using the form (1.5)
with an understood universal set U . Following this, we summarize their defini-
tions in Definition 1.18 using the form (1.6).

The complement of a set A, denoted Ac , is given by

Ac = {x : x �∈ A}.

EXAMPLE 1.30 (a) If U = {1, 2, 3, 4, 5}, then {1, 3, 5}c = {2, 4}.
The elements of {1, 2, 3, 4, 5} that are not 1, 3, or 5 are 2 and 4.

(b) If U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then {1, 3, 5}c = {2, 4, 6, 7, 8, 9, 10}.
(c) If U = [0, 1], then (0, 1)c = {0, 1}.

Only the endpoints of the closed interval [0, 1] are not in the open
interval (0, 1).

(d) If U = Z, then Nc = Z−.
The integers that are not nonnegative are negative.

The difference between the values of {1, 3, 5}c in parts (a) and (b) demonstrates
the importance of the universal set U in determining complements. ■

The intersection of two sets A and B, denoted A∩ B, is given by

A∩ B = {x : x ∈ A and x ∈ B}.

EXAMPLE 1.31 (a) {1, 3, 4, 7} ∩ {2, 3, 5} = {3}.
Only the number 3 appears in both sets on the left.

(b) [1, 4) ∩ [2, 7] = [2, 4).
The intersection of these two intervals from Figure 1.7 is the portion of
the real line that is shaded in both cases.
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1 4

2 7

Figure 1.7 Diagrams of the Intervals [1, 4) and [2, 7]

(c) Z+ ∩ Z− = ∅.
There is no integer that is both positive and negative. Note that 0 is
neither positive nor negative. ■

The union of two sets A and B, denoted A∪ B, is given by

A∪ B = {x : x ∈ A or x ∈ B}.

EXAMPLE 1.32 (a) {1, 3, 4, 7} ∪ {2, 3, 5} = {1, 3, 4, 7, 2, 5}.
All of the elements on the left are gathered together to form the set on
the right. Note that 3 need not be listed twice.

(b) [1, 4) ∪ [2, 7] = [1, 7].
The union of these two intervals from Figure 1.7 is the portion of the
real line that is shaded in either case.

(c) Z+ ∪ Z− = Z\{0}.
The set of integers that are either positive or negative excludes only 0. ■

The difference of a set A minus a set B, denoted A\B, is given by

A\B = {x : x ∈ A and x �∈ B}.

EXAMPLE 1.33 (a) {1, 3, 4, 7}\{2, 3, 5} = {1, 4, 7}.
The elements of the set {2, 3, 5} get removed from the set {1, 3, 4, 7}.
Since 3 is the only element of {2, 3, 5} in {1, 3, 4, 7}, it is the only element
that gets removed from {1, 3, 4, 7}.

(b) [1, 4)\[2, 7] = [1, 2).
This difference of the two intervals from Figure 1.7 is the portion of the
real line that is shaded in the top copy of the real line and not in the
bottom copy.

(c) Z+\Z− = Z+.
When the set being subtracted has no intersection with the set from
which it is subtracted, the result is the same as if nothing were sub-
tracted. ■

The symmetric difference of two sets A and B, denoted A� B, is given by

A� B = {x : x ∈ A ⊕ x ∈ B}.
The symmetric difference is so named since

A�B = ( A\B) ∪ (B \A).

The expression on the right is symmetric in A and B. That is, switching A and B
there yields an expression of the same set.



44 P A R T I ■ Proofs

EXAMPLE 1.34 (a) {1, 3, 4, 7}� {2, 3, 5} = {1, 4, 7, 2, 5}.
The set on the right consists of the elements that are in one or the other,
but not both, of the sets on the left.

(b) [1, 4) � [2, 7] = [1, 2) ∪ [4, 7].
The symmetric difference of these two intervals from Figure 1.7 is the
portion of the real line that is shaded in either the top copy of the real
line or the bottom copy, but not in both.

(c) Z+� Z− = Z+ ∪ Z− = Z\{0}. ■

DEFINITION 1.18 Basic Set Operations

Given sets A and B (subsets of some universal set U):

(a) The complement of A, denoted Ac , is defined by

∀ x ∈ U , x ∈ Ac ↔ x �∈ A (i.e. ¬(x ∈ A)).

(b) The intersection of A and B, denoted A∩ B, is defined by

∀ x ∈ U , x ∈ A∩ B ↔ x ∈ A and x ∈ B.

(c) The union of A and B, denoted A∪ B, is defined by

∀ x ∈ U , x ∈ A∪ B ↔ x ∈ A or x ∈ B.

(d) The difference of A minus B, denoted A\B, is defined by

∀ x ∈ U , x ∈ A\B ↔ x ∈ A and x �∈ B.

(e) The symmetric difference of A and B, denoted A�B, is defined by

∀ x ∈ U , x ∈ A�B ↔ x ∈ A ⊕ x ∈ B.

Note in Definition 1.18 the correspondence between the set operations

c, ∩, ∪, and �

and the logical operations

¬, ∧, ∨, and ⊕,

respectively. Also, in Definition 1.17 there is a correspondence between the set
relations

= and ⊆
and the logical operations

↔ and →,

respectively. These correspondences are at the heart of the proofs, given in Chap-
ter 2, of properties of these set operations and relations.

A helpful way to visualize the set operations is provided by Venn diagrams,
in which sets are represented by enclosed regions. In Figure 1.8, Venn diagrams
depicting the basic set operations are presented. In each case, the sets A and B
involved are represented by circles as labeled, and the relevant portions of the
diagram are shaded.

Unions like [1, 2)∪ [4, 7] and Z+∪Z− are examples of a special kind of union
that we now define.
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A B
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Figure 1.8 Venn Diagrams for the Basic Set Operations

DEFINITION 1.19 Given sets A and B:

(a) They are said to be disjoint if and only if A∩ B = ∅.

(b) The union A∪ B is said to be a disjoint union if and only if A and B are
disjoint.

EXAMPLE 1.35 (a) The intervals [1, 2) and [4, 7] are disjoint, since no real number can
be in both. Consequently, the union [1, 2) ∪ [4, 7] displayed on the
right-hand side of Example 1.34(b) is a disjoint union.

(b) The sets {1, 3, 4, 7} and {2, 3, 5} are not disjoint, since 3 is an element
common to both. ■

Note that A∪ B is a disjoint union if and only if A∪ B = A� B. In Exam-
ple 1.34, we see that Z+ ∪ Z− is a disjoint union and Z+ ∪ Z− = Z+� Z−.

The basic set operations of Definition 1.18 all yield a set of the same form
(in the same universe of consideration) as the sets involved. However, there are
also operations that yield sets of different forms.

DEFINITION 1.20

The product of two sets A and B, denoted A× B, is given by

A× B = {(x, y) : x ∈ A and y ∈ B}.
That is,

∀ x ∈ U and y ∈ V , (x, y) ∈ A× B ↔ x ∈ A and y ∈ B,

where A and B are subsets of universes U and V , respectively. The elements (x, y) of
the product A× B are called ordered pairs.
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In the case that A= B, the product A× B is denoted A2. For example, R2 is
the familiar Cartesian plane, in which each element is a point (x, y). When the
context is clear, there should not be any confusion between the element (x, y) of
a product and the interval (x, y).

EXAMPLE 1.36 (Products).

(a) {2, 5} × {3} = {(2, 3), (5, 3)}.
The first coordinate of an element (x, y) in this product can be either 2
or 5, but the second coordinate must be 3 in each case.

(b) {1, 2} × {2, 4, 6} = {(1, 2), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6)}.
If the first coordinate is a 1, then the second coordinate can be 2, 4, or 6.
Similarly, if the first coordinate is a 2, then the second coordinate can be
2, 4, or 6.

(c) {a , b} × {a , b} = {(a , a ), (a , b), (b, a ), (b, b)}.
Note that (a , b) is different from (b, a ), since the elements are ordered
pairs. ■

When A and B are finite,

|A× B| = |A| · |B|. (1.7)

The proof of this is left to the exercises in Section 5.6. For now, (1.7) can certainly
be seen to be true for the finite products in Example 1.36. When a product is
infinite, it is not possible to list all of its elements. However, since elements of R2

can be plotted as points, some subsets of R2 can be conveniently drawn in the
Cartesian plane.

EXAMPLE 1.37 Sketch the following subsets of R2.

(a) [1, 4) × [2, 7].
By definition, this is the set {(x, y) : x ∈ [1, 4) and y ∈ [2, 7]} = {(x, y) :
1 ≤ x < 4 and 2 ≤ y ≤ 7}.

x

y

7

2

1 4

The right-hand edge of the pictured rectangle is excluded since x = 4 is
not permitted.

(b) R× ((−∞, −1) ∪ (1,∞)).
This is {(x, y) : x ∈ R and either y < −1 or 1 < y}.
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x

y

1

�1

Of course, the lines y = −1 and y = 1 are excluded from the set. ■

It is possible to take the product of more than two sets.

DEFINITION 1.21 General Products

(a) Given sets A1, A2, . . . , An, the n-fold product A1×A2×· · ·×An is given by

A1 × A2 × · · · × An = {(x1, x2, . . . , xn) : x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An}.
(b) The elements (x1, x2, . . . , xn) of A1 × A2 × · · · × An are called ordered

n-tuples.

(c) The n-fold product A× A× · · · × A is denoted An.

EXAMPLE 1.38 The elements of R3 are the ordered triples (x, y, z), where x, y, and z are real
numbers. That is, each point of R3 is specified by three coordinates. Certainly
the order of these coordinates is important. For example, the point (1, 0, 0) is
on the x-axis, the point (0, 1, 0) is on the y-axis, and the point (0, 0, 1) is on the
z-axis. See Figure 1.9. Of course, each of these three points happens to be one
unit away from the origin (0, 0, 0).

(0, 1, 0)
(0, 0, 0)

(0, 0, 1)

(1, 0, 0)

y

x

z

Figure 1.9 A Picture of R3 ■

As we have seen in several examples from Section 1.2, sets can be elements
of sets.
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DEFINITION 1.22

Given a set A, the power set of A, denoted P( A), is the set of subsets of A,

P( A) = {B : B ⊆ A}.
That is,

∀ B, B ∈ P( A) ↔ B ⊆ A.

EXAMPLE 1.39 (Power Sets)

(a) If A= {1, 2}, then P( A) = {∅, {1}, {2}, {1, 2}}.
By Theorem 1.3, ∅ ⊆ A. Moreover, ∅ is the only subset of A of cardinality
0. The singletons {1} and {2} are the subsets of A of cardinality 1. The
set A itself is its only subset of cardinality 2.

(b) If A= {2, 4, 6}, then
P( A) = {∅, {2}, {4}, {6}, {2, 4}, {2, 6}, {4, 6}, {2, 4, 6}}.
Although it is not required, the elements on the right have been ordered
according to cardinality.

(c) P(∅) = {∅}.
The only subset of ∅ is ∅ itself.

(d) P(Z) is an infinite set, since Z itself is infinite.
It contains sets such as ∅, {1}, {2, 4, 6, 8}, {1, 3, 5, 7, 9, 11, . . .},
{. . . , −15, −10, −5, 0, 5, 10, . . .}, and Z. ■

The empty set ∅ and the set A itself are always elements of P( A) (although
they need not be distinct). The fact that, if A is finite, then

|P( A)| = 2|A| (1.8)

motivates the term power set. The proof of (1.8), like that of (1.7), is left for the
exercises in Section 5.6.

We now consider some set identities that relate the various operations we
have encountered. The similarities of these identities to the logical equivalences
encountered in Section 1.1 should be noted.

THEOREM 1.5 Basic Set Identities

Let A, B, and C be sets (in some universe U). Then, the following identities hold:

(a) ( Ac)c = A. Double Complement

(b) ( A∩ B) ∩ C = A∩ (B ∩ C). Associativity
( A∪ B) ∪ C = A∪ (B ∪ C).

(c) A∩ B = B ∩ A. Commutativity
A∪ B = B ∪ A.

(d) A∩ (B ∪ C) = ( A∩ B) ∪ ( A∩ C). Distributivity
A∪ (B ∩ C) = ( A∪ B) ∩ ( A∪ C).

(e) ( A∩ B)c = Ac ∪ Bc . De Morgan’s Laws
( A∪ B)c = Ac ∩ Bc .

(f) If A⊆ B, then A∩ B = A. Absorption Rules
If A⊆ B, then A∪ B = B.
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THEOREM 1.6 Interactions with U and ∅
Let A be a set (in some universe U). Then, the following identities hold:

(a) U c = ∅. (b) A∩ U = A.
∅c = U . A∪ U = U .

(c) A∩ ∅ = ∅. (d) A∩ Ac = ∅.
A∪ ∅ = A. A∪ Ac = U .

Identities involving products and power sets are left to Chapter 2, as are the
proofs of the identities in Theorems 1.5 and 1.6. Those proofs will come out of the
obvious correspondence between these identities and the logical equivalences in
Theorems 1.1 and 1.2. For now, familiarity with the logical equivalences should
ease intuitive acceptance of the set identities.

From the associativity rules, it follows that general n-fold intersections and
unions

A1 ∩ A2 ∩ A3 ∩ · · · ∩ An and A1 ∪ A2 ∪ A3 ∪ · · · ∪ An

may be computed by associating the sets (with parentheses) to reflect some
desired order of operations. For example, the association

((( A1 ∩ A2) ∩ A3) ∩ · · ·) ∩ An

shows one such choice in which the computation is performed left to right.
Venn diagrams can be used to help visualize some of the identities in Theo-

rems 1.5 and 1.6. Note that the most general form of a Venn diagram for three
sets appears in Figure 1.10.

A B

C

U

Figure 1.10 Venn Diagram for Three Sets

EXAMPLE 1.40 Use Venn diagrams to illustrate the set identity

A∩ (B ∪ C) = ( A∩ B) ∪ ( A∩ C).

Solution.

A B

C

U

A B

C

U
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In the left Venn diagram, the set A is shaded medium pink, and B ∪ C is
shaded light pink. Hence, the set A∩ (B ∪ C) is represented by the red shaded
portion. In the right Venn diagram, A∩ B is shaded medium pink, and A∩C is
shaded light pink. Hence, the set ( A∩ B) ∪ ( A∩ C) is represented by the
portion that is shaded any color. We see that the regions representing
A∩ (B ∪ C) and ( A∩ B) ∪ ( A∩ C) are the same. ■

EXAMPLE 1.41 Use Venn diagrams to illustrate the set identity

( A∩ B)c = Ac ∪ Bc .

Solution.

A B

U

A B

U

In the left Venn diagram, ( A∩ B)c is shaded medium pink. In the right Venn
diagram, Ac is shaded medium pink, and Bc is shaded light pink. Hence, the
portion shaded any color represents Ac ∪ Bc in the right Venn diagram. This is
the same as the portion representing ( A∩ B)c is the left Venn diagram. ■

It is important to realize that Examples 1.40 and 1.41 do not constitute proofs
of the identities therein. They merely aid intuition. Although we do not prove
the identities in Theorems 1.5 and 1.6 until Chapter 2, we use those identities
here to obtain more complicated identities. Note that we may allow ourselves
also to use obvious generalizations like

A∩ (B ∪ C ∪ D) = ( A∩ B) ∪ ( A∩ C) ∪ ( A∩ D).

EXAMPLE 1.42 Verify the set identity ( A∩ B ∩ C) ∪ ( A∩ B ∩ Cc) = A∩ B.

Verification.

( A∩ B ∩ C) ∪ ( A∩ B ∩ Cc) = (( A∩ B) ∩ C) ∪ (( A∩ B) ∩ Cc) Associativity
= ( A∩ B) ∩ (C ∪ Cc) Distributivity
= ( A∩ B) ∩ U Theorem 1.6
= A∩ B Theorem 1.6.

■

EXAMPLE 1.43 Verify the set identity ( Ac ∩ (B ∪ C))c = ( A∪ Bc) ∩ ( A∪ Cc).

Verification.

( Ac ∩ (B ∪ C))c = ( Ac)c ∪ (B ∪ C)c De Morgan’s Law
= A∪ (B ∪ C)c Double Complement
= A∪ (Bc ∩ Cc) De Morgan’s Law
= ( A∪ Bc) ∩ ( A∪ Cc) Distributivity. ■

EXAMPLE 1.44 Verify the following set identities:

(a) A∩ ( A∪ B) = A.
(b) ( A∩ B) ∪ B = B.
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Verification.

(a) It is easy to see that A⊆ A∪ B (a formal proof is given in Chapter 2).
The Absorption Rule then gives that A∩ ( A∪ B) = A. To see this, it may
be helpful to think of the Absorption Rule as

If S ⊆ T then S ∩ T = S.

We apply that rule in this case with S = A and T = A∪ B.
(b) In this case, we use the fact that A∩ B ⊆ B and the Absorption Rule

If S ⊆ T then S ∪ T = T

with S = A∩ B and T = B. ■

Software Implementation of Set Operations
If set-like data structures are needed in computer software, then certainly
basic operations like union ∪, intersection ∩, and difference \ are also needed to
manipulate these structures. Here, we consider how such operations are
addressed in the software examples introduced in Section 1.2.

In Mathematica, there do exist operations that behave as one would wish on
sets, to some extent.

In[1]:= A={4,2,2,1}

Out[1]= {4,2,2,1}

In[2]:= B={5,1,4}

Out[2]= {5,1,4}

In[3]:= Union[A,B]

Out[3]= {1,2,4,5}

In[4]:= Intersection[A,B]

Out[4]= {1,4}

In[5]:= Complement[A,B] ← Note that this is set difference.

Out[5]= {2}

Each of these ignores repetition and order in the input lists and returns a list
of distinct elements presented in a standard order. In particular, by applying
Union to a single list, we can essentially strip off its structure as a list and obtain
its more basic structure as a set.

In C++, the functions

set_union(), set_intersection(), set_difference(), and
set_symmetric_difference()

act on two input sets like ∪, ∩, \, and �, respectively.
In Maple, standard operations act as one would expect on sets.

> A := {4,2,2,1} ;

{1,2,4}

> B := {5,1,4} ;

{1,4,5}

> A union B ;

{1,2,4,5}
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> A intersect B ;

{1,4}

> A minus B ;

{2}

Additionally, the power set of a set can be computed.

> powerset({a,b}) ;

{{}, {a,b}, {b}, {a}}

Using Mathematica and Maple to explore various set operations is taken up
in the exercises.

SECTION 1.4 Exercises
In Exercises 1 through 8, find Ac , Bc , A∩ B, A∪ B, A\B, B \A, and A�B for
the given sets.
1. A= {1, 2, 3}, B = {3, 4},

and U = {1, 2, 3, 4}.
2. A= {a , b, c, d}, B = {b, d},

and U = {a , b, c, d, e}.
3. A= (−1, 1), B = [0, 1],

and U = R.
4. A= (1, 2], B = [−2, 1],

and U = R.

5. A= N, B = Z+,
and U = Z.

6. A= {0}, B = Z−,
and U = Z.

7. A= (0, 3), B = [2,∞),
and U = R+.

8. A= (−3, −1], B = [−4, −2),
and U = R−.

9. Are Z− and N disjoint? 10. Are (−2, 2) and (1, 3) disjoint?

11. Is [2, 4] ∪ (3, 5) a disjoint union? 12. Is {2, 4} ∪ {3, 5} a disjoint union?
13. Find {1, 3} × {2, 4}. 14. Find {a , b, c} × {1, 2}.
15. Find {3, 5, 7, 9} × {5}. 16. Find {a , b} × {a , b, c, d}.
In Exercises 17 through 24, sketch the given subsets of R2.

17. [2, 4]× [1, 3]. 18. (−1, 1) × (1, 2).

19. (−1, 1)2. 20. [0, 10]2.

21. R+ × [−1, 1]. 22. R+ × R−.

23. R− × R+. 24. (0, 1) × R−.
25. Find {1, 3} × {2, 4} × {1, 2}. 26. Find {a} × {a , b} × {a , b, c}.
27. Find {a , b}3. 28. What is Z3?
29. Find P({a , b, c}). 30. Find P({2}).
31. Find P({1, 2, 3, 4}). 32. Find P({x, y}).

�33. Find |P({n : n ∈ Z and 1 ≤ n ≤ 10})|.
�34. Find |P({n : n ∈ Z and − 3 ≤ n ≤ 3})|.
35. Give two finite and two infinite elements of P(R).
36. Give two finite and two infinite elements of P(N).



C H A P T E R 1 ■ Logic and Sets 53

For Exercises 37 through 40, determine whether the stated relations are true or
false.
37. 1 ∈ {1, 2} × {1, 2}. 38. (1, 1) ∈ {1, 2} × {3, 4}.
39. 1 ∈ P({1}). 40. {1} ∈ P({1, 2}).
For Exercises 41 through 44, write the set identities that correspond to the
given logical equivalences.
41. Associativity of ⊕: ( p ⊕ q ) ⊕ r ≡ p ⊕ (q ⊕ r ).
42. Commutativity of ⊕: p ⊕ q ≡ q ⊕ p.
43. Distributivity with ∧ and ∨: p ∧ (q ∨ r ) ≡ ( p ∧ q ) ∨ ( p ∧ r ) and

p ∨ (q ∧ r ) ≡ ( p ∨ q ) ∧ ( p ∨ r ).
44. Distributivity with ∧ and ⊕: p ∧ (q ⊕ r ) ≡ ( p ∧ q ) ⊕ ( p ∧ r ).

In Exercises 45 through 48, use Venn diagrams to illustrate the stated identities.
45. Distributivity. A∪ (B ∩ C) = ( A∪ B) ∩ ( A∪ C).
46. De Morgan’s Law. ( A∪ B)c = Ac ∩ Bc .
47. Absorption. If A⊆ B, then A∩ B = A and A∪ B = B. Hint: Use a Venn

diagram of the form

B
A

48. Associativity. ( A∩ B) ∩ C = A∩ (B ∩ C) and ( A∪ B) ∪ C = A∪ (B ∪ C).

In Exercises 49 through 56, use Theorems 1.5 and 1.6, as well as obvious
generalizations, to verify the stated identities.
49. A∩ ( Ac ∪ B ∪ C) = ( A∩ B) ∪ ( A∩ C).
50. ( A∪ B ∪ C)c = Ac ∩ Bc ∩ Cc .
51. ( A∩ B ∩ Cc) ∪ ( A∩ Bc ∩ C) = A∩ (B�C).
52. ( A∩ B ∩ Cc) ∪ ( A∩ Bc ∩ Cc) = A∩ Cc .
53. A∩ ((B ∩ C)c) = ( A∩ Bc) ∪ ( A∩ Cc).
54. ( A∪ (B ∩ C))c = ( A∪ B)c ∪ ( A∪ C)c .

�55. ( A∩ B) ∪ ( A∩ B ∩ C) = A∩ B.
�56. ( A∪ B) ∩ ( A∪ B ∪ C) = A∪ B.

In Exercises 57 through 62, use Mathematica to perform the given tasks.
57. Define the function

In[1]:= setEq[x_, y_] := (Union[x] == Union[y])

and experiment with setEq[A,B] for various lists A and B. Does this test
for equality as sets? as lists?

58. Define the function

In[1]:= subSet[x_, y_] := (Union[x, y] == Union[y])

and experiment with subSet[A,B] for various lists A and B. Does this
test for the subset relation?

59. Define a function disjoint that tests whether two given sets are disjoint,
and experiment with that function for various lists A and B.
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60. Define a function cardSet that finds the cardinality of a given list
regarded as a set, and experiment with that function for various lists A.

61. Define a function symmDiff that finds the symmetric difference of two
given lists regarded as sets, and experiment with that function for various
lists A and B.

62. Let U = {0,1,2,3,4,5,6,7,8,9}, define the functions

In[1]:= compUn[x_, y_] := Complement[U, Union[x, y]]

In[2]:= intComp[x_, y_] :=
Intersection[Complement[U, x], Complement[U, y]]

and experiment with compUn[A,B] and intComp[A,B] for various lists
A and B. How are the two results related? Why?

In Exercises 63 through 68, use Maple to perform the given tasks.
63. For various sets A and B, experiment with the given expressions, and in

each case, determine which of the two operations is computed first.
(a) A intersect B union C

(b) A union B intersect C

64. Compute powerset({{}}).
65. Define the functions

> subset1 := (x,y) -> evalb(x = x intersect y) ;

> subset2 := (x,y) -> member(x,powerset(y)) ;

and experiment with subset1(A,B) and subset2(A,B) for various
sets A and B. What do these two functions do? Which of the two ought to
be more efficient? Why?

66. Define the function

> disjoint := (x,y) -> evalb(x intersect y = {}) ;

and experiment with disjoint(A,B) for various sets A and B. Does it
test whether A and B are disjoint sets?

67. Let U = {0,1,2,3,4,5,6,7,8,9}, define a function compU that finds
the complement of a given subset A of U, and experiment with compU for
various subsets.

68. Define a function symmDiff that finds the symmetric difference of two
given sets, and experiment with that function for various sets A and B.

1.5 Valid Arguments
In order to prove theorems, we need to be able to deduce a statement from a
sequence of prior statements. This section considers circumstances under which
such deductions can be made.

An argument consists of a sequence of statements, called premises, followed
by a final statement, called the conclusion. In a formal presentation of an argu-
ment, the symbol ∴ is placed before the conclusion and represents the
word therefore. Example 1.45 gives two examples of arguments from plane
geometry.
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EXAMPLE 1.45 (a) If triangles T1 and T2 are congruent, then T1 and T2 are similar.
Triangles T1 and T2 are congruent.
∴ T1 and T2 are similar.

(b) If quadrilateral Q is a rectangle, then both pairs of opposite sides of Q
are parallel.
The quadrilateral Q is not a rectangle.
∴ Q has a pair of nonparallel opposite sides. ■

In order to analyze the arguments of Example 1.45, we examine their struc-
ture. We step back from the specific statements in the arguments and, instead,
consider the corresponding statement forms. Of course, we must recognize when
the same statement (or its negation) appears in multiple places in an argument.
In this way, we obtain the form of a given argument. The argument forms cor-
responding to the arguments from Example 1.45 are given in Example 1.46.

EXAMPLE 1.46 (a) The following is the form of the argument in Example 1.45(a).

p → q

p

∴ q

(b) The following is the form of the argument in Example 1.45(b).

p → q

¬p

∴ ¬q ■

DEFINITION 1.23

(a) An argument form
p1

p2

...

pn

∴ r

is a sequence of (premise) statement forms p1, p2, . . . , pn followed by a
(conclusion) statement form r (preceded by the symbol ∴ for “therefore”).

(b) The argument form is considered to be valid if and only if the statement
form p1 ∧ p2 ∧ · · · ∧ pn → r is a tautology. Otherwise, it is considered to be
invalid.

Arguments are analyzed by considering their forms. An argument is said
to be valid if and only if its corresponding argument form is valid. Of course,
checking that a statement of the form p1 ∧ p2 ∧ · · · ∧ pn → r is a tautology can
be accomplished with a truth table, and it suffices to check that the conclusion r
is true in those rows in which each of the premises p1, p2, . . . , pn is true.

EXAMPLE 1.47 (a) Verify that the argument form in Example 1.46(a) is valid (and hence the
argument in Example 1.45(a) is valid).
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Solution.
p q p → q p q

F F T F
F T T F
T F F T
T T T T T

The truth table shows that ( p → q ) ∧ p → q is a tautology. It contains a
column for each premise and one for the conclusion. In each row in
which both of the premises p → q and p are true, the conclusion q is
also seen to be true. The value of the conclusion q in the other rows
need not be checked to now conclude that ( p → q ) ∧ p → q is a tautol-
ogy, since an if-then statement is always true when its hypothesis is
false. Therefore, the argument form in Example 1.46(a) is valid.

(b) Verify that the argument form in Example 1.46(b) is invalid (and hence
the argument in Example 1.45(b) is invalid).

Solution.
p q p → q ¬ p ¬q

F F T T T
F T T T F
T F F F
T T T F

The second row of the truth table shows that ( p → q ) ∧ ¬p → ¬q is not
a tautology. In that row, the hypothesis ( p → q ) ∧ ¬p is true, but the
conclusion ¬q is false. Therefore, the argument form in Example 1.46(b)
is not valid. ■

The next example illustrates the fact that the validity of an argument is not
characterized solely by the truth of its conclusion.

EXAMPLE 1.48 Determine whether the following argument is valid.

23 > 0.

If 2 > 0 then 23 > 0.

∴ 2 > 0.

Solution. The argument has the following form.

p

q → p

∴ q

The truth table
p q p q → p q

F F F T
F T F F
T F T T F
T T T T T
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shows that the statement form p ∧ (q → p) → q is not a tautology. Specifically,
this is seen in the third row, in which the premises are true but the conclusion
is false. Thus the argument form, and hence the argument, is invalid. ■

What can lead to confusion in an example like Example 1.48 is that the con-
clusion is certainly true under the conditions given in the premises. In fact, in
this case the conclusion is true independent of those premises. However, the con-
clusion does not follow from the displayed premises. The important point here
is that the validity of an argument is defined in terms of the validity of its form.
The argument form is not valid. Therefore, the argument is not considered valid.

Theorem 1.7 lists several valid argument forms. Part (a) included there was
shown to be valid in Example 1.47(a). Verification of the validity of some of the
other parts is accomplished in subsequent examples. The rest are left for the
exercises.

THEOREM 1.7 Basic Valid Argument Forms
(a) p → q Direct Implication

p
∴ q

(b) p → q Contrapositive Implication
¬q
∴ ¬p

(c) p → q Transitivity of→
q → r
∴ p → r

(d) p → r Two Separate Cases
q → r
p ∨ q
∴ r

(e) p ∨ q Eliminating a Possibility
¬p
∴ q

(f) p ∧ q In Particular
∴ p

(g) p Obtaining Or
∴ p ∨ q

(h) p Obtaining And
q
∴ p ∧ q

(i) p ↔ q Substitution of Equivalent
p
∴ q

In addition to performing the straightforward verifications of the argument
forms in Theorem 1.7, some time should be spent internalizing them. The names
attached to each argument form are nonstandard but should aid in this pro-
cess. Basic arguments of these basic forms appear throughout more complicated
arguments. Hence, quick recollection of the basic forms is valuable. Verification
of the argument forms may be helpful in the process of remembering them.

Some parts of Theorem 1.7 are in fact consequences of other parts. In partic-
ular, this is true of part (i).
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EXAMPLE 1.49 Verify that part (i) of Theorem 1.7 is a valid argument form by using some of
the earlier parts of that theorem.

Verification.
Starting from the premises as given, we successively apply known logical
equivalences and valid argument forms to our current list of statement forms,
until the desired conclusion is obtained.

Statement Form Justification

1. p ↔ q Given
2. p Given
3. ( p → q ) ∧ (q → p) (1), Definition of↔
4. p → q (3), In Particular
5. ∴ q (2),(4), Direct Implication ■

The argument in the next example is just a special case of part (b) of Theo-
rem 1.7. It is, however, extremely important in its own right.

EXAMPLE 1.50 (Argument by Contradiction). Verify that the following argument form is valid.

¬p → f

∴ p

Verification.

Statement Form Justification

1. ¬p → f Given
2. t Definition of t

3. ¬ f (2), Theorem 1.2(a), Substitution of Equivalent
4. ¬¬p (1), (3), Contrapositive Implication
5. ∴ p (4), Double Negative, Substitution of Equivalent

Note that the tautology t need not be included as one of the premises, since it
is automatically true independent of everything else. ■

The basic idea of an argument by contradiction is very simple. If the negation
of a statement implies a contradiction, then the statement must, in fact, be true.

EXAMPLE 1.51 Verify that the following argument is valid.

If R+ = ∅ then 1 ≤ 0.

If R+ = ∅ then − 1 ≤ 0.

1 > 0 or − 1 > 0.

∴ R+ �= ∅.
Verification.
The argument’s form

p → ¬q

p → ¬r

q ∨ r

∴ ¬p
can be seen to be valid.
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Statement Form Justification

1. p → ¬q Given
2. p → ¬r Given
3. q ∨ r Given
4. ¬¬q → ¬p (1), Contrapositive, Substitution of Equivalent
5. ¬¬r → ¬p (2), Contrapositive, Substitution of Equivalent
6. q → ¬p (4), Double Negative, Substitution of Equivalent
7. r → ¬p (5), Double Negative, Substitution of Equivalent
8. ∴ ¬p (3),(6),(7), Two Separate Cases

Therefore, the argument is valid. ■

Arguments Involving Quantifiers
None of the arguments considered so far involved quantified statements, yet
most of the mathematical statements that we prove and use are quantified. Con-
sequently, we need the ability to handle such statements in arguments.

THEOREM 1.8 Principle of Specification

If the premises

∀ x ∈ U , p(x) and

a ∈ U
hold, then the conclusion

p(a )

also holds.

THEOREM 1.9 Principle of Generalization

From the following steps:

(i) Take an arbitrary element a ∈ U .

(ii) Establish that p(a ) holds.

the conclusion

∀ x ∈ U , p(x)

is obtained.

The validity of the Principles of Specification and Generalization follows
from the definition of the quantified statement

∀ x ∈ U , p(x),

which specifies the conditions under which such a universal statement is true.
Note that step (i) in the Principle of Generalization is an assumption that is made
in order to apply that principle.

It is important to recognize the difference between the two principles. The
Principle of Specification starts with a universal statement and concludes with a
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specific instance. The Principle of Generalization starts with a specific but arbi-
trarily chosen element a in the universe of consideration U and concludes with
a universal statement. It is critical to understand in this latter case that a repre-
sents an arbitrary or generic element of U . That is, a is assumed to have precisely
the properties that characterize membership in the set U , no more and no less.
Moreover, a should not be taken to be a particular element of U that can be dis-
tinguished from any other element.

All of the arguments in Theorem 1.7 have universal analogs. Examples 1.52
and 1.53 give analogs of part (a), and Example 1.54 gives an analog of part (c).

EXAMPLE 1.52 Show that the following argument form is valid.

∀ x ∈ U , p(x) → q (x)
a ∈ U
p(a )
∴ q (a )

Verification.

Statement Form Justification

1. ∀ x ∈ U , p(x) → q (x) Given
2. a ∈ U Given
3. p(a ) Given
4. p(a ) → q (a ) (1),(2), Principle of Specification
5. ∴ q (a ) (3),(4), Direct Implication ■

EXAMPLE 1.53 Show that the following argument form is valid.

∀ x ∈ U , p(x) → q (x)
∀ x ∈ U , p(x)
∴ ∀ x ∈ U , q (x)

Verification.

Statement Form Justification

1. ∀ x ∈ U , p(x) → q (x) Given
2. ∀ x ∈ U , p(x) Given
3. Let a ∈ U be arbitrary. Assumption
4. p(a ) → q (a ) (1),(3), Principle of Specification
5. p(a ) (2),(3), Principle of Specification
6. q (a ) (4),(5), Direct Implication
7. ∴ ∀ x ∈ U , q (x) (3),(6), Principle of Generalization ■

EXAMPLE 1.54 Show that the following argument form is valid.

∀ x ∈ U , p(x) → q (x)
∀ x ∈ U , q (x) → r (x)
∴ ∀ x ∈ U , p(x) → r (x)
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Verification.
Statement Form Justification

1. ∀ x ∈ U , p(x) → q (x) Given
2. ∀ x ∈ U , q (x) → r (x) Given
3. Let a ∈ U be arbitrary. Assumption
4. p(a ) → q (a ) (1),(3), Principle of Specification
5. q (a ) → r (a ) (2),(3), Principle of Specification
6. p(a ) → r (a ) (4),(5), Transitivity of→
7. ∴ ∀ x ∈ U , p(x) → r (x) (3),(6), Principle of Generalization ■

Remark 1.3 In practice, when the Principle of Generalization is used in
an argument, the variable x attached to the universal quantifier is also
used to represent the arbitrary element of U , rather than introducing a
new variable a . The separate variable a is used here to enhance clarity in
the verification of the relevant argument forms. Throughout the rest of
the book, a separate variable is not used.

How Do We Show That an Argument Form Is Invalid? If the argument form
does not involve quantifiers, then we have seen that a truth table always deter-
mines whether or not the argument form is valid. In the case of the argument
form in Example 1.46(b)

p → q
¬p
∴ ¬q

(1.9)

the following line from the truth table in Example 1.47(b)

p q p → q ¬ p ¬q

F T T T F
(1.10)

demonstrates that (1.9) is invalid. Moreover, (1.10) gives an outline for construct-
ing an example of an argument of the form (1.9) in which each of the premises
is true but the conclusion is false. For instance, we might take

p = “0 = 1.”
q = “0 = 0.”

The resulting argument
If 0 = 1 then 0 = 0.

0 �= 1.

∴ 0 �= 0.

is certainly invalid; its premises are true and its conclusion is false. That is, the
invalidity of an argument form can be demonstrated by giving an example of
an argument of that form with true premises and a false conclusion. Since truth
tables are not an option in argument forms involving quantifiers, this method
of showing that an argument form is invalid is useful in the general case.

EXAMPLE 1.55 Show that the argument form

∀ x ∈ U , p(x) → q (x)
a ∈ U
p(a )
∴∀ x ∈ U , q (x)

is invalid.
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Solution. We provide an example.

Let U = R,
p(x) = q (x) = “x > 0”, and
a = 1.

In the argument ∀ x ∈ R, (x > 0) → (x > 0)
1 ∈ R

1 > 0
∴∀ x ∈ R, x > 0

all of the premises are true, but the conclusion is false. Hence, the given
argument form is invalid. ■

In general, an argument can be shown to be invalid by providing an exam-
ple of an argument of the same form each of whose premises is true but whose
conclusion is false. For example, the argument

∀ x ∈ R, (x > 0) → (x3 > 0).
2 ∈ R.

23 > 0.

∴ 2 > 0.

is invalid, since it has the same form as the obviously invalid argument

∀ x ∈ R, (x > 0) → (x2 > 0).
−2 ∈ R.

(−2)2 > 0.

∴− 2 > 0.

SECTION 1.5 Exercises
In Exercises 1 through 8, use truth tables to verify the validity of the given
argument form.
1. Theorem 1.7(b). Contrapositive Implication.
2. Theorem 1.7(c). Transitivity of→.
3. Theorem 1.7(d). Two Separate Cases.
4. Theorem 1.7(e). Eliminating a Possibility.
5. Theorem 1.7(f). In Particular.
6. Theorem 1.7(g). Obtaining Or.
7. Theorem 1.7(h). Obtaining And.
8. Theorem 1.7(i). Substitution of Equivalent.

In Exercises 9 through 14, determine whether the given argument form is valid
or invalid. Justify your answers.
9. p → q

q
∴ p

10. p → r
q → r
p ⊕ q
∴ r
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11. p ∨ q
p → r
∴ q ∨ r

12. p ∨ q
p ∧ q → r
∴ r

13. p ∨ q
p
∴ ¬q

14. p → q
r → q
¬( p ∧ r )
∴ ¬q

15. (a) Show that the following argument form is valid.

p → r
q → r
∴ p ∨ q → r

(b) Use part (a) to show, without using a truth table, that Theorem 1.7(d),
“Two Separate Cases,” is valid.

�(c) Show that the argument form “Three Separate Cases”

p → s

q → s

r → s

p ∨ q ∨ r

∴ s

is valid without using a truth table.
16. (a) Show that the following argument form is valid.

s ∨ q

r ∨ ¬q

∴ s ∨ r

�(b) Use part (a) for s = ¬p together with the logical equivalence
a → b ≡ ¬a ∨ b to prove Theorem 1.7(c).

In Exercises 17 through 20, determine whether the given argument is valid or
invalid. Justify your answers.

17. 210 > 102 or 102 > 210.

∴ 210 > 102.

18. 3 ∈ Z and π �∈ Z.

∴ 3 ∈ Z.

19. Z is finite or Z is infinite.

Z is infinite.

∴ R is infinite.

20. N is finite or Z− is finite.

Z− is infinite.

∴ N is finite.

In Exercises 21 through 26, use Theorem 1.7 to show that the given argument
forms are valid without using a truth table.

21. p → q
q → r
p
∴ r

22. p ∨ q → r
p
∴ r

23. p → r
p ∧ q
∴ r

24. p → r
p ∨ q
¬q
∴ r
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25. p ∧ (q ∨ r )
( p ∧ q ) → s
( p ∧ r ) → s
∴ s

26. p → q
p → r
p
∴ q ∧ r

�27. Use part (e) of Theorem 1.7 to prove part (a).
Hint: p → q ≡ ¬p ∨ q .

�28. Use part (e) of Theorem 1.7 to prove part (b).

In Exercises 29 through 38, verify that the given argument form is valid.

29. ∀ x ∈ U , p(x) → q (x)
a ∈ U
¬q (a )
∴ ¬p(a )

30. ∀ x ∈ U , p(x) ∨ q (x)
a ∈ U
¬p(a )
∴ q (a )

31. ∀ x ∈ U , p(x) → q (x)
∀ x ∈ U , ¬q (x)
∴ ∀ x ∈ U , ¬p(x)

32. ∀ x ∈ U , p(x) ∨ q (x)
∀ x ∈ U , ¬p(x)
∴ ∀ x ∈ U , q (x)

33. ∀ x ∈ U , p(x)
∀ x ∈ U , q (x)
a ∈ U
∴ p(a ) ∧ q (a )

34. ∀ x ∈ U , p(x) → q (x)
∀ x ∈ U , q (x) → r (x)
a ∈ U
p(a )
∴ r (a )

35. ∀ x ∈ U , p(x)
∀ x ∈ U , q (x)
∴ ∀ x ∈ U , p(x) ∧ q (x)

36. ∀ x ∈ U , p(x) → q (x)
∀ x ∈ U , q (x) → r (x)
∴ ∀ x ∈ U , p(x) → r (x)

�37. ∀ x ∈ U , p(x) ∨ q (x)
a ∈ U
q (a ) → r (a )
∴ p(a ) ∨ r (a )

�38. ∀ x ∈ U , p(x) ∧ ¬q (x)
∀ x ∈ U , q (x) ∨ r (x)
∴ ∀ x ∈ U , ¬p(x) → r (x)

In Exercises 39 through 42, verify that the given argument form is invalid.

39. ∀ x ∈ U , p(x) ∨ q (x)
∀ x ∈ U , ¬p(x)
∴ ∀ x ∈ U , ¬q (x)

40. ∀ x ∈ U , p(x) ∨ q (x)
∀ x ∈ U , q (x) ∨ r (x)
∴ ∀ x ∈ U , p(x) ∨ r (x)

41. ∀ x ∈ U , p(x) ∨ q (x)
a ∈ U
p(a ) ∧ q (a )
∴ ∀ x ∈ U , p(x) ∧ q (x)

42. ∀ x ∈ U , p(x) → q (x)
a ∈ U
q (a ) → p(a )
∴ ∀ x ∈ U , q (x) → p(x)

In Exercises 43 through 46, determine whether the given argument is valid or
invalid. Justify your answers.

43. ∀ x ∈ R, (x > 1) → (x2 > 1)
4 = 22

4 > 1
∴ 2 > 1.

44. ∀ n ∈ Z, ( 1
n ∈ Z) → (n = 1 or n = −1)

1
2 �∈ Z

∴ 2 �= 1 and 2 �= −1.

�45. ∀ n ∈ Z, (n < 0) → (−n > 0)
−2 ≤ 0
∴ 2 ≥ 0.

46. ∀ A, B ⊆ R, ( A⊆ B) → ( A∩ B = A)
∀ A, B ⊆ R, ( A∩ B = A) → ( A⊆ B)
∴ ∀ A, B ⊆ R, ( A⊂ B) → ( A⊆ B).

47. State the appropriate Principle of Specification for statements of the form
“∀ x, y ∈ U , p(x, y).”
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48. State the appropriate Principle of Generalization to achieve statements of
the form “∀ x, y ∈ U , p(x, y).”

CHAPTER 1 Review Problems

1. Determine whether the sentence “If 0 > 0, then 1 = 2” is a statement. If so,
is it true?

2. Make a truth table for the statement form p → ¬q .
3. Verify the logical equivalence ( p ∨ q ) ≡ (¬p ∧ q ) ∨ p.
4. Verify the logical equivalence ¬( p ∧ ¬q ) ≡ ¬p ∨ q .
5. Verify that ( p → q ) ∨ (q → p) is a tautology.
6. Are ¬p → q and p ∨ q logically equivalent? Justify your answer.
7. Are p → (q ∨ r ) and ( p → q ) ∨ r logically equivalent? Justify your answer.
8. For the statement form p → p ∨ ¬q , find and simplify its

(a) converse.
(b) contrapositive.

(c) inverse.
(d) negation.

9. Experienced programmers know the truth of the following statement.
“If the program contains a syntax error, then the program does not
compile.”

Since its contrapositive is an equivalent statement, express its
contrapositive.

10. Negate the statement ¬p ∨ (q ∧ ¬r ).
11. Steve’s mom made the following statement.

“Steve is doing his homework or Steve is not going to the basketball
game.”

However, Steve does not believe this to be true. Express the negation of his
mother’s statement.

12. Verify the logical equivalence

¬p ∧ (q ∨ ¬r ) ≡ (¬p ∧ q ) ∨ ¬( p ∨ r )

by using known logical equivalences.
13. Verify the logical equivalence

( p ∧ q ∧ ¬r ) ∨ (¬p ∧ q ∧ ¬r ) ≡ q ∧ ¬r

by using known logical equivalences.
14. Trace the pictured circuit to determine an expression for the output in

terms of the input, and make an input-output table.

Q

P

S

R

AND

AND

NOT

OR

15. Draw a circuit that realizes the expression ¬(( P ∨ Q) ∧ R) = S.
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In Exercises 16 through 25, determine whether each of the following relations
is true or false.
16. {1, 2, 3, 4} = {4, 3, 2, 1}. 17. {1} ∈ {1, 2, 3}.
18. 1 ⊆ {1}. 19. {1, 2} ∈ {{1, 2}, {3, 4}}.
20. [0, 1] is finite. 21. {2} ⊆ {1, 2, 3}.
22. 1 ∈ {{1}, {2}}. 23. 0 ⊂ Z.
24. {1, 2, 1, 2} ⊆ {1, 2}. 25. |{∅}| = 0.

In Exercises 26 through 28, express the following sets in set notation.
26. The set of even integers from 4 to 12. (See Definition 3.1 in Section 3.1.)
27. The set of real roots of the polynomial

p(x) = x5 + x4 + x3 + x2 + x + 1.

28. (−3, −1].
�29. Find |{x : x ∈ R and x2 + x − 1 = 0}|.
30. Express the “set” from Russell’s Paradox, and explain why it cannot be

a set.

In Exercises 31 through 36, write the given statements efficiently using
quantifiers and standard notation.
31. Every integer power of 2 is an integer.
32. There is an integer power of 2 that is greater than 1000.
33. The quotient of any real number by any nonzero real number is a real

number.

34. For every real number x such that 1 < x ≤ 4, we have 1
4 ≤ 1

x < 1.

35. The sum of any two integers is an integer.
36. Every real number has a real cube root.

In Exercises 37 through 42, negate the given statements.

37. ∀ x ∈ N, x2 ∈ N and 1
2x �∈ N.

38. ∃ x ∈ R such that x2 − x + 1 = 0.
39. ∀ x ∈ R, if x3 < 0 then x < 0.
40. ∀ x, y ∈ R, (x + y)2 = x2 + 2xy+ y2.
41. ∃n ∈ Z such that, if n < 0, then n2 − 1 > 0.
42. ∀ x ∈ R, ∃n ∈ Z such that xn > 0.
43. The following popular saying may be accepted as wisdom.

“Truth is not always popular, but it is always right.”
However, express the negation of this statement.

44. Given that A= {1, 2, 3} and B = {2, 5}, find each of the following:
(a) A∩ B

(b) A∪ B

(c) B\A

(d) A�B

(e) A× B

(f) P(B)
45. If U = R, then find (−1,∞)c . 46. Find Z ∩ (−1, 1).

47. Find {1, 2, 3, 4} ∪ {2, 4, 6, 8}. 48. Find [3, 5]\[2, 4).



C H A P T E R 1 ■ Logic and Sets 67

49. Find {a , b, c, f }�{d, e, f }. 50. Are N and Z disjoint?
51. Find {x, y, z} × {p, q }. 52. Sketch (−1, 1) × [0, 1].

53. Find {1}2. 54. Find P({x, y, z}).
In Exercises 55 through 58, use known set identities to verify the given set
identity.

55. ( Ac ∩ Bc)c = A∪ B. 56. Ac ∩ (B ∪Cc) = ( Ac ∩ B) ∪ ( A∪ C)c .
57. ( A∩ Bc) ∪ ( A∩ B) = A. 58. ( Ac ∩ B ∩Cc)∪ ( Ac ∩ (Bc ∪C)) = Ac .
59. Use truth tables to verify the

validity of the given argument
form.

p ∧ q

p → r

∴ q ∧ r

60. Use truth tables to verify the
validity of the given argument
form.

p → q

q → r

r → p

∴ p ↔ r

61. Determine whether the given
argument form is valid. Justify
your answer.

p ∨ q

q → r

∴ p ∨ r

62. Determine whether the given
argument form is valid. Justify
your answer.

p ∧ ¬q

q ∨ r

∴ ¬r → p

63. Determine whether the given argument form is valid. Justify your answer.

p → q

r → q

q

∴ p ∨ r

64. A geometry student has used the following argument in his homework
assignment.

Rhombus R is a square or a parallelogram.
Rhombus R is a parallelogram.
∴ Rhombus R is not a square.

Determine whether the argument is valid. Justify your answer.
65. Without using a truth table,

verify that the given argument
form is valid.

p → (q ∨ r )
¬q ∧ ¬r

∴ ¬p

66. Without using a truth table, verify
that the given argument form is
valid.

¬r

p → q

q → r

∴ ¬p

67. Verify that the given argument form is valid.

∀ x ∈ U , p(x) ∧ q (x)
∴ ∀ x ∈ U , p(x)
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68. Verify that the given argument
form is valid.

∀ x ∈ U , p(x) ∨ q (x)
a ∈ U
¬q (a )
∴ p(a )

�69. Verify that the given argument form
is valid.

∀ x ∈ U , p(x) ∨ ¬q (x)
∀ x ∈ U , q (x)
∴ ∀ x ∈ U , p(x)

70. Show that the argument

∀ x ∈ R, x < 1 or x > 0
∀ x ∈ R, x > 0 or x2 > −1
∴ ∀ x ∈ R, x < 1 or x2 > −1

is invalid.
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Basic Proof Writing

IN THIS CHAPTER, we learn how to prove statements. In addition, emphasis

is placed on how to write proofs. We want to move away from the rigid two-column

(statement-reason) format sometimes used in high school geometry courses. Lists of

statements or equations with little or no words connecting them will instead be consi-

dered a sketch of a proof and not a proof itself. We move past the formal structure in

which the argument forms of Section 1.5 were presented and verified. However, those

forms certainly provide the logical foundation on which proofs are built.

Proofs are written in proper English. Correct grammar is necessary. Further, there

should be a flow from sentence to sentence that carries the reader through the argu-

ment. An analogy can be made comparing a proof writer to a painter. Just as a painter

may start with a charcoal sketch on the canvas, a proof writer may start with a sketch

of the proof on some scratch paper. For the painter, the desired work of art is not

completed until the paint in all of its colors is applied. In a similar fashion, the proof

writer succeeds through good writing. Moreover, just like paintings, proofs have styles.

With practice, such as that gained in this chapter and subsequent chapters, everyone

develops their own proof-writing style.

An additional issue that needs to be addressed before we begin writing proofs

regards what facts can be used without proof. In this chapter, the primary context of our

proofs will be set theory. We are not allowed to use any properties of sets until we have

proved them first. Only the definitions from Chapter 1 are assumed. Additionally, we

consider some proofs of facts about the real numbers and real functions. For those, only

the facts given in Appendix A may be used without proof.

2.1 Direct Demonstration
We start with some very simple examples of proofs to illustrate the basic princi-
ples. In Example 2.1, a sketch is presented first, and then the proof is provided.
This should emphasize the difference between sketches and proofs.

EXAMPLE 2.1 Show that the points (−4, −5), (2, −2), and (8, 1) lie on a common line.

Note that show is synonymous with prove.

69
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Sketch of the proof for Example 2.1.

m = −5− (−2)
−4− 2

= −5+ 2
−6

= −3
−6

= 1
2

y− (−5) = 1
2 (x − (−4))

y+ 5 = 1
2 (x + 4) = 1

2 x + 2

y = 1
2 x − 3

1 = 1
2 (8) − 3

Our sketch contains the calculations sufficient to prove our statement.
However, it is merely a list of equations, and no explanation is given to carry a
reader through the argument. In contrast, our proofs will be written in proper
English. They will contain complete sentences that flow from one step to
another, giving appropriate justifications.

Proof for Example 2.1.

Let L be the line given by the equation y = 1
2 x − 3. Observe that

−5 = 1
2 (−4) − 3,

−2 = 1
2 (−2) − 3, and

1 = 1
2 (8) − 3.

Therefore, all of the points (−4, −5), (2, −2), and (8, 1) lie on the common
line L . �

The symbol � signifies the end of the proof. Some people instead use Q.E.D.,
which stands for the Latin phrase quod erat demonstrandum and means “which
was to be demonstrated.”

In some ways, the proof for Example 2.1 turned out to be more efficient than
the sketch, since we stripped out some of the extraneous calculations used to
discover the equation of our line. The point is that we need to write enough so
that the reader sees a clear argument. However, we do not always need to share
all of our scratch work. Certainly, no failed attempts at the proof and no false or
unnecessary steps should be included in a final proof.

Existential Statements
To prove a statement of the form

∃ x ∈ U such that p(x)

it suffices to present an example of a particular element x ∈ U for which p(x)
holds.

EXAMPLE 2.2 Show: There is a set A such that A ∩ R+ = Z+.

Proof
Let A= Z.
Observe that

A ∩ R+ = Z ∩ R+ = Z+. �
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For the proof in Example 2.2, A = Z+ would provide another example for
which A∩ R+ = Z+. Of course, there are many others as well. However, a single
example suffices. Moreover, examples we might have tried that do not work are
certainly not included.

The method of presenting a single example also works, in fact, for any num-
ber of existential quantifiers.

EXAMPLE 2.3 Show: There exist sets A and B such that |A∪ B| < |A| + |B|.
Proof
Let A= {1, 2} and B = {2, 3}.
So A∪ B = {1, 2, 3}.
Observe that

|A∪ B| = 3 < 2+ 2 = |A| + |B|. �

Counterexamples
If a statement is not true, then we want to disprove it. That is, we want to verify
that the statement is false. If the statement has the form

∀ x ∈ U , p(x), (2.1)

then it is disproved by presenting an example of a particular element x ∈ U
for which p(x) does not hold. Such an example is called a counterexample.
Of course, this technique works since the negation of (2.1) is the existential
statement

∃ x ∈ U such that ¬p(x).

EXAMPLE 2.4 Disprove: Every interval’s complement is not an interval.
Note that we seek an interval whose complement is also an interval.

Counterexample
Let I = [0,∞).
So I is an interval.
Observe that

I c = [0,∞)c = (−∞, 0).

So I c is also an interval.
Hence, there is an interval whose complement is also an interval. �

Sometimes we do not know in advance whether a given statement is true or
false. Hence, we must decide whether a proof or a disproof is warranted.

EXAMPLE 2.5 Prove or Disprove: ∀ x ∈ R, if x < 2, then x2 < 4.

Solution. By thinking about values x for which x ≤ −2, we discover that this
statement is not true. Therefore, a counterexample is warranted and comes
from picking a particular value x with x ≤ −2 (whence x2 ≥ 4).
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Counterexample
Let x = −3.
So x2 = 9.
Observe that x < 2 and x2 ≥ 4.
That is, for x = −3, it is not true that

if x < 2, then x2 < 4. �

In Example 2.5, it is important to recall that the negation of the if-then state-
ment form p → q is the statement form p ∧ ¬q .

Universal Statements for Small Universes
If a universe U is finite and has a very small size, then it may be reasonable to
prove a statement of the form

∀ x ∈ U , p(x)

by verifying p(x) for each individual element x ∈ U .

EXAMPLE 2.6 Show: ∀ x ∈ {−1, 0, 1}, x3 = x.

Proof
Observe that

(−1)3 = −1,
03 = 0, and
13 = 1. �

EXAMPLE 2.7 Define A0 = ∅, A1 = {∅}, A2 = {∅, {∅}}, and A3 = {∅, {∅}, {∅, {∅}}}.
Show, for each integer 0 ≤ i ≤ 2, that Ai+1 ⊆ P( Ai ).

Proof
For i = 0, P( Ai ) = {∅}.
Observe that

A1 = {∅} = P( A0).

In particular, Ai+1 ⊆ P( Ai ).

For i = 1, P( Ai ) = {∅, {∅}}.
Observe that

A2 = {∅, {∅}} = P( A1).

In particular, Ai+1 ⊆ P( Ai ).

For i = 2, P( Ai ) = {∅, {∅}, {{∅}}, {∅, {∅}}}.
Observe that

A3 = {∅, {∅}, {∅, {∅}}} ⊆ P( A2).

That is, for i = 0, 1, 2, we have Ai+1 ⊆ P( Ai ). �

The technique used in Examples 2.6 and 2.7 should be applied only when |U |
is small. If that is not the case, then the universal statement should be proved
using techniques encountered in the subsequent sections.
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Comments on Proof Writing. Just as we did in this section, in much of Part I of
this book, we shall start each sentence of our proofs on a new line. This is done
to encourage a pause at the end of each statement to reflect on how that fact
follows from previous ones. This is in slight conflict with our goal of achieving
a natural flow from sentence to sentence in our proofs. However, at this point,
learning to write (and read) proofs is an additional focus that motivates this
choice. In fact, the proofs and disproofs in this section do not well represent
general proof-writing strategies. They are quite brief, in the absence of a need
for great explanation and exposition. Better general proof-writing principles are
initiated in the next section.

SECTION 2.1 Exercises
1. Show that the points (−1, −8), (1, −2), and (2, 1) lie on a common line.
2. Show that (−1, 6), (0, 3), (1, 2), and (2, 3) lie on a common parabola.

Hint: For scratch work, plug three of these points into y = ax2 + bx + c to
obtain three linear equations determining a , b, and c.

3. Show: There is a set A such that {1, 2, 3, 4}\A= {1, 3}.
4. Show: There is a set A such that Z ∪ A= R.
5. Show: There exist sets A and B such that A∪ B = A ∩ B.
6. Show: There exist sets A and B such that |A\B| �= |A| − |B|.
7. Show: ∃n ∈ Z such that 10n = 0.001.
8. Show: ∃m, n ∈ Z such that 3m+ 5n = 11.
9. Show: ∃m, n ∈ Z such that 9m+ 14n = 1.
10. Show: There exist sets A and B such that A �= ( A∪ B)\B.
11. Show: There exist sets A and B such that A\B = B\A.
12. Show: ∃ x ∈ Z such that x3 + 2x2 − 2x + 3 = 0.

In Exercises 13 through 16, recall that the roots of a function f (x) are the
solutions to the equation f (x) = 0. Utilize factoring and the quadratic
formula.
13. Show: x2 − 1 has two distinct real roots.
14. Show: x2 + 1 has no real roots.

�15. Show: x2 − 2x + 5 has no real roots.
16. Show: x3 − 3x2 + 4 has only two distinct real roots.
17. If P dollars is invested in a certain account, then the amount A in that

account after t years is given by the formula A= P(1.075)t.
(a) Find the amount A after 10 years for an investment of $6000.

�(b) Show that there is an investment amount less than $5000 that will
grow to at least $10,000 after 10 years.

18. If a 30-year mortgage for M dollars is obtained from a certain bank, then
the monthly payment R is given by the formula

R = 0.008(1.008360)M

1.008360 − 1
.

∗Exercises that may be particularly challenging are marked with a star.
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(a) Find the mortgage amount M that can be paid off by monthly
payments of $1000.

�(b) On a budget of no more than $650 per month, show that it is possible
to afford a mortgage of $75,000.

19. Show: There is a set A such that A2 = A.
20. Disprove: ∀ x ∈ R, x2−4

x+2 = x − 2.
21. Disprove: The union of any two intervals is an interval.
22. Disprove: ∀ x ∈ R, x > 2 and x2 ∈ Z.
23. Disprove: ∀ x ∈ R, x2 > x.
24. Disprove: ∀ x ∈ R, 4x2 + 4x + 1 > 0.
25. Prove or Disprove: ∀ n ∈ N, n2 ≤ 2n.
26. Prove or Disprove: For all integers n ≥ 2, 2n − 1 is prime.

See Definition 3.3 for a definition of prime.
27. Prove or Disprove: There exists x ∈ R such that x < 10 and x2 > 100.
28. Prove or Disprove: For all sets A and B, if A× B = ∅, then A= B = ∅.

�29. Disprove: The sine function is increasing.
See Definition 1.15.

�30. Disprove: The cosine function is decreasing.
See Definition 1.15.

31. Prove or Disprove: Every nonnegative real number is positive.

32. Prove or Disprove: ∀ x ∈ R,
√

x2 = x.
33. Prove or Disprove: For all sets A and B, if |A| ≤ |B|, then A⊆ B.
34. Prove or Disprove: For all sets A and B, A∪ B = A�B.
35. Disprove: For all sets A, B, and C , if A �= B, then A ∩ C �= B ∩ C .
36. Disprove: For all sets A, B, and C , if A\C = B\C , then A= B.
37. Show: ∀ A∈ {∅, {1}, {1, 2}}, A∪ {3} = A� {3}.
38. Show: For all integers 1 ≤ n ≤ 3, 6

n ∈ Z.
39. Prove or Disprove: For all integers 2 ≤ n ≤ 9, the tens digit and the ones

digit of 9n sum to 9.
40. Prove or Disprove: ∀ A∈ {{1, 2}, {3, 4}}, |A× {3, 4}| = 4.
41. A divisibility test says that a number is divisible by 11 if and only if the

alternating sum of its digits is divisible by 11. Certainly, 11n is divisible
by 11.
Show: For all integers 19 ≤ n ≤ 29, the alternating sum of

the hundreds digit − the tens digit + the ones digit

of 11n is a multiple of 11.
42. A divisibility test says that a number is divisible by 3 if and only if the sum

of its digits is divisible by 3. Certainly, 3n is divisible by 3.
Show: For all integers 4 ≤ n ≤ 33, the tens digit and the ones digit of 3n
sum to a multiple of 3.

43. Show: For each integer n ∈ {2, 3, 5, 7}, 2n − 1 is prime.
See Definition 3.3 for a definition of prime. A prime of the form 2n − 1 is
called a Mersenne prime. Compare Exercise 26.
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44. Show: For all integers 5 ≤ n ≤ 10, n2 < 2n.
�45. The Syracuse Problem, also known as the 3n + 1 problem, is a famous

conjecture in number theory that the function

f (n) =
⎧⎨
⎩

n

2
if n is even,

3n+ 1 if n is odd,

when iterated from any starting positive integer n, will return to the
value 1. For example, starting from n = 1, we see that

f (1) = 4, f (4) = 2, f (2) = 1.

We may write 1 �→ 4 �→ 2 �→ 1. That is, we stop when the function value
achieves 1. Show that this conjecture holds for all 1 ≤ n ≤ 6.

�46. Let g be the function given by

g(n) =

⎧⎪⎪⎨
⎪⎪⎩

n

2
if n is even,

3n+ 1
2

if n is odd.

Show that, for any positive integer n ≤ 8, starting from n and iterating g,
the function values eventually return to 1. (Compare Exercise 45.)

2.2 General Demonstration (Part 1)
Often, we want to prove a statement of the form

∀ x ∈ U , p(x).

Section 2.1 provides a technique for small sets U that is rarely useful, since U is
usually large, even infinite. More generally, the appropriate technique is to use
the Principle of Generalization (Theorem 1.9) from Section 1.5. Since a proof con-
tains finitely many words and can therefore consider only finitely many things
explicitly, the ability to work with a generic element x ∈ U , and to correspond-
ingly prove p(x), is a powerful one. Note that henceforth, we will use the same
variable name (here x) that appears in the universal statement to represent the
generic element (rather than using a new variable a as in Section 1.5).

EXAMPLE 2.8 Show: ∀ x ∈ R, x2 + 1 > 0.

Proof
Suppose x ∈ R.
Since the square of any real number is nonnegative
(see Appendix A, property 11), we have x2 ≥ 0.
Hence,

x2 + 1 ≥ 0+ 1 = 1 > 0.

We therefore have x2 + 1 > 0. �

Note that the first sentence of the proof in Example 2.8 establishes that x
represents a generic real number. That is, subsequently we can use only gen-
eral properties of real numbers when working with x. We cannot, for example,



76 P A R T I ■ Proofs

assume that x is positive or has some other special property. Equivalently, the
first sentence of the proof could be replaced by “Let x ∈ R.” That x is arbitrary
is implicitly understood and need not be stated explicitly.

EXAMPLE 2.9 Show: ∀ n ∈ Z−, −n ∈ Z+.

Proof
Let n ∈ Z−.
So n ∈ Z and n < 0.
Multiplication by −1 gives that −n > 0. (See Appendix A, property 10.)
Since −n ∈ Z and −n > 0, we have −n ∈ Z+. �

If-Then Statements
An if-then statement of the form

∀ x ∈ U , p(x) → q (x)

is a particular example of a universal statement. Hence, it can be proved by
working with a generic element x ∈ U . However, beyond that, there is a standard
method for establishing the resulting if-then statement

p(x) → q (x). (2.2)

We suppose that p(x) is true and then show that q (x) must be true under that as-
sumption. Since (2.2) is vacuously true when p(x) is false, that possibility need
not be considered. Very simply, an if-then statement can be verified by suppos-
ing its hypothesis holds and then verifying that the conclusion follows.

EXAMPLE 2.10 Show: ∀ x ∈ R, if x ∈ [2, 3], then x2 ∈ [4, 9].

Proof
Let x ∈ R,
and suppose x ∈ [2, 3].
That is, 2 ≤ x ≤ 3.
Squaring each term gives 22 ≤ x2 ≤ 32.
(That follows from Appendix A, property 10.)
Hence, 4 ≤ x2 ≤ 9.
Therefore, x2 ∈ [4, 9]. �

EXAMPLE 2.11 Show: For all real functions f , if f is constant, then f 2 is constant.

Solution. Recall from Definition 1.15 that a real function g is constant if and
only if there exists some c ∈ R such that

∀ x ∈ R, g(x) = c.

Also, recall from Definition 1.16 that the function f 2 is defined by

∀ x ∈ R, f 2(x) = [ f (x)]2.

Proof
Let f be a real function,
and suppose that f is constant.
Hence, we have c ∈ R such that

∀ x ∈ R, f (x) = c.
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Observe that

∀ x ∈ R, f 2(x) = [ f (x)]2 = c2.

Since c2 ∈ R and ∀ x ∈ R, f 2(x) = c2, it follows that f 2 is constant. �

The comments in Example 2.11 prior to the proof emphasize the importance
of definitions in driving most proofs. Before proving any statement, the defini-
tion of the terms involved must be clearly understood. In Example 2.11, in order
to prove that f 2 is constant, we have to know what f 2 means and, formally,
what being constant means. Then, we know precisely what needs to be shown.
Note that the first sentence in the proof of Example 2.11 could be expressed more
efficiently by the sentence “Suppose f is a constant real function.”

EXAMPLE 2.12 Show: For all real functions f , if f is constant, then f is periodic. That is,
constant functions are periodic.

Solution. Recall from Definition 1.15 that f is periodic if and only if there is a
positive real number p such that

∀ x ∈ R, f (x + p) = f (x).

Proof
Suppose f is a constant real function.
Hence, we have c ∈ R such that

∀ x ∈ R, f (x) = c.

(Let p = 1.) Observe that

∀ x ∈ R, f (x + 1) = c = f (x).

That is, f is periodic (with p = 1). �

In the proof of Example 2.12, any positive value p will work to demonstrate
that the constant function f is periodic. A single value needed to be chosen for
the proof, and we chose p = 1.

Subsets
Given two sets S and T in some universeU , Definition 1.17 tells us that the subset
relation S ⊆ T is defined by the universal statement

∀ x ∈ U , x ∈ S → x ∈ T.

Hence, verification of the subset relation S ⊆ T is accomplished by proving the
corresponding universal if-then statement. That is, we suppose that we have an
element x ∈ S and show that we must have x ∈ T .

EXAMPLE 2.13 Show: For all sets A and B, A ∩ B ⊆ A.

Proof
Let A and B be sets.
Suppose x ∈ A ∩ B.
So x ∈ A and x ∈ B.
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In particular, x ∈ A.
Hence, x ∈ A ∩ B implies x ∈ A.
That is, A ∩ B ⊆ A. �

The fact that the argument forms from Section 1.5 provide the logical foun-
dation for our proofs can be seen very clearly in the proof of Example 2.13. The
third and fourth sentences of this proof provide an example of the (In Particu-
lar) argument form in Theorem 1.7(f). The last two sentences are not completely
necessary. They simply state that we have proved what is desired. As we gain
more experience, we need not make such closing remarks.

EXAMPLE 2.14 (Transitivity of the Subset Relation).
Let A, B, and C be sets.
Show: If A⊆ B and B ⊆ C , then A⊆ C .

Solution. The statement that we wish to prove is the universal statement

For all sets A, B, and C, if A⊆ B and B ⊆ C, then A⊆ C.

However, due to the way it is stated in Example 2.14, we need not state that
A, B, and C are generic sets in our proof. We consider that already accomp-
lished by the sentence given prior to what we need to show. Hence, we can
dive right into proving the if-then statement.

Proof
Suppose A⊆ B and B ⊆ C .
(Goal: A⊆ C . That is, ∀ x, x ∈ A→ x ∈ C .)
Suppose x ∈ A.
Since x ∈ A and A⊆ B, it follows that x ∈ B.
Since x ∈ B and B ⊆ C , it follows that x ∈ C .
Hence, A⊆ C . �

We included in the proof of Example 2.14 the reminder, in parentheses, of the
need to prove the conclusion of the if-then statement and, moreover, what that
entails in this case. Such comments can be helpful, especially when first learning
to write proofs. The proof in Example 2.14 illustrates the argument form (Tran-
sitivity of→) of Theorem 1.7(c).

The lines in this next proof are numbered for the sole purpose of providing
easy reference in the comments that follow. A proper proof would not have its
lines numbered.

EXAMPLE 2.15 (Intersection Operation Respects Subset Relation).
Let A, B, C , and D be sets.
Show: If A⊆ B and C ⊆ D, then A ∩ C ⊆ B ∩ D.

Proof

1. Suppose A⊆ B and C ⊆ D.
2. (Goal: A ∩ C ⊆ B ∩ D.)
3. Suppose x ∈ A ∩ C .
4. So x ∈ A and x ∈ C .
5. Since x ∈ A and A⊆ B, it follows that x ∈ B.
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6. Since x ∈ C and C ⊆ D, it follows that x ∈ D.
7. Hence, x ∈ B and x ∈ D.
8. That is, x ∈ B ∩ D.
9. Therefore, A ∩ C ⊆ B ∩ D. �

Proof-Writing Strategies. To a large degree, we are on autopilot when we write
relatively straightforward proofs. The structure of the asserted statement and
the definitions of the terms involved dictate what we do. The preceding proof
exemplifies this and provides a good opportunity to point out some of the basic
proof-writing principles encountered so far.

Since the statement in Example 2.15 is an if-then statement, we assume its
hypothesis in line 1. The second line (though unnecessary) simply reminds us
of our aim to verify the conclusion of our if-then statement. Since that goal is
a subset relation here, line 3 shoots for it by taking an arbitrary element of the
(purportedly) smaller set A ∩ C . Since line 3 involves a set operation, line 4
accomplishes an unwinding of its definition. In fact, the first four lines of this
proof are completely automatic. We are forced out of the gate to naturally take
these steps. However, after line 4, our motivation changes.

When our initial momentum subsides, we need to consider where our proof
is headed rather than from where it left. We started down the path of proving the
subset relation in line 2 by taking an arbitrary element x ∈ A ∩ C . To finish this
task, we need to get x into B ∩ D. In fact, looking ahead, this needed assertion
appears on line 8. Moreover, immediately following it, line 9 states that we have
verified the conclusion of our if-then statement and completes our proof. At this
point, lines 1, 2, 3, 4, 8, 9 have been forced upon us, so getting from line 4 to line 8
is the hole that needs to be filled. Thus, we need to understand what line 8 says.
This understanding comes from the unwinding of the definition of the statement
in line 8, as stated in line 7. We now realize that after line 4, we need to somehow
get the statement in line 7.

We patch the remaining holes by thinking specifically about how to use the
statements in lines 1 through 4 to get the statement in line 7. Since up through
line 4, we have yet to use the hypothesis of our if-then statement (assumed in
line 1), it is not surprising that this hypothesis is the key to filling in the holes
here. We have x ∈ A and we want x ∈ B. So we use the fact that A ⊆ B (from
line 1). This is the subject of line 5. We have x ∈ C and we want x ∈ D. So we
use the fact that C ⊆ D (from line 1). This is the subject of line 6. In this example,
that suffices to patch the hole.

In summary, there are three main things driving our proof.

■ A natural start gets the ball rolling.
■ Thinking backwards from our destination tells us how to proceed.
■ Throughout, the unwinding of definitions provides the details with which

and for which we work.

Sometimes, although it was not needed in Example 2.15, appealing to previous
results is useful. An additional ingredient of cleverness is always helpful but
sometimes unnecessary.

Having discussed proof structure, we should also address style. When writ-
ing a proof, one should aim for a flow that leads the reader from one sentence
to the next in a smooth and natural way. One thing that can cause writing to
be choppy is repeatedly starting sentences in the same way. For example, it is
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appropriate to start sentences with the word So, Hence, Thus, or Therefore when
the sentence being expressed follows from an earlier fact. One should resist
falling into the habit of always using the same start and, instead, should alter-
nate among different ones. This was done in the proof of Example 2.15.

Set Equalities
For the final two examples in this section, we prove some set identities by
appealing to Definition 1.17, which tells us that, given two sets S and T in some
universe U ,

S = T if and only if ∀ x ∈ U , (x ∈ S ↔ x ∈ T).

An alternative approach for set equalities is presented in the next section.

EXAMPLE 2.16 Show: For all sets A, ( Ac)c = A.

Proof
Let A be a set,
and let x ∈ U (the universal set containing A).
Observe that we have the following string of equivalences:

x ∈ ( Ac)c ↔ x �∈ Ac

↔ ¬(x ∈ Ac)
↔ ¬(x �∈ A)
↔ ¬(¬(x ∈ A))
↔ x ∈ A.

That is, x ∈ ( Ac)c ↔ x ∈ A. �

Although merely giving a string of logical equivalences like that presented
in the proof of Example 2.16 would not constitute a proof by itself, our use of
the string there is acceptable. We have incorporated it in a sentence. Displaying
it as we did aids in readability. The string by itself would be considered a sketch
of the proof.

EXAMPLE 2.17 Let A, B, and C be sets in some universal set U .
Show: A ∩ (B ∪ C) = ( A ∩ B) ∪ ( A ∩ C).

Proof
Let x ∈ U .
From the string of logical equivalences

x ∈ A ∩ (B ∪ C) ↔ x ∈ A∧ x ∈ B ∪ C

↔ x ∈ A∧ (x ∈ B ∨ x ∈ C)
↔ (x ∈ A∧ x ∈ B) ∨ (x ∈ A∧ x ∈ C)
↔ (x ∈ A ∩ B) ∨ (x ∈ A ∩ C)
↔ x ∈ ( A ∩ B) ∪ ( A ∩ C),

it follows that

x ∈ A ∩ (B ∪ C) ↔ x ∈ ( A ∩ B) ∪ ( A ∩ C). �
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The proofs in Examples 2.16 and 2.17 make clear the connection between
the set identities of Theorem 1.5 and the logical equivalences of Theorem 1.1.
When such a strong connection exists, the style used in those examples is
appropriate.

SECTION 2.2 Exercises
1. Show: ∀ x ∈ R+, −x ∈ R−.
2. Show: ∀ x ∈ [−1, 2), −x ∈ (−2, 1].
3. Show: ∀ x ∈ R, if x ∈ (2, 4), then 2x ∈ (4, 8).
4. Show: ∀ x ∈ R, if x ∈ [1, 2], then (3x − 1) ∈ [2, 5].
5. Prove or Disprove: ∀ x ∈ R+,

√
x < x.

6. Prove or Disprove: ∀ x ∈ R+, (x + 2)2 > 4.
7. Prove or Disprove: ∀ x ∈ R, if x < 2, then x2 < 4.
8. Prove or Disprove: ∀ x ∈ R, if x < −4, then 4− 3x > 10.
9. Show: ∀ x ∈ R, if x < −2, then x2 > 4.
10. Show: ∀ x ∈ R, if x > 2, then x3 > 8.
11. By Ohm’s Law, the voltage V (in volts), current I (in amps), and resistance

R (in ohms) through a wire are related by the equation V = I R. Suppose
current is passing through a wire with a voltage of 10 volts.
Show that if the resistance is greater than 2 ohms, then the current will be
less than 5 watts.

12. If $1000 is invested in an account earning 5% annual interest, then
the amount A in the account after t years is given by the formula
A= 1000(1.05)t.
Show that if at least 15 years pass, then the amount in the account will be
at least $2000.

For Exercises 13 through 24, refer to Definition 1.15.
13. Show: For all real functions f , if f is periodic, then f 2 is periodic.
14. Show: For all real functions f , if f is periodic, then − f is periodic.
15. Show: For all real functions f , if f is constant, then 2 f is constant.
16. Show: For all real functions f , if f is constant, then f is nondecreasing.
17. Show: For all real functions f and g, if f and g are nondecreasing, then

f + g is nondecreasing.
18. Show: For all real functions f and g, if f and g are constant, then f + g is

constant.
19. Let f and g be real functions.

Show: If f and g are constant, then f g is constant.
20. Let f and g be real functions.

Show: If f and g are bounded above, then f + g is bounded above.
�21. Let f be a real function, and let c ∈ R.

Show: If f is periodic, then f + c is periodic.
�22. Let f be a real function, and let c ∈ R.

Show: If f is periodic, then c f is periodic.
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23. Let f be a real function, and let c ∈ R+.
Show: If f is increasing, then c f is increasing.

24. Let f be a real function, and let c ∈ R.
Show: If f is decreasing, then f + c is decreasing.

25. Show: R+ ⊆ (R−)c .
26. Show: R− ⊆ [0, 1]c .

For Exercises 27 and 28, we use the following definitions from plane geometry.
Refer only to these in the requested proofs.

■ For each integer n ≥ 3, an n-gon is a union of line segments A1 A2, A2 A3, . . . ,
An−1 An, An A1 such that no two of these segments intersect outside of their
endpoints, where the endpoints A1, A2, . . . , An are distinct points in the
plane.

■ A parallelogram is a 4-gon with each pair of opposite sides parallel.
■ A rectangle is a parallelogram with all right angles.
■ A rhombus is a parallelogram with all sides congruent.
■ A square is a rectangle with all sides congruent.

27. Prove that every square is a parallelogram.
28. Prove that every rhombus is a 4-gon.

For Exercises 29 through 44, let A, B, and C be arbitrary sets.
29. Show: A⊆ A∪ B.
30. Show: A ∩ B ∩ C ⊆ A ∩ B.
31. Show: If A⊆ A ∩ B, then A⊆ B.
32. Show: If A∪ B ⊆ B, then A⊆ B.
33. Show: If A⊆ B, then A ∩ C ⊆ B ∩ C .
34. Show: If A⊆ B and A⊆ C , then A⊆ B ∩ C .
35. Show: ( A ∩ B) ∩ C = A ∩ (B ∩ C).
36. Show: ( A∪ B) ∪ C = A∪ (B ∪ C).
37. Show: A ∩ B = B ∩ A.
38. Show: A∪ B = B ∪ A.
39. Prove or Disprove: A× B = B × A.
40. Prove or Disprove: A� B = B � A.
41. Show: A∪ (B ∩ C) = ( A∪ B) ∩ ( A∪ C).
42. Show: A ∩ (B � C) = ( A ∩ B) � ( A ∩ C).

Hint: Use properties of ∧ and ⊕.
43. Show: ( A ∩ B)c = Ac ∪ Bc .
44. Show: ( A∪ B)c = Ac ∩ Bc .

2.3 General Demonstration (Part 2)
We continue the task started in Section 2.2 of learning to write proofs based on
the Principle of Generalization.
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If and Only If Statements
A proof of an if and only if statement is often based on the fact that the statement
form p ↔ q is logically equivalent to

( p → q ) ∧ (q → p).

That is, we can prove a statement of the form p ↔ q by first proving p → q and
then proving q → p.

EXAMPLE 2.18 Let A, B, and C be sets.
Show: C ⊆ A ∩ B if and only if C ⊆ A and C ⊆ B.

Proof
(→) Suppose C ⊆ A ∩ B.
(Goal: C ⊆ A and C ⊆ B.)
Suppose x ∈ C .
Since C ⊆ A ∩ B, it follows that x ∈ A ∩ B.
That is, x ∈ A and x ∈ B.
Hence, C ⊆ A and C ⊆ B.

(←) Suppose C ⊆ A and C ⊆ B.
(Goal: C ⊆ A ∩ B.)
Suppose x ∈ C .
Since C ⊆ A, it follows that x ∈ A.
Since C ⊆ B, it follows that x ∈ B.
Therefore, x ∈ A and x ∈ B.
That is, x ∈ A ∩ B.
So C ⊆ A ∩ B. �

At the beginning of the proof of Example 2.18, the notation (→) denotes the
fact that we first aim to prove that the left-hand side of the if and only if state-
ment implies the right-hand side. Similarly, the notation (←) denotes the start
of the proof that the right-hand side implies the left-hand side. Each of these
if-then statements is proved by using the techniques from Section 2.2. Such
added notations are certainly not required in a proof, but they can be helpful,
especially when proof writing is first being learned.

In both parts (→) and (←) of the proof of Example 2.18, a variable element x
is used in the argument. It is important to understand that the x used in the first
part (→) is not connected to the x used in the second part (←). Consequently,
in the second part, properties of the x from the first part cannot be referenced.
Within each part, x should be thought of as a local variable. Its properties do
not pass globally between the parts, much like variables local to a function used
in a computer program. When the first part ends, its variable x dies, and a new
one must be created for the second part.

EXAMPLE 2.19 Let f be a real function.
Show: f is bounded below if and only if − f is bounded above.

Proof
(→) Suppose f is bounded below.
So we have some L ∈ R such that

∀ x ∈ R, f (x) ≥ L .
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Multiplication by −1 gives that

∀ x ∈ R, − f (x) ≤ −L .

Hence, −L provides a bound which demonstrates that − f is bounded above.

(←) Suppose − f is bounded above.
Thus we have some M ∈ R such that

∀ x ∈ R, − f (x) ≤ M.

Multiplication by −1 gives that

∀ x ∈ R, f (x) ≥ −M.

Hence, −M provides a bound which demonstrates that f is bounded below. �

Set Equalities Revisited
Since set equalities, by definition, correspond to if and only if statements, they
can be proved by appealing to a string of if and only if statements, as was done
in Section 2.2. However, it is also often useful to prove the corresponding if and
only if statement by using the method from Example 2.18. Equivalently, this
amounts to using the characterization of the set equality S = T given by

S ⊆ T and T ⊆ S.

That is, proving a set equality can be accomplished by proving the two corre-
sponding subset relations.

EXAMPLE 2.20 Let A and B be sets.
Show: If A⊆ A ∩ B and B ⊆ A ∩ B, then A= B.

Proof
Suppose A⊆ A ∩ B and B ⊆ A ∩ B.
(Goal: A= B.)

(⊆) Suppose x ∈ A.
Since A⊆ A ∩ B, it follows that x ∈ A ∩ B.
That is, x ∈ A and x ∈ B.
In particular, x ∈ B.
So A⊆ B.

(⊇) Suppose x ∈ B.
Since B ⊆ A ∩ B, it follows that x ∈ A ∩ B.
That is, x ∈ A and x ∈ B.
In particular, x ∈ A.
So B ⊆ A.

Since A⊆ B and B ⊆ A, we have A= B. �

In the proof of Example 2.20, the notation (⊆) denotes the start of the proof
that the set on the left-hand side of the desired set equality (A= B) is a subset of
the set on the right-hand side. Similarly, the notation (⊇) denotes the start of the
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proof that the right-hand side is a subset of the left-hand side. Of course, these
notations are not essential.

EXAMPLE 2.21 Let A, B, C , and D be sets such that
D ⊆ A ∩ B, D ⊆ B ∩ C , and A ∩ C ⊆ D.
Show: D = A ∩ B ∩ C .

Solution. Note that all of the hypotheses have been stated prior to the desired
statement. Hence, we need not restate them in our proof.

Proof
(⊆) Suppose x ∈ D.
Since D ⊆ A ∩ B, it follows that x ∈ A ∩ B.
That is, x ∈ A and x ∈ B.
Since D ⊆ B ∩ C , it also follows that x ∈ B ∩ C .
That is, x ∈ B and x ∈ C .
Altogether, we have x ∈ A and x ∈ B and x ∈ C .
So x ∈ A ∩ B ∩ C .

(⊇) Suppose x ∈ A ∩ B ∩ C .
So x ∈ A and x ∈ B and x ∈ C .
In particular, x ∈ A ∩ C .
Since A ∩ C ⊆ D, it follows that x ∈ D. �

Sets with Particular Forms
Some of the set operations that we have encountered yield sets whose elements
have a special form. For example, the elements of a product are ordered pairs.
We need to take this into account in proofs involving such operations.

EXAMPLE 2.22 Let A, B, and C be sets.
Show: If A⊆ B, then A× C ⊆ B × C .

Solution. On the very surface, the conclusion of this if-then statement is a
subset relation. Hence, after supposing that A⊆ B, we should suppose that
we have an element in A× C . If we initially name this element with a single
variable, say z, then we subsequently have to unwind the fact that z is an ele-
ment of a product. That is, we have to write z = (x, y) as a pair, where x ∈ A
and y ∈ C . To save this extra writing and to avoid this additional variable z,
which is ultimately discarded, it is more efficient simply to start by supposing
that (x, y) is an element of A× C . That is, we can immediately write our
element in the form appropriate for products.

Proof
Suppose A⊆ B.
(Goal: A× C ⊆ B × C .)
Suppose (x, y) ∈ A× C .
So x ∈ A and y ∈ C .
Since x ∈ A and A⊆ B, we have x ∈ B.
Thus x ∈ B and y ∈ C .
That is, (x, y) ∈ B × C .
Therefore, A× C ⊆ B × C . �

Our next example mixes products and complements.
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EXAMPLE 2.23 Let A and B be sets.
Show: Ac × Bc ⊆ ( A× B)c .

Proof
Suppose (x, y) ∈ Ac × Bc .
So x ∈ Ac and y ∈ Bc .
In particular, since x �∈ A, it follows that (x, y) �∈ A× B.
(Recall the definition of A× B.)
That is, (x, y) ∈ ( A× B)c . �

Note in the proof of Example 2.23 that we need only one of the facts, x �∈ A
or y �∈ B, to assert that (x, y) �∈ A× B. Although we would need both x ∈ A and
y ∈ B to assert that (x, y) ∈ A× B, it takes only one coordinate to misbehave to
throw the pair (x, y) out of the product A× B.

Power sets warrant their own special considerations.

EXAMPLE 2.24 Let A and B be sets.
Show: If A⊆ B, then P( A) ⊆ P(B).

Solution. Remember that the elements of power sets are themselves sets. The
convention is to use capital letters when denoting sets. Hence, we denote the
elements of a power set with capital letters, rather than lower-case letters,
which are usual for elements. Such a naming convention is not required mathe-
matically, of course. However, it aids in the readability of the proof if the
reader can have a sense of an object from its name.

Proof
Suppose A⊆ B.
(Goal: P( A) ⊆ P(B).)
Suppose S ∈ P( A).
That is, S ⊆ A.
Since S ⊆ A and A⊆ B, it follows from the transitivity of ⊆ (proved in
Example 2.14) that S ⊆ B.
Therefore, S ∈ P(B). �

SECTION 2.3 Exercises
1. Show: ∀ x ∈ R, x ∈ R− if and only if −x ∈ R+.
2. Show: ∀ x ∈ R, x ∈ (−2, 1] if and only if −x ∈ [−1, 2).
3. Show: ∀ x ∈ R, x = 2x if and only if x = 0.

4. Show: ∀ x ∈ R, x+1
x = 2 if and only if x = 1.

5. Let x ∈ R. Show: x3 > 0 if and only if x > 0.
Hint: See Appendix A, properties 10 and 11.

6. Show: ∀ x ∈ R+, x2 < x if and only if x < 1.
7. Show: ∀ x ∈ R, 4− x < 2 if and only if x > 2.
8. Show: ∀ x ∈ R+, x3 = x if and only if x = 1.
9. Show: ∀ x ∈ R, x4 − 16 = 0 if and only if x2 − 4 = 0.
10. Show: ∀ x ∈ R, x =√6− x if and only if x = 2.



C H A P T E R 2 ■ Basic Proof Writing 87

11. Let f be a real function.
Show: f is constant if and only if 2 f is constant.

12. Show that the definition of constant functions given in Definition 1.15 and
the characterization of constant functions given in Exercise 37(b) from
Section 1.3 are equivalent.
That is, let f be a real function.
Show: ∃ c ∈ R such that ∀ x ∈ R, f (x) = c if and only if ∀ x, y ∈ R,
f (x) = f (y).
Hint: For (←), consider c = f (0).

13. Let f be a real function.
Show: f is bounded above if and only if f + 1 is bounded above.

14. Let f be a real function.
Show: f is increasing if and only if 2 f is increasing.

�15. Let f be a real function.
Show: f is bounded above and below if and only if f 2 is bounded above.

�16. Let f be a nonnegative real function.
Show: f is constant if and only if f 2 is constant.

17. Let f be a real function.
Show: f is periodic if and only if 2 f is periodic.

18. Let f be a real function.
Show: f is periodic if and only if f + 1 is periodic.

19. Assume that a football team can score only touchdowns, worth 7 points
each, and field goals, worth 3 points each. Thus 21 points could be scored
either by scoring 3 touchdowns or by scoring 7 field goals. Show that a
total of 20 points are scored if and only if the team scores 2 touchdowns
and 2 field goals.

20. Suppose that the United States Post Office only sells first-class stamps at
39¢ each and postcard stamps at 24¢ each. A certain package requires $3 in
postage. Show that $3 can be achieved by stamps if and only if four 39¢
stamps and six 24¢ stamps are used.

21. Show: R+ ∩ [−2, 2] = (0, 2].
22. Show: [−2, 2]\R+ = [−2, 0].

For Exercises 23 through 42, let A, B, C, and D be sets in some universe U .
23. Show: If A⊆ B, then A ∩ B = A.
24. Show: A ∩ U = A.
25. Show: ( A\C) ∩ B = (B\C) ∩ A.
26. Show: If C ⊆ A ∩ B, then C ∩ A= C ∩ B.
27. Show: If A ∩ B = A ∩ C , then A ∩ B ∩ C = A ∩ B.
28. Show: If A⊆ B, A⊆ C , A⊆ D, and C ∩ D ⊆ A, then A= B ∩ C ∩ D.
29. Show: ( A\B)\C = A\(B ∪ C).
30. Show: A× (B\C) = ( A× B)\( A× C).
31. Show: If A⊆ B, then A2 ⊆ B2.
32. Show: ( A× U)c = Ac × U .
33. Show: (U × B)\( A× B) = Ac × B.
34. Show: If A⊆ B and C ⊆ D, then A× C ⊆ B × D.
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35. Show: A× (B ∩ C) = ( A× B) ∩ ( A× C).
36. Show: (B\A) × (D\C) ⊆ (B × D)\( A× C).

�37. Assume that C �= ∅.
Show: A× C = B × C if and only if A= B.

�38. Show: P( A) = P(B) if and only if A= B.
�39. Show: P( Ac)\{∅} ⊆ P( A)c .
40. Show: If (C, D) ∈ P( A) × P(B), then C × D ∈ P( A× B).
41. Show: P( A ∩ B) ⊆ P( A) ∩ P(B).

�42. Show: P( A\B)\{∅} ⊆ P( A)\P(B).
43. Mario is taking two laps in a car around a 1-mile track. He is attempting to

achieve a certain average speed over this entire trip.
(a) Find the average speed for his entire trip if there was an average speed

of 40 mph over the first lap and 60 mph over the second lap. Hint: It is
not 50 mph.

�(b) Show that Mario can obtain an average speed of 60 mph over the
entire trip if and only if he exceeds an average speed of 30 mph over
the first lap.

44. When resistors with resistances R1 and R2 are connected in parallel in a
circuit, the total resistance R achieved is given by the equation R = R1 R2

R1+R2
.

(a) If the total resistance is R = 8 ohms and we have R1 = 10 ohms, then
what must be the value of R2?

�(b) Assume that R1 = 10 ohms. Show that a total resistance R is achiev-
able in this circuit if and only if R is less than 10 ohms.

2.4 Indirect Arguments
For some statements, a direct approach to a proof is not the best, or it may not
even be feasible. This section presents some alternatives.

Proofs by Contradiction
The basic idea behind the proof technique called proof by contradiction is a
very simple one. We suppose that the negation of the desired statement holds
and show that this leads to a contradiction. The fact that the desired statement
follows is a consequence of the argument form (Argument by Contradiction) in
Example 1.50 from Section 1.5.

EXAMPLE 2.25 Show: R+ does not have a smallest element.

Proof
(By Contradiction)
Suppose not.
So there is some element s ∈ R+ that is the smallest.
However, s

2 is a smaller element of R+ (since s
2 < s and s

2 > 0).
This contradicts the fact that s was supposed to be the smallest element. �
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The first sentence, “Suppose not,” in our proof by contradiction is shorthand
for supposing the negation of the statement we aim to prove. In this case, it
means “Suppose R+ has a smallest element.”

In our proof of Example 2.25, it is important that our choice of s
2 be both

smaller than s and positive. A choice of s − 1 would give an element that is
smaller than s but not necessarily positive, and hence not necessarily an element
of R+. A choice of

√
s would give an element of R+, but

√
s is not necessarily

smaller than s (definitely not if s < 1; for example,
√

0.01 > 0.01).
One of the advantages of a proof by contradiction is that it gives us an

additional hypothesis with which to work. The negation of our desired state-
ment generally provides something concrete to pursue. In Example 2.25, forc-
ing a potential smallest element to declare its value was the key to refuting its
existence.

EXAMPLE 2.26 Prove each of the following:

(a) For all sets A, A ∩ Ac = ∅.
(b) U c = ∅.
(c) ∅c = U .

Proof

(a) Suppose not.
So there is some set A for which A ∩ Ac �= ∅.
Since A ∩ Ac is not empty, there is some element x ∈ A ∩ Ac .
Hence, x ∈ A and x ∈ Ac .
That is, x ∈ A and x �∈ A.
This is a contradiction.

(b) Suppose not.
So there is an element x ∈ U c (since U c �= ∅).
That is, x �∈ U .
However, x ∈ U , since we can pick only elements from our universe U .
This is a contradiction.

(c) By the Double Complement Identity (Theorem 1.5(a) and
Example 2.16), we know that U = (U c)c .
From statement (b) above, we get (U c)c = ∅c .
Hence, by substitution, U = ∅c . �

In Example 2.26, notice that both the contradiction in part (a) (that x ∈ Aand
x �∈ A) and the contradiction in part (b) (that x �∈ U and x ∈ U) are examples
of statements of the form p ∧ ¬p. We saw in Example 1.5 that p ∧ ¬p is a con-
tradiction. Although the proof in part (c) is not a proof by contradiction, it does
makes use of the result in part (b), which was proved by contradiction. Note that
an alternative proof of part (b) could have been accomplished by using part (a)
in the case that A= U and the fact that U c = U ∩ U c .

EXAMPLE 2.27 Show: Z is infinite.

Proof
(By Contradiction)
Suppose not.
So Z is finite.
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Let n be the natural number that is the cardinality of Z.
However, there are n+ 1 distinct integers in the list 1, 2, 3, . . . , n, n+ 1.
So Z has more than n elements.
This is a contradiction. �

Proving the Contrapositive
We know from Example 1.11 that an if-then statement form p → q is logically
equivalent to its contrapositive ¬q → ¬p. Hence, an if-then statement can be
proved by instead proving its contrapositive. Since the contrapositive is itself an
if-then statement, its proof can use the techniques learned in the earlier sections
of this chapter; suppose ¬q and establish ¬p.

EXAMPLE 2.28 Let A be a set. Show: If A2 is infinite, then A is infinite.

Proof
(Of the Contrapositive)
Suppose that A is not infinite.
That is, A is finite.
Let n = |A|, and write A= {a1, a2, . . . , an}.
Observe that

A2 = A× A= {(a1, a1), (a1, a2), . . . , (a1, an),
(a2, a1), (a2, a2), . . . , (a2, an),

...
...

(an, a1), (an, a2), . . . , (an, an)}
has n2 elements.
Thus, A2 is finite (not infinite). �

Our proof in Example 2.28 starts by supposing the negation of the conclu-
sion of the desired if-then statement. It concludes once the negation of the
hypothesis is established. That is, we give a direct proof of the contrapositive.
In Example 2.28, we therefore gave a direct proof of the statement

For all sets A, if A is finite, then A2 is finite.

The utility of this choice in that example can be seen by instead trying to prove
the desired statement directly. The direct approach immediately runs into an
obstacle, since we do not have any tools for working with an infinite set A2.

EXAMPLE 2.29 Show: ∀ x ∈ R, if x3 ≤ 0, then x ≤ 0.

Proof
(Of the Contrapositive)
Let x ∈ R, and suppose x > 0 (that is, not x ≤ 0).
Cubing both sides of this inequality gives that x3 > 0 (that is, not x3 ≤ 0). �

Example 2.29 could alternatively be proved directly. However, such a proof
would be more complicated. For example, it could be accomplished by dividing
both sides of the inequality x3 ≤ 0 by x2. Of course, the cases in which x = 0
and x �= 0 would have to be handled separately. Such proofs involving cases are
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discussed in the next section. An alternative direct proof using cube roots needs
the fact that the cube root function is increasing. The proof of that fact is left for
the exercises and itself warrants an indirect argument.

Proving Properties of the Empty Set from Section 1.2. The following example
provides a nice illustration of the utility of proving the contrapositive of an if-
then statement.

EXAMPLE 2.30 (Proving Theorem 1.3).
Let E and A be sets.
Show: If E has no elements, then E ⊆ A.

Proof
(Of the Contrapositive)
Suppose E � A.
So there is some element x such that x ∈ E and x �∈ A.
Since x ∈ E , the set E has an element. �

In Section 1.2 we encountered examples of sets containing no elements such
as (0, 0) and [1, 0]. We are now in a position to give the promised proof of the
fact that there is a unique set with no elements. This fact enables us to give the
empty set the name ∅. The proof makes use of the result from Example 2.30.

THEOREM 2.1 (∅ Is Well-Defined in Definition 1.10).

There is a unique set with no elements, namely ∅.

Proof
Suppose that two sets A and B each contain no elements.
By Example 2.30, since B has no elements, B ⊆ A.
Similarly, since A has no elements, A⊆ B.
Therefore, A= B. �

Example 2.30 also implies that, for any set A,
∅ ∈ P( A) or, equivalently, ∅ ⊆ A.

Comparing Indirect Proof Techniques for If-Then Statements. We now have
a few options for indirect proofs of an if-then statement. In working with
if-then statements, proving the contrapositive is one option. However, a proof
by contradiction is also an option, since that technique applies to any statement,
if-then or otherwise. Additionally, there is a third option. Since the if-then state-
ments have the form p → q , we could start, as in a direct proof, by supposing p.
However, we could then switch to an indirect approach toward our goal of es-
tablishing q and apply a proof by contradiction. It turns out that there are strong
commonalities among these approaches, as we can see in the following example.

EXAMPLE 2.31 Let A and B be sets. Show: If A⊆ B, then A\B = ∅.

Proof

(a) (Of the Contrapositive)
Suppose A\B �= ∅.
Hence, we have some element x ∈ A\B.
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That is, x ∈ A and x �∈ B.
It follows that A� B.

(b) (By Contradiction)
Suppose not.
So A⊆ B and A\B �= ∅.
Since A\B �= ∅, we have some element x ∈ A\B.
That is, x ∈ A and x �∈ B.
It follows that A� B.
This contradicts the fact that A⊆ B.

(c) (Direct Proof with Indirect Proof of Conclusion)
Suppose A⊆ B.
Claim: A\B = ∅.
Suppose not.
So A\B �= ∅.
Since A\B �= ∅, we have some element x ∈ A\B.
That is, x ∈ A and x �∈ B.
It follows that A� B.
This contradicts the fact that A⊆ B and establishes our claim. �

The three proofs for Example 2.31 can be seen to be very similar. The strongest
similarity is between proofs (b) and (c). The first two lines of proof (b) accom-
plish the same thing as the first four lines of proof (c). The remaining lines are
then virtually identical. Therefore, proof (b) is the more efficient of the later two,
in this case.

In Example 2.31, there is also much in common between proofs (a) and (b).
This stems from the fact that the contradiction A� B obtained in proof (b) is
the negation of the hypothesis A ⊆ B of the if-then statement. When that is
the case, the proof by contradiction contains the basic argument given in the
proof using the contrapositive along with additional structure setting up the
proof by contradiction. In that case, proving the contrapositive is more efficient.
However, in general, a different contradiction might be obtained in the proof by
contradiction. Then, the relative advantages of the two proofs must be compared
by other means.

In our final example of this section, we make use of the logical equivalence of
an if-then statement with its contrapositive. However, the technique of proving
the contrapositive is not used.

EXAMPLE 2.32 Let A and B be sets in some universal set U .
Show: A⊆ B if and only if Bc ⊆ Ac .

Proof
The sequence of logical equivalences

A⊆ B ↔ ∀ x ∈ U (x ∈ A→ x ∈ B)
↔ ∀ x ∈ U (x �∈ B → x �∈ A)
↔ ∀ x ∈ U (x ∈ Bc → x ∈ Ac)
↔ Bc ⊆ Ac

yields the desired result. �

Another way in which a contrapositive is useful is in the fact that the state-
ment form p ↔ q is logically equivalent to ( p → q ) ∧ (¬p → ¬q ). Hence, a
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statement of the form p ↔ q can be proved by first proving p → q and then
proving ¬p → ¬q . That is, the second stage at which q → p would typically be
proved can be replaced be proving its contrapositive ¬p → ¬q .

SECTION 2.4 Exercises
1. Show: The interval (1, 2) has no smallest element.
2. Show: R has no smallest element.
3. Show: N has no largest element.
4. Show: The interval (1, 2) has no largest element.
5. Show: For any set A, A ∩ ∅ = ∅.
6. Let A be any set such that A⊆ ∅. Show: A= ∅.
7. Show: The interval (0, 1] is infinite.
8. Show: Z× Z is infinite.
9. Show: {(x, y) : x, y ∈ R and y = √x} is infinite.
10. Show: {k : k = j2 for some j ∈ Z} is infinite.
11. Show: (1, 0) = ∅. 12. Show: (0, −1) = ∅.

13. Show: R+ ∩ R− = ∅. 14. Show: Z− ∩ N = ∅.
15. Tracy Flick is running for class president. Assume that there are a total of n

candidates running, where n represents a positive integer. After the votes
are tallied, Tracy is told only the fraction of votes that she received.

(a) Suppose that Tracy received less than 1
n of the votes. Show that Tracy

cannot have won the election.

(b) Suppose that Tracy received more than 1
n of the votes. Show that Tracy

cannot have come in last in the election.
16. Pigeon Hole Principle. Suppose that there are n distinct items and m

distinct boxes, where n and m are positive integers. We are to place each
item into a box, and we are allowed to place more than one item in the
same box.
(a) Suppose that n > m. Show that some box must receive more than one

item.
(b) Suppose that n < m. Show that some box must be empty.
Note that the Pigeon Hole Principle is introduced formally in Theorem 5.12
of Section 5.6. There we shall consider the issues above in the context of
one-to-one and onto functions. In that setting, we make precise the impre-
cise notion here of placing items into boxes. However, simple arguments
can be made here using basic common sense in the absence of the formal
notion of functions.

17. Show: ∀ a , b ∈ R, if (a , b) = ∅, then b ≤ a .
18. Show: ∀ a , b ∈ R+, if a2 ≥ b2, then a ≥ b.

For Exercises 19 through 30, let A, B, C be sets in some universe U .

19. Show: If A2 = ∅, then A= ∅. 20. Show: If A2 �= B2, then A �= B.
21. Show: If A2 � B2, then A� B. 22. Show: If P( A) �P(B), then A� B.
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23. Show: If A= ∅, then A× B = ∅. 24. Show: If A2 �= ∅, then A �= ∅.

25. Show: If A� B, then A �= B. 26. Show: If |P( A)| > 1, then |A| > 0.

27. Show: If P( A) �= P(B), then A �= B.
28. Show: If C � A∪ B, then C � A or C � B.
29. Show: If A× B is infinite, then either A is infinite or B is infinite.
30. Assume that U is infinite. Show: If Ac is finite, then A is infinite.

�31. Euclid’s First Postulate: For all points P and Q in the plane, if P �= Q, then
there is a unique line l that contains P and Q.
Prove: Any two distinct lines intersect in at most one point.

�32. Two lines in the plane are said to be parallel if they do not intersect.
Euclid’s Parallel Postulate: For every line l and every point P not on l,
there is a unique line m through P and parallel to l.
Prove: For any three distinct lines k, l, and m, if k is parallel to l and l is
parallel to m, then k is parallel to m.

For Exercises 33 through 40, let f be a real function.
33. Assume that f is positive.

(a) Show: If f 2 is decreasing, then f is decreasing.
(b) Is it true that if f 2 is increasing, then f is increasing? Explain.

34. (a) Show: If f 2 is not periodic, then f is not periodic.
(b) Is it true that if f 2 is periodic, then f is periodic? Explain.

35. Show: If f + 100 is unbounded above, then f is unbounded above.

36. Show: If f is unbounded below, then 1
2 f is unbounded below.

37. Show: If f is periodic, then f is not increasing.
38. Show: If f is decreasing, then f is not periodic.
39. Show: If f 2 is not constant, then f is not constant.
40. Show: If f is not increasing, then 2 f is not increasing.
41. Show: ∀ x ∈ R, if x2 = 0, then x = 0.
42. Show: ∀ x ∈ R, if x2 �= 1, then x �= 1.

�43. Show: ∀ x ∈ R, if x > 0, then 1
x > 0.

�44. Show: ∀ x ∈ R, if 1
x < 0, then x < 0.

45. Show: (−∞, −1) ∩ (1,∞) = ∅.
46. Show that the cube root function f (x) = 3

√
x is increasing. That is, show:

∀ x1, x2 ∈ R, if x1 < x2 then 3
√

x1 < 3
√

x2.
Hint: Use the facts that 3

√
x = y if and only if y3 = x

and that ∀ y1, y2 ∈ R, if y1 ≤ y2, then y1
3≤ y2

3.

2.5 Splitting into Cases
Some proofs naturally split into cases. That is, at some point in the proof, dif-
ferent possibilities need to be considered. Typically, this happens when an “or”
statement is encountered. For example, a statement of the form p ∨ q ∨ r may
lead us to consider the different reasons why p ∨ q ∨ r would be true. That is, if
p is true, if q is true, or if r is true.
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EXAMPLE 2.33 Let A, B, and C be sets.
Show: If A⊆ C and B ⊆ C , then A∪ B ⊆ C .

Proof
Suppose A⊆ C and B ⊆ C .
Suppose x ∈ A∪ B.
So x ∈ A or x ∈ B.

Case 1: x ∈ A.
Since A⊆ C , it follows that x ∈ C .

Case 2: x ∈ B.
Since B ⊆ C , it follows that x ∈ C .

In both cases, we have x ∈ C .
Hence, A∪ B ⊆ C . �

In the proof of Example 2.33, it is the statement just preceding our cases that
causes us to split the argument into cases. For a generic element x, simply know-
ing that either x ∈ A or x ∈ B does not determine which of the two holds. Since
the arguments for x ∈ A and for x ∈ B require the use of different parts of our
hypotheses (A ⊆ C and B ⊆ C , respectively), we handle these distinct cases
separately. It is important that we consider each of the possible properties for x,
of which there are two in this example (x ∈ A or x ∈ B). It does not matter that
there could be some overlap between the cases, if x ∈ A ∩ B.

EXAMPLE 2.34 Let A, B, and C be sets.
Show: A ∩ (B ∪ C) ⊆ ( A ∩ B) ∪ C .

Proof
Suppose x ∈ A ∩ (B ∪ C).
So x ∈ A and x ∈ B ∪ C .
Hence, x ∈ B or x ∈ C .

Case 1: x ∈ B.
Observe that x ∈ A and x ∈ B.
That is, x ∈ A ∩ B.
Since A ∩ B ⊆ ( A ∩ B) ∪ C , it follows that x ∈ ( A ∩ B) ∪ C .

Case 2: x ∈ C .
Since C ⊆ ( A ∩ B) ∪ C , it follows that x ∈ ( A ∩ B) ∪ C .

In both cases, x ∈ ( A ∩ B) ∪ C . �

The statements obtained within a case are local to that case and cannot be
referenced in other cases. In case 1 of Example 2.34, we get x ∈ A ∩ B. This fact
cannot be used in case 2, because it may not be true there. However, if a common
conclusion (such as x ∈ ( A ∩ B) ∪C) is reached within all of the cases, then that
result may be globally referenced subsequent to the cases.
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EXAMPLE 2.35 Show: ∀ x ∈ R, if |x| > 1, then x2 > 1.

Solution. The fact that the absolute value function

|x| =
{

x if x ≥ 0,
−x if x < 0

is a piecewise function leads us to consider cases. More specifically, it gives
that |x| > 1 is equivalent to saying that x > 1 or x < −1.

Proof
Suppose x ∈ R and that |x| > 1.
So x > 1 (when x ≥ 0) or −x > 1 (when x < 0).

Case 1: x > 1.
Observe that x2 > 12 = 1.

Case 2: −x > 1.
So (−x)2 > 12 = 1.
Since (−x)2 = (−1)2x2 = x2, substitution gives that x2 > 1.

In both cases, x2 > 1. �

An alternative proof for Example 2.35 might use the fact that x2 = |x|2. How-
ever, the proof of that fact would warrant the use of cases. That proof is requested
in the exercises.

The need for cases was very clear in Examples 2.33 through 2.35; it grew out
of an “or” statement. Sometimes, however, that need can be a bit more subtle.

EXAMPLE 2.36 Let A, B, and C be sets.
Show: A\C ⊆ ( A\B) ∪ (B\C).

Proof
Suppose x ∈ A\C .
So x ∈ A and x �∈ C .

Case 1: x ∈ B.
Since x �∈ C , we have x ∈ B\C .
Since B\C ⊆ ( A\B) ∪ (B\C), it follows that x ∈ ( A\B) ∪ (B\C).

Case 2: x �∈ B.
Since x ∈ A, we have x ∈ A\B.
Since A\B ⊆ ( A\B) ∪ (B\C), it follows that x ∈ ( A\B) ∪ (B\C).

In both cases, x ∈ ( A\B) ∪ (B\C). �

What drives the split into cases in Example 2.36? Just prior to the split, we
do not have the “or” statement

x ∈ B or x �∈ B.

However, that fact is certainly true; it is a tautology. The split in the proof is
driven by where the proof is headed rather than by where it is coming from.
The aim is to get x in the union ( A\B) ∪ (B\C). This can happen in two ways.
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Either we end up with x ∈ A\B, or we end up with x ∈ B\C . What distinguishes
these two possibilities is that in the first x �∈ B, and in the second x ∈ B. As we
see in the proof, considering these separate cases leads us to our desired end.

The applicability of cases in the proof of Example 2.36 can also be seen by
considering the Venn diagram in Figure 2.1. There, the regions numbered 1 and
2 correspond to cases 1 and 2, respectively, in our argument. We certainly see in
our proof that the different regions of A\C warrant different arguments.

A B12

C

U

Figure 2.1 Two Parts of A\C

EXAMPLE 2.37 Let a , b, c ∈ R with a �= 0.
Show: The number of distinct real roots of the quadratic polynomial

ax2 + bx + c is

⎧⎨
⎩

2 if b2 − 4ac > 0,
1 if b2 − 4ac = 0,
0 if b2 − 4ac < 0.

Proof
The roots of the equation

ax2 + bx + c = 0

are given by the quadratic formula

x = −b ±
√

b2 − 4ac

2a
.

Case 1: b2 − 4ac > 0.
The roots are

−b +
√

b2 − 4ac

2a
and

−b −
√

b2 − 4ac

2a
.

Moreover, these are distinct. (Check that they are not equal.)

Case 2: b2 − 4ac = 0.
The single root is −b

2a .

Case 3: b2 − 4ac < 0.
Since

√
b2 − 4ac does not exist as a real number, there are no real roots. �

In Example 2.37, it is the piecewise conclusion that leads to the use of cases.
In that example, unlike the previous ones, there are different conclusions in the
different cases. The standard proof of the quadratic formula by the method of
completing the square is left to the reader.
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An additional way in which cases may be employed is through a strategy
called bootstrapping. There, a proof might first consider a case in which some
simplifying assumptions have been added to the existing conditions. Then, ar-
guments in subsequent cases, in which those assumptions have been removed,
may be streamlined by appealing to the already established result in the simpler
case. This is a more advanced strategy than is considered in this section. Boot-
strapping, however, is used in examples such as the proofs of the Pigeon Hole
Principle (Theorem 5.12) and Brooks’ Theorem (Theorem 9.26).

SECTION 2.5 Exercises
Throughout these exercises, let A, B, C , and D denote arbitrary sets in some
universal set U .
1. Show: If A⊆ B and C ⊆ D, then A∪ C ⊆ B ∪ D.
2. Disprove: If A⊆ B and C ⊆ D, then A� C ⊆ B � D.
3. Show: If A⊆ B, then A∪ B = B.
4. Show: A∪ ∅ = A. 5. Show: A∪ Ac = U .
6. Show: If A⊆ B, then A∪ C ⊆ B ∪ C .
7. Show: A∪ U = U .
8. Show: If A⊆ B, then A� B = B\A.
9. Show: A∪ B ⊆ C if and only if A⊆ C and B ⊆ C .
10. Show: ( A∪ B)\C = ( A\C) ∪ (B\C).
11. Show: A� B ⊆ A∪ B.
12. Show: A� B �= ∅ if and only if A �= B.
13. Show: A∪ (B\C) = ( A∪ B)\(C\A).
14. Show: A\(B\C) = ( A\B) ∪ ( A ∩ C).
15. Show: ( A× B)c = ( Ac × U) ∪ (U × Bc).
16. Show: ( A∪ B) × C = ( A× C) ∪ (B × C).

�17. Show: A ∩ (B � C) = ( A ∩ B) � ( A ∩ C).
�18. Show: A× (B � C) = ( A× B) � ( A× C).
19. Show: ( A∪ B)\C ⊆ A∪ (B\C).
20. Show: ( A\B) ∪ ( A\C) = A\(B ∩ C).
21. Show: P( A) ∪ P(B) ⊆ P( A∪ B).
22. Show: If A∈ P(C) and B ∈ P(C), then A∪ B ∈ P(C).
23. Pictured is a portion of Rome through which the Tiber River flows.

Tiber
Tiberina

Teatre Marcello

1

2

3

4

1 � Ponte Garibaldi
2 � Ponte Crestio
3 � Ponte Fabricio
4 � Ponte Palatino
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A tourist is interested in the bridges and wants to plan a tour of this part of
Rome that starts and ends in the same place and goes over each bridge
(ponte) exactly once. Show that no such tour exists. Note that is suffices to
assume that the starting point is on the north side of the Tiber at the Teatre
Marcello and that Ponte Garibaldi is the first bridge to be crossed. From
there, consider cases based on subsequent bridge choices and argue that,
in each case, it becomes impossible to complete a desired tour.

24. Notre Dame Cathedral is located on the Ile de la Cité in the portion of Paris
pictured below. (Only some of the bridges are included here.)

Sud

Ile de la Cité Ile St-Louis

Nord

Seine

4

3

1

2

5

Starting from Notre Dame Cathedral, a tourist would like to take a tour of
this portion of Paris that goes over each displayed bridge exactly once and
returns to Notre Dame Cathedral. Show that no such tour is possible by
considering cases based on possible bridge choices at each stage of a
potential tour.

25. Show: ∀ x ∈ R, |1− 2x| =
{

1− 2x if x ≤ 1
2 ,

2x − 1 if x >
1
2 .

26. Show: ∀ x ∈ R\{0}, x
|x| =

{
1 if x > 0,
−1 if x < 0.

27. Let a be a real number. Show: The number of distinct real roots of the

polynomial (x + 3)(x2 + 2ax + a2) is
{

1 if a = 3,
2 if a �= 3.

28. Let a be a real number. Show: The number of distinct real roots of the

polynomial x2 − a is

⎧⎨
⎩

0 if a < 0,
1 if a = 0,
2 if a > 0.

29. Show: ∀ x ∈ R, |x|2 = x2.

30. Show: ∀ x ∈ R, |(x + 2)(x − 3)| =
{

6+ x − x2 if −2 ≤ x ≤ 3,
x2 − x − 6 otherwise.

�31. Show: ∀ x, y ∈ R, |x · y| = |x| · |y|.
�32. Show: ∀ x, y ∈ R, if |x| < y then −y < x < y.
33. Let x ∈ R. Show: x4 > 1 if and only if x < −1 or x > 1.
34. Let x ∈ R. Show: x2 − x − 2 > 0 if and only if x < −1 or x > 2.
35. Let x, y ∈ R. Show: If x2 = y2, then x = ±y.
36. Let x, y ∈ R. Show: x = y if and only if x ≤ y and y ≤ x.

�37. Triangle Inequality. Show: ∀ x, y ∈ R, |x + y| ≤ |x| + |y|.
�38. Show: ∀ x, y ∈ R, ||x| − |y|| ≤ |x − y|.
�39. A regular n-gon is a polygon with n congruent sides and interior angles,

where n ≥ 3. If one wishes to use a fixed regular n-gon as the shape for
tiles used to tile the floor in such a way that, for every tile, each edge
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matches up with the edge of the tile next to it, then the only possible
patterns are pictured below.

Prove that these are the only patterns by arguing that only n-gons with
n = 3, 4, or 6 will work. Use the fact that the interior angle of a regular
n-gon has a measure of 180(n−2)

n degrees and that the tiles will join perfectly
together around a corner point. First argue that n ≥ 7 is impossible, and
then consider each case 3 ≤ n ≤ 6 separately.

40. The Pythagorean Theorem says that, for a right triangle with side lengths
a , b, and c, with c the largest, we have a2 + b2 = c2. This well-known result
from right triangle trigonometry has many simple proofs, and we shall
explore two. Prove the Pythagorean Theorem using the prescribed method.
(a) It suffices to assume that a ≥ b. In the case a > b, we can form the

pictured square of area c2 with the square S inside.

S

b

b b

b

a

a

a

a

c

c

cc

Find the area by adding the areas of the interior pieces, and use alge-
bra to obtain the desired formula. Find a similar picture and argument
in the case that a = b.

(b) Use the following picture to write a proof that does not require cases.

ab

a

c

c
c

c

b

a

b
a

b

CHAPTER 2 Review Problems

1. Show that (3, 4), (4, −3), and (0, −5) all lie on a common circle.
2. Show that 2 and −2 are the only real roots of x4 − 2x2 − 8.
3. Show: ∃m, n ∈ Z such that mn = 100 and m+ n = 25.
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4. Show: ∃ x ∈ R such that 2x = x2.
5. Show: There exist sets A, B, C such that A⊂ B and A∪ C = B ∪ C .
6. Show: There is a set A such that |P( A)| = |A2|.
7. Jeremy is taking calculus, which has three tests, each worth 100 points. On

the first test he got an 80, but on the second test he got only a 60. He would
like to obtain an average of 75. Show that there is a possible test score on
the third test for Jeremy such that he can achieve an average of 75.

8. Disprove: For all real functions f , if f 2 is constant, then f is constant.
9. Disprove: For all sets A, B, C , if A⊆ B ∪ C , then A⊆ B and A⊆ C .

10. Show: ∀ n ∈ {−1, 0, 1}, n4 = n2. 11. Show: ∀ A∈ {{1}, {2}}, |A3| = 1.

12. Show: Z× N �= N× Z.
13. Show: ∀ n ∈ Z+, n2 ≥ n.

Hint: If n ∈ Z+, then n ≥ 1.
14. Show: ∀ x ∈ R, if x ∈ [2, 4], then x2 ∈ [4, 16].
15. Show: For all real functions f , if f is constant, then f + 1 is constant.
16. Show: For all real functions f and g, if f is periodic and g is constant, then

f + g is periodic.
17. Show: For all real functions f and g, if f is bounded above and g is

bounded below, then f − g is bounded above.
18. Jennifer is taking statistics, which has three tests, each worth 100 points.

She would like to achieve a test average over 80. However, she is very
uncomfortable with the material on the first test. Show that if Jennifer gets
at most a 40 on the first test, then she can achieve an average of at most 80.

19. Show: For all sets A, B, and C , if A⊆ C , then A ∩ B ⊆ C .
20. Show: For all sets A and B, A\B ⊆ A.

�21. Show: For all sets A, B, C, A� (B ∩ C) = ( A� B) ∩ ( A� C).
22. Prove or Disprove: For all sets A and B, ( A\B)c = Ac ∪ B.
23. Show: For all sets A and B, if A⊂ B, then B\A �= ∅.
24. Show: ∀ x ∈ R, x ∈ [1, 2] if and only if 2x ∈ [2, 4].
25. Show: ∀ x, y ∈ R+, x2 = y2 if and only if x = y.
26. Show: ∀ x, y ∈ R, x = y if and only if x ≤ y and y ≤ x.
27. Let f be a real function. Show: f is constant if and only if f is nondecreas-

ing and nonincreasing.
28. Let f be a nonnegative real function. Show: f is periodic if and only if f 2

is periodic.
29. Let A and B be sets. Show: A2 = B2 if and only if A= B.

�30. Let A, B, and C be sets. Show: A\B ⊆ C if and only if A⊆ B ∪ C .
31. Mr. Chipman is very strict with grades. He will give a student a grade of

100 for the marking period only if that student’s average is exactly 100; he
does not round up. Each test is worth 100 points, and Kevin is a very good
student. Show that, no matter what positive number of tests Mr. Chipman
gives, Kevin can achieve an average of 100 if and only if Kevin gets a grade
of 100 on every test.

32. Show: For all sets A, B, C , ( A ∩ B)\C = ( A\C) ∩ (B\C).
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33. Show: For all sets A, B, C , A× (B ∪ C) = ( A× B) ∪ ( A× C).
34. Show: For all sets A and B, P( A) ∪ P(B) ⊆ P( A∪ B).
35. Show: R− has no largest element.
36. Show: The interval (−1, 1) has no smallest element.
37. Show: The real function f (x) = x is not periodic.
38. Show: The real function f (x) = x2 is not bounded.
39. Let x ∈ R. Show: If x5 ≥ 0, then x ≥ 0.
40. Show: For all sets A, A× ∅ = ∅.
41. Show: For all sets A and B, if A= ∅, then A ∩ B = ∅.
42. Show: For all sets A and B, if A× B = ∅, then A= ∅ or B = ∅.
43. Show: For all sets A, B, C , if A× B �= A× C , then B �= C .
44. Show: For all sets A, if P( A) is infinite, then A is infinite.

Hint: If A is finite, then |P( A)| = 2|A|.
45. Let f be a real function. Show: If f 2 is not constant, then f is not constant.
46. Erik is struggling and just wants to pass discrete mathematics. His grade is

based entirely on the average of the four tests, each worth 100 points. A
minimum grade of 60 is required to pass. Show that if Erik is to pass the
class, then at least one of his test grades must be 60 or higher.

47. Show: For all sets A, B, C , ( A ∩ B ∩ C)c = Ac ∪ Bc ∪ Cc .
48. Show: For all sets A, B, C , ( A\C) ∪ (B\C) = ( A∪ B)\C .
49. Show: For all sets A and B, if A= ∅ or B = ∅, then A× B = ∅.

Note that the converse appears in Exercise 42.
50. Show: ∀ x, y ∈ R, xy > 0 if and only if x, y > 0 or x, y < 0.

51. Show: ∀ x ∈ R, |x2 − 1| =
{

1− x2 if −1 < x < 1,
x2 − 1 otherwise.

52. Show: ∀ x ∈ R,
√

x2 = |x|.
53. Let x ∈ R. Show: x2 − 6x + 8 > 0 if and only if x < 2 or x > 4.

54. Let x ∈ R. Show: x = 1
x if and only if x = ±1.
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Elementary Number Theory

QUITE SIMPLY, number theory is the study of numbers, where the primary focus is

on the integers. Our studies also yield results that can be used to determine whether

a real number is rational or irrational.

Besides learning the basics of number theory, we aim to gain more experience with

the proof techniques introduced in Chapter 2. However, instead of working in the context

of set theory, we move to the context of number theory. Despite this change of topic,

the basic strategies of our proofs remain the same. For example, if-then statements

pertaining to numbers are proved by the same methods as those pertaining to sets. Only

the terminology and definitions involved are different.

A main theme throughout this chapter is that the definitions and the basic methods

of proof drive the majority of proofs we encounter. There is a degree to which we are

on autopilot when writing many proofs. This is because the definitions and the structure

of the statements essentially force us to do the right things. Our change of subject

should help illuminate this point.

In addition to learning some of the basics in the beautiful area of number theory,

we shall see some interesting applications. The check digits appended to the ends of

identification numbers are discussed. More generally, we consider error-correcting

codes, which enable messages to be read despite the possible introduction of errors

during transmission. To send secret messages, we consider linear ciphers. Also, the

powerful public key encryption method known as RSA encryption is introduced.

3.1 Divisors
When working with an integer, it is natural to try to factor the integer and thereby
write it as a product. For this reason, numbers that cannot be factored them-
selves, such as 2, are particularly important. To initiate our study of integers
and their divisors, we start with the consideration of whether or not an integer
is a multiple of 2.

Parity
One of the most basic properties of an integer is whether it is even or odd—its
parity. Of course, before we can prove anything, we need a formal characteri-
zation of even and odd.

103
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DEFINITION 3.1 An integer n is said to be

(a) even if n = 2k for some integer k, and

(b) odd if n = 2k + 1 for some integer k.

The fact that every integer can be written in exactly one of the two forms 2k
or 2k+ 1 is a consequence of the Division Algorithm proved in Section 3.2. That
is, our definition of odd numbers gives that all integers that are not even must
be odd. We use Definition 3.1 to prove properties of even and odd integers.

EXAMPLE 3.1 Show that, for every pair of odd integers, the product is odd.

Proof
Let m and n be arbitrary odd integers.
So m = 2k + 1 and n = 2l + 1 for some k, l ∈ Z.
Hence,

mn = (2k + 1)(2l + 1) = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1.

Since 2kl + k + l is an integer, the form displayed on the right-hand side above
shows that mn is odd. �

The proof in Example 3.1 is basically forced on us. After establishing the odd
integers m and n in the first sentence, the second sentence simply expresses m
and n according to the definition of odd. The next sentence is merely a calcu-
lation of the product mn. The grouping in the expression 2(2kl + k + l) + 1 is
again driven by the definition of odd and our consequent desire to express mn
as twice an integer, plus one. Our proof closes with the simple observation that
this has been accomplished.

The next example is one in which the contrapositive of an if-then statement
is the more natural statement to prove.

EXAMPLE 3.2 Let n ∈ Z. Show: If n2 is odd, then n is odd.

Proof
Suppose n is not odd.
That is, n is even.
So n = 2k for some k ∈ Z.
Hence, n2 = 4k2 = 2(2k2).
Since 2k2 ∈ Z, n2 is even.
That is, n2 is not odd. �

An attempt to prove Example 3.2 directly runs quickly into a dead end when
taking the square root of n2 = 2k+1 is attempted. This is why the contrapositive
was a good choice. The analog of Example 3.2 for even integers is left for the
exercises.

Divisibility
An integer being even is simply a special case of one integer being divisible by
another.
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DEFINITION 3.2

Given integers n and d, we say that d divides n, written d | n, if n = dk for some
integer k. In this case, we also say that n is divisible by d, that n is a multiple of d ,
that d is a divisor of n, and that d is a factor of n. When n is not divisible by d, we
write d � | n.

Note that n is even if and only if 2 | n.

EXAMPLE 3.3 Let a and m be integers with m ≥ 1. Show: a | am.

Proof
Observe that am = a · am−1 and, since m− 1 ≥ 0, am−1 ∈ Z. �

From the algebra of real numbers (Appendix A, number 8), we know that if
a < b and b < c, then a < c. That property is called the transitivity of the less
than relation. We have an analogous property of divisibility among integers.

EXAMPLE 3.4 (Transitivity of the Divides Relation)
Let a , b, and c be integers. Show: If a | b and b | c, then a | c.

Proof
Suppose a | b and b | c.
So b = ak and c = bl for some k, l ∈ Z.
Observe that c = bl = akl = a (kl).
Since kl ∈ Z, we have established that a | c. �

The proof in Example 3.4 is simply an example of a direct proof of an if-then
statement. The details are just the unwinding of the notation from Definition 3.2.

It should come as no surprise that the divisors of a positive integer cannot
exceed that integer. However, this assertion warrants a proof.

THEOREM 3.1 Let a , b ∈ Z with b > 0. If a | b, then a ≤ b.

Proof
Suppose a | b.
So b = ak for some k ∈ Z.

Case 1: a ≤ 0.
We have a ≤ 0 < b, and the conclusion a ≤ b is immediate.

Case 2: a > 0.
Since ak = b > 0, it must be that k > 0 too. (Otherwise, ak < 0.)
Since k is an integer, 1 ≤ k.
Multiplication by (the positive value) a gives that a = a · 1 ≤ a · k = b.

In both cases, we conclude that a ≤ b. �

In Theorem 3.1, the assumption that b > 0 is necessary. For example, if b=−6,
then each of the divisors a ∈ {−3, −2, −1, 1, 2, 3, 6} satisfies a | b and a > b. Only
if an integer b is positive will none of its divisors be larger.
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Primes
The most important divisors of an integer are those that cannot be factored any
further.

DEFINITION 3.3

An integer p is said to be prime if p > 1 and the only positive divisors of p are 1
and p.

DEFINITION 3.4

An integer n > 1 that is not prime is said to be composite.

The first ten primes are

2, 3, 5, 7, 11, 13, 17, 19, 23, and 29.

The first ten composites are

4 = 2 · 2, 6 = 2 · 3, 8 = 2 · 4, 9 = 3 · 3, 10 = 2 · 5, 12 = 2 · 6,
14 = 2 · 7, 15 = 3 · 5, 16 = 2 · 8, and 18 = 3 · 6.

Note that 1 is the only positive integer that can be called neither prime nor
composite. We do not want 1 to be a prime, since we want each integer n > 1
to have a unique factorization as a product of primes (Theorem 4.8). If 1 were
prime, then

18 = 1 · 2 · 3 · 3, 18 = 1 · 1 · 2 · 3 · 3, and 18 = 1 · 1 · 1 · 2 · 3 · 3,

would all be different factorizations of 18. We want just the one factorization
18 = 2 · 3 · 3. Considering 1 to be composite is also not desirable, since 1 is its
only positive divisor. Consequently, 2 is the smallest prime, and 4 is the smallest
composite.

EXAMPLE 3.5 Show that 2 is the only even prime.

Proof
Let p be an even prime.
So p = 2k for some k ∈ Z.
In fact, since p > 0 and 2 > 0, it must be that k > 0. (Otherwise, 2k < 0.)
Since p is prime, and k is a positive divisor of p, we must have either k = 1 or
k = p.
Since p = 2p is impossible, it has to be that k = 1.
Therefore, p = 2k = 2. �

The term composite is defined as the negation of the term prime. However, it
is often useful to have a direct characterization of composites. An integer n > 1
is composite if and only if

∃ r, s ∈ Z such that r > 1, s > 1, and rs = n. (3.1)

A proof that this characterization is equivalent to the definition is requested in
the exercises. It is the characterization of composites in (3.1) that is most fre-
quently applied in our proofs.
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Greatest Common Denominators
An integer c is said to be a common divisor of the integers m and n if c | m and
c | n. That is, c is a divisor of both m and n. For example, 10 is a divisor of both
40 and 60. Also, 20 is a common divisor of 40 and 60 and is the largest one.

DEFINITION 3.5

Given integers m and n not both zero, their greatest common divisor, denoted
gcd(m, n), is the unique integer d such that

(i) d > 0,

(ii) d | m and d | n, and

(iii) ∀ c ∈ Z+, if c | m and c | n, then c ≤ d.

A proof of the uniqueness assertion in Definition 3.5 is left for the exercises
in the next section. Condition (iii) could equivalently be stated for all integers c,
not just the positive ones. However, the nonpositive common divisors of m and
n are obviously less than or equal to the positive integer d.

Note that gcd(0, 0) is undefined, since every positive integer is a divisor of 0.
Hence, there cannot be a greatest one. At the other extreme, it is possible for two
integers to have no positive divisors in common other than 1, which divides all
integers.

DEFINITION 3.6

Two integers m and n are said to be relatively prime if gcd(m, n) = 1.

EXAMPLE 3.6 (a) gcd(18, 30) = 6.
Certainly, 6 > 0, 6 | 18, and 6 | 30. Also, any element c in the set
{1, 2, 3, 6} of positive common divisors of 18 and 30 satisfies c ≤ 6.

(b) Observe that 14 and 9 are relatively prime, since gcd(14, 9) = 1. ■

If one can factor each of two positive integers m and n as a product of powers
of primes, then the greatest common divisor can quickly be determined from
those factorizations. The proof of the validity of the method introduced in the
following example is left for the exercises in Section 4.5, where factorizations are
discussed in more depth.

EXAMPLE 3.7 (a) gcd(81989600, 231254595000) = 2928200.
We have the factorizations

81989600 = 25 · 52 · 7 · 114 and 231254595000 = 23 · 35 · 54 · 114 · 13.

We see that 2, 5, and 11 are the prime factors common to both 81989600
and 231254595000. It follows that

gcd(81989600, 231254595000) = 23 · 52 · 114 = 2928200.

Here the exponents on the primes 2, 5, and 11 are chosen to be the
smaller of the two exponents in the factorizations of 81989600 and
231254595000.
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(b) gcd(26159679, 644436) = 3159.
From the factorizations

26159679 = 35 · 72 · 133 and 644436 = 22 · 36 · 13 · 17,

we get that

gcd(26159679, 644436) = 35 · 13 = 3159. ■

The shortcoming of the method in Example 3.7 is that it is extremely difficult
to factor large numbers. What we want is an algorithm, which is a finite list of
simple instructions leading to a desired result. Moreover, we want implementa-
tions of our algorithm to reach the desired result quickly. Euclid’s algorithm for
computing greatest common divisors, which avoids the difficulty of factoring
integers, is presented in Section 3.3. The functions GCD and igcd in Mathematica
and Maple, respectively, interleave Euclid’s algorithm with other methods to
calculate greatest common divisors quickly. In C++, however, there is no prede-
fined function for computing greatest common divisors. Hence, some algorithm
such as Euclid’s would need to be programmed.

Before learning Euclid’s algorithm in Section 3.3, we should further famil-
iarize ourselves here with the basic properties of greatest common divisors. The
computation of the greatest common divisor in the following example is driven
entirely by Definition 3.5.

EXAMPLE 3.8 Given any positive integer k, show: gcd(k, 0) = k.

Proof
(We verify the conditions in Definition 3.5 for m = k, n = 0, and d = k.)
Observe that k is positive and that k | k and k | 0.
Hence, conditions (i) and (ii) are satisfied.
If c ∈ Z+ and c | k and c | 0, then, in particular, c | k.
By Theorem 3.1, we have c ≤ k. Thus, condition (iii) is satisfied.
We conclude that k = gcd(k, 0). �

It follows from Definition 3.5 that gcd(m, n) does not depend on the sign
of m and n. That is, gcd(m, n) = gcd(±m, ±n). Hence, gcd(m, n) = gcd(|m|, |n|).
(Verification is left for the exercises.) These observations, together with the result
in Example 3.8, give the following result.

THEOREM 3.2 Given any integer k �= 0, gcd(k, 0) = |k|.

The proof in the next example obviously breaks into cases. Note that in each
case, the computation of the greatest common divisor simply follows the
definition.

EXAMPLE 3.9 Let p and n be integers with p prime. Show: gcd( p, n)=
{

p if p | n,
1 if p � | n.

Proof
Case 1: p | n
Since p is prime, p is positive.
Certainly p | p and p | n.
So suppose that c is a positive integer such that c | p and c | n.
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Since c | p, it follows from Theorem 3.1 that c ≤ p.
Therefore, p = gcd( p, n).

Case 2: p � | n
It is clear that 1 is positive and that 1 | p and 1 | n.
So suppose that c is a positive integer such that c | p and c | n.
Since c | p and p is prime, it follows that c = 1 or c = p.
Since c | n and p � | n, in this case it must be that c = 1.
In particular, c ≤ 1.
Therefore, 1 = gcd( p, n). �

It is interesting to note, and we shall need in the next section, that two con-
secutive integers can never have a factor in common except ±1.

LEMMA 3.3 Let n be any integer. Then n and n+ 1 are relatively prime.

Proof
We shall show that gcd(n, n+ 1) = 1.
Certainly, 1 > 0, 1 | n, and 1 | (n+ 1).
So suppose c ∈ Z+ and c | n and c | (n+ 1).
So n = ck and n+ 1 = cl for some k, l ∈ Z.
Hence, 1 = (n+ 1) − n = cl − ck = c(l − k).
That is, c | 1, and therefore, c ≤ 1.
It follows that gcd(n, n+ 1) = 1. �

A lemma is simply a theorem. However, the term lemma is typically used
when the theorem is one whose primary use is to help prove subsequent theo-
rems. The previous lemma is important in our proof that the list of all primes
goes on forever (Theorem 3.6).

SECTION 3.1 Exercises
1. Show that, for every even integer and every odd integer, the product is

even.
2. Show that, for every even integer and every odd integer, the sum is odd.
3. Let n ∈ Z. Show: If n2 is even, then n is even.
4. Let n ∈ Z. Show: If n3 is odd, then n is odd.
5. Show: For every even integer n, (−1)n = 1. Hint: Use the laws of exponents.
6. Show: For every odd integer n, then (−1)n = −1.
7. The power button on a TV remote control turns the TV on if it is off

and off if it is on. If the TV is on, then will the TV be on after the power
button is pressed 50 times? How is this related to Exercise 5?

8. Juliet is pulling off the petals of a flower one at a time. When the first petal
is pulled off, she says, “He loves me.” When the second petal is pulled off,
she says, “He loves me not.” And she continues to alternate between these
two states of mind until no petals remain. What will her conclusion be if
the flower has 17 petals? How is this related to Exercise 6?

9. Let a ∈ Z. Show: a | 0. 10. Let a ∈ Z. Show: If 0 | a , then a = 0.

11. Let a ∈ Z. Show: If a |1, then a = ±1.
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12. Let a , b ∈ Z. Show: a | ab.
13. Let a ∈ Z. (a) Show: (a − 1) | (a2 − 1).

(b) Assume that a ≥ 2, and consider an a × a grid of unit squares, such
as that shown in Figure 3.1 for a = 5. Let R be the region obtained by re-
moving the unit square from the top-right corner of this grid. Observe
that the area of R is a2 − 1, and prove the assertion in part (a) by splitting
R into rectangles, each of which has a dimension of size a − 1.

Figure 3.1 Grid of Unit Squares

14. Let a ∈ Z. (a) Show: a | ((a + 2)2 − 4).
(b) Assume that a ≥ 1, and consider an (a + 2) × (a + 2) grid of unit
squares, such as that shown in Figure 3.1 for a = 3. Prove the assertion in
part (a) by considering the region obtained by removing the unit square
from each corner.

15. Let a , b ∈ Z. Show: If a | b and b | a , then a = ±b.
16. Let a , b ∈ Z. Show: a | b if and only if a | −b.
17. Let n ∈ Z. Show: If n is even, then 4 | n2.
18. Let n ∈ Z. Show: If 3 | n, then 9 | n2.
19. A mother purchased a bag containing 420 m&m’s to split among the chil-

dren attending a birthday party. If there are 8 children attending the party,
can this bag be divided evenly? What if one of the children is unable to
attend?

20. A large group planning a trip to a baseball game wishes to purchase tickets
so that they can sit together in one section. Each row of the section seats
15 people. If there are 275 people in the group, will they completely fill the
rows required to contain them? What is the smallest number of extra
people they could invite to completely fill the rows they need?

21. Let a , b, c ∈ Z. Show: If a | b and a | c, then a | (b − c).
22. Let a , b, c ∈ Z. Show: If a | b and a | (b + c), then a | c. Hint: c = (b + c) − b.
23. For a , b, c ∈ Z, is it possible that a | (b + c) but a � | b and a � | c?
24. For a , b ∈ Z, is it possible that a | b and a > b?
25. List the first twenty primes.
26. List the first twenty composites.
27. Show that 3 is the only prime divisible by 3.
28. Show that 5 is the only prime divisible by 5.

�29. Show: For any integer p with p > 1,
p is prime if and only if ∀ r, s ∈ Z, if r > 1 and s > 1, then rs �= p.

∗Exercises that may be particularly challenging are marked with a star.



C H A P T E R 3 ■ Elementary Number Theory 111

�30. Show: For any integer p with p > 1, p is prime if and only if the only
divisors of p are ±1 and ±p.

�31. Prove that the characterization of composite integers given in (3.1) is
equivalent to that given by Definition 3.4. That is, show: For any integer n
with n > 1, n is composite if and only if ∃ r, s ∈ Z such that r > 1, s > 1,
and rs = n.

�32. Show: Any integer n > 1 is composite if and only if n has divisors other
than ±1 and ±n.

�33. Show that, if an integer n > 1 is composite, then n has a factor larger than 1
and less than or equal to

√
n.

�34. Show that, if an integer n > 1 is a product of three (not necessarily distinct)
integers, each of which is greater than 1, then n has a factor larger than 1
and less than or equal to 3

√
n.

35. The Greek mathematician Eratosthenes of Cyrene (276–194 B.C.E.) used the
following method, now known as the Sieve of Eratosthenes, to find all
primes up to a given integer n provided that all primes p1, . . . , pk less than
or equal to

√
n are known: List the integers 2, . . . , n, and, with the excep-

tions of p1, . . . , pk themselves, cross off all multiples of p1, . . . , pk . (See
Exercise 33.) Use the Sieve of Eratosthenes to find all primes less than or
equal to 121. This will yield the first 30 primes (and the first 90 composites),
and it requires previous knowledge only of the first 5 primes.

36. A method similar to the Sieve of Eratosthenes in Exercise 35 can be used to
determine which integers can be written in the form abc with a , b, c > 1.
Explain how it follows from Exercise 34 that all the integers from 1 to 64
that can be written as a product of three integers greater than 1 lie among
the multiples of 2 and 3. Use this fact to find them.

In Exercises 37 through 42, find the greatest common divisors by factoring.
37. Find gcd(56, 42). 38. Find gcd(−360, 270).
39. Find gcd(−108, −90). 40. Find gcd(810, 24500).
41. Find gcd(2475, −780). 42. Find gcd(−1144, 3146).
43. Suppose n beads are to be arranged on a circular loop, and every kth bead

must be the same color. That is, for each bead b, both beads k positions
away from b must be the same color as b.
(a) The case in which n = 10 and k = 4 is reflected in Figure 3.2, where a

coloring has been started. What is the maximum number of different
colors that could be used in this case?

(b) For a cycle of 20 beads and a skipping number 8, what is the maxi-
mum number of different colors that could be used?

(c) In general, for a cycle of n beads and a skipping number k, what is the
maximum number of different colors that could be used? Try several
examples to see a pattern.

k � 4

Figure 3.2 Cycle of n = 10 Beads with Skipping Number k = 4
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44. Some of the squares in an m× n grid of unit squares are to be numbered.
We start with the bottom-left corner. From then on, we shall next number
the square over and up one from the previous numbered square. If this
runs us off the top of the grid, then we resume on the square in the next
column of the bottom row. If we run off the right of the grid, then we
resume on the square in the next row of the left column.

(a) The case in which m = 15 and n = 6 is displayed in Figure 3.3, where
the numbering has also been started. What number gets assigned to
the top-right corner?

(b) For a 20× 12 grid, what number gets assigned to the top-right corner?
(c) In general, for an m× n grid, what number gets assigned to the

top-right corner?

16

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

Figure 3.3 Numbering Squares on a Grid

For Exercises 45 through 50, let m and n be integers that are not both zero.
45. Show that there can only be one value d satisfying the three conditions in

Definition 3.5.
46. Let d = gcd(m, n) and note that m

d , n
d ∈ Z. Show: gcd( m

d , n
d ) = 1.

47. Show: gcd(−m, n) = gcd(m, n).
48. Show: gcd(n, m) = gcd(m, n).
49. Use Exercises 47 and 48 to show: gcd(m, −n) = gcd(m, n).
50. Use Exercises 47, 48, and 49 to show: gcd(m, n) = gcd(|m|, |n|).
51. Show that every pair of distinct primes is relatively prime.
52. Let m ∈ Z+ and k ∈ Z\{0}. Show: gcd(m, mk) = m.
53. Let n ∈ Z. Show that n and 1− 2n are relatively prime.

Hint: 1 = (1− 2n) + 2(n).
54. Let n ∈ Z. Show that 3n+ 1 and 2n+ 1 are relatively prime.

Hint: Find a , b ∈ Z such that a (3n+ 1) + b(2n+ 1) = 1.

DEFINITION 3.7

Given nonzero integers m and n, their least common multiple, denoted lcm(m, n), is
the unique integer l such that

(i) l > 0,

(ii) m | l and n | l, and

(iii) ∀ k ∈ Z+, if m | k and n | k, then l ≤ k.

In Exercises 55 through 58, use the fact, to be proved in Section 4.5, that

∀m, n ∈ Z\{0}, lcm(m, n) = |mn|
gcd(m, n)

. (3.2)
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55. Find lcm(56, 42). 56. Find lcm(−36, 27).
57. Find lcm(−108, −90). 58. Find lcm(81, 245).
59. For two positive integers a and b, we have many cans of height a inches

and many of height b inches that we would like to store on some shelves.
We insist that (1) the shelves must be evenly spaced, (2) only cans of the
same height can be stacked on the same shelf, and (3) each shelf, when
completely filled by stacks of cans, leaves no empty space above the top
cans and below the next shelf. For example, if a = 4 and b = 6, then
leaving 12 inches between the shelves will accomplish this. We can stack
the 4-inch cans three high, and we can stack the 6-inch cans two high.
(a) If we have cans of heights 4 inches and 16 inches, then what is the

smallest possible spacing between the shelves that will satisfy our
conditions?

(b) If we have cans of heights 6 inches and 15 inches, then what is the
smallest possible spacing between the shelves that will satisfy our
conditions?

(c) In general, in terms of a and b, what is the smallest possible spacing
between the shelves that will satisfy our conditions?

60. Given integers a , b, c, d with b and d nonzero, to compute the fraction sum
a
b + c

d , we need to find a common denominator.

(a) What is the smallest possible common denominator we could use in
computing 3

10 + 2
25 ?

(b) In general, in terms of b and d, what is the smallest possible common
denominator we could use?

(c) If a
b and c

d are in lowest terms (that is, gcd(a , b) = gcd(c, d) = 1) and
we use the smallest possible common denominator to add them, will
that always be the smallest possible denominator for the sum?

In Exercises 61 and 62, use Definition 3.7 and not (3.2).
61. Show: ∀m, n ∈ Z\{0}, lcm(n, m) = lcm(m, n).
62. Show: ∀m, n ∈ Z\{0}, lcm(m, −n) = lcm(m, n).

3.2 Consequences of Well-Ordering
Since, in this book, we have not axiomatically constructed the set of integers,
we have allowed ourselves to accept and use without proof the basic properties
listed in Appendix A. For example, this includes the fact that sums and pro-
ducts of integers are integers. In this section, we explore some consequences of a
less elementary but extremely important property, which we also assume with-
out proof.

THEOREM 3.4 Well-Ordering Principle for the Integers

Each nonempty subset of the nonnegative integers has a smallest element.

When relatively simple examples are considered, the Well-Ordering Princi-
ple may not seem helpful.
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EXAMPLE 3.10 Let S = {s : s = 15x + 25y, where x, y ∈ Z and 15x + 25y > 0}. Obviously, S
is a nonempty subset of the nonnegative integers. Hence, the Well-Ordering
Principle guarantees that S has a smallest element. However, it is not hard to
see directly in this case that the smallest element of S is 5. First, 5 ∈ S, since
5 = 15(2) + 25(−1). Second, any element of S can be expressed as

s = 15x + 25y = 5(3x + 5y),
a multiple of 5. Since none of 1, 2, 3, 4 is divisible by 5, no element smaller
than 5 is in S. ■

The power of the Well-Ordering Principle shows itself in perhaps subtle ways.
For example, it enables us to prove that primes are factors of every integer from
2 on up.

THEOREM 3.5 Existence of Prime Divisors

Every integer greater than 1 has a prime divisor.

Proof
Suppose not. Let S be the set of integers greater than 1 that do not have a
prime divisor. Since our assumption is that S is nonempty, the Well-Ordering
Principle gives us a smallest element n ∈ S. It cannot be the case that n is prime,
since n divides itself. Thus, n must be composite. We can therefore write n = rs
for some integers r and s such that 1 < r < n and 1 < s < n. (See Exercise 31 of
Section 3.1.) In particular, r > 1 and r is smaller than n, the smallest element of
S. Hence, r �∈ S. That is, r must be divisible by some prime p. Say r = pt, where
t ∈ Z. Therefore, n = rs = pts. That is, n is divisible by the prime p. This is a
contradiction. �

The proof of Theorem 3.5 additionally illustrates the power of a proof by
contradiction. That power is also highlighted in the following proof using
Theorem 3.5.

THEOREM 3.6 There are infinitely many primes.

Proof
Suppose not.
Since there must therefore be only finitely many primes, we can give a
complete list p1, p2, . . . , pm of all of the primes.
Form the product n = p1 · p2 · · · · · pm, and consider the integer n+ 1.
Theorem 3.5 tells us that n+ 1 must have some prime divisor.
Hence, n+ 1 must be divisible by some prime on our (supposedly complete)
list, say pk .
However, n is divisible by pk .
So n and n+ 1 have the prime factor pk in common.
This is a contradiction, since Lemma 3.3 tells us that gcd(n, n+ 1) = 1. �

Computer Searches for Large Primes
Despite the fact that there is no end to the list of primes, there is an end to the list
of known primes. As of January 2007, the largest known prime was 232582657 − 1.
However, the determination of all primes up to that value is not yet complete.
The prime 232582657 − 1 has 9,808,358 decimal digits and is an example from a
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special class of prime numbers named after the French monk Marin Mersenne
(1588–1648), who was a connoisseur of mathematics.

A Mersenne prime is a prime number of the form 2n− 1, for some integer n.
The first five Mersenne primes are the numbers 2n − 1, when n = 2, 3, 5, 7, 13.
As we shall see in the exercises, the exponent n must itself be prime for 2n − 1
to be prime. However, since 211 − 1 = 23 · 89 is composite, that condition is
not sufficient. The Great Internet Mersenne Prime Search (GIMPS) is a worldwide
effort to find larger and larger Mersenne primes. One can enlist one’s personal
computer in this pursuit by downloading software available from the GIMPS
website, http://www.mersenne.org/prime.htm. An award of $100,000 is being
offered by the Electronic Frontier Foundation for the first to find a ten million
digit prime number.

Integer Division
For another useful application of the Well-Ordering Principle, we revisit the in-
teger division taught in elementary school. For example, the problem of 124÷ 9

1 3
9
)

1 2 4
− 9

3 4
− 2 7

7

yields the response of 13 remainder 7. This is formalized in the Division
Algorithm.

THEOREM 3.7 Division Algorithm

Given any integer n and any positive integer d, there exist unique integers q and r such that

(i) n = dq + r , and (ii) 0 ≤ r < d.

DEFINITION 3.8

In Theorem 3.7, we say that q is the quotient and r is the remainder upon division
of n by d. We also write

q = n div d and r = n mod d.

The operators div and mod occur in some form in most programming lan-
guages. In Mathematica, the values q and r from the Division Algorithm are re-
turned by the functions Quotient[n,d] and Mod[n,d], respectively. In C++,
n/d and n%d are used, and in Maple, iquo(n,d) and irem(n,d) can be used.1

However, when n is negative, the behavior of these operators does not always
agree with div and mod, respectively. In that case, n%d and irem(n,d)may be
negative. Thus, one must thoroughly understand their precise definitions when
using them for computations.

Before proving Theorem 3.7, we consider some examples.

EXAMPLE 3.11 (a) If n = 124 and d = 9, then q = 13 and r = 7.
That is, 124 = 9(13) + 7.
So 124 div 9 = 13 and 124 mod 9 = 7.

1In Maple, the function modp and the operator mod can also be used.

http://www.mersenne.org/prime.htm
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(b) If n = 60 and d = 5, then q = 12 and r = 0.
That is, 60 = 5(12) + 0.
So 60 div 5 = 12 and 60 mod 5 = 0.

(c) If n = −53 and d = 7, then q = −8 and r = 3.
That is, −53 = 7(−8) + 3.
So −53 div 7 = −8 and −53 mod 7 = 3.

Proof of Theorem 3.7
Both the existence and the uniqueness of q and r must be shown. Existence is
handled first.

Let S = {s : s = n− dk, where k ∈ Z and n− dk ≥ 0}. We can argue that S is
nonempty. If n ≥ 0, then n− d · 0 = n is in S. If n < 0, then n− dn = (d − 1)(−n)
is in S. Since S is nonempty, the Well-Ordering Principle provides us with a
smallest element r . Thus, r = n− dq for some q ∈ Z. We just need to show that
q and r have the desired properties. Certainly, n = dq + r and r ≥ 0. Hence, it
remains to show that r < d. However, if r ≥ d, then n− d(q + 1) = n− dq − d =
r − d ≥ 0. This would make r − d a smaller element of S than r , which is
impossible because r is the smallest element of S. Since the assumption that
r ≥ d leads to a contradiction, we conclude that 0 ≤ r < d.

To prove uniqueness, suppose n = dq1 + r1 = dq2 + r2, 0 ≤ r1 < d, and
0 ≤ r2 < d . That is, suppose that the pairs (q1, r1) and (q2, r2) are both results
of the division of n by d. Without loss of generality, say r2 ≥ r1. That is, we
can choose to name our pairs so that (q2, r2) does not have a smaller second
coordinate than (q1, r1). Since d(q1 − q2) = dq1 − dq2 = r2 − r1, we have
that d | (r2 − r1). If r2 �= r1, then r2 − r1 > 0. Theorem 3.1 then tells us that
d ≤ r2 − r1 ≤ r2, which contradicts the fact that r2 < d. Hence, it must be that
r2 = r1. This forces dq2 = dq1, and therefore q2 = q1 as well. �

By the Division Algorithm, the only possible remainders upon division of an
integer n by a positive integer d are 0, 1, . . . , and d − 1. In particular, for d = 2,
the only possible remainders are 0 and 1. Hence, Definition 3.1 is now seen to
say that an integer is odd if and only if it is not divisible by 2.

In general, the Division Algorithm provides a way of proving statements
involving an integer d not dividing an integer n. Such a property is characterized
by the fact that n mod d is nonzero.

EXAMPLE 3.12 Show: For any integer n, n2 − 2 is not divisible by 5.

Proof
Let n be any integer.
By the Division Algorithm, n must take one of the forms

5k, 5k + 1, 5k + 2, 5k + 3, or 5k + 4,

for some integer k. That is, dividing n by 5 leaves a remainder of 0, 1, 2, 3, or 4.
Here, k is being used to represent the quotient.
We consider each possible form for n.

Case 0: n = 5k for some k ∈ Z.
Observe that n2 − 2 = 25k2 − 2

= 25k2 − 5+ 3
= 5(5k2 − 1) + 3.

That is, (n2 − 2) mod 5 = 3 and not 0.
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Case 1: n = 5k + 1 for some k ∈ Z.
Observe that

n2 − 2 = 25k2 + 10k + 1− 2
= 25k2 + 10k − 5+ 4
= 5(5k2 + 2k − 1) + 4.

That is, (n2 − 2) mod 5 = 4 and not 0.

Case 2: n = 5k + 2 for some k ∈ Z.
Observe that

n2 − 2 = 25k2 + 20k + 4− 2
= 25k2 + 20k + 2
= 5(5k2 + 4k) + 2.

That is, (n2 − 2) mod 5 = 2 and not 0.

Case 3: n = 5k + 3 for some k ∈ Z.
Observe that

n2 − 2 = 25k2 + 30k + 9− 2
= 25k2 + 30k + 5+ 2
= 5(5k2 + 6k + 1) + 2.

That is, (n2 − 2) mod 5 = 2 and not 0.

Case 4: n = 5k + 4 for some k ∈ Z.
Observe that

n2 − 2 = 25k2 + 40k + 16− 2
= 25k2 + 40k + 10+ 4
= 5(5k2 + 8k + 2) + 4.

That is, (n2 − 2) mod 5 = 4 and not 0.

In each case, we see that 5 � | (n2 − 2). �

The approach taken in Example 3.12 can also be used to show that an expres-
sion is not divisible by 2.

EXAMPLE 3.13 Show: ∀ n ∈ Z, n2 + n− 1 is odd.

Proof
Let n ∈ Z.
By the Division Algorithm, n must take either the form 2k or 2k + 1, for some
k ∈ Z. (That is, n is either even or odd.)

Case 0: n = 2k for some k ∈ Z.
Observe that

n2 + n− 1 = 4k2 + 2k − 1
= 4k2 + 2k − 2+ 1
= 2(2k2 + k − 1) + 1.

Thus, (n2 + n− 1) mod 2 = 1 and not 0. (That is, n2 + n− 1 is odd.)
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Case 1: n = 2k + 1 for some k ∈ Z.
Observe that

n2 + n− 1 = 4k2 + 4k + 1+ 2k + 1− 1
= 4k2 + 6k + 1
= 2(2k2 + 3k) + 1.

Thus, (n2 + n+ 1) mod 2 = 1 and not 0. (That is, n2 + n+ 1 is odd.)

In both cases, n2 + n− 1 is odd. �

Rounding Numbers
We consider two ways of discarding the decimal part of an arbitrary real
number.

DEFINITION 3.9

Let x be any real number.

(a) The floor of x, denoted �x�, is the largest integer n such that n ≤ x.

(b) The ceiling of x, denoted �x�, is the smallest integer n such that x ≤ n.

In Mathematica, the functions in Definition 3.9 are denoted Floor and
Ceiling. In C++ and Maple, they are floor and ceil.

EXAMPLE 3.14 (a) �3.2� = 3. (e) �3.2� = 4.

(b) �5.8� = 5. (f) �5.8� = 6.

(c) �−4.9� = −5. (g) �−4.9� = −4.

(d) �−6.3� = −7. (h) �−6.3� = −6. ■

The characterizations of floor and ceiling given in the following theorem pro-
vide a checklist of three items to verify in computations. A proof of Theorem 3.8
is left for the exercises.

THEOREM 3.8 Let x be any real number.

(a) �x� is the unique value n such that

(i) n ∈ Z,

(ii) n ≤ x, and

(iii) x < n+ 1.

(b) �x� is the unique value n such that

(i) n ∈ Z,

(ii) x ≤ n, and

(iii) n− 1 < x.

We apply Theorem 3.8 to prove the following formula for � n
2 �.

THEOREM 3.9
∀ n ∈ Z, � n

2 � =
{

n
2 if n is even,
n−1

2 if n is odd.
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Proof
Let n ∈ Z.

Case 1: n is even.
So n = 2k for some k ∈ Z.
Note that k = n

2 .
We then have k ∈ Z, k ≤ n

2 (actually =), and n
2 < k + 1.

In this case, it follows from Theorem 3.8 that � n
2 � = k = n

2 .

Case 2: n is odd.
So n = 2k + 1 for some k ∈ Z.
Note that k = n−1

2 .
We then have k ∈ Z, k ≤ n

2 , and n
2 < k + 1. (Check these.)

In this case, it follows from Theorem 3.8 that � n
2 � = k = n−1

2 . �

As should be expected, there is an analogous formula for � n
2 �.

THEOREM 3.10
∀ n ∈ Z, � n

2 � =
{n

2 if n is even,

n+1
2 if n is odd.

The results in Theorems 3.9 and 3.10 can be combined to yield the following
formula.

COROLLARY 3.11 ∀ n ∈ Z, � n
2 � + � n

2 � = n.

A corollary is a theorem. However, the term corollary is typically used when
that theorem follows relatively easily from a previous theorem or theorems. The
proofs of Theorem 3.10 and Corollary 3.11 are left to the exercises.

It is tempting to overestimate how well-behaved the floor and ceiling func-
tions are. The following example should serve to dispel some misconceptions.

EXAMPLE 3.15 Disprove: ∀ x, y ∈ R, �x + y� = �x� + �y�.
Counterexample
Let x = 1.5 and y = 2.5.
So x + y = 4.
Observe that �x + y� = 4 and �x� + �y� = 1+ 2 = 3.
Thus, �x + y� �= �x� + �y�. ■

There is a beautiful connection between the floor function and the ÷
operation.

THEOREM 3.12 Given any integer n and positive integer d, � n
d � = n div d.

Proof
Let n, d ∈ Z with d > 0.
By the Division Algorithm, we can write n = dq + r , where q = n div d and
0 ≤ r < d .
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Observe that q ∈ Z, q = n
d − r

d ≤ n
d , and q + 1 = n

d + d−r
d > n

d .
It follows from Theorem 3.8 that � n

d � = q = n div d. �

Applications of mod
Identification numbers are typically appended with a check digit that is deter-
mined using the remainder function mod.

EXAMPLE 3.16 (Check Digit Formulas)

(a) A Universal Product Code (UPC) number

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

is attached to all products available for sale. The last digit d12 is the
check digit and is determined from the first eleven identifying digits by
the requirement that

[3(d1+ d3+ d5+ d7+ d9+ d11)+ d2+ d4+ d6+ d8+ d10+ d12] mod 10 = 0.

For example, the UPC number for a bottle of Gatorade is

0 52000 33831 7

and indeed

[3(0+ 2+ 0+ 3+ 8+ 1)+ 5+ 0+ 0+ 3+ 3+ 7] = 60 and 60 mod 10 = 0.

(b) An International Standard Book Number (ISBN)

d1 − d2 d3 d4 d5 d6 d7 d8 d9 − d10

is attached to each book published. The check digit d10 is determined by
the requirement that

[10d1 + 9d2 + 8d3 + 7d4 + 6d5 + 5d6 + 4d7 + 3d8 + 2d9 + d10] mod 11 = 0.

If the value of d10 must be ten, then X is used for that digit. For example,
the ISBN for Curious George by H. A. Rey is

0-39515023-X

and indeed
[10 · 0+ 9 · 3+ 8 · 9+ 7 · 5+ 6 · 1+ 5 · 5+ 4 · 0+ 3 · 2+ 2 · 3+ 10] = 187 and
187 mod 11 = 0. ■

Check digits can be used to detect whether an identification number is read
or entered incorrectly.

EXAMPLE 3.17 (Error Detection with Check Digits)

(a) If the UPC number for Gatorade is mistakenly scanned as

0 25000 33831 7,

then the calculation

[3(0+ 5+ 0+ 3+ 8+ 1) + 2+ 0+ 0+ 3+ 3+ 7] = 65

shows that an error has occurred, since 65 mod 10 = 5 �= 0.
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(b) If the ISBN for Curious George is mistakenly typed as

0-36515023-X,

then the calculation

[10 · 0+ 9 · 3+ 8 · 6+ 7 · 5+ 6 · 1+ 5 · 5+ 4 · 0+ 3 · 2+ 2 · 3+ 10] = 163

shows that an error has occurred, since 163 mod 11 = 9 �= 0. ■

Having a check digit does not guarantee the detection of all errors, but most
typical errors are commonly caught. Some simple errors in identification num-
bers that might not be caught are explored in the exercises.

Another application in which additional check digits help to catch errors
is through binary linear codes. These are schemes used to transmit messages
when errors may be introduced, and they not only detect errors but also cor-
rect some errors. Such systems are employed by NASA to mitigate the errors
introduced in sending messages over the vastness of space and by CD burners
to circumvent errors caused by scratches and other imperfections.

The binary linear codes we consider in this book are constructed as follows.
Given a message, encoded as a binary string b1b2 . . . bk , a binary linear code spec-
ifies a code word b1b2 . . . bkbk+1 . . . bn by appending extra digits, called parity
check digits. Each parity check digit is determined by the sum of some of the
binary digits in the message.

EXAMPLE 3.18 (Constructing a Binary Linear Code). A message b1b2b3 is converted to a code
word b1b2b3b4b5b6 by computing the parity check digits according to the
following formulas, using sums of the message digits.

b4 = (b1 + b2) mod 2
b5 = (b1 + b3) mod 2
b6 = (b1 + b2 + b3) mod 2

The code words determined by the eight possible three-digit binary messages
are displayed in Table 3.1.

Message Code Word

000 000000
001 001011
010 010101
011 011110
100 100111
101 101100
110 110010
111 111001

Table 3.1 A Binary Linear Code for Three-Digit Messages ■

The weight w of a binary linear code is the minimum number of ones that
appear in a nonzero code word. For example, the code displayed in Table 3.1 has
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weight w = 3. It turns out that if a code word c1c2 · · · cn is received with no more
than �w−1

2 � incorrect digits, then the intended message b1b2 · · · bk corresponding
to that code word can be recovered by the method of nearest neighbor decod-
ing. Very simply, we use the first k digits of the code word b1b2 · · · bn differing
from c1c2 · · · cn in the least number of digits. It is the assumption that no more
than �w−1

2 � errors exist that guarantees the uniqueness of this nearest neighbor
b1b2 · · · bn to c1c2 · · · cn.

EXAMPLE 3.19 Suppose the binary linear code from Example 3.18 is being used, and the code
word 010110 is received. Since this is not a true code word from Table 3.1, some
error has been introduced. Assuming a very low likelihood of an error, it is not
unreasonable to expect that no more than � 3−1

2 � = 1 error has been introduced.
The method of nearest neighbor decoding then dictates that we decode this
using the code word 011110, which corresponds to the message 011. Notice, in
this case, that the message did not turn out to be the first three digits of the
received erroneous code word. ■

Binary linear codes are not designed to encrypt messages for clandestine
transmission. The objective of encryption is handled instead by a cipher. Sup-
pose, for example, that we wish to send a secret text message using the corre-
spondence of letters to numbers shown in Table 3.2, in which a space is assigned
the numerical value 0. Very simply, we seek to scramble the numbers 0 to 26, so
that a message consisting of those characters can be converted to a scrambled
message that cannot be read easily. Perhaps the simplest way to assign each
number x to a new number y, and thus permute our numbers, is with a shift
cipher. Such a cipher has the form

y = (x + b) mod n, (3.3)

for some choice of an integer b. In our case, n = 27, since we are permuting the
numbers 0 to 26.

A B C D E F G H

0 1 2 3 4 5 6 7 8

I J K L M N O P Q

9 10 11 12 13 14 15 16 17

R S T U V W X Y Z

18 19 20 21 22 23 24 25 26

Table 3.2 Converting Letters to Numbers

EXAMPLE 3.20 Using n = 27, b = −1, equation (3.3), and the conversions in Table 3.2, the
message

IBM IS UP

is encrypted as

HALZHRZTO. ■
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To decrypt a message, the formula

x = (y− b) mod n (3.4)

is used.

EXAMPLE 3.21 Using n = 27, b = −1, equation (3.4), and the conversions in Table 3.2, the
encrypted message

RDKKZHSZMNV

is decrypted as

SELL IT NOW. ■

Generalizations of shift ciphers are considered in Section 3.6.

SECTION 3.2 Exercises
In Exercises 1 through 4, determine the smallest element of the given set S.
1. S = {s : s = 11− 4n, where n ∈ Z and 11− 4n > 0}.
2. S = {s : s = 3n+ 20, where n ∈ Z and 3n+ 20 > 0}.
3. S = {s : s = 12x + 20y, where x, y ∈ Z and 12x + 20y > 0}.
4. S = {s : s = 15x + 21y, where x, y ∈ Z and 15x + 21y > 0}.
Use a calculator or mathematical software to perform the verifications in
Exercises 5 and 6. In Mathematica, the functions FactorInteger and PrimeQ
can be used, and in Maple, the functions ifactor and isprime can be used.
However, Mersenne (c. 1600) knew the results in these exercises long before
the invention of calculators.
5. Verify that 2n − 1 is a Mersenne prime for n = 17 and 19, but not for

n = 23 and 29. Note that verifying that 217 − 1 is prime by hand (not
recommended) could be done (by Exercise 33 in Section 3.1) by testing for
divisibility by the primes from 2 to 359. Also, successively testing for
prime divisors of 223 − 1 could lead to a factorization of 223 − 1, but that
would be rather tedious by hand.

6. Verify that 231 − 1 is a Mersenne prime, but 237 − 1 is not. Note that these
numbers have 10 and 12 digits, respectively. Hence, verification by hand is
not recommended.

7. Show that there is a prime with at least 10 million digits.
8. Show that there is a composite with at least 10 million digits.
9. Use the fact that, ∀ x ∈ R, ∀ n ∈ Z+,

xn − 1 = (x − 1)(xn−1 + xn−2 + · · · + x + 1),

to show the following:

(a) For all b, n ∈ Z+ with b ≥ 3 and n ≥ 2, bn − 1 is composite.
(b) For all n ∈ Z+, if 2n − 1 is prime, then n is prime.

Hint: Use an indirect argument.
10. Show: ∀ n ∈ Z+, there exist n consecutive composites.

Hint: Consider (n+ 1)!+ 2, (n+ 1)!+ 3, · · ·. Factorials are defined in
Section 4.1.
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11. Find the quotient and remainder resulting from the integer division
problems.
(a) 127÷ 12. (b) 216÷ 15.

12. Find the quotient and remainder resulting from the integer division
problems.
(a) 207÷ 8. (b) 162÷ 11.

13. Verify the conclusions of the Division Algorithm (Theorem 3.7) for each of
the following:
(a) n = 45 and d = 7. (b) n = −37 and d = 4.

14. Verify the conclusions of the Division Algorithm (Theorem 3.7) for each of
the following:
(a) n = 17 and d = 3. (b) n = −53 and d = 10.

15. Compute 73 div 10 and 73 mod 10.
16. Compute 104 div 6 and 104 mod 6.
17. Compute each of the following:

(a) 67 div 13 and 67 mod 13. (b) −67 div 13 and −67 mod 13.
18. Compute each of the following:

(a) 85 div 12 and 85 mod 12. (b) −85 div 12 and −85 mod 12.
19. A group of 165 people is planning a trip to a concert. They wish to all sit in

one section, each row of which contains 18 seats. How many entirely full
rows do they need? How many additional seats in a row that will not be
full are needed? Answer these questions using div and mod .

20. A father wishes to split a bag of 375 gum drops as evenly as possible
among 18 children, until fewer than 18 gum drops remain. How many
gum drops will each child get? How many will be left over for the father to
eat? Answer these questions using div and mod.

�21. Given n, s ∈ Z+ with s ≥ 2, the following algorithm (which uses div and
mod ) gives the base-s representation akak−1 · · · a0 for n.

Let k = −1.
While n > 0,

\begin
Let k = k + 1.
Let ak = n mod s.
Let n = n div s.
\end.

Return akak−1 · · · a0.

Follow the algorithm for the given values of n and s.
(a) n = 39 and s = 2. (b) n = 87 and s = 8.
Write a program that implements the algorithm. Prompt the user for n and
s, and store akak−1 · · · a0 in an array.

�22. Given an integer s ≥ 2 and base-s representations akak−1 · · · a0 and
bkbk−1 · · · b0 for two nonnegative integers (both have a given length k),
the following algorithm (which uses div and mod ) gives the base-s
representation ck+1ckck−1 · · · c0 for their sum.
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Let ak+1 = bk+1 = 0.
Let carry = 0.
For i = 0 to k + 1,

\begin
Let ci = (carry+ ai + bi ) mod s.
Let carry = (carry+ ai + bi ) div s.
\end.

Return ck+1ckck−1 · · · c0.

Follow the algorithm for the given s and integers represented in base s.

(a) In base s = 2, add 10101 and 01101.
(b) In base s = 8, add 4316 and 2570.

Write a program that implements the algorithm. Prompt the user for s and
the base-s representations of the summands, and store each base-s repre-
sentation in an array.

23. Let n ∈ Z+. Determine n2 div n and n2 mod n.
24. Let n ∈ Z+. Determine 6n div 3 and 6n mod 3.
25. Why does the Well-Ordering Principle not work for any subset of the

integers (instead of just the nonnegative integers)?
26. Why is d = 0 not allowed in the Division Algorithm?
27. Generalized Well-Ordering Principle for the Integers. Show: Given a

fixed integer a , any nonempty subset of the set of integers greater than or
equal to a must have a smallest element.
Hint: Starting with a set S, consider the set S− a = {s − a : s ∈ S}.

28. Generalized Maximum Principle. Show: Given a fixed integer b, any
nonempty subset of the integers less than or equal to b must have a largest
element.
Hint: Starting with a set S, consider the set b − S = {b − s : s ∈ S}.

29. Show: ∀ n ∈ Z, n3 − n+ 2 is not divisible by 6.
30. Show: ∀ n ∈ Z, n3 + 3n2 + 2n+ 1 is not divisible by 6.
31. Show: ∀ n ∈ Z, if n is not divisible by 3, then n2 mod 3 = 1.
32. Show: ∀ n ∈ Z, if n is odd, then n2 mod 8 = 1.

Hint: Consider n = 4k + 1 and n = 4k + 3.
33. Show: ∀ n ∈ Z, if n is not divisible by 5, then n4 − 1 is divisible by 5.
34. Show: ∀ n ∈ Z, if n is not divisible by 7, then n6 − 1 is divisible by 7.
35. Find each of the following:

(a) �4.4�. (b) �−4.4�. (c) �8.6�. (d) �−8.6�.
36. Find each of the following:

(a) �3.7�. (b) �−3.7�. (c) �6.2�. (d) �−6.2�.
37. A company needs to ship c cans of soup from the cannery to a distribution

center. The boxes it has each hold a maximum of m cans. To be efficient, the
company certainly wants to use as few boxes as possible.

(a) What is the minimum number of boxes needed to contain c = 500 cans
if each box will hold up to m = 32 cans?

(b) In general, what is the minimum number of boxes needed to contain c
cans if each box will hold up to m cans?
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38. A trucking company has r refrigerators to deliver to a warehouse. Each
truck can hold a maximum of m refrigerators, and the company will not
send a truck unless it is full.
(a) What is the maximum number of full trucks that can be sent to the

warehouse, if there are r = 250 refrigerators and each truck can hold a
maximum of m = 36 refrigerators?

(b) In general, what is the maximum number of full trucks that can be sent
to the warehouse, if there are r refrigerators and each truck can hold a
maximum of m refrigerators?

39. Show: ∀ x ∈ R and n ∈ Z, �x + n� = �x� + n.
40. Show: ∀ x ∈ R and n ∈ Z, �x + n� = �x� + n.
41. Prove Theorem 3.10. 42. Prove Corollary 3.11.

43. Show: ∀ n ∈ Z, �n
3 � =

⎧⎪⎪⎨
⎪⎪⎩

n
3 if 3 | n,
n−1

3 if n mod 3 = 1,
n−2

3 if n mod 3 = 2.

44. Show: ∀ n ∈ Z, 2� n
4 � =

{� n
2 � if n mod 4 = 0 or 1,

� n
2 � − 1 if n mod 4 = 2 or 3.

45. Observe that �2.1� + �3.2� = �5.3� and �4.6� + �6.7� < �11.3�.
In general, prove that ∀ x, y ∈ R, �x� + �y� ≤ �x + y�.

46. Observe that �3� + �4� = �7� and �2.8� + �4.7� = �7.5�.
However, disprove: ∀ x, y ∈ R, �x� + �y� = �x + y�.

47. Prove or disprove: ∀ x ∈ R, �2x� = 2�x�.
48. Prove or disprove: ∀ x ∈ R, � x

2 � = 1
2�x�.

49. Show: ∀ x ∈ R, �x� = �x� if and only if x ∈ Z.
50. Show: ∀ x ∈ R\Z, �x� = �x� + 1. What is different for x ∈ Z?
51. Show: ∀ x ∈ R, ��x�� = �x�.
52. Show: ∀ x ∈ R,

(a) �−x� = −�x�. (b) �−x� = −�x�.
53. Show: ∀ n ∈ Z, �n+1

2 � = � n
2 �.

54. Show: ∀ n ∈ Z, � n
2 � + 1 = � n+1

2 �.

For each x ∈ R, define the integer round(x) according to the following rule for
rounding. Write x = n+ f , where n ∈ Z and 0 ≤ f < 1, and define

round(x) =
⎧⎨
⎩n if 0 ≤ f <

1
2 ,

n+ 1 if 1
2 ≤ f < 1.

55. Express round(x) in terms of the floor function. Since programming
languages are more likely to provide a flooring function than a rounding
function, this ability is useful.

56. Express round(x) in terms of the ceiling function. Note that Exercise 52
deals with expressing the ceiling in terms of the floor.

�57. Show: There are no integers in (0, 1).
Hint: By the Well-Ordering Principle, there is a smallest positive integer. If
it is not 1, then consider its square.
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�58. Use the Archimedean Principle from Appendix A to show:
∀ x ∈ R, ∃n ∈ Z such that n < x.
Hint: Consider −x.

�59. Prove the uniqueness of the value �x� specified in Theorem 3.8.
Hint: Suppose n1, n2 ∈ Z with n1 ≤ x < n1+ 1 and n2 ≤ x < n2+ 1. Through
subtraction, discover that −1 < n1 − n2 < 1, and appeal to Exercise 57.

�60. Prove the existence of the value �x� specified in Theorem 3.8.
Hint: Use the Archimedean Principle from Appendix A and its analog in
Exercise 58 to get a , b ∈ Z with a < x < b. Apply the Generalized
Maximum Principle from Exercise 28 to the set S = {s : s ≤ x}.

�61. Show: ∀ n ∈ Z+, ∃ a ∈ N and b ∈ Z+ with b odd such that n = 2a b.
Hint: Apply the Well-Ordering Principle to the set
S = {s : n = 2r s, where r ∈ N and s ∈ Z+}.

�62. Let a , b ∈ Z with b > 0. Without using the Archimedean Principle from
Appendix A, prove: ∃n ∈ Z such that n > a

b .
Hint: Apply the Well-Ordering Principle to the set
S = {s : s = a − bn ≥ 0 and n ∈ Z+}.

�63. Show that the integer d described in Definition 3.5 does indeed exist.
Hint: Apply the Generalized Maximum Principle from Exercise 28.

�64. Show that the integer d described in Definition 3.5 is indeed unique.
65. The manufacturer and the particular product determine the first eleven

digits of a UPC number. The value of the check digit is then forced.
Compute the missing check digit # in the UPC number for Colgate
Toothpaste, 0 35000 74126 #.

66. A cashier is unable to read one of the digits in the UPC number for a bag of
Tostitos Tortilla Chips, 0 2#400 00932 4. However, since the check digit is
present, that missing digit is determined by the remaining eleven digits.
Find the value of that missing digit #.

67. Suppose a cashier mistakenly enters the UPC number for Corn Chex,
0 16000 81160 7, as 0 61000 81160 7. This is a common type of error, called a
transposition error, in which two adjacent digits (16) have been reversed
(to 61). Since the register is programmed to verify that the check digit is
consistent with the first eleven digits, will the error be detected?

68. Since a UPC number is typically scanned as a bar code, one might expect
that scanning the bar code backwards would lead to a scanning error. For
example, determine whether an error would be detected if the UPC
number for Gerber Baby Food Carrots, 0 15000 00411 8, is erroneously
entered as 8 11400 00015 0. In fact, the error of reversing all of the digits is
not likely to occur, since the way in which the first six digits is encoded as
bars is different from that for the last six digits. Consequently, scanners can
tell the difference between frontwards and backwards.

69. At a used-book store, the cashier notices that one of the digits in the ISBN
for To Kill a Mockingbird by Harper Lee, 0-446#1078-6, is unreadable.
However, from the nine readable digits, she can determine the value of
the unreadable digit #. Determine that digit.

70. The publisher, author, and title of a book determine the first nine digits
of its ISBN. The value of the check digit is then forced. Compute the
missing check digit # in the ISBN for Fahrenheit 451 by Ray Bradbury,
0-34534296-#.
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71. During the holiday rush, a busy cashier accidentally enters the ISBN for
Hop on Pop by Dr. Seuss, 0-39480029-X, as 0-39480079-6. Since the register is
programmed to verify the validity of check digits, will the error be
detected? (Note that entering two incorrect digits, as considered here, is an
unlikely mistake.)

72. Suppose that a transposition error is made, and the ISBN for Harry Potter
and the Sorcerer’s Stone by J. K. Rowling, 0-59035340-3, is erroneously
entered as 0-95035340-3. That is, the two adjacent digits 59 are reversed to
95. Will this error be detected?

�73. Show that if two adjacent digits in a UPC number are switched, then the
error will be detected if and only if the digits do not differ by 5. (See
Exercise 67.) That is, all but some very special transposition errors will be
detected.

�74. Show that if two adjacent digits in an ISBN are switched, then the error
will always be detected. (See Exercise 72.) That is, 100% of transposition
errors will be detected.

75. A hospital database needs to encode the gender and blood type of each of
its patients. First, such data are converted to a four-digit binary message
b1b2b3b4, according to Table 3.3. Consider the binary linear code that
converts each four-digit message b1b2b3b4 into a seven-digit code word
b1b2b3b4b5b6b7 according to the following formulas, using sums of the
message digits.

b5 = (b1 + b2) mod 2
b6 = (b2 + b3) mod 2
b7 = (b3 + b4) mod 2

Gender, Blood Message Gender, Blood Message

Female, O− 0000 Male, O− 1000
Female, O+ 0001 Male, O+ 1001
Female, B− 0010 Male, B− 1010
Female, B+ 0011 Male, B+ 1011
Female, A− 0100 Male, A− 1100
Female, A+ 0101 Male, A+ 1101
Female, AB− 0110 Male, AB− 1110
Female, AB+ 0111 Male, AB+ 1111

Table 3.3 Encoding Gender and Blood Type

(a) To what code word is “Female, AB−” converted?
(b) Make the table for this entire code.
(c) What is the weight of this code?
(d) To what gender and blood type should the code word 0101111 be

decoded?
(e) Give an example of a seven-digit word that is not a code word from

the table and that has more than one code word tied for nearest to it.
Such a word cannot be decoded by the nearest neighbor method.

76. The army needs to communicate directions to its troops in the field over
communication links that sometimes induce errors. Each compass
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Figure 3.4 Direction Encoding

direction is associated with a four-digit binary message b1b2b3b4, according
to Figure 3.4. Consider the binary linear code that converts each four-digit
message into a seven-digit code word b1b2b3b4b5b6b7 according to the
following formulas, using sums of the message digits.

b5 = (b1 + b2 + b3) mod 2
b6 = (b1 + b2 + b4) mod 2
b7 = (b1 + b3 + b4) mod 2

(a) Determine the code word for the southwest direction SW.
(b) Make the table for this entire code.
(c) What is the weight of this code?
(d) Decode the code word 1110100 to a compass direction.
(e) Use the nearest neighbor method to decode the intended compass

direction, if the string 0100101 is received.

In Exercises 77 through 80, use the letter-to-number conversions from Table 3.2
(repeated below) and a shift cipher with n = 27 and the specified encrypting
shift value b. Using software such as Mathematica or Maple (to evaluate
functions on lists of input) might also be wise.

A B C D E F G H
0 1 2 3 4 5 6 7 8

I J K L M N O P Q
9 10 11 12 13 14 15 16 17

R S T U V W X Y Z
18 19 20 21 22 23 24 25 26

77. A certain college uses a shift cipher with b = 8 to encrypt student course
registration data. Determine how the course “DISCRETE MATH” would
be encrypted at this college.

78. To protect against hackers, a certain Internet service provider encrypts its
customers’ passwords using a shift cipher with b = 3. Determine how the
customer password “BINARY CODE” would be encrypted.

79. In December 2001, Sam Waksal, the CEO of the company ImClone, might
have sent the encrypted message “GT OXAR CBT” to his friend and
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ImClone stockholder Martha Stewart. Assuming that Waksal used a shift
cipher with b = 15, decrypt that message.

80. In 1948, the Chicago Tribune might have used a shift cipher to receive
encrypted reports from its reporters in the field. Assuming that a reporter
was using a shift cipher with b = 2, decrypt the message “FGYG BYKPU”
that this reporter sent.

3.3 Euclid’s Algorithm and Lemma
One of the greatest early contributors to number theory (and to mathematics
in general) was the Greek mathematician Euclid of Alexandria (fl. 300 B.C.E.).
Although his famous work Elements is perhaps better known for its contribution
to geometry, it also includes important theorems in number theory. For example,
it contains the clever argument used in our proof that there are infinitely many
primes (Theorem 3.6). This section focuses on two important results in Book VII
of Euclid’s Elements. The first is an algorithm that is useful for finding greatest
common divisors and more. The second is a technical lemma that is fundamental
to results on factoring.

Before we discuss Euclid’s Algorithm for finding gcd’s, we should be aware
of a very useful form in which greatest common divisors can be expressed. Note
that the form on the right-hand side of (3.5) is called a linear combination of m
and n.

THEOREM 3.13 Expressing the GCD as a Linear Combination

Given integers m and n not both zero, there exist integers x and y such that

gcd(m, n) = mx + ny. (3.5)

Proof
Let S = {t : t = mu+ nv for some u, v ∈ Z where mu+ nv > 0}. Since m ·m+
n · n > 0, S is nonempty. The Well-Ordering Principle gives us a smallest
element d of S. So d = mx + ny for some x, y ∈ Z, and d > 0. Our aim is to
show that d = gcd(m, n). We first show that d | m.

By the Division Algorithm, there are integers q and r such that m = dq + r
and 0 ≤ r < d . Observe that

r = m− dq = m− (mx + ny)q = m(1− q x) + n(−q y).
If it were the case that r > 0, then r ∈ S and r is smaller than d, the smallest
element of S. Hence, it must be that r = 0. That is, m = dq and d | m. A similar
argument shows that d | n.

It remains to show that d is the greatest among common divisors. So, sup-
pose that c is an integer such that c | m and c | n. Hence, m = ac and n = bc for
some a , b ∈ Z. It follows that

d = mx + ny = acx + bcy = (ax + by)c.
So c | d . From Theorem 3.1 it follows that c ≤ d. Therefore, gcd(m, n) = d =
mx + ny. �

The proof of the following straightforward consequence of Theorem 3.13 is
left to the exercises.
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COROLLARY 3.14 Two integers m and n are relatively prime if and only if there exist integers x and y such that
mx + ny = 1.

The results in Theorem 3.13 and Corollary 3.14 are illustrated in the following
example.

EXAMPLE 3.22 (a) Observe that gcd(18, 30) = 6, and 6 = 18(−3) + 30(2).
(b) Observe that 14 and 9 are relatively prime, and 14(2) + 9(−3) = 1. ■

It is straightforward to verify the linear combinations presented in Exam-
ple 3.22, but how can we find them?

Euclid’s Algorithm
Recall that an algorithm is a finite list of simple instructions leading to a desired
result. There does exist a method, known as Euclid’s Algorithm, for finding
not only greatest common divisors but also the integers x and y promised in
Theorem 3.13. However, to see how this algorithm works, we initially focus our
attention on the computation of the greatest common divisor.

First observe that, since gcd(m, n) = gcd(|m|, |n|), it suffices to have a method
for computing gcd(m, n) when m and n are both nonnegative. The critical result
exploited by Euclid is an application of the Division Algorithm.

THEOREM 3.15 GCD Reduction

Let n and m be integers such that n ≥ m > 0. Write n = mq + r, where q , r ∈ Z with
0 ≤ r < m. Then,

gcd(n, m) = gcd(m, r ).

Proof
The fact that gcd(n, m) = gcd(m, r ) is an immediate consequence of the fact,
which we now prove, that the pairs (n, m) and (m, r ) have the same set of
common divisors.

(→) Suppose that c is a common divisor of n and m. That is, n = ck and
m = cl for some integers k and l. Observe that

r = n−mq = ck − clq = c(k − lq ).
Thus c | r as well as c | m. That is, c is a common divisor of m and r .

(←) Suppose that c is a common divisor of m and r . That is, m = ck and
r = cl for some integers k and l. Observe that

n = mq + r = ckq + cl = c(kq + l).
Thus c | n as well as c | m. That is, c is a common divisor of n and m. �

The point of Theorem 3.15 is that it allows us to exchange a calculation of
the gcd of the pair (n, m) for a calculation of the gcd of the smaller pair (m, r ).
By a sequence of such reductions, we can hope to reduce a general problem
to a much smaller problem for which the solution is easy. In particular, these
reductions will eventually result in a pair in which one of the integers is 0. At
that point, the result from Example 3.8 completes the calculation.

If k is a positive integer, then gcd(k, 0) = k.

We illustrate Euclid’s Algorithm in some examples.
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EXAMPLE 3.23 Compute gcd(48, 18).

Solution. We repeatedly apply Theorem 3.15.

gcd(48, 18) = gcd(18, 12) since 48 = (18)2+ 12
= gcd(12, 6) since 18 = (12)1+ 6
= gcd(6, 0) since 12 = (6)2+ 0
= 6 by Example 3.8. ■

The basic procedure of Euclid’s Algorithm is shown in Algorithm 3.1.2 The
French mathematician Gabriel Lame’ (1795–1870) proved that it requires at most
5m steps to compute gcd(n, m), when n ≥ m > 0. A further consequence of
Euclid’s Algorithm is that it enables us to find integer coefficients with which
we can write gcd(n, m) as a linear combination of n and m, as we illustrate in the
following two examples.

ALGORITHM 3.1 Euclid’s Algorithm for Finding gcd(n, m)

Let n, m ∈ Z+ with n ≥ m.

Algorithm.

While m > 0,
\begin
Let r = n mod m.
Let n = m.
Let m = r .
\end.

Return n.

EXAMPLE 3.24 Find gcd(630, 96) and write it in the form 630x + 96y for x, y ∈ Z.

Solution. The initial steps are the same as those used in Example 3.23.

gcd(630, 96) = gcd(96, 54) since 630 = (96)6+ 54
= gcd(54, 42) since 96 = (54)1+ 42
= gcd(42, 12) since 54 = (42)1+ 12
= gcd(12, 6) since 42 = (12)3+ 6
= gcd(6, 0) since 12 = (6)2+ 0
= 6 by Example 3.8.

With some additional work, these calculations can be used to find x and y.
Note that the greatest common divisor 6 is the last nonzero remainder
occurring in our calculations. Down to that last nonzero remainder, we have

54 = 630− (96)6
42 = 96− (54)1
12 = 54− (42)1
6 = 42− (12)3.

2For an explanation of the pseudocode used to present algorithms throughout this book, see
Appendix B.
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Substituting backwards from the last row, we get

6 = 42− (12)3
= 42− (54− 1(42))3 = (54)(−3) + (42)(4)
= (54)(−3) + (96− 1(54))(4) = (96)(4) + (54)(−7)
= (96)(4) + (630− 6(96))(−7) = (630)(−7) + (96)(46).

That is, gcd(630, 96) = 6 = 630x + 96y for x = −7 and y = 46. ■

EXAMPLE 3.25 Find gcd(102, 30) and write it in the form 102x + 30y for x, y ∈ Z.

Solution.

gcd(102, 30) = gcd(30, 12) since 102 = (30)3+ 12, so 12 = 102− (30)3
= gcd(12, 6) since 30 = (12)2+ 6, so 6 = 30− (12)2
= gcd(6, 0) since 12 = (6)2+ 0
= 6 by Example 3.8.

Therefore,
6 = 30− (12)2 = 30− (102− 3(30))2 = (102)(−2) + (30)(7).

That is, gcd(102, 30) = 6 = 102x + 30y for x = −2 and y = 7. ■

The procedure used in Examples 3.24 and 3.25 to find d, x, and y so that d =
gcd(m, n) = mx + ny is called the Extended Euclidean Algorithm. Mathematica
and Maple provide the functions ExtendedGCD and igcdex, respectively, for
performing this task.

Lemmas on Factoring
We close this section with some important results on factoring that are needed in
subsequent sections. They all stem from a fundamental result known as Euclid’s
Lemma. The common theme is a determination of conditions under which an
integer dividing a product implies that the integer divides one of the factors in
the product. For example, 6 | (9 ·10), but 6 � | 9 and 6 � | 10, whereas, 5 | (9 ·10), and,
although 5 � | 9, it is true that 5 | 10.

THEOREM 3.16 Euclid’s Lemma

Let m, n, and c be integers. If c | mn and gcd(c, m) = 1, then c | n.

Proof
Suppose c | mn and gcd(c, m) = 1. So mn = ck for some k ∈ Z. By Corol-
lary 3.14, there are x, y ∈ Z such that cx +my = 1. Observe that

n = (cx +my)n = cnx +mny = cnx + cky = c(nx + ky).
Therefore, c | n. �

COROLLARY 3.17 Let m, n, and p be integers with p prime. If p | mn, then p | m or p | n.

The proof of Corollary 3.17 is left for the exercises. The next corollary natu-
rally lends itself to a proof by induction. After induction is introduced in Sec-
tion 4.3, a proof will be requested in those exercises.
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COROLLARY 3.18 Let m1, m2, . . . , mn, and p be integers with p prime.
If p | (m1 ·m2 · · · · ·mn), then p | mi for some 1 ≤ i ≤ n.

COROLLARY 3.19 Let m, n, and p be integers with n > 0 and p prime. If p | mn, then p | m.

In the proof in our final example, we apply Corollary 3.19. An alternative
proof is outlined in the exercises in Section 4.5.

EXAMPLE 3.26 Let a , b, and n be integers with n > 0.
Show: If gcd(a , b) = 1, then gcd(a , bn) = 1.

Proof
Suppose gcd(a , b) = 1. Let d = gcd(a , bn). Suppose, toward a contradiction,
that d > 1. By Theorem 3.5, we have a prime p such that p | d. So p | a and
p | bn. By Corollary 3.19, p | b. So p | gcd(a , b). That is, p | 1, which is
impossible since p is prime. Hence, d = 1. �

SECTION 3.3 Exercises
In Exercises 1 through 4, through trial and error find integers x and y that
satisfy the given equation.
1. gcd(65, 25) = 65x + 25y. 2. gcd(39, 9) = 39x + 9y.
3. 15x + 11y = 1. 4. 27x + 8y = 1.

In Exercises 5 through 18, use Euclid’s Algorithm.
5. Find gcd(110, 44). 6. Find gcd(1452, 252).
7. Find gcd(296, 112). 8. Find gcd(204, 30).
9. Find gcd(63, 25), and keep a running table of the values of n and m in

Algorithm 3.1.
10. Find gcd(70, 27), and keep a running table of the values of n and m in

Algorithm 3.1.
11. Find gcd(14, 8) and write it in the form 14x + 8y for some x, y ∈ Z.
12. Find gcd(56, 42) and write it in the form 56x + 42y for some x, y ∈ Z.
13. Find gcd(50, 35) and write it in the form 50x + 35y for some x, y ∈ Z.
14. Find gcd(108, 45) and write it in the form 108x + 45y for some x, y ∈ Z.
15. Find gcd(81, 60) and write it in the form 81x + 60y for some x, y ∈ Z.
16. Find gcd(259, 77) and write it in the form 259x + 77y for some x, y ∈ Z.
17. Find x, y ∈ Z such that 55x + 12y = 1.
18. Find x, y ∈ Z such that 45x + 14y = 1.
19. Are the integers x and y in Theorem 3.13 unique? Why?
20. Prove Corollary 3.14. Remember that there are two directions to prove.

�21. Since gcd(10, 6) = 2, Theorem 3.13 guarantees that there are x, y ∈ Z such
that 10x + 6y = 2. In fact,

10(−1) + 6(2) = 2, 10(5) + 6(−8) = 2, 10(11) + 6(−18) = 2, . . . .

Since, for any k ∈ Z, we have 10(−1+ 6k) + 6(2− 10k) = 2, observe that
there are infinitely many choices for the pair x, y in this case. In general, let
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m and n be any pair of nonzero integers. Show that there are infinitely
many pairs of integers x and y such that mx + ny = gcd(m, n).

�22. In Example 3.24, we saw that gcd(630, 96) = 6 and, moreover, that
6 = 630x + 96y for x = −7 and y = 46. Observe that these integers
guaranteed by Theorem 3.13 are relatively prime in this example. That
is, gcd(−7, 46) = 1. In general, for any pair of nonzero integers m and n,
prove that the integers x and y in Theorem 3.13 are relatively prime.

23. In Corollary 3.17, if p is not required to be prime, is the statement still true?
Why?

24. Prove Corollary 3.17.
25. Prove Corollary 3.19 by using Corollary 3.18.
26. Prove the converse of the statement in Example 3.26.

�27. Observe that, in general, gcd(a , b) �= gcd(am, bn), since, for example,
gcd(42, 18) = 6 and gcd(422, 183) = 36. However, let a and b be integers
not both zero, let m and n be positive integers, and show that gcd(a , b) and
gcd(am, bn) have the same prime divisors.

�28. Observe that 24 | (40 · 6), and although 24 � | 40 and 24 � | 6, we do have 23 | 40
and 21 | 6 (note 2321 = 24). In general, let m, n, p, k ∈ Z with p prime and
k ≥ 0. Suppose pk | mn. Show: There are a , b ∈ N such that a + b = k,
pa | m, and pb | n.
Hint: Use Exercise 28 of Section 3.2 to pick a as large as possible so that
pa | m. Apply Euclid’s Lemma to the fact that pk−a | ( m

pa n).

29. Let m and n be integers with m �= 0. Show: gcd(m, n) = gcd(m, n−m).
30. Explain why a corollary of the proof of Theorem 3.13 is the fact that, for

integers m and n not both zero,

gcd(m, n) = min{t : t = mu+ nv with u, v ∈ Z and mu+ nv > 0}.

Use the fact in Exercise 30 to prove the statements in Exercises 31 through 33.
31. Show: For all m, n ∈ Z not both zero, gcd(m, n) = gcd(n, m).
32. Show: For all m, n ∈ Z not both zero, gcd(m, −n) = gcd(m, n).
33. Show: For all k ∈ Z+, gcd(k, 0) = k.
34. Prove Theorem 3.15.
35. Given m, n ∈ Z+, use Theorem 3.13 to show: ∀ c ∈ Z, if c | m and c | n, then

c | gcd(m, n).
36. Let d = gcd(m, n). Show: ∃ a , b ∈ Z with gcd(a , b) = 1 such that m = ad

and n = bd.
37. Show that, for any integer n, the integers 5n+ 3 and 7n+ 4 are relatively

prime.
38. Show that, for any integer n, the integers 5− 2n and n− 3 are relatively

prime.
39. A matrix is a rectangular array of real numbers. The determinant of a 2 by

2 matrix
[

a b
c d

]
is defined to be the value ad − bc. The absolute value of

this determinant turns out to be the area of the parallelogram in the
Cartesian plane with vertices (0, 0), (a , b), (c, d), and (a + c, b + d).

(a) Confirm that the parallelogram with vertices (0, 0), (3, 5), (1, 2), and
(4, 7) has area 1.
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(b) Show that, if a 2 by 2 matrix with integer entries has determinant 1,
then, in each row, the two integers must be relatively prime. The same
will also be true for the columns.

(c) Is the converse true?
40. If a vending machine dispenses only stamps worth 6¢ and 15¢, then the

monetary amounts 1, . . . , 5, 7, . . . , 11, 13, 14, 16, 17, 19, 20, . . . cannot be
achieved with stamps from this machine. In general, suppose a vending
machine dispenses stamps worth a¢ and b¢.
(a) Show that, if a and b are not relatively prime, then there will be

infinitely many monetary amounts that cannot be achieved with
stamps from this machine.

(b) If stamps worth 4¢ were also available, then what monetary amounts
would be unachievable?

3.4 Rational Numbers
Although the primary focus of number theory is on integers, some of its issues
are also relevant to a study of fractions of integers. By expanding our universe
of consideration, we also gain further opportunities to practice the proof tech-
niques we have learned.

DEFINITION 3.10

A real number r is said to be rational if r = a
b for some integers a and b with b �= 0.

The set of rational numbers is denoted by Q. Very simply, rational numbers
are real numbers that can be expressed as a fraction of two integers. In fact, every
integer is a rational number.

THEOREM 3.20 Z ⊆ Q.

Proof
Suppose n is an arbitrary integer.
Observe that n = n

1 and that n, 1 ∈ Z with 1 �= 0.
Thus, n ∈ Q. �

EXAMPLE 3.27 (Recognizing Rational Numbers).

(a) 5
7 is rational, since 5, 7 ∈ Z with 7 �= 0.

Similarly, −2
3 , 13

5 , and 22
−9 are seen to be rational.

(b) 14 1
2 is rational, since it equals 29

2 .

(c) Real numbers with finite decimal expansions are rational.
For example, 5.604 = 5+ 604

1000 = 5604
1000 = 1401

250 .

(d) Real numbers with repeating decimal expansions are rational.
For example, 27.531 (which means 27.531531 . . .) is rational.
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Let x = 27.531531 . . ..
So 1000x = 27531.531531 . . ..
Hence, 999x = 1000x − x = 27504.
Therefore, x = 27504

999 = 3056
111 is rational.

(e) 0.35826 is rational.
Let x = 0.35826 = .35826826 . . ..
So 100000x = 35826.826,
and 100x = 35.826.
Hence, 99900x = 100000x − 100x = 35826− 35 = 35791.
Therefore, x = 35791

99900 is rational. ■

The first eleven properties of Z and R listed in Appendix A also hold for Q.
In most cases, this is a simple consequence of the fact that rational numbers are
special kinds of real numbers. However, some properties do need to be verified
separately for Q. These are gathered in the following theorem.

THEOREM 3.21 Field Properties of Q

Let r, s ∈ Q. Then

(a) 0, 1 ∈ Q. (b) r + s ∈ Q. (c) −s ∈ Q.

(d) rs ∈ Q. (e) if s �= 0, then
1
s ∈ Q.

Part (a) of Theorem 3.21 follows from Theorem 3.20. We prove parts (b) and
(e) here and leave parts (c) and (d) for the exercises. Each proof is a straightfor-
ward illustration of our strategy of letting the definitions of the terms involved
dictate our actions.

Proof of Theorem 3.21(b)
Since r, s ∈ Q, we can write r = a

b and s = c
d

for some a , b, c, d ∈ Z with b �= 0 and d �= 0.
Observe that

r + s = a

b
+ c

d
= ad

bd
+ bc

bd
= ad + bc

bd
.

Since ad + bc and bd are integers with bd �= 0, we see that r + s is rational. �

Proof of Theorem 3.21(e)
Suppose s �= 0.
Since s ∈ Q, we can write s = a

b for some a , b ∈ Z with b �= 0.
Since s �= 0, it follows that a �= 0.
Observe that (because a

b
b
a = ab

ab = 1)

1
s
= 1

a
b

= b

a
.

Since b and a are integers with a �= 0, we see that 1
s is rational. �

When working with rational numbers, it is often most convenient to express
them in lowest terms. That is, we want to cancel out any common factors in the
numerator and denominator. For example, 12

18 = 2
3 and 35

−14 = −5
2 . In general,

n
m is completely reduced by canceling gcd(m, n) from n and m. Consequently,
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every rational number can be uniquely expressed in lowest terms (with a
positive denominator).

THEOREM 3.22 Expressing Rational Numbers in Lowest Terms

Given r ∈ Q, there exist unique a , b ∈ Z such that b > 0, gcd(a , b) = 1, and r = a
b . That

is, a
b expresses r in lowest terms.

Proof
Write r = u

v
for u, v ∈ Z with v �= 0. Let

S =
{

m : m ∈ Z, m > 0, and r = n

m
for some n ∈ Z

}
.

If v > 0, then v ∈ S. If v < 0, then −v ∈ S, since r = −u
−v

. Hence, S is nonempty.
By the Well-Ordering Principle, S has a smallest element b. Thus, b ∈ Z, b > 0,
and r = a

b for some a ∈ Z.
Let d = gcd(a , b). So a = dk and b = dl for some k, l ∈ Z. Since b, d > 0, it

must be that l > 0. Since a
b = dk

dl = k
l , it follows that l ∈ S. Since l | b and b > 0,

Theorem 3.1 tells us that l ≤ b. Since l ∈ S and b is the smallest element of S, it
must be that l = b. Hence, 1 = d = gcd(a , b).

To show uniqueness, suppose a
b = e

f , where e, f ∈Z with f > 0 and
gcd(e, f )= 1. Thus a f = be, so f | be. Since gcd(e, f ) = 1, Euclid’s Lemma tells
us that f | b. Theorem 3.1 then tells us that f ≤ b. Similarly, we get b ≤ f , so
f = b. It follows that e = a as well. �

Decimal Form of Rational Numbers
We often express real numbers in decimal form, which is a natural extension of
the base ten representation of integers, as discussed in Chapter 0. For example,

427.3528 = 4 · 102 + 2 · 101 + 7 · 100 + 3 · 10−1 + 5 · 10−2 + 2 · 10−3 + 8 · 10−4.

More generally, for bi , a j ∈ {0, 1, . . . , 9}, we have

bmbm−1 · · · b0.a1a2 · · · an =
bm10m + bm−110m−1 + · · · + b0 +

a1

10
+ a2

100
+ · · · + an

10n
.

We call bmbm−1 · · · b0 the integer part and 0.a1a2 · · · an the decimal part. In fact,
the decimal part could contain infinitely many digits:

0.a1a2 · · · anan+1 · · · .
In that case, it specifies the value

a1

10
+ a2

100
+ · · · + an

10n
+ an+1

10n+1 + · · · ,

which is an infinite sum that can be proved to lie in the interval (0, 1]. Repeating
infinite decimal parts

0.a1a2 · · · amam+1 · · · an,

as well as a method for computing their values, were encountered in Exam-
ple 3.27. Moreover, from the results seen there, it is clear that any real number
that can be written in decimal form with either a finite or a repeating decimal
part represents a rational number. In fact, the converse is also true.
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THEOREM 3.23 When Decimals Are Rational

A real number written in decimal form represents a rational number if and only if the
decimal part is either finite or repeating. Moreover, a rational number r = a

b written in
lowest terms has a finite decimal expansion if and only if 2 and/or 5 are the only prime
divisors of b. Otherwise, the decimal part of r repeats.

Sketch of Proof.
Since we saw in Example 3.27 how to write numbers with finite or repeating
decimals as rational numbers, we focus only on showing that rational numbers
can be written in decimal form with a decimal part that is either finite or
repeating. Moreover, it suffices to consider rational numbers a

b with a , b ∈ Z
and 0 < a < b. The process of writing a rational number in decimal form is
illustrated in the following examples. �

EXAMPLE 3.28 (A Finite Decimal Expansion)

63
160

= 0.39375

. 3 9 3 7 5
1 6 0

)
6 3. 0

− 4 8 0
1 5 0 0 remainder 150

− 1 4 4 0
6 0 0 remainder 60

− 4 8 0
1 2 0 0 remainder 120

− 1 1 2 0
8 0 0 remainder 80

− 8 0 0
0 remainder 0 ← END

The decimal expansion ends when a remainder of 0 is encountered.

EXAMPLE 3.29 (A Repeating-Decimal Expansion)

389
3700

= 0.10513

. 1 0 5 1 3
3 7 0 0

)
3 8 9. 0

− 3 7 0 0
1 9 0 0 remainder 190

− 0
1 9 0 0 0 remainder 1900

− 1 8 5 0 0
5 0 0 0 remainder 500

− 3 7 0 0
1 3 0 0 0 remainder 1300

− 1 1 1 0 0
1 9 0 0 remainder 1900

�



140 P A R T I ■ Proofs

The repeating portion is recognized as soon as a remainder is encountered for
a second time. ■

In general, when a is divided by b, either a remainder of 0 will be encoun-
tered or some remainder will occur twice. This happens because each remainder
is an integer in the interval [0, b − 1]. Since there are only finitely many such
integers, if a remainder of 0 is not encountered, then some remainder must get
repeated after at most b − 1 steps in the division. The following example illus-
trates the worst possible case.

EXAMPLE 3.30 (A Fraction a
b with b − 1 Repeating Digits in Its Decimal Expansion)

2
7
= 0.285714

. 2 8 5 7 1 4
7
)

2. 0 0 (remainder 2)
− 1 4

6 0 remainder 6
− 5 6

4 0 remainder 4
− 3 5

5 0 remainder 5
− 4 9

1 0 remainder 1
− 7

3 0 remainder 3
− 2 8

2 remainder 2

�

All of the nonzero remainders 1, 2, 3, 4, 5, 6 are encountered before one gets
repeated. Note that the numerator 2, which is being divided by 7, should be
considered the first nonzero remainder. ■

For the final part of the statement in Theorem 3.23, we must show that our
rational number r = a

b in lowest terms has a finite decimal expansion if and only
if 2 and/or 5 are the only prime divisors of b. If r has a finite decimal expansion

r = 0.a1a2 · · · an,

then

r = a1

10
+ a2

100
+ · · · + an

10n
= a1a2 · · · an

10n
= a1a2 · · · an

2n5n
,

where a1, a2 . . .an refers to the base ten representation of the integer 10nr .
Reducing r to lowest terms would still leave only powers of 2 and/or 5 in

the denominator.
Conversely, suppose that r = a

2s 5t for some integers s, t ≥ 0. If s ≥ t, then

r = 5s−ta

2s5s
= 5s−ta

10s
.

If s < t, then

r = 2t−sa

2t5t
= 2t−sa

10t
.
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Certainly, any fraction of the form c
10n for some positive integers c and n

with c < 10n has a finite decimal expansion with at most n digits. For example,
372
105 = 0.00372.

SECTION 3.4 Exercises
In Exercises 1 through 10, show that the specified real number is rational.

1. 5 1
2 2. 7 2

3

3. −13 2
5 4. −25 1

4

5. 5.821 6. −3.72

7. 3.14 8. −2.718

9. −4.321 10. 17.832

For Exercises 11 through 16, let r, s ∈ Q and let n ∈ Z. Use only the definitions
of the terms involved, and not previous results, in each requested proof.
11. Show: nr ∈ Q. 12. Show: If n �= 0, then r

n ∈ Q.

13. Show: (a) −s ∈ Q.
(b) r − s ∈ Q.

14. Show: (a) rs ∈ Q.
(b) If s �= 0, then r

s ∈ Q.

15. Show: If n ≥ 0, then rn ∈ Q. 16. Show: If n < 0 and r �= 0, then
rn ∈ Q.

In Exercises 17 through 22, express the given rational number in lowest terms.

17. 65
39 18. 21

147

19. −513
72 20. 144

−36

21. 3.14 22. 0.045

In Exercises 23 through 28, write the given rational number in decimal form,
without using a calculator.

23. 12
25 24. 9

150

25. 3
7 26. 4

11

27. 8
15 28. 24

35

29. Let a , b be nonzero integers. Is it possible for a
b to have a finite decimal

expansion if b has prime factors other than 2 and 5? Note that
Theorem 3.23 deals with rational numbers expressed in lowest terms.
Think about what changes if this restriction is lifted.

30. Observe that 4
7 and 5

7 are both in lowest terms. In general, let a , b be

nonzero integers. If a
b is in lowest terms, must a+1

b also be in lowest terms?
What about when b = 7, in particular?

31. Observe that 2
7 and 5

11 are in lowest terms, and the computation

2(11) + 5(7)
7 · 11

= 57
77
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gives their sum in lowest terms. In general, let a , b, c, d be nonzero
integers. If a

b and c
d are in lowest terms, does ad+bc

bd necessarily express the
sum a

b + c
d in lowest terms?

32. Observe that 6
11 and 32

35 are in lowest terms, and the computation

6 · 32
11 · 35

= 192
385

gives their product in lowest terms. In general, let a , b, c, d be nonzero
integers. If a

b and c
d are in lowest terms, does ac

bd necessarily express the
product a

b · c
d in lowest terms?

33. Observe that 5
6 , 5

14 , and 5
23 are in lowest terms. If p and n are integers with

p prime, then under what conditions is p
n in lowest terms?

34. Show: If n ∈ Z+, then n−1
n is in lowest terms.

�35. If we represent numbers in binary form (for example, 25
4 is represented as

110.01), then does the result in Theorem 3.23 change? If so, how?
�36. If we represent numbers in base 12 (for example, 17

6 is represented as 2.a ),
then does the result in Theorem 3.23 change? If so, how?

37. Observe that 4
3 , 7

5 , and 10
7 are in lowest terms. In general, let k ∈ Z+. Show

that 3k+1
2k+1 is in lowest terms.

38. Observe that the rational numbers 5
6 and 7

15 can alternatively be written

with the same denominator, namely as 25
30 and 14

30 , respectively. Let r1, r2 ∈ Q.
Show: There exist a1, a2, b ∈ Z with b > 0 such that r1 = a1

b and r2 = a2

b .
39. The Least Upper Bound Property (Appendix A, property 13) does not

hold when restricted to the rational numbers. Consider the set A=
{r ∈ Q : r2 < 2}.
What is lub( A)? What condition is not met?

�40. Use the Density of the Rationals (Appendix A, property 15) to show that
∀ x, y ∈ R, if x < y, then ∃n ∈ Z such that (nx, ny) ∩ Z �= ∅.

3.5 Irrational Numbers
Not all real numbers are rational, as we now explore.

DEFINITION 3.11

A real number that is not rational is said to be irrational.

Since irrational numbers are defined indirectly, statements about irrational
numbers tend to be proved by indirect arguments. We are now ready for our
first proof that a number is irrational.

Although the fact that
√

2 is irrational may not faze us in modern times,
to those who followed the Greek mathematician Pythagoras (c. 580–500 B.C.E.),
the discovery of this fact came as quite a shock. The Pythagoreans thought of
numbers geometrically in terms of lengths of line segments. They believed that
the ratio of the lengths of any two line segments could be expressed as a ratio of
two integers. However,

√
2, which can be seen by the Pythagorean Theorem to
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measure the ratio of the length of the diagonal of a square to the length of its
side, cannot be so expressed. The Pythagoreans were so disturbed by this af-
front to their beliefs that they initially sought to keep it a secret. However, word
got out. A modern proof is presented here.

THEOREM 3.24
√

2 is irrational.

Proof
Suppose not.
So
√

2 is rational.
That is,

√
2 = a

b for some a , b ∈ Z with b �= 0.
Moreover, by Theorem 3.22, we may choose it so that a

b is in lowest terms.
In particular, gcd(a , b) = 1.
We have a =√2b.
So a2 = 2b2.
That is, a2 is even. (In other words, a2 is divisible by 2.)
By Exercise 3 of Section 3.1, a must be even. (that is, a is divisible by 2.)
Therefore, a = 2k for some k ∈ Z.
It follows that 2b2 = a2 = 4k2.
So b2 = 2k2.
Since b2 is even (divisible by 2), so is b (divisible by 2).
The fact that both a and b are divisible by 2 contradicts the fact that a

b was
supposed to be in lowest terms.
That is, gcd(a , b) ≥ 2 is impossible. �

Knowing that
√

2 is irrational enables us to show more easily that some other
numbers involving

√
2 are also irrational.

EXAMPLE 3.31 Show that
7+
√

2

5 is irrational.

Proof
Suppose not.

So r = 7+
√

2

5 is rational.
From basic algebra, we see that

√
2 = 5r − 7.

However, 5r − 7 ∈ Q and
√

2 /∈ Q.
This is a contradiction. �

Note in Example 3.31 how we took advantage of Theorem 3.24. We did not
have to work through the details of an argument like that given in the proof of
Theorem 3.24. In fact, the proof in Example 3.31 did not even require that the
rational number r be expressed as a fraction.

For our next example of an irrational number, we turn to logarithms. Given
real numbers b, x, and y with b > 1 and x > 0, recall that logb x = y is equivalent
to by = x. This description suffices for our purposes here, and we shall consider
logarithms in more depth in Section 5.4.

EXAMPLE 3.32 Show that log3 5 is irrational.

Proof
Suppose not.
So log3 5 is rational.
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That is, log3 5 = a
b for some a , b ∈ Z with b �= 0.

Moreover, (since both a and b could be multiplied by −1 if necessary)
we may assume that b > 0.
Since log3 5 > 0, it follows that a > 0.
By the definition of logarithms, 3

a
b = 5.

Raising both sides of this equation to the power b gives 3a = 5b .
Since a > 0, we see that 3 | 5b .
Corollary 3.19 then tells us that 3 | 5.
This is a contradiction. �

A root or zero of a real function f (x) is a value r such that f (r ) = 0. The
following result about rational roots turns out to be a useful tool for showing
that numbers are irrational.

THEOREM 3.25 Rational Roots Theorem

Let n ∈ Z+ and let

f (x) = cnxn + cn−1xn−1 + · · · + c1x + c0

be a polynomial with integer coefficients cn, cn−1, . . . , c1, c0 such that cn �= 0. If r is a
rational root of f (that is, r ∈ Q and f (r ) = 0), then r = a

b for some a , b ∈ Z such that
a | c0 and b | cn.

Proof
Suppose f (r ) = 0 for some rational number r . By Theorem 3.22, we can choose
a , b ∈ Z with b > 0 and gcd(a , b) = 1 so that r = a

b is written in lowest terms.
The equation

cn
an

bn
+ cn−1

an−1

bn−1 + · · · + c1
a

b
+ c0 = 0

can be written as

cnan + cn−1ban−1 + · · · + c1bn−1a + c0bn = 0.

Since

c0bn = −a (cnan−1 + cn−1ban−2 + · · · + c1bn−1),

it follows that a | c0bn. Since gcd(a , b) = 1, the result in Example 3.26 tells us
that gcd(a , bn) = 1. Euclid’s Lemma then tells us that a | c0. Similarly, since

cnan = −b(cn−1an−1 + · · · + c1bn−2a + c0bn−1),

it follows that b | cnan and therefore b | cn. �

The statement of the Rational Roots Theorem is perhaps best digested in an
example.

EXAMPLE 3.33 Consider the polynomial

f (x) = 4x4 + 3x3 − 9x2 − 6x + 2,

which clearly has integer coefficients. The divisors of the constant term 2 are

1, −1, 2, and − 2. (3.6)
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The divisors of the leading coefficient 4 are

1, −1, 2, −2, 4, and − 4. (3.7)

The Rational Roots Theorem says that any rational root of f must be the value
of a fraction whose numerator comes from list (3.6) and whose denominator
comes from list (3.7).

1
1 , 1

−1 , 1
2 , 1

−2 , 1
4 , 1

−4 ,

−1
1 , −1

−1 , −1
2 , −1

−2 , −1
4 , −1

−4 ,

2
1 , 2

−1 , 2
2 , 2

−2 , 2
4 , 2

−4 ,

−2
1 , −2

−1 , −2
2 , −2

−2 , −2
4 , −2

−4

Stripping out the obvious redundancies, the list of possible rational roots for
f is

1, −1,
1
2

, −1
2

,
1
4

, −1
4

, 2, −2.

By simply plugging the numbers from this list into f , we can determine all of
the rational roots for f .

f (1) = −6 �= 0
f (−1) = 0

f

(
1
2

)
= −21

8
�= 0

f

(
−1

2

)
= 21

8
�= 0

f

(
1
4

)
= 0

f

(
−1

4

)
= 93

32
�= 0

f (2) = 42 �= 0
f (−2) = 18 �= 0

We see that −1 and 1
4 are the only rational roots of f . Consequently, (x+ 1) and

(4x − 1) must be factors of f (x). Therefore, long division could be used to
discover that

f (x) = (x + 1)(4x − 1)(x2 − 2).

In this case, the final term x2 − 2 is easily factored as (x −√2)(x +√2). From
this, it follows that a complete factorization of f (x) is given by

f (x) = (x + 1)(4x − 1)(x −
√

2)(x +
√

2).

Hence, the roots of f are

−1,
1
4

,
√

2, and −
√

2.

Since
√

2 and −√2 are not on the list of rational roots, they must be irrational
roots. Of course, in this case, we already knew that

√
2 and −√2 are

irrational. ■
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We can now justify our inclusion of a theorem on rational roots in this sec-

tion on irrational numbers. In Example 3.31, we showed that r = 7+
√

2

5 is irra-
tional. Basic algebra gave us the critical result that

√
2 = 5r − 7. If we, further,

square both sides of this equation, then we get 2 = 25r2 − 70r + 49. Hence,
25r2−70r +47 = 0. That is, r is a root of the polynomial f (x) = 25x2−70x+47.
Since the Rational Roots Theorem tells us that ±1, ±47, ± 1

5 , ± 47
5 , ± 1

25 , and ± 47
25

are the only possible rational roots of f , a simple check that none of those ratio-
nal numbers is a root of f shows that r must be irrational. Moreover, the other

root
7−
√

2

5 of f must also be irrational. This general line of argument can be
exploited in many examples.

EXAMPLE 3.34 Show that
√

2+√3 is irrational.

First, we do some scratch work.
Let r =√2+√3.
So r2 = 2+ 2

√
6+ 3 = 5+ 2

√
6.

Hence, r2 − 5 = 2
√

6.
So r4 − 10r2 + 25 = (r2 − 5)2 = (2

√
6)2 = 24.

Therefore, r4 − 10r2 + 1 = 0.

Proof
Let f (x) = x4 − 10x2 + 1.
By the Rational Roots Theorem, the only possible rational roots of f are ±1.
Of course,

√
2+√3 is neither 1 nor −1, since

√
2+√3 > 1+ 1 > 1 > −1.

Since f (
√

2+√3) = 0, it follows that
√

2+√3 must be irrational. �

The proof technique used for Theorem 3.24 depends on the fact that 2 is
prime. Consequently, that technique does not lend itself to a proof that

√
6 is

irrational. Instead, the approach taken in Example 3.34 works quite well.

EXAMPLE 3.35 Show that
√

6 is irrational.

Proof
Certainly,

√
6 is a root of f (x) = x2 − 6.

By the Rational Roots Theorem, the only possible rational roots of f are
±1, ±2, ±3, ±6. Since none of these is a root of f ,

√
6 must be irrational. �

The numbers that lend themselves to the type of argument in Examples 3.34
and 3.35 form a special class.

DEFINITION 3.12

A real number r is said to be algebraic if r is a root of a polynomial with integer
coefficients.

A proof of the fact that rational numbers are algebraic is left for the exercises.
However, not all algebraic numbers are rational. In Example 3.34 we showed
that

√
2+√3 is algebraic but not rational.
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DEFINITION 3.13

Real numbers that are not algebraic are said to be transcendental.

Since rational numbers are algebraic, all of the transcendental numbers must
be irrational. Although verification is beyond the scope of this book, the num-
bers π and e are transcendental and hence irrational.

SECTION 3.5 Exercises
In Exercises 1 through 8, mimic the proof of Theorem 3.24.
1. Show that

√
3 is irrational.

Hint: You will need Corollary 3.19 for p = 3 and n = 2.

2. Show that
√

5 is irrational. 3. Show that
√

13 is irrational.

4. Let p be any prime. Show that
√

p is irrational.

5. Show that 3
√

2 is irrational. 6. Show that 3
√

5 is irrational.

7. Show that 3
√

7 is irrational. 8. Show that 4
√

2 is irrational.
9. If a population is growing continuously and doubling every year, then the

function p(t) that measures the size of the population after t years from
some start time has the form p(t) = a2t, where a is the population at time
0. Observe, for example, that p(6) = 2p(5). It turns out that the tripling
time for the population is log2 3. That is, ∀ t ≥ 0, p(t + log2 3) = 3p(t). (This
can be confirmed by using (5.5) from Section 5.4.) Show that the tripling
time log2 3 is irrational.

10. Suppose that the amount of a radioactive substance in a rock at time t is
given by the function r (t) = a ( 1

5 )t, for some constant a = r (0). The half-life
of the radioactive substance is defined to be the length of time it takes the
amount of radioactive substance to decrease by 50%. It turns out that the
half-life in this case will be log5 2. That is, ∀ t ≥ 0, r (t + log5 2) = 1

2r (t).
(This can be confirmed by using (5.5) from Section 5.4.) Show that the
half-life log5 2 is irrational.

11. Show that log3 7 is irrational. 12. Show that log7 5 is irrational.

�13. Is
√

2+
√

6√
2+
√

3
irrational? Why?

�14. Is
√

13+√2+ 7

3+
√

2
irrational? Why?

15. Is the sum of irrational numbers always irrational? Explain.
16. Is the negative of an irrational number always irrational? Explain.

In Exercises 17 through 22, mimic the proof of Example 3.31. Refer to the
results in Exercises 1 through 8.

17. If the ratio of the length to the width of a rectangle is
1+
√

5

2 and a square is
cut off of one end of that rectangle, then the remaining rectangle will also

have
1+
√

5

2 as the ratio of its length to its width. The number
1+
√

5

2 is called

the golden ratio. Show that
1+
√

5

2 is irrational.
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Remove

1

11

1 

2
�5

� 1
�

1
1 


2
�5

1 

2
�5

18. The formula s(n) = (
2+
√

3

3 )n + (
2−
√

3

3 )n generates a rational number for all
positive integers n. Compute the values s(1), s(2), and s(3), and observe

that they are rational. However, show that
2+
√

3

3 is irrational. Also, use this

together with the computation of s(1) to show that
2−
√

3

3 is irrational.

19. A regular dodecahedron is a solid that has twelve congruent regular
pentagons for its faces. The volume V of a regular dodecahedron with side

length s is given by V = 15+7
√

5

4 s3. Show that
15+7

√
5

4 is irrational.

20. A regular icosahedron is a solid that has twenty congruent equilateral
triangles for its faces. The volume V of a regular icosahedron with side

length s is given by V = 5(3+
√

5)

12 s3. Show that
5(3+
√

5)

12 is irrational.

21. Show that
7−
√

2

3+
√

2
is irrational.

22. Show that 3− 4
√

2 is irrational.
Hint: Use the result from Exercise 8.

In Exercises 23 through 30, use the Rational Roots Theorem.

23. Show that
√

10 is irrational. 24. Show that
√

35 is irrational.
25. Using the identity cos( A− B) = cos( A) cos(B) + sin( A) sin(B) for A= 45◦

and B = 30◦, we get

cos(15◦) = cos(45◦) cos(30◦)+ sin(45◦) sin(30◦) =
√

2

2 ·
√

3

2 +
√

2

2 · 12 =
√

6+
√

2

4 .

Show that
√

6+√2 is irrational. Conclude that cos(15◦) is irrational.
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26. Show that
√

3+√5 is irrational. Keep Exercise 14 in mind.

27. Using the identity tan2(θ ) = 1−cos(2θ )
1+cos(2θ ) for θ = 22.5◦, we get

tan(22.5◦) =
√

1− cos(45◦)
1+ cos(45◦)

=

√√√√√√1−
√

2

2

1+
√

2

2

=
√

3− 2
√

2.

Show that
√

3− 2
√

2 is irrational. Conclude that tan(22.5◦) is irrational.

28. Using the identity cos2(θ ) = 1+cos(2θ )
2 for θ = 15◦, we get

cos(15◦) =
√

1+ cos(30◦)
2

=

√√√√√1+
√

3

2

2
=
√

2+√3

2
.

Show that
√

2+√3 is irrational. Conclude that cos(15◦) is irrational, and
consider Exercise 13 in light of this result and Exercise 25.

29. Show that
4
√

3√
2

is irrational.

30. Show that
√

2
3
√

5
is irrational.

31. In 1768, the French mathematician Johann Heinrich Lambert (1728–1777)
proved that π is irrational. Use the fact that π is irrational to show that π+1

2
is irrational.

32. In 1737, Euler proved that the Euler number e is irrational. Use the fact that
e is irrational to show that e−1

2 is irrational.

33. Let x ∈ R. Show: If x is irrational, then
√

x is irrational.
34. Show that, for a monic polynomial (a polynomial with 1 as the coef-

ficient of the highest power of the variable), all of the rational roots are
integers.

35. Show that rational numbers are algebraic.

�36. Is

√
1+
√

1+√1+ · · · algebraic? Why?

�37. Show that the roots of a polynomial with rational coefficients are algebraic.
�38. Show: ∀ a ∈ R, if a is algebraic, then

√
a is algebraic.

39. Are all irrational numbers transcendental? Why?
40. Is the sum of two transcendental numbers necessarily transcendental?

Why?
�41. In 1873, the French mathematician Charles Hermite (1822–1901) proved

that the Euler number e is transcendental. Given that e is transcendental,
show that 2e must be transcendental.

�42. In 1882, the German mathematician Ferdinand von Lindemann
(1852–1939) proved that π is transcendental. Given that π is transcen-
dental, show that π

6 must be transcendental.



150 P A R T I ■ Proofs

3.6 Modular Arithmetic
Many things are numbered cyclically. For example, four hours after 10 o’clock,
it is 2 o’clock, not 14 o’clock. Seven hours before 3 o’clock, it is 8 o’clock. Twenty-
eight hours after 1 o’clock, it is 5 o’clock. In specifying time of day, we equate
10 + 4 with 2, we equate 3 − 7 with 8, and we equate 1 + 28 with 5. These
equivalences hold because the differences (10+ 4)−2, (3− 7)−8, and (1+ 28)−5,
respectively, are divisible by 12. In the same way, two dates fall on the same day
of the week if and only if the number of days by which they differ is divisible by
7. These types of calculations are sometimes called clock arithmetic. The more
formal term is modular arithmetic.

DEFINITION 3.14

Given integers a , b, and n with n > 1, we say that a is congruent to b modulo n,
written a ≡ b (mod n), if n | (a − b).

EXAMPLE 3.36 (Some Congruences)

14 ≡ 2 (mod 12), since 12 | (14− 2)
−4 ≡ 8 (mod 12), since 12 | (−4− 8)
34 ≡ 6 (mod 7), since 7 | (34− 6)
25 ≡ 0 (mod 5), since 5 | (25− 0) ■

Formal properties of congruence are listed in the following two theorems.
Their proofs are straightforward applications of the definitions, and almost all
are left for the exercises. Very simply, congruence≡ has many properties similar
to those of equality=. In fact, the properties of≡ listed in the following theorem
constitute those of an equivalence relation, as we shall study in Section 5.2.

THEOREM 3.26 Congruence Is an Equivalence Relation

Let a , b, and n be integers with n > 1.

(a) a ≡ a (mod n).

(b) If a ≡ b (mod n), then b ≡ a (mod n).

(c) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

THEOREM 3.27 Arithmetic Properties of Congruence

Let a1, a2, b1, b2, and n be integers with n > 1.
If a1 ≡ a2 (mod n) and b1 ≡ b2 (mod n), then

(a) a1 + b1 ≡ a2 + b2 (mod n), and

(b) a1b1 ≡ a2b2 (mod n).

Proof of Theorem 3.27(b)
Suppose a1 ≡ a2 (mod n) and b1 ≡ b2 (mod n).
Therefore, n | (a1 − a2) and n | (b1 − b2).
That is, a1 − a2 = nk and b1 − b2 = nl for some k, l ∈ Z.
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Observe that

a1b1 − a2b2 = a1b1 − a1b2 + a1b2 − a2b2 = a1(b1 − b2) + b2(a1 − a2)
= a1nl + b2nk = n(a1l − b2k).

Therefore, n | (a1b1 − a2b2), and it follows that a1b1 ≡ a2b2 (mod n). �

EXAMPLE 3.37 Note that 4 ≡ −6 (mod 10) and 22 ≡ 2 (mod 10). As promised by
Theorem 3.27, 4+ 22 ≡ −6+ 2 (mod 10) and 4 · 22 ≡ −6 · 2 (mod 10). ■

A proof of part (a) of the following straightforward consequence of Theo-
rem 3.27 is left for the exercises at the end of this section. A proof of part (b) is
left for the exercises in Section 4.3, after induction is available.

COROLLARY 3.28 Let m, a1, a2, and n be integers with n > 1.
If a1 ≡ a2 (mod n), then

(a) ma1 ≡ ma2 (mod n), and (b) if m ≥ 0, then am
1 ≡ am

2 (mod n).

EXAMPLE 3.38 Note that 3 ≡ −2 (mod 5). As promised by Corollary 3.28, we also have
4(3) ≡ 4(−2) (mod 5) and 34 ≡ (−2)4 (mod 5). ■

The notation mod has now been used in two ways in this chapter. In fact,
there is an important relationship that mitigates any potential confusion. For
example, note that 25 mod 7 = 4 and 4 ≡ 25 (mod 7).

LEMMA 3.29 Given integers n and d with d > 1,

n mod d ≡ n (mod d),

and, moreover, n mod d is the unique integer in {0, 1, . . . , d−1} congruent to n modulo d.

Proof
Let r = n mod d. That is, r is the remainder upon division of n by d guaranteed
by the Division Algorithm. By letting q = n div d, we have n = dq + r and
0 ≤ r < d . So d(−q ) = r − n. Since d | (r − n), in the notation of congruence, we
have r ≡ n(mod d). That is, n mod d ≡ n (mod d).

To establish our uniqueness assertion, suppose r ′ ∈ {0, 1, . . . , d − 1} and
r ′ ≡ n (mod d). Since d | (r ′ − n), there is some q ′ ∈ Z such that d(−q ′) = r ′ − n.
That is, n = dq ′ + r ′. Since 0 ≤ r ′ < d, the uniqueness assertion in the Division
Algorithm tells us that r ′ = r = n mod d. �

We can use Lemma 3.29 together with Theorem 3.27 to simplify computa-
tions of the form n mod d.

EXAMPLE 3.39 Use Theorem 3.27 to help with the following calculations.

(a) Compute (5162387+ 83645) mod 10.
Note that the value of a positive integer mod 10 is its ones digit.
Since 5162387 ≡ 7 (mod 10) and 83645 ≡ 5 (mod 10),
we get 5162387+ 83645 ≡ 5+ 7 ≡ 12 ≡ 2 (mod 10).
That is, we can conclude that (5162387+ 83645) mod 10 = 2
without having to compute 5162387+ 83645 = 5246032.
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(b) Compute (34861+ 571028) mod 5.
Note that it is easy to determine the value of an integer mod 5 based on
its ones digit.
Since 34861 ≡ 1 (mod 5) and 571028 ≡ 8 ≡ 3 (mod 5),
we get 34861+ 571028 ≡ 1+ 3 ≡ 4 (mod 5).
That is, we can conclude that (34861+ 571028) mod 5 = 4
without having to compute 34861+ 571028 = 605889.

(c) Compute 335 mod 10.
Note that 34 ≡ 81 ≡ 1 (mod 10).
So 332 = (34)8 ≡ 18 ≡ 1 (mod 10).
Hence, 335 ≡ 33233 ≡ 1(27) ≡ 27 ≡ 7 (mod 10).
We conclude that 335 mod 10 = 7, and we did not need to compute the
value 335 = 50031545098999707.

(d) Compute 213 mod 209.
Note that 28 ≡ 256 ≡ 47 (mod 209)
and 25 ≡ 32 (mod 209).
Hence, 213 ≡ 2825 ≡ 47(32) ≡ 1504 ≡ 41 (mod 209).
We conclude that 213 mod 209 = 41.

(e) Compute 417 mod 209.
Note that 412 ≡ 1681 ≡ 9 (mod 209).
Hence, 416 ≡ (412)3 ≡ 93 ≡ 729 ≡ 102 (mod 209).
Therefore, 417 ≡ 416(41) ≡ 102(41) ≡ 4182 ≡ 2 (mod 209).
We conclude that 417 mod 209 = 2. ■

The notion of congruences enables us to make some divisibility arguments
very efficiently. In Example 3.12, we showed that, for any integer n, n2 − 2 is
not divisible by 5. Here, we can give a new proof by noting that 5 | (n2 − 2) is
equivalent to n2 − 2 ≡ 0 (mod 5), which is itself equivalent to n2 ≡ 2 (mod 5).

EXAMPLE 3.40 Show: For any integer n, n2 �≡ 2 (mod 5).

Proof
It suffices to consider n ≡ r (mod 5) for each of r = 0, 1, 2, 3, and 4.
If n ≡ 0 (mod 5), then n2 ≡ 0 (mod 5).
If n ≡ 1 (mod 5), then n2 ≡ 1 (mod 5).
If n ≡ 2 (mod 5), then n2 ≡ 4 (mod 5).
If n ≡ 3 (mod 5), then n2 ≡ 9 ≡ 4 (mod 5).
If n ≡ 4 (mod 5), then n2 ≡ 16 ≡ 1 (mod 5).
In each case, n2 �≡ 2 (mod 5). �

Note how much cleaner the proof in Example 3.40 is than that in Exam-
ple 3.12. Working with congruences can be convenient.

EXAMPLE 3.41 Let n be any integer. Show that n3 ≡ n (mod 6).

Proof
It suffices to consider n ≡ r (mod 6) for each of r = 0, 1, 2, 3, 4 and 5.
If n ≡ 0 (mod 6), then n3 ≡ 0 (mod 6).
If n ≡ 1 (mod 6), then n3 ≡ 1 (mod 6).
If n ≡ 2 (mod 6), then n3 ≡ 8 ≡ 2 (mod 6).
If n ≡ 3 (mod 6), then n3 ≡ 27 ≡ 3 (mod 6).
If n ≡ 4 (mod 6), then n3 ≡ 64 ≡ 4 (mod 6).
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If n ≡ 5 (mod 6), then n3 ≡ 125 ≡ 5 (mod 6).
In each case, n3 ≡ n (mod 6). �

In the equation n3 ≡ n (mod 6), it may be tempting to cancel an n from both
sides. However, n2 ≡ 1 (mod 6) does not follow in general (for instance, consider
n = 2). Cancellation works only under certain conditions.

LEMMA 3.30 Modular Cancellation Rule

Let a , b1, b2, and n be integers with n > 1. Suppose that ab1 ≡ ab2 (mod n) and
gcd(a , n) = 1. Then, b1 ≡ b2 (mod n).

Proof
Since n | a (b1 − b2) and gcd(n, a ) = 1, it follows from Euclid’s Lemma that
n | (b1 − b2). That is, b1 ≡ b2 (mod n). �

Canceling a from both sides of the congruence ab1 ≡ ab2 (mod n) is effec-
tively dividing both sides by a . From another point of view, we are multiplying
both sides by an inverse of a .

DEFINITION 3.15

Given a , n ∈ Z with n > 1, a multiplicative inverse of a modulo n is an integer c
such that ac ≡ 1 (mod n).

LEMMA 3.31 Given n ∈ Z with n > 1, an integer a has a multiplicative inverse modulo n if and only if
gcd(a , n) = 1.

Proof
Observe that the following statements are equivalent:

(1) ∃ c ∈ Z such that ac ≡ 1 (mod n).
(2) ∃ c, d ∈ Z such that n(−d) = ac − 1.
(3) ∃ c, d ∈ Z such that ac + nd = 1. �

Remark 3.1 From the proof of Lemma 3.31, it follows that Euclid’s
Algorithm can be applied to find multiplicative inverses modulo n. If
gcd(a , n) = 1, then the Extended Euclidean Algorithm can be used to
find integers c and d such that ac + nd = 1. We see in the proof of
Lemma 3.31 that c is a multiplicative inverse of a modulo n.

Linear Ciphers
Lemma 3.31 can be applied to give a generalization of the shift cipher introduced
in Section 3.2. As in Section 3.2, to be concrete, suppose that n = 27 and that we
wish to assign each number x from 0 to 26 (representing letters as shown in Table
3.4) to a new number y in that range. A linear cipher has the form

y = (ax + b) mod n, (3.8)

for some choice of integers a and b. Moreover, in order for the assignment of x
to y in equation (3.8) to be useful, it must be the case that x can be subsequently
recovered from y. As is seen in the exercises, this occurs precisely when a has a
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A B C D E F G H

0 1 2 3 4 5 6 7 8

I J K L M N O P Q

9 10 11 12 13 14 15 16 17

R S T U V W X Y Z

18 19 20 21 22 23 24 25 26

Table 3.4 Converting Letters to Numbers

multiplicative inverse c modulo n. In this case, the deciphering equation corre-
sponding to equation (3.8) is

x = c(y− b) mod n, (3.9)

where ac ≡ 1 (mod n).

EXAMPLE 3.42 Using n = 27, a = 4, b = 2, equation (3.8), and the conversions of letters to
numbers in Table 3.4, the message

JUMP
is encrypted to the message

OE L,

and, using c = 7 (since 4 · 7 ≡ 1 (mod 27)) and equation (3.9), the encrypted
message

GHMBGKCG

is decrypted to the message

HOW HIGH. ■

RSA Encryption
Computations like those in Example 3.39 are critical to a means of encryption
known as RSA encryption, developed by Ronald Rivest, Adi Shamir, and
Leonard Adleman in 1977. The method requires that an integer n be known to
the sender and receiver of a secret message. Also, the sender must have a parti-
cular integer a , and the receiver must have a particular integer c, where n, a , and
c have certain properties. Specifically, n is chosen by the receiver to be the prod-
uct of two (large) primes p and q . Also, the receiver picks an integer a that has
a multiplicative inverse c modulo m = lcm( p − 1, q − 1). The sender then takes
a message x (which is assumed to be in the form of a number3) and computes
the encrypted message

y = xa mod n. (3.10)

The encrypted message y can then be sent to the receiver, who decrypts the mes-
sage by computing yc mod n. That is,

x = yc mod n, (3.11)

as we shall prove in the exercises.

3In this case, since n can be quite large, a number may represent much more than merely a
single character of a message.
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EXAMPLE 3.43 An ATM is set up to receive transactions from many customers of a bank.
However, no customer should be able to intercept another customer’s
transaction. The ATM therefore uses an RSA encryption scheme with p = 11
and q = 19, so n = 209. Since m = lcm(10, 18) = 90 and gcd(13, 90) = 1, the
ATM chooses a = 13 and consequently decodes transactions with the inverse
of a modulo m, namely c = 7. Only the values n and a are stored on all ATM
cards to enable them to use equation (3.10) to encrypt transactions (messages).
The value c needed in equation (3.11) for decrypting received messages is kept
secret by the bank.

(a) An ATM card encrypts the message x = 2, which represents a “Balance
Inquiry” transaction. The details presented in Example 3.39(d) show
that

y = 213 mod 209 = 41.

The encrypted message 41 is sent to the bank.
(b) The bank can decrypt y = 41. The details presented in Example 3.39(e)

show that

x = 417 mod 209 = 2.

The decrypted message 2 is thus received and interpreted as a “Balance
Inquiry.” ■

Since factoring n as the product pq is extremely difficult in general,4 the
sender’s knowledge of n and a is not sufficient to determine the exponent c
needed for decrypting. Consequently, multiple senders can encrypt messages
by the same method, while none of them can decrypt another sender’s message.
A system that has this property is called a public key encryption scheme. Such
schemes have applications in wireless communications, Internet commerce, and
security.

Primality Conditions
The French mathematician Pierre de Fermat (1601–1665) is perhaps best known
for what is now called Fermat’s Last Theorem. It states that for every inte-
ger n ≥ 3, there are no nonzero integers x, y, and z satisfying the equation
xn + yn = zn. This was proved in 1994 by the English mathematician Andrew
Wiles (1953– ). Our study of congruences is aided by a smaller but extremely
useful result about primes that we owe to Fermat.

THEOREM 3.32 Fermat’s Little Theorem

If p is a prime, a ∈ Z, and p � | a, then a p−1 ≡ 1 (mod p).

Proof
Since no pair of integers from the list

0, 1, 2, . . . , p − 1 (3.12)

4There are nearly two quintillion 20-digit primes, for example.
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is congruent modulo p (Exercise 43), it follows from the Modular Cancellation
Rule that no pair of integers from the list

a · 0, a · 1, a · 2, . . . , a ( p − 1) (3.13)

is congruent modulo p (Exercise 44). Consequently, there must be a way to pair
off the entries in (3.12) with the entries in (3.13) so that each pair is congruent
modulo p. Certainly, 0 pairs with a · 0.

Since the list 1, 2, . . . , p − 1 gets paired, in some order, with the list a · 1,
a · 2, . . . , a ( p− 1), it follows from Theorem 3.27(b) (generalized to p− 1 factors)
that the products of these lists are congruent modulo p. That is, ( p − 1)! ≡
a p−1( p − 1)! (mod p). Since p is prime, gcd( p, ( p − 1)!) = 1. The Modular
Cancellation Rule then tells us that 1 ≡ a p−1 (mod p). �

EXAMPLE 3.44 Compute 72222 mod 13.

Solution. Fermat’s Little Theorem tells us that 712 ≡ 1 (mod 13). Thus,

72222 ≡ (712)18572 ≡ 118549 ≡ 10 (mod 13).

We conclude that 72222 mod 13 = 10. ■

The proofs of the following corollaries to Fermat’s Little Theorem are left for
the exercises.

COROLLARY 3.33 If p is prime, then, for all a ∈ Z, a p ≡ a (mod p).

COROLLARY 3.34 Let n ∈ Z with n > 1. If there exists a ∈ Z such that an �≡ a (mod n), then n is not prime.

Corollary 3.34 can be used to test whether an integer n is prime.

EXAMPLE 3.45 Consider n = 221. Observe that

35 ≡ 243 ≡ 22 (mod 221) and 224 ≡ 234256 ≡ −4 (mod 221).

Thus,

3220 ≡ (35)44 ≡ 2244 ≡ (224)11 ≡ (−4)11 ≡ −4194304 ≡ 55 (mod 221).

Since 3221 ≡ 165 �≡ 3 (mod 221), we see from Corollary 3.34 that 221 is not
prime. (Of course, 221 = 13 · 17.) ■

If an integer n satisfies an ≡ a (mod n) for a particular value of a , then that is
not enough to conclude that n is prime. For example, n = 91 = 7 · 13 is certainly
not prime despite the fact that 391 ≡ 3 (mod 91). A more useful computation in
this case is the observation that 291 ≡ 37 �≡ 2 (mod 91).

The Additive Group of Integers Modulo n.
We close this section with some notions that are of further interest to us in Chap-
ter 5 and Section 7.4, where formal introductions to equivalence relations and
groups are given. Proofs of our assertions here are left to the exercises. Let n be
an integer such that n > 1. Given any integer a , let [a ]n denote the set

[a ]n = {k : k ∈ Z and k ≡ a (mod n)}.
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We refer to [a ]n as the equivalence class of a modulo n. We shall prove in the
exercises that, for all a , b ∈ Z,

[a ]n = [b]n if and only if a ≡ b (mod n).

In fact we usually represent the set [a ]n as [b]n, where b is the unique integer
such that 0 ≤ b ≤ n− 1 and a ≡ b (mod n).

EXAMPLE 3.46 Consider the case in which n = 15.

(a) [25]15 = [10]15 (b) [73]15 = [13]15 (c) [−36]15 = [9]15

(d) [8]15 = [8]15 (e) [15]15 = [0]15 ■

Let Zn denote the set of equivalence classes of integers modulo n. That is,

Zn = {[a ]n : a ∈ Z}.
More simply, we have

Zn = {[0]n, [1]n, . . . , [n− 1]n}.
We define arithmetic operations on subsets S and T of the integers by

S+ T = {s + t : s ∈ S and t ∈ T}
−T = {−t : t ∈ T}, and

S− T = S+ (−T).

It is straightforward to verify that, given integers a and b, we have

[a ]n + [b]n = [a + b]n,
−[b]n = [−b]n, and

[a ]n − [b]n = [a − b]n.

With [0]n playing the role of the additive identity and [−a ]n playing the role of
the additive inverse of [a ]n, the set Zn under addition (and subtraction) satisfies
arithmetic properties familiar from the integers. In fact, Zn forms what is called
a group, as we shall study in Section 7.4.

THEOREM 3.35 Zn Forms a Group Under +

Let n > 1 be an integer, and let a , b, c ∈ Z. Then

(a) ([a ]n + [b]n) + [c]n = [a ]n + ([b]n + [c]n), Associativity

(b) [0]n + [a ]n = [a ]n, Identity

(c) [−a ]n + [a ]n = [0]n. Inverse

SECTION 3.6 Exercises
For Exercises 1 through 4, determine whether the given assertion is true or
false.

1. 55 ≡ 15 (mod 10). 2. 38 ≡ 8 (mod 8).

3. −7 ≡ 21 (mod 6). 4. 10 ≡ −8 (mod 3).
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5. The stock market crash on October 19, 1987, is referred to as Black Monday.
Consequently, it is easy to remember that October 19, 1987, was a Monday.
Use this to determine the day of the week on January 8, 1987. That was
the first day that the Dow Jones Industrial Average ever closed at over
2000 points.

6. The Rev. Martin Luther King, Jr. was shot on Thursday April 4, 1968. In
that same year, Robert F. Kennedy was shot on June 6. Use the fact that
MLK was shot on a Thursday to determine the day of the week that RFK
was shot.

7. In 1986, Susan Butcher, only the second women to win the Iditarod
Dog-Sled Race, won her first of three consecutive (and four overall)
Iditarods in just over 279 hours. If the race started at 6 A.M., at what time of
day did she finish?

8. In October of 1997, the Cassini spacecraft was launched from Earth to take
detailed pictures of Jupiter. If the trip takes approximately 81 months, then
in what month (of 2004) did the Cassini spacecraft reach Jupiter?

9. Prove Theorem 3.26.
10. (a) Prove Theorem 3.27(a). (b) Prove Corollary 3.28(a).
In Exercises 11 through 14, give proofs using only the definitions of the terms
involved and basic properties of integer arithmetic. Do not use other results.
11. Let a1, a2, and n be integers with n > 1.

Show: If a1 ≡ a2 (mod n), then −a1 ≡ −a2 (mod n).
12. Let a1, a2, b1, b2, and n be integers with n > 1.

Show: If a1 ≡ a2 (mod n) and b1 ≡ b2 (mod n), then a1 − b1 ≡
a2 − b2 (mod n).

13. Let a , b, and n be integers with n > 1.
Show: If a ≡ b (mod n), then a2 ≡ b2 (mod n).
This is the special case of Corollary 3.28(b) in which m = 2. A general proof
can be given after mathematical induction is introduced in Chapter 4.

14. Let a , b, c, and n be integers with n > 1.
Show: If a ≡ b (mod n), then a + c ≡ b + c (mod n).

15. Let d , n1, n2 ∈ Z with d > 1.
Show: n1 mod d = n2 mod d if and only if n1 ≡ n2 (mod d).

16. Let d , n1, n2 ∈ Z with d > 1.
Prove or Disprove: (n1 mod d)(n2 mod d) = n1n2 mod d.

17. Compute (8763+ 536) mod 25, without using the value of 8763+ 536.
18. Compute (517+ 229) mod 3, without using the value of 517+ 229.

19. Compute (105379 + 14) mod 10. 20. Compute (25379 + 5) mod 4.

21. Compute 2517 mod 19.
Hint: 252 ≡ −2 (mod 19).

22. Compute 1501000 mod 13.
Hint: 150 ≡ 7 (mod 13) and 76 ≡ −1 (mod 13).

23. Compute 2050 mod 3. 24. Compute 17100 mod 5.

25. Compute 13200 mod 7. 26. Compute 30421 mod 11.

27. Show: ∀n ∈ Z, n3 − n− 1 ≡ 2 (mod 3).
28. Show: ∀n ∈ Z, n3 − 3n2 − 4n ≡ 0 (mod 6).
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29. Let n ∈ Z. Show: If n �≡ 0 (mod 7), then n3 ≡ ±1 (mod 7).

30. Let n ∈ Z. Show:
{

n4 ≡ 0 (mod 5) if n ≡ 0 (mod 5),
n4 ≡ 1 (mod 5) if n �≡ 0 (mod 5).

31. Let n be an odd integer.

(a) Show: n2 ≡ 1 (mod 8). (b) Show: n3 ≡ n (mod 8).

32. Let n ∈ Z. Show:

⎧⎨
⎩

n3 ≡ 0 (mod 4) if n is even,
n3 ≡ 1 (mod 4) if n ≡ 1 (mod 4),
n3 ≡ 3 (mod 4) if n ≡ 3 (mod 4).

33. Let n, r ∈ N. Show: If n ≡ r (mod 3), then 2n ≡ 2r (mod 7).
34. Let n, r ∈ Z. Show: If n ≡ r (mod 4), then 3n ≡ 3r (mod 10).

Further, determine the values of 3r mod 10 for r = 0, 1, 2, 3.
35. Let a , b, n, and m be integers with n > 1 and m > 1. Suppose that

a ≡ b (mod m) and a ≡ −b (mod n). Show: a2 ≡ b2 (mod mn).
�36. Let a , b, m, and n be integers with m > 1 and n > 1. Suppose that

a ≡ b (mod m) and a ≡ b (mod n).
(a) Must it follow that a ≡ b (mod mn)? Explain.
(b) What if m and n are distinct primes?

37. Use the Extended Euclidean Algorithm to find a multiplicative inverse of
12 modulo 55. See Remark 3.1.

38. Use the Extended Euclidean Algorithm to find a multiplicative inverse of
14 modulo 45. See Remark 3.1.

In Exercises 39 through 42, use the letter-to-number conversions in Table 3.4
(repeated below) and a linear cipher with n = 27 and the specified encrypting
values a and b. Using software such as Mathematica or Maple (to evaluate
functions on lists of input) might also be wise.

A B C D E F G H
0 1 2 3 4 5 6 7 8

I J K L M N O P Q
9 10 11 12 13 14 15 16 17

R S T U V W X Y Z
18 19 20 21 22 23 24 25 26

39. A certain university uses a linear cipher with a = 2 and b = 8 to encrypt
student course registration data. Determine how the course “DISCRETE
MATH” would be encrypted at this college.

40. To protect against hackers, a certain Internet service provider encrypts
its customers’ passwords using a linear cipher with a = 5 and b = 3.
Determine how the customer password “BINARY CODE” would be
encrypted.

41. In 2007, Jack Nicholson might have used the encrypted message “QPVOZ”
to submit his vote for the Academy Award for Best Adapted Screenplay.
Assuming that Jack used a linear cipher with a = 2 and b = 13, decrypt
that message.

42. In December of 1941, Japanese commander Admiral Isoroku Yamamoto
might have sent the encrypted message “KIIKY DUAC” (here translated
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into English) to his fleet. Assuming that Admiral Yamamoto used a linear
cipher with a = 7 and b = 4, decrypt that message.

43. Let n ∈ Z with n > 1. Show that no pair of distinct integers from the list
0, 1, 2, . . . , n− 1 is congruent modulo n.

44. Let a , n ∈ Z with n > 1 and gcd(a , n) = 1. Show that no pair of distinct
integers from the list a · 0, a · 1, a · 2, . . . , a (n− 1) is congruent modulo n.

�45. Given a , n ∈ Z with n > 1 and gcd(a , n) = 1, show that there is a
unique value c ∈ {0, 1, . . . , n− 1} that is the multiplicative inverse of a
modulo n. This uniqueness result expands on the existence result in
Lemma 3.31.

�46. Given a , b, n ∈ Z with n > 1, show that, for each y ∈ {0, 1, . . . , n− 1}, there
is a unique solution x ∈ {0, 1, . . . , n− 1} to the equation y = (ax + b) mod n
if and only if gcd(a , n) = 1.

47. The BooksForCheap website uses the RSA encryption method to encrypt
customer credit card orders. Consequently, even if a criminal intercepts
a customer’s order, the criminal will not be able to decrypt that customer’s
credit card information. Table 3.5 shows the numerical codes (messages)
used by BooksForCheap to represent the credit cards it accepts. Assume
that BooksForCheap uses the RSA encryption method with p = 5, q = 11,
a = 7, and c = 3.

Message (x) Credit Card

8 American Express
15 Diner’s Club
23 Discover
30 MasterCard
38 Sears
49 Visa

Table 3.5 Messages Representing Credit Cards

(a) Determine the numerical value to which “American Express” encrypts.
(b) Determine the numerical value to which “Visa” encrypts.
(c) Suppose BooksForCheap receives an order with the encrypted credit

card value y = 12. Decrypt this value to determine the type of credit
card used by the customer.

(d) Suppose BooksForCheap receives an order with the encrypted credit
card value y = 35. Decrypt this value to determine the type of credit
card used by the customer.

48. The cable company TvByWire uses the RSA encryption method to receive
pay-per-view movie orders from its customers. This prevents nonpaying
customers from receiving the movies for free. Table 3.6 shows the numeri-
cal codes (messages) used by TvByWire to represent the movies it has
available. Assume that TvByWire uses the RSA encryption method with
p = 13, q = 17, a = 5, and c = 29.
(a) Determine the numerical value to which “Final Analysis” encrypts.
(b) Determine the numerical value to which “The Matrix” encrypts.
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Message (x) Movie

7 A Beautiful Mind

9 Final Analysis

20 Good Will Hunting

32 It’s My Turn

33 The Matrix

41 Seven

45 Stand and Deliver

Table 3.6 Messages Representing Movies

(c) Suppose TvByWire receives an order with the encrypted movie value
y = 2. Decrypt this value to determine the movie requested by the
customer.

(d) Suppose TvByWire receives an order with the encrypted movie value
y = 11. Decrypt this value to determine the movie requested by the
customer.

49. Compute 101000 mod 17. 50. Compute 3400 mod 7.
51. Prove Corollary 3.33. 52. Prove Corollary 3.34.

53. Use Corollary 3.34 to show that 253 is not prime.
54. Use Corollary 3.34 to show that 209 is not prime.

�55. Prove Wilson’s Theorem: If p is prime, then ( p − 1)! ≡ −1 (mod p).
Hint: In the product ( p − 1)!, pair off each integer in {2, . . . , p − 2}with its
multiplicative inverse modulo p. Factorials are defined in Section 4.1.

�56. Prove the converse of Wilson’s Theorem:
If n ∈ Z with n > 1 and (n− 1)! ≡ −1 (mod n), then n is prime.
Hint: If not, then find a common divisor of (n− 1)! and (n− 1)!+ 1.

�57. Recall from Example 3.16 in Section 3.2 that an ISBN d1d2d3d4d5d6d7d8d9d10
satisfies
[10d1 + 9d2 + 8d3 + 7d4 + 6d5 + 5d6 + 4d7 + 3d8+ 2d9 + d10] mod 11 = 0.
Show that this holds if and only if

[d1 + 2d2 + 3d3 + 4d4 + 5d5 + 6d6 + 7d7 + 8d8 + 9d9 + 10d10] mod 11 = 0.

�58. RSA Decryption. Given integers a and c and primes p and q , let n = pq
and m = lcm( p − 1, q − 1). Show that, if ac ≡ 1 (mod m) and y = xa mod n,
then x = yc mod n.
Hint: Use Fermat’s Little Theorem.

59. Find an integer x such that x2 ≡ −1 (mod 10).
Observe that 9! �≡ −1 (mod 10), and compare Exercise 55.

60. Find an integer x such that 3x ≡ 5 (mod 7).
61. Find x, y ∈ Z such that x �≡ 0 (mod 10) and y �≡ 0 (mod 10) but

xy ≡ 0 (mod 10). This shows that the set of integers modulo 10 does not
have the zero multiplication property (Appendix A, property 6) as R does.

62. Find x, y ∈ Z such that x �≡ ±y (mod 8) but x2 ≡ y2 (mod 8). This shows
that the set of integers modulo 8 cannot have uniquely defined square
roots (Appendix A, property 16) as R+ does.
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In Exercises 63 through 68, for the relevant n, express the given set in the form
[b]n, where 0 ≤ b ≤ n− 1.
63. [8]3. 64. [52]10.

65. [10]4 + [5]4. 66. [12]5 + [17]5.

67. [18]10 + [217]10 + [3146]10. 68. [18]12 + [217]12 + [3146]12.

In Exercises 69 through 76, let a , b, c, n ∈ Z with n > 1.
69. Show: [a ]n = [b]n if and only if a ≡ b (mod n).
70. Show: If [a ]n ∩ [b]n �= ∅, then [a ]n = [b]n.
71. Show: [a ]n + [b]n = [a + b]n. Consequently, [a ]n + [b]n = [b]n + [a ]n.
72. Show: −[b]n = [−b]n.
73. Show: [a ]n − [b]n = [a − b]n.
74. Show: ([a ]n + [b]n) + [c]n = [a ]n + ([b]n + [c]n).
75. Show: [0]n + [a ]n = [a ]n.
76. Show: [−a ]n + [a ]n = [0]n.

Divisibility Tests. For Exercises 77 through 80, let akak−1 · · · a0 be the base-10
representation of an integer n. That is,

n = 10kak + 10k−1ak−1 + · · · + 100a0.

77. Show: n ≡ a0 (mod 5). This proves that the last digit alone determines
whether an integer is divisible by 5.

78. Let m be the integer whose base-10 representation is a1a0.
Show: n ≡ m (mod 4). This proves that the last two digits determine
whether an integer is divisible by 4.

�79. Let m = ak + ak−1 + · · · + a0.
Show: n ≡ m (mod 9). This proves that an integer is divisible by 9 if and
only if the sum of its digits is divisible by 9.
Prove that this is also true if 9 is replaced by 3.

�80. Let m = (−1)kak + (−1)k−1ak−1 + · · · + (−1)0a0.
Show: n ≡ m (mod 11). This proves that an integer is divisible by 11 if and
only if the alternating sum of its digits is divisible by 11.

CHAPTER 3 Review Problems

1. Show that the product of any two even integers is even.
2. Show: ∀ n ∈ Z, if 4 � | n2 then n is odd.
3. In a game of bridge, all 52 cards in a standard deck are dealt to four

players so that each gets the same number of cards. Suppose we wish to
invent a game like bridge, but for six players. Can a deck of 52 cards be
split evenly among six players? Why?

4. Let a , b ∈ Z. Show: a | ((a + b)3 − b3).
5. Let a , b ∈ Z. Show: a | b if and only if −a | b.
6. Is 91 prime? Why? Is 1 prime? Why?
7. Are 14 and 33 relatively prime? Why?
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8. Let a and n be integers. Show: If a | n and a | (n+ 2), then a | 2.
9. Find gcd(1001, 455) by factoring.
10. Let n∈Z with n �= 0. Show: gcd(n, −n) = |n|. Note that

|n| =
{

n if n ≥ 0,
−n if n < 0.

11. Let a and b be integers not both zero, and let m and n be positive integers.

(a) Find specific values for a , b, m, n with m, n > 1 and gcd(a , b) =
gcd(am, bn).

(b) In general, show that gcd(a , b) ≤ gcd(am, bn).
�(c) What additional conditions on a , b, m, n are forced by the strict

inequality gcd(a , b) < gcd(am, bn)?

12. Find lcm(120, 84).
13. Observe that lcm(69, 615) = 615.

Show: ∀m, j, k ∈ N with m > 0, that lcm(m j , mk) = mmax{ j,k}.
14. Find the smallest element of {s : s = 10x + 25y, where x, y ∈ Z and

10x + 25y > 0}.
15. Recall that a Mersenne prime is a prime of the form 2p − 1 for some prime

p. Decide whether the following statement is true or false. Since 113 is
prime, so is 2113 − 1. Hint: See the GIMPS website.

16. Find the quotient and remainder resulting from the integer division
problem 101÷ 8.

17. Compute
(a) 43 div 7 and 43 mod 7. (b) −51 div 9 and −51 mod 9.

18. Suppose two standard decks of cards (52 cards in each) are shuffled
together and dealt to 6 players as follows. For each round of the deal, if
there are at least 6 cards left in the pile, then each player is given one more
card. When fewer than 6 cards remain, the dealing stops. How many cards
will remain when the dealing stops? How many cards will each player
have? Compare Exercise 3.

19. Show: ∀ n ∈ Z, (n3 − n) mod 3 = 0.
20. Let n ∈ Z. Show: If n is odd, then 4 � | n2. Note that this is the converse of

Exercise 2.
21. Find

(a) �6.6�. (b) �−6.6�.
(c) �5.4�. (d) �−5.4�.

22. Show: ∀ n ∈ Z, if 4 | n, then � n+2
4 � = n

4 .

23. Show: ∀ x ∈ R, ��x�� = �x�.
24. One of the digits in the ISBN of a book purchased at a yard sale is

smudged. If the ISBN is 0-8218-#461-4, what is the value of the smudged
digit #? If two digits were smudged, could they be determined by the
remaining digits?

25. Two high school girls have agreed to send secret messages using the
letter-to-number conversions “ ” = 0, A= 1, . . . , Z = 26 and a shift cipher
with n = 27 and encrypting shift value b = 4. Thus, if the teacher
intercepts a message, he will not be able to read it. How would one of
these girls encrypt the message “I LOVE TOM”?
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�26. A shift cipher for a given n and b will contain cycles

x1 encrypts to x2 encrypts to · · · encrypts to xk encrypts to x1.

For example, when n = 27 (with letter-to-number conversions “ ” = 0, A =
1, . . . , Z = 26) and b = 6, we have the cycle

A→ G → M→ S → Y → D → J → P → V → A

of length 9. In general, in terms of n and b, what is the length k of these
cycles? Try various examples, and discover a pattern.

27. Through trial and error, find x, y ∈ Z such that 35x + 49y = 7.
28. Prove or disprove: ∃ x, y ∈ Z such that 85x + 39y = 1.
29. Use Euclid’s Algorithm to find gcd(110, 88).
30. Use Euclid’s Algorithm to find gcd(810, 245).
31. Use the Extended Euclidean Algorithm to find integers x and y such that

gcd(81, 45) = 81x + 45y.
32. Use the Extended Euclidean Algorithm to find integers x and y such that

77x + 24y = 1.
33. Observe that 5 | 43102 and, in particular, 5 | 10. Let a , b, m, n ∈ Z with

m, n > 0. Show: If 5 | ambn, then 5 | a or 5 | b.
34. In Exercises 3 and 18, we considered dealing decks of cards to six players.

Show that n decks will split evenly among six players if and only if n is
divisible by 3.

35. Let a , b ∈ Z. Is it true that if 10 | ab, then 10 | a or 10 | b? Justify your
answer.

36. Suppose you wish to pay for everything using only quarters and dimes.

(a) Show that there are infinitely many monetary amounts (dollars and
cents) that cannot be achieved in this way.

(b) What multiples of 5 cents cannot be achieved in this way?
(c) If we also had coins worth 2 cents available, what values could we not

achieve?

37. Show that 6 3
4 is rational.

38. Show that 1.414 is rational. Is this number bigger or smaller than
√

2?
Justify your answer without using a calculator.

39. Show that 1.625 is rational.

40. Show: ∀ r ∈ R if r ∈ Q, then 3r
4 ∈ Q.

41. Let r ∈ Q. Show: r2 is rational.

42. Observe that both 14
15 and ( 14

15 )2 = 196
225 are in lowest terms. Suppose r = a

b is

a rational number written in lowest terms. Show that r2 = a2

b2 is also in
lowest terms.

43. Without using a calculator, write 5
11 in decimal form. Show your work.

44. Show that
√

7 is irrational by mimicking the proof that
√

2 is irrational.

45. Use the result from Exercise 44 to show that
5+
√

7

3 is irrational.

46. Show that log3 11 is irrational.
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47. In 1737, Euler proved that e and e2 are irrational. In 1768, Lambert proved
that all nonzero integer powers of e are irrational. Given that every
nonzero integer power of e is irrational, do the following.

(a) Show that e2−4
3 is irrational.

(b) Show that ln 2 is irrational. Note that ln 2 is defined to be loge 2.

48. Show that
√

3+√2 is irrational.

49. Show that
3
√

2√
5

is irrational.

50. Using the trigonometric identity (2 cos2(θ ) − 1)2 = cos2(2θ ) = 1+cos(4θ )
2 for

θ = 11.25◦, observe that we get cos(11.25◦) = 1
2

√
2+
√

2+√2. Use this to

prove that cos(11.25◦) is irrational.

51. Are the roots of 5
4 x2 − 2

3 x + 1 algebraic? Why?

52. February 1, 2004, the New England Patriots won Super Bowl XXXVIII.
That same year, on October 27, the Boston Red Sox won the World Series
and finally broke the curse of the Bambino. Since the Super Bowl occurred
on a Sunday, determine the day of the week that the Red Sox won the 2004
World Series.

53. Let a , b, c, and n be integers with n > 1. Show: If a ≡ b (mod n), then
ac ≡ bc (mod n).

54. Compute

(a) 1110 mod 9. (b) 234321 mod 12.

55. Let n ∈ Z. Show: If n is odd, then n2 ≡ 1 (mod 4).
56. Let n ∈ Z. Show: If n �≡ 0 (mod 3), then n2 ≡ 1 (mod 3).
57. To enter a high-security area, a CIA operative needs a three-character

code to key into the lock. Since this code must be kept secret, the letter-
to-number conversions “ ” = 0, A = 1, . . . , Z = 26 and a linear cipher with
n = 27, a = 4, and b = 1 are used to encrypt the code, before sending it to
the operative. If the encrypted code is “SWE,” what code opens the lock?

58. Use the Extended Euclidean Algorithm to find the multiplicative inverse
of 11 modulo 50.

59. All of the CIA operatives in the field send messages to CIA headquarters
using the RSA encryption method for p = 7, q = 13, and a = 17. The
numerical equivalents of some standard messages are shown in Table 3.7.

Message (x) Translation

2 I’m in position.
3 Target is destroyed.

60 The package has been delivered.
61 The package has been received.
99 I’ve been caught.

Table 3.7 CIA Message Codes
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Since only CIA headquarters knows the value c = 5 needed to decrypt the
messages, no operative can decrypt another operative’s message.

(a) Determine the numerical value to which “I’m in position” encrypts.
(b) Suppose CIA headquarters receives the encrypted value 3 from one of

its operatives. Decrypt this value to determine the message that was
sent.

60. Compute 95432 mod 11.

In Exercises 61 through 63, for the relevant n, express the given set in the form
[b]n, where 0 ≤ b ≤ n− 1.
61. [7]5.
62. [8]3 + [2]3.
63. [17]7 − [208]7 + [1343]7.
64. Let a , n ∈ Z with n > 1. Show that [a ]n is not empty.
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Indexed by Integers

WE CONTINUE THE STUDY begun in Chapter 3 of results and proofs in number

theory. Our main goal here is to introduce the powerful proof technique known as mathe-

matical induction. Since induction is used to prove statements that are indexed by the

integers, sequences are discussed first. Recursion is also introduced, and we explore

sequences expressed recursively.

After some results have been presented that can be proved by induction, we then

proceed to do so. In the exercises, we explore extensions of two-variable identities to

n variables, and we consider applications to annuities and mortgages. Summation

formulas provide another major source of examples.

After the more powerful form of induction known as strong induction is introduced,

we prove some important theorems in number theory, particularly the Fundamental

Theorem of Arithmetic. In the last section, the Binomial Theorem is presented.

4.1 Sequences, Indexing, and Recursion
A basic acquaintance with sequences is required before induction can be pre-
sented. Familiarity with some standard notation is also required.

Factorials and Binomial Coefficients
For all integers n ≥ 1, the notation n!, which is read n factorial, is defined to be
the product

n! = n(n− 1)(n− 2) · · · 2 · 1.

Additionally, we define

0! = 1.

It is easy to compute small examples, such as

0! = 1, 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, . . . , (4.1)

but the numbers get large rather quickly.
Given integers n and k with 0 ≤ k ≤ n, the binomial coefficient

(n
k

)
is defined

as (
n

k

)
= n!

k!(n− k)!
.

167
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The reason for calling
(n

k

)
a binomial coefficient will be clear in Section 4.6, where

we see values of the form
(n

k

)
serving as coefficients in the Binomial Theorem.

The notation
(n

k

)
is read “n choose k.” In Chapter 6, we learn that

(n
k

)
counts the

number of ways to choose k objects from a set of n distinct objects. For our pur-
poses here, simple examples of binomial coefficients can be computed explicitly
from the defining formula.

EXAMPLE 4.1 (Computations of Binomial Coefficients).(
6
4

)
= 6!

4!2!
= 6 · 5 · 4!

4! · 2 · 1 = 15(
6
3

)
= 6!

3!3!
= 6 · 5 · 4

3 · 2 · 1 = 20(
n

0

)
= n!

0!n!
= 1(

n

1

)
= n!

1!(n− 1)!
= n(

n

2

)
= n!

2!(n− 2)!
= n(n− 1)

2(
n

n− 4

)
= n!

(n− 4)!4!
= n(n− 1)(n− 2)(n− 3)

24 ■

The computation
(n

0

) = 1 motivates our choice that 0! = 1. Factorials and
binomial coefficients are used heavily in the counting problems of Chapter 6. It
is there that the true value of reading

(n
k

)
as “n choose k” can be appreciated.

Although C++ has no predefined functions for factorials and binomial co-
efficients, Mathematica provides n! (or Factorial[n]) and Binomial[n,k],
and Maple similarly provides n! (or factorial(n)) and binomial(n,k).

Sequences
A sequence is simply an ordered list of real numbers. All sequences have an
initial term, but only finite sequences have a final term. Our primary focus will
be on infinite sequences. We have already encountered the sequence of factorials
in (4.1). Other examples are plentiful.

1, 2, 3, 4, 5, 6, . . . (4.2)

7, 10, 13, 16, 19, 22, . . . (4.3)

1, 2, 4, 8, 16, 32, 64, . . . (4.4)

6e, 18e, 54e, 162e, 486e, 1458e, . . . (4.5)

5, −9, 13, −17, 21, −25, . . . (4.6)

10, 15, 21, 28, 36, 45, . . . (4.7)

−2, 11, 0, 23, −5, 4, . . . (4.8)

Sequence (4.8) is meant to emphasize the fact that there need not be an appar-
ent pattern. However, we work primarily with sequences for which there is a
visible pattern, and consequently, the terms in the sequence can be given by a
formula.
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We express a sequence in the form {sn}n≥a and mean that our sequence con-
sists of the terms

sa , sa+1, sa+2, sa+3, sa+4, sa+5, . . . ,

where a ∈ Z. That is, the sequence has been indexed by the integers

a , a + 1, a + 2, a + 3, a + 4, a + 5, . . . .

Usually, a = 0 or 1, but that need not be the case. If the indexing is clear in context,
then a sequence may be displayed as {sn}, or just a formula for sn may be given.
Sequences (4.1) through (4.7) can each be expressed by formulas.

(4.1) ∀ n ≥ 0, sn = n!.
(4.2) ∀ n ≥ 1, sn = n.

(4.3) ∀ n ≥ 0, sn = 7+ 3n.

(4.4) ∀ n ≥ 0, sn = 2n.

(4.5) ∀ n ≥ 1, sn = 2e · 3n.

(4.6) ∀ n ≥ 0, sn = (−1)n(5+ 4n).

(4.7) ∀ n ≥ 5, sn =
(

n

2

)
.

Sequence (4.8) has no obvious formula. Note that the alternating signs in se-
quence (4.6) are obtained from the factor (−1)n in its formula. The simple for-
mula given in sequence (4.7) shows one reason why starting the indexing at
a = 0 or 1 may not always be the best choice. The alternative formula,

(n+5
2

)
, for

n ≥ 0, is not as concise.
Infinite sequences can be handled in software implementations as special

cases of functions.1 In Mathematica, sequence (4.5) can be entered as

In[1]:= s[n_] := 2*E*3^n .

The underline symbol after the n on the left-hand side denotes that n is the vari-
able when it occurs on the right-hand side. In C++, sequence (4.6) can be pro-
grammed as the function

int s(int n)
{
return (int) pow(-1,n)*(5+4*n);

}.

The occurrences of the type identifier int simply announce that the object fol-
lowing it shall be an integer. In Maple, sequence (4.7) can be entered as

> s := n -> binomial(n,2) ; .

The symbol -> dictates that each input index n shall yield the output value that
follows it. In each case, a desired term in the sequence can be computed by eval-
uating the function s at the appropriate index. Note that the initial index (here,
1, 0, or 5, respectively) is not specified in these definitions, and hence the user
needs to take care in each call of s that only an appropriate index is used.

Formulas for sequences (4.1) through (4.7) were presented without explain-
ing how to find them. Being able to find a formula for a sequence is a valuable
skill that comes from seeing examples and discerning patterns. Some exercises
are devoted to practicing that skill after some more examples are seen.

1We address functions in general in Chapter 5.
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Two Special Kinds of Sequences
A sequence in which each successive term is obtained by adding a fixed number
c to the previous term is called an arithmetic sequence. Such a sequence, with
given first term s0, is generated by the formula

∀ n ≥ 0, sn = s0 + cn.

Sequences (4.2) and (4.3) are examples of arithmetic sequences.
A sequence in which each successive term is obtained by multiplying the

previous term by a fixed number r is called a geometric sequence. Such a se-
quence, with given first term s0, is generated by the formula

∀ n ≥ 0, sn = s0rn.

Sequences (4.4) and (4.5) are examples of geometric sequences.

Reindexing a Sequence
One of the issues that arises in giving a formula for a sequence is how to index
it. Sometimes the indexing in which an original formulation is written may not
be the most convenient, and reindexing may be desired. Reindexing a sequence
is a simple matter of substituting the index variable.

EXAMPLE 4.2 The sequence given by

∀ n ≥ 3, sn = 5+ 2n

has terms

s3 = 13, s4 = 21, s5 = 37, s6 = 69, . . . .

If we prefer to have this sequence indexed starting at 1, then we accomplish
this with the variable substitution m = n− 2. A new formula tm for the
sequence is obtained by observing that n = m+ 2. That is,

∀ m ≥ 1, tm = 5+ 2m+2 = 5+ 4 · 2m.

The terms

t1 = 13, t2 = 21, t3 = 37, t4 = 69, . . .

are the same as before. Only the indexing has changed. Since there is nothing
special about the choice of variable used for indexing, we may also write

∀ n ≥ 1, tn = 5+ 4 · 2n. ■

EXAMPLE 4.3 Reindex the sequence given by ∀ n ≥ 5, sn =
(n−3

2

)
, so that the indexing starts

at 0.

Solution. Let m = n− 5. So n = m+ 5, and

∀ m ≥ 0, tm =
(

m+ 5− 3
2

)
=
(

m+ 2
2

)
.

Equivalently, ∀ n ≥ 0, tn =
(n+2

2

)
. ■
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Recursion
A closed formula for a sequence {sn}n≥a is a formula that expresses the value of
sn in terms of the index n. That is, it allows sn to be computed directly from n.
Each of the formulas that we have seen so far for sequences has been a closed
formula. In contrast, a recursive formula is a formula in which sn is expressed
not only in terms of n but also in terms of some of the earlier values sa , . . . , sn−1
in the sequence. More generally, a recursive function is a function whose value
for a given input is expressed in terms of its values for smaller inputs.

A recursive formula can provide a more convenient and more natural way
to express some sequences. For example, reconsider the sequence of factorials
in (4.1). We can express this recursively by

(4.1) s0 = 1 and ∀ n ≥ 1, sn = nsn−1.

The equation sn = nsn−1, which is defined for all integers n ≥ 1, is called the
recurrence relation. This equation expresses the value of sn in terms of earlier
values in the sequence. It may refer to n directly, as is done in this case, and could
refer to more than one earlier value. The assignment s0 = 1 is called the initial
condition and specifies the value of the first term in the sequence. In some cases,
more than one initial term may be included, when additional initial conditions
are warranted.

Since the recurrence relation expresses sn in terms of earlier values, and those
earlier values may be defined in terms of yet earlier values, and so on, the initial
conditions play the important role of terminating what would otherwise be a
nonterminating cycle of self-reference by a sequence. We can see this nicely by
tracing how our recursive formula for sequence (4.1) enables us to compute the
value of s3.

s3 = 3s2, What is s2?
s2 = 2s1, What is s1?

s1 = 1s0, What is s0?
s0 = 1, The initial condition.

s1 = 1, We get s1 from s0.
s2 = 2, We get s2 from s1.

s3 = 6. We get s3 from s2.

Of course, 6 is the expected value for 3!.
Sequences (4.2) through (4.7) can also be expressed recursively.

(4.2) s1 = 1 and ∀ n ≥ 2, sn = sn−1 + 1.

(4.3) s0 = 7 and ∀ n ≥ 1, sn = sn−1 + 3.

(4.4) s0 = 1 and ∀ n ≥ 1, sn = 2sn−1.

(4.5) s1 = 6e and ∀ n ≥ 2, sn = 3sn−1.

(4.6) s0 = 5 and ∀ n ≥ 1, sn = −sn−1

(
1+ 4

|sn−1|
)

.

(4.7) s5 = 10 and ∀ n ≥ 6, sn = sn−1 + n− 1.

Another way of expressing sequence (4.6) is

s0 = 5, s1 = −9, and ∀ n ≥ 2, sn =
{

sn−2 + 8 if n is even,
sn−2 − 8 if n is odd.

This second expression for sequence (4.6) expresses values in the sequence in
terms of the second most recent value.
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EXAMPLE 4.4 (Recursion in Arithmetic and Geometric Sequences).

(a) An arithmetic sequence is very naturally expressed recursively by
specifying s0 and a constant c for which

∀ n ≥ 1, sn = sn−1 + c.

(b) A geometric sequence is also naturally expressed recursively by speci-
fying s0 and a constant r for which

∀ n ≥ 1, sn = rsn−1. ■

EXAMPLE 4.5 The following recurrence relation involves more than one previous value in the
sequence.

s0 = 1, s1 = 2, and ∀ n ≥ 2, sn = sn−1 + 2sn−2. (4.9)

Note that the earliest term on the right-hand side of the recurrence relation is
two terms prior to the term on the left-hand side, and there are two initial
conditions. In general, the minimum requirement of initial conditions is deter-
mined by the right-hand side of the recurrence relation in this way. The terms
in sequence (4.9) start out

1, 2, 4, 8, 16, . . . .

In fact, sequence (4.9) is the same as sequence (4.4). ■

EXAMPLE 4.6 The sequence expressed recursively by

s0 = 1 and ∀ n ≥ 1, sn = 2sn−1

might alternatively be expressed recursively by

s0 = 1 and ∀ n ≥ 0, sn+1 = 2sn.

To see this formally, rewrite the second expression (using m as the index) as

s0 = 1 and ∀ m ≥ 0, sm+1 = 2sm.

Set n = m+ 1, so m = n− 1, and the inequality m ≥ 0 becomes the inequality
n ≥ 1. Substitution now yields the first expression

s0 = 1 and ∀ n ≥ 1, sn = 2sn−1.

Of course, it is also easy to see this equivalence informally. Both expressions
say that after the initial value, each subsequent value in the sequence is twice
the previous value. ■

EXAMPLE 4.7 Given the sequence expressed recursively by

s1 = 1, s2 = 3, and ∀ n ≥ 3, sn = 2sn−2 + sn−1,

and given an index k ≥ 2, find an expression for sk+1 in terms of earlier values
in the sequence.

Solution. Let n = k + 1. Since k ≥ 2, we have n ≥ 3. So the formula

sn = 2sn−2 + sn−1

may be applied. This gives

sk+1 = 2sk+1−2 + sk+1−1.
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That is,

sk+1 = 2sk−1 + sk . ■

Software Implementation of Recursion
Since recursion can be a powerful programming tool, mathematical software
and programming languages generally support it.

In Mathematica, sequence (4.3) can be defined recursively as follows.

In[1]:= s[n_] := s[n-1] + 3

In[2]:= s[0] := 7

Both the recurrence relation and the initial conditions must be specified.
In C++, we can recursively define a function factorial (which we have

previously noted is not predefined) to produce the values in sequence (4.1) as
follows.

int factorial(int n)
{
if (n > 0) return n*factorial(n-1);
else return 1;

}

The input is assumed to be a natural number. If it is positive, then the function
calls itself with smaller input. Otherwise, the value 0! = 1 is returned.

In Maple, sequence (4.4) can be defined recursively as follows.

> s := n -> 2*s(n-1) ;
> s(1) := 1 ;

Both the recurrence relation and the initial conditions must be specified.

SECTION 4.1 Exercises
Each of the following exercises can be completed by hand. However, those
requesting computations might also be done with the aid of a symbolic
calculator such as Mathematica or Maple. The results can then be compared with
hand computations.
1. Compute 10!. 2. Compute 12!.
3. Compute

(7
5

)
. 4. Compute

(8
3

)
.

5. Compute
(9

4

)
. 6. Compute

(10
4

)
.

7. Use the defining formula for binomial coefficients to verify, for all integers
0 ≤ k ≤ n, that

(n
k

) = ( n
n−k

)
.

8. Use the defining formula for binomial coefficients to verify, for all integers
1 ≤ k ≤ n, that

( n
k−1

)+ (n
k

) = (n+1
k

)
.

In Exercises 9 through 12, determine whether the stated formula is true or false.

9. ∀ n ∈ N, (n2)! = (n!)2. 10. ∀ n ∈ N, (n+ 1)! = (n+ 1)n!.

11. ∀ even n ∈ N, ( n
2 )! = n!

2 . 12. ∀ k ≤ n ∈ N,
(n

k

) = (2n
2k

)
.
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In Exercises 13 through 18, find the first four terms of each sequence.
13. ∀ n ≥ 0, sn = 4− 2n. 14. ∀ n ≥ 1, sn = 10n−3.

15. ∀ n ≥ 3, sn = n!
n−2 . 16. ∀ n ≥ 0, sn = 6− 3 · 2n.

17. ∀ n ≥ 2, sn = 3+ 2n. 18. ∀ n ≥ 6, sn =
(n

3

)
.

19. What is the fifteenth term in the sequence of prime numbers? Recall that
the first is 2, not 1.

20. What is the fifteenth term in the sequence of composite numbers? The first
is 4.

In Exercises 21 through 28, find a closed formula for each sequence.
21. 2, 4, 6, 8, 10, . . . 22. 1, −4, 9, −16, 25, . . .

23. 3, 6, 12, 24, 48, . . . 24. π
2 , 3π

2 , 5π

2 , 7π

2 , 9π

2 , . . .

25. 1, −3, 5, −7, 9, . . . 26. 5
√

2, 10
√

2, 20
√

2, 40
√

2, 80
√

2, . . .

27. 1, 1
2 , 1

3 , 1
4 , 1

5 , . . .

�28. 1, 4, 10, 20, 35, 56, . . .

Hint: Consider binomial coefficients.
29. Compound Interest. An initial investment of s0 = P dollars is made into

an account earning periodic interest rate i . At the end of each period,
interest is added to the previous balance.

(a) If P = $6000 and i = 0.03, then what is the amount in the account after
1 period? after 2 periods?

(b) If P = $1000, then express, in terms of an unspecified interest rate i ,
the amount in the account after 2 periods. Is twice as much interest
earned when i = 0.02 as when i = 0.01? Note that the interest earned
is the total amount minus $1000.

(c) In general, if an initial investment of P dollars is made, then to what
future value sn will the balance grow after n periods? What kind of
sequence is {sn}?

30. Resource Management. A storehouse is stocked with s0 = a items. Each
month, c items are sold, and b new items are bought.

(a) If a = 100, c = 40, and b = 25, then how many items are in the store-
house after 2 months?

(b) If a = 5000, then express, in terms of general c and b, the number
of items in the storehouse after 3 months.

(c) In general, after n months, how many items sn are in the storehouse?
What kind of sequence is {sn}?

In Exercises 31 through 36, reindex the sequence so that the indexing starts at 0.

31. ∀ n ≥ 1, sn = 10n−3. 32. ∀ n ≥ 3, sn = n!
n−2 .

33. ∀ n ≥ 2, sn = 3+ 2n. 34. ∀ n ≥ 6, sn =
(n

3

)
.

35. ∀ n ≥ 2, sn = (−1)n n−2
n . 36. ∀ n ≥ 1, sn = (−1)n

(n−1)! .

∗Exercises that may be particularly challenging are marked with a star.
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In Exercises 37 through 42, find the first four terms of each sequence.
37. s1 = 4 and ∀ n ≥ 2, sn = 3sn−1 − 2.
38. s0 = 1

3 and ∀ n ≥ 1, sn = 1− sn−1.
39. s2 = 5 and ∀ n ≥ 3, sn = sn−1 − 2.
40. s0 = π

4 and ∀ n ≥ 1, sn = sn−1 + π .
�41. Let s1 = −1 and ∀ n ≥ 2, sn = 5sn−1 + 1. Observe that this sequence is

decreasing. That is, ∀ n ≥ 1, sn > sn+1. However, varying the initial
condition alone can change this. Find the smallest possible value for s1
such that {sn} is not decreasing.

�42. Let s1 = 2 and ∀ n ≥ 2, sn = s2
n−1 − 1. Observe that this sequence is

increasing. That is, ∀ n ≥ 1, sn < sn+1. However, varying the initial
condition alone can change this. Find the largest possible value for s1
such that {sn} is not increasing.

In Exercises 43 through 50, find a recursive formula for each sequence.
43. 2, 4, 6, 8, 10, . . . �44. 1, −4, 9, −16, 25, . . .

45. 3, 6, 12, 24, 48, . . . 46. π
2 , 3π

2 , 5π

2 , 7π

2 , 9π

2 , . . .

�47. 1, −3, 5, −7, 9, . . . 48. 5
√

2, 10
√

2, 20
√

2, 40
√

2, 80
√

2, . . .

�49. 1, 1
2 , 1

3 , 1
4 , 1

5 , . . .

50. 1, 4, 10, 20, 35, 56, . . .

Hint: Consider the differences sn − sn−2.
51. Annuity. An annuity is an investment into which regular deposits are

made. For example, retirement annuities often receive automatic deposits
taken from an employee’s regular paychecks. In an ordinary annuity
earning periodic interest rate i , a deposit of D dollars is made at the end of
each month, after interest is added to the previous balance. Assuming an
initial balance of zero and letting sn be the balance after n months, we have
s0 = 0, s1 = D, s2 = D(1+ i) + D, . . . .

(a) If D = 1000 and i = 0.05, then find s2 and s3.
(b) If s10 = $1200.61, i = 0.04, and D = $100, then find s11.
(c) In general, find a recursive formula for the balance sn after n months.
Exercises in subsequent sections will establish the closed formula
sn = D (1+i)n−1

i .
52. Mortgage. A mortgage is a loan that is paid off in periodic (typically

monthly) installments, while interest is also charged each period. A
mortgage that has annual interest rate r is understood to have monthly
interest rate i = r

12 . A mortgage of M dollars at monthly interest rate i has
monthly (rent) payments of R dollars. At the end of each month, interest is
added to the previous balance, and then the payment of R dollars is
subtracted from that result. Letting sn be the balance due after n months,
we have s0 = M, s1 = M(1+ i) − R, . . . .

(a) If M = $10,000, i = 0.02, and R = $94.56, then find s2 and s3.
(b) If s20 = $79,495.98, i = 0.01, and R = $822.89, then find s21.
(c) In general, find a recursive formula for the balance sn.
Exercises in subsequent sections will establish the closed formula
sn = M(1+ i)n − R (1+i)n−1

i .
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In Exercises 53 through 58, given that k ≥ 1, find an expression for sk+1 in terms
of prior values in the sequence.
53. s1 = 4 and ∀ n ≥ 2, sn = 3sn−1 − 2.

54. s0 = 1
3 and ∀ n ≥ 1, sn = 1− sn−1.

55. s1 = 5 and ∀ n ≥ 2, sn = sn−1 − 2.
56. s0 = π

4 and ∀ n ≥ 1, sn = 3sn−1 + π .

57. s0 = 1, s1 = −1, and ∀ n ≥ 2, sn = 5sn−2 − 3sn−1. First find s2 and s3.
58. s1 = 2, s2 = 1, and ∀ n ≥ 2, sn = (sn−1)2 − (sn−2)2. First find s3 and s4.

In Exercises 59 through 62, find a recursive formula that expresses sn in terms
of prior values in the sequence.
59. s1 = 5 and ∀ n ≥ 1, sn+1 = sn − 2.
60. s0 = π

4 and ∀ n ≥ 0, sn+1 = 3sn + π .

61. s0 = 1, s1 = −1, and ∀ n ≥ 0, sn+2 = 5sn − 3sn+1.
62. s1 = 2, s2 = 1, and ∀ n ≥ 1, sn+2 = (sn+1)2 − (sn)2.

In Exercises 63 and 64, use any convenient software, such as Mathematica,
Maple, or C++.
63. (a) Write a recursive program that implements the function

AppRt2(n)
\begin

if (n > 0),
return 1 + 1/(1+AppRt2(n-1)).

else
return 1.

\end.

where n is understood to be a natural number.
(b) Use the program to find AppRt2(10) to five decimal places.
(c) The sequence AppRt2(n) gives a better and better approximation for√

2 as n gets larger. What is the first decimal place in which
AppRt2(15) and

√
2 differ?

64. (a) Write a recursive program that implements the function

Gold(n)
\begin

if (n > 0),
return Sqrt(1+Gold(n-1)).

else
return 1.

\end.

where n is understood to be a natural number.
(b) Use the program to find Gold(11) to seven decimal places.
(c) The sequence Gold(n) gives a better and better approximation for the

golden ratio φ = 1+
√

5
2 as n gets larger. What is the first decimal place

in which Gold(20) and φ differ?
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4.2 Sigma Notation
Given a sequence {sn}, one may be interested in a sum of several of its terms:

S = sa + sa+1 + sa+2 + · · · + sb−1 + sb , (4.10)

where a , b ∈ Z. The notation used to represent the sum in equation (4.10) is

S =
b∑

i=a

si . (4.11)

Due to the use of the Greek letter �, the right-hand side of equation (4.11) is
said to be written in sigma notation. This notation is also known as summation
notation. The notation on the right-hand side of equation (4.11) is read as the
sum, as i goes from a to b, of si . However, the index does not have to be denoted
by i . If b < a , then the sum in (4.11) is assigned the value 0. Infinite sums (when
b = ∞ or a = −∞) are called series. They are studied extensively in calculus
and will not be considered here, where we focus on finite sums.

EXAMPLE 4.8 Compute
5∑

i=0

i !.

Solution.
5∑

i=0

i ! = 0!+ 1!+ 2!+ 3!+ 4!+ 5!

= 1+ 1+ 2+ 6+ 24+ 120
= 154. ■

Given a sequence {sn} and indices a , b ∈ Z, the computation of the sum∑b
i=a si can be thought of as the implementation of a for loop.

Let S = 0.
For i = a to b,

Let S = S+ si .
Return S.

Since C++ has no predefined function for computing sums, an algorithm like
this could be used to program one. Assuming that s is our sequence and a and
b are integers, Mathematica uses

In[1]:= Sum[s[i], {i, a, b}]

and Maple uses

> sum(s(i), i=a..b) ;

to compute the sum.
Although software can be used to do many summation computations, there

are limits to the sizes it can handle. Having a deeper understanding of sigma
notation is thus warranted. Since sigma notation represents summation, it has
some formal properties that are immediate consequences of the associative and
distributive properties of addition.
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THEOREM 4.1 Let a , b ∈ Z, let {sn} and {tn} be sequences, and let c ∈ R.

(a)
b∑

i=a

(si ± ti ) =
b∑

i=a

si ±
b∑

i=a

ti . (b)
b∑

i=a

csi = c

b∑
i=a

si .

Sigma notation provides an efficient and clear way to represent long sums.

EXAMPLE 4.9 (Writing Fixed Sums in Sigma Notation).

15+ 16+ 17+ 18+ · · · + 84 =
84∑

i=15

i.

1+ 2+ 4+ 8+ · · · + 1024 =
10∑

i=0

2i .
■

Although concrete sums such as those in Example 4.9 do arise, the real power
of sigma notation comes from its utility in handling a variable number of terms.

EXAMPLE 4.10 (Writing General Sums in Sigma Notation).

1+ 2+ 3+ 4+ · · · + n =
n∑

i=1

i.

1+ 4+ 9+ 16+ · · · + n2 =
n∑

i=1

i2.

1+ 2+ 4+ 8+ · · · + 2n =
n∑

i=0

2i .

(
n

0

)
+
(

n

1

)
+
(

n

2

)
+
(

n

3

)
+ · · · +

(
n

n

)
=

n∑
i=0

(
n

i

)
.

7 · 23 + 7 · 24 + 7 · 25 + 7 · 26 + · · · + 7 · 2n−1 =
n−1∑
i=3

7 · 2i .

1− 1
2
+ 1

6
− 1

24
+ · · · + (−1)n+1 1

n!
=

n∑
i=1

(−1)i+1

i !
.

■

Most of the summations in Example 4.10 have formulas that make them easy
to compute. For example, the first three summations there can be computed us-
ing the following two theorems.

THEOREM 4.2 Let n ∈ Z with n ≥ 1. Then

(a)
n∑

i=1

1 = n. (b)
n∑

i=1

i = n(n+ 1)
2

.

(c)
n∑

i=1

i2 = n(n+ 1)(2n+ 1)
6

. (d)
n∑

i=1

i3 =
[

n(n+ 1)
2

]2

.
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The formulas in Theorem 4.2 tell us how to sum certain powers of the index
variable. Formulas for all sums of the form 1m+2m+3m+· · ·+nm =∑n

i=1 im are
discussed at the end of this section in Theorem 4.4. The next theorem handles
the sum of the terms in a finite geometric sequence 1+ r + r2 + · · · + rn.

THEOREM 4.3 Let r ∈ R with r �= 1 and n ∈ Z with n ≥ 0. Then

n∑
i=0

r i = rn+1 − 1
r − 1

.

Theorems 4.2 and 4.3 can easily be proved by induction. Hence, their proofs
are postponed until Section 4.4. Here, we instead focus on computing sums us-
ing Theorems 4.2 and 4.3 together with the properties in Theorem 4.1.

EXAMPLE 4.11 Compute 1+ 2+ 3+ 4+ · · · + 100.

Solution. By Theorem 4.2(b), with n = 100, we see that

100∑
i=1

i = 100(101)
2

= 5050.
■

The computation in Example 4.11 is the subject of a well-known story about
the German mathematician Carl Friedrich Gauss (1777–1855). His elementary
school teacher, in an attempt to give Gauss’ class a time-consuming calcula-
tion, asked them to compute the sum of the first 100 positive integers. Only
moments later, young Gauss had obtained the solution through the observa-
tion that the sums of the first and last, the second and second to last, and so on,
all equaled 101.

1+ 2+ 3+ · · · + 98︸ ︷︷ ︸+99︸ ︷︷ ︸+100

︸ ︷︷ ︸
Since there are 100

2 such pairwise sums, the total is immediately seen to be
100

2 (101) = 5050. In fact, this calculation is essentially that ultimately used in
Example 4.11. Moreover, Gauss’ technique motivates a clever proof of Theo-
rem 4.2(b), outlined in Exercise 41.

EXAMPLE 4.12 Compute
n∑

i=1

(6i2 − 4i + 5).

Solution.
n∑

i=1

(6i2 − 4i + 5) =
n∑

i=1

6i2 −
n∑

i=1

4i +
n∑

i=1

5

= 6
n∑

i=1

i2 − 4
n∑

i=1

i + 5
n∑

i=1

1

= 6
[

n(n+ 1)(2n+ 1)
6

]
− 4
[

n(n+ 1)
2

]
+ 5n

= 2n3 + n2 + 4n.

The first two equalities follow from Theorem 4.1(a). The third equality follows
from Theorem 4.2, and the last is basic algebra. ■
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EXAMPLE 4.13 Compute
n−1∑
i=0

3 · 2i .

Solution.
n−1∑
i=0

3 · 2i = 3
n−1∑
i=0

2i = 3
[

2n−1+1 − 1
2− 1

]
= 3(2n − 1).

Since Theorem 4.1(b) enables us to factor out the constant 3, Theorem 4.3 takes
care of the summation. ■

Theorems 4.2 and 4.3 are directly applicable only for computing summations
like those in Examples 4.12 and 4.13, where the indexing starts at i = 1 or i = 0,
respectively. For summations in which this is not the case, reindexing is useful.

EXAMPLE 4.14 Compute 15+ 16+ 17+ 18+ · · · + 84.

Solution. This sum is most naturally written in sigma notation as
∑84

i=15 i .
Theorem 4.2 can be used to compute such a sum, but first we need to reindex it
so that the indexing starts at 1.

Let j = i − 14. So i = j + 14. Since j = 1 when i = 15, and j = 70 when
i = 84, we have

84∑
i=15

i =
70∑
j=1

( j + 14) =
70∑
j=1

j +
70∑
j=1

14 = 70(71)
2

+ 70(14) = 3465.

Alternatively, we could compute
∑84

i=15 i via

84∑
i=15

i =
84∑

i=1

i −
14∑

i=1

i = 84(85)
2

− 14(15)
2

= 3465.

That is, from the sum 1+ 2+ 3+ · · · + 84 we subtract the partial sum 1+ 2+ 3+
· · · + 14 of the terms that are excluded from our desired sum. ■

EXAMPLE 4.15 Compute
n∑

i=5

3i .

Solution. To enable us to apply Theorem 4.3, we reindex this sum so that the
indexing starts at 0. Let j = i − 5. So i = j + 5. Since j = 0 when i = 5, and
j = n− 5 when i = n, we have

n∑
i=5

3i =
n−5∑
j=0

3 j+5 =
n−5∑
j=0

353 j = 35
n−5∑
j=0

3 j = 35
[

3n−5+1 − 1
3− 1

]
= 35(3n−4 − 1)

2
.

Alternatively,

n∑
i=5

3i =
n∑

i=0

3i−
4∑

i=0

3i = 3n+1 − 1
3− 1

−34+1 − 1
3− 1

= 3n+1 − 1− 35 + 1
2

= 35(3n−4 − 1)
2

.

■
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Product Notation
Just as summation notation represents sums, there is product notation for rep-
resenting products. In this notation, the product

P = sa · sa+1 · sa+2 · · · · · sb

is represented by

P =
b∏

i=a

si .

When b < a , it is assigned the value 1. For example, factorials can be represented
in product notation by

∀ n ≥ 0, n! =
n∏

i=1

i.

Products can be computed in Mathematica and Maple with the functionsProduct
and product, respectively.

EXAMPLE 4.16 Let n ≥ 1. We represent a factorization of x2n − y2n
in product notation.

Solution. Factoring results from repeatedly taking advantage of the
difference of two squares. For example,

x4 − y4 = (x2 − y2)(x2 + y2) = (x − y)(x + y)(x2 + y2).

In general,

x2n − y2n = (x2n−1 − y2n−1
)(x2n−1 + y2n−1

)

= (x2n−2 − y2n−2
)(x2n−2 + y2n−2

)(x2n−1 + y2n−1
)

= · · ·

= (x − y)
n−1∏
i=0

(x2i + y2i

).

A careful proof of this fact (without the · · ·) can be given by induction and is
left for the exercises in Section 4.4. ■

General Summation Formulas
Summation formulas like those in Theorem 4.2, but for

∑n
i=1 im when m ≥ 4, can

be generated from the following recursive relationship.

THEOREM 4.4 Let m ≥ 1 and n ≥ 1 be integers. Then

n∑
i=1

im =
(n+ 1)((n+ 1)m − 1) −∑m−1

j=1

[(
m+1

j

)∑n
i=1 i j

]
m+ 1

.

A proof of Theorem 4.4 is left for the exercises in Section 4.6 after the Bino-
mial Theorem is presented. Here, we demonstrate the utility of Theorem 4.4 by
finding

∑n
i=1 i4.
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EXAMPLE 4.17 Find a formula for
n∑

i=1

i4 .

Solution.
n∑

i=1

i4 =
(n+ 1)((n+ 1)4 − 1) −

[(5
1

)∑n
i=1 i + (5

2

)∑n
i=1 i2 + (5

3

)∑n
i=1 i3

]
5

=
(n+ 1)((n+ 1)4 − 1) − 5 n(n+1)

2 − 10 n(n+1)(2n+1)
6 − 10

[
n(n+1)

2

]2

5

= n(n+ 1)(2n+ 1)(3n2 + 3n− 1)
30

.

The first equality follows from Theorem 4.4 with m = 4. The second results
from applications of Theorem 4.2, and the last is basic algebra. We conclude
that

n∑
i=1

i4 = n(n+ 1)(2n+ 1)(3n2 + 3n− 1)
30

. ■

SECTION 4.2 Exercises
Each of the following exercises can be completed by hand. However, those
requesting computations might also be done with the aid of a symbolic
calculator such as Mathematica or Maple. The results should then be compared
with hand computations.

1. Compute
4∑

i=0

1
i !

.

As n gets larger and larger,
∑n

i=0
1
i ! becomes a better and better approx-

imation for the Euler number e ≈ 2.718.

2. Compute
6∑

i=2

(
i

2

)
.

In Exercises 3 through 14, (a) write the given sum in sigma notation, and (b)
compute the sum using known summation formulas.
3. 1+ 8+ 27+ 64+ · · · + 1000.
4. 1+ 2+ 3+ 4+ · · · + 1000.
5. The sum of the powers of 2 from 1 to 1024.
6. The sum of the powers of 3 from 1 to 310.
7. −2+ 4− 8+ 16− · · · − 512.

�8. The sum of the odd integers from 5 to 1001.
9. 12+ 27+ 48+ 75+ · · · + 3n2.
10. 1+ 8+ 27+ 64+ · · · + n3.
11. The sum of the powers of 4 from 4 to 4n.
12. 6+ 18+ 54+ 162+ · · · + 2 · 3n.
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13. 9− 27+ 81− 243+ · · · + (−3)n. This is the alternating sum of powers of 3
from 9 to 3n or, equivalently, the sum of powers of −3 from 9 to (−3)n.

14. 2− 4+ 6− 8+ · · · + (−1)n+12n. This is the alternating sum of the even
integers from 2 to 2n.

15. Annuity. In an ordinary annuity with periodic interest rate i and deposit
D, the balance sn at the end of each period can be shown to satisfy

sn = D(1+ i)n−1 + D(1+ i)n−2 + · · · + D(1+ i) + D. (4.12)

(a) Use the recursive definition of sn given in Exercise 51 from Section 4.1
to obtain expressions for s2, s3, s4, and verify that they can be written in
the form of (4.12).

(b) With i = 0.01 and D = 100, use (4.12) to compute s4.
(c) Use (4.12) and known summation formulas to verify the closed formula

for sn asserted at the end of Exercise 51 from Section 4.1.
(d) If i = 0.01 and $10,000 is desired after 12 periods, then what should be

the amount D of each deposit?
(e) In general, at periodic interest rate i , if F dollars is desired after N

periods, then what should be the amount D of each deposit?

16. Mortgage. For a mortgage of M dollars with periodic interest rate i and
payment R, the balance sn due at the end of each month can be shown to
satisfy

sn = M(1+ i)n − R(1+ i)n−1 − · · · − R(1+ i) − R. (4.13)

(a) Use the recursive definition of sn given in Exercise 52 from Section 4.1
to obtain expressions for s1, s2, s3, and verify that they can be written in
the form of (4.13).

(b) With M = $80,000, i = 0.01, and R = $822.89, use (4.13) to find s4.
(c) Use (4.13) and known summation formulas to verify the closed formula

for sn asserted at the end of Exercise 52 from Section 4.1.
(d) A mortgage of $80,000 at interest rate i = 0.01 is desired. If the term of

the mortgage is 480 months (40 years), then what should be the amount
of each payment R so that the balance due is exactly zero after month
480?

(e) A mortgage of M dollars at interest rate i is desired. In general, if the
term of the mortgage is N months, then what should be the amount of
each payment R so that the balance due is exactly zero after month N?

In Exercises 17 through 28, compute the sums.

17.
n∑

i=1

(4i3 − 6i − 1). 18.
n∑

i=1

(12i2 + 2i − 3).

19.
n∑

i=1

(i − 1)2. 20.
n∑

i=1

(i + 1)3.

21.
n∑

i=0

(
1
3

)i

.

22. The sum of the powers of 5 from 1 to 5n.
23. The sum of the powers of 2 from 1024 to 2100.



184 P A R T I ■ Proofs

24.
400∑

i=100

3i . 25.
64∑

i=2

5 · 4i .

26.
40∑

i=1

(−2) · 3i . �27.
100∑
i=1

4
3i

.

�28.
50∑

i=2

3
2i

.

In Exercises 29 through 36, verify the stated formulas.

29.
n∑

i=1

(4i − 3) = n(2n− 1). 30.
n∑

i=1

(3i − 2) = n(3n− 1)
2

.

31.
n∑

i=1

(3i2 − i) = n2(n+ 1). 32.
n∑

i=1

(4i3 − 2i) = n(n+ 1)(n2 + n− 1).

33.
2n∑

i=1

i = n(2n+ 1).

34. The sum of the first 2n cubes (that is, the sum from 1 to (2n)3) is n2(2n+ 1)2.
�35. The sum of the odd integers from 3 to 2n+ 1 is n(n+ 2).

36.
n∑

i=1

22i+1 = 2
3

(4n+1 − 1). Hint: 22i+1 = 2 · 4i .

37. Express kn in product notation.
38. Express

(n
k

)
by using product notation.

39. Find a simple formula for
n∏

i=1

2i . 40. Find a simple formula for
n∏

i=1

i2.

41. Use the following outline to verify Theorem 4.2(b).
Let S = 1+ 2+ 3+ · · · + (n− 2) + (n− 1) + n. So we can also write
S = n+ (n− 1) + (n− 2) + · · · + 3+ 2+ 1. Adding these two equations
together, by first observing that the sums of corresponding terms (column
sums) are all the same, we obtain an expression for 2S that is easily used to
get S.

42. Use the following outline to verify Theorem 4.3.
Let S = 1+ r + r 2 + · · · + rn−1 + rn. So r S = r + r2 + r3 + · · · + rn + rn+1.
Subtracting the first equation from the second, and taking advantage of the
resulting cancellations, we obtain an equation that can be used to get S.

�43. Use Theorem 4.4 to find a formula for
n∑

i=1

i5.

�44. Use Theorem 4.4 to find a formula for
n∑

i=1

i6.

45. A spiral pattern is created by pasting together squares, each with side
length half that of the previous. The initial square is a unit square, and the
first four iterations of this process are illustrated.
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s1 s2 s3

. . .

s4

(a) Draw s6.
(b) Which is the first sn to have area greater than 1.33?
(c) In general, express the area an of sn as a sum.
(d) Use Theorem 4.3 and the expression from part (c) to get a closed

formula for an. Note that as n gets larger, an approaches 4
3 .

46. Suppose we have an unlimited supply of rectangular blocks, each 2 feet
long and weighing 1 pound. For each n, by stacking n blocks in the
pictured stair-step pattern sn, we get the greatest possible extension of the
blocks beyond the edge of a table, while having them balance on their own.

s1
s2

s3

Table
1

1
1 Table Table1

2 1
3

1
2

That is, at the nth stage, the stack sn−1 is placed atop the nth block, and the
nth block extends 1

n feet beyond the edge of the table.

(a) Draw s5.
(b) Which is the first stack sn for which the topmost block extends at least

3 feet beyond the edge of the table?
(c) Express the distance dn that the topmost block of sn extends beyond

the edge of the table as a sum. As a consequence of Exercise 32 from
Section 4.4, for any desired distance from the edge of the table, we can
form a stack that obtains that distance.

4.3 Mathematical Induction, an Introduction
Often, we want to prove statements of the form

∀ integers n ≥ a , P(n). (4.14)

Here, a is some fixed integer (usually a = 0 or 1), and P(n) is a statement that
depends on n. Two examples to keep in mind are

∀ n ≥ 2, n2 > n. (4.15)

∀ n ≥ 0, 2n ≥ n+ 1. (4.16)

Note that when it is clear in context that we are working with integers n, we may
omit mention of this in our statements. Also, statements of the form (4.14) can
be thought of as sequences of statements. For example, (4.15) is the sequence

22 > 2, 32 > 3, 42 > 4, 52 > 5, 62 > 6, . . .
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Sometimes a statement of the form (4.14) can be proved directly. That is, it
may be possible to prove P(n) independently of n. For example, in statement
(4.15), the restriction n ≥ 2 is equivalent to n > 1. Multiplying both sides of this
by n gives the inequality n2 > n. Thus a proof of statement (4.15) is immediate.
However, many statements of the form (4.14), such as statement (4.16), are not
proved so easily.

For statement (4.16), it is certainly easy to check several cases.

For n = 0, 20 = 1 ≥ 0+ 1.

For n = 1, 21 = 2 ≥ 1+ 1.

For n = 2, 22 = 4 ≥ 2+ 1.

For n = 3, 23 = 8 ≥ 3+ 1.

Moreover, we have the sense that this checking will continue to work for as
many cases as we wish to consider. However, since we can explicitly check only
a finite number of cases, such a technique does not yield a proof of statement
(4.16). This is where we need a more powerful tool like mathematical induction.

Here is an outline for a proof by induction.

OUTLINE 4.1 (Proof by Mathematical Induction).
To show: ∀ n ≥ a , P(n).

Proof by induction

1. Base cases:
Show: P(a ), . . . , P(b) are true.

2. Inductive step:
Show: ∀ k ≥ b, if P(k) is true, then P(k + 1) is true.
That is,
(a) Suppose k ≥ b and that P(k) is true.

(b) Show: P(k + 1) is true. ■

In Outline 1, although steps 2a and 2b are merely the expected steps in a
standard proof of the if-then statement listed in step 2, step 2a does deserve
special mention. It is called the inductive hypothesis. The power behind a proof
by induction comes from the inductive step, where it is shown that the truth of
P(k) implies the truth of P(k + 1). Very simply, this establishes that the truth of
later cases follows from the truth of the early cases. In fact, in many examples
only a single base case needs to be verified, and b = a . In Example 4.21, we will
see one reason why b > a is sometimes used.

Before discussing why induction works, it may be helpful to see it applied
to a particular example. In the following proof of statement (4.16), note how the
general structure of Outline 4.1 is followed.

EXAMPLE 4.18 Show: ∀ n ≥ 0, 2n ≥ n+ 1.

Proof
(By Induction)

Base case: (n = 0)
It is straightforward to see that 20 = 1 ≥ 0+ 1.
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Inductive step:
Suppose k ≥ 0 and that 2k ≥ k + 1.
(Goal: 2k+1 ≥ (k + 1) + 1.)
Observe that

2k+1 = 2(2k)
≥ 2(k + 1) ← By the inductive hypothesis
= (k + 1) + (k + 1)
≥ (k + 1) + 1.

That is, 2k+1 ≥ (k + 1) + 1. �

In the displayed string of equalities and inequalities, the left-hand side of
the first line is not meant to be copied on each row of the left-hand side. Instead,
the right-hand side of each line should be thought of as the left-hand side of its
subsequent line. Very simply, the string should be read as if it were all on a single
line. The convention of displaying it on several lines is intended to improve
readability. This style is repeated throughout the book.

Although unnecessary, the parenthesized comment expressing our goal in
Example 4.18 is a good idea. In more complicated examples, having our goal
written out explicitly can greatly help our construction of a proof. Notice that,
in the process of achieving our goal, the inequality

2(2k) ≥ 2(k + 1)

is used. That is, we used the inductive hypothesis (times 2 in this example).
Using the truth of P(k) in the proof of P(k + 1) is a feature of every proof by
induction. The final inequality,

k + (k + 1) + 1 ≥ (k + 1) + 1,

follows from the assumption that k ≥ 0, since dropping the first term, k, from
the sum k + (k + 1) + 1 will certainly not cause an increase in magnitude.

Why Does a Proof by Induction Work? We answer this question in two ways.
An intuitive explanation is given first, and then a formal one. The intuitive ex-
planation comes in the form of an analogy.

Consider the way in which dominoes are lined up with the intent of knocking
them all down with one push. (See Figure 4.1.) For the purpose of our analogy,
we assume that we have infinitely many dominoes lined up, and they are num-
bered starting at 1. We equate knocking over the nth domino with proving P(n).
Consequently, the base case in our proof by induction corresponds to knocking
down the first domino. The inductive step corresponds to the fact that if the kth

1 2 5 k k 
 1 43

. . . . . .

Figure 4.1 Dominoes
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domino falls down, then the (k + 1)st domino will also fall down. Basically, the
inductive step means that consecutive dominoes have been set up close enough
together. Given this, once the first domino is knocked down, they will all fall in
succession. That is, P(n) is proved for all n ≥ 0.

The analogy brings out the importance of both the base case and the in-
ductive step. Without the base case (that is, if we cannot knock down the first
domino), not all of the dominoes will fall, no matter how close together they are.
Without the inductive step (that is, if the dominoes are not placed close enough
together), even though we knock down the first domino, the dominoes will not
all fall down.

The analogy to dominoes is helpful to satisfy our intuition, but there must
be a formal reason why induction works. The formal reason comes out of the
well-ordering of the integers. For convenience, we state here the straightforward
generalization of the Well-Ordering Principle that we need.

THEOREM 4.5 Generalized Well-Ordering Principle

Given a fixed integer a , each nonempty subset of {n : n ∈ Z and n ≥ a} has a smallest
element.

We use Theorem 4.5 to prove the Principle of Mathematical Induction.

THEOREM 4.6 Principle of Mathematical Induction

Let a ≤ b be integers, and let P(n) be an expression that depends on the free integer vari-
able n. If

(i) P(a ), . . . , P(b) hold, and

(ii) ∀ k ≥ b, if P(k) holds, then P(k + 1) holds,

then the statement

∀ n ≥ a , P(n) holds.

Proof
Assume conditions (i) and (ii) in the hypotheses of the theorem. Suppose it is
not true that P(n) holds ∀ n ≥ a . Let S be the set of those integers n ≥ a for
which P(n) does not hold. By our assumptions, S is nonempty. Hence, by the
Generalized Well-Ordering Principle, S has a smallest element, say s. Since
P(a ), P(a + 1), . . . , P(b) all hold, it must be that s > b. Therefore, s − 1 ≥ b.
Since s − 1 /∈ S, it follows that P(s − 1) holds. However, for k = s − 1, by
condition (ii), since P(k) holds, P(k + 1) must also hold. That is, P(s) holds.
This contradicts the fact that s ∈ S. �

Now that induction has been shown to be a valid proof technique, some more
practice using it is warranted.

EXAMPLE 4.19 Show: ∀ n ≥ 4, n2 ≥ 3n+ 4.

Proof
(By Induction)

Base case: (n = 4)
Note that 42 = 16 ≥ 3(4) + 4. (In fact, we have equality here.)
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Inductive step:
Suppose k ≥ 4 and that k2 ≥ 3k + 4.
(Goal: (k + 1)2 ≥ 3(k + 1) + 4 = 3k + 7.)
Observe that

(k + 1)2 = k2 + (2k + 1)
≥ (3k + 4) + (2k + 1) ← By the inductive hypothesis
= 3k + (2k + 5)
≥ 3k + 7.

That is, (k + 1)2 ≥ 3(k + 1) + 4. �

In the string of equalities and inequalities in Example 4.19, the equalities all
follow from basic algebra. The first inequality comes from the inductive hypoth-
esis. It follows by adding 2k + 1 to both sides of the inequality

k2 ≥ 3k + 4.

The final inequality holds since k ≥ 4 and it is easy to see that

∀ k ≥ 1, 2k + 5 ≥ 7.

EXAMPLE 4.20 Show: ∀ n ≥ 0, 4 | (5n − 1).

Proof
(By Induction)

Base case: (n = 0)
Here, 50 − 1 = 0 and 4 | 0.

Inductive step:
Suppose k ≥ 0 and that 4 | (5k − 1).
So 5k − 1 = 4c for some c ∈ Z.
(Goal: 4 | (5k+1 − 1).)
Observe that

5k+1 − 1 = 5k(5) − 1
= 5k(4+ 1) − 1
= 4 · 5k + 5k − 1
= 4 · 5k + 4c ← By the inductive hypothesis
= 4(5k + c).

Therefore, 4 | (5k+1 − 1). �

A simpler inductive argument than that given in Example 4.20 can be given
using the ideas in Section 3.6, since 4 | (5n − 1) is equivalent to 5n ≡ 1 (mod 4).

In the next example, we see that sometimes more than one base case can be
helpful.

EXAMPLE 4.21 Show: ∀ n ≥ 0, 2n ≥ n2 − 1.

Proof
(By Induction)

Base cases: (n = 0, 1, 2, 3)
Observe that 20 ≥ 02 − 1, 21 ≥ 12 − 1, 22 ≥ 22 − 1, and 23 ≥ 32 − 1.
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Inductive step:
Suppose k ≥ 3 and that 2k ≥ k2 − 1.
(Goal: 2k+1 ≥ (k + 1)2 − 1 = k2 + 2k.)
Observe that

2k+1 = 2(2k)
≥ 2(k2 − 1) ← By the inductive hypothesis
= k2 + (k2 − 2)
≥ k2 + 2k ← Since ∀ k ≥ 3, k2 − 2 ≥ 2k, by Exercise 2
= (k + 1)2 − 1.

That is, 2k+1 ≥ (k + 1)2 − 1. �

Note that in our proof, the fact that k ≥ 3 is used to get

k2 − 2 ≥ 2k and hence k2 + (k2 − 2) ≥ k2 + (2k).

However, this does not mean that extra base cases are necessary. It is certainly
true that

∀ k ≥ 0, if 2k ≥ k2 − 1, then 2k+1 ≥ (k + 1)2 − 1.

However, in the particular argument that we chose, it was convenient that k ≥ 3.

Induction and Recursion. When a sequence is defined recursively, we can often
figure out the closed formula for that sequence by listing several terms in the
sequence. Induction can then be used to prove that a proposed closed formula
is correct. The skill of guessing a closed formula for a sequence from a listing of
several terms was practiced in the exercises in Section 4.1. Here we practice the
skill of proving that such a guess is correct.

EXAMPLE 4.22 Sequence (4.7) from Section 4.1 was expressed recursively by the formula

s5 = 10 and ∀ n ≥ 6, sn = sn−1 + n− 1. (4.17)

Show: ∀ n ≥ 5, sn =
(n

2

)
.

Remark 4.1 The closed formula
(n

2

)
was also asserted in Section 4.1.

However, at that time, no proof was given that both sequences are
indeed the same. Here, we are taking (4.17) as the definition of the
sequence.

Proof for Example 4.22.
(By Induction)

Base case: (n = 5)
Observe that

(5
2

) = 10, and 10 is the defined value for s5.

Inductive step:
Suppose k ≥ 0 and that sk =

(k
2

)
.

(Goal: sk+1 =
(k+1

2

)
.)
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From (4.17), it follows that

sk+1 = sk + (k + 1) − 1

=
(

k

2

)
+ k ← By the inductive hypothesis

= k(k − 1)
2

+ k

= k2 − k + 2k

2

= (k + 1)k
2

=
(

k + 1
2

)
.

That is, sk+1 =
(k+1

2

)
. �

SECTION 4.3 Exercises
In Exercises 1 through 20, use induction to prove the given statements.

1. Show: ∀ n ≥ 3, n2 + 1 ≥ 3n. 2. Show: ∀ n ≥ 3, n2 − 2 ≥ 2n.

3. Show: ∀ n ≥ 3, n2 ≥ 2n+ 1. 4. Show: ∀ n ≥ 3, 2n3 ≥ 3n2 + 3n+ 1.

5. Show: ∀ n ≥ 4, 2n ≥ n2. 6. Show: ∀ n ≥ 0, 3n ≥ n3.
Hint: Consider four base cases.

7. Show: ∀ n ≥ 4, n! ≥ n2. 8. Show: ∀ n ≥ 6, n! > 2n3.
9. Show: ∀ n ≥ 4, n! > 2n. 10. Show: ∀ n ≥ 7, n! > 3n.
11. Show: ∀ n ≥ 0, 3 | (4n − 1). 12. Show: ∀ n ≥ 0, 5 | (6n − 1).
13. Show: ∀ n ≥ 0, 4 | (6n − 2n). 14. Show: ∀ n ≥ 0, 5 | (9n − 4n).

�15. Show: ∀ n ≥ 0, 6 | (n3 − n). �16. Show: ∀ n ≥ 0, 6 | (n3 + 5n).

17. Let {sn} be the sequence defined by

s1 = 4 and ∀ n ≥ 2, sn = 3sn−1 − 2.

Show: ∀ n ≥ 1, sn = 3n + 1.
18. Let {sn} be the sequence defined by

s0 = π

4
and ∀ n ≥ 1, sn = sn−1 + π.

Show: ∀ n ≥ 0, sn = 4n+1
4 π .

19. Let {sn} be the sequence defined by

s2 = 5 and ∀ n ≥ 3, sn = sn−1 − 2.

Show: ∀ n ≥ 2, sn = 9− 2n.
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�20. Let {sn} be the sequence defined by

s0 = 1
3

and ∀ n ≥ 1, sn = 1− sn−1.

Show: ∀ n ≥ 0, sn =
{ 1

3 if n is even,
2
3 if n is odd.

21. Annuity. The sequence given recursively by

s0 = 0 and ∀ n ≥ 1, sn = (1+ i)sn−1 + D

gives the value after n periods of an annuity with periodic interest rate i
and deposit D. See Exercise 51 in Section 4.1.
(a) For n = 0, 1, 2, determine sn and confirm that it agrees with the

corresponding value of the expression D (1+i)n−1
i .

(b) Show that the sequence whose nth term is D (1+i)n−1
i satisfies the

recurrence relation above for all n ≥ 1.

(c) Show: ∀ n ≥ 0, sn = D (1+i)n−1
i . (By Induction)

(d) Use the closed formula in part (c) to determine the value after
24 months of an annuity with monthly interest rate 0.75% (that is,
i = 0.0075) and a monthly deposit of $200.

22. Mortgage. The sequence given recursively by

s0 = M and ∀ n ≥ 1, sn = (1+ i)sn−1 − R

gives the balance due after n periods of a mortgage for M dollars
with periodic interest rate i and payment R. See Exercise 52 in
Section 4.1.
(a) For n = 0, 1, 2, 3, determine sn and confirm that it agrees with the

corresponding value of the expression M(1+ i)n − R (1+i)n−1
i .

(b) Show that the sequence whose nth term is M(1+ i)n − R (1+i)n−1
i

satisfies the recurrence relation above for all n ≥ 1.

(c) Show: ∀ n ≥ 0, sn = M(1+ i)n − R (1+i)n−1
i . (By Induction)

(d) Use the closed formula in part (c) to determine the balance due after
24 months on a 30-year $60,000 mortgage with monthly interest rate
0.75% (i = 0.0075) and a monthly payment of $482.77.

23. Generalized Distributivity for Sets. We generalize (the n = 2 case of)
Theorem 1.5(d) from Section 1.4. Let A be a set.
(a) Show: For all sets B1, B2, B3 that

A∩ (B1 ∪ B2 ∪ B3) = ( A∩ B1) ∪ ( A∩ B2) ∪ ( A∩ B3),
by associating B1 ∪ B2 ∪ B3 = (B1 ∪ B2) ∪ B3.

(b) Show: ∀ n ≥ 1, for all sets B1, B2, . . . , Bn,
A∩ (B1 ∪ B2 ∪ · · · ∪ Bn) = ( A∩ B1) ∪ ( A∩ B2) ∪ · · · ∪ ( A∩ Bn).

(c) Show: ∀ n ≥ 1, for all sets B1, B2, . . . , Bn,
A∪ (B1 ∩ B2 ∩ · · · ∩ Bn) = ( A∪ B1) ∩ ( A∪ B2) ∩ · · · ∩ ( A∪ Bn).

Hint: For the inductive step, use Associativity and Distributivity (n = 2).
24. Generalized Distributivity for Logic. We generalize (the n = 2 case of)

Theorem 1.1(d) from Section 1.1. Let p be a statement form.
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(a) Show: For all statement forms q1, q2, q3 that
p ∧ (q1 ∨ q2 ∨ q3) ≡ ( p ∧ q1) ∨ ( p ∧ q2) ∨ ( p ∧ q3),
by associating q1 ∨ q2 ∨ q3 ≡ (q1 ∨ q2) ∨ q3.

(b) Show: ∀ n ≥ 1, for all statement forms q1, q2, . . . , qn,
p ∧ (q1 ∨ q2 ∨ · · · ∨ qn) ≡ ( p ∧ q1) ∨ ( p ∧ q2) ∨ · · · ∨ ( p ∧ qn).

(c) Show: ∀ n ≥ 1, for all statement forms q1, q2, . . . , qn,
p ∨ (q1 ∧ q2 ∧ · · · ∧ qn) ≡ ( p ∨ q1) ∧ ( p ∨ q2) ∧ · · · ∧ ( p ∨ qn).

Hint: For the inductive step, use Associativity and Distributivity
(n = 2).

25. Generalized De Morgan’s Laws for Logic. We generalize (the n = 2 case
of) Theorem 1.1(e) from Section 1.1.
(a) Show: For all statement forms p1, p2, p3 that

¬( p1 ∨ p2 ∨ p3) ≡ ¬p1 ∧ ¬p2 ∧ ¬p3,
by associating p1 ∨ p2 ∨ p3 ≡ ( p1 ∨ p2) ∨ p3.

(b) Show: ∀ n ≥ 1, for all statement forms p1, p2, . . . , pn,
¬( p1 ∨ p2 ∨ · · · ∨ pn) ≡ ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn.

(c) Show: ∀ n ≥ 1, for all statement forms p1, p2, . . . , pn,
¬( p1 ∧ p2 ∧ · · · ∧ pn) ≡ ¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn.

Hint: For the inductive step, use Associativity and De Morgan’s Law.
26. Generalized De Morgan’s Laws for Sets. We generalize (the n = 2 case of)

Theorem 1.5(e) from Section 1.4.
(a) Show: For all sets A1, A2, A3,

( A1 ∪ A2 ∪ A3)c = A1
c ∩ A2

c ∩ A3
c ,

by associating A1 ∪ A2 ∪ A3 = ( A1 ∪ A2) ∪ A3.
(b) Show: ∀ n ≥ 1, for all sets A1, A2, . . . , An,

( A1 ∪ A2 ∪ · · · ∪ An)c = A1
c ∩ A2

c ∩ · · · ∩ An
c .

(c) Show: ∀ n ≥ 1, for all sets A1, A2, . . . , An,
( A1 ∩ A2 ∩ · · · ∩ An)c = A1

c ∪ A2
c ∪ · · · ∪ An

c .
Hint: For the inductive step, use Associativity and De Morgan’s Law.

27. Prove the following generalization of Theorem 3.27(a).
Let n ∈ Z with n > 1.
Show: ∀m ≥ 1, ∀ a1, a2, . . . , am, b1, b2, . . . , bm ∈ Z,
if a1 ≡ b1 (mod n), a2 ≡ b2 (mod n), . . . , am ≡ bm (mod n), then
(a)
∑m

i=1 ai ≡
∑m

i=1 bi (mod n).

(b)
∏m

i=1 ai ≡
∏m

i=1 bi (mod n).
Hint: Use induction on m.

28. Prove Corollary 3.28(b). Hint: Use Theorem 3.27 for the base case and to
help with the inductive step.

29. Show that any nonempty finite subset of R has a maximum element. That
is, for any finite set S such that S ⊂ R, there is an element m ∈ S such that
m = max(S).
Hint: If S = {s1, . . . , sk , sk+1}, then max(S) = max(max(s1, . . . , sk), sk+1). Use
induction on |S|.

30. Prove Corollary 3.18. Hint: For the base case, use Corollary 3.17. For the
inductive step, treat the (k + 1)-fold product m1 ·m2 · · · · ·mk+1 as a 2-fold
product (m1 ·m2 · · · · ·mk) ·mk+1 and apply Corollary 3.17.



194 P A R T I ■ Proofs

A matrix is a rectangular array of real numbers. In Exercises 31 through 35, we
focus on 2 by 2 matrices (that is, matrices with 2 rows and 2 columns) and use
the standard definition of matrix multiplication and exponentiation.[

a1 b1
c1 d1

] [
a2 b2
c2 d2

]
=
[

a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

]

For any matrix A, we define A1 = A and, ∀ n ≥ 2, An = A · An−1.
31. Show: ∀ n ≥ 1,[

1 1
0 1

]n

=
[

1 n
0 1

]
.

32. Show: ∀ n ≥ 1,[−1 1
1 −1

]n

= (−2)n−1
[−1 1

1 −1

]
.

33. Show: ∀ n ≥ 1,[
1 1
0 2

]n

=
[

1 2n− 1
0 2n

]
.

34. Show: ∀ n ≥ 1,[
1 1
0 −2

]n

=
[

1 1−(−2)n

3
0 (−2)n

]
.

For Exercises 35 through 37, use the trigonometric identities

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2

�35. Let θ ∈ R. Show: ∀ n ≥ 1,[
cos θ sin θ

− sin θ cos θ

]n

=
[

cos nθ sin nθ

− sin nθ cos nθ

]
.

�36. Using i =√−1, multiplication and exponentiation of complex numbers
are defined by the formulas
(a1 + ib1) · (a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + b1a2), (a + ib)1 = a + ib,
and, ∀ n ≥ 2, (a + ib)n = (a + ib) · (a + ib)n−1.

(a) Observe that (cos π
3 , sin π

3 ) =
(

1
2 ,
√

3
2

)
and compute(

1
2 + i

√
3

2

)
·
(

1
2 + i

√
3

2

)
. How is the answer related to 2π

3 ?

(b) Let θ ∈ R. Prove De Moivre’s Theorem. That is, show:
∀ n ≥ 1, (cos θ + i sin θ )n = cos nθ + i sin nθ .

�37. Let θ ∈ R.
(a) Use the first identity above with θ = θ1 = θ2 to obtain the identity for

sin 2θ , known as the double-angle identity for the sine function.
(b) Use the double-angle identity to prove that sin 4θ = 4 sin θ cos θ cos 2θ .

(c) Show: ∀ n ≥ 1, sin 2nθ = 2n sin θ
∏n−1

i=0 cos 2iθ .

38. Let x > −1. Prove Bernoulli’s Inequality. That is, show: ∀ n ≥ 0,
(1+ x)n ≥ 1+ nx.

39. Give an example of a statement of the form (4.14) for which the inductive
step holds but the base case does not.

40. Give an example of a statement of the form (4.14) for which the base case
holds but the inductive step does not.

41. Show that, if ∀ n ≥ a , P(n), then ∀ k ≥ a , P(k) → P(k + 1).
42. Show that, if ∀ n ≥ a , P(n), then P(a ). What principle is this?
43. Show: ∀ n ≥ 0, 5n ≡ 1 (mod 4).
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44. Show: ∀ n ≥ 0, 9n ≡ 4n (mod 5).
45. The Catalan Numbers are defined by C0 = 1 and

Cn = 2(2n− 1)
n+ 1

Cn−1, ∀ n ≥ 1.

(a) List the Catalan numbers C0, C1, C2, C3, C4.
�(b) Show: ∀ n ≥ 0, Cn = 1

n+1

(2n
n

)
.

(c) Cn counts the number of ways of parenthesizing a product consisting
of n+ 1 factors (for example, abc can be written as (ab)c or a (bc)).
Verify that this is true for n = 0, 1, 2, 3, 4.

46. In the outline for a proof by induction, replace the inductive step with
∀ k > b, if P(k − 1) is true, then P(k) is true.
Explain why this new format for induction provides another valid
technique.

4.4 Induction and Summations
One class of statements whose proofs are often done by induction consists of
those that involve summations. This section focuses on this type and also pro-
vides more practice with inductive proofs. The promised proofs of the summa-
tion formulas in Theorems 4.2 and 4.3 are also provided.

In the first example, we prove part (c) from Theorem 4.2. The proofs of the
remaining parts are left for the exercises.

EXAMPLE 4.23 Show: ∀ n ≥ 1,
n∑

i=1

i2 = n(n+ 1)(2n+ 1)
6

.

Proof
(By Induction)

Base case: (n = 1)
It is easy to see that

∑1
i=1 i2 = 1 = 1(2)(3)

6 .

Inductive step:
Suppose k ≥ 1 and that

∑k
i=1 i2 = k(k+1)(2k+1)

6 .

(Goal:
∑k+1

i=1 i2 = (k+1)((k+1)+1)(2(k+1)+1)
6 = (k+1)(k+2)(2k+3)

6 .)
Observe that

k+1∑
i=1

i2 =
⎛
⎝ k∑

i=1

i2

⎞
⎠+ (k + 1)2

= k(k + 1)(2k + 1)
6

+ (k + 1)2 ← By the inductive hypothesis

= k(k + 1)(2k + 1) + 6(k + 1)2

6

= (k + 1)[k(2k + 1) + 6(k + 1)]
6
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= (k + 1)(k + 2)(2k + 3)
6

= (k + 1)((k + 1) + 1)(2(k + 1) + 1)
6

.
�

In Example 4.23, our first step toward achieving our goal is to split the sum∑k+1
i=1 i2 into

∑k
i=1 i2 plus (k+1)2. That is, the sum from the inductive hypothesis

is split off, and the remaining term (which could be more than one term in gen-
eral) is added on separately. This enables the inductive hypothesis to be used
in the subsequent step. The rest is basic algebra. This splitting of the sum is a
feature common to inductive proofs involving summations.

In our second example, we prove Theorem 4.3.

EXAMPLE 4.24 Let r ∈ R with r �= 1. Show: ∀ n ≥ 0,
n∑

i=0

r i = rn+1 − 1
r − 1

.

Proof
(By Induction)

Base case: (n = 0)
It is straightforward to see that

∑0
i=0 r i = 1 = r1−1

r−1 .

Inductive step:
Suppose k ≥ 0 and that

∑k
i=0 r i = rk+1−1

r−1 .

(Goal:
∑k+1

i=0 r i = rk+2−1
r−1 .)

Observe that

k+1∑
i=0

r i =
⎛
⎝ k∑

i=0

r i

⎞
⎠+ rk+1

= rk+1 − 1
r − 1

+ rk+1 ← By the inductive hypothesis

= rk+1 − 1+ rk+1(r − 1)
r − 1

= rk+1 − 1+ rk+2 − rk+1

r − 1

= rk+2 − 1
r − 1

. �

In both examples so far, we took advantage of the sum in the inductive
hypothesis by splitting off a single term from the sum in our goal. In the next
example, more than one term gets split off.

EXAMPLE 4.25 Show: ∀ n ≥ 1,
3n∑

i=1

i(i − 1) = n(9n2 − 1).

Proof
(By Induction)

Base case: (n = 1)
A straightforward computation shows that∑3

i=1 i(i − 1) = 1(0) + 2(1) + 3(2) = 8 = 1(9 · 12 − 1).
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Inductive step:
Suppose k ≥ 1 and that

∑3k
i=1 i(i − 1) = k(9k2 − 1).

(Goal:
∑3(k+1)

i=1 i(i − 1) = (k + 1)(9(k + 1)2 − 1) = (k + 1)(9k2 + 18k + 8).)
Observe that

3(k+1)∑
i=1

i(i − 1) =
3k+3∑
i=1

i(i − 1)

=
⎛
⎝ 3k∑

i=1

i(i − 1)

⎞
⎠+

⎛
⎝ 3k+3∑

i=3k+1

i(i − 1)

⎞
⎠ ← Split off three terms

=
⎛
⎝ 3k∑

i=1

i(i − 1)

⎞
⎠+ [(3k+1)(3k) + (3k+2)(3k+1) + (3k+3)(3k+2)]

= k(9k2 − 1) + (9k2 + 3k + 9k2 + 9k + 2+ 9k2 + 15k + 6)
= 9k3 + 27k2 + 26k + 8
= (k + 1)(9k2 + 18k + 8)
= (k + 1)(9(k + 1)2 − 1). �

Our last example is a beautiful result about the sum of binomial coefficients.
Its proof uses a more involved splitting of the sum in the inductive step. It uses
the identity (

k + 1
i

)
=
(

k

i − 1

)
+
(

k

i

)
, for 1 ≤ i ≤ k (4.18)

known as Pascal’s identity. The proof of Pascal’s identity is immediate from the
formulas for the binomial coefficients. Pascal’s identity is discussed further in
Section 4.6.

EXAMPLE 4.26 Show: ∀ n ≥ 0,
n∑

i=0

(
n

i

)
= 2n.

Proof
(By Induction)

Base case: (n = 0)
It is straightforward to see that

∑0
i=0

(0
i

) = 1 = 20.

Inductive step:
Suppose k ≥ 0 and that

∑k
i=0

(k
i

) = 2k .

(Goal:
∑k+1

i=0

(k+1
i

) = 2k+1.)
Observe that

k+1∑
i=0

(
k + 1

i

)
=
(

k + 1
0

)
+

k∑
i=1

(
k + 1

i

)
+
(

k + 1
k + 1

)
← Split off first and last

= 1+
k∑

i=1

(
k + 1

i

)
+ 1
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= 1+
k∑

i=1

[(
k

i − 1

)
+
(

k

i

)]
+ 1

= 1+
k∑

i=1

(
k

i − 1

)
+

k∑
i=1

(
k

i

)
+ 1

= 1+
k−1∑
j=0

(
k

j

)
+

k∑
i=1

(
k

i

)
+ 1

=
(

k

k

)
+

k−1∑
j=0

(
k

j

)
+

k∑
i=1

(
k

i

)
+
(

k

0

)

=
k∑

j=0

(
k

j

)
+

k∑
i=0

(
k

i

)
= 2k + 2k ← By the inductive hypothesis
= 2 · 2k

= 2k+1. �

A much more elegant proof of Example 4.26 can be given after the Binomial
Theorem is covered in Section 4.6. That proof is presented in Example 4.31.

SECTION 4.4 Exercises

1. Use induction to prove: ∀ n ≥ 1,
n∑

i=1

0 = 0+ 0+ · · · + 0︸ ︷︷ ︸
n times

= 0.

2. Use induction to prove Theorem 4.2(a):

∀ n ≥ 1,
n∑

i=1

1 = 1+ 1+ · · · + 1︸ ︷︷ ︸
n times

= n.

3. In Section 4.2, we saw that Gauss used the summation formula

∀ n ≥ 1,
n∑

i=1

i = n(n+ 1)
2

from Theorem 4.2(b) to compute the sum of the first n positive integers (in
the case that n = 100).

(a) Prove that result here by using induction.
(b) What is the formula for the sum of the first n positive even integers?
(c) When n is even, what is the formula for the sum of the positive even

integers up to and including n?
(d) When n is odd, what is the formula for the sum of the positive even

integers less than n?
4. Suppose we wish to build a pyramid-like structure by placing a cube with

side length 1 inch, on top of a cube of side length 2 inches, on top a cube of
side length 3 inches, and so forth. If we use a total of n cubes, then the
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volume of this structure is given by the formula

∀ n ≥ 1,
n∑

i=1

i3 =
[

n(n+ 1)
2

]2

from Theorem 4.2(d).
(a) Prove that result here by using induction.
(b) How many cubes are required to make the volume of the structure

exceed the volume of a single cube with side length 10 inches?
(c) How many cubes are required to make the structure at least 6 feet tall?

In Exercises 5 through 22, do not use Theorems 4.2 and 4.3. Instead, give a
proof by induction.

5. Show: ∀ n ≥ 1,
n∑

i=1

(3i2 − i) = n2(n+ 1).

6. Show: ∀ n ≥ 1,
n∑

i=1

(4i3 − 2i) = n(n+ 1)(n2 + n− 1).

7. Show: ∀ n ≥ 1, 1+ 5+ 9+ · · · + (4n− 3) = n(2n− 1).

8. Show: ∀ n ≥ 1, 1+ 4+ 7+ · · · + (3n− 2) = n(3n− 1)
2

.

9. Show: ∀ n ≥ 1, 3+ 5+ 7+ · · · + (2n+ 1) = n(n+ 2).
10. Consider the sequence of binary numbers

10, 1010, 101010, . . .

whose digits alternate between 1 and 0. If we start our indexing at 0, then
the value of the nth number in this sequence is given by

22n+1 + · · · + 25 + 23 + 2.

Show: ∀ n ≥ 0, 2+ 23 + 25 + · · · + 22n+1 = 2
3 (4n+1 − 1).

11. A binary tournament, such as the type used for the NCAA basketball
tournament held each March, involves a number of teams t that is a
power of 2, say t = 2n+1. In the first round, the t teams are paired off into 2n

games, and only the winners advance to the second round. There are then
2n−1 games in the second round, 2n−2 games in the third round, and so
forth, until the one game in the final round determines the champion.
The total number of games played in this tournament is thus 2n + 2n−1 +
2n−2 + · · · + 1. In the case that t = 64 = 25+1, the number of games played is
32+ 16+ 8+ 4+ 2+ 1 = 63. In general, show:
∀ n ≥ 0, 1+ 2+ 4+ 8+ · · · + 2n = 2n+1 − 1.

12. Show: ∀ n ≥ 0, 1+ 3+ 9+ 27+ · · · + 3n = 1
2 (3n+1 − 1).

13. Show: ∀ n ≥ 2,
n∑

i=2

i2i = (n− 1)2n+1.

14. Show: ∀ n ≥ 1,
n∑

i=1

i3i = 3
4

[(2n− 1)3n + 1].

15. Show: ∀ n ≥ 1,
n∑

i=1

i22i = (n2 − 2n+ 3)2n+1 − 6.
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16. Show: ∀ n ≥ 1,
n∑

i=1

i23i = 3
2

[(n2 − n+ 1)3n − 1].

17. Show: ∀ n ≥ 1,
n∑

i=1

(i · i !) = (n+ 1)!− 1.

18. A landscaper wants to have rows of bricks emanating from the backdoor
of a house in the following pattern.

...
...

By adding the number of bricks in each row, we see that the total number
of bricks needed to make n rows in this arrangement is

∑n
i=1(2i − 1).

Show: ∀ n ≥ 1,
n∑

i=1

(2i − 1) = n2.

19. Show: ∀ n ≥ 1,
2n∑

i=1

i = n(2n+ 1).

20. Show: ∀ n ≥ 1,
2n∑

i=1

i3 = n2(2n+ 1)2.

21. Show: ∀ n ≥ 1,
n∑

i=1

1
i(i + 1)

= n

n+ 1
.

22. Show: ∀ n ≥ 1,
n∑

i=1

2
i(i + 2)

= 3
2
− 2n+ 3

(n+ 1)(n+ 2)
.

23. If a fair coin is tossed i times, then the probability that the first occurrence
of “heads” is on the ith toss is 1

2i . This is true because on each of the first
i − 1 tosses, there is a probability of 1

2 that the coin will be “tails,” and on the
ith toss, there is a probability of 1

2 that the coin will be “heads.” Conse-
quently, if the coin is tossed n times, then the probability that there is some
occurrence of heads is

∑n
i=1

1
2i .

Show: ∀ n ≥ 1,
n∑

i=1

1
2i
= 1− 1

2n
.

24. Show: ∀ n ≥ 0,
n∑

i=0

(3i+1 − 3i ) = 3n+1 − 1.

25. Show: ∀ n ≥ 1,
n∏

i=1

i

i + 2
= 2

(n+ 1)(n+ 2)
.

26. Show: ∀ n ≥ 1,
n∏

i=1

i

i + 1
= 1

n+ 1
.

27. Let r ∈ R. Show: ∀ n ≥ 1,
n∏

i=1

r2i = rn(n+1).

28. Let m ∈ Z. Show: ∀ n ≥ 1,
n∏

i=1

im = (n!)m.
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29. Show: ∀ n ≥ 0, x2n − y2n = (x − y)
n−1∏
i=0

(x2i + y2i

).

30. Show: ∀ n ≥ 1,
n∏

i=1

(4i − 2) = (2n)!
n!

.

31. Let {sn}n≥0 be a sequence of real numbers such that, for all n ≥ 0, sn+1 ≥ 2sn.

Show: ∀ n ≥ 0, sn+1 ≥
n∑

i=0

si .

�32. In Exercise 46 of Section 4.2, we saw that N 2-foot blocks can be stacked to
extend

∑N
i=1

1
i feet off the end of a table. By varying the value of N, we shall

see here that we can exceed any desired extension off the end of the table.

(a) Show: ∀ n ≥ 0,
2n∑

i=1

1
i
≥ n+ 2

2
.

(b) Suppose we wish to extend the blocks greater than n feet off the end of
the table. Use the result in part (a) with N = 22n to show that we can
achieve this.

�33. Show: ∀ n ≥ 1,
n∑

i=1

1
i2 ≥

3
2
− 1

n+ 1
.

34. Show: ∀ n ≥ 1,
n∑

i=1

i

2i
= 2− n+ 2

2n
.

�35. Show: ∀ n ≥ 1,
n∑

i=1

1
i2 ≤ 2− 1

n
.

�36. Show: ∀ n ≥ 1,
n∑

i=1

1
i3 ≤

1
2

(
3− 1

n2

)
.

37. Prove Theorem 4.1(a): ∀ a , si , ti , ∀ b ≥ a ,
b∑

i=a

(si ± ti ) =
b∑

i=a

si ±
b∑

i=a

ti .

38. Prove Theorem 4.1(b): ∀ a , c, si , ∀ b ≥ a ,
b∑

i=a

csi = c
b∑

i=a

si .

Remark 4.2 From Exercises 33 and 35, it follows that
3
2
≤

∞∑
i=1

1
i2 ≤ 2.

In fact,
∞∑

i=1

1
i2 =

π2

6
≈ 1.645.

4.5 Strong Induction
Sections 4.3 and 4.4 show the power of mathematical induction for proving state-
ments of the form

∀ integers n ≥ a , P(n).

However, there are also many such examples whose proofs are more naturally
done by a stronger form of induction.
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OUTLINE 4.2 (Proof by Strong Induction).
To show: ∀ n ≥ a , P(n).

Proof by strong induction

1. Base cases:
Show: P(a ), . . . , P(b) are true.

2. Inductive step:
Show: ∀ k ≥ b, if P(a ), . . . , P(k) are true, then P(k + 1) is true. That is,
(a) Suppose k ≥ b and that P(i) is true for all a ≤ i ≤ k.
(b) Show: P(k + 1) is true.

■

The difference between regular induction and strong induction is in their in-
ductive steps and, more specifically, in their inductive hypotheses. In strong in-
duction, we assume not only that P(k) is true but further that all of P(a ), . . . , P(k)
are true. That is, we carry with us a stronger inductive hypothesis, as we aim to
show that P(k+1) is true. Our interest in doing this can be appreciated after see-
ing a specific example of strong induction in action. After that, a formal proof of
why it works is provided. Our example is a second proof of Theorem 3.5 from
Section 3.2.

Theorem 3.5. Every integer greater than 1 has a prime divisor.

Proof
First note that the statement in the theorem has the form

∀ integers n ≥ 2, ∃ p a prime such that p | n.

Of course, different integers n may have different prime divisors p. With this in
mind, our proof proceeds by strong induction.

Base case: (n = 2)
Certainly, 2 is already prime and divides itself. That is, 2 | 2.

Inductive step:
Suppose k ≥ 2 and that each integer i with 2 ≤ i ≤ k has a prime divisor.
(Goal: k + 1 has a prime divisor)
Our proof naturally breaks into two cases.
Case 1: k + 1 is prime.
Obviously, k + 1 divides itself.
Case 2: k + 1 is composite.
We can express k + 1 as a product k + 1 = rs, where 2 ≤ r ≤ k and 2 ≤ s ≤ k.
Thus, in particular, r is an integer for which the inductive hypothesis applies.
Consequently, there exists a prime p that divides r .
That is, r = pt for some integer t.
It follows that k + 1 = rs = pts.
Therefore, k + 1 is divisible by the prime p. �

The key to our proof in case 2 is our ability to call on a prime factor of a
potentially much smaller number r to also be a prime factor of the bigger num-
ber k + 1. We cannot count on a prime factor of k to also be a prime factor of
k + 1, as would be needed in a proof by regular induction. In fact, k + 1 and k
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never share any factors other than±1. That is, it is important that our induction
hypothesis be

Each integer i , with 2 ≤ i ≤ k, has a prime divisor

and not merely

k has a prime divisor.

Strong induction is a good tool for this example.
That strong induction works can be seen, in fact, as a consequence of regular

induction. An alternative proof using the Well-Ordering Principle is suggested
in the exercises.

THEOREM 4.7 Principle of Strong Induction

Let a ≤ b be integers, and let P(n) be an expression that depends on the free integer vari-
able n. If

(i) P(a ), . . . , P(b) hold, and

(ii) ∀ k ≥ b, if P(i) holds for each a ≤ i ≤ k, then P(k + 1) holds,

then the statement

∀ n ≥ a , P(n) holds.

Proof
Assume conditions (i) and (ii) in the hypotheses of the theorem. For each n ≥ a ,
let Q(n) be the statement that

P(i) holds for each a ≤ i ≤ n.

Since Q(n) implies P(n), it is sufficient to show that Q(n) holds ∀ n ≥ a . We
accomplish this with a proof by regular induction.

Base cases: (n = a , . . . , b)
The truth of Q(a ), . . . , Q(b) follows from the truth of P(a ), . . . , P(b).

Inductive step:
Suppose k ≥ a and that Q(k) holds. That is, P(i) holds for each a ≤ i ≤ k. From
(ii), it follows that P(k + 1) holds. By definition, Q(k + 1) also holds. �

Standard Factorization
Given an integer n > 1, not only can a single prime divisor be found, as asserted
in Theorem 3.5, but we further know from practice that n can be completely
factored into a product of primes.

21 = 3 · 7
440 = 23 · 5 · 11
29 = 29

27061671 = 3 · 74 · 13 · 172

The convention is to list the prime factors in increasing order and to use expo-
nents to denote repeated use of the same prime.
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DEFINITION 4.1

The expression of an integer n > 1 as a product of the form

n = p
e1

1 · p
e2

2 · · · · · pem
m ,

where m is a positive integer, p1 < p2 < · · · < pm are primes, and e1, e2, . . . , em are
positive integers, is referred to as the standard factorization of n.

The following theorem is also known as the Unique Factorization Theorem,
which is suggestive of what it asserts.

THEOREM 4.8 Fundamental Theorem of Arithmetic

Every integer greater than 1 has a unique standard factorization.

Proof
Existence and uniqueness are proved separately, but each by strong induction.
Existence is handled first.

Base case: (n = 2)
Certainly, 2 = 21 is a standard factorization.

Inductive step:
Suppose k ≥ 2 and that each integer i with 2 ≤ i ≤ k has a standard
factorization.
(Goal: k + 1 has a standard factorization.)
Our proof naturally breaks into two cases.
Case 1: k + 1 is prime.
Here, k + 1 = (k + 1)1 is already a standard factorization.
Case 2: k + 1 is composite.
We can express k + 1 as a product k + 1 = rs, where 2 ≤ r ≤ k and 2 ≤ s ≤ k.
By the inductive hypothesis, r and s have standard factorizations. By
appropriately grouping the primes in the product rs, we obtain a standard
factorization for k + 1.

Now we handle uniqueness.

Base case: (n = 2)
Since 2 is prime, 2 has the unique standard factorization 2 = 21. (Note that any
other product of powers of primes is greater than 2.)

Inductive step:
Suppose k ≥ 2 and that each integer i with 2 ≤ i ≤ k has a unique standard
factorization.
(Goal: k + 1 has a unique standard factorization.)
Suppose k + 1 has two standard factorizations

k + 1 = p
e1

1 · · · · · pem
m = q

d1

1 · · · · · q dl
l .

Since p1 | (k + 1), Corollary 3.18 tells us that p1 | q di
i for some i . Moreover,

Corollary 3.19 tells us that p1 | qi . Since p1 and qi are prime, it must be that
p1 = qi . Since the primes in a standard factorization are listed in increasing
order, we have q1 ≤ qi = p1. By a symmetric argument (reversing the roles of
the p’s and the q ’s), we see that p1 ≤ q1. Thus, p1 = q1. The integer k+1

p1
now
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has the two standard factorizations

k + 1
p1

= p
e1−1
1 · · · · · pem

m = q
d1−1
1 · · · · · q dl

l

By the inductive hypothesis, those standard factorizations must be the same.
Therefore, the two standard factorizations for k + 1 must be the same. �

The Fibonacci Numbers
The sequence of numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

is known as the Fibonacci sequence. It is named after the Italian mathematician
Leonardo of Pisa (known as Fibonacci) who lived in the late twelfth and early
thirteenth centuries. After the first two terms, each term in the sequence is ob-
tained as the sum of the previous two. If we denote the Fibonacci sequence by
{Fn}n≥0, then

F0 = 1, F1 = 1, and ∀ n ≥ 2, Fn = Fn−2 + Fn−1.

That is, the sequence is defined recursively.
It is a beautiful fact that the Fibonacci sequence can also be expressed with a

closed formula (that happens to be somewhat ugly).

EXAMPLE 4.27 Show that the Fibonacci sequence can be expressed by the formula

∀ n ≥ 2, Fn = 1√
5

⎡
⎣(1+√5

2

)n+1

−
(

1−√5
2

)n+1
⎤
⎦ .

Proof
Since the recursive formula for the nth Fibonacci number defines the value Fn

as a function of the two previous Fibonacci numbers, we consider two base
cases. Subsequently, we may appeal to the recursive formula.

Base cases: (n = 0, 1)
It is straightforward to check that

1√
5

⎡
⎣(1+√5

2

)1

−
(

1−√5
2

)1
⎤
⎦ = 1, and

1√
5

⎡
⎣(1+√5

2

)2

−
(

1−√5
2

)2
⎤
⎦ = 1.

Inductive step:
Suppose k ≥ 1 and that

Fi = 1√
5

⎡
⎣(1+√5

2

)i+1

−
(

1−√5
2

)i+1
⎤
⎦ , for each 0 ≤ i ≤ k.

(
Goal: Fk+1= 1√

5

[(
1+
√

5
2

)k+2

−
(

1−
√

5
2

)k+2
]

.

)
Note that k + 1 ≥ 2 and that both k − 1 and k lie in the interval [0, k].
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Observe that

Fk+1 = Fk−1 + Fk

= 1√
5

⎡
⎣(1+√5

2

)k

−
(

1−√5
2

)k
⎤
⎦+ 1√

5

⎡
⎣(1+√5

2

)k+1

−
(

1−√5
2

)k+1
⎤
⎦

= 1√
5

⎡
⎣(1+√5

2

)k

+
(

1+√5
2

)k+1

−
(

1−√5
2

)k

−
(

1−√5
2

)k+1
⎤
⎦

= 1√
5

⎡
⎣(1+√5

2

)k(
1+ 1+√5

2

)
−
(

1−√5
2

)k(
1+ 1−√5

2

)⎤⎦
= 1√

5

⎡
⎣(1+√5

2

)k (
3+√5

2

)
−
(

1−√5
2

)k (
3−√5

2

)⎤⎦
= 1√

5

⎡
⎣(1+√5

2

)k (
1+√5

2

)2

−
(

1−√5
2

)k (
1−√5

2

)2
⎤
⎦

= 1√
5

⎡
⎣(1+√5

2

)k+2

−
(

1−√5
2

)k+2
⎤
⎦ .

�

For our final example, we move to the world of sports. What is and what is
not possible for the score of a football game?

EXAMPLE 4.28 Assume that, on any one possession, a football team can only score either
3 points (for a field goal) or 7 points (for a touchdown).
Show that it is then mathematically possible (assuming that there are no time
constraints) for a football team to score any number of points from 12 on up.

Remark 4.3 Note that 1, 2, 4, 5, 8, 9, and 11 points are not possible in the
scheme in Example 4.28. Of course, 3, 6, 7, and 10 are possible numbers
of points.

Proof of Example 4.28
(By Strong Induction)

Base cases: (n = 12, 13, 14)
We see that
12 points can be accomplished by 4 field goals,
13 points can be accomplished by 2 field goals and 1 touchdown, and
14 points can be accomplished by 2 touchdowns.

Inductive step:
Suppose k ≥ 14 and that, for each 12 ≤ i ≤ k, it is possible to attain i points
through field goals and touchdowns.
(Goal: Show that k + 1 points can be accomplished through field goals and
touchdowns.)
Consider the possibility of scoring (k + 1) − 3 points (that is, k − 2 points).
Since k ≥ 14, we know that 12 ≤ k − 2 ≤ k.
Hence, by our inductive hypothesis, k − 2 points can be accomplished by some
number f of field goals and some number t of touchdowns.
Consequently, scoring one more field goal would yield k + 1 points.
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That is, k + 1 points can be accomplished by f + 1 field goals and t
touchdowns. �

Why does the proof in Example 4.28 consider three base cases? The reason
can be seen in the inductive step. Three base cases are considered since a field
goal is worth 3 points. Consequently, if a team can score 3 fewer than some de-
sired number of points, then they need only score an additional field goal to get
the desired total. Alternatively, we could have considered seven base cases and
made similar use of a touchdown. However, using the smaller point value was
certainly more efficient.

Formally, Example 4.28 is the statement that

∀ n ≥ 12, ∃ f, t ∈ N such that 3 f + 7t = n.

However, the connection with football perhaps made it more digestible for some.

SECTION 4.5 Exercises
1. Let {sn} be the sequence defined by

s0 = 0, s1 = 1, and ∀ n ≥ 2, sn = 3sn−1 − 2sn−2.

Show: ∀ n ≥ 0, sn = 2n − 1.
2. Let {sn} be the sequence defined by

s0 = 2, s1 = 6, and ∀ n ≥ 2, sn = 6sn−1 − 8sn−2.

Show: ∀ n ≥ 0, sn = 2n(2n + 1).
3. Let {sn} be the sequence defined by

s0 = −1, s1 = 0, s2 = 12 and ∀ n ≥ 3, sn = 10sn−1 − 31sn−2 + 30sn−3.

Show: ∀ n ≥ 0, sn = 5n − 3n − 2n.
4. Let {sn} be the sequence defined by

s0 = 2, s1 = 5, s2 = 5 and ∀ n ≥ 3, sn = 14sn−1 − 59sn−2 + 70sn−3.

Show: ∀ n ≥ 0, sn = 2n + 2 · 5n − 7n.
5. Let {sn} be the sequence defined by

s0 = 1, s1 = 3, and ∀ n ≥ 2, sn = 3sn−2 − 2sn−1.

Show: ∀ n ≥ 0, sn is odd.
6. Let {sn} be the sequence defined by

s0 = 0, s1 = 2, s2 = 6 and ∀ n ≥ 3, sn = sn−3 − sn−2 + sn−1.

(a) Show: ∀ n ≥ 0, sn is even.
(b) Find s6543. (Hint: Find a pattern.)
(c) State and prove the pattern used in part (b).
(d) How many base cases were used in part (c)? in part (a)?

7. Let {sn} be the sequence defined by
s0 = −1, s1 = 0, and ∀ n ≥ 2, sn = −6sn−2 + 5sn−1.

(a) Find s2, s3, s4.
(b) Show: ∀ n ≥ 0, sn = 2 · 3n − 3 · 2n.
(c) Show: {sn} is increasing.

Hint: Consider sn+1 − sn.
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8. The Lucas sequence {Ln}n≥1 is a sequence very similar to the Fibonacci
sequence, but with different initial terms. It is defined by

L1 = 1, L2 = 3, and ∀ n ≥ 3, Ln = Ln−2 + Ln−1.

(a) Find L1, . . . , L6.
(b) Why would L1 = 1, L2 = 2 not be an interesting choice for the initial

terms of the Lucas sequence?

(c) Show: ∀ n ≥ 1, Ln =
(

1+
√

5
2

)n

+
(

1−
√

5
2

)n

.

9. The following is a recursive function that encodes a given array (of
specified length) of single-digit positive integers into a string of digits.

Function Encode(n, [a1, . . . , an])
\begin

If n = 0, then Print 0.
If n = 1, then Print a1.
Otherwise,

\begin
Encode(n− 1, [a2, . . . , an]),
Encode(n− 2, [a2, . . . , an−1]),
Encode(n− 1, [a1, . . . , an−1]).
\end.

\end.

If sn denotes the length of the resulting string when an array of length n is
input, then

s0 = 1, s1 = 1, and ∀ n ≥ 2, sn = 2sn−1 + sn−2.

(a) Find s2, s3, s4.

(b) Show: ∀ n ≥ 0, sn = 1
2 ((1+√2)n + (1−√2)n).

(c) Find the string resulting from the 3-digit input array [5, 2, 7].

10. Let {sn} be the sequence defined by s0 = 1 and ∀ n ≥ 1, sn = 3− sn−1.

Show: ∀ n ≥ 0, sn =
{

2 if n is even,
1 if n is odd.

Is strong induction needed for this?

11. Show: ∀ n ≥ 0,
∑n

i=0(−1)i =
{

1 if n is even,
0 if n is odd.

12. Let {sn} be the sequence defined by

s0 = 3, s1 = 3+
√

2, and ∀ n ≥ 2, sn = 2sn−1 + sn−2.

Show: ∀ n ≥ 0, sn = 2(1+√2)n + (1−√2)n.
13. (a) Show that any dollar amount of $4 or greater can be achieved with

$2 bills and $5 bills. That is, only $1 and $3 are unachievable.
(b) Would using $4 bills instead of $5 bills increase or decrease the number
of dollar amounts that cannot be achieved? Explain.

14. A vending machine dispenses only 5¢ stamps and 12¢ stamps.
(a) Show that any monetary value of 44¢ or greater can be obtained from
stamps from this machine.
(b) Using this machine to get stamps, what is the largest amount of extra
postage (beyond the value required) that one would ever have to put on an
item to be mailed?
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15. A hardware store is promoting sales of cement blocks of heights 4 inches
and 9 inches to college students. The suggestion is that such blocks can be
stacked to form the legs of a table with a sheet of plywood 1 inch thick
used as the top. The claim is that a table of any (integer) height in inches of
25 or greater can be achieved by this method. Prove that the store’s claim is
true. Do not forget about the plywood.

16. Show that all monetary values except 1¢, 2¢, 4¢, and 7¢ can be obtained
from 3¢ and 5¢ stamps. Compare Exercise 14.

�17. (a) Show that any monetary value of 20¢ or greater that is a multiple of 5¢
can be achieved with dimes and quarters.
(b) If exactly four pennies are available as well, then what monetary values
are unachievable?

�18. Show that any even number of points greater than 2 can be achieved with
items worth 4 points and 6 points.

For Exercises 19 through 24, find the standard factorization of the given integer.
19. 1260. 20. 1210.
21. 3549. 22. 70125.
23. 12!. 24.

(18
3

)
.

25. Show: ∀ n ≥ 2, there is a prime p such that p2 | n2

(a) by mimicking the proof of Theorem 3.5 and not using the Fundamental
Theorem of Arithmetic.

(b) by using the Fundamental Theorem of Arithmetic.
26. Show: ∀ n ≥ 2, there is a prime p such that p3 | n3

(a) by mimicking the proof of Theorem 3.5 and not using the Fundamental
Theorem of Arithmetic.

(b) by using the Fundamental Theorem of Arithmetic.
�27. Let p1, p2, . . . , pm be primes and e1, e2, . . . , em, f1, f2, . . . , fm be natural

numbers. Show that gcd
(

p1
e1 p2

e2 · · · pm
em , p1

f1 p2
f2 · · · p fm

m

) =
p1

min{e1, f1} p2
min{e2, f2} · · · pm

min{em, fm} .
�28. Let m and n be integers, not both zero. Show that lcm(m, n) = |mn|

gcd(m,n) .

29. Show that ∀ a , b ∈ Z+, gcd(a2, b2) = (gcd(a , b))2.
30. Show: ∀ a , b, d ∈ Z+, d = gcd(a , b) if and only if there exist relatively prime

integers x and y such that a = dx and b = dy.
�31. (a) Unique Binary Representations of Nonnegative Integers.

Show: Each integer n > 0 has a unique representation in the form

n = bm · 2m + bm−1 · 2m−1 + · · · + b1 · 2+ b0,

where m ≥ 0, bm = 1, and bi = 0 or 1 for each 0 ≤ i ≤ m− 1. That is, the
string bmbm−1 · · · b1b0 is the binary representation of n.
(b) Unique Base s Representations of Nonnegative Integers.
Show: Each integer n > 0 has a unique representation in the form

n = am · sm + am−1 · sm−1 + · · · + a1 · s + a0,

where m ≥ 0, am �= 0, and ai ∈ {0, 1, . . . , s − 1} for each 0 ≤ i ≤ m. That is,
the string amam−1 · · · a1a0 is the base s representation of n.
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�32. Given an integer n and a base s, show that the following algorithm returns
the base s representation amam−1 · · · a1a0 of n. That is, n = amsm +
am−1sm−1 + · · · + a1s + a0.

Let m = 0.
While n > 0,

\begin
Let am = n mod s.
Let n = n div s.
Let m = m+ 1.
\end.

Return amam−1 · · · a1a0.

33. Observe that n(n+ 1) is a factor of the numerator in each of the formulas

n∑
i=1

i = n(n+ 1)
2

,
n∑

i=1

i2 = n(n+ 1)(2n+ 1)
6

, and
n∑

i=1

i3 =
[

n(n+ 1)
2

]2

.

Show that, for all integers m ≥ 1 and n ≥ 1, the product n(n+ 1) is a factor
of the numerator in the formula for

∑n
i=1 im.

Hint: Use Theorem 4.4 and strong induction on m.

In Exercises 34 through 40, we explore sum of the beautiful identities involving
the Fibonacci and Lucas numbers.

�34. Show: ∀ n ≥ 0,
n∑

i=0

F
2
i = Fn Fn+1. That is, the sum of the squares of any

initial string of the Fibonacci sequence can be easily obtained.

35. Show: ∀ n ≥ 0,
n∑

i=0

Fi = Fn+2 − 1. That is, the sum of any initial string of

the Fibonacci sequence can be easily obtained.

�36. Show: ∀ n ≥ 0, Fn =
n div 2∑

i=0

(
n− i

i

)
.

Hint: Consider odd and even n separately.

37. Show: ∀ n ≥ 2,
[

1 1
1 0

]n

=
[

Fn Fn−1
Fn−1 Fn−2

]
. The relevant matrix

multiplication is defined prior to Exercise 31 of Section 4.3.
38. Show: ∀ n ≥ 2, Ln = Fn + Fn−2.

See Exercise 8 for the definition of Ln.
�39. Show ∀ n ≥ 0 that Fn and Fn+1 are relatively prime.
�40. Show ∀ n ≥ 1 that Fn and Ln+1 have the same parity.

See Exercise 8 for the definition of Ln.
41. Prove the Principle of Strong Induction (Theorem 4.7) by mimicking the

proof of the Principle of Induction (Theorem 4.6) that uses the Well-
Ordering Principle.

42. Prove the existence result in the Fundamental Theorem of Arithmetic
(Theorem 4.8) by using the Well-Ordering Principle and Theorem 3.5.

43. Rugby. A rugby team may score a try, which is worth 5 points, and only
after doing so, they may score a conversion goal, which is worth 2 points.
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Assuming that these are the only scoring possibilities, show that 23 points
is not achievable but that any number of points from 24 on up is
achievable. That is, show that ∀ n ≥ 24, ∃ t, c ∈ N with t ≥ c such that
5t + 2c = n. Is there a certain number of base cases that must be
considered?

�44. Frobenius Coin Exchange Problem. Given relatively prime positive
integers a and b (thought of as the monetary values of two different coins),
(a − 1)(b − 1) − 1 is the largest value that cannot be achieved as a linear
combination ax + by for natural numbers x and y. For example, in Exercise
16, we have a = 3 and b = 5, and we see that 7 is the largest unachievable
value. Observe that this formula also agrees with the result in Exercise 14
that 43 is the largest unachievable value when a = 5 and b = 12. In gen-
eral, do the following:
(a) Show that (a − 1)(b − 1) − 1 cannot be achieved.
(b) Show that (a − 1)(b − 1) can be achieved.

4.6 The Binomial Theorem
The Binomial Theorem is a result that tells us how to expand an expression of
the form

(a + b)n for some integer n ≥ 0.

In fact, it expresses the pattern that starts to show itself for the first few values
of n.

(a + b)0 = 1
(a + b)1 = a + b
(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

...
...

(4.19)

One feature to observe in the developing pattern is that in each row, the powers
of a decrease from left to right, while the powers of b increase. Another feature
is how the coefficients change.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
...

This infinite array of integers is known as Pascal’s triangle. Its beauty comes
from the way in which each subsequent row can be determined from the previ-
ous. To express this, let cn,k denote the kth entry in the nth row. Here, both n and
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k start counting from 0.

c0,0
c1,0 c1,1

c2,0 c2,1 c2,2
c3,0 c3,1 c3,2 c3,3

c4,0 c4,1 c4,2 c4,3 c4,4
...

The edges of the triangle display the identity

∀ n ≥ 0, cn,0 = cn,n = 1.

The internal entries of each row are determined from the previous row by Pascal’s
identity

∀ n ≥ 2 and 1 ≤ k ≤ n− 1, cn,k = cn−1,k−1 + cn−1,k . (4.20)

For example, the entries in the 5th row of Pascal’s triangle are the following
values of cn,k .

c5,0 c5,1 c5,2 c5,3 c5,4 c5,5

The internal entry c5,3 is determined by (4.20) as

c5,3 = c4,2 + c4,3 = 4+ 6 = 10.

In a similar way, each internal entry in the 5th row can be determined from
entries in the 4th row. Of course, the initial and final entries are defined to be 1.
Consequently, the 5th row of Pascal’s triangle is seen to be

1 5 10 10 5 1.

The disadvantage of this method is that if the 100th row is desired, then rows
0 through 99 first have to be computed. Fortunately, in practice, all that extra
work is not necessary. This is a consequence of the fact that the entries in Pascal’s
triangle turn out to be the binomial coefficients. That is, cn,k =

(n
k

)
.(0

0

)(1
0

) (1
1

)(2
0

) (2
1

) (2
2

)(3
0

) (3
1

) (3
2

) (3
3

)(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)
...

This equality is certainly apparent in the first few rows, if we compute the values(n
k

)
. However, a careful proof comes from the identities

∀ n ≥ 0,
(n

0

) = (n
n

) = 1 (4.21)

∀ n ≥ 2 and 1 ≤ k ≤ n− 1,
(n

k

) = (n−1
k−1

)+ (n−1
k

)
. (4.22)

Equation (4.22) is Pascal’s identity, and we also encountered it in equation (4.18)
of Section 4.4. Of course, equation (4.22) agrees with equation (4.20).

We now have all of the pieces that go into the Binomial Theorem. In fact,
the binomial coefficients are so named because of their role as coefficients in the
Binomial Theorem.
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THEOREM 4.9 The Binomial Theorem

Let a , b ∈ R and n ∈ Z+. Then2,

(a + b)n =
n∑

i=0

(
n

i

)
an−i bi

Proof
More than enough base cases, namely n = 0, 1, 2, 3, 4, were confirmed in (4.19).
Hence, we move right to the inductive step.
Suppose k ≥ 1 and that (a + b)k =∑k

i=0

(k
i

)
ak−i bi .

(Goal: (a + b)k+1 =∑k+1
j=0

(k+1
j

)
ak+1− j b j .)

Observe that

(a + b)k+1 = (a + b)(a + b)k

= (a + b)
k∑

i=0

(
k

i

)
ak−i bi ← By the inductive hypothesis

=
k∑

i=0

(
k

i

)
ak+1−i bi +

k∑
i=0

(
k

i

)
ak−i bi+1

=
k∑

j=0

(
k

j

)
ak+1− j b j +

k+1∑
j=1

(
k

j − 1

)
ak+1− j b j

=
⎛
⎝ak+1 +

k∑
j=1

(
k

j

)
ak+1− j b j

⎞
⎠+

⎛
⎝ k∑

j=1

(
k

j − 1

)
ak+1− j b j + bk+1

⎞
⎠

= ak+1 +
⎛
⎝ k∑

j=1

[(
k

j

)
+
(

k

j − 1

)]
ak+1− j b j

⎞
⎠+ bk+1

= ak+1 +
⎛
⎝ k∑

j=1

(
k + 1

j

)
ak+1− j b j

⎞
⎠+ bk+1

=
k+1∑
j=0

(
k + 1

j

)
ak+1− j b j .

�

Pascal’s identity is used in the second to last equality of the inductive step. In
that case, the form of Pascal’s identity expressed in (4.18) from Section 4.4 may
be the more convenient reference. Note that the terms ak+1 and bk+1 need to be
split off so that Pascal’s identity can be applied for the indices in the remaining
sums. This is analogous to the fact that the 1’s on the edges of Pascal’s triangle
need to be specified separately from the description of the internal numbers.

One obvious use of the Binomial Theorem is in performing algebraic expan-
sions.

EXAMPLE 4.29 Use the Binomial Theorem to expand each of the following.

(a) Expand (x + y)6.

2Any occurrence of 00 here is taken to have the value 1.
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Solution. We use a = x, b = y, and n = 6 in Theorem 4.9.

(x + y)6 =
6∑

i=0

(
6
i

)
x6−i yi

=
(

6
0

)
x6 +

(
6
1

)
x5 y1 +

(
6
2

)
x4 y2 +

(
6
3

)
x3 y3

+
(

6
4

)
x2 y4 +

(
6
5

)
x1 y5 +

(
6
6

)
y6

= x6 + 6x5 y1 + 15x4 y2 + 20x3 y3 + 15x2 y4 + 6x1 y5 + y6. ■

(b) Expand (2x + 3y)5.

Solution. We use a = 2x, b = 3y, and n = 5 in Theorem 4.9.

(2x + 3y)5 =
5∑

i=0

(
5
i

)
(2x)5−i (3y)i

=
(

5
0

)
(2x)5 +

(
5
1

)
(2x)4(3y) +

(
5
2

)
(2x)3(3y)2

+
(

5
3

)
(2x)2(3y)3 +

(
5
4

)
(2x)(3y)4 +

(
5
5

)
(3y)5

= 25x5 + 5 · 24 · 3x4 y+ 10 · 23 · 32x3 y2

+ 10 · 22 · 33x2 y3 + 5 · 2 · 34xy4 + 35 y5

= 32x5 + 240x4 y+ 720x3 y2 + 1080x2 y3 + 810xy4 + 243y5. ■

(c) Expand (x + 1)n.

Solution. We use a = x and b = 1 in Theorem 4.9.

(x + 1)n =
n∑

i=0

(
n

i

)
xn−i 1i =

n∑
i=0

(
n

i

)
xn−i

= xn + nxn−1 +
(

n

2

)
xn−2 + · · · + nx + 1. ■

(d) Expand (x − y)n.

Solution. We use a = x and b = −y in Theorem 4.9.

(x − y)n = (x + (−y))n =
n∑

i=0

(
n

i

)
xn−i (−y)i

=
n∑

i=0

(−1)i

(
n

i

)
xn−i y i

= xn − nxn−1 y+
(

n

2

)
xn−2 y2 −

(
n

3

)
xn−3 y3 + · · ·

+ (−1)n−1nxyn−1 + (−1)n yn.

Note that the first term has a positive coefficient, and then the signs
alternate. Of course, the sign of the last term depends on the parity of n.

■
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Another way in which the Binomial Theorem may be used is to find, with
little effort, a particular coefficient in a polynomial that has not been expanded.

EXAMPLE 4.30 Find the coefficient of x40 in (1+ 2x)50.

Solution. By the Binomial Theorem,

(1+ 2x)50 =
50∑

i=0

(
50
i

)
150−i (2x)i =

50∑
i=0

(
50
i

)
2i xi .

Consequently, the coefficient of x40 (that is, when i = 40) is(
50
40

)
240. ■

The ability to quickly extract a particular coefficient from a factored polyno-
mial without having to expand the polynomial entirely is of great use in
Section 7.3, where polynomials are used to solve counting problems. The func-
tions Expand and Coefficient in Mathematica, and the functions expand and
coeff in Maple, may also be of some help.

For our final applications, we see how the Binomial Theorem can be used to
give quick proofs of some beautiful identities.

EXAMPLE 4.31 Verify each of the following identities.

(a) ∀ n ≥ 0,
n∑

i=0

(
n

i

)
= 2n.

Proof
By Theorem 4.9,

2n = (1+ 1)n =
n∑

i=0

(
n

i

)
1n−i 1i =

n∑
i=0

(
n

i

)
. �

(b) ∀ n ≥ 0,
n∑

i=0

(
n

i

)
2i = 3n.

Proof
By Theorem 4.9,

3n = (1+ 2)n =
n∑

i=0

(
n

i

)
1n−i 2i =

n∑
i=0

(
n

i

)
2i . �

(c) ∀ n ≥ 1,
n∑

i=0

(−1)i

(
n

i

)
= 0.

Proof
By Theorem 4.9,

0 = (1− 1)n =
n∑

i=0

(
n

i

)
1n−i (−1)i =

n∑
i=0

(−1)i

(
n

i

)
. �
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SECTION 4.6 Exercises
Each of the following exercises can be completed by hand. Those requesting
computations might also be done with the aid of a symbolic calculator such as
Mathematica or Maple. However, the results should then be compared with
hand computations.
1. Hexagon Identity. Let n, k ∈ Z with 1 ≤ k ≤ n− 1.

Show:
(n−1

k−1

)( n
k+1

)(n+1
k

) = (n−1
k

)( n
k−1

)(n+1
k+1

)
.

These binomial coefficients form a hexagon in Pascal’s triangle.
2. Second-Order Pascal’s Identity. Let n, k ∈ Z with 2 ≤ k ≤ n− 2.

Show:
(n−2

k−2

)+ 2 · (n−2
k−1

)+ (n−2
k

) = (n
k

)
.

What shape is formed by the binomial coefficients in this identity?

In Exercises 3 through 22, use the Binomial Theorem to expand the given
expressions, and perform any other requested computations.

3. (x + y)5. 4. (x + y)7.

5. (3x + y)6. 6. (x + 2y)5.

7. (2x − y)5. 8. (x − 3y)6.
9. (x − 1)n. 10. (x + 2)n.

11. (a) Expand (x + 1
2 )n.

(b) What is the coefficient of x5?

12. (a) Expand (x − 1
3 )n.

(b) What is the coefficient of x6?

13. (x2 + y2)4. 14. (x2 + y2)5.

15. (3x2 + y3)5. 16. (x3 + 2y2)4.

17. (a) Expand (x2 + 1)n.
(b) What is the coefficient of x8?

18. (a) Expand (x2 − y2)n.
(b) What is the coefficient of y10?

19. (n− 1)n. 20. (n+ 1)n.
�21. The expression p(n) = (1+ 1

n )n gives a better and better approximation for
the Euler number e ≈ 2.718, as n gets larger. (a) Compute p(100), p(1000),
and p(10000), and observe how the approximation improves. (b) Give an
expression for the expansion of p(n).

�22. The expression q (n) = (1− 1
n )n gives a better and better approximation for

the reciprocal of the Euler number 1
e ≈ 0.3679, as n gets larger. (a) Compute

q (100), q (200), and q (300), and observe how the approximation improves.
(b) Give an expression for the expansion of q (n).

23. Find the coefficient of x60 y40 in (3x + 2y)100.
24. Find the coefficient of x493 y7 in (x − 2y)500.
25. Find the coefficient of x20 y1170 in (2x2 + y3)400.
26. Find the coefficient of x840 y40 in (x3 − 2y2)300.
27. Find the coefficient of x50 y50 in (x2 + y2)30.
28. Find the coefficient of x35 y15 in (x2 + y2)50.
29. Let a , b ∈ N. A game consists of tossing a coin. If heads is obtained, then a

dollars is won. If tails is obtained, then b dollars is lost. If the coin is tossed
10 times, then the probability of winning exactly w dollars equals 1

210 times
the coefficient of xw in (xa + x−b)10. Determine the probability of winning
$4 in each of the following cases.
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(a) a = 1, b = −1. (b) a = 2, b = −2.
(c) a = 3, b = −1.

30. Let a , b ∈ N. A vending machine dispenses stamps worth 3¢ and 7¢. A
man has inserted a dollar into the machine, and 12 times he randomly
presses either the button to receive a 3¢ stamp or the button to receive a 7¢
stamp. If at the end he retrieves his change and the 12 stamps that he
purchased, then the probability that he ends up with s¢ in stamps is 1

212

times the coefficient of xs in (x3 + x7)12. Determine the probability that he
ends up with s¢ in stamps in each of the following cases.
(a) s = 68¢. (b) s = 60¢.

In Exercises 31 through 42, use the Binomial Theorem to verify the given
identities.

31.
n∑

i=0

(
n

i

)
8i = 9n. 32.

n∑
i=0

(
n

i

)
2n−i 3i = 5n.

33. Since base twelve numbers use the “digits” 0, . . . , 9, a , b, it is natural to
classify such numbers according to how many of their digits are “letters”
(a or b). Among all base twelve numbers of length n, for each 0 ≤ i ≤ n,
there are

(n
i

)
10n−i 2i that contain exactly i letters. Summing over all

0 ≤ i ≤ n, we see that there are
∑n

i=0

(n
i

)
10n−i 2i possible base 12 numbers

of length n. A much easier formula is given by 12n. Verify that∑n
i=0

(n
i

)
10n−i 2i = 12n.

34. A DNA (deoxyribonucleic acid) strand contains a sequence of nitrogen
bases, each chosen from one of cytosine (C), guanine (G), thymine (T), or
adenine (A). Scientists studying a particular class of genes are categorizing
strands according to the number of occurrences of the nitrogen base T.
Among stands of length n, for each 0 ≤ i ≤ n, there are

(n
i

)
3n−i strands

containing exactly i occurrences of T. Summing over all 0 ≤ i ≤ n, we see
that there are

∑n
i=0

(n
i

)
3n−i possible DNA sequences of length n. A much

easier formula is given by 4n. Verify that
∑n

i=0

(n
i

)
3n−i = 4n.

35.
n∑

i=0

(
n

i

)
5n−i 3i = 23n. 36.

n∑
i=0

(
n

i

)
22i 3n−i = 7n.

37.
n∑

i=0

(−1)i

(
n

i

)
3n−i = 2n. 38.

n∑
i=0

(−1)i

(
n

i

)
2n−i 3i = (−1)n.

39. (a) Use the fact that 6 = 2+ 4 to prove
n∑

i=0

(
n

i

)
2n+i = 6n.

(b) This identity is 2n times what simpler identity?

40. (a) Use the fact that −2 = 2− 4 to prove
n∑

i=0

(−1)i

(
n

i

)
2n+i = (−2)n.

(b) This identity is 2n times what simpler identity?

41.
n∑

i=0

(−1)i

(
n

i

)(
1
3

)i

=
(

2
3

)n

. 42.
n∑

i=0

(
n

i

)(
1
2

)i

=
(

3
2

)n

.
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�43. Let a and b be integers that are not both zero, and let n be a positive
integer. Show: If gcd(a , b) = 1, then gcd(a , bn) = 1.
Hint: If we can write by = 1− ax, then how can we write bn yn?

�44. Prove Theorem 4.4.
Hint: Follow these steps.
(1) Observe that

(i + 1)m+1 − im+1 = 1+
⎡
⎣m−1∑

j=1

(
m+ 1

j

)
i j

⎤
⎦+ (m+ 1)im. (4.23)

(2) Sum both sides of equation (4.23) from i = 1 to n, and observe that the
left-hand side gives −1+ (n+ 1)m+1 while the right-hand side gives

n+
⎡
⎣ n∑

i=1

⎛
⎝m−1∑

j=1

(
m+ 1

j

)
i j

⎞
⎠
⎤
⎦+ (m+ 1)

n∑
i=1

im.

(3) Solve this resulting equation for
∑n

i=1 im.

CHAPTER 4 Review Problems

1. Find the first five terms in the sequence {sn} given by ∀ n ≥ 3, sn = 2n
(n

3

)
.

2. Find the first five terms in the sequence {sn} given by s1 = 3, and
∀ n ≥ 2, sn = (sn−1)2 − 4.

3. Find a closed formula for the sequence 1
2 , 2

4 , 3
8 , 4

16 , 5
32 , . . . .

4. Find a recursive formula for the sequence −6, 6, 18, 30, 42, . . . .

5. Find a closed formula for the sequence −2, 6, −18, 54, −162, . . . .

6. Compound Interest. In an account earning annual interest rate r , for
which interest is compounded m times per year (for example, if interest is
compounded monthly, then m = 12), the periodic interest rate is r

m .
(a) Assume that r = 0.06, m = 12, and an initial investment of $500 is

made. To what will that investment grow after 2 months? after 2 years?
(b) In general, if an initial investment of s0 = P dollars is made, then to

what future value st will the balance grow after t years?
7. Reindex the sequence in Exercise 1 so that the indexing starts at 0.
8. Given an index k ≥ 1, find an expression for sk+1 from the sequence in

Exercise 2.
9. Write 12+ 24+ 48+ 96+ · · · + 3 · 2n−1 in summation notation.
10. Compute 1+ 2+ 3+ 4+ · · · + 500.
11. Compute 1+ 4+ 16+ 64+ · · · + 410.

12. Compute
100∑
i=1

(3i2 − i + 2).

13. Compute
n∑

i=1

(i − 2)2.
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14. Compute
n∑

i=0

(−2)i .

15. Mortgage. A mortgage of M dollars with a 6% annual interest rate and a
$500 monthly payment has, after t years a balance st, given by

st = M(1.005)12t − 500(1.005)12t−1 − · · · − 500(1.005) − 500.

(a) Assume that M = $80,000. Then what is the balance due after 10 years?
after 20 years?

(b) What amount M can be paid off exactly at the end of 30 years?

16. Consider the sum
203∑
i=5

2
3i

.

(a) Reindex the sum so that the indexing starts at 0.
(b) Compute the sum.

17. Show: ∀ n ≥ 9, n! > 4n. 18. Show: ∀ n ≥ 6, n2 > 4(n+ 2).
�19. Show: ∀ n ≥ 0, 3n ≥ n2 + 1. 20. Show: ∀ n ≥ 0, 3 | (n3 − 4n+ 6).
21. Show: ∀ n ≥ 0, 6 | (7n − 1). 22. Show: ∀ n ≥ 0, 3 | (5n − 2n).
23. Annuity. In an annuity earning a 6% annual interest rate and receiving a

$300 monthly payment, the balance at the end of each month is increased
by 0.5% just prior to adding the $300 payment. That is, the balance sn after
n months satisfies the recurrence relation

s0 = 0 and ∀ n ≥ 1, sn = 1.005sn−1 + 300.

(a) Find s1, s2, s3.
(b) Show: ∀ n ≥ 0, sn = 60000(1.005n − 1).

24. Let a , x1, x2, . . . be real numbers.
Show: ∀ n ≥ 2, a (x1 + · · · + xn) = ax1 + · · · + axn.
Hint: Use the Distributive Law for the base case, and additionally use
associativity for the inductive step.

25. Show that any nonempty finite subset of R has a minimum element. That
is, for any finite set S such that S ⊂ R, there is an element m ∈ S such that
m = min(S).
Hint: Use induction on |S|.

26. Show: ∀ n ≥ 1,
n∑

i=1

(
1
i
− 1

i + 1

)
= 1− 1

n+ 1
.

27. Show: ∀ n ≥ 1, 4+ 7+ 10+ · · · + (3n+ 1) = n
2 (3n+ 5).

28. Show: ∀ n ≥ 1,
n∑

i=1

3i = 3
2

(3n − 1).

29. Show: ∀ n ≥ 0,
n∑

i=0

(i + 1)2i = n2n+1 + 1.

30. Show: ∀ n ≥ 1,
n∑

i=1

(3i2 + 5i) = n(n+ 1)(n+ 3).
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31. Show: ∀ n ≥ 1,
n∑

i=1

i4i = 4
9

[4n(3n− 1) + 1].

32. Let b, a1, a2, a3, . . . be real numbers with b > 0.

Show: ∀ n ≥ 1, b
∑n

i=1
ai =

n∏
i=1

bai .

33. Let {sn} be the sequence defined by

s0 = 6, s1 = 3, and ∀ n ≥ 2, sn = 2sn−2 + sn−1.

Show: ∀ n ≥ 0, 3 | sn.
34. Let {sn} be the sequence defined by

s0 = 7, s1 = 32, and ∀ n ≥ 2, sn = −20sn−2 + 9sn−1.

Show: ∀ n ≥ 0, sn = 4 · 5n + 3 · 4n.
35. Let {sn} be the sequence defined by

s0 = 5, s1 = 16, and ∀ n ≥ 2, sn = 6sn−1 − 8sn−2.

Show: ∀ n ≥ 0, sn = 2n+1 + 3 · 22n.
36. If a vending machine dispenses only 3¢ and 8¢ stamps, then any monetary

value of 14¢ or greater can be obtained from this machine.
(a) How could 20¢ be obtained?
(b) Prove the general result.

37. Display the standard factorization for 1001.
38. Display the standard factorization for 78408.

39. Display the standard factorization for
(50

9

)
.

40. Recall that the Lucas sequence {Ln}n≥1, as defined in Exercise 8 of
Section 4.5, is 1, 3, 4, 7, 11, . . ..

Show: ∀ n ≥ 1,
n∑

i=1

Li = Ln+2 − 3.

41. Let {sn} be the sequence defined by

s0 = 0, s1 = 6, and ∀ n ≥ 2, sn = 3(4sn−1 − 9sn−2).

Show: ∀ n ≥ 0, sn = 3n(3n − 1).
42. Use the Binomial Theorem to expand (x + y)4.
43. Use the Binomial Theorem to expand (3x − 4y)8.
44. Use the Binomial Theorem to expand (x2 − y2)5.
45. Find the coefficient of x10 in (x − 2)100.
46. Find the coefficient of x25 y75 in (3x − y)100.
47. Find the coefficient of x30 y40 in (7x + 2y)80.
48. You are on a team of 6 that is completing a large job by splitting it into

smaller tasks and having an individual team member volunteer for each
task. From your point of view, what is important is how many tasks you
end up doing. If there are a total of n tasks, then for each 0 ≤ i ≤ n, the
number of possible task assignments in which you are responsible for i
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tasks is
(n

i

)
5i . Summing over all 0 ≤ i ≤ n, we see that there are

∑n
i=0

(n
i

)
5i

different possible task assignments for the job. A much easier formula is
given by 6n. Use the Binomial Theorem to verify that
∀ n ≥ 0,

∑n
i=0

(n
i

)
5i = 6n.

49. Show: ∀ n ≥ 0,
n∑

i=0

(
n

i

)
22i = 5n.

50. Show: ∀ n ≥ 0,
n∑

i=0

(−1)i

(
n

i

)
3n−i 4i = (−1)n.
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Relations

RELATIONS PROVIDE the means of comparing mathematical objects, such as sets

or numbers. In some cases, we seek to decide whether one object is bigger or smaller

than another in terms of some measure of size. In other cases, we care only whether

two objects ought to be considered the same relative to some property. Relations that

keep track of some ordering are called partial order relations, and those that keep track

of some notion of sameness are called equivalence relations.

Functions are another special kind of relation. They assign values from one set to

another. Via input values and output values, a function provides a link between two

sets. Among the important kinds of functions we study are one-to-one functions, onto

func tions, and bijective functions. As we shall see, bijections provide the strongest

communication between a pair of sets and enable us to pair off the elements in one set

with another. By pairing off elements, we can decide whether two sets have the same

number of elements. Thus, we formally study the cardinality of sets.

Throughout this chapter, the general notions associated with relations are applied to

relational databases. Beyond the simple observation that databases provide examples

of relations, the implementations of natural database queries can be understood

through general constructs for relations. The utility of hash functions and tables is also

addressed.

5.1 General Relations
The previous chapters have utilized notations such as x ∈ A, x < y, and a | b.
In these cases, the symbols ∈, <, and | express a relationship between the two
items they separate. Between members of a family there exist relationships, such
as parent and child. Within data collections, certain pieces of data are related to
others. Here, we take up a more formal study of relationships.

DEFINITION 5.1

Given sets X and Y, a relation from X to Y is a subset R of X× Y. When (x, y) ∈ R,
we say that x is related to y (by R) and write x R y. Similarly, (x, y) �∈ R is denoted
by x /R y.

The relations described in Definition 5.1 are sometimes called binary rela-
tions, since X × Y is a product of two sets. More generally, n-ary relations are
subsets of n-fold products. Since, in this book, we focus on binary relations, they

222
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are simply referred to as relations. General n-ary relations are encountered here
only in the context of databases, as we shall see in Table 5.2 on page 226.

EXAMPLE 5.1 (The “Is an Advisee of” Relation). Let X be the set of students at a certain
college, and let Y be its faculty. Define the relation R from X to Y by

x R y if and only if x is an advisee of y.

Suppose we have

R = { (Megan Johnson, Dr. Gauss)
(Richard Kelley, Dr. Dijkstra)
(Charles Murphy, Dr. Gauss)
(Susan Brower, Dr. Euler)
(Martha Lang, Dr. Dijkstra)
(Richard Kelley, Dr. Gauss) }.

For example, Charles Murphy is an advisee of Dr. Gauss, since

(Charles Murphy, Dr. Gauss) ∈ R.

However, Nate Cobb is not an advisee of Dr. Gauss, since

(Nate Cobb, Dr. Gauss) �∈ R.

Here, Nate Cobb happens to be a student with no advisor. At another extreme,
a faculty member may have several advisees. For example, Dr. Gauss has three
advisees. Also, a student with multiple majors may have an advisor for each
major. For example, Richard Kelley has two advisors. ■

We shall also explore several examples of relations of a purely mathematical
nature. For our next example, recall that a zero of a real function1 f is a value a
such that f (a ) = 0.

EXAMPLE 5.2 (The “Is a Zero of” Relation). Let Y be the set of real functions. Define the
relation R from R to Y by

a R f if and only if f (a ) = 0.

That is, a R f means a is a zero of f . For example, suppose f (x) = x2 − 1. Then
−1 R f , since f (−1) = 0. However, 0 /R f , since f (0) �= 0. Note that f /R −1,
since order is important here and ( f, −1) �∈ R× Y. ■

EXAMPLE 5.3 (The “Is an Element of” Relation ∈). Let U be some universal set and Y ⊆ P(U).
To be concrete, consider U = Z and Y = P(Z).
Let

R = {(x, A) : x is an element of A} ⊆ U × Y.

That is,

x R A if and only if x ∈ A.

1Our informal understanding of real functions from Section 1.3 suffices here, before functions
are defined more formally and generally in Section 5.3.
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So R is the relation ∈. Consequently,

x /R A if and only if x �∈ A.

For example, if U = Z and Y = P(Z), then 0 R N since 0 ∈ N. However, 0 /R Z+,
since 0 �∈ Z+. ■

EXAMPLE 5.4 (The “Is Less Than” Relation <). Define the relation R from R to R by

x R y if and only if x is less than y.

That is, R is the relation <. Formally, the symbol < represents a subset of
R× R, as just described. For example, 2 R 4 since 2 < 4. That is, (2, 4) ∈ R.
However, 4 /R 2 since 4 �< 2. ■

In Example 5.4, we see an example of a relation from a set X to itself.

DEFINITION 5.2

A relation on a set X is a relation from X to itself.

EXAMPLE 5.5 (The “Is the Father of” Relation). Let X be the set of living male members of a
certain family, and define the relation R on X by

x R y if and only if x is the father of y.

Suppose that X is the set of men listed in Figure 5.1 and that each arrow there
points from a father to his son. For example,

Nicholas R Mark

since Nicholas is the father of Mark. However,

Mark /R Nicholas

since Mark is not the father of Nicholas.

Peter

Daniel Jeffrey David Mark StephenKevin

Fred Gaunce Nicholas Yimin

Figure 5.1 A Family Tree ■

EXAMPLE 5.6 (The “Divides” Relation |). Define the relation R on Z by

a R b if and only if a | b.

For example, 3 R 6 since 3 | 6. However, 6 /R 3 since 6 � | 3. ■
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Further emphasizing the fact that a relation goes from one set to another is
the notion of an inverse, which reverses that direction.

DEFINITION 5.3

The inverse of a given relation R from a set X to a set Y is the relation
R−1 = {(y, x) : y ∈ Y, x ∈ X, and (x, y) ∈ R} from Y to X. That is, ∀ y ∈ Y, x ∈ X,

y R−1 x if and only if x R y.

EXAMPLE 5.7 The inverse of the “is an advisee of” relation from Example 5.1 is the “is an
advisor for” relation R−1 from the faculty Y to the students X given by

y R−1 x if and only if x is an advisee of y

if and only if y is an advisor for x.

For example,

Dr. Dijkstra R−1 Martha Lang,

since Martha Lang is an advisee of Dr. Dijkstra. ■

EXAMPLE 5.8 The inverse of the “divides” relation R on Z is the “is a multiple of” relation
R−1 on Z given by

b R−1 a if and only if a | b. ■

The symbol ! is sometimes used to represent the inverse of ∈; the notation
A! x is read as A “contains” x, and is taken to mean x ∈ A.

Databases
A relational database is a collection of tables. Each table is organized by its
columns, or fields, and in a fixed column, each entry comes from a specific set
of potential data. The rows of a table are also called its records, and a table may
have some positive number of rows or no rows at all. Generally, the columns of a
table represent characteristics of the objects recorded in its rows. For example, if
the objects of interest are advisee-advisor pairings at a college, then one column
would contain the advisees and the other the advisors. Data are entered into a
database by adding a row to some table in the database, and data are deleted by
removing a row.

The Registrar’s Office at a college might keep a database containing tables
like those in Tables 5.1 and 5.2. Very simply, each table is a relation, and its

Student Faculty Member

Megan Johnson Dr. Gauss
Richard Kelley Dr. Dijkstra
Charles Murphy Dr. Gauss
Susan Brower Dr. Euler
Martha Lang Dr. Dijkstra
Richard Kelley Dr. Gauss

Table 5.1 Advisee Assignments
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Faculty Member Course Meeting Time Room

Dr. Gauss Discrete Math MWF 8–9 Kingsbury 314
Dr. Dijkstra Algorithms MWF 10–11 Carnegie 217
Dr. Gauss Number Theory TuTh 8–9:30 Kingsbury 146
Dr. Euler Number Theory MWF 8–9 Carnegie 217

Table 5.2 Class Schedules

columns represent the sets involved in the relation. For example, Table 5.1 is the
“is an advisee of” relation from Example 5.1. Table 5.2 is a relation that specifies
class schedules. For each course, that table lists who is teaching the course, the
name of the course, and when and where it meets. This “class schedule” relation
is a 4-ary relation, since it lists the elements in a subset of the 4-fold product

Faculty× Courses×Meeting Times× Classrooms.

Representing Relations
Since a relation is a set, it might be represented simply by listing its elements, as
in list notation. In relational databases, this approach is adopted by presenting
each element of a relation as a row in a table. Here, we consider other means of
representing a relation that can be more efficient or more digestible.

Arrow Diagrams for Finite Relations. A relation R from a finite set X to a finite
set Y can be displayed pictorially. An arrow diagram for R is constructed by
representing the sets X and Y in disjoint regions and drawing an arrow from an
element x ∈ X to an element y ∈ Y if and only if x R y.

EXAMPLE 5.9 (A Restricted “Is a Zero of” Relation). Let R be the “is a zero of” relation from
the set X = {−2, −1, 0, 1, 2} to the set Y = {x2− 1, x− 2, x2+ x− 2, x2− 3}. That
is, a R f if and only if f (a ) = 0. An arrow diagram for R is shown in Figure 5.2.

�2

�1

0

1

2

x2 � 1

X Y
x � 2

x2 
 x � 2

x2 � 3

Figure 5.2 An Arrow Diagram for the “Is a Zero of” Relation ■

If R is a relation from a finite set X to itself, then, in a more compact way
than an arrow diagram, we can represent R with a directed graph. In fact, the
family tree displayed in Figure 5.1 is a directed graph for the “is the father of”
relation from Example 5.5. In general, given a relation R on a finite set X, a
directed graph, or digraph, for R is obtained by displaying the elements of X
and drawing an arrow from an element x to an element y if and only if x R y.

Directed graphs are introduced in more depth in Section 8.5. Here we simply
make superficial use of digraphs as a means of representing relations.
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EXAMPLE 5.10 (A Restricted “Divides” Relation). Let R be the “divides” relation on the set
X = {1, 2, 3, 4, 6, 12}. That is, a R b if and only if a | b. A digraph for R is shown
in Figure 5.3. For example, there is an arrow from 3 to 6, since 3 | 6. However,
there is no arrow from 3 to 2, since 3 � | 2. Note that each loop represents the fact
that an element is related to itself in this relation.

12

1

4 6

2 3

Figure 5.3 A Digraph for the “Divides” Relation | ■

Representing Finite Relations with Matrices. A relation R from a finite set X
to a finite set Y may be represented by a zero-one matrix. That is, we use a rect-
angular array of numbers, each of whose entries is either 0 or 1. The rows of this
matrix are labeled by the elements of X and the columns by the elements of Y.
For each x ∈ X and y ∈ Y, the entry in row x and column y is assigned the value
1 if x R y and 0 if x /R y.

EXAMPLE 5.11 Let X = {1, 2, 3, 4}, Y = {∅, {1, 2}, {2, 3}}, and R be the “is an element of”
relation from X to Y, defined as in Example 5.3. The matrix

∅ {1, 2} {2, 3}
1

2

3

4

⎡
⎢⎢⎢⎢⎣

0 1 0

0 1 1

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎦

represents R. For example, the entry in row 2 and column {1, 2} is a 1, since
2 ∈ {1, 2}. However, the entry in row 3 and column {1, 2} is a 0, since 3 �∈ {1, 2}.

■

EXAMPLE 5.12 Let X = {1, 2, 3, 4} and R be the “is less than” relation on X, defined as in
Example 5.4. The matrix

1 2 3 4
1

2

3

4

⎡
⎢⎢⎢⎢⎣

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎥⎦

represents R. ■
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If a relation R is represented by a matrix A, then its inverse relation R−1 is
represented by the transpose matrix AT , whose columns are the rows of A (and
whose rows are the columns of A). That is, the entry in row y and column x of
AT is the entry from row x and column y of A. For example, the matrix

1 2 3 4
∅

{1, 2}
{2, 3}

⎡
⎢⎣

0 0 0 0

1 1 0 0

0 1 1 0

⎤
⎥⎦

represents R−1, the inverse of the relation R from Example 5.11.

Graphing Relations on R. Although digraphs and matrices work well for rep-
resenting finite relations, they do not work well for infinite relations. For infinite
relations, we consider a different method that works in the particular case of a re-
lation on the set of real numbers R, which is a common case in our studies. Since
a relation on R is a subset of R× R, it may be drawn in the Cartesian plane.

EXAMPLE 5.13 Let R be the “is less than” relation on X = R from Example 5.4. In the drawing
of the graph of R, all points (x, y) for which x < y are shaded.

y

x

■

EXAMPLE 5.14 Let R be the relation on X = R defined by

x R y if and only if x = y2.

The drawing of the graph of R is a parabola that opens to the right.

y

x

■

For any relation R on R, the graph of R−1 is the reflection of the graph of R
about the line y = x. This follows since ∀ y, x ∈ R,

(y, x) ∈ R−1 if and only if (x, y) ∈ R,

and the point (y, x) is the reflection of the point (x, y).
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EXAMPLE 5.15 Let R be the inverse of the relation x = y2 on X = R from Example 5.14. The
drawing of the graph of R is the reflection of the solid curve in the picture on
the left and is shown on the right.

y

x
(4, 2)

(2, 4)
y

x

Of course, R is the relation y = x2. ■

EXAMPLE 5.16 The inverse of < on X = R is >. The drawing of the graph of the relation >, is
the reflection of that from Example 5.13.

y

x

■

Properties of Relations on Sets
We close this section with a consideration of four basic properties that a relation
on a set might have. These properties play a prominent role in Section 5.2.

DEFINITION 5.4

A relation R on a set X is said to be

(a) reflexive if ∀ x ∈ X,

x R x.

(b) symmetric if ∀ x, y ∈ X,

x R y → y R x.

(c) antisymmetric if ∀ x, y ∈ X,

x R y and y R x → x = y.

(d) transitive if ∀ x, y, z ∈ X,

x R y and y R z → x R z.

Very simply, a relation on a set is reflexive if each element is related to itself.
It is symmetric if the order in which elements are related is interchangeable. If it
is antisymmetric, then two distinct elements can be related in at most one order.
Transitivity means that what one might write as a triple x R y R z can have its
middle element dropped to obtain x R z. Formally, a relation is checked for each
of these properties by appealing to Definition 5.4.



230 P A R T I ■ Proofs

EXAMPLE 5.17 (The “Intersects” Relation). Let X be the set of nonempty subsets of R, and let
R be the relation on X given by

A R B if and only if A∩ B �= ∅.
For each of the properties reflexive, symmetric, antisymmetric, and transitive,
prove or disprove that R has that property.

Solution.
Reflexive: Let A be a nonempty subset of R. Since A∩ A= A �= ∅, it follows that
A R A.
Symmetric: Let A and B be nonempty subsets of R. Suppose A R B. That is,
A∩ B �= ∅. By the commutativity of ∩, we have B ∩ A= A∩ B �= ∅. That is,
B R A.
Not Antisymmetric: Let A= {1, 2} and B = {2, 3}. So A R B and B R A. However,
A �= B.
Not Transitive: Let A= {1, 2}, B = {2, 3}, and C = {3, 4}. So A R B and B R C .
However, A /R C . ■

EXAMPLE 5.18 (The “Divides” Relation on Z+). Let R be the relation on Z+ given by

a R b if and only if a | b.

For each of the properties reflexive, symmetric, antisymmetric, and transitive,
prove or disprove that R has that property.

Solution.
Reflexive: Let a ∈ Z+. Since a = a · 1, we see that a | a . That is, a R a .
Not Symmetric: Let a = 2 and b = 4. So a R b. However, b /R a .
Antisymmetric: Let a , b ∈ Z+. Suppose a | b and b | a . By Exercise 15 of
Section 3.1, we have a = ±b. Since a , b > 0, it must be that a = b.
Transitive: Let a , b, c ∈ Z+. Suppose a | b and b | c. By Example 3.4 of
Section 3.1, we have a | c. ■

With a minor additional assumption, properties (b) and (d) in Definition 5.4
imply property (a).

THEOREM 5.1 Let R be any relation on a set X. Suppose R is symmetric and transitive and every x ∈ R
has some y ∈ R to which it is related (that is, ∀ x ∈ R, ∃ y ∈ R such that x R y). Then R is
reflexive.

Proof
Let x ∈ R be arbitrary. Our assumptions give us some y ∈ R such that x R y.
It follows from symmetry that y R x. Since both x R y and y R x, transitivity
implies x R x. Hence, R is reflexive. �

SECTION 5.1 Exercises
In Exercises 1 through 8, decide whether the given statements are true or false.
1. Let X be the set of primes, let Y = Z, and define the relation R from X to Y

by a R b if and only if a | b.
(a) 5 is related to 1. (b) 3 is related to 6.
(c) 2 is related to 7.
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2. Let X = R, let Y = P(Z), and define the relation R from X to Y by
x R A if and only if x ∈ A.
(a) 0 is related to {−1, 0, 1}. (b) 1 is related to {0, 1

2 , 1}.
(c) {2} is related to 2.

3. The “is a subset of” relation.
Given the universal set U = R, let X = P(U), and define the relation R on
X by A R B if and only if A⊆ B.
(a) ∅ is related to Z. (b) 0 is related to ∅.
(c) {1, 2} is related to R+.

4. Let X be the set of circles in R2 with positive radius, and define the relation
R on X by C1 R C2 if and only if C1 is tangent to C2.
(a) (x + 1)2 + y2 = 1 is related to (x − 1)2 + y2 = 1.
(b) x2 + y2 = 2 is related to (x − 1)2 + y2 = 1.
(c) x2 + y2 = 1 is related to x2 + y2 = 4.

5. The “is a superset of” relation ⊇ is the inverse of ⊆.
6. The “is equal to” relation = on R is its own inverse.
7. The “is perpendicular to” relation ⊥ on the set of lines in R2 is the inverse

of the “is parallel to” relation ||.
8. The “is congruent to” relation ∼= on the set of triangles in R2 is the inverse

of the “is not congruent to” relation �∼=.
Recall that congruent triangles have exactly the same size and shape.

9. A map of South America is shown in Figure 5.4. Consider the “shares a
border with” relation on the set of countries in South America. That is, one
country “shares a border with” another if and only if they meet at more
than just isolated points.

AB
C

D

E

F

G

H

I
J

K L

M
A � Guinea
B � Suriname
C � Guyana
D � Venezuela
E � Colombia
F � Equador
G � Peru
H � Bolivia
I � Chile
J � Paraguay
K � Argentina
L � Uruguay
M � Brazil

Figure 5.4 South America

(a) Does Chile share a border with Paraguay?
(b) List the countries with which Venezuela shares a border.
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10. A hierarchy of folders on a C:\ drive is displayed in Figure 5.5. Each arrow
points from a folder to an immediate subfolder and therefore corresponds
to an element of the “immediate subfolder” relation on the set of folders
on this disk.

Wolfram Research Calc II DiscreteWindows NT

MathematicaAccessories

C:\

Program Files School

Maple 9.5

Figure 5.5 Folders in a Directory System

(a) Is Accessories an immediate subfolder of Program Files?
(b) List the immediate subfolders of Program Files.

In Exercises 11 through 18, find the inverse of the specified relation.
11. The “is the father of” relation from Example 5.5.
12. The “is less than” relation from Example 5.4.
13. The “is a subset of” relation from Exercise 3.
14. The “is tangent to” relation from Exercise 4.
15. The “is perpendicular to” relation ⊥ from Exercise 7.
16. The “is a zero of” relation from Example 5.2.
17. The relation R on R defined by x R y if and only if x2 + y2 = 1.
18. The relation R on R defined by x R y if and only if x = y+ 1.
19. SoftJobs is a company capable of producing a variety of software packages,

ranging from data management software to video games. SoftJobs itself
uses a database to keep track of which programmers are working on which
projects for which clients. Two tables from that database are displayed in
Figure 5.6.

Project Client
NBA Dunkfest GameCo
Rx Tracker MediComp
Skate Rats GameCo

Programmer Project
Martha Lang NBA Dunkfest
Megan Johnson Rx Tracker
Charles Murphy NBA Dunkfest
Martha Lang Skate Rats
Charles Murphy Skate Rats

Contracts Work Assignments

Figure 5.6 Database for SoftJobs
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(a) For what client is the project Skate Rats being produced?
(b) Is Rx Tracker contracted out to GameCo?
(c) Is Charles Murphy assigned to work on NBA Dunkfest?

20. HardSell is a mail-order hardware store. It needs to keep track of both the
customers to which it sells items and the vendors from which it purchases
items. Two tables from the database used by HardSell are displayed in
Figure 5.7.

Part Customer
hammer Richard Kelley
wrench Susan Brower
pliers Susan Brower
wrench Charles Murphy

Vendor Part
Stanley hammer
Maxtool hammer
Stanley wrench
Maxtool pliers

Orders Suppliers

Figure 5.7 Database for HardSell

(a) Which customer(s) ordered a wrench?
(b) Were pliers ordered by Susan Brower?
(c) Will Maxtool supply a wrench?

In Exercises 21 through 24, draw an arrow diagram for the specified relation.
21. The “is an element of” relation ∈ from {0, 1, 2} to P({0, 1, 2}).
22. The “is tangent to” relation from the set of lines

{y = 1, y = −1, y = −3, x = 3}
to the set of circles {x2 + y2 = 1, x2 + (y+ 1)2 = 4}.

23. The relation in the “Contracts” table in Exercise 19 from projects to clients.
24. The relation in the “Orders” table in Exercise 20 from parts to customers.

In Exercises 25 through 28, draw a digraph for the specified relation.
25. The “is less than” relation < on {2, 4, 6, 8}.
26. The “divides” relation | on {2, 5, 6, 10, 15}.
27. The “is a subset of” relation ⊆ on {{1}, {2}, {1, 2}, {2, 3}, {1, 2, 3}}.
28. The “is perpendicular to” relation ⊥ on {y = x, y = −x, y = x + 1,

y = x − 1}.
In Exercises 29 through 32, find the matrix representing the specified relation.
29. The “divides” relation from the set {0, 1, 2} to the set {0, 3, 6, 9}.
30. The relation x = y2 in Example 5.14 on the set {−4, −2, −1, 1, 2, 4}.
31. The “is a subset of” relation on X = {∅, {1}, {2}, {1, 2}}.
32. The “is tangent to” relation in Exercise 4 on the set

{C(−1,−1), C(−1,1) , C(1,−1), C(1,1)},
where C(h,k) is the circle in R2 of radius 1 with center (h, k).

In Exercises 33 through 36,
(a) draw the graph of the specified relation on R, and
(b) draw the graph of its inverse.
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33. y > x2 34. y = x + 1

35. x = y2 + 1 36. x < y2

In Exercises 37 through 54, a set X and a relation R on X are given. For each of
the properties reflexive, symmetric, antisymmetric, and transitive, determine
whether the given relation has that property, and justify your answer.

37. X = R and x R y if and only if 1
x = y.

38. X = R and x R y if and only if x ≤ y.
39. X is the set of lines in the Cartesian plane R2 and

l1 R l2 if and only if l1 intersects l2.

40. X = R and x R y if and only if 1
x = 1

y ∈ R.

41. X = R and x R y if and only if
√

x = √y ∈ R.
42. X = R and x R y if and only if x �= y.
43. X = P(U) for some nonempty universal set U and A R B if and only if

A⊂ B.
44. X is the set of circles in R2 and

C1 R C2 if and only if center(C1) = center(C2).

45. X = R and x R y if and only if x + 1 = y.
46. X = R and x R y if and only if x − 1 < y.
47. X = Z and a R b if and only if a and b have the same prime factors.
48. X = R and x R y if and only if 2x = y.
49. X = R and x R y if and only if x ≤ |y|.
50. X = R and x R y if and only if x < y.
51. X = P(R) and A R B if and only if A⊆ B ∪ Z.
52. X = {n : n ∈ Z and n ≥ 2} and a R b if and only if gcd(a , b) > 1.
53. The “is a subset of” relation in Exercise 3.
54. The relation in Exercise 4.
55. Consider “shares a border with” relations on regions of a map such as that

for the countries of South America in Exercise 9. Such relations will have
exactly one of the properties reflexive, symmetric, antisymmetric, or
transitive. Which one? Explain.

56. Consider “immediate subfolder” relations on the folders on a disk such as
that for the folders on the C:\ drive in Exercise 10. Such relations in general
will have exactly one of the properties reflexive, symmetric, antisym-
metric, or transitive. Which one? Explain.

For Exercises 57 through 60, given a set X, let � = {(x, x) : x ∈ X} ⊆ X2. We call
� the diagonal.
57. Show that a relation R on a set X is symmetric if and only if R = R−1.

When X is finite, observe that the representing matrix A is symmetric (that
is, AT = A). When X = R, observe that the graph of R is symmetric about
the line y = x.

58. Show that a relation R on a set X is reflexive if and only if � ⊆ R. When X
is finite, observe that the representing matrix A contains a 1 in each entry
of its main diagonal. When X = R, observe that the graph of R contains
the line y = x.
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�59. Show that a relation R on a set X is antisymmetric if and only if
R ∩ R−1 ⊆ �. When X is finite, observe that the representing matrix A
cannot contain a 1 in both of any two distinct symmetric positions (i, j)
and ( j, i). When X = R, observe that the graphs of R and R−1 intersect
only in the line y = x.

�60. Show that a relation R on a set X is both symmetric and antisymmetric if
and only if R ⊆ �. When X is finite, observe that the representing matrix A
can only contain 1’s on the diagonal. When X = R, observe that the graph
of R is contained in the line y = x.

5.2 Special Relations on Sets
Relations that have most, but not all, of the properties in Definition 5.4 (reflexive,
symmetric, antisymmetric, transitive) are particularly important. As we shall
see, certain such relations provide a good means of comparing elements in a set.
For example, the “is greater than” relation > has properties that render it a good
means of “ordering” real numbers, and the congruence relation≡modulo some
fixed integer n > 1 has properties that allow us to “equate” integers (modulo n).
In this section, we introduce partial order relations and equivalence relations.

Order Relations
Relations like ≤, ≥, <, >, ⊆, ⊇, ⊂, and ⊃ establish an ordering between objects.
However, we should clarify what we mean by an ordering.

DEFINITION 5.5

A partial order relation or partial ordering on a set X is a relation on X that is
reflexive, antisymmetric, and transitive. In this case, we say that X is a partially
ordered set or poset (under R). Given a partial order relation R on a set X and
two elements x, y ∈ X, we say that x is comparable to y (under R) if and only if
x R y or y R x. Otherwise, x and y are said to be incomparable.

Since <, >,⊂, and⊃ are not reflexive, they are not partial orderings as spec-
ified in Definition 5.5. The allowance of equality is a necessary condition. A pro-
totypical example of a partial ordering is the “is a subset of” relation⊆ on P(U),
for some fixed universal set U .

EXAMPLE 5.19 Let U be a set. Show that ⊆ is a partial order relation on P(U), the set of all
subsets of U .

Proof
Let A, B, and C represent arbitrary elements of P(U). That is, A, B, and C are
subsets of U .
Reflexive: Since A⊆ A, we see that ⊆ is reflexive.
Antisymmetric: Suppose A⊆ B and B ⊆ A. By our characterization of set
equalities given in Section 2.3, it follows that A= B.

∗Exercises that may be particularly challenging are marked with a star.
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Transitive: It was shown in Example 2.14 of Section 2.2 that if A⊆ B and B ⊆ C ,
then A⊆ C . ■

The adjective partial is used for a partial ordering because, in general, not
every pair of elements will be comparable.

EXAMPLE 5.20 Consider the subset relation ⊆ on P({1, 2, 3}).
(a) {1, 3} is comparable to {1},

since {1} ⊆ {1, 3}.
(b) {1, 3} is incomparable to {2},

since {1, 3}� {2} and {2}� {1, 3}. ■

Hasse Diagrams. Just as a digraph provides a useful way to represent an ar-
bitrary relation on a set, a Hasse diagram provides a useful way to represent a
partial order relation R on a set X. Hasse diagrams are named after the German
mathematician Helmut Hasse (1898–1979) and are relatives of digraphs in the
sense that a Hasse diagram can be constructed from a digraph as follows.

1. Construct a digraph with the elements of X arranged so that all of the
arrows point upward.

2. Delete all loops, since these follow immediately from reflexivity.
3. Delete any arrows that follow from transitivity. That is, if x, y, and z are

distinct elements of X with x R y and y R z, then delete the arrow reflecting
x R z.

4. Delete the direction indicators from the arrows, since the relative heights of
the elements indicate the appropriate direction.

Since a Hasse diagram is obtained from a digraph by deleting several of its fea-
tures, a Hasse diagram provides a more efficient means of representing a partial
order relation.

The left-hand side of Figure 5.8 shows a digraph for the relation ⊆ on
P({1, 2, 3}), and the right-hand side shows its Hasse diagram. The Hasse dia-
gram is obviously less cluttered than the digraph. Yet, by reversing the process

{∅}

{1, 2} {2, 3}{1, 3}

{1} {3}{2}

{1, 2, 3}

{∅}

{1, 2} {2, 3}{1, 3}

{1} {3}{2}

{1, 2, 3}

Figure 5.8 Constructing the Hasse Diagram for P({1, 2, 3})
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used to construct the Hasse diagram, all of the details in the corresponding di-
graph can be recovered.

EXAMPLE 5.21 In Example 5.18 from Section 5.1, we saw that the “divides” relation on Z+

is reflexive, antisymmetric, and transitive. Therefore, it is a partial order rela-
tion on Z+. The more general observation that, given any subset X of Z+, the
“divides” relation is a partial order relation on X, is left for the exercises. The
Hasse diagram in the case that X = {1, 2, 3, 4, 6, 12}, the set of divisors of 12, is
displayed on the left-hand side of Figure 5.9. The corresponding digraph was
given in Figure 5.3 in Example 5.10.

12

1

4 6

2 3

The “Divides” Relation

12

3

2

1

4

6

The � Relation

Figure 5.9 Hasse Diagrams for Relations on {1, 2, 3, 4, 6, 12} ■

EXAMPLE 5.22 It is left for the exercises to verify that, given any subset X of R, ≤ is a partial
ordering on X. The Hasse diagram in the case that X = {1, 2, 3, 4, 6, 12} is
displayed on the right-hand side of Figure 5.9. ■

The striking difference between the two diagrams in Figure 5.9 is that the
diagram on the right appears naturally as a line and that on the left does not.
This is a reflection of the fact that, in a sense, the ordering on the left is only
“partial,” whereas that on the right is “total.”

DEFINITION 5.6

A partial order relation R on a set X is called a total order relation or linear order
relation if every pair of elements is comparable. In this case, we say that X is a
totally ordered set or linearly ordered set (under R).

Given any X ⊆ R, the relation ≤ on X is a total ordering; any two real
numbers can always be compared with ≤ (or ≥), by the Trichotomy Law (Ap-
pendix A, property 7).

Lexicographic Order. Very simply, lexicographic order is a generalization of al-
phabetical order. It provides a practical way to order and store words or word-
like objects in a computer, given a fixed character order.
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Given a character set C , a word over C is a string x1x2 · · · xn, where n ∈ Z+

and x1, x2, . . . , xn ∈ C . When C is partially ordered by some relation %, we
construct a corresponding partial ordering, which we shall denote �, called the
lexicographic ordering, on the set of words W = {x1x2 · · · xn : n ∈ Z+, x1, x2, . . . ,
xn ∈ C}. Given two words &x = x1x2 · · · xm and &y = y1 y2 · · · yn, let k be the largest
index such that x1x2 · · · xk = y1 y2 · · · yk , and define &x � &y if either k = m < n (so
&x is a proper sub-word of &y) or k < m, n and xk+1 % yk+1 (note that xk+1 �= yk+1).
The lexicographic order � on W is thus defined by taking &x � &y precisely if &x � &y
or &x = &y.

EXAMPLE 5.23 (Dictionary Order). The best-known example of a lexicographic order is al-
phabetical order, as used in a dictionary, based on the standard ordering of
the letters a, b, . . . , z. For example,

algebra � algebraic

and

combination � combinatorics. ■

EXAMPLE 5.24 (Set Powers and Job Priority). Given a partially ordered set X and a positive
integer n, we have a corresponding lexicographic order on the power Xn of X.
That is, we can compare the elements of Xn, which are ordered n-tuples, by
regarding them as words of length n.

Suppose X consists of tasks listed in order of priority from highest to low-
est t1, t2, . . . , tm. Hence, X3 consists of ordered task lists of length 3, which we
regard as jobs. By using lexicographic order, we can assign a corresponding
priority to these jobs. Here, we use ' for the relation between two tasks (for
example, t1 ' t2) and � for the relation between two jobs. For instance,

(t2, t4, t1) � (t3, t1, t2).

This might reflect a situation in which students are registering for classes
and are allowed to list their top three desired classes in order of preference. If
the relative demand for the classes is reflected by the relation ' (that is, t1 is the
class of highest demand), then the registrar might schedule the students using
the order given by �. In that way, the students who have the strongest prefer-
ence for the high-demand classes will be scheduled first. ■

Equivalence Relations
Relations like = and ≡ suggest equality or equivalences. What properties are
important here?

DEFINITION 5.7

An equivalence relation on a set X is a relation on X that is reflexive, symmetric,
and transitive. Given an equivalence relation R on a set X and two elements x, y∈ X,
we say that x is equivalent to y (under R) if and only if x R y.

In our first example, we “equate” two points in the xy-plane if their
y-coordinates round down to the same integer.
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EXAMPLE 5.25 Let R be the relation on R2 defined by

(x1, y1) R (x2, y2) if and only if �y1� = �y2�.
For example, (7,

√
3) R ( 1

5 ,
√

2), since �√3� = �√2�, and (0, π ) /R (0, 2), since
�π� �= �2�. Show that R is an equivalence relation.

Proof
Let (x1, y1), (x2, y2), and (x3, y3) represent arbitrary elements of X.
Reflexive: Since �y1� = �y1�, we automatically have (x1, y1) R (x1, y1).
Symmetric: Suppose (x1, y1) R (x2, y2). That is, �y1� = �y2�. Since the symmetry
of equality gives �y2� = �y1�, we have (x2, y2) R (x1, y1).
Transitive: Suppose (x1, y1) R (x2, y2) and (x2, y2) R (x3, y3). That is, �y1� = �y2�
and �y2� = �y3�. From the transitivity of equality, it follows that �y1� = �y3�.
Therefore, (x1, y1) R (x3, y3). �

To understand a particular equivalence relation, it is helpful to group to-
gether equivalent elements.

DEFINITION 5.8

Given an equivalence relation R on a set X, the equivalence class (under R) of an
element x ∈ X is the set {y : y ∈ X and y R x} of all elements of X that are equivalent
to x. It is denoted by [x]R, and the subscript is dropped from our notation if the
relation R is understood in context. A representative of an equivalence class [x] is
an element y ∈ [x]. That is, it is an element y such that y R x.

Given an equivalence relation R on a set X and an element x ∈ X, it is always
the case that x is equivalent to itself. That is, the reflexivity of R gives x R x.
Consequently, x can serve as a representative for [x]. Moreover, since x ∈ [x], an
equivalence class [x] is never empty.

EXAMPLE 5.26 Let R be the equivalence relation on R2 from Example 5.25. For each point
(x1, y1) ∈ R2, we have

[(x1, y1)] = {(x, y) : x, y ∈ R and �y� = �y1�}.
Letting n denote the integer �y1�, we have

�y� = n if and only if n ≤ y < n+ 1.

Hence,

[(x1, y1)] = {(x, y) : x, y ∈ R and n ≤ y < n+ 1} = R× [n, n+ 1),

the horizontal strip shown in Figure 5.10. Any of its points, such as (0, n), (1, n),
or (−√2, n+ 1

π
), can serve as representatives for this equivalence class.

y � n 
 1

y � n

x

y

Figure 5.10 An Equivalence Class for the Relation in Example 5.25 ■

The equivalence classes of equivalent elements are always the same.
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LEMMA 5.2 Let X be any set and R be any equivalence relation on X. For all x, y ∈ X,

y R x if and only if [y] = [x].

That is, y is equivalent to x if and only if the equivalence class of y is the same as that of x.

Proof
Let x and y be arbitrary elements of X.

(→) Suppose y R x.
To show that [y] ⊆ [x], suppose z ∈ [y]. That is, z R y. Since z R y and y R x, it
follows from transitivity that z R x. Hence, z ∈ [x]. We have thus shown that
[y] ⊆ [x].
To show that [x] ⊆ [y], suppose z ∈ [x]. That is, z R x. Since y R x, symmetry of
R gives that x R y. Since z R x and x R y, it follows from transitivity that z R y.
Hence, z ∈ [y]. We have thus shown that [x] ⊆ [y].
It follows that [y] = [x].

(←) Suppose [y] = [x]. Since y ∈ [y] = [x], we have y R x. �

Distinct equivalence classes never intersect.

THEOREM 5.3 Let X be any set and R be any equivalence relation on X. For all x, y ∈ X,

[y] �= [x] if and only if [y] ∩ [x] = ∅.
That is, two equivalence classes are distinct if and only if they are disjoint.

Proof
Let x and y be arbitrary elements of X. We prove each implication by
considering its contrapositive.

(→) Suppose [y] ∩ [x] �= ∅. So we have some element z ∈ [y] ∩ [x]. That is,
z ∈ [x] and z ∈ [y]. So z R x and z R y. By symmetry, we have y R z. Since y R z
and z R x, it follows from transitivity that y R x. That is, y ∈ [x]. Lemma 5.2
then gives that [y] = [x].

(←) If [y] = [x], then certainly x ∈ [x] = [y] ∩ [x]. So [y] ∩ [x] �= ∅. �

Recall from Section 3.6 that, given an integer n > 1, integers a and b are said
to be congruent modulo n, written a ≡ b (mod n), if and only if n | (a − b). That
is, for some k ∈ Z, a−b = nk or, equivalently, a = b+nk. A prototypical example
of an equivalence relation is congruence modulo n.

EXAMPLE 5.27 (Congruence Modulo n). Fix an integer n > 1, and define a relation R on Z by

a R b if and only if a ≡ b (mod n).

Theorem 3.26 tells us that R is an equivalence relation. For any a ∈ Z,

[a ] = {b : b ∈ Z and b ≡ a (mod n)}
= {. . . , a − 3n, a − 2n, a − n, a , a + n, a + 2n, a + 3n, . . .}.

If the value n needs to be made clear, then this equivalence class may be de-
noted [a ]n, as it was in Section 3.6. In this context, [a ]n is called the equivalence
class of a modulo n. It follows from Lemma 5.2 that

a ≡ b (mod n) if and only if [a ]n = [b]n.

Moreover, the set of equivalence classes of the integers modulo n is

Zn = {[0], [1], . . . , [n− 1]}.
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(a) Fix n = 10.
We have, for example, 37 ∈ [7]10, −16 ∈ [4]10, and
[28]10 = [8]10 = {. . . , −22, −12, −2, 8 , 18, 28 , 38, . . .}.
In the presentation of the integers displayed in Figure 5.11, the equiv-
alence classes are the vertical strips.

...
...

...
...

...
...

...
...

...
...

20 21 22 23 24 25 26 27 28 29
10 11 12 13 14 15 16 17 18 19
0 1 2 3 4 5 6 7 8 9

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
−20 −19 −18 −17 −16 −15 −14 −13 −12 −11

...
...

...
...

...
...

...
...

...
...

Figure 5.11 Equivalence Classes of Integers Modulo 10

(b) Fix n = 5.
We have, for example, 37 ∈ [2]5, −16 ∈ [4]5, and
[28]5 = [3]5 = {. . . , −7, −2, 3 , 8, 13, 18, 23, 28 , 33, . . .}. ■

Partitions
The concept of a partition is very closely tied to that of an equivalence relation.
Before we can define a partition, we need to generalize some set notions from
Section 1.4. Further generalizations are pursued in Section 5.5.

DEFINITION 5.9

Let A be a collection of sets from some universe U .

(a) The union of A, denoted
⋃
A∈A

A, is the set defined by

∀ x ∈ U , x ∈
⋃
A∈A

A ↔ x ∈ A for some A∈ A.

(b) We say that A is a collection of disjoint sets if

∀ A, B ∈ A, if A �= B, then A∩ B = ∅.

EXAMPLE 5.28 Let U = R, and let

A = {[n, n+ 1] : n ∈ Z and − 10 ≤ n ≤ 20}
= {[−10, −9], [−9, −8], [−8, −7], . . . , [20, 21]}.

(a)
⋃
A∈A

A= [−10, 21].

For example, −7.5 ∈
⋃
A∈A

A since −7.5 ∈ [−8, −7] ∈ A.

Moreover, since A is a finite collection, we see that⋃
A∈A

A= [−10, −9] ∪ [−9, −8] ∪ [−8, −7] ∪ · · · ∪ [20, 21] = [−10, 21].

(b) A is not a collection of disjoint sets.
For example, [0, 1] ∩ [1, 2] = {1} �= ∅.
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Alternatively, {(n, n+ 1) : n ∈ Z and − 10 ≤ n ≤ 20} is a collection of
disjoint sets. Its union is (−10, 21)\{−9, −8, . . . , 20}. ■

DEFINITION 5.10

A partition of a set X is a collection A of disjoint nonempty subsets of X whose
union is X.

The diagram in Figure 5.12 shows what a partition A = {A0, A1, . . . , A9}
might look like. That particular partition shows the regions into which the con-
tinental United States is divided based on the first digit of the ZIP code. That is,
Ai is the region in which the first digit of the ZIP code is i . Essentially, a partition
of a set X carves it into pieces.

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

Figure 5.12 Partition of United States Based on First Digit of ZIP Code

EXAMPLE 5.29 Let X = {1, 2, 3, 4, 5, 6, 7, 8}. In each case, does the specified collection
A = {A1, A2, A3} form a partition of X?

(a) A1 = {1, 4}, A2 = {2, 3, 5, 7}, and A3 = {6, 8}.
Solution. Yes. The sets A1, A2, and A3 are disjoint, and their union
A1 ∪ A2 ∪ A3 equals X. ■

(b) A1 = {1, 3, 7}, A2 = {2, 8}, and A3 = {5, 6}.
Solution. No. Despite the fact that A1, A2, and A3 are disjoint, their
union fails to be X, since 4 �∈ A1 ∪ A2 ∪ A3. ■

(c) A1 = {2, 4, 6}, A2 = {1, 5, 7}, and A3 = {3, 4, 8}.
Solution. No. Despite the fact that A1 ∪ A2 ∪ A3 = X, the sets A1, A2,
and A3 are not disjoint, since 4 ∈ A1 ∩ A3. ■

An equivalence relation can be used to form a partition.

LEMMA 5.4 Given an equivalence relation R on a nonempty set X, the collection of equivalence classes

{[x] : x ∈ X}
is a partition of X.
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Proof
By our observations after Definition 5.8, the equivalence classes are nonempty
sets. Theorem 5.3 tells us that distinct equivalence classes are disjoint. That X is
the union of its equivalence classes follows from the fact that each element
x ∈ X is indeed in some equivalence class, namely [x]. �

DEFINITION 5.11

Given an equivalence relation R on a nonempty set X, the partition specified in
Lemma 5.4 is called the partition of X corresponding to R.

EXAMPLE 5.30 Let X = Z and R be congruence modulo n. The collection

Zn = {[a ] : a ∈ Z} = {[0], [1], . . . , [n− 2], [n− 1]}
forms the partition of the integers corresponding to R. Note that the equiva-
lence classes . . . , [−2], [−1], [n], [n+ 1], . . . are included in the listing above,
since . . . , [−2] = [n− 2], [−1] = [n− 1], [n] = [0], [n+ 1] = [1], . . . . ■

EXAMPLE 5.31 Let R be the equivalence relation on R2 from Example 5.25 defined by

(x1, y1) R (x2, y2) if and only if �y1� = �y2�.
Find the partition of R2 corresponding to R.

Solution. As observed in Example 5.26, each equivalence class is a horizontal
strip. For each n ∈ Z, let

An = {(x, y) : x, y ∈ R and �y� = n} = R× [n, n+ 1).

The collection

A = {An : n ∈ Z}
is the partition of R2 corresponding to R.

y

A2
A1
A0
A�1
A�2
A�3

...

...

x

Clearly, any two distinct horizontal strips are disjoint, each strip is nonempty,
and each point of R2 lies on exactly one horizontal strip. ■

Lemma 5.4 describes how to form a partition from an equivalence relation.
Conversely, an equivalence relation can be formed from a partition.
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LEMMA 5.5 Given a partition A of a set X, the relation R defined by, ∀x, y ∈ X

x R y if and only if ∃ A∈ A such that x, y ∈ A.

is an equivalence relation on X.

Proof
Let x, y, and z represent arbitrary elements of X.
Reflexive: Since X = ⋃A∈A A, there must be some A∈ A such that x ∈ A. Since
x, x ∈ A, it follows that x R x.
Symmetric: Suppose x R y. That is, x, y ∈ A for some A∈ A. Since y, x ∈ A, we
have y R x.
Transitive: Suppose x R y and y R z. That is, x, y ∈ A1 for some A1 ∈ A, and
y, z ∈ A2 for some A2 ∈ A. Since y ∈ A1 ∩ A2, we must have A1 = A2. Other-
wise, distinct sets A1 and A2 would have to be disjoint and could not both
contain y. It follows that x, z ∈ A1, and thus x R z. �

DEFINITION 5.12

Given a partition A of a set X, the equivalence relation R specified in Lemma 5.5 is
called the equivalence relation on X corresponding to A.

EXAMPLE 5.32 Let X = {1, 2, 3, 4, 5, 6, 7, 8}, and take the partition from Example 5.29(a) given
by A1 = {1, 4}, A2 = {2, 3, 5, 7}, and A3 = {6, 8}. The equivalence relation cor-
responding to this partition is the relation represented by the matrix

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0 0

0 1 1 0 1 0 1 0

0 1 1 0 1 0 1 0

1 0 0 1 0 0 0 0

0 1 1 0 1 0 1 0

0 0 0 0 0 1 0 1

0 1 1 0 1 0 1 0

0 0 0 0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

■

EXAMPLE 5.33 Let A = {An : n ∈ Z} be the partition of R2, where, ∀ n ∈ Z,
An = {(x, y) : x, y ∈ R and �y� = n}.

Find the equivalence relation R on R2 corresponding to A.

Solution. As specified in Lemma 5.5, R is given by
(x1, y1) R (x2, y2) ↔ ∃ An ∈ A such that (x1, y1), (x2, y2) ∈ An

↔ ∃n ∈ Z such that �y1� = n and �y2� = n

↔ �y1� = �y2�.
That is, R is the equivalence relation from Example 5.25. ■

The fact that the partitionA found in Example 5.31 recovered the equivalence
relation R from which it came illustrates a general result.
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THEOREM 5.6 Correspondence Between Equivalence Relations and Partitions

Let X be a set, R be an equivalence relation on X, and A be a partition of X. Then A is the
partition of X corresponding to R if and only if R is the equivalence relation on X
corresponding to A.

The proof of Theorem 5.6 is left for the exercises.

SECTION 5.2 Exercises
1. Let X be a subset of Z+. Show that the “divides” relation | is a partial order

relation on X.
2. Let X be a subset of R. Show that the relation ≤ is a partial order relation

on X.
3. Let R be a partial order relation on a set X. Show that R−1 is also a partial

order relation on X. Conclude that ⊇ and ≥ are partial order relations.
4. Let R be a partial order relation on a set X such that any two elements of X

are comparable. Show that the same is true for R−1. Conclude that ≥ is a
total order relation.

5. Among the relations in the odd-numbered exercises in Exercises 37
through 54 from Section 5.1, which are partial order relations?

6. Among the relations in the even-numbered exercises in Exercises 37
through 54 from Section 5.1, which are partial order relations?

In Exercises 7 through 12, determine whether the specified relation R on the
given set X is a partial order relation. Justify your answer.
7. Define R on P({1, 2, . . . , 10})\{∅} by A R B if and only if min( A) ≤ min(B)

and max( A) ≤ max(B).
8. Let R be the “is a proper divisor” relation on Z+. That is, a R b if and only if

a | b and a �= b.
9. A college is tracking those students who took a math class both semesters

of their first year in college. In the displayed digraph, an arrow points
from the class taken first semester to that taken second semester.

Algebra PreCalculus

Calculus Trigonometry

Let R be the relation on the set

{Algebra, Calculus, PreCalculus, Trigonometry}
of first-year math courses reflected by this digraph.

10. Some of the birds on the islands Alki, Balu, Cerf, and Dago have been
tagged for a study of their migration habits from year to year. In the
displayed digraph, an arrow points from the island inhabited by a tagged
bird one year to that inhabited by that same bird the next year.
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Alki Balu

Cerf Dago

Let R be the relation on the set {Alki, Balu, Cerf, Dago} of islands reflected
by this digraph.

11. The relation on {1, 2, 3, 4}
whose matrix representation
is displayed.

1 2 3 4
1

2

3

4

⎡
⎢⎢⎢⎢⎣

1 1 1 0

0 1 0 0

0 1 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

12. The relation on {1, 2, 3, 4}
whose matrix representation
is displayed.

1 2 3 4
1

2

3

4

⎡
⎢⎢⎢⎢⎣

1 1 1 0

0 1 0 0

0 1 0 1

0 0 0 1

⎤
⎥⎥⎥⎥⎦

In Exercises 13 through 16, make a Hasse diagram for the specified relation on
the given set.
13. The “is a subset of” relation ⊆ on P({a , b}).
14. The “divides” relation | on {2, 3, 5, 6, 10, 12}.
15. The “divides” relation | on the set of positive divisors of 72.
16. The “is a subset of” relation ⊆ on the subsets of {1, 2, 3, 4} containing at

least three elements.
17. Blood Donors. A person’s blood type is determined by the presence (T) or

absence (F) of the antigens A, B, and Rh, as shown in Table 5.3. A person
with blood type X can donate blood to a person with blood type Y if and
only if Y contains all of the antigens present in X. Let P be the set of the
eight possible blood types, and let R be the relation on P such that X R Y if
and only if a person with blood type X can donate blood to a person with
blood type Y.

A B Rh Type

F F F O−

F F T O+

F T F B−

F T T B+

T F F A−

T F T A+

T T F AB−

T T T AB+

Table 5.3 Blood Types Determined by Antigens
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(a) Can a person with A+ blood donate to one with A− blood?
(b) What types of blood can a person with A+ blood receive?
(c) Draw a digraph for R, and observe that R is a partial order relation.
(d) Make a Hasse diagram for R.

18. The employees in Bob’s grocery store are divided into six departments:
Baggers, Cashiers, Deli, Produce, Meat, and Management. Although
promotions are always being sought, they are restricted according to the
matrix in Table 5.4. That is, a promotion from department X to department
Y is permitted only if there is a 1 in row X and column Y of the matrix.
Let R be the relation on the grocery store departments determined by this
matrix.

Bag Deli Cash Meat Prod Manage

Bag

Deli

Cash

Meat

Prod

Manage

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1

0 1 0 1 1 1

0 0 1 0 1 1

0 0 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 5.4 Promotion Matrix for Bob’s Grocery Store

(a) Can an employee be promoted from the Deli department to the
Produce department?

(b) From what departments might an employee be promoted to the Meat
department?

(c) Draw a digraph for R, and observe that R is a partial order relation.
(d) Make a Hasse diagram for R.

�19. Show that a Hasse diagram never contains triangles (three mutually joined
elements).

�20. Show that a Hasse diagram for a total order relation on a finite set can
always be represented in a vertical line.

21. The login ID’s are stored in a computer using a lexicographic ordering
based on the character ordering a < b < · · · < z < 0 < 1 < · · · < 9. This
allows for efficient lookup of an ID, when a user attempts to log in. Place
the two login ID’s b6vitamin and b12vitamin in lexicographic order.

22. ASCII Code (American Standard Code for Information Interchange)
imposes the following ordering on characters

0 < 1 < · · · < 9 < a < b < · · · < z.

The file names on a computer are stored in a list using a lexicographic
ordering based on this character ordering. When a user searches for a file,
its name is easily checked against the list of existing files. Determine the
proper order for the two file names doggy2 and dog8cat.

23. Using lexicographic order on Z4, based on the normal ordering ≤ on Z,
determine the proper order of (2, −3, 1, 0) and (2, −1, 5, 3).
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24. Using lexicographic order on N2, based on the normal ordering ≤ on N,
determine the proper order of (3, 1) and (2, 7).

�25. Let n ∈ Z+, and let X be the set of n-bit binary numbers (with zeros pad-
ded at the left). Using 0 < 1, show that the lexicographic ordering on X is
the same as the ordering given by ≤.

�26. Show that if % is a total ordering on a character set C , then the lexico-
graphic ordering � on the set of words W will be a total ordering as well.

In Exercises 27 through 32, show that the specified relation R on the given set
X is an equivalence relation.
27. On X = R, define x R y if and only if �x� = �y�.
28. On X = R, define x R y if and only if cos x = cos y and sin x = sin y.
29. On X = N2, define (m1, n1) R (m2, n2) if and only if m1 − n1 = m2 − n2.

30. On X = R2, define (x1, y1) R (x2, y2) if and only if x
2
1 + y

2
1 = x

2
2 + y

2
2 .

31. On X = R2\{(0, 0)}, define (x1, y1) R (x2, y2) if and only if ∃ c ∈ R\{0} such
that cx1 = x2 and cy1 = y2. That is, c(x1, y1) = (x2, y2).

32. On X = R2, define (x1, y1) R (x2, y2) if and only if y1 − x1 = y2 − x2.
33. Show that the relation R on R2 defined by (x1, y1) R (x2, y2) if and only if

x1 + x2 = y1 + y2 is not an equivalence relation.
34. Show that the relation R on R2 defined by (x1, y1) R (x2, y2) if and only if

x1 y1 = x2 + y2 is not an equivalence relation.
35. Among the relations in the odd-numbered exercises in Exercises 37

through 54 from Section 5.1, which are equivalence relations?
36. Among the relations in the even-numbered exercises in Exercises 37

through 54 from Section 5.1, which are equivalence relations?
37. Let R be an equivalence relation on a set X.

Show: ∀ x, y ∈ X, x ∈ [y] if and only if y ∈ [x].
38. Let R be an equivalence relation on a set X.

Show: ∀ x, y, z ∈ X, if x ∈ [y] and y ∈ [z], then [x] = [z].
39. In Exercise 29, find a representative for [(m1, n1)] such that one of the

coordinates is zero.
40. In Exercise 30, find a representative for [(x1, y1)] that lies on the x-axis.
41. In Exercise 31, find a representative for [(x1, y1)] that lies on the unit circle.
42. In Exercise 32, find a representative for [(x1, y1)] that lies on the y-axis.

In Exercises 43 through 46, determine whether a partition of the given set X is
formed by the specified collection {A1, A2, . . .}.
43. X = {1, 2, 3, 4, 5, 6}, A1={1, 2}, A2={3, 4}, A3={5}, and A4={6}.
44. X = R2 the Cartesian plane, and A1, A2, A3, A4 represent the four quad-

rants. That is,

A1 = {(x, y) : x > 0 and y > 0},
A2 = {(x, y) : x < 0 and y > 0},
A3 = {(x, y) : x < 0 and y < 0}, and
A4 = {(x, y) : x > 0 and y < 0}.

45. X = R+, A1 = (0, 1), A2 = (1, 2), and, in general, An = (n− 1, n), for all
n ∈ Z+.
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46. X = Z,
A1 = {m : m = 2k for some k ∈ Z},
A2 = {m : m = 3k for some k ∈ Z},
A3 = {m : m = 5k for some k ∈ Z},

and, in general, taking pn to be the nth prime number,

An = {m : m = pnk for some k ∈ Z}.
47. The members of a committee—Jones, Halmos, Carlson, McBride, Damon,

and Yokus—have been divided into subcommittees. One consists of
Damon, Halmos, and McBride. Another consists of Yokus and Jones. And
another consists of Carlson and Halmos. Do these subcommittees form a
partition of the committee? Explain.

48. Major League Baseball (MLB) is divided into two leagues: the American
League (AL) and the National League (NL). The teams in each league are
then divided into three divisions: East, Central, and West. Do the MLB
divisions (AL East, AL Central, AL West, NL East, NL Central, and NL
West) form a partition of the MLB teams? Explain.

In Exercises 49 through 52, show that a partition of the given set X is formed
by the specified collection of subsets of X.
49. X = Z, A1 is the set of odd integers, and A2 is the set of even integers.
50. X = R× R, and, for each a ∈ R, let Aa be the set of points on the vertical

line through (a , 0).
51. Let Z∗ denote the set of nonzero integers and X = Z× Z∗. For each r ∈ Q,

let Ar = {(a , b) : a
b = r}.

52. X = Z, and, for each i ∈ N, let Ai = {i, −i}.
In Exercises 53 through 58, find the partition on the given set X that corre-
sponds to the specified equivalence relation R on X.
53. The relation from Exercise 27. 54. The relation from Exercise 28.
55. The relation from Exercise 29. 56. The relation from Exercise 30.
57. The relation from Exercise 31. 58. The relation from Exercise 32.
59. Partition the set of words {apple, eat, peace, car, call, ear} according to the

specified equivalence relation.

(a) “starts with the same letter as”
(b) “has the same number of letters as”
(c) “has the same set of vowels as”

60. Partition the set of numbers {20, 500, 5, 176, 80, 605} according to the
specified equivalence relation.

(a) “has the same number of digits as”
(b) “has the same set of prime divisors as”
(c) “ends with the same digit as”

In Exercises 61 through 64, for the given set X, find the equivalence relation R
on X that corresponds to the specified partition of X.

61. The partition from Exercise 49. 62. The partition from Exercise 50.

63. The partition from Exercise 51. 64. The partition from Exercise 52.
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65. Find a simple equivalence relation that yields the given partition on the set
of file names {hw1.doc, hw1.xls, hw2.doc, hw2.xls, hw2.ppt}.
(a) {hw1.doc, hw2.doc}, {hw1.xls, hw2.xls}, {hw2.ppt}.
(b) {hw1.doc, hw1.xls}, {hw2.doc, hw2.xls, hw2.ppt}.

66. Find a simple equivalence relation that yields the given partition on the set
of ZIP codes {03264, 17815, 01104, 13210, 13244, 90210}.
(a) {03264, 01104}, {17815, 13210, 13244}, {90210}.
(b) {03264, 01104, 13244}, {17815}, {13210, 90210}.

�67. Prove Theorem 5.6.
�68. Show that an equivalence relation on a finite set always can be represented

by a block diagonal matrix. Such a matrix has the form⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J1 0 0 · · · 0

0 J2 0 · · · 0

0 0 J3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Jk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where each zero represents a square array, all of whose entries are zero,
and each J i represents a square array, all of whose entries are one. For

example,

[
J1 0

0 J2

]
is the block form of the matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0

1 1 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

What is important about the ordering of the rows and columns?
69. Refer to Definition 5.9. Let A1 and A2 be collections of sets from some

universal set U . Show that⎛
⎝ ⋃

A∈A1

A

⎞
⎠ ∪

⎛
⎝ ⋃

A∈A2

A

⎞
⎠ = ⋃

A∈A1∪A2

A.

70. Refer to Definition 5.9. Let B be a set and A be a collection of sets from
some universal set U . Show that

B ∩
(⋃

A∈A
A

)
=
⋃
A∈A

(B ∩ A).

5.3 Basics of Functions
Most lower-level mathematics books work with an informal definition of func-
tion. Such books say that a function f from a set X to a set Y is a rule that, to
each x ∈ X, assigns a unique y ∈ Y, denoted f (x). That is, f (x) = y. Although
this understanding typically proves adequate for the intended audience, it is not
precise. It relies on the undefined terms rule and assigns. However, these holes
are filled by our formal understanding of relations from Section 5.1.
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DEFINITION 5.13

Given sets X and Y, a function f from X to Y, denoted f : X → Y, is a relation from
X to Y such that each x ∈ X is related to a unique y ∈ Y. In this context, we write
f (x) = y in place of x f y or (x, y) ∈ f . When f is understood, we may also write
x �→ y.

(a) When f (x) = y, so x �→ y, we say that f maps the element x to the element
y or that y is the image of x (under f ). We also say that f maps the set X to
the set Y. In fact, functions are sometimes called maps.

(b) The domain of f is the set X. That is, domain( f ) = X.

(c) The codomain, or target, of f is the set Y.

(d) The range, or image, of f is the set

range( f ) = {y : y ∈ Y and f (x) = y for some x ∈ X}.

Figure 5.13 depicts the structure of a function, and Figure 5.14 shows the prin-
cipal feature that a relation avoids to satisfy the conditions of a function.

x f (x)

Domain Codomain

Range

f
���

Figure 5.13 The Structure of a Function

x y1

y2

Figure 5.14 A Relation That Is Not a Function

EXAMPLE 5.34 Let f be the function from {0, 1, 2, 3, 4} to {1, 2, 3, 4, 5, 6} defined by f (x) = (4
x

)
.

That is,

f : {0, 1, 2, 3, 4} → {1, 2, 3, 4, 5, 6}.
(a) For each integer 0 ≤ x ≤ 4, the function f maps x to the binomial

coefficient
(4

x

)
. For example, the image of 1 is 4 and the image of 2 is 6.

That is, 1 �→ 4 and 2 �→ 6.
(b) The domain of f is {0, 1, 2, 3, 4}.
(c) The codomain of f is {1, 2, 3, 4, 5, 6}.
(d) The range of f is {1, 4, 6}.

Observe that {y : f (x) = y for some x ∈ {0, 1, 2, 3, 4}} is

{ f (0), f (1), f (2), f (3), f (4)} = {1, 4, 6, 4, 1} = {1, 4, 6}. ■

EXAMPLE 5.35 (a) Define f from P(R) to {0, 1} by

f ( A) =
{

1 if
√

2 ∈ A,
0 if

√
2 �∈ A.
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This defines a function f : P(R) → {0, 1} that maps each subset A of R
to 1 precisely when A contains the number

√
2.

The range of f is all of {0, 1}. For example, f (Z) = 0 and f ({0,
√

2}) = 1.
So both 0 and 1 lie in the range.
This function is an example of an indicator function. In this case, f
indicates whether a set contains

√
2.

(b) Define f from P(R) to {0, 1} by

f ( A) =
{

1 if
√

2 ∈ A,
0 if

√
3 ∈ A.

This formula does not define a function. The problem is that a unique
value for f ( A) is not specified when A contains both

√
2 and

√
3. The

formula merely defines a relation. For example, {√2,
√

3} f 1 and
{√2,

√
3} f 0. ■

Well-Defined Functions. In an example like Example 5.35(b), we say that the
relation f is not a well-defined function. Very simply, this is equivalent to saying
that f is not a function. However, the extra adjective well-defined is sometimes
added for emphasis; a formula that appears on the surface to yield a function,
might, upon careful analysis, be seen not to do so. In fact, it is inappropriate to
use notation like f (x) = y when f is not a function.

The reasons why some relations fail to satisfy the conditions of a function
may be quite subtle. In Example 5.35(b), the specified formula is ambiguous and
therefore does not yield unique function values. More basic problems can occur
if, for some x in the proposed domain X, a value f (x) either is not defined or
does not land in the proposed codomain Y. There are also ambiguity problems
that are particularly plaguing when X is a set of equivalence classes under some
equivalence relation. Such a difficulty is illustrated in the next example.

EXAMPLE 5.36 Let d ∈ Z with d > 1. Recall that Zd = {[0], [1], . . . , [d − 1]} is the set of equiva-
lence classes of integers modulo d.

(a) Define f from Zd to Z by f ([a ]) = a .
Show that f is not a well-defined function.

Solution. The problem is that the representative a for [a ] is not used
in a valid way to specify a unique function value. For example, since
[0] = [d], our function f should have f ([0]) = f ([d]). However, under
the specified formula, we have f ([0]) = 0 and f ([d]) = d. Since 0 �= d, a
unique output value has not been specified for the input value [0] = [d].
Thus, f is not a well-defined function. ■

(b) Define f from Zd to Z by f ([a ]) = a mod d.
Show that f is a well-defined function.

Solution. In this case, we shall show that the representative a for [a ] is
used in a valid way to specify a unique function value. Let r = a mod d,
the proposed value for f ([a ]). So 0 ≤ r < d and a = dq + r , for some
q ∈ Z.

Suppose [b] = [a ]. Since the formula for f specifies that f ([b]) = b
mod d , we must establish that b mod d = r . Since b ≡ a (mod d),
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we have b − a = dk, for some k ∈ Z. Consequently,

b = a + dk = dq + r + dk = d(q + k) + r.

Since q + k is an integer, we see, by the Division Algorithm, that
b mod d = r . That is, f ([b]) = f ([a ]), and thus each input value has a
unique output value. ■

EXAMPLE 5.37 Define f : [−1, 1] → (−4, 4) by x �→ 1− 2x.

(a) Show that f indeed maps elements from the domain [−1, 1] to the
codomain (−4, 4), so f is a well-defined function from [−1, 1] to (−4, 4).

Solution. If x ∈ [−1, 1], then the inequalities

−1 ≤ x ≤ 1 Now, multiply by 2.

−2 ≤ 2x ≤ 2 Now, add 1.

−1 ≤ 1− 2x ≤ 3

show that f (x) ∈ [−1, 3] ⊆ (−4, 4). ■

(b) Show that the range of f is [−1, 3].

Solution. In part (a) we showed that the range is a subset of [−1, 3]. To
establish equality, we must show conversely that, for each y ∈ [−1, 3],
there is some x ∈ [−1, 1] such that x �→ y. So suppose that y ∈ [−1, 3].
We seek a value x such that −1 ≤ x ≤ 1 and 1− 2x = y. Since this
equation is satisfied by x = 1−y

2 , it suffices to verify that −1 ≤ 1−y
2 ≤ 1.

The inequalities

−1 ≤ y ≤ 3 Now, multiply by −1.

−3 ≤ −y ≤ 1 Now, add 1.

−2 ≤ 1− y ≤ 2 Now, divide by 2.

−1 ≤ 1− y

2
≤ 1

thus establish that [−1, 3] is a subset of the range, and, therefore, [−1, 3]
is the range. ■

Composing Functions
In some cases, it makes sense to follow one function by another. That is, we may
want to use the output from one function as input to another.

DEFINITION 5.14

Given functions f : X → Y and g : W → Z such that the range of f is a subset of the
domain of g, their composite, denoted g ◦ f , is the function g ◦ f : X → Z defined
by the formula

∀ x ∈ X, (g ◦ f )(x) = g( f (x)).

The notation g ◦ f is read “g composed with f .”

Figure 5.15 depicts the structure of a composition of two functions. In the
picture at its center, the oval denotes the range of f and the rectangle denotes
the domain of g.
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x f (x)

Domain of f  �
domain of g � f

Range of  f  �
domain of g

Codomain of g �
codomain of g � f

f
���

g
��� g ( f (x))

g � f

Figure 5.15 The Structure of a Composition of Functions

EXAMPLE 5.38 Define a function f : {0, 1, 2} → {0, 1, 2, 3, 4} by f (x) = 2x, and define a
function g : {0, 1, 2, 3, 4} → {1, 2, 3, 4, 5, 6} by g(x) = (4

x

)
. Then

g ◦ f : {0, 1, 2} → {1, 2, 3, 4, 5, 6}
is given by

(g ◦ f )(x) = g( f (x)) = g(2x) =
(

4
2x

)
, ∀ x ∈ {0, 1, 2}. ■

EXAMPLE 5.39 Define a function f : [−1, 1] → (−4, 4) by f (x) = 1− 2x, and define a function
g : (−2, 3] → [0,∞) by g(x) = 1

x+2 . By Example 5.37(b), the range( f ) =
[−1, 3] ⊆ (−2, 3]. Therefore, the composite g ◦ f is defined and maps [−1, 1] to
[0,∞) by the formula

(g ◦ f )(x) = g( f (x)) = g(1− 2x) = 1
(1− 2x) + 2

= 1
3− 2x

. ■

It follows from the definition of a function that two functions F : X → W
and F ′ : X′ → W′ are equal (that is, F = F ′) if and only if X = X′, W = W′, and,
∀ x ∈ X, F (x) = F ′(x). We use this fact in our proof of the following result.

THEOREM 5.7 Associativity of Function Composition

Given any functions f : X → Y, g : Y → Z, and h : Z → W,

(h ◦ g) ◦ f = h ◦ (g ◦ f ).

Proof
By the definition of composition (Definition 5.14), both (h ◦ g) ◦ f and
h ◦ (g ◦ f ) have domain X and codomain W. So we focus on the output values
of these two compositions. Let x ∈ X. Observe that

((h ◦ g) ◦ f )(x) = (h ◦ g)( f (x)) = h(g( f (x)))

and

(h ◦ (g ◦ f ))(x) = h((g ◦ f )(x)) = h(g( f (x))).

Since ((h ◦ g) ◦ f )(x) = (h ◦ (g ◦ f ))(x) and x is arbitrary, it follows that
(h ◦ g) ◦ f = h ◦ (g ◦ f ). �

Generalizing Definition 5.14, it is also possible to define the composition
of two relations. This is taken up in the exercises, where its applications to
databases are also explored.
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Focusing on Real Functions
Real functions were informally introduced in Section 1.3. We now define them
more formally, in light of Definition 5.13, as functions that map a subset of R to a
subset of R. Real polynomial functions and exponential functions are important
examples of real functions.

DEFINITION 5.15

(a) A real polynomial function is a real function f for which there are n ∈ N
and cn, cn−1, . . . , c0 ∈ R such that

∀ x ∈ R, f (x) = cnxn + cn−1xn−1 + · · · + c1x + c0.

When n = 0, the polynomial f (x) = c0 is a constant function.

(b) An exponential function2 is a real function f for which there is some
b ∈ R+ such that

∀ x ∈ R, f (x) = bx.

The number b is called its base. When b is the Euler number e ≈ 2.718, the
function f (x) = ex is called the natural exponential function.

Examples of polynomials are given by the formulas 3x2 + 2 and
√

2x3 −
1
4 x+π but not 4x1/2+1 = 4

√
x+1. Important examples of exponential functions

besides ex include 2x and 2−x = 1
2x = ( 1

2 )x.
The graph of a function f : X → Y is the set

{(x, y) : x ∈ X, y ∈ Y, and f (x) = y}. (5.1)

When f is a real function, a drawing of (5.1) is a valuable tool for understand-
ing properties of f . Basic examples of drawings of graphs of real functions are
shown in Figure 5.16.

y

x

y � x3 � x 
 1 
1
6

1
6

y

x

y � ex

y

x

y � �x�

y

x

y � (  )x � 2�x 
1
2

y

x

y � x�1 �   
1
x

y

x

y � x    � �x
1
2

Figure 5.16 Examples of Real Functions

2A formal development of general powers ba is given in Appendix A. However, an informal
understanding gained from a precalculus course ought to suffice for our purposes.
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EXAMPLE 5.40 The relation on R given by {(x, y) : x = y2} can be seen not to be a function,
since it contains both (4, 2) and (4, −2); there is no unique value y specified as
the image of 4.

y

x
x � y2

(4, 2)

(4, �2)

■

For relations on R, the definition of function can be recast in a form known
as the vertical line test.

Test (Vertical Line Test). Let X ⊆ R, Y ⊆ R, and let R be a relation from
X to Y. Consider all vertical lines in R2 (of the form x = a for some
a ∈ R).
If every such vertical line intersects R at most once, then R is a function.
Moreover, each vertical line x = a should intersect R

(i) exactly once if a ∈ X, and
(ii) not at all if a �∈ X.

The fact that the relation x = y2 from Example 5.40 is not a function can
be seen with the vertical line test. The argument given in Example 5.40 shows
that the line x = 4 intersects the relation x = y2 more than once. Much as Venn
diagrams give us intuition about set identities, the vertical line test gives us a
way of seeing the difference between functions and relations on R. Rigorous
arguments, however, must appeal to the definition of a function (as was done in
Example 5.40) and not just to a picture.

In a spirit similar to the vertical line test, the range of a real function can be
seen by considering horizontal lines.

Test (The Horizontal Line Range Test). Let X ⊆ R, Y ⊆ R, and
f : X → Y. Consider all horizontal lines in R2 (of the form y = b for
some b ∈ R).
The range of f consists of all values b such that the line y = b intersects
the graph of f at least once.

Throughout this book, if a function is expressed by a formula, and the do-
main is not specified, it is understood that, within the context of some universe
of consideration, the domain is the set of values at which the formula can be eval-
uated. Similarly, if the codomain is not specified, then it is taken to be the set of
images of elements from the domain (that is, the range).

EXAMPLE 5.41 For each real function displayed in Figure 5.16, its domain and range are listed
in Table 5.5. For example, 1

x is defined for all real numbers x except x = 0.
Consequently, the domain of 1

x is R\{0}, and there is no point (x, y) on its
graph with x = 0. To determine the range of 1

x , let y be an arbitrary real
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f (x) Domain of f Range of f

1
6 x3− 1

6 x+1 R R

ex R (0,∞)
|x| R [0,∞)
( 1

2 )x R (0,∞)
1
x R\{0} R\{0}√

x [0,∞) [0,∞)

Table 5.5 Domain and Range for the Functions in Figure 5.16

number. Can we find a value x in R\{0} for which 1
x = y? Since this equation is

equivalent to x = 1
y , such an x can be found if and only if y �= 0. Consequently,

the range of 1
x is R\{0}, and there is no point (x, y) on its graph with y = 0. ■

EXAMPLE 5.42 The floor function f (x) = �x� is an example of a real function. Recall, for each
x ∈ R, that �x� is the unique integer n such that n ≤ x < n+ 1.

y

x

y � �x�

...

...

The domain of f is R and the range of f is Z. Consequently, the floor function
may alternatively be treated as a function from R to Z. ■

SECTION 5.3 Exercises
1. Is codomain synonymous with range?
2. Does a function map its domain to its codomain?

In Exercises 3 through 14, determine whether the given f , as “defined,” is a
function. If it is not well-defined, then explain why.

3. Define f from Z to Z+ by

f (n) = 2n−1.

4. Define f from Z+ to Z+ by

f (n) = 3n2 − 2.

5. Define f from [0,∞) to R by

x �→ ±√x.

6. Define f from R to P(R) by
(a) x �→ {x}. (b) x �→ {x, −x}.
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7. Define f from Z to Z by

(a) f (n) = n
2 .

(b) f (n) = 2n.

8. Define f from Z to Q by

(a) f (n) = 1
n2+1 .

(b) f (n) = 1
n2 .

9. Define f from Z to Q by n �→ 3n+1
2n−1 .

10. Define f from Q to Q by r �→ r−1
3r+2 .

11. Define f from Q to Q by

(a) f ( m
n ) = n.

(b) f ( m
n ) = m.

(c) f ( m
n ) =

{
n
m if m �= 0,
0 if m = 0.

12. Define f from Q to Q by

(a) f ( m
n ) = m− n.

(b) f ( m
n ) = m−n

n .

(c) f ( m
n ) = m+1

n .

�13. Define f from Z5 to Z10 by

(a) [a ]5 �→ [a ]10.
(b) [a ]5 �→ [2a ]10.

�14. Define f from Z10 to Z5 by

(a) [a ]10 �→ [a ]5.
(b) [a ]10 �→ [ a

2 ]5.

15. Tamera’s boss promised that employee salaries would be a function of
how hard the employees worked. After a year of putting in far more hours
than her co-workers, Tamera found out that she and her co-workers all
made the same salary. Did her boss keep his promise? Explain.

16. For the purposes of a large medical study, height is measured in inches,
and weight is measured in pounds, each rounded to the nearest integer.
Would it be reasonable for this study to conclude that weight is a function
of height? Explain.

In Exercises 17 through 26, specify the domain and range of the given function.
You need not prove your assertions.
17. The function f : {−3, −2, . . . , 3} → {−10, −9, . . . , 10} defined by n �→ n2.
18. The function f : {−4,−2, . . . , 4} → {−3,−2, . . . , 3} defined by n �→ n

2 .

19. The function f : {0, 1, . . . , 4} → {0, 1, . . . , 25} defined by n �→ 2n.
20. The function f : {0, 1, . . . , 4} → {0, 1, . . . , 25} defined by n �→ n!.
21. The function f : R → R defined by x �→ x2 − 1.

22. The function f : (R\{0}) → R defined by f (x) = 1
x2 .

23. f (x) =√x − 1. 24. f (x) = √x − 1.

25. f (x) = 1
x+1 . 26. f (x) = 1

x2+1 .

In Exercises 27 through 32, prove that the range is the stated set.
27. The function f : {0, 1, . . . , 6} → Z defined by n �→ (n− 2)2 has range

{0, 1, 4, 9, 16}.
28. The function f : {0, 1, . . . , 6} → Z defined by n �→ |4− n| has range

{0, 1, 2, 3, 4}.
29. The function f : [0, 2] → R defined by f (x) = 3x − 2 has range [−2, 4].
30. The function f : [1, 4) → R defined by f (x) = 3− 2x has range (−5, 1].
31. The function f : [0, 2] → R defined by f (x) = x2 has range [0, 4].
32. The function f : [−8, 0] → R defined by f (x) = x

1
3 has range [−2, 0].
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In Exercises 33 through 38, for the given functions f and g, find g ◦ f .
33. Let f : N → N and g : N → N be the functions defined by f (n) = n! and

g(n) = n2, respectively.
34. Let f : N → Z+ and g : Z+ → Z+ be the functions defined by f (n) = 2n and

g(n) = (n+1
2

)
, respectively.

35. Let f (x) = 1+ 3x and g(x) = 1− 3x.
36. Let f (x) = 1− x2 and g(x) = 1+ x2.
37. Let f : R\{0} → R+ and g : R+ → [0,∞) be the functions defined by

f (x) = 1
x2 and g(x) = √x, respectively.

38. Let f : R → R+ and g : R+ → [0,∞) be the functions defined by
f (x) = x2 + 1 and g(x) = xe , respectively.

39. Since a bit can take the value 0 or 1, an operation on a bit is a function from
{0, 1} to itself. Consider only functions f : {0, 1} → {0, 1}.
(a) Are x �→ 1− x and x �→ 1− x2 the same function? Explain.
(b) How many different functions are there from {0, 1} to itself?

40. Are the functions f (x) = x2−4
x−2 and g(x) = x + 2 the same function?

Explain.

In Exercises 41 through 48, use the following definition of the composite of
two relations.

DEFINITION 5.16

Given relations R from X to Y, and S from W to Z, such that

{y ∈ Y : ∃ x ∈ X, x R y} ⊆ {w ∈ W : ∃ z ∈ Z, w R z}, (5.2)

their composite, S ◦ R, is the relation from X to Z defined by

x (S ◦ R) z if and only if ∃ y ∈ Y such that x R y and y S z.

Note that condition (5.2) is satisfied if Y ⊆ W.

41. Let R be the “is the father of” relation from Example 5.5 in Section 5.1.
Determine R ◦ R.

42. Let R be the “is a proper divisor of” relation on Z+. That is, a R b if and
only if a | b and b

a �= 1. Determine R ◦ R.
43. Transitivity. Let R be a relation on a set X.

(a) Show: R is transitive if and only if R ◦ R ⊆ R.
(b) Show: If R is reflexive and transitive, then R ◦ R = R.
Conclude that any partial order relation composed with itself is itself. This
is true of ≤ on R, ⊆ on any collection of sets, and | on Z+.

44. Associativity. Given relations R from X to Y, S from Y to Z, and T from Z
to W, prove that (T ◦ S) ◦ R = T ◦ (S ◦ R).

45. RapItUp is a music company that distributes CD’s and specializes in rap
music. For each album that it sells, RapItUp keeps track of both the music
company and the artist who produced the album. Figure 5.17 shows two
tables from the database for RapItUp.
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Album Music Company
Slim Pickins Aristotle Records
Half Full of It Bald Boy Records
Can’t Make This Aristotle Records
8 Kilometer Bald Boy Records

Artist Album
MandM Slim Pickins
Fifty Percent Half Full of It
MandM 8 Kilometer
M.C. Escher Can’t Make This

Contracts Projects

Figure 5.17 Database for RapItUp

(a) Does M.C. Escher have a record deal with Bald Boy Records?
(b) Compose the “Contracts” table with the “Projects” table to obtain a

new “Record Deals” table.
(c) For which music companies does MandM have record deals?

46. CheapTripTics is a Web-based travel referral service that allows customers
to compare the travel packages offered by various travel agents. It keeps
track of both the packages offered and the packages purchased in a data-
base. The relevant tables are shown in Figure 5.18.

Package Travel Agent
Paris Passions Fly by Night
Rome Ruins Jump Ship
London Laughs Fly by Night
New York Nights Riding High

Traveler Package
Steve Terry Paris Passions
Steve Terry London Laughs
Tony Nistler New York Nights

Agreements Purchases

Figure 5.18 Database for CheapTripTics

(a) Does Tony Nistler have an agreement with the Riding High travel
agency?

(b) Compose the “Agreements” table with the “Purchases” table to obtain
a new “Buys From” table.

(c) From which agents is Steve Terry buying a travel package?
47. SoftJobs is the software company described in Exercise 19 from Section 5.1.

Using the tables the company has in its database, SoftJobs now wishes to
determine which client each programmer “works for.”
(a) Compose the “Contracts” table with the “Work Assignments” table to

obtain a new “Works For” table.
(b) For what clients is Martha Lang working?

48. HardSell is the mail-order hardware company described in Exercise 20
from Section 5.1. Using the tables it has in its database, SoftJobs now
wishes to determine which customer(s) each vendor “sells to.”
(a) Compose the “Orders” table with the “Suppliers” table to obtain a

new “Sells To” table.
(b) To what customers does Stanley sell parts?

In Exercises 49 through 54, a relation is given on R.
(a) Draw the graph of the relation.
(b) Use the Vertical Line Test to decide whether the relation is a function

and, if so, to find its domain.
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(c) If the relation is a function, then use the Horizontal Line Range Test to
find its range.

49. x2 + y = 1. 50. x2 + y = 0.
51. x2 + y2 = 1. 52. x2 + y2 = 0.
53. x2 − y2 = 1. 54. x2 − y2 = 0.
55. For a relation with a finite domain and a finite codomain, state the matrix

representation version of the Vertical Line Test.
56. For a function with a finite domain and a finite codomain, state the matrix

representation version of the Horizontal Line Range Test.

In Exercises 57 through 60, let f , g, and h be functions from R to R. Recall the
definitions of the operations + and · on functions given in Definition 1.16 of
Section 1.3.
57. (a) Show: ( f + g) ◦ h = f ◦ h + g ◦ h.

�(b) Give an example for which f ◦ (g + h) �= f ◦ g + f ◦ h.
58. (a) Show: ( f · g) ◦ h = ( f ◦ h) · (g ◦ h).

�(b) Give an example for which f ◦ (g · h) �= ( f ◦ g) · ( f ◦ h).
59. Let c ∈ R.

(a) Show: c( f ◦ g) = (c f ) ◦ g.
�(b) Give an example for which f ◦ (cg) is not the same as the functions in

part (a).
60. The sum of two subsets A and B of R is defined by

A+ B = {c : c = a + b for some a ∈ A and b ∈ B}.

(a) Show: range( f + g) ⊆ range( f ) + range(g).
�(b) Give an example for which range( f + g) �= range( f ) + range(g).

61. Is it possible that f ◦ f = f besides the function f (x) = x or the function
f (x) = −x?

62. If f ◦ g = g ◦ f , must it be true that f = g?

5.4 Special Functions
Definition 5.13 tells us that a function is a relation with the property that each
input yields a unique output. In this section, we consider additional important
properties a function might have.

DEFINITION 5.17

Given a set X, the identity function on X, denoted idX, is the function idX : X → X
given by the formula

∀ x ∈ X, idX(x) = x.

Under the operation of composition, the identity function acts just as the
multiplicative identity 1 does under multiplication.
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LEMMA 5.8 Let f : X → Y be any function. Then

f ◦ idX = f and idY ◦ f = f.

The straightforward proof of Lemma 5.8 is left for the exercises.

One-to-One and Onto Functions
A function, by definition, cannot send one input value to two or more output
values. However, two or more input values may be sent to one common output
value. That feature is pictured in the left-hand arrow diagram in Figure 5.19.
Also, there may be elements of the codomain that do not occur as output values.
This is pictured in the right-hand arrow diagram in Figure 5.19. We now consider
functions that avoid one or more of the features represented in Figure 5.19.

Not One-to-One Not Onto

Figure 5.19 Functions Without a Special Property

DEFINITION 5.18

Let a function f : X → Y be given.

(a) We say that f is one-to-one, or injective, if

∀ x1, x2 ∈ X, if f (x1) = f (x2) then x1 = x2.

That is, each element of Y is the image of at most one element of X.

(b) We say that f is onto, or surjective, if range( f ) = Y. That is, each element of
Y is the image of at least one element of X.

(c) We say that f is bijective if f is both one-to-one and onto. That is, each
element of Y is the image of exactly one element of X. A bijective function is
said to be a bijection, or a one-to-one correspondence.

Remark 5.1

(a) We prove that a function f : X → Y is one-to-one by proving the
if-then statement in Definition 5.18(a). To prove that f is not one-to-one,
we provide an example of x1, x2 ∈ X with f (x1) = f (x2) and x1 �= x2.

(b) To prove that f : X → Y is onto, since range( f ) ⊆ Y, it suffices to
prove Y ⊆ range( f ). We can prove that f is not onto by providing an
example of y ∈ Y such that y �∈ range( f ).

(c) We prove that f : X → Y is a bijection by both establishing that f
is one-to-one and establishing that f is onto. To prove that f is not a
bijection, it suffices to show that either f is not one-to-one or f is
not onto.

As is reflected in Figure 5.19, an understanding of the properties introduced
in Definition 5.18 can be gained by considering an example of a function without
those properties.
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EXAMPLE 5.43 The function f : {0, 1, 2, 3, 4} → {1, 2, 3, 4, 5, 6} defined by f (x) = (4
x

)
that we

considered in Example 5.34 is

(a) not one-to-one,
since f (1) = 4 = f (3). (Of course, 1 �= 3.)

(b) not onto,
since range( f ) = {1, 4, 6} �= {1, 2, 3, 4, 5, 6}. (For example, 2 �∈ range( f ).)

■

In our next example, we see functions that do exhibit the properties in Defi-
nition 5.18.

EXAMPLE 5.44 Let d be any positive integer.

(a) Show that the “multiplication by d” function f : Z → Z defined by

∀ n ∈ Z, f (n) = dn

is one-to-one.

Solution. Suppose that n1, n2 ∈ Z and f (n1) = f (n2). That is, dn1 =
dn2. Canceling d from both sides gives n1 = n2. Hence,

∀ n1, n2 ∈ Z, if f (n1) = f (n2) then n1 = n2.

That is, f is one-to-one. ■

(b) Show that the “mod d” function f : Z → {0, 1, . . . , d − 1} defined by

∀ n ∈ Z, f (n) = n mod d

is onto and not one-to-one.

Solution. (Onto) Suppose r ∈ {0, 1, . . . , d − 1}. We seek an integer n
such that f (n) = r . That is, we want n mod d = r . Pick n = r . Since
0 ≤ r < d, by definition of mod , we have r mod d = r . That is, f (r ) = r .
So every r ∈ {0, 1, . . . , d − 1} is the image of some n ∈ Z. Consequently,
range( f ) = {0, 1, . . . , d − 1}, the codomain of f .
(Not One-to-one) Observe that f (d) = 0 = f (0), but d �= 0. ■

Hash Functions. One method used for storing and retrieving information in a
computer, such as in a database, is known as hashing. It employs a function,
called a hash function, that determines the storage location of a particular item
of data on the basis of some identifying key for that item. For example, a li-
brary might choose to keep track of the books that are checked out by using each
book’s ISBN (International Standard Book Number) for its key. When identifi-
cation numbers are used for the keys, a common choice for the hashing function
is a “mod d” function from Example 5.44(b), for a particular choice of d. For
example, the library might use the function

h(n) = n mod 10000,

where n is the first 9 digits of the ISBN

d1 − d2d3d4d5d6d7d8d9 − d10,
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regarded as a base ten number d1d2d3d4d5d6d7d8d9. (We are ignoring here the last
digit, which we saw in Section 3.2 is a check digit.) Consequently, in this case,
when a book with identification key n is checked out, it would be recorded in
row h(n) of a table with d = 10000 rows, as shown in Table 5.6. We call such a
table a hash table.

Row ISBN Title Borrower
...

5023 0-39515023-X Curious George Megan Johnson
...

5340 0-59035340-3 Harry Potter Charles Brower
...

Table 5.6 Hash Table for Books Checked Out

One major issue involved in choosing a hash function is dealing with colli-
sions. These arise when two keys n1 and n2 hash to the same storage location,
i.e., h(n1) = h(n2). This is precisely the phenomenon that is avoided if h is one-
to-one. However, storage considerations may not allow such a choice. Alterna-
tively, if an item of data with key n1 has already been entered and h(n2) = h(n1),
then a common choice is instead to hash the item with key n2 to the next available
location in the hash table. Of course, the size of the codomain of h, which is the
number of rows in the hash table, must exceed the number of expected inputs.
Otherwise, there would eventually be a collision that could not be resolved.

Another important feature of the hash function is that it should be onto. Oth-
erwise, there is wasted space in the hash table that would never be filled. Of
course, there will also be unused space, in general, when the number of stored
records is smaller than the table’s capacity. Since we can never exceed the capac-
ity of a hash table, finding an appropriate balance between minimizing collisions
and conserving space influences the choice of a good hash function.

The value of a hash table comes from the ease with which a lookup of an
entry in the table can be implemented. For example, suppose a librarian using
Table 5.6 to record checked-out books wants to determine whether the book Hop
on Pop by Dr. Seuss is checked out. Since the book’s ISBN 0-39480029-X hashes
to row 29 of the table, if there is no entry in that row, then the book must still be
available in the library.

Our next example emphasizes the fact that whether a function is one-to-
one or onto is determined not only by its formula but also by its domain and
codomain.

EXAMPLE 5.45 Define the four functions

f : R → R,
g1 : R → R,
g2 : R → [0,∞), and
g3 : [0,∞) → [0,∞)

by the formulas f (x) = x3 and g1(x) = g2(x) = g3(x) = x2.
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y

x

y � f (x)

y

x

y � g1(x)

y

x

y � g2(x)

y

x

y � g3(x)

(a) (b) (c) (d)

The functions g1, g2, and g3 are distinguished by their domains and codomains.

(a) Show that f is one-to-one.
Solution. Suppose that x1, x2 ∈ R and f (x1) = f (x2). That is, x1

3 = x2
3.

Taking the cube root of both sides gives (x1
3)

1
3 = (x2

3)
1
3 . That is, x1 = x2.

Therefore,

∀ x1, x2 ∈ R, if f (x1) = f (x2), then x1 = x2. ■

(b) Show that g1 is not one-to-one.
Solution. Observe that g1(−1) = g1(1) and −1 �= 1. Consequently,

∃ x1, x2 ∈ X such that g1(x1) = g1(x2) and x1 �= x2.

Namely, x1 = 1 and x2 = −1. ■

(c) Show that f is onto.
Solution. Suppose y ∈ R. We seek a value x ∈ R such that f (x) = y.
That is, we want x3= y. So pick x= y

1
3 . Hence, f (x)= f (y

1
3 )= (y

1
3 )3 = y.

Since y is arbitrary, every element of the codomain R is the image of
some element from the domain R. That is, range( f ) = Y, where Y = R
in this case. ■

(d) Show that g1 is not onto.
Solution. Let y = −1. Since ∀ x ∈ R, x2 ≥ 0, there can be no value
x ∈ R such that x2 = −1. That is, there is no x in the domain such
that g1(x) = y. Hence, y = −1 is not in the image of g1. That is,
range(g1) �= Y, where Y = R in this case. Namely, −1 �∈ range(g1). ■

(e) Show that g2 is onto.
Solution. Suppose y ∈ [0,∞). Since y ≥ 0, we may pick x = √y.
Observe that g2(x) = (

√
y)2 = y. Hence, g2(R) = [0,∞). ■

(f) Show that f is bijective.
Solution. By parts (a) and (c), f is one-to-one and onto. ■

(g) Show that g2 is not bijective.
Solution. The arguments from part (b) can also be used to show that g2
is not one-to-one. Hence, g2 is not bijective. ■

(h) Show that g3 is bijective.
Solution. The arguments from part (e) can also be used to show
that g3 is onto. So it remains to show that g3 is one-to-one. Suppose
g3(x1) = g3(x2). That is, x1

2 = x2
2. Since x1, x2 ≥ 0, it follows that

x1 = |x1| =
√

x1
2 =
√

x2
2 = |x2| = x2. ■
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The assertions in Example 5.45 can also be seen graphically. For real func-
tions, the definitions of one-to-one and onto can be recast in the form of the fol-
lowing horizontal line tests. The first of these is commonly called the Horizontal
Line Test.

Test (Horizontal Line Tests). Let X ⊆ R, Y ⊆ R, and f : X → Y.
Consider all horizontal lines in R2 of the form y = b for some b ∈ Y.

(a) If every such horizontal line intersects the graph of f at most once,
then f is one-to-one.

(b) If every such horizontal line intersects the graph of f at least once,
then f is onto.

Certain properties exhibited by functions f and g are retained by their com-
position g ◦ f .

THEOREM 5.9 Composition Preserves One-to-One and Onto

Let f : X → Y and g : Y → Z be functions.

(a) If f and g are one-to-one, then g ◦ f is one-to-one.

(b) If f and g are onto, then g ◦ f is onto.

(c) If f and g are bijective, then g ◦ f is bijective.

Proof
For part (a), suppose that f and g are one-to-one. To show that g ◦ f is one-to-
one, suppose that x1, x2 ∈ X and (g ◦ f )(x1) = (g ◦ f )(x2). Let y1 = f (x1) and
y2 = f (x2). Then

g(y1) = g( f (x1)) = (g ◦ f )(x1) = (g ◦ f )(x2) = g( f (x2)) = g(y2).
Since g is one-to-one and g(y1) = g(y2), it follows that y1 = y2. That is,
f (x1)= f (x2).
Since f is one-to-one and f (x1) = f (x2), it follows that x1 = x2. We conclude
that g ◦ f is one-to-one.

The proofs for parts (b) and (c) are left for the exercises. �

Inverse Functions
Since a function f : X → Y is, in particular, a relation, Definition 5.3 from Sec-
tion 5.1 defines its inverse relation f −1 by, for all y ∈ Y and x ∈ X,

y f −1 x if and only if x f y (that is, f (x) = y). (5.3)

However, f −1 is not always a function.

EXAMPLE 5.46 The function y = x2 has inverse relation x = y2. However, we saw in Exam-
ple 5.40 that x = y2 is not a function. ■

To understand the cases in which f −1 is a function, and to appreciate the
properties f −1 then has, we utilize the following notion.

DEFINITION 5.19

Two functions f : X → Y and g : Y → X are said to be inverses of one another if

g ◦ f = idX and f ◦ g = idY.
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EXAMPLE 5.47 The functions f : R → R and g : R → R defined by f (x) = x3 and g(x) = x1/3

are inverses of one another.

y

x

y � x3

y

x

y � x    � �x
1
3

3

Proof
Observe that, ∀ x ∈ R,

(g ◦ f )(x) = g( f (x)) = g(x3) = (x3)1/3 = x,

and, ∀ y ∈ R,

( f ◦ g)(y) = f (g(y)) = f (y1/3) = (y1/3)3 = y. �

Of course, rather than using y in the second case, we could use the same
letter, say x, in both cases.

EXAMPLE 5.48 The functions f : R → (−1, 1) and g : (−1, 1) → R defined by f (x) = x√
1+x2

and g(x) = x√
1−x2

are inverses of one another.

y

x

y � f (x)1

�1

y

x

y � g(x)

1�1

Proof
Observe that, ∀ x ∈ R,

g( f (x)) =
x√

1+x2√
1−
(

x√
1+x2

)2
=

x√
1+x2√

1+x2

1+x2 − x2

1+x2

=
x√

1+x2√
1

1+x2

=
x√

1+x2

1√
1+x2

= x,

and, ∀ x ∈ (−1, 1),

f (g(x)) =
x√

1−x2√
1+
(

x√
1−x2

)2
=

x√
1−x2√

1−x2

1−x2 + x2

1−x2

=
x√

1−x2√
1

1−x2

=
x√

1−x2

1√
1−x2

= x.

�
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In Example 5.47, the fact that g = f −1 may be obvious from (5.3). In Exam-
ple 5.48, that relationship is not so obvious. However, part (b) of the following
theorem says that g = f −1 must hold when f and g are inverses of one another.

THEOREM 5.10 Let f : X → Y be any function.

(a) If f is a bijection, then

(i) f −1 is a function and (ii) f and f −1 are inverses of one another.

(b) If there is a function g : Y → X such that f and g are inverses of one another, then

(i) f is a bijection and (ii) g = f −1.

Proof

(a) Suppose f is a bijection.
(i) We need to show that the relation f −1 defined by (5.3) is a function. For

each y ∈ Y, since f is a bijection, there is exactly one value x ∈ X such
that f (x) = y. Hence, there is a unique value x specified by (5.3) such
that y f −1 x. So f −1 is indeed a function, and we may write f −1(y) = x.

(ii) It must be verified that f −1 ◦ f = idX and f ◦ f −1 = idY. For each
x ∈ X, if we let y = f (x), then (5.3) tell us that f −1(y) = x. That is,
f −1( f (x)) = x. So f −1 ◦ f = idX. For each y ∈ Y, if we let x = f −1(y),
then (5.3) tells us that f (x) = y. That is, f ( f −1(y)) = y. So f ◦ f −1 = idY.
Hence, f and f −1 are inverses of one another.

(b) Suppose g : Y → X is a function such that f and g are inverses of one
another.
(i) To show that f is one-to-one, suppose x1, x2 ∈ X and f (x1) = f (x2).

Evaluating g on both sides of this equation gives g( f (x1)) = g( f (x2)). So

x1 = (g ◦ f )(x1) = g( f (x1)) = g( f (x2)) = (g ◦ f )(x2) = x2.

Therefore, f is one-to-one.
To show that f is onto, suppose y ∈ Y. Let x = g(y) ∈ X, and observe
that

f (x) = f (g(y)) = ( f ◦ g)(y) = y.

Since y is the image of x, it follows that f is onto.
(ii) It must be verified that, ∀ y ∈ Y and x ∈ X,

g(y) = x (that is, y g x) if and only if f (x) = y.

If g(y) = x, then f (x) = f (g(y)) = ( f ◦ g)(y) = y.
If f (x) = y, then g(y) = g( f (x)) = (g ◦ f )(x) = x. �

Theorem 5.10 provides, in part (b), a useful tool for showing that a function
is bijective. It also enables us to properly define the inverse of a function as a
function, when possible.

DEFINITION 5.20

If a function f : X → Y satisfies the hypotheses of either part (a) or part (b) of
Theorem 5.10, then the function f −1 defined by, ∀ x ∈ X and y ∈ Y,

f −1(y) = x if and only if f (x) = y

is called the inverse function for f .
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As we observed in Section 5.1, the graphs of real functions f and f −1 are
reflections of one another about the line y = x. This relationship can be seen, for
example, in the graphs in Examples 5.47 and 5.48.

Logarithms
Let b be a real number such that b > 1. The exponential function

f : R → R+ given by ∀ x ∈ R, f (x) = bx

can be seen to be a bijection.

y

x

y � bx

Since f satisfies the hypothesis of Theorem 5.10(a), Definition 5.20 tells us that
f has an inverse function f −1 : R+ → R. In this case, for each y ∈ R+, the func-
tion value f −1(y) is called the logarithm base b of y and is denoted logb(y).
Moreover, ∀ x ∈ R and y ∈ R+,

logb(y) = x if and only if bx = y. (5.4)

The graph of y = logb(x) is obtained by reflecting the graph of y = bx about the
line y = x.

y

x

y � logb(x)

Moreover, since the logarithm base b and the exponential function base b are
inverses of one another, we have, ∀ x ∈ R and y ∈ R+,

logb(bx) = x and blogb (y) = y. (5.5)

DEFINITION 5.21

The natural logarithm function, which we denote by ln, is the function ln : R+ → R
given by ∀x ∈ R+, ln(x) = loge (x). That is, the natural logarithm function is the
inverse of the natural exponential function x �→ ex .
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EXAMPLE 5.49 (Computing Logarithms from Their Definition, Equation (5.4)).

(a) log2(8) = 3, since 23 = 8.

(b) log10(0.001) = −3, since 10−3 = 0.001.

(c) log9(3) = 1
2 , since 9

1
2 = 3.

(d) ln(e2) = 2, since e2 = e2. ■

The fundamental properties of logarithms are developed in the exercises.

SECTION 5.4 Exercises
1. Define f : Z× Z → Z by f (m, n) = mn.

(a) Show that f is onto. (b) Show that f is not one-to-one.

2. Define f : Z → Q by f (n) = n
2n .

(a) Show that f is not one-to-one. (b) Show that f is not onto.

3. Show that f (x) = x3 + 8 is one-to-one.
4. Show that f (x) = (x + 2)3 is one-to-one.
5. Show that the function f : R+ → R+ defined by x �→ x2 + x is onto.
6. Show that the function f : R+ → R− defined by x �→ −x2 is onto.
7. Let f be an arbitrary real function. Show: If f is increasing, then f is

one-to-one. See Definition 1.15(b).
8. Give an example of a real function f that is increasing but not onto.

�9. Define the multiplication by 2 map f : Z6 → Z6 by [n] �→ [2n].

(a) Show that f is well-defined. (b) Show that f is not one-to-one.
(c) Use Lemma 3.30 to explain why the cancellation argument used in

Example 5.44(a) does not work here.

�10. Define the multiplication by 5 map f : Z6 → Z6 by [n] �→ [5n].
(a) Show that f is well-defined.
(b) Show that f is bijective by computing the six function values.
(c) Use Lemma 3.30 to explain why the cancellation argument used in

Example 5.44(a) also works here to show that f is one-to-one.
11. A cash register is using a hash function h to keep track of the items

purchased by a customer. For each UPC number

d1 d2d3d4d5d6 d7d8d9d10d11 d12,

it takes n to be the base ten value of the string d1d2d3d4d5d6d7d8d9d10d11 and
computes h(n) = n mod 625.
(a) To what value does Corn Chex 0 16000 81160 7 hash?
(b) Suppose no item hashes to 321. Give two examples of UPC numbers

that cannot possibly represent a product purchased by the customer.
Refer to Example 3.16 from Section 3.2 to see how to form the check
digit.

12. The Internet bookseller BooksForCheap is using a hash function h to keep
track of the books ordered by a customer. For each ISBN

d1 − d2d3d4d5d6 d7d8d9 − d10,
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it takes n to be the base ten value of the string d1d2d3d4d5d6d7d8d9 and
computes h(n) = n mod 250.
(a) To what value does Harry Potter and the Sorcerer’s Stone by J. K.

Rowling, 0-59035340-3, hash?
(b) Suppose no book hashes to 123. Give two examples of ISBNs that

cannot possibly represent a book ordered by the customer. Refer
to Example 3.16 from Section 3.2 to see how to form the check digit.

13. Let X and Y be sets with Y �= ∅. Say y0 ∈ Y.
The function p : X× Y → X defined by p(x, y) = x is called a projection.
The function i : X → X× Y defined by i(x) = (x, y0) is called an injection.

(a) Show that p is onto. (b) Show that i is one-to-one.
(c) Show p ◦ i = idX. (d) Find i ◦ p.

14. Let P be the set of all real polynomial functions. Define f : P → R by
f ( p) = p(0), and define g : R → P by taking g(c) to be the constant
function with constant value c.
(a) Show f is onto. (b) Show g is one-to-one.
(c) Find f ◦ g. (d) Find g ◦ f .

15. Let A⊆ X. The function i : A→ X defined by i(a ) = a is called an
inclusion function. Show that i is one-to-one.

�16. Let R be an equivalence relation on a set X. Let Y = {[x]R : x ∈ X}, the set
of equivalence classes under R. The function p : X → Y defined by
p(x) = [x]R is called a quotient map. Show that p is onto.

17. Define f :P(R) → P([0, 1]) by A �→ A∩ [0, 1]. Show f is onto.
18. Define functions f, g :P(R) → P(R2) by f ( A) = A× [0, 1] and g( A) = A2.

Are f and g onto or one-to-one?
19. Define functions f, g :P(R)2 → P(R) by f (( A, B)) = A∩ B and

g(( A, B)) = A∪ B. Are f and g onto or one-to-one?
20. Define functions f, g :P(R) → P(R) × P(R) by f ( A) = ( A, A) and

g( A) = ( A, ∅). Are f and g onto or one-to-one?
21. A couple has reserved a reception hall for their wedding and wishes to

specify a seating chart for the guests.

In fact, a seating chart is a function from the set of guests to the set of seats
in the reception hall. Which one of the following must this function be:
one-to-one, onto, or bijective? Explain.

22. A contestant throws darts at the pictured board until each one of the nine
regions contains a dart.
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Assuming that the contestant never misses the board, a record of a con-
testant’s throws can be regarded as a function from the set of her or his
throws to the set of regions on the dart board. Which one of the following
must this function be: one-to-one, onto, or bijective? Explain.

23. Prove Lemma 5.8.
24. Show, for any set X, that idX is a bijection.
25. Show that the function f (x) = x3 + 8 is a bijection. See Exercise 3.
26. Show that the function f : R+ → R− defined by f (x) = −x2 is a bijection.

See Exercise 6.
27. Show that the function f : {−2, −1, 0, 1, 2} → {0, 2, 4, 6, 8} defined by

k �→ 2k + 4 is a bijection.
28. Let n ∈ Z+. Show that the function

f : {m : m ∈ Z and − n ≤ m ≤ 2n} → {m : m ∈ Z and 0 ≤ m ≤ 3n}
defined by k �→ 2n− k is a bijection.

29. Let n ∈ Z+. Show that the function

f : {m : m ∈ Z and 1 ≤ m ≤ 2n+ 1} → {m : m ∈ Z and − n ≤ m ≤ n}
defined by f (k) = k − 1− n is a bijection.

�30. Let d ∈ Z with d > 1. Show that the function f : {0, 1, . . . , d − 1} → Zd

given by f (r ) = [r ]d is a bijection.
�31. Let m, n ∈ Z with n > 1. Define functions f, g : Zn → Zn by f ([k]) = [mk]

and g([k]) = [m+ k].

(a) Show that f and g are well-defined.
(b) Show f is a bijection if and only if gcd(m, n) = 1.
(c) Under what conditions is g a bijection?

�32. Let m, n ∈ Z+ with n > 1. Define functions f : Zmn → Zn and g : Zn → Zmn

by f ([k]mn) = [k]n and g([k]n) = [mk]mn.
(a) Show that f and g are well-defined.
(b) Compute both compositions f ◦ g and g ◦ f .
(c) Show that g is one-to-one.
(d) Under what conditions is f one-to-one?

33. For a function with a finite domain and a finite codomain, state the matrix
representation version of part (a) of the Horizontal Line Test.

34. For a function with a finite domain and a finite codomain, state the matrix
representation version of part (b) of the Horizontal Line Test.

35. Prove parts (b) and (c) of Theorem 5.9.
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36. Let f : X → X be a bijection. Show that f ◦ f ◦ f is also a bijection.
37. Let X be an arbitrary set and f : X → X an arbitrary function.

Show: f is a symmetric relation on X if and only if f ◦ f = idX.
38. Let X be an arbitrary set and f : X → X an arbitrary function.

Show: f is a reflexive relation on X if and only if f = idX.

In Exercises 39 through 42, let f : X → Y and g : Y → Z be functions.
�39. Suppose g ◦ f is one-to-one.

(a) Show: f is one-to-one.
(b) Give an example in which g is not one-to-one.

�40. Suppose g ◦ f is onto.
(a) Show: g is onto.
(b) Give an example in which f is not onto.

�41. Suppose g ◦ f is a bijection.
(a) Show: f is one-to-one. (b) Show: g is onto.
(c) Give an example in which neither f nor g is a bijection.

�42. Suppose Z = X. Give an example in which g ◦ f = idX but f and g are not
inverses of one another.

43. Suppose f and g are real functions.
(a) Show: If f and g are increasing, then g ◦ f is increasing.
(b) Give an example for which g ◦ f is increasing, but neither f nor g is

increasing.
44. Suppose f and g are real functions.

(a) Show: If f or g is constant, then g ◦ f is constant.
(b) Give an example for which g ◦ f is constant, but neither f nor g is

constant.

In Exercises 45 through 50, show that the given functions f and g are inverses
of one another.

45. Define f, g : R → R by f (x) = 2x + 5 and g(x) = x−5
2 .

46. f (x) = 3
√

x + 1 and g(x) = (x − 1)3.
47. f : {2, 3, 4, 5} → {1, 3, 6, 10} defined by f (n) = (n

2

)
and

g : {1, 3, 6, 10} → {2, 3, 4, 5} defined by g(n) = 1+
√

8n+1
2 .

48. f : {1, 2, 3} → {2, 4, 8} defined by f (n) = 2n and
g : {2, 4, 8} → {1, 2, 3} defined by g(n) = � n

3 �.
49. f (x) = 4− 2x and g(x) = 2− 1

2 x.

50. Define f, g : R → R by f (x) = x
3 + 1 and g(x) = 3x − 3.

51. Define f : Q+ → Q+ by r �→ 1
r . Show that f is its own inverse.

52. Define f : Z → Z by n �→ −n. Show that f is its own inverse.
53. Find the inverse of f (x) = 4x3 + 1.

54. Find the inverse of f (x) = 2x+3
5 .

55. The listings of phone numbers in a phone book can be regarded as a
function from the set of people with phones to the set of possible phone
numbers.
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Name Phone Number
Blair, Tina 555-3148
Jennings, Robert 555-6301
Tillman, Paul 555-4500
Walsh, Carol 555-3992

Caller ID is a service that inverts this function and enables one to deter-
mine the identity of a caller based on his or her phone number. Specify the
inverse listing of the small phone book above, while putting the phone
numbers in numerical order. Must the phone listing function be one-to-
one? onto?

56. The appearance of terms in a book can be regarded as a relation from the
set of pages (each specified by its number) in the book to the set of terms
included in the book.

13

Tautology

43

Intersection

106
Even

Odd

222

Relation

An index of terms in the back of the book is the inverse of this relation and
enables one to easily find the page on which a term is defined. Form the
index for the portion of the book above, while putting the terms in alpha-
betical order. Must either relation be a function?

57. Show, for any bijection f : X → Y, that f −1 : Y → X is a bijection.
Hint: Use Theorem 5.10.

58. Show that, in Theorem 5.10(b), the conclusions g is a bijection and f = g−1

may be added.
59. Given functions f1 : X1 → Y1 and f2 : X2 → Y2, define a function, denoted

f1 × f2, such that f1 × f2 : X1 × X2 → Y1 × Y2 and ( f1 × f2)((x1, x2)) =
( f1(x1), f2(x2)).

(a) Show: If f1 and f2 are one-to-one, then f1 × f2 is one-to-one.
(b) Show: If f1 and f2 are onto, then f1 × f2 is onto.
(c) Show: If f1 and f2 are bijective, then f1 × f2 is bijective.

60. Let X1 and X2 be disjoint sets. Given functions f1 : X1 →Y and f2 : X2 →Y,

define a function f : X1 ∪ X2 → Y by f (x) =
{

f1(x) if x ∈ X1
f2(x) if x ∈ X2

.

(a) Prove or disprove: If f1 and f2 are one-to-one, then f is one-to-one.
(b) Prove or disprove: If f1 or f2 is onto, then f is onto.
(c) Under what conditions would f be well-defined if X1 and X2 were not

disjoint?
61. Define f : N× N → N by f ((m, n)) = n+∑m+n

i=1 i .
(a) Show f is a bijection.

Hint: Draw a picture, and label each point (m, n) ∈ N× N with its
function value f ((m, n)).
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(b) Show that the map g : Z+ → N defined by g(n) = n− 1 is a bijection.
(c) Show that the map (g × g) : Z+ × Z+ → N× N defined by

(g × g)(m, n) = (g(m), g(n)) is a bijection.
(d) Show that the map (g−1 ◦ f ◦ (g × g)) : Z+ × Z+ → Z+ is a bijection.

62. Let P = {(a , b) : a ∈ Z, b ∈ Z+, and gcd(a , b) = 1} ⊂ Z× Z+, and define
f : Q → P by f (r ) = (a , b), where a

b is the unique expression of r in lowest
terms as guaranteed by Theorem 3.22.
Show that f is a bijection.

63. Find the following values.
(a) log2( 1

4 ). (b) log3(81).

(c) log16(2). (d) ln( 1
e ).

64. Find the following values.
(a) log3( 1

9 ). (b) log10(100).

(c) log4(8). (d) ln(
√

e).

65. If a population is growing continuously and doubling every year, then the
function p(t) that measures the size of the population after t years from
some start time has the form p(t) = a2t, where a is the population at time
0. Observe, for example, that p(6) = 2p(5). In general, the population
indeed doubles from one year to the next. Use Equation (5.5) from the end
of this section as a tool to determine the tripling time for the population.

66. Suppose that the amount of a radioactive substance in a rock at time t is
given by the function r (t) = a ( 1

5 )t, for some constant a = r (0). The half-life
of the radioactive substance is defined to be the length of time it takes the
amount of radioactive substance to decrease by 50%. Use Equation (5.5)
from the end of this section as a tool to determine the half-life of the
substance.

67. Let a ∈ R and b, c, y, z ∈ R+ with b, c > 1. Prove the following.
(a) logb(1) = 0. (b) logb(yz) = logb(y) + logb(z).
(c) logb(ya ) = a logb(y).

68. Let a ∈ R and b, c, y, z ∈ R+ with b, c > 1. Prove the following.
(a) logb(b) = 1. (b) logb( y

z ) = logb(y) − logb(z).

(c) logc(y) = logc(b) · logb(y).
69. Use the Fundamental Theorem of Arithmetic to argue that the exponential

function f : Z+ → Z+ given by f (n) = 2n is one-to-one.
70. Show that the function f : Z → R2 defined by f (n) = (cos n, sin n) is

one-to-one. Note that angles are measured in radians here.

5.5 General Set Constructions
Our focus in the previous sections on a function’s behavior relative to individual
values shifts to a consideration of its behavior relative to sets. Such considera-
tions play a prominent role in higher mathematics courses, such as advanced
calculus and real analysis. We shall study arbitrary unions and intersections of
sets and generalize earlier special cases of these operations, such as finite unions
and intersections. Applications to database queries are also discussed.
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Images and Inverse Images

DEFINITION 5.22

Let a function f : X → Y be given.

(a) Given a subset S of X, the image of S under f , denoted f (S), is the set
given by

f (S) = {t : t ∈ Y and f (s) = t for some s ∈ S}.
(b) Given a subset T of Y, the inverse image of T under f , denoted f −1(T), is

the set given by

f −1(T) = {s : s ∈ X and f (s) = t for some t ∈ T}.

To develop some comfort with the notions in Definition 5.22, we start by
revisiting a function we studied earlier, in Example 5.34 of Section 5.3.

EXAMPLE 5.50 Consider the function f : {0, 1, 2, 3, 4} → {1, 2, 3, 4, 5, 6} defined by f (x) = (4
x

)
.

(a) f ({1, 2}) = {4, 6},
since f (1) = 4 and f (2) = 6.

(b) f ({0, 1, 4}) = {1, 4},
since f (0) = f (4) = 1 and f (1) = 4.

(c) f −1({4, 6}) = {1, 2, 3},
since f (1) = f (3) = 4, f (2) = 6, and, for no other value x outside of
{1, 2, 3} is f (x) ∈ {4, 6}.

(d) f −1({4, 5, 6}) = {1, 2, 3},
by part (c) together with the fact that there is no value x for which
f (x) = 5.

(e) f −1({1, 4, 6}) = {0, 1, 2, 3, 4},
since Example 5.34 tells us that {1, 4, 6} is the range of f . That is, the
entire domain of f is mapped to the set {1, 4, 6}. ■

Remark 5.2 Let a function f : X → Y, an element x ∈ X, a subset S ⊆ X,
and a subset T ⊆ Y be given.

(a) The term image has been defined in three contexts. We say
(i) f (x) is the image of the element x,
(ii) f (X) is the image of the function f , and
(iii) f (S) is the image of the subset S.
The type of image being considered should always be clear in
context. Of course, all three types are closely related. For example,
the image of the function f : X → Y is the image of the subset X.

(b) The image of S is the image of the restricted function

fS : S → Y defined by ∀ x ∈ S, fS(x) = f (x).

That is, f (S) is the range of fS. Consequently, images of subsets are
computed using the techniques introduced in Section 5.3 to compute
ranges.

(c) The inverse image operator f −1 should not be confused with an
inverse function (or relation). The inverse image operator f −1 is



C H A P T E R 5 ■ Relations 277

defined for any function, whereas the inverse function f −1 exists
only for some functions. If a given function f : X → Y has an inverse
function f −1 : Y → X, then there are two potential interpretations of
the notation f −1(T). This might be thought of as the inverse image
of T under f or as the image of T under f −1. Fortunately, the result
is the same either way. Namely,

{s : s ∈ X and f (s) = t for some t ∈ T} =
{s : s ∈ X and s = f −1(t) for some t ∈ T},

since

f (s) = t if and only if s = f −1(t)

in this special case.

As an illustration of Remark 5.2(b), consider the function f : R → R defined
by x �→ 1− 2x. The image f ([−1, 1]) = [−1, 3] can be seen by the computations
in Example 5.37, where the domain of f was restricted to [−1, 1].

In our next example, we consider another real function.

EXAMPLE 5.51 Define f : R\{0} → R by x �→ 1
x2 .

(a) Show: f ((2, 3]) =
[

1
9 , 1

4

)
.

Proof
By definition,

f ((2, 3]) = {t : t ∈ R and 1
s2 = t for some s ∈ (2, 3]}.

Since

t = 1
s2 for some 2 < s ≤ 3 if and only if

t = 1
r for some 4 < r ≤ 9 if and only if

1
9 ≤ t <

1
4 ,

we see that the image of (2, 3] is
[

1
9 , 1

4

)
.

y

x
2

1
4

3

1
9

�

(b) Show: f −1
([

1
9 , 1

4

))
= [−3, 2) ∪ (2, 3].

Proof
By definition,

f −1
([

1
9 , 1

4

))
=
{

s : s ∈ R\{0} and 1
s2 = t for some t ∈

[
1
9 , 1

4

)}
.
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Since
1
s2 = t for some 1

9 ≤ t <
1
4 if and only if

s2 = r for some 4 < r ≤ 9 if and only if

4 < s2 ≤ 9 if and only if
−3 ≤ s < −2 or 2 < s ≤ 3,

we see that the inverse image of
[

1
9 , 1

4

)
is [−3, 2) ∪ (2, 3].

y

x
2

1
4

3�3 �2

1
9

�

EXAMPLE 5.52 (Database Queries). A library might keep track of which books are checked
out in a table like Table 5.7. In fact, this table can be seen to reflect a function
f : B → P , where B is the set of books in the library, P is the set of patrons of
the library, and f (b) = p precisely when (b, p) is a row of Table 5.7. That is,
f (b) = p means that book b has been checked out by patron p. From this point
of view, natural questions one might ask about the database can be seen to be
either an image or an inverse image for the function f .

Book Borrower

Grapes of Wrath, by J. Steinbeck Abe Roth
Hop on Pop, by Dr. Seuss Megan Johnson
Of Mice and Men, by J. Steinbeck Carla Torre
Fahrenheit 451, by R. Bradbury Richard Kelley
Curious George, by H. Rey Martha Lang
The Martian Chronicles, by R. Bradbury Carla Torre
Cannery Row, by J. Steinbeck Abe Roth

Table 5.7 Books Checked Out

(a) Which members have checked out books by John Steinbeck?

Solution. The set of books by John Steinbeck that have been checked
out is

S = {Grapes of Wrath, Of Mice and Men, Cannery Row}.
What we seek is the image of S under f . Since

f (S) = {Abe Roth, Carla Torre},
the answer to our question is Abe Roth and Carla Torre. ■

(b) Which books have been checked out by Carla Torre?

Solution. We are inquiring about the checked-out books for the set of
patrons

T = {Carla Torre}.
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What we seek is the inverse image of T under f . Since

f −1(T) = {Of Mice and Men, The Martian Chronicles},

the answer to our question is Of Mice and Men and The Martian
Chronicles. ■

Although Table 5.7 reflects a function, we have seen in Section 5.1 that tables
in databases more generally reflect relations. In fact, the notions of image and
inverse image in Definition 5.22 naturally generalize to relations, as we shall see
in the exercises.

Although images may seem easier to compute than inverse images, it turns
out that inverse images are better behaved with respect to basic set operations.
That is, the operation of taking an inverse image tends to commute with a set
operation more often than does the operation of taking an image. The behav-
ior relative to complements is demonstrated in the next example. The behavior
relative to other operations, such as unions and intersections, is explored in the
exercises. (See Exercises 27 through 34.)

EXAMPLE 5.53 Let f : X → Y be an arbitrary function.

(a) Show: For any subset T ⊆ Y, that f −1(Tc) = ( f −1(T))c .
(b) Give an example of a function f and a subset S ⊆ X such that both

f (Sc) � f (S)c and f (S)c � f (Sc). Hence, certainly f (S)c �= f (Sc).

Solution.

(a) (⊆) Suppose x ∈ f −1(Tc). Hence, f (x) ∈ Tc . That is, f (x) �∈ T .
Therefore, x �∈ f −1(T). That is, x ∈ ( f −1(T))c .
(⊇) Suppose x ∈ ( f −1(T))c . That is, x �∈ f −1(T). Hence, f (x) �∈ T .
Therefore, f (x) ∈ Tc . That is, x ∈ f −1(Tc).

(b) Define f : [0, 4] → [0, 3] by

f (x) =
{

x if x ∈ [0, 2],
x − 2 if x ∈ (2, 4],

and let S = [0, 2]. Observe that f (S)c = (2, 3] and f (Sc) = (0, 2]. Neither
is a subset of the other. ■

Indexed Set Operations
The union of a finite list of sets was defined in Section 1.4. The union of a gen-
eral (possibly infinite) collection of sets was introduced in Section 5.2. Although
taking unions of collections of sets was sufficient for our study of partitions, it
does not cover all possible types of unions. Since A represents a set of sets in⋃

A∈A A, each set A in A occurs exactly once in this union. However, in the fi-
nite case (such as, A∪ A), a set A can be repeated. In fact, when dealing with an
arbitrary union, such as A∪B, we may not know whether B is a repeat of A, and
we prefer not needing to fuss over such possibilities when making a general
argument. To accomplish both degrees of flexibility, arbitrary infinite unions and
arbitrary repetitions, we introduce the most general notion of indexed unions.
Of course, intersections are handled similarly.



280 P A R T I ■ Proofs

DEFINITION 5.23

Let U be some fixed universal set. Given a set I and a function that assigns to each
i ∈ I a set Ai in U , we say that I is the indexing set for the indexed collection
{Ai }i∈I of sets.3

EXAMPLE 5.54 Let U = {2, 3, 5, 7} and I = {1, 2, 3}. Define A1 = {2, 5}, A2 = {5, 7}, and A3 =
{2, 5}. The sets A1, A2, A3 form an indexed collection. In this case, A1 = A3, but
the indices of A1 and A3, namely 1 and 3, respectively, are different. ■

DEFINITION 5.24

Let I be the indexing set for an indexed collection of sets {Ai }i∈I from some
universe U .

(a) The union of {Ai }i∈I , denoted
⋃
i∈I

Ai , is the set defined by

∀ x ∈ U , x ∈
⋃
i∈I

Ai ↔ x ∈ Ai for some i ∈ I.

(b) The intersection of {Ai }i∈I , denoted
⋂
i∈I

Ai , is the set defined by

∀ x ∈ U , x ∈
⋂
i∈I

Ai ↔ x ∈ Ai for every i ∈ I.

The unions of collections of sets in Definition 5.9 are the special cases of
the unions in Definition 5.24(a) in which the indexing set and the collection of
sets coincide. The repetitions permitted in indexed unions and intersections cer-
tainly do not affect the final result, but the flexibility of the notation that we
sought is achieved. For other set operations, such as products, the difference is
more significant. Those cases are not considered in this book, but will be en-
countered in higher mathematics.

EXAMPLE 5.55 Consider the indexed collection of sets from Example 5.54.

(a)
⋃

i∈{1,2,3}
Ai ={2, 5, 7},

since 2 ∈ A1, 5 ∈ A1, 7 ∈ A2, and 3 is not in any of A1, A2 or A3. In this
case,

⋃
i∈{1,2,3}

Ai = A1 ∪ A2 ∪ A3 is a finite union.

(b)
⋂

i∈{1,2,3}
Ai ={5},

since only 5 is in each of A1, A2, and A3. ■

EXAMPLE 5.56 (Birth Rates). For each natural number n, let An denote the set of women living
in the United States who have given birth to exactly n children. Hence,⋃

n≥5

An

3Notation similar to that of sequences is used here to emphasize the allowance of repeats, as in
sequences.
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would be the set of women living in the United States who have had at least
5 children. ■

EXAMPLE 5.57 Compute
⋃
r∈R

(−r2, r2).

Solution. Here U = R, I = R, and, ∀ r ∈ R, Ar = (−r2, r2). Observe that each
real number x is in some set Ar . Namely, since

−(|x| + 1)2 ≤ −(|x| + 1) < −|x| ≤ x ≤ |x| < |x| + 1 ≤ (|x| + 1)2,

it follows that x ∈ (−(|x| + 1)2, (|x| + 1)2). That is, x ∈ Ar for r = |x| + 1.
Therefore, ⋃

r∈R

(−r2, r2) = R. ■

EXAMPLE 5.58 Show
⋂

r∈Q+
(0, r ] = ∅.

Proof
Here U = R, I = Q+, and, ∀ r ∈ Q+, Ar = (0, r ].
Suppose x ∈ R. We claim that there is some set (0, r ] that does not contain x. If
x ≤ 0, then x �∈ (0, 1]. If x > 0, then, by the density of the rational numbers
(Appendix A, property 15), there is some r ∈ Q+ with 0 < r < x. So x �∈ (0, r ].
Thus, x �∈

⋂
r∈Q+

(0, r ]. Since
⋂

r∈Q+
(0, r ] contains no real numbers, it must be

empty. �

EXAMPLE 5.59 (Frequent Travelers). Let S be the set of the 50 states in the United States, and,
for each S ∈ S, let AS denote the set of living Americans who have visited state
S. Hence, ⋂

S∈S
AS

is the set of living Americans who have visited all 50 states. ■

SECTION 5.5 Exercises
1. Define f : N → N by n �→ n!.

(a) Find f ({0, 1, 2, 3}). (b) Is f ({3}) = 6? Explain.

2. Define f : Z+ → Q by n �→ 2n

n .

(a) Find f ({1, 2, 3}). (b) Is f (2) = {2}? Explain.
3. For f (x) = 2x + 1, find f ([−2, 2]) and prove your result.
4. For f (x) = x2, find f ([−1, 2]) and prove your result.
5. For f (x) = x2 + 1, find f ([1, 3]) and prove your result.
6. For f (x) = x3, find f ([−2, 3]) and prove your result.

�7. Given functions f : X → Y and g : Y → Z, Definition 5.14 tells us that the
domain of g ◦ f is the domain of f and that the codomain of g ◦ f is the
codomain of g. Show that the image under g of the range of f is the range
of g ◦ f . That is, g(range( f )) = range(g ◦ f ).

�8. Let f : X → Y and S ⊆ X be given. Show: f (S) ⊆ range( f ).
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9. Define f : N → N by n �→ n!.

(a) Find f −1({1, 2, 24}). (b) Find f −1({6, 10}).
(c) Is f −1({120}) = 5? Explain.

10. Define f : Z+ → Q by n �→ 2n

n .

(a) Find f −1({2, 4}).
(b) Is it correct to say f −1( 8

3 ) = 3? Explain.
11. Define f : Z → {−1, 1} by f (n) = (−1)n. Find f −1({−1}) and prove your

result.

12. Define f : Z → {−1, 1} by f (n) = (−1)
n(n−1)

2 . Find f −1({1}) and prove your
result.

13. Define f : Z+ × Z+ → Z+ by (m, n) �→ gcd(m, n). Find f −1({1}).
14. Let d ∈ Z\{0}, and define f : Z → Q by n �→ n

d . Find f −1(Z).

15. For f (x) = x2, find f −1([1, 4]) and prove your result.
16. For f (x) = x3, find f −1([−1, 8]) and prove your result.
17. Define functions f : R → R× R and g : R× R → R by f (x) = (x, x) and

g(x, y) = x − y. Show: f (R) = g−1({0}).
18. Let d ∈ Z+. Define functions f : Z → Z and g : Z → {0, 1, . . . , d − 1} by

f (n) = dn and g(n) = n mod d. Show: f (Z) = g−1({0}).
19. Some colleges are not unique in their choice of a mascot. Table 5.8 repre-

sents a function in a database that lists the nicknames used by certain
colleges. After answering each of the following questions, determine
which type of computation is needed for this function, an image or an
inverse image.

College Nickname

Boston College Eagles
Gonzaga University Bulldogs
Kansas State University Wildcats
Morehead State University Eagles
Northeastern University Huskies
Northwestern University Wildcats
University of Georgia Bulldogs
University of New Hampshire Wildcats
Villanova University Wildcats
Yale University Bulldogs

Table 5.8 Mascots

(a) Which nicknames are used for the Massachusetts schools? Note that
Boston College and Northeastern University are in Massachusetts.

(b) Which schools use the nickname “Wildcats”?
20. The software company SoftJobs uses a database to keep track of its current

projects and clients. In particular, Table 5.9 is a function in this database
that assigns to each project the client for which it is under contract. After
answering each of the following questions, determine which type of com-
putation is needed for this function, an image or an inverse image.



C H A P T E R 5 ■ Relations 283

Project Client

NBA Dunkfest GameCo
Rx Tracker MediComp
Skate Rats GameCo
Claim Pro HealthCorp
Slap Shot 3 PlayBox

Table 5.9 Contracts

(a) Which projects are being done for at least one of GameCo or
HealthCorp?

(b) For which clients is a video game being designed? Note that NBA
Dunkfest, Skate Rats, and Slap Shot 3 are games.

For Exercises 21 through 26, use the following analog of Definition 5.22 for a
relation R from a set X to a set Y.

(a) Given a subset S of X, the image of S under R is

R(S) = {t : t ∈ Y and s R t for some s ∈ S}.
(b) Given a subset T of Y, the inverse image of T under R is

R−1(T) = {s : s ∈ X and s R t for some t ∈ T}.
21. Let R be the “divides” relation from the set P of primes to Z.

(a) Find R({2}). (b) Find R−1({15, 35}).
22. Let R be the “is a zero of” relation from R to the set P of real polynomial

functions.
(a) List four elements of R({1}). Can you describe the entire set?
(b) Find R−1({x2 − 4x + 3, 2x − 8}).

23. Let R be the “is an element of” relation from Z to P(Z).
(a) List three elements of R({0, 1}). Can you describe the entire set?
(b) Find R−1({{0, 1, 2, 3}, {0, 2, 4, 6}}).

24. Let R be the “is less than” relation from R to R.
(a) Find R({1, 3, 5}). (b) Find R−1({1, 3, 5}).

25. HardSell is a mail-order hardware company that uses a database to keep
track of customer orders. In particular, Table 5.10 is a relation that assigns,
to each part ordered, the customer who ordered it. After answering parts
(b) and (c) below, determine which type of computation is needed for this
relation, an image or an inverse image.

Part Customer

hammer Richard Kelley
wrench Susan Brower
pliers Susan Brower
wrench Abe Roth

Table 5.10 Hardware Orders
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(a) Is the relation in Table 5.10 a function? Explain.
(b) Which parts were ordered by Susan Brower?
(c) Which customers ordered wrenches?

26. The software company SoftJobs from Exercise 20 also uses its database to
keep track of its programmers’ work assignments. In particular, Table 5.11
is a relation that assigns, to each programmer, the project on which he or
she is working. After answering parts (b) and (c) below, determine which
type of computation is needed for this relation, an image or an inverse
image.

Programmer Project

Martha Lang NBA Dunkfest
Megan Johnson Rx Tracker
Abe Roth NBA Dunkfest
Martha Lang Skate Rats
Abe Roth Skate Rats

Table 5.11 Programming Assignments

(a) Is the relation in Table 5.11 a function? Explain.
(b) On which projects is Martha Lang working?
(c) Which programmers are working on NBA Dunkfest?

In Exercises 27 through 34, let f : X → Y be an arbitrary function, and let
S, S1, S2 ⊆ X and T, T1, T2 ⊆ Y be arbitrary subsets.

�27. (a) Show: If S1 ⊆ S2, then f (S1) ⊆ f (S2).
(b) Show: If T1 ⊆ T2, then f −1(T1) ⊆ f −1(T2).

�28. (a) Show: S ⊆ f −1( f (S)). (b) Show: f ( f −1(T)) ⊆ T .
(c) Show: If f is one-to-one, then S = f −1( f (S)).
(d) Show: If f is onto, then f ( f −1(T)) = T .

29. (a) Show: X = f −1(Y). (b) Show: f (X) ⊆ Y.

(c) Give an example of a function f : X → Y such that f (X) �= Y.

30. (a) Show: f (∅) = ∅. (b) Show: f −1(∅) = ∅.

31. (a) Show: f −1(T1 ∪ T2) = f −1(T1) ∪ f −1(T2).
(b) Show: f −1(T1 ∩ T2) = f −1(T1) ∩ f −1(T2).

32. (a) Show: f (S1 ∪ S2) = f (S1) ∪ f (S2).
(b) Show: f (S1 ∩ S2) ⊆ f (S1) ∩ f (S2).
(c) Give an example of a function f : X → Y such that

f (S1 ∩ S2) �= f (S1) ∩ f (S2).
�33. (a) Show: f (S ∩ f −1(T)) ⊆ f (S) ∩ T .

(b) Show: S ∩ f −1(T) ⊆ f −1( f (S) ∩ T).
�34. (a) Show: f ( f −1( f (S))) = f (S). (b) Show: f −1( f ( f −1(T))) = f −1(T).
�35. Let f : X → Y be given, and define F :P(X) → P(Y) by F ( A) = f ( A).

Show that
(a) f is one-to-one if and only if F is one-to-one.
(b) f is onto if and only if F is onto.
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�36. Let f1 : X1 → Y1 and f2 : X2 → Y2 be given. The function
f1 × f2 : X1 × X2 → Y1 × Y2 is defined by

( f1 × f2)(x1, x2) = ( f1(x1), f2(x2)), ∀ x1 ∈ X1, x2 ∈ X2.

Suppose A1 ⊆ X1, A2 ⊆ X2, B1 ⊆ Y1, and B2 ⊆ Y2.

(a) Prove: ( f1 × f2)( A1 × A2) = f1( A1) × f2( A2).

(b) Prove or Disprove: ( f1 × f2)−1(B1 × B2) = f
−1
1 (B1) × f

−1
2 (B2).

37. Find
⋂
r∈R

(−r2, r2). 38. Find
⋃

r∈Q+
(0, r ).

39. Find
⋃

n∈Z+
[n, n+ 2). 40. Find

⋂
n∈Z+

[n, n+ 2).

41. Find
⋂

n∈Z+
[0, n]. 42. Find

⋃
r∈R+

[0, 1− 1
r ].

In Exercises 43 through 46, express the described set S using either an indexed
union or an indexed intersection.
43. At Bloomsburg University, the possible grade point averages (GPA’s)

range from 0 to 4. For each x ∈ [0, 4], let Ax be the set of students at
Bloomsburg University whose GPA is x. Let S be the set of students
whose GPA is greater than or equal to 3 and less than 4, the “B students.”

44. Some baseball fans aim to visit as many of the major league baseball parks
as possible. Let M be the set of major league baseball teams, and, for each
t ∈ M, let At be the set of people living in the United States who have
attended a game in the home park of team t. The American League East
division is

E = {Blue Jays, Devil Rays, Orioles, Red Sox, Yankees}.
Let S be the set of people living in the United States who have attended a
game in each American League East home park.

45. The sentence “The quick brown fox jumps over the lazy dog.” is used to
test keyboards, since it contains every letter in the alphabet. It is also
interesting to think of individual words that use a variety of letters. For
each letter α in the alphabet A = {a, b, . . . , z}, let Aα be the set of words in
the English language that contain the letter α. Let S be the set of words in
the English language that contain all of the vowels, such as the word
hyperstimulation.

46. Many doctors prescribe cholesterol-lowering medication to their patients
whose cholesterol levels exceed 200. For each n ∈ N, let An be the set of
living Americans whose cholesterol level is n. Let S be the set of living
Americans whose cholesterol level is at most 200.

In Exercises 47 through 56, X and Y are sets, B ⊆ X, and, for some indexing set
I, {Ai }i∈I is an indexed collection of subsets of X.

�47. Let f : X → Y. Show f

(⋃
i∈I

Ai

)
=
⋃
i∈I

f ( Ai ).

�48. Let f : Y → X. Show f −1

(⋃
i∈I

Ai

)
=
⋃
i∈I

f −1( Ai ).

�49. Let f : Y → X. Show f −1

(⋂
i∈I

Ai

)
=
⋂
i∈I

f −1( Ai ).
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�50. Let f : X → Y. Show f

(⋂
i∈I

Ai

)
⊆
⋂
i∈I

f ( Ai ).

51. Suppose J ⊆ I.

(a) Show:
⋃
i∈J

Ai ⊆
⋃
i∈I

Ai . (b) Show:
⋂
i∈I

Ai ⊆
⋂
i∈J

Ai .

52. Suppose, for all i ∈ I, that Bi ⊆ Ai .

(a) Show:
⋃
i∈I

Bi ⊆
⋃
i∈I

Ai . (b) Show:
⋂
i∈I

Bi ⊆
⋂
i∈I

Ai .

53. Distributive Laws.

(a) Show: B ∪
⋂
i∈I

Ai =
⋂
i∈I

(B ∪ Ai ). (b) Show: B ∩
⋃
i∈I

Ai =
⋃
i∈I

(B ∩ Ai ).

54. De Morgan’s Laws.

(a) Show:

(⋃
i∈I

Ai

)c

=
⋂
i∈I

Ai
c . (b) Show:

(⋂
i∈I

Ai

)c

=
⋃
i∈I

Ai
c .

55. Show:

(⋃
i∈I

Ai

)∖
B =

⋃
i∈I

( Ai\B). 56. Show: B ×
⋂
i∈I

Ai =
⋂
i∈I

(B × Ai ).

�57. Given an onto function f : X → Y and a partition A of Y, must it be true
that the collection { f −1( A) : A∈ A} is a partition of X? Justify your answer.

�58. Given an onto function f : X → Y and a partition A of X, must it be true
that the collection { f ( A) : A∈ A} is a partition of Y? Justify your answer.

5.6 Cardinality
The cardinality of a set was introduced informally in Section 1.2 as the number
of elements in the set. What was not made precise is exactly how one counts ele-
ments. This is settled with the notion of a bijection. If we agree that {1, 2, . . . , n}
should have cardinality n, then the same should be true of sets for which there
is a one-to-one correspondence with {1, 2, . . . , n}.

DEFINITION 5.25

(a) Two sets A and B are said to have the same cardinality if there is a bijection
from A to B.

(b) Given n∈N, a set A is said to have cardinality n if A has the same cardinality
as the set {k : k ∈ Z and 1 ≤ k ≤ n}.

(c) A set A is said to be finite, or to have finite cardinality, if A has cardinality n
for some n ≥ 0. Otherwise, A is said to be infinite.

The empty set ∅ has cardinality 0, since
{k : k ∈ Z and 1 ≤ k ≤ 0} = ∅.

EXAMPLE 5.60 Show that the set {−5, −4, . . . , 4, 5} has cardinality 11.

Proof
Define f : {−5, −4, . . . , 4, 5} → {1, 2, . . . , 10, 11} by f (k) = k + 6.

−5 −4 −3 −2 −1 0 1 2 3 4 5
f ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

1 2 3 4 5 6 7 8 9 10 11
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It is straightforward to verify that f is a bijection with inverse function f −1

given by f −1(k) = k − 6. �

The bijection f in Example 5.60 can be interpreted as counting the elements
in the set {−5, −4, . . . , 4, 5}. That is, −5 is the first, −4 is the second, and so on.
Ultimately, 11 elements are counted. For finite sets, using cardinality to measure
size is quite natural. For infinite sets, our intuitions may be challenged as we
gain comfort with the issues.

EXAMPLE 5.61 Let E be the set of even integers. Show that Z and E have the same cardinality.

Proof
Define functions f : Z → E and g : E → Z by f (n) = 2n

Z · · · −3 −2 −1 0 1 2 3 · · ·
↓ f ↓ ↓ ↓ ↓ ↓ ↓ ↓
E · · · −6 −4 −2 0 2 4 6 · · ·

and g(n) = n
2 . Note that when n is even, n

2 is an integer. So the values taken
by g are indeed in Z. The equations

( f ◦ g)(n) = f (g(n)) = f ( n
2 ) = 2( n

2 ) = n, ∀ n ∈ E

(g ◦ f )(n) = g( f (n)) = g(2n) = 2n
2 = n, ∀ n ∈ Z

show that f and g are inverses of one another. Therefore, f is a bijection dis-
playing the fact that Z and E have the same cardinality. �

The subset relation is one means of comparing sizes of sets. From that per-
spective, since the set E of even integers is a proper subset of Z, the set E is a
“smaller” set. However, that is not the view taken with cardinality. Example 5.61
shows that Z and E have the same “size” when cardinality is the measure.

EXAMPLE 5.62 Show that, for any a , b ∈ R with a < b, the open intervals (a , b) and (0, 1) have
the same cardinality.

Proof
Define functions f : (a , b) → (0, 1) and g : (0, 1) → (a , b) by

f (x) = x − a

b − a
and g(x) = a + (b − a )x.

y

x

y � f (x)

a0

1

b

It is straightforward to verify that f and g are inverses of one another. Hence,
Theorem 5.10 tells us that f is a bijection from (a , b) to (0, 1). �
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In some contexts, we might want to measure the “size” of an interval (a , b)
by its length b−a . However, Example 5.62 shows that cardinality is independent
of length.

The following theorem says, in particular, that in Definition 5.25(a), the order
of the two sets is unimportant when asserting that they have the same
cardinality.

THEOREM 5.11 Same Cardinality Is an Equivalence Relation

Let A, B, and C be any sets in some fixed universal set U .

(a) A has the same cardinality as itself.

(b) If A has the same cardinality as B, then B has the same cardinality as A.

(c) If A has the same cardinality as B and B has the same cardinality as C, then A has
the same cardinality as C.

Proof
For part (a), the identity function idA is a bijection from A to A (see Exercise 24
from Section 5.4). The proofs of parts (b) and (c) are left for the exercises. �

The bijection in Example 5.48 shows that R and (−1, 1) have the same cardi-
nality. That result combined with the result in Example 5.62 gives that R has the
same cardinality as any open interval.

In Definition 5.25(b), we want to assert additionally that a single set Acannot
be assigned both cardinality m and cardinality n when m �= n. The Pigeon Hole
Principle accomplishes that and more.

THEOREM 5.12 The Pigeon Hole Principle

If A is any set of cardinality n, and B is any set of cardinality m with n > m, then there is
no one-to-one function from A to B. That is, any function from A to B must send two
distinct elements of A to the same element of B.

Remark 5.3 Very simply, the Pigeon Hole Principle says that if n > m
and n pigeons are placed into m holes, then some hole must receive two
or more pigeons.

Proof of Theorem 5.12
It suffices to assume that A = {1, 2, . . . , n} and B = {1, 2, . . . , m}. Since B ⊆ A,
we may define the inclusion function i : B → Agiven by the formula i(b) = b for
each b ∈ B. It is easy to see that i is one-to-one. Given any function f : A→ B,
we can define a new function f : A→ A by f = i ◦ f . Since m < n and

range( f ) ⊆ range(i) = {1, 2, . . . , m} ⊂ {1, 2, . . . , m, . . . , n},
the element n cannot be in the range of f . Thus f cannot be onto. If f is one-to-
one, then Theorem 5.9(a) tells us that f must also be one-to-one. Hence, to show
that there is no one-to-one function from A to B, it suffices to show that there
is no one-to-one function from A to itself that is not onto. We therefore show
that any one-to-one function f : A→ A must be onto. This is accomplished by
induction on n, for n ≥ 1.

If n = 1, then the identity function is the only one-to-one function from {1}
to itself (in fact, the only function), and it is certainly onto. Since this takes care
of the base case, we move on to the inductive step. Suppose k ≥ 1 and all one-
to-one functions g : {1, 2, . . . , k} → {1, 2, . . . , k} are onto. Let h : {1, 2, . . . , k,
k + 1} → {1, 2, . . . , k, k + 1} be any one-to-one function.
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Case 1: h(a ) ≤ k for all 1 ≤ a ≤ k.
Here we may define g : {1, 2, . . . , k} → {1, 2, . . . , k} by g(a ) = h(a ) for all 1 ≤ a ≤
k. Since the fact that h is one-to-one forces g also to be one-to-one, it follows from
the inductive hypothesis that g must be onto. Consequently, the only possibility
is that h(k + 1) = k + 1, and thus h is onto.

Case 2: h(a ′) = k + 1 for some 1 ≤ a ′ ≤ k.
Define a new function h′ : {1, 2, . . . , k, k + 1} → {1, 2, . . . , k, k + 1} by h′(a ′) =
h(k+1), h′(k+1) = h(a ′) = k+1, and, for all other values of a , h′(a ) = h(a ). The
fact that h is one-to-one forces h′ also to be one-to-one. Since h′ also satisfies the
conditions of Case 1, it must be that h′ is onto. Consequently, h must be onto. �

The Pigeon Hole Principle has an important consequence in our study of
cardinality.

COROLLARY 5.13 Let A be a set with cardinality n, and let m ∈ Z with m �= n. Then A does not have
cardinality m.

The proof of Corollary 5.13 is left for the exercises. Corollary 5.13 tells us
that, for each finite set A, there is a unique natural number n such that A has
cardinality n. Hence, we may assign to each finite set A the unique number,
denoted |A|, characterized by

|A| = n if and only if A has cardinality n.

That is, A has cardinality |A|.
It follows from Example 5.60 that |{−5, −4, . . . , 4, 5}| = 11. That the set of all

positive integers

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . .

cannot be assigned a finite cardinality n is suggested by the “. . .” in our listing.
But how can we justify this carefully?

EXAMPLE 5.63 Show that Z+ is infinite.

Proof
Suppose to the contrary that Z+ is finite. Let m = |Z+|. By definition, there
must be a bijection f : Z+ → {1, 2, . . . , m}. Let

i : {1, 2, . . . , m, m+ 1} → Z+

be the inclusion given by i(k) = k. Since f and i are one-to-one, Theorem 5.9(a)
tells us that the composite

f ◦ i : {1, 2, . . . , m, m+ 1} → {1, 2, . . . , m}
must be one-to-one. However, this contradicts the Pigeon Hole Principle (with
n = m+ 1). We conclude that Z+ must be infinite. �

The proof in Example 5.63 is essentially the same as that used in Example 2.27
to show that Z is infinite. However, here we utilize our more formal understand-
ing of cardinality and its properties.

We have defined the notion of an infinite set and seen the — perhaps
surprising — result that infinite sets such as the set E of even integers and the
set Z of all integers have the same cardinality. In light of this, what may now
come as a surprise is the fact that there are indeed different infinite cardinalities.
That is, not all infinities are equal.
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DEFINITION 5.26 Let A be any set.

(i) A is said to be countably infinite if A has the same cardinality as Z+.

(ii) A is said to be countable if A is finite or countably infinite.

(iii) A is said to be uncountable if A is not countable.

EXAMPLE 5.64 Show that Z is countably infinite.

Proof
Define f : Z+ → Z and g : Z → Z+ by

f (n) = (−1)n

⌊
n

2

⌋
and g(n) =

{
2n if n > 0,
2|n| + 1 if n ≤ 0.

Z+ 1 2 3 4 5 6 7 · · ·
↓ f ↓ ↓ ↓ ↓ ↓ ↓ ↓
Z 0 1 −1 2 −2 3 −3 · · ·

The equations

∀ even n ∈ Z+, g( f (n)) = g( n
2 ) = 2( n

2 ) = n,

∀ odd n ∈ Z+, g( f (n)) = g(− n−1
2 ) = 2( n−1

2 ) + 1 = n,

∀ positive n ∈ Z, f (g(n)) = f (2n) =
⌊

2n
2

⌋
= n,

∀ nonpositive n ∈ Z, f (g(n)) = f (−2n+ 1) = −
⌊−2n+1

2

⌋
= −(−n) = n

show that f is a bijection (with inverse g). �

If a set X is countably infinite, then we could write a computer program that
prints each of its elements. Namely, a bijection f : Z+ → X could be used in a
program

Let n = 1.
While n > 0,

\begin
Print f (n).
Let n = n+ 1.
\end.

that implements an infinite while loop. Although this program will never finish,
any particular element for which we wish to wait will eventually be printed, if
we wait long enough. In contrast, no such program could be written to list the
elements of an uncountable set.

The following theorem shows us that not all infinite sets are countable. We
owe the method of proof presented here to the German mathematician Georg
Cantor (1845–1918). It is known as the diagonal argument.

THEOREM 5.14 R is uncountable.

Proof
Since R has the same cardinality as (0, 1), it suffices to prove that (0, 1) is
uncountable. As discussed in Section 3.4, each real number x ∈ (0, 1) can be
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expressed in decimal form

0. a1 a2 a3 · · · an · · · (5.6)

Moreover, if we do not allow decimal expressions to end in repeating 9’s, then
each x ∈ (0, 1) has a unique representation in form (5.6). For example,
0.49 = 0.5, and we take 0.50 as the unique representation of this number.

Suppose to the contrary that (0, 1) is countable. Thus, we have a bijective
function f : Z+ → (0, 1) that we may use to list all of the elements of (0, 1).

f (1) � 0. a1,1 a1,2 a1,3 . . . a1,n . . .

f (2) � 0. a2,1 a2,2 a2,3 . . . a2,n . . .

f (3) � 0. a3,1 a3,2 a3,3 . . . a3,n . . .

f (n) � 0. an,1 an,2 an,3 . . . an,n . . .

...

...

A contradiction is obtained by finding a real number x ∈ (0, 1) that is not
on this list and thus showing that f is not onto. We describe x in decimal form

x = 0. b1 b2 b3 · · · bn · · ·
by defining, for each i ∈ Z+,

bi =
{

1 if ai,i �= 1,
2 if ai,i = 1.

For each i , we have chosen bi �= ai,i , and therefore x �= f (i). That is, x differs
from f (i) in the (shaded) digit on the diagonal above. So x is not on the list.
This contradiction shows that (0, 1) is uncountable. �

Despite the fact that the density of the rationals (Appendix A, property 15)
tells us that every real number has rational numbers arbitrarily close to it, R and
Q do not have the same cardinality.

THEOREM 5.15 Q is countably infinite.

A proof of Theorem 5.15 is laid out in Exercise 47. An alternative proof fol-
lows from Exercise 62 in Section 5.4.

THEOREM 5.16 All intervals containing more than one element (including the interval (−∞,∞) = R) have
the same cardinality.

The proof of Theorem 5.16 follows from Theorem 5.11, Examples 5.48 and
5.62, and Exercises 15 through 20.

SECTION 5.6 Exercises
In Exercises 1 through 4, specify the cardinality of the given set.

1. {−65, −64, . . . , 9, 10}. 2.
{

1, 1
2 , 1

4 , 1
8 , . . . , 1

2048

}
.

3.
{(4

0

)
,
(4

1

)
,
(4

2

)
,
(4

3

)
,
(4

4

)}
. 4.

{
21

1 , 22

2 , 23

3 , 24

4

}
.
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5. The software company SoftJobs keeps track of its projects in the following
table from its database.

Project Client

NBA Dunkfest GameCo
Rx Tracker MediComp
Skate Rats GameCo
Claim Pro HealthCorp
Slap Shot 3 PlayBox

How many clients does SoftJobs have?
6. The mail-order hardware company HardSell keeps track of its customer

orders in the following table from its database.

Part Customer

hammer Richard Kelley
wrench Susan Brower
pliers Susan Brower
wrench Abe Roth

How many different types of parts have been ordered?
7. Let n ∈ N. Show that {0, 1, . . . , n} has cardinality n+ 1.
8. Let n ∈ N. Show that {m : m is even and 1 ≤ m ≤ 2n} has cardinality n.
9. Let n ∈ N. Show that {n2, n2 + 1, . . . , (n+ 1)2} has cardinality 2n+ 2.
10. Let n ∈ N. Show that {−n, −n+ 1, . . . , n} has cardinality 2n+ 1.
11. Show that N has the same cardinality as Z−.
12. Show that Z+ has the same cardinality as the set {n : n = 2k for some

k ∈ Z+}.
13. Show that Z+ has the same cardinality as the set {n : n = k2 for some

k ∈ Z+}.
14. Show that Z has the same cardinality as the set O of odd integers.

�15. Let a , b ∈ R with a < b. Prove the following.
(a) The closed intervals [a , b] and [0, 1] have the same cardinality.
(b) The right-half-open intervals [a , b) and [0, 1) have the same cardinality.
(c) The left-half-open intervals (a , b] and (0, 1] have the same cardinality.

�16. Let a ∈ R. Prove the following.
(a) The intervals (a ,∞) and (0,∞) have the same cardinality.
(b) The intervals [a ,∞) and [0,∞) have the same cardinality.
(c) The intervals (−∞, a ) and (−∞, 0) have the same cardinality.
(d) The intervals (−∞, a ] and (−∞, 0] have the same cardinality.

�17. Let a , b ∈ R with a < b. Show that [a , b) and (0, 1] have the same
cardinality.
Hint: For a = −1 and b = 0, use x �→ −x.
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�18. Let a ∈ R.
(a) Show that (a ,∞) and (−∞, 0) have the same cardinality.
(b) Show that [a ,∞) and (−∞, 0] have the same cardinality.

�19. Let a ∈ R.
(a) Show that (a , b) and (0,∞) have the same cardinality.
(b) Show that [a , b) and [0,∞) have the same cardinality.
Hint: For a = 0 and b = 1, restrict the function g : (−1, 1) → R used in
Example 5.48.

�20. (a) Show that [0, 1] and [0, 1) have the same cardinality.
Hint: Use a one-to-one correspondence between

{
1
n : n ≥ 1

}
and{

1
n : n ≥ 2

}
, and use the identity for the rest.

(b) Show that (0, 1] and (0, 1) have the same cardinality by restricting the
bijection from part (a).

�21. Let a , b, c, d ∈ R with a < b ≤ c < d. Show that [a , b) ∪ [c, d) has the same
cardinality as [0, 1).

�22. Let a , b, c ∈ R with a < b ≤ c. Show that [a , c]\{b} has the same cardinality
as [0, 1). Hint: By Theorem 5.11 and Exercise 17, (b, c] and [b, c) have the
same cardinality.

23. Prove Theorem 5.11(b). Hint: Use Exercise 57 from Section 5.4.
24. Prove Theorem 5.11(c). Hint: Use Theorem 5.9.

�25. Prove Corollary 5.13. Hint: It suffices to show that {1, 2, . . . , n} and
{1, 2, . . . , m} cannot have the same cardinality when 0 ≤ m < n.

�26. Let A be a set with cardinality n and B a set with cardinality m.
(a) Show that, if n > m, then there is no onto function f : B → A.

Hint: ∀ a ∈ A pick an element g(a ) of f −1({a}).
(b) Show that, if there is an onto function f : B → A, then m ≥ n.

27. Let A be a set with cardinality n and B a set with cardinality m. Show that,
if there is a bijection f : A→ B, then n = m.

28. Let A be a set with cardinality n and B a set with cardinality m. Show that,
if there is a one-to-one function f : B → A, then m ≤ n.

29. Suppose that nonnegative integers are stored in a computer in binary
using 16 bits. An array of such integers can be regarded as a function map-
ping each index in the array to the integer value contained at that index.
Use the Pigeon Hole Principle to argue that an array of 70,000 nonnegative
16-bit integers cannot contain all distinct values.

30. Before every NBA basketball game, the starters on each team are intro-
duced. Suppose that a coach uses the same 5 starters in every game, but he
wants to have them introduced in a different order each game. (a) Can he
accomplish this for an 81-game season? (b) Use the Pigeon Hole Principle
to argue that the coach cannot achieve his goal if there are 162 games in a
season. Hint: There are n(n− 1)(n− 2) · · · 2 · 1 ways to order n items.

31. Let A, B, C, D be sets, and suppose that A and C have the same cardinality
and that B and D have the same cardinality. Show that A× B and C × D
have the same cardinality.
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32. Let A and B be disjoint sets in some universal set U , and let C and D be
disjoint sets in some universal set V . Suppose that A and C have the same
cardinality and that B and D have the same cardinality. Show that A∪ B
and C ∪ D have the same cardinality.

�33. Let A and B be finite sets. Show: |A× B| = |A| · |B|.
Hint: Consider |A| arbitrary but fixed, and use induction on |B|.

�34. Let A be a finite set. Show: |P( A)| = 2|A|.
Hint: Use induction on |A|.

35. Show that Z+ × Z+ is countably infinite.
Hint: Use Exercise 61 from Section 5.4.

36. Show that the set E+ of even positive integers is countable and that the set
O+ of odd positive integers is countable.

�37. Show that the product of countable sets is countable.
Hint: Use Exercises 31 and 35 to build a map C1 × C2 → Z+ × Z+ → Z+.

�38. Show that the disjoint union of countably infinite sets is countably infinite.
Hint: Use Exercises 32 and 36 to build a map C1 ∪ C2 → Z+ ∪ Z+ →
E+ ∪ O+ = Z+.

39. Imagine that there is a hotel, called Hotel Infinity, that contains a countably
infinite number of rooms. The nice feature of this hotel is that even when
it is full, it can always take another guest. For convenience, suppose the
rooms are numbered 1, 2, 3, . . . and G is the set of guests. If the hotel is full,
then we have a bijection g : N → G. Suppose that a new guest z would also
like a room. Find a new bijection h : N → G ∪ {z} to accomplish this.
Hint: Effectively, we can ask each current guest to move up one room.

40. We have seen in Exercise 15 that, whenever b > a , the line segments
(intervals) [a , b] and [0, 1] have the same cardinality, even though their
lengths may be different. Similarly, we can consider two-dimensional
shapes. Show that, for any positive length L and positive width W, a
rectangle with dimensions L ×W will have the same cardinality as the
unit square (i.e., with dimensions 1× 1), even though their areas may
be different. Hint: Refer to Exercise 31 and describe each rectangle as
a product of closed intervals.

�41. (a) Show: Any subset of any finite set is finite.
Hint: Use induction on the cardinality of the finite set.

(b) Show: Any superset of any infinite set is infinite.
�42. Let A be an infinite set.

Show: There is a sequence {an}n≥1 such that ∀ n ≥ 1, an ∈ A\{a1, . . . , an−1}.
(a) Conclude that, for each n ≥ 1, A contains a set of cardinality n.
(b) Conclude that A contains a countable subset.

�43. Let A be an infinite set.
(a) Show: If A⊆ Z+, then A is countably infinite. Hint: The Well-

Ordering Principle for Z+ allows one to define a function f : Z+ → A
by f (1) =min( A) and, for n ≥ 1, f (n) = min( A\{ f (1), f (2), . . . ,
f (n− 1)}). Argue that f is a bijection.

(b) Show: If there is a one-to-one map g : A→ Z+, then A is countably
infinite.
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�44. Let A be an infinite set. Show: If there is an onto map f : Z+ → A, then
A is countably infinite. Hint: For each a ∈ A, pick an element g(a ) from
f −1({a}). Then apply Exercise 43(b) for this function g. A systematic choice
can be accomplished using the Well-Ordering Principle for Z+ by always
picking the smallest element of f −1({a}).

45. Let A⊆ B. Show: If B is countable, then A is countable. Hint: Use Exer-
cise 43.

46. Show that the union of two countable sets is countable. Hint: A∪ B =
A∪ (B\A).

�47. Show that Q is countably infinite.
Hint: Consider the function h : Z× Z+ → Q defined by h((m, n)) = m

n .
Specify an onto function g : Z+ → Z× Z+, and apply Exercise 44 to the
composite h ◦ g.

�48. Show that the subset of (0, 1) consisting of those real numbers whose
decimal digits are in {0, 1} is uncountable.

�49. Show that the countable union of countable sets is countable. That is, if B
is countable, and, for each b ∈ B, Ab is countable, then ∪b∈B Ab is countable.
Hint: Given bijections g : Z+ → B and, for each b ∈ B, fb : Z+ → Ab , define
h : Z+ × Z+ → ∪b∈B Ab by h((m, n)) = fg(m)(n).

�50. (a) Show that the countable product of finite sets need not be countable.
That is, ∏

n∈Z

An = {(x1, x2, x3, . . .) : xi ∈ Ai ∀ i}

need not be countable even though Ai is finite for ∀ i .
(b) Could it be countable for some choices?

CHAPTER 5 Review Problems

For Exercises 1 through 4, let R be the relation from {0, 1, 2, 3, 4} to {0, 1, 2}
defined by x R y if and only if x = 2y.
1. (a) Is 2 R 1 ? (b) Is 0 R 0 ? (c) Is 1 R 2 ?
2. Find the matrix that represents R.
3. Find the inverse of R.
4. Find the matrix that represents the inverse of R.
5. The registrar’s office at a science and engineering college is keeping track of

its students’ majors in Table 5.12. Note that a student may have two majors.

Student Major

Abe Roth computer science
Megan Johnson mathematics
Richard Kelley computer science
Martha Lang physics
Abe Roth mathematics

Table 5.12 Students’ Majors
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(a) Is Martha Lang a mathematics major?
(b) Is computer science a major for Richard Kelley?
(c) What are Abe Roth’s majors?

6. Draw an arrow diagram for the relation ∈ from {a , b} to P({a , b}).
7. A game is being played on the grid of points with integer coordinates

shown on the left-hand side of Figure 5.20. Starting from the origin (0, 0), a
player’s first move can be one unit in any of the four compass directions N,
S, E, or W. However, each subsequent move is restricted by the previous
move according to the relation on {N, S, E , W} represented by the matrix
on the right-hand side of Figure 5.20.

(1, 1)

(0, 0)
N

(0, �2)

N S E W
N

S

E

W

⎡
⎢⎢⎢⎢⎣

1 1 0 0

1 0 1 1

1 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

Figure 5.20 A Random Walking Game

(a) Find a sequence of moves taking a player from (0, 0) to (1, 1).
(b) Starting from (0, 0), is it possible to get to (0, −2)?
(c) Draw a digraph for the relation on {N, S, E, W} represented by the

given matrix.

For Exercises 8 through 11, let R be the relation on R defined by

x R y if and only if y2 − x2 = 1.

8. (a) Is
√

3 R
√

2 ? (b) Is 0 R−1 ? (c) Is 1 R 0 ?

9. Draw the graph of R. 10. Find the inverse of R.

11. Draw the graph of the inverse of R.
12. Given the binary relation R on R defined by

x R y if and only if x2 + y2 = 1,

for each of the properties reflexive, symmetric, antisymmetric, and
transitive, prove or disprove that R has that property.

13. Given the binary relation R on Z+ defined by

a R b if and only if a | b and a �= b,

for each of the properties reflexive, symmetric, antisymmetric, and
transitive, prove or disprove that R has that property.

14. Let R1 and R2 be partial order relations on a set X, and define a new
relation R on X by x R y if and only if x R1 y and x R2 y. Show
that R is also a partial order relation on X.
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15. Given any set X, what is the only relation on X that is both a partial order
relation and an equivalence relation?

16. Draw a Hasse diagram for the “divides” relation | on the set of positive
divisors of 30.

17. Given the standard ordering ≤ on Z, what is the lexicographic ordering %
for (6, −1, 2, −4, 7) and (6, −1, −3, 5, 2) in Z5?

18. If a sports league allows ties in its games, then a team’s record would
consist of wins W, losses L , and ties T . At the end of the season, the teams

are ranked from lowest to highest according to the value
W+ 1

2 T

W+L+T associated
with each team’s record (W, L , T). Assume that each team plays 60 games
in a season.
(a) Show that the ranking of the teams from lowest to highest need not be

the same as the order determined by the lexicographic ordering on the
triples (W, L , T) in Z3.

(b) How could we change the way we keep track of records so that these
two orderings would agree?

19. Let X = R, and let R be the relation on X defined by

x R y if and only if x2 = y2.

Show that R is an equivalence relation.
20. For the equivalence relation R on R from Exercise 19, for each x ∈ R,

(a) give an explicit description of the set [x] by listing its elements.
(b) specify the nonnegative representative for [x].

21. For each n ∈ Z, let An = (n− 1, n]. Let A = {An : n ∈ Z}.
Show that A partitions R.

22. For each x ∈ R, let Ax = {x} × R.
(a) What does Ax look like in R2?
(b) Let A = {Ax : x ∈ R}. Show that A partitions R2.

23. For each n ∈ Z+, let An = {r : r ∈ Q, nr ∈ Z}. Does {An : n ∈ Z+} form a
partition of Q? Why?

24. Find the partition corresponding to the equivalence relation R on R from
Exercise 19.

25. Find the equivalence relation R that corresponds to the partition from
Exercise 21.

26. Find the equivalence relation R that corresponds to the partition from
Exercise 22.

27. Why does the formula

∀ x ∈ R, f (x) =
{

2− x if x ≤ 1,
x + 1 if x ≥ 1

not define a function?
28. Define f from Z to Z by n �→ 2n. Does this give a function f : Z → Z?
29. Define f : {2, 3, 4, 5} → {1, 2, . . . , 10} by n �→ (n

2

)
. Find the domain and

range of f .
30. Define f : [−1, 2] → R by x �→ 2− x. Show that the range of f is [0, 3].

31. Specify the domain and range of f (x) = 1+ 1
x−2 .
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32. Define functions f : Z+ → R and g : R → R by f (n) =√n− 1 and
g(x) = x2 − 1. Find g ◦ f .

33. BookEmDotCom is an Internet book supplier that uses an extensive data-
base to keep track of its business operations. In particular, it must keep
track of both the sales it makes and the suppliers of the items ordered. Two
tables from the database for BookEmDotCom are shown in Table 5.13.

Book Customer
Of Mice and Cats Raul Cortez
Fahrenheit 212 Mary Wright
Raisons of Wrath David Franklin
War and Peas Mary Wright

Publisher Book
Book Farm Of Mice and Cats
Authority Pubs Fahrenheit 212
Word Factory War and Peas
Book Farm Raisons of Wrath

Orders Publications

Table 5.13 Database for BookEmDotCom

(a) Among the books sold by BookEmDotCom, which ones are published
by Book Farm?

(b) Compose the “Orders” table with the “Publications” table to obtain a
new “Sells To” table.

(c) To what customers is Book Farm selling books?
34. Let R be a relation from X to Y and S be a relation from Y to Z. Show that

the inverse of S ◦ R is R−1 ◦ S−1.
35. Define f : Z → Z by f (n) = 3n− 2. Show that f is one-to-one.
36. Show that f (x) = x3 − x is not one-to-one.
37. Define f : {−3, −1, 2, 3} → {0, 3, 8} by n �→ n2 − 1. Show that f is onto.
38. Show that f (x) = x2 − 10 is not onto.
39. The town tax collector is using social security numbers to identify each

resident’s account in the town database. The hashing function h that is
being used for social security numbers d1d2d3-d4d5-d6d7d8d9 is defined by
taking n to be the base ten value of d6d7d8d9 and then computing h(n) =
n mod 225.
(a) To what value does 036-77-5484 hash?
(b) Give examples of two distinct social security numbers that hash to the

same value.
40. Let n ∈ Z+, and define f : Q → Q by r �→ r

n . Show that f is a bijection.
41. Define f : Z → Z× {0, 1} by

f (n) =
{

( n
2 , 0) if n is even,

( n−1
2 , 1) if n is odd.

Show that f is a bijection.
42. Suppose f : X → Y is a one-to-one function, and let Y′ be the range of f .

Define f ′ : X → Y′ by f ′(x) = f (x). Show that f ′ is a bijection.

43. Define the function g : [0, 2] → [0, 1] by g(x) =
{

x if x ∈ [0, 1],
1 if x ∈ (1, 2].
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(a) Show: For any function f : [0, 2] → [0, 1], that g ◦ f = f .
(b) Find a function f : [0, 2] → [0, 1] such that f ◦ g �= f .

44. Define functions f, g : R → R by f (x) = 2−x
3 and g(x) = 2− 3x. Show that

f and g are inverses of one another.
45. Show: Given any function f : X → Y, there is at most one function

g : Y → X such that f and g are inverses of one another.
46. Find log5(125). 47. Find ln(e).

48. Define f : Z → Z by f (n) = (−1)nn2.
(a) Find f ({−1, 0, 1, 2}). (b) Find f −1({−1, 0, 1, 4, 9}).

49. For f (x) = 4− x2,
(a) find f ([−1, 2]). (b) find f −1([1, 4]).

50. Consider the function f : [−1, 1] → (−4, 4) defined by x �→ 1− 2x. Fill in
the missing values.

S f (S)

{1}
[0, 1]

(−1, 0)

T f −1(T )

{1}
[1, 4)

(−4, −2)

51. A table from the database maintained by the registrar’s office at a science
and engineering college is given in Exercise 5. That table can be used to
determine the students in each major.
(a) What students are majoring in mathematics or physics?
(b) Which type of computation is needed in part (a), an image or an

inverse image?
�52. Let f : X → Y be an arbitrary function, and let S1, S2 ⊆ X and T1, T2 ⊆ Y be

arbitrary subsets. Prove or Disprove:
(a) f (S1�S2) ⊆ f (S1)� f (S2). (b) f −1(T1�T2) = f −1(T1)� f −1(T2).

53. Find
⋃

r∈[0,2]

(r, r + 3).

54. Find
⋂

k∈Z+
{m : m = nk for some n ∈ Z}.

55. The town tax collector needs to distinguish various income brackets. For
each r ∈ R, let Ar be the set of Americans whose annual salary in thou-
sands of dollars is at least r but less than r + 10. Use either an indexed
union or an indexed intersection to express the set S of Americans whose
annual salary is at least $80,000 but less than $125,000. Could a finite union
or intersection be used?

�56. Let B be a set, and, for some nonempty indexing set I, {Ai }i∈I be an in-
dexed collection of sets in some universal set U .
Show:

⋃
i∈I

(B ∪ Ai ) = B ∪
⋃
i∈I

Ai .

57. Show: |{−100, −99, . . . , 199, 200}| = 301.
58. Refer to the table from the registrar’s database in Exercise 5. How many

different majors are there at this science and engineering college?
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59. Show that [−1, 0) and (1, 7] have the same cardinality. Give a direct proof
based on the definition of cardinality.

60. Show that {m : m = 2k for some k ∈ Z, 0 ≤ k ≤ n} has cardinality n+ 1.
61. Show that Z and T = {n : n = 10k for some k ∈ Z} have the same car-

dinality.
62. Let A and B be sets. Show that A× B and B × A have the same cardinality.

Note that A and B need not be finite.
63. Let A, B, C, D be sets, and suppose that A and C have the same cardinality

and B and D have the same cardinality. Prove or Disprove: If A⊆ B and
C ⊆ D, then B\A and D\C have the same cardinality.

�64. Show that [1, 2] is infinite.
65. Show that {n : n = 3k for some k ∈ Z+} is countable.

�66. Show that R2 is uncountable.
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C H A P T E R 6

Basic Counting

THE BASIC TECHNIQUES of counting are introduced. Our interest is in enumer-

ating the number of ways a desired outcome can be achieved given certain constraints.

For example, we count the number of possible license plates having a certain fixed

number of characters subject to conditions on the characters. Such a computation might

be useful for police officers trying to apprehend a suspect in a hit-and-run accident on

the basis of a partial license plate given by a witness. By using factorials, permutations,

and combinations as our basic building blocks and the multiplication and addition prin-

ciples as our tools for assembling these blocks, we are able the build up to solving more

and more complex enumeration problems.

Our counting skills also enable us to compute probabilities. For example, by counting

the number of ways to get a full house in 5-card stud poker, we can determine the like-

lihood of getting a full house. When gambling is involved, it is extremely valuable to

know relative probabilities. With our tools, we will be able to determine the extremely low

likelihood of winning state lotteries, for example.

A great benefit of developing our counting skills is that those skills can be applied to

many and varied contexts, which nonetheless share a common mathematical structure.

For example, tools used to count license plates can also be used to count ways in which

workers might be broken into teams. Those same tools also apply to analyses of jury

selections and can be used to study the security of passwords and other codes. Several

applications of counting techniques are encountered throughout this chapter. Ways in

which initial overcounting can be corrected to a desired value are also explored.

6.1 The Multiplication Principle
The primary technique of counting is to break a complex problem into a se-
quence of simpler problems. Additionally, one must understand how to com-
bine the answers to the simple problems to obtain the desired answer to the
complex problem. This section introduces one of the most basic tools of count-
ing and starts with an example.

EXAMPLE 6.1 (Dinner Choices). A guest at a formal dinner has 4 entrée choices and 2 dessert
choices. If a guest’s dinner is entirely determined by these two choices, then
how many different dinner choices are there?

Solution. The total number of dinner choices is given by the product

4 · 2 = 8.
303
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GUEST

E1

D1

D2

D1

D2

D1

D2

D1

D2

E2

E3

E4

Entrée 2 and Dessert 1

Entrée 2 and Dessert 2

Entrée 1 and Dessert 1

DINNER CHOICE

Entrée 1 and Dessert 2

Entrée 4 and Dessert 1

Entrée 4 and Dessert 2

Entrée 3 and Dessert 1

Entrée 3 and Dessert 2

Figure 6.1 A Guest’s Dinner Choice

The reason can be seen in the tree in Figure 6.1. Each of the 4 branches con-
nected to the root of that tree splits off into 2 more branches. The 8 different
ends represent the various possible pairings of an entrée choice with a dessert
choice. ■

Example 6.1 motivates our first fundamental principle of counting.

THEOREM 6.1 Multiplication Principle

Let A be a set of outcomes we wish to count. If there is a set of outcomes A1, and, for each
outcome in A1, there is a set of outcomes A2 such that

(i) each outcome from A can be uniquely characterized by a pair of outcomes, the first
from A1 and the second from its corresponding set A2, and

(ii) for each outcome from A1, the number |A2| is the same,

then

|A| = |A1| · |A2|.

In Example 6.1, the set A to which the Multiplication Principle applies is the
set of dinner choices, A1 is the set of entrée choices, and (for each entrée choice)
A2 is the set of dessert choices. It is important in that example that the number
of dessert choices does not depend on any entrée choice.

EXAMPLE 6.2 (Home Security). If a home security code consists of a sequence of two distinct
letters (A to Z), then how many different codes are possible? If a thief could try
only 5 possible codes every 30 minutes, then how long would it take the thief
to try all possible codes?

Solution. The first letter can be any of the letters A to Z. Hence, there are
26 choices for the first letter. Once the first letter is chosen, there remain only
25 letters from which to choose the second letter. Since the number 25 is
independent of the particular first letter chosen, the Multiplication Principle
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tells us that there are

26 · 25 = 650

possible security codes. At a rate of 5 codes for each 30 minutes, it would take
the thief

650
5/30

codes
codes/minute

= 3900 minutes = 65 hours

to try all possible codes. ■

Note in Example 6.2 that the choice for the second letter does depend on the
choice of the first letter. However, the number of choices for the second letter does
not depend on the choice of the first letter. This is all that is required to apply the
Multiplication Principle. In Example 6.1, the fact that the dessert choice did not
depend on the entrée choice was a stronger-than-necessary condition (though
certainly sufficient) for the Multiplication Principle.

A better appreciation for the Multiplication Principle can be gained by con-
sidering an example in which it does not apply.

EXAMPLE 6.3 A 2-digit code is constructed using the digits 1, 2, 3. If the second digit is
required to be at least as large as the first digit, then how many such codes are
possible?

Solution. There are certainly 3 choices for the first digit. However, the num-
ber of choices for the second digit does depend on the first digit. For example,
if the first digit is a 1, then there are 3 choices for the second digit. Alterna-
tively, if the first digit is a 2, then there are only 2 choices for the second digit.
Therefore, the Multiplication Principle does not apply in the way it did in
Example 6.2. Instead, the problem can be analyzed with the tree in Figure 6.2.
We see that there are 6 possible codes.

START

1

1

2

2

3

3

3

2

3

13

11

CODE

12

23

33

22

Figure 6.2 Constructing a Security Code ■

Our primary focus here is on problems to which the Multiplication Princi-
ple does apply. Of course, the Multiplication Principle as stated in Theorem 6.1
generalizes to problems characterized by a sequence of more than two steps.

Suppose that n ≥ 2 and each outcome in a set A is uniquely characterized by
a sequence of outcomes, one from each of a sequence of sets A1, A2, . . . , An. In
this general case, the requirement is that, for each 2 ≤ k ≤ n, the number |Ak |
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must not depend on any of the sets Ai for 1 ≤ i ≤ k−1. Under those conditions,
|A| is given by the product

|A| = |A1| · |A2| · · · · · |An|.
Of course, this General Multiplication Principle follows from Theorem 6.1 by
an inductive argument.

EXAMPLE 6.4 (License Plates). In a state that has just under 100 million cars registered, the
Department of Motor Vehicles is considering a new requirement that license
plates must consist of 3 letters (A to Z) followed by 4 digits (0 to 9). Could all of
the cars registered in this state be accommodated by this system?

Solution. There are 7 places on the license plate

︸ ︷︷ ︸
letters

︸ ︷︷ ︸
digits

that need to be filled. For each of the first three slots, there are 26 choices. For
each of the last four slots, there are 10 choices. Moreover, the choice for each
slot is independent of the choices for the other slots. Hence, there are

26 · 26 · 26 · 10 · 10 · 10 · 10 = 263 · 104 = 175760000

different license plates possible. Since this number is greater than 100 million,
the system could accommodate all of the registered cars. ■

EXAMPLE 6.5 How many octal (base-8) numbers are there of length n? Note that the number
is allowed to start with zeros.

Solution. Since each of the n digits can take any one of the 8 values 0 through
7, there are

8 · 8 · · · · · 8︸ ︷︷ ︸
n terms

= 8n

octal numbers of length n. ■

EXAMPLE 6.6 (Rolling Dice). Three standard (6-sided) dice are rolled. One is red, one is blue,
and one is green. If the particular number showing on each colored die is
important, then how many different outcomes are possible?

Solution. The outcome of a roll can be thought of as a sequence of length 3
(red, blue, green) in which each entry is one of the numbers 1 through 6. There
are

63 = 216

such sequences. ■

We saw in Example 6.3 that not every counting problem is solved by a direct
application of the Multiplication Principle. Of course, those that are not do not
all involve drawing trees. Some counting problems are simply handled by basic
principles.
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EXAMPLE 6.7 How many 3-digit (base-10) numbers (with nonzero hundreds digit) are
divisible by 7?

Solution. Of the 3-digit numbers

100, 101, . . . , 104, 105, 106, . . . , 111, 112, 113, . . . , 993, 994, 995, . . . , 999,

the numbers

105, 112, . . . , 994

are divisible by 7. That is, we need to count the multiples of 7:

105 = 7(15), 112 = 7(16), . . . , 994 = 7(142).

Hence, there is a correspondence between the multiples of 7 and the numbers

15, 16, . . . , 142.

Therefore, the number of 3-digit positive integers (with nonzero hundreds
digit) divisible by 7 equals the number of integers from 15 to 142, inclusive.
That is, there are

142− 15+ 1 = 128

3-digit multiples of 7. ■

SECTION 6.1 Exercises
1. An outfit consists of a skirt and a blouse. If there are 6 skirts and 8 blouses

from which to choose, then how many different outfits are possible? We
assume that any possible combination can be worn together.

2. A computer system consists of a tower, a monitor, and a printer. If an
electronics store has 8 different towers, 4 different monitors, and 6 dif-
ferent printers, then how many different computer systems can be
purchased from this store?

3. Baskin-Robbins made itself famous for selling 31 flavors of ice cream.
Suppose a Baskin-Robbins ice cream shop has waffle, sugar, and regular
cones in sizes kiddie, small, medium, and large. How many different
ice cream cones are possible in that shop?

4. Two college students are planning a date that will consist of dinner, a
movie, and dancing. They are deciding among Applebee’s, Red Lobster,
Ruby Tuesdays, TGI Friday’s, and the Outback Steakhouse for dinner.
There are 8 movies playing, and they are considering Disco Dan’s, The
Calypso, and The Night Light for dancing after the movie. How many
different dates might they plan?

5. How many sequences of two letters (A,B,C, or D) are in alphabetical order
(repeats are allowed)? Why does the Multiplication Principle not apply by
considering each of the two letters as an outcome?

6. A certain code is to consist of two digits (0 to 9). If the first digit is a
multiple of three, then the second digit must be even. Otherwise, the
second digit must be a multiple of three. How many such codes are
possible? Why does the Multiplication Principle not apply by considering
each of the two digits as an outcome?
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7. A certain game consists of two steps. First, a standard die is rolled, and the
number showing is recorded. If the number is even, then a coin is tossed,
and its result is recorded. Otherwise, a card is drawn from a standard
deck, and the suit is recorded.
(a) How many different outcomes are there for this game?
(b) Is the number of outcomes involving a coin the same as the number

involving a card? Explain.
8. To remotely retrieve messages from a certain answering machine, a code

is entered after the beep. That code, which needs to have been set by the
user, must consist of a digit (0, 1, or 2) followed by that number of letters
(A to Z).
(a) How many such codes are possible?
(b) Since letters are entered into a phone using the scheme shown in

Figure 6.3, the number of possible key sequences is smaller than the
number of codes determined in part (a). For example, “1D” and “1F”
are both entered as “13” on the key pad. Consequently, how many
different key sequences represent all of the possible codes?

1 2
ABC

3
DEF

6
MNO

5
JKL

4
GHI

9
WXYZ

8
TUV

7
PQRS

#
0

OPER*

Figure 6.3 Phone Key Pad

9. The Department of Motor Vehicles (DMV) in a certain state is discontin-
uing vanity plates. Moreover, this DMV is considering requiring license
plates to consist of 3 letters (A to Z) followed by 3 digits (0 to 9), such as

HLP 911

(a) How many cars could this system accommodate?
(b) What if “911” is reserved for emergency vehicles and cannot be used

on a civilian plate?
(c) What if the three-letter sequence “ASS” is also not allowed?

10. A home security code consists of 2 letters (A to Z) followed by 4 digits
(0 to 9). To gain access to the home, one must enter the code in a key pad.
A thief has a device that enables him to attempt 1 code every second.
(a) How many hours would it take him to try all possible codes?
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(b) What if he knew that the first two letters were the same?
(c) What if he knew that the first two letters were different?

11. A certain ATM code is required to consist of 4 distinct digits (0 to 9). If the
ATM machine will allow only 3 guesses per day, then how many days
would it take to try all possible ATM codes?

12. A computer account requires a password consisting of 6 characters (letters
A to Z or digits 0 to 9). If one password can be tried every 5 seconds, then
how long would it take to try all possible passwords?

13. How many license plates consisting of 2 nonrepeating letters (A to Z)
followed by 3 even digits (0 to 8) are possible?

14. How many 6-digit numbers have odd digits in the odd places and even
digits in the even places?

15. A certain Internet provider requires that its e-mail addresses consist of
6 characters (letters A to Z or digits 0 to 9). Further, the first character must
be a letter, and the last character must be a digit. How many different
e-mail accounts are possible from this provider?

16. How many 5-digit numbers neither start with zero nor end in zero?
17. How many 6-digit numbers (leading zeros are allowed) have the last two

digits the same as the first two digits (in the same order)?
18. A palindromic number, or palindrome, is a natural number whose digits

remain the same if the ordering of the digits is reversed. How many 6-digit
numbers (leading zeros are allowed) are palindromes? What if leading
zeros are not allowed?

19. A certain license plate is required to consist of 3 distinct letters (A to Z)
followed by 4 digits (0 to 9). How many are possible?

20. A certain license plate is required to consist of 2 letters (A to Z) followed
by 4 distinct digits (0 to 9). How many are possible?

21. A DNA (deoxyribonucleic acid) molecule consists of two parallel strands
of nitrogen bases. The possible bases are cytosine (C), guanine (G),
thymine (T), and adenine (A). However, the two strands are bonded
together pairwise and are complementary in the sense that the only
possible base pairs are C with G and T with A. Hence,

G T C A C A
C A G T G T

is a possible segment of length 6 in a DNA molecule, but one with G paired
over A is not. How many different segments of length 6 are possible?

22. A chromosome is a body that contains DNA in the nucleus of a cell.
Variations in chromosomes allow for variations in cell functions. If a
chromosome has a DNA molecule (see Exercise 21) with 108 base pairs,
then how many different chromosomes are mathematically possible?

23. How many hexadecimal (base-16) numbers of length 10 are there? Note
that such numbers may start with zeros.

24. How many different sequences of 5 coin flips are possible?
25. Some countries have flags that consist of three vertical stripes, each of

different colors. For example, the stripes on the flag of Ireland are green -
white - yellow, and those on the flag of Côte d’Ivoire (also known as the
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Ivory Coast) are yellow - white - green. How many such flags are possible
if the color choices are red, white, blue, green, and yellow?

26. A melody consists of three notes (C, D, E, F, G, A, or B). How many are
possible if repeats are allowed?

27. A game consists of rolling a standard (6-sided) die until an even number is
showing (only that even number is recorded), flipping a coin, and drawing
a card from a standard deck. How many possible outcomes does this game
have?

28. A game consists of flipping a coin, rolling a 4-sided die, and drawing a
card from a standard deck until a heart is obtained (only the denomination
of that heart is recorded). How many possible outcomes does this game
have?

29. How many integers are there from 85 to 850?
30. How many integers are there from 17 to 1700?
31. A roadside guard rail is built by placing a post every 10 yards and then

attaching a metal barrier connecting them. How many posts are needed to
build a 100-yard guard rail?

32. A bucket of paint will paint 1 mile of the yellow lines on the highway.
How many buckets are needed to paint from the 236-mile marker to the
287-mile marker on the highway?

33. How many of the integers from 1 to 7000 are divisible by 28?
34. How many of the integers from 1 to 3000 are divisible by 20?
35. How many of the integers from 80 to 8000 are divisible by 7?
36. How many of the integers from 20 to 2000 are divisible by 13?
37. How many of the integers from 200 to 2200 are divisible by 6?
38. How many of the integers from 150 to 1515 are divisible by 8?
39. Find |{n : 17 ≤ n ≤ 777 and n is even}|.
40. Find |{n : 30 ≤ n ≤ 3003 and n is odd}|.

�41. Determine the number of 8-digit binary numbers that are divisible by 3.
Leading zeros are allowed.

�42. Determine the number of 6-digit base-3 numbers that are divisible by 4.
Leading zeros are allowed.

Calendar Problems. For Exercises 43 through 48, recall that leap years are
years that are divisible by 4, with the exception that years divisible by 100 are
leap years only if they are also divisible by 400.
43. How many days after 12/7/1941 (Pearl Harbor bombed) was 9/11/2001

(the September 11 terrorist attack)?
44. How many days after 4/14/1865 (Lincoln shot) was 4/4/1968 (Martin

Luther King, Jr. shot)?
45. How many days after 12/17/1903 (First manned flight) was 7/20/1969

(First man on moon)?
46. How many days after 3/10/1876 (Bell’s first telephone call) was

1/26/1926 (Baird’s first public demonstration of television)?

∗Exercises that may be particularly challenging are marked with a star.



C H A P T E R 6 ■ Basic Counting 311

47. How many days after 7/4/1776 (Declaration of Independence) was
1/1/1863 (Emancipation Proclamation signed by Lincoln)?

48. How many days after 9/4/1929 (Stock market crash) was 10/19/1987
(Stock market crash)?

6.2 Permutations and Combinations
Many counting problems can be thought of as a selection of some objects from
a fixed set of objects. In some cases, the order in which the objects are selected
is important, and in others it is not. As we shall see, permutations handle the
former case, and combinations handle the latter.

Permutations
A permutation of a set of objects is an ordering of those objects. Permutations
reflect selections for which an ordering is important.

EXAMPLE 6.8 (Lining Up). How many ways are there to put 8 children in a line to get
ice cream?

Solution. Of course, the ordering of the children is important, especially to
them! There are 8 children from which to pick the child who is first. Then there
are 7 children left from which to pick the second child. Then there are 6 left,
and so on. Therefore, there are

8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 8! = 40320

ways to line up the children. ■

EXAMPLE 6.9 (Listing Elements of a Set). The set S = {a , b, c, d, e} is entered into the com-
puter (e.g., using Maple) by listing its elements in some order between curly
braces, such as

> S := {b, a, c, e, d} ;

Assuming that no element is listed more than once, in how many ways might
this be done?

Solution. There are

5 · 4 · 3 · 2 · 1 = 5! = 120

ways to enter S. ■

The factorials that arose in the previous two examples suggest a general
result.

THEOREM 6.2 The number of ways to put n distinct items in order is n!.
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In many problems, the entire set of objects under consideration need not be
placed in order; only a subset may need ordering. Consequently, not every ex-
ample in which there is an ordering requirement results in a complete factorial.

EXAMPLE 6.10 (Student Officers). How many ways are there to elect a class president, vice
president, and treasurer from a class of 30 students? We assume that each
student is eligible for any office and that no student may be elected to more
than one office.

Solution. Regard the election results as an ordered list of length 3.

President, Vice President, Treasurer

There are 30 ways to fill in the first office, then 29 ways left to fill in the second
office, and finally 28 ways left to fill in the last. Hence, there are

30 · 29 · 28 = 24360

possible election results. ■

EXAMPLE 6.11 How many different license plates consisting of 6 distinct digits (0 to 9) are
possible?

Solution. Any digit can be the first. Then there are 9 digits left from which to
choose the second. Then there are 8 choices left for the third, and so on. Hence,
there are

10 · 9 · 8 · 7 · 6 · 5 = 151200

6-digit license plates with distinct digits. ■

The computations in the previous two examples warrant the following ter-
minology and notation.

DEFINITION 6.1

A permutation of k objects from a set of size n is an ordered list of k of the n objects.
The number of permutations of k objects from n is denoted P(n, k).

EXAMPLE 6.12 If S = {a , b, c, d , e} is the set of n = 5 objects under consideration and k = 3,
then all of the possible permutations of 3 elements from S are listed in Fig-
ure 6.4. We see that P(5, 3) = 60.

abc abd abe acd ace ade bcd bce bde cde

acb adb aeb adc aec aed bdc bec bed ced

bac bad bae cad cae dae cbd cbe dbe dce

bca bda bea cda cea dea cdb ceb deb dec

cab dab eab dac eac ead dbc ebc ebd ecd

cba dba eba dca eca eda dcb ecb edb edc

Figure 6.4 Permutations of Size 3 from S = {a, b, c, d, e} ■
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In Example 6.10, we computed P(30, 3) = 24360. Example 6.11 showed us
that P(10, 6) = 151200. The arguments used in those examples can easily be
adapted to obtain a general formula for P(n, k).

THEOREM 6.3 Let n, k ∈ Z with 0 ≤ k ≤ n. Then

P(n, k) = n(n− 1) · · · (n− k + 1) = n!
(n− k)!

.

EXAMPLE 6.13 P(25, 5) = 25!
20! = 25 · 24 · 23 · 22 · 21 = 6375600. ■

Combinations
Although some counting problems contain an ordering requirement, there are
also situations in which order is not important. For example, we saw in Chap-
ter 1 that the elements in a set need not be listed in any particular order.

DEFINITION 6.2

A combination of k elements from a set of size n is a subset of size k.

EXAMPLE 6.14 If S = {a , b, c, d, e} is the set of n = 5 objects under consideration and k = 3,
then all of the possible combinations of 3 elements from S are listed in Fig-
ure 6.5. We see that the number of combinations of 3 objects from 5 is equal
to 10. {a , b, c} {a , b, d} {a , b, e} {a , c, d} {a , c, e}

{a , d, e} {b, c, d} {b, c, e} {b, d, e} {c, d, e}
Figure 6.5 The Combinations of Size 3 from S = {a, b, c, d, e} ■

The following theorem shows that we already have notation that keeps track
of numbers of combinations.

THEOREM 6.4 Let n, k ∈ Z with 0 ≤ k ≤ n. Given a set of n distinct elements, the number of subsets of size
k is given by the binomial coefficient(

n

k

)
= n!

k!(n− k)!
.

That is,
(

n
k

)
counts the number of combinations of k elements from a set of size n.

In Section 4.6, we saw that the binomial coefficient
(n

k

)
is the kth entry in the

nth row of Pascal’s triangle and gets its name from its occurrence in the Binomial
Theorem as the coefficient of an−kbk in the expansion of (a + b)n. Theorem 6.4 is
the reason why

(n
k

)
is read “n choose k.” The quantity

(n
k

)
is the number of ways

to choose k things out of n. A proof of Theorem 6.4 is given at the end of this
section. Prior to that, we consider a few basic examples involving combinations.
Many more examples are explored in Section 6.5.

EXAMPLE 6.15 (Student Council). Given a class of size 30, in how many ways can a student
council of 3 students be selected (assuming that all 3 members of the student
council are equal in power)?
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Solution. Since the 3 student council positions are considered equivalent,
there is no order inherent in the selection. We simply want a subset of
3 students from the set of 30 students. There are(

30
3

)
= 4060

ways to make this selection. ■

EXAMPLE 6.16 How many binary numbers of length n have exactly k ones (where 0 ≤ k ≤ n)?
Leading zeros are allowed.

Solution. A binary number with exactly k ones can be characterized by
specifying which k of the n positions are occupied by ones; by default, the
remaining n− k positions must be occupied by zeros. There are(

n

k

)
ways to choose k of the n positions to be ones. ■

EXAMPLE 6.17 (Jury Selection). When a jury is selected for a court case, the lawyers for both
the prosecution and the defense have opportunities to accept or reject can-
didates from a jury pool. Suppose a jury pool contains 18 men and 16 women.
How many possibilities are there for a jury that is composed of 5 men and
7 women?

Solution. We want to select a subset of size 5 from the set of 18 men and a
subset of size 7 from the set of 16 women. By the Multiplication Principle,
there are (

18
5

)(
16
7

)
= 8568 · 11440 = 98017920

such selections. ■

Problems need not involve permutations exclusively or combinations
exclusively.

EXAMPLE 6.18 How many license plates consisting of 6 digits (0 to 9) with exactly 2 of the
same digit are possible?

Solution. These license plates can be characterized by the value and locations
of the repeated digit, together with an ordered list of the remaining distinct
digits. There are 10 digits from which to choose the repeated one. There are

(6
2

)
ways to choose the two positions to contain the repeated digit. Then there are
P(9, 4) ways to fill in the 4 remaining distinct digits. By the Multiplication
Principle, there are

10 ·
(

6
2

)
· P(9, 4) = 453,600

6-digit license plates with exactly 2 digits the same. ■

The solution in Example 6.18 shows that the factors multiplied together need
not always be in one-to-one correspondence with the entries in a sequence being
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considered. The first two factors 10 and
(6

2

)
do correspond to the placement of

two digits into the license plate. However, neither one of them alone corresponds
to the placement of any single digit.

EXAMPLE 6.19 (Postnet Codes). The U.S. Postal Service encodes ZIP + 4 codes on business re-
ply cards and envelopes using the digit-to-code conversion shown in Table 6.1.
In the Postnet code, each digit is thus encoded by a sequence of 5 bars, in
which exactly 2 are long (and 3 are short). Since there are

(5
2

)
such sequences

and 10 digits, the fact that
(5

2

) = 10 is at the heart of this system! For example,
the Postnet code for Capital One in Richmond, VA 23286-9291 is

︸︷︷︸
2
︸︷︷︸

3
︸︷︷︸

2
︸︷︷︸

8
︸︷︷︸

6
︸︷︷︸

9
︸︷︷︸

2
︸︷︷︸

9
︸︷︷︸

1
︸︷︷︸

8

A check digit (an 8 in this case) is appended to the ZIP + 4 code so that the sum
of all the digits is divisible by 10. Also, long guard bars are added to mark each
end of the code.

Digit Code

0
1
2
3
4
5
6
7
8
9

Table 6.1 Postnet Code Conversions ■

Identification numbers and check digits were introduced in Section 3.2.

Permutations vs. Combinations
It is important to distinguish between situations that require permutations and
those that require combinations. For example, suppose we wish to select 2 cards
from a deck of 52 distinct cards. A common incorrect analysis of this problem
gives that there are

52 · 51 = P(52, 2) = 2652

possible 2-card hands. The argument is that there are 52 choices for the first
card and then 51 choices left for the second card. However, in that reasoning, it
is assumed that the order of the cards is important. For example, the selections
3♥, 8♣ and 8♣, 3♥would be counted as different. If it only matters which 2 cards
are obtained, then there are (

52
2

)
= 1326
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ways to select 2 cards from the deck. The desired outcome (the set of 2 cards)
is what is being counted, not the process by which someone might obtain those
cards (first one, then another).

The Proof of Theorem 6.4
For convenience here, let C(n, k) denote the number of combinations of k ele-
ments from a set of size n. Our aim is to show that C(n, k) = P(n,k)

k! . We accom-
plish this by relating the permutations counted by P(n, k) to the combinations
counted by C(n, k). Before we give a general proof, it is helpful to think about a
particular example.

Consider the case in which n = 5, k = 3, and the set of 5 elements is S =
{a , b, c, d , e}. The P(5, 3) = 60 permutations of 3 elements from S are listed in
Figure 6.4, and the C(5, 3) = 10 combinations of 3 elements from S are listed
in Figure 6.5. There are certainly more permutations than combinations. In fact,
there are distinct permutations that correspond to the same combination. For
example, all of the permutations in the first column of Figure 6.4 correspond to
the combination {a , b, c}. In general, we can group together permutations that
correspond to the same combination. In Figure 6.4, these groups are the columns.
Each column lists the 3! = 6 different orderings of the 3 elements contained
therein. Since each group has size 6, the number of groups (combinations) must
be 60

6 = 10. That is, C(5, 3) = P(5,3)
3! .

Proof of Theorem 6.4
Let S = {a1, a2, . . . , an} be a set of size n. A listing of all of the permutations of
size k from S has size P(n, k). Each permutation ai1 ai2 · · · aik in this list cor-
responds to a combination {ai1 , ai2 , . . . , aik } of size k. Group together all of the
permutations that correspond to the same combination. The number of groups
obtained is the number of combinations C(n, k).

Two permutations ai1 ai2 · · · aik and a j1 a j2 · · · a jk correspond to the same
combination if and only if a j1 a j2 · · · a jk is an ordering of ai1 ai2 · · · aik . Since there
are k! orderings of {ai1 , ai2 , · · · , aik }, each group has size k!. Hence, the number
of groups must be P(n,k)

k! . That is, C(n, k) = P(n,k)
k! . �

SECTION 6.2 Exercises
1. In how many ways can a family of 4 line up in a row to pose for a picture?
2. Tyrone Ecke, Seema Khan, and Carol Masters have applied for a pro-

gramming job at a software company. The personnel director has asked the
search committee to rank these candidates, and ties are not allowed. How
many different rankings are possible?

3. Anna, Billy, Erica, Glen, Sam, and Tammy will take turns jumping on a
trampoline. If each child takes one turn, then how many orderings of these
children are possible?

4. A standard deck consists of 52 distinct cards. Prior to any card game, the
deck is typically shuffled to place the cards in some unknown order. How
many ways are there to order the cards?

5. In how many ways can a movie critic make a list of the top 10 movies
(ranked 1 to 10) out of the 200 released in the past year?
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6. A neighborhood of 40 families has agreed to have one family volunteer for
each night of the week to oversee the neighborhood watch program. In
how many ways can the weekly schedule be set?

7. Compute P(20, 4). 8. Compute P(15, 6).
9. The final of the Olympic 100-meter dash results in 3 medalists. If there are

8 finalists, then in how many ways might the gold, silver, and bronze
medals be awarded? Assume that there are no ties.

10. The United States has a team of 5 women ready to compete in the 4 by
100-meter relay. In how many ways can a running order of 4 of these
women be selected?

11. Compute
(20

4

)
. 12. Compute

(15
6

)
.

13. The witness to the hit-and-run accident was not able to get a clear view of
the license plate as the offending vehicle sped off. However, she did notice
that it consisted of 6 letters (A to Z) and had exactly three A’s. How many
possible license plates meet the witness’s description?

14. The license plates issued by a certain state have the form of 4 letters
(A to Z) followed by 4 digits. A rumor is circulating that plates with two
7’s designate that the owner is a secret agent. Find the number of possible
plates that consist of 4 letters (A to Z) followed by 4 digits and have
exactly two 7’s.

15. How many hexadecimal (base-16) numbers of length 10 have exactly
5 twos? Leading zeros are allowed.

16. How many octal (base-8) numbers of length 10 have 5 consecutive twos
and no other twos? Leading zeros are allowed.

17. A bag contains 8 gold, 10 silver, and 20 bronze coins, no two of the same
size. In how many ways can 2 of each kind be selected if we can distin-
guish between any 2 of the 38 coins?

18. A DNA strand consists of a sequence of nitrogen bases. Each is one of
cytosine, guanine, thymine, or adenine. How many possible strands of
length 12 have 3 of each type of nitrogen base?

19. A bag contains 8 black balls and 6 white balls. How many ways are there
to select 3 black balls and 2 white balls from the bag? We are assuming that
the balls are distinguishable beyond their color. Therefore, which 3 black
balls are chosen is important. However, the order in which they are chosen
is not.

20. A computer gaming company employs 10 programmers, 6 graphics
specialists, and 3 creative designers. In how many ways can a team of
4 programmers, 2 graphics specialists, and 1 creative designer be selected
to work on a new project?

21. A child riding in a car notices a license plate consisting of 6 distinct letters
(A to Z) that happen to be in alphabetical order. How many such license
plates are possible?
Hint: The set of 6 letters determines the plate.

22. How many 4-digit (base ten) numbers have strictly decreasing digits?
23. An NBA team consists of 12 players, and exactly 5 play at one time. Before

each game, the coach must decide which players will start the game.
Determine the number of ways to pick the 5 starters based on the given
conditions.
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(a) There is no bias regarding a player’s position.
(b) The team consists of 3 centers, 5 guards, and 4 forwards. To match up

against the opponent, the starting 5 must contain 1 center, 2 guards,
and 2 forwards.

24. George is on a strict diet that requires him to eat 9 pieces of fruit each
day. On a day he is visiting his mother, she has a fruit basket containing
10 apples, 8 oranges, and 6 bananas. However, each of these 24 pieces of
fruit is unique in its own way, in terms of ripeness, size, and color
differences.
(a) How many ways are there for George to select 9 pieces of fruit from

this basket to maintain his diet for the day?
(b) What if he wants to select 4 apples, 2 oranges, and 3 bananas?

25. How many different 8-digit hexadecimal sequences have exactly 2 zeros
and 2 ones?

26. A researcher is studying a DNA strand of length 6 that has exactly
1 guanine and 2 adenine nitrogen bases. How many such DNA strands
are possible? See Exercise 18 for an explanation of DNA.

27. How many different 10-digit octal sequences have exactly 4 zeros and no
other repeats?

28. How many different 8-digit hexadecimal sequences have 4 zeros and
4 ones?

29. A BINGO card has 5 rows and 5 columns, and the columns are labeled by
the letters in BINGO. The third cell in column N is a free cell (containing
no number) on which the player places a chip before the game starts. The
first column contains numbers from 1 to 15, the second from 16 to 30, . . . ,
and the last from 61 to 75. In a game of BINGO, letter and number com-
binations, such as B12 and N37, are called out until some card achieves
5-in-a-row along a row, column, or diagonal.

B I N G O

233 31 47 65

211 33 54 70

1615 53 67

2913 43 55 62

199 39 50 71

(a) How many different BINGO cards are possible?
(b) How many different cards could achieve BINGO simultaneously

i. if it happens in column B, I, G, or O?
ii. if it happens in column N?

30. A dart board is a circle divided into 20 equal-sized sectors, numbered 1
through 20 in a certain order. The dart board is always oriented so that the
sector containing the number 20 is at the top.
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205
12

9
14

11
8

16

7
19 3 17

2

15
10

6
13

4

18
1

(a) How many different dart boards are possible?
(b) What if we relax the restriction that the number 20 must be at the top?

This would change the game, since the topmost and bottommost
numbers tend to be the easiest to hit.

Ordered Dice. For Exercises 31 through 36, consider the task of rolling a
standard (6-sided) die 5 times and recording the sequence of 5 numerical out-
comes. In each case, determine the number of possible sequences satisfying the
given conditions.
31. No repeats. 32. Increasing order.
33. Exactly 2 sixes. 34. 3 twos and 2 fours.
35. 3 of one number and 2 of another. 36. Sum is 6.

Scrambled Dice. For Exercises 37 through 42, consider the task of rolling 4 dice
and recording the 4 numbers showing. The dice are considered identical and
have no order to them. In each case, determine the number of possible out-
comes satisfying the given conditions.
37. A run of four consecutive

numbers (e.g., 2, 3, 4, 5).
38. Three of a kind

(and not four of a kind).
39. Four distinct numbers. 40. 2 sixes and 2 other distinct values.
41. A pair and 2 other distinct values. 42. Two pair (and not four of a kind).

Exercises 43 through 46 refer to the Postnet codes used by U.S. Postal Service,
as described in Example 6.19. See Table 6.1.
43. Use the Postnet code

︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸
for INFORMS (Institute for Operations Research and the Management
Sciences) in Linthicum, Maryland to determine the ZIP + 4 code for
INFORMS.

44. The Postnet code for the MAA (Mathematical Association of America) in
Washington, DC, is

︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸
Consequently, what is the ZIP + 4 code for the MAA?
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45. Suppose we wish to create a Postnet code to encode hexadecimal numbers
using a fixed number of long and short bars for each digit.

�(a) What is the smallest fixed number of bars that will enable us to encode
all of the possible hexadecimal digits?

(b) How many long bars will be used for each digit?
46. In a Postnet code for decimal digits, each digit uses the same number of

bars. However, suppose we now allow the number of long bars to vary
from digit to digit.

�(a) What is the smallest fixed number of bars that will enable us to encode
all of the possible decimal digits?

(b) Can this be done using the number of bars from part (a) and only two
different numbers of long bars? How?

47. In the 2005 Kentucky Derby, a family betting on the race won the super-
fecta, which was worth $854,253. That is, they correctly picked the first
four horses to finish the race and in the correct order. This was particularly
remarkable because the horses that did well were huge long-shots. The
strategy they employed was to select 6 of the 20 horses in the race and
purchase a 6-horse $1 superfecta box. That is, they bet $1 on each of the
possible top-four finishes using only the 6 horses they selected.
(a) In total, how much did they bet?
(b) How much would it cost to bet on all possible top-four finishes from

the entire 20-horse field?
�(c) Why might the strategy in part (b) not be a good choice?

48. In dog racing, a quiniela (or quinella) bet is a bet on which two dogs will
be the first two to cross the finish line. However, the order in which they
cross does not matter. For any number n of dogs, an n-dog $2 quiniela box
is a bet of $2 each on each possible pair from a set of n dogs.
(a) How much does it cost to purchase a 5-dog $2 quiniela box?

�(b) If there is a field of 14 dogs in the race, then how much would it cost to
guarantee a quiniela win from one of the $2 bets?

6.3 Addition and Subtraction
Besides the multiplication principle and its consequences, we need tools to han-
dle problems that naturally break into cases. For such problems, we need to ap-
propriately combine results obtained in those cases. A couple of examples will
motivate another useful counting principle.

Disjoint Events
Some counting problems are handled by taking the sum of separate counts.

EXAMPLE 6.20 How many possible license plates consisting of 6 digits (0 to 9) have either all
digits distinct or all digits the same?

Solution. There are P(10, 6) plates with all digits distinct and 10 with all
digits the same. Certainly no one plate can have both of these properties.
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Hence, the total number of license plates under consideration is

P(10, 6) + 10 = 151210.

We add the counts from the two disjoint cases. ■

EXAMPLE 6.21 How many possible sequences of 10 coin flips result in exactly 3 or exactly
4 heads?

Solution. A sequence cannot have both exactly 3 and exactly 4 heads. Hence,
we add the counts for these distinct possibilities. Therefore, there are(

10
3

)
+
(

10
4

)
= 330

sequences with 3 or 4 heads. ■

THEOREM 6.5 Addition Principle

Finite sets A and B are disjoint (equivalently, |A∩ B| = 0) if and only if

|A∪ B| = |A| + |B|.

An inductive argument shows that the Addition Principle generalizes to any
finite number of disjoint sets, giving the General Addition Principle

|A1 ∪ · · · ∪ An| = |A1| + · · · + |An| if and only if A1, . . . , An are disjoint.

To fully appreciate the Addition Principle, it may be helpful to consider an ex-
ample in which it does not apply.

EXAMPLE 6.22 Consider subsets of the set U of 6-digit license plates. Let A contain those with
exactly 2 ones, and let B contain those with exactly 3 nines. Hence, A∪ B
contains those with 2 ones or 3 nines. However,

|A∪ B| �= |A| + |B|,
since A and B are not disjoint. It is possible to have a plate with both 2 ones
and 3 nines (e.g., 115999). Since A∩ B is nonempty, the Addition Principle does
not apply. It is important to take this into account before blindly invoking the
Addition Principle. Theorem 6.7 will tell us how to handle situations in which
the sets being considered are not disjoint. ■

In the applications of the Addition Principle in Examples 6.20 and 6.21, the
disjoint cases that we considered were explicitly described in the problem. More
typically, we must discover for ourselves a convenient decomposition of a count-
ing problem into disjoint cases.

EXAMPLE 6.23 (Jury Selection). The lawyer for the prosecution in a certain court case wants
the jury of 12 to contain more women than men. If the jury pool contains
15 men and 9 women, then how many different possible juries would satisfy
this lawyer?
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Solution. To have more women than men on the jury, there must be one of
the following possibilities:

5 men and 7 women,
4 men and 8 women, or
3 men and 9 women.

Since there are only 9 women, we cannot have 10 or more on the jury. Since the
listed possibilities are disjoint, we obtain(

15
5

)(
9
7

)
+
(

15
4

)(
9
8

)
+
(

15
3

)(
9
9

)
= 120848

possible juries with more women than men. ■

EXAMPLE 6.24 (Cracking Passwords). There are 2.6 million possible computer passwords
consisting of a letter (A to Z) followed by 5 digits (0 to 9). If such a password is
known to contain at least 3 zeros, then to how many possibilities is the pass-
word narrowed down?

Solution. There are 26 choices for the beginning letter. In general, if a pass-
word is to contain k zeros, then there are

(5
k

)
choices for their locations and 9

choices (1 to 9) for each of the 5−k remaining locations. Of course, there must
be one of 3, 4, or 5 zeros (exactly), and these are disjoint possibilities. Hence,
there are

26 ·
(

5
3

)
· 92 + 26 ·

(
5
4

)
· 9+ 26 = 22256

possible passwords with at least 3 zeros. ■

Complements
Recall that, given a subset A of a universal set U , the complement of A , denoted
Ac , is the set of elements in U that are not in A. There is a simple corollary to
the Addition Principle that makes use of set complements and turns out to be a
valuable counting tool.

THEOREM 6.6 Complement Principle

Given a subset A of a finite universal set U ,

|A| = |U | − |Ac |.

Proof
The Addition Principle applies to the disjoint union A∪ Ac = U and gives
|A| + |Ac | = |U |. Subtracting |Ac | from both sides gives the desired equality. �

The Complement Principle is useful in problems involving a set whose com-
plement is more natural or easier to consider.

EXAMPLE 6.25 How many of the integers from 1 to 300 are not divisible by 15?

Solution. Let U = {1, 2, . . . , 300}, and let A be the subset of those integers that
are not divisible by 15. It is easy to count the subset Ac of integers that are
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divisible by 15. We get

|Ac | = 300
15

= 20.

The Complement Principle now tells us that there are

|A| = |U | − |Ac | = 300− 20 = 280

integers in U that are not divisible by 15. ■

EXAMPLE 6.26 A byte is a binary number consisting of 8 digits. How many bytes have at least
2 zeros?

Solution. There are 28 binary sequences of length 8. Of them, 1 has no zeros
and 8 have one zero. Since the rest have at least 2 zeros, there are

28 − (1+ 8) = 247

sequences with at least 2 zeros. It would have been tedious to count directly
those that have 2 zeros, or 3 zeros, . . . , or 8 zeros. ■

EXAMPLE 6.27 A bag contains 8 red, 4 blue, 7 green, and 5 yellow balls. A box is to be filled
with 3 balls. How many ways are there to do this so that at least two colors are
used? Note that the 24 balls are considered distinguishable.

Solution. The total number of ways to fill the box with 3 balls is(
8+ 4+ 7+ 5

3

)
=
(

24
3

)
= 2024.

The number of monochromatic ways to fill the box is(
8
3

)
+
(

4
3

)
+
(

7
3

)
+
(

5
3

)
= 105.

Hence, there are

2024− 105 = 1919

ways to fill the box using at least 2 colors. ■

The utility of the Complement Principle can be appreciated by trying to solve
Example 6.27 directly rather than by using complements.

Basic Inclusion and Exclusion
The Addition Principle does not handle problems in which the relevant sets are
not disjoint. In those cases, some subtraction is needed.

THEOREM 6.7 Basic Inclusion-Exclusion Principle

Given finite sets A and B,

|A∪ B| = |A| + |B| − |A∩ B|.
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Proof
Our approach is motivated by the Venn diagram reflecting this general
situation.

A B

A � B

The basic idea is that A∩ B is counted twice in the sum |A| + |B| and must
therefore be subtracted off. A careful argument is based on the disjoint unions

A= ( A\B) ∪ ( A∩ B), B = (B\A) ∪ ( A∩ B), and
A∪ B = ( A\B) ∪ ( A∩ B) ∪ (B\A).

The Addition Principle then gives that

|A| = |A\B| + |A∩ B|, |B| = |B\A| + |A∩ B|, and

|A∪ B| = |A\B| + |A∩ B| + |B\A|
= |A| + |B\A|
= |A| + |B| − |A∩ B|

as asserted. �

The Addition Principle is simply the special case of the Basic Inclusion-
Exclusion Principle in which |A∩B| = 0. The more general result, which further
covers cases in which A∩ B is nonempty, enables us to handle problems like the
one encountered in Example 6.22.

EXAMPLE 6.28 (Getaway Car). Two witnesses to a bank robbery had different memories of
the license plate on the getaway car. Both agreed that the plate consisted of
6 digits. However, one noticed that there were exactly 2 ones, and the other
noticed that there were exactly 3 nines on the plate. To be safe, and realizing
that one of the witnesses might be mistaken, the police want to consider both
possibilities. How many license plates consisting of 6 digits (0 to 9) have
exactly 2 ones or 3 nines?

Solution. Our universe of consideration is the set of 6-digit license plates.
Let A denote the set of plates with exactly 2 ones. Let B denote the set of
plates with exactly 3 nines. Hence, A∩ B is the set of plates with both 2 ones
and 3 nines, and A∪ B is the set of plates with 2 ones or 3 nines. By the Basic
Inclusion-Exclusion Principle,

|A∪ B| = |A| + |B| − |A∩ B|
=
(

6
2

)
· 94 +

(
6
3

)
· 93 −

(
6
2

)(
4
3

)
· 8

= 113475. ■

Of course, knowing the make, model, or color of the car could further narrow
down the possibilities significantly.
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EXAMPLE 6.29 A standard (6-sided) die is rolled a sequence of 5 times. In how many ways can
the sequence of numbers resulting be all even or all multiples of 3?

Solution. Since there are 3 even values (2, 4, and 6), there are 35 ways to get
all even numbers. Since there are 2 multiples of 3 (3 and 6), there are 25 ways to
get all multiples of 3. Only the value 6 is both even and a multiple of 3, so there
is 1 way to do both (namely, 66666). Therefore,

35 + 25 − 1 = 274

is the desired number of ways. ■

Our final example in this section makes use of the following corollary of the
Basic Inclusion-Exclusion Principle.

COROLLARY 6.8 Given subsets A and B of a finite universal set U ,

|Ac ∩ Bc | = |U | − |A| − |B| + |A∩ B|.

Proof
By De Morgan’s Law, Ac ∩ Bc = ( A∪ B)c . By the Complement Principle,
|( A∪ B)c | = |U | − |A∪ B|. Basic Inclusion-Exclusion now gives

|Ac ∩ Bc | = |U | − (|A| + |B| − |A∩ B|) = |U | − |A| − |B| + |A∩ B|. �

EXAMPLE 6.30 How many of the integers from 1 to 1000 are relatively prime to 1000?

Solution. Our universe of consideration is U = {1, 2, . . . , 1000}. We want
to count those integers that do not have any factors in common with 1000 =
23 · 53. Since it suffices to consider only prime factors, we want to know how
many integers are divisible neither by 2 nor by 5.

Let A be the set of integers that are divisible by 2, and let B be the set of
integers that are divisible by 5. So Ac ∩ Bc is the set that we wish to count, and
Corollary 6.8 applies. We have |A| = 1000

2 , |B| = 1000
5 , and |A∩ B| = 1000

10 .
Therefore,

|Ac ∩ Bc | = 1000− 1000
2

− 1000
5

+ 1000
10

= 1000− 500− 200+ 100
= 400

is the number of integers in U that are relatively prime to 1000. ■

Example 6.30 shows a computation of a particular value of the Euler phi-
function φ. For any positive integer n, the value φ(n) is defined to be the number
of integers from 1 to n that are relatively prime to n. In particular, we see that
φ(1000) = 400. Computations of values of φ and other similar computations are
taken up in the exercises. Further consideration of φ is given in Section 7.1.

SECTION 6.3 Exercises
1. A bag contains 10 black and 12 white balls. How many ways are there to

select 8 balls so that exactly 5 or 6 of them are black? The 22 balls are
considered distinguishable.
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2. How many bytes have 2 or 3 zeros? See Example 6.26.
3. Determine the number of possible 6-digit (0 to 9) license plates that have

exactly 4 threes or exactly 4 sixes.
4. Determine the number of possible 6-digit (0 to 9) license plates that have at

least 4 nines.
5. A coin is tossed 10 times. In how many different ways can there be at most

3 heads?
6. Anakin is in fourth grade and has 6 different classes. His mother told him

that she will take him to the pod races if he gets at least 3 A’s on his next
report card. If each class grade will be one of A, B, C, D, or F, then how
many possible report cards could earn Anakin his reward?

7. How many different sequences of 6 coin flips result in at least 4 tails?
8. A standard (6-sided) die is rolled 5 times. How many possible sequences

result in at most 2 ones?
9. The defense attorney figures that she will have a good chance of winning

the case if the jury contains at least 2 men. The jury pool contains 18 men
and 17 women. How many ways are there to select 12 jurors so that this
attorney is satisfied?

10. How many different sequences of 10 coin flips result in at least 3 tails?
11. How many different sequences of 5 coin flips result in an even number of

heads?
12. How many different bytes have at least 5 zeros?
13. How many of the integers from 500 to 1000 are not divisible by 3?
14. How many of the integers from 10 to 999 are not divisible by 9?
15. How many of the integers from 1 to 500 are divisible by 3 or 7?
16. How many of the integers from 500 to 5000 are divisible by 11 or 13?
17. How many of the integers from 200 to 2000 are divisible by 2 or 5?
18. How many of the integers from 1 to 3500 are divisible by 3 or 11?
19. Two children on a long car ride are playing a license plate game. One

counts the plates she sees consisting of 8 digits (0 to 9) with all digits
greater than or equal to 4. The other counts the 8-digit plates he sees with
all digits less than or equal to 5. After playing for a while, the children
complain that there are not many such plates to be found.
(a) How many possible plates satisfy the girl’s restrictions?
(b) How many satisfy the boy’s restrictions?
(c) Overall, how many possible plates fit into the children’s game?

20. A man has 3 dimes and 5 nickels in his pocket. To pay for a newspaper, he
will reach into his pocket and retrieve exactly 40¢. Assume that the 8 coins
are distinguishable.
(a) How many ways are there to pay for the paper using all 3 dimes?
(b) How many ways are there to pay using no dimes?
(c) Overall, how many ways are there for him to pay for the paper?

21. A DNA strand consists of a sequence of nitrogen bases. Each is one of
cytosine, guanine, thymine, or adenine. How many possible strands of
length 8 have exactly 3 cytosine or exactly 3 thymine nitrogen bases?
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22. A bag contains 4 red, 3 blue, and 5 green balls. How many ways are there
to select 5 balls so that either 2 are red or 2 are blue? The 12 balls are
considered distinguishable.

Card Hands. For Exercises 23 through 26, use the fact that a standard deck of
cards contains 52 cards with 13 each of the 4 suits (clubs, diamonds, hearts,
and spades). Moreover, each suit contains the three face cards (Jack, Queen,
King). In each case, determine how many hands of 5 cards have the specified
property.
23. Exactly 2 clubs or exactly 2 spades. 24. At least 4 face cards.
25. At most one heart. 26. Five face cards or five diamonds.
27. Find φ(144). 28. Find φ(245).
29. How many of the integers from 100 to 1000 are relatively prime to 1000?
30. How many of the integers from 25 to 1125 are relatively prime to 1125?
31. There are 27! different permutations of 0, . . . , 26. Using the conversions

0 = “ ”, 1 = A, 2 = B, . . . , any such permutation specifies a scrambling of
the alphabet that can be used to send coded messages. In particular,
consider the permutation

x : A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

y : C G K O S W D H L P T X A E I M Q U Y B F J N R V Z

that sends a letter x to a coded letter y.
(a) Decode “AWWBCAW.”
(b) As we saw in Section 3.6, some permutations of 0, . . . , 26 take the form

of a linear cipher y = (ax + b) mod 27, for choices of integers a and b.
Justify that the permutation above is a linear cipher.

�(c) Determine the number of permutations that are linear ciphers.
Hint: What are the restrictions and freedoms on a and b?

32. Given p = 11, q = 19, and n = 209, we saw in Section 3.6 that certain
choices of an integer a yield an RSA encryption scheme given by the
equation y = xa mod n. Such a code could be used to encode messages
using 209 different characters.
(a) Given n = 209 and a = 3, encode each entry in the sequence 2, 7, 1, 8.
(b) When n = 209, why is 5 not a valid choice for a?

�(c) How many possible schemes are there when n = 209?
33. How many of the integers from 171 to 1771 are relatively prime to 10?
34. How many of the integers from 543 to 5432 are relatively prime to 63?
35. Prove the General Addition Principle for an arbitrary number of disjoint

sets.
36. Formulate and prove a version of Corollary 6.8 for arbitrary numbers of

disjoint sets.

Ordered Dice. For Exercises 37 through 44, consider the task of rolling a die
5 times and recording the sequence of 5 values. In each case, determine the
number of outcomes satisfying the given conditions.

37. Sum is 7. 38. Sum is odd.
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39. A sum of at most 7. 40. At least 3 sixes.
41. Four or more common values. 42. At most 1 three.

�43. At most 1 pair. �44. At least 2 fives and at least 2 sixes.

Scrambled Dice. For Exercises 45 through 52, consider the task of rolling 4 dice
and recording the 4 numbers showing. The dice are considered identical and
have no order to them. In each case, determine the number of outcomes sat-
isfying the given conditions.
45. At least 3 sixes. 46. All even numbers.
47. At least 3 fives or at least 3 sixes. 48. Exactly 3 distinct numbers.
49. Two pairs of values. 50. At most 2 different numbers.

�51. At least 3 different numbers. �52. At least 2 numbers the same.

6.4 Probability
One application of counting is to compute probabilities. To analyze the relative
fairness of games of chance, we must understand probability, especially when
gambling is involved. Millions buy state lottery tickets despite the extremely
low likelihood of winning. In the insurance industry, actuaries study the prob-
abilities of accidents or deaths to determine insurance premiums.

We start with an example of a game of chance, which motivates both our
methods and our terminology.

EXAMPLE 6.31 Consider the task of tossing two dice and recording the numbers showing.
Assume that one die is red and the other is green. Hence, we may record each
result as a pair (r, g), where r and g are the values showing on the red and
green die, respectively. The set of possible results of our task is thus

S = { (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) }.

Of course, |S| = 62 = 36. What is particularly important is the fact that each of
the 36 possible results has the same likelihood. That is, for each pair (r, g), the
probability of getting (r, g) is 1

36 . Consider now the sum r + g of the two values
showing on the dice, and compute the probability that the sum is 8.

Solution. From the possible results listed in S, we are interested in the subset

E = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}
consisting of those pairs (r, g) for which r + g = 8. The probability of E is
given by

P(E) = 1
36
+ 1

36
+ 1

36
+ 1

36
+ 1

36
= 5

36
.

That is, P(E) = |E |
|S| . ■
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Some general notions can be extracted from Example 6.31. An experiment is
a specific task of consideration. The possible results of the experiment are called
outcomes, and the set S of all possible outcomes is called the sample space for
the experiment. A subset E of S is said to be an event. Given a particular event
E , the probability of E , denoted P(E), is a value between 0 and 1 that gives
the likelihood that an outcome in E will occur if the experiment is performed.
The value can be estimated experimentally, but in some cases, as we shall see
in Definition 6.4, it can be determined exactly. If E consists of a single outcome
x ∈ S, we may more compactly write P(x) for its probability.

In Example 6.31, the experiment is the tossing of two dice. An outcome is a
pair (r, g), such that r, g ∈ {1, 2, 3, 4, 5, 6}, and the sample space is

S = {(r, g) : r, g ∈ {1, 2, 3, 4, 5, 6}}.
For the event E = {(r, g) : r + g = 8}, we computed the probability of E and
got P(E) = 5

36 . That computation depended on the fact that all outcomes from
S have the same probability.

DEFINITION 6.3

Let S be a finite sample space. The outcomes in S are said to be equally likely if
∀ x, y ∈ S, P(x) = P(y). That is, ∀ x ∈ S, P(x) = 1

|S| .

We consider only finite sample spaces: discrete probability distributions.
When we have equally likely outcomes, probability computations reduce to
counting.

DEFINITION 6.4 Probability When Outcomes Are Equally Likely

If the outcomes in a finite sample space S are all equally likely, then the probability
of an event E is given by

P(E) = |E |
|S| .

Many probability questions can be answered using Definition 6.4. Conse-
quently, such probability computations amount to two counting problems; we
count the number of elements in E and the number in S. The probability is then
given by the quotient |E ||S| .

EXAMPLE 6.32 If two fair coins are tossed, then what is the probability of getting exactly one
head?

Solution. To ease our analysis, we regard our two tosses as occurring in
sequence, a first coin and then a second. If we use H for heads and T for tails,
then the sample space of possible outcomes is given by the set of ordered pairs

S = {TT, T H, HT, H H}.
Since the coins are assumed to be fair, each of the outcomes in S is equally
likely. The event of getting exactly one head is given by

E = {T H, HT}.



330 P A R T II ■ Combinatorics

Hence,

P(E) = |E |
|S| =

2
4
= 1

2

is the desired probability. ■

Why was it helpful to treat the results of the two coin tosses as an ordered pair?
An alternative analysis of Example 6.32 might consider the outcomes to be the
number of heads obtained. Hence, there would be three possible outcomes: 0, 1,
or 2. However, these three outcomes are not equally likely, as can be seen by re-
peating this experiment several times. More precisely, the work in Example 6.32
gives that P(1) = 1

2 and P(0) = P(2) = 1
4 . Consequently, Definition 6.4 does not

apply to this alternative analysis. Hence, the approach taken in Example 6.32 is
more convenient.

EXAMPLE 6.33 (Gender Bias). There are 8 men and 4 women who work in an office, and the
2 promotions that were recently announced both went to men. If the 2 to be
promoted had been randomly selected, what is the probability that both would
have been men?

Solution. Let M denote man and W woman. When workers are selected,
there are three possible gender combinations MM, MW, and WW. However,
these are not equally likely, even if we further consider our pairs as ordered
and separate out MW and WM. The reason is that there are more men than
women. Instead, we consider the sample space S of all possible combinations
of 2 workers. This gives |S| = (12

2

)
, and each outcome in S is equally likely.

Our interest is in the event E consisting of all combinations in which both
promotions go to men. Since there are 8 men, |E | = (8

2

)
. Therefore,

P(E) =
(8

2

)
(12

2

) = 14
33
≈ .424.

It was not unlikely for both promotions to go to men. ■

In the context of probability, disjoint events are said to be mutually exclu-
sive. In general, if events E and F are mutually exclusive, then P(E ∪ F ) =
P(E) + P(F ). This fundamental property of probability is the analog of the
addition principle for counting. Probability also has a complement principle that
is much like Theorem 6.6 and is similarly useful.

THEOREM 6.9 Probability Complement Principle

If E is an event in a sample space S, then

P(E) = 1− P(Ec).

In the case of equally likely outcomes, the Probability Complement Principle
is an easy consequence of Theorem 6.6 and Definition 6.4. A proof in that case
is left to the exercises.

EXAMPLE 6.34 The license plates issued by a certain state consist of 3 letters (A to Z) followed
by 4 digits (0 to 9). If all possible plates are equally likely to be chosen, then
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what is the probability that a randomly chosen plate will have some letter or
digit repeated?

Solution. The sample space S is the set of all possible plates consisting of
3 letters followed by 4 digits. Hence,

|S| = 263 · 104 = 175760000.

Let E be the subset of plates in which some letter or digit is repeated. Although
it is P(E) that we seek, it is easier to compute P(Ec). Since

|Ec | = P(26, 3) · P(10, 4) = 78624000,

the desired probability is

P(E) = 1− 78624000
175760000

= 467
845

≈ .553. ■

EXAMPLE 6.35 (Day Labor). At the beginning of the day, 10 day laborers arrive at a con-
struction site seeking work. If each is either retained or sent home with equal
likelihood (as might be decided by flipping a fair coin), then what is the
probability that at least 3 day laborers will be retained to work?

Solution. At least 3 are retained if exactly 3, exactly 4, . . . , or exactly 10 are
retained. It is easier to consider instead the complementary event of retaining
at most 2. The number of ways in which at most 2 day laborers are retained is

1+ 10+
(

10
2

)
= 56.

Hence, the desired probability is

1− 56
210 =

121
128

≈ .945. ■

Basic Inclusion-Exclusion also has an analog for probability.

THEOREM 6.10 Basic Probability Inclusion-Exclusion

Given events E and F in a sample space S,

P(E ∪ F ) = P(E) + P(F ) − P(E ∩ F ).

A proof of Theorem 6.10 in the case of equally likely outcomes is left to the
exercises.

EXAMPLE 6.36 (Home Security). A home security code consists of 4 digits (0 to 9). If all such
codes are equally likely to be chosen, then what is the probability that a ran-
domly chosen code will contain exactly 1 three or exactly 2 sixes?

Solution. Let S be the sample space of all possible 4-digit codes. Let E be the
subset of codes containing exactly 1 three, and let F be the subset of codes
containing exactly 2 sixes. So E ∪ F consists of all codes containing exactly
1 three or exactly 2 sixes. We seek P(E ∪ F ).
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Since

P(E) = 4 · 93

104 = 729
2500

P(F ) =
(4

2

) · 92

104 = 243
5000

and

P(E ∩ F ) =
4 · (3

2

) · 8
104 = 6

625

Theorem 6.10 gives that

P(E ∪ F ) = 729
2500

+ 243
5000

− 6
625

= 1653
5000

= .3306. ■

Conditional Probability
If we roll two dice, then computations like those used in Example 6.31 give that
the probability that the sum is 10 is 3

36 = 1
12 . However, suppose we are rolling

the two dice in sequence, and we know that the value on the first die is at least
5. How does this affect our chances of rolling a sum of 10, when the second die
is rolled? Essentially, we are removing from consideration all elements of the
36-element sample space S in Example 6.31 that do not have a 5 or greater in
their first coordinate. To estimate our new desired probability by rolling two
dice several times, we should simply ignore any outcomes from S that achieve
a 4 or smaller on the first die. Hence, our new sample space is the subset

S′ = { (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) }

of S. Since outcomes in S′ must be equally likely, just as they are in S, the new
probability is 2

12 = 1
6 . If we let E be the event in S that the sum is 10 and F be

the event in S that the first die has a value of at least 5, then our new probability
can be described as the probability of E given that F has occurred. Moreover,
its value can be seen to satisfy

1
6
= 2

12
=

2
36
12
36

= P(E ∩ F )
P(F )

.

This enables us to determine our new probability from computations involving
the old sample space S and inspires the following definition.

DEFINITION 6.5

Let E and F be events in a sample space S with P(F ) > 0. The conditional
probability of E given F , denoted P(E | F ), is given by

P(E | F ) = P(E ∩ F )
P(F )

.

EXAMPLE 6.37 At a company picnic, the children played a soccer game, after which one
player’s name was randomly drawn to win a prize. The winning team in the
soccer game consists of 7 girls and 4 boys, and the losing team consists of
5 girls and 6 boys. Given that the prize winner is a boy, what is the probability
that he also comes from the winning soccer team?
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Solution. Let S be the set of 22 children that played soccer, let E be the event
that the prize winner is from the winning team, and let F be the event that the
prize winner is a boy. The probability that we seek is P(E | F ), the probability
that the prize winner comes from the winning team given that he is a boy.

Note that E ∩ F is the event that the prize winner is a boy from the winning
team. Since

P(E ∩ F ) = 4
22
= 2

11
and

P(F ) = 10
22
= 5

11
,

we conclude that

P(E | F ) =
2
11
5
11

= 2
5
. ■

It follows from the formula in Definition 6.5 that

P(E ∩ F ) = P(E | F ) · P(F ). (6.1)

In some circumstances, there is a simpler formula for P(E ∩ F ).

DEFINITION 6.6

Two events E and F in a sample space S are said to be independent if

P(E ∩ F ) = P(E) · P(F ).

If E and F are independent events and P(E | F ) is defined, then P(E | F ) =
P(E), as we will see in the exercises. In this case, knowing that event F has
occurred does not affect the likelihood of event E occurring. This justifies the
use of the term independent.

EXAMPLE 6.38 Consider the experiment of tossing two dice in sequence. Let E be the event
that the first die shows a value of at most 3, let F1 be the event that the values
on the two dice are the same, and let F2 be the event that the sum of the values
on the two dice is 5. Note that P(E) = 18

36 = 1
2 .

(a) Are E and F1 independent?

Solution. Since P(F1) = 6
36 = 1

6 and P(E ∩ F1) = 3
36 = 1

12 , it follows that

P(E ∩ F1) = 1
12
= 1

2
· 1

6
= P(E) · P(F1).

So yes, E and F1 are independent.
Note, in this case, that P(E | F1) = P(E) = 1

2 . ■

(b) Are E and F2 independent?

Solution. Since P(F2) = 4
36 = 1

9 and P(E ∩ F2) = 3
36 = 1

12 , it follows that

P(E ∩ F2) = 1
12
�= 1

2
· 1

9
= P(E) · P(F2).

So no, E and F2 are not independent. ■
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If a sample space is partitioned into events F1, . . . , Fn, then we can take ad-
vantage of equation (6.1) and compute the probability of an event E by condi-
tioning on each of the events Fi .

THEOREM 6.11 Suppose E , F1, . . . , Fn are events in a sample space S with P(F1), . . . , P(Fn) positive, and
S is a disjoint union S = F1 ∪ · · · ∪ Fn. Then

P(E) =
n∑

i=1

P(E | Fi ) P(Fi ).

Proof
Since E = E ∩ S = E ∩ (F1 ∪ · · · ∪ Fn) = (E ∩ F1) ∪ · · · ∪ (E ∩ Fn) is a disjoint
union,

P(E) =
n∑

i=1

P(E ∩ Fi ) =
n∑

i=1

P(E | Fi ) P(Fi ). �

The following corollary to Theorem 6.11 is named after the English minister
Thomas Bayes (1702–1761), who discovered it. Its proof is left for the exercises.

COROLLARY 6.12 Bayes’ Formula

Suppose E , F1, . . . , Fn are events in a sample space S with P(E), P(F1), . . . , P(Fn)
positive, and S is a disjoint union S = F1 ∪ · · · ∪ Fn. Then for any 1 ≤ k ≤ n,

P(Fk | E) = P(E | Fk ) P(Fk )∑n
i=1 P(E | Fi ) P(Fi )

.

EXAMPLE 6.39 In a recent election, the majority of female voters preferred a different candi-
date from the one preferred by the majority of the male voters. Exit polls
showed that 75% of female voters chose candidate A, whereas 55% of male
voters chose candidate B. Assume that each voter chose either candidate A or
candidate B and that an equal number of men and women voted.

(a) Which candidate won the election? Explain.
(b) If a randomly chosen voter is known to have voted for candidate A,

then what is the probability that the voter is a female?

Solution. To be simple, let A be the event that a voter chooses candidate A, let
B be the event that a voter chooses candidate B, let F be the event that a voter
is female, and let M be the event that a voter is male. Based on the exit polls
and the assumption that each voter chose A or B, we know that

P( A | F ) = .75, P(B | F ) = .25,
P( A | M) = .45, P(B | M) = .55.

We are also assuming that
P(F ) = P(M) = .5.

Note that F and M form a partition of the sample space of all the voters.

(a) To determine who won, we apply Theorem 6.11. Observe that

P( A) = P( A | F ) P(F ) + P( A | M) P(M) = (.75)(.5) + (.45)(.5) = .6.

Since candidate A received 60% of the votes, candidate A won the
election.
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(b) We seek P(F | A), the probability that a voter is female given that she
voted for candidate A. For this, Bayes’ Formula gives that

P(F | A) = P( A | F ) P(F )
P( A | F ) P(F ) + P( A | M) P(M)

= (.75)(.5)
.6

= .625.

That is, there is a 62.5% chance that this voter for candidate A is a
female. ■

SECTION 6.4 Exercises
1. At the end of each NBA season, only the teams that do not make the

playoffs have a chance to get the first overall pick in the draft. Each of
these teams is assigned ping pong balls that are placed in a bin, and one
ball is randomly selected from this bin to determine which team gets the
valuable first pick. The worse a team’s record, the more ping pong balls it
gets. Table 6.2 reflects the results of the 2004–2005 NBA season. In that
lottery, the ping pong ball for the Milwaukee Bucks was drawn, giving
them the first pick. (They chose Andrew Bogut.)

Team Record Number of Ping Pong Balls

Atlanta 13-69 250
New Orleans 18-64 178
Charlotte 18-64 177
Utah 26-56 119
Portland 27-55 88
Milwaukee 30-52 63
Toronto 33-49 36
New York 33-49 36
Golden State 34-48 14
LA Lakers 34-48 14
Orlando 36-46 8
LA Clippers 37-45 7
Cleveland 42-40 6
Minnesota 44-38 5

Table 6.2 2005 NBA Draft Lottery

(a) What was the probability of Milwaukee winning that lottery?
(b) What was the probability of a team from Los Angeles winning that

lottery?
2. Roulette is a popular casino game in which a ball is dropped onto a spin-

ning wheel. As shown in Figure 6.6, the wheel is split into 38 equal-sized
sectors to which numbers and colors are assigned. To 36 of the sectors are
assigned the numbers 1 through 36, with half of those given the color red
and the other half given the color black. The remaining spaces are given
the color green, with one assigned the number 0 and the other the number
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Figure 6.6 Roulette Wheel

00 (double zero). Players can bet on the number or color on which the ball
will land.
(a) What is the probability that the ball will land on 7?
(b) What is the probability that the ball will land on red?

For Exercises 3 through 6, consider the experiment of rolling two fair standard
(6-sided) dice, and determine the probabilities of the given events.
3. A sum of 7. 4. A pair.
5. A sum of at least 9.
6. The two numbers on top differ by at most one.
7. An experiment consists of tossing a coin 3 times and recording the se-

quence of heads and tails.
(a) Write out the sample space for this experiment.
(b) What is the probability that at least 2 heads occur?

8. An experiment consists of tossing a coin 4 times and recording the se-
quence of heads and tails.
(a) Write out the sample space for this experiment.
(b) What is the probability that exactly 2 heads occur?

9. The touch pad for a home security code has buttons for the digits 0, 1, 2, 3.
To secure the house, the home owner must set a code that consists of a
sequence of 2 digits.
(a) A thief attempting to enter the house plans to consider all possible

security codes. Write out the relevant sample space.
(b) To conserve time, the thief decides to attempt only codes for which the

second digit is greater than the first. What is the probability that the
thief will find the correct code?

10. A computer account has a password consisting of 3 letters. Each letter is
one of a, b, or c.
(a) To attempt to break into the account, a hacker should consider all

possible passwords. Write out the relevant sample space.
(b) The hacker has neglected to consider passwords that have the same

letter occurring exactly twice. What is the probability that the hacker
will miss the correct password?
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For Exercises 11 through 14, consider the experiment of rolling three fair
standard (6-sided) dice, and determine the probabilities of the given events.
11. The values are three consecutive numbers. Note that they need not be

rolled in order.
12. All three dice show the same value.
13. All three dice show different values.
14. A pair of one value and an additional distinct value.

Jury Selection. For Exercises 15 through 18, we consider a jury trial for which
the jury of 12 was selected from a pool containing 20 men and 30 women.
Since the case involved a gender discrimination claim, both sides felt that the
makeup of the jury was important. As it turned out, the jury consisted of
5 men and 7 women.
15. If the jurors had been randomly selected from the jury pool of 50 people,

then what would have been the probability of obtaining the gender
balance that occurred?

16. The defense would have preferred a jury of 8 men and 4 women. What
would have been the probability of randomly selecting such a jury?

17. (a) If the jurors had been randomly selected from the jury pool, then what
would have been the probability that all 12 jurors were the same
gender?

(b) There are 50% more women than men in the jury pool. Is it 50% more
likely that the jury would consist of all women than that it would
consist of all men?

(c) What is the probability that a randomly selected jury would have
some of both genders?

18. (a) Since the defendant was male, the defense lawyers would have
preferred that there be more men than women on the jury. What
would have been the chance of this in a random selection of 12 jurors?

(b) The prosecution lawyers were pleased to have more women than men
on the jury. What were the chances of such a gender balance, if the
selections were random?

(c) Why do the answers to parts (a) and (b) not add up to 1?
19. The owner of a company needed to hire a president and vice president for

her company from the 10 male and 8 female candidates she interviewed.
She ended up hiring two women. If two candidates were randomly
selected, then what would have been the probability that they both were
women?

20. A standard deck contains 26 red cards and 26 black cards. What is the
probability that two randomly chosen cards will be the same color?

21. If 8 coins are tossed, then what is the probability that at most 2 heads will
be showing?

22. If 4 standard (6-sided) dice are rolled, then what is the probability that at
most 1 six will be showing?

23. If 10 coins are tossed, then a common misconception is to believe that a
result of 5 heads and 5 tails is very likely.
(a) What is the true probability that this result will occur?
(b) Would you bet for or against it?
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24. What is the probability that 5 randomly chosen cards from a standard deck
(containing 26 red and 26 black) will be all red?

25. What is the probability that a license plate consisting of 6 distinct letters
(A to Z) will have its letters in alphabetical order?

26. What is the probability that a license plate consisting of 6 letters (A to Z)
will use exactly 5 different letters?

27. If 4 standard 6-sided dice are thrown, then what is the probability that the
sum is even?

28. If 4 cards are randomly chosen from a standard deck (containing 13 each of
the four suits: clubs, diamonds, hearts, and spades), then what is the
probability that one card of each suit will be obtained?

�29. Prove Theorem 6.9 under the assumption that the outcomes in the sample
space are equally likely.

�30. Prove Theorem 6.10 under the assumption that the outcomes in the sample
space are equally likely.

31. The New York State Take Five Lottery has a drawing at 11:21 each evening.
At that time, 5 balls from a set of 39 balls numbered 1, 2, . . . , 39 are se-
lected to determine a winner. Determine the probability that a single
selection of 5 numbers on a ticket will win this lottery.

32. If two standard (6-sided) dice are rolled, then what sum has the greatest
probability of occurring?

33. A fun experiment to perform with a class or at a party is called the
Birthday Problem. Simply determine whether some two people in the
group have the same day of the year for their birthday. (Ignore year of
birth.) Here, we consider how likely a coincidence this is.
Ignore leap years and assume that all possible birthdays are equally likely.
For 1 ≤ n ≤ 365, if n people are randomly chosen, then what is the prob-
ability that at least 2 will have the same birthday
(a) when n = 15?
(b) when n = 30?

�(c) What is the smallest value of n for which it is more likely than not that
2 will have the same birthday?

34. The very popular TV game show Let’s Make a Deal was hosted by Monty
Hall from 1963 to 1986. An analysis of strategies employed on that show
has spawned what is known as the Monty Hall Problem.
Game show host Monty Hall has placed a valuable prize behind one of
three doors and junk behind each of the other two. First, a contestant
selects one of the three doors. Second, since at least one of the unselected
doors contains junk, Monty Hall opens one of them to reveal junk. Third,
the contestant is given the option to stay with the initially chosen door or
to switch to the other unopened door. Determine the probability that the
contestant will win the valuable prize
(a) if the strategy of staying with the original door is employed?
(b) if the strategy of switching to the other door is employed?
(c) Which strategy is better for the contestant?

35. If two standard (6-sided) dice are rolled, then what is the probability of
obtaining doubles or a sum of 10?
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36. If 4 balls are selected from a bag containing 6 red, 5 blue, and 4 green balls,
then what is the probability of getting 2 red or an equal number of blue
and green?

37. If two standard (6-sided) dice are rolled, then what is the probability that
their sum will be even or divisible by 3?

38. What is the probability that a randomly chosen 5-digit (0 to 9) license plate
has all of its digits less than 6 or all greater than 3?

�39. Prove that, if any number of standard (6-sided) dice are rolled, then the
probability that the sum is even is 1

2 .
�40. Is it true in general that, if any number of standard (6-sided) dice are

rolled, then the probability that the sum is divisible by 3 is 1
3 ? Justify your

answer.
41. A baseball player seeking as many at-bats as possible wants to bat in the

first 3 positions, since that guarantees an at-bat in the first inning. If you
are one of the 9 starting players in a baseball lineup and the batting order
is randomly set, then find the probability that you will bat within the first
3 positions.

42. If two integers from 1 to 9 are randomly selected (repeats allowed), then
what is the probability that their sum will be even?

43. In Maine, New Hampshire, and Vermont, drawings for the Tri-State
Megabucks lottery occur on Wednesdays and Saturdays. They draw 6 balls
from a set of 42 balls numbered 1, 2, . . . , 42, and a ticket wins if at least
4 numbers are correct (4 numbers earns $40, 5 numbers earns $1000, and
all 6 numbers earns “The Jackpot”). What is the probability that a ticket
will win?

44. A slot machine contains 5 wheels. Equally spaced around each wheel are a
star, a moon, a plane, a car, a dog, a cat, a lemon, and an apple. Exactly one
of the items can be seen in the display window at a time, and a pull of the
arm causes the wheels to spin independently. If the player wins if at least
4 of the wheels show the same item, then what is the probability that a
player will win on a single pull?

45. If two integers from 1 to 5 are randomly selected (repeats allowed), then
what is the probability that at least one will be even?

46. If two integers from 1 to 10 are randomly selected (repeats allowed), then
what is the probability that their product will be odd?

For Exercises 47 through 52 consider the experiment of rolling 4 fair standard
(6-sided) dice. Determine the probability of the given events.
47. A run of 4 consecutive numbers. They need not be rolled in order.
48. 2 fives and 2 sixes.
49. Exactly 3 distinct numbers. 50. At least 3 of a kind.

�51. At least 2 fives or at least 2 sixes. 52. At least a pair.
53. Assume that male and female children are equally likely in a family. If we

use B to denote a boy, G to denote a girl, and a pair to denote the genders
of the first and second child in a family with two children, then the 4
possible outcomes GG, G B, BG, B B are equally likely. Given that a family
with two children has at least one girl, what is the probability that both
children are girls?
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54. Suppose we toss three fair 6-sided dice in sequence. What is the proba-
bility that their sum is 9, given that the first two dice result in a pair?

55. A red box contains 4 black balls and 2 white balls, and a blue box contains
6 black balls and 4 white balls. One of these 16 balls is randomly selected.
What is the probability that the ball came from the red box given that the
ball is black?

56. A plaintiff is going to choose a lawyer from one of the two law firms in
town. Firm 1 employs 5 male and 3 female lawyers, and Firm 2 employs
2 male and 4 female lawyers. Assume that a lawyer is randomly selected.
Given that the lawyer is a woman, what is the probability that she is
employed by Firm 2?

57. Consider the experiment of selecting a single card from a standard deck.
Let E be the event that the suit of the card is hearts, let F1 be the event that
the card is a face card, and let F2 be the event that the card is red.
(a) Are E and F1 independent? Explain.
(b) Are E and F2 independent? Explain.

58. Consider the experiment of randomly selecting a number from 1 to 99. Let
E be the event that the number is divisible by 3, let F1 be the event that
number is from 1 to 22, and let F2 be the event that the number is from 23
to 88.
(a) Are E and F1 independent? Explain.
(b) Are E and F2 independent? Explain.

59. Suppose E and F are events in a sample space S with P(E) > 0 and
P(F ) > 0. Show that E and F are independent if and only if P(E | F ) =
P(E) and P(F | E) = P(F ).

60. Show that two mutually exclusive events that each have positive proba-
bility can never be independent.

61. An insurance company issues car insurance, homeowner insurance, and
life insurance. Of the claims the company pays, 50% are car, 40% are
homeowner, and 10% are life. The company is primarily concerned with
claims over $10,000 that it pays. History has shown that 10% of car claims,
30% of homeowner claims, and 90% of life insurance claims exceed $10,000.
(a) What percentage of claims paid by this company exceed $10,000?
(b) Given that this company pays a claim over $10,000, what is the prob-

ability that it is a homeowner claim?
62. Juan Rodrigez’s batting average against left-handed pitchers is .325. That

is, when he is facing a left-handed pitcher, the probability that he will get a
hit is .325. His batting average against right-handed pitchers is .285. Sup-
pose that only 15% of the pitchers Juan faces are left-handed.
(a) What is Juan’s overall batting average?
(b) Given that Juan just got a hit, what is the the probability that it occur-

red against a right-handed pitcher?
63. A drug company has designed an over-the-counter test for strep throat.

The probability of a false positive result from this test is .05. That is, 5% of
the times a patient without strep throat takes the test, it will nonetheless
tell the patient that strep throat is present. The probability of a false negative
result, in which the test reports no strep throat even though it is present,
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is .1. The company has also determined that only 20% of the people
choosing to take the strep test actually have strep throat, since patients
often believe that they are sicker than they really are. Given that a patient
taking the strep test gets a negative result (no strep), what is the probabil-
ity that this patient actually does not have strep throat?

64. A toy company has a quality control inspector watching the toy cars as
they come off the assembly line to separate out defective cars. The prob-
ability that this inspector (correctly) pulls out a car when it is defective
is .9, and the probability that he (mistakenly) pulls out a car when it is
nondefective is .06. Assume that 4% of the toy cars made are defective.
What percentage of the toy cars pulled out by the inspector are actually
nondefective?

�65. Use Definition 6.5 and Theorem 6.11 to prove Bayes’ Formula.
�66. Prove Bonferroni’s inequality: If E and F are events in a sample space S,

then P(E ∩ F ) ≥ P(E) + P(F ) − 1.
Hint: P(E ∪ F ) ≤ 1.

6.5 Applications of Combinations
As can be seen in the examples from the previous sections, combinations are a
useful counting tool. Although counting the number of ways to select a subset
of a certain size from some fixed set is the most obvious use of this tool, there
are many others. In this section, we explore other — and perhaps more subtle —
applications of combinations.

Paths in a Grid

EXAMPLE 6.40 (Delivery Routes). The grid in Figure 6.7 represents the streets and intersec-
tions in a downtown area. A delivery truck must transport goods from the
storehouse S to the factory F . To achieve a shortest possible route, the truck
will necessarily make a sequence of one block moves, each to the right or down
(from the point of view of an observer facing the grid). That is, movements to
the left or up are inefficient and hence avoided. How many routes are there
from S to F

(a) with only those restrictions?

S

M

w

v

u

F

Figure 6.7 Routes through a Rectangular Grid
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(b) with the additional restriction that the route must pass through the
displayed point M? Here, M represents an intermediate stop at another
factory.

(c) with the additional restriction that the route cannot pass through the
displayed point M? Here, M represents a blocked intersection due to a
water main break.

Solution.

(a) A route from S to F is characterized by a sequence listing each move as
either right R or down D. Moreover, any such sequence must have
length 7 and consist of exactly 3 R’s and 4 D’s. For example, the route
marked in Figure 6.7 is characterized by the sequence RDDRDRD. The
number of routes from S to F is the number of sequences of length 7
containing 3 R’s (and by default 4 D’s). Hence, there are(

7
3

)
= 35

routes from S to F .
(b) Since our routes must pass through M, we can treat each route as a

concatenation of two routes. The first goes from S to M, and the second
goes from M to F . Paths from S to M have length 3 and contain 1 R.
Paths from M to F have length 4 and contain 2 R’s. Therefore, there are(

3
1

)(
4
2

)
= 18

routes from S to F that pass through M.
(c) The fastest way to solve this is to use the Complement Principle and the

answers from parts (a) and (b). Specifically, there are

35− 18 = 17

routes that do not pass through M.

It is also worthwhile to understand how this problem might be solved
directly. Since our routes cannot pass through M, they must pass through one
of u, v, or w. Since these represent disjoint cases, there are(

3
0

)(
4
3

)
+
(

3
2

)(
4
1

)
+
(

3
3

)(
4
0

)
= 17

routes through u, v, or w. Note that the points u, v, w are chosen on an off-
diagonal line, since each route can pass through only one such point. They are
not chosen on a vertical or horizontal line, since routes may pass through more
than one point of such a line. ■

The use of binomial coefficients in Example 6.40 can give us a deeper appre-
ciation of Pascal’s triangle.

EXAMPLE 6.41 The locations in Pascal’s triangle form a triangular grid, as shown in Figure 6.8.
Consider paths that start at the topmost vertex and traverse down this trian-
gular grid. That is, paths consist of a sequence of turns at each vertex to the



C H A P T E R 6 ■ Basic Counting 343

...

Figure 6.8 Pascal’s Triangular Grid

right R or left L (from the point of view of an observer facing the grid). For
each 0 ≤ k ≤ n, let cn,k denote the vertex in the kth entry of the nth row.

c0,0
c1,0 c1,1

c2,0 c2,1 c2,2
c3,0 c3,1 c3,2 c3,3

c4,0 c4,1 c4,2 c4,3 c4,4
...

A path from c0,0 to c4,3, for example, is characterized by a sequence of length 4
consisting of 3 R’s (and 1 L). Hence, there are

(4
3

)
such paths. In general, we see

that the number of paths from c0,0 to cn,k is given by
(n

k

)
. The numbers in

Pascal’s triangle count the number of paths from the topmost entry to that
location!

If the turns occur randomly with right and left being equally likely, then
our analysis here can be used to study the probabilities of a game played on a
Plinko board. That study is addressed in the exercises. ■

Poker
We have all of the tools needed to determine the likelihood, and hence the hi-
erarchy, of all of the hands in 5-Card Stud Poker. However, we first need some
familiarity with the terminology of Poker and cards in general.

A standard deck contains 52 cards. There are 13 of each suit (clubs ♣,
diamonds ♦, hearts ♥, and spades ♠), and each suit is numbered with the
13 denominations

2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, Ace

listed here in increasing order of value. Jacks, Queens, and Kings are called face
cards, since they are decorated with pictures rather than numbers. A run of 5
cards is any set of 5 cards whose denominations are either 5 consecutive denom-
inations from the list above or the list Ace, 2, 3, 4, 5.

In 5-Card Stud Poker, each player is dealt 5 cards. Those 5 cards make up the
player’s hand. Of course, there are

(52
5

)
possible hands. The winner is decided

by using the hierarchy of hands listed in Table 6.3 from the highest to the lowest
value. The issue of how to break a tie does not concern us here. Note that the
definition of a Straight and the definition of a Flush exclude hands that have the
higher value of a Straight-Flush.

The reason for the ordering in Table 6.3 is justified by the results in Table 6.4.
There, the number of ways to obtain each hand and the probability of doing so
are given.
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Hand Description

Straight Flush A run of 5 cards of the same suit
Four of a Kind 4 cards of one denomination
Full House 3 cards of one denomination and 2 of one other
Flush 5 cards of the same suit, not forming a run
Straight A run of 5 cards, not all of the same suit
Three of a Kind 3 cards of one denomination and 2 of others
Two Pairs 2 cards each of two denominations and 1 of one other
One Pair 2 cards of one denomination and 3 of others
Nothing None of the hands listed above

Table 6.3 Order and Description of Poker Hands

Hand Number Possible Probability (to 8 places)

Straight Flush 40 .00001539
Four of a Kind 624 .00024010
Full House 3744 .00144058
Flush 5108 .00196540
Straight 10200 .00392465
Three of a Kind 54912 .02112845
Two Pairs 123552 .04753902
One Pair 1098240 .42256903
Nothing 1302540 .50117739

Table 6.4 Likelihood of Poker Hands

Proof of the Results in Table 6.4
For each hand, the probability is obtained by dividing the number of ways to
achieve that hand by (

52
5

)
= 2598960.

Hence, we focus only on counting the number of ways to achieve each hand.
Here we prove the parts associated with the hands

One Pair, Two Pairs, Straight, and Nothing.

Along the way, we also consider Straight Flushes. The remaining parts are left
for the exercises.

(One Pair) There are 13 different denominations that could be involved in
the pair. Once the particular denomination has been chosen, there are

(4
2

)
ways

to select which 2 of the 4 cards of that denomination are involved in the pair.
The 3 remaining cards cannot match the pair or each other. There are thus

(12
3

)
ways to select which denominations (outside of the one already used in the pair)
are to be used for the 3 remaining cards. Once those denominations have been
chosen, the particular suit (of the 4 possible) must be chosen for each of the cards.
Therefore, there are

13 ·
(

4
2

)
·
(

12
3

)
· 43 = 1098240

ways to get One Pair.
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(Two Pairs) We need two denominations to be involved in pairs. There are(13
2

)
ways to pick them. Once those are set, the particular 2 cards of each de-

nomination must be chosen. In both cases, there are
(4

2

)
ways to do that. The

fifth card must not match either of the pairs. Since there are 8 cards in the deck
that match the pairs (including the pairs themselves), there are 44 choices for a
non-matching card. Therefore, there are(

13
2

)
·
(

4
2

)
·
(

4
2

)
· 44 = 123552

ways to get Two Pairs.
(Straight) The key is to focus on the highest denomination. Only the 10 de-

nominations 5, 6, . . . , King, Ace can end a Straight. Once that has been set, there
are 4 ways to fix the suit of each of the 5 cards. Thus, there are

10 · 45 = 10240

ways to get a run of 5 cards. However, those runs that have the higher value of a
Straight Flush must be excluded. Since each such hand is completely determined
by its highest card, there are 10 · 4 = 40 Straight Flushes to exclude. Therefore,
there are

10240− 40 = 10200

ways to get a Straight.
(Nothing) In order to count the number of ways to get Nothing, we instead

count the number of ways to get something. Then we can apply the Complement
Principle. Hence, this part of the proof should be regarded as being last. Very
simply, the counts from the other parts need to be added together, and that sum
must be subtracted from

(52
5

)
. Since there are

40+ 624+ 3744+ 5108+ 10200+ 54912+ 123552+ 1098240 = 1296420

ways to get something, there are(
52
5

)
− 1296420 = 1302540

ways to get Nothing. �

Choices with Repetition
We consider here problems involving selections in which an item may be se-
lected multiple times. It turns out that such problems involve combinations.
However, their use in these problems is perhaps more subtle than in others we
have encountered so far.

EXAMPLE 6.42 (Barbecue Orders). A barbecue is attended by 7 people. Each person has the
choice of a hamburger, a piece of barbecued chicken, or a hot dog (but only one
in each case) for the first food item. If the cook will barbecue all 7 items at the
same time and does not care who ordered what, then how many different
barbecue orders are possible for the cook? We assume that there are ample
supplies of each food type.
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Solution. This is considered a problem involving choices with repetition,
since the cook may receive multiple requests for any of the 3 items

hamburger B, barbecued chicken C, or hot dog D.

A total order would consist of a list of length 7 of B’s, C’s, and D’s, but with no
specified number of any particular choice. For example, one order might be
CBBDBDB. To help motivate our counting technique, such an order could be
recorded in the form of a table.

B C D√√√√ √ √√

Imagine that the cook simply places a
√

in the appropriate column of an order
sheet as each order is taken. At the end, the order could more efficiently be
recorded as a sequence of length 9 consisting of 7

√
’s and 2 |’s.

√√√√ | √ | √√

Here the headers B, C, D are understood. The point is that this is a binary
sequence of length 9 containing 7

√
’s (and 2 |’s). Note that the number of |’s is

one fewer than the number of item choices. We conclude that the number of
possible barbecue orders is (

9
7

)
= 36. ■

The argument used in the solution of Example 6.42 generalizes to give the
following result.

THEOREM 6.13 The number of ways to distribute n identical items into c distinct categories is(
n+ c − 1

n

)
.

In Example 6.42, the items are orders and the categories are food types. Of
course, the notions of item and category vary from problem to problem.

EXAMPLE 6.43 (Election Results). A class of size 30 is choosing among 4 candidates for class
president. In how many ways can the vote tallies come out?

Solution. Imagine that the 30 completed ballots are placed in 4 piles accord-
ing to which candidate is selected. By Theorem 6.13, there are(

30+ 4− 1
30

)
=
(

33
30

)
= 5456

ways for this to result. The fact that there might be a tie and a resulting re-vote
is a separate issue. ■

SECTION 6.5 Exercises
1. A bag contains 4 each of red, blue, green, and yellow balls. How many

ways are there to select 8 so that 2 of each color are obtained?
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2. How many license plates consisting of 6 digits (0 to 9) have their digits in
strictly increasing order? Compare Exercise 42.

Delivery Routes. Exercises 3 through 10 refer to the traffic grid illustrated in
Figure 6.9. Location S is a storehouse from which deliveries are made, and F is
a factory to which a large delivery is going. Intersections G and G ′ contain gas
stations to which deliveries are sometimes made and where the delivery truck
can get gas if necessary. Since the factory is southeast of the storehouse, we are
interested only in efficient delivery routes, which never travel north or west in
this grid.

G

G´

F

S

N

Figure 6.9 Routes Through a Grid

3. How many possible efficient delivery routes are there from the storehouse
to the factory? It is not necessary to pass by a gas station.

4. On Monday, an intermediate delivery must be made to gas station G. How
many possible efficient delivery routes from the storehouse to the factory
pass through location G?

5. On Tuesday, an intermediate stop at gas station G ′ is required. How many
possible efficient delivery routes from the storehouse to the factory pass
through location G ′?

6. On Wednesday, there was a gas leak at gas station G ′. Since the wind was
blowing to the northeast on that day, G ′ and all locations north or east of
G ′ had to be avoided. How many possible efficient delivery routes were
there from the storehouse to the factory on Wednesday?

7. Sometimes intermediate stops are required at both gas stations G and G ′.
How many possible efficient delivery routes from the storehouse to the
factory accommodate this?

8. On Thursday, the gas leak at gas station G ′ was fixed, but that intersection
itself remained closed for repairs. However, an intermediate delivery
needed to be made at location G. Being sure to avoid location G ′, how
many possible efficient delivery routes are there from the storehouse to the
factory with an intermediate stop at gas station G?

9. Suppose the delivery truck needs gas. How many possible efficient de-
livery routes from the storehouse to the factory allow the truck to stop for
gas? Hint: It must pass through G or G ′.

10. On Friday, there were gas leaks at both gas stations G and G ′. The wind
blowing to the northeast therefore made it unsafe to travel through, north,
or east of either gas station. How many possible efficient delivery routes
were there from the storehouse to the factory on Friday?

11. One of the popular games on the TV game show The Price Is Right is called
Plinko. Figure 6.10 shows a small version of the vertical board on which
this game is played. A chip is dropped onto the topmost peg and falls,
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$100 $0 $1000 $0 $100

Figure 6.10 Plinko Board

with equal probabilities, either left or right onto a peg in the next row. This
process continues until the chip lands in one of the open slots shown on
the bottom row.
(a) Determine the probability of landing in each of those slots.
(b) Below each slot is displayed its monetary reward. What is the prob-

ability that a single chip earns $100?
12. Consider paths in Pascal’s Triangular Grid (Figure 6.8) as described in

Example 6.41. Given 0 ≤ j ≤ m, 0 ≤ k ≤ n, j ≤ k, and m ≤ n, how many
paths are there from cm, j to cn,k?

In Exercises 13 through 20, count the number of ways to get the given hand in
5-Card Stud Poker.
13. Flush. 14. Four of a Kind.
15. Full House. 16. Three of a Kind.
17. A Straight in red cards. Note that diamonds and hearts are red.
18. A Flush in which the highest card is 10 or better.
19. A hand that is at least as good as a pair of Jacks.
20. A hand that is at least as good as a Jack-high Straight.

In Exercises 21 through 28, consider playing 5-Card Stud Poker with two
identical decks shuffled together. Count the number of ways to get the given
hands. Also give the probability to 8 decimal places.
21. Straight Flush. 22. Straight.
23. Flush. 24. Four of a Kind.
25. Two Pairs. 26. Full House.
27. Three of a Kind. 28. One Pair.

29. Ben’s mother bought cake and ice cream for his birthday party. While the
10 children were in the dining room, Ben’s father was in the kitchen
awaiting their dessert orders. If Ben’s mother gives each child a choice of
cake, ice cream, or both, then how many different dessert orders might she
bring to his father? Needless to say, no child skipped dessert.

30. A car dealer is eager to display the newest model car in his lot. Based on
the space available, he has decided that he will order 20 cars. However, he
is having trouble picking the colors that will sell the best. If the car is
available in 5 different colors, then how many different possible purchase
orders might the dealer submit?

31. A jury consultant puts people into four categories: white men, white
women, minority men, and minority women. She believes that the
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decisions made by the jury will be largely influenced by the relative rep-
resentation of these categories. From this consultant’s point of view, how
many different juries of 12 people are possible?

32. Mr. Calhoun bought 16 bite-size bars each of Snickers, Mounds, and Butter
Fingers to give out on Halloween. He put them in a bowl on his porch and
noted that a total of 14 bars had been taken throughout the night. How
many possible distributions of leftovers are possible in the bowl?

33. Mrs. Pomfret has decided to make a small fruit basket for her new
neighbor. The size of the basket is just right for 8 pieces of fruit, and
Mrs. Pomfret has decided that apples, bananas, and oranges are the best
types of fruit to consider. Determine the number of different options
Mrs. Pomfret now has for her fruit basket. We distinguish types of fruit
baskets by the numbers of each type of fruit included.

34. How many different collections of 8 balls are possible from a bag con-
taining 8 each of red, blue, green, yellow, and orange balls? Balls of the
same color are indistinguishable.

35. If 4 indistinguishable dice are rolled, then how many different “hands” of
4 values are possible? The order in which the values are rolled is irrelevant.

�36. Determine the number of different positive-integer solutions e1, e2, e3 there
are to the equation e1 + e2 + e3 = 7. Hint: Let fi = ei − 1.

37. Mr. Loomis told Serge that he has 8 coins in his pocket. Serge knows that
the only possible coins Mr. Loomis might have are pennies, nickels, dimes,
and quarters.
(a) If coins of the same denomination are considered indistinguishable,

then how many possibilities are there for the set of coins in Mr.
Loomis’ pocket?

(b) Do distinct possible sets of coins from part (a) necessarily have distinct
monetary values? Justify your answer.

38. A class of 100 students is having an election for class president. Greg,
Marcia, and Peter are the candidates, and everyone, including the candi-
dates, is required to vote in the election. After the election, the vote tallies
will be announced for all three candidates.
(a) How many different vote tallies are possible?
(b) Note that a 3-way tie is not possible. However, if two candidates tie for

the most votes, then there will be a runoff between them. How many
different possible tallies would lead to a runoff?

39. If 4 balls are selected from a bag containing 3 red, 2 white, and 4 blue, then
what is the probability that at least one of each color is chosen?

40. If 4 cards are selected from a standard deck, then what is the probability
that there will be 2 each from 2 suits?

41. The game of Yahtzee is played by rolling 5 standard dice and keeping
track of the resulting “hand” achieved. For example, one hand is 3 twos, a
one, and a five. Note that 3 twos, a one, and a six is considered a different
hand, even though a player might use either to count for 6 points in the
“Twos” box on her or his scorecard. How many different hands are
possible?

42. How many license plates consisting of 6 digits (0 to 9) have their digits in
nondecreasing order? Compare Exercise 2.
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In Exercises 43 through 51, count the number of ways to get the given hand in
7-Card Stud Poker. In this case, 7 cards are dealt and 5 are retained to form the
best possible hand from the 7 given cards. Be aware that one set of 7 cards
might have properties suitable for multiple hands.
43. Four of a Kind. �44. Full House.

�45. Straight Flush. �46. Flush.
�47. Three of a Kind. �48. Two Pairs.
�49. Straight. �50. Nothing.
51. One Pair.
52. Should the hierarchy of hands for 7-Card Stud Poker agree with that for

5-Card Stud Poker?

In Exercises 53 through 58, we consider the poker game called Texas Hold ’em
that is played by the professionals in the World Series of Poker. In it, each player
receives two down cards, called their hole cards. An additional five cards are
dealt face up on the board and are cards common to all players. Each player,
using his or her two hole cards plus the five board cards determines his or her
hand as in 7-Card Stud. To accommodate betting, the five board cards are dealt
by first showing three cards, called the flop, then showing one more card,
called the turn, and finally showing the last card, called the river. In each of the
given two-player games, determine the probability that player A will win and
the probability that player B will win.

53.

Player Down Cards Flop Turn River
A K♠ 6♦ 7♥ 8♠ 5♠ 7♦B Q♠ 5♦

54.

Player Down Cards Flop Turn River
A A♥ 8♦

K♣ K♠ 5♥ 3♦B 10♠ 3♣

55.

Player Down Cards Flop Turn River
A K♣ 7♦ 3♦ 8♥ J ♠B 2♣ 2♦

56.

Player Down Cards Flop Turn River
A A♦ J ♦ 4♠ 5♣ 9♣B K♠ Q♠

For Exercises 57 and 58, use software such as the Poker Calculator Tool avail-
able at the website http://www.internettexasholdem.com to determine the
probabilities. An explanation of how and when ties are broken can also be
found there.

57.

Player Down Cards Flop Turn River
A A♣ K♣
B 8♦ 8♥

58.

Player Down Cards Flop Turn River
A A♥ K♥
B A♣ A♠

http://www.internettexasholdem.com
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6.6 Correcting for Overcounting
A useful counting technique is to start with a rough count that is too large and
then make the necessary corrections to obtain the desired count. This is the
approach taken in Section 6.2 in our proof that C(n, k) = P(n,k)

k! . The quantity
P(n, k) is an overcounting of C(n, k), and division by k! is the necessary correc-
tion. Overcounting is also at the heart of the Basic Inclusion-Exclusion Principle.
In the formula for |A∪ B|, the sum |A| + |B| is too large in general; it must be
corrected by subtracting |A∩ B|. In this section, we consider problems that lend
themselves to an overcounting approach.

EXAMPLE 6.44 (Seating Arrangements). How many ways are there to seat 5 girls at a circular
table if the particular seat taken by each girl does not matter and what matters
to each girl is

(a) who is sitting to her left and who is sitting to her right?
(b) who is sitting next to her (which side does not matter)?

Solution.

(a) Temporarily call one seat the head of the table. If we keep track of which
girl is seated at the head, then there are 5! ways to seat the girls clock-
wise around the table. However, 5! is an overcounting of what we want,
since we have carried the extra structure of who is seated at the head of
the table. Given any such seating, if all of the girls stood up and shifted
one position clockwise, then the new seating should be considered the
same as the original. Each girl would still have the same neighbor to her
left and the same neighbor to her right. Since there are 5 different
rotations of any seating, we need to divide the original 5! count by 5.
Therefore, there are

5!
5
= 24

different seatings around the table.
(b) When which neighbor is to the left of a girl and which is to the right

no longer matters, there are fewer than 24 different seatings. Since only
the set of 2 neighbors matters, if we take the mirror reflection of any
seating from part (a), then the reflected seating should now be con-
sidered the same as the original. Reflection preserves neighbors (and
switches sides). Since each seating from part (a) should be paired with

1

2

3 4

5

1

5

4 3

2

reflects to
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its reflection, we need to divide the answer from part (a) by 2. Thus,
there are

24
2
= 5!

5 · 2 = 12

different seatings in which only neighbors matter. ■

In both parts of Example 6.44 it was necessary to divide out by the size of a
set of symmetries. To be specific, assume that a fixed head of the table is assigned
seat number 1 and the remaining seats are consecutively numbered clockwise
around the table. In part (a), any seating is considered unchanged by the rota-
tions r0, r1, r2, r3, r4, where ri is a clockwise rotation of the seating by 72i degrees.
That is, ri represents i

5 of a full clockwise 360 degree rotation. The set of rota-
tions {r0, r1, r2, r3, r4} forms what is called the cyclic group of order 5. It is the
size of that group that is divided out in part (a). In part (b), we allow the ad-
ditional symmetries given by reflections (or flips). There, the seatings are also
considered unchanged by the flips f1, f2, f3, f4, f5, where fi represents reflec-
tion of the seating about the line passing through seat i and the center of the
table. The full set {r0, r1, r2, r3, r4, f1, f2, f3, f4, f5} forms what is called the dihe-
dral group of order 10. Its size is what the overcounting of 5! is divided by in
part (b). Symmetry groups are formally introduced in Section 7.4.

EXAMPLE 6.45 (Picking Teams). Eleven players have gathered to play 5-on-5 basketball.

(a) If they have decided that one of the teams will have 6 players and use a
substitute, then how many ways are there for them to break up into two
teams?

(b) If one player decides to leave and there are only 10 players left, then
how many ways are there to break up into two teams of 5?

Solution.

(a) Among the 11 players, 5 must be selected to play on the team without a
substitute. There are (

11
5

)
= 462

ways to do that.
(b) It is tempting to use the same analysis as that used in part (a) and get(10

5

)
. However, that is not correct. It would be correct if something

distinguished the two teams (like uniforms or a name). Remember that(10
5

)
counts the number of ways to select 5 players to be on a team. For

example, if we number the players 1 through 10, then {2, 4, 7, 9, 10}
might be such a choice. Also, {1, 3, 5, 6, 8}would be another such choice.
However, both of these choices yield the same basketball game. It does
not matter which team was “chosen” and which team was “unchosen.”
We need to equate those two possibilities. Hence, the count

(10
5

)
must be

divided by 2. There are thus (10
5

)
2
= 126

different possible basketball games for the 10 players. ■
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EXAMPLE 6.46 (Making Dice). A 12-sided die is to be made by placing the integers 1 through
12 on the faces of a dodecahedron (see Figure 6.11). Such a die is used in the
game Dungeons and Dragons. How many different such dice are possible? Here
we consider two dice identical if one is a rotation of the other. Reflections are
different.

Figure 6.11 A dodecahedron

Solution. Since each face must receive a different number, we might start by
counting 12! ways to assign the numbers (assuming some fixed ordering or
orientation of the faces). However, there is no order to the faces on a die; it may
be rolled around into many different orientations. We therefore need to divide
out for symmetries of the die. If the die is placed on a table, then any of the 12
faces (say, the one with the number 1 assigned to it) can be rotated to the top
position. Further, even after the location of this top face is chosen, there are still
5 ways in which it might be rotated about a line through the centers of the top
and bottom faces. That is, adjacent to the top face there are 5 faces from which
to specify one as the front face. Consequently, there are 12 · 5 = 60 ways to
orient any numbering of the faces. Thus, the number of oriented numberings
must be divided by 60. It follows that there are

12!
60
= 7983360

different 12-sided dice. ■

In Example 6.46, we divided out by the symmetry group of the oriented
dodecahedron. That group is called the alternating group on 5 symbols. A care-
ful description of it is not needed here. Only its order 60 is important for our
purposes.

EXAMPLE 6.47 (Student Population). A certain school offers biology, chemistry, and physics
classes. Its sophomores are required either to take one of these or to take all
three of these. If there are 40 sophomores in the biology class, 30 in the chem-
istry class, 20 in the physics class, and 10 sophomores taking all three classes,
then how many sophomores are at this school?

Solution. The sum 40+ 30+ 20 overcounts the sophomores who took all
three classes. Precisely, it counts each of those sophomores three times. Hence,
two of those times must be subtracted for each such sophomore. It follows that
there are

(40+ 30+ 20) − 2(10) = 70

sophomores at the school. ■
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Example 6.47 foreshadows a counting technique that we explore more
deeply in Section 7.1.

SECTION 6.6 Exercises
1. The 40 guests at a wedding are going to hold hands in a circle to perform a

traditional dance. How many ways are there to do this if what is important
to each is
(a) the guest on the right hand and the guest on the left hand?
(b) just the guests whose hands are being held?

2. A company makes small plastic rings in 6 colors: red, purple, blue, green,
yellow, and orange. A baby rattle is constructed by attaching 6 different-
colored small plastic rings around a large white plastic ring. How many
such rattles are possible?

3. A set of blocks is to be made by painting wooden cubes in a certain format.
Each cube gets two opposite faces painted white. The remaining 4 faces are
to be painted red, yellow, blue, and green (one each). How many different
resulting blocks are possible?

4. A small company produces 10 kinds of cheese. To promote their cheeses,
this company is going to produce several samplers, each filled with
6 sample wedges of cheese. To maximize the advertising benefit of the
samplers, it is important to the company that each of the 6 sectors receive a
different kind of cheese. How many different cheese samplers are possible?

5. Mrs. Polhill is trying to figure out how to seat her dinner guests around the
large circular table in the dining room. Specifically, she needs a seating
arrangement for a total of 8 people. How many ways are there to set this
arrangement
(a) if only the left and right neighbors of each seat matter?
(b) What if, further, she and Mr. Polhill must sit together?
(c) What if instead they must sit opposite each other?

6. A day-care center has taken 12 preschoolers to the fair, and the children all
want to ride on the merry-go-round together. Making things easier for the
day-care workers, all of the horses on the merry-go-round are identical
and equally spaced. How many ways are there to arrange the children
(a) if the merry-go-round has 12 horses?
(b) if it has 13 horses?
(c) if it has 14 horses?
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7. A necklace is to be formed by threading 8 beads on a circle of string. The
beads are taken from a bag containing 14 different beads. How many options
are there for a necklace if the knot holding the string together is not visible?

8. A craftsman makes bracelets by threading beads on a solid silver circular
band. For a special order, a customer has picked out a specific set of 6
beads. Two are identical and the remaining four are all distinct. How many
different bracelet options are there for the craftsman that fulfill this
customer’s wishes?

Making Dice. In Exercises 9 through 16, a die is to be made from the specified
solid by placing the numbers 1 through n on the faces of the solid, where n is
the total number of faces. Determine the number of different dice possible in
each case.
9. A cube. Hint: There are 24 different “rotations” of a cube. That is, there are

24 different ways to place the die on the table with one of its 6 sides facing
up and then one of the top’s 4 adjacent sides facing forward.

10. A regular tetrahedron. Hint: There are 12 different “rotations” of a tetra-
hedron. That is, there are 12 different ways to place the die on the table
with a particular side facing forward (and one facing down).

11. An icosahedron.

12. A cuboctahedron. This is formed by slicing off the corners of a cube. Specifi-
cally, mark the midpoints of each of the square sides of a cube. Then use the
three midpoints nearest each corner of the cube to determine an equilateral
triangle face produced after the corner is sliced off. There are 14 faces.

13. A triangular prism. It has two opposite faces in the shapes of equilateral
triangles with three square faces connecting them.
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14. A pentagonal prism. It has two opposite faces in the shapes of regular
pentagons with five square faces connecting them.

15. A truncated pyramid with a square base.

16. A pyramid with a regular pentagon as the base.

Team Sports. In Exercises 17 through 24, we consider examples of splitting
people into teams.
17. Six neighborhood children have gathered to play 3-on-3 hockey. In how

many ways can they split into teams for a game?
18. Every Saturday, Mr. and Mrs. Agassi and Mr. and Mrs. Sampras get

together to play doubles tennis. To keep things interesting, they like to
vary the pairings. How many weeks does it take to exhaust all of the
possible pairings?

19. A basketball camp serves 20 girls. After a day of drills, the girls look
forward to an evening of playing competitive games. In how many ways
can these girls be split up to form two games of 5-on-5 basketball?

20. An advertising firm needs to be able to handle three clients at a time.
Consequently, the boss must hire 12 people to split into 3 teams of 4. Once
the boss hires 12 people, in how many different ways might these teams
be set?

21. Determine the number of ways in which 21 people can be split into 3
teams of 5 and 1 team of 6.

22. Determine the number of ways in which 14 people can be split into 4
teams of 2 and 2 teams of 3.

23. A tennis camp for children ages 10 to 12 has registered 16 children. To get a
sense of each child’s ability on the first day, the director decides to watch
all of the children play singles simultaneously. In how many ways can the
8 singles matches be set for these campers? The particular court on which a
game is played does not matter.

24. On Tuesday night, 18 men gathered to play basketball. They decided to
split into 2 teams of 5 and 2 teams of 4. In how many different ways might
they do this?

25. Fifty women showed up Wednesday morning to play golf in the Blooms-
burg Ladies League. The director instructed the women to split into 10
teams of 3 (to play a 3-person scramble tournament) and 10 teams of 2 (to
play a best-ball tournament). In how many different ways might these
teams be set?

26. On Thursday night, 30 men have gathered and will play 3 separate games
of 5-on-5 basketball. Before they can play, teams must be picked and op-
ponents must be decided. In how many ways can these men be split up to
form these games?
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�27. Kurt and Goldie are planning their wedding reception. They plan to seat
their 60 wedding guests at 10 circular tables of 6. If all that matters is the
set of neighbors of each guest, then how many ways are there to make the
seating arrangements?

�28. As a summer camp arts and crafts project, Sally is going to make necklaces
for her four cabin-mates. For this she has selected 20 distinct beads. In how
many different ways can Sally make four 5-bead necklaces, each with no
visible knot?

29. In how many ways can the numbers 1 through 9 be assigned to a 3× 3
square grid, if we assume that the same grid might be viewed from any of
its 4 sides?

30. The ends of a 2× 5 rectangular grid are pasted together to form a cylinder
of height 2. In how many different ways can 10 different colors be assigned
to the squares on this cylinder?

31. In how many ways can 24 people be seated on a 12-chair ferris wheel in
which each chair seats 2 people? We do not care which of the two is seated
on the right or the left of a chair.

32. In how many ways can 12 skiers be seated on 4 consecutive chairs of a
triple-chair lift? That is, each chair seats 3, and we do not care about the
order of the 3 skiers in a chair.

33. Ethan bought Snickers, Mars, Mounds, and Crunch bars to give out for
Halloween. To each child he gave either one or all four. If Ethan gave out
60 Snickers bars, 40 Mars bars, 50 Mounds bars, and 40 Crunch bars, and
20 children received all four, then how many children got candy from
Ethan?

34. Sarah bought Snickers, Mars, Mounds, and Crunch bars to give out for
Halloween. To each child she gave either one or two. At the end of the
night, Sarah had given out 60 Snickers bars, 40 Mars bars, 50 Mounds bars,
and 40 Crunch bars. She had given 10 children both a Snickers and a Mars,
12 children both a Snickers and a Mounds, and 8 children both a Snickers
and a Crunch. If no other combinations were given out, then how many
children got candy from Sarah?

35. Several ice cream sundaes were made from choices of strawberry,
black raspberry, chocolate, and coffee ice cream. In total, 20 contained
strawberry, 10 contained black raspberry, 30 contained chocolate,
20 contained coffee, 6 contained both strawberry and black raspberry,
10 contained both chocolate and coffee, and no other combinations were
chosen. How many sundaes were made?

36. Several ice cream sundaes were made from choices of vanilla, strawberry,
and chocolate ice cream. If 30 contained vanilla, 20 contained strawberry,
50 contained chocolate, 15 contained all three, and no other combinations
were chosen, then how many sundaes were made?
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Building Mobiles. For Exercises 37 through 40, a mobile is to be constructed in
the given configuration (pictured from below). The mobile is hung from a
string attached to the central point. The symbol � marks a rotational center,
and the symbol � marks a location that must be filled with an item from a box
containing a sun, a moon, a star, a bird, a plane, and a rocket. Determine the
number of different possible mobiles in each case.
37. 38.

�39. �40.

CHAPTER 6 Review Problems

1. The New York Mets is a National League baseball team. In the National
League, there is no designated hitter, and each of the 9 starting players has
a position in the batting order. Once the New York Mets manager has deter-
mined the 9 starting players, in how many ways can the batting order be set?

2. A certain state makes it easier to identify VIP license plates by requiring
them to have a specific form. They are required to consist of 5 letters (A, B,
or C) followed by 2 digits (0 to 7), and any other plate is forbidden to have
this format. How many VIP’s can be accommodated by this scheme?

3. Sam is trying to break into Diane’s computer account. All that he knows is
that her password consists of two letters (A to Z) followed by 3 distinct
digits (0 to 9). How many such passwords are possible?

4. How many of the integers from 1 to 1000 are divisible by 5?
5. How many of the integers from 200 to 4000 are divisible by 3?
6. A license plate is to consist of 7 letters (A to Z). How many possibilities

have all of their letters distinct except that the first, fourth, and seventh
letters are the same?

7. John and Robert Kennedy’s lives were both ended by assassins in the
1960s. How many days after 11/22/1963 (JFK shot) was 6/5/1968 (RFK
shot)?

8. Six friends on vacation have asked a stranger to take their picture. In how
many ways can they be lined up in a single row for this picture?
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9. Each of the 50 states has two senators. The intelligence, armed services,
and judicial committees are three important Senate committees, and
consequently, each should have a different senator as chair.
(a) How many ways are there to select these chairs?
(b) What if no two of these chairs can be from the same state?

10. A large company contains a president, 6 vice presidents, 20 managers, and
22 secretaries. Due to financial setbacks, this company needs to downsize
to a president, 5 vice presidents, 16 managers, and 17 secretaries. In how
many ways can this be accomplished?

11. List all of the combinations of 2 items from the set {a , b, c, d, e, f }.
12. A couple has quadruplets and wants to send each of them to a different

university within the 14 state universities. In how many ways could they
assign these 4 children to 4 different state schools?

13. Zahira has 6 quarters and 4 nickels in her purse. Moreover, each coin has
a different date on it, making it easily distinguishable from the others.
Consequently, in how many different ways can 85¢ be obtained from
Zahira’s purse?

14. How many different pairs of cards from a standard deck are there that are
either both red or both clubs?

15. How many binary numbers of length 8 (leading zeros are allowed) have at
least 3 ones?

16. A certain NBA team contains 5 guards, 4 forwards, and 3 centers. The
coach needs to name the starting 5 and has decided that it should include
exactly 2 guards or exactly 2 centers. Therefore, in how many different
ways can the starting 5 be selected?

17. A researcher at a drug company is doing a study of DNA strands that have
no cytosine (C) or no guanine (G) nitrogen bases. Recall that each nitrogen
base in a DNA strand is one of C, G, A, or T. Determine the number of
possible DNA strands of length 8 that are relevant to this researcher’s
study.

18. How many of the integers from 1 to 507 are divisible by 5 or 7?
19. Find φ(10000). That is, how many of the integers from 1 to 10000 are

relatively prime to 10000?
20. How many different hands of 4 cards from a standard deck have at least 3

of the same denomination?
21. Craps is a dice game in which two standard 6-sided dice are thrown. The

outcome of a game is determined by the sum of the values appearing on
the dice. One way in which a player loses on his first turn is if he rolls an
11. What is the probability that the sum is 11?

22. The prosecuting attorney in a high-profile case is upset that the jury
consists only of men. The jury pool contained 50 men and 20 women. The
attorney claims that if the jury had been randomly selected, then there
would have been only a 1% chance of obtaining such a jury. Is he correct?

23. What is the probability that a sequence of 6 coin flips will result in at least
3 heads?

24. What is the probability that 4 cards selected from a standard deck will be
of the same suit?
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25. If 5 fair coins are tossed, then what is the probability that there will be
more heads than tails?

26. Emma’s mother bought a bag of 10 apples, 6 bananas, and 8 oranges for
a fruit basket. However, she wants only 9 pieces of fruit in the basket
and would like a balance in the types of fruit included. Although Emma
insisted on being the one to pick which 9 to include, Emma simply
picks them at random from the bag. Therefore, what is the probability
that this fruit basket will contain equal numbers of apples, bananas, and
oranges?

27. The Pennsylvania Cash 5 Lottery has players pick 5 numbers from 1 to 39.
A winning pick is one in which at least 3 of the numbers are correct. Of
course, the reward increases with the number correct. What is the
probability of picking a winning ticket?

28. Consider the experiment of randomly drawing two cards from a standard
deck. Let E be the event that they form a pair, and let F be the event that
they are both face cards.
(a) Find P(E | F ).
(b) Are E and F independent events? Explain.

29. A drug company sells three drugs, labeled A, B, and C, as a cure for a
certain disease. It is known that drug A is successful 70% of the time, drug
B is successful 80% of the time, and drug C is successful 90% of the time.
However, not all patients can afford drug C, since it is the most expensive.
Instead, within the group of patients with the disease, 20% use drug A,
30% use drug B, and 50% use drug C.
(a) What percentage of the patient group will be cured?
(b) Given that a patient in the group is cured, what is the probability that

this patient used drug C?

Navigating City Streets. Exercises 30 through 32 refer to the grid of city streets
pictured in Figure 6.12. Mehdi’s home is at intersection H, and he works at
intersection W. His aunt lives at intersection A. Since Mehdi walks to work
every day, he likes to vary his route so that he does not get bored. However, he
refuses to make his trip to work any longer than necessary. Consequently, he
travels only east or south along the streets.

W

H

A
N

Figure 6.12 A Grid of City Streets

30. Mehdi works 5 days per week for 48 weeks of the year. Is it possible for
Mehdi to walk a different route to work each work day of a calendar year?
Justify your answer.
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31. On his aunt’s birthday, Mehdi decides to stop by her house on the way to
work to give her a card. How many possible routes to work will take
Mehdi by his aunt’s house?

32. One day, there was a huge fire at Mehdi’s aunt’s house. She escaped with
her life and was staying with Mehdi while the firemen worked, but Mehdi
still had to go to work. The strong wind blowing the smoke to the
southwest that day made it impossible for Mehdi to walk by his aunt’s
house in the areas south and west of there. Consequently, how many
possible routes to work did Mehdi have?

33. In Pascal’s triangle, how many downward paths are there from
(0

0

)
to
(10

6

)
that pass through

(4
2

)
?

34. In 5-Card Stud Poker, count the number of ways to get a Full House with
the denomination for the pair being lower than the other denomination.

�35. Using a standard 52-card deck, the number of possibilities for a 5-card
hand with all distinct denominations is

(13
5

)
45. This is an overcounting of

the number of ways to get Nothing in 5-Card Stud Poker. Correct this by
excluding hands.

For Exercises 36 through 44, consider 6-Card Stud Poker in which each player
is dealt 6 cards, and 5 cards are chosen to form the best possible 5-card hand
from those 6 cards. Count the number of ways of getting each hand.
36. Four of a Kind. 37. Three of a Kind.

�38. Two Pairs. �39. Full House.
�40. Straight-Flush. �41. Flush.
�42. Straight. �43. One Pair.
44. Nothing.

�45. Doyle Brunson and Chris Ferguson are playing Texas Hold ’em poker.
Doyle’s down cards are A♣ 9♣. The common cards showing on the board
are 2♣ 9♦ J♦ Q♥ K♠. Chris has made a bet that would put Doyle “all in.”
That is, Doyle will need to bet all of his remaining chips to call the bet. So
he needs to think carefully before acting. If all possible sets of down cards
for Chris are considered equally likely, then what is the probability that
Chris will win if Doyle goes “all in”?

46. At the end of each day a fountain is emptied of its coins (pennies, nickels,
dimes, quarters, and half dollars), and like coins are grouped together.
How many different outcomes are possible if in one day each of 100 people
tosses a coin into the fountain?

47. A computer password consists of a sequence of 5 letters (A to Z). What is
the probability that a randomly chosen password will be in alphabetical
order (repeats are allowed)?

48. In the showcase showdown on The Price Is Right, a wheel with 20 sectors
containing the values 5, 10, 15, . . . , 100 is spun. Each of three contestants
tries to obtain a sum of no more than 100 using up to two spins.
(a) How many such wheels are possible?
(b) How many ways are there for a contestant to get 100?
(c) If a contestant gets 65 on her first spin, then what is the probability

that adding a second spin will take her over 100?
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49. An 8-sided die is the shape of an octahedron. In how many ways can the
numbers 1 through 8 be assigned to its sides? Note: There are 32 different
“rotations” of an octahedron.

50. A high school football team has 22 members. In practice, the coach likes to
split them up for an 11-on-11 scrimmage. In how many ways can they be
split for this scrimmage?

51. A software company maintains two large and two small work groups to
handle the programming projects it gets. There are a total of 24 program-
mers at this company. In how many ways can they be split up into 2 teams
of 8 and 2 teams of 4?

52. The math majors at a certain school either take one or two of the courses
linear algebra, numerical methods, and numerical linear algebra, but not
all three. In total, 30 took linear algebra, 40 took numerical methods, 25
took numerical linear algebra, and the number of students taking any pair
of classes was 10. How many math majors are at this school?

53. Andrew’s mother is planning to make a a mobile for him in the configura-
tion shown, using the 8 distinct cars that are in a box. The mobile will be
hung from a string attached to the central point, and the symbol � marks
a rotational center. If the symbol � marks a location that must be filled
with one of the cars, then determine the number of different possible
mobiles Andrew’s mother might make.

54. There are 20 participants in a programming contest. Each is hoping to win
one of the first-, second-, or third-place ribbons. How many such outcomes
are possible
(a) with an additional student receiving honorable mention?
(b) What if not just one but three students get honorable mention?

55. How many possible sequences of 10 coin tosses result in (a) 5 heads?
(b) more heads than tails?

56. Find φ(729). That is, how many integers from 1 to 729 are relatively prime
to 729?
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57. Determine the number of 8-digit base-3 sequences that have at most
2 zeros. Leading zeros are allowed.

58. A roulette wheel is divided into 38 sectors of equal size, and the numbers

0, 00, 1, 2, . . . , 36

are assigned to the sectors. If 0 and 00 must be on opposite sectors, then
how many different roulette wheels are possible?

0263
35

12

28
7

29
18

22
9

31
14

20
1

33
16

24 5 00 10 23
8

30

11
36

13
27

6
34

17
25

2
21

4
19

1532

59. How many possible 5-digit (0 to 9) license plates with distinct digits have
their digits in decreasing order?

60. How many of the integers from 1000 to 10000 are divisible by 13 or 17?
61. If 4 balls are picked from 8 red, 6 blue, and 5 green, then what is the

probability of getting the same number of red balls as blue balls?
62. If 3 fair 6-sided dice are rolled, then what is the probability that the sum

is odd?
63. The fans at a Texas Hold ’em cannot see any of the player’s hole cards.

Otherwise, they might yell out information. Since they can see only the
common cards, the first cards the fans see are the 3 cards on the flop. When
3 cards are drawn from a standard 52-card deck, what is the probability
that they
(a) are all the same color?
(b) all have the same denomination?

�64. Annie Duke is playing Texas Hold ’em. She has two hole cards of the same
suit. If she stays in the game, then what is the probability that she will have
at least five cards of the same suit, after the five common cards are dealt?
This would make a flush or better, which is a great hand. Note that the five
common cards could form a “flush” of a different suit from the suit of the
hole cards.
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More Counting

WE EXPLORE in more depth some of the basic counting techniques from Chapter 6.

The Basic Inclusion-Exclusion Principle (Theorem 6.7) is generalized, so that we can

analyze the cardinality of the union of any finite number of sets, and not just two. Simi-

larly, binomial coefficients, which we have used in counting combinations (Theorem 6.4)

and in the Binomial Theorem (Theorem 4.9), are extended to multinomial versions.

In Section 7.3, we introduce new and powerful counting tools: generating functions,

which have a marvelous way of organizing combinatorial information. It is striking to see

that elementary algebraic calculations can seemingly magically produce answers to

counting problems. A more sophisticated use of algebra leads us to a consideration of

Burnside’s formula. That result strengthens our abilities from Section 6.6 to correct for

overcounting. In the final section, combinatorial proofs are introduced as both a clever

proof technique and a way to gain deeper insight into some combinatorial identities.

Applications similar to those in Chapter 6 are encountered throughout this chapter.

Additionally, our development of stronger counting tools enables us to go deeper. We

count the number of ways to completely mix up the members of a set, as would be

required of the members of a group participating in a Secret Santas gift exchange. With

the tools in this chapter, we can more easily analyze the splitting of a group of people

into several teams. We also consider the number of ways it is possible to build a

computer network in a certain configuration, given a variety of available types of

computers.

7.1 Inclusion-Exclusion
Introduced in Section 6.3, Basic Inclusion-Exclusion enables us to count the num-
ber of elements in the union of two sets. It gives the formula

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|,

which is not hard to see from the Venn diagram on the left-hand side of
Figure 7.1. However, when we extend our consideration to a union of more than
two sets, an appropriate general formula for |A1∪A2∪· · ·∪An| is not so obvious.
Even for three sets, as we can see in the Venn diagram on the right-hand side of
Figure 7.1, the possible intersections among the sets are much more complicated
than in the case of two sets.

364
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A1 A2

U A1 A2

A3

U

Figure 7.1 Venn Diagrams for Two and Three Sets

The appropriate general formula for the cardinality of the union of three sets
turns out to be

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3|
− (|A1 ∩ A2| + |A1 ∩ A3| + |A2 ∩ A3|)
+ |A1 ∩ A2 ∩ A3|.

As is requested in the exercises, that case can be proved by using the Venn dia-
gram on the right-hand side of Figure 7.1 as a guide. However, such a brute-force
method is not reasonable in general. Fortunately, the general formula that han-
dles any finite number of sets has both a reasonable expression and a reasonable
proof.

THEOREM 7.1 Generalized Inclusion-Exclusion Principle

Let n sets A1, A2, . . . , An be given. For each 1 ≤ i ≤ n, define the sum

Si =
∑

1≤ j1< j2<···< ji≤n

|Aj1 ∩ Aj2 ∩ · · · ∩ Aji |.

That is, Si is the sum of the sizes of the
(

n
i

)
possible intersections of i sets from the collection

{A1, A2, . . . , An}. Then

|A1 ∪ A2 ∪ · · · ∪ An| =
n∑

i=1

(−1)i−1Si .

The results in Theorem 7.1 in the cases that n = 2 or 3 are shown above. To
understand the Generalized Inclusion-Exclusion Principle, it may also be help-
ful to see the formula written out in detail for n = 4.

|A1 ∪ A2 ∪ A3 ∪ A4| = |A1| + |A2| + |A3| + |A4|
−(|A1 ∩ A2| + |A1 ∩ A3| + |A1 ∩ A4| + |A2 ∩ A3| + |A2 ∩ A4|
+|A3 ∩ A4|) + (|A1 ∩ A2 ∩ A3| + |A1 ∩ A2 ∩ A4|
+|A1 ∩ A3 ∩ A4| + |A2 ∩ A3 ∩ A4|) − |A1 ∩ A2 ∩ A3 ∩ A4|

In fact, most of the examples we consider do not involve more than four sets.

Proof of Theorem 7.1
Let x be an arbitrary element of A1∪A2∪· · ·∪An. We verify the asserted formula
by showing that x contributes exactly 1 to

∑n
i=1(−1)i−1Si .

Let k be the number of sets A1, A2, . . . , An that contain x. By reindexing if nec-
essary, we can assume that x is in the k sets A1, A2, . . . , Ak . For each 1 ≤ i ≤ n,
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the contribution of x to Si must be computed. Since Si is the sum of the sizes
of intersections of i sets from A1, A2, . . . , An, that contribution is the number of
those intersections that contain x. Since x is only in the k sets A1, A2, . . . , Ak ,
this number is

(k
i

)
, the number of intersections (equivalently, selections) of i

sets from A1, A2, . . . , Ak . That is, x contributes
(k

i

)
to Si . Of course, x makes

a nonzero contribution to Si only if 1 ≤ i ≤ k. Thus, the contribution made by x
to
∑n

i=1(−1)i−1Si is

k∑
i=1

(−1)i−1
(

k

i

)
=
(

k

1

)
−
(

k

2

)
+
(

k

3

)
− · · · + (−1)k−1

(
k

k

)

=
(

1−
(

k

0

))
+
(

k

1

)
−
(

k

2

)
+
(

k

3

)
− · · · + (−1)k−1

(
k

k

)

= 1−
k∑

i=0

(−1)i

(
k

i

)
= 1− (1− 1)k

= 1.

The second to last equality follows from the Binomial Theorem. �

Our first example to which Theorem 7.1 applies involves the union of four
sets.

EXAMPLE 7.1 (Computer Scheduling). A certain college splits its general education require-
ments into four categories: Business (B), Engineering (E), Humanities (H), and
Social Science (S). At the beginning of the year, each entering freshman is
randomly assigned a sequence of 10 categories (5 for the fall and 5 for the
spring). The student’s class schedule is then required to satisfy the category
sequence so that the first class comes from the first category, the second class
comes from the second category, and so on. If each entry in the category se-
quence has equal probability of being any one of the four categories, then what
is the probability that a randomly generated schedule will exclude at least one
of the four categories?

Solution. We are considering the set U of all sequences of length 10 such that
each entry in the sequence is one of the categories B, E, H, or S. Since the 410

possible sequences are considered equally likely, to compute the desired
probability we must count the number of sequences in U that exclude at least
one of the categories. We define the following subsets of U :

A1 contains those sequences without any B’s,
A2 contains those sequences without any E’s,
A3 contains those sequences without any H’s, and
A4 contains those sequences without any S’s.

Consequently, the set whose cardinality we seek is

A1 ∪ A2 ∪ A3 ∪ A4,

the set of sequences missing at least one of B, E, H, or S.



C H A P T E R 7 ■ More Counting 367

It is straightforward to compute the sizes

|Aj | = 310 ∀ 1 ≤ j ≤ 4,
|Aj1 ∩ Aj2 | = 210 ∀ 1 ≤ j1 < j2 ≤ 4,

|Aj1 ∩ Aj2 ∩ Aj3 | = 1 ∀ 1 ≤ j1 < j2 < j3 ≤ 4, and
|A1 ∩ A2 ∩ A3 ∩ A4| = 0

of the various possible intersections. The point is that, when a fixed number of
categories is excluded, each of the 10 positions can be filled freely with any of
the remaining letters. Since, for each fixed value of i , each of the

(10
i

)
sum-

mands in Si has the same value, we get

S1 =
(

4
1

)
· 310, S2 =

(
4
2

)
· 210, S3 =

(
4
3

)
· 1, and S4 = 0.

By the Generalized Inclusion-Exclusion Principle,

|A1 ∪ A2 ∪ A3 ∪ A4| =
(

4
1

)
· 310 −

(
4
2

)
· 210 +

(
4
3

)
· 1− 0

= 4 · 310 − 6 · 210 + 4
= 230056.

Therefore, the probability that a randomly chosen schedule will be missing at
least one of the four categories is

230056
410 = 28757

131072
≈ .2194. ■

The key to using Inclusion-Exclusion to compute the size of a set A is to
express A as a union A1∪ A2∪· · ·∪ An of simpler sets. What must also be true of
the simpler sets is that intersections of the form Aj1∩Aj2∩· · ·∩Aji have sizes that
are reasonable to compute. If A is more naturally expressed as an intersection
of the complements A1

c ∩ A2
c ∩ · · · ∩ An

c of the simpler sets (as we shall see in
Example 7.2), then a similar approach can be taken using the following Corollary
to Theorem 7.1. It is a generalization of Corollary 6.8 from Section 6.3, and its
proof is left for the exercises.

COROLLARY 7.2 Given subsets A1, A2, . . . , An of a finite universal set U ,

|A1
c ∩ A2

c ∩ · · · ∩ An
c | =

n∑
i=0

(−1)i Si ,

where S0 = |U |.

The Euler phi-function φ was defined in Section 6.3. Recall that for each
positive integer n, the value φ(n) is the number of integers from 1 to n that are
relatively prime to n. Corollary 7.2 can be applied as a tool for computing values
of the Euler phi-function.

EXAMPLE 7.2 Compute φ(2695).

Solution. Let U = {1, 2, . . . , 2695}. Since

2695 = 5 · 72 · 11,
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we want the number of integers in U that are not divisible by any of the primes
5, 7, or 11. Define the following subsets of U :

A5 contains those that are divisible by 5,
A7 contains those that are divisible by 7, and
A11 contains those that are divisible by 11.

Note the wisdom in choosing the subscript of each set to reflect its description.
Nothing says we must use A1, A2, . . . every time. Here, we are interested in
counting the number of elements in

A5
c ∩ A7

c ∩ A11
c ,

the set of integers in U that are not divisible by 5, not divisible by 7, and not
divisible by 11. Thus, Corollary 7.2 applies. We have

|A5| = 2695
5

= 539, |A7| = 2695
7

= 385, |A11| = 2695
11

= 245,

|A5 ∩ A7| = 2695
5 · 7 = 77, |A5 ∩ A11| = 2695

5 · 11
= 49, |A7 ∩ A11| = 2695

7 · 11
= 35,

and

|A5 ∩ A7 ∩ A11| = 2695
5 · 7 · 11

= 7.

Therefore,

S0 = 2695,
S1 = 539+ 385+ 245 = 1169,
S2 = 77+ 49+ 35 = 161, and
S3 = 7.

By Corollary 7.2,

|Ac
5 ∩ Ac

7 ∩ Ac
11| = 2695− 1169+ 161− 7 = 1680.

Therefore, 1680 of the integers from 1 to 2695 are relatively prime to 2695.
That is,

φ(2695) = 1680. ■

Derangements
Secret Santas is a popular gift exchange method in which each member of some
group, such as a group of office workers, is assigned another member of the
group to whom a gift must be given. Although it is usually important that the as-
signments be kept secret, what is most important in our analysis here is that no
person can be assigned himself or herself. The assignments might be made by
placing everyone’s name in a hat and then having each person select a name
from the hat. However, if someone selects his or her own name, then this unac-
ceptable outcome must be corrected through some re-selection. Consequently,
we consider the likelihood that such a problem does not occur.

A derangement of a set is a permutation that leaves no element fixed. For
example, the permutation 321 of {1, 2, 3} leaves the value 2 fixed in its second
position and switches values 1 and 3. Hence, 321 is not a derangement. In fact,



C H A P T E R 7 ■ More Counting 369

among the 3! = 6 permutations of the set {1, 2, 3}, namely

123, 132, 213, 231, 312, 321,

only the two

231, 312

are derangements. In this case, 1
3 of the permutations are derangements. Con-

sequently, a group of 3 people selecting names for a Secret Santas gift exchange
would do so without a self-selection on the first try only 1

3 of the time. In general,
the percentage of permutations of n items that are derangements has a remark-
able formula.

EXAMPLE 7.3 (Secret Santas). If each of a set of n people is randomly assigned a member of
the set, then what is the probability that no one will be assigned himself or
herself?

Solution. We can regard the people as numbered from 1 to n. Let U be the set
of permutations of {1, 2, . . . , n}. Of course, |U | = n! is the size of our sample
space. For each 1 ≤ j ≤ n, let Aj be the set of those permutations that leave j
fixed. That is, j is in the j th position for every permutation in Aj . Observe that
A1 ∪ A2 ∪ · · · ∪ An is the set of permutations that leave some integer fixed.
Therefore,

Ac
1 ∩ Ac

2 ∩ · · · ∩ Ac
n = ( A1 ∪ A2 ∪ · · · ∪ An)c

is the set (event) that we need the size of.
For each 1 ≤ i ≤ n and for any 1 ≤ j1 < j2 < · · · < ji ≤ n, the intersection

Aj1 ∩ Aj2 ∩ · · · ∩ Aji is the set of permutations that leave positions j1, j2, . . . , ji
all fixed. Since only the remaining n− i positions are permuted,

|Aj1 ∩ Aj2 ∩ · · · ∩ Aji | = (n− i)!.

Therefore, for each 1 ≤ i ≤ n,

Si =
(

n

i

)
· (n− i)! = n!

i !
.

By Corollary 7.2,

|Ac
1 ∩ Ac

2 ∩ · · · ∩ Ac
n| =

n∑
i=0

(−1)i n!
i !

.

Thus,

P( Ac
1 ∩ Ac

2 ∩ · · · ∩ Ac
n) =

∑n
i=0(−1)i n!

i !

n!
=

n∑
i=0

(−1)i

i !

is the desired probability. ■

The remarkable fact about the result in Example 7.3 is that as n approaches
infinity,

n∑
i=0

(−1)i

i !
approaches

1
e

,
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the reciprocal of the Euler number e ≈ 2.718. That is, for large n, the probability
that a randomly chosen permutation of {1, 2, . . . , n} fixes no integers is approx-
imately 1

e . For example, when n = 12, both
∑n

i=0
(−1)i

i ! and 1
e equal .36787944 to

eight decimal places.

SECTION 7.1 Exercises
1. How many base-3 sequences of length 5 are missing one of the digits 0, 1,

or 2?
2. In a game at the state fair, a bag contains 7 red, 5 white, and 6 blue balls. A

player blindly selects 4 balls and wins if not all colors are obtained. In a
single play of this game, what is the probability that at least one color will
be missing and hence the player will win the game?

3. In a certain neighborhood on Halloween night, each house is specializing
in a single type of candy. There are 6 houses giving out Snickers bars, 10
giving out Mounds bars, and 8 giving out Butterfingers bars. Rodrigo is
interested in obtaining each of these types of candy, but his mother has
told him that he may go to only 5 houses. How many ways are there to
select 5 houses to visit so that each type of candy bar is obtained?

4. A deoxyribonucleic acid strand consists of a sequence of nitrogen bases.
Each is one of cytosine (C), guanine (G), thymine (T), or adenine (A). A
researcher is studying sequences that contain all of these. How many
possible DNA strands of length 6 contain at least one of each type of
nitrogen base?

5. A box contains 6 bananas, 7 apples, and 9 oranges. How many possible
selections of 6 pieces of fruit make a fruit basket that excludes at least one
type of fruit? The 22 pieces of fruit are considered distinguishable.

6. From a committee containing 10 Republicans, 5 Democrats, and 8 Indepen-
dents, a subcommittee needed to be formed. Although it would have been
desirable to have each party represented on the subcommittee, it turned
out that the subcommittee contained no Democrats.
(a) How many possible selections of a subcommittee of size 6 contain at

least one member of each party?
(b) If the subcommittee was selected randomly, then what would have

been the probability that it contained no Democrats?
7. The game Dungeons and Dragons uses a 4-sided die constructed from a

tetrahedron by filing down the vertices and placing the numbers 1 through
4 on these dulled points of the die. Thus, exactly one of 1 through 4 faces
up after the die is rolled. If six 4-sided dice are rolled, then what is the
probability that
(a) there will be a number that is not showing on any of the dice?
(b) the sum will be at least 22?

8. What is the probability that a 5-card poker hand contains at least one of
each face card denomination (Jack, Queen, King)?

9. What is the probability that a 7-card poker hand (keep all 7) contains at
least one of each suit (♣, ♦, ♥, ♠)?

10. What is the probability that a 5-card poker hand is missing some suit?
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11. A bag contains 8 quarters, 5 dimes, 4 nickels, and 10 pennies. What is the
probability that a random selection of 5 coins from this bag will exclude at
least one of these types of coins?

12. A researcher participating in the DNA study discussed in Exercise 4 has
found several naturally occurring DNA strands of length 7 that are miss-
ing at least one of C, G, A, or T. What is the probability that a randomly
generated DNA strand of length 7 would be missing at least one of the
possible nitrogen bases?

Exercises 13 through 16 refer to the Euler phi-function φ.
13. Compute φ(300). 14. Compute φ(616).
15. Compute φ(1100). 16. Compute φ(7000).

Exercises 17 through 22 refer to the following formulas for φ. From the basic
facts

∀ k ∈ Z+, ∀ primes p, φ( pk) = pk
(

1− 1
p

)
(7.1)

and

∀ a , b ∈ Z+, if gcd(a , b) = 1, then φ(ab) = φ(a )φ(b), (7.2)

it can be proved that

∀ n ∈ Z+, φ(n) = n
∏
p|n

(
1− 1

p

)
. (7.3)

A proof of (7.2) is given in [4], for example.
17. Use the Principle of Inclusion-Exclusion to compute φ(2100), and confirm

that the result agrees with that given by equation (7.3).
18. Use the Principle of Inclusion-Exclusion to compute φ(7700), and confirm

that the result agrees with that given by equation (7.3).
19. Prove that (7.3) follows from (7.1) and (7.2).
20. Use the Complement Principle to prove (7.1).
21. Use the Basic Inclusion-Exclusion Principle to prove (7.3) directly, when n

has exactly two prime divisors.
22. Use the Generalized Inclusion-Exclusion Principle to prove (7.3) directly,

when n has exactly three prime divisors.
23. How many of the integers from 1 to 10,000 are divisible by at least one of 3,

13, 23, and 43?
24. How many of the integers from 1 to 2222 are divisible by at least one of 7,

11, 17, and 31?

25. Compute
∑5

i=0
(−1)i

i ! . To how many decimal places does it agree with 1
e ?

26. List the sample space consisting of all permutations of the set {1, 2, 3, 4}.
List the event consisting of those permutations that do not leave any
element fixed. What is the probability of that event?

27. A person applying for jobs accidentally mixed up the 5 applications and
corresponding envelopes. Assume that the applications were randomly
shuffled before being placed into the 5 envelopes. What is the probability
that
(a) some application ends up in its correct envelope?
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(b) all applications end up in their correct envelopes?
(c) at least 3 applications end up in their correct envelopes?

28. Greg, Marcia, Peter, Jan, Bobby, and Cindy are participating in a Secret
Santas gift exchange. They have put their names in a hat, and each will
randomly select a name from this hat.
(a) What is the probability that none of them will end up with his or her

own name? Hence no re-selection is needed.
(b) What is the probability that exactly three of them will end up with

their own names?
(c) Why would total re-selection be warranted in all cases except the case

in which none of them end up with his or her own name?
�29. Before playing a card game, it is customary to shuffle the deck. If a stand-

ard deck of cards is randomly shuffled, then, to eight decimal places, what
is the probability that no card ends up in its original location?

�30. Suppose 20 deranged men throw their hats into a dark closet and then
each man randomly selects a hat from the closet. To eight decimal places,
what is the probability that some man ends up with his own hat?

�31. Prove Corollary 7.2. Hint: Use De Morgan’s Law and the Principle of
Complements.

�32. Prove the Generalized Inclusion-Exclusion Principle in the case in which
n = 3 by mimicking the proof of the Basic Inclusion-Exclusion Principle
(Theorem 6.7). Hint: A Venn diagram can motivate the argument.

33. For n = 5, write out the sum S3 defined in the Generalized Inclusion-
Exclusion Principle.

34. For n = 6, write out the sum S2 defined in the Generalized Inclusion-
Exclusion Principle.

35. Use Corollary 7.2 to obtain a formula for the size of the intersection of
three sets A1, A2, and A3 in terms their complements.

36. Express |Ac
1 ∪ Ac

2 ∪ Ac
3| in terms of the sets A1, A2, and A3, without using

their complements.
37. How many ways are there to distribute 10 distinct objects into 5 boxes,

labeled A through E, so that no box is empty?
38. How many integer solutions to the equation k1 + k2 + k3 + k4 = 35 are there

such that ∀ i, 0 ≤ ki ≤ 10?
Hint: Let Ai be the number of solutions with ei ≥ 11.

39. A child playing with standard fair 6-sided dice is rolling several of them
with the hope that, upon a single roll, all possible numbers will be
showing.
(a) What is the probability of success if 6 dice are rolled?
(b) What is the probability of success if 10 dice are rolled?

�(c) What is the minimum number of dice that should be rolled so that it is
more likely than not that all possible numbers will be showing? Hint:
Determine a general formula p(n) for the probability that all possible
numbers will be showing when n dice are rolled, and plug in various
values for n.

∗Exercises that may be particularly challenging are marked with a star.
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�40. At a birthday party, 4 children are playing a game with their shoes. The
children have removed their shoes and have thrown them into a pile in a
dark closet. Each child will then randomly take two shoes from the closet
(not necessarily a matching pair).
(a) What is the probability that some child gets a matching pair?
(b) What is the probability that some child gets his or her own pair?

For Exercises 41 through 44, n colors are available, and we are interested in
coloring each circle � in the given picture. In each case, count the number of
ways to do this so that no two circles that are directly joined by a line receive
the same color. The resulting expression will be a polynomial in n and is called
the chromatic polynomial for the figure. Hint: For each i , let Ai be the set of
colorings in which both ends of line i receive the same color.

�41. 2

3

4
1

�42. 2

3

4 5
1

�43. 2

6
4

3

5

1

�44.

51 3

4

2

Coloring problems are pursued further in Section 9.5.

7.2 Multinomial Coefficients
We have seen in Chapter 6 the utility of binomial coefficients when we need to
count the number of ways to select a subset from a set of objects. Specifically,
the binomial coefficient

(n
k

)
counts the number of ways to split a set of n objects

into two sets, one with k objects and one with n − k objects. However, it does
not handle directly a problem in which the original set of n objects must be split
into three or more sets. For that, as we shall see, multinomial coefficients can be
employed.

Given nonnegative integers k1, k2, . . . , km and n = k1+ k2+ · · · km, the multi-
nomial coefficient

( n
k1,k2,···,km

)
is defined by(

n

k1, k2, · · · , km

)
= n!

k1!k2! · · · km!
.

In fact, binomial coefficients are special instances of multinomial coefficients,
since, for 0 ≤ k ≤ n, (

n

k

)
= n!

k!(n− k)!
=
(

n

k, n− k

)
.

EXAMPLE 7.4 (Computing Multinomial Coefficients).

(a) Compute
( 10

3,2,5

)
.
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Solution. (
10

3, 2, 5

)
= 10!

3!2!5!
= 2520.

■

(b) Compute
( 10

4,0,6

)
.

Solution. (
10

4, 0, 6

)
= 10!

4!0!6!
= 210.

■

In Mathematica, the function Multinomial can be used to compute multi-
nomial coefficients. For instance, the computation in Example 7.4(a) is entered
as Multinomial[3,2,5]. Note that the syntax used here is different from that
of the functionBinomial[n,k], in which the total value n is included. In Maple,
Example 7.4(a) can be entered ascombinat[multinomial](10,3,2,5), and
thus n is included there.

The utility of multinomial coefficients in counting comes out of the following
generalization of Theorem 6.4.

THEOREM 7.3 Given nonnegative integers k1, k2, . . . , km, and

n = k1 + k2 + · · · + km,

the multinomial coefficient
(

n
k1,k2,···,km

)
counts the number of ways to split n distinct items

into m distinct categories of sizes k1, k2, . . . , km.

Proof
We want to place n different items into m distinct categories of sizes k1, k2, . . . ,
km. See Figure 7.2. The fact that the categories are distinct allows us to regard

1

1
k1

2
k2

m
km

Category
Size

Object 2 3 n. . .

. . .

. . .

. . .

Figure 7.2 Splitting n Objects into m Categories of Specified Sizes

them as having some fixed ordering in which they are sequentially filled. Since
there are

( n
k1

)
ways to choose k1 of the n items to fill category 1, then

(n−k1
k2

)
ways

to choose k2 of the remaining n− k1 items to fill category 2, and so forth, in
total, the n items can be placed in(

n

k1

)(
n− k1

k2

)(
n− k1 − k2

k3

)
· · ·
(

n− k1 − k2 − · · · − km−1

km

)
different ways. The obvious cancellations from the product

n!
k1!(n− k1)!

(n− k1)!
k2!(n− k1 − k2)!

(n− k1 − k2)!
k3!(n− k1 − k2 − k3)!

· · · (n− k1 − k2 − · · · − km−1)!
km!(n− k1 − k2 − · · · − km)!

,

together with the observation that n− k1 − k2 − · · · − km = 0, leave the formula
for
( n

k1,k2,···,km

)
. �
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Theorem 7.3 applies to problems in which a group must be divided into a
collection of smaller groups.

EXAMPLE 7.5 (Job Allocation). The software production company SoftJobs has contracts to
write three video games. NBA Dunkfest requires 4 programmers, Skate Rats
requires 3 programmers, and Bug Buster II requires 2 programmers. In how
many ways can the 9 programmers at SoftJobs be assigned these projects so
that no programmer is working on more than one project?

Solution. The programmers play the role of the items to be placed, and the
projects play the role of the categories in Theorem 7.3. There are thus(

9
4, 3, 2

)
= 1260

ways to make the assignments. ■

Example 7.5 could have been computed by using binomial coefficients and
applying the counting technique used in the proof of Theorem 7.3 to obtain(9

4

)(5
3

)(2
2

) = 1260. However, multinomial coefficients provide a convenient count-
ing tool for handling this type of problem.

EXAMPLE 7.6 (Bridge Party). To play the card game called bridge, 8 players must split into
4 teams of 2. The teams then split into two pairs of teams that compete sepa-
rately, with one game at each of two tables. The teams are reflected by chairs
of the same color in Figure 7.3. How many ways are there to have 8 play
bridge if

(a) the teams are further assigned the numbers 1 through 4, and it is prede-
termined that Team 1 plays Team 2 and Team 3 plays Team 4? Note that
here we keep track not only of a player’s teammate but also of the team
number.

(b) we are only interested in how the players are teamed up and how the
teams are paired? Here the teams are not numbered.

Figure 7.3 Two Bridge Tables

Solution.

(a) The numbered teams serve as 4 distinct categories. There are thus(
8

2, 2, 2, 2

)
= 2520

ways to set the teams. The games are then predetermined.
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(b) Here the teams reflect identical categories. We therefore need to divide
out for the order imposed on them in part (a). There are now( 8

2,2,2,2

)
4!

= 105

ways to set the teams. Once the 4 teams are set, there are(4
2

)
2
= 3

ways to pair them off for competition. Hence, there are

105 · 3 = 315

ways to set the games. ■

The difference between the choices of the teams in parts (a) and (b) of Ex-
ample 7.6 is significant. It is analogous to the difference between permutations
and combinations. In part (a), the order in which the teams of two are selected
is important. In part (b), that order is not important and is stripped out by an
appropriate division. We have seen such strategies employed in Section 6.2 in
the proof that

(n
k

) = P(n,k)
k! and in Section 6.6.

There is a generalization of the Binomial Theorem (Theorem 4.9) that in-
volves multinomial coefficients. Before presenting that generalization, we re-
present the Binomial Theorem using alternative notation that is more conducive
to generalizing.

THEOREM 7.4 The Binomial Theorem (Revisited)

Let a1, a2 ∈ R and n ∈ Z with n ≥ 1. Then

(a1 + a2)n =
∑

0 ≤ k1, k2 ≤ n
k1 + k2 = n

(
n

k1, k2

)
a

k1

1 a
k2

2 .

Here, the sum is indexed over all ordered pairs of integers k1, k2 such that 0 ≤ k1, k2 ≤ n
and k1 + k2 = n.

Theorem 4.9 can be recovered from Theorem 7.4 by setting k2 = i and k1 =
n− i . Since k1 is determined by i , it can be eliminated from the indexing in the
summation in Theorem 7.4 to obtain Theorem 4.9. The appropriate generaliza-
tion of the Binomial Theorem to multinomial coefficients can now be presented.

THEOREM 7.5 The Multinomial Theorem

Let a1, a2, . . . am ∈ R and n ∈ Z with n ≥ 1. Then

(a1 + a2 + · · · + am)n =
∑

0 ≤ k1, k2, . . . , km ≤ n
k1 + k2 + · · · + km = n

(
n

k1, k2, · · · km

)
a

k1

1 a
k2

2 · · · akm
m .

Here, the sum is indexed over all ordered m-tuples of integers k1, k2, . . . , km such that
0 ≤ k1, k2, . . . , km ≤ n and k1 + k2 + · · · + km = n.
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Proof
Each unsimplified monomial ai1 ai2 · · · ain in the expanded n-fold product

(a1 + a2 + · · · + am)(a1 + a2 + · · · + am) · · · (a1 + a2 + · · · + am)

comes from choosing the value ai1 from the summands in the first factor, ai2

from the summands in the second factor, and so on. The monomial simplifies
to a

k1

1 a
k2

2 · · · akm
m precisely when a1 is chosen k1 times, a2 is chosen k2 times, and

so on. Since there are
( n

k1,k2,···km

)
ways to make those choices, the coefficient of

a
k1

1 a
k2

2 · · · akm
m is

( n
k1,k2,···km

)
. �

Remark 7.1 It follows from Theorem 6.13 that the number of terms in
the expansion of (a1 + a2 + · · · + am)n is

(n+m−1
n

)
. That is, each choice of

an m-tuple 0 ≤ k1, k2, . . . , km ≤ n with k1 + k2 + · · · + km = n can be
recorded as a sequence of n ones and m− 1 separators. The number of
ones before the first separator is k1, the number after the first separator
and before the second separator is k2, and so on. For example, 2+ 3+
0+ 1 = 6 is recorded as 11 | 111 || 1.

Just as the Binomial Theorem was used in Section 4.6 to expand a power of
a sum of two terms, the Multinomial Theorem can be used to expand a power
of a sum of two or more terms.

EXAMPLE 7.7 (Expanding Polynomials).

(a) Use the Multinomial Theorem to expand (x + y+ z)4.

Solution. Here, the sum in our expansion is indexed over the triples
(k1, k2, k3) such that 0 ≤ k1, k2, k3 ≤ 4 and k1 + k2 + k3 = 4. That is, the
triples

(4, 0, 0), (3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1),
(2, 0, 2), (1, 3, 0), (1, 2, 1), (1, 1, 2), (1, 0, 3),
(0, 4, 0), (0, 3, 1), (0, 2, 2), (0, 1, 3), (0, 0, 4)

index our sum. In each case, the triple (k1, k2, k3) corresponds to the
term

( 4
k1,k2,k3

)
xk1 yk2 zk3 . That is, the triple determines both the exponents

on x, y, and z and the bottom row of the multinomial coefficient. For
example, the triple (3, 0, 1) corresponds to the term

( 4
3,0,1

)
x3 y0z1 = 4x3z.

Thus, in total, we get

(x + y+ z)4 =
∑

0 ≤ k1, k2, k3 ≤ 4
k1 + k2 + k3 = 4

(
4

k1, k2, k3

)
xk1 yk2 zk3

= x4 + 4x3 y+ 4x3z+ 6x2 y2 + 12x2 yz

+ 6x2z2 + 4xy3 + 12xy2z+ 12xyz2 + 4xz3

+ y4 + 4y3z+ 6y2z2 + 4yz3 + z4. ■

(b) Use the Multinomial Theorem to expand (w + 2x + 3y+ 4z)2.

Solution. Here, the sum in our expansion is indexed over the
ordered 4-tuples (k1, k2, k3, k4) such that 0 ≤ k1, k2, k3, k4 ≤ 4 and
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k1 + k2 + k3 + k4 = 2. That is, the ordered 4-tuples

(2, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 2, 0, 0),
(0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 2, 0), (0, 0, 1, 1), (0, 0, 0, 2)

index our sum. Thus, we get

(w + 2x + 3y+ 4z)2 =
∑

0 ≤ k1, k2, k3, k4 ≤ 2
k1 + k2 + k3 + k4 = 2

(
2

k1, k2, k3, k4

)
wk1 (2x)k2 (3y)k3 (4z)k4

= w2 + 4wx + 6wy+ 8wz+ 4x2

+12xy+ 16xz+ 9y2 + 24yz+ 16z2. ■

EXAMPLE 7.8 (Extracting a Coefficient). What is the coefficient of u2w3x4 y2 in the expansion
of (u+ v + 2w + x + 3y+ z)11?

Solution. The expansion includes the summand(
11

2, 0, 3, 4, 2, 0

)
u2v0(2w)3x4(3y)2z0 = 69300u2 · 8w3x4 · 9y2

= 4989600u2w3x4 y2.

Hence, the desired coefficient is 4989600. ■

The ability to extract a particular coefficient from a factored polynomial with-
out having to expand the polynomial entirely is needed in Section 7.3, where
polynomials are used to solve counting problems.

SECTION 7.2 Exercises
Most of the following exercises involve some computations. Each can be
completed by hand, but some might also be done with the aid of a symbolic
calculator, such as Mathematica or Maple. In those cases, the results should then
be compared with hand computations.

1. Compute
( 7

3,2,2

)
. 2. Compute

( 11
5,2,4

)
.

3. Compute
( 15

2,3,6,4

)
. 4. Compute

( 12
3,3,4,2

)
.

5. The students know that there is going to be a 12-question multiple-choice
quiz on Friday, and each question will have three possible answers: a , b,
or c. To tease the students, the teacher further told them that 4 of the ques-
tions will have answer a , 3 will have answer b, and 5 will have answer c.
How many possible answer keys satisfy these conditions?

6. A small college has 3 physics professors and 9 physics majors. Each of the
physics professors needs to be assigned 3 advisees from among the physics
students. In how many ways can this be done so that each student has an
advisor?

7. The housing director at a boarding school needs to assign the 15 resident
assistants to the 4 dorms. He needs 5 to go to North Hall, 3 to go to South
Hall, 4 to go to East Hall, and 3 to go to West Hall.
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(a) How many ways are there to make the assignments?
(b) What if Megan, one of the resident assistants, can be assigned to

neither South nor West?
(c) What if Megan must be assigned to North?

8. In the game of bridge, the 52 cards of a standard deck are divided evenly
among 4 players. Thus, each player’s hand consists of 13 cards. How many
different possible hands
(a) have all 13 of the denominations represented?
(b) have 4 clubs, 3 diamonds, 3 hearts, and 3 spades?
(c) have all 13 of the denominations represented and contain 4 clubs,

3 diamonds, 3 hearts, and 3 spades?

Team Sports. In Exercises 9 through 14, we consider examples of splitting
people into teams.
9. The 12 students in an honors history class will be split into 3 teams of 4 for

a quiz bowl competition. How many ways are there to form these teams?
10. Sixteen students have gathered at the basketball court to play 5-on-5

basketball, so they decide to break into two teams of size 5 and one of
size 6. (The team with 6 will have a substitute.) How many ways are there
to form these teams?

11. The biology teacher needs to split her 22 students into 4 groups for a lab
project. How many ways are there to do this so that there are two lab
groups of 5 students and two lab groups of 6 students?

12. There are 40 girls at a volleyball camp. At the end of the first week, these
girls must be split into teams of 8. How many ways are there to form the
5 teams?

13. A gym class of 16 students is learning how to play tennis. Since there are
4 courts, the teacher decides to have the students split into 4 concurrent
doubles matches.
(a) How many ways are there to set the matches?
(b) How many ways are there to not only set the matches but also assign

courts to the matches?
14. There are 3 basketball courts at the town park, and 30 boys have gathered

to play 3 simultaneous games of 5-on-5 basketball.
(a) How many ways are there to set the games on these courts?
(b) If we keep track only of teams and opponents, and not of which game

is on which court, then how many ways are there to set the games?
15. The KiddieCorp day care has taken its 18 children to the fair. In how many

different ways can all of the children be put on 3 small merry-go-rounds,
each with 6 (single seat) chairs, if
(a) the children care about which merry-go-round they are on and which

child is riding in front of which?
(b) the children do not care about which merry-go-round they are on, but

they do care about which child is riding in front of which?
(c) the children do not care which merry-go-round they are on but they

do care about who is on the same merry-go-round?
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16. The 20 members of a student council need to split into 4 groups of size 5.
How many ways are there to do this if
(a) they are merely forming discussion groups for a common topic?
(b) they are forming committees, each with a distinct purpose?
(c) they are forming committees, each with a distinct purpose and a

designated chairperson?
17. List all of the triples (k1, k2, k3) such that 0 ≤ k1, k2, k3 and k1 + k2 + k3 = 3.
18. List all of the 4-tuples (k1, k2, k3, k4) such that 0 ≤ k1, k2, k3, k4 ≤ 3 and

k1 + k2 + k3 + k4 = 3.

Expanding Polynomials. In Exercises 19 through 24, use the Multinomial
Theorem to expand the given expression. The function Expand in Mathematica,
or expand in Maple, might then be used to compare its results with the re-
quested hand computations.

19. (x − y+ z)2. 20. (x + y+ z)3.
�21. (x + y+ 1)4. 22. (3x + 2y− z)2.

23. (2x + y− z)2. 24. (x + 4y+ 1
2 z)2.

Extracting Coefficients. In Exercises 25 through 32, the function
Coefficient in Mathematica, or coeff in Maple, might also be used to
compare its results with the requested computations.
25. What is the coefficient of a100b50c40d60e20 f 30 in the expansion of (a + b+

d + e + f )300?
26. What is the coefficient of a20b10c30d10 in the expansion of (a + b + c + d)70?
27. What is the coefficient of x10 y20z30 in the expansion of (x + y+ z)80?
28. What is the coefficient of x30 y20z50 in the expansion of (x+ 2y+ 3z+ 4w)100?
29. What is the coefficient of x25 y10z40w25 in the expansion of (x− y+ z−w)100?
30. What is the coefficient of x4 y6z2w4 in the expansion of (w − z+ y− x)20?
31. What is the coefficient of x4 y2z5w3 in the expansion of (x + y− 2z+ w)14?
32. What is the coefficient of x6 y8z6 in the expansion of (2x − 3y+ 1

2 z)20?

33. How many nonzero terms are there in the expansion of (x + y− 2z+w)14?

34. How many nonzero terms are there in the expansion of (2x − 3y+ 1
2 z)20?

�35. Prove Theorem 7.3 by generalizing the proof of Theorem 6.4 given at the
end of Section 6.2.

�36. Prove the Multinomial Theorem by induction on m. Use Theorem 7.4 for
the base case.

Quick Proofs. In Exercises 37 through 40, apply the Multinomial Theorem to
give a short proof of the stated identities.
37. Prove: For all integers n ≥ 0,

3n =
∑

0 ≤ k1, k2, k3 ≤ n
k1 + k2 + k3 = n

(
n

k1, k2, k3

)
.



C H A P T E R 7 ■ More Counting 381

38. Prove: For all integers n ≥ 0,

0 =
∑

0 ≤ k1, k2, k3, k4 ≤ n
k1 + k2 + k3 + k4 = n

(−1)k1+k2

(
n

k1, k2, k3, k4

)
.

Hint: 0 = −1− 1+ 1+ 1.
39. Prove: For all integers n ≥ 0,∑

0 ≤ k1, k2 ≤ n
k1 + k2 ≤ n

(
n

k1

)(
n− k1

k2

)
3k1 2k2 = 6n.

�40. Prove: For all integers n ≥ 0 and all real numbers x and y,∑
0 ≤ k1, k2, k3 ≤ n
k1 + k2 + k3 = n

(
n

k1, k2, k3

)
xk1 yn−k1 =

n∑
k=0

2n−k

(
n

k

)
xk yn−k .

7.3 Generating Functions
We have seen in Chapter 6 that the basic tools for counting are based upon addi-
tion and multiplication principles. The fact that rules for addition and multipli-
cation also govern algebraic manipulations of real functions enables functions
to store combinatorial information in a powerful and useful way.

For instance, we will see in Example 7.11, that if we have 2 quarters, 4 dimes,
and 3 nickels in our pocket, then the number of ways to make 35¢ is the coeffi-
cient of x35 in the expansion of the polynomial function

g(x) = (1+ x25 + x50)(1+ x10 + x20 + x30 + x40)(1+ x5 + x10 + x15).

That is, that there are 4 ways to make 35¢ is reflected by the fact that

g(x) = 1+ · · · + 4x35 + · · · + x105.

Consequently, we start this section with a development of some algebraic tools,
and then we move on to applying those tools to combinatorial problems.

The Algebra

DEFINITION 7.1

The generating function for a given sequence c0, c1, c2, . . . of real numbers is the
function

g(x) =
∞∑

i=0

ci xi = c0 + c1x + c2x2 + · · · ,

where x is a real variable (and we identify x0 = 1).

If our given sequence is a finite sequence c0, c1, c2, . . . , cn, then its gener-
ating function g(x) = c0 + c1x + c2x2 + · · · + cnxn is indeed a real polynomial
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function. If the sequence is not finite, then its generating function g(x) = c0 +
c1x+c2x2+· · · is treated as a formal power series. For our purposes, we will not
be concerned with the radius of convergence of such power series (as studied
in calculus). A simple understanding of the formal operations of addition and
multiplication will suffice.

∞∑
i=0

ai x
i +

∞∑
i=0

bi x
i =

∞∑
i=0

(ai + bi )xi . (7.4)

⎛
⎝ ∞∑

i=0

ai x
i

⎞
⎠
⎛
⎝ ∞∑

i=0

bi x
i

⎞
⎠ = ∞∑

i=0

⎛
⎝ i∑

j=0

a j bi− j

⎞
⎠ xi . (7.5)

As a special case of (7.5), observe that

(a0 + a1x + a2x2)(b0 + b1x + b2x2 + b3x3) = a0b0 + (a0b1 + a1b0)x

+ (a0b2 + a1b1 + a2b0)x2

+ (a0b3 + a1b2 + a2b1)x3

+ (a1b3 + a2b2)x4 + a2b3x5.

In particular, the coefficient a0b3+ a1b2+ a2b1 of x3 on the right-hand side is the
sum of all possible products of the form a j bk with j + k = 3.

EXAMPLE 7.9 Use (7.5) to determine the sequence c0, c1, c2, . . . whose generating function is
given by the product

(1+ x + x2 + x3 + · · ·)(1+ x2 + x4 + x6 + · · ·).

Solution. For each i ≥ 0, define ai = 1 and bi =
{

1 if i is even,
0 if i is odd.

Thus, we are computing the product
(∑∞

i=0 ai xi
)(∑∞

i=0 bi xi
)
.

Let i ≥ 0. Our aim is to compute the coefficient ci =
∑i

j=0 a j bi− j of xi in the
product above. Very simply, we need to understand how xi can be obtained
from products of the form x j xi− j , where x j and xi− j come from the first and
second factors, respectively, in our product. The key is that the sum of j and
i − j is the desired exponent i .

The fact that the powers of x in the second factor are all even warrants the
consideration of separate cases based on the parity of i . If i is odd, then the
ways to obtain xi in the product are

x1xi−1, x3xi−3, x5xi−5, . . . , xi−2x2, xi 1. (7.6)

This observation, together with the fact that all of the nonzero coefficients in
both factors are 1, implies that ci = i+1

2 . That is, there are i+1
2 entries in (7.6).

Similarly, if i is even, then the ways to obtain xi in the product are

1xi , x2xi−2, x4xi−4, . . . , xi−2x2, xi 1.

It follows that ci = i+2
2 . Consequently, for all i ≥ 0, a single formula for ci can

be given by ci = � i+2
2 �. ■

The utility of generating functions for counting derives from the fact that
algebra, such as that encountered in Example 7.9, can be used to encode combi-
natorial facts.
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EXAMPLE 7.10 Let c0, c1, c2, . . . be the sequence whose generating function g(x) is given by

g(x) = (1+ x2)(1+ x + x3)(x2 + x3).

To find c0, c1, c2, . . ., we need to expand g(x) into the standard form consisting
of sums of increasing powers of x. However, we also need to understand how
the current form provides valuable information about what ci counts in terms
of i . In fact, the encoded counting problem unfolds through a very deliberate
expansion of g(x).

To help illuminate a developing pattern, we identify x0 = 1 and write

g(x) = (x0 + x2)(x0 + x1 + x3)(x2 + x3). (7.7)

If we expand (7.7) into a sum of monomials and temporarily delay the use of
the laws of exponents and the combining of like terms, then we obtain

g(x) = x0x0x2 + x0x1x2 + x0x3x2 + x2x0x2 + x2x1x2 + x2x3x2

+ x0x0x3 + x0x1x3 + x0x3x3 + x2x0x3 + x2x1x3 + x2x3x3.

Here, each term xe1 xe2 xe3 is a product of a summand xe1 from (x0 + x2), a
summand xe2 from (x0 + x1 + x3), and a summand xe3 from (x2 + x3). That is,
the triple e1, e2, e3 satisfies e1 ∈ {0, 2}, e2 ∈ {0, 1, 3}, and e3 ∈ {2, 3}.

By using the laws of exponents, we can write

g(x) = x2 + x3 + x5 + x4 + x5 + x7

+ x3 + x4 + x6 + x5 + x6 + x8.

In the exponents here, we see the sums e1 + e2 + e3 that result from the various
choices of allowable triples e1, e2, e3. By finally combining like terms, we get

g(x) = x2 + 2x3 + 2x4 + 3x5 + 2x6 + x7 + x8. (7.8)

That is, c0 = 0, c1 = 0, c2 = 1, c3 = 2, c4 = 2, c5 = 3, c6 = 2, c7 = 1, and c8 = 1.
Moreover, what ci counts can now be extracted from our work.

First, consider the particular value c4 = 2. Tracing back, we see that the
coefficient 2 for x4 in (7.8) comes from the two terms x2x0x2 and x0x1x3 in our
initial expansion for g(x). That is, 2+ 0+ 2 = 4 and 0+ 1+ 3 = 4 are the only
ways to obtain the sum e1 + e2 + e3 = 4, when we require that e1 ∈ {0, 2},
e2 ∈ {0, 1, 3}, and e3 ∈ {2, 3}.

In general, for each i ≥ 0, ci counts the number of solutions e1, e2, e3 to the
equation

e1 + e2 + e3 = i

under the restrictions that e1 ∈ {0, 2}, e2 ∈ {0, 1, 3}, and e3 ∈ {2, 3}. Table 7.1
displays all such possible solutions. That the coefficients ci for g(x) count these
solutions is reflected by the exponents in the factored form (7.7). The utility of
generating functions comes from the fact that the algebraic expansion of g(x),
which can be done quickly with the help of any computer algebra system,
takes care of what could potentially be a cumbersome process of directly
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i Solutions to e1 + e2 + e3 = i

0 none
1 none
2 0+ 0+ 2
3 0+ 1+ 2, 0+ 0+ 3
4 2+ 0+ 2, 0+ 1+ 3
5 0+ 3+ 2, 2+ 1+ 2, 2+ 0+ 3
6 0+ 3+ 3, 2+ 1+ 3
7 2+ 3+ 2
8 2+ 3+ 3
9+ none

Table 7.1 Enumeration for Example 7.10

enumerating the solutions in Table 7.1. The generating function does not list
the solutions, but it counts them. ■

The Combinatorics
With the insight gained from Example 7.10, we can now use a generating func-
tion to directly attack a counting problem.

EXAMPLE 7.11 (Making Change). For each i ≥ 0, determine the number of ways ci to obtain
i¢ if we have 2 quarters, 4 dimes, and 3 nickels. Here, coins of like values are
considered indistinguishable. That is, different ways to obtain i¢ are distin-
guished solely by how many of each type of coin they use.

Solution. Table 7.2 reflects the monetary values obtainable from each single
type of coin. The numbers in the right-hand column provide the exponents for
the factors of our generating function

g(x) = (1+ x25 + x50)(1+ x10 + x20 + x30 + x40)(1+ x5 + x10 + x15).

Coin Type Possible Amounts Contributed

quarters 0¢, 25¢, 50¢
dimes 0¢, 10¢, 20¢, 30¢, 40¢
nickels 0¢, 5¢, 10¢, 15¢

Table 7.2 Coin Contributions

The first, second, and third factors account for the contributions made by the
quarters, dimes, and nickels, respectively. In the first factor, for example, the
1 reflects the choice of no quarters (since 1 = x0), x25 reflects the choice of one
quarter, and x50 reflects the choice of two quarters.

Expanding g(x) yields

1+ x5 + 2x10 + 2x15 + 2x20 + 3x25 + 3x30 + 4x35 + 4x40 + 4x45 + 4x50 + 4x55

+ 4x60 + 4x65 + 4x70 + 3x75 + 3x80 + 2x85 + 2x90 + 2x95 + x100 + x105.

Thus, for example, there are 4 ways to obtain 35¢ and 3 ways to obtain 80¢. It
would not be hard to enumerate any one of the cases by hand (in this small
example). However, the generating function handles all of the cases at once
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quite nicely. In general, the number of ways ci of obtaining i¢ is the coefficient
of xi in the expanded form of g(x). ■

EXAMPLE 7.12 (Prize Packages). The first-place winner of a programming contest is allowed
to select 6 items from a table containing 3 identical modems, 2 identical
printers, and some identical ten-packs of zip disks.

(a) How many different prize packages are possible if there are 4 ten-packs
of zip disks on the table?

(b) What if there is an unlimited supply of ten-packs of zip disks available?
(c) What if there is an unlimited supply of ten-packs of zip disks available,

and the winner is required to select at least 2 of them?

Solution.
(a) The answer is not

(3+2+4
6

) = 84, as would be the case if all 9 items were
distinct. Here, we seek integer solutions to the equation

M+ P + Z = 6,
where M is the number of modems chosen, P is the number of printers
chosen, and Z is the number of ten-packs of zip disks chosen, and
0 ≤ M ≤ 3, 0 ≤ P ≤ 2, and 0 ≤ Z ≤ 4. However, it is convenient to
simultaneously consider all possible sums M+ P + Z, and not just the
sum 6. The relevant generating function is

g(x) = (1+ x + x2 + x3)(1+ x + x2)(1+ x + x2 + x3 + x4). (7.9)

The exponents in the first, second, and third factors reflect the possible
numbers of modems, printers, and ten-packs of zip disks, respectively.
Expanding (7.9) gives

g(x) = 1+ 3x + 6x2 + 9x3 + 11x4 + 11x5 + 9x6 + 6x7 + 3x8 + x9.

It is now easy to pick off the coefficient of x6 and conclude that there are
9 possible prize packages.

(b) How does our analysis change when there is an unlimited number of
ten-packs of zip disks? In that case, the relevant generating function is

f (x) = (1+ x + x2 + x3)(1+ x + x2)(1+ x + x2 + · · ·).
The last factor is an infinite sum. Hence, expansion of f (x) may not
easily be handled by a computer algebra system. However, if our interest
is only in selecting 6 items, then it suffices to assume that there are only
6 ten-packs of zip disks available and to use the generating function

h(x) = (1+ x + x2 + x3)(1+ x + x2)(1+ x + x2 + x3 + x4 + x5 + x6).

In this case, expansion of h(x) yields

1+ 3x + 6x2 + 9x3 + 11x4 + 12x5 + 12x6 + 11x7 + 9x8 + 6x9 + 3x10 + x11,

and we see that there are 12 possible prize packages.
(c) Since we now require that Z ≥ 2, the third factor in the generating

function h used in part (b) must be changed so that its minimum ex-
ponent is 2. Thus, the relevant generating function here is

k(x) = (1+ x + x2 + x3)(1+ x + x2)(x2 + x3 + x4 + x5 + x6)
= (1+ x + x2 + x3)(1+ x + x2)x2(1+ x + x2 + x3 + x4)
= x2g(x).
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Since the coefficient of x6 in k(x) must therefore be the same as the
coefficient of x4 in g(x), we conclude that there are 11 possible prize
packages. ■

The algebraic equation k(x) = x2g(x) relating the generating functions in
parts (b) and (c) of Example 7.12 reflects a simple combinatorial observation.
Selecting a total of 6 items containing anywhere from 2 to 6 ten-packs of zip
disks is equivalent to first selecting 2 ten-packs of zip disks and then selecting
a total of 4 additional items containing anywhere from 0 to 4 ten-packs of zip
disks. The combinatorics is encoded in the algebra!

More Algebra
The generating functions used in Example 7.12 were all built from factors of the
types (1+ x + x2 + · · · + xn) and (1+ x+ x2+· · ·). Of course, the second type is
the infinite version of the first type. Since these kinds of factors occur frequently
in the generating functions we consider, it is important to understand them well.

By Theorem 4.3, we have

1+ x + x2 + · · · + xn =
n∑

i=0

xi = 1− xn+1

1− x
. (7.10)

By a result from calculus (which we accept here without proof), when |x| < 1
we have

(1+ x + x2 + · · ·)n = 1
(1− x)n

. (7.11)

With equations (7.10) and (7.11) in mind, we now give some useful formulas for
the coefficients in a few fundamental generating functions.

THEOREM 7.6 Let n ∈ Z+, and let g(x) be the generating function for the sequence c0, c1, c2, . . .. That is,
g(x) = c0 + c1x + c2x2 + · · ·. Then,

(a) g(x) = 1−xn+1

1−x if and only if, for each 0 ≤ i ≤ n, ci = 1, and, for each i > n, ci = 0.

(b) g(x) = 1
(1−x)n if and only if, for each i ≥ 0, ci =

(
i+n−1

i

)
.

(c) g(x) = (1+ x)n if and only if, for each 0 ≤ i ≤ n, ci =
(

n
i

)
, and, for each i > n,

ci = 0.

Proof
Part (a) follows from (7.10).

For part (b), observe from (7.11) that g(x) is the n-fold product

(1+ x + x2 + · · ·)(1+ x + x2 + · · ·) · · · (1+ x + x2 + · · ·).
This is the generating function for the number of solutions ci to the equation

e1 + e2 + · · · + en = i,

where each e j ≥ 0. That is, ci counts the number of ways to select i objects from
n categories (with repetition allowed). Hence, ci =

(i+n−1
i

)
.

For part (c), consider expanding the n-fold product

(1+ x)(1+ x) · · · (1+ x)

into a sum of 2n terms (delaying the combining of like terms). Each term
results from an n-fold product a1a2 · · · an, where each a j is either 1 or x coming
from the j th factor (1+ x). A term xi is obtained from n− i contributions of a 1
and i contributions of an x. The number of terms xi, and thus the coefficient of
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xi, is
(n

i

)
, the number of ways to choose i factors to contribute an x. A quicker

but less enlightening proof follows by applying the Binomial Theorem. �

More Combinatorics
Theorem 7.6 can be used to ease the algebraic computations needed to find a
particular coefficient in a generating function.

EXAMPLE 7.13 (Fruit Baskets). Since Heather’s neighbors just moved in, she thought it would
be nice to put together a fruit basket for them in the basket she recently made
at summer camp. When Heather’s mother returned from the grocery store, she
had a bag containing apples, bananas, and oranges. How many different possi-
bilities are there for a fruit basket consisting of 36 pieces of fruit if

(a) there is an ample supply of apples and bananas, but there are only
4 oranges?

(b) there are 16 of each kind of fruit?
(c) there is an ample supply of bananas and oranges, and there are 4 distin-

guishable apples (one Cortland, one Delicious, one Empire, and one
Macintosh)?

In each case, fruit baskets are distinguished solely by how many of each type
of fruit they contain.

Solution.

(a) The generating function that accounts for fruit baskets of all possible
sizes is

g(x) = (1+ x + x2 + · · ·)(1+ x + x2 + · · ·)(1+ x + x2 + x3 + x4).

From (7.10) and (7.11), it follows that

g(x) =
(

1
1− x

)2 1− x5

1− x
= 1

(1− x)3 (1− x5).

If we let ai and bi denote the coefficients of xi in 1
(1−x)3 and 1− x5,

respectively, then the formula for the coefficients in a product in eq-
uation (7.5) and the formula for the coefficients in 1

(1−x)3 given by
Theorem 7.6(b) with n = 3 tell us that the coefficient of x36 in g(x) is

a31b5 + a36b0 =
(

31+ 3− 1
31

)
(−1) +

(
36+ 3− 1

36

)
(1) = −

(
33
31

)
+
(

38
36

)
= 175.

(b) When there are 16 of each type of fruit, the relevant generating function is

h(x) = (1+ x + x2 + · · · + x16)3

=
(

1− x17

1− x

)3

= 1
(1− x)3 (1− x17)3

= 1
(1− x)3 (1− 3x17 + 3x34 − x51).

Here, the coefficient of x36 in h(x) is

a2(3) + a19(−3) + a36(1) =
(

4
2

)
(3) +

(
21
19

)
(−3) +

(
38
36

)
(1) = 91.
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(c) Effectively, there are now 6 types of fruit; each of the 4 apples is its own
type. The relevant generating function is

f (x) = (1+ x + x2 + · · ·)2(1+ x)4

= 1
(1− x)2 (1+ x)4.

From (7.5) and Theorem 7.6, it follows that the coefficient of x36 in f (x) is(
33
32

)(
4
4

)
+
(

34
33

)(
4
3

)
+
(

35
34

)(
4
2

)
+
(

36
35

)(
4
1

)
+
(

37
36

)(
4
0

)
= 560.

■

SECTION 7.3 Exercises
In Exercises 1 through 4, find the coefficients in the resulting power series.
1. (1+ x + x2 + x3 + · · ·)2.
2. (1+ x + x2 + x3 + · · ·)(1+ x3 + x6 + x9 + · · ·).
3. (1+ x + x2 + x3 + · · ·)(1− x + x2 − x3 + · · ·).
4. (1− x + x2 − x3 + · · ·)2.

In Exercises 5 through 8, first expand the given function into unsimplified
monomials and then group together terms with the same exponent. The point
is not merely to obtain the product but, further, to observe the development of
each of its coefficients.

5. (1+ x + x2)(1+ x2 + x4). 6. (1+ x5 + x10)(1+ x + x2 + x3 + x4).

7. (1+ x)(x + x2)(1+ x3). 8. (1+ x25)(1+ x10 + x20)(1+ x5).

Making Change. In Exercises 9 through 14, for each i ≥ 0, determine the
number of ways ci of obtaining i¢ if you have the given coins. Ways are
distinguished solely by how many of each type of coin they contain.
9. 1 dime and 4 nickels. 10. 2 nickels and 5 pennies.
11. 2 dimes, 1 nickel, and 5 pennies. 12. 1 dime, 3 nickels, and 5 pennies.
13. 1 quarter, 2 dimes, and 3 nickels. 14. 4 dimes and 2 nickels.
15. A father promised his son 5 balloons at the fair. When the clown selling

balloons approached the father and son, she had 3 identical red, 4 identical
white, and 2 identical blue balloons. How many different purchases of 5
balloons are possible if purchases are distinguished by how many of each
color they contain?

16. How many different collections of 7 pieces of fruit are possible from 4 ap-
ples, 3 bananas, and 3 oranges? Collections are distinguished by how
many of each type of fruit they contain.

17. Mrs. Coffta bought 6 hamburgers, 6 hot dogs, and 4 pieces of chicken for a
barbecue. As Mr. Coffta prepared the grill, Mrs. Coffta took an order of one
item from each of their 8 guests, while keeping in mind the available food
items. Then she brought out to Mr. Coffta the list of items for him to
prepare. How many different barbecue orders might Mr. Coffta receive?

18. A father has gone to the store to buy one balloon for each of 6 children
attending his daughter’s birthday party. For his daughter, in particular, he
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promised to buy a blue balloon. When he arrived at the store, there were
4 identical red, 4 identical white, and 3 identical blue balloons.
(a) How many different balloon purchases are possible, given the father’s

promise?
(b) If the father simply asks the clerk to grab 6 balloons, and he does so

randomly, then what is the probability of obtaining at least one blue
balloon?

(c) In a random selection of 6 balloons, what is the probability that not all
colors will be represented?

19. A woman has agreed to bake 8 cakes for a charity picnic. Moreover, she
promised to bake at least one of each of the flavors chocolate, vanilla,
and marble. When her husband returned from the store he had bought
22 boxes of cake mix, of which 10 were chocolate, 8 were vanilla, and 4
were marble.
(a) In how many possible ways could the woman fulfill her promise?
(b) If 8 of the 22 boxes are randomly selected, then what is the probability

that there is at least one of each flavor?
(c) In a random selection of 8 boxes, what is the probability that they are

all the same flavor?
20. A diner had 21 pieces of pie ready for the lunch crowd. There were 8 pieces

of pumpkin pie, 6 pieces of apple pie, and 7 pieces of blueberry pie. Dur-
ing lunch, 9 customers each ordered a piece of pie. How many different
possible collections of pie could remain for the dinner crowd?

21. Let a ∈ R. For what sequence is (1+ ax)n a generating function?
22. Let a ∈ R. For what sequence is (a + x)n a generating function?

23. For what sequence is 1
(1−x)4 a generating function?

24. For what sequence is 1−x9

1−x a generating function?

25. Find the coefficient of x100 in 1
(1−x)50 .

26. Find the coefficient of x50 in 1
(1−x)100 .

27. Find the coefficient of x100 in 1+x
(1−x)50 .

28. Find the coefficient of x50 in 1−x2

(1−x)100 .

29. If we ignore suits, then how many different 5-card hands are possible
using a standard deck of 52 cards? Note that 3, 5, 7, 8, 8 and 3, 4, 7, 8, 8 are
considered different, even though they would both have the value of a pair
of eights.

30. How many different monetary values can be achieved by selecting 6
stamps from 3 five-cent stamps, 3 twelve-cent stamps, and 3 thirty-cent
stamps?

31. How many different collections of 80 balls are possible from 4 red balls,
and unlimited numbers of blue, yellow, and green balls?

32. How many different collections of 70 balls are possible from 3 red, 3 blue,
and unlimited numbers of yellow and green balls?

�33. For a wedding reception, 60 bottles of wine are needed. The budget can
handle any number of bottles of red or white wine, but at most 5 bottles of
champagne can be afforded. The alcohol supplier simply needs to know
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how many bottles of red wine, white wine, and champagne to send to the
reception hall.
(a) How many different alcohol orders are possible?
(b) How many possible orders include 5 bottles of champagne?
(c) How many have an equal number of bottles of red and white wine?

�34. In a large neighborhood, more than 120 houses are giving out candy for
Halloween, but from each house only one piece of candy can be obtained.
There are 8 houses giving out Snickers bars, 10 giving out Mounds bars,
more than 50 giving out Butterfingers, and more than 50 giving out
Crunch bars. Malcolm’s mother told him that he could collect only
50 pieces of candy. So the only decision Malcolm has to make is how many
of each type of candy to acquire.
(a) How many different collections of 50 pieces of candy are possible?
(b) How many contain no Snickers bars?
(c) How many contain at least one of each type of candy bar?

35. There are 8 hamburgers, 8 pieces of chicken, and an unlimited supply of
hot dogs. If 40 people each order one item, then how many different
barbecue orders are possible for the cook?

36. There are 4 pineapples and unlimited supplies of kiwis and mangos. How
many different possibilities are there for a fruit basket consisting of
30 pieces of fruit? Baskets are distinguished by how many of each type of
fruit they contain.

�37. A bag contained 30 bronze coins, 40 copper, 50 brass, one silver, one gold,
and one platinum. A thief reached in and grabbed 20 coins without look-
ing. How many possibilities are there for the collection of coins stolen from
this bag? Collections are distinguished by how many of each type of coin
they contain.

�38. At the end of Halloween night, the Jones’ bowl of candy contained
12 Snickers, 10 Mounds, 11 Butterfingers, 14 Krackel, one Milky Way, and
one Crunch bar. When one last child showed up at the door, they decided
to offer her 10 items from the bowl. How many possibilities are there for
what she took home?

�39. In the expanded generating function in Example 7.12 the coefficients are
symmetric. That is, the first is the same as the last, the second is the same
as the second to last, and so on. Explain why this should be expected.

40. Verify the formula ∀ n ∈ Z+, ∀ x �= 1,
∑n

i=0 xi = 1−xn+1

1−x by multiplying both
sides by 1− x and simplifying the left-hand side.

�41. For what sequence is 1
(1+x)n a generating function?

42. For what sequence is (1− x)n a generating function?

7.4 Counting Orbits
In Section 6.6, we considered counting problems in which symmetries needed to
be factored out. Here, we extend the ideas used there and introduce a counting
technique based on group theory. Before developing the necessary machinery,
we consider a motivating example.
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EXAMPLE 7.14 (Making Necklaces). If an unlimited supply of black, gray, and white beads are
available, then how many different ways are there to place 4 beads on a loop to
form a necklace (which can be freely rotated and flipped to any orientation)?

Solution. Our interest is in coloring each of the vertices of a square black,
gray, or white. To start, we ignore symmetries and list in Figure 7.4 the 34 = 81
colorings of a fixed square (not free to rotate or flip). Since a necklace is
unchanged by rotating it or flipping it over, there are not 81 different necklaces.

Figure 7.4 Fixed B,G,W Colorings of a Square

In fact, each pair of colorings from the same row of Figure 7.4 represents a
different way of laying the same necklace on a table. Moreover, no two from
distinct rows differ by a rotation or flip. For example, the first and second
entries in the last row differ by a rotation. The first and fifth entries in the last
row differ by a flip (a rotation does not suffice). On the other hand, the first
entries in the last and the fourth to last rows do not differ by rotations or flips
(even though they have the same numbers of beads of each color). We conclude
that the number of different necklaces is 21, the number of rows in Figure 7.4.

■

Unlike results in Section 6.6, the answer 21 in Example 7.14 is not obtained
as a quotient of the initial count 81. Instead, a more careful accounting of sym-
metries is needed. Here, we study symmetries more formally through group
actions.
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DEFINITION 7.2

A group is a set G together with a binary operation . (called composition1) such
that ∀ g, h ∈ G, g . h ∈ G and the conditions

(i) ∀ g, h, k ∈ G, (g . h) . k = g . (h . k)

(ii) ∃ e ∈ G such that ∀ g ∈ G, e . g = g . e = g

(iii) ∀ g ∈ G, ∃ g−1 ∈ G such that g−1 . g = g . g−1 = e

hold. The composition g . h may be denoted more compactly like multiplication—
that is, as gh. Further, exponent notation is used to represent repeated multipli-
cation as usual. Condition (i) is associativity of multiplication (composition). The
element e required in condition (ii) is called the identity element. The element g−1

associated to g in condition (iii) is called the inverse of g. We identify g0 = e, and for
any n ∈ Z+, g−n denotes (g−1)n.

A deep formal understanding of groups will not be required for our study.
Instead, familiarity with a small class of examples is all that is needed. We start
with the groups needed for examples such as Example 7.14.

DEFINITION 7.3 Symmetry Groups for Regular n-gons

Let n ≥ 3, and let B be a regular n-gon. Let V be the set of vertices of B, which we
label 1 to n clockwise around B. Figure 7.5 shows the cases in which n = 5 and
n = 6. For each i ∈ Z, let ri denote the clockwise rotation of B about its center by
360i

n degrees. If i < 0, then the resulting rotation is counterclockwise. Note that,
∀ i, j ∈ Z, ri = r j if and only if i ≡ j (mod n).

1

5 2

4 3

1 2

5 4

36

Figure 7.5 Labeled n-gons, for n = 5, 6

We also consider reflections of B about lines through its center. The allowable
reflection lines are those that additionally pass through a vertex or a midpoint of a
side of B. Those for n = 5 and n = 6 are pictured as dotted lines in Figure 7.5. Let
f1, f2, . . . , fn denote these n reflections (flips). See Remark 7.2 regarding their order.
All compositions are read right to left. For example, the composite f1r2 is the
symmetry obtained by first applying rotation r2 to B and then applying reflection f1
to that result. Note that ∀ i, j ∈ Z, ri r j = ri+ j .

(a) The set of rotations {r0, r1, . . . , rn−1}with the specified composition rule
forms a group with identity r0 and inverses given by r

−1
i = r−i . This group

is called the cyclic group of order n and is denoted Zn.

(b) The set of transformations {r0, r1, . . . , rn−1, f1, f2, . . . , fn} forms a group
called the dihedral group of order 2n. It is denoted Dn and contains all of
the size- and shape-preserving symmetries of a regular n-gon.

1This need not be the composition of functions from Definition 5.14.
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Remark 7.2 For our purposes, the order in which the flips are labeled
f1, . . . , fn is unimportant. However, to be consistent, we use the follow-
ing convention. If n is odd, then for each 1 ≤ i ≤ n, we take fi to be the
reflection about the line through vertex i . If n is even, then for each
1 ≤ i ≤ n

2 , define fi as in the odd case, and for each n
2 + 1 ≤ i ≤ n, take

fi to be the reflection about the line through the midpoint of the side
between the vertices i − 1 and i .

EXAMPLE 7.15 The dihedral group D4 = {r0, r1, r2, r3, f1, f2, f3, f4} consists of all size- and
shape-preserving symmetries of a square.

f1 1 2

4 3

f2

f3

f4

. r0 r1 r2 r3 f1 f2 f3 f4

r0 r0 r1 r2 r3 f1 f2 f3 f4
r1 r1 r2 r3 r0 f4 f3 f1 f2
r2 r2 r3 r0 r1 f2 f1 f4 f3
r3 r3 r0 r1 r2 f3 f4 f2 f1
f1 f1 f3 f2 f4 r0 r2 r1 r3
f2 f2 f4 f1 f3 r2 r0 r3 r1
f3 f3 f2 f4 f1 r3 r1 r0 r2
f4 f4 f1 f3 f2 r1 r3 r2 r0

Figure 7.6 Multiplication Table for D4

The entire multiplication table for D4 is shown in Figure 7.6. There, the product
b . a is displayed in row b and column a . For example, the fact that r3 f4 = f1
can be seen by performing the indicated transformations

1 2

4 3

2 1

3 4

f4
���

������������

r3

���

1 4

2 3

r3 f4

and noting the final locations of the vertex labels. That f4r3 = f2 is shown
similarly.

1 2

4 3

2 3

1 4

r3

���

������������

f4
���

3 2

4 1

f4r3 ■

Our interest is in groups that act on sets.
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DEFINITION 7.4

Given a group G with composition . and a set X, we say that G acts on X via
operation ∗ if ∀ g ∈ G, ∀ x ∈ X, g ∗ x ∈ X and the conditions

(i) ∀ x ∈ X, e ∗ x = x

(ii) ∀ g, h ∈ G, ∀ x ∈ X, h ∗ (g ∗ x) = (h . g) ∗ x

hold. The action g ∗ x may also be unambiguously denoted like multiplication—that
is, as gx. Condition (ii) tells us that both potential interpretations of hgx yield the
same result.

In our study of the colorings of a square in Example 7.14, the relevant sym-
metry group is D4. To count the number of different 4-bead necklaces possible,
we need to understand the action of D4 on the set X of colorings shown in Fig-
ure 7.4. There, the action of a rotation or a flip from D4 takes each example of a
fixed coloring to another (possibly the same) fixed coloring. For example,

r1 * �

f4 * �

and

In general, it is possible to transform between two colorings in Figure 7.4 if and
only if they lie on the same row there. This motivates the notion of an orbit of
an action.

DEFINITION 7.5

Let a group G act on a set X. For each x ∈ X, the orbit of x is the set Orb(x) =
{y : y ∈ X and y = gx for some g ∈ G}. An orbit is a set Orb(x) for some x ∈ X.

For each coloring in Figure 7.4, its orbit under the action of D4 is the subset
of colorings in its row. The orbits form equivalence classes.

THEOREM 7.7 If a group G acts on a set X, then the orbits partition X.

The proof of Theorem 7.7 is presented at the end of this section. As a result
of Theorem 7.7, we say that two elements x, y ∈ X are G-equivalent (or just
equivalent if G is clear in context) if and only if Orb(x) = Orb(y). Very simply,
counting the number of necklaces in Example 7.14 is the same as counting the
number of equivalence classes of the fixed colorings in Figure 7.4. This was done
explicitly in Example 7.14. However, we can now do it using a formula named
after the British mathematician William Burnside (1852–1927) that counts the
number of orbits in a set with a group action.

THEOREM 7.8 Burnside’s Formula2

Let a group G act on a set X, and let N be the number of orbits under this action. Then

N = 1
|G|
∑
g∈G

|Fix(g)|,

where ∀ g ∈ G, Fix(g) = {x : x ∈ X and gx = x}.

2Burnside’s Formula can also be attributed to the work of Augustin-Louis Cauchy and Georg
Frobenius.
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The proof of Theorem 7.8 is sketched at the end of this section. For each
g ∈ G, the set Fix(g) = {x : x ∈ X and gx = x} is called the fixed points of g.
Problems like Example 7.14 are attacked with Theorem 7.8 by counting sizes of
fixed point sets. For our first example of this approach, we revisit Example 7.14,
without the benefit of Figure 7.4.

EXAMPLE 7.16 (Example 7.14 Revisited). Let X be the set of colorings of the vertices of a
square in black, gray, and white. Count the number of orbits of X under the
natural action of D4.

Solution. For each g ∈ D4, we need to count |Fix(g)|.
Case 1: g = r0 the identity.

The identity moves nothing. Each coloring is fixed. So |Fix(r0)| = 34 = 81.

Case 2: g = ri for i = 1 or 3. That is, or .

The only colorings unchanged by such a rotation are those in which each
vertex has the same color (from 3 choices). So |Fix(ri )| = 3.

Case 3: g = r2. That is, .

Such a rotation switches two pairs of opposite vertices. Within each pair, the
vertices must have the same color. However, the two pairs are independent. So
|Fix(r2)| = 32 = 9.

Case 4: g = fi for i = 1 or 2. That is, or .

Such a flip fixes a pair of opposite vertices and switches the other pair. The
colorings unchanged by this can have any colors on the fixed vertices, but the
two that are switched must have the same color. So |Fix( fi )| = 33 = 27.

Case 5: g = fi for i = 3 or 4. That is, or .

Such a flip switches two pairs of neighboring vertices. Within each pair, the
vertices must have the same color. However, the two pairs are independent. So
|Fix( fi )| = 32 = 9.

Let N be the number of orbits of X. Invoking Theorem 7.8 gives

N = 1
|D4|

∑
g∈D4

|Fix(g)|

= 1
8

(|Fix(r0)| + |Fix(r1)| + |Fix(r3)| + |Fix(r2)| + |Fix( f1)| + |Fix( f2)|
+ |Fix( f3)| + |Fix( f4)|)

= 1
8

(81+ 3+ 3+ 9+ 27+ 27+ 9+ 9) = 168
8
= 21.

We rediscover the fact that there are 21 different necklaces. ■

Having seen the utility of Burnside’s Formula, we use it to solve more count-
ing problems.

EXAMPLE 7.17 (Building Ferris Wheels). A Ferris wheel company makes 4 types of chairs.
How many different Ferris wheels consisting of 12 chairs could be made by
this company? We assume that the chairs face forward in the one direction that
the wheel rotates.
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Solution. Since there are 412 different Ferris wheels with a fixed position, an
explicit listing of them is unreasonable. Instead, we use Theorem 7.8 to count
the number N of orbits of these under the action of the cyclic group Z12. Note
that D12 is not the appropriate group here. In general, the mirror image of a
particular Ferris wheel is not the same as the original; a chair that was pre-
viously in front of another would now be behind it. Thus, the only relevant
symmetries are the rotations in Z12.

For each i , the value |Fix(ri )| depends on gcd(i, 12). In fact,

|Fix(ri )| = 4gcd(i,12).

For example, consider the case in which gcd(i, 12) = 3, so i = 3 or 9. For ri not
to change the appearance of a Ferris wheel, positions 1, 4, 7, 10 must hold the
same type of chair, as must positions 2, 5, 8, 11 and positions 3, 6, 9, 12.

1
212

311

410

59

68
7

Since there are 4 types of chairs, there are 43 Ferris wheels fixed by ri . The other
cases are handled similarly. Thus, there are

N = 1
12

(4(4) + 2(42) + 2(43) + 2(44) + 1(46) + 1(412))

= 1
12

(16+ 32+ 128+ 512+ 4096+ 16777216)

= 1398500.

possible Ferris wheels. ■

EXAMPLE 7.18 (Making a Die). A die is to be made from a cube by coloring each face either
black or white. How many possibilities are there for such a die?

Solution. Let G be the symmetry group of a cube. In a symmetry, there are 6
faces that might be moved to the top. Then, there are 4 choices for how that
face might be rotated about a line through its center and the center of the cube.
We see immediately that |G| = 6 · 4 = 24. For each g ∈ G, |Fix(g)| depends on
the “geometry” of g.

Case 1: g moves no faces.
Here, g can only be 1 element, the identity. Since each face may be given either
color, |Fix(g)| = 26.

Case 2: g fixes a pair of opposite faces and rotates the remaining four by

±90◦ around a line through the center of the fixed opposite faces.

Since there are 3 pairs of opposite faces and then 2 possible rotations, g is one
of 3 · 2 = 6 elements. Since each of the fixed opposite faces can receive either
color and the other four faces must be all black or all white, |Fix(g)| = 23.
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Case 3: g fixes a pair of opposite faces and rotates the remaining four by

180◦ around a line through the center of the fixed opposite faces.

Since there are 3 pairs of opposite faces and then only one possible 180◦

rotation, g is one of 3 elements. Since each of the fixed opposite faces can
receive either color and each pair of opposite faces from the other 4 must be
both black or both white, |Fix(g)| = 24.

Case 4: g reverses the ends of each of a pair of opposite edges.

Since there are 6 pairs of opposite edges, g is one of 6 elements. Since g
reverses 3 pairs of faces, |Fix(g)| = 23.

Case 5: g rotates the cube by ±120◦ about a line through a pair of opposite

vertices.

Since there are 4 pairs of opposite vertices and then 2 possible rotations, g is
one of 4 · 2 = 8 elements. Since each vertex on the line of rotation must be the
corner of three faces of the same color, |Fix(g)| = 22.

The above cases account for all 1+ 6+ 3+ 6+ 8 = 24 elements of G. By
Theorem 7.8, the number N of possible dice is

N = 1
24

(1(26) + 6(23) + 3(24) + 6(23) + 8(22)) = 10. ■

The counting technique introduced in this section is based on a more general
method initiated by the Hungarian mathematician George Pólya (1887–1985).
That method is known as Pólya’s Method of Counting and additionally em-
ploys generating functions. The interested reader can find this developed fur-
ther in [14].

The Delayed Proofs
We close this section with the promised verifications of Theorems 7.7 and 7.8,
regarding a group G acting on a set X.

Proof of Theorem 7.7
We show that the orbits of G partition X.

Certainly, for each x ∈ X, we have x ∈ Orb(x). Thus, we need only show that
distinct orbits are disjoint. This is accomplished by showing that

∀ x, y ∈ X, if Orb(x) ∩Orb(y) �= ∅, then Orb(x) = Orb(y). (7.12)

So suppose we have some z ∈ Orb(x) ∩ Orb(y). Hence, we have g, h ∈ G such
that gx= z= hy. If w ∈ Orb(x), then we have some k ∈ G such that w= kx =
kg−1hy ∈ Orb(y). If w ∈ Orb(y), then we have some k ∈ G such that w= ky =
kh−1gx ∈ Orb(x). Hence, Orb(x) = Orb(y). �

Sketch of Proof of Theorem 7.8.
We show that the number of orbits is

N = 1
|G|
∑
g∈G

|Fix(g)|.

For each x ∈ X, let S(x) = {g : g ∈ G and gx = x}. The proof follows from a
sequence of basic facts.
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(i) ∀ x ∈ X, ∀ y ∈ Orb(x), |{g : gx = y}| = |S(x)|.
Sketch. Fix some h ∈ {g : gx = y}. The function

f : {g : g ∈ G and gx = y} → S(x)

defined by f (g) = h−1g is a bijection (with inverse f −1(g) = hg).
(ii) ∀ x ∈ X, |Orb(x)| = |G|

|S(x)| .
Sketch. Let k = |S(x)|. The function f : G → Orb(x) defined by
f (g) = gx is onto. By (i), each y ∈ Orb(x) is hit k times. Hence,
|G| = k|Orb(x)| = |S(x)||Orb(x)|.

(iii) ∀ x ∈ X, ∀ y ∈ Orb(x), |S(y)| = |S(x)|.
Sketch. This follows from (ii) and (7.12).

Let x1, x2, . . . , xN ∈ X be representatives for the N orbits. We have

∑
g∈G

|Fix(g)| =
∑
x∈X

|S(x)| =
N∑

i=1

|Orb(xi )||S(xi )|

=
N∑

i=1

|G|
|S(xi )| |S(xi )| =

N∑
i=1

|G| = N|G|.

The first equality holds since, in the leftmost sum, each x ∈ X is counted |S(x)|
times. The remaining equalities follow from conditions (ii) and (iii) above. �

SECTION 7.4 Exercises
1. List all possible colorings of a fixed equilateral triangle for which each

vertex is black, white, or gray.
2. List all possible colorings of a fixed regular pentagon for which each vertex

is either black or white.
3. Make a multiplication table for the group Z4.
4. Make a multiplication table for the group Z6.
5. Consider D4 and its multiplication table in Figure 7.6.

(a) Find f2r2. (b) Find r2 f1r3. (c) Is r1 f2 = f2r1?

6. Make a multiplication table for D3. (Use the naming conventions from
Remark 7.2.)
(a) Find f2r2. (b) Find f1r2 f2. (c) Is r1 f1 = f1r1?

Networking Computers. In Exercises 7 through 10, we are planning to net-
work together some computers in a circuit configuration, as shown in Fig-
ure 7.7. Since different computers with varying speeds and capabilities will be
used, and a computer can directly pass information only to an adjacent com-
puter, the behavior of the network will depend not only on which computers
are used but also on the order in which they are connected. However, two
networks that differ only by a rotation or are mirror images of one another will
exhibit exactly the same computational properties and are thus considered the
same network type. In each case, determine the number of possible network
types for our network of the specified size, given the computers that are
available.
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. . .

Figure 7.7 Computers Networked in a Circuit

7. There are ample supplies of 2 kinds of computers to make a circuit of
4 computers.

8. There are ample supplies of 4 kinds of computers to make a circuit of
4 computers.

9. There are ample supplies of 3 kinds of computers to make a circuit of
3 computers.

10. There are ample supplies of 3 kinds of computers to make a circuit of
5 computers.

11. A company is producing towels based on a simple design. Each towel is
formed by sewing together three equal-sized strips of colored cloth to form
a rectangle (with three horizontal stripes).

For the stripes, the company is using only the solid colors red, orange,
yellow, green, blue, and purple. Also, each towel has no particular
orientation distinguishing top from bottom or front from back.
(a) How many different towels are possible?
(b) How many do not use the same color on two adjacent strips?
(c) How many use three different colors for the strips?

12. A cheese company makes wedges of cheddar, muenster, and provolone
cheese. Each wedge is packaged in one of the 6 slots of a cheese sampler.
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Of course, the appearance of a cheese sampler is considered unchanged by
a rotation.
(a) How many different cheese samplers are possible?
(b) What if each sampler is considered the same as its mirror image?
(c) What if mirror images are considered the same and all three kinds of

cheese must be present?

Colored Blocks and Dice. In Exercises 13 through 17, we aim to make colored
blocks, some of which might be used as dice.
13. A die is to be made from a cube by coloring each face either red, white, or

blue. How many possibilities are there for such a die?
14. A triangular prism has two opposite faces in the shapes of equilateral

triangles with three square faces connecting them. How many different
ways are there to color each of the faces of a triangular prism with one of
3 colors?

15. How many different ways are there to color each of the faces of a pyramid
with square base and equilateral sides either red, blue, yellow, or green?

16. A pentagonal prism has two opposite faces in the shapes of regular
pentagons with five square faces connecting them. How many different
ways are there to color each of the faces of a pentagonal prism with one of
3 colors?

�17. How many different ways are there to color each of the faces of a tetra-
hedron either red, blue, yellow, or green?

�18. A die is to be made from an octahedron by coloring each face either black
or white. How many possibilities are there for such a die?

19. A Ferris wheel company makes 3 different types of chairs. How many
different Ferris wheels consisting of 8 chairs could be made?
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20. A baby rattle is to be made by attaching 6 colored plastic rings (each of
which can be red, yellow, blue, or green) to a large plastic ring. How many
different rattles are possible?

21. Assume that the end of a Tic-Tac-Toe game results in a 3× 3 grid
containing five X’s and four O’s. With the understanding that each
complete game might be viewed from any of the four sides of the grid,
how many different complete Tic-Tac-Toe grids are possible?

22. The front of a quilt is to be made by attaching, to a plain white back,
colored squares in the pictured four-by-four configuration.

Before sewing begins, a plan is mapped out on the grid. How many
different quilts are possible if each square can be red, white, or blue? Note
that the quilt is free to be rotated and thus has no specified top edge.

�23. A necklace with an undetectable clasp is to be made by threading 4 black
beads and 4 white beads on a loop. How many different necklaces are
possible?

�24. Each of 6 black beads and 6 white beads is to be threaded on a loop to form
a necklace. If the clasp will be undetectable, then how many possibilities
are there for this necklace?

25. A charm bracelet is to be made by attaching 5 small charms on a given
band. The jeweler has large supplies of 3 different types of charms.
(a) How many possibilities are there for this bracelet?
(b) What if the jeweler additionally attaches a diamond?
(c) What if, since a diamond has been added, the jeweler feels that at most

2 of the 3 types of charms should be used on the bracelet?
26. A merry-go-round company makes black horses, white horses, tigers, and

lions for its merry-go-rounds. This company is planning a series of
merry-go-rounds consisting of 8 animals in a cycle, with each animal
facing in the direction of rotation.
(a) How many different merry-go-rounds can there be in this series?
(b) How many use exactly one lion?
(c) How many use no lions?

Making Mobiles. For Exercises 27 through 32, a mobile is to be constructed in
the given configuration (pictured from below). The mobile is hung from a
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string attached to the central point. The symbol � marks a rotational center,
and the symbol � marks a location that must be filled with a sun, a moon, a
star, a bird, or a plane. If there are unlimited supplies of these objects, then
determine the number of different mobiles possible.
27. 28.

29. 30.

�31. �32.

33. Let G be a group acting on a set X.
Show: ∀ g ∈ G, Fix(g) = Fix(g−1).

34. Let G be a group acting on a set X.
Show: ∀ g1, g2 ∈ G, Fix(g1) ∩ Fix(g2) ⊆ Fix(g1g2).

Limited Computer Networks. In Exercises 35 through 38, we are networking
computers in a circuit configuration, as in Exercises 7 through 10. However,
here there are limited numbers of various types of computers available. In each
case, determine the number of possible network types for our network of the
specified size, given the computers that are available.

�35. There are 4 each of 3 kinds of computers to make a circuit of 12 computers.
�36. There are 2 each of 4 kinds of computers to make a circuit of 8 computers.
�37. There are 6 each of 2 kinds of computers and 2 more of a third kind with

which to make a circuit of 12 computers. There will be two computers left
over.

�38. There are 4 each of 2 kinds of computers and 2 more of a third kind with
which to make a circuit of 8 computers. There will be two computers left
over.
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�39. There are 4 black and 4 white squares available to form the sides of a box,
which will be used as a decorative piece of furniture. How many different
possibilities are there for this box?

�40. There are 3 black and 3 white equilateral triangles available to form the
sides of a tetrahedron, which will be filled with sand and used as a paper
weight. How many different possibilities are there for this paper weight?
See the picture in Exercise 17.

7.5 Combinatorial Arguments
There are many beautiful combinatorial identities. For example, we have already
encountered Pascal’s identity and several identities that are consequences of
the Binomial Theorem. Combinatorial identities can be useful tools for solving
counting problems or for simplifying their solutions. However, here we turn
things around and use counting techniques to prove combinatorial identities.
This type of proof is called a combinatorial proof.

In this section, we justify identities that have already been proved or could be
proved by techniques presented earlier. Our interest is in presenting alternative
proofs that can sometimes be very efficient, are often very beautiful, and always
provide deeper insight into the identities themselves.

Our first example revisits Pascal’s identity.

EXAMPLE 7.19 Show: For each 1 ≤ k ≤ n− 1,
(n

k

) = (n−1
k−1

)+ (n−1
k

)
.

Proof
The binomial coefficient

(n
k

)
counts the number of ways to choose a subset of

size k from the set {1, 2, . . . , n}. Another way to count this involves considering
whether or not the element n is chosen. Figure 7.8 illustrates our strategy when
n = 5 and k = 3.

{1, 2, 5} {1, 3, 5} {1, 4, 5} | {1, 2, 3} {1, 2, 4}
{2, 3, 5} {2, 4, 5} {3, 4, 5} | {1, 3, 4} {2, 3, 4}(4

2

)
subsets contain 5

(4
3

)
subsets exclude 5

Figure 7.8
(5

3

)
subsets of {1, 2, 3, 4, 5}

The number of ways to choose a subset of size k that contains the element
n is
(n−1

k−1

)
, since the remaining k − 1 elements must be chosen from the set

{1, 2, . . . , n− 1} of n− 1 elements. The number of ways to choose a subset of
size k that does not contain the element n is

(n−1
k

)
. In this case, all k elements

must be chosen from the n− 1 element set {1, 2, . . . , n− 1}.
By the Addition Principle, since each subset of size k either does or does not

contain the element n, the number of ways to choose a subset of size k is(
n− 1
k − 1

)
+
(

n− 1
k

)
. (7.13)

Since
(n

k

)
and (7.13) both count the same thing, they must be equal. �
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The basic approach of a combinatorial proof is to create a counting problem,
to solve that problem in two ways, and to conclude that the two solutions must
be equal.

EXAMPLE 7.20 Show: ∀ n ≥ 0,
n∑

k=0

(
n

k

)
= 2n.

Proof
We give two proofs.

(a) Consider the number of ways to form a subset of a set of size n. Since a
subset is formed by specifying whether or not each of the n elements is
in the subset, there are 2n subsets. That is, each subset of {x1, x2, . . . , xn}
can be characterized by a binary sequence

in, out, out, in, in, . . . , out

specifying which elements are in the subset and which are out. Alter-
natively, we can separate the subsets according to their size. For each
0 ≤ k ≤ n, the number of subsets of size k is

(n
k

)
. Hence, the total number

of subsets is
∑n

k=0

(n
k

)
. It therefore follows that

∑n
k=0

(n
k

) = 2n.
(b) Consider the downward paths through Pascal’s triangular grid counted

in Example 6.41.

...

Such a path is characterized by a binary sequence of turns to the right
and to the left. We saw in Example 6.41 that the number of paths from(0

0

)
to
(n

k

)
is given by

(n
k

)
. Since the nth row consists of the entries(

0
0

)
, . . . ,

(
n

k

)
, . . . ,

(
n

n

)
,

the total number of paths from
(0

0

)
to the nth row is given by

∑n
k=0

(n
k

)
.

Alternatively, since each path is characterized by a binary sequence of
length n (of right and left turns), there are 2n such paths. We conclude
that

∑n
k=0

(n
k

) = 2n. �

The assertion in Example 7.20 was proved by induction in Example 4.26 of
Section 4.4. However, once one gains comfort with combinatorial proofs, the
proofs in Example 7.20 have to be seen to be more elegant!

EXAMPLE 7.21 Show: ∀ n ≥ 0,
n∑

k=0

(
n

k

)
2k = 3n.

Proof
There are 3n base-3 sequences of length n. Separate them according to the
number of 0’s they contain. For each 0≤ k ≤ n, the number of base-3 sequences
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of length n with exactly k entries that are not 0’s is
(n

k

)
2k . This follows since

there are
(n

k

)
ways to pick the k entries that will not be 0’s and 2k ways to fill

those entries with 1’s or 2’s. Hence, the total number of base-3 sequences of
length n is

∑n
k=0

(n
k

)
2k , which must equal 3n. �

Note in Example 7.21 that the choice of k entries to not be 0’s can also be
thought of as a choice of n− k entries to be 0’s. Of course, the identity(

n

k

)
=
(

n

n− k

)
(7.14)

gives that the number of such choices is the same. From another point of view,
the fact that the number of such choices must be the same gives (7.14).

EXAMPLE 7.22 Show: ∀ n ≥ 0,
n∑

k=0

(
n

k

)2

=
(

2n

n

)
.

Proof
Our combinatorial argument shows the equivalent identity

n∑
k=0

(
n

k

)(
n

n− k

)
=
(

2n

n

)
.

We consider a counting problem of the type encountered in Example 6.40.
Suppose we have an (n+ 1) by (n+ 1) square grid of points like the one in Fig-
ure 7.9, and we are interested in paths from S to F that move only to the right
or down (as we face the grid). By the arguments in Example 6.40, the number
of such paths is

(2n
n

)
.

d0

d1

d2

dn

. . 
.

S

F

Figure 7.9 Routes Through a Square Grid

Now separate the paths according to which of the points d0, d1, . . . , dn in
the off diagonal is encountered. For each 0 ≤ k ≤ n, the number of paths that
pass through dk is

(n
k

)( n
n−k

)
. Since each path goes through exactly one of the off

diagonal points, the total number of paths is
n∑

k=0

(
n

k

)(
n

n− k

)
(7.15)

Hence, the sum in (7.15) must equal
(2n

n

)
. �

College basketball fans can easily remind themselves each March of the fol-
lowing result and proof, in the case that n = 6.
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EXAMPLE 7.23 Show: ∀ n ≥ 1,
n−1∑
k=0

2k = 2n − 1.

Proof
Consider a binary tournament of the type used for the NCAA basketball
tournament. That is, the tournament consists of 2n teams and has n rounds of
games. In each round, the teams are paired off, and only the winner from each
pair advances to the next round. Before the tournament starts, the teams are
paired off for the first-round matches, and this determines which winners
will play each other throughout the tournament. The case in which there are
4 teams and thus 2 rounds of games is illustrated in Figure 7.10.

Team 1

Team 4

Champion

Winner of 1 vs. 4

Round 1 Games Round 2 Games

Winner of 2 vs. 3

Team 2

Team 3

Figure 7.10 Four-Team Tournament Bracket

As the tournament is played, the actual winning teams are listed on the
appropriate line of the bracket. We count here the total number of ways to fill
in the winning teams.

For each 1 ≤ k ≤ n, the completion of round k yields 2n−k winners. Of
course, the round-n winner is declared the champion. Therefore, there are a
total of

n∑
k=1

2n−k =
n−1∑
k=0

2k

victories throughout the tournament. Of course, some teams are winners more
than once.

A faster way to count the number of victories is to instead count the num-
ber of losses. Since each game has one winner and one loser, these counts are
the same. Since the tournament starts with 2n teams and all but the ultimate
champion are losers of exactly one game, there are 2n − 1 losses. The number of
victories must also be 2n − 1 and therefore equals

∑n−1
k=0 2k . �

The alternating sum in our final example of this section naturally lends itself
to an argument involving the Principle of Inclusion-Exclusion.

EXAMPLE 7.24 Show: ∀ n ≥ 1,
n∑

k=1

(−1)k−1
(

n

k

)
2n−k = 2n − 1.
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Proof
Consider a sequence of n coin flips. We count the number of sequences that
contain at least one head. Of course, since only the sequence consisting entirely
of tails does not contain at least one head, there are 2n− 1 sequences containing
at least one head.

We could also count this using the Inclusion-Exclusion Principle. For each
1 ≤ k ≤ n, let Ak be the set of those sequences that have a head on toss k.
Hence, A1 ∪ A2 ∪ · · · ∪ An is the set of sequences containing at least one head.
For each 1 ≤ j1 < j2 < · · · < jk ≤ n, the intersection Aj1 ∩ Aj2 ∩ · · · ∩ Ajk is the
set of sequences with heads on each of the k flips j1, j2, . . . , jk . Hence,

|Aj1 ∩ Aj2 ∩ · · · ∩ Ajk | = 2n−k .

Since Sk =
(n

k

)
2n−k , we get

|A1 ∪ A2 ∪ · · · ∪ An| =
n∑

k=1

(−1)k−1
(

n

k

)
2n−k .

Of course, this sum must therefore be equal to 2n − 1. �

SECTION 7.5 Exercises

1. Show: ∀ n, k ≥ 0,
k∑

i=0

(
n− i − 1

k − i

)
=
(

n

k

)
.

Hint: For each 0 ≤ i ≤ k, separate out those subsets of size k that contain
1, 2, . . . , i but not i + 1.

2. Use a subset argument to show: ∀ n ≥ 0,
n∑

k=0

(
n

k

)2

=
(

2n

n

)
.

Hint: Separate subsets of {1, 2, . . . , 2n} by the size of their intersection with
{1, 2, . . . , n}.

3. Show: ∀ n ≥ 2 and 2 ≤ k ≤ n− 2,
(n−2

k−2

)+ 2 · (n−2
k−1

)+ (n−2
k

) = (n
k

)
.

Exercise 2 in Section 4.6 requested a computational proof.
4. Show: ∀ n ≥ m ≥ 1 and 1 ≤ k1, k2 with k1 + k2 + · · · + km = n, that( n

k1,k2,...,km

) = ( n−1
k1−1,k2,...,km

)+ ( n−1
k1,k2−1,...,km

)+ · · · + ( n−1
k1,k2,...,km−1

)
.

5. Show: ∀ n ≥ 0,
n∑

i=0

(
2n

i

)(
n

i

)
=
(

3n

n

)
.

Hint: Mimic Example 7.22 using a rectangular grid.

6. Show: ∀ m, n ≥ 0 and 0 ≤ k ≤ m, n,
k∑

i=0

(
m

i

)(
n

k − i

)
=
(

m+ n

k

)
.

Hint: Consider paths in Pascal’s triangle.

7. Show: ∀ n ≥ 1, 2
n−1∑
k=0

3k = 3n − 1.

Hint: Imagine a game in which 3 teams play and one is declared the
winner. (For example, Canadian doubles is a tennis game designed for
3 players.) Consider a tournament for 3n teams. There will be twice as
many losses as victories.



408 P A R T II ■ Combinatorics

8. Show: ∀ n ≥ 1, 3
n−1∑
k=0

4k = 4n − 1.

9. Show: ∀ n ≥ 1,
n∑

i=1

(−1)i−1
(

n

i

)
3n−i = 3n − 2n.

Hint: Use Inclusion-Exclusion to count the number of base-3 sequences of
length n that contain at least one 2.

10. Show: ∀ n ≥ 1,
n∑

k=1

(−1)k−1
(

n

k

)
4n−k = 4n − 3n.

11. Show: ∀ n ≥ 1,
n∑

k=1

k

(
n

k

)
= n2n−1.

Hint: From n players, consider choosing a nonempty team (of any size)
with a team captain.

12. Show: ∀ n ≥ 1,
n∑

k=1

k2
(

n

k

)
= n(n− 1)2n−2 + n2n−1.

Hint: From n players, consider choosing a team with a team captain and a
van driver, noting that the captain might also be the van driver.

13. Show: ∀ n ≥ 1, (2n
n )
2 = (2n−1

n−1

)
. Hint: If you play n-on-n basketball, then how

many ways can you pick your team?

14. Show: ∀ n ≥ 1, ( 3n
n,n,n)
3! = ( 3n−1

n−1,n,n)
2 .

15. Prove: For all integers n ≥ 0, 3n=
∑

0 ≤ k1, k2, k3 ≤ n
k1 + k2 + k3 = n

(
n

k1, k2, k3

)
.

Hint: Consider base-3 sequences.

16. Prove the Binomial Theorem ∀ n ∈ Z+, (a + b)n =
n∑

i=0

(
n

i

)
an−i bi .

Hint: Before like terms are combined, the n-fold product (a + b)(a + b) · · ·
(a + b) has 2n monomials (for example, for n = 5, one would be baaba =
a3b2). For each i , how many equal an−i bi (for example, abbaa = a3b2 =
baaba )?

�17. Consider paths through an (a + 1) by (b + 1) by (c + 1) rectangular grid of
points that start at the top back left corner S, end at the bottom front right
corner F , and only move right, down, or frontward at each step.

S

Fa 
 1

b 
 1

c 
 1

(a) How many such paths are there from S to F ?
(b) Use this application to prove: ∀ i, j, k ∈ Z+,

if n = i + j + k, then
( n

i, j,k

) = ( n−1
i−1, j,k

)+ ( n−1
i, j−1,k

)+ ( n−1
i, j,k−1

)
.
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�18. Show: ∀ n ∈ Z+,∑
0 ≤ k1, k2, k3 ≤ n
k1 + k2 + k3 = n

(
n

k1, k2, k3

)(
2n

n− k1, n− k2, n− k3

)
=
(

3n

n, n, n

)
.

Hint: Use the idea in Exercise 17.

19. Show: ∀ n ≥ 2,
n−1∑
i=1

(i · i !) = n!− 1.

Hint: Count permutations.

20. Show: ∀ n ≥ 1,
( 2n

2,2,...,2)
n! = (2n− 1)(2n− 3) · · · 3 · 1.

Hint: Count the number of ways to form n chess matches from 2n players.

21. Show: ∀ n ≥ 1,
∑n

k=1
1
2k = 1− 1

2n .
Hint: If a coin is tossed n times, then the event that a head is obtained can
be broken into cases according to the toss in which the first head occurs.

�22. Show: ∀n ∈ Z+, 2n · 3n = 6n.
Hint: For s = 2, 3, 6, let As be the set of n-digit base-s numbers, and give a
bijection A2 × A3 → A6.

�23. Prove that, given any 6 people, there are either 3 of them who have met
each other before or 3 who have never met.

24. Show: ∀ k ∈ Z+, any product of k consecutive integers must be divisible
by k!.
Hint: Let n be the largest integer in the string of k consecutive integers.

For Exercises 25 through 28, for each n ≥ 3, let Tn be the number of triangula-
tions of a fixed regular n-gon that do not introduce new vertices. For example,
T5 = 5, as shown.

25. Find T4. 26. Find T6.
�27. Let n ≥ 3. (a) Show: Tn counts the number of ways to parenthesize a

product of n− 1 terms. Hint: a ((bc)d) corresponds to

b c

a d

(b) Conclude from the assertions in Exercise 45 from Section 4.3 that
Tn = 1

n−1

(2n−4
n−2

)
.

�28. Show: ∀ n ≥ 3, (n− 1)Tn = 2(2n− 5)Tn−1.
Hint: Map a triangulation of an n-gon with a non-base outer edge selected
to a triangulation of an (n− 1)-gon with an edge selected and an end of
that edge specified. For example,
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���

Base

and
���

Base

Magic Tricks. Although Exercises 29 through 32 do not ask for combinatorial
proofs per se, they do each ask for a combinatorial explanation of what is being
described.
29. Here is a fun task to give a young child, because it will keep the child busy

for a while.
On an 8× 8 chess board, place coins in the upper-left and lower-right
corners. Assume that a domino can be placed on the board to cover
exactly two adjacent squares. Ask the child to cover the remainder of
the board with dominoes.

Explain why this task cannot be completed.
30. The following card trick has been performed on television by the famous

magician David Copperfield. Place 9 cards in a 3× 3 grid pattern. We shall
refer to each position by ci, j for some 1 ≤ i, j ≤ 3. A player will be allowed
to “walk” over the cards by making horizontal or vertical moves of one
step. Ask the player to start on any of the four corners and then to move
4 steps. Remove card c1,2. Ask the player to then move 3 steps among the
remaining cards. Remove c1,3 and c3,1. Ask the player to then move 2 steps
among the remaining cards. Remove c1,1 and c3,3. Ask the player to then
move 1 step among the remaining cards. Remove all but c2,2. This is where
the player will be. Moreover, if an entire television audience is playing,
then this is where they all will be. Explain why.

31. For a simple card trick, deal 27 cards face up into 9 rows of 3 cards. Keep
the cards face up at all times. Be sure to deal each row from left to right
and to place the cards in row i + 1 on top of the cards in row i so that
the denominations and suits of all cards remain visible. Ask a player to
secretly pick one of the cards and to announce only the column in which
it appears. Slide each of the columns into a pile and stack the piles so that
the selected one is on top. Now deal the cards into 9 rows of 3, as before.
Again have the player announce the column in which the selected card
appears, and stack the piles so that the selected one is on top. Deal the
cards into 9 rows of 3 again, and have the player announce the column in
which the selected card appears. The selected card should be the first card
in that column. Explain why this is so.

32. Simple mathematics can be used to fake clairvoyance. On four index cards,
write the numbers

1 3 5 7 9 11 13 15
2 3 6 7 10 11 14 15
4 5 6 7 12 13 14 15
8 9 10 11 12 13 14 15

so that each row appears on exactly one card. Ask a player to secretly pick
an integer from 0 to 15 and to announce each of the four cards containing
that number. This information is sufficient to quickly determine that
number. Explain why.
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CHAPTER 7 Review Problems
1. How many possible 8-digit (0 to 9) license plates exclude at least one of the

digits 0, 3, 6, or 9?
2. Compute φ(9100) using the Principle of Inclusion-Exclusion.
3. How many of the integers from 1 to 4000 are divisible by at least one of 7,

11, or 13?
4. Since a flush is a poker hand containing just one suit, one might call a hand

containing all suits an anti-flush. What is the probability that a 5-card hand
will contain at least one card from each suit?

5. A cup of Fourth of July holiday candies contains 6 red, 7 white, and 8 blue
candies. If 5 are randomly selected, then what is the probability that at
most two colors will be represented?

6. Mrs. Hetrick returned from the produce market with a bag containing
8 apples, 5 bananas, and 7 oranges. She then asked her son Luke to use 6 of
these pieces of fruit to make a fruit basket. While Mrs. Hetrick was busy
doing other errands, she realized that she had neglected to mention to
Luke that he should include in the basket at least one of each type of fruit.
How many possible selections of 6 pieces of fruit might Luke make that
will contain at least one of each type?

7. While at a club, 4 women left their drinks on the table so that they could
dance. When the women returned to their table, each had forgotten which
drink was hers, so each of them randomly retrieved one. What is the pro-
bability that no woman got her original drink?

8. Compute
( 6

2,1,3

)
.

9. A researcher is studying the significance of the DNA strand

TGTATACTGT.

She wants to know what characteristics are special to this particular
ordering and what might be preserved in another sequence of length 10
containing the same numbers of each nitrogen base. How many possible
DNA strands of length 10 contain 1 cytosine, 2 guanine, 5 thymine, and
2 adenine nitrogen bases?

10. A witness to a drive-by shooting remembers a partial license plate on the
vehicle. She remembered that the plate had exactly 3 fives and 3 sevens.
The police are confident that the plate must have had 8-digits, as is stan-
dard in their state. To how many possibilities does this information narrow
down the license plate?

11. A chemistry teacher is trying to decide how to break his class into groups
for a lab the next day. There are 18 students in the class, and the teacher is
not even sure what group sizes to use. How many ways are there to form
(a) a group of size 6, one of size 5, one of size 4, and one of size 3?
(b) three groups of size 6?
(c) two groups of size 4 and two of size 5?

12. Expand (x + y+ z+ w)2 using the Multinomial Theorem.
13. What is the coefficient of x20 y50z10 in (3x − 2y+ z)80?
14. What is the coefficient of x4 y5z6 in (1+ x + y+ z)20?
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15. Find the coefficients in the power series
(1− x + x2 − x3 + · · ·)(1+ x2 + x4 + x6 + · · ·).

16. For each i ≥ 0, determine the number of ways ci of obtaining i¢ if there are
2 quarters, 4 dimes, and 2 nickels. Ways are distinguished by how many of
each type of coin they contain.

17. How many possibilities are there for a snack of 5 candies taken from 5 red,
3 white, and 4 blue candies? We distinguish snacks solely by the numbers
of candies of each color that they contain.

18. Count all integer solutions a , b, c, d to the equation a + b + c + d = 12,
such that 0 ≤ a ≤ 2, 1 ≤ b ≤ 4, 2 ≤ c ≤ 6, and 3 ≤ d ≤ 8.

19. A grocery store is nearly out of apples and has only 7 left. However, the
store has a huge supply of bananas and oranges available. A customer has
requested a fruit basket consisting of 8 pieces of fruit. If fruit baskets are
distinguished by how many of each type of fruit they contain, then how
many possibilities are there for what the store could provide?

20. What is the coefficient of x20 in 1
(1−x)10 ?

21. What is the coefficient of x9 in x2+3x4−x6

(1−x)5 ?

22. How many possibilities are there for a collection of 50 balls taken from
5 red, 60 blue, 50 yellow, and 70 green balls? We distinguish collections
solely by the numbers of balls of each color that they contain.

23. In the group D6 let f be the reflection about the pictured line, and find
f ◦ r2 ◦ f .

1 2

5 4

36

24. A programmer wishes to build a computer network consisting of 6 compu-
ters connected in a circuit configuration, as shown in Exercise 23. At work,
she has ample supplies of two types of computers available. How many
different network types are possible for her?

25. A Ferris wheel company makes 5 different types of chairs. How many
different Ferris wheels consisting of 9 chairs could be made? Each chair
will face forward.

�26. A company that makes educational toys is planning to sell colored blocks.
Each block is to be made from a cube by coloring each face either red, blue,
yellow, or green. Moreover, the company wants to sell the blocks in a bag
containing exactly one of each possible block, within this coloring scheme.
How many blocks will the bag contain?

27. A quilt is to be designed with a back that is solid white and a front that
forms a 3-by-3 grid.
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If each square on the grid must be colored red, yellow, or blue, then how
many different quilts might be designed?

�28. Let G be a group acting on a set X.
Show: ∀ g1, g2 ∈ G, if Fix(g2) = X then Fix(g2g1) = Fix(g1).

�29. A mobile is to be constructed in the pictured configuration. The mobile is
hung from a string attached to the central point. The symbol � marks a
rotational center, and the symbol � marks a location that must be filled
with a sun, a moon, a star, or a cloud. Determine the number of different
possible mobiles.

�30. A child has 3 red, 3 yellow, and 3 blue beads with which to make a neck-
lace, the beads of which will be free to rotate. How many different 9-bead
necklaces could this child make?

31. Prove Pascal’s Identity
(n+1

k

) = ( n
k−1

)+ (n
k

)
by interpreting binomial coef-

ficients as numbers of paths in Pascal’s triangular grid.

32. Show: ∀ 0 ≤ k ≤ n,
n−1∑

i=k−1

(
i

k − 1

)
=
(

n

k

)
.

Hint: Separate out the subsets of size k from {1, 2, . . . , n} for which i + 1 is
the largest item selected.

�33. Show: ∀ 0 ≤ k ≤ n,
k∑

i=0

(
2n

i

)(
n

k − i

)
=
(

3n

k

)
.

34. Show that the number of ways to balance n pairs of parentheses equals the
number of (down and right, only) paths from S to F in an n+ 1 by n+ 1
square grid that never dip below the diagonal.
Hint: ()(()) corresponds to

S

F

35. Show: ∀ n ≥ 1,
∑

k even,
0 ≤ k ≤ n

(
n

k

)
=

∑
k odd,

0 ≤ k ≤ n

(
n

k

)
.

Hint: Define a function from the subsets of {1, . . . , n} of even cardinality to
those of odd cardinality by mapping each subset A to the subset A� {n}.

36. What is the coefficient of x205 in (1+ x + x2 + · · · + x99)3?
37. What is the coefficient of x3 in (1+ x + x99)205?



414 P A R T II ■ Combinatorics

38. The game of Bridge starts by dealing 13 cards to each of 4 players labeled
North, South, East, and West. How many different initial states are there
for a Bridge game?

�39. How many different 8-bead necklaces can be made using 2 red, 2 blue, and
4 white beads?

40. A game at a charity fundraiser involves selecting colored balls from a bag.
The bag contains 10 red, 8 white, and 12 blue balls, and 9 are randomly
selected. Let N be the number of different outcomes possible, where we
distinguish outcomes solely by the numbers of balls of each color that they
contain.

(a) Find N.
(b) A contestant wins the game by selecting 3 balls of each color. What is

the probability of winning?

(c) Explain why the probability of winning is not 1
N .

41. Show: ∀ k ≥ 12,
(k+3

k

)− 4
( k

k−3

)+ 6
(k−3

k−6

)− 4
(k−6

k−9

)+ ( k−9
k−12

) = 0 by using the

identity (1+ x + x2)4 = (1− x3)4 1
(1−x)4 . Hint: Consider coefficients.

�42. A quilt is to be made with the back solid white and the front a 4-by-4 grid
using 4 red, 4 yellow, 4 blue, and 4 green squares.

(a) How many ways are there to make such a quilt and hang it on the
wall? Note that different orientations matter.

(b) How many possibilities are there for this quilt? Here it may be freely
rotated.

43. How many possibilities are there for a purchase of 8 balloons from a man
selling 6 red, 4 white, and 5 blue balloons, if we must purchase at least one
balloon of each color? We distinguish purchases solely by the numbers of
balloons of each color that they contain.

44. How many solution triples (a , b, c) with a , b, c ∈ Z+ are there for the
equation 2a + 3b + 4c = 25?
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Basic Graph Theory

GRAPH THEORY might better be named network theory. It is the study of structures

that model such networks as computer networks and transportation networks. As a

model for a computer network, a graph is built from two kinds of objects. The computers

are represented by points, and each cable that provides a direct communication link

between a pair of computers is represented by a curve. Adopting terminology from ge-

ometry, we call the points vertices and the curves edges. Very simply, a graph consists

of a set of vertices, a set of edges, and a map that specifies the pair of vertices linked

by each edge.

After providing some motivating examples, the formal definitions, and the basic

terminology of graphs, we present several fundamental graphs. Then we discuss when

two graphs should be considered equivalent and how to justify when they are not. Graph

operations reminiscent of set operations are also studied. In the final section, we con-

sider variations that result from assigning a particular direction to each edge. This leads

to a discussion of Markov chains. Because graphs can be used to model many kinds of

real-world problems, applications are explored throughout the chapter.

8.1 Motivation and Introduction
The term graph typically brings to mind the graph of a function y = f (x). How-
ever, a different notion of graph is considered here. Before giving a precise def-
inition, we start with some examples that motivate our study.

Motivation
Our introduction to graph theory begins with the Ko··nigsberg Bridge Problem;
this problem motivated the birth of the subject. In 1736, Ko··nigsberg was a city on
the Pregel River in Prussia and was renowned for its beautiful bridges.
(Ko··nigsberg is now Kaliningrad, Russia.) Figure 8.1 depicts the layout of
Ko··nigsberg, with the the bridges labeled 1 through 7 and the land masses la-
beled A through D.

The people of Ko··nigsberg considered the following question.

EXAMPLE 8.1 (Ko··nigsberg Bridge Problem). Is it possible, starting from some place in
Ko··nigsberg, to go for a walk that passes over each bridge exactly once and
returns to the starting place? ■

415
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A

B C

D

1

3

4

5 6
7

2

Figure 8.1 The Seven Bridges of Ko··nigsberg

In 1736, the Swiss mathematician Leonard Euler (1707–1782) provided a
clever solution to the Ko··nigsberg Bridge Problem and others like it, by analyz-
ing it in terms of the diagram in Figure 8.2. There, each land mass is represented
by a point •, and each bridge is represented by a curve joining the appropriate
points. The attached labels correspond to the labels from Figure 8.1. A desired
walk through Ko··nigsberg could be appropriately traced in Figure 8.2. However,
one does not exist. An exhaustive argument using Figure 8.2 to show that no
such walk exists is outlined in the exercises. A much more elegant proof is given
in Section 9.2, after Euler’s Theorem is presented.

B

1

4

6

5

3

7

2

A

D

C

Figure 8.2 Ko··nigsberg Bridge Graph

Figure 8.2 (without the labels) depicts our first example of a graph. Such dia-
grams arise naturally in many contexts, and often the points represent locations
or objects. The next example is motivated by the type of diagram one typically
sees in the complimentary magazine provided by an airline in the back-of-seat
pockets.

EXAMPLE 8.2 (Airline Service). Figure 8.3 is a map displaying the direct round-trip flights
between major cities offered by a particular airline. The essential information

Chicago

Houston

New York

London

RomeLos Angeles
Honolulu

Figure 8.3 In-Flight Magazine Ad
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Chicago

Houston

New York

London

Rome

Los AngelesHonolulu

Figure 8.4 Direct Flights Graph

being conveyed by that map is displayed more efficiently in the graph in
Figure 8.4. There, points represent cities (or airports) and each curve represents
the existence of a two-way direct flight between a pair of cities. To plan a trip
involving these cities, one needs to determine which direct flights to take.
Costs and lengths of these flights may also need to be considered. Section 10.3
addresses problems of this sort. ■

In our next motivating example, the points in our graph do not represent
physical locations.

EXAMPLE 8.3 (Scheduling Conflicts). Six classes (Astronomy, Biology, Calculus, Discrete
Math, English Composition, and French) need to schedule study group
sessions. In the displayed table, an X denotes that the two different classes
corresponding to that row and column have a student in common.

Astr. Bio. Calc. Discr. Eng. Fr.

Astr. X X X
Bio. X X X X
Calc. X X X
Discr. X X X
Eng. X X X X X
Fr. X X

Figure 8.5 then depicts the potential scheduling conflicts. There, each class is
represented by a point, and each curve joins a pair of points corresponding
to classes with students in common. Section 9.5 discusses how the graph in
Figure 8.5 can be used to find an appropriate schedule.

Bio.Astr.

Calc.

Discr.Eng.

Fr.

Figure 8.5 Study Scheduling Graph ■

EXAMPLE 8.4 (Networking Computers). Five computers, labeled 1, . . . , 5, have been net-
worked together to complete a job in parallel by passing tasks among the
computers. In Figure 8.6, a curve between a pair of computers represents
the fact that the two computers can directly pass a task between them. The
communication links are two-way, so either computer can assign a task to, or
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1 2

3 4 5

Figure 8.6 Task Passing in a Computer Network

1 2

3 4 5

Figure 8.7 Computer Network Graph

receive a task from, the other computer. The loop joining computer 5 to itself
denotes that this computer may assign a task to itself. Figure 8.7 displays a
graph that reflects the task-passing capabilities of this computer network. Each
computer is represented by a point, and each curve represents the ability to
pass a task directly between the computers reflected by its endpoints. ■

Introduction
Informally, we have seen some examples of graphs in Figures 8.2, 8.4, 8.5, and
8.7. From those examples, we see that the two important features of a graph are
the points and the curves joining them. Adopting terminology from geometry,
we shall call the points vertices and the curves edges. For the most part, each
edge we have seen joins two distinct vertices. Thus, it is natural to assign such
an edge e to the 2-element set {u, v} containing this pair of vertices. However, we
must take care to allow the possibility that two edges may join the same pair of
vertices, as in the Ko··nigsberg Bridge Graph in Figure 8.2. Also, we must handle
the case in which an edge joins a vertex to itself, as in the Computer Network
Graph in Figure 8.7. In that case, we assign such an edge e to the 1-element set
{u} containing the vertex joined to itself by e. Letting V denote the set of vertices,
we see that each edge is assigned to either a 1-element or a 2-element subset of V.

For each natural number k, it will be convenient to denote the set of k-
element subsets of a set V by Pk(V). Note, in particular, that each element of
P1(V)∪P2(V) may be written in the form {u, v} for some u, v ∈ V; if u = v, then
{u, v} = {u} ∈ P1(V), and otherwise {u, v} ∈ P2(V). Letting E denote the set of
edges, we see that each e ∈ E must therefore be assigned to a set of the form
{u, v}, where u, v ∈ V are the vertices we understand to be joined by e.

We are now ready to formally define a graph G in terms of a vertex set V,
an edge set E , and a function ε specifying the vertices joined by each edge.
Despite the formalism required for this, it is nonetheless important to keep in
mind our informal understanding of the structure of a graph, as developed in
Examples 8.1 through 8.4.
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DEFINITION 8.1

(a) A graph G consists of a pair of sets VG and EG together with a function
εG : EG → P2(VG ) ∪ P1(VG ). We write G = (VG , EG ), and, rather than
writing εG (e) = {u, v}, we write e �→ {u, v}. An element of VG is called a
vertex of G, and an element of EG is called an edge of G. When a particular
graph G is clear in context, the subscripts are dropped from V, E , and ε.

(b) If e �→ {u, v}, then we say that the vertices u and v are the endpoints of the
edge e, that u and v are adjacent, and that v is a neighbor of u. If two edges
have an endpoint in common, then the edges are said to be incident. We also
say that an edge is incident with its endpoints.

(c) An edge e such that e �→ {v}, for some v ∈ V, is called a loop; it has a single
endpoint. Two or more edges assigned the same set of endpoints are called
multiple edges (or parallel edges).

(d) A simple graph is a graph G = (V, E) that has no loops and no multiple
edges.

In the Computer Network Graph G in Figure 8.7, the vertex set V is the set
of computers {1, 2, 3, 4, 5}, and the edge set E is the set of direct links enabling
the passing of a task from one computer to another. That is, two computers are
adjacent in G if and only if a task can be directly passed between them. At vertex
5, as shown on the left-hand side of Figure 8.8, G has a loop, reflecting the fact
that computer 5 may assign a task to itself. Because of the presence of that loop,
G is not a simple graph.

5

Loop

1

2

Multiple edges

A

B

Figure 8.8 Features Not in a Simple Graph

In the Ko··nigsberg Bridge Graph in Figure 8.2, the vertex set V is the set of
land masses {A, B, C, D}, and the edge set E is the set of bridges {1, 2, 3, 4, 5, 6, 7}.
Thus, the endpoints of a bridge are the land masses it joins. Joining vertices A
and B, as shown on the right-hand side of Figure 8.8, G has multiple edges,
reflecting the multiple bridges joining land masses Aand B. Because of the pres-
ence of multiple edges, G is not a simple graph.

The Direct Flights Graph in Figure 8.4 and the Study Scheduling Graph in
Figure 8.5 are simple graphs. Both contain neither loops nor multiple edges, as
can be seen in their pictures.

Having given the formal definition of a graph and interpreted our earlier
examples in terms of it, we should also understand how a graph is presented
directly in terms of Definition 8.1. Thus, we consider some examples presented
via a vertex set V, an edge set E , and an assignment of edges to their endpoints.
Throughout this book, only finite graphs G = (V, E) are considered. That is, V
and E are finite.

Remark 8.1 When a graph G = (V, E) has no multiple edges, we
typically regard E as a subset of P1(VG) ∪ P2(VG) and understand the
assignment of endpoints to be given by the identity ε({u, v}) = {u, v}.
That is, when E ⊆ P1(VG) ∪ P2(VG), we shall understand that each edge
is the set {u, v} of its endpoints. In particular, this is done for simple
graphs.
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EXAMPLE 8.5 In each case below, G = (V, E) is an example of a graph.

(a) Let V = {1, 2, 3, 4, 5, 6, 7} and
E = {{1, 2}, {2, 3}, {1, 4}, {2, 5}, {4, 5}, {4, 6}, {5, 6}, {5, 7}}.

1

4 5

2

6

3

7

We identify each edge here with a pair of vertices. This is a simple
graph, since it contains neither loops nor multiple edges.

(b) Let V = {1, 2, 3, 4, 5, 6, 7} and
E = {{1, 2}, {1, 4}, {2, 5}, {4, 5}, {4, 6}, {5, 6}, {3, 7}}.

1

4 5

2 3

6 7

This is a simple graph. Note that this particular graph comes in multiple
pieces, a notion we shall formalize in Definition 8.5.

(c) Let V = {1, 2, 3, 4, 5} and
E = {{1, 2}, {1, 5}, {1, 3}, {2, 4}, {2, 5}, {3, 4}, {4, 5}, {5}}.

3 4 5

a

f g h

b d ec

21

In the picture, we have a = {1, 2}, b = {1, 5}, c = {1, 3}, d = {2, 4},
e = {2, 5}, f = {3, 4}, g = {4, 5}, and h = {5}. Of course, this is same as
the Computer Network Graph in Figure 8.7. Because of the loop edge h,
it is not a simple graph.

(d) Let V = {1, 2, 3, 4, 5} and E = {a , b, c, d, e, f, g, h}, where
a �→ {1, 2}, b �→ {1, 2}, c = {1, 3}, d = {2, 4}, e = {2, 5},
f = {3, 4}, g = {4, 5}, h �→ {5}, and i �→ {5}.

ih
3 4 5

a

f g

b
d ec

21

Here, we appreciate the value of the notation �→ assigning endpoints to
an edge. Both edges a and b need the same endpoints, but we want a
and b to be distinct. The same is true of h and i . Because of these
multiple edges, the graph is not simple. ■
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We have presented several drawings of graphs so far. What properties must
such a drawing have? Note in the picture of the graph in Example 8.5(c) that
two edges may cross at a point that does not represent a vertex. The formal
restrictions on a drawing are specified as follows.

DEFINITION 8.2

A drawing of a graph G = (V, E) in the plane is a one-to-one assignment of the
vertices to points in the plane and, for each edge, the assignment of a curve joining
the ends of the edge in such a way that

(i) the only vertex points hit by a curve are the endpoints of the edge it
represents,

(ii) each curve is one-to-one (that is, it does not intersect itself) with the
exception that the ends of a loop edge are assigned to a common point, and

(iii) the images of curves associated with two distinct edges intersect in at most
finitely many points.

An intersection of two curves outside of their endpoints is called a crossing.

Figures 8.2, 8.4, 8.5, and 8.7, and all of the pictures in Example 8.5 are draw-
ings. Only the one in Figure 8.7 (repeated in Example 8.5(c)) contains a crossing.
However, Figure 8.9 shows a different drawing of that same graph without a
crossing. Some graphs can be drawn without crossings, but others cannot, as
we shall explore in Section 9.4.

1

3 4 5

a

f g
h

b

d ec

2

Figure 8.9 Alternative Drawing for Example 8.5(c)

Parts of a Graph
In some situations, we may be interested only in part of a given graph. In the
Direct Flights Graph in Figure 8.4, for example, we may be interested only in
traveling within the United States, or we may seek a vacation itinerary that in-
cludes only some other subset of cities. We may aim to avoid certain flights, such
as the long flight between Honolulu and Chicago. In these cases, we choose to
focus on a subgraph of a larger graph.

DEFINITION 8.3

We say that a graph H = (W, F ) is a subgraph of a graph G = (V, E) if W ⊆ V,
F ⊆ E , and the endpoints of edges in F all lie in W and are the same as they are in
G. Given a subset W of the vertex set V for a graph G = (V, E), the subgraph
induced by W is the subgraph whose edges set is

{e : e ∈ E and the ends of e are in W}.



422 P A R T II ■ Combinatorics

The subgraph of the Direct Flights Graph whose vertices are all of the U.S.
cities and whose flights are all of the flights between U.S. cities except for the
flight between Honolulu and Chicago is shown in Figure 8.10.

Chicago

Houston

New York

Los AngelesHonolulu

Figure 8.10 U.S. Vacation Subgraph

EXAMPLE 8.6 Let G = (V, E) be the graph from Example 8.5(d). In each of the following
pictures, the described subgraph H is shown in bold.

(a) Let W = {1, 2, 4, 5} and F = {b, d, e}. So H = (W, F ) is a subgraph of G.

1

3 4 5

a

b

f g
h

d ec

2

(b) Let H be the subgraph of G induced by W = {1, 2, 4, 5}.
1

3 4 5

a

b

f g
h

d ec

2

The subgraph in part (b) is induced by its vertex set; it contains every
edge that has both ends in W. The subgraph in part (a) is not an induced
subgraph, since the edges a , g, and h are not included and their end-
points are in W. ■

Given two vertices in a graph, we might seek the ways to travel between
them in the graph. In the Direct Flights Graph in Figure 8.4, we might want
to explore our options for traveling from Los Angeles to London, or we might
consider possible vacations that start in and return to Los Angeles. In these cases,
we seek various kinds of walks in our graph.

DEFINITION 8.4

(a) A walk in a graph G = (V, E) is an alternating list of vertices and edges

v0, e1, v1, e2, v2, e3, . . . , vn−1, en, vn

with n ≥ 0 that starts at vertex v0, ends at vertex vn, and, in which, for each
1 ≤ i ≤ n, ei �→ {vi−1, vi }. The length of a walk is the number of edges it
contains (counting multiple occurrences of the same edge), here n. In a
graph without multiple edges, a walk can more efficiently be expressed by a
list of vertices v0, v1, . . . , vn such that for each 1 ≤ i ≤ n, {vi−1, vi } ∈ E .
There, we identify E with the subset ε(E) ⊆ P2(V) ∪ P1(V).

(Continued)
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(b) A circuit is a walk of positive length that starts and ends at the same vertex.

(c) A trail is a walk with no repeated edges. In a graph with multiple edges,
distinct multiple edges may be included.

(d) A path is a walk with no repeated vertices.

(e) A cycle is a circuit in which the only vertex repetition is vn = v0.

(f) The distance between two vertices u and v in G, denoted distG (u, v), is the
length of the shortest walk in G between u and v. If there is no walk, then we
assign distG (u, v) = ∞. When G is clear in context, the subscripts may be
dropped.

The relationships among the various kinds of walks in Definition 8.4 are
reflected by the Venn diagram in Figure 8.11.

Walks

Trails

Paths Cycles

Circuits

Figure 8.11 Kinds of Walks

In the Direct Flights Graph, the walk

Los Angeles to New York to London to Rome to New York to
Chicago to Los Angeles

represents a circuit, since it starts and ends in Los Angeles. Since New York
is repeated, this walk is not a cycle. However, since no edge is repeated, it is a
trail. Although this walk uses 3 edges to get from Los Angeles to Rome,
dist(Los Angeles, Rome) = 2, since there is a path

Los Angeles to New York to Rome
of length 2, and there is no shorter path.

EXAMPLE 8.7 Given the pictured graph G = (V, E) from Example 8.5(d),

1

3 4 5

a

b

f g h

d ec

2

(a) 1, b, 2, e , 5, h, 5, e, 2, d, 4 is a walk of length 5 that starts at 1 and ends
at 4.

(b) 1, b, 2, e , 5, h, 5, g, 4, d, 2, a , 1 is a circuit of length 6 that starts and ends
at 1.

(c) 2, a , 1, b, 2, e , 5, h, 5 is a trail of length 4 that starts at 2 and ends at 5.
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(d) 2, b, 1, c, 3, f, 4 is a path of length 3 that starts at 2 and ends at 4.
(e) 2, b, 1, c, 3, f, 4, d, 2 is a cycle of length 4 that starts and ends at 2.
(f) dist(2, 4) = 1, dist(3, 5) = 2, and dist(5, 5) = 0. ■

Some graphs come in one piece and are said to be connected. Others split
into more than one piece. In general, the pieces are called components, as the
following definition makes precise.

DEFINITION 8.5

(a) A graph G is connected if, for any two vertices, there is a path between
them. Otherwise, G is disconnected.

(b) A component of a graph G is a connected subgraph H that is not contained
in any other connected subgraph of G; two vertices are in the same compo-
nent if and only if there is a path between them.

Very simply, a component of a graph is a connected subgraph to which no
edges and vertices from the graph can be added, while leaving a connected
subgraph. In particular, components are always induced subgraphs. However,
Example 8.6(b) shows that a connected induced subgraph is not always a
component.

EXAMPLE 8.8 The graphs in Example 8.5(a), (c), and (d) are all connected and therefore have
a single component. The graph in Example 8.5(b) is disconnected and has two
components.

4 5

2 31

6 7

One is induced by {1, 2, 4, 5, 6}, and the other is induced by {3, 7}. ■

SECTION 8.1 Exercises
1. Notre Dame Cathedral is located on the Ile de la Cité in the portion of Paris

pictured below. The bridge labeled 9 in this picture is the famous Pont
Neuf.

Sud

Ile de la Cité Ile St-Louis

Nord

Seine

789 6

12 13 141110

15

21

4 35

Draw the graph that reflects the bridge crossings in this portion of Paris.
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2. Pictured is a portion of Rome through which the Tiber River flows. Vatican
City is also near the Tiber River.

Tiber
Tiberina

Teatre Marcello

1

2

3

4

1 � Ponte Garibaldi
2 � Ponte Crestio
3 � Ponte Fabricio
4 � Ponte Palatino

Draw the graph that reflects the bridge crossings in this portion of Rome.
3. The classes Algebra, Business, Communications, Differential Equations,

Economics, and Finance each need to schedule a study session. In the
displayed table, an X denotes the fact that the two different classes corre-
sponding to that row and column have a student in common.

Alg. Bus. Comm. Diff. Eq. Econ. Fin.

Alg. X X X X
Bus. X X X X
Comm. X X X X
Diff. Eq. X X X X
Econ. X X X X
Fin. X X X X

Draw the corresponding study session scheduling graph.
4. At a certain high school, there are several school committees that need to

hold meetings: Athletics, Budget, Cleanup, Dance, Entertainment, Fund
Raising, Class Gift Selection, and Homecoming. In the displayed table, an
X denotes the fact that the two different committees corresponding to that
row and column have a member in common.

Ath. Budg. Clean. Dance Ent. Fund Gift Home.

Ath. X X X X
Budg. X X X X
Clean. X X X X
Dance X X X X
Ent. X X X X
Fund X X X X
Gift X X X X
Home. X X X X

Draw the corresponding committee scheduling graph.
5. Pictured is a map of the subway system in a certain city. It contains three

separate lines, each specified by a color. Transfers can be made at stops
sitting on more than one line.
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Milton

Rosewood

Brockton

Connor

Blake

Clay

Rockport

Salmon

Lyme

Berwick

Colby

Ridgeway
Kenmore

Fairmont Lines
Red
Black
Gray

Draw the graph representing the entire subway system.
6. Pictured is a map of the bus system in a certain city. There are two bus

routes. However, they do overlap in the busiest part of the city.

Daniels

Center

Hawk

Fern

AnselmMarket

Main

Bradley

ParkComstock

Winter

South

Routes
1
2

Draw the graph representing the entire bus system.

The following graphs G = (V, E) are referenced throughout the exercises.

(a) V = {1, 2, 3, 4, 5} and E = {{1, 3}, {1, 5}, {2, 3}, {2, 4}, {3, 4}, {3, 5}}.
(b) V = {1, 2, 3, 4, 5, 6} and E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {6}, {2, 4}}.
(c) V = {1, 2, 3, 4} and E = {a , b, c, d, e}, where

a �→ {1, 3}, b �→ {2, 3}, c �→ {2, 4}, d �→ {1, 3}, and e �→ {3, 4}.
(d) V = {1, 2, 3} and E = {a , b, c}, where

a �→ {1, 2}, b �→ {2, 3}, and c �→ {3, 1}.
In Exercises 7 through 10, draw the specified graph and determine whether it
is simple. If not, explain why.
7. Graph (a). 8. Graph (b).
9. Graph (c). 10. Graph (d).

The following simple graphs are referenced throughout the remaining exer-
cises. Each edge is taken to be the appropriate 2-element set containing its
endpoints.

(e) (f) (g) (h)1

3

2
4

5

6

43
5

6

1

2

6 1

4 3

25

1 2

5

43
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In Exercises 11 through 14, determine whether a subgraph H = (W, F ) is
specified. If not, explain why.
11. In graph (e), take W = {2, 4, 6} and F = {{2, 4}, {4, 6}}.
12. In graph (f), take W = {1, 2, 3, 4} and F = {{1, 3}, {2, 3}, {2, 4}}.
13. In graph (c), take W = {1, 2, 3} and F = {a , d, e}.
14. In graph (d), take W = {1, 2, 3} and F = ∅.

In Exercises 15 through 18, determine the edge set for the specified subgraph.
15. In graph (g), the subgraph induced by W = {1, 2, 3, 5}.
16. In graph (h), the subgraph induced by W = {2, 3, 4, 5}.
17. In graph (a), the subgraph induced by W = {1, 3, 5}.
18. In graph (b), the subgraph induced by W = {2, 4, 6}.
19. Consider the study group scheduling problem in Exercise 3. Due to test

schedules, during a particular week of the semester, only the classes
Algebra, Business, Differential Equations, and Finance need to schedule
study sessions. Draw the subgraph induced by those vertices that need to
be considered.

20. Consider the high school committee scheduling problem in Exercise 4. If
just the committees on Athletics, Cleanup, Entertainment, Class Gift
Selection, and Homecoming need to schedule meetings, then only the
subgraph induced by those vertices needs to be considered. Draw that
subgraph.

In Exercises 21 through 26, determine whether the given picture is the drawing
of a graph. If not, then explain why.
21. 22. 23.

24. 25. 26.

27. In graph (a), is there a path from 1 to 4?
28. In graph (b), is there a path from 2 to 6?
29. Show that every graph with at least one edge contains walks that are not

paths.
30. Show that every graph that is not simple contains a cycle.
31. Does graph (a) contain a cycle?
32. Does graph (b) contain a cycle?
33. In graph (f), find the distance from 1 to 4.
34. In graph (g), find the distance from 1 to 5.
35. In graph (c), find the distance from 1 to 4.
36. In graph (d), find the distance from 1 to 3.
37. Consider the city subway system graph from Exercise 5. In that graph,

what is the distance between Berwick and Connor? Note that this need not
reflect a physical distance.

38. Consider the city bus system graph from Exercise 6. In the corresponding
graph, what is the distance between Winter and Hawk? Note that this
need not reflect a physical distance.



428 P A R T II ■ Combinatorics

Exercises 39 through 42 refer to the following simple graph. In this case, walks
can be specified by just a list of vertices.

1 2 3

4 5

39. Is 5, 1, 2, 3 a path? 40. Is 2, 5, 1, 2, 3 a path?
41. Is 4, 1, 2, 5, 1, 4 a cycle? 42. Is 5, 2, 1, 4, 5 a cycle?

43. Consider the city subway system graph from Exercise 5.
(a) Express the green line as a path starting at Colby.
(b) Does the blue line similarly form a path?

44. Consider the city bus system graph from Exercise 6.
(a) Express bus route number 2 as a cycle starting with the leg from Main

to Market.
(b) Does bus route number 1 similarly form a cycle?

�45. Let u, w be any vertices in a graph. Show: If dist(u, w) ≥ 1, then there is a
vertex v that is a neighbor of w such that dist(u, v) = dist(u, w) − 1.

�46. Let u, v, w be arbitrary vertices in a graph. Show:
(a) dist(u, u) = 0. (b) dist(u, v) = dist(v, u).
(c) dist(u, w) ≤ dist(u, v) + dist(v, w).

�47. Show: If there are vertices u and v in a graph G such that two distinct paths
exist from u to v, then G contains a cycle.

�48. Show: For any two vertices u and v in a graph, there is a walk from u to v if
and only if there is a path from u to v.

�49. Use Figure 8.2 to show that the Ko··nigsberg Bridge Problem has no solu-
tion. Hint: You can assume that the walk starts at C. Consider cases while
taking advantage of symmetry. Argue that you will get stuck some where.

50. In the Ko··nigsberg Bridge Problem, what is the greatest number of bridges
that can be covered in a circuit that starts and finishes in the same place
without repeating bridges?

51. (a) In Figure 8.4, for what values of n does there exist a path of length n
from Honolulu to London?

(b) What is the distance from Honolulu to London?
52. Which cities in Figure 8.4 have the property that no other city is a distance

of more than 2 away?
53. In Example 8.3, which study groups could meet at the same time as the

study group for Astronomy?
54. In Example 8.3, is it generally true that if study groups for classes 1 and 2

cannot meet at the same time and study groups for classes 2 and 3 cannot
meet at the same time, then study groups for classes 1 and 3 cannot meet at
the same time?

∗Exercises that may be particularly challenging are marked with a star.
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8.2 Matrices and Special Graphs
Matrices
Recall that a matrix is a rectangular array of real numbers. In Section 5.1, we
saw that a zero-one matrix can be used to represent a finite relation. In a similar
way, matrices can be used to represent graphs. Moreover, matrices are useful for
storing the structure of a graph in a computer. However, the value of matrices,
as we shall see, goes beyond mere storage of adjacencies.

DEFINITION 8.6

An adjacency matrix for a graph G on n vertices is an n-by-n matrix A= [ai, j ]
obtained by fixing an ordering of the vertices, say v1, v2, . . . , vn, and, for each
1 ≤ i ≤ n and 1 ≤ j ≤ n, taking ai, j to be the number of edges connecting vi to v j .

EXAMPLE 8.9 If, for the graph

3

1 2

4 5

we take the ordering of the vertices to be 1, 2, 3, 4, 5, then the adjacency matrix
obtained is

1 2 3 4 5
1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 2 1 0 0

2 0 0 1 1

1 0 0 1 0

0 1 1 0 1

0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
(8.1)

For added clarity, labels have been attached to the rows and columns. If,
instead, we take the ordering 3, 2, 5, 1, 4, then a different adjacency matrix is
obtained.

3 2 5 1 4
3

2

5

1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1

0 0 1 2 1

0 1 1 0 1

1 2 0 0 0

1 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.2)

However, there is an important relationship between these two matrices.
The vertex list 3, 2, 5, 1, 4 is a permutation of the initial list 1, 2, 3, 4, 5.

Moreover, the permutation 3, 2, 5, 1, 4 can be described by saying that 3 goes to
position 1, 2 goes to position 2, 5 goes to position 3, 1 goes to position 4, and 4
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goes to position 5. We write

3 2 5 1 4
↓ ↓ ↓ ↓ ↓
1 2 3 4 5

.

In fact, if we first permute the rows of matrix (8.1) according to this permuta-
tion, and second permute the columns of the resulting matrix according to this
same permutation, then we obtain matrix (8.2).⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 2 1 0 0

2 0 0 1 1

1 0 0 1 0

0 1 1 0 1

0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Permute
rows as

3, 2, 5, 1, 4
−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0

2 0 0 1 1

0 1 0 1 1

0 2 1 0 0

0 1 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Permute
columns as
3, 2, 5, 1, 4
−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1

0 0 1 2 1

0 1 1 0 1

1 2 0 0 0

1 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

■

A general observation that we can take from Example 8.9 is that different
orderings of the vertices may yield distinct adjacency matrices. However, any
two differ only by a fixed permutation applied to both the rows and the columns.
Also observe that adjacency matrices for graphs are always symmetric (that is,
∀ i, j, ai, j = a j,i ), since ai, j , the number of edges connecting vi to v j , is the same
as a j,i , the number of edges connecting v j to vi .

With a knowledge of matrix multiplication, we can gain a greater apprecia-
tion for adjacency matrices.

DEFINITION 8.7 Matrix Multiplication

Given an m-by-n matrix A= [ai, j ] and an n-by-p matrix B = [bi, j ], their product
AB is defined to be the m-by-p matrix C = [ci, j ] such that, for each 1 ≤ i ≤ m and
1 ≤ j ≤ p, ci, j =

∑n
k=1 ai,kbk, j .

Our interest here is in multiplying two square matrices. That is, for some n,
both factors will be n-by-n matrices, and, consequently, so will their product.

EXAMPLE 8.10 (a) [
2 4

6 8

][
3 7

5 9

]
=
[

26 50

58 114

]
since

2 · 3+ 4 · 5 = 26, 2 · 7+ 4 · 9 = 50
6 · 3+ 8 · 5 = 58, 6 · 7+ 8 · 9 = 114.

(b) ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 2 1 0 0

2 0 0 1 1

1 0 0 1 0

0 1 1 0 1

0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0

2 0 0 1 1

0 1 0 1 1

0 2 1 0 0

0 1 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

For example, the entry in the 4th row and 2nd column of the product is
2, since

1 · 2+ 0 · 0+ 0 · 0+ 0 · 1+ 0 · 1 = 2. ■
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Mathematical software can be helpful for computing matrix products,
especially when the matrices are large. In Mathematica, matrices are entered by
listing their rows in list notation, and a period is used for multiplication. For
instance, Example 8.10(a) is handled as follows.

In[1] := A = {{2,4},{6,8}}

In[2] := B = {{3,7},{5,9}}

In[3] := A . B

Out[3] = {{26,50},{58,114}}

The function MatrixForm can be used to display a matrix in standard form
as an array with rows and columns. In Maple, Example 8.10(a) is handled
similarly.

> A := Matrix([[2,4],[6,8]]);

> B := Matrix([[3,7],[5,9]]);

> A . B ; [
26 50
58 114

]
In this case, matrices are automatically displayed as arrays.

The matrix on the left-hand side of the product in Example 8.10(b) is an
example from a useful class of matrices.

DEFINITION 8.8

Let n ∈ Z+.

(a) The n-by-n identity matrix is the matrix In = [ai, j ] such that

ai, j =
{

1 if i = j ,
0 otherwise.

(b) Given a permutation p1, p2, . . . , pn of the integers 1, 2, . . . , n, the corre-
sponding permutation matrix is the n-by-n matrix P = [ai, j ] such that

ai, j =
{

1 if pi = j ,
0 otherwise.

That is, P is obtained from In by permuting its rows according to the per-
mutation p1, p2, . . . , pn.

EXAMPLE 8.11 (a)
I2 =

[
1 0

0 1

]
.

(b) The permutation matrix corresponding to the permutation 3, 2, 5, 1, 4
is the matrix

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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Letting A be the adjacency matrix (8.1) from Example 8.9, we see in
Example 8.10(b) that the result of the product P A is to permute the rows
of A according to the permutation 3, 2, 5, 1, 4.
Observe that the transpose PT of P is the same as the matrix obtained
by permuting the columns of I5 according to the permutation 3, 2, 5, 1, 4.
Moreover, for any 5-by-5 matrix B, the result of the product B PT is to
permute the columns of B according to the permutation 3, 2, 5, 1, 4.
Putting this together with our preceding computation, it follows that
the result of the product PAPT is to permute both the rows and the
columns of A according to the permutation 3, 2, 5, 1, 4. The result is the
adjacency matrix (8.2), constructed in terms of the ordering 3, 2, 5, 1, 4
of the vertices. ■

The general observation to be taken from Example 8.11(b) is that, if A is an
adjacency matrix for a graph with respect to one ordering of its vertices and P is
the permutation matrix corresponding to a permutation that takes this ordering
of the vertices to another ordering, then PAPT is the adjacency matrix for the
graph with respect to this other ordering. Again, the rows and columns of A are
simply permuted according to the permutation P .

As another application of matrix multiplication, a remarkable result is ob-
tained when powers of an adjacency matrix are considered.

EXAMPLE 8.12 Let A be the adjacency matrix for the graph from Example 8.9, in terms of the
ordering 1, 2, 3, 4, 5 of its vertices.

3 4 5

a

f g
h

b
d ec

1 2 1 2 3 4 5
1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 2 1 0 0

2 0 0 1 1

1 0 0 1 0

0 1 1 0 1

0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= A

Observe that

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 2 1 0 0

2 0 0 1 1

1 0 0 1 0

0 1 1 0 1

0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 2 1 0 0

2 0 0 1 1

1 0 0 1 0

0 1 1 0 1

0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

5 0 0 3 2

0 6 3 1 2

0 3 2 0 1

3 1 0 3 2

2 2 1 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Letting A2 = [bi, j ], it is straightforward to check, for each i, j , that bi, j is the
number of walks of length 2 in the graph from i to j . For example, b2,3 = 3 and

2, a , 1, c, 3
2, b, 1, c, 3
2, d, 4, f, 3

are the walks of length 2 from vertex 2 to vertex 3. ■

Example 8.12 illustrates a particular instance of a general result.



C H A P T E R 8 ■ Basic Graph Theory 433

THEOREM 8.1 Let A be the adjacency matrix for a graph G obtained from the ordering v1, v2, . . . , vn

of its vertices, and let m ∈ N. Then the mth power of A, say Am = [bi, j ], has the property
that, for each 1 ≤ i ≤ n and 1 ≤ j ≤ n, the entry bi, j is the number of walks in G of length
m from vi to v j .

Proof
We proceed by induction on m. For m = 0, we have A0 = I , the n-by-n identity
matrix (ones on the diagonal and zeros elsewhere). This reflects the fact that a
walk of length 0 is possible only from a vertex to itself. So suppose m ≥ 0 and
Am has the asserted property. Say A= [ai, j ], Am = [bi, j ], and Am+1 = [ci, j ].

Suppose 1 ≤ i, j ≤ n. For each 1 ≤ k ≤ n, the number of paths of length
m+ 1 from vi to v j that first visit vk is ai,kbk, j . Hence,

∑n
k=1 ai,kbk, j is the total

number of paths of length m+ 1 from vi to v j . Since Am+1 = A · Am, it follows
that ci, j is this number. �

Since powers of matrices can be tedious to compute, mathematical software
can be very helpful. In Mathematica, the mth power of a matrix A is computed
with the function MatrixPower[A,m]. In Maple, we use the function
LinearAlgebra[MatrixPower](A,m).

Having seen how an adjacency matrix stores the structure of a graph, we con-
sider another means of storage. This one is more efficient but lacks wonderful
consequences like those of Theorem 8.1.

DEFINITION 8.9

Let v1, v2, . . . , vn be the vertices of a graph G without multiple edges. For each
1 ≤ i ≤ n, an adjacency list for vertex vi is a list of all of the neighbors of vi . A
listing, for each vertex, of its adjacency list, forms the adjacency lists for G.

EXAMPLE 8.13 The adjacency lists for the graph are

3 4 5

1 2 1 : 2, 3, 5
2 : 1, 4, 5
3 : 1, 4
4 : 2, 3, 5
5 : 1, 2, 4, 5.

For added clarity, each row is marked by the vertex whose adjacency list
follows. ■

Remark 8.2 The adjacency lists for a graph can be used to produce a
linked list for storing the graph in a computer. For each vertex, the
adjacency list then specifies the vertices to which pointers should be
directed.

Special Graphs
There are several examples of graphs that will be useful to keep in mind as we
explore new concepts in subsequent sections. Some provide extreme cases of
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general results. Some are particularly important when they occur as subgraphs
of other graphs. Some are interesting on their own.

DEFINITION 8.10

Let n ∈ Z+, and let V = {1, 2, . . . , n}.
(a) The path on n vertices is the graph Pn with vertex set V and edge set

E = {{1, 2}, {2, 3}, . . . , {n− 1, n}}.
(b) The cycle on n vertices is the graph Cn with vertex set V and edge set

E = {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}}. When n = 2, we take C2 to have two
parallel edges.

The graphs C1 and C2 are the only cycles that are not simple graphs.

EXAMPLE 8.14 Examples of paths and cycles are pictured.

(a) P1 1
P5 1 2 3 4 5

(b) C1
1

C2
1 2

C5
1

25

34
■

The map for a city subway line shown in Figure 8.12 would be represented
by a graph that is a path, namely P7. The computer network configuration
displayed in Figure 8.13 is reflected by a cycle, namely C4. Note the slightly
awkward fact that Pn has length n− 1. However, Cn has length n if we express
it as a trail starting and ending at a particular vertex.

Milton

THE RED LINE

Rockport

Salmon

Lyme

Berwick

Kenmore

Fairmont

Figure 8.12 A Line of a Subway
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1 2

4 3

Figure 8.13 A Cyclic Computer Network

Paths and cycles contain relatively few edges, especially among connected
graphs. The most edges a simple graph on n vertices can have is

(n
2

)
.

THEOREM 8.2 Given a simple graph G = (V, E),

(a) if |V| ≤ 1, then |E | = 0,

(b) if |V| ≥ 2, then 0 ≤ |E | ≤ (|V|2

)
.

Proof
If |V| ≤ 1, then P2(V) = ∅. If |V| ≥ 2, then |P2(V)| = (|V|2

)
. The result follows

from the fact that E ⊆ P2(V). �

At one extreme, we consider simple graphs that contain all possible edges.

DEFINITION 8.11

Given an integer n ≥ 1, the complete graph on n vertices is the simple graph Kn

with vertex set V = {1, 2, . . . , n} and edge set E = P2(V). Any graph in which every
pair of vertices is adjacent is said to be complete.

EXAMPLE 8.15 K5 is pictured.

1

25

34
■

The graph Kn might represent a computer network in which every pair of
computers is directly connected. For example, a wireless network could have
this property if all of the computers are close enough together. The wireless com-
puter network configuration displayed in Figure 8.14 is reflected by a complete
graph, namely K4.
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1 2

4 3

Figure 8.14 Wireless Computer Network

It is also convenient to have notation for graphs without any edges.

DEFINITION 8.12

Given any n ∈ N, the empty graph on n vertices is the graph 
n with vertex set
V = {1, 2, . . . , n} and edge set E = ∅. Any graph in which no pair of vertices is
adjacent is said to be empty.

In some graphs, the vertex set naturally splits as a disjoint union of two sets.

DEFINITION 8.13

A graph G = (V, E) is bipartite if V can be expressed as a disjoint union V1 ∪ V2
such that each edge of G has one endpoint in V1 and one in V2. In this case, the pair
(V1, V2) is said to form a bipartition of G. Note that for i = 1 or 2, the subgraph
induced by Vi is empty.

Bipartite graphs arise in applications in which the vertices reflect two kinds
of objects that need to be “matched.” For example, a manager may form a graph
in which some vertices represent employees and others represent tasks. An edge
then connects an employee to a task if and only if that employee is qualified
to perform that task. This graph might be used to determine which employees
should be assigned which tasks so that all tasks are accomplished while making
the most efficient use of the work force. Such an example for a small company
that designs computer games is shown in Figure 8.15. A study of matching and
marriage type problems can be found in [11] and [14].

Programming Ming Lee

Harold Dickson

Sarah Klein

Ethan Mills

Story Design

Graphics

TASKS EMPLOYEES

Figure 8.15 Possible Task Assignments
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EXAMPLE 8.16 The graph
x

yw

zv

is bipartite. Its bipartition is given by V1 = {v, x, z} and V2 = {w, y}. Observe
that each edge joins a vertex in V1 with a vertex in V2. ■

v w

yx

z

Figure 8.16 Standard Display of a Bipartite Graph

An alternative drawing of the graph from Example 8.16 is shown in Fig-
ure 8.16. There, the bipartition sets are pictured with one on the left-hand side
and the other on the right-hand side. The fact that edges connect only vertices
from different sides is what makes the graph bipartite.

Certainly, not every graph is bipartite.

EXAMPLE 8.17 C3 is not bipartite.

Proof
Here V = {1, 2, 3}. Suppose, toward a contradiction, that C3 is bipartite with
bipartition (V1, V2). Say 1 ∈ V1. Since {1, 2} and {1, 3} are edges, we must have
2, 3 ∈ V2. However, {2, 3} is also an edge. Hence 2 and 3 cannot be in the same
set V2. This contradiction shows that C3 cannot be bipartite. �

The result in Example 8.17 is a special case of the following theorem.

THEOREM 8.3 Let G be any graph. Then G is bipartite if and only if every cycle in G has even length.

Proof
It suffices to consider only connected simple graphs.

(→) Suppose G is bipartite with bipartition (V1, V2), and let

v0, v1, . . . , vn−1, v0

be a cycle of length n. Say v0 ∈ V2. By definition of bipartite, the vertices must
alternate between V2 and V1. Since v0 follows vn−1, it must be that vn−1 ∈ V1.
This implies that n− 1 is odd and n is even.

(←) Suppose every cycle in G = (V, E) has even length. Pick a vertex v0
and define V2 = {v ∈ V : dist(v0, v) is even} and V1 = V\V2. Obviously, V =
V1 ∪ V2 is a disjoint union. So it remains to show that there are no edges joining
a pair of vertices from the same set Vi .

Suppose to the contrary that u and v are from the same set Vi and that {u, v}
is an edge. Let P be a shortest path from v0 to u, and let Q be a shortest path



438 P A R T II ■ Combinatorics

from v0 to v with the most possible vertices in common with P . Thus, there
must be a vertex w such that P and Q are identical from v0 to w and disjoint
after w.

v0 w
v

u

Since the left-hand sides of the two equations

dist(v0, u) = dist(v0, w) + dist(w, u)
dist(v0, v) = dist(v0, w) + dist(w, v)

have the same parity, their sum is even. We therefore see by adding these two
equations that dist(w, u) + dist(w, v) must be even. Thus the cycle that follows
P from w to u, takes the edge {u, v} from u to v, and follows Q backwards from
v to w, has odd length

dist(w, u) + 1+ dist(w, v).

This contradiction establishes our result. �

At the extreme among simple bipartite graphs are those that contain all pos-
sible edges.

DEFINITION 8.14

Given integers m, n ≥ 1 and sets

V1 = {(1, 1), (1, 2), . . . , (1, m)} and V2 = {(2, 1), (2, 2), . . . , (2, n)},
the complete bipartite graph Km,n has vertex set V = V1 ∪ V2 and edge set
E = {{v1, v2} : v1 ∈ V1 and v2 ∈ V2}.

EXAMPLE 8.18 K3,4 is pictured.

(1, 1) (2, 1)

(2, 2)

(2, 3)

(2, 4)

(1, 2)

(1, 3)

■

A complete bipartite graph would arise in an example like that shown in
Figure 8.15 in which every employee is qualified to perform every task. In that
case, some weights may additionally be attached to the edges to reflect pref-
erences or relative abilities of employees to perform certain tasks. Weighted
graphs are considered in Section 10.3.

Our final examples are derived from geometry.

EXAMPLE 8.19 (The Platonic Solids). There are exactly five solids for which each face is a fixed
regular polygon and the same number of faces meets at each vertex. These
solids are called the platonic solids. For each such solid, the graph formed
from its vertices and edges is given the same name as the solid. Drawings of
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Tetrahedron Cube Octahedron

Dodecahedron Icosahedron

Figure 8.17 Graphs of the Platonic Solids

these graphs are given in Figure 8.17 in perspective to best reflect the connec-
tion with the solids. Alternative drawings are encountered later. ■

The cube is the 3-dimensional example from a family of cubes, which we
now define.

DEFINITION 8.15

The n-dimensional cube Qn is the simple graph whose vertex set is the set of binary
sequences of length n and whose edges connect two vertices if and only if they
differ in exactly one coordinate.

The drawing of the 3-dimensional cube Q3 shown in Figure 8.18 is obtained
by regarding its vertices as points in R3. That picture indeed agrees with our
drawing of the cube in Figure 8.17. We cannot draw objects of dimensions

(1, 0, 1)

(0, 0, 0)

(1, 0, 0) (1, 1, 0)

(0, 1, 0)
y

z

x

(1, 1, 1)

(0, 1, 1)(0, 0, 1)

Figure 8.18 The Graph Q3
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greater than 3. However, each graph Qn can be drawn in the plane. Of course,
such a drawing need not reflect a corresponding solid nor be esthetically
pleasing. A standard drawing of Q4 is shown in Figure 8.19.

1011

1010

1110

1001

0000

1000
0100

1100

0110

01110101

1101

0001 0011

1111

0010

Figure 8.19 The Graph Q4

Binary linear codes were introduced in Section 3.2. For instance, in Exam-
ple 3.18, we considered the binary linear code displayed in Table 8.1. In general,
each message, which is expressed as a binary string of some fixed length k, is as-
signed a code word. The code word is a binary string of some fixed length n > k
that contains the message in its first k digits. Each appended digit results from
the sum of some of the digits of the message, taken mod 2. What is important
here is the observation that the code words are vertices of the graph Qn, and
their spacing in Qn determines the capability of correcting errors introduced in
transmission. Specifically, the weight w of the code is the smallest distance be-
tween two vertices in Qn that correspond to code words. A received word of
length n also corresponds to a vertex v of Qn. If v is a distance of no more than
�w−1

2 � from a code word vertex c, then c will be the unique closest vertex to v in
Qn. The method of nearest neighbor decoding then uses the vertex c to decode
the message. That is, the transmitted message is understood to be the first k dig-
its of c. For example, if the word 010110 is received and the binary linear code in

Message Code Word

000 000000
001 001011
010 010101
011 011110
100 100111
101 101100
110 110010
111 111001

Table 8.1 A Binary Linear Code for 3-Digit Messages
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Table 8.1 is being used, then 011110 is seen to be the closest code word vertex in
Q6 to it. Hence, the message 011 is understood to be the intended one.

SECTION 8.2 Exercises
1. Find an adjacency matrix for the study group scheduling graph from

Exercise 3 in Section 8.1. Note the obvious connection between the table
presented there and the adjacency matrix constructed here.

2. Find an adjacency matrix for the high school committee scheduling graph
from Exercise 4 in Section 8.1. Note the obvious connection between the
table presented there and the adjacency matrix constructed here.
The following graphs are referred to throughout the remaining exercises.

(a) (b) (c) (d)1

3

2
4

5

6

43
5

6

1

2

6 1

4 3

25

1 2

5

43

In Exercises 3 through 6, find the adjacency matrix A for the given graph, using
the natural ordering 1, 2, 3, . . . of its vertices.
3. Graph (a). 4. Graph (b).
5. Graph (c). 6. Graph (d).

7. Find the adjacency matrix for graph (a), using the ordering 2, 5, 1, 4, 6, 3 of
its vertices.

8. Find the adjacency matrix for graph (b), using the ordering 3, 4, 1, 6, 5, 2 of
its vertices.

9. Five computers are connected in a network, and the given matrix reflects
the direct cable connections between computers in this network.

1 2 3 4 5
1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0

1 0 1 0 1

1 1 0 0 0

1 0 0 1 1

0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Draw the graph with this adjacency matrix that reflects the network
configuration.

10. Five power stations are connected to form a power grid. Redundant
connections are used to maintain a backup for important connections that
might fail. The given matrix reflects direct connections between the power
stations.
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1 2 3 4 5
1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 0 0

2 0 1 1 1

0 1 0 0 1

0 1 0 0 1

0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Draw the graph with the given adjacency matrix that reflects the power
grid.

The matrix products and powers in Exercises 11 through 18 should be com-
puted by hand to gain familiarity with those operations. However, mathemati-
cal software such as Mathematica or Maple might also be used to confirm the
results obtained by hand.

11. Compute the product

[
3 2

4 1

][
4 1

2 5

]
.

12. Compute the product

[
3 5

1 2

][
2 3

4 1

]
.

13. Let A be the matrix from Exercise 3.
(a) Find the permutation matrix P corresponding to the permutation

2, 5, 1, 4, 6, 3.
(b) Compute PA.
(c) Compute PAPT , and confirm, in this case, the observation made after

Example 8.11.
14. Let A be the matrix from Exercise 4.

(a) Find the permutation matrix P corresponding to the permutation
3, 4, 1, 6, 5, 2.

(b) Compute PA.
(c) Compute PAPT , and confirm, in this case, the observation made after

Example 8.11.
In Exercises 15 through 18, compute the square A2 of the given adjacency
matrix A, and confirm the result in Theorem 8.1 that each entry bi, j in A2 counts
the number of walks of length 2 in the corresponding graph from vertex i to j .
15. The matrix A from Exercise 3. 16. The matrix A from Exercise 4.
17. The matrix A from Exercise 5. 18. The matrix A from Exercise 6.

�19. Let G be any graph on n vertices, and let A be an adjacency matrix for G.
Show: G is connected if and only if the matrix I + A+ A2 + · · · + An−1 has
no zero entries.

�20. State a result like the one in Exercise 19 that can be used to partition the
vertices into the different components of a graph.

In Exercises 21 through 24, give the adjacency lists for the given graph.

21. Graph (a). 22. Graph (b).

23. Graph (c). 24. Graph (d).
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25. Seven power stations are connected to form a power grid. The given ad-
jacency lists reflect direct connections between the power stations. Draw
the graph whose adjacency lists are given that reflects the power grid.

1 : 2, 3, 4, 7
2 : 1, 6, 7
3 : 1, 6
4 : 1, 4, 6
5 : 4, 6
6 : 2, 3, 4, 5
7 : 1, 2

26. Six computers are connected in a network. The given adjacency lists reflect
the direct cable connections between computers in this network. Draw the
graph whose adjacency lists are given that reflects this network config-
uration.

1 : 2, 4
2 : 1, 3, 4, 5
3 : 2, 4, 5, 6
4 : 1, 2, 3, 5
5 : 2, 3, 4, 6
6 : 3, 5

In Exercises 27 through 36, draw the given graph.
27. P4. 28. C3.

29. C6. 30. P6.

31. K6. 32. K1,3.

33. K3,2. 34. K7.

35. Q1. 36. Q2.

37. Consider the subway system graph from Exercise 5 in Section 8.1.
(a) What graph is the subgraph determined by the blue line?
(b) Does each subway line correspond to a path subgraph?
(c) Give an example of a path subgraph that does not correspond to a

subway line.
38. Consider the bus system graph from Exercise 6 in Section 8.1.

(a) What graph is the subgraph determined by bus route number 2?
(b) Does bus route number 1 correspond to a cycle subgraph?
(c) Give an example of a cycle subgraph that does not correspond to a bus

route.
39. (a) Is the graph representing the portion of Paris from Exercise 1 in

Section 8.1 complete?
(b) For that graph, give an example of a complete subgraph on three

vertices.
40. (a) Is the graph representing the portion of Rome from Exercise 2 in

Section 8.1 complete?
(b) Is it simple?
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41. Are 101101 and 101011 adjacent in Q6?
42. What is the distance between 011011 and 110110 in Q6?

Message Code Word Message Code Word

0000 0000000 1000 1000111
0001 0001011 1001 1001100
0010 0010101 1010 1010010
0011 0011110 1011 1011001
0100 0100110 1100 1100001
0101 0101101 1101 1101010
0110 0110011 1110 1110100
0111 0111000 1111 1111111

Table 8.2 A Binary Linear Code for 4-Digit Messages

43. A hospital database encodes the gender and blood type of each of its
patients, as in Table 8.3.

Gender, Blood Message Gender, Blood Message

Female, O− 0000 Male, O− 1000
Female, O+ 0001 Male, O+ 1001
Female, B− 0010 Male, B− 1010
Female, B+ 0011 Male, B+ 1011
Female, A− 0100 Male, A− 1100
Female, A+ 0101 Male, A+ 1101
Female, AB− 0110 Male, AB− 1110
Female, AB+ 0111 Male, AB+ 1111

Table 8.3 Encoding Gender and Blood Type

(a) Using the binary linear code in Table 8.2 and nearest neighbor de-
coding, decode the received word 1111010 to a message.

(b) Determine the gender and blood type for this patient.

44. To deal with possible errors introduced in communication links, the army
is communicating directions to its troops in the field using the symbols in
Figure 8.20.

0000
1111

11

10

11
01

11
00

10
11

101
0

1001
1000

0111

0110

0101
0100

0011

0010

0001

N

W

S

E

NE
NW

SW
SE

NNW

W
N

W
W

SW

   SSW
 SSE

  E
SE

 EN
E

   NNE

Figure 8.20 Direction Encoding
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(a) Using the binary linear code in Table 8.2 and nearest neighbor
decoding, decode the received word 1001111 to a message.

(b) Determine the compass direction being conveyed.
45. Is every subgraph of a complete graph complete? What about induced

subgraphs?
46. Is every subgraph of an empty graph empty?
47. In the displayed table, an X denotes the fact that the math class is required

by the major shown at the head of that column.

Comp. Sci. Math Physics Chemistry

Calculus X X X X
Diff. Eq. X X

Discrete Math X X
Linear Algebra X X X
Group Theory X X

Draw the corresponding bipartite graph.
48. In the displayed table, an X denotes the fact that the boy would like to ask

the girl to the dance.

Alice Beth Cindy Dorothy

Albert X X X
Bob X X

Charles X
David X X X X

Draw the corresponding bipartite graph.
49. Is Pn bipartite? Justify your answer.
50. Prove that Cn is bipartite if and only if n is even.
51. Show that subgraphs of bipartite graphs are bipartite.
52. Prove or disprove: Subgraphs of non-bipartite graphs are non-bipartite.
53. Prove or disprove that the

pictured graph is bipartite.

1 2

543

54. Prove or disprove that the pictured
graph is bipartite.

6 1

4 3

25

In Exercises 55 through 64, determine the numbers of vertices and edges in the
specified graph.

55. Pn. 56. Cn.

57. Kn. 58. Km,n.

59. The cube. 60. The octahedron.
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61. The dodecahedron. 62. The icosahedron.
63. Q4. 64. Q5.

In Exercises 65 through 74, find the maximum possible distance between two
vertices of the given graph. This number is called the diameter of the graph.
65. Pn. 66. Cn.
67. Kn. 68. Km,n.
69. The cube. 70. The octahedron.
71. The dodecahedron. 72. The icosahedron.
73. Q4. 74. Q5.

In Exercises 75 through 78, make an adjacency matrix for the given graph
using the specified ordering of the vertices.
75. K5 with vertices ordered 1, 2, 3, 4, 5.
76. Q3 with vertices in binary order.
77. K2,4 with vertices (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4).
78. C5 with vertices ordered 1, 2, 3, 4, 5.

79. Give the adjacency lists for Q3. 80. Give the adjacency lists for K2,3.

8.3 Isomorphisms
Drawings for two graphs, (a) and (b), are shown in Figure 8.21. Are they pictures
of the same graph? The transformation of the drawing of (a) into the drawing
of (b) shown in Figure 8.22 suggests that the answer is yes.

(a) (b)

ag

e f

c

b

d

1

4 3

25

hn
m

k
l

j
i

6

9 8

710

Figure 8.21 Two Graphs to Compare
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Figure 8.22 Transforming One Graph into Another
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A key observation should be made in the last step in Figure 8.22. There we
see that the vertices of (a) match up with the vertices of (b) according to the
assignments specified on the left-hand side of Figure 8.23. It is also important
that the edges are matched up likewise, as specified on the right-hand side of
Figure 8.23. What is critical here is that an edge correspondence like b → m fits
with the vertex correspondence on the endpoints. That is, the endpoint assign-
ments b �→ {1, 3} and m �→ {7, 10} reflect the vertex correspondences 1 → 7 and
3 → 10. In fact, in a case in which just one edge joins two endpoints, the vertex
correspondence for the endpoints completely determines the edge correspon-
dence. That is, the decision that 1 → 7 and 3 → 10 forces the choice that b → m.
However, when we have multiple edges, such as e and f , we need to specify
that e → k and f → j , or, alternatively, that e → j and f → k.

V(a ) V(b)
1 → 7
2 → 8
3 → 10
4 → 9
5 → 6

E(a ) E(b)
a → i
b → m
c → n
d → l
e → k
f → j
g → h

Figure 8.23 Matching Vertices and Edges in Figure 8.21

Having seen the issues involved in showing that a particular pair of graphs
is equivalent, we now define the notion of a graph isomorphism in general.

DEFINITION 8.16

Let G = (VG , EG ) and H = (VH , EH) be graphs.

(a) A graph isomorphism from G to H, denoted f : G → H, is a pair of
bijections fV : VG → VH and fE : EG → EH such that, for each e ∈ EG , the
bijection fV maps the endpoints of e to the endpoints of fE (e). Since there is
no intersection between the domains of fV and fE , both are more simply
denoted by f . If G and H are simple graphs, then f is completely deter-
mined by a function fV : VG → VH , since fE must consequently take {u, v} ∈
EG to { fV(u), fV(v)} ∈ EH .

(b) We say that G is isomorphic to H, written G ∼= H, if there exists a graph
isomorphism from G to H.

(c) A graph automorphism on G is a graph isomorphism from G to itself. A
nontrivial automorphism is an automorphism f : G → G that is not the
identity map. The set of automorphisms on G is denoted Aut(G).

We can understand graph isomorphisms in terms of adjacency matrices. For
example, using increasing order for the vertices, the adjacency matrices A(a )
and A(b) for the graphs (a) and (b), respectively, in Figure 8.21 are shown in
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1 2 3 4 5
1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 2 1

1 0 0 0 0

1 0 0 1 1

2 0 1 0 0

1 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= A(a )

6 7 8 9 10
6

7

8

9

10

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1

1 0 1 2 1

0 1 0 0 0

0 2 0 0 1

1 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= A(b)

Figure 8.24 Adjacency Matrices for Figure 8.21

Figure 8.24. Although A(a ) �= A(b) , if we apply the permutation

6 → 7
7 → 8
8 → 10
9 → 9

10 → 6

to the rows and columns of A(b) , then we obtain a new adjacency matrix A′(b) for
(b) that has exactly the same entries as A(a ) . Of course, the ordering 7, 8, 10, 9, 6
is that determined by the vertex map in Figure 8.23. That is, the vertex map tells
us how to consistently order the vertices for (a) and (b) so that the corresponding
adjacency matrices are the same.

EXAMPLE 8.20 (Equivalent Network Configurations). The two seemingly different network
configurations shown in Figure 8.25 have been proposed to implement a
complex parallel program. Show that these networks are in fact the same
configuration.

1 2

4 5

3

Network G

6 87

9 10
Network H

Figure 8.25 Equivalent Computer Networks

Solution. The aim is to show that the corresponding graphs displayed in
Figure 8.26 are isomorphic. Since G and H are simple graphs, it suffices to
specify a vertex bijection f : VG → VH that maps endpoints to endpoints and
establishes an edge bijection between EG and EH . It is straightforward to check
that defining f (1) = 9, f (2) = 10, f (3) = 7, f (4) = 6, and f (5) = 8 gives the
desired isomorphism.
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1 2

4 5

3

Network Graph G

6 8

9 10

7

Network Graph H

Figure 8.26 Isomorphic Network Graphs ■

EXAMPLE 8.21 We consider some graph isomorphisms with domain K4. In each case, the
isomorphism is described in terms of the given labeled pictures. Also, since K4
is a simple graph, the edge mapping is completely determined by the vertex
mapping.

(a) Below are pictured what amount to two different ways of drawing K4.
An isomorphism f : K4 → H is given by

1 2 a
K4 H

bc

d

3 4

f

f (1) = a , f (2) = d, f (3) = c, and f (4) = b. Hence, K4 ∼= H. Moreover, if
the labels a , b, c, d on H are replaced by 1, 4, 3, 2, respectively, then the
picture of H is seen to be an alternative drawing of K4.

(b) A nontrivial automorphism of K4 is given by the graph isomorphism
f : K4 → K4,

1 2
K4

3 4

f

where f (1) = 2, f (2) = 4, f (3) = 1, and f (4) = 3. That is, f is the
permutation

1 2 3 4
↓ ↓ ↓ ↓
2 4 1 3

of the vertices. Since f (1) �= 1, f is not the identity. ■

There was a great deal of choice available for the automorphism of K4 con-
sidered in Example 8.21(b). That is, we might also have chosen f (1) = 4 and
then f (2) = 2, f (3) = 3, and f (4) = 1. In fact, any vertex value for f (1) can be
chosen when building an automorphism f of K4. In this sense, we say that all
of the vertices of K4 look the same.
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DEFINITION 8.17

A graph G = (V, E) is said to be vertex transitive if, for any u, v ∈ V, there is a
graph automorphism f such that f (u) = v.

EXAMPLE 8.22 For any positive integer n, the complete graph Kn is easily seen to be vertex
transitive. The point is that, for Kn, graph automorphisms correspond to per-
mutations of {1, 2, . . . , n}. For instance, the automorphism in Example 8.21(b)
can be thought of as an isomorphism f constructed to send u = 1 to v = 2. ■

EXAMPLE 8.23 Displayed are three different drawings of a graph known as the Petersen
graph. Verification that these graphs are indeed isomorphic is left for the
exercises.

1

4 3

2
7

6

10

9 8

5

11 12

20 18

14

19
1617

1315

3027

29

24

25
21

22

23

28

26

That the Petersen graph is vertex transitive is also left for the exercises. ■

THEOREM 8.4 Graph Isomorphism Is an Equivalence Relation

For all graphs G, H, and K ,

(a) G ∼= G.

(b) if G ∼= H, then H ∼= G.

(c) if G ∼= H and H ∼= K , then G ∼= K .

Proof
For part (a), the identity maps on VG and EG yield the desired isomorphism.
Parts (b) and (c) are left for the exercises. �

Remark 8.3 We have specified several names of graphs so far, such as
Pn, Cn, Kn, Km,n, Qn, the tetrahedron, the octahedron, the dodecahedron,
the icosahedron, and the Petersen graph. Although specific vertex sets,
such as {1, . . . , n} for Pn, Cn, and Kn have been used in their definitions,
we only mean to define these graphs up to isomorphism. That is, any
graph that is isomorphic to one of these will also be referred to by the
appropriate name. For example, the graph H in Example 8.21(a) can
also be called K4.

The following result establishes that Aut(G) has more structure than that of
just a set.
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THEOREM 8.5 For any graph G, Aut(G) forms a group under composition.

Proof
We must establish the three defining properties of a group.

(Associativity) Suppose f, g, h ∈ Aut(G). Since fV , gV , hV are functions, the
associativity of function composition (Theorem 5.7) gives that ( fV ◦ gV) ◦ hV =
fV ◦ (gV ◦ hV). The same holds for fE , gE , hE , and we conclude that ( f ◦ g) ◦ h =
f ◦ (g ◦ h).

(Identity) It is easy to see that the identity function idG defined by
idV(v)= v and idE (e) = e gives an automorphism of G. Moreover, for any
automorphism f , we have idG ◦ f = f ◦ idG = f .

(Inverses) Let f ∈ Aut(G). Since fV and fE are bijections, it follows from
Theorem 5.10 that gV = f

−1
V and gE = f

−1
E are bijections. Letting e be an arbi-

trary edge, say e �→ {u, v}, we must confirm that gV maps the endpoints of e
to the endpoints of gE (e). Since fE is onto, we have some edge e ′ such that
fE (e ′) = e. Since f is a graph isomorphism, we must further have e ′ �→ {u′, v′}
with fV(u′) = u and fV(v′) = v. From the fact that gV = f

−1
V and gE = f

−1
E , it

now follows that gE (e) = e ′, gV(u) = u′, and gV(v) = v′. That is, gV maps the
endpoints of e to the endpoints of gE (e). Hence, gV and gE determine an auto-
morphism g of G. Moreover, g ◦ f = f ◦ g = idG , and we see that g = f −1. �

In general, an automorphism f of a graph G = ({v1, . . . , vn}, E) corresponds
to permutation f (v1), . . . , f (vn) of its vertex set such that the adjacency matrix
A for G, using the ordering v1, . . . , vn, is the same as the adjacency matrix using
the ordering f (v1), . . . , f (vn). In terms of matrices, if we let P denote the per-
mutation matrix corresponding to the permutation f (v1), . . . , f (vn), then f is
an automorphism of G if and only if P APT = A. In particular, the set of auto-
morphisms Aut(G) is a subset of the set of permutations of v1, . . . , vn.

EXAMPLE 8.24 The automorphisms of the graph

1 2

3 4

are certain permutations of 1, 2, 3, 4. Specifically, they are

1, 2, 3, 4 the identity,
1, 4, 3, 2 switch vertices 2 and 4 only,
3, 2, 1, 4 switch vertices 1 and 3 only,
3, 4, 1, 2 switch vertices 2 and 4, and switch vertices 1 and 3.

In total, there are thus four automorphisms. One is trivial and the other three
are nontrivial. ■

If we remove from the definition of a graph isomorphism the requirement
of bijective functions, then we obtain the more general notion of a map between
graphs.
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DEFINITION 8.18

A graph map f from a graph G = (VG , EG ) to a graph H = (VH , EH), denoted
f : G → H, is a pair of functions fV : VG → VH and fE : EG → EH such that, for
each edge e ∈ EG , the function fV maps the endpoints of e to the endpoints of fE (e).

Graph maps send vertices to vertices and edges to edges. A graph map
f : G → H may be visualized as a folding of G into H.

EXAMPLE 8.25 In both instances below, graphs G and H are pictured with labels given, and
the values of a graph map f : G → H are specified.

(a) The pictured graph map f must be specified both on the vertices and on
the edges.

G H

9 10q

j
l

k
o

n
m

p

8

3 4

1 2 6 7

5

a

g h
i

b
d ec f

Here, f (1) = 6, f (2) = 7, f (3) = 9, f (4) = 10, f (5) = 9, f (a ) = j,
f (b) = j, f (c) = m, f (d) = o, f (e) = n, f (g) = q , f (h) = q , and
f (i) = p. The image of f is the subgraph of H shown in bold.

(b) The pictured graph map f need only be specified on the vertices.

1 2

3 4

6 7

8 9 10

G H

f

Here f (1) = 7, f (2) = 9, f (3) = 6, and f (4) = 8. The image of f is
shown in bold. Very simply, f rotates G clockwise and places it on a
portion of H. ■

SECTION 8.3 Exercises
Graph isomorphisms are requested throughout the exercises. In the cases that
the graphs are simple, it suffices to specify a vertex bijection that behaves
appropriately with respect to the edges, as described in Definition 8.16.
Otherwise, the edge bijection should also be given.
1. Show that the two pictured graphs are isomorphic.

1 2
3
4

2. Show that the two pictured graphs are isomorphic.
1

23

4 5

6
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3. Show that P3 ∼= K1,2. 4. Show that C4 ∼= K2,2.
5. Show that the two pictured graphs are isomorphic.

1

4 5

2 3 10

8

9

7

61

4 5

2 3 10

8

9

7

6

6. Show that the two pictured graphs are isomorphic.

1

4 3

25

6

9 8

710

7. The New York office for a certain company contains a network with the
configuration shown below on the left. Its Los Angeles office contains the
network configuration shown on the right. A programmer from the New
York office has traveled to the Los Angeles office and wishes to demon-
strate a program that has been tested on the New York network.

1 2

3 4 5

6 7

9 10

8

Show that the two network configurations pictured yield equivalent
networks and, hence, that the program can be made to work in Los
Angeles.

8. A company needs to network 5 computers using 7 cable connections. Two
competing network designers have come up with the pictured network
configurations, and each is asserting the superiority of his design.

1 2 3

4 5

6 7

9 10

8
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Show that the two network configurations pictured actually yield
equivalent networks.

9. Pictured are two design plans for a power grid, in which the symbol ◦
denotes a power station. One represents a grid in Nashville, Tennessee,
and the other is in Syracuse, New York. In Nashville, they have some
software that has been very effective at managing power transfers among
their power stations.

1

4 3 5

2 9

8 7 10

6

Show that the power grids are equivalent and, hence, that Syracuse can
employ the same management software as that used in Nashville.

10. Pictured are two design plans for a power grid, in which the symbol ◦
denotes a power station. The one on the left is a grid in Philadelphia,
Pennsylvania and the one on the right is in Pittsburgh, Pennsylvania.
Philadelphia has paid for a comprehensive analysis of the ability of its grid
to handle the failures of some of its power stations in storms.

1

4 3

5

2

6 10

8

9

7

Show that the power grids are equivalent and, hence, that Pittsburgh can
directly benefit from the grid analysis purchased by Philadelphia.

�11. A certain university is making its summer schedule based upon predeter-
mined student interest in its courses. The Department of Science and
Technology is offering classes in Algebra, Biology, C++, Databases, Earth
Science, and Functional Analysis. The Department of Languages and
Cultures is offering classes in German, History, Indochina, Japanese,
Kuwait, and Latin. In the displayed tables, an X denotes the fact that the
two different classes corresponding to that row and column have a student
in common.

Alg. Bio. C++ Data. EaSc. Func.

Alg. X X X X

Bio. X X X X

C++ X X X X

Data. X X X X

EaSc. X X X X

Func. X X X X

Ger. His. Indo. Jap. Kuw. Lat.

Ger. X X X X

His. X X X X

Indo. X X X X

Jap. X X X X

Kuw. X X X X

Lat. X X X X
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(a) Show that the corresponding class scheduling graphs are isomorphic.
Hence, a workable schedule for one department can be converted to
one for the other department.

(b) Use this isomorphism to convert the schedule

Time Period Committee Meeting

1 Algebra, Databases
2 Biology, Earth Science
3 C++, Functional Analysis

from the Department of Science and Technology to the Department of
Languages and Cultures.

�12. The Senate needs to schedule meetings for its committees: Appropriations
(A), Budget (B), Commerce (C), Energy (D), Environment (E), Foreign
Relations (F), Homeland Security and Governmental Affairs (G), and
Health (H). On the other side of the Capitol building, the House of
Representatives needs to schedule meetings for its committees: Inter-
national Relations (I), Judicial (J), Agriculture (K), Armed Services (L),
Financial Services (M), Science (N), Standards of Official Conduct (O), and
Printing (P). In the displayed tables, an X denotes the fact that the two
different committees corresponding to that row and column have a
member in common.

A B C D E F G H

A X X X X

B X X X X

C X X X X

D X X X X

E X X X X

F X X X X

G X X X X

H X X X X

I J K L M N O P

I X X X X

J X X X X

K X X X X

L X X X X

M X X X X

N X X X X

O X X X X

P X X X X

(a) Show that the corresponding committee scheduling graphs are
isomorphic. Hence, a workable schedule for the Senate can be
converted to one for the House of Representatives.

(b) Use this isomorphism to convert the schedule

Time Period Committee Meeting

1 A, C, H
2 B, D, E
3 F, G

from the Senate to the House of Representatives.
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Special Graphs. Exercises 13 through 18 give alternative presentations of some
of the special graphs from Section 8.2, particularly some of the platonic solids.
13. Show that K3,3 is isomorphic to the pictured graph.

6 1

4 3

25

14. Show that the two pictured graphs are isomorphic.

1

2

3

4

10

5

9

6

8

7

11
12

13

14
1516

17

18

19

20

1

2

34

5 9

8 7

6

11

12

13

14

15

16
17

18
19

20

10

They are both called the dodecahedron.
15. Show that the two pictured graphs are isomorphic.

0

6

7

4

5

1

2

3
8

11

12 13

15 14

9

10

They are both called the cube.
16. Show that the two pictured graphs are isomorphic.

5

2

4

3

6

1

8

7

9

12

11
10

They are both called the octahedron.
17. Show that the three graphs pictured in Example 8.23 are isomorphic.
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18. Show that the two pictured graphs are isomorphic.

a

d

b

c

f

e

g

hl

i

j

k

10

2

4

6

3

5

1

9 8

1112

7

They are both called the icosahedron.

The following graphs are referred to throughout the remaining exercises.

(a) (b) (c) (d)1

3
2

4 5

6

43 5

6

1

2

6 1

4 3

25

1 2

5

43

In Exercises 19 through 26, determine the number of automorphisms of the
specified graph. Recall that automorphisms correspond to permutations of the
vertices that preserve the structure of the graph.
19. Graph (a). 20. Graph (b).
21. Graph (c). 22. Graph (d).
23. Cn. 24. Pn.
25. Kn,n. 26. Km,n, where m �= n.
27. Show that graph isomorphisms send paths to paths. That is, if v0, e1,

v1, . . . , vn is a path in a graph G and f : G → H is an isomorphism, then
f (v0), f (e1), f (v1), . . . , f (vn) is a path in H.

28. Show that graph isomorphisms send subgraphs to isomorphic subgraphs.
That is, if K is a subgraph of a graph G and f : G → H is an isomorphism,
then f (K ) is a subgraph of H and K ∼= f (K ). Conclude that f maps cycles
to cycles (of the same length), f maps complete subgraphs to complete
subgraphs (of the same size), and f maps induced subgraphs to induced
subgraphs.

29. Let V = P2({1, 2, 3, 4, 5}) and put edges between disjoint sets. Show that
the resulting graph is isomorphic to the Petersen graph.

�30. Show that the Petersen graph is vertex transitive. Hint: Use Exercise 29.
�31. Show that, for any cycle C of length 5 in the Petersen graph, there is an

automorphism of the Petersen graph that sends C to the cycle induced by
vertices 1, 2, 3, 4, 5 in Example 8.23.

�32. Show that, for any path P of length 3 in the Petersen graph, there is an
automorphism of the Petersen graph that sends P to the path induced by
vertices 1, 2, 3 in Example 8.23.

33. Show that Cn is vertex transitive. 34. Show that Kn,n is vertex transitive.
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35. Prove Theorem 8.4(b). 36. Prove Theorem 8.4(c).
�37. Show that a graph G = (V, E) is vertex transitive if and only if there is

u ∈ V such that, for all v ∈ V, there exists an automorphism f of G such
that f (u) = v.

�38. Prove or disprove: If a graph G is vertex transitive, then every induced
subgraph H of G will also be vertex transitive.

�39. Show: For all graphs G and H, if G ∼= H, then there are drawings of G and
H that have the same image (that is, occupy the same points) in R2.

�40. Let G = ({v1, . . . , vn}, EG) and H = ({u1, . . . , un}, EH) be any graphs
without multiple edges.
Show that G ∼= H if and only if there is a bijection f : {v1, . . . , vn} →
{u1, . . . , un} such that the adjacency lists for H using the vertex ordering
f (v1), . . . , f (vn) are the same as the adjacency lists obtained by applying f
to each entry in the adjacency lists for G.

In Exercises 41 through 50, to specify graph maps between the given simple
graphs, it suffices to specify a vertex map that behaves appropriately with
respect to the edges, as described in Definition 8.18.
41. Give an example of a graph map from graph (a) to graph (b).
42. Give an example of a graph map from graph (c) to graph (d).

�43. Show that there is no graph map from C3 to C4.
�44. Show that there is no graph map from C5 to K2.
45. Does there exist a graph map from graph (b) to graph (c)? Explain.
46. Does there exist a graph map from graph (d) to graph (a)? Explain.
47. Show that, ∀m, n ∈ Z+, there exists a graph map from Km,n to P2.
48. Show that, ∀ n ∈ Z+, there exists a graph map from Cn to K3.
49. For which pairs of integers m, n does there exist a graph map from Km to

Kn? Explain.
50. For which pairs of integers m, n does there exist a graph map from Qm to

Qn? Explain.

8.4 Invariants
In Example 8.20 in Section 8.3, we considered two network configurations on
five computers and seven cable connections that, at a casual glance, appeared
to be different in structure. However, by establishing an isomorphism between
the graphs that model those networks, we saw that they were in fact equivalent
in structure. Since surely not all networks on five computers and seven cable
connections are equivalent, we need a means of distinguishing two genuinely
different network configurations. That is, we want to be able to distinguish two
non-isomorphic graphs.

How does one prove that two graphs are not isomorphic? If, for each graph G,
we assign a value i(G) in such a way that, for any two isomorphic graphs G and
H, we have i(G) = i(H), then we say that i is a graph invariant. That is, graph in-
variants are preserved under isomorphisms. Consequently, if, for two graphs G
and H and some invariant i , we have i(G) �= i(H), then we can conclude that
G �∼= H.
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The numbers of vertices and edges provide very simple examples of graph
invariants. For instance, |VG | is the invariant i(G) that gives the number of ver-
tices in a graph G.

THEOREM 8.6 Let G and H be graphs. If G ∼= H, then

(i) |VG | = |VH |.
(ii) |EG | = |EH |.

Proof
Suppose G ∼= H. Thus, we have a graph isomorphism that consists of bijec-
tions fV : VG → VH and fE : EG → EH . These bijections show that VG and VH

have the same cardinality and that EG and EH have the same cardinality. �

Certainly, if two graphs do not have the same numbers of vertices and the
same numbers of edges, then they cannot be isomorphic. In fact, the invariants
|V| and |E | for a graph G = (V, E) are likely to be the first values one checks
when considering a potential isomorphism.

EXAMPLE 8.26 Graphs (a) and (b) in Figure 8.27 are not isomorphic. Although, they have the
same number of vertices, they do not have the same number of edges.
Similarly, graphs (a) and (c) are seen not to be isomorphic.

(a) (b) (c)

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

Figure 8.27 Non-isomorphic Graphs on 5 Vertices ■

Theorem 8.6 is not sufficient to establish that graphs (b) and (c) in Figure 8.27
are not isomorphic, since those graphs do have the same number of vertices and
the same number of edges. Consequently, we need a more powerful invariant in
this case. In fact, immediately following the definition of a graph isomorphism
in Section 8.3, we observed that adjacency matrices provide extremely powerful
invariants, as we now formulate precisely.

THEOREM 8.7 Let G = (VG , EG ) and H = (VH , EH) be graphs. Then G ∼= H if and only if there are
orderings of VG and VH such that the corresponding adjacency matrices AG and AH are
equal. In this case, we say that G and H have a common adjacency matrix.

The problem with Theorem 8.7 is that it is too powerful. It can work well as a
tool to show that two graphs are isomorphic, if we can find a common adjacency
matrix for them. However, it is too cumbersome in general to argue that no or-
derings of VG and VH yield a common adjacency matrix. If |VG | = |VH | = n and
we fix an ordering of VG , then there are n! possible orderings of VH to consider.
For large values of n, this is an intractable task.
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1 2 3 4 5
1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0

1 0 0 1 0

1 0 0 1 0

0 1 1 0 1

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= A(b)

1 2 3 4 5
1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0

1 0 0 0 1

1 0 0 1 0

0 0 1 0 1

0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= A(c)

Figure 8.28 Some Adjacency Matrices for Figure 8.27

Adjacency matrices for graphs (b) and (c) from Figure 8.27 are displayed in
Figure 8.28. What we might notice there that can help us avoid unnecessary
work is that row 4 of matrix A(b) contains three 1’s. Not only does no row of ma-
trix A(c) have that property, but also, no matter what vertex ordering is used for
graph (c), no row of the corresponding adjacency matrix for (c) will ever have
three 1’s in it. Consequently, we need not consider entire adjacency matrices.
Instead, we obtain some less powerful, but still effective, invariants by consid-
ering the local structure of a graph at each vertex. Basically, for each vertex v,
we keep track of the number of times v serves as an endpoint for an edge.

DEFINITION 8.19

Let G = (V, E) be a graph.

(a) The degree of a vertex v, denoted deg(v), is the number of non-loop edges
incident with v plus twice the number of loops incident with v. That is, each
incident loop edge contributes 2 to the degree, and all other incident edges
contribute 1.

(b) The maximum degree (respectively, minimum degree) of G, denoted �(G)
(respectively, δ(G)), is the maximum (respectively, minimum) degree among
all vertices in G.

(c) A degree sequence for G is a sequence

deg(v1), deg(v2), . . . , deg(vn)

obtained from some ordering v1, v2, . . . , vn of V. A standard convention is to
write a degree sequence in nonincreasing order.

(d) If G has a constant degree sequence, then G is said to be regular. If each
vertex has degree r , the G is called r -regular.

(e) A vertex of degree 0 is said to be an isolated vertex.

(f) A vertex of degree 1 is said to be a pendant vertex, or a leaf.

EXAMPLE 8.27 For the pictured graph G,

3 4 5

1 2a

b

g h

c d

i

e

we have deg(1) = 3, since a , b, and c are the edges incident with vertex 1.
Similarly, we see that deg(2) = 4, deg(3) = 2, and deg(4) = 3. We have
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deg(5) = 4, since e , h, and i are incident with vertex 5 and the loop edge i
counts twice. A degree sequence for G is thus 4, 4, 3, 3, 2. In particular,
�(G) = 4 and δ(G) = 2. ■

The Petersen graph from Example 8.23 is 3-regular. That is, each of its vertices
has degree 3. For each integer n ≥ 1, Cn is 2-regular and Kn is (n − 1)-regular.
The graph P1 = 
1 consists of a single isolated vertex •, and, for each integer
n ≥ 2, Pn contains two pendant vertices.

The utility of the notions in Definition 8.19 for providing graph invariants
comes from the fact that, at an individual vertex in a graph, the local structure
of the graph reflected by the degree of that vertex must be preserved by an iso-
morphism.

LEMMA 8.8 Let f : G → H be a graph isomorphism, and let v be a vertex of G.
Then deg( f (v)) = deg(v).

Proof
Let F be the set of edges incident with v, and let F ′ be the set of edges incident
with f (v). If e ∈ F , then f (e) ∈ F ′. Conversely, if e ′ ∈ F ′, then f −1(e ′) ∈ F . It
follows that |F | = |F ′|. If e is a loop edge in F , then f (e) must be a loop edge in
F ′. Conversely, if e ′ is a loop edge in F ′, then f −1(e ′) must be a loop edge in F .
Consequently, the number of loop edges in F must be the same as the num-
ber of loop edges in F ′. From the definition of the degree of a vertex, it now
follows that deg(v) = deg( f (v)). �

EXAMPLE 8.28 Graphs (b) and (c) in Figure 8.27 are not isomorphic, since (b) has a vertex of
degree 3 and (c) does not. That is, suppose to the contrary that there is an
isomorphism f from (b) to (c). In (b), vertex 4 has degree 3. So it follows from
Lemma 8.8 that in (c), vertex f (4) must have degree 3. However, (c) has no
vertices of degree 3, and a contradiction is obtained. ■

THEOREM 8.9 Degree Invariants

Let G and H be graphs. If G ∼= H, then

(i) G and H have a common degree sequence.

(ii) �(G) = �(H).

(iii) δ(G) = δ(H).

Proof
Suppose f is an isomorphism from G to H. Let v1, v2, . . . , vn be a listing of
the vertices of G. So f (v1), f (v2), . . . , f (vn) is a listing of the vertices of H. It
follows from Lemma 8.8 that the associated lists of degrees must be the same.
Hence, part (i) holds. Parts (ii) and (iii) follow easily from (i). �

Since �(G) and δ(G) are particular entries in a degree sequence for G, the
most powerful result in Theorem 8.9 is part (i).
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EXAMPLE 8.29 The pictured graph H,

3 4 5

1 2

is not isomorphic to the graph G in Example 8.27, since 4, 4, 4, 2, 2 is a degree
sequence for H and it cannot possibly be reordered to give the degree sequence
4, 4, 3, 3, 2 listed for G. Note, however, that �(G) = �(H) and δ(G) = δ(H),
despite the lack of an isomorphism between G and H. ■

The degree of an individual vertex in a graph does not provide information
about the global structure of the graph. However, if we add up the degrees of
all of the vertices, then a remarkable result occurs.

THEOREM 8.10 For any graph G = (V, E), we have
∑
v∈V

deg(v) = 2|E |.

Proof

Let e ∈ E . What impact does the presence of e in G have on the sum
∑
v∈V

deg(v)?

If e �→ {v1, v2} is not a loop edge, then e contributes 1 to each term deg(v1) and
deg(v2). If e �→ {v} is a loop edge, then e contributes 2 to the term deg(v). Thus
each e ∈ E contributes 2 to the sum

∑
v∈V

deg(v). It follows that
∑
v∈V

deg(v) =∑
e∈E

2 = 2|E |. �

The first of our corollaries of Theorem 8.10 follows immediately from the
definition of an adjacency matrix. The proofs of the others are left for the
exercises.

COROLLARY 8.11 Let A= [ai, j ] be the adjacency matrix for a loopless graph G = (V, E) obtained from the
ordering v1, v2, . . . , vn of its vertices. Then, for any 1 ≤ k ≤ n, the sum of the entries in the
kth row of A and the sum of the entries in the kth column of A both equal the degree of vertex
vk . That is,

n∑
j=1

ak, j =
n∑

i=1

ai,k = deg(vk ).

Moreover, the sum of all of the entries in A is twice the number of edges. That is,
n∑

i=1

n∑
j=1

ai, j = 2|E |.

COROLLARY 8.12 In any graph, there must be an even number of odd-degree vertices.

By Corollary 8.12, there is no graph with degree sequence 5, 3, 2, 2, 2, 1, for
example, since this sequence has an odd number of odd entries.

COROLLARY 8.13 If G = (V, E) is r-regular, then r |V| = 2|E |.
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It follows from Corollary 8.13 that if G = (V, E) is a 4-regular graph, then
|E | = 2|V|. An example of a graph with these properties is the octahedron graph.

Graph Operations
We close this section with some graph operations reminiscent of set operations.

DEFINITION 8.20

The complement of a simple graph G = (VG , EG ) is the graph Gc with VGc = VG

and EGc = EG
c , where the complement of EG is taken inside P2(VG ).

EXAMPLE 8.30 Pictured are a simple graph G and its complement Gc .

G Gc

The vertices are the same in G and Gc , and the edges in Gc are precisely those
missing from G. ■

The complement of a graph is invariant under isomorphism.

THEOREM 8.14 Let G and H be simple graphs. If G ∼= H, then Gc ∼= Hc.

The proof of Theorem 8.14 is left for the exercises. Theorem 8.14 is effective
for showing that two graphs G and H are not isomorphic if it is easier to observe
that Gc and Hc are not isomorphic. This tool is used in the exercises.

DEFINITION 8.21

Let G = (VG , EG ) and H = (VH , EH) be any two graphs.

(a) To construct the disjoint union of G and H, the graph denoted G + H, we
consider two cases. If VG and VH are disjoint, then we simply define
G + H = (VG ∪ VH , EG ∪ EH). If VG and VH are not disjoint, then we
construct graphs G ′ ∼= G and H′ ∼= H such that VG ′ and VH′ are disjoint
and define G + H = (VG ′ ∪ VH′ , EG ′ ∪ EH′ ).

(b) If G and H are both subgraphs of the same graph, then

(i) the union of G and H, denoted G ∪ H, is the graph
(VG ∪ VH , EG ∪ EH).

(ii) the intersection of G and H, denoted G ∩ H, is the graph
(VG ∩ VH , EG ∩ EH).

(c) The product of G and H, denoted G × H, is the graph with vertex set
VG × VH and edge set (EG × VH) ∪ (VG × EH). An edge’s endpoints are
determined as follows.
If e ∈ EG , v ∈ VH , and e �→ {x, y}, then (e, v) �→ {(x, v), (y, v)}.
If v ∈ VG , e ∈ EH , and e �→ {x, y}, then (v, e) �→ {(v, x), (v, y)}.
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The graph operations in Definition 8.21 have properties like their analogous
set operations, as will be explored in the exercises. Here, we gain some familiar-
ity with how these operations work.

EXAMPLE 8.31 The graph K4 + C4 is pictured.

1 2

4 3

5 6

8 7

Note that the standard vertex set {1, 2, 3, 4} for C4 has been changed to
{5, 6, 7, 8} to make it disjoint from the vertex set {1, 2, 3, 4} of K4. ■

In terms of pictures, the disjoint union of two graphs is obtained by putting
their pictures side by side, in disjoint regions.

EXAMPLE 8.32 Let G and H be the subgraphs of K5 given by VG = {1, 2, 4, 5}, EG = {{1, 2},
{1, 4}, {1, 5}, {2, 4}, {4, 5}}, VH = {1, 2, 3, 4}, and EH = {{1, 2}, {1, 4}, {1, 3},
{2, 3}}. Their intersection and union are pictured.

G � H

2

1

4

2

1

5

4 3

G � H

They are subgraphs of K5. ■

EXAMPLE 8.33 The product of the graphs

21

a

G

b

and

H

d

c
e

f

5

3

4

is the displayed graph G × H.
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(2, 4)(1, 4)

(2, 5)

(2, 3)

(1, 5)

(1, e)

(2, c)
(1, c)

(2, e)

(2,  f )(1,  f )

(2, d )
(1, d)

(a, 5)

(b, 5)

(a, 4)

(b, 4)

(a, 3)

(b, 3)

(1, 3)

Each vertex of G × H is a pair (u, v) determined by a vertex u of G and a vertex
v of H. There are two kinds of edges. One has the form (u, β), where u is a
vertex of G and β is an edge of H. Such an edge joins the vertices (u, v1) and
(u, v2), where v1 and v2 are the vertices of H joined by β. The other has the form
(α, v), where α is an edge of G and v is a vertex of H. Such an edge joins the
vertices (u1, v) and (u2, v), where u1 and u2 are the vertices of G joined by α.

Note that G × H contains |VH | = 3 disjoint copies of G, as subgraphs. Simi-
larly, it contains |VG | = 2 disjoint copies of H. ■

EXAMPLE 8.34 P2 × P2 ∼= Q2 ∼= C4. Here, we use {0, 1} for the vertex set for P2 and picture
P2 × P2.

(0, 0) (1, 0)

(0, 1) (1, 1)

Its vertex set is the set of ordered pairs with entries from {0, 1}. Edges must
then join pairs that differ in exactly one coordinate. Thus, the graph Q2 is
obtained. ■

Since P2 ∼= Q1, Example 8.34 is a special case of the following general result,
which allows us to express cubes as products.

THEOREM 8.15 We have Q0 ∼= K1, Q1 ∼= P2, and, for n ≥ 2,

Qn
∼= Qn−1 × P2.

A proof of Theorem 8.15 is left for the exercises. However, observe, for exam-
ple, that the graph Q3 displayed in Figure 8.29 can be seen to contain |VP2 | = 2
copies of the graph Q2 displayed in Example 8.34. One is the top square, each
vertex of which has last coordinate 1. The other is the bottom square, each vertex
of which has last coordinate 0. Similarly, in Figure 8.19 in Section 8.2, the graph
Q4 is seen as two copies of Q3 joined together.
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(0, 1, 1)

(1, 1, 1)

y

z

x

(1, 0, 1)

(1, 1, 0)(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 0, 0)

Figure 8.29 The Graph Q3

SECTION 8.4 Exercises
The following graphs are referred to throughout the exercises.

(a) (b) (c) (d)1

3
2

4 5

6

43 5

6

1

2

6 1

4 3

25

1 2

5

43

(e) (f) (g) (h)1

3
2

4 5

6

1

3
2

4 5

6

1

4

2 3

65

1

4

2 3

65

In Exercises 1 through 4, show that the specified graphs are not isomorphic.
1. Graphs (a) and (d). 2. Graphs (a) and (b).
3. Graphs (a) and (c). 4. Graphs (b) and (d).

In Exercises 5 through 8, find a degree sequence for the specified graph.
5. Graph (a). 6. Graph (b).
7. Graph (c). 8. Graph (d).

In Exercises 9 through 12, show that the specified graphs are not isomorphic.
9. Graphs (b) and (g). 10. Graphs (a) and (e).
11. Graphs (e) and (f). 12. Graphs (g) and (h).

13. Observe that the two pictured graphs have common degree sequences.

1

3

2

4
5 6

7

10

8
9

11
12

However, show that they are not isomorphic.
Hint: Consider the vertices of degree 3.
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14. Observe that the two pictured graphs have common degree sequences.

1

3

2

6

45

7

8

911

10

12

However, show that they are not isomorphic.
Hint: Consider the vertices of degree 2.

15. A company needs to network 5 computers using 6 cable connections. Two
competing network designers have come up with the pictured network
configurations, and each is asserting the superiority of her design.

4 5

1 2

3

6 7

9 10

8

Show that the two network configurations pictured do not yield equiv-
alent networks. Hence, there is a genuine decision to be made.

16. The New York office for a certain company contains a network with the
configuration shown below on the left. Its Los Angeles office contains the
network configuration shown on the right. A programmer from the New
York office has traveled to the Los Angeles office and wishes to demon-
strate a program that has been tested on the New York network.

1 2 3

4 5

6 7

9 10

8

Show that the two network configurations pictured do not yield equiv-
alent networks. Hence, the program may not work in Los Angeles.

17. Pictured are two design plans for a power grid, in which the symbol ◦
denotes a power station. The one on the left is a grid in Philadelphia,
Pennsylvania, and the one on the right is in Pittsburgh, Pennsylvania.
Philadelphia has paid for a comprehensive analysis of the ability of its grid
to handle the failures of some of its power stations in storms.
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1 2

4 3 5

9 6

8 7 10

Show that the power grids are not equivalent and, hence, that Pittsburgh
cannot directly benefit from the grid analysis already purchased by
Philadelphia.

18. Pictured are two design plans for a power grid in which the symbol �

denotes a power station. One represents a grid in Nashville, Tennessee,
and the other is in Syracuse, New York. In Nashville, they have some
software that has been very effective at managing power transfers among
their power stations.

1 2

4 3

5

6 10

8

9

7

Show that the power grids are not equivalent and, hence, that Syracuse
may not be able to employ the same management software.

19. A certain university is making its summer schedule on the basis of pre-
determined student interest in its courses. The Department of Science and
Technology is offering classes in Algebra, Biology, C++, Databases, Earth
Science, and Functional Analysis. The Department of Languages and Cul-
tures is offering classes in German, History, Indochina, Japanese, Kuwait,
and Latin. In the displayed tables, an X denotes the fact that the two
different classes corresponding to that row and column have a student in
common.

Alg. Bio. C++ Data. EaSc. Func.

Alg. X X X X

Bio. X X X X

C++ X X X X

Data. X X X X

EaSc. X X X X

Func. X X X X

Ger. His. Indo. Jap. Kuw. Lat.

Ger. X X X

His. X X X X

Indo. X X X

Jap. X X X X

Kuw. X X X X

Lat. X X X X

Show that the corresponding class scheduling graphs are not isomorphic.
Hence, a workable schedule for the Department of Science and Technology
cannot be converted to one for the Department of Languages and
Cultures.
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20. The Senate needs to schedule meetings for its committees: Appropriations
(A), Budget (B), Commerce (C), Energy (D), Environment (E), Foreign
Relations (F), Homeland Security and Governmental Affairs (G), and
Health (H). On the other side of the Capitol building, the House of
Representatives needs to schedule meetings for its committees: Inter-
national Relations (I), Judicial (J), Agriculture (K), Armed Services (L),
Financial Services (M), Science (N), Standards of Official Conduct (O), and
Printing (P). In the displayed tables, an X denotes the fact that the two
different committees corresponding to that row and column have a
member in common.

A B C D E F G H

A X X X X

B X X X X

C X X X X

D X X X X

E X X X X

F X X X X

G X X X X

H X X X X

I J K L M N O P

I X X X X

J X X X X X

K X X X X

L X X X

M X X X X

N X X X X X

O X X X

P X X X X

Show that the corresponding committee scheduling graphs are not iso-
morphic. Hence, a workable schedule for the Senate cannot be converted
to one for the House of Representatives.

21. List all non-isomorphic simple graphs on 4 or fewer vertices.
22. List all non-isomorphic simple graphs on 5 vertices.
23. Find all non-isomorphic simple graphs on 6 vertices and 3 edges.
24. Find all non-isomorphic simple graphs on 6 vertices and 4 edges.

In Exercises 25 through 30, list all non-isomorphic simple graphs (if any) with
the given degree sequence.
25. 5, 3, 2, 2, 2, 2. 26. 4, 4, 4, 4.
27. 4, 3, 3, 2, 1. 28. 3, 3, 2, 2.

�29. 4, 2, 2, 2, 1, 1. �30. 5, 4, 3, 3, 3, 2.
31. Prove Corollary 8.12. 32. Prove Corollary 8.13.
33. Determine the numbers of vertices and edges in Qn.

34. Show: If G has n vertices and m edges, then δ(G) ≤ � 2m
n �. Is that upper

bound achievable? Hint: Consider average degree.

In Exercises 35 through 38 find the complement of the specified graph.
35. Graph (a). 36. Graph (b).
37. Graph (c). 38. Graph (d).

39. Show that C c
5
∼= C5. 40. Show that P c

4
∼= P4.
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41. What graph is the complement
of the pictured graph?

4

1

6 5

23

42. What graph is the complement
of the pictured graph?

1

5 4

23

43. Observe that the two pictured graphs have common degree sequences.

4 3

5

6 1

2

4 3

6 1

5 2

However, show that they are not isomorphic by considering their
complements.

44. Observe that the two pictured graphs have common degree sequences.

A B

EF

C

D

H

G

A B

F E

C

D

H

G

However, show that they are not isomorphic by considering their
complements.

45. Prove Theorem 8.14.
46. Show for any simple graph G = (V, E), that Gc ∪ G ∼= K|V|.
47. Show: For any simple graph G, Aut(G) = Aut(Gc). Note that here we

regard elements of Aut(G) as functions (permutations) f : V → V.
48. Show: Any graph G is vertex transitive if and only if Gc is vertex transitive.
49. Prove or disprove: Any graph that is vertex transitive must be regular.
50. Prove or disprove: Any graph that is regular must be vertex transitive.

In Exercises 51 through 60, draw the specified graph. Regard the graphs
(a),(b),(c),(d) defined at the beginning of these exercises as subgraphs of K6.

51. (a ) + (d). 52. (b) + (c).

53. (a ) ∩ (c). 54. (a ) ∪ (c).

55. (b) ∪ (c). 56. (b) ∩ (c).

57. P3 × P3. 58. P2 × P4.

59. P2 × K1,3. 60. C3 × P4.
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�61. Distributive Laws. Let M be any graph.
Show that, for any subgraphs G, H, K of M,
(a) G ∩ (H ∪ K ) = (G ∩ H) ∪ (G ∩ K ).
(b) G ∪ (H ∩ K ) = (G ∪ H) ∩ (G ∪ K ).

�62. De Morgan’s Law. Let M be any graph.
Show that, for any subgraphs G, H, K of M,
(a) (G ∩ H)c = Gc ∪ Hc . (b) (G ∪ H)c = Gc ∩ Hc .

63. Prove that the graph pictured in Exercise 41 is isomorphic to C3 × P2.
In general, the graph Cn × P2 is called the n-prism.

64. Prove Theorem 8.15.
65. Assuming that VG and VH are nonempty, show that G × H has a subgraph

isomorphic to G and a subgraph isomorphic to H.
�66. Show that G and H are bipartite if and only if G × H is bipartite.

8.5 Directed Graphs and Markov Chains
In Section 5.1, the notion of a directed graph, or digraph, for a relation on a set
was introduced. For example, Figure 8.30 displays the directed graph for the
“is a proper divisor of” relation on {1, 2, . . . , 8}. Having studied graphs in this
chapter, we can now see that such digraphs are very much like graphs, except
that directions are attached to the edges.

1

3

4

5

6

7

8

2

Figure 8.30 Digraph for “Proper Divisor” Relation

Like graphs, directed graphs arise in many and varied applications. Before
giving a formal definition of a directed graph, analogous to Definition 8.1 for
ordinary graphs, we consider another example in which the relevant edges have
a specified direction.

EXAMPLE 8.35 (Rounding the Bases). Figure 8.31 shows the possible states of a baseball player
(who is either at bat or on base) before and after a plate appearance (by either
the player himself or a teammate). There, an arrow points from the state prior
to the plate appearance to the state afterwards. For example, it is possible for
a player starting at second (2nd) base to score if batted in. However, it is
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2nd3rd

Out

At Bat

Score

1st

Figure 8.31 Plate Appearance

impossible for a player starting at second (2nd) base to move to first (1st) base.
A diagram such as Figure 8.31 with additional statistics could be used to de-
termine strategy or to keep track of probabilities for a baseball video game. ■

In an ordinary graph, each edge is assigned a set {u, v} of endpoints from
the vertex set V. In a directed graph, we want this edge assignment to be, more
specifically, from a vertex u to a vertex v. Essentially, we aim to order the end-
points so that u is first and v is second. Although the elements in a set {u, v} do
not have an ordering, the coordinates in an ordered pair (u, v) certainly do. We
use this feature of ordered pairs to give a direction to each edge. Recall that the
elements of a product V2 = V × V are ordered pairs.

DEFINITION 8.22

(a) A directed graph, or digraph, G consists of a vertex set VG , an edge set EG ,
and a function ε : EG → VG × VG . We write G = (VG , EG ), and, rather than
writing εG (e) = (u, v), we write e �→ (u, v). As in ordinary graphs, the
subscripts may be dropped from our notation.

(b) If e �→ (u, v), then the vertex u is called the initial endpoint or tail of e, and
the vertex v is called the terminal endpoint or head of e. We say that e goes
from u to v.

(c) An edge e such that e �→ (v, v) for some v ∈ V is called a loop, and two or
more edges assigned the same initial and terminal endpoints are called
multiple edges.

(d) A simple directed graph is a directed graph G = (V, E) that has no loops
and no multiple edges. In this case, we can take E to be a subset of
V2\{(v, v) : v ∈ V}.

EXAMPLE 8.36 In the following examples, G = (V, E) is a directed graph.

(a) Let V = {1, 2, 3, 4, 5} and E = {a , b, c, d, e, f, g}, where
a = (1, 2), b = (2, 1), c = (3, 1), d = (4, 2), e = (2, 5),
f = (3, 4) and g = (5, 4).
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3 4

1 2

5

a

b

f g

d
e

c

This is indeed a simple directed graph. The edges (1, 2) and (2, 1) are
distinct elements of the product V2.

(b) Let V = {1, 2, 3, 4, 5} and E = {a , b, c, d, e, f, g, h}, where
a �→ (1, 2), b �→ (1, 2), c = (3, 1), d = (4, 2), e = (2, 5),
f = (3, 4), g = (5, 4), and h = (5, 5).

3 4

1 2

5

a

b

f g h

d
e

c

This directed graph is not simple. The edges a and b are multiple edges
since they are assigned to the same element of the product V2. Also, the
edge h = (5, 5) is a loop. ■

A subgraph of a directed graph is defined in the same way that it is for ordi-
nary graphs (in Definition 8.3). However, extra care is taken in defining walks.

DEFINITION 8.23

A walk in a directed graph G = (V, E) is an alternating list of vertices and edges

v0, e1, v1, e2, v2, e3, . . . , vn−1, en, vn

with n ≥ 0 that starts at vertex v0, ends at vertex vn, and, in which, for each 1 ≤
i ≤ n, ei �→ (vi−1, vi ). That is, edges must be traversed from tail to head.

Based on the definition of a walk in a directed graph, the other terms (length,
start, end, circuit, trail, path, cycle, distance) and notation from Definition 8.4
are defined in the same way for directed graphs.

EXAMPLE 8.37 In the directed graph from Example 8.36(a), an example of a walk is given
by the list 5, g, 4, d, 2, b, 1, a , 2. However, that same list is not a walk in the
directed graph from Example 8.36(b). There, the portion 2, b, 1 is not allowed,
since b cannot be traversed from head to tail.

Consider the directed graph from Example 8.36(a). Since e is an edge that
directly connects 2 to 5, we have dist(2, 5) = 1. However, dist(5, 2) = 2, since
there is not a single edge from 5 to 2. Instead, 5, g, 4, d, 2 is a shortest path
from 5 to 2. ■

EXAMPLE 8.38 (Street Plans). To reduce traffic and increase parking, city planners have
proposed that the neighborhood shown on the left-hand side of Figure 8.32
convert to one-way streets the portions of the streets marked with arrows.
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Figure 8.32 Planned One-Way Streets in a Neighborhood

The resulting traffic flow is thus reflected by the directed graph shown on the
right-hand side of Figure 8.32. In that digraph, intersections are represented
by vertices, which we have additionally labeled for easy reference. Each edge
represents a possible direction of traffic between two intersections. Hence, any
street remaining two-way is reflected by two edges, one in each direction. Note
that there are walks from the corner of Spruce and Third (labeled 9) to the
corner of Maple and First (labeled 1), such as 9, 8, 5, 1. However, there is no
return walk from 1 to 9. This presents a major flaw in the plan that we shall
address further after Definition 8.25. ■

When looking at a directed graph, it is natural to see the ordinary graph
underneath; it is obtained by removing the directions from the edges.

DEFINITION 8.24

Given a directed graph G = (V, E), its underlying graph, denoted G , is the ordi-
nary graph with the same vertex set V and with the edge set E containing one un-
directed edge e for each directed edge e ∈ E . The ends of e are taken to be the head
and tail of e.

EXAMPLE 8.39 Shown are a directed graph G and its underlying graph G.

3 4

1 2

5

a
G

b

f g h

d
e

c

1 2

3 4 5

a
G

b

f g h

d
e

c

■

Even if G is a simple directed graph, G could have multiple edges, as is the
case in Example 8.39.

Since, in a directed graph, it is possible for there to be a path from u to v

but not one from v to u, there are two natural ways to define components in a
directed graph.



C H A P T E R 8 ■ Basic Graph Theory 475

DEFINITION 8.25

Let G be a directed graph.

(a) G is said to be strongly connected if, for any two vertices u and v, there is a
path from u to v and there is a path from v to u.

(b) G is said to be weakly connected if G is connected.

(c) A strong component of G is a strongly connected subgraph H that is not
contained in any other strongly connected subgraph of G.

(d) A weak component of G is a subgraph H such that H is a component of G.

EXAMPLE 8.40 The pictured directed graph G

1 2 3 4

is weakly connected, since its underlying graph is connected. However, G is
not strongly connected; it has 2 strong components. One is the isolated vertex
{1}, and the other is the subgraph induced by {2, 3, 4}. From each vertex in
{2, 3, 4}, there exists a path to any other vertex in {2, 3, 4}, but no path to
vertex 1. ■

The notion of a strong component enables us to better explain the failing of
the street plan in Figure 8.32.

EXAMPLE 8.41 Displayed in Figure 8.33 are the strong components of the directed graph from
Figure 8.32. One is the city block induced by the set of vertices {1, 2, 5, 6}, and

1

5

8

6

10

7

9

2 3 4

Figure 8.33 Isolated Areas of the Neighborhood

the other is induced by {3, 4, 7, 8, 9, 10}. The point is that, from any of the
intersections 1, 2, 5, or 6, it is not possible to get out of that city block and into
another portion of the neighborhood. Although it happens to be possible to
get to that city block from anywhere else, getting out is impossible. Thus, the
proposed plan in Figure 8.32, in which the neighborhood would not be
strongly connected, is not a good one. ■

Directed graphs are compared in much the same way as are ordinary graphs.
However, additionally, in directed graphs, the direction of each edge must be
preserved by a graph map. This is important in determining isomorphisms.
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EXAMPLE 8.42 The two pictured directed graphs are isomorphic.

1 3

2
G

4 6

5
H

An isomorphism f : G → H is given by f (1) = 5, f (2) = 6, and f (3) = 4.
Note, for example, that this causes the edge (1, 2) to be mapped to the edge
(5, 6), as opposed to the nonexistent edge (6, 5). That is, f (1) = 6, f (2) = 5,
and f (3) = 4 would not provide an isomorphism for the directed graphs here,
even though it would do so for their underlying ordinary graphs. ■

Graph isomorphisms necessarily preserve invariants such as the numbers of
vertices and edges. For a directed graph, the in-degree of a vertex v, denoted
indeg(v), is the number of edges whose head is v, and the out-degree, denoted
outdeg(v), is the number of edges whose tail is v. For a vertex v in a directed
graph, we define deg(v) = indeg(v)+outdeg(v). That is, deg(v) is the degree of
v in G.

EXAMPLE 8.43 (a) In the directed graph

3 4

1 2

we have indeg(1) = 0, indeg(2) = 2, indeg(3) = 2, indeg(4) = 1,
outdeg(1) = 2, outdeg(2) = 0, outdeg(3) = 0, and outdeg(4) = 3. For
example, vertex 1 has two edges pointing out of it and none pointing in.
Also, note that the loop at vertex 4 contributes once to each of the
in-degree and out-degree of vertex 4.

(b) The two pictured directed graphs are not isomorphic.

1 3

2
G

7 9

8
K

In G, vertex 1 has indeg(1) = 0. Whereas, each vertex v in K has
indeg(v) = 1. Hence there is no potential vertex with in-degree 0 to be
the image of 1 in an isomorphism f : G → K . ■

EXAMPLE 8.44 (New Street Plans). If we change the traffic plans in Figure 8.32 by reversing
the direction of the portion of Second Street that is one-way, then the resulting
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directed graph is strongly connected. Consequently, this new plan is not
isomorphic to the old plan, even though the underlying graph remains the
same. The new plan is certainly better for the residents of the neighborhood,
especially those living in the city block induced by {1, 2, 5, 6}. Otherwise, they
would have been stuck there. ■

As in ordinary graphs, there is a connection between the sum of the degrees
of the vertices and the number of edges in a directed graph.

THEOREM 8.16 For any directed graph G = (V, E), we have∑
v∈V

indeg(v) =
∑
v∈V

outdeg(v) = |E |.

The proof of Theorem 8.16 is left for the exercises.

DEFINITION 8.26

The adjacency matrix for a directed graph G on the ordered list of vertices
v1, v2, . . . , vn is the n× n matrix A= [ai, j ] such that ai, j is the number of edges from
vi to v j .

EXAMPLE 8.45 If, for the directed graph

3 4

1 2

5

we take the ordering of the vertices to be 1, 2, 3, 4, 5, then the adjacency matrix
obtained is

1 2 3 4 5
1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

1 0 0 0 1

1 0 0 1 0

0 1 0 0 0

0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

■

Adjacency matrices for directed graphs need not be symmetric, as they are
for ordinary graphs.

Markov Chains
A directed graph can be used to model a random process. Vertices are used
to represent the states of the process, and each edge (u, v) reflects a possible
transition from state u to state v in one iteration of the process. For example, this
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is the case in Figure 8.31, in which the vertices represent the states of a baseball
player and the edges point to possible subsequent states. (We expand on this
example in Exercise 63.) In general, each edge (u, v) might be assigned the prob-
ability that a direct transition from state u to state v will occur, with p(u, v) = 0
if (u, v) is not an edge. Of course, for a fixed state u, since an iteration of the pro-
cess must result in a transition to some state v, we must have

∑
v∈V p(u, v) = 1.

If, for all states u and v, the probability p(u, v) does not change from iteration to
iteration, then the process is called a Markov chain. Such processes are named
after the Russian mathematician Andrei Markov (1856–1922). In keeping with
our consideration of finite graphs only, we shall consider only Markov chains
with finitely many states.

DEFINITION 8.27

A Markov chain graph is a directed graph G = (V, E) without multiple edges, for
which each edge (u, v) is assigned a value p(u, v) in the interval [0, 1]. Moreover, for
each vertex u, the sum of the values assigned to the edges with tail u must be 1.

EXAMPLE 8.46 At an extremely competitive private school, each semester every student is
assigned one of three states. The student has normal status if everything is fine.
The student is assigned probationary status if the previous semester’s grades
are poor. The student is suspended for a semester if grades are not improved
while on probation. We assume that students always return to normal status
after a semester of being suspended.

By tracking students for several years, the school has determined the like-
lihood of the possible status changes. Using v1 for normal status, v2 for pro-
bationary status, and v3 for suspended status, the Markov chain graph

2
3

Normal status (v1)

Probationary status (v2)

(v3) Suspended status 

1
1
3

1
2

1
2

reflects the probabilities of moving from one status to another at this school.
For example, from normal status, there is a 2

3 chance of retaining normal sta-

tus, a 1
3 chance of receiving probationary status, and no chance of getting sus-

pended for the subsequent semester. ■

A matrix very much like an adjacency matrix can be used to keep track of
the state-to-state transition probabilities.

DEFINITION 8.28

Given a Markov chain graph and an ordering of its vertices, v1, v2, . . . , vn, its transi-
tion matrix is the n× n matrix M = [p(vi , v j )]. That is, the (i, j)th entry of M is the
value p(vi , v j ), which may be denoted more compactly as p(i, j).
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EXAMPLE 8.47 The transition matrix M for the Markov chain graph in Example 8.46 is
displayed.

v1 v2 v3

v1

v2

v3

⎡
⎢⎢⎣

2
3

1
3 0

1
2 0 1

2

1 0 0

⎤
⎥⎥⎦

■

More than merely storing the transition probabilities for one iteration of a
process, the transition matrix can be used to compute analogous transition prob-
abilities for multiple iterations of the process.

THEOREM 8.17 Let M be the transition matrix for a Markov chain graph G obtained from the ordering
v1, v2, . . . , vn of the vertices, and let m ∈ N. Then the mth power of M, say Mm = [qi, j ],
has the property that, for each 1 ≤ i ≤ n and 1 ≤ j ≤ n, the entry qi, j is the probability of
moving in G from vi to v j in a sequence of exactly m steps

EXAMPLE 8.48 The second and third powers of the transition matrix M for the Markov chain
graph in Example 8.46 are shown.

M2 =

⎡
⎢⎢⎣

11
18

2
9

1
6

5
6

1
6 0

2
3

1
3 0

⎤
⎥⎥⎦ M3 =

⎡
⎢⎢⎣

37
54

11
54

1
9

23
36

5
18

1
12

11
18

2
9

1
6

⎤
⎥⎥⎦

For example, we see that there is a 1
6 chance that a student with normal status

will fail out after two semesters. Also, there is a 23
36 chance that a student on

probation will return to normal status after three semesters.
If we consider higher and higher powers of M, then we see that they con-

verge to a fixed matrix with special properties. In this case, a strong trend is
already apparent by the 7th power, and it turns out that these powers are ap-
proaching the limiting matrix, denoted M∞, displayed below.

M7 ≈

⎡
⎢⎣

.667 .223 .110

.665 .222 .113

.668 .221 .112

⎤
⎥⎦ M∞ =

⎡
⎢⎢⎣

2
3

2
9

1
9

2
3

2
9

1
9

2
3

2
9

1
9

⎤
⎥⎥⎦

Moreover, the rows of M∞ are all the same, and thus, for j = 1, 2, 3, the j th
entry in a row of M∞ gives the long-term probability of being in state v j , re-
gardless of the initial state. That is, in the long-run, roughly 2

3 of the students
have normal status, 2

9 are on probation, and 1
9 are suspended. ■

To better explain the convergence properties for Example 8.46 observed in
Example 8.48, we need some terminology. A state vi in a Markov chain graph is
said to have period q if q ∈ Z+ and the length of every circuit starting at vi is a
multiple of q . We say that vi is periodic if q > 1 and aperiodic if q = 1. Although
the shortest circuit starting at v3 in the Markov chain graph from Example 8.46
has length 3, the presence of the loop at v1 enables us to form circuits of any
length greater than or equal to 3 starting from any vertex. Thus, every state in
Example 8.46 is aperiodic.
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A class in a Markov chain is a set of states that corresponds to the vertex
set for a strong component in the corresponding graph. If a Markov chain has
just one class, then the Markov chain is said to be irreducible. A finite Markov
chain is said to be regular if it is irreducible and every state is aperiodic. There
is a simple test for regularity, which we state without proof.

LEMMA 8.18 A finite Markov chain with transition matrix M is regular if and only if there exists some
m ∈ Z+ such that Mm has all positive entries.

In light of the value M3 displayed in Example 8.48, it follows from Lemma 8.18
that the Markov chain in Example 8.46 is regular. Of course, it is not hard to see
this directly as well, since the graph can be seen to be strongly connected, and
we observed above that each state is aperiodic. The following result, which we
also state without proof, explains the convergence behavior demonstrated for
Example 8.46.

THEOREM 8.19 If M is a transition matrix for a finite regular Markov chain, then as m increases, the powers
Mm of M converge to a matrix, which we denote by M∞, all of whose rows are the same.
Moreover, for each j , the entry in the j th column of every row of M∞ is the long-term
probability of being in state v j , independent of the initial state.

To appreciate properties that irregular Markov chains might exhibit, such as
periodicity, we consider another example.

EXAMPLE 8.49 (Tied in Tennis). When a tennis game has a score of deuce, it means that the
game is tied and the first player to gain a two-point lead will be declared the
winner of that game. A player with a one-point lead is said to have the ad-
vantage, but the state of deuce may be revisited several times before the game
is completed. Since a game has a fixed server and a fixed receiver, the possible
states are deuce (D), advantage server (AS), advantage receiver (AR), a win for
the server (WS), and a win for the receiver (WR). Assuming that the server has
a 60% chance of winning any given point and the receiver has a 40% chance,
the relevant Markov chain graph is displayed in Figure 8.34, and is accompa-
nied by its transition matrix.

1

1

AS

.4

.4

.6

.6

.4

.6

D

AR
WR

WS D AS AR WS WR
D

AS

AR

WS

WR

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 .6 .4 0 0

.4 0 0 .6 0

.6 0 0 0 .4

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= M

Figure 8.34 Tennis End-Game Analysis
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By computing the value of M2, shown in Figure 8.35, we can see what might
happen after two more points of the game. For example, from deuce (D), there
is a .36 chance that the server will win (WS) and a .16 chance that the receiver
will win (WR). From advantage server (AS), there is a .6 chance that the server
will win (WS). Of course, that win will have occurred after the first point, and
the second iteration will have cycled back onto the state of victory in that case.

M2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

.48 0 0 .36 .16

0 .24 .16 .6 0

0 .36 .24 0 .4

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

M30 ≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 .692 .308

0 0 0 .877 .123

0 0 0 .415 .585

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Figure 8.35 Ongoing Tennis

The Markov chain is not irreducible; it has three classes. One class consists
of the states D, AS, and AR. Each of these states has period 2. Each of WS and
WR forms a class by itself and has period 1. Although the Markov chain is not
regular and Theorem 8.19 therefore does not apply, we can still observe some
meaningful long-term behavior here. In this case, the powers of M do not
change much after the 30th power, shown in Figure 8.35. Although the rows
are not all the same, as results in the regular case, they still store long-term
probabilities. The first row shows that, starting from deuce (D), the chance that
the server wins is approximately .692 and the chance that the receiver wins is
approximately .308. The second and third rows give similar probabilities start-
ing from advantage server (AS) and advantage receiver (AR), respectively. The
last two rows reflect the fact that, once a player has won the game, there are no
further transitions to a different state in that game. ■

In a Markov chain, a state vi is said to be absorbing if p(i, i) = 1. That is, in
the Markov chain graph, there is a loop edge at vi with assigned probability 1.
In Example 8.49, WS and WR are the absorbing states. Note in the convergence
behavior observed there that it is in those columns that the nonzero values con-
gregate; all initial states are absorbed into those absorbing states.

A class is said to be ergodic if no edge in the Markov chain graph points
from a vertex inside the class to a vertex outside the class. In this case, each of
the states in the class is also said to be ergodic, or recurrent. In Example 8.49,
the states WS and WR are recurrent. A class for which there is an edge in the
Markov chain graph pointing from a vertex inside the class to a vertex outside
the class is said to be transient, as is each of its states. In Example 8.49, the states
D, AS, and AR form a class of transient states.

A Markov chain is said to be absorbing if each state is either absorbing or
transient, so what is special about the Markov chain in Example 8.49 is that it is
absorbing. In general, if a Markov chain with transition matrix M is absorbing,
then the powers Mm of M converge to a matrix M∞, which contains long-term
transition probabilities. For a proof of this and the other unproved results on
Markov chains stated in this section, the reader is referred to [8].
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SECTION 8.5 Exercises
1. When there is a lot of snow on the ground, the residents of the pictured

neighborhood have complained that some of the streets are too narrow for
two cars to pass. Hence, town planners have proposed that during the
winter months, the portions of the streets marked with arrows should be
converted to one-way streets.

Draw a directed graph that reflects the resulting traffic flow.
2. To reduce traffic and increase parking, city planners have proposed that

the pictured neighborhood convert to one-way streets the portions of the
streets marked with arrows.

Draw a directed graph that reflects the resulting traffic flow.
3. In the pictured computer network configuration, some of the direct cable

connections allow only one-way communication from one computer to
another. On each line, an arrow points in a direction of possible commu-
nication along that line.

1 2 3

4 5

Draw the directed graph that reflects this network.
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4. Pictured is a map of the bus system in a certain city. The direction of travel
of each bus is marked on the map. Each bus route runs a circuit.

Park Daniels

Center

Hawk

Fern

Anselm
Market

Main

Bradley

Comstock

Winter

South

Routes
1
2

Draw the directed graph representing the entire bus system.

The following directed graphs G = (V, E) are referenced throughout the
exercises.

(a) V = {1, 2, 3, 4, 5} and E = {(1, 3), (1, 5), (2, 3), (4, 2), (3, 4), (3, 5)}.
(b) V = {1, 2, 3, 4, 5, 6} and

E = {(1, 3), (2, 1), (3, 2), (4, 3), (4, 6), (5, 4), (6, 1), (6, 5)}.
(c) V = {1, 2, 3, 4} and E = {(1, 3), (2, 1), (2, 3), (3, 4), (4, 1), (2, 2)}.
(d) V = {1, 2, 3, 4} and E = {(1, 2), (1, 3), (1, 4), (2, 3), (4, 1)}.

In Exercises 5 through 8, draw the specified directed graph and determine
whether it is simple. If not, explain why.
5. Graph (a). 6. Graph (b).
7. Graph (c). 8. Graph (d).
9. In graph (c), is there a path from 2 to 4?
10. In graph (d), is there a path from 2 to 4?
11. Consider the computer network from Exercise 3. Find two possible paths

through which computer 1 could send a message to computer 5.
12. Consider the city bus system from Exercise 4. Find two possible paths one

could use to travel from South to Center.

In Exercises 13 through 16, draw the underlying graph of the specified directed
graph.
13. Graph (a). 14. Graph (b).
15. Graph (c). 16. Graph (d).

In Exercises 17 through 22, determine the strong components of the specified
directed graph.
17. Graph (a). 18. Graph (b).
19. Graph (c). 20. Graph (d).
21. Consider the neighborhood in Exercise 1. From each point in the neighbor-

hood, is it possible to travel to any other? If not, then describe the portions
in which travel is restricted.

22. Consider the neighborhood in Exercise 2. From each point in the neighbor-
hood, is it possible to travel to any other? If not, then describe the portions
in which travel is restricted.
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In Exercises 23 through 26, prove that the two pictured directed graphs are
isomorphic.
23. 1 2 3 4 5 6

24.

1 3

2

4 6

5

25.

1 3

2

8 7

5
4

6

26. 1 2

3 4

5 6

7 8

In Exercises 27 through 32, list the in- and out-degrees for each vertex of the
specified directed graph.
27. Graph (a). 28. Graph (b).
29. Graph (c). 30. Graph (d).
31.

1 3

2 4 32. 1 2

3 4

In Exercises 33 through 36, prove that the two pictured directed graphs are not
isomorphic.
33. 1 2

3 4

5 6

7 8

34. 1 2 3 4 5 6
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35.

6

1 3

2

8 7

54

36.

1 3

2

4 6

5

In Exercises 37 through 40, prove or disprove that the pictured directed graphs
are isomorphic.
37.

4

3 2

1

8

7 6

5

38. 1 2 3 4

39.
1 2 3 4

40. 1 2

3 4

5 6

8 7

41. List all non-isomorphic simple directed graphs on 3 or fewer vertices.
42. List all non-isomorphic simple directed graphs on 4 vertices and 3 or fewer

edges.
�43. List all non-isomorphic directed graphs G such that G ∼= K4.
�44. List all non-isomorphic directed graphs G such that G ∼= K2,3.
45. Let G be any directed graph. Show: If G is strongly connected, then G is

weakly connected.
46. Prove Theorem 8.16.
47. Let G and H be any directed graphs. Show: If G ∼= H, then G ∼= H.

Does the converse hold?
48. Show that the strong components and the weak components are the same

in any directed graph G = (V, E) satisfying the condition

∀ u, v ∈ V, (u, v) ∈ E ↔ (v, u) ∈ E .



486 P A R T II ■ Combinatorics

In Exercises 49 and 50, (a) find the adjacency matrix A for the given graph, and
(b) compute A2 by hand.
49.

1 3

2 50. 1 2

3 4

�51. If G is a directed graph without loops and A is its adjacency matrix, then
express the adjacency matrix for G in terms of A.

�52. Under what conditions will the adjacency matrix for a directed graph be
symmetric?

53. State a version of Corollary 8.11 for directed graphs.
54. State a version of Corollary 8.13 for directed graphs.
55. Is the pictured directed graph a

Markov chain graph? If not, then
explain why.

1 .5

.5 .5

3

2

56. Is the pictured directed graph a
Markov chain graph? If not, then
explain why.

.6

.4

.4

.2.6

3 4

1 2

57. For the given Markov chain
graph,

1
.8

.2

.4

1.6

3 4

1 2

(a) find the transition matrix M.
(b) find M2.

58. For the given Markov chain
graph,

1 .8

1

.4

.2

.6

3 4

1 2

(a) find the transition matrix M.
(b) find M2.

For Exercises 59 through 68, use mathematical software such as Mathematica or
Maple to compute powers of matrices.
59. Full Tennis Game. In a game of tennis, a player must win by at least two

points. However, the points are not called 0, 1, 2, and so on; they are called
0 (or Love), 15, 30, 40, Game. The convention is to state the score as a pair,
with the server’s score listed first. Once the smaller of the two scores
reaches at least 30, any tie score is called deuce, and a player who needs
only one more point to win the game is said to have the advantage.
(a) Draw a Markov chain graph whose vertices reflect the possible scores

in a tennis game. Note that Figure 8.34 displays a subgraph of this
graph. However, our graph will not include any probability labels.
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(b) How many classes are there?
(c) How many are transient?

60. Winning by Three. Players A and B are playing a game in which points
are determined by a coin toss and the first player to lead by three points
wins. If the coin comes up heads, then player A wins a point. If the coin
comes up tails, then player B wins a point. Since only the difference in
points matters, a score of (2, 1) is identified with the score (1, 0), for
example. In general, (a , b) is identified with (a −min{a , b}, b −min{a , b}).
Hence, there are only finitely many possible states.
(a) Assume that the coin is fair, and make a Markov chain graph that

reflects this game.
(b) What are the absorbing states?
(c) What is the period of the transient states?
(d) What is the likelihood that the player who wins the first toss will win

the game? Hint: Consider M∞.
61. Let M be the transition matrix for a Markov chain graph. Show that, for

each 1 ≤ i ≤ n, the sum of the entries in the ith row of M is 1. That is,∑n
j=1 p(i, j) = 1. Must the column sums be 1?

62. Let G be any Markov chain graph on n vertices, and let M be a transition
matrix for G. Show that G is strongly connected if and only if every entry
of the matrix I + M+ M2 + · · · + Mn−1 is positive.

63. Baseball Analysis. Form a Markov chain graph from the directed graph
in Figure 8.31 as follows. Label the vertices 0, 1, 2, 3, 4, 5, where 0 is At
Bat, 1 is First Base, 2 is Second Base, 3 is Third Base, 4 is Score, and 5 is Out.
Also, add loops at vertices 4 and 5. Let the following be the transition
matrix.

0 1 2 3 4 5
0

1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 .2 .05 .025 .025 .7

0 .55 .125 .125 .075 .125

0 0 .65 .05 .2 .1

0 0 0 .7 .25 .05

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= M

(a) Compute M2 and M3. If a player starts from first base, then what is the
probability that he will have scored after 2 more at bats? after 3 more
at bats?

(b) Compute a large power of M (say M30). This reflects a convergence
and suggests ultimate likelihood of scoring versus getting out from
a certain base. What is the ultimate likelihood of scoring from first
base? Does the ultimate likelihood of scoring vary with the starting
point?

64. Population Migration. Each year the inhabitants of four islands, labeled
A, B, C, and D migrate among these islands. The probabilities of the
various migrations are shown in the pictured Markov chain graph.



488 P A R T II ■ Combinatorics

.3

.1

.2

.8

.1 .9.2

.7.6

.1

B

C

A

D

(a) Give the transition matrix M for this Markov chain graph.
(b) Compute M2 and M3. What is the probability that an inhabitant of

island A will end up an inhabitant of island D after 2 years? after 3
years?

(c) Compute a large power of M (say M30). This reflects a convergence
and suggests an ultimate balance of the population among the islands.
What is the probability that an inhabitant of island A will ultimately
end up as an inhabitant of island D? Does the starting island matter in
this ultimate likelihood?

65. Calculus Remediation. At a competitive college, students who do not pass
calculus and wish to remain at the college must first take algebra and then
take trigonometry (though passing these remedial courses is not required)
before they can retake calculus. Many end up withdrawing (WD) from
school out of frustration. The transition matrix M for this Markov chain is
displayed.

Calc. Trig. Alg. WD Pass
Calc.

Trig.

Alg.

WD

Pass

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 .3 .1 .6

.5 0 0 .5 0

0 .8 0 .2 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= M

(a) Draw the corresponding Markov chain graph.
(b) For each state, determine its period.
(c) Compute a large power of M (say M20). What percentage of students

starting in calculus ultimately pass calculus? What percentage of
students starting in algebra ultimately withdraw from school?

66. Doubles Tennis Rally. Teams A and B are playing doubles tennis. Team A
consists of players A and a, and Team B consists of players B and b. For
each player, statistics have been kept on which member of the opponent’s
team tends to receive his shot. We are assuming that none of the players
will miss a shot, and thus an arbitrarily long rally can be maintained.

A a B b
A

a

B

b

⎡
⎢⎢⎢⎢⎣

0 0 .3 .7

0 0 .6 .4

.2 .8 0 0

.5 .5 0 0

⎤
⎥⎥⎥⎥⎦= M
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(a) Draw the corresponding Markov chain graph.
(b) Compute M2, and observe that every state has period 2.
(c) This Markov chain does not have a single matrix M∞ to which the

powers of M converge. Instead, because every state has period 2, the
even powers of M converge to one matrix Meven and the odd powers
of M converge to another matrix Modd. Estimate those matrices by
computing large powers of M.

67. Video Poker. Keith is trying to outsmart a video poker machine in a
casino. After hours of observation, he has witnessed the transition
probabilities listed in the following matrix. That is, given the action of
the computer on one turn, the matrix reflects the probable action of the
computer on its subsequent turn.

Bet Check Fold Win

Bet
Check

Fold
Win

⎡
⎢⎢⎢⎢⎣

.4 .2 .1 .3

.3 .2 .3 .2

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦= M

Of course, the game is over when either the computer folds (equivalently,
the computer loses) or the computer wins.

(a) Draw the corresponding Markov chain graph.
(b) Estimate M∞.
(c) For each possible action of the computer on its first turn, determine the

likelihood that the computer goes on to win that game.
(d) Is Keith able to find any advantage against the computer as a result of

this analysis?

68. Doubles Tennis Point. Here, we consider the same basic setup of a dou-
bles tennis match as that in Exercise 66. However, we now deal with the
possibility that a player may fail to complete a shot. Thus, for each state x
that represents a player’s shot, we add a state x′ representing the failing of
that player to complete his shot. Of course, once one of these new states is
reached, the point is over.

A a B b A′ a′ B′ b′

A

a

B

b

A′

a′

B′

b′

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 .2 .6 .2 0 0 0

0 0 .4 .2 0 .4 0 0

.1 .6 0 0 0 0 .3 0

.3 .4 0 0 0 0 0 .3

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= M
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(a) Draw the corresponding Markov chain graph.
(b) Estimate M∞. If player A serves, then what is the probability that

player A is the one who loses the point in the end?
(c) Which team is likely to win the point? Does it matter which player

serves (starts the point)?

CHAPTER 8 Review Problems

1. Pictured is a portion of the city of Zahlenberg through which the Stetig
River flows.

Sud

West Ost

Nord

Stetig

21

7 86

5

9

3 4

Draw the graph that reflects the bridge crossings in this city.
2. A small airline in upstate New York provides the round-trip service shown

in the following table.

Binghamton Buffalo Ithaca Rochester Syracuse

Binghamton No Yes No No Yes
Buffalo Yes No Yes No Yes
Ithaca No Yes No Yes No
Rochester No No Yes No No
Syracuse Yes Yes No No No

A travel agent wants to represent this service in a diagram. Draw a graph
that reflects this service.

3. Let V = {1, 2, 3, 4}, E = {{1, 4}, {2, 4}, {3, 4}}, and G = (V, E).

(a) Draw G = (V, E).
(b) Determine the edge set for the subgraph of G induced by W = {1, 2, 3}.
(c) What is the distance from 2 to 3?
(d) Is G bipartite?

4. Let V = {1, 2, 3, 4, 5}, E = {a , b, c, d, e}, a = {1, 3}, b �→ {1, 4},
c �→ {1, 4}, d = {2, 5}, e = {3, 4}, and G = (V, E).
(a) Draw G. (b) Give an example of a cycle in G.
(c) Is G connected? (d) Find the components of G.

5. Determine whether each of the following pictures is the drawing of a
graph.

(a) (b)
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6. Let G be the pictured graph.

3

6

1 2

4 5

(a) Is G a simple graph? (b) Does 4, 5, 2, 3 specify a path?

(c) Does 3, 4, 5, 6, 3 specify a cycle?

7. Let G be the pictured graph.

3 4

1 2

(a) Give the adjacency matrix, using the vertex ordering 1, 2, 3, 4.
(b) Give the adjacency lists.

8. Let A be the adjacency matrix from Exercise 7(a).

(a) Find the permutation matrix P corresponding to the permutation
2, 4, 3, 1.

(b) Compute PA.
(c) How is the matrix PAPT related to the graph in Exercise 7?

9. Six power stations have been connected to form a power grid. Redundant
connections are used to maintain a backup for important connections that
might fail. The given matrix reflects direct connections between the power
stations.

NE E SE SW W NW
NE

E

SE

SW

W

NW

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 2 0 1

1 0 2 0 1 0

0 2 0 1 0 1

2 0 1 0 1 0

0 1 0 1 0 2

1 0 1 0 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Draw the graph with the given adjacency matrix that reflects the power
grid.

10. Draw K3,1.
11. Draw P6.
12. (a) Draw K4.

(b) Find a trail in K4 that is neither a path nor a cycle.
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13. For the purposes of a psychological study, a binary linear code in Table 8.4
is used to encode, for each participant, his or her gender and the hand with
which he or she writes. Consequently, the code words can be regarded as
vertices of Q4.

Gender Writing Hand Message Code Word

Male Right 00 0000
Male Left 01 0101
Female Right 10 1011
Female Left 11 1110

Table 8.4 A Binary Linear Code for a Psychological Study

(a) Draw Q4.
(b) In Q4, find dist(0110, 0011).
(c) Is there a unique code word that is nearest to the vertex 1101? To what

gender and writing hand does it correspond?
(d) Give an example of a vertex in Q4 for which there is not a unique

nearest code word. Such a vertex could not be decoded.
14. Let G = (V, E) be a graph, W ⊆ V, and H the subgraph of G induced

by W.
Show: If G is complete, then H is complete.

15. Can a graph be bipartite if it has
(a) a loop? (b) multiple edges? (c) a cycle?

16. Show that the cube is bipartite.
17. Is the dodecahedron bipartite? Justify your answer.
18. A sixth-grade teacher is keeping track of the friendships within her class

with a graph. Each student is represented by a vertex, and an edge joins
two students if and only if they are friends. Will such a graph always be
bipartite? Explain.

19. Show that the two pictured graphs are isomorphic.

1

2

4 3

6 7

5

8

20. Show that the two pictured graphs are isomorphic.

ba 1
dc2

Observe that a vertex map is not sufficient in this case.
21. Pictured are two design plans for a power grid, in which the symbol �

denotes a power station. One represents a grid at MIT and the other is at
Harvard.
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4

5 2

3

6 1
3

6

1 2

4 5

Show that the power grids are equivalent and, hence, that Harvard can
employ the same diagnostic software as that used at MIT.

22. Show that Qn is vertex transitive.
23. Are the graphs in Exercise 21 vertex transitive?
24. Is the pictured graph isomorphic to the Petersen graph?

25. Show that there is a graph map from C4 to the pictured graph.

a

b

c

26. How many automorphisms does the graph pictured in Exercise 25 have?
�27. Find |Aut(Q3)|. Compare this result with the number of automorphisms of

a die studied in Example 7.18 of Section 7.4.
28. Is there a graph map from the tetrahedron to the octahedron? Explain.
29. Show that, if G = (V, E) is an r -regular graph and r is odd, then |V|

is even.
30. Show that the two pictured graphs are not isomorphic.

31. Pictured are two design plans for a power grid at Yale, in which the
symbol � denotes a power station. They seem to have one major design
difference around the interior power station on the right. Are they really
different?

Show that the two graphs that model these grids are in fact not isomorphic.
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32. Show that the two pictured graphs are not isomorphic.

4

7

5 2

3

6 1

4

7

5 2

3

6 1

33. Determine whether the two pictured graphs are isomorphic.

4

5 2

3

6 1

4

5 2

3

6 1

�34. List all non-isomorphic simple graphs with degree sequence 3, 2, 2, 2, 1.
�35. List all non-isomorphic simple graphs with degree sequence 4, 4, 2, 2, 2, 2.
36. Show that the complement of the graph in Exercise 21 is isomorphic to the

pictured graph.

51

62

3 4

37. For every simple graph G, show that (Gc)c = G.
38. Draw each of the following graphs.

(a) P3 + C3. (b) P3 × C3.

39. In Q3, let G be the subgraph induced by vertices 000, 001, 010, 011, and let
H be the subgraph induced by vertices 000, 010, 100, 110.
(a) Find G ∩ H. (b) Find G ∪ H.

40. Let G and H be any graphs. Show: G × H ∼= H × G.
41. Let V = {1, 2, 3, 4}, E = {(1, 2), (1, 4), (3, 2), (3, 4)}, and G = (V, E).

(a) Draw G.
(b) Draw G.
(c) Determine the weak components of G.
(d) Determine the strong components of G.
(e) List the in- and out-degrees of the vertices.
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42. Is the pictured directed graph simple?

43. Pictured are two seemingly different designs for a computer network on
six computers using eight cables in which each cable connection allows
message passing in only one direction.

1

4

2

5

3

6

7

10

8

11

9

12

Show that the two directed graphs that model these networks are
isomorphic.

44. Show that the two pictured directed graphs are not isomorphic.

1

3

2

4

1

3

2

4

45. Determine whether the two pictured directed graphs are isomorphic.

1

3 4

2

5

1

3 4

2

5

46. List all non-isomorphic simple directed graphs on two vertices.
47. List all directed graphs G for which G is the pictured graph.

1

3 4

2
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48. Give the adjacency matrix for the pictured graph.

1

4

2

5

3

6

49. Is the directed graph in Exercise 42 strongly connected? Describe its strong
components.

50. Is the pictured directed graph a
Markov chain graph?

1

.2

5

3 .3
.3

2

4 .7

51. Give the transition matrix for the
Markov chain whose graph is
pictured.

1

.7

.2

1

1.3

4

2

3 .8

52. Turtle Migration. Each year the turtles inhabiting the four islands A, B, C,
and D migrate among these islands. The probabilities of the various
migrations are given in the displayed transition matrix.

A B C D
A

B

C

D

⎡
⎢⎢⎢⎢⎣

0 .2 0 .8

0 .6 0 .4

.3 0 .2 .5

0 0 1 0

⎤
⎥⎥⎥⎥⎦

(a) Draw the corresponding Markov chain graph.
(b) What is the probability that a turtle on island A will end up on island

D after 2 years?
(c) Is this Markov chain irreducible? regular?
(d) What is the long-term probability that a turtle starting on island A will

inhabit island C?
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Graph Properties

IN CHAPTER 8, we were introduced to some basic graph invariants such as the

number of vertices and the maximum degree. Those invariants are numerical values.

However, more generally, invariants include global properties such as whether or not a

graph is connected.

This chapter focuses more keenly on properties of graphs, starting with connectivity.

Beyond just whether or not a graph is connected, the connectivity measures how close

the graph is to becoming disconnected should portions be removed. This is of particular

interest when a graph models a network whose components may fail. Next, we consider

whether or not a graph contains certain special circuits. Euler circuits are those that

traverse every edge exactly once. Hamiltonian cycles hit every vertex exactly once. Such

circuits and cycles are of interest if we want to plow all of the streets in a neighborhood

or make deliveries to each of its addresses.

Our final two sections build up to one of the most famous theorems in graph theory

and mathematics in general, the Four Color Theorem. First, we determine which graphs

can be drawn in the plane without edge crossings. Such graphs are said to be planar.

Second, we consider the general problem of determining the minimum number of colors

needed to color the vertices of a graph so that neighbors have different colors. The fact

that planar graphs never need more than four colors is the famous result.

The determination of whether or not a graph is planar is important in circuit design.

Finding the minimum number of colors needed to color a graph turns out to have appli-

cations in scheduling problems. The fact that planar graphs need at most four colors

means that a coloring of the states or countries in a map never requires more than four

colors.

9.1 Connectivity
Suppose a graph represents a power grid. The failure of power stations or cables
in that grid can be reflected by the deletion of the corresponding vertices or
edges in the graph. The new graph obtained can then be used to study the power
delivery capabilities and limitations of the new grid. Such analysis is important,
since storms or other incidents can damage a grid.

We consider the vulnerability of a graph to the removal of vertices and edges.
Initially, the focus is on removing vertices. We start with a motivating example.

497
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EXAMPLE 9.1 The pictured graph represents a power grid in which it is possible for each of
eight power stations to transfer power to all others.

1

5

2

6

3 4

7 8

What is the minimum number of power stations whose failure would leave a
grid in which not every remaining station could transfer power to any other?

Solution. Two power stations.
The failure of stations 3 and 7 leaves a grid

1

5

2

6

4

8

in which stations 1 and 4 cannot transfer power to one another. Further, it is
easy to check that, if just a single station fails in the original grid, then the
remaining stations can still transfer power among themselves. ■

The issues arising in Example 9.1 are relevant to graphs in general.

DEFINITION 9.1

Let G = (V, E) be any graph.

(a) Given subsets W ⊆ V and F ⊆ E , the graph resulting from the removal of
W ∪ F , denoted1 G\(W ∪ F ), is the subgraph of G whose vertex set is V\W
and whose edge set is E\(F ∪ {e ∈ E : e is incident with some v ∈ W}).

(b) A disconnecting set for G is a set D of vertices such that G\D is
disconnected.

(c) The connectivity of G, denoted κ(G), is the minimum number of vertices
whose removal results in either a disconnected graph or a single vertex.

(d) A κ-set for G is a set of κ(G) vertices whose removal results in either a
disconnected graph or a single vertex.

Remark 9.1 If a graph G = (V, E) has a pair of distinct nonadjacent
vertices, then κ(G) is the minimum possible size of a disconnecting set.
Only in the case that every pair of distinct vertices is adjacent is κ(G)
the minimum number of vertices whose removal results in a single
vertex. In that case, κ(G) = |V| − 1. This gives κ(Kn) = n− 1 and also
handles any graph that might be constructed from Kn by adding extra
loops or multiple edges.

1The notion of a union of graphs, sets, or otherwise is not intended in W ∪ F . What is important is
that each of W and F are removed from V and E , respectively.
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EXAMPLE 9.2 Let G be the pictured graph, W = {1, 3}, and F = {g}.

1

3 4 5

a

b

f g h

d ec

2

Then the graph G\(W ∪ F ) is

4

2

5
h

d e

Note that, in addition to edge g, all edges incident with vertex 1 or vertex 3
have been removed. ■

If G is not complete, then to establish that κ(G) has a particular value k
takes two steps. First, a disconnecting set of size k must be specified. This gives
κ(G) ≤ k. Then it must be argued that no disconnecting set of size smaller than k
exists. That gives κ(G) ≥ k, and equality follows. The arguments in Example 9.1
thus showed that the graph presented there has connectivity 2.

We have seen that graphs can be used to model computer networks such as
those shown in Figure 9.1. Suppose n is the number of computers for which a
network is to be formed. If there are just n−1 cables with which to connect them,
then they might be connected to form the path Pn (see Exercise 18). If there are
n cables, then Cn is the logical choice (see Exercise 17). Theorem 9.1 thus reflects
the vulnerability of these types of networks to failure.

P4

2 3

1 4

C4

2 3

1 4

Figure 9.1 Network Configurations

THEOREM 9.1 Let n be an integer.

(a) If n ≥ 2, then κ( Pn) = 1. (b) If n ≥ 3, then κ(Cn) = 2.

Proof
Our vertices are labeled 1, 2, . . . , n as in Definition 8.10.

(a) Suppose n ≥ 2. Since Pn is connected (and has more than one vertex), it
follows that κ( Pn) ≥ 1. If n = 2, then Pn\{2} is a single vertex. If n > 2,
then Pn\{2} is disconnected. Thus, κ( Pn) ≤ 1.
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(b) Suppose n ≥ 3. If we remove one vertex, say vertex i , then the remaining
graph forms the path i + 1, . . . , n, 1, . . . , i − 1, which is obviously con-
nected. Thus, κ(Cn) ≥ 2. Since removing {1, 3} results in either a single
vertex (if n = 3) or a disconnected graph (if n > 3), it follows that
κ(Cn) ≤ 2. �

One easy way to disconnect a graph is to remove all of the neighbors of some
vertex. It follows that the connectivity of a graph cannot exceed its minimum
degree.

THEOREM 9.2 For any graph G, we have κ(G) ≤ δ(G).

Proof
Let G be any graph. Let v be a vertex with deg(v) = δ(G), and let W be the set
of neighbors of v distinct from v. So |W| ≤ δ(G). The removal of W from G
leaves v without neighbors. Since G\W must then be either a disconnected
graph or a single vertex, κ(G) ≤ |W| ≤ δ(G). �

Equality is possible in Theorem 9.2, as can be seen in Theorem 9.1. Namely,
κ( Pn) = δ( Pn) = 1 and κ(Cn) = δ(Cn) = 2. Obviously, each cycle Cn is con-
nected and 2-regular. It turns out that these are the only connected and 2-regular
graphs.

THEOREM 9.3 Let G = (V, E) be any graph. If G is connected and 2-regular, then G ∼= Cn, where n = |V|.
So κ(G) = 2.

Proof
Suppose G is connected and 2-regular. Let T be a longest possible trail in G.
Say x0, x1, . . . , xn is a listing of the vertices encountered along T .

Suppose toward a contradiction that v is a vertex of G not on T . Since G is
connected, there is a path P from xn to v. Let e be the last edge on P that is also
on T . Since v is not on T , there is an edge f in P immediately following e.
Thus, e and f share an endpoint xi for some 0 ≤ i ≤ n.

x0 x1 xi

v

e
f

xn�1 xn

If i = 0 or n, then adjoining f to T forms a trail in G longer than T . If 0 < i < n,
then deg(xi ) ≥ 3. These contradictions show that f cannot exist and hence
neither can v.

We conclude that T contains all of the vertices of G. Moreover, since the
argument above shows that there can be no edge f outside of T that is in-
cident with x0 or xn, we must have x0 = xn and G ∼= Cn. By Theorem 9.1(b),
κ(G) = 2. �

In light of Theorem 9.3, one might expect that, if a graph G is connected and
3-regular, then κ(G) = 3. However, that is not the case.

EXAMPLE 9.3 The pictured graph G

is connected and 3-regular with κ(G) = 2.
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Proof
It is easy to see that the removal of a single vertex does not disconnect the
graph. It is also easy to find two vertices whose removal disconnects the graph.
This 3-regular graph thus has connectivity 2. �

Thus far, we have computed the connectivities for a few important classes
of graphs, namely complete graphs, paths, and cycles. We now add complete
bipartite graphs to our list.

THEOREM 9.4 Let m, n ∈ Z+. Then, κ(Km,n) = min{m, n}.

Proof
We have V = V1 ∪ V2, where

V1 = {(1, 1), (1, 2), . . . , (1, m)}, V2 = {(2, 1), (2, 2), . . . , (2, n)},
and E = {{v1, v2} : v1 ∈ V1 and v2 ∈ V2}. Observe that Km,n\V1 and Km,n\V2 are
disconnected.

We claim that any disconnecting set for Km,n must contain either all of V1
or all of V2. Suppose not. So we have a disconnecting set W whose removal
leaves an edge {v1, v2}with v1 ∈ V1 and v2 ∈ V2. Now let x and y be any pair of
distinct vertices in V\W. If x and y are not both in the same set Vi , then x, y
gives a single edge path from x to y. For i = 1 or 2, if x, y ∈ Vi , then x, v3−i , y
gives a path in Km,n\W from x to y. The fact that Km,n\W is connected is a
contradiction.

We conclude that the smaller of the two sets V1 and V2 is a κ-set for Km,n.
That is, κ(Km,n) = min{|V1|, |V2|} = min{m, n}. �

Edge Connectivity
Our focus now shifts to the removal of edges from a graph. If computer
cables could fail but the computers themselves could not, then this would be
our concern. For example, inexpensive fiber optic cables might be fragile and
the primary cause of downtime for a network.

DEFINITION 9.2

Let G = (V, E) be any graph.

(a) A disconnecting set of edges for G is a set F of edges such that G\F is
disconnected.

(b) The edge connectivity of G, denoted λ(G), is the minimum number of edges
whose removal results in either a disconnected graph or a single vertex.

(c) A λ-set for G is a set of λ(G) edges whose removal results in either a dis-
connected graph or a single vertex.

Remark 9.2

(a) Connectivity alone always refers to the notion in Definition 9.1(c),
which we might also call vertex connectivity.

(b) If a graph G = (V, E) has |V| = 1, then λ(G) = |E |.
The following theorem extends Theorem 9.2 and relates vertex connectivity,

edge connectivity, and minimum degree.
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THEOREM 9.5 For any graph G, we have κ(G) ≤ λ(G) ≤ δ(G).

Proof
Let G be any graph. First, we show that λ(G) ≤ δ(G). Let v be a vertex with
deg(v) = δ(G). Thus, the set F of edges incident with v has size at most δ(G).
Since G\F is either a disconnected graph or the single vertex v, it follows that
λ(G) ≤ |F | ≤ δ(G).

It remains to show that κ(G) ≤ λ(G). It is easy to see that, if λ(G) ≤ 1, then
κ(G) = λ(G). (Do Exercise 39.) So it suffices to assume that λ(G) ≥ 2. We
further assume that G is a simple graph and handle general graphs that may
not be simple at the end.

Let m = λ(G), and let F be a λ-set for G. Say F = {e1, e2, . . . , em} and
em = {um, vm}. For each 1 ≤ i ≤ m− 1, let xi be an endpoint of ei distinct from
um and vm. Note that X = {xi : 1 ≤ i ≤ m− 1} has at most m− 1 vertices.

If G\X is disconnected, then κ(G) ≤ m− 1 < λ(G). Otherwise, G\X is
connected. Note that the edges e1, e2, . . . , em−1 are removed from G when X is
removed. Since the additional removal of em results in either a disconnected
graph or a single vertex, so does the additional removal of um. Hence, κ(G) ≤
|X ∪ {um}| ≤ m = λ(G).

In the general case that G is a graph, let G ′ be a simple graph formed from
G by removing all loops and by retaining a single edge between any pair of
vertices joined by one or more edges. It is easy to see that κ(G ′) = κ(G) and
λ(G ′) ≤ λ(G). Since we have established that κ(G ′) ≤ λ(G ′), it follows that
κ(G) = κ(G ′) ≤ λ(G ′) ≤ λ(G). �

Theorem 9.5 can be used to help compute one of the parameters κ or λ when
the other is known. For example, it follows from Theorems 9.1 and 9.5 that
λ( Pn) = 1 and λ(Cn) = 2. However, it is not always the case that the three pa-
rameters κ , λ, and δ are the same.

EXAMPLE 9.4 The pictured graph G represents a fiber optic network.

We leave for the exercises the proofs that κ(G) = 1, λ(G) = 2, and δ(G) = 3.
Here, we interpret what this tells us about our network.

This network is very vulnerable to the failure of the central computer.
However, if the only likely failures would occur in the fiber optic cables, then
this network is not as vulnerable as the vertex connectivity suggests. Its edge
connectivity tells us that at least two cables need to fail to disconnect the net-
work. If the failure of two cables at the same time is extremely unlikely, then
this design might be reasonable. ■

Although Example 9.4 shows that κ and λ do not in general coincide, there
are conditions under which they do.

THEOREM 9.6 For any graph G, if G is 3-regular, then κ(G) = λ(G).



C H A P T E R 9 ■ Graph Properties 503

Proof
Let G be a 3-regular graph. By Theorem 9.5, κ(G) ≤ λ(G). Thus it remains to
show that λ(G) ≤ κ(G). Since κ(K4) = 3 = λ(K4) and K4 is the only 3-regular
complete simple graph, the case in which G is complete is covered. Now we
will consider the case in which G is not complete.

Let D be a κ-set for G, and let H and K be two distinct components of G\D.
Let D′′ be the set of those vertices in D with neighbors in D, and let D′ = D\D′′.
By Exercise 23, each vertex in D has neighbors in both H and K . Since every
vertex has degree 3, each vertex in D has either only one neighbor in H or only
one neighbor in K . Let D′

K be the set those vertices in D′ with only one neigh-
bor in K , and let D′

H = D′\D′
K . Note that the vertices in D′

H have only one
neighbor in H.

Form a set F of edges as follows.

(i) For each v∈D′′∪D′
K , put into F the unique edge from v to K .

(ii) For each v ∈ D′
H , put into F the unique edge from v to H.

So |F | = |D| and there are no paths from H to K in G\F . Since G\F is
disconnected, λ(G) ≤ |F | = |D| = κ(G). �

The connectivity of a directed graph G, denoted κ(G), is the minimum
number of vertices whose removal results in a directed graph that either is not
strongly connected or is a single vertex. The edge connectivity λ(G) is defined
analogously.

The relationship between the connectivity of a directed graph G and that of
its underlying graph G is that κ(G) ≤ κ(G). Also, λ(G) ≤ λ(G). The straightfor-
ward proofs of these observations are requested in the exercises.

SECTION 9.1 Exercises
Exercises 1 through 4 refer to the pictured graph G.

G 1

4 5

a c

b

h
g

fd e

2 3

In each case, find G\(W ∪ F ) for the given sets W and F .
1. W = {2, 4} and F = ∅. 2. W = ∅ and F = {b, c, e, h}.
3. W = {1, 4} and F = {a , b, c}. 4. W = {2, 5} and F = {a , b, g}.
Subsequent exercises refer to the following pictured graphs.

(a) (b) (c)1

3
2

4 5

6

43 5

6

1

2

6 1

4 3

25

(d) (e) (f)1 2

5

43

1

3
2

4 5

6
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5
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6

1

4
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In Exercises 5 through 12, determine the connectivity κ of the specified graph
and prove your result.
5. Graph (a). 6. Graph (b). 7. Graph (c).
8. Graph (d). 9. Graph (e). 10. Graph (f).
11. The dodecahedron graph. 12. The Petersen graph.
13. Pictured is a power grid on six stations. In addition to the outer 6-cycle,

three cables connecting diametrically opposite stations are included to
decrease the power grid’s vulnerability to station failures.

4

5 2

3

6 1

(a) What special graph is it that models this power grid?
(b) What is the connectivity of this graph? Justify your answer.
(c) Can we remove a cable from this grid and retain the same

connectivity? Explain.
14. Pictured is a computer network on five computers using seven cable

connections.
1 2

5

43

(a) What is the connectivity of the graph that models this network? Prove
your result.

(b) Can some cable connections be removed from this network, while
retaining the same connectivity? How many?

(c) What special graph is obtained when we remove as many edges as
possible, while retaining the original connectivity?

15. In a computer network, if there is a computer that is directly linked to only
one other computer, then this leaves a vulnerable point in the network. Let
G be any graph. Show: If G is connected and δ(G) = 1, then κ(G) = 1.

16. The results in Exercises 11, 12, and 13 suggest a tempting conjecture about
the connectivity of 3-regular graphs that happens to be false. What
connectivity value is shared by these graphs? Give an example of a
3-regular simple graph G with κ(G) = 1.

17. Given n computers and n cables with which to link pairs of computers, the
best network configuration in terms of connectivity is that of the cycle Cn.
(a) Show that Cn has the highest possible connectivity among graphs on n

vertices and n edges.
(b) Show that Cn is the only graph (up to isomorphism) on n vertices and

n edges that achieves this maximum.
(c) Find all possible isomorphism types of connected networks on

5 computers and 5 cables.
(d) Which of the network configurations in part (c) is the worst? Why?
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18. Given n power stations and n− 1 cables with which to link pairs of
stations, a best power grid configuration in terms of connectivity is that
of the path Pn.
(a) Show that Pn has the highest possible connectivity among graphs on n

vertices and n− 1 edges.
(b) Show that, if n ≥ 4, then Pn is not the only graph (up to isomorphism)

on n vertices and n edges that achieves this maximum.
(c) What connected power grid configuration on 5 vertices and 4 edges is

the worst? Why?
19. We need to build a power grid on n power stations and have m cables with

which to join pairs of stations. If m is relatively small as a function of n,
then it is not possible to build a grid with very high connectivity. Show
that, if a graph G has n vertices and m edges and m <

⌈ 3n
2

⌉
, then κ(G) ≤ 2.

�20. We need to build a computer network on n computers and have m cables
with which to join pairs of computers. If m is relatively large as a function
of n, then any graph will have a connectivity that is not far from the maxi-
mum possible. Show that, if a graph G has n vertices and m edges and
m = (n

2

)− 2, then κ(G) = n− 2 or n− 3.

21. Prove the following corollary of Theorem 9.3. Let G be any graph. Show: If
G is 2-regular, then G is isomorphic to the disjoint union of cycles.

22. Characterize 1-regular graphs.
�23. Show: For any graph G = (V, E) and any disconnecting set D ⊂ V, if

κ(G) = |D|, then each v ∈ D has neighbors in each component of G\D.
24. It should be intuitively obvious that removing cables from a computer

network can only reduce or maintain its connectivity and that adding
cables to a computer network can only increase or maintain its connecti-
vity. Let H and G be any graphs.
Show: If H is a subgraph of G with VH = VG , then κ(H) ≤ κ(G).

25. One might suspect that designing a power grid so that it is connected and
each power station is directly linked to several others would make it
relatively invulnerable to the failure of any single station. However, there
are examples that prove otherwise. Show that, even with the restriction
that κ = 1, it is possible to have δ arbitrarily large. That is, show: For each
integer d ≥ 1, there exists a graph G with κ(G) = 1 and δ(G) = d.
Hint: Glue some complete graphs onto a common vertex.

26. Give an example of a graph G with κ(G) = 2 and δ(G) = 4.
�27. Show: For any graph G, κ(G × P2) ≥ 1+ κ(G).
�28. Show: For all n ≥ 1, κ(Qn) = n.

Hint: Induction on n. Use the fact that Qn
∼= Qn−1 × P2.

In Exercises 29 through 36, determine the edge connectivity λ of the specified
graph and prove your result.

29. Graph (a). 30. Graph (b).
31. Graph (c). 32. Graph (d).
33. Graph (e). 34. Graph (f).
35. The dodecahedron graph. 36. The Petersen graph.

∗Exercises that may be particularly challenging are marked with a star.
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37. Consider the power grid from Exercise 13. Determine the edge connecti-
vity of the graph that models this grid, and prove your result. Is there a
unique λ-set?

38. Consider the computer network from Exercise 14. Determine the edge
connectivity of the graph that models this network, and prove your result.
Is there a unique λ-set?

39. An edge in a graph whose removal disconnects the graph is called a
cut-edge or bridge. The presence of such an edge strongly ties the
connectivity of the graph to its edge connectivity. Let G be any graph.
Show: If λ(G) ≤ 1, then κ(G) = λ(G).

40. We saw in Theorem 9.6 that 3-regular graphs have edge connectivity equal
to their vertex connectivity. Prove or disprove: If G is any 4-regular graph,
then λ(G) = κ(G).

41. Show: λ(Kn) = n− 1.
42. Prove the assertions in Example 9.4.
43. Give an example of a simple graph G for which κ(G) < λ(G) = δ(G).
44. Give an example of a simple graph G for which κ(G) = λ(G) < δ(G).
In Exercises 45 through 50, determine (a) the connectivity κ and (b) the edge
connectivity λ of the specified directed graph G = (V, E).
45. V = {1, 2, 3, 4, 5} and E = {(1, 3), (5, 1), (2, 3), (4, 2), (3, 4), (3, 5)}.
46. V = {1, 2, 3, 4, 5, 6} and E = {(1, 3), (2, 1), (3, 2), (4, 3), (4, 6), (5, 4), (6, 1),

(6, 5)}.
47. V = {1, 2, 3, 4} and E = {(1, 3), (2, 1), (3, 2), (3, 4), (4, 1), (2, 2)}.
48. V = {1, 2, 3, 4} and E = {(1, 2), (1, 3), (1, 4), (2, 3), (4, 3)}.
49. In the pictured neighborhood, the portions of the streets marked with

arrows are one-way streets, whereas the others are two-way. Let G be the
directed graph that reflects the resulting traffic flow.

50. In the pictured neighborhood, the portions of the streets marked with
arrows are one-way streets, whereas the others are two-way. Let G be the
directed graph that reflects the resulting traffic flow.
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51. Show for any directed graph G that κ(G) ≤ κ(G) and λ(G) ≤ λ(G).
52. For a directed graph G, is there an inequality of the form κ(G) ≤ λ(G) ≤

δ(G)? To what should δ(G) refer?

9.2 Euler Circuits
The highlight of this section is the beautiful theorem used by Euler to solve the
Ko··nigsberg Bridge Problem (Example 8.1 in Section 8.1). In terms of graph
theory, this focuses our study on trails in graphs.

Recall from Definition 8.4 that a trail is a walk with no repeated edges; it
contains, in particular, a list of edges. To simplify notation in this section, we
specify a trail just by its edges. The edges in this list and their endpoints are said
to be covered by the trail. Also recall that trails and circuits may repeat vertices.
Of course, a circuit must start and end at the same vertex.

DEFINITION 9.3

Let G be a graph or a digraph. An Euler circuit (respectively, Euler trail) in G is a
circuit (respectively, trail) that covers every edge exactly once and covers every
vertex. Of course, unless G has isolated vertices, covering every edge will imply
that every vertex is covered. If G contains an Euler circuit, then G is said to be
Eulerian.

We focus our attention here on graphs and consider digraphs in the exercises.

EXAMPLE 9.5 (a) In the pictured graph,

1

9

6
4

3

5710

Start
and
Finish

8

2

the edges of an Euler circuit have been numbered consecutively.
(b) In the pictured graph,

1
12

3
Start Finish

4 8
7

5
6

2
11

10

9

the edges of an Euler trail that is not an Euler circuit have been
numbered consecutively.
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(c) The graph on the left,
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which reflects the seven bridges of Ko··nigsberg, shown on the right, has
neither an Euler trail nor an Euler circuit. An exhaustive argument was
suggested in Exercise 49 of Section 8.1. ■

Euler’s solution to the Ko··nigsberg Bridge Problem comes out of the follow-
ing general result.

THEOREM 9.7 Euler’s Theorem

Given any graph G,

(a) G has an Euler circuit if and only if G is connected and every vertex of G has even
degree.

(b) G has an Euler trail that is not an Euler circuit if and only if G is connected and has
exactly two vertices with odd degree.

The results in Example 9.5 can now be understood in terms of Euler’s Theo-
rem. The graph in part (a) is connected, and every vertex has even degree. The
graph in part (b) is connected and has exactly two vertices with odd degree,
namely the start and the finish. The graph in part (c) is connected, but more
than two vertices have odd degree. Applying Euler’s Theorem to that example
gives an elegant solution to the Ko··nigsberg Bridge Problem.

Before proving Euler’s Theorem, we consider an example that shows the rel-
evance of having vertices of even degree.

EXAMPLE 9.6 (Motivation for the Proof of Euler’s Theorem).

n

h a
v0

m

l
g

f
e d

c

bk

j
i

Since the pictured graph G is connected and every vertex has even degree,
Euler’s Theorem guarantees an Euler circuit for G. In fact, the Euler circuit can
be found as follows.

From some vertex, say v0, we start walking along a trail until we get stuck.
For example, the trail

a , b, c, d, e, f, g, h.

is a cycle C that ends back at v0. It cannot be extended to a longer trail since
there are no edges outside of C incident with v0. Removing the edges of C ,
together with any resulting isolated vertices, leaves the following graph H.
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n

v1

v2

m

l
k

j
i

It can be decomposed into the circuits i, j, k and l, m, n starting at v1 and v2,
respectively. An Euler circuit for G is obtained by inserting the circuits from H
into the circuit C from G. First, follow C from v0 to v1, Then, follow the circuit
i, j, k which returns to v1. Next, follow C from v1 to v2. Then follow the circuit
l, m, n which returns to v2. Finally, follow C from v2 back to v0. The resulting
circuit

a , i, j, k, b, c, d, e, f, l, m, n, g, h

is an Euler circuit for G. ■

Proof of Euler’s Theorem.
(a) (→) Suppose G has an Euler circuit e1, e2, . . . , em, and let v0 be the vertex

at which it starts and ends. For each 1 ≤ i ≤ m− 1, let vi be the endpoint
common to ei and ei+1. So the vertex set of G is {v0, v1, . . . , vm−1}, although
this listing may have repetitions. Since any pair of vertices vi and v j are
connected by a portion of the Euler circuit, G is connected. Since each
loop edge contributes 2 to the degree of its endpoint and returns us to
that endpoint, it suffices to assume that e1, e2, . . . , em are not loop edges.
The edges em and e1 contribute 2 to deg(v0), and, for each 1 ≤ i ≤ m− 1, the
edges ei and ei+1 contribute 2 to deg(vi ). Since the Euler circuit lists each
edge exactly once, the degree of each vertex vi must be even. Hence, every
vertex of G has even degree.

(←) We proceed by strong induction on the number m of edges in G.
Obviously, the unique graph with one edge and a single vertex is a loop at
that vertex. Thus it has an Euler circuit. So, suppose m ≥ 1 and that every
connected graph on m or fewer edges, all of whose vertices have even
degree, has an Euler circuit. Let G be any connected graph on m+ 1 edges
all of whose vertices have even degree. Let v0 be a vertex of G, and form a
maximal trail starting at v0. That is, form a trail e1, e2, . . . , ek that ends at
some vertex v and cannot be extended to a longer trail.

Suppose toward a contradiction that v �= v0. For each 1 ≤ i ≤ k − 1 for
which v is the endpoint common to ei and ei+1, a degree contribution of 2 is
used up by the trail. Since the last edge ek then uses a degree contribution
of 1, the total degree contributed to v by the trail is odd. Since v has even
degree in G, there must be another edge incident with v that can extend the
trail. This contradiction shows that v = v0. That is, our maximal trail is a
cycle C that starts and ends at v0. We can also see that, at each vertex of C ,
the degree contribution from edges in C must be even.

Remove from G all of the edges of C and any resulting isolated vertices
to form a subgraph H. Since G has only vertices of even degree and the
same is true of the subgraph C , the vertices of H must all have even degree.
Since each component of H has no more than m edges, each has an Euler
circuit. Since G is connected, for each component of H we can select a
vertex in common with C . Order the components H1, H2, . . . , Hn so that
their selected vertices v1, v2, . . . , vn are in the order in which they occur in
C . For each 1 ≤ i ≤ n, regard the Euler circuit for Hi as starting at vi . These
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circuits can then be inserted into C (as in Example 9.6) to form an Euler
circuit for G.

The proof of part (b) is left for the exercises. �

How Do We Find an Euler Circuit? Euler’s Theorem gives a nice characteriza-
tion of Eulerian graphs, but its statement does not explain how to find an Euler
circuit when we know one exists. For those directions, we need to refer to the
proof. In fact, a systematic procedure for finding an Euler circuit was illustrated
in Example 9.6. Very simply, when we know that an Euler circuit exists, we can
start from any vertex we wish. From there, we walk around the graph, making
sure not to repeat an edge, until we find ourselves stuck back at the starting ver-
tex with no unused edges along which to exit. Call this circuit C1. If C1 covers
every edge, then we are done. Otherwise, there is a vertex of C1 incident with an
unused edge along which we can start another circuit without repeating edges.
As described in Example 9.6, we can insert this new circuit into C1 to form a
circuit C2 containing all of the edges used so far. If C2 covers every edge, then
we are done. Otherwise, we repeat this process until all edges are covered and
an Euler circuit is formed.

The beauty of this process is that no foresight is needed to form the Euler
circuit. Getting stuck is not a failure. It is merely the cue to make a renewed
start from elsewhere. The new work can be seamlessly folded into the old work.
Of course, with practice on small examples, we can minimize the number of
times we get stuck, and opportunities for such practice are given in the exercises.
However, for large examples warranting the use of a computer program, it is
important that a systematic algorithm exists.

Examples like the Ko··nigsberg Bridge Problem are certainly not the only type
to which Euler circuits apply. We consider now the problem of efficiently remov-
ing snow or other debris from the streets of a neighborhood.

EXAMPLE 9.7 (Snowplow Routes). The department of transportation plans the routes for its
snowplows well in advance of any snow storms. The pictured neighborhood
is a new development that has gone up since last winter, and an efficient
snowplow route needs to be designed for it.

Each street is two-way, and one pass of the plow is required for each side of
the street. Also, one pass is sufficient to clear the road surface on one side of a
street. To be efficient, once the snowplow enters the neighborhood, it should
not pass a second time over a section of road that has already been plowed.
Find a maximally efficient route that clears the entire road surface.

Solution. Although the graph on the following page on the left might seem a
natural model for our neighborhood, it is the graph on the right with doubled
edges that we want.
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The doubled edges reflect the need to plow the two sides of the road. Con-
sequently, a maximally efficient snowplow route for the neighborhood
corresponds to an Euler circuit in the graph on the right. In fact, the doubled
edges in this graph cause all of the vertices to have even degree, and thus
Euler’s Theorem applies. On this graph, we find an Euler circuit and transfer
it back to a specified route through the neighborhood.
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The route that we have found in this case does not always have the plow
traveling on the correct side of the street. However, with a minor adjustment
to our analysis, we can always find a route that does conform to the traffic
laws. Such an adjustment is left to the exercises and can be based on
Theorem 9.8. ■

We close this section with a version of Euler’s Theorem for directed graphs.
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THEOREM 9.8 Given any directed graph G on n vertices,

(a) G has an Euler circuit if and only if G is strongly connected and every vertex v of G
has indeg(v) = outdeg(v).

(b) G has an Euler trail that is not an Euler circuit if and only if every vertex v of G has
indeg(v) = outdeg(v) except that one vertex v1 has outdeg(v1) = 1+ indeg(v1)
and another vertex vn has indeg(vn) = 1+ outdeg(vn) and the directed graph
obtained from G by adding the edge (vn, v1) is strongly connected.

The proof of Theorem 9.8 is left for the exercises.

SECTION 9.2 Exercises
The following graphs are referred to in the subsequent exercises.
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In Exercises 1 through 10, determine whether the indicated graph has an Euler
circuit, an Euler trail, or neither. If so, then specify it. If not, then justify why.
1. Graph (a). 2. Graph (b).
3. Graph (c). 4. Graph (d).
5. Graph (e). 6. Graph (f).
7. Graph (g). 8. Graph (h).
9. The octahedron graph. 10. The dodecahedron graph.
11. Notre Dame Cathedral is located on the Ile de la Cité in the portion of Paris

pictured in the following figure.
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With its many bridges, this section might appeal to tourists wanting to
cross over each bridge. Determine whether this portion of Paris has an
Euler circuit, an Euler trail, or neither.

12. Pictured is a portion of Rome through which the Tiber River flows.

Tiber
Tiberina

Teatre Marcello

1

2

3

4

1 � Ponte Garibaldi
2 � Ponte Crestio
3 � Ponte Fabricio
4 � Ponte Palatino

For a tourist interested in its bridges, determine whether this portion of
Rome has an Euler circuit, an Euler trail, or neither.

13. A street sweeper needs to sweep each side of the two-way streets in the
pictured neighborhood.

To be maximally efficient, the route should cover each side of each street
exactly once. Find a maximally efficient route through this neighborhood
for the street sweeper.

14. To protect against cracking pavement, a sealant needs to be applied to the
surfaces of the streets in the pictured neighborhood.
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With one pass, a truck can spray the sealant on one side of these two-way
streets. Find a route through the neighborhood for the sealant truck so that
it covers each side of each street exactly once.

15. Suppose a graph G has an Euler trail and is not Eulerian. Is it possible to
add a single edge to G to make the resulting graph Eulerian? Explain.

16. Suppose a graph G has an Euler trail and the two vertices of odd degree
are endpoints of an edge e. Must G\{e} be Eulerian? Explain.

17. Suppose a graph G has c components and exactly two vertices u and v of
odd degree. Can u and v be in different components? What is the minimum
number of edges that must be added to G to obtain a graph with an Euler
trail?

18. Suppose a graph G has c components and each vertex has even degree.
What is the minimum number of edges that must be added to G to obtain
an Eulerian graph? Does it matter where the edges are attached?

19. A standard assignment for a janitor is to mop and wax the hallways in
some building. Of course, each floor area should be mopped first and
waxed second. Also, it is preferred that the janitor not walk on a floor once
it has been waxed. Consequently, the janitor should enter the building,
mop and wax all of the floors, and then exit the building, leaving the
floors to dry overnight. Prove that, no matter what the layout of the
hallways in the building, the janitor can always find a plan that accom-
plishes this.

20. Once a building has been constructed, its walls need to be painted.
Suppose one man is assigned the job of painting the walls of all of the
hallways in a single color. Since the ladder and other materials are
cumbersome to move around, the man would like to complete the job in
one continuous route around the building, a route that does not require
him to carry his materials down a hallway both of whose walls have al-
ready been painted. Prove that, no matter what the layout of the hallways
in the building, the painter can always find a plan that accomplishes
this.

�21. Prove that the equivalent conditions in Theorem 9.7(a) are also equivalent
to the condition that the edges of the graph G can be split into a disjoint
union of cycles.

22. Prove Theorem 9.7(b).
23. For which integers n is Qn Eulerian?
24. For which integers n is Kn Eulerian?
25. For which pairs of integers m, n is Km,n Eulerian?
26. Let G = (V, E) be a graph with |V| odd such that both G and Gc are

connected. Show: G is Eulerian if and only if Gc is Eulerian.
27. What is the minimum possible number of edge repetitions in a circuit that

covers every edge of K2,3?
28. What is the minimum possible number of edge repetitions in a circuit that

covers every edge of K4?
29. Consider the layout of a portion of Paris shown in Exercise 11. A tourist

desires a walk that crosses every bridge and returns to its starting point.
(a) What is the smallest possible number of bridges that would need to be

crossed more than once in order for the tourist to cross every bridge?
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(b) Suppose that the bridge connecting Ile de la Cité to Ile St-Louis is
being repaired and cannot be crossed. What is the smallest number of
bridge repetitions needed in that case?

30. Consider the layout of a portion of Rome shown in Exercise 12. A tourist
desires a walk that never crosses a bridge more than once and returns to its
starting point.
(a) Suppose one of the bridges crossing the Tiber is out of service. What is

the maximum number of bridge crossings that can be accomplished?
(b) If, instead, one of the bridges to the island is out of service, then what

is the maximum number of possible bridge crossings?

Subsequent exercises refer to the following directed graphs.

(i) (j)

3 4

1 2

c

v1

v3

v2

d

b

e

a

(k) (l)

(m) (n)
a

d c

b

5

2 3

41

In Exercises 31 through 36, determine whether the indicated directed graph
has an Euler circuit, an Euler trail, or neither.
31. Graph (i). 32. Graph (j). 33. Graph (k).
34. Graph (l). 35. Graph (m). 36. Graph (n).
37. Let G = (V, E) be a directed graph, and form a new edge set E ′ as follows.

For each edge e ∈ E , if e �→ (u, v), then put an edge e ′ ∈ E ′ with e ′ �→ (v, u).
Show that, if G is weakly connected, then the directed graph G ′ =
(V, E ∪ E ′) is Eulerian.

38. Suppose G is a directed Eulerian graph. Show that G must then be an
Eulerian graph.

�39. Prove Theorem 9.8(a). 40. Prove Theorem 9.8(b).
41. The route for the snowplow that we found in Example 9.7 has the problem

that it sometimes directs the snowplow to drive on the left-hand side
of the road. That route is therefore undesirable, since not only does the
plow most naturally throw the snow off to its right side, but also the plow
could cause major traffic problems by disobeying the traffic laws. Explain
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how Theorem 9.8 can be used to solve snowplow problems like the one in
Example 9.7 in such a way that the traffic laws may be obeyed by the driver.

42. We have seen in our discussions of the Ko··nigsberg Bridge Problem that a
tourist could not take a tour of Ko··nigsberg that travels over each bridge
exactly once. Short of this, the tourist may simply desire a route that covers
each bridge at least once with the smallest possible number of repetitions.
Show that the minimum number of bridge repetitions needed in the
Ko··nigsberg Bridge Problem is 2.

9.3 Hamiltonian Cycles
In Section 9.2, our primary interest was in finding a circuit that covered every
edge exactly once. If our graph represents a neighborhood whose streets we
wish to plow, then that pursuit is appropriate. However, if we need to deliver
mail to the houses in the neighborhood, then our focus shifts. If each address is
represented by a vertex, then our interest is in finding a circuit that covers every
vertex exactly once.

EXAMPLE 9.8 Find a mail route through the pictured neighborhood that hits every mailbox
exactly once and returns to its start.

Solution. Make a graph that models the neighborhood in such a way that the
vertices correspond to the mailboxes, and the edges reflect streets.

In the copy of this graph on the left-hand side of Figure 9.2, we have consec-
utively labeled the edges along a cycle with the desired properties; it visits
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1

13 12

9 10

11 4

58

67

2

314

Start
and
Finish

1

13

7

9 10

12

6

11

8

14 3

2

4

5

Figure 9.2 Designing a Mail Route

each vertex exactly once. How one might find such a cycle is addressed after
Example 9.9. Here, we simply observe that this cycle corresponds to a desired
mail route through the given neighborhood, as labeled on the right-hand side
of Figure 9.2; it visits each mailbox exactly once. ■

The special cycle used in Example 9.8 is one of an important type.

DEFINITION 9.4

Let G be a graph or a digraph. A Hamiltonian cycle (respectively, Hamiltonian
path) in G is a cycle (respectively, path) that covers every vertex. By definition, each
vertex must be covered exactly once, with the exception that the starting and ending
vertex of a Hamiltonian cycle is covered twice. If G contains a Hamiltonian cycle,
then G is said to be Hamiltonian.

Hamiltonian cycles are named after the Irish mathematician William Rowan
Hamilton (1805–1865), who was one of the first—although not the first—to study
them.

EXAMPLE 9.9 The vertices in the pictured graph have been numbered consecutively along a
Hamiltonian cycle.

4

5

1 3

7 6

2

■

How Can We Find a Hamiltonian Cycle? Since a Hamiltonian cycle ultimately
visits every vertex, if there is a Hamiltonian cycle to be found in a graph, then
it can be found from any chosen starting point. From there, we might simply
start walking through the graph in an attempt to visit every vertex exactly once.
If at some point we discover that our walk cannot possibly be completed to a
Hamiltonian cycle, then we can retreat on our walk to an earlier position from
which we hope an alternative choice of direction will yield better results. If
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we are systematic in this process and explore every possible direction from ev-
ery encountered fork in the road, then this exhaustive method always finds a
Hamiltonian cycle when one exists. This method is called backtrack searching
and will be discussed in Section 10.2, where we will also see that it is extremely
inefficient—and thus unreasonable in all but small examples.

Having previously studied Euler circuits, one might expect an analog of
Euler’s Theorem for characterizing Hamiltonian graphs. However, no such char-
acterization is known. Moreover, there is no known efficient algorithm for find-
ing a Hamiltonian cycle in a graph. Since algorithm efficiency is discussed in
Chapter 10, we shall revisit and delve deeper into this issue there. Here, we
must understand that the general problem of finding Hamiltonian cycles is quite
hard. Hence, we primarily focus on small problems that can be analyzed by
hand. Additionally, we pursue special conditions under which the existence of
Hamiltonian cycles can be determined. For instance, there is a relationship be-
tween Hamiltonicity and connectivity.

THEOREM 9.9 Let G be any graph. If G is Hamiltonian, then κ(G) ≥ 2.

Proof
A Hamiltonian cycle is a subgraph isomorphic to a cycle Cn covering all of the
vertices of G. The result in Exercise 24 from Section 9.1 then tells us that κ(G) ≥
κ(Cn). By Theorem 9.1, κ(Cn) = 2, and the result follows. �

The contrapositive of Theorem 9.9 says that, for any graph G,

if κ(G) ≤ 1, then G is not Hamiltonian.

This can be used to show that a graph does not have a Hamiltonian cycle.

EXAMPLE 9.10 The pictured graph G represents a computer network.

The presence of a Hamiltonian cycle in such a network might be of advantage
to a programmer employing a parallel algorithm. In that case, the Hamiltonian
cycle could provide a route along which each computer could pass a process
to the next, much like an assembly line. However, this graph G is not
Hamiltonian, since κ(G) = 1. ■

The method used in Example 9.10 to show that a graph is not Hamiltonian
does not apply very generally. The following theorem provides more useful
tools.

THEOREM 9.10 If C is a Hamiltonian cycle in a graph G = (V, E), then

(i) C covers exactly two edges incident with each vertex, and

(ii) C has no subgraph which is a cycle on fewer than |V| vertices.

In the case that G is directed, for each vertex v, C must cover exactly one edge whose head is
v and one whose tail is v.
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EXAMPLE 9.11 Show that the pictured graph G does not have a Hamiltonian cycle.

Proof
Suppose G does have a Hamiltonian cycle C . The edges shown in bold would
have to be included in C , since each is incident with a vertex of degree 2.
However, this bold subgraph cannot be completed to a Hamiltonian cycle, for
two reasons. First, it contains a vertex of (bold) degree 3. Second, it contains a
4-cycle. Of course, either one of these reasons alone suffices to contradict the
existence of C . �

Having seen ways to show that a Hamiltonian cycle does not exist, we ought
to consider conditions sufficient to guarantee that one does. There is a bound on
the minimum degree δ(G) of a graph G that implies Hamiltonicity.

THEOREM 9.11 For any simple graph G = (V, E) with |V| ≥ 3, if δ(G) ≥ |V|
2 , then G is Hamiltonian.

Proof
Suppose not. Let n be the smallest number of vertices on which there is a
simple graph H for which δ(H) ≥ n

2 but H has no Hamiltonian cycle. Further,
among all simple graphs H on n vertices with δ(H) ≥ n

2 and no Hamiltonian
cycle, pick a graph G = (V, E) with the largest number of edges. Consequently,
the addition of any new edge to G would cause G to have a Hamiltonian cycle.

Let v1 and vn be two nonadjacent vertices in G, and let v1, v2, . . . , vn, v1 be an
ordering of the vertices in a Hamiltonian cycle in the graph obtained from G by
adding an edge en �→ {vn, v1}. Hence, v1, v2, . . . , vn is a Hamiltonian path in G.

We claim that there exists an index k such that there exist edges ek �→ {vk , vn}
and ek+1 �→ {vk+1, v1} in G,

v1 v2
ek+1

ek

vk vk+1 vn

and, consequently, the listing

v1, v2, . . . , vk , vn, vn−1, . . . , vk+1, v1

gives a Hamiltonian cycle in G. Let

K = {k : 1 ≤ k ≤ n− 1 and ∃ e ∈ E such that e �→ {vn, vk}} and
K ′ = {k : 1 ≤ k ≤ n− 1 and ∃ e ∈ E such that e �→ {v1, vk+1}}.

Note that |K ∪ K ′| ≤ n− 1, |K | ≥ deg(vn) ≥ n
2 , and |K ′| ≥ deg(v1) ≥ n

2 . Hence,
|K ∩ K ′| = |K | + |K ′| − |K ∪ K ′| ≥ n

2 + n
2 − (n− 1) = 1. Since |K ∩ K ′| ≥ 1,

the sets K and K ′ must have a value k in common. This k is the desired index
that enables the construction of a Hamiltonian cycle in G. Thus, we have a
contradiction. �
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EXAMPLE 9.12 It follows from Theorem 9.11 that the pictured graph G = (V, E) is
Hamiltonian, since δ(G) = 4 = |V|

2 .

A B

F E

C

D

H

G

Of course, it is not hard in this case to find a Hamiltonian cycle, such as

A, B, C, D, H, G, E , F , A. ■

The result in Theorem 9.11 is best possible, since the graph G = (V, E) in
Example 9.11 is not Hamiltonian and satisfies δ(G) = |V|

2 − 1.
Although the n-cubes Qn have relatively low minimum degree and they are

hard to visualize for large n, it is rather straightforward to show that they are
Hamiltonian.

EXAMPLE 9.13 For each integer n ≥ 2, the n-cube Qn is Hamiltonian.

Proof
Clearly, the 2-cube Q2 ∼= C4 has a Hamiltonian cycle. We proceed by induction
on n. So suppose that n ≥ 2 and Qn has a Hamiltonian cycle. We identify Qn+1
with Qn × P2. Say {1, 2} is the vertex set for P2, and let C be a Hamiltonian
cycle for Qn. Say that C starts at vertex u and that vertex v is the last on C
before returning to u. Let P be the path from u to v along C\{{v, u}}, and let Q
be the reverse of P . The case in which n = 2 is pictured in Figure 9.3. The cycle

P × {1}, {(v, 1), (v, 2)}, Q× {2}, {(u, 2), (u, 1)}
gives the desired Hamiltonian cycle for Qn+1.

P = u, w, x, v
Q = v, x, w, u

w x

u v

(u, 2)

(w, 1)

(w, 2) (x, 2)

(x, 1)

(v, 2)

(v, 1)(u, 1)

Figure 9.3 A Hamiltonian Cycle in Q3 from a Hamiltonian Path in Q2 �

Having focused on the presence of Hamiltonian cycles in ordinary graphs,
we now turn our attention to directed graphs. A directed graph can be used to
reflect the results of a series of head-to-head competitions. In that case, we shall
see that Hamiltonian paths may be of interest.
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DEFINITION 9.5

A tournament is a directed graph whose underlying graph is complete.

EXAMPLE 9.14 The pictured directed graph is a tournament.

Andre

Boris

PeteRoger

Its underlying graph is K4. In this case, the tournament reflects the results in
Table 9.1 of a tennis competition. For instance, the edge from Andre to Boris
represents the victory of Andre over Boris in their match (1a).

Match Results

1a Andre defeated Boris
1b Pete defeated Roger
2a Andre defeated Pete
2b Roger defeated Boris
3a Andre defeated Roger
3b Boris defeated Pete

Table 9.1 Tennis Tournament ■

In general, a tournament on Kn might reflect the results of a tennis tourna-
ment in which every possible pair of players competed in a match. An edge (u, v)
would be present if and only if player u defeated player v. At the end of the ten-
nis tournament, a way to rank the players could be provided by a Hamiltonian
path. However, this may not always be the best way. In the exercises, we shall
see that the results of a round robin tournament do not generally yield a clear
champion.

In the tournament in Example 9.14, the path

Andre, Boris, Pete, Roger

is a Hamiltonian path and might be considered a ranking of those tennis players.
The fact that such a path exists is true in general for tournaments.

THEOREM 9.12 Every tournament has a Hamiltonian path.

Proof
We proceed by induction on the number n of vertices in the tournament. It is
easy to see that any tournament on n = 2 vertices has a Hamiltonian path. So
suppose n ≥ 2 and that any tournament on n vertices has a Hamiltonian path.
Let K = (V, E) be a tournament on n+ 1 vertices, and let vn+1 be a vertex of
K . Since K\{vn+1} is a tournament on n vertices, it has a Hamiltonian path v1,
v2, . . . , vn. If (vn, vn+1) ∈ E , then v1, v2, . . . , vn, vn+1 is a Hamiltonian path in K .
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If (vn+1, v1) ∈ E , then vn+1, v1, v2, . . . , vn is a Hamiltonian path in K . Otherwise,
both (vn+1, vn) and (v1, vn+1) are in E , and we can let k be the smallest index
less than n such that (vk , vn+1) and (vn+1, vk+1) are both in E . That is, k is the
largest index such that, for each 1 ≤ i ≤ k, we have (vi , vn+1) ∈ E . See Fig-
ure 9.4. Since (vn, vn+1) �∈ E , it follows that k < n.

v1 v2

vn+1

vk vk+1 vn

Figure 9.4 Finding a Hamiltonian Path

A Hamiltonian path for K is then given by v1, . . . , vk , vn+1, vk+1, . . . , vn. �

EXAMPLE 9.15 The pictured tournament must have a Hamiltonian path by Theorem 9.12.

5

41

32

Moreover, the proof of Theorem 9.12 can help us find one. Suppose we have
been able to find the Hamiltonian path 1, 2, 3, 4 on the subtournament induced
by the those vertices. The proof of Theorem 9.12 then tells us how to insert
vertex 5 and obtain the Hamiltonian path 1, 2, 5, 3, 4. ■

SECTION 9.3 Exercises
The following graphs are referred to in the subsequent exercises.

(a) (b) (c) (d)1

3 4

2

5 6

1 3

5

4

7

2

6

1

3 4

2

5 6

1 3

5

4

7

2

6

In Exercises 1 through 6, find and shade a Hamiltonian cycle in the specified
graph.
1. Graph (a). 2. Graph (b).
3. The tetrahedron graph. 4. The octahedron graph.
5. The dodecahedron graph. 6. The icosahedron graph.
7. The mailman needs to deliver mail to each of the mailboxes in the pictured

neighborhood. He wants to enter and exit the neighborhood from the same
location, and, to be efficient, he does not want to pass by a mailbox to
which he has already delivered the mail.
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Find a mail route that hits every mailbox exactly once.
8. The UPS truck needs to make deliveries to each of the marked locations in

the pictured neighborhood. To be as fast as possible, the truck should not
pass by a location to which it has already made a delivery.

Find a route for the UPS truck that starts and finishes in the same location
and hits every delivery location exactly once.

In Exercises 9 through 14, show that there is no Hamiltonian cycle in the
specified graph.
9. Graph (c). 10. Graph (d).
11. K3,2. 12. Pn.

13. 1

3 5

2

4

6

7 8 9

14. 1

7 26

5 34

The following graphs are referred to in the subsequent exercises.
(e) (f) (g) (h)31 4

67 5

31 4

67 5

2

21 3

54

21 3

54 3 4 5

21
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In Exercises 15 through 18, determine whether the specified graph has a
Hamiltonian cycle. Justify your answer.
15. Graph (e). 16. Graph (f).
17. Graph (g). 18. Graph (h).
19. A sales representative is based in Syracuse, New York, and her sales

territory includes the same cities in upstate New York covered by a small
airline, whose round-trip service is shown in the following table.

Binghamton Buffalo Ithaca Rochester Syracuse

Binghamton No Yes No No Yes
Buffalo Yes No Yes No Yes
Ithaca No Yes No Yes No
Rochester No No Yes No Yes
Syracuse Yes Yes No Yes No

Is it possible for this sales representative to use this airline for a single trip
that visits each city in her territory exactly once before immediately
returning home? Justify your answer.

20. The ferry service among the eight islands in a popular vacation destination
is pictured below.

Is it possible for a tourist visiting these islands to take a sequence of ferry
rides that visits each island exactly once and immediately returns to its
starting point? Justify your answer.

21. Characterize the pairs (m, n) for which Km,n is Hamiltonian.
22. Show that the Petersen graph contains cycles of length n for n = 5, 6, 8, 9.

See Exercise 31.

In Exercises 23 through 26, regard a Hamiltonian cycle as a subgraph that
happens to be a cycle with no particular order specified for its vertices. That is,
we distinguish Hamiltonian cycles by their edge sets. In each case, determine
the number of different Hamiltonian cycles that the given graph has.
23. 4

5

31

2

67

24.

6

3
2 4

5

1

25. Kn. 26. Kn,n.
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27. Let G be any graph. Theorem 9.9 tells us that if G has a Hamiltonian cycle,
then κ(G) ≥ 2. Show that there is no integer k such that, if κ(G) ≥ k, then G
is Hamiltonian.

28. What is the maximum value of k such that the removal of any k edges from
Kn yields a Hamiltonian graph?

29. Let n ≥ 3, and let G be any graph on n vertices.
Show that, if κ(G) ≥ n

2 , then G is Hamiltonian.

30. Show that assuming that G is simple is necessary in Theorem 9.11.
�31. Prove or disprove: The Petersen graph is Hamiltonian.

Hint: Use Exercise 32 from Section 8.3.
32. Prove or disprove: The pictured graph is Hamiltonian.

1

7
8

9

10
11

12

2

5

6 3

4

33. Show, for all integers n ≥ 2, that Cn × P2 is Hamiltonian.
34. Show, for all integers n ≥ 2, that Pn × P2 is Hamiltonian.

�35. Show, for all integers n ≥ 2, that Cn × P3 is Hamiltonian.
�36. Show, for all integers n ≥ 2, that C3 × Pn is Hamiltonian.

37. Find a Hamiltonian cycle in the
pictured directed graph.

3

6

1 2

4 5

38. Find a Hamiltonian path in the
pictured directed graph.

1 3

2 4

39. Find a Hamiltonian path in
the pictured tournament.

1 2

3 4

40. Find a Hamiltonian path in the
pictured tournament.

5

2 3

41

41. Show that the pictured directed
graph is not Hamiltonian.

1

3 4

2

5 6

42. Show that the pictured directed
graph is not Hamiltonian.

1 3

5

4

7

2

6
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43. Each of five schools sent its best chess player to the County Speed Chess
Tournament. This tournament is a day-long event that follows a round
robin format. The schedule and results for the tournament are displayed
in Table 9.2. From those results, the organizers needs to decide upon a
ranking of the competitors from first place to fifth place. The only con-
straint is that each player must have been defeated by the player ranked
immediately above him or her.

Time Results

9 A.M. Ann defeats Dan
Bob defeats Cari

10 A.M. Ann defeats Bob
Cari defeats Ed

11 A.M. Ann defeats Ed
Dan defeats Bob

Noon LUNCH
1 P.M. Ann defeats Cari

Dan defeats Ed
2 P.M. Bob defeats Ed

Cari defeats Dan
3 P.M. AWARDS

Table 9.2 Chess Tournament

(a) Can anyone other than Ann be declared the overall champion?
(b) Suppose that the 10 A.M. game had instead resulted in Ed defeating

Ann. Could Ed be declared the champion?
(c) If Ed had defeated Ann, would each competitor have had the pos-

sibility of being declared the champion?

44. The Knotty Oaks Tennis Club has set up a 3-day round robin tennis
tournament for its female members over the age of sixty. The results of the
matches are displayed in Table 9.3. The awards committee now needs to
declare a ranking of the players from first place to fourth place in such a
way that each woman must have defeated the woman ranked immediately
below her.

Time Results

Day 1 Beth defeats Alice
Ceil defeats Dee

Day 2 Alice defeats Ceil
Dee defeats Beth

Day 3 Alice defeats Dee
Ceil defeats Beth

Table 9.3 Tennis Tournament

(a) Find a ranking in which Dee is declared the champion.
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(b) Does each player have a chance of being declared the champion?
(c) If Beth is declared the champion, can Dee come in last place?

�45. Show that every tournament has a vertex from which each vertex is a
distance of at most 2.

46. Give an example of a tournament with no Hamiltonian cycle.

9.4 Planar Graphs
If a graph represents the layout of a circuit board, then edge crossings reflect wire
connections that are difficult to accommodate. A desired layout is one in which
there are no crossings. In general, we prefer a closed circuit to be implemented
without wire crossings.

EXAMPLE 9.16 The closed electric circuit on the left-hand side of Figure 9.5 contains a battery

 � and some resistors . An intersection of wires not marked by a node •
is a wire crossing, which we would like to avoid. On the right-hand side of
Figure 9.5 is a graph that models this circuit, with edges representing wires.
Since that graph can alternatively be drawn with no edge crossings, as shown
on the right-hand side of Figure 9.6, the circuit can similarly be constructed
without wire crossings, as shown on the left-hand side of Figure 9.6.


 �

32

41

Figure 9.5 An Electric Circuit with a Wire Crossing


 �

2

3

1 4

Figure 9.6 An Electric Circuit Without Wire Crossings ■

Applications like Example 9.16 motivate our study of graphs that can be
drawn without crossings.

DEFINITION 9.6

(a) A planar embedding of a graph is a drawing of the graph such that the
images of distinct edges do not intersect outside of their endpoints. That is,
there are no crossings.

(b) A graph is said to be planar if it has a planar embedding.
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EXAMPLE 9.17 A planar embedding of a graph is pictured.

■

The fact that a graph may have a drawing that is not a planar embedding
does not mean that the graph is not planar. Although the graph in Figure 9.5
is pictured with a crossing, the alternative drawing without crossings in Fig-
ure 9.6 shows that it is planar. In Example 8.21, we saw two different drawings
of K4,

one with a crossing and one without crossings. The existence of the drawing
without crossings implies that K4 is planar. One might next try to find a planar
embedding of K5, but the result in Example 9.18 cannot be improved.

EXAMPLE 9.18 K5 can be drawn with one crossing.

However, simply trying for a while and failing to find a planar embedding
does not prove that K5 is not planar. We shall prove that K5 has no planar
embedding later in this section (Proposition 9.15), after we develop stronger
tools. ■

EXAMPLE 9.19 The diagram on the left-hand side of Figure 9.7 reflects the need to connect
three homes to each of three utilities. However, for safety reasons, it is
undesirable to have lines from these utilities crossing. Since the graph K3,3
models this utility problem, the drawing of K3,3 on the right-hand side of
Figure 9.7 reflects a good layout for these connections. It contains only one
crossing. In Proposition 9.17, we will prove that K3,3 is not planar and, hence,
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h1

h2

h3

Water

Gas

Electric

h1

h2G

W

E h3

Figure 9.7 Connecting Three Utilities to Three Homes

that the utility connections required here must accommodate at least one
crossing. ■

The machinery we use to prove that K5 and K3,3 are not planar is built from
the following tools.

DEFINITION 9.7

Given a planar embedding of a graph G = (VG , EG ),

(a) a region is a maximal connected subset of the complement of the image of
the embedding.

(b) we use RG , or just R, to denote the set of regions.

(c) the dual graph, denoted D(G), is the graph with vertex set RG and edge set
EG for which the endpoints of each edge e are taken to be the regions that, in
the embedding, share the image of e as part of their boundary.

Although the regions and the dual depend not only on the graph but also on
the embedding, a particular embedding will always be fixed in context and is
therefore not reflected in the notation. In fact, the isomorphism type of the dual
may depend upon the chosen embedding. (See Exercise 13.)

EXAMPLE 9.20 The regions of the graph G pictured in Example 9.17 are labeled here
A, B, C, D, E , F , O.

C

E

D F
A O

B

Note that O is the unique unbounded region. ■

The standard way of drawing the dual of a graph based on a given embed-
ding is shown in the following example.
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EXAMPLE 9.21 We construct the dual of the graph G from Example 9.17. In Figure 9.8, a vertex
represented by an open point ◦ has been placed inside each region of G, and
the dotted lines join regions that share an edge as part of their boundaries.

Figure 9.8 A Graph and Its Dual

Note that each dotted edge crosses exactly one solid edge, and vice versa. The
dual graph D(G) can then be drawn by itself in the usual fashion, with solid
vertices and edges.

■

Note that, for any graph G with a planar embedding, D(G) is always planar
and D(D(G)) ∼= G. For example, the dual of the dotted graph in Figure 9.8 can
be seen to be the solid graph in that picture.

A graph G = (V, E) with a planar embedding has not only a vertex set V
and an edge set E , but also a region set R. It turns out that the three numbers
|V|, |E |, and |R| are related in such a way that knowing two of them forces the
value of the third.

THEOREM 9.13 Euler’s Formula

Given any planar embedding of a connected graph G = (V, E), we have

|V| − |E | + |R| = 2.

Proof
We proceed by induction on n = |V|. If n = 1, then all edges must be loops, and
it is straightforward to argue that |R| = |E | + 1 in this case. (See Exercise 14.) So
assume that n ≥ 1 and that Euler’s formula holds for all graphs on n vertices.

Suppose that G = (V, E) is a graph on n+ 1 vertices with a planar embed-
ding. Since G is connected, there must be some non-loop edge e, say e �→ {u, v}.
Form a new graph G ′ = (V′, E ′) from G by removing e and identifying u and
v to a single vertex v′.



C H A P T E R 9 ■ Graph Properties 531

v'vu e

The planar embedding of G can easily be converted (as shown) into a pla-
nar embedding for G ′ with |R′| = |R|. Since |V′| = |V| − 1 = n, the induction
hypothesis gives that |V′| − |E ′| + |R′| = 2. Since |E ′| = |E | − 1, substitution
gives that |V| − |E | + |R| = 2. �

It follows from Theorem 9.13 that, for a fixed graph, the number of regions
in any planar embedding will always be the same. Specifically, that number is
|E | − |V| + 2 and is a function of only |V| and |E |.

The more edges a graph has, the less likely it is that a planar embedding for it
exists. There is, in fact, an upper limit on the number of edges in a planar simple
graph, in terms of the number of vertices.

COROLLARY 9.14 Given any planar simple graph G = (V, E) with |V| ≥ 3, we have

|E | ≤ 3|V| − 6.

Proof
It suffices to assume that G is connected, because a disconnected graph has
fewer edges than the connected graph obtained by joining its components with
additional edges. Since the dual graph D(G) has vertex set R and edge set E ,
Theorem 8.10 tells us that

∑
r∈R

deg(r ) = 2|E |. Since G is simple, it has no

regions bounded by just one or two edges. That is, for each r ∈ R, deg(r ) ≥ 3.
Hence, 3|R| ≤ 2|E |. Theorem 9.13 then gives that

2 = |V| − |E | + |R| ≤ |V| − |E | + 2
3
|E | = |V| − 1

3
|E |.

Thus, 6 ≤ 3|V| − |E |, and the result follows. �

Corollary 9.14 can be used to give a simple proof of the following result.

PROPOSITION 9.15 K5 is not planar.

Proof
The values |V| = 5 and |E | = 10 do not satisfy the inequality in Corollary 9.14.

�

The bound on the number of edges in a planar simple graph is further low-
ered for triangle-free graphs.

COROLLARY 9.16 Given any planar simple graph G = (V, E) with |V| ≥ 3 and no triangles (that is, no
3-cycles), we have

|E | ≤ 2|V| − 4.

Corollary 9.16 applies, in particular, to planar simple bipartite graphs. Its
proof is left for the exercises.
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PROPOSITION 9.17 K3,3 is not planar.

Proof
The values |V| = 6 and |E | = 9 do not satisfy the inequality in Corollary 9.16.

�

Using Corollaries 9.14 and 9.16, the results that K5 and K3,3 are not planar
follow with relative ease. The importance of those results is their role in a beauti-
ful characterization of planar graphs. Its presentation requires the introduction
of another notion.

DEFINITION 9.8

Let G = (V, E) be a graph.

(a) Given an edge e ∈ E , a new graph G ′ = (V′, E ′) is said to be obtained by
subdividing e = {u, v} if V′ = V ∪ {w}, where w is a new vertex not in V,
and E ′ = (E\{e}) ∪ {e ′, e ′′}, where e ′ �→ {u, w} and e ′′ �→ {w, v} are new edges
not in E . That is, e is subdivided by the new vertex w.

(b) We say that G ′ is a subdivision of G, or a G-subdivision, if G ′ is obtained
from G by a (possibly empty) sequence of edge subdivisions. We also say
that two graphs G ′ and G ′′ are homeomorphic if there is a graph G such that
both G ′ and G ′′ are G-subdivisions.

EXAMPLE 9.22 Pictured is a sequence of edge subdivisions.

■

The following result, which we owe to the Polish mathematician Casimir
Kuratowski (1896–1980), characterizes planar graphs in terms of two kinds of
forbidden subgraphs.

THEOREM 9.18 Kuratowski’s Theorem

A graph is not planar if and only if it contains a subgraph that is a subdivision of either K5
or K3,3. Equivalently, G is not planar if and only if G contains a subgraph homeomorphic to
K5 or K3,3.

The straightforward proof that any graph containing a subdivision of either
K5 or K3,3 is not planar is left for the exercises. The proof of the converse of this is
much more involved and is not included in this book. The interested reader can
find a proof in [9], for example. Here, we focus on applications of Kuratowski’s
Theorem.

EXAMPLE 9.23 The Petersen graph is not planar. The left-hand picture following is the second
drawing of the Petersen graph from Example 8.23.
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e d
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a b

c d

Although the Petersen graph contains no triangles, Corollary 9.16 does not
help us here, since indeed |E | = 15 ≤ 16 = 2|V| − 4. However, Kuratowski’s
Theorem does the trick since the Petersen graph can be seen to contain a
K3,3-subdivision (shown in bold above). That is, G − {v} is seen in the right-
hand picture above to be a K3,3-subdivision. ■

Corollaries 9.14 and 9.16 are not generally useful for proving that graphs are
not planar. Those corollaries made their contributions toward showing that K5
and K3,3 are not planar, which is needed in Kuratowski’s Theorem. In general,
one should seek the help of Kuratowski’s Theorem to show that a graph is not
planar.

EXAMPLE 9.24 The graph pictured on the left below is a layout for a power grid for eight
stations.

25

1

7

3

6

4

8

1

25

37

8 6

4

Despite the fact that it may be desirable to lay out this grid without any cable
crossings, this graph is not planar. The subgraph obtained by deleting the two
bold edges is seen in the right-hand picture above to be a subdivision of K5.
(Check it.) ■

A significant result on planar graphs known as the Four Color Theorem is
discussed in Section 9.5.

Crossing Number
When a planar embedding is not possible, it is natural to seek a drawing of the
graph with as few crossings as possible.

DEFINITION 9.9

The crossing number of a graph G, denoted ν(G), is the minimum possible number
of crossings in a drawing of G.
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A graph G is planar if and only if ν(G) = 0. Since K5 and K3,3 are not planar
and Examples 9.18 and 9.19 show drawings of them with one crossing, it follows
that ν(K5) = ν(K3,3) = 1. In applications such as network or circuit design, when
the number of wire crossings must be minimized, an embedding that achieves
the crossing number of the corresponding graph is sought.

EXAMPLE 9.25 The layout for the power grid in Example 9.24 has crossing number 1. That the
crossing number is at least 1 is established in Example 9.24 by showing that the
graph modeling this grid is not planar. That the grid can be laid out with just
one crossing is shown in the following picture.

25

1

7

3

6

4

8

■

SECTION 9.4 Exercises
1. Show that the pictured computer network configuration can be laid out

without cable crossings.

1 2

3 4 5

2. Pictured is a design plan for a power grid, in which the symbol ◦ denotes a
power station. Show that there is a layout for this power grid without
cable crossings.

1

4 3 5

2

3. When connecting the components of a personal computer, one typically
ends up with a mess of tangled cables stuffed behind the computer. Show
that the connections in the pictured computer system can be accomplished
without crossings.
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Speakers

Mouse

Printer

MonitorTower

Power Strip

Keyboard

4. A camp is being built to contain three buildings. There are four utilities
available, but it is not necessary for each building to be connected to each
utility. Show that the required connections shown in the diagram below
can be accommodated without cable crossings.

Gas Bathrooms

Sleeping Quarters

Mess Hall

Sewer

Electric

Water

5. Show that K2,3 is planar by giving a drawing without crossings.
6. Two-Utility Problem. If there are just 2 utilities and any number n of

homes, then each home can be connected to each utility without any cable
crossings. Show that, for any n ∈ Z+, K2,n is planar.

7. Draw the dual of the pictured
embedding of a graph.

8. Draw the dual of the pictured
embedding of a graph.

9. Exercises 15 and 16 from Section 8.3 show that the cube and the
octahedron are planar graphs. Show that the dual of the cube is the
octahedron, and vice versa.

10. Exercises 14 and 18 from Section 8.3 show that the dodecahedron and the
icosahedron are planar graphs. Show that the dual of the dodecahedron
graph is the icosahedron graph, and vice versa.

11. Given a planar embedding of a graph G = (V, E) with regions R, if
|V| = 10 and |E | = 16, then find |R|.

12. Given a planar embedding of a graph G = (V, E) with regions R, if
|V| = 14 and |R| = 10, then find |E |.

�13. Give an example of a planar graph G and two planar embeddings of G
that give rise to non-isomorphic duals.
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�14. Without using Euler’s Formula, prove, for any planar embedding of a
graph G = (V, E) with |V| = 1, that |R| = |E | + 1.
Hint: Use induction on |E |. Each new edge must split a region in two.

15. What is the appropriate version of Euler’s Formula for a planar graph with
c components?

�16. Show: ∀ n, m, r ∈ N with n ≥ 1 and n−m+ r = 2, that there exists a
connected planar graph G with |V| = n, |E | = m, and |R| = r .

17. Prove the easy direction of Kuratowski’s Theorem. That is, show that
any graph containing a subdivision of either K5 or K3,3 is not planar.
Hint: Subdivisions of planar graphs are planar.

�18. Prove Corollary 9.16.
19. Show: For all n ≥ 5, Kn is not planar.
20. Show: For all m, n ∈ Z+, Km,n is planar if and only if min{m, n} ≤ 2.
21. Determine whether the pictured electric circuit can be constructed without

wire crossings. Justify your answer.


 �

22. Determine whether the pictured electric circuit can be constructed without
wire crossings. Justify your answer.


 �

Subsequent exercises refer to the following pictured graphs.

(a) (b) (c) (d)1 2

5 6

43

1 2 3

4 5 6

1 2

5

6 3

4

1 2

5 4

3

(e) (f) (g) (h)

1 42

5 8

3

76

1 42

5 8

3

76

1 42

5 8

3

76

5

6 3

4

1 2
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In Exercises 23 through 30, prove or disprove that the specified graph is planar.
23. Graph (a). 24. Graph (b).
25. Graph (c). 26. Graph (d).
27. Graph (e). 28. Graph (f).
29. Graph (g). 30. Graph (h).
31. Find all nonplanar simple graphs on 5 vertices.
32. Find all nonplanar simple graphs on 6 vertices that contain neither K5 nor

K3,3 explicitly (subdivisions are permitted).
�33. Show: Any planar simple graph G has a vertex of degree at most 5. That is,

δ(G) ≤ 5. Hint: Use Corollary 9.14 in a proof by contradiction.
�34. Show: Any planar graph G with no triangles has a vertex of degree at

most 3. That is, δ(G) ≤ 3.
35. Show that the bounds given in Corollary 9.14 are best possible. That is, for

each n ∈ Z+, give an example of a planar simple graph G = (V, E) with
|V| = n and |E | = 3n− 6. Hint: To Cn−2 add one point inside and one
outside.

36. Show that the bounds given in Corollary 9.16 are best possible. That is, for
each n ∈ Z+, give an example of a triangle-free planar simple graph
G = (V, E) with |V| = n and |E | = 2n− 4.

37. The pictured graph represents a power grid in which the power stations
are connected in a cycle. Beyond the cables used for the outer cycle, other
cables have been added to allow the bypassing of power stations. Thus, a
cyclic layout can be maintained despite the failure of any single station.

Prove that this graph is planar but that any simple graph obtained by
adding an edge to it is not planar.

38. The pictured graph models a computer network. A layout is sought for
this network in which no communication cables cross. Can this be
accomplished?

That is, prove or disprove that the pictured graph is planar.

In Exercises 39 through 46, find the crossing number of the specified graph,
and justify your result.

39. Graph (a). 40. Graph (b).
41. Graph (c). 42. Graph (d).
43. Graph (e). 44. Graph (f).
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45. Graph (g). 46. Graph (h).
47. Prove that the crossing number of the Petersen graph is at most 2.
48. Prove that the crossing number of the pictured graph is at most 3.

49. ν(K6) = 3. Find a drawing of K6 with 3 crossings.
50. ν(K4,4) = 4. Find a drawing of K4,4 with 4 crossings.
51. ν(Q4) = 8. Find a drawing of Q4 with 8 crossings.
52. ∀ n ≥ 2, ν(K3,n) = n− 2. Find a drawing of K3,n with n− 2 crossings.
53. The pictured layout for a planned power grid is undesirable, since there

are too many cable crossings.

Find a layout for this grid using as few crossings as possible, and prove
that no fewer crossings can be achieved.

54. The graph pictured in Exercise 38 models a computer network that is laid
out with two wire crossings. Determine the smallest possible number of
wire crossings for that network, and prove your result.

55. Prove or disprove: A subdivision of an Eulerian graph is Eulerian.
56. Prove or disprove: A subdivision of a Hamiltonian graph is Hamiltonian.

9.5 Chromatic Number
If the countries on a map are going to be colored, then they ought to be colored
in such a way that no two adjacent countries have the same color. As we will
see, to each map there corresponds a graph in which the vertices represent the
countries and the edges reflect adjacencies. The construction of this graph is
essentially the same as that used to produce duals in Section 9.4. Our desire
here to color the map that yields this graph leads us to a consideration of graph
colorings, with a focus on minimizing the number of colors used.

DEFINITION 9.10

Let G be a graph.

(a) A coloring of G is an assignment of colors to the vertices of G in such a way
that no two adjacent vertices have the same color.

(b) A color class for a coloring is a set of all the vertices of one color. The
vertices are partitioned by the color classes.

(Continued)
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(c) For any k ∈ Z+, a k-coloring of G is a coloring that uses k different colors.

(d) We say that G is k-colorable if there exists a coloring of G that uses at most k
colors.

(e) The chromatic number of G, denoted χ (G), is the minimum possible
number of colors in a coloring of G.

Remark 9.3

(a) It is not possible to color a graph containing loops. However, the
existence of multiple edges has no impact on colorings.

(b) We typically use integers as the “colors” in our colorings.
(c) If a graph G has a k-coloring, then χ (G) ≤ k.

EXAMPLE 9.26 A graph G is pictured below at the left, followed by two different colorings
for G.

s t u v

w x y z

1 2 3 4

4 5 1 2

1 2 3 4

2 1 3 1

The coloring shown in the middle is a 5-coloring, and that shown on the
right is a 4-coloring. Since G is thus seen to be 4-colorable, we conclude that
χ (G) ≤ 4. In fact, χ (G) = 4, as we shall see after Theorem 9.21. In the coloring
on the right, the color classes are the sets {s, x, z}, {t, w}, {u, y}, and {v}. In
particular, {s, x, z} is the set of vertices of color 1 in that coloring. ■

In this section, we will see applications of graph colorings to scheduling
problems as well as map colorings. However, to start, it may be natural to think
of graph coloring as a purely recreational pursuit. Given a graph, what is the
least number of colors we can use in a coloring? Could someone come along
and beat our coloring, or can we prove that ours in the best? We start with some
general results that both develop our coloring skills and provide tools for prov-
ing that certain colorings cannot be improved.

The straightforward proofs of the following two theorems are left for the ex-
ercises. The first theorem equates bipartite graphs with those that are 2-colorable.
The second implies that the pursuit of an optimal coloring need focus on only
one component at a time.

THEOREM 9.19 Let G be any graph. Then G is bipartite if and only if χ (G) ≤ 2.

THEOREM 9.20 Given any graphs G and H without loops, the chromatic number of their disjoint union is
given by χ (G + H) = max{χ (G), χ (H)}.

When trying to color the vertices of a graph one at a time with as few colors
as possible, it is generally wise to reuse colors as much as possible. The most
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obvious feature of a graph that forces us to resort to unused colors is a collection
of mutually adjacent vertices.

DEFINITION 9.11

Let G be a graph.

(a) A clique in G is a subgraph that is complete.

(b) The clique number of G, denoted ω(G), is the maximum number of vertices
in a clique of G.

EXAMPLE 9.27 The pictured graph G

u v

x y

w

z

has ω(G) = 3. The vertices v, w, and y form a clique of size 3, and there are no
cliques on 4 or more vertices. ■

The clique number provides a lower bound for the chromatic number.

THEOREM 9.21 Let G be any graph without loops. Then χ (G) ≥ ω(G).

Proof
In any coloring, the vertices in a clique must receive different colors. �

The graph G in Example 9.26 has ω(G) = 4; vertices t, u, v, x form a largest
clique. It now follows from Theorem 9.21 that χ (G) ≥ 4. Since a 4-coloring for
G is provided in Example 9.26, this gives χ (G) = 4.

EXAMPLE 9.28 Show that the graph G from Example 9.27 has χ (G) = 3.

Solution. Theorem 9.21 and Example 9.27 together give that χ (G) ≥ 3. The
pictured coloring of G

3 1

1 3

2

1

shows that χ (G) ≤ 3. Therefore, χ (G) = 3. ■

For the graphs in Examples 9.26 and 9.28, we used Theorem 9.21 to prove
that our coloring was optimal. However, that technique does not always work.
There are graphs G for which χ (G) > ω(G).
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EXAMPLE 9.29 The pictured graph G

1

4 3

27105

9 8

11

6

is called the Gro·· tzsch graph and satisfies χ (G) = 4 > 2 = ω(G). A proof that
χ (G) = 4 is left for the exercises. ■

EXAMPLE 9.30 (Accommodating Scheduling Conflicts). In Example 8.3, a graph G

Astr. Bio.

Eng. Discr.

Calc.Fr.

was used to reflect scheduling conflicts among classes in Astronomy, Biology,
Calculus, Discrete Math, English Composition, and French, each needing to
schedule a study session. That is, in G an edge joins two vertices precisely
when the two corresponding class groups cannot meet simultaneously. We can
now see how this graph can be used to obtain a schedule that accommodates
all of the study sessions in a minimum number of time periods.

Solution. An allowable schedule corresponds to a coloring of the vertices of
G with time periods numbered 1, 2, . . . . For example, the coloring

2 1

4 3

21

corresponds to the schedule

Time Period Study Groups

1 Biology, French
2 Astronomy, Calculus
3 Discrete Math
4 English Composition

which uses four time periods. In fact, a smaller number of time periods is not
possible, since G cannot be colored with fewer than four colors. Here, the fact



542 P A R T II ■ Combinatorics

that χ (G) = 4 follows easily from the displayed coloring with four colors and
the fact that vertices Bio., Calc., Discr., and Eng. form a clique of size 4. ■

For scheduling problems such as Example 9.30, the important result is that,
for the corresponding scheduling graph G, the minimum number of meeting
periods required to accommodate all of the meetings is χ (G).

Since each pair of vertices in a color class must be nonadjacent, we are inter-
ested in subgraphs that are empty.

DEFINITION 9.12

Let G = (V, E) be a graph.

(a) An independent set in G is a subset W of V in which no two vertices are
adjacent. That is, the subgraph induced by W is empty.

(b) The independence number of G, denoted α(G), is the maximum number of
vertices in an independent set in G.

A complementary relationship exists between independent sets and cliques.

THEOREM 9.22 For any simple graph G, we have α(Gc) = ω(G) and ω(Gc) = α(G).

The proof of Theorem 9.22 is left for the exercises. The independence number
can be used to obtain another lower bound for the chromatic number.

THEOREM 9.23 For any graph G = (V, E) without loops, if |V| = n, then χ (G) ≥ n
α(G) .

Proof
Take a coloring of G with χ (G) colors, and partition V into color classes.
The size of the largest class is at most α(G). Since there are χ (G) classes,
χ (G)α(G) ≥ n. �

Although we have computed several chromatic numbers and, in the process,
provided optimal colorings for several graphs, we have not addressed the prob-
lem of finding good colorings for graphs in general. In fact, there is no known ef-
ficient algorithm that, for every graph G, yields a χ (G)-coloring. However, there
are efficient algorithms that give nearly optimal colorings a significant portion
of the time.

The algorithm that we consider is an example of a greedy algorithm. Such
an algorithm is one that attempts to solve a global problem by treating it as a
sequence of local problems for which local conditions should be optimized. In
the case of our greedy coloring algorithm, we color the vertices of our graph one
at a time. At each vertex, we pay attention only to the best possible color choice
relative to the neighbors of that vertex. As we shall see, these are not always
the best choices in the long run.

ALGORITHM 9.1 Greedy Coloring Algorithm

Let a graph G on n vertices with no loops be given, together with an ordering
v1, v2, . . . , vn of its vertices. In that order, color the vertices with positive integers so
that, for each 1 ≤ i ≤ n, vertex vi is given the smallest possible color not assigned to
a neighbor v j of vi with j < i . Note that v1 has color 1.
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Remark 9.4 A typical choice of the vertex ordering is in nonincreasing
order of degree deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vn). However, that is not
required.

EXAMPLE 9.31 Use the Greedy Coloring Algorithm to color the pictured graph given the
ordering v1, v2, v3, v4, v5, v6, v7 of its vertices.

v5

v1 v2

v6 v4

v3 v7

Solution. The resulting coloring is shown in the right-hand picture below.

?

1 2

3

1 2

1 2

32

1 2

The left-hand picture shows the stage after v4 has been colored with color 3.
(Note that v4 is adjacent to the colors 1 and 2 used earlier.) At this point, v5
gets color 2, since it is currently adjacent only to vertices of color 1. The entire
coloring that results turns out to be optimal in this case; it is straightforward to
confirm that the chromatic number is indeed 3. ■

To demonstrate that the Greedy Coloring Algorithm does not always give
an optimal coloring, as it did in Example 9.31, we consider another example.

EXAMPLE 9.32 The Greedy Coloring Algorithm applied to the graph pictured at the left with
the ordering v1, v2, v3, v4, v5, v6, v7, v8 of its vertices yields the coloring pictured
at the right.

v6 v1 v2 v4

v7 v8 v5 v3

2 1 2 3

1 2 3 1

Even though the vertices are colored in nonincreasing order of their degree,
which is often a good choice, the resulting coloring is not optimal. The graph is
bipartite and thus has chromatic number 2. ■

In the 1987 movie Wall Street, Michael Douglas’ character, Gordon Gecco,
asserts that “greed, for lack of a better word, is good. Greed is right. Greed
works.” However, Example 9.32 shows that the Greedy Coloring Algorithm is
not perfect. Nonetheless, it can be used to obtain reasonably good upper bounds
on the chromatic number of a graph.
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THEOREM 9.24 For any graph G without loops, if v1, v2, . . . , vn is a listing of its vertices in nonincreasing
order of degree, then χ (G) ≤ 1+max{min{deg(vi ), i − 1} : 1 ≤ i ≤ n}.

Proof
Use the Greedy Coloring Algorithm for the list v1, v2, . . . , vn. For each 1≤ i ≤ n,
the color of vertex vi is at most 1+min{deg(vi ), i − 1}. The resulting color-
ing is thus a k-coloring with k = max{1+min{deg(vi ), i − 1} : 1 ≤ i ≤ n}. So
χ (G) ≤ k. �

The general result in Theorem 9.24 is perhaps most easily digested in a weaker
but simpler form that is an immediate corollary.

COROLLARY 9.25 For any graph G, we have χ (G) ≤ �(G) + 1.

Proof
For each 1 ≤ i ≤ n, we have min{deg(vi ), i − 1} ≤ deg(vi ) ≤ �(G). �

Inspired by Corollary 9.25, we further explore the relationship between the
chromatic number and the maximum degree of a graph.

EXAMPLE 9.33 There are graphs for which the upper bound in Corollary 9.25 is achieved.

(a) For any n ∈ Z+, χ (Kn) = n = �(Kn) + 1.
(b) For any odd n ∈ Z+, χ (Cn) = 3 = �(Cn) + 1.

However, Kn and Cn are the only graphs for which equality holds. ■

The British mathematician R. Leonard Brooks (1916–1992) improved upon
the upper bound in Corollary 9.25.

THEOREM 9.26 Brooks’ Theorem

Let G be any graph without loops. If G is not complete and not an odd cycle, then
χ (G) ≤ �(G).

Partial Proof of Brooks’ Theorem
Our proof excludes the case in which G is 2-regular with connectivity 2. For
that, an understanding of the block structure of graphs is warranted. The
interested reader is referred to [15] for the relevant discussion and proofs in
that case.

Let n = |V|. It suffices to assume that G is connected.
Case 1: G has a vertex vn with deg(vn) < �(G).

This means that G is not regular. Choose an ordering v1, v2, . . . , vn of the
vertices in nonincreasing order of their distance from vn. By Exercise 45 from
Section 8.1, for each 1 ≤ i < n, vertex vi has a neighbor v j with j > i . Conse-
quently, for each 1 ≤ i ≤ n, vertex vi has at most �(G) − 1 neighbors v j with
j < i . The Greedy Coloring Algorithm then uses at most �(G) colors.

Case 2: κ(G) ≥ 3.
In light of case 1, it suffices to assume that G is r -regular with r = �(G). In this
case, it must be that r ≥ 3. Since G is not complete, there must be a vertex vn

with neighbors v1 and v2 such that v1 and v2 are not adjacent. Since κ(G) ≥ 3,
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the graph G\{v1, v2} is connected and its vertices may be ordered v3, v4, . . . , vn

in nonincreasing order of their distance in G\{v1, v2} from vn. For each 1≤ i < n,
vertex vi has a neighbor v j with j > i . Apply the Greedy Coloring Algorithm
to the ordering v1, v2, v3, v4, . . . , vn. The vertices v1, v2, . . . , vn−1 require at most
r colors. Since v1 and v2 both receive color 1, vertex vn is adjacent to at most
r − 1 different colors. Thus, at most r = �(G) colors suffice for G.

The case in which κ(G) = 1 is left for Exercise 43. Thus, only the case in
which G is 2-regular and κ(G) = 2 remains. �

COROLLARY 9.27 For any graph G without loops and any integer r ≥ 3, if G is r-regular and no component of
G is complete, then χ (G) ≤ r .

The upper bound on χ (G) given by Brooks’ Theorem is not achieved in gen-
eral, as the following example illustrates.

EXAMPLE 9.34 χ (K2,3) = 2 < 3 = �(K2,3). ■

There is a remarkably simple relationship between the chromatic number of
a product and the chromatic numbers of its factors.

THEOREM 9.28 Given any graphs G and H without loops, the chromatic number of their product is given by
χ (G × H) = max{χ (G), χ (H)}.

Proof
Let fG : VG → {1, . . . , χ (G)} and fH : VH → {1, . . . , χ (H)} be functions that
optimally color G and H, respectively. Let m = max{χ (G), χ (H)}. Define the
m-coloring f : VG×H → {0, . . . , m− 1} by f ((u, v)) = ( fG(u) + fH(v)) mod m.
Suppose that (u1, v1) and (u2, v2) are adjacent in G × H. If u1 = u2, then v1 and
v2 are adjacent in H and fH(v1) �= fH(v2). If v1 = v2, then u1 and u2 are adjacent
in G and fG(u1) �= fG(u2). In any case, f ((u1, v1)) �= f ((u2, v2)). Since f provides
an m-coloring, χ (G) ≤ m. Since G × H contains isomorphic copies of G and H,
χ (G) ≥ m too. �

Coloring Maps
We close this section with the application of graph colorings to map colorings
mentioned at the beginning of the section. A map of South America is shown in
Figure 9.9. Suppose we wish to color its countries with as few colors as possible
such that no two countries that share a border receive the same color. We can
convert this into a graph coloring problem by taking the dual graph to the map.
This is a accomplished by placing a vertex in each country and joining a pair of
vertices by an edge precisely when their corresponding countries are adjacent.
The construction is virtually the same as that of the dual of a planar graph, ex-
cept that we choose to not place a vertex in the outer region when that does not
represent a country. The dual graph for our map of South America is shown on
the left side of Figure 9.10. An optimal coloring for this graph yields an optimal
coloring for the map.

It is straightforward to check that our dual graph has chromatic number 4
and that an optimal coloring is thus shown on the right side of Figure 9.10.
In fact, the clique formed by the vertices corresponding to Argentina, Bolivia,
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AB
C

D

E

F

G

H

I
J

K L

M
A � Guinea
B � Suriname
C � Guyana
D � Venezuela
E � Colombia
F � Equador
G � Peru
H � Bolivia
I � Chile
J � Paraguay
K � Argentina
L � Uruguay
M � Brazil

Figure 9.9 South America

121
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3

3

1
2

4

2

Figure 9.10 Coloring of Dual Graph for South America

Brazil, and Paraguay (shown with open points) forces the need for four colors.
The optimal coloring of the dual graph can now be used to obtain an optimal
coloring of the countries in South America. It is shown in Figure 9.11.

The fact that no more than four colors were needed is a consequence of a
famous result.

THEOREM 9.29 Four Color Theorem

If G is any planar graph, then χ (G) ≤ 4.

Although it was probably believed much earlier by map makers, the Four
Color Theorem was first formally conjectured in 1852 by an Englishman, Francis
Guthrie (1831–1899). Twenty-seven years later, an erroneous proof was pub-
lished by the English mathematician Arthur Kempe (1849–1922). The error was
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Figure 9.11 Coloring of South America

not caught until 1890, when another English mathematician, Percy Heawood
(1861–1955), showed that Kempe’s arguments could only be made to prove a
Five Color Theorem. The Four Color Theorem was first correctly proved in 1976
at the University of Illinois by the American mathematician Kenneth Appel
(1932– ) and the German-born American mathematician Wolfgang Haken
(1928–). Their proof required hundreds of pages of arguments, over 1200 hours
of computer time, and ultimately the consideration of nearly 2000 cases. It was
the first computer-aided proof and was quite controversial at the time, since
mathematicians could not check their argument by hand. However, their proof
is now accepted, and many other computer-aided proofs of mathematical results
have followed.

SECTION 9.5 Exercises
1. Do the assignments given by the displayed labels represent a coloring of

the pictured graph?
1 2 2

2 1 1

2. Do the assignments given by the displayed labels represent a coloring of
the pictured graph?

1 2 3

4 1 2
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Subsequent exercises refer to the following graphs.

(a) (b) (c) (d)1

2
4

5

3 6

1 3

4 65

2 6 1

4 3

25

1

5

3 4

2

In Exercises 3 through 8, find the chromatic number of the specified graph, and
prove your result.
3. The graph from Exercise 1. 4. The graph from Exercise 2.
5. Graph (a). 6. Graph (b).
7. Graph (c). 8. Graph (d).
9. Prove Theorem 9.19: G is bipartite if and only if χ (G) ≤ 2.
10. Prove Theorem 9.20: χ (G + H) = max{χ (G), χ (H)}.

�11. Prove that the Gro·· tzsch graph has chromatic number 4, as asserted in
Example 9.29.

�12. Show that the pictured graph is not 3-colorable.

1

2 4 53

6 7

13. Show that the removal of any vertex from the Gro·· tzsch graph leaves a
graph with chromatic number 3.

14. Show that χ (Cn) =
{

2 if n is even,
3 if n is odd.

15. Six classes from the Department of Languages and Cultures (German,
History, Indochina, Japanese, Kuwait, and Latin) need to schedule study
groups. In the displayed table, an X denotes the fact that the two different
classes corresponding to that row and column have a student in common.

Ger. His. Indo. Jap. Kuw. Lat.
Ger. X X X X
His. X X X X

Indo. X X X X
Jap. X X X X

Kuw. X X X X
Lat. X X X X

Assuming that each group needs to meet for one hour, find a schedule that
accomplishes these study sessions in the least possible number of hours.
Prove that your schedule is best possible.

16. Eight Senate committees—Appropriations (A), Budget (B), Commerce (C),
Energy (D), Environment (E), Foreign Relations (F), Homeland Security
and Governmental Affairs (G), and Health (H)—need to schedule meet-
ings. In the displayed table, an X denotes the fact that the two different
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committees corresponding to that row and column have a member in
common.

A B C D E F G H
A X X X X
B X X X X
C X X X X
D X X X X
E X X X X
F X X X X
G X X X
H X X X X

Assuming that each committee needs to meet for one hour, find a schedule
that accomplishes these meetings in the least possible number of hours.
Prove that your schedule is best possible.

17. Prove that C5 is “uniquely” 3-colorable. That is, for any two colorings,
there is an automorphism of C5 that sends the color classes in one coloring
to the color classes in the other.

18. Prove that, for every even integer n, Cn is “uniquely” 2-colorable. See
Exercise 17.

19. Show that the pictured graph is not uniquely 3-colorable.

1 2

3

45

20. Show that K2,1 + K2,1 is not uniquely 2-colorable.

In Exercises 21 through 26, determine, with proof, the chromatic number of the
specified graph.
21. The Petersen graph. 22. The octahedron.

�23. The icosahedron. 24. The dodecahedron.
�25. �26.

27. Prove Theorem 9.22.
28. Prove that χ (G) is the minimum value of n for which there exists a graph

map from G to Kn.
29. We need to store chemicals in some cabinets, while being careful not to put

in the same cabinet two chemicals that might cause a dangerous chemical
reaction. If acids are mixed with bleach or sulfides, then a toxic gas can
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be produced. If acids come in contact with hydrogen peroxide, then an
explosion can result. Mixing bleach with ammonia can also produce a
toxic gas. What is the smallest number of cabinets needed to store these
chemicals, based on the dangers described? Justify your answer using
graph colorings.

30. The camp councilor at math camp needs to break her girls up into groups
to work on some proofs. However, some of the girls are not getting along
with each other and need to be kept in separate groups. Betty is not getting
along with Mary, Amy, Sally, and Cindy. Wendy does not like Cindy, Sally,
and Kelly. Sally cannot stand Amy and Kelly. And Mary and Amy have
been fighting since camp started. What is the smallest number of groups
into which these girls can be split? Justify your answer using graph
colorings.

Subsequent exercises refer to the following graphs.

(e) (f) (g) (h)

1

4 5

7

2
3

6

3

4 2

1

6
7

5

31 4

67 5

2

31 4

62 5

In Exercises 31 through 34, apply the Greedy Coloring Algorithm to the
specified graph, using the ordering 1, 2, . . . of the vertices.
31. Graph (e). 32. Graph (f).
33. Graph (g). 34. Graph (h).
35. Show that G and H are bipartite if and only if G × H is bipartite.

Hint: Use bipartite and product coloring results.
36. Does χ (G) ≤ 4 imply that G is planar? Hint: Consider 2-colorable graphs.
37. The wheel Wn is the graph obtained from Cn−1 by adding a new vertex n

and joining n to each vertex 1, 2, . . . , n− 1 of Cn−1. Note that W4 = K4.
(a) Draw W5.
(b) Prove that the chromatic number of Wn is 4 if n is even and is 3 if n is

odd.
38. The n-prism is the graph Cn × P2. Note that the 4-prism is the cube Q3.

(a) Draw the 3-prism.
(b) Prove that the chromatic number of the n-prism is 2 if n is even and

is 3 if n is odd.
39. Suppose a graph G has a unique vertex of maximum degree, and let d2 be

the second highest degree in G. Show that χ (G) ≤ d2 + 1.
40. Suppose a graph G has adjacent vertices v1 and v2 of degrees d1 and d2,

respectively, such that d1 ≥ d2 > deg(v), for all vertices v �∈ {v1, v2}. Show
that χ (G) ≤ d2.

�41. Suppose that, from a given graph G, a graph G ′ is obtained by combining
two nonadjacent vertices of G into one.
(a) Show: χ (G) ≤ χ (G ′).
(b) Give an example for which χ (G) < χ (G ′).
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�42. Suppose that, from given a graph G, a graph G ′ is obtained by combining
two nonadjacent vertices of G into one.
(a) Show: χ (G ′) ≤ χ (G) + 1.
(b) Give an example for which χ (G ′) < χ (G) + 1.

43. Prove Brooks’ Theorem in the case that G is a regular graph with κ(G) = 1.
Hint: For each component H of G\{v}, optimally color the subgraph
induced by H ∪ {v}.

44. Show that there always is some ordering of the vertices for which the
Greedy Coloring Algorithm yields an optimal coloring.
Hint: Let c = χ (G). Pick a coloring with c colors and color classes
A1, . . . , Ac such that |A1| ≤ · · · ≤ |Ac | and A1 is smallest possible, A2 is
smallest possible given A1, A3 is smallest possible given A2, and so on.
Argue that for each i , each vertex of Ai is adjacent to every color j with
j > i . Otherwise, Ai could be made smaller. Order the vertices so that
Ac , . . . , A1.

45. Pictured are the voting districts in a certain county.

The county commissioners want to include a color picture of this map in a
pamphlet, so that colors clearly distinguish voting districts. Since each
additional color adds expense to the production of this pamphlet, they
want to minimize the number of colors needed. What is the smallest
number of colors that can be used?

46. Pictured are the police precincts in a portion of a major city.

The mayor wants to create a color version of this map, with colors
distinguishing precinct boundaries, using as few colors as possible. How
many colors are required?

47. Find a map of the 48 contiguous states in the United States.
(a) Find a coloring of the map using as few colors as possible so that no

two adjacent states have the same color.
(b) How many colors are needed?
(c) Prove that no fewer colors would suffice.

48. Find a map of the 54 countries in Africa.
(a) Find a coloring of the map using as few colors as possible so that no

two adjacent countries have the same color.
(b) How many colors are needed?
(c) Prove that no fewer colors would suffice.
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CHAPTER 9 Review Problems
1. Let G be the pictured graph.

3

6

5

1 2

4

7

(a) Prove κ(G) = 1. (b) Prove λ(G) = 2.

For Exercises 2 through 5, determine the given values. Justify your answers.
2. κ(K5,7). 3. λ(K5).

4. κ( P5). 5. λ(C5).

6. Pictured is a power grid on eight stations. In addition to the outer 8-cycle,
five extra cables connecting stations are included to decrease the power
grid’s vulnerability to station failures.

4

7

5

2

6 8

1 3

Determine the smallest possible number of power stations whose failure
would leave a remaining grid that is not connected. Prove your result.

7. Prove or disprove that there exists a graph G with κ(G) = 3 and λ(G) = 2.
8. Prove or disprove that there exists a graph G with κ(G) = 2 and λ(G) = 4.
9. Let G be a simple graph on n vertices and

(n
2

)− 1 edges. Show that
κ(G) = n− 2.

10. Two cyclic computer networks have been joined together with the aim of
forming a stronger network. The designers are concerned with the possible
failures of both computers and cable connections.

1

4 3

2
7

6

10

89

5

Prove that at least three computers or at least three cables must fail to
disconnect this network. That is, for the graph G modeling this network,
prove that κ(G) = λ(G) = 3.

11. Determine λ(Km,n) and prove your result.
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12. Specify an Euler circuit in the
pictured graph.

4

8

6
5

2

7 9

1 3

13. Prove that no Euler trail exists in
the pictured graph.

4

8

6
5

2

7 9

1 3

14. A tourist visiting the city of Zahlenberg is interested in crossing over each
of its bridges.

Süd

West Ost

Nord

Stetig

21

7 86

5

9

3 4

Determine whether this portion of Zahlenberg has an Euler circuit, an
Euler trail, or neither. Justify your answer.

For Exercises 15 through 21, determine whether the specified graph has an
Euler circuit, an Euler trail, or neither. If so, then specify one. If not, then justify
why.
15. K2,3. 16. Q3.

17. K5. 18. P6.

19.

5

6 8

1 2

7

4

3

20.

654

7 9

1 3

8

2

21.

6
5

4

7 9

1 3

8

2

22. It is easy to find a Hamiltonian cycle Cn in Kn. For some values of n, the
remaining edges form an Euler circuit. For which integers n does C c

n have
an Euler circuit? Justify your answer.

23. Since several potholes developed over the winter months, the streets in the
pictured neighborhood need to be repaved.
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So that traffic does not need to be completely stopped in this neighbor-
hood, the workers pave one side of each of these two-way streets at a time.
Find a route that takes the workers over each side of each street exactly
once and leaves the neighborhood from the same point it entered.

24. The pictured neighborhood is a new development that has gone up since
last winter, and consequently an efficient snowplow route needs to be
designed for it.

Each street is two-way, and one pass of the plow clears one side of the
street. To be efficient, once the snowplow enters the neighborhood, it
should not pass a second time over a section of road that has already been
plowed. Find a maximally efficient route that clears the entire road surface
and keeps the plow on the right-hand side of the street at all times.

25. Find a Hamiltonian cycle in K4,4.
26. A Hamiltonian cycle in Q3 determines a subgraph isomorphic to C8. How

many different subgraphs of Q3 are isomorphic to C8?

27. Show that the pictured graph
is not Hamiltonian.

3

5

21

4 6

987

28. Determine whether or not the
pictured graph is Hamiltonian.

5

6 8

1 2

7

4

3

29. Let G be any graph.
Show: If G is Hamiltonian, then δ(G) ≥ 2.



C H A P T E R 9 ■ Graph Properties 555

30. FedEx needs to make deliveries to the marked locations in the pictured
neighborhood.

To be maximally efficient, FedEx does not want its truck to pass by a
delivery sight to which a delivery has already been made, and it wants the
truck to exit the neighborhood from the same location at which the truck
entered. Does such a maximally efficient delivery route exist? Justify your
answer.

31. Determine whether the pictured directed graph is Hamiltonian.

54

6 8

1 3

7

2

32. The pictured graph is a tournament.

Jack

Zed Quo

Xia

It reflects the results of a round robin Scrabble tournament.
(a) Who won the match between Jack and Zed?
(b) Find a Hamiltonian path through the tournament.
(c) Have the results of this tournament determined a clear ranking of its

competitors? Justify your answer.

33. Show that, if a directed graph is Hamiltonian, then it is strongly connected.
34. Given a planar embedding of a graph G = (V, E) with regions R, if

|E | = 23 and |R| = 10, then find |V|.
35. Show that the following Gro·· tzsch graph is not planar.
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�36. Prove that any planar graph G = (V, E) with all of its cycles of length at
least 5 has |E | ≤ 5

3 (|V| − 2).

37. Use the result in Exercise 36 to show that the Petersen graph is not planar.
38. Without using Kuratowski’s Theorem, prove that all graphs on 4 or fewer

vertices are planar.
39. Draw the dual of the planar graph from Exercise 13.
40. Since the tetrahedron graph is isomorphic to K4, we have seen that it is

planar. Show that the dual of the tetrahedron is itself.
41. Does every nonplanar graph contain K5 or K3,3 as a subgraph? Explain.
42. Pictured is a computer network that needs to be laid out without any cable

crossings.

Show that this is indeed possible by presenting such a layout.
43. Pictured is the layout for a circuit board that needs to be constructed.

Although a layout without any wire crossings is preferred, show that no
such layout exits.

44. The pictured power grid needs to be laid out, but the presence of the
displayed cable crossings is undesirable.

Can this grid be laid out without any cable crossings? Justify your answer.
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45. What is the minimum possible number of wire crossings required in a
layout of the circuit board from Exercise 43? Justify your answer.

46. What is the minimum possible number of cable crossings required in a
layout of the power grid from Exercise 44. Justify your answer.

�47. Determine, with proof, the chromatic number of the pictured graph.

48. ν(K3,4) = 2. Give a drawing of K3,4 with 2 crossings.
49. Find each of ω(G), α(G), and χ (G), where G is the graph that models the

computer network in Exercise 42.
50. Find each of ω(G), α(G), and χ (G), where G is the circuit board graph in

Exercise 43.
51. The yearbook needs group pictures of each of these clubs: Archery, Chess,

Math, National Honor Society, and Student Council. There are two pho-
tographers who can work at the same time, but some of the clubs have
overlapping membership, as shown in the following table.

Arch. Chess Math NHS StCo.
Arch. X
Chess X X
Math X X X
NHS X X X
StCo. X X X

With these restrictions, determine the minimum number of sessions
required to complete all of these club pictures. Justify your answer.

52. Use the Greedy Coloring Algorithm to color the vertices of the pictured
graph,

1 53

2 6

7

84

using the ordering 1, . . . , 7 of the vertices. Is that coloring optimal? Justify
your answer.

53. If G is a simple graph on n vertices, then how are �(G) and δ(Gc) related?
54. Displayed are the school districts in a certain county.



558 P A R T II ■ Combinatorics

We would like to color these districts so that adjacent districts receive
distinct colors. Find a coloring that uses the smallest possible number of
colors.

55. Find a map of the political regions (provinces or territories) of Canada.

(a) Find a coloring of the map using as few colors as possible so that no
two adjacent provinces have the same color.

(b) How many colors are needed?
(c) Prove that no fewer colors would suffice.
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Trees and Algorithms

AN IMPORTANT SPECIAL class of graphs is made up of those that are connected

and contain no cycles. Such graphs are called trees. After exploring basic properties and

applications of trees, we consider algorithms for finding breadth-first search trees and

depth-first search trees. Not only do these algorithms provide systematic means of

traversing trees, but they also yield useful spanning trees for general graphs. The depth-

first search algorithm in particular is the basis for a general searching technique called

backtrack searching.

In the case that weights are attached to the edges of a graph, we study Kruskal’s

Algorithm and Prim’s Algorithm for finding a spanning tree with the minimum possible

total weight. An additional algorithm that we owe to Dijkstra enables us to find, from a

fixed vertex, the shortest path to any other. In the case that the graph represents a

potential computer network, in which each edge is weighted with the cost of the link it

reflects, a minimum spanning tree represents a cheapest possible connected network.

If, instead, each edge is weighted with the time delay across the link it reflects, then a

shortest-path tree from a specified vertex represents a network with the fastest res-

ponse time from the corresponding specified computer.

The last two sections initiate a study of the analysis of algorithms in general. For

that, we focus primarily on algorithms that search for a value in a given array and those

that sort an array. Our study of the complexities and efficiencies of algorithms leads us

to a study of function growth and, in particular, big-O notation. Finally, through our con-

sideration of decision trees for algorithms, we see how trees provide a valuable tool for

analyzing algorithms.

10.1 Trees
In Section 5.1, we considered the “is the father of” relation, as reflected by a fam-
ily tree. In Section 6.1, we used tree diagrams to analyze counting problems. In
light of our studies in Chapters 8 and 9, we see that these diagrams are examples
of graphs. In fact, they are examples of a specialized yet extremely useful kind
of graph. A tree is a graph that is connected and contains no cycles. More gen-
erally, a forest is a graph that contains no cycles; each component of a forest is
a tree. This section explores the graph-theoretical properties of trees and forests
as well as some applications.

A relatively simple class of trees is provided by paths. That is, for each n ≥ 1,
the path Pn is a tree. A great variety of other trees (and forests) exists as well.

559
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Figure 10.1 A Tree and a Forest

EXAMPLE 10.1 (a) The graph pictured in the left-hand box of Figure 10.1 is a tree. We can
see that this graph is connected and contains no cycles.

(b) The graph pictured in the right-hand box of Figure 10.1 is a forest that
consists of two trees. That graph contains no cycles and has two com-
ponents. ■

When we are working with forests, a pendant vertex (a vertex of degree 1)
is usually called a leaf. The vertices of degree at least 2 are said to be internal
vertices. In Example 10.1(a) the vertices 3, 6, 7 are leaves, whereas in (b) the
leaves are 2, 3, 5, 6, 7.

EXAMPLE 10.2 (Chemical Structures). Graphs in general can be used to model molecules; we
represent each atom by a vertex and each chemical bond by an edge. Figure
10.2 displays the chemical structure of ethane, C2H6, whose corresponding
graph is a tree.

CH HC

H H

H H

Figure 10.2 Ethane, C2H6, and Its Corresponding Tree

Figure 10.3 shows benzene, C6H6, whose graph is not a tree. That graph con-
tains a cycle on the vertices corresponding to the carbon atoms, as well as

CC

CC

HH

HH

CH HC

Figure 10.3 Benzene, C6H6, and Its Corresponding Graph

some doubled edges representing double bonds. Ethane and benzene are
examples of hydrocarbons, which are molecules built exclusively from atoms
of hydrogen, H, and carbon, C. An important subset of these is the saturated
hydrocarbons, whose chemical formulas have the form CnH2n+2 for some
positive-integer n. We highlight them here, since their structures always cor-
respond to graphs that are trees.

Although ethane is the only hydrocarbon with formula C2H6, in general,
the chemical formula alone does not determine the chemical structure. For
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Figure 10.4 The Three Pentane, C5H12, Isomers

example, there are three different pentanes, C5H12, as shown in Figure 10.4.
In general, the different structures associated with a fixed formula are called its
isomers, and each has its own chemical and physical properties. The structure
of an isomer of a saturated hydrocarbon CnH2n+2 is determined by the sub-
tree induced by the n carbon atoms.1 That subtree must be a tree of maximum
degree at most 4. Then the entire tree is the unique tree in which the carbon
atoms form the set of internal vertices, each with degree 4, and the hydrogen
atoms form the set of leaves. For example, when n = 4, the isomers butane and
isobutane of C4H10 correspond to the carbon trees P4 and K1,3, respectively.
In general, the number of possible isomers of CnH2n+2 is the number of non-
isomorphic trees on n vertices with maximum degree at most 4. The problem
of determining this number was studied by the English mathematician Arthur
Cayley (1821–1895). In 1875, he determined this number for n vertices in the
cases that n ≤ 13. In the exercises, we consider some of those values. However,
no convenient general formula is known. ■

We have seen that a graph can be used to represent a transportation network,
such as the subway system displayed in Figure 10.5. In that example, the result-
ing graph is a tree. By inspection, we can also see that, within this particular
subway system, there is a unique path between any pair of its stops. This is a
general property exhibited by trees.

Milton

Rosewood

Brockton

Connor

BlakeRockport

Salmon

Lyme

Berwick

Colby

Ridgeway
Kenmore

Fairmont Lines
Red
Gray

Figure 10.5 A City Subway System

1Here we ignore possible differences among optical isomers. These occur among saturated
hydrocarbons when a fixed subtree determined by the carbon atoms can be built in distinct ways
that differ by non-superimposable mirror images of portions of the tree. Distinct optical isomers
have bond angles that are oriented differently but have mostly identical physical properties.
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THEOREM 10.1 Let G be a graph. If G is a tree, then there is a unique path between any pair of vertices in G.

Proof
Let G be a tree, and let u and v be two vertices G. Suppose toward a contradic-
tion that there are distinct paths P and Q from u to v. Since P and Q must be
different at some point after u, let y be the first vertex in P that is not in Q. So
the vertex x in P immediately preceding y must also be in Q. See Figure 10.6.

x

zQ

P

y

u

v

Figure 10.6 Supposed Distinct Paths in a Tree

Since P and Q become different after vertex x but both end up at vertex v, let z
be the first vertex in P that is after x (and y) and is common to P and Q. Note
that the portion of P strictly between x and z has nothing in common with Q.
Therefore, the walk that follows P from x to z and then follows Q backwards
from z to x forms a cycle in G (bold in Figure 10.6). This contradicts the fact
that G is a tree. �

A proof that the converse of Theorem 10.1 also holds is left for the exercises.
Here, we establish a lower bound on the number of leaves in a tree. It can be
seen to hold in the examples considered so far.

THEOREM 10.2 Every tree on two or more vertices has at least two leaves.

Proof
Let T be a tree, and let P be a longest possible path in T . The start and end
vertices of P must be distinct and must be leaves. Otherwise, P could be made
longer. �

The result in Theorem 10.2 is as strong as possible, since, for n ≥ 2, Pn has
exactly two leaves. Additionally, observe that the number of edges in the tree Pn

is one fewer than the number of vertices. That result is true in general for trees.

THEOREM 10.3 Let G = (V, E) be a graph. If G is a tree, then

|E | = |V| − 1.

Proof
We prove by induction that, for every n ≥ 1, every tree on n vertices has n− 1
edges. Since every tree on one vertex must have no edges, the asserted result
holds when n = 1. So suppose n ≥ 1 and every tree on n vertices has n− 1
edges. Let G = (V, E) be a tree with |V| = n+ 1. Since n+ 1 ≥ 2, it follows
from Theorem 10.2 that G has a leaf v. Let e be the one edge incident with v,
and observe that G ′ = (V\{v}, E\{e}) is a tree on n vertices. By the induction
hypothesis,

|V| − 1 = |V\{v}| = |E\{e}| − 1 = |E | − 1− 1.

Therefore, |V| = |E | − 1. �
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A proof that the converse of Theorem 10.3 holds for connected graphs is left
for the exercises.

Spanning Trees. Although trees are special kinds of graphs, they are nonethe-
less useful for studying graphs in general. In a sense, a tree can serve as a
skeleton for a larger graph. A spanning tree for a graph G = (V, E) is a sub-
graph H = (V, F ) that is a tree on the same vertex set V. It may be specified
uniquely by its edge set F . More generally, a subgraph of a graph G is called a
spanning forest if its intersection with each component of G is a spanning tree
for that component.

A spanning tree for the graph pictured in the left-hand box of Figure 10.7 is
shown there in bold. In the right-hand box of Figure 10.7, a spanning forest for
the graph there is shown in bold. Since that graph is not connected, it cannot
have a spanning tree. However, every graph that is connected has at least one
spanning tree.

Figure 10.7 In Bold, a Spanning Tree and a Spanning Forest

THEOREM 10.4 Let G = (V, E) be a graph. If G is connected, then G has a spanning tree.

Proof
We proceed by strong induction on the number n of vertices in the graph. Any
graph with only one vertex requires no edges for its spanning tree. So suppose
n ≥ 1 and any connected graph with n or fewer vertices has a spanning tree.
Let G be an arbitrary connected graph with n+ 1 vertices, and select a vertex v

of G. Since every component of G\{v} has n or fewer vertices, each has a span-
ning tree. Let F0 be the union of their edges. Since each component of G\{v}
must contain a neighbor of v, we can add to F0 an edge from v to that neighbor.
The edges in the resulting set F must then form a spanning tree for G. (Think
about why there are no cycles.) �

A proof that the converse of Theorem 10.4 holds and a proof of the following
corollary are left for the exercises.

COROLLARY 10.5 Every graph has a spanning forest.

A connected graph may have more than one spanning tree. In the next two
sections, we consider algorithms that yield particular spanning trees.

Rooted Trees. A directory or file system in a computer takes the form of a tree
with additional structure. For example, the topmost directory is known as
the root directory. When there are directories within directories, the directory
immediately above a particular directory is known as its parent directory. An
example of a portion of such a file system is displayed in Figure 10.8. In Defini-
tions 10.1 and 10.2, we shall see that the terminology used to describe computer
directory systems corresponds to the terminology of rooted trees.
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C:\

Mathematica.exe MathKernel.exe

wordpad.exe 4.2mint.exemaple.exe

Mathematica

Wolfram Research DiscreteCalc IIWindows NT

Program Files Schoolpagefile.sys

Maple 9.5

dialer.exeAccessoriesbin.win hw1 syll hw1 syll

Figure 10.8 Files and Folders in a Directory System

DEFINITION 10.1

A rooted tree is a pair (T, v), where T is a tree and v is a vertex of T . The distin-
guished vertex v is said to be the root of T .

The directory tree in Figure 10.8 has the structure of a rooted tree with root
C:\. Note in this application of rooted trees that files are always leaves and in-
ternal vertices are always folders. However, a folder, if empty, can also be a leaf.

v1
Level

0

1

2

3

v2

v3 v5

v4

v6

Figure 10.9 A Rooted Tree

The graph in Figure 10.9 with vertex v1 designated as the root is an example
of a rooted tree. Drawings of rooted trees typically show the prominence of the
root by having the other vertices trail away from it. We shall usually draw the
root as the topmost vertex. With such conventions in mind, there is a variety of
terminology associated with rooted trees.

DEFINITION 10.2

Let T be a rooted tree with root v.

(a) The level of a vertex u in T is its distance from v, namely dist(v, u).

(b) A child of a vertex u in T is a neighbor of u at a level greater than that of u;
its level is always one greater.

(Continued)
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(c) The parent of a vertex u in T is the unique neighbor of u with level less than
that of u; its level is always one less. The root v is the only vertex in T
without a parent.

(d) The height of T is the maximum level among its vertices.

(e) If each vertex of T has at most m children, then we say that T is an m-ary
tree. If each internal vertex has exactly m children, then T is said to be a full
m-ary tree. A 2-ary tree is also called a binary tree.

(f) If T has height h and all of its leaves are at levels h or h − 1, then T is said to
be balanced.

In the directory system displayed in Figure 10.8, the directory Windows NT
has parent Program Files and children Accessories and dialer.exe. In
this case, one child is a folder and an internal vertex, whereas the other is a file
and a leaf.

Consider the rooted tree (T, v1) displayed in Figure 10.9. Vertex v2 is at level 1,
since dist(v1, v2) = 1, and v6 is at level 3, since dist(v1, v6) = 3. Vertex v2 has
children v3 and v5, and the parent of v2 is v1. The height of T is 3, and T is a binary
tree that is neither full nor balanced. Figure 10.10 shows a full and balanced
rooted 3-ary tree (T ′, v1) of height 2.

v1
Level

0

1

2

v2

v5 v7

v4

v6

v3

Figure 10.10 A Full and Balanced Rooted 3-ary Tree

If an m-ary tree is full, then a certain portion of the vertices must be internal
and the remaining portion must, of course, be leaves.

THEOREM 10.6 Let T be a full m-ary rooted tree with n vertices, l leaves, and i internal vertices. Then

(a) n = i + l, and

(b) n = mi + 1.

It follows from Theorem 10.6 that knowing two of the three values n, l, and
i for a full m-ary tree determines the third. The proof of Theorem 10.6 and the
proofs of some useful consequences of it are left for the exercises. The next the-
orem will play a significant role in our analyses of algorithms in Sections 10.4
and 10.5.

THEOREM 10.7 Let T be an m-ary rooted tree of height h with l leaves. Then

(a) l ≤ mh , and

(b) h ≥ �logm l�.

Proof
Our proof is by induction on h. If h = 0, then l = 1 and we have equalities in
our desired results, for any choice of m. So suppose that h ≥ 1, that T is an
m-ary tree of height h with l leaves, and that our desired results hold for all
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trees with smaller height. Let v0 be the root of T , and let v1, . . . , vd be its
children. Note that d ≤ m.

v0

v1 vdv2

T1 TdT2

...

If we remove v0, then there remain d rooted trees. For each 1 ≤ j ≤ d, let Tj

be the tree with root v j , height h j , and l j leaves. So h j < h, and the inductive
hypothesis applies to Tj . Hence,

l = l1 + · · · + ld ≤ mh1 + · · · +mhd ≤ d ·mh−1 ≤ mh .

Taking logm gives logm l ≤ h. Since h ∈ Z, it follows that �logm l� ≤ h. �

In practice, rooted trees often have additional structure given by an ordering
of the children for each internal vertex.

DEFINITION 10.3

(a) An ordered rooted tree is a rooted tree in which the set of children of each
internal vertex is ordered.

(b) An ordered binary tree is a binary tree in which each child of an internal
vertex is designated as either the left child or the right child, but not both.
Moreover, at each internal vertex, the corresponding left subtree (respec-
tively, right subtree) is the subtree rooted at its left child (respectively, right
child).

The rooted tree displayed in Figure 10.10 may be more strongly regarded as
an ordered rooted tree, if we take the ordering on the set of children for each
internal vertex given by the natural ordering on the subscripts of the vertices,
for example. Note that this ordering agrees with the left-to-right placement of
the vertices in the picture in Figure 10.10. In fact, the convention for displaying
ordered rooted trees is to place the children in order from left to right.

The convention for displaying ordered binary trees is to place the left child to
the left of its parent and the right child to the right. Consequently, there is more
than one way in which we might provide the binary tree in Figure 10.9 with the
structure of an ordered binary tree. The two are shown in Figure 10.11; they are
distinguished by the choice of regarding vertex v6 as either the left or the right
child of its parent v5.

v6

v1

v2

v3 v5

v4

v6

v1

v2

v3 v5

v4

Figure 10.11 Two Different Ordered Binary Trees
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An ordered binary tree can be used to define a convenient data structure in
which to store items indexed by identifying keys and in which to look up those
items. A binary search tree is an ordered binary tree such that the key at each
vertex is greater than all of the keys in its left subtree and less than all of the keys
in its right subtree. We build a binary search tree for a given list of items using
the following recursive construction. The initial item from the list is designated
as the root vertex. Each subsequent item in turn is added to the binary search
tree built so far by first focusing our attention at the root. If the new item’s key is
the same as that of the root, then this is a duplicate of an item already in the tree
and need not be added. If its key is less than that of the root, then we move our
attention to the left child of the root. If its key is greater than that of the root, then
we move our attention to the right child of the root. After this comparison, if we
are attempting to consider a (child) vertex that does not yet exist in our tree, then
we add our new item by creating that new position in the tree. Otherwise, we
have focused on a higher-level vertex of the tree, and we now treat that vertex
as we did the root, repeating our comparisons until the new item is either found
or added. This process is illustrated in the next example.

EXAMPLE 10.3 Suppose we wish to keep track of which words occur in a journal article.
Under the usual dictionary ordering for words, each word can serve as its own
key. However, the words in the article are certainly not expected to occur in
alphabetical order. For example, say the first sentence is

“Discrete mathematics is my favorite course.”

Its six words are entered into the corresponding binary search tree in the steps
shown in Figure 10.12. After step (3), the word my is compared first to discrete
and then to mathematics. Since my is greater than mathematics, and mathematics
has no right child in step (3), my is added as the right child of mathematics in
step (4).

(1) (2) (3)discrete discrete

mathematics

is

discrete

mathematics

(4) (5) (6)

myis

discrete

mathematics

myis

favorite

discrete

mathematics

myis

course

favorite

discrete

mathematics

Figure 10.12 Building a Binary Search Tree

If we wish to look up a word in this tree (such as cat, for example), then
essentially the same procedure is employed. The word cat is compared first to
discrete and then to course. Since cat is less than course, and course has no left
child, we conclude that cat is not in the tree. ■
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Ordered rooted trees can be used to encode two-dimensional black-and-
white images. The quadtree for a given image is an ordered full 4-ary tree con-
structed by placing a square bounding box around the image and recursively
subdividing boxes within the image into four quadrants. Each box that is nei-
ther entirely black nor entirely white in color is itself subdivided into four quad-
rants, and this process is repeated until all boxes are monochromatic. Each box
that gets subdivided is designated the parent of its resulting four quadrants, and
an ordering for the quadrants is given by the numbering convention shown in
Figure 10.13. The procedure is illustrated in Example 10.4.

2 1

3 4

Figure 10.13 Quadrant Order in Quadtrees

EXAMPLE 10.4 The image displayed on the left-hand side of Figure 10.14 might simply repre-
sent a spiral-like design, or it might represent the letter “J” in some crude font.
The necessary quadrant subdivisions are shown on the right-hand side of
Figure 10.14.

Figure 10.14 An Image and Its Corresponding Subdivision

The quadtree for this image is displayed in Figure 10.15, where B represents a
black square and W represents a white square. The size and location of each
square are determined by the level and position order of the corresponding
leaf in the tree.

W W B

W B W W

B B B

Figure 10.15 Quadtree for the Letter “J” ■

Note that higher and higher levels in the quadtree represent greater and
greater levels of detail in the corresponding image. Consequently, one could ob-
tain a coarser version of a given image by pruning its quadtree above some level.
That is, one could remove all of the vertices above some fixed level and then, for
each vertex that changes from an internal vertex to a leaf, substitute either a B
or a W according to some rule. This rule might be determined by the majority
of the children, or it could simply replace all such vertices by a W, for instance.

For example, suppose we wish to print a smaller version of the “J” from
Figure 10.14 and decide to decrease the level of detail. We could remove all of the
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vertices above level 2 in the quadtree from Figure 10.15. At the resulting new leaf
in level 2, we could substitute a W, based on the majority of the former children
of that vertex. The resulting coarser version of our “J” is shown in Figure 10.16.

Figure 10.16 A Coarser Version of the “J” from Figure 10.14

SECTION 10.1 Exercises
1. Is the pictured graph a tree? 2. Is the pictured graph a tree?

3. For which pairs (m, n) is the graph Km,n a tree?
4. For n ∈ Z+, is the empty graph 
n a forest?
5. The hydrocarbon ethylene, C2H4, is used to accelerate the ripening of

bananas and other fruit. Its chemical structure is pictured.

C C

H

H

H

H

Is its corresponding graph a tree?
6. Ammonia, NH3, is a cleaning agent and is also used to produce fertilizer.

Its chemical structure is pictured.

H N

H

H

Is its corresponding graph a tree?
7. Could a graph with a loop edge be a tree?
8. Could a graph with multiple edges be a tree?
9. Let T be a tree. Is T ×
n a forest?
10. Under what conditions on graphs G and H will G × H be a forest?
11. Hexanes are used in the preparation of adhesives and inks. They also serve

as solvents. Find the number of possible isomers of the hexanes, C6H14.
12. Heptanes are used in dry cleaners and pesticides. Find the number of

possible isomers of the heptanes, C7H16.
13. Pictured is the bus system for a certain city. It consists of two bus routes,

each of which is a path.
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Daniels

Center

Hawk

Fern

Anselm
Market

Main

Bradley

ParkComstock

Winter

South

Routes
1
2

Consider the graph representing this bus system.
(a) Is there a unique path from Fern to Market?
(b) Is there a unique path from Hawk to Park?
(c) The graph is not a tree, so in general, paths in it are not unique. How-

ever, is there a unique shortest path between any pair of stops in this
city? For this, we assume that all edges in our graph have the same
length. Explain your answer.

14. Pictured are the roads in a particular neighborhood.

Consider the graph in which intersections (including dead ends) are
represented by vertices, and streets joining them are represented by edges.
(a) Observe that the graph is a tree. For any pair of intersections that sit in

this neighborhood, must there be a unique path between them?
(b) What features of the tree represent the dead ends?
(c) What features of the tree represent the intersections?

�15. Prove the converse of Theorem 10.1.
�16. Prove the converse of Theorem 10.3 for connected graphs.
�17. Let G be an arbitrary graph without loops.

Show: G has only one spanning tree if and only if G is a tree.
18. Find all trees with degree sequence 4, 4, 2, 2, 1, 1.
19. Let G = (V, E) be an arbitrary graph. Show: If G is connected and

|E | = |V| − 1, then G is a tree. Hint: Consider a spanning tree.
�20. Use Theorem 10.3 to prove Theorem 10.2. Hint: Consider the degree

sequence.
�21. Show that a tree has exactly two leaves if and only if it is a path.
22. What is the degree sequence of any tree with exactly 3 leaves?
23. How many edges are there in a forest on n vertices with c components?

∗Exercises that may be particularly challenging are marked with a star.



C H A P T E R 1 0 ■ Trees and Algorithms 571

24. Show that a forest with c components and no isolated vertices must have
at least 2c leaves.

25. What trees have n− 1 leaves, where n is the number of vertices?
26. What trees have n− 2 leaves, where n is the number of vertices?

�27. Prove Theorem 10.3 by using Euler’s Formula.
�28. Prove that any graph G with δ(G) ≥ 2 must contain a cycle. Hint: Use

Theorem 10.3.
29. In a tree on n vertices, how many different subgraphs are there that are

isomorphic to a path?
30. Prove that trees are bipartite. 31. Find a spanning tree for Cn.
32. Find a spanning tree for Kn. 33. Find a spanning tree for Qn.
34. Find a spanning tree for Km,n. 35. Prove the converse of Theorem 10.4.
36. Prove Corollary 10.5.

1

4
5

2

6

3

7

Figure 10.17 A Tree for Exercises 37 Through 40

37. Take 1 to be the root of the
tree in Figure 10.17.
(a) List the children of 2.
(b) Which vertex is the parent of 5?
(c) What is the level of 3?
(d) What is the height of this

rooted tree?
(e) Is this a binary tree?
(f) Is it balanced?

38. Take 7 to be the root of the tree
in Figure 10.17.
(a) List the children of 2.
(b) Which vertex is the parent of 5?
(c) What is the level of 3?
(d) What is the height of this

rooted tree?
(e) Is this a binary tree?
(f) Is it balanced?

39. Take 2 to be the root of the
tree in Figure 10.17.
(a) List the children of 1.
(b) Which vertex is the parent of 3?
(c) What is the level of 4?
(d) What is the height of this

rooted tree?
(e) Is this a binary tree?
(f) Is it full?

40. Take 6 to be the root of the tree in
Figure 10.17.
(a) List the children of 2.
(b) Which vertex is the parent of 1?
(c) What is the level of 3?
(d) What is the height of this

rooted tree?
(e) Is this a binary tree?
(f) Is it full?

41. Billy Creasey has stored some music files on a CD according to the
displayed file system. It makes it easier for him to find his songs.

♦ CD Drive (E:)
/ Country

� Black.mpg
� Reba.mpg
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/ Hip Hop
� Fifty.mpg
� JLo.mpg

/ Rock
/ Classic Rock

� Lola.mpg
� Satisf.mpg
� USSR.mpg

/Modern Rock
� GrnDay.mpg

Consider the tree that corresponds to this structure.
(a) Is Lola.mpg a child of Rock?
(b) The “is the folder containing” relation in this example corresponds to

either the “is the parent of” relation or the “is a child of” relation on
trees. Which one?

(c) The music (.mpg) files in this example correspond to what tree
feature?

(d) What is the height of the tree?
(e) Is the tree balanced?

42. Displayed is the family tree for the set of living male members of a certain
family. This same example was considered in Example 5.5 of Section 5.1.

Peter

Daniel Jeffrey David Mark StephenKevin

Fred Gaunce Nicholas Yimin

(a) In trees, as in families, the child of a child is called a grandchild. How
many grandchildren does Peter have?

(b) The men with children in this example correspond to what tree
feature?

(c) Is the tree 3-ary? 4-ary?
(d) Is the tree balanced?

43. If a tree is balanced with a particular vertex taken as the root, then must it
be balanced no matter which vertex is taken as the root?

44. If a tree is a full m-ary tree with a particular vertex taken as the root,
then must it be a full m-ary tree no matter which vertex is taken as the
root?

45. Prove or disprove: Every tree has a vertex that can be chosen as the root to
make the tree balanced.

46. Prove or disprove: Every tree has a vertex that can be chosen as the root to
make the tree full.
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For Exercises 47 through 50, let T be a given full m-ary tree. Let n denote the
number of vertices, l the number of leaves, and i the number of internal
vertices.

�47. Prove Theorem 10.6. 48. Express i and l in terms of n and m.
49. Express n and i in terms of l and m.
50. Express n and l in terms of i and m.
51. Beth Robbins made a family tree consisting of the women in her family,

starting with her grandmother. After doing so, she noticed that each
mother has exactly three daughters and precisely ten of the women are
mothers. How many women are in Beth’s family?

52. Luther Foote is trying to make a family tree consisting of the men in his
family, starting with his father. If precisely eight of the men do not have
sons but every father has exactly two sons, then how many men are in the
Foote family?

53. Let T be a full m-ary tree of height h in which all l leaves are at level h.
Show that l = mh .

�54. Let T be a full and balanced m-ary tree of height h with l leaves. Show that
h = �logm l�.

In Exercises 55 through 58, construct the binary search tree for the words in the
given sentence. Use the usual dictionary order to compare words.
55. All students take calculus. 56. Long live the king.
57. Eat, drink, and be merry. 58. Three is the magic number.

In Exercises 59 through 62, construct the quadtree for the given image. Note
that grid lines have been drawn over the image for reference and are not
themselves part of the image.
59. 60.

61. 62.

In Exercises 63 through 66, draw the image that corresponds to the given
quadtree. In each case, the image represents a letter.

63.

W B B W W B B B W W B B

W

64.

B B B W W B B B B W B BB B W B
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65.

W B B W W W

W W B W B B W B B B W B B B B WW W W BB B B W

B W W B

66.

B B W W B WB W

B B B W BB BB B W B B

W BW B W W B B

10.2 Search Trees
Recall that an algorithm is a finite list of simple instructions leading to a desired
result. In this section, we consider two algorithms that yield spanning trees by
traversing a given connected graph from a specified vertex. The first is called
Breadth-First Search and reaches out as widely as possible to nearby neighbors
before moving on to less immediate neighbors. The second is called Depth-First
Search and reaches into the graph as long as possible until it is forced to back up
and resume reaching out in another direction. Although these two algorithms
generally produce different spanning trees, they are more significantly distin-
guished by the orders in which vertices are visited. Consequently, each algo-
rithm outputs not only a set F of edges for its spanning tree, but also a list L
imposing an ordering on the vertices. To aid in the management within each
algorithm, we keep track of vertices that have been visited so far in a list M and
regard those vertices as “marked.” Lists of vertices are stored as one-dimensional
arrays [v1, v2, . . . , vn], with [ ] denoting the empty list.

Applications of our algorithms are also explored. In particular, we consider
ways in which a computer can interpret and evaluate expressions. This further
leads us to a consideration of some additional tree traversal algorithms. Our
study of the Depth-First Search algorithm also leads us to a general searching
strategy called backtrack searching. In particular, we see how this technique ap-
plies to a search for a Hamiltonian cycle in a graph.

Breadth-First Search Trees
The tree T constructed by Algorithm 10.12 is called the breadth-first search tree
for G starting from a given vertex v. It is a spanning tree and may be regarded

2For an explanation of the pseudocode used to present algorithms throughout this book, see
Appendix B.
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ALGORITHM 10.1 Breadth-First Search

Let G = (V, E) be a connected graph on n vertices and v a vertex of G.

Algorithm.

Let M = [ ], L = [v], and F = ∅.
While |F | < n− 1,

\begin
Let t be the first vertex in L and not in M.
Add t to the end of M.
While t has neighbors that are not in L ,

\begin
Let e be an edge such that one end is t and the other

is a vertex u outside of L .
Let F = F ∪ {e}.
Add u to the end of L .
\end.

\end.
Return T = (V, F ).

as a rooted tree with root v. In Breadth-First Search, the neighbors of v are visited
first, then any unvisited neighbors of those neighbors are visited, and so on. Each
vertex is entered into the list L when it is first visited. A vertex is marked just
prior to seeking its unvisited neighbors.

Remark 10.1 Breadth-First Search and Depth-First Search construct
spanning trees by selecting edges. Since, at some stages in these
algorithms, there may be more than one reasonable edge to select, an
initial ordering of the edges would need to be specified to ensure
unique choices. For a simple graph, such an ordering can be specified
by giving an initial ordering of the vertices. In that case, the resulting
lexicographic, or “alphabetical,” ordering of the edges is used, as
described in Section 5.2. That is, we compare two edges by comparing
the two lower-valued endpoints and using the higher-valued endpoints
to break a tie. General sorting algorithms are discussed in Section 10.5.

In our first example, we perform Breadth-First Search on a tree. Thus, we can
focus our attention not on the resulting tree, which is obviously the entire graph
in this case, but rather on the imposed ordering L on the vertices.

EXAMPLE 10.5 Perform Breadth-First Search on the pictured graph starting from vertex v1,
given the ordering v1, v2, v3, v4, v5, v6 of the vertices.

v1

v2

v3 v5

v4

v6

Keep a running table of values for the list of marked vertices M, the imposed
(ordered) list of vertices L , and the set of edges F .
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Solution. Starting from the initial values, we make a new row in our table
each time either M changes or both F and L change. To aid in our trace, we
also record our current position in the graph at vertex t.

M L F t

[ ] [v1] ∅
[v1] [v1] ∅ v1

[v1] [v1, v2] {{v1, v2}} v1

[v1] [v1, v2, v4] {{v1, v2}, {v1, v4}} v1

[v1, v2] [v1, v2, v4] {{v1, v2}, {v1, v4}} v2

[v1, v2] [v1, v2, v4, v3] {{v1, v2}, {v1, v4}, {v2, v3}} v2

[v1, v2] [v1, v2, v4, v3, v5] {{v1, v2}, {v1, v4}, {v2, v3}, {v2, v5}} v2

[v1, v2, v4] [v1, v2, v4, v3, v5] {{v1, v2}, {v1, v4}, {v2, v3}, {v2, v5}} v4

[v1, v2, v4, v3] [v1, v2, v4, v3, v5] {{v1, v2}, {v1, v4}, {v2, v3}, {v2, v5}} v3

[v1, v2, v4, v3, v5] [v1, v2, v4, v3, v5] {{v1, v2}, {v1, v4}, {v2, v3}, {v2, v5}} v5

[v1, v2, v4, v3, v5] [v1, v2, v4, v3, v5, v6] {{v1, v2}, {v1, v4}, {v2, v3}, {v2, v5}, {v5, v6}}

For example, the first time that the outermost while loop is entered (so M = [ ],
L = [v1], and F = ∅), we set t = v1 and M = [v1]. The inner while loop then
adds v2 and v4 to L and adds {v1, v2} and {v1, v4} to F . In the end, we see that
the final imposed ordering on the vertices,

L = [v1, v2, v4, v3, v5, v6]

need not agree with the original given ordering. ■

In our second example, we apply Breadth-First Search to a graph that is not
a tree. Thus, the particular spanning tree produced should also be a focus of our
attention.

EXAMPLE 10.6 Use Breadth-First Search to find the breadth-first search tree for the pictured
graph starting from the vertex v1, given the initial ordering v1, v2, v3, v4, v5,
v6, v7 of its vertices.

v7v6v1

v4v5

v2 v3

Shade the edge set F for the resulting breadth-first search tree, and report the
new ordering L imposed on the vertices.

Solution. The final value of the vertex list is

L = [v1, v2, v6, v3, v4, v5, v7],

and the breadth-first search tree is shown in bold in the right-hand picture.
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v7v6v1

v4v5

v2 v3

v7v6v1

v4v5

v2 v3

The left-hand picture shows the point in the algorithm when the outermost
while loop is entered with |F | = 2. There, F is shown in bold, only the vertices
in M are darkened, and L = [v1, v2, v6]. At that point, we get t = v2, add v2 to
M, add v3, v4, v5 to L , and add the edges joining those vertices with v2 to F . ■

The list L provided by Breadth-First Search lists the vertices in nondecreas-
ing order of their distance from v. The reverse of such a listing was utilized in
Section 9.5 in our proof of Brooks’ Theorem.

Depth-First Search Trees
The tree T constructed by Algorithm 10.2 is called the depth-first search tree for
G starting from a given vertex v. It is a spanning tree and may be regarded as a
rooted tree with root v.

ALGORITHM 10.2 Depth-First Search

Let G = (V, E) be a connected graph on n vertices and v a vertex of G.

Algorithm.

Let M = [v], L = [ ], and F = ∅.
Let t = v.
While t �= null,

\begin
While t has neighbors that are not in M,

\begin
Let e be an edge such that one end is t and the other

is a vertex u outside of M.
Let F = F ∪ {e}.
Add u to the end of M.
Let t = u.
\end.

Add t to the end of L .
Replace t by the parent of t.
\end.

Return T = (V, F ).

In Depth-First Search, first a neighbor of v is visited, then an unvisited neighbor
of that neighbor is visited, and so on. When a vertex has no unvisited neighbors,
we return to the previously visited vertex and continue our process from there.
Each vertex is marked when it is first visited. A vertex is entered into the list L
after all of its neighbors have been marked. Since, at each stage of the algorithm,
F determines a v-rooted tree on the vertices of M, each vertex in M, except for
v, has a well-defined parent. For v, we assign its parent to be the value null,
assumed not to be in the vertex set.
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Note the difference between the innermost while loops for Breadth-First
Search and Depth-First Search. This while loop in Depth-First Search ends with
the assignment “Let t = u.” It is this feature that sends Depth-First Search deep
into a graph, as opposed to holding it near its starting point as long as possible.

In our first example using Depth-First Search, we apply it to the same tree
that we first considered using Breath-First Search. Thus, we can focus our atten-
tion on how the imposed ordering L on the vertices develops under Depth-First
Search in contrast to how it developed under Breath-First Search.

EXAMPLE 10.7 Perform Depth-First Search on the pictured graph starting from v1, given the
initial ordering v1, v2, v3, v4, v5, v6 of its vertices.

v1

v2

v3 v5

v4

v6

Keep a running table of values for the list of marked vertices M, the imposed
(ordered) list of vertices L , and the set of edges F .

Solution. Starting from the initial values, we make a new row in our table
each time either M and F both change or L changes. To aid in our trace, we
also record our current position in the graph at vertex t.

M L F t

[v1] [ ] ∅ v1

[v1, v2] [ ] {{v1, v2}} v2

[v1, v2, v3] [ ] {{v1, v2}, {v2, v3}} v3

[v1, v2, v3] [v3] {{v1, v2}, {v2, v3}} v2

[v1, v2, v3, v5] [v3] {{v1, v2}, {v2, v3}, {v2, v5}} v5

[v1, v2, v3, v5, v6] [v3] {{v1, v2}, {v2, v3}, {v2, v5}, {v5, v6}} v6

[v1, v2, v3, v5, v6] [v3, v6] {{v1, v2}, {v2, v3}, {v2, v5}, {v5, v6}} v5

[v1, v2, v3, v5, v6] [v3, v6, v5] {{v1, v2}, {v2, v3}, {v2, v5}, {v5, v6}} v2

[v1, v2, v3, v5, v6] [v3, v6, v5, v2] {{v1, v2}, {v2, v3}, {v2, v5}, {v5, v6}} v1

[v1, v2, v3, v5, v6, v4] [v3, v6, v5, v2] {{v1, v2}, {v2, v3}, {v2, v5}, {v5, v6}, {v1, v4}} v4

[v1, v2, v3, v5, v6, v4] [v3, v6, v5, v2, v4] {{v1, v2}, {v2, v3}, {v2, v5}, {v5, v6}, {v1, v4}} v1

[v1, v2, v3, v5, v6, v4] [v3, v6, v5, v2, v4, v1] {{v1, v2}, {v2, v3}, {v2, v5}, {v5, v6}, {v1, v4}} null

For example, the first time that the innermost while loop is entered (so
M = [v1], L = [ ], F = ∅, and t = v1), we add v2 to M, add {v1, v2} to F and set
t = v2. We then effectively start a Depth-First Search from v2 and, upon com-
pleting that, reset t back to v1. In the end, we see that the final imposed
ordering on the vertices,

L = [v3, v6, v5, v2, v4, v1]

is quite different from that obtained by Breadth-First Search in Example 10.5. ■
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In our second example, we apply Depth-First Search to the graph on which
Breadth-First Search was earlier applied in Example 10.6. Here we see that a
different spanning tree results.

EXAMPLE 10.8 Use Depth-First Search to find the depth-first search tree for the pictured graph
starting from the vertex v1, given the initial ordering v1, v2, v3, v4, v5, v6, v7 of its
vertices.

v7v6v1

v4v5

v2 v3

Shade the edge set F for the resulting depth-first search tree, and report the
new ordering L imposed on the vertices.

Solution. The final value of the vertex list is

L = [v4, v7, v6, v3, v5, v2, v1],

and the depth-first search tree is shown in bold in the right-hand picture.

v7v6v1

v4v5

v2 v3

v7v6v1

v4v5

v2 v3

The left-hand picture shows the first point in the algorithm when the outer-
most while loop is entered with t = v3. There, F is shown in bold, only the
vertices in M are darkened, and L is empty. At that point, we add v4 to M and
let t = v4. Then we add v4 to L and let t = v3 again. ■

Applications
Managing Algebraic Operations. The list L supplied by Depth-First Search
provides a useful way to encode algebraic expressions. An algebraic expression
involving the operations addition +, subtraction −, multiplication ∗, and divi-
sion÷ can be represented by an ordered binary tree. For example, the expression

(a + b ∗ (c − 1)) ÷ 2 (10.1)

is represented by the leftmost tree in Figure 10.18. There, the leaves are the vari-
ables and numbers, and the internal vertices are the binary operations. Each

2

� �




a *

b �

1c

2

� �




a *

b c � 1

b*(c � 1)

a 
 b*(c � 1)2

� �




a

2

�

Figure 10.18 Tree Representing (a + b ∗ (c − 1)) ÷ 2
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operation acts on the results at its left child and its right child, in the order pic-
tured. The steps in the evaluation process are also shown in Figure 10.18.

Expression (10.1) lists all of the vertices in the corresponding tree, together
with the parentheses needed to uniquely characterize the resulting value. Alter-
natively, postfix notation can be used to represent the same expression with no
parentheses and only the items in the vertices. It is obtained by listing the ver-
tices in the order L given by Depth-First Search (using a left-to-right ordering of
the children as pictured). For example, the leftmost tree in Figure 10.18 results
in the postfix expression

a b c 1 − ∗ + 2 ÷ (10.2)

Its value is computed by reading from left to right. When an operation is encoun-
tered, it is performed on the previous two values. The three positions involved
are then replaced by a single position containing the result of that operation.
This process corresponds exactly to the tree pruning displayed in Figure 10.18.
Expression (10.2) gets evaluated as shown in Figure 10.19.

a b c 1 − ∗ + 2 ÷
↓

a b c−1 ∗ + 2 ÷
↓

a b∗(c−1) + 2 ÷
↓

a+b∗(c−1) 2 ÷
↓

(a+b∗(c−1))÷2

Figure 10.19 Evaluating Postfix Notation

There is another way to describe postfix notation that leads to two related
notations. To accomplish this, we define three traversal methods for an ordered
binary tree T , each of which produces a list (and hence an ordering) of the ver-
tices in T . All three behave the same on a tree with at most one vertex and are
otherwise defined recursively.

DEFINITION 10.4 Ordered Binary Tree Traversals

Let T be an ordered binary tree. If T has no vertices, then nothing is listed. If T
consists only of the root v, then just v is listed. Otherwise, let TL denote the left
subtree of the root v, and let TR denote the right subtree, noting that one of TL or TR

could have no vertices.

(a) A postorder traversal of T is accomplished by first performing a postorder
traversal on TL , second performing a postorder traversal on TR, and third
listing the root v for T .

(b) A preorder traversal of T is accomplished by first listing the root v for T ,
second performing a postorder traversal on TL , and third performing a
postorder traversal on TR.

(c) An inorder traversal of T is accomplished by first performing a postorder
traversal on TL , second listing the root v for T , and third performing a
postorder traversal on TR.
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In Definition 10.4, note that the list obtained from a postorder traversal is the
same as that obtained from a Depth-First Search. Consequently, given an alge-
braic expression, the postfix notation for it is the list obtained from a postorder
traversal of the ordered binary tree representing the algebraic expression. Sim-
ilarly, the prefix notation is the list obtained from a preorder traversal, and the
infix notation is the list obtained from an inorder traversal. The infix notation
turns out to be the original algebraic expression with the parentheses removed
and is hence ambiguous in general. Prefix notation, on the other hand, gives an
unambiguous expression that can be evaluated and is explored in the exercises.

An application of inorder traversal relates to binary search trees. Recall that
a binary search tree stores a set of items, based on an order relation on the set. It
turns out that an inorder traversal of a binary search tree lists the items in order,
based on the order relation.

EXAMPLE 10.9 An inorder traversal of the binary search tree that resulted in Example 10.3,

myis

course

favorite

discrete

mathematics

yields the list

course, discrete, favorite, is, mathematics, my.

Note that, since the dictionary ordering was used to generate the binary search
tree, the resulting list in is dictionary order. ■

Backtrack Searches. The approach of a Depth-First Search can be used to search
for a Hamiltonian cycle in a graph G. The idea is to start at a vertex a in G and
to walk through the graph until a Hamiltonian cycle is found. If at some point
in the walk we get “stuck” and cannot possibly complete a Hamiltonian cycle
from the path we have followed so far, then we back up one step in our path
and check whether we can alternatively complete a Hamiltonian cycle from that
point. Consequently, this approach is also called backtrack searching. Precisely,
we are performing a Depth-First Search not in G, but in a related graph H, which
we now describe.

If we fix a vertex a in a given graph G, then there is a graph H in which each
vertex is either a path or a cycle in G starting at a . Two vertices P and Q in H
are taken to be adjacent if and only if one is the other followed by an additional
vertex. The utility of H is that G is Hamiltonian if and only if H contains a vertex
that is a Hamiltonian cycle. Moreover, when G is Hamiltonian, there must be
a path in H from the trivial path a to a Hamiltonian cycle. Although H is, in
general, a very large graph, the advantage of H is that traversing it requires
only knowledge of its local structure, and that structure is determined by G.
Moreover, not only is it unnecessary to store the entire vertex and edge set for
H, but also these sets are unknown prior to the start of the search. Otherwise,
we would already know whether G is Hamiltonian by knowing whether or not
one of the vertices in H is a Hamiltonian cycle.
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EXAMPLE 10.10 (Backtrack Searching for a Hamiltonian Cycle).

(a) The pictured graph G

a d

b e

c

yields the pictured graph H, in which our searching occurs.
a

adcba adcbe

adcb

ad

adce

adceba

adceb

abec

abecda

abecdabcda

abcd

adc

ab

abe

abce

abc

In this case, a Depth-First Search of H from a would lead us to find the
vertex abecda, which is a Hamiltonian cycle in G.

(b) The pictured graph G

a d

b e

c

yields the pictured graph H, in which our searching occurs.

adc

adcba adeba

ade

adebcadcbe

adcb adeb

abc

abcda abeda

abe

abedcabcde

abcd abed

a

adab

In this case, a Depth-First Search of H from a would complete without
having found a vertex corresponding to a Hamiltonian cycle. We could
then conclude that G is not Hamiltonian. ■

The method used in Example 10.10 to determine whether a given graph is
Hamiltonian is very inefficient in general. However, there is no known efficient
general method for solving this problem. Moreover, it is widely believed that no
efficient general method exists.

The problem of simply determining whether or not a graph is Hamiltonian is
related to a famous problem known as the traveling salesman problem. In that



C H A P T E R 1 0 ■ Trees and Algorithms 583

problem, a salesman wishes to visit each location in his territory exactly once be-
fore returning home. Moreover, there is some cost (in time or money) associated
with each move from one location to another, and the salesman wants the route
with the cheapest total cost. The traveling salesman problem is an example of
an NP-complete problem, as will be discussed at the end of Section 10.4. In the
exercises here, we shall consider the problem of finding a route for a salesman,
but we do not consider associated costs.

SECTION 10.2 Exercises
The following graphs are referred to throughout the exercises.
(a) (b) (c) (d)1

4 5

2

6

3

7

3

4 2

6

5

7

1

1

4 5

2

6

3

7

3

4 2

6

5

7

1

(e) (f) (g) (h)

3

1
4

2

5 6

1 2 3

4 5 6

42

1 3

5 6

42

1 3

5 6

In Exercises 1 through 8, perform Breadth-First Search on the given graph
starting at vertex 1. Use the ordering 1, 2, 3, . . . of the vertices. In each case,
specify the resulting list L ordering the vertices. If the graph is not a tree, then
shade the resulting tree.
1. Graph (a). 2. Graph (b).
3. Graph (c). 4. Graph (d).
5. Graph (e). 6. Graph (f).
7. Graph (g). 8. Graph (h).

In Exercises 9 through 16, perform Depth-First Search on the given graph
starting at vertex 1. Use the ordering 1, 2, 3, . . . of the vertices. In each case,
specify the resulting list L ordering the vertices. If the graph is not a tree, then
shade the resulting tree.
9. Graph (b). 10. Graph (a).
11. Graph (d). 12. Graph (c).
13. Graph (f). 14. Graph (e).
15. Graph (h). 16. Graph (g).
17. Does there exist a graph and an ordering of its vertices for which the

breadth-first search tree and the depth-first search tree are distinct? Justify
your answer.

18. Does there exist a graph on more than one vertex and an ordering of its
vertices for which the breadth-first search tree and the depth-first search
tree are the same? Justify your answer.

19. Given a fixed root, does the input ordering of the vertices affect the tree T
resulting from Breadth-First Search? See Remark 10.1. Justify your answer.
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20. Given a fixed root, does the input ordering of the vertices affect the tree T
resulting from Depth-First Search? See Remark 10.1. Justify your answer.

�21. Given the ordered list L resulting from Depth-First Search applied to a tree
T , can T be recovered from L alone? Explain.

�22. Given the ordered list L resulting from Breadth-First Search applied to a
tree T , can T be recovered from L alone? Explain.

23. In graph (g), what shortest path from 1 to 4 is provided by Breadth-First
Search? Is that the only shortest path from 1 to 4?

24. In graph (h), what shortest path from 1 to 6 is provided by Breadth-First
Search? Is that the only shortest path from 1 to 6?

�25. True or false? Given a fixed root, the breadth-first search tree has the
minimum height among all spanning trees for a graph. Explain.

�26. True or false? Given a fixed root, the depth-first search tree has the
maximum height among all spanning trees for a graph. Explain.

�27. Here is a potential algorithm for producing a spanning tree for a given
connected graph G = (V, E).

Let F = E .
While the subgraph (V, F ) contains a cycle,

\begin
Let e be an edge in a cycle.
Remove e from F .
\end.

Return T = (V, F ).

Will T always be a spanning tree? Justify your answer.
�28. Here is a potential algorithm for producing a spanning tree for a given

connected graph G = (V, E).

Let F = ∅.
Let v be a vertex of G.
Let S = {v}.
While there is a vertex u in V\S,

\begin
Find a path P from v to u.
Add the edges of P into F .
Add the vertices of P into S.
\end.

Return T = (V, F ).

Will T always be a spanning tree? Justify your answer.
29. Write an algorithm using Breadth-First Search that determines whether or

not a given graph is connected.
30. Write an algorithm using Depth-First Search that counts the number of

components in a given graph.
�31. Given the ordered list L resulting from Depth-First Search applied to a full

m-ary tree T , can T be recovered from L together with the knowledge that
T is a full m-ary tree? Explain. (Compare Exercise 21.)

�32. Given the ordered list L resulting from Breadth-First Search applied to a
full m-ary tree T , can T be recovered from L together with the knowledge
that T is a full m-ary tree? Explain. (Compare Exercise 22.)
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33. If an investment is earning simple interest, then interest is being earned
only on the initial investment (the principal) and not on subsequent
interest. That is, given a periodic interest rate i and an initial investment
of P dollars, the future value F of the investment after n periods is given
by F = P(1+ ni). Construct the tree that represents the expression

P ∗ (1+ (n ∗ i))

giving the value of F .
34. If there are n people in a room and each person makes sure to shake hands

with every other person exactly once, then a total of n(n−1)
2 handshakes

occur. That is, there are
(n

2

) = n(n−1)
2 possible pairs of people in the room.

Construct the tree that represents the expression

(n ∗ (n− 1)) ÷ 2

for the number of handshakes.
35. The calculus teacher gives a quiz every week, but at the end of the sem-

ester, she drops each student’s lowest quiz grade before computing the av-
erage. That is, for each student, she computes the sum S of the quiz grades
and subtracts the lowest quiz score L . If there were a total of n quizzes,
then the quiz average is S−L

n−1 . Write the ordinary expression

(S− L) ÷ (n− 1)

(a) in postfix notation. (b) in prefix notation.
(c) in infix notation.

36. If resistors of resistances R1 and R2 are connected in parallel in a circuit,
then the resistance R that results from this combination is given by
R = R1 R2

R1+R2
. Write the ordinary expression

(R1 ∗ R2) ÷ (R1 + R2)

(a) in postfix notation. (b) in prefix notation.
(c) in infix notation.

37. Evaluate the following postfix expression.

6 5 3 − ÷ 1 +
38. Evaluate the following postfix expression.

2 3 ∗ 1 4 + −
In Exercises 39 and 40, note that prefix expressions are evaluated from right to
left. When an operation is encountered, it is performed on the two values to its
right. The three positions involved are then replaced by a single position
containing the result of that operation.
39. Evaluate the following prefix expression.

− 5 ÷ + 8 6 7

40. Evaluate the following prefix expression.

∗ − 5 + 2 1 3

41. The standings in the American League East Division were used as the
ordering when its member teams were put into the following binary
search tree.
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Toronto

New York

Tampa Bay

Baltimore

Boston

Perform an inorder traversal of the binary search tree to determine the
standings (order of the teams) in the American League East Division.

42. The itinerary for a European trip was used as the ordering when its
highlight cities were put into the following binary search tree.

London

Cannes

Rome

ParisVenice

Perform an inorder traversal of the binary search tree to determine the
itinerary (order of the cities) for the European trip.

Subsequent exercises refer to the following graphs. Each graph G reflects the
sales territories (displayed below it) for a particular salesman. As discussed in
Section 9.5, the edges in this dual graph G reflect the adjacencies of the ter-
ritories, which are represented by vertices. Since the salesman can travel only
from one territory to an adjacent one, these graphs can be used in the analysis
required for Exercises 43 through 50.

(i) (j) (k) (l)a e

d b

c

d c

b e

a

a d

b e

c

a d

c e

b

a e

d b

c

d c

b e
a

a d

b e

c

a d

c e

b

In Exercises 43 through 46, for the salesman with the specified sales territory
graph G, search for a travel route that starts in territory a and visits each
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territory exactly once before immediately returning to a . Do this by mimicking
Example 10.10 to search for a Hamiltonian cycle in G. That is, draw the graph
H that would be searched with Depth-First Search to determine whether G is
Hamiltonian. If G is Hamiltonian, then specify the Hamiltonian cycle that
would be found in this way.
43. Graph (i). 44. Graph (j).
45. Graph (k). 46. Graph (l).

In Exercises 47 through 50, we are interested in coloring the sales territory map
reflected by the specified graph G. Since we would like to color the map with
the fewest possible colors so that no two adjacent territories receive the same
color, we want to know whether just 2 colors would suffice. Do a backtrack
search to determine whether G is 2-colorable. Specifically, color the vertices in
alphabetical order, and color each vertex with the smallest possible color in
{1, 2} that has yet to be tried on that vertex given the coloring built so far. If G
is 2-colorable, then specify the coloring that would be found in this way. If not,
then list the attempted incomplete colorings.
47. Graph (i). 48. Graph (j).
49. Graph (k). 50. Graph (l).

�51. Given integers 1 ≤ k ≤ n, explain how Depth-First Search could be used to
generate all of the permutations of k elements from {1, 2, . . . , n}.

�52. Given integers 1 ≤ k ≤ n, explain how Depth-First Search could be used to
generate all of the combinations of k elements from {1, 2, . . . , n}.

10.3 Weighted Trees
In the previous sections, we considered spanning trees for connected graphs
and saw that there are, in general, many choices for a spanning tree. If, how-
ever, there is additional structure dictating that some edges in a graph are more
“costly” or “weighty” than others, then some choices may now be considered
better than others.

A weighted graph is a graph G = (V, E) for which each edge has been as-
signed a positive real number called the weight of the edge. Formally, this as-
signment is given by a function ω : E → R+. In the examples we consider, the
weights are displayed by attaching them as labels on the edges in a drawing of
the graph. Figure 10.20 displays an example of a weighted graph. In all of the
examples we consider, the weights are positive integers.
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Figure 10.20 A Weighted Graph (for a Company Setting up a Network)
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Minimum Spanning Trees
Figure 10.21 shows the layout of a large company that needs to set up a com-
puter network among all of its buildings. Suppose the vertices in the graph in
Figure 10.20 represent the buildings from Figure 10.21, each edge represents a
potential direct link between two buildings, and the weight assigned to that
edge reflects the cost in thousands of dollars of constructing that link. To enable
all of the buildings to communicate with each other, the links in the network
must correspond (at least) to the edges in a spanning tree for the graph. The
cheapest possible network is thus obtained by choosing a spanning tree of least
possible total weight (cost).

Shipping

Sales
Warehouse

Manufacturing
Assembly

Management Personnel

Receiving

Figure 10.21 Company Building Map

DEFINITION 10.5

Let G be a weighted graph.

(a) The weight of a subgraph is the sum of the weights of the edges in that
subgraph.

(b) A minimum spanning tree for G is a spanning tree with the minimum
weight among all spanning trees.

EXAMPLE 10.11 For the weighted graph in Figure 10.20, the edges shown in bold with weights
2, 3, 4, 6, 7, 9, 12 form a minimum spanning tree. It has weight 43, and no other
spanning tree for that graph has smaller weight. Consequently, the company
whose layout is displayed in Figure 10.21 will need to spend at least $43,000 to
set up its computer network. ■

The preceding discussion has shown the utility of a minimum spanning tree.
Consequently, it is desirable to have a method for finding one. We now present
two algorithms for finding a minimum spanning tree. After both are presented,
the proof that they indeed always find a minimum spanning tree will be given.

Our first algorithm is presented in Algorithm 10.3 and is named after the
American mathematician Joseph Bernard Kruskal (1928– ). In Kruskal’s
Algorithm, the step of adding an edge of minimum possible weight that does
not cause the formation of a cycle is repeated until a spanning tree is built. Note
that, at intermediate stages, the edges chosen so far form a forest that may not
be a tree.
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ALGORITHM 10.3 Kruskal’s Algorithm

Let G = (V, E) be a weighted connected graph on n > 1 vertices.

Algorithm.

Let F = {e}, where e is a non-loop edge of minimum possible weight.
While |F | < n− 1,

\begin
Let e be an edge of minimum possible weight among all

edges in E\F for which F ∪ {e} contains no cycle.
Let F = F ∪ {e}.
\end.

Return T = (V, F ).

At any stage of an implementation of Kruskal’s Algorithm, if there is a tie
among edges that may be chosen next, then any one such choice will suffice.
However, if the edge set additionally comes with some ordering, then that or-
dering can be used to force a unique choice at each stage. For example, it can be
helpful to pre-sort the edges into some order of nondecreasing weight. Hence,
the algorithms for sorting items in nondecreasing order that will be discussed
in Section 10.5 could be employed here. To be consistent in all of the tree algo-
rithms considered in this section, we shall break ties between edges of the same
weight by using the lexicographic ordering induced by a given initial ordering
of the vertices, as discussed in Remark 10.1.

EXAMPLE 10.12 The graph in Figure 10.22 represents an apartment complex for which electric
power must be supplied. Each vertex represents an apartment building, each
edge represents a potential direct power cable between two buildings, and
the weight assigned to an edge reflects the cost of establishing that link.
Consequently, the cheapest power grid that connects all of the apartment
buildings is reflected by a minimum spanning tree.
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Figure 10.22 Possible Power Grid Connections with Costs

Use Kruskal’s Algorithm to find a minimum spanning tree for the graph in
Figure 10.22. List the set of edges F in the spanning tree in the order in which
they are obtained by the algorithm, and shade the spanning tree.

Solution. The minimum spanning tree has edge set

F = {{v1, v2}, {v3, v8}, {v5, v6}, {v7, v8}, {v3, v6}, {v4, v7}, {v2, v3}}
and is shown in bold in the following right-hand picture.
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The left-hand picture shows the stage after all of the edges of weight 1 or 2
have been chosen. At that point, the edge of weight 3 and the edge of weight 4
cannot be chosen, since each, together with what was chosen previously,
would complete a cycle. Consequently, the edge of weight 5 is chosen next.
After that, note that although there are two edges of weight 6, only one of them
is a possible addition to our tree.

The weight of our spanning tree is 17 and reflects the cheapest possible cost
of a power grid for the apartment complex. ■

The reader can now verify that the bold portion of the graph in Figure 10.20
is the minimum spanning tree produced by Kruskal’s Algorithm.

Our second spanning tree algorithm is presented in Algorithm 10.4; it is
named after the American mathematician Robert Clay Prim (1921). In Prim’s
Algorithm, at each step we add an edge of minimum possible weight. How-
ever, unlike in Kruskal’s Algorithm, here the stronger requirement that the set
of chosen edges always forms a tree further restricts our possible choices. The
process continues until this growing tree forms a spanning tree.

ALGORITHM 10.4 Prim’s Algorithm

Let G = (V, E) be a weighted connected graph on n > 1 vertices.

Algorithm.

Let F = {e}, where e is a non-loop edge of minimum possible weight.
While |F | < n− 1,

\begin
Let e be an edge of minimum possible weight among all

edges in E\F that connect an endpoint of an edge from F
to a vertex that is not an endpoint of an edge from F .

Let F = F ∪ {e}.
\end.

Return T = (V, F ).

EXAMPLE 10.13 The graph in Figure 10.23 represents the same apartment complex considered
in Example 10.12, but now the weighted edges reflect potential gas line
connections and their costs. So here a minimum spanning tree reflects the
cheapest possible system of gas lines joining the apartment buildings.

Use Prim’s Algorithm to find a minimum spanning tree for the graph in
Figure 10.23. List the set of edges F in the spanning tree in the order in which
they are obtained by the algorithm, and shade the minimum spanning tree.
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Figure 10.23 Possible Gas Line Connections with Costs

Solution. The spanning tree has edge set

F = {{v2, v5}, {v1, v2}, {v1, v4}, {v2, v3}, {v3, v8}, {v6, v8}, {v7, v8}}
and is shown in bold in the right-hand picture below.
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The left-hand picture shows the stage after edges of weights 1, 3, 2, 7, 5 are
chosen (in that order). It is at this point, after some higher-weight edges have
been chosen, that the remaining two edges of weight 2 are added.

The weight of our spanning tree is 22 and reflects the cheapest possible cost
for installing gas lines for the apartment complex. ■

The reader can verify that the minimum spanning tree in Figure 10.20 is also
that which is produced by Prim’s Algorithm. The proof that the results from
Kruskal’s Algorithm and Prim’s Algorithm generally agree is left to the exer-
cises. Here, we now prove the correctness of both algorithms.

THEOREM 10.8 Let G be any weighted connected graph. Each of Kruskal’s Algorithm and Prim’s Algorithm
yield a minimum spanning tree for G.

Since the proofs for both algorithms are essentially the same, they are pre-
sented in parallel. However, it may be best to focus on just one algorithm for a
first reading and on the other for a second.

Proof of Theorem 10.8.
Let T be the spanning tree for G produced by either Kruskal’s Algorithm or
Prim’s Algorithm. Select a minimum spanning tree T ′ for G satisfying certain
conditions. In the case of Kruskal’s Algorithm, choose T ′ with the maximum
possible number of edges in common with T . In the case of Prim’s Algorithm,
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choose T ′ containing the longest possible initial string S : e1, e2, . . . , ek of edges
chosen by the algorithm. Suppose toward a contradiction that T ′ �= T .

Let e be the first edge chosen for T that is not in T ′. In the case of Prim’s Algo-
rithm, note that e = ek+1. In any case, T ′ ∪{e} contains a cycle C . Select an edge e ′

from C satisfying certain conditions. In the case of Kruskal’s Algorithm, choose
e ′ not in T . In the case of Prim’s Algorithm, choose e ′ not in S but with exactly
one endpoint in S. In any case, e ′ is in T ′, and T ′\{e ′} ∪ {e} is a spanning tree for
G. By comparing the weights of e and e ′, we obtain our desired contradictions.

If ω(e ′) < ω(e), then e ′ would have been chosen for T instead of e. If ω(e ′) >

ω(e), then T ′\{e ′}∪{e} has smaller weight than T ′. Thus, it suffices to assume that
ω(e ′) = ω(e). In the case of Kruskal’s Algorithm, T ′\{e ′} ∪ {e} has more edges in
common with T than does T ′. In the case of Prim’s Algorithm, T ′\{e ′} ∪ {e} has
a longer initial string of edges chosen by the algorithm. �

Shortest Path Trees
The cities in Table 10.1 are the office locations of a large corporation based in
New York. The costs therein are the airfares for the direct flights available
between pairs of these cities.

Chicago Honolulu Houston Los Angeles London New York Rome

Chicago — $400 $200 $200 $400 $100 —
Honolulu $400 — — $300 — — —
Houston $200 — — $100 — $400 —
Los Angeles $200 $300 $100 — — $400 —
London $400 — — — — $300 $100
New York $100 — $400 $400 $300 — $500
Rome — — — — $100 $500 —

Table 10.1 Airfares Between Major Cities

In Figure 10.24, we have represented the information from Table 10.1 in a
weighted graph. Its vertices represent the office locations. Each edge and its
weight represent the existence and cost, respectively, of a direct flight between a
pair of cities. A corporate leader in New York might like to know, for each of the
corporation’s office locations, the cheapest way to get there. In this case, it is not
a minimum spanning tree for our weighted graph that is desired, but something
similar.

Chicago

Houston

New York

London
$100

$100

$200 $200

$100

$400

$400$400

$400
$300

$300

$500 Rome

Los AngelesHonolulu

Figure 10.24 Travel Costs Among Cities
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DEFINITION 10.6

Let G = (V, E) be a weighted graph.

(a) The weighted distance between two vertices u and v in G, denoted
DistG (u, v), is the minimum weight of a path in G from u to v. If there is no
path in G from u to v, then we assign DistG (u, v) = ∞. When G is clear in
context, the subscripts may be dropped. Note that capital D is used here in
the notation for the weighted distance where lower-case d was used for
ordinary distance in Definition 8.4(f).

(b) Suppose that a vertex v is specified in G. A shortest path tree for G from v is
a spanning tree T such that, for each vertex w in G, the path in T from v to w

has the minimum weight among all paths in G from v to w.

A shortest path tree need not be a minimum spanning tree. An example of a
graph in which they are different is requested in the exercises.

EXAMPLE 10.14 For the weighted graph in Figure 10.24, the edges shown in bold form a
shortest path tree from New York. Consequently, for each office location, the
cheapest way to fly from New York to that location follows the path shown
in bold. For example, it is cheaper to fly from New York to Chicago to Los
Angeles than it is to fly direct from New York to Los Angeles ■

Having seen the utility of a shortest path tree, we now consider an algorithm
for finding one that was discovered by the Dutch computer scientist Edsger W.
Dijkstra (1930–2002). Dijkstra’s Algorithm is presented in Algorithm 10.5, and
the proof of its correctness is given at the end of this section.

ALGORITHM 10.5 Dijkstra’s Algorithm

Let G be a weighted connected graph on n > 1 vertices and v a vertex of G.

Algorithm.

Let F = {e}, where e is a non-loop edge incident with v

of minimum possible weight.
While |F | < n− 1,

\begin
Let e be an edge such that

one endpoint t is an endpoint of an edge from F , the other
endpoint is not, and DistT (v, t) + ω(e) is as small as possible.

Let F = F ∪ {e}.
\end.

Return T = (V, F ).

EXAMPLE 10.15 The graph in Figure 10.25 again represents the apartment complex consid-
ered in Example 10.12, but now the edges reflect potential water lines, and
the weights reflect the relative difficulty of pumping water between buildings.
A large pumping station has been installed beneath the apartment building
represented by vertex v1. Hence, water must be pumped from there to the other
buildings. Consequently, the system that accomplishes this with the lowest
loss of water pressure for each building is reflected by a shortest path tree.

For the graph in Figure 10.25, use Dijkstra’s Algorithm to find a shortest
path tree starting from vertex v1. List the set of edges F and the vertices W in
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Figure 10.25 Possible Water Line Connections with Pressure Losses

the shortest path tree in the order in which they are added in the algorithm,
and shade the shortest path tree.

Solution. The shortest path tree has edge set

F = {{v1, v4}, {v1, v2}, {v2, v5}, {v4, v7}, {v7, v8}, {v2, v3}, {v6, v8}}
and is shown in bold in the right-hand picture below. The vertices are
encountered in the order v1, v4, v2, v5, v7, v8, v3, v6.
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The left-hand picture shows the stage after the first three edges have been
chosen. The three vertices pictured as open circles ◦ are then the candidates for
a vertex to be added along one of the edges of weight 3. Since vertex v7, via
edge {v4, v7} together with the bold path from v4 to v1, is the closest to v1, it is
added next with edge {v4, v7}.

By using the shortest path tree to determine which water lines to establish,
we can ensure that each apartment building will have the highest possible
water pressure it can receive from the pumping station provided. ■

The reader can confirm that the bold portion of the graph in Figure 10.24
is the shortest path tree from New York produced by Dijkstra’s Algorithm. We
now establish that Dijkstra’s Algorithm is always successful.

THEOREM 10.9 Let G be a weighted connected graph and v a vertex of G. Dijkstra’s Algorithm yields a
shortest path tree for G from v.

Proof
Let W be the set of ends of edges in F as T is growing. We prove inductively
that, at each stage of the algorithm, the paths in T = (W, F ) from v to the
vertices in W are of minimum weight in G. Obviously, this holds for W = {v}.
So consider the case in which the algorithm adds a new edge e �→ {t, u} to T ,
where t ∈ W and u ∈ V\W.
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Suppose toward a contradiction that the distance in G from v to u is smaller
than DistT (v, t) + ω(e). Let P be a minimum-weight path in G from v to u with
the greatest possible number of edges in common with T . Consequently, there
must be an edge e ′ that is in P but not in T such that

(i) e ′ �→ {t′, u′},
(ii) P and T agree from v to t′ but not at the next vertex, and
(iii) u′ �∈ W.

t'

e'

et u

u'
P

v

Since the algorithm chooses e, we have DistT (v, t) + ω(e) ≤ DistT (v, t′) + ω(e ′).
That is, DistT (v, t′) +DistT (t′, t) + ω(e) ≤ DistT (v, t′) + ω(e ′). So

DistT (t′, t) + ω(e) − ω(e ′) ≤ 0. (10.3)

Since P has smaller weight than DistT (v, t) + ω(e), we have

DistT (v, t′) + ω(e ′) +DistP (u′, u) < DistT (v, t′) +DistT (t′, t) + ω(e).

Hence,

DistP (u′, u) < DistT (t′, t) + ω(e) − ω(e ′). (10.4)

Since DistP (u′, u) ≥ 0, inequalities (10.3) and (10.4) contradict each other. �

SECTION 10.3 Exercises
The following graphs are referred to throughout the exercises.
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In Exercises 1 through 8, we need to establish a network of gas lines in a
condominium development. The vertices in the specified graph represent the
condominiums in the development, each edge represents a possible gas line
connection, and its weight gives the cost of making that connection in tens of
thousands of dollars. Consequently, a cheapest possible network of gas lines
corresponds to a minimum spanning tree.

(a) Use Kruskal’s Algorithm to find and shade a minimum spanning tree
for the specified graph.

(b) What is the cheapest possible cost for a network of gas lines for the
condominium development?

1. Graph (a). 2. Graph (b).
3. Graph (c). 4. Graph (d).
5. Graph (e). 6. Graph (f).
7. Graph (g). 8. Graph (h).

In Exercises 9 through 16, we need to establish a power grid in an apartment
complex. The vertices in the specified graph represent the apartments in the
complex, each edge represents a possible power line connection, and its weight
gives the cost of establishing that line in tens of thousands of dollars. Conse-
quently, a cheapest possible power grid corresponds to a minimum spanning
tree.

(a) Use Prim’s Algorithm to find and shade a minimum spanning tree for
the specified graph. Also, list the weights of the edges in the order in
which they are added in the algorithm.

(b) What is the cheapest possible cost for a power grid for the apartment
complex?
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9. Graph (b). 10. Graph (a).
11. Graph (d). 12. Graph (c).
13. Graph (f). 14. Graph (e).
15. Graph (h). 16. Graph (g).
17. Does a minimum spanning tree always contain an edge of smallest

weight? Justify your answer.
18. Let G be a weighted graph with all weights distinct. Suppose C is a cycle

in G. Is it possible that the largest-weight edge of C is in a minimum
spanning tree for G? Justify your answer.

�19. Suppose G is a weighted graph with all weights distinct. Prove or disprove
that G must have a unique minimum spanning tree.

20. Let G be a weighted graph, and form a weighted graph G ′ by either adding
some fixed constant to all of the weights of G or multiplying all of the
weights of G by some fixed positive constant. Show that, as a subgraph, a
tree is a minimum spanning tree for G if and only if it is for G ′.

21. A college wishes to set up a closed circuit television network on its
campus. The following table gives the costs determined by a contractor to
connect pairs of buildings on the campus.

Bartle Evans Guild Miles Pine Taft Waller

Bartle — $5000 $3000 — — — —
Evans $5000 — $5000 $2000 — — —
Guild $3000 $5000 — — $2000 $9000 —
Miles — $2000 — — $4000 — $3500
Pine — — $2000 $4000 — $6000 $4500
Taft — — $9000 — $6000 — —
Waller — — — $3500 $4500 — —

Find the cheapest cost of establishing a TV network that serves all the
buildings.

22. A new summer camp needs to provide electricity to each of its buildings.
The following table gives the costs of connecting pairs of buildings in this
summer camp.

Assembly Cafeteria Counselors Dorm 1 Dorm 2 Dorm 3

Assembly — $4000 $5000 — — $5000
Cafeteria $4000 — $3000 $3000 — —
Counselors $5000 $3000 — — $4000 —
Dorm 1 — $3000 — — $2000 $3000
Dorm 2 — — $4000 $2000 — $2000
Dorm 3 $5000 — — $3000 $2000 —

Find the cheapest cost of providing power to all the buildings in the camp.
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23. Prove: If the edges of a weighted connected graph are ordered and, when
there is a tie, the lower-numbered edge is chosen, then both Kruskal’s
Algorithm and Prim’s Algorithm give the same tree.

�24. Prove: Given any minimum spanning tree T for a connected weighted
graph G = (V, E), there is some ordering for E such that Prim’s Algorithm
will produce T .

In Exercises 25 through 32, we need to establish a network of water lines in a
new industrial park. The vertices in the specified graph represent the business
sites in the park, each edge represents a possible water line connection, and its
weight gives the loss of water pressure (in pounds per square inch) when
water is pumped between the sites at its endpoints. The specified vertex
represents the site on which a water tower has been constructed to serve the
park. Consequently, a shortest path tree from the specified water tower site
reflects a network that provides the minimum possible water pressure loss for
each business site.

(a) Use Dijkstra’s Algorithm to find and shade a shortest path tree for the
specified graph and vertex.

(b) What is the largest water pressure loss that must be experienced by a
business site in the industrial park?

25. Graph (a) from v. 26. Graph (b) from v1.

27. Graph (c) from v. 28. Graph (d) from v.
29. Graph (e) from v1. 30. Graph (f) from v1.

31. Graph (g) from v. 32. Graph (h) from v.
�33. Prove or disprove: If the edges in any graph are all given weight 1, then

Dijkstra’s Algorithm always yields a depth-first search tree.
�34. Prove or disprove: If the edges in any graph are all given weight 1, then

Dijkstra’s Algorithm always yields a breadth-first search tree.
35. Give an example of a weighted graph G and a selected vertex v such that a

shortest path tree starting at v is not a minimum spanning tree.
�36. Can Dijkstra’s Algorithm be altered to find a longest distance tree? Explain.
37. In a graph with no loops, does Dijkstra’s Algorithm always select an edge

of smallest weight? Justify your answer.
38. Does Dijkstra’s Algorithm ever select an edge of largest weight? Justify

your answer.
39. Let G be a weighted graph, and form a weighted graph G ′ by multiplying

all of the weights of G by some fixed positive constant. Let v be any vertex.
Prove or disprove that, as a subgraph, a tree is a shortest path tree for G if
and only if it is for G ′.

40. Let G be a weighted graph, and form a weighted graph G ′ by adding some
fixed positive constant to all of the weights of G. Let v be any vertex. Prove
or disprove that, as a subgraph, a tree is a shortest path tree for G if and
only if it is for G ′.

41. A fire station serving a remote town needs to minimize its response time to
each home in the town. Since many of the homes are on dirt roads of low
quality, the fire chief wants to plan in advance the routes that will be used
to respond to certain key locations in the town. The chief has driven the
fire truck on each road, measured the number of minutes it takes to travel



C H A P T E R 1 0 ■ Trees and Algorithms 599

between the key locations, and recorded those times in the following
table.

Station Adams Johnson Kennedy Lincoln Nixon Polk

Station — — 8 5 7 6 —
Adams — — 6 7 — — —
Johnson 8 6 — 2 — — —
Kennedy 5 7 2 — 10 — —
Lincoln 7 — — 10 — 6 —
Nixon 6 — — — 6 — 12
Polk — — — — — 12 —

Find the minimum possible response time from the fire station to each of
the key locations in the town.

42. A campus pizza shop claims the fastest delivery time to each dorm in the
college. To minimize delivery times, it plans in advance the shortest route
to each dorm. The following table lists the travel times in minutes between
campus locations.

Shop Columbia Elwell Lycoming Smith Wells

Shop — — — 3 4 —
Columbia — — 3 — — 4
Elwell — 3 — 5 — 1
Lycoming 3 — 5 — 3 —
Smith 4 — — 3 — 2
Wells — 4 1 — 2 —

Find the minimum possible delivery time from the pizza shop to each of
the dorms on campus.

43. Give an example of a graph G and two vertices v1 and v2 such that two
corresponding shortest path trees are distinct, as subgraphs.

44. Given a graph G and a vertex v, is a shortest path tree always unique?
What if the weights are distinct? Justify your answers.

�45. Here is a potential algorithm for producing a minimum spanning tree for a
given connected graph G = (V, E).

Let F = E .
While the subgraph (V, F ) contains a cycle,

\begin
Let e be an edge of maximum weight in a cycle.
Remove e from F .
\end.

Return T = (V, F ).
Will T always be a minimum spanning tree? Justify your answer.
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�46. Here is a potential algorithm for producing a shortest path tree for a given
connected graph G = (V, E).

Let F = ∅.
Let v be a vertex of G.
Let S = {v}.
While there is a vertex u in V\S,

\begin
Find a shortest path P from v to u.
Add the edges of P into F .
Add the vertices of P into S.
\end.

Return T = (V, F ).
Will T always be a shortest path tree? Justify your answer.

47. An army commander in one unit needs to send messages to the units in
the field by messenger, since electronic communications are insecure. If he
knows the travel times between each pair of units and wants to determine
the fastest possible routes by which to send messages, then what kind of
tree is relevant, a minimum spanning tree or a shortest path tree? Explain.

48. A farmer has a power source in his barn and needs to supply power to
several locations on his farm. He has determined the amount of cable
needed to join each pair of locations and wants to use the least possible
amount of cable to provide all locations with power. What kind of tree is
relevant, a minimum spanning tree or a shortest path tree? Explain.

10.4 Analysis of Algorithms (Part 1)
In the previous two sections, various tree-finding algorithms were considered.
To fully appreciate the value of a particular algorithm, one must understand its
efficiency, especially in comparison with other algorithms that perform the same
task. Since a detailed study of the efficiency of tree-finding algorithms is more
involved than we shall get in this book, the reader interested in such pursuits
is referred to [1] or [5]. Instead, our goal is a basic introduction to analyzing the
efficiency of algorithms. Consequently, we pursue some fundamental examples
that provide a good setting for this. In this section, we initiate our study by
focusing on algorithms that search for a value in an array. In the next section,
we consider algorithms that sort an array.

Search Algorithms
A common programming need is to search for an item in a collection of data,
such as a database. Perhaps a suspect with a certain DNA signature is sought,
or a store wants to know whether a particular item is still in stock. To simplify
our discussion, we assume that the data being searched have been stored as
numbers in an array.

The first of the two algorithms we consider takes a very natural approach. It
runs through the array in its given order and checks each entry as it goes. It is
called Sequential Search and is presented in Algorithm 10.6.
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ALGORITHM 10.6 Sequential Search

Let x be a real number whose index is sought in an array A of length n. The index of
x is returned in a variable called location. If x is not in A, then the algorithm returns
location = 0.

Algorithm.

Let location = 0.
Let i = 1.
While location = 0 and i ≤ n,

\begin
If A[i] = x, then

Let location = i .
Otherwise,

Let i = i + 1.
\end.

Return location.

EXAMPLE 10.16 Given x = 4, A= 6 1 4 7 3 , and n = 5, Sequential
Search runs through the values listed in the following table

i location

1 0
2 0
3 3

and returns location = 3. That is, 4 = A[3]. ■

Our second search algorithm takes a more sophisticated approach requiring
that the entries in the array be given in nondecreasing order. (Sorting algorithms
are examined in Section 10.5.) Very simply, we repeat the process of cutting a
portion of the array into two portions and continuing our search only on the
portion that could possibly contain the desired value. This algorithm is called
Binary Search and is presented in Algorithm 10.7.

ALGORITHM 10.7 Binary Search

Let x be a real number whose index is sought in an ordered array A of length n. The
index of x is returned in a variable called location. If x is not in A, then the algo-
rithm returns location = 0. The variables low and high store the indices of the first
and last entries, respectively, of the portion of A we are considering.

Algorithm.

Let location = 0.
Let low = 1.
Let high = n.

(Continued)
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While low < high,
\begin

Let mid =
⌊

low+high
2

⌋
.

If A[mid] < x, then
Let low = mid+ 1.

Otherwise,
Let high = mid.

\end.
If A[low] = x, then

Let location = low.
Return location.

EXAMPLE 10.17 Given x = 3,
A= 0 2 2 3 4 6 6 7 8 8 , and
n = 10, Binary Search runs through the following stages

l=1 m=5 h=10

0 2 2 3 4 6 6 7 8 8
l=1 m=3 h=5

0 2 2 3 4

l=m=4 h=5

3 4

l=h=4

3

and returns location = 4. That is, 3 = A[4]. In our display we have used l, m,
and h for the values of the variables low, mid, and high, respectively. In each
row, we also display only the portion of the array, from index low to index
high, that is under current consideration. ■

Complexity of Algorithms
Given an ordered array of size n, both Sequential Search and Binary Search could
be used to determine the location of a particular value. Although Binary Search
may seem more complicated to implement, it is the more efficient of the two. To
make this assertion precise, we need to specify our measure of efficiency.

In this book, we consider only the time complexity of an algorithm. That
is, we are interested in the length of time it takes for an algorithm to run. One
might also consider the notion of space complexity and be concerned with the
amount of memory used by a program implementing the algorithm. However,
we are concerned with time only.

Since run-time varies from machine to machine, we in fact focus on the num-
ber of operations required in a running of the algorithm. Consequently, within
a particular context, exactly what operations are counted must be specified.
Among the potential operations to be considered are arithmetic operations, such
as addition (+) and multiplication (·); comparisons, such as <, >, and =; and
more.
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DEFINITION 10.7

The worst-case complexity of an algorithm is a function f (n) of the size n of the
input to the algorithm. For each n, the value of f (n) is the maximum number of op-
erations performed in a run of the algorithm on an input of size n.

Anothertypeofcomplexitythatcanbeconsideredforanalgorithmis average-
case complexity. It is defined, for each n, to be the average number of opera-
tions performed, considering all possible inputs of size n. This measure can give
a better sense of the expected run-time for a randomly chosen input. However,
it is generally complicated to compute, and we therefore focus our attention
on worst-case analysis. Consequently, we get a sense of the longest possible
run-time.

For search algorithms, we take the size of the input to be the length n of the
array being searched. Also, the only operations we consider are comparisons
of an array entry with some other value (possibly another array entry). This is
reasonable since it can be shown that the time a search algorithm takes to run is
indeed proportional to the number of comparisons.

EXAMPLE 10.18 The worst-case complexity of Sequential Search is n.

Proof
The comparison A[i] = x is performed once each time through the while loop.
If the desired value x is in location k, then the number of comparisons per-
formed is

1+ 1+ · · · + 1︸ ︷︷ ︸
k times

= k ≤ n.

The worst case is, of course, when k = n. �

EXAMPLE 10.19 The worst-case complexity of Binary Search is 1+ �log2 n�.
Proof
For each n ≥ 1, let cn be the maximum number of comparisons needed
in a Binary Search of an array of length n (counting the last comparison
A[low] = x). So c1 = 1. In the while loop, in the worst case, we move from
considering a portion of A of length k = high− low+ 1 to a portion of length
� k

2�. So ∀n ≥ 2, cn = 1+ c� n
2 �. From this, we shall prove by strong induction

that ∀ n ≥ 1, cn = 1+ �log2 n�.
Since the base case is easy, we move immediately to the inductive step.

Suppose k ≥ 1 and that ci = 1+ �log2 i�, for all 1 ≤ i ≤ k. Observe that

ck+1 = 1+ c� k+1
2 �

= 1+ 1+
⌈

log2

⌈
k + 1

2

⌉⌉

=
⎧⎨
⎩

2+
⌈

log2

(
k+2

2

)⌉
= 1+ �log2(k + 2)� if k is even,

2+
⌈

log2

(
k+1

2

)⌉
= 1+ �log2(k + 1)� if k is odd,

= 1+ �log2(k + 1)�.
The last equality follows from Exercise 9. �
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Let us compare the relative efficiencies of SequentialSearchandBinarySearch
by comparing their worst-case complexities, n and 1+�log2 n�, respectively. We
can see in a table of values

n 1 + �log2 n�
2 2

10 5
100 8
106 21

or in the graph in Figure 10.26 (in which we dropped the ceiling function to sim-
plify the picture) that eventually n gets large more quickly than does 1+�log2 n�.
This leads us to conclude that Binary Search is more efficient than Sequential
Search. However, we first need to clarify the notion of one function getting large
more quickly than another.

y

x

y � 1 
 log2(x)

1

y � x

2

Figure 10.26 Comparing the Growth of x and 1 + log2(x)

Growth of Functions
The graph in Figure 10.26 suggests that the function y = x grows faster than the
function y = 1 + log2(x). This statement is made precise by introducing big-O
notation.

DEFINITION 10.8

Given a real function g(x), big-O of g(x), denoted O(g(x)), is the set of real func-
tions f (x) such that there exist positive constants C and d for which

∀ x > d, | f (x)| ≤ C |g(x)|.
That the inequality | f (x)| ≤ C |g(x)| holds for all x greater than some fixed constant
d can be described by saying that it holds for large x, or eventually.

Figure 10.26 displays the fact that 1+ log2(x) ∈ O(x) (use C = 1 and d = 2).
In general, the assertion f (x) ∈ O(g(x)) is the precise meaning of the statement
that f (x) grows no more quickly than does g(x) or that g(x) grows at least as
quickly as does f (x). Equivalently, we say that the growth rate of f (x) is no
faster than the growth rate of g(x) or that the growth rate of g(x) is no slower
than the growth rate of f (x).
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Since O(g(x)) is a set, the subset relation⊆ provides another convenient way
of comparing the growth rates of two functions. This is reflected in the following
lemma, whose proof is left to the exercises.

LEMMA 10.10 Let f and g be real functions. Then

f (x) ∈ O(g(x)) if and only if O( f (x)) ⊆ O(g(x)).

As should be expected, a higher power of x grows at least as fast as a lower
power of x.

LEMMA 10.11 Let r1, r2 ∈ Q with r1 ≤ r2. Then

∀ x > 1, xr1 ≤ xr2 .

Proof
Write r1= m1

b and r2= m2

b for some m1, m2, b ∈Z with b > 0. For any fixed x≥ 1,
it is straightforward to prove inductively that ∀ n ∈ N, xn ≥ 1. Consequently,
xm2−m1 ≥ 1, and we can multiply both sides by xm1 to obtain xm1 ≤ xm2 . Taking
the bth root gives xr1 = x

m1
b ≤ x

m2
b = xr2 . �

If r1, r2 ∈ Q and r1 ≤ r2, then it follows from Lemma 10.11 and Definition 10.8
(using C = 1 and d = 1) that xr1 ∈ O(xr2 ). That result, which we may also express
by writing O(xr1 ) ⊆ O(xr2 ), is reflected in the graphs in Figure 10.27. Further,
Lemma 10.11 can be used to prove a general result about polynomial growth.

y

x

y = x2

y = x1/2

y = x
y = x3

1

Figure 10.27 Comparing the Growth of Powers of x

THEOREM 10.12 Let m ∈ N and let f (x) = cmxm + cm−1xm−1 + · · · + c0 be a polynomial of degree at most
m. Then f (x) ∈ O(xm).

Proof
For x > 1,

| f (x)| ≤ |cm|xm + |cm−1|xm−1 + · · · + |c0|
≤ |cm|xm + |cm−1|xm + · · · + |c0|xm

= (|cm| + |cm−1| + · · · + |c0|)xm.

The first inequality follows from the Triangle Inequality (Exercise 37 in Sec-
tion 2.5), and the second follows from Lemma 10.11. Let d = 1 and C = |cm| +
|cm−1| + · · · + |c0|, and observe that ∀ x > d, | f (x)| ≤ C |xm|. �
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Just as big-O notation provides a way to compare the relative growth rates
of functions, big-� notation provides a way to say that two functions have the
same growth rate.

DEFINITION 10.9

Given a real function g(x), big-� of g(x), denoted �(g(x)), is the set of real
functions f (x) such that f (x) ∈ O(g(x)) and g(x) ∈ O( f (x)). Equivalently,
f (x) ∈ �(g(x)) if and only if there exist positive constants C1, C2, and d for which

∀ x > d, C1|g(x)| ≤ | f (x)| ≤ C2|g(x)|.
In this case, we say that f (x) has the same order (or order of growth) as g(x).

A proof of the following lemma is left for the exercises.

LEMMA 10.13 Let f and g be real functions. Then

f (x) ∈ �(g(x)) if and only if �( f (x)) = �(g(x))

if and only if O( f (x)) = O(g(x)).

EXAMPLE 10.20 3x2 + 5x + 2 ∈ �(x2).
This is justified by establishing two facts.

(i) 3x2 + 5x + 2 ∈ O(x2).
This follows from Theorem 10.12, but, it can also be seen directly since
∀ x > 1, |3x2 + 5x + 2| ≤ 10|x2|.

(ii) x2 ∈ O(3x2 + 5x + 2).
This holds since ∀ x > 0, |x2| ≤ |3x2 + 5x + 2|. ■

The result in Example 10.20 is reflected in Figure 10.28. That x2 and 3x2 +
5x+ 2 have the same order of growth can also be expressed by writing O(x2) =
O(3x2 + 5x + 2).

y

x

y = x2

y � 10x2

y � 3x2 
 5x 
 2

Figure 10.28 Comparing the Growth of x2 and 3x2 + 5x + 2

In general, polynomials of the same degree have the same order of growth.
In fact, it is the allowance of the constant C in the inequality | f (x)| ≤ C |g(x)|
characterizing f (x) ∈ O(g(x)) and the absence of requiring C = 1 that allows us
to equate the growth rates of polynomials of the same degree. Indeed, it is the
degree that most significantly distinguishes the growth rates in Figure 10.27.

We are interested in instances when one function f (x) has a strictly slower
rate of growth than another function g(x). For this, we want precisely that
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f (x) ∈ O(g(x)) and g(x) �∈ O( f (x)). It should not be surprising that this com-
parison, which is similar to strict inequality < on rates of function growth, is
reflected by the proper subset relation ⊂. A proof of the following lemma is left
for the exercises.

LEMMA 10.14 Let f and g be real functions. Then

f (x) ∈ O(g(x)) and g(x) �∈ O( f (x)) if and only if O( f (x)) ⊂ O(g(x)).

The following lemma, together with Lemma 10.11, allows us to conclude that
strictly bigger powers of x have strictly faster growth.

LEMMA 10.15 Let r1, r2 ∈ Q with r1 < r2. Then xr2 �∈ O(xr1 ).

Proof
Suppose to the contrary that there are positive constants C and d such that
∀ x > d , |xr2 | ≤ C |xr1 |. Since this would remain true for any bigger value of C ,

we may assume that C > d
r2−r1

2 . Note then that (2C)
1

r2−r1 > d. For x > d, we have

x
r2

x
r1 ≤ C and hence xr2−r1 ≤ C . Plugging in x = (2C)

1
r2−r1 then gives 2C ≤ C , a

contradiction. �

Order of Algorithms
Since our interest is in comparing worst-case complexities of algorithms, we
restrict our attention to functions of Z+ (or some subset thereof).

DEFINITION 10.10

Let g(n) be a function. An algorithm is said to be O(g(n)) (respectively, �(g(n))) if its
worst-case complexity f (n) is in O(g(n)) (respectively, �(g(n))).

Example 10.18 tells us that Sequential Search is O(n) (moreover, �(n)), and
Example 10.19 tells us that Binary Search is O(1 + �log2 n�) (moreover, �(1 +
�log2 n�)). In fact, since it is established in the exercises that O(1+ �log2 n�) =
O(log2 n), we can say more compactly that Binary Search is O(log2 n) (moreover,
�(log2 n)).

In general, there is an important difference between asserting that an algo-
rithm is O( f (n)) and asserting that it is �( f (n)). An algorithm is O( f (n)) if, for
large n, no input of size n requires a number of operations more than some fixed
multiple of f (n). To further assert that the algorithm is �( f (n)), there must be,
for large n, some input of size n for which the number of operations is at least
some fixed multiple of f (n). For example, it is true that Sequential Search is
O(n2), but it is not true that it is �(n2).

The following theorem compares the relative growth rates of worst-case com-
plexities of many standard algorithms.

THEOREM 10.16 Let b ∈ R with b > 1 and r ∈ Q with r > 2.
O(1) ⊂ O(logb n) ⊂ O(n) ⊂ O(n logb n) ⊂ O(n2) ⊂ O(nr ) ⊂ O(bn) ⊂ O(n!).

Portions of the proof of Theorem 10.16 are left for the exercises. Here we
prove a special case of Theorem 10.16.
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EXAMPLE 10.21 Show: O(n2) ⊂ O(3n).

Proof
First, we must show that n2 ∈ O(3n). We do this by proving by induction that
∀ n ≥ 1, n2 ≤ 3n. Since 12 ≤ 31 and 22 ≤ 32, suppose that k ≥ 2 and k2 ≤ 3k . It
follows that

(k + 1)2 = k2 + 2k + 1 ≤ k2 + k2 + k2 = 3k2 ≤ 3 · 3k = 3k+1.

Hence, n2 ∈ O(3n).
Second, we must show that 3n �∈ O(n2). So suppose to the contrary that

there are constants C and d such that ∀ n > d, 3n ≤ Cn2. Let N be an integer
larger than both C and d. So, in particular, 3N ≤ C N 2. However, by Exercise 6
from Section 4.3 and our choice of N, it follows that 3N ≥ N 3 > C N 2. This is a
contradiction. Hence, 3n �∈ O(n2). �

An algorithm that is �(logb n) for some b > 1 is said to be a logarithmic.
Those that are �(nm) for some m ∈ Z+ are said to be polynomial, and those that
are �(bn) for some b > 1 are called exponential. Problems that can be solved by
polynomial algorithms are said to be in class P. Problems for which a proposed
solution can be checked for correctness with a polynomial algorithm are said to
be in class NP, the class of nondeterministic polynomial algorithms. Although it
is known that P⊆NP, it is a famous outstanding problem in computer science to
determine whether or not P=NP. Moreover, there are classes of problems called
NP-complete that are not known to be in P, but if any one problem from such a
class can be shown to be in P, then all problems in that class will be known to be
in P. The traveling salesman problem, as described at the end of Section 10.2, is
perhaps the most well-known example of an NP-complete problem. The reader
is referred to [1] or [5] for further discussion of this.

To get a sense of the relative differences in run-times associated with the
various complexities from Theorem 10.16, suppose a computer has a speed of
4 gigahertz (4 GHz). This means in theory that such a machine can perform
approximately 4 billion instructions per second. If we assume that each instruc-
tion corresponds to the operations being counted in the complexity of an
algorithm, then Table 10.2 reflects the relative run-times associated with the var-
ious complexities from Theorem 10.16 in the cases of inputs of size n = 100 and
n = 100,000. In particular, we see the great advantage of a polynomial algorithm
over an exponential one.

Number of Run-Time for Run-Time for
Instructions n = 100 n = 100,000

log2 n 0.0000000017 second 0.0000000042 second
n 0.000000025 second 0.000025 second

n log2 n 0.00000017 second 0.00042 second
n2 0.0000025 second 2.5 seconds
n3 0.00025 second 250000 seconds ≈ 2.9 days
2n 3.2× 1020 seconds ≈ 1.0× 1013 years 2.5× 1030093 seconds ≈ 7.9× 1030085 years
n! 2.3× 10148 seconds ≈ 7.4× 10140 years 7.1× 10456563 seconds ≈ 2.2× 10456556 years

Table 10.2 Run-Times for Some Complexities on a 4-GHz Machine
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SECTION 10.4 Exercises
In Exercises 1 through 4, show the main states of a Binary Search for the
specified value x in the given array A.
1. x = 5 and A= 1 3 4 5 7 8 .

2. x = 4 and A= 0 1 4 6 7 8 9 .

3. x = 3 and A= 0 1 2 4 5 7 8 .

4. x = 6 and A= 1 2 4 5 8 9 .
5. If an array A contains the value x in more than one location, then which

location is returned by Sequential Search?
6. If an ordered array A contains the value x in more than one location, then

which location is returned by Binary Search?
7. Suppose a computer has a speed of 2 GHz. That is, it can perform 2 billion

instructions per second.
(a) Assume that comparisons are the only time-consuming instructions in

Binary Search. What is the longest possible time it would take this
computer to use Binary Search to find a value in an array of one
million entries?

(b) What is the longest possible time it would take this computer to run an
algorithm of worst-case complexity n2 on an input of size n = 106?

8. Suppose a computer has a speed of 3 GHz. That is, it can perform 3 billion
instructions per second.
(a) Assume that comparisons are the only time-consuming instructions in

Sequential Search. What is the longest possible time it would take this
computer to use Sequential Search to find a value in an array of one
million entries?

(b) What is the longest possible time it would take this computer to run an
algorithm of worst-case complexity n

3
2 �log2 n� on an input of size

n = 106?
�9. Show that, if k is even, then �log2(k + 2)� = �log2(k + 1)�.
10. Show: ∀ x ∈ R+, 1+ log2 x ≤ 1+ �log2 x� < 2+ log2 x.

11. Write an (efficient as possible) algorithm, called Maximum, that finds
the location of a largest element of a given array A of length n. Only one
location is returned, even if the maximum value occurs in multiple
locations. Note that the elements of the array need not be sorted in
advance.

12. Write an (efficient as possible) algorithm, called Count, that counts the
number of occurrences of a given value x in a given array A of length n.
Note that the elements of the array need not be sorted in advance.

13. Determine the worst-case complexity for Maximum.
14. Determine the worst-case complexity for Count.

In Exercises 15 through 17, let g(x) be an arbitrary real function.

15. Show that g(x) ∈ O(g(x)). 16. Show that 0 ∈ O(g(x)).
17. Let c �= 0.

Show that O(cg(x)) = O(g(x)).
18. Prove Lemma 10.10.
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In Exercises 19 through 22, decide whether the given statement is true or false.

19. x
3
2 ∈ O( 3

2 x). 20. x2 + 5x + 7 ∈ O(x2).

21. O(x3 + x2) ⊆ O(x4). 22. O( 1
10 x3 − x) ⊆ O(x2).

23. Suppose f1(x), f2(x) ∈ O(g(x)). Show: f1(x) + f2(x) ∈ O(g(x)).
24. Suppose f1(x) ∈ O(g1(x)) and f2(x) ∈ O(g2(x)). Show:

f1(x) f2(x) ∈ O(g1(x)g2(x)).
25. Show that, if f (x) ∈ O(g(x)), then f (x) + g(x) ∈ O(g(x)).
26. Show that, if O( f (x)) = O(1), then O( f (x)g(x)) = O(g(x)).
27. Let c ∈ R, and suppose 1 ∈ O(g(x)). Show: c + g(x) ∈ O(g(x)).
28. Suppose 1 ∈ O(g(x)). Show: O(�g(x)�) = O(g(x)).
29. Suppose P dollars have been invested in an account earning a monthly

interest rate i . If the account earns simple interest, then the amount in the
account after n months is P(1+ in). If the account earns compound
interest, then the amount in the account after n months is P(1+ i)n. In
general, the investor is better off with compound interest, since (1+ i)n has
a higher growth rate than (1+ in). However, suppose a bank is offering a
compound interest rate of 2% (i = 0.02) or a simple interest rate of 4%
(i = 0.04), so the interest rates are not equal.
(a) Which option is better for a 5-year investment?
(b) Which option is better for a 6-year investment?
(c) Find the smallest number of months for which the compound interest

option would be the better choice.

30. A newly hired employee is negotiating her salary with her employer, who
has provided two salary options. Under option 1, her salary for year n
will be 1000(20

√
n+ 2). Under option 2, her salary for year n will be

1000(16n− 1). Note that option 2 has a higher growth rate than option 1.
(a) Which option has a better second-year salary?
(b) Which option has a better fourth-year salary?
(c) If this new employee plans to stay at this job exactly 4 years before

moving on, then which option is better for her?
�31. Show: O(1+ �log2 n�) = O(log2 n).
�32. Show: O(n+ n log2 n) = O(n log2 n).
�33. Show: O( n

2 log2
n
2 ) = O(n log2 n).

�34. Show: O(100+ 3 · 2n) = O(2n).
35. Prove the assertion in Definition 10.9. That is, show that f (x) ∈ O(g(x))

and g(x) ∈ O( f (x)) if and only if there exist positive constants C1, C2, and
d for which ∀ x > d, C1|g(x)| ≤ | f (x)| ≤ C2|g(x)|.

36. Prove that f (x) ∈ �(g(x)) if and only if g(x) ∈ �( f (x)).
37. Prove Lemma 10.13. 38. Prove Lemma 10.14.

In Exercises 39 through 42, decide whether the given statement is true or false.
39. n log2 n ∈ O(n). 40. n4 ∈ O(2n).

41. O(log2 n) = O(log2(n2)). 42. O(n2) ⊆ O((log2 n)2).
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43. A programmer has written two programs for sorting a list of numbers.
One uses 64�log2 n� + 108n+ 18 operations, and the other uses 2n2 + 4n+ 8
operations. She is trying to determine which program is faster for certain
applications and has noticed that both use the same number of operations
to sort a list of n = 55 items.
(a) Which is faster at sorting a list of fewer than 55 items?
(b) Which is faster at sorting a list of more than 55 items?
(c) Which program has a smaller order of growth?

44. A programmer has written two programs for finding the median value in
an unsorted list of numbers (of length n ≥ 21). One uses n3 − 20n2 − 6n+ 1
operations, and the other uses 80n2 + 64n− 3 operations. He is trying to
determine which program is faster for certain applications.
(a) Which is faster for a list of at most 100 items?
(b) What is the smallest length of a list for which the second program is

faster?
(c) Which program has a smaller order of growth?

45. Show that, ∀ b > 1, O(logb n) = O(log2 n). Hint: logb n = log2 n

log2 b .

46. Is it true that, ∀ b > 1, O(bn) = O(2n)?
47. Show: O(1) ⊂ O(log2 n).

48. Show: O(log2 n) ⊂ O(n). Hint: log2 n ≤ n if and only if n ≤ 2n, so use
induction.

49. Show: O(n) ⊂ O(n log2 n). Hint: Use work from Exercise 47.

50. Show: O(n log2 n) ⊂ O(n2). Hint: Use work from Exercise 48.
�51. Show: O(n2) ⊂ O(2n). Hint: Use induction.
�52. Show: O(2n) ⊂ O(n!). Hint: Use induction.

10.5 Analysis of Algorithms (Part 2)
In Section 10.1, we studied trees and their applications. In Sections 10.2 and 10.3,
we considered various algorithms that find spanning trees in connected graphs.
Having shifted our interest to the analysis of algorithms in Section 10.5, we now
come full circle and use trees to study algorithms.

Decision Trees
One tool used to analyze an algorithm is a decision tree. Such a tree reflects the
paths an algorithm can follow based on the various decision tests performed
throughout a running of the algorithm. Here, we focus on binary decision trees
in which the decision tests are comparisons. The vertices of the tree record the
states of the algorithm as it is running. Vertices at which comparisons are made
are connected to children distinguished by the result of the comparison (true or
false).

A representation of the decision tree for Sequential Search is shown in Fig-
ure 10.29. For each 1 ≤ i ≤ n, there is an internal vertex reflecting the test
whether A[i] = x. The leaves reflect the potential return values of the location
of x. The height of that tree is n.
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a1 a2 ... an

a1 � x ?

i � 1

FT

Return
1

a1 a2 ... an

a2 � x ?

i � 2

FT

Return
2 a1 a2 ... an

an � x ?

i � n

FT

Return
n

Return
0

. . .

Figure 10.29 Decision Tree for Sequential Search

The decision tree for Binary Search (restricted to arrays of length 3) is rep-
resented in Figure 10.30. There, the vertices similarly reflect comparisons made
and locations returned by the algorithm. In this case, the vertices display only
the portion of the array under consideration at each stage. The height of this tree
is 3 = 1+ �log2 3�.

l � 1, m � 2, h � 3

a1 a2 a3

a1 a2a3

a2 � x ?

a3 � x ?

FT

FFT

Return
03

Return

l � m � h � 3

a2

a1 � x ?

a2 � x ?

T

FT

Return
02

Return

l � m � h � 2
a1

a1 � x ?
FT

Return
01

Return

l � m � h � 1

l � m � 1, h � 2

Figure 10.30 Decision Tree for Binary Search (for n = 3)

Note in Figures 10.29 and 10.30 that the height of the tree is equal to the
worst-case complexity of the algorithm. This is true in general, since the worst
case of the algorithm corresponds to the longest path from the root.

Although the internal vertices in a decision tree represent the intermediate
states of the algorithm at which decisions are made, it is the leaves that represent
the potential final outcomes. A search for a value x in an array of length n has
n+1 possible outcomes. If x is found, then some index from 1 to n is returned. If
x is not found, then 0 is returned. Thus, a decision tree for any search algorithm
must have at least n + 1 leaves. By Theorem 10.7, its height must be at least
�log2(n+ 1)�. That is, the smallest possible complexity of a search algorithm is
�(�log2(n + 1)�) = �(log2 n). Therefore, Binary Search has the least possible
complexity. In this sense, no other search algorithm is more efficient.
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Sorting Algorithms
We continue our study of the analysis of algorithms by moving to another class
of algorithms. Here, we are interested in putting the elements of a given array
into nondecreasing order. This will certainly be of interest to us if we frequently
need to search for elements in the array. For example, we typically alphabet-
ize our files so that we can subsequently find files more easily. Similarly, the
records in a database might be sorted according to some identification number.
This would provide a convenient way to access records more quickly. Although
the keys to be sorted might be text and not numbers, it suffices to consider algo-
rithms that sort numbers, since any type of key could alternatively be assigned
a numerical value.

Our first sorting algorithm does so by sequentially running through the en-
tries of the array. Each entry is inserted into its correct position relative to the
already sorted prior portion of the array. It is called Insertion Sort and is pre-
sented in Algorithm 10.8.

EXAMPLE 10.22 Given A= 3 1 5 6 4 2 , as Insertion Sort is
performed, the main states of the array (based on the outermost for loop) are
as follows.

3 1 5 6 4 2
i � 2

1 3 5 6 4 2
i � 3

1 3 5 6 4 2
i � 4

1 3 5 6 4 2
i � 5

1 3 4 5 6 2
i � 6

ends with
1 2 3 4 5 6

For each i , the arrows point from position i to the position to which that entry
is moved. ■

As with search algorithms, the operations of interest in sorting algorithms
are comparisons involving array entries. Also, the size of the input is considered
to be the length of the array. It is these factors that are used to determine the
worst-case complexity of a sorting algorithm.

EXAMPLE 10.23 The worst-case complexity of Insertion Sort is n(n−1)
2 .

Proof
Keep in mind that the worst performance occurs when A starts out sorted. For
each value of i , there are at most i − 1 comparisons A[ j] < A[i] made in the
while loop.
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ALGORITHM 10.8 Insertion Sort

Let A be an array of length n that needs to be sorted (into nondecreasing order).

Variable i is the index of the array entry to be inserted into its correct position
relative to the previously sorted portion A[1, . . . , i − 1], and j runs through that
portion in search of this correct position.

Algorithm.

For i = 2 to n,
\begin
Let j = 1.
While j < i and A[ j] < A[i],

Let j = j + 1.
If j < i , then

\begin
Let temp = A[i].
For k = i down to j + 1,

Let A[k] = A[k − 1].
Let A[ j] = temp.
\end.

\end.
Return A.

Note that a comparison A[i] < A[i] is never made, because the test i < i fails
before that point would be reached. The number of comparisons performed is
at most

n∑
i=2

⎛
⎝ i−1∑

j=1

1

⎞
⎠ = n∑

i=2

(i − 1) = n(n− 1)
2

.

This number is achieved when the input starts in nondecreasing order. �

A representation of the decision tree for Insertion Sort (on arrays of length
n = 3) is shown in Figure 10.31. The height of that tree is 3 = 3(2)

2 .

a1 a2 a3

a1 � a2 ?

a1 a2 a3

a1 � a3 ?

a1 a2 a3 a3 a1 a2

a2 � a3 ?

a2 a1 a3

a2 � a3 ?

FT

FT FT
Return

a1 a2 a3 a1 a3 a2

FT
ReturnReturn

a2 a1 a3 a2 a3 a1

FT
ReturnReturn

a2 a1 a3 a3 a2 a1

a1 � a3 ?

Return

Figure 10.31 Decision Tree for Insertion Sort (for n = 3)
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Our second sorting algorithm does so by splitting the given array in half. It
sorts each half and then merges the two sorted halves back into one sorted array.
This recursive algorithm is called Merge Sort and is presented in Algorithm 10.9.

ALGORITHM 10.9 Merge Sort

Let A be an array of length n that needs to be sorted (into nondecreasing order).
Arrays A1 and A2 are used to store the first and second halves of A, respectively,
after they have been sorted by this same algorithm.

Algorithm.

If n ≤ 1, then
Return A.

Otherwise,
\begin
Let A1 = Merge Sort( A[1, . . . , � n

2 �], � n
2 �).

Let A2 = Merge Sort( A[� n
2 � + 1, . . . , n], � n

2 �).
Return Merge( A1, � n

2 �, A2, � n
2 �).

\end

The algorithm is based primarily on an algorithm called Merge, which is pre-
sented in Algorithm 10.10. That algorithm combines two sorted arrays into one
sorted array.

EXAMPLE 10.24 Given A= 3 1 5 6 4 2 , the implementation of
Merge Sort is displayed in Figure 10.32. The tree above the dotted line shows

13 5 6 4 2

6 4 23 1 5

1 53

1 5

4 26

4 2

21 3 4 5 6

2 4 61 3 5

1 53

1 5

2 46

4 2

Figure 10.32 Merge Sort (for n = 6)



616 P A R T II ■ Combinatorics

how the array gets repeatedly split until only pieces of length 1 remain. The
tree below the dotted line then shows how the pieces get merged back together
to finally put the array in order. Note that these are not decision trees. ■

ALGORITHM 10.10 Merge

Given a sorted array A1 of length n1 and a sorted array A2 of length n2, this
algorithm produces a sorted array A of length n1 + n2.

Algorithm.

Let i1 = i2 = i = 1.
While i1 ≤ n1 and i2 ≤ n2,

\begin
If A1[i1] < A2[i2], then

\begin
Let A[i] = A1[i1].
Let i1 = i1 + 1.
\end

Otherwise,
\begin
Let A[i] = A2[i2].
Let i2 = i2 + 1.
\end

Let i = i + 1.
\end.

If i1 > n1, then
While i2 ≤ n2,

\begin
Let A[i] = A2[i2].
Let i = i + 1 and i2 = i2 + 1.
\end

If i2 > n2, then
While i1 ≤ n1,

\begin
Let A[i] = A1[i1].
Let i = i + 1 and i1 = i1 + 1.
\end

Return array A of length n1 + n2.

EXAMPLE 10.25 Merge Sort is O(n log2 n).

Proof
Let cn be the maximum number of comparisons needed in a Merge Sort of an
array of length n. So c0 = c1 = 0 and c2 = 1. A Merge Sort of an array of length
n is accomplished by

1. merge sorting an array of length � n
2 �,

2. merge sorting an array of length � n
2 �, and

3. performing the n− 1 comparisons in a merge.

So ∀ n ≥ 2, cn = c� n
2 � + c� n

2 � + (n− 1). It can now be shown by strong induction
that, ∀ n ≥ 1, cn ≤ 2n log2 n. This is left to Exercise 37. �
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THEOREM 10.17 The worst-case complexity of every sorting algorithm is at least n
2 log2

n
2 .

Proof
Since there are n! possible permutations of an array of length n, the decision
tree for any sorting algorithm must have at least n! leaves. Theorem 10.7 then
tells us that the height of this tree must be at least �log2 n!�. Consequently, the
worst-case complexity is at least

�log2 n!� ≥ log2 n! =
n∑

i=1

log2 i

≥
n∑

i=� n
2 �

log2 i = log2� n
2 � + · · · + log2 n

≥ (n− � n
2 � + 1) log2� n

2 � = (� n
2 � + 1) log2� n

2 �
≥ � n

2 � log2� n
2 �

≥ n
2 log2

n
2 .

�

Since Exercise 33 from Section 10.4 tells us that O( n
2 log2

n
2 ) = O(n log2 n),

it follows that Merge Sort is �(n log2 n). Moreover, no sorting algorithm can
be more efficient than Merge Sort, in the sense of big-�. However, recall that
we have considered only time complexity and not space complexity. The recur-
sive nature of Merge Sort requires more memory to be used each time the pro-
cedure calls itself. Insertion Sort, on the other hand, is an in-place sort. That is,
the elements of the array Ato be sorted are simply shuffled around Aitself. There
is no need to generate copies of subarrays of A, as is required in the recursive
Merge Sort.

In the exercises, we introduce three additional sorting algorithms: Bubble
Sort, Selection Sort, and Quick Sort. Including those, the time complexities of
the sorting algorithms considered in this section are listed in Table 10.3, where
the missing values in that table are left to the exercises. The unproved average-
case complexities listed in Table 10.3 are included to give a sense of the expected
run-times on a random array in need of sorting. Also, the average-case complex-
ity of Quick Sort helps to justify its name.

Sorting Algorithm Insertion Bubble Selection Merge Quick

Worst-Case �(n2) �(n log2 n)
Average-Case �(n2) �(n2) �(n2) �(n log2 n) �(n log2 n)

Table 10.3 Time Complexities for Sorting Algorithms

SECTION 10.5 Exercises
1. Make the decision tree for Binary Search for arrays of length 4.
2. Make the decision tree for Binary Search for arrays of length 5.
3. Make a decision tree for Maximum (from Exercise 11 in Section 10.4) for

n = 4.
4. Make a decision tree for Count (from Exercise 12 in Section 10.4) for n = 3.



618 P A R T II ■ Combinatorics

In Exercises 5 through 8, for the given matrix A, show the main states of
Insertion Sort.
5. A= 7 5 3 1 .

6. A= 3 8 4 1 2 6 5 7 .

7. A= 4 2 6 1 5 3 .

8. A= 3 8 6 1 4 .
9. Make the decision tree for Insertion Sort for arrays of length 2.
10. Make the portion of the decision tree for Insertion Sort for arrays of length

4, in the case that A[4] is the smallest value.

In Exercises 11 through 14, for the given matrix A, make a tree diagram of
Merge Sort that shows first how the matrix is split into pieces and then how
the pieces are merged back together in order.
11. A= 7 5 3 1 .

12. A= 3 8 4 1 2 6 5 7 .

13. A= 4 2 6 1 5 3 .

14. A= 3 8 6 1 4 .

The sorting algorithm Bubble Sort is presented in Algorithm 10.11. In
Exercises 15 through 18, for the given matrix A, show the main states of Bubble
Sort.

ALGORITHM 10.11 Bubble Sort

Variable i is the index of the entry to be determined based on the assumption that
the portion A[i + 1, . . . , n] is already set, while j runs through the lower indices to
filter up the correct value for the ith spot.

Algorithm.

For i = n down to 2,
For j = 1 to i − 1,

If A[ j] > A[ j + 1], then
\begin
Let temp = A[ j + 1].
Let A[ j + 1] = A[ j].
Let A[ j] = temp.
\end.

Return A.

15. A= 4 2 6 1 5 3 .

16. A= 5 8 1 3 6 .

17. A= 7 5 4 2 1 .

18. A= 8 6 5 3 2 1 .

The sorting algorithm Selection Sort is presented in Algorithm 10.12. In
Exercises 19 through 22, for the given matrix A, show the main states of
Selection Sort.
19. A= 3 8 6 1 4 .
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ALGORITHM 10.12 Selection Sort

Variable i is the index of the entry to be determined based on the assumption that
the portion A[1, . . . , i − 1] is already sorted, while j runs through the upper indices
to find the correct value for the ith spot. Variable min stores the index of the current
best candidate for the ith spot.

Algorithm.

For i = 1 to n− 1,
\begin
Let min = i .
For j = i + 1 to n,

If A[ j] < A[min], then
Let min = j .

If min �= i , then
\begin
Let temp = A[i].
Let A[i] = A[min].
Let A[min] = temp.
\end.

\end.
Return A.

20. A= 2 8 3 1 5 4 .

21. A= 6 5 4 3 2 1 .

22. A= 7 5 4 2 1 .
23. Determine the worst-case complexity for Bubble Sort.
24. Determine the worst-case complexity for Selection Sort.
25. Make a decision tree for Bubble Sort for n = 3.
26. Make a decision tree for Bubble Sort for n = 2.
27. Make a decision tree for Selection Sort for n = 2.
28. Make a decision tree for Selection Sort for n = 3.
29. Is Bubble Sort a maximally efficient sorting algorithm in the sense of

big-�?
30. Is Selection Sort a maximally efficient sorting algorithm in the sense of

big-�?
31. There is a sorting algorithm that is sometimes called Bridge Sort, because it

works the way a card player may sort the cards in her hand when playing
bridge. First, she moves the highest card to the rightmost position in her
hand. Then, she moves the second highest card to the second rightmost
position in her hand, and so on. This technique coincides with one of the
sorting algorithms considered in this section. Which one is it?

32. Suppose a worker needs to find the medical record for patient Smith. So he
goes to the drawer labeled “S” and pulls it open. First he fingers the file
about half-way back in the drawer and finds that it is the file for patient
Shears. So he moves to about three-quarters back in the drawer and fingers
the file for patient Stevens. Then, he moves forward, and so on. This
approach is similar to one of the searching algorithms considered in the
Section 10.4. Which one is it?
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For Exercises 33 through 36, if there are duplicated entries in an array A,
determine whether the specified sorting algorithm will always leave them in
their original order. If not, explain.
33. Insertion Sort. 34. Merge Sort.
35. Bubble Sort. 36. Selection Sort.

�37. Let cn be the maximum number of comparisons needed in a Merge Sort of
an array of length n. Complete the proof of Example 10.25 by showing that
∀ n ≥ 1, cn ≤ 2n log2 n. Hint: Prove by strong induction that ∀ n ≥ 1,
2cn ≤ 22n log2 n = n2n.

�38. Observe that, for any fixed k, finding the top k entries in an array of length
n is O(n), yet sorting is O(n log2 n). Explain how this can be.

39. Show that Maximum (from Exercise 11 in Section 10.4) is �(n).
40. Show that Count (from Exercise 12 in Section 10.4) is �(n).

The sorting algorithm Quick Sort is presented in Algorithm 10.13. It is based
primarily on the algorithm Split presented in Algorithm 10.14.

ALGORITHM 10.13 Quick Sort

Let A be an array of length n that needs to be sorted (into nondecreasing order). The
variable mid will be a position chosen by the function Split that cuts the array into
two pieces and partially sorts it so that
A[1], . . . , A[mid−1] < A[mid] ≤ A[mid+1], . . . , A[n].

Algorithm.

If n ≤ 1, then
Return A.

Otherwise,
\begin
Let ( A, mid) = Split( A, n).
Let A[1, . . . , mid−1] = Quick Sort( A[1, . . . , mid−1], mid−1).
Let A[1, . . . , mid+1] = Quick Sort( A[mid+ 1, . . . , n], n−mid).
Return A.
\end

ALGORITHM 10.14 Split

Let A be an array of length n that needs to be reordered so that A[1] is moved to the
position, index mid, into which it will end up when the array is entirely sorted.
When this function completes with A reordered, we want no larger entries than
A[mid] prior to position mid and no smaller entries than A[mid] after position mid.

Algorithm.

Let mid = 1.
For i = 2 to n,

If A[i] < A[1], then
\begin
Let mid = mid+ 1.
Let temp = A[mid]. Let A[mid] = A[i]. Let A[i] = temp.
\end

Let temp = A[mid]. Let A[mid] = A[1]. Let A[1] = temp.
Return ( A, mid).
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In Exercises 41 through 44, for the given matrix A, show the main states of
Quick Sort. In particular, each time Split is called, report the returned value of
mid. Also, follow the calls of Quick Sort down to those on subarrays of length
one.
41. A= 3 5 6 1 4 .

42. A= 2 1 4 3 6 5 .

43. A= 1 2 3 4 .

44. A= 2 7 1 3 5 .
45. Determine the worst-case complexity for Quick Sort. Note that this occurs

when the given array A starts in nondecreasing order. That is, each call of
Split returns the value mid = 1. Exercise 43 is an example of this worst
case. Warning: The worst-case complexity is not always of the same order
as the average-case complexity.

�46. Determine the number of comparisons done in Quick Sort if each call of
Split returns the value mid = 2. Note that Exercise 42 is an example of this
case.

CHAPTER 10 Review Problems
The following graphs are referred to throughout the exercises.

(a) (b) (c)

4

1

5

2

6

3

7

3

6

1 2

4 5

52

1 6

3 4

1. Let G = (V, E) be a graph. Show: If |E | < |V| − 1, then G is not connected.
Hint: Make use of spanning trees or forests, and prove the contrapositive.

2. List all possible degree sequences for a tree on n vertices with 4 leaves.
3. Gasoline that is high in octane, C8H18, can handle compression well and

thus has a smoother burn with less engine knocking. How many different
isomers of the hydrocarbon C8H18 are possible?

4. How many vertices are there in a graph with 4 components whose
spanning forest has 26 edges?

5. We have seen that, for a fixed n, there may be many different isomers of
the saturated hydrocarbon CnH2n+2. However, any two isomers will have
the same number of chemical bonds. How many chemical bonds are there
in a saturated hydrocarbon CnH2n+2?

6. Show that, in a tree, any two vertices u and v are joined by a path in which
all of the vertices, except possibly u and v, are internal vertices.

7. Take 2 to be the root of the tree in graph (a).
(a) List the children of 5. (b) Which vertex is the parent of 3?
(c) What is the level of 5? (d) What is the height of this tree?
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(e) Is this a binary tree? (f) Is it balanced?
(g) Is it full?

8. Can a spanning forest for a graph G = (V, E) be characterized as a
subgraph on V that is a forest? Explain.

9. Let T be a full m-ary tree with n vertices, l leaves, and i internal vertices.
Express m and i in terms of n and l.

10. The file directory system on Sarah’s A:\ drive contains 9 folders, not
counting A:\ itself. If each folder, including A:\ itself, has exactly 4
children, and no folder is empty, then how many files are on this disk?

�11. Prove or disprove: The diameter of any rooted tree is at most twice its
height.

12. Using the usual dictionary order to compare words, construct the binary
search tree for the words in the sentence

“Time flies when you are having fun.”

13. Construct the quadtree for the given image. Note that grid lines have been
drawn over the image for reference and are not themselves part of the
image.

14. Draw the image that corresponds to the given quadtree. It represents a
letter.

W B B W W B B B B W B BB W W B

In Exercises 15 through 20, use the ordering of the vertices on the specified
graph given by the natural ordering of the labels, and perform the specified
algorithm starting at vertex 1. In each case give the resulting ordering L on the
vertices. If the graph itself is not a tree, then shade the resulting spanning tree.
15. Breadth-First Search on graph (a).
16. Breadth-First Search on graph (b).
17. Breadth-First Search on graph (c).
18. Depth-First Search on graph (a).
19. Depth-First Search on graph (b).
20. Depth-First Search on graph (c).
21. The ideal gas law for n moles of gas at pressure P , volume V, and

temperature T is PV = nrT , where r is the universal gas constant obtained
by multiplying Boltzmann’s constant by Avogadro’s number. Solving for
pressure, we obtain the expression P = nrT

V . Construct the tree that
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represents the expression

((n ∗ r ) ∗ T) ÷ V

for the pressure P .
22. A trapezoid with height h and base lengths b1 and b2 has its area given by

the formula A= b1+b2

2 · h. Write the expression for the area A of this
trapezoid

((b1 + b2) ÷ 2) ∗ h

(a) in postfix notation. (b) in prefix notation.
(c) in infix notation.

23. Compute the value of the following postfix expression.

4 5 1 + 2 ÷ ∗

24. Compute the value of the following prefix expression.

+ 1 ∗ − 8 5 2

25. Major U.S. cities from an atlas were put into the following binary search
tree, using longitude for comparisons.

Houston

Chicago

Boston

New York

Los Angeles

Perform an inorder traversal of the binary search tree to determine the
west-to-east ordering for these cities.

26. If a Hamiltonian cycle is sought in the graph

v x

w y

using a backtrack search that starts from the trivial path v, then what are
the next two paths considered after the path vwx is encountered?
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Subsequent exercises refer to the following graphs.

(d) (e) (f) (g)113
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v

In Exercises 27 through 32, use the ordering of the vertices on the specified
graph given by the natural ordering of the labels, and find the tree resulting
from the specified algorithm.
27. Kruskal’s Algorithm for graph (d).
28. The vertices in graph (e) represent buildings in an apartment complex

under construction. Each edge represents a potential power line joining
two buildings, and its weight represents the cost of establishing that line in
tens of thousands of dollars. Consequently, the cheapest possible way to
establish a power grid joining all of the buildings corresponds to a mini-
mum spanning tree.
(a) Use Kruskal’s Algorithm to find a minimum spanning tree for

graph (e).
(b) What is the cheapest possible cost of establishing a power grid for this

apartment complex?

29. Prim’s Algorithm for graph (f). Also, list the order in which the edges are
added.

30. The vertices in graph (g) represent the condominiums in a new devel-
opment. Each edge represents a potential sewer line joining two condo-
miniums, and its weight represents the cost of establishing that line in
tens of thousands of dollars. Consequently, the cheapest possible way to
establish a sewer system joining all of the condominiums corresponds to a
minimum spanning tree.
(a) Use Prim’s Algorithm to find a minimum spanning tree for graph (g).

Also, list the order in which the edges are added.
(b) What is the cheapest possible cost of establishing a sewer system for

this condominium development?

31. Dijkstra’s Algorithm for graph (d) starting from vertex v.
32. The vertices in graph (e) represent critical police patrol locations under the

jurisdiction of the police station at vertex v. Each edge represents a road
joining two locations, and its weight gives the travel time in minutes
between those locations. Consequently, the fastest response time from the
police station to each location is reflected by a path on a shortest path tree
for graph (e) from v.
(a) Use Dijkstra’s Algorithm to find a shortest path tree for graph (e)

starting from vertex v.
(b) What is the longest required response time from the police station to a

critical location under its jurisdiction?
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33. Suppose we have a weighted graph in which all of the weights are distinct.
Determine whether each of the following statements is true or false.
(a) The spanning trees produced by Kruskal’s Algorithm and Prim’s

Algorithm are always the same.
(b) The tree produced by Dijkstra’s Algorithm is independent of the edge

ordering.

34. The cities in the following table are the business locations for a company,
based in Syracuse, New York, that serves the upstate New York area.

Binghamton Buffalo Ithaca Rochester Syracuse

Binghamton — $200 — — $200
Buffalo $200 — $150 — $450
Ithaca — $150 — $300 —
Rochester — — $300 — $300
Syracuse $200 $450 — $300 —

The costs therein are the airfares for the direct flights available between
pairs of these cities.
(a) What is the greatest necessary cost to travel from Syracuse to one of

the other company locations?
(b) What kind of spanning tree is relevant to this problem?

35. A college wishes to set up a computer network joining the residence halls
on its campus. The following table gives the costs in thousands of dollars
determined by a contractor to connect pairs of residence halls.

Arsenio Fawn Monty Philip Rich

Arsenio — 11 6 7 15
Fawn 11 — 8 9 12
Monty 6 8 — 5 13
Philip 7 9 5 — 13
Rich 15 12 13 13 —

(a) Find the cheapest possible cost of establishing a computer network
that serves all of the residence halls.

(b) What kind of spanning tree is relevant to this problem?

36. Given x = 5 and A= 1 2 4 6 8 , show the main
states of Binary Search.

37. Suppose that a personal computer has a speed of 1 GHz. That is, this
computer can perform one billion instructions per second. If we assume
that comparisons are the only time-consuming instructions in Sequential
Search, then what is the longest possible time it would take this computer
to run Sequential Search on an array of length 5× 1010?

Subsequent exercises refer to the following algorithm for finding a location for
the smallest value in a given array A of length n.
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Minimum.
Let location = 1.
Let i = 2.
While i ≤ n,

\begin
If A[i] < A[location], then

Let location = i .
Otherwise,

Let i = i + 1.
\end.

Return location.

38. Determine the worst-case complexity of Minimum.

For Exercises 39 through 43, decide whether each of the following statements is
true or false.
39. 3x ∈ O(x − 1). 40. x2 + 1 ∈ O(25x).

41. x3 − x2 + 7 ∈ �(x4). 42. x2 ∈ �(4x2 + 5x).

43. O(n2) ⊆ O(n log2 n).

44. A newly hired employee must decide which of two retirement plans to
accept. Both options simply pay out a lump sum upon retirement based on
the number n of years in employment. The first plan pays 30n3 + 500n
dollars, and the second pays 600n2 + 10000 dollars.
(a) Which plan has a greater growth rate?
(b) Which plan would be better, based on 15 years of employment?
(c) What is the least number of years of employment for which the first

plan is better?

45. Let f (x) be a bounded real function. Show that f (x) ∈ O(1).

46. Prove that O(log2 n) ⊂ O(n
3
2 ). Hint: We know the relative growth rates of

log2 n versus n, and we know how powers of n compare.

47. Is it true that Minimum is O(n2)? Explain.
48. Is it true that Minimum is �(n)? Explain.
49. Make a decision tree for Minimum for n = 3.
50. Given A= 6 3 8 2 5 , show the main states of

Insertion Sort.
51. Given A= 4 3 2 1 , make a tree diagram of Merge Sort

that shows first how the matrix is split into pieces and then how the pieces
are merged back together in order.

52. Given A= 4 2 1 3 , show the main states of Bubble
Sort.

53. Given A= 2 4 3 1 , show the main states of Selection
Sort.

54. What ordering of an array yields the most comparisons in Insertion Sort?
55. If the array starts out ordered, will Bubble Sort use fewer comparisons

than otherwise?
56. Given A= 3 1 6 4 , show the main states of Quick Sort.
57. Is it true that Quick Sort is O(n log2 n)? Explain.
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Assumed Properties of Z and R

For easy reference, we list here some basic properties of real numbers and
integers that may be used freely (without proof) throughout the book. The prop-
erties listed here are sufficient to characterize the ordered field of real num-
bers. However, they are not intended to be completely independent of one
another. Also, properties that are straightforward consequences of these, but
might nonetheless be considered “basic” by some, may not be listed.

1. Let S be any of the sets Z, Z+, N, R, or R+. Then S is closed under addition
and multiplication. That is,

∀ x, y ∈ S, x + y ∈ S and x · y ∈ S.

Note that the product x · y may also be denoted xy.
2. Addition and multiplication are associative and commutative. That is,

∀ x, y, z ∈ R, we have

(a) (x + y) + z = x + (y+ z)
and we can unambiguously write x + y+ z for both expressions.

(b) (x · y) · z = x · (y · z)
and we can unambiguously write x · y · z for both expressions.

(c) x + y = y+ x.
(d) x · y = y · x.

3. The additive identity is 0 ∈ R, and the multiplicative identity is 1 ∈ R.
Further, inverses exist and behave appropriately. That is,

∀ x ∈ R

(a) 0+ x = x.
(b) There exists −x ∈ R such that x + (−x) = 0.

Further, −(−x) = x.
(c) 1 · x = x.

(d) If x �= 0, then ∃ 1
x ∈ R such that x ·

(
1
x

)
= 1

Further, 1
1
x

= x.

Note that, for any y ∈ R,
the difference y− x is defined as y+ (−x), and,
for x �= 0, the quotient y

x is defined as y ·
(

1
x

)
.

4. The distributive law holds. That is,

∀ x, y, z ∈ R x · (y+ z) = x · y+ x · z.
627
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5. For x ∈ R and n ∈ Z+, we use exponent notation

xn = x · x · · · · · x︸ ︷︷ ︸
n copies

,

x−n = 1
xn

if x �= 0,

x0 = 1 if x �= 0,

and the Laws of Exponents hold. That is,

∀ x ∈ R and m, n ∈ Z, xm · xn = xm+n and (xm)n = xmn.

6. The Zero Multiplication Property holds for R. That is,

∀ x, y ∈ R, if x · y = 0, then either x = 0 or y = 0.

7. The Trichotomy Law. Every pair of real numbers is uniquely comparable.
That is,

∀ x, y ∈ R, exactly one of the following holds:

x < y or x = y or x > y.

Of course, x ≤ y means that either x < y or x = y.
Note that x > y may also be written as y < x.

8. We have transitivity of inequalities. That is,

∀ x, y, z ∈ R, if x < y and y < z, then x < z.

Of course, the same holds for ≤. In mixed cases, the strict inequality <

overrides.
9. Inequalities are preserved under addition. That is,

∀ x, y, z, w ∈ R, if x < y and z < w, then x + z < y+ w.

Of course, the same holds for ≤. In mixed cases, the strict inequality <

overrides.
10. Multiplication of an inequality by a positive real number preserves it,

whereas multiplication by a negative real number reverses it. That is,

∀ x, y, z ∈ R such that x < y,

(a) if z > 0, then zx < zy.
(b) if z < 0, then zx > zy.

11. Squares are nonnegative. That is,

∀ x ∈ R, if x �= 0 then x2 > 0.

Of course, 02 = 0.
12. Note that Z+ and N are subsets of Z. Further, Z and R+ are subsets of R.

Thus, most of the properties of R described above restrict down to these
subsets, with the following exceptions. All of the properties quantified
above for x, y, z, w ∈ R hold for x, y, z, w ∈ Z except 3(d) (since 1

x �∈ Z
unless x = ±1). Also, 3(b) does not hold for Z+, N, and R+.

13. The Least Upper Bound Property. Given any nonempty subset A⊆ R for
which U = {u ∈ R : ∀ a ∈ A, a ≤ u} is nonempty, there exists a unique real
number l ∈ U such that ∀ u ∈ U, l ≤ u. We denote this value l by lub( A).
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14. The Archimedean Principle.

∀ x ∈ R, ∃n ∈ Z such that x < n.

15. The Density of the Rationals.

∀ x, y ∈ R, if x < y, then ∃ q ∈ Q such that x < q < y.

16. For each b ∈ R and n ∈ Z+, if either
(i) b > 0 or
(ii) b < 0 and n is odd,
then there exists a unique y ∈ R such that yn = b and y has the same sign
as b. We denote this value y by n

√
b or b

1
n .

17. There is a unique value ba associated with any pair a , b of real numbers
with b > 0 in such a way that
(a) ∀m ∈ Z, n ∈ Z+, b

m
n = n

√
bm = ( n

√
b)m,

(b) 1a = 1,
(c) if b > 1, then ba = lub({b m

n : m ∈ Z, n ∈ Z+, m
n ≤ a}),

(d) if b < 1, then ba = lub({b m
n : m ∈ Z, n ∈ Z+, m

n ≥ a}),
(e) ∀ a1, a2 ∈ R, ba1 ba2 = ba1+a2 , and
(f) ∀ a1, a2 ∈ R, (ba1 )a2 = ba1a2 .
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Pseudocode

Pseudocode is an algorithm presentation format suggestive of the code for many
programming languages but lacking the formal syntax rules of any one lan-
guage. This appendix is designed to serve as a quick introduction to and easy
reference for the pseudocode used to present algorithms throughout this book.

To describe our pseudocode, we make use of some key words. Each algo-
rithm uses variables, whose values can be changed by the algorithm. However,
at any point in the implementation of an algorithm, each variable will have a
fixed value. Similarly, an expression, which may depend on constants, variables,
or the results of an algorithm, will also have a fixed value. Expressions that take
on the value True or False are called conditions.

Each algorithm in this book is preceded by a description of its assumed input
data. This includes the input variables as well as properties of those variables.
The start of the algorithm itself is signified by the word Algorithm.

The most basic element of an algorithm is an instruction. More generally, an
instruction block is a list of instructions preceded by \begin and followed by
\end, as shown in Figure B.1. However, an instruction block can consist of just
one instruction.

\begin

instruction 1.
.
.
.
instruction n.
\end.

Figure B.1 Instruction Block

Each algorithm in this book ends with an instruction of the form

Return variable.

The value of variable (or variables) at that ending point of the algorithm is what
we consider to be the result of the algorithm.

The most basic type of instruction that we use is an assignment instruction,
as shown in Figure B.2. It is with such an instruction that we assign a value to a
variable.

Let variable = expression.

Figure B.2 Assignment Instruction

630
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For example, the instruction

Let x = 2.

assigns the value 2 to the variable x. If the variable on the left-hand side of an
assignment instruction also appears on the right-hand side, then the value of the
variable prior to the instruction is used to evaluate the expression on the right-
hand side. The resulting value is then assigned to the variable on the left-hand
side. For example, the instruction block

\begin

Let x = 2.
Let x = 3x.
\end.

results in the value 6 being assigned to the variable x.

If condition, then
instruction block 1.

Otherwise,
instruction block 2.

Figure B.3 Conditional Instruction

A conditional instruction has the form shown in Figure B.3. If this instruc-
tion is entered with the value of condition being True, then instruction block 1 is
performed (and instruction block 2 is skipped). If the value of condition is False,
then instruction block 2 is performed (and instruction block 1 is skipped). If the
“Otherwise, instruction block 2” portion of a conditional instruction is omitted,
then nothing is performed when the value of condition is False. For example, if
the instruction

If x < 4, then
Let x = x + 1.

Otherwise,
Let x = x − 1.

is entered with the value x = 2, then it results in the value 3 being assigned to x.
If it is entered with the value x = 6, then it results in the value 5 being assigned
to x. In contrast, if the instruction

If x < 4, then
Let x = x + 1.

is entered with the value x = 6, then no action results (and the value x = 6 is
maintained).

A loop instruction is an instruction that enables us to iterate a step multiple
times in an algorithm. Moreover, the number of iterations can depend on the
values of variables set in the algorithm. We consider two types of loop instruc-
tions.

A for loop has the form shown in Figure B.4, where start value and end value

For variable = start value to end value,
instruction block.

Figure B.4 For Loop
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are integers with start value no bigger than end value. When it is entered, variable
is assigned the value start value, and the following two steps are performed: (1)
instruction block and (2) increase the value of variable by 1. As long as the value of
variable is no greater than end value, these two steps are repeated. For example,
suppose we have x = 1 and n = 3 when we enter the instruction

For i = 1 to n,
Let x = 2x.

Since n = 3, the step “Let x = 2x” will be performed three times. The first will
result in x = 2, the second in x = 4, and the third in x = 8. Thus, the final result
is that the value 8 is assigned to x. Note that when start value is no smaller than
end value, there is an analog of the for loop in Figure B.4 that uses “down to” in
place of “to” and decreases the value of variable by 1 upon each iteration.

A while loop has the form shown in Figure B.5. When it is entered, if condition
is True, then instruction block is performed. (Note that instruction block may cause
the value of condition to change.)

While condition,
instruction block.

Figure B.5 While Loop

As long as condition remains True, instruction block is repeated. The while loop
ends when condition becomes false. For example, suppose x = 2.78 when we
enter the instruction

While x > 1,
Let x = x − 1.

Since 2.78 > 1, we let x = 2.78 − 1 = 1.78. Since 1.78 > 1, we next let x =
1.78− 1 = 0.78. Since 0.78 �> 1, the final result is that x = 0.78.



Answers to Selected Exercises

Here we include the answers to the odd-numbered exercises from each section
and all of the exercises from the review sections. However, each answer listed
may be more brief than that required by its exercise. Students are expected to
flesh out the answers given to obtain the answers requested.

Chapter 0
1. 10. 3. 23. 5. 46.
7. 75. 9. 171. 11. 111011.
13. 1010100. 15. 1110101.
17. 100110000. 19. 10000000000.
21. Using T for Tails and H for Heads, we see the

16 possibilities.

T T T T
T T T H
T T H T
T T H H
T H T T
T H T H
T H H T
T H H H
H T T T
H T T H
H T H T
H T H H
H H T T
H H T H
H H H T
H H H H

23. 115. 25. 1679. 27. 16712.
29. 3529. 31. 23166. 33. 73.

35. 165. 37. 3b.
39. 75. 41. acdc.
43. (a) 1463. (b) 333. 45. (a) 54613. (b) 598b.
47. 100111. 49. 101011001100.
51. 2m.
53. A one followed by 2n zeros.
55. It is divisible by 4 if and only if it ends in 00.
57. 8m − 1.
59. The number is divisible by 7 if and only if the

sum of its digits is divisible by 7.

61. First rewrite the number in binary, and then
group the digits into blocks of size 4 to convert
to hexadecimal.

Chapter 1

Section 1.1

1. A true statement. 3. Not a statement.
5. p q p ∨ ¬q

F F T
F T F
T F T
T T T

7. p q r ¬ p → (q ∧ r)

F F F F
F F T F
F T F F
F T T T
T F F T
T F T T
T T F T
T T T T

9. p q r ( p → q) ∨ r

F F F T
F F T T
F T F T
F T T T
T F F F
T F T T
T T F T
T T T T

11. They differ in the two rows in which q is true.
13. They differ in the two rows in which p is true

and q is false.
A1
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15. p p → p

F T
T T

17. (a) p ¬ p ¬¬ p

F T F
T F T

(b) t ¬t f ¬ f

T F F T

19. p t t → p p → t

F T F T
T T T T

21. p q p ∨ q ¬(¬ p ∧ ¬q)

F F F F
F T T T
T F T T
T T T T

23. p q p → p ∨ q t

F F T T
F T T T
T F T T
T T T T

25. p q r ( p ∧ q) ∧ r p ∧ (q ∧ r) ( p ∨ q) ∨ r p ∨ (q ∨ r)

F F F F F F F
F F T F F T T
F T F F F T T
F T T F F T T
T F F F F T T
T F T F F T T
T T F F F T T
T T T T T T T

27. p q r ( p ⊕ q) ⊕ r p ⊕ (q ⊕ r)

F F F F F
F F T T T
F T F T T
F T T F F
T F F T T
T F T F F
T T F F F
T T T T T

29. p q r p ∧ (q ∨ r) ( p ∧ q) ∨ ( p ∧ r) p ∨ (q ∧ r) ( p ∨ q) ∧ ( p ∨ r)

F F F F F F F
F F T F F F F
F T F F F F F
F T T F F T T
T F F F F T T
T F T T T T T
T T F T T T T
T T T T T T T
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31. p q ¬( p ∧ q) ¬ p ∨ ¬q ¬( p ∨ q) ¬ p ∧ ¬q

F F T T T T
F T T T F F
T F T T F F
T T F F F F

33. p q ¬( p ⊕ q) p ↔ q

F F T T
F T F F
T F F F
T T T T

35. They differ when p is false, q is true, and r is
false.

37. They differ when p is true, q is false, and r is
true.

39. p q p ⊕ q ¬ p ⊕ ¬q

F F F F
F T T T
T F T T
T T F F

41. (a) ¬q → p. (b) q → ¬p. (c) ¬p → q .
(d) p ∧ q .

43. (a) r → p ∧ ¬q . (b) ¬r → ¬p ∨ q .
(c) ¬p ∨ q → ¬r . (d) p ∧ ¬q ∧ ¬r .

45. (a) If Ted fails, then Ted’s average is less
than 60. (b) If Ted passes, then Ted’s average
is at least 60. (c) If Ted’s average is at least 60,
then Ted passes. (d) Ted’s average is less than
60, and Ted passes.

47. (a) If George is going to a movie or going
dancing, then George feels well. (b) If George
is not going to a movie and not going dancing,
then George does not feel well. (c) If George
does not feel well, then George is not going to
a movie and not going dancing. (d) George
feels well, and George is not going to a movie
and not going dancing.

49. ¬( p ∨ ¬q ) ≡ ¬p ∧ ¬¬q ≡ ¬p ∧ q

51. Helen’s average is less than 90, or Helen is not
getting an A.

53. (a) p q r ( p ∧ q) → r ¬ p ∨ (q → r)

F F F T T
F F T T T
F T F T T
F T T T T
T F F T T
T F T T T
T T F F F
T T T T T

(b) p ∧ q → r ≡ ¬( p ∧ q ) ∨ r ≡
(¬p∨¬q ) ∨ r ≡ ¬p∨ (¬q ∨ r ) ≡ ¬p∨ (q → r ).

55. p ∧ (q ∨ r ∨ s) ≡ p ∧ (q ∨ (r ∨ s)) ≡ ( p ∧ q )∨
( p ∧ (r ∨ s)) ≡ ( p ∧ q ) ∨ (( p ∧ r ) ∨ ( p ∧ s)) ≡
( p ∧ q ) ∨ ( p ∧ r ) ∨ ( p ∧ s).

57. ( p∧q ∧¬r )∨ ( p∧¬q ∧r ) ≡ ( p∧ (q ∧¬r ))∨ ( p∧
(¬q∧r )) ≡ p∧((q∧¬r )∨(¬q∧r )) ≡ p∧(q⊕r ).

59. p ∧ (¬(q ∧ r )) ≡ p ∧ (¬q ∨ ¬r ) ≡
( p ∧ ¬q ) ∨ ( p ∧ ¬r ).

61. Since p ∧ q ∧ r → p ∧ q is a tautology, the
result follows from the Absorption Rule.

63. (i) p ∨ q ≡ ¬(¬p ∧ ¬q ) and p → q ≡
¬( p ∧ ¬q ). (ii) p ∧ q ≡ ¬(¬p ∨ ¬q ) and
p → q ≡ ¬p ∨ q . (iii) p ∧ q ≡ ¬( p → ¬q ) and
p ∨ q ≡ ¬p → q .

65. (a) ( P ∧ Q) ∨ ¬Q = S.
(b) P Q S

0 0 1
0 1 0
1 0 1
1 1 1

(c) Yes.
67. (a) P ∨ (¬Q ∧ R) = S.

(b) P Q R S

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

(c) No.
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69.
NOT

ORQ

P

S

R

AND

71. (a) ( P ∨ Q) ∧ ¬( P ∧ Q) = S. (b) ( P ∧ ¬Q)∨
(¬P ∧ Q) = S. The definition uses fewer gates.

Section 1.2

1. True. 3. True.
5. {2, 4, 6} 7. {{1}, {4}}
9. {x : x ∈ R and x3 − 4x2 + 5x − 6 = 0}, which

happens to equal {3}.
11. {n : n ∈ Z and n < −10}.
13. (0,∞). 15. [0, 0].
17. (1,∞). 19. (−1, 1).
21. True. 23. False.
25. True. 27. True.
29. ⊂, ⊆. 31. ⊆, =.
33. ∈, ⊂, ⊆. 35. Finite. |A| = 5.
37. Infinite. 39. Finite. |E | = 9.
41. Finite. |G| = 2.
43. If yes, then he should not. If no, then he

should. Hence, either way, there is a
contradiction.

45. False. 47. 2.
49. True. 51. 1.

Section 1.3

1. ∃n∈Z such that 1
n ∈Z.

3. ∀ x ∈ R, x2+ 1 > 0.
5. ∃n ∈ N such that ∀ x ∈ R, xn ≥ 0.
7. ∃ x ∈ R such that ∀ y ∈ R, if 2 ≤ y ≤ 3, then

1 ≤ xy < 2, or ∃ x ∈ R such that ∀ y ∈ [2, 3],
1 ≤ xy < 2.

9. ∃ x, y ∈ R such that x + y ∈ Z and xy �∈ Z.
11. ∀ x, y ∈ R, if x < y, then ex < e y.
13. ∃ x ∈ [−2, 2] such that x3 �∈ [0, 8]. Negation is

true.
15. ∃ x ∈ R+ such that x2 > 4 and x ≤ 2. Original

is true.
17. ∀ n ∈ Z, ∃m ∈ Z such that nm ≥ 1. Original is

true.

19. ∃m, n ∈ Z such that m+ n �∈ Z. Original is true.

21. ∀ n ∈ Z, 1
n �∈ Z.

23. ∃ x ∈ R such that x2 + 1 ≤ 0.
25. ∀ n ∈ N, ∃ x ∈ R such that xn < 0.
27. ∀ x ∈ R, ∃ y ∈ R such that 2 ≤ y ≤ 3 and

xy �∈ [1, 2).
29. ∀ x, y ∈ R, x + y �∈ Z or xy ∈ Z.
31. There is a student at Harvard University

whose age is at most 17.
33. There exists a truly great accomplishment that

is immediately possible.
35. There is such a thing as bad publicity.
37. (a) A real function f is not constant iff

∀ c ∈ R, ∃ x ∈ R such that f (x) �= c.
(b) ∃ x, y ∈ R such that f (x) �= f (y).

39. ∃ x, y ∈ R such that x < y and f (x) ≥ f (y).
41. ∃ x, y ∈ R such that x ≤ y and f (x) > f (y).
43. ∀M ∈ R, ∃ x ∈ R such that f (x) > M.
45. True. An if-then statement is true whenever its

hypothesis is false.
47. Say U = {a , b}. The statement is equivalent to

“p(a ) ∧ p(b).”
49. Say U = {a , b}. The logical equivalences are

equivalent to ¬[p(a ) ∧ p(b)] ≡ ¬p(a ) ∨ ¬ p(b)
and ¬[p(a ) ∨ p(b)] ≡ ¬p(a ) ∧ ¬p(b).

51. x is unbound.
53. It is true. 55. It is false.

Section 1.4

1. Ac = {4}, Bc = {1, 2}, A∩ B = {3}, A∪ B =
{1, 2, 3, 4}, A\B = {1, 2}, B\A= {4}, and
A�B = {1, 2, 4}.

3. Ac = (−∞, −1] ∪ [1,∞), Bc = (−∞, 0) ∪
(1,∞), A∩ B = [0, 1), A∪ B = (−1, 1],
A\B = (−1, 0), B\A= {1}, and A�B =
(−1, 0) ∪ {1}.

5. Ac = Z−, Bc = Z− ∪ {0}, A∩ B = Z+, A∪ B =
N, A\B = {0}, B\A= ∅, and A�B = {0}.
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7. Ac = [3,∞), Bc = (0, 2), A∩ B = [2, 3),
A∪ B = (0,∞), A\B = (0, 2), B\A= [3,∞),
and A�B = (0, 2) ∪ [3,∞).

9. Yes. 11. No.
13. {(1, 2), (1, 4), (3, 2), (3, 4)}.
15. {(3, 5), (5, 5), (7, 5), (9, 5)}.
17.

x

y

1

2 4

3

19.

x

y

1

�1
1�1

21.

x
1

�1

y 23.

x

y

25. {(1, 2, 1), (1, 2, 2), (1, 4, 1), (1, 4, 2), (3, 2, 1),
(3, 2, 2), (3, 4, 1), (3, 4, 2)}.

27. {(a , a , a ), (a , a , b), (a , b, a ), (a , b, b),
(b, a , a ), (b, a , b), (b, b, a ), (b, b, b)}.

29. {∅, {a}, {b}, {c}, {a , b}, {a , c}, {b, c}, {a , b, c}}.
31. {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3},

{2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},
{1, 2, 3, 4}}.

33. 1024.
35. ∅, {π}, (−2, 7], and Z.
37. False.
39. False.
41. ( A�B)�C = A�(B � C).

43. A∩ (B ∪ C) = ( A∩ B) ∪ ( A∩ C) and
A∪ (B ∩ C) = ( A∪ B) ∩ ( A∪ C).

45.

A B

C

U

A B

C

U

A∪ (B ∩ C) is the shaded portion of the left
diagram. ( A∪ B) ∩ ( A∪ C) is the doubly
shaded portion of the right diagram. Both
portions are the same.

47. B
A

B
A

A∪ B is the shaded portion of the left diagram.
B is shaded in the right diagram. Both
portions are the same.

49. A∩ ( Ac∪B∪C) = ( A∩Ac)∪ ( A∩B)∪ ( A∩C) =
∅ ∪ ( A∩ B) ∪ ( A∩ C) = ( A∩ B) ∪ ( A∩ C).

51. ( A∩ B ∩ Cc) ∪ ( A∩ Bc ∩ C) = ( A∩ (B ∩ Cc)) ∪
( A∩ (Bc ∩ C)) = A∩ ((B ∩ Cc) ∪ (Bc ∩ C)) =
A∩ ((B\C) ∪ (C\B)) = A∩ (B�C).

53. A∩ ((B ∩ C)c) = A∩ (Bc ∪ Cc) =
( A∩ Bc) ∪ ( A∩ Cc).

55. Since A∩ B ∩ C ⊆ A∩ B, the Absorption Rule
yields the desired result.

57. Yes, as sets, but not as lists.

59. disjoint[x_, y_] := (Intersection[x, y] == {}).
61. symmDiff[x_, y_] := Union[Complement[x, y], Complement[y, x]].

63. In both cases, intersect is performed before
union.

65. They test whether A is a subset of B. The first
should be more efficient, since the power set
can be much larger than the given set and thus
expensive to compute.

67. compU := x -> U minus x;.

Section 1.5

1. p q p → q ¬q ¬ p

F F T T T
F T T F
T F F T
T T T F
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3. p q r p → r q → r p ∨ q r

F F F T T F
F F T T T F
F T F T F T
F T T T T T T
T F F F T T
T F T T T T T
T T F F F T
T T T T T T T

5. p q p ∧ q p

F F F
F T F
T F F
T T T T

7. p q p ∧ q

F F
F T
T F
T T T

9. Invalid. Consider when p is false and q is true.
11. Valid.
13. Invalid. Consider when p is true and q is true.
15. (a) p q r p → r q → r p ∨ q → r

F F F T T T
F F T T T T
F T F T F
F T T T T T
T F F F T
T F T T T T
T T F F F
T T T T T T

(b) Statement Form Justification

1. p → r Given
2. q → r Given
3. p ∨ q Given
4. p ∨ q → r (1), (2), Part (a)
5. ∴ r (3), (4), Direct

Implication

(c) Statement Form Justification

1. p → s Given
2. q → s Given
3. r → s Given
4. p ∨ q ∨ r Given
5. p ∨ q → s (1), (2), Part (a)
6. p ∨ q ∨ r → s (3), (5), Part (a)
7. ∴ s (4), (6), Direct

Implication

17. Invalid, since its argument form p ∨ q ; ∴ p is
invalid.

19. Invalid, since its argument form p ∨ ¬p; ¬p;
∴ q is invalid.

21. Statement Form Justification

1. p → q Given
2. q → r Given
3. p Given
4. p → r (1), (2), Transitivity of→
5. ∴ r (3), (4), Direct Implication

23. Statement Form Justification

1. p → r Given
2. p ∧ q Given
3. p (2), In Particular
4. ∴ r (1), (3), Direct Implication

25. Statement Form Justification

1. p ∧ (q ∨ r ) Given
2. ( p ∧ q ) → s Given
3. ( p ∧ r ) → s Given
4. ( p ∧ q ) ∨ ( p ∧ r ) (1), Distributivity
5. ∴ s (2), (3), (4), Two Separate

Cases

27. Statement Form Justification

1. p → q Given
2. p Given
3. ¬p ∨ q (1), Substitution of

Equivalent
4. ¬¬p (2), Double Negative
5. ∴ q (3), (4), Eliminating

a Possibility

29. Statement Form Justification

1. ∀ x ∈ U , p(x) → q (x) Given
2. a ∈ U Given
3. ¬q (a ) Given
4. p(a ) → q (a ) (1),(2), Principle

of Specification
5. ∴ ¬p(a ) (3),(4),

Contrapositive
Implication
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31. Statement Form Justification

1. ∀ x ∈ U , p(x) → q (x) Given
2. ∀ x ∈ U , ¬q (x) Given
3. Let a ∈ U be arbitrary. Assumption
4. p(a ) → q (a ) (1),(3), Principle

of Specification
5. ¬q (a ) (2),(3), Principle

of Specification
6. ¬p(a ) (4),(5),

Contrapositive
Implication

7. ∴ ∀ x ∈ U , ¬p(x) (3),(6), Principle
of Generalization

33. Statement Form Justification

1. ∀ x ∈ U , p(x) Given
2. ∀ x ∈ U , q (x) Given
3. a ∈ U Given
4. p(a ) (1),(3), Principle of

Specification
5. q (a ) (2),(3), Principle of

Specification
6. ∴ p(a ) ∧ q (a ) (4),(5), Obtaining And

35. Statement Form Justification

1. ∀ x ∈ U , p(x) Given
2. ∀ x ∈ U , q (x) Given
3. Let a ∈ U be arbitrary. Assumption
4. p(a ) ∧ q (a ) (1),(2),(3),

Exercise 33
5. ∴ ∀ x ∈ U , p(x) ∧ q (x) (3),(4), Principle

of Generalization

37. Statement Form Justification

1. ∀ x ∈ U , p(x) ∨ q (x) Given
2. a ∈ U Given
3. q (a ) → r (a ) Given
4. p(a ) ∨ q (a ) (1),(2), Principle

of Specification
5. p(a ) → p(a ) ∨ r (a ) Tautology
6. r (a ) → p(a ) ∨ r (a ) Tautology
7. q (a ) → p(a ) ∨ r (a ) (3),(6),Transitivity of→
8. ∴ p(a ) ∨ r (a ) (4),(5),(7),

Separate Cases

39. Let U = Z, p(n)= “n2 < 0” and q (n)= “n2≥ 0.”
41. Let U = R, p(x) = “x ≥ 0” and q (x) = “x ≤ 0”

and a = 0.

43. Invalid. The form of the argument

∀ x ∈ U , p(x) → q (x)
r

q (2)
∴ p(2)

is invalid.
45. Valid. The form of the argument

∀ x ∈ U , p(x) → q (x)
a ∈ U
p(a ) ∨ r (a )
∴ q (a ) ∨ r (a )

is valid. Note that U = Z, p(n) = “n < 0,”
q (n) = “− n > 0,” and r (n) = “n = 0.”

47. If ∀ x, y ∈ U , p(x, y) holds and a , b ∈ U , then
p(a , b) holds.

Chapter 1 Review

1. It is a true statement.
2. p q p → ¬q

F F T
F T T
T F T
T T F

3. p q p ∨ q (¬ p ∧ q) ∨ p

F F F F
F T T T
T F T T
T T T T

4. p q ¬( p ∧ ¬q) ¬ p ∨ q

F F T T
F T T T
T F F F
T T T T

5. p q ( p → q) ∨ (q → p)

F F T
F T T
T F T
T T T
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6. Yes. 7. Yes.
8. (a) p ∨ ¬q → p. (b) ¬p ∧ q → ¬p. (c)

¬p → ¬p ∧ q . (d) f .
9. If the program compiles, then the program

does not contain a syntax error.
10. p ∧ (¬q ∨ r )
11. Steve is not doing his homework and Steve is

going to the basketball game.
12. ¬p ∧ (q ∨ ¬r ) ≡ (¬p ∧ q ) ∨ (¬p ∧ ¬r ) ≡

(¬p ∧ q ) ∨ ¬( p ∨ r ).
13. ( p ∧ q ∧ ¬r ) ∨ (¬p ∧ q ∧ ¬r ) ≡

( p ∧ (q ∧ ¬r )) ∨ (¬p ∧ (q ∧ ¬r )) ≡
( p ∨ ¬p) ∧ (q ∧ ¬r ) ≡ t ∧ (q ∧ ¬r ) ≡ q ∧ ¬r .

14. (( P ∧ Q) ∨ ¬Q) ∧ R = S.

P Q R S

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

15.

NOT

OR
Q

R
S

P

AND

16. True. 17. False. 18. False.

19. True. 20. False. 21. True.
22. False. 23. False. 24. True.

25. False. 26. {4, 6, 8, 10, 12}.
27. {x : x ∈ R and x5 + x4 + x3 + x2 + x + 1 = 0}.

It happens to be {−1}.
28. {x : x ∈ R and − 3 < x ≤ −1}
29. 2. 30. Read Example 1.22.
31. ∀ n ∈ Z, 2n ∈ Z.
32. ∃n ∈ Z such that 2n > 1000.
33. ∀ x, y ∈ R, if y �= 0, then x

y ∈ R.

34. ∀ x ∈ R, if x ∈ (1, 4], then 1
x ∈ [ 1

4 , 1).

35. ∀m, n ∈ Z, m+ n ∈ Z.
36. ∀ x ∈ R, ∃ y ∈ R such that y3 = x.

37. ∃ x ∈ N such that x2 �∈ N or 1
2x ∈ N.

38. ∀ x ∈ R, x2 − x + 1 �= 0.
39. ∃ x ∈ R such that x3 < 0 and x ≥ 0.
40. ∃ x, y ∈ R such that (x + y)2 �= x2 + 2xy+ y2.
41. ∀ n ∈ Z, n < 0 and n2 − 1 ≤ 0.
42. ∃ x ∈ R such that ∀ n ∈ Z, xn ≤ 0.
43. Truth is always popular, or it is sometimes

wrong.
44. (a) {2}. (b) {1, 2, 3, 5}. (c) {5}. (d) {1, 3, 5}.

(e) {(1, 2), (1, 5), (2, 2), (2, 5), (3, 2), (3, 5)}.
(f) {∅, {2}, {5}, {2, 5}}.

45. (−∞, −1]. 46. {0}.
47. {1, 2, 3, 4, 6, 8}. 48. [4, 5].
49. {a , b, c, d, e}. 50. No.
51. {(x, p), (x, q ), (y, p), (y, q ), (z, p), (z, q )}.
52.

x

y

1

1

�1

53. {(1, 1)}.

54. {∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.
55. ( Ac ∩ Bc)c = ( Ac)c ∪ (Bc)c = A∪ B.

56. Ac ∩ (B ∪ Cc) = ( Ac ∩ B) ∪ ( Ac ∩ Cc) =
( Ac ∩ B) ∪ ( A∪ C)c .

57. ( A∩ Bc) ∪ ( A∩ B) = A∩ (Bc ∪ B) = A∩U = A.
58. ( Ac∩B∩Cc)∪( Ac∩(Bc∪C)) = ( Ac∩(B∩Cc))∪

( Ac ∩ (Bc ∪ C)) = Ac ∩ ((B ∩ Cc) ∪ (Bc ∪ C)) =
Ac ∩ ((B ∩ Cc) ∪ (B ∩ Cc)c) = Ac ∩ U = Ac .

59. p q r p ∧ q p → r q ∧ r

F F F F T
F F T F T
F T F F T
F T T F T
T F F F F
T F T F T
T T F T F
T T T T T T
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60. p q r p → q q → r r → p p ↔ r

F F F T T T T
F F T T T F
F T F T F T
F T T T T F
T F F F T T
T F T F T T
T T F T F T
T T T T T T T

61. Valid. 62. Valid.

63. Invalid. Consider when p is false, q is true,
and r is false.

64. The argument is invalid, since its form
p ∨ q ; q ; ∴ ¬p is invalid.

65. Statement Form Justification

1. p → (q ∨ r ) Given
2. ¬q ∧ ¬r Given
3. ¬(q ∨ r ) (2), De Morgan's Law
4. ∴ ¬p (1), (3), Contrapositive

Implication

66. Statement Form Justification

1. ¬r Given
2. p → q Given
3. q → r Given
4. p → r (2), (3), Transitivity of→
5. ∴ ¬p (1), (4), Contrapositive

Implication

67. Statement Form Justification

1. ∀ x ∈ U , p(x) ∧ q (x) Given
2. Let a ∈ U be arbitrary. Assumption
3. p(a ) ∧ q (a ) (1),(2), Principle

of Specification
4. p(a ) (3), In Particular
5. ∴ ∀ x ∈ U , p(x) (2),(4), Principle

of Generalization
68. Statement Form Justification

1. ∀ x ∈ U , p(x) ∨ q (x) Given
2. a ∈ U Given
3. ¬q (a ) Given
4. p(a ) ∨ q (a ) (1), (2), Principle

of Specification
5. ∴ p(a ) (3),(4), Eliminating

a Possibility

69. Statement Form Justification

1. ∀ x ∈ U , p(x) ∨ ¬q (x) Given
2. ∀ x ∈ U , q (x) Given
3. Let a ∈ U be arbitrary. Assumption
4. p(a ) ∨ ¬q (a ) (1),(3), Principle

of Specification
5. q (a ) (2),(3), Principle

of Specification
6. ¬¬q (a ) (5), Double

Negative
7. p(a ) (4),(6), Eliminating

a Possibility
8. ∴ ∀ x ∈ U , p(x) (3),(7), Principle

of Generalization
70. It has the form

∀ x ∈ U , p(x) ∨ q (x)
∀ x ∈ U , q (x) ∨ r (x)
∴ ∀ x ∈ U , p(x) ∨ r (x)

which can be seen to be invalid.

Chapter 2

Section 2.1

1. Use y = 3x − 5.
3. A= {2, 4}.
5. A= B = {1}.
7. n = −3.
9. m = −3, n = 2.
11. A= B = Z.
13. Proof. The polynomial x2 − 1 factors as

(x + 1)(x − 1). From the zero multiplication
property, the solutions to the equation
(x + 1)(x − 1) = 0 occur when x + 1 = 0 or
x − 1 = 0. That is, x = −1 and x = 1 are the
two distinct real roots of x2 − 1.

15. 2±
√
−16

2 �∈ R. Note that x2 − 2x + 5 > 0 for all
x ∈ R.

17. (a) $12,366.19. (b) Let P = 4900, and note that
4900(1.075)10 = 10099.05 > 10000.

19. A= ∅.
21. (−2, −1) ∪ (1, 2) is not an interval.

23. Counterexample:
(

1
2

)2
≤ 1

2 .

25. Counterexample: 32 > 23.
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27. x = −11.
29. 0 < 2π but sin(0) �< sin(2π).
31. False, since 0 is nonnegative but not positive.
33. False. A= {1}, B = {2, 3}.
35. Let A= {1, 2}, B = {1, 3}, C = {1}.
37. Proof. Observe that ∅ ∪ {3} = {3} = ∅� {3},

{1} ∪ {3} = {1, 3} = {1}� {3}, and
{1, 2} ∪ {3} = {1, 2, 3} = {1, 2}� {3}.

39. Observe that 9(2) = 18 and 1+ 8 = 9;
9(3) = 27 and 2+ 7 = 9; 9(4) = 36 and
3+ 6 = 9; 9(5) = 45 and 4+ 5 = 9; 9(6) = 54
and 5+ 4 = 9; 9(7) = 63 and 6+ 3 = 9;
9(8) = 72 and 7+ 2 = 9; 9(9) = 81 and
8+ 1 = 9.

41. n 11n Hundreds − Tens + Ones

19 209 2− 0+ 9 = 11 = 11(1)
20 220 2− 2+ 0 = 0 = 11(0)
21 231 2− 3+ 1 = 0 = 11(0)
22 242 2− 4+ 2 = 0 = 11(0)
23 253 2− 5+ 3 = 0 = 11(0)
24 264 2− 6+ 4 = 0 = 11(0)
25 275 2− 7+ 5 = 0 = 11(0)
26 286 2− 8+ 6 = 0 = 11(0)
27 297 2− 9+ 7 = 0 = 11(0)
28 308 3− 0+ 8 = 11 = 11(1)
29 319 3− 1+ 9 = 11 = 11(1)

43. 3, 7, 31, and 127 are prime.
45. 6 �→ 3 �→ 10 �→ 5 �→ 16 �→ 8 �→ 4 �→ 2 �→ 1.

Section 2.2

1. Proof. Let x ∈ R+. So x > 0. Multiplying by −1
gives −x < 0. So −x ∈ R−.

3. Proof. Suppose x ∈ R and x ∈ (2, 4). That is,
2 < x < 4. Multiplication by 2 gives
4 < 2x < 8. Thus, 2x ∈ (4, 8).

5. Counterexample: When x = 1
4 , we have√

1
4 �< 1

4 .

7. Counterexample: When x = −3, we have
x < 2 and x2 ≥ 4.

9. Proof. Suppose x ∈ R and x < −2. Since x < 0,
multiplication by x gives x2 > −2x. Since
−2 < 0, multiplying x < −2 by −2 gives
−2x > (−2)2. Transitivity of > gives
x2 > (−2)2. That is, x2 > 4.

11. Proof. Suppose R > 2. So 2I < RI = 10.
Division by 2 gives I < 5.

13. Proof. Suppose f is a periodic real function. So
we have p ∈ R+ such that ∀ x ∈ R, f (x + p) =
f (x). Observe that ∀ x ∈ R, f 2(x + p) =
[ f (x + p)]2 = [ f (x)]2 = f 2(x). So f 2 is
periodic.

15. Proof. Suppose f is a constant real function. So
we have c ∈ R such that ∀ x ∈ R, f (x) = c.
Observe that ∀ x ∈ R, (2 f )(x) = 2 f (x) = 2c. So
2 f is constant.

17. Proof. Suppose f and g are nondecreasing real
functions. Suppose x ≤ y are real numbers.
Observe that ( f +g)(x) = f (x) + g(x) ≤
f (y) + g(y) = ( f +g)(y). So f +g is nonde-
creasing.

19. Sketch. If ∀ x ∈ R, f (x) = c and g(x) = d, then
∀ x ∈ R, ( f g)(x) = f (x)g(x) = cd.

21. Proof. Suppose f is periodic. So we have
p ∈ R+ such that ∀ x ∈ R, f (x + p) = f (x).
Observe that ∀ x ∈ R, ( f + c)(x + p) =
f (x + p) + c = f (x) + c = ( f + c)(x). So f + c
is periodic.

23. Proof. Suppose f is increasing. Suppose x < y
are real numbers. So f (x) < f (y). Since c > 0,
multiplication by c gives c f (x) < c f (y). That
is, (c f )(x) < (c f )(y). So c f is increasing.

25. Proof. Suppose x ∈ R+. So x > 0. That is,
x �≤ 0. In particular, x �< 0. Hence, x �∈ R−. That
is, x ∈ (R−)c .

27. Proof. Let A be a square. So A is a rectangle.
Hence, A is a parallelogram.

29. Proof. Suppose x ∈ A. Hence, x ∈ A or x ∈ B.
So x ∈ A∪ B.

31. Proof. Suppose A⊆ A∩ B and suppose
x ∈ A. It follows that x ∈ A∩ B. That is, x ∈ A
and x ∈ B. In particular, x ∈ B. Therefore,
A⊆ B.

33. Proof. Suppose A⊆ B. Suppose x ∈ A∩ C . So
x ∈ A and x ∈ C . Since x ∈ A and A⊆ B, we
get x ∈ B. So x ∈ B and x ∈ C . Thus, x ∈ B ∩C .

35. x ∈ ( A∩ B) ∩ C iff (x ∈ A∧ x ∈ B) ∧ x ∈ C iff
x ∈ A∧ (x ∈ B ∧ x ∈ C) iff x ∈ A∩ (B ∩ C).

37. x ∈ A∩ B iff x ∈ A∧ x ∈ B iff x ∈ B ∧ x ∈ A iff
x ∈ B ∩ A.

39. Counterexample: Let A= {1} and B = {2}.
Since A× B = {(1, 2)} and B × A= {(2, 1)}, we
see that A× B �= B × A.
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41. x ∈ A∪ (B ∩ C) iff x ∈ A∨ (x ∈ B ∧ x ∈ C) iff
(x ∈ A∨ x ∈ B) ∧ (x ∈ A∨ x ∈ C) iff
x ∈ ( A∪ B) ∩ ( A∪ C).

43. x ∈ ( A∩ B)c iff ¬(x ∈ A∩ B) iff
¬(x ∈ A∧ x ∈ B) iff ¬(x ∈ A) ∨ ¬(x ∈ B) iff
x ∈ Ac ∨ x ∈ Bc iff x ∈ Ac ∪ Bc .

Section 2.3

1. Proof. (→) Suppose x ∈ R−. So x < 0.
Multiplication by −1 gives −x > 0. That is,
−x ∈ R+. (←) Suppose −x ∈ R+. So −x > 0.
Multiplication by −1 gives x= (−1)(−x) < 0.
That is, x ∈ R−.

3. Sketch. x = 2x ↔ 0 = 2x − x = x.
5. Proof. (→) Suppose x3 > 0. Note x �= 0 (since

03 = 0). So x2 > 0 and 1
x2 > 0. Multiplying both

sides of x3 > 0 by 1
x2 gives x > 0. (←) Suppose

x > 0. Since x2 > 0, multiplication by x2 gives
x3 > 0.

7. Sketch. 4− x < 2 iff −x < −2 iff x > 2.
9. Sketch. x4 − 16 = (x2 + 4)(x2 − 4) and

x2 + 4 �= 0.
11. Proof. (→) Done in Exercise 15 from

Section 2.2. (←) Suppose 2 f is constant. So we
have c ∈ R such that ∀ x ∈ R, 2 f (x) = c. Thus,
∀ x ∈ R, f (x) = c

2 . So f is constant.

13. Proof. (→) Suppose f is bounded above. So
we have M ∈ R such that ∀ x ∈ R, f (x)≤M.
Observe that ∀ x ∈ R, ( f + 1)(x) = f (x) + 1 ≤
M+ 1. So f + 1 is bounded above. (←)
Suppose f + 1 is bounded above. So we have
M ∈ R such that ∀ x ∈ R, ( f + 1)(x) ≤ M. That
is, ∀ x ∈ R, f (x) + 1 ≤ M. So ∀ x ∈ R, f (x) ≤
M− 1. Thus, f is bounded above.

15. Sketch. (→) If ∀ x ∈ R, L ≤ f (x) ≤ M, then
∀ x ∈ R, f 2(x) ≤ max{L2, M2}. (←) If
∀ x ∈ R, f 2(x) ≤ M, then ∀ x ∈ R,
−√M ≤ f (x) ≤ √M.

17. Sketch. If f is periodic with period p, then
(2 f )(x+ p) = 2 · f (x+ p) = 2 · f (x) = (2 f )(x).
If 2 f is periodic with period p, then f (x+ p) =
1
2 · (2 f )(x + p) = 1

2 · (2 f )(x) = f (x).

19. Sketch. If 20 points are scored, then number of
touchdowns is at most 2. Considering the cases
of 0, 1, or 2 touchdowns, only 2 is possible.

21. x > 0 and −2 ≤ x ≤ 2 if and only if 0 < x ≤ 2.
23. Suppose A⊆ B. Show that A∩ B ⊆ A and

A⊆ A∩ B.

25. Proof. (⊆) Suppose x ∈ ( A\C) ∩ B. So x ∈ A\C
and x ∈ B. Hence x ∈ A, x �∈ C , and x ∈ B.
Since x ∈ B and x �∈ C , we have x ∈ B\C .
Thus x ∈ A and x ∈ B\C . That is x ∈ A∩ B\C .
(⊇) Essentially, reverse the previous
argument.

27. Suppose A∩ B = A∩ C . Show that
A∩ B ∩ C ⊆ A∩ B and A∩ B ⊆ A∩ B ∩ C .

29. Proof. (⊆) Suppose x ∈ ( A\B)\C . So x ∈ A\B
and x �∈ C . So x ∈ A and x ∈ Bc ∩ Cc . Since
x �∈ (Bc ∩ Cc)c , De Morgan’s Law tells us that
x �∈ B ∪ C . Since x ∈ A and x �∈ B ∪ C , we have
x ∈ A\(B ∪ C). (⊇) Essentially, reverse the
previous argument.

31. Proof. Suppose A⊆ B and (x, y) ∈ A2. Since
x, y ∈ A and A⊆ B, it follows that x, y ∈ B.
Hence, (x, y) ∈ B2.

33. Proof. (⊆) Suppose (x, y) ∈ (U × B)\ ( A×B).
So (x, y) ∈ U × B and (x, y) �∈ A× B. We have
(x ∈ U and) y ∈ B. Since (x, y) �∈ A× B, it must
be that x �∈ A. That is, x ∈ Ac . Hence (x, y) ∈
Ac × B. (⊇) Suppose (x, y) ∈ Ac × B. So x ∈ Ac

and y ∈ B. Since x �∈ A, we get (x, y) �∈ A× B.
Since (x, y) ∈ U ×B, we have (x, y) ∈ (U × B)\
( A× B). Thus, (U × B)\( A× B) = Ac × B.

35. (x, y) ∈ A× (B ∩ C) iff x ∈ A∧ y ∈ B ∧ y ∈ C
iff x ∈ A, y ∈ B ∧ x ∈ A, y ∈ C iff (x, y) ∈
( A× B) ∩ ( A× C).

37. Proof. (→) Suppose A× C = B × C . Since
C �= ∅, we have some y ∈ C . (⊆) Suppose
x ∈ A. Since (x, y) ∈ A× C , it follows that
(x, y) ∈ B × C . So x ∈ B. (⊇) Similar. (←)
Suppose A= B. (⊆) Suppose (x, y) ∈ A× C .
So x ∈ A and y ∈ C . Since A= B, we have
x ∈ B. So (x, y) ∈ B × C . (⊇) Similar.

39. Proof. Suppose S ∈ P( Ac)\{∅}. So S ⊆ Ac and
S �= ∅. Since S �= ∅, we have some x ∈ S. Since
S ⊆ Ac , we have x ∈ Ac . That is, x ∈ S and
x �∈ A. So S � A. Therefore, S �∈ P( A). That is,
S ∈ P( A)c .

41. Sketch. Suppose S ⊆ A∩ B. So S ⊆ A.
Similarly, S ⊆ B. Thus S ∈ P( A) ∩ P(B).

43. Let r be the average speed over the entire trip,
let r1 be the average speed over the first lap,
and let r2 be the average speed over the second
lap. Observe that 2

r = 1
r1
+ 1

r2
. (a) r = 48 mph.

(b) 2r1r2

r1+r2
= r = 60 if and only if r1 = 30r2

r2−30 > 30.
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Section 2.4

1. Proof. Suppose not. Let s be the smallest
element of (1, 2). Observe that s+1

2 is a smaller
element of (1, 2). (Think about it.) This is a
contradiction.

3. Sketch. If L were the largest element, then
L + 1 would be larger.

5. Proof. Let A be a set, and suppose A∩ ∅ �= ∅.
So we have an element x ∈ A∩ ∅. Hence, x ∈ A
and x ∈ ∅. However, x ∈ ∅ is impossible. This
is a contradiction. So it must be that
A∩ ∅ = ∅.

7. Sketch. Suppose (0, 1] has finite cardinality n.
The list 1

2 , 1
22 , . . . , 1

2n+1 of numbers in (0, 1] is
then too long.

9. Sketch. Suppose {(x, y) : x, y ∈ R and y = √x}
has finite cardinality n. The list of elements
(1, 1), (4, 2), . . . , ((n+ 1)2, n+ 1) is then too
long.

11. Proof. Suppose (1, 0) �= ∅. So there is a real
number x such that 1 < x < 0. In particular,
1 < 0. This is a contradiction.

13. Proof. Suppose R+ ∩ R− �= ∅. So there is a real
number x such that x ∈ R+ and x ∈ R−.
However, it is impossible to have both x > 0
and x < 0.

15. (a) Sketch. Suppose to the contrary that Tracy
wins the election. So every other candidate
must have also received fewer than 1

n of the
votes. However, the total of the fractions of the
votes for the n candidates would then be less
than n · 1

n = 1, which is impossible.
(b) Sketch. Suppose to the contrary that Tracy
comes in last. So every other candidate must
have also received more than 1

n of the votes.
However, the total of the fractions of the votes
for the n candidates would then be more than
n · 1

n = 1, which is impossible.
17. Proof. Suppose b > a are real numbers. Since

a+b
2 ∈ (a , b), we see that (a , b) �= ∅.

19. Proof. Suppose A �= ∅. So we have an element
x ∈ A. Thus (x, x) ∈ A2. Hence A2 �= ∅.

21. Proof. Suppose A⊆ B. Suppose (x, y) ∈ A2.
Since x ∈ A and y ∈ A and A⊆ B, we get
x ∈ B and y ∈ B. That is, (x, y) ∈ B2.

23. Proof. Suppose A× B �= ∅. So we have some
element (x, y) ∈ A× B. In particular, x ∈ A. So
A �= ∅.

25. If A= B, then A⊆ B.
27. If A= B, then P( A) = P(B).
29. If |A| = m and |B| = n, then |A× B| = mn.
31. Proof. Suppose to the contrary that there are

two distinct lines l and m that intersect in two
or more points. That is, we have distinct points
P and Q in their intersection. Since both l and
m contain P and Q, we must have l = m, by the
uniqueness assertion in Euclid’s First Postulate.

33. (a) If we have x, y ∈ R with x < y and 0 <

f (x) ≤ f (y), then f 2(x) ≤ f 2(y). (b) Yes.
35. If we have M ∈ R such that ∀ x ∈ R, f (x) ≤ M,

then ∀ x ∈ R, ( f + 100)(x) ≤ M+ 100.
37. Proof. Suppose f is increasing. (Goal: f is not

periodic.) Suppose p ∈ R+. Since f (0+ p) >

f (0), it cannot be that f is periodic.
39. The converse, “If f is constant, then f 2 is

constant,” is easy to prove.
41. We prove the contrapositive. If x �= 0, then

x2 > 0. In particular, x2 �= 0.
43. Proof. Suppose not. So we have some x > 0

with 1
x < 0. Hence 1 = x · 1

x < 0. This is a
contradiction.

45. Proof. Suppose not. So we have some
x ∈ (−∞, −1) ∩ (1,∞). That is, x < −1 and
x > 1. Hence, 1 < x < −1, which is a
contradiction.

Section 2.5

1. Proof. Suppose A⊆ B and C ⊆ D. (Goal:
A∪ C ⊆ B ∪ D.) Suppose x ∈ A∪ C . That is,
x ∈ A or x ∈ C . Case 1: x ∈ A. Since A⊆ B,
we get x ∈ B. So x ∈ B or x ∈ D. Hence,
x ∈ B ∪ D. Case 2: x ∈ C . Since C ⊆ D, we get
x ∈ D. So x ∈ B or x ∈ D. Hence, x ∈ B ∪ D. In
either case, x ∈ B ∪ D. Thus, A∪ C ⊆ B ∪ D.

3. Sketch. Suppose A⊆ B. (⊆) Suppose x ∈
A∪ B. If x ∈ A, then x ∈ B. If x ∈ B, then
x ∈ B. (⊇) Suppose x ∈ B. Hence, x ∈ A∪ B.

5. Proof. (⊆) A∪ Ac ⊆ U since everything is in U .
(⊇) Suppose x ∈ U . Case 1: x ∈ A. We have
x ∈ A or x ∈ Ac . So x ∈ A∪ Ac . Case 2: x �∈ A. So
x ∈ Ac . We have x ∈ A or x ∈ Ac . So x ∈ A∪ Ac .
In either case, x ∈ A∪ Ac . Hence, U ⊆ A∪ Ac .

7. Sketch. A∪ U ⊆ U can be seen through cases.
U ⊆ A∪ U is straightforward.

9. Sketch. (→) Suppose A∪ B ⊆ C . So
A⊆ A∪ B ⊆ C and B ⊆ A∪ B ⊆ C . (←)
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Suppose A⊆ C , B ⊆ C and x ∈ A∪ B. If x ∈ A,
then x ∈ C . If x ∈ B, then x ∈ C .

11. Proof. Suppose x ∈ A�B. We use the charac-
terization of � displayed after Definition 1.18.
That is, x ∈ ( A\B) ∪ (B\A). So x ∈ A\B or
x ∈ B\A. If x ∈ A\B, then x ∈ A. If x ∈ B\A,
then x ∈ B. In either case, x ∈ A∪ B.

13. Sketch. (⊆) Suppose x ∈ A∪ (B\C).
Case 1: x ∈ A. We have x ∈ A∪ B and x �∈ C\A.
Case 2: x ∈ B\C . We have x ∈ A∪ B and
x �∈ C\A. (⊇) Suppose x ∈ ( A∪ B)\(C\A).
Thus x ∈ A or x ∈ B, and x �∈ C or x ∈ A. Case
1: x ∈ A. We have x ∈ A∪ (B\C). Case 2: x �∈ A.
We have x ∈ A∪ (B\C).

15. (x, y) ∈ ( A× B)c iff x ∈ Ac ∨ y ∈ Bc iff
(x, y) ∈ ( Ac × U) ∪ (U × Bc).

17. x ∈ A∩ (B�C) iff x ∈ A∧ (x ∈ B ⊕ x ∈ C) iff
x ∈ A∩ B ⊕ x ∈ A∩C iff x ∈ ( A∩ B)� ( A∩C).

19. Sketch. Suppose x ∈ ( A∪ B)\C . If x ∈ A, then
x ∈ A. If x ∈ B, then x ∈ B\C .

21. Sketch. Suppose S ∈ P( A) ∪ P(B). That is,
S ⊆ A or S ⊆ B. In either case, S ⊆ A∪ B.

23. Sketch. If bridge 2 is taken next, then bridge 3
must follow, with bridge 4 after that, leaving
the tourist on the wrong side of the Tiber with
no way to return. It bridge 4 is taken next, then
bridge 3 must follow, with bridge 2 after that,
leaving the tourist on the wrong side of the
Tiber with no way to return.

25. Sketch. 1− 2x ≥ 0 iff x ≤ 1
2 . Also, 1− 2x < 0

iff x >
1
2 . In the second case, −(1− 2x) =

2x − 1.
27. Sketch. x2 + 2ax + a2 = 0 iff

x = −2a±
√

4a2−4a2

2 = −a . Also, x + 3 = 0 iff
x = −3. Either −a = −3 or not.

29. Sketch. If x ≥ 0, then |x|2 = x2. If x < 0, then
|x|2 = (−x)2 = x2.

31. Sketch. If x, y ≥ 0, then |xy| = xy = |x||y|. If
x ≤ 0, y ≥ 0, then |xy| = −xy = (−x)y = |x||y|.
If x ≥ 0, y ≤ 0, then |xy| = −xy =
x(−y) = |x||y|. If x, y ≤ 0, then |xy| = xy =
(−x)(−y) = |x||y|.

33. Sketch. (→) Prove the contrapositive. (←)
If x < −1 or x > 1, then x2 > 1, whence
x4 > 1.

35. Sketch. Suppose x2 − y2 = 0. So x + y = 0 or
x − y = 0. Therefore, x = ±y.

37. Sketch. If xy ≥ 0, then |x + y| = |x| + |y|.
If xy < 0, then |x + y| ≤ max{|x|, |y|} ≤
|x| + |y|.

39. Sketch. Let An = 180(n−2)
n . If n ≥ 7, then

128 < An < 180 and no multiple of An can
equal 360. If n = 5, then no multiple of
A5 = 108 can equal 360. Equilateral triangles
(n = 3), squares (n = 4), and regular hexagons
(n = 6) certainly do tile the floor as shown.

Chapter 2 Review

1. Sketch. x2 + y2 = 25 fits each point.
2. Sketch. x4 − 2x2 − 8 = (x2 + 2)(x2 − 4) and

x2 + 2 �= 0.
3. Sketch. Let m = 20, n = 5.
4. Sketch. Let x = 2.
5. Sketch. Let A= ∅, B = C = Z.
6. Sketch. Let A= {1, 2}.
7. An 85 on the third test yields an average of 75.

8. False. Consider f (x) =
{

1 if x ≥ 0,
−1 if x < 0.

9. Sketch. Let A= B = Z, C = ∅.
10. Proof. Observe that (−1)4 = 1 = (−1)2,

04 = 0 = 02, and 14 = 1 = 12.
11. Proof. If A= {1}, then A3 = {(1, 1, 1)} and

|A3| = 1. If A= {2}, then A3 = {(2, 2, 2)} and
|A3| = 1.

12. Proof. Since (−1, 0) ∈ Z× N and (−1, 0) �∈
N× Z, it follows that Z× N �= N× Z.

13. Proof. Let n ∈ Z+. So n ≥ 1. Hence, n · n ≥ n · 1.
That is, n2 ≥ n.

14. If 2 ≤ x ≤ 4, then 4 = 22 ≤ x2 ≤ 42 = 16.
15. If ∀ x ∈ R, f (x) = c, then ∀ x ∈ R, ( f + 1)(x) =

c + 1.
16. Proof. Suppose f is periodic and g is constant.

So we have p ∈ R+ and c ∈ R such that
∀ x ∈ R, f (x+ p) = f (x) and g(x) = c. Observe
that ∀ x ∈ R, ( f + g)(x + p) = f (x + p)+
g(x+ p) = f (x)+ c = f (x)+ g(x) = ( f + g)(x).
So f + g is periodic.

17. Sketch. Suppose ∀ x ∈ R, f (x) ≤ M and
g(x) ≥ L . So ∀ x ∈ R, ( f − g)(x) =
f (x) − g(x) = f (x) + (−g(x)) ≤ M+ (−L) =
M− L .

18. Proof. Let t1, t2, t3 represent the test scores, in
order. Suppose t1 ≤ 40. Since t2 ≤ 100 and
t3 ≤ 100, we have an average of at most
40+100+100

3 = 80.
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19. Proof. Suppose A⊆ C . Suppose x ∈ A∩ B. So
x ∈ A and x ∈ B. Since x ∈ A and A⊆ C , we
get x ∈ C . Thus A∩ B ⊆ C .

20. Proof. Suppose x ∈ A\B. So x ∈ A and x �∈ B.
In particular, x ∈ A.

21. x ∈ A� (B ∩ C) iff x ∈ A⊕ (x ∈ B ∧ x ∈ C) iff
(x ∈ A⊕ x ∈ B) ∧ (x ∈ A⊕ x ∈ C) iff
x ∈ A� B ∧ x ∈ A� C iff x ∈ ( A� B) ∩ ( A� C).

22. Sketch. ( A\B)c = ( A∩ Bc)c = Ac ∪ (Bc)c =
Ac ∪ B.

23. Proof. Suppose A⊂ B. Hence, we have x ∈ B
with x �∈ A. That is, x ∈ B\A. So B\A �= ∅.

24. Sketch. 1 ≤ x ≤ 2 iff 2 ≤ 2x ≤ 4.
25. Sketch. x2 − y2 = 0 iff x + y = 0 or x − y = 0.

Since x, y ∈ R+, it is not possible that x+ y = 0.
26. Sketch. The Trichotomy Law in Appendix A

tells us that ∀ x, y ∈ R, x = y⊕ x > y ⊕ y > x.
From this it follows that ∀ x, y ∈ R, x �=
y ↔ x > y or y > x. Negating both sides of
this equivalence gives the desired result.

27. Here it is more convenient to use the
characterization of constant functions given in
Exercise 37(b) from Section 1.3 (and proved in
Exercise 12 from Section 2.3).

28. Proof. (→) Done in Exercise 13 from Section
2.2. (←) Suppose f 2 is periodic. So we have
p ∈ R+ such that ∀ x ∈ R, f 2(x + p) = f 2(x).
Since f is nonnegative, ∀ x ∈ R, f (x + p) ≥ 0
and f (x) ≥ 0. From Exercise 25 it follows that
∀ x ∈ R, f (x + p) = f (x). So f is periodic.

29. Proof. (→) Suppose A2 = B2. (⊆) Suppose
x ∈ A. So (x, x) ∈ A2 = B2. Hence, x ∈ B. (⊇)
Similar. So A= B. (←) Suppose A= B. (⊆)
Suppose (x, y) ∈ A2. So x ∈ A= B and
y ∈ A= B. Hence (x, y) ∈ B2. (⊇) Similar. So
A2 = B2.

30. Proof. (→) Suppose A\B ⊆ C . Suppose x ∈ A.
Case 1: x ∈ B. We have x ∈ B ∪C . Case 2: x �∈ B.
So x ∈ A\B. Hence x ∈ C . We have x ∈ B ∪ C .
In both cases x ∈ B ∪ C . (←) Suppose A⊆
B ∪ C . Suppose x ∈ A\B. So x ∈ A and x �∈ B.
Since x ∈ A, we have x ∈ B ∪ C . Since x �∈ B,
it must be that x ∈ C . Hence A\B ⊆ C .

31. Proof. Let t1, t2, . . . , tn be the test scores. (→)
Suppose some test score tk is less than 100.
Then the average t1+t2+···+tn

n is at most
(n−1)100+tk

n <
(n−1)100+100

n = 100. (←) Suppose
t1 = t2 = · · · = tn = 100. The average is then
n(100)

n = 100.

32. Sketch. (⊆) Suppose x ∈ ( A∩ B)\C . Since
x ∈ A and x �∈ C , we have x ∈ A\C . Since
x ∈ B and x �∈ C , we have x ∈ B\C . (⊇)
Suppose x ∈ ( A\C) ∩ (B\C). Since x ∈ A and
x ∈ B, we have x ∈ A∩ B. Also note that x �∈ C .

33. Sketch. (⊆) Suppose (x, y) ∈ A×(B ∪C). Case 1:
y ∈ B. We get (x, y) ∈ A× B. Case 2: y ∈ C .
We get (x, y) ∈ A× C . (⊇) Suppose (x, y) ∈
( A× B) ∪ ( A× C). Case 1: (x, y) ∈ A× B. Since
y ∈ B, (x, y) ∈ A× (B ∪ C). Case 2: (x, y) ∈
A× C . Since y ∈ C , (x, y) ∈ A× (B ∪ C).

34. Sketch. Suppose S ∈ P( A) ∪ P(B). Case 1:
S ∈ P( A). Since A⊆ A∪ B, we get S ⊆ A∪ B.
Case 2: S ∈ P(B). Since B ⊆ A∪ B, we get
S ⊆ A∪ B.

35. Sketch. Suppose not. Let L be the largest
element. Observe that L

2 is a larger element
of R−. (Think about it.) This is a contradiction.

36. Proof. Suppose not. Let s be the smallest
element of (−1, 1). However, −1+s

2 is a smaller
element of (−1, 1). This is a contradiction.

37. Proof. Suppose p ∈ R+. Observe that
f (0+ p) = p �= 0 = f (0). So f cannot be
periodic.

38. Sketch. Suppose M ∈ R. Let L = max{M, 2}.
Observe that f (L) = L2 > L ≥ M. So f cannot
be bounded above.

39. Proof. Suppose x < 0. Repeated multiplication
by x gives x2 > 0, x3 < 0, x4 > 0, and finally
x5 < 0.

40. If (x, y) ∈ A× ∅, then y ∈ ∅.
41. If x ∈ A∩ B, then x ∈ A.
42. If x ∈ A and y ∈ B, then (x, y) ∈ A× B.
43. Proof. Suppose B = C . (⊆) Suppose (x, y) ∈

A× B. So x ∈ A and y ∈ B = C . Hence, (x, y) ∈
A× C . (⊇) Similar. Therefore, A× B = A× C .

44. Sketch. If |A| = n, then |P( A)| = 2n.
45. The contrapositive is proved in Example 2.11

46. If t1, t2, t3, t4 < 60, then t1+t2+t3+t4
4 <

4(60)
4 = 60.

47. Mimic the proof of De Morgan’s Law for two
sets from Exercise 43 in Section 2.2.

48. Sketch. ( A\C) ∪ (B\C) = ( A∩Cc) ∪ (B ∩Cc) =
( A∪ B) ∩ Cc = ( A∪ B)\C .

49. Sketch. If A× B �= ∅, choose (x, y) ∈ A× B.
Then x ∈ A, y ∈ B, so A �= ∅ and B �= ∅.

50. Proof. (→) Suppose xy > 0. Observe that x �= 0
and y �= 0. Case 1: x > 0. We see that
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y = xy
x > 0. Case 2: x < 0. We see that

y = xy
x < 0. Thus, either x, y > 0 or x, y < 0.

(←) Suppose x, y > 0 or x, y < 0. Case 1:
x, y > 0. We get xy > 0. Case 2: x, y < 0. We get
xy = (−x)(−y) > 0. In both cases, xy > 0.

51. Sketch. x2 − 1 < 0 iff x2 < 1 iff −1 < x < 1.
Also −(x2 − 1) = 1− x2.

52. Sketch. Since |x|2 = x2 and |x| ≥ 0, it follows
that |x| =

√
x2.

53. x2 − 6x + 8 = (x − 4)(x − 2). Now apply
Exercise 50.

54. Sketch. x = 1
x iff x2 = 1 iff x2 − 1 = 0 iff

(x + 1)(x − 1) = 0 iff x + 1 = 0 or x − 1 = 0 iff
x = −1 or x = 1 iff x = ±1.

Chapter 3

Section 3.1

1. Proof. Let m be even and n be odd. So m = 2 j
and n = 2k + 1 for some j, k ∈ Z. Observe that
mn = (2 j)(2k + 1) = 2( j (2k + 1)). Since
j (2k + 1) ∈ Z, we see that mn is even.

3. Proof. Suppose n is odd. So n = 2k + 1 for
some k ∈ Z. Observe that n2 = (2k + 1)2 =
4k2 + 4k + 1 = 2(2k2 + 2k) + 1. Since
2k2 + 2k ∈ Z, we see that n2 is odd.

5. Sketch. If n = 2k, then (−1)n = ((−1)2)k =
1k = 1.

7. On. Off = −1 and On = 1 = (−1)2.
9. Sketch. a · 0 = 0.
11. Proof. Suppose a | 1. So 1 = ak for some k ∈ Z.

Since a , k ∈ Z, this is possible only if a = k =
±1. (Under any other conditions, |ak| > 1.)

13. (a) Sketch. a2 − 1 = (a + 1)(a − 1).
(b) R breaks into two (a − 1)× 1 rectangles and
an (a − 1) × (a − 1) square.

15. Proof. Suppose a | b and b | a . So b = a j and
a = bk for some j, k ∈ Z. So a = bk = a ( jk). So
1 = jk. Thus k | 1. By Exercise 11, it follows
that k = ±1. Therefore, a = bk = ±b.

17. Sketch. If n = 2k, then n2 = 4k2.
19. No. Yes.
21. Proof. Suppose a | b and a | c. So b = a j and

c = ak for some j, k ∈ Z. Note that b − c =
a j − ak = a ( j − k). Since j − k ∈ Z, we see that
a | (b − c).

23. Yes.
25. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,

41, 43, 47, 53, 59, 61, 67, 71.
27. Proof. Let p be a prime with 3 | p. So p = 3k

for some k ∈ Z. In fact, k > 0. Since p is prime
and 3 �= 1, it must be that k = 1. Thus, p = 3.

29. Proof. Let p ∈ Z with p > 1. (→) Suppose p is
prime. Suppose r > 1 and s > 1. Since the only
positive divisors of p are 1 and p, we cannot
have rs = p, so rs �= p. (←) Suppose ∀ r, s ∈ Z,
if r > 1 and s > 1, then rs �= p. Suppose t is a
positive divisor of p. So p = tu, for some
u ∈ Z. Moreover, u > 0. Since tu = p, we must
have t ≤ 1 or u ≤ 1. This forces t = 1 or u = 1.
If u = 1, then t = p. So t = 1 or t = p.

31. Negate the characterization given in
Exercise 29.

33. Sketch. Suppose n = rs, where r, s > 1.
Suppose to the contrary that both r, s >

√
n.

Then n = rs > n, a contradiction.

35.

12

23

34

45

56

67

78

89

100

111

2

13

24

35

46

57

68

79

90

101

112

3

14

25

36

47

58

69

80

91

102

113

4

15

26

37

48

59

70

81

92

103

114

5

16

27

38

49

60

71

82

93

104

115

6

17

28

39

50

61

72

83

94

105

116

7

18

29

40

51

62

73

84

95

106

117

8

19

30

41

52

63

74

85

96

107

118

9

20

31

42

53

64

75

86

97

108

119

10

21

32

43

54

65

76

87

98

109

120

11

22

33

44

55

66

77

88

99

110

121

The first 30 primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113.
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37. 14.
39. 18.
41. 15.
43. (a) 2. (b) 4. (c) gcd(n, k).
45. Proof. Suppose d1, d2 ∈ Z both satisfy

conditions (i), (ii), and (iii). By conditions (i)
and (ii) for d2 and condition (iii) for d1 with
c = d2, we see that d2 ≤ d1. A similar argument
with d1 and d2 switched gives d1 ≤ d2. Hence,
d2 = d1.

47. Proof. Let d = gcd(m, n). So d | m and d | n.
Also, d | (−m) and d | n. Suppose c | (−m) and
c | n. So c | m and c | n. Thus, c | d . Hence,
d = gcd(−m, n).

49. Sketch. gcd(m, −n) = gcd(−n, m) =
gcd(n, m) = gcd(m, n).

51. Proof. Let p and q be distinct primes. Suppose
d ∈ Z+ with d | p and d | q . Since d | p, we
have d = 1 or d = p. If d = p, then p | q ,
giving p = 1 or p = q . Hence, d �= p.
Therefore, d = 1. Thus, gcd( p, q ) = 1.

53. Write 1 = 2(n) + 1(1− 2n), and mimic the
argument in the proof of Lemma 3.3.

55. 168.
57. 540.
59. (a) 16. (b) 30. (c) lcm(a , b).
61. Sketch. Let l = lcm(n, m). So l > 0, n | l, and

m | l. If k ∈ Z+, m | k, and n | k, then l ≤ k.

Section 3.2

1. 3 = 11− 4(2). 3. 4 = 12(2) + 20(−1).
5. 217 − 1 is prime, 219 − 1 is prime, 223 − 1 =

47 · 178481, and 229 − 1 = 233 · 1103 · 2089.

7. Sketch. If not, then there are fewer than 10(106)

primes.
9. (a) Sketch. bn − 1 = (b − 1)(bn−1 + bn−2 +

· · · + b + 1). Since b ≥ 3, both factors are larger
than 1.
(b) Proof. Suppose n ∈ Z+ is not prime. So
n = rs for some integers r, s ≥ 2. Since 2r ≥ 3,
it follows from part (a) that 2n− 1 = (2r )s − 1 is
not prime.

11. (a) 10 remainder 7. (b) 14 remainder 6.
13. (a) 45 = 7(6) + 3. (b) −37 = 4(−10) + 3.
15. 7 and 3.
17. (a) 5 and 2. (b) −6 and 11.
19. 165 div 18 = 9 full rows. 165 mod 18 = 3 extra

seats.
21. (a) 100111. (b) 127.
23. n and 0.
25. Because Z does not have a smallest element.
27. Proof. Let a ∈ Z, and let S be a subset of Z such

that ∀ x ∈ S, x ≥ a . Let T = {t : t = s − a for
some s ∈ S}. So T ⊆ N. By the Well-Ordering
Principle, T has a smallest element, say τ . Let
σ = τ + a . Observe that σ is the smallest
element of S. (Think about it.)

29. n n3 − n + 2 (n3 − n + 2) mod 6

6k 216k3 − 6k + 2 2
6k + 1 216k3 + 108k2 + 12k + 2 2
6k + 2 216k3 + 216k2 + 66k + 8 2
6k + 3 216k3 + 324k2 + 156k + 26 2
6k + 4 216k3 + 432k2 + 282k + 62 2
6k + 5 216k3 + 540k2 + 444k + 122 2

31. Proof. Suppose n ∈ Z and 3 � | n. So n = 3q + r
for some q ∈ Z and r = 1 or 2. Case 1: r = 1.
Since n2 = (3q + 1)2 = 3(3q 2 + 2q ) + 1, we
see that n2 mod 3 = 1. Case 2: r = 2. Since
n2 = (3q + 2)2 = 3(3q 2 + 4q + 1) + 1, we see
that n2 mod 3 = 1.

33. Sketch. If n = 5k + 1, then n4 − 1 = 5(125k4 +
100k3 + 30k2 + 4k). If n = 5k + 2, then
n4 − 1 = 5(125k4 + 200k3 + 120k2 + 32k + 3).

If n = 5k + 3, then n4 − 1 = 5(125k4+ 300k3+
270k2 + 108k + 16). If n = 5k + 4, then n4 − 1 =
5(125k4 + 400k3 + 480k2 + 256k + 51).

35. (a) 4. (b) −5. (c) 9. (d) −8.

37. (a) � 500
32 � = 16. (b) � c

m�.
39. Sketch. Note that (i) �x� + n ∈ Z, (ii) �x� + n ≤

x + n, (iii) x + n < 1+ �x� + n.
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41. Proof. Suppose n ∈ Z. Case 1: n = 2k for some
k ∈ Z. Observe that k ∈ Z, n

2 ≤ k, and k− 1 < n
2 .

Hence, � n
2 � = k = n

2 . Case 2: n = 2k + 1 for
some k ∈ Z. Observe that k + 1 ∈ Z, n

2 ≤ k + 1,

and (k + 1) − 1 < n
2 . Hence, � n

2 � = k + 1 = n+1
2 .

43. Sketch. Write n = 3k + r, where r = 0, 1, or 2.
Then k = n

3 − r
3 ≤ n

3 and n
3 = k + r

3 < k + 1, so
� n

3 � = k = n−r
3 .

45. Sketch. We have �x� + �y� ∈ Z and
�x� + �y� ≤ x + y.

47. Counterexample: Let x = 1
2 .

49. Proof. Let x ∈ R. (→) Suppose x �∈ Z. Then
�x� �= x, and it must be that �x� < x. Since
x ≤ �x�, we get �x� �= �x�. (←) Suppose x ∈ Z.
It follows that �x� = x = �x�.

51. Sketch. Certainly �x� ∈ Z and �x� ≤ �x� <

�x� + 1.

53. If n is odd, then
⌊n+1

2

⌋ = n+1
2 = ⌈ n

2

⌉
. If n is

even, then
⌊ n+1

2

⌋ = n
2 =
⌈

n
2

⌉
.

55. round(x) = ⌊x + 1
2

⌋
.

57. The statement is equivalent to the fact that 1 is
the smallest positive integer.

59. Proof. Suppose n1, n2 ∈ Z with n1 ≤ x < n1 + 1
and n2 ≤ x < n2 + 1. Without loss of generality,
say n1 ≥ n2. Adding n2 ≤ x < n2 + 1 to
−n1 − 1 < −x ≤ −n1, we get n2 − n1 − 1 < 0 <

n2 − n1 + 1. Adding n1 − n2 to this inequality
gives −1 < n1 − n2 < 1. So 0 ≤ n1 − n2 < 1.
From Exercise 57 it follows that n1 − n2 = 0.
That is, n1 = n2.

61. Proof. Let S = {s : n = 2r s, where r ∈ N and
s ∈ Z+}. Since n = 20n, it follows that n ∈ S
and thus S is nonempty. By the Well-Ordering
Principle, S has a smallest element. Call it b.
Since b ∈ S, there is some a ∈ N such that
n = 2a b. If b were even (so b

2 ∈ Z), then
n = 2a+1 b

2 , whence b
2 would be a smaller

element of S than b. Therefore, b must be odd.
63. Let m and n be integers that are not both zero.

We must show that there exists an integer d
such that (i) d > 0, (ii) d | m and d | n, and
(iii) ∀ c ∈ Z+, if c | m and c | n, then c ≤ d. Let
d = max{a : a > 0, a | m, and a | n}.

65. 4. 67. No. 69. 3.
71. No. That is the ISBN for How the Grinch Stole

Christmas.

73. Sketch. Let a and b be the consecutive digits.
Note that (3a + b) − (3b + a ) = 2(a − b) is
divisible by 10 iff a − b is divisible by 5.

75. (a) 0110101.
(b) Message Code Word

0000 0000000
0001 0001001
0010 0010011
0011 0011010
0100 0100110
0101 0101111
0110 0110101
0111 0111100
1000 1000100
1001 1001101
1010 1010111
1011 1011110
1100 1100010
1101 1101011
1110 1110001
1111 1111000

(c) 2. (d) Female, A+. (e) 1010011 is one digit
away from both 0010011 and 1010111.

77. “LQ KZMAMHUIAP”.
79. “SELL IMCLONE”.

Section 3.3

1. x = 2, y = −5. 3. x = 3, y = −4.
5. 22. 7. 8.
9. 1. 11. 2 = 14(−1) + 8(2).
13. 5 = 50(−2) + 35(3). 15. 3 = 81(3) + 60(−4).
17. x = −5 and y = 23.
19. No. For m = 2, n = 3, we can use x = 2, y = −1

or x = −1, y = 1.
21. Proof. Let x0, y0 be any fixed pair that gives

gcd(m, n) = mx0 + ny0. Observe that, ∀ k ∈ Z,
gcd(m, n) = mx0+ny0 = m(x0+kn)+n(y0−km).
Therefore, x = x0 + kn and y = y0 − km gives a
general solution to gcd(m, n) = mx + ny.

23. No. 6 | (2 · 3) but 6 � | 2 and 6 � | 3.
25. Sketch. Let m1 = m2 = · · ·mn = m.
27. Sketch. Let p be prime. It follows from

Corollary 3.19 that p | a ↔ p | am, and
p | b ↔ p | bn.
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29. Proof. Let d = gcd(m, n). So d | m and d | n.
Note that d | m and d | (n−m). If c | m and
c | (n−m), then c | m and c | n, whence c ≤ d.
So gcd(m, n−m) = d .

31. Argue that min{mu1 + nv1 : mu1 + nv1 > 0} =
min{nu2 +mv2 : nu2 +mv2 > 0} by using
(u2, v2) = (v1, u1).

33. From the given characterization, we get
gcd(k, 0) = min{ku+ 0v : ku+ 0v > 0} =
min{ku : ku > 0} = k · 1 = k.

35. Proof. Suppose c ∈ Z, c | m, and c | n. So
m = ca and n = cb for some a , b ∈ Z. By
Theorem 3.13, there are x, y ∈ Z such that
gcd(m, n) = mx + ny. Since gcd(m, n) =
cax + cby = c(ax + by), we see that
c | gcd(m, n).

37. (5n+ 3)(7) + (7n+ 4)(−5) = 1.
39. (a) ad − bc = 3(2)− 5(1) = 1. (b) If ad − bc = 1,

then Corollary 3.14 tells us that a and b are
relatively prime and that c and d are relatively
prime. (c) No.

Section 3.4

1. 5 1
2 = 11

2 . 3. −13 2
5 = −67

5 .

5. 5.821 = 5821
1000 .

7. 3.14 = 311
99 and 311, 99 ∈ Z with 99 �= 0.

9. −4.321 = −713
165 and −713, 165 ∈ Z with 165 �= 0.

11. Sketch. If r = a
b , then nr = na

b .
13. (a) Sketch. If s = a

b , then −s = −a
b .

(b) Sketch. If r = a
b and s = c

d , then
r − s = ad−bc

bd .
15. Proof. Suppose n ≥ 0. We can write r = a

b
where a , b ∈ Z with b �= 0. Observe that rn =
an

bn and an, bn ∈ Z with bn �= 0. So rn ∈ Q.

17. 5
3 . 19. −57

8 .

21. 157
50 . 23. 0.48.

25. 0.428571. 27. 0.53.
29. Yes. 31. No.
33. When p � | n.
35. Yes. A fraction a

b in lowest terms has a finite
binary decimal expansion iff b is a power of 2.

37. Proof. Since k > 0, 2k + 1 > 0. Since
(−2)(3k + 1)(−2) + (2k + 1)(3) = 1, we have
gcd(3k + 1, 2k + 1) = 1.

39.
√

2. It is not in Q.

Section 3.5

1. Sketch. Write
√

3 = a
b in lowest terms. So

b23 = a2. Since 3 | a2, 3 | a . Write a = 3c. So
b23 = a2 = 9c2. So b2 = 3c2. Since 3 | b2, 3 | b.
So gcd(a , b) ≥ 3, a contradiction.

3. Sketch. Write
√

13 = a
b in lowest terms. So

b213 = a2. Since 13 | a2, 13 | a . Write a = 13c.
So b213 = a2 = 132c2. So b2 = 13c2. Since
13 | b2, 13 | b. So gcd(a , b) ≥ 13, a
contradiction.

5. Sketch. Write 3
√

2 = a
b in lowest terms. So

b32 = a3. Since 2 | a3, 2 | a . Write a = 2c. So
b32 = a3 = 23c3. So b3 = 22c3. Since 2 | b3, 2 | b.
So gcd(a , b) ≥ 2, a contradiction.

7. Sketch. Write 3
√

7 = a
b in lowest terms. So

b37 = a3. Since 7 | a3, 7 | a . Write a = 7c. So
b37 = a3 = 73c3. So b3 = 72c3. Since 7 | b3, 7 | b.
So gcd(a , b) ≥ 7, a contradiction.

9. Sketch. Write log2 3 = a
b , with a , b > 0. So

2
a
b = 3. So 2a = 3b . Hence a = b = 0, a

contradiction.
11. Sketch. Write log3 7 = a

b , with a , b > 0. So
3

a
b = 7. So 3a = 7b . Hence a = b = 0, a

contradiction.

13. No,
√

2+
√

6√
2+
√

3
= 2 ∈ Z ⊆ Q.

15. No.
17. Proof. Suppose r = 1+

√
5

2 is rational. So
√

5 =
2r − 1. However, 2r − 1 is rational, and

√
5 is

irrational. This is a contradiction.

19. Proof. Suppose not. So r = 15+7
√

5

4 is rational.

So
√

5 = 4r−15
7 . However, 4r−15

7 is rational, and√
5 is irrational. This is a contradiction.

21. Sketch. Suppose r = 7−
√

2

3+
√

2
is rational.

So
√

2 = 7−3r
r+1 ∈ Q, a contradiction.

23. Sketch. Observe that
√

10 is a root of
f (x) = x2 − 10. However, by the Rational
Roots Theorem, f (x) has no rational roots.

25. Sketch. Observe that
√

6+√2 is a root of
f (x) = x4 − 16x2 + 16. However, by the
Rational Roots Theorem, f (x) has no rational
roots.

27. Sketch. Observe that
√

3− 2
√

2 is a root of
f (x) = x4 − 6x2 + 1. However, by the Rational
Roots Theorem, f (x) has no rational roots.



Chapter 3 A19

29. Sketch. Observe that
4
√

3
√

2
is a root of

f (x) = 4x4 − 3. However, by the Rational
Roots Theorem, f (x) has no rational roots.

31. Proof. Suppose r = π+1
2 is rational. So π = 2r

− 1. However, 2r − 1 is rational, and π is
irrational. This is a contradiction.

33. Sketch. Suppose
√

x = a
b is rational. Then

x = a2

b2 is rational.
35. Proof. Suppose r ∈ Q. So r = a

b for some
a , b ∈ Z with b �= 0. Observe that r is a root of
f (x) = bx − a and is hence algebraic.

37. Sketch. Let g(x) = rnxn + rn−1xn−1+ · · · +
r1x + r0 be a polynomial with rational
coefficients. For each 0 ≤ i ≤ n, write ri = ai

bi
,

where ai , bi ∈ Z with bi �= 0. Define f (x) =
g(x)

∏n
i=1 bi . So f (x) is a polynomial with

integer coefficients, and f and g have exactly
the same roots. Since the roots of f are
algebraic, so are the roots of g.

39. No.
41. Proof. Suppose not. So 2e is algebraic. Thus 2e

is a root of some polynomial f (x) = cnxn+
cn−1xn−1 + · · · + c1x + c0, where n ∈ Z+, cn,
cn−1, . . . , c1, c0 ∈ Z. That is, 0 = f (2e) =
cn2nen + cn−12n−1en−1 + · · · + c12e + c0. Define
g(x) = cn2nxn + cn−12n−1xn−1 + · · · + c12x + c0.
Since cn2n, cn−12n−1, . . . , c12, c0 ∈ Z, and
g(e) = 0, we see that e is algebraic. This is a
contradiction.

Section 3.6

1. True. 3. False.
5. Thursday. 7. 9 P.M.
9. (a) n | (a − a ). (b) If n | (a − b), then n divides

(b − a ) = −(a − b). (c) If a − b = nj and
b − c = nk, then a − c = (a − b) + (b − c) =
n( j + k).

11. If n | (a1 − a2), then n | (−a1 + a2).
13. If a − b = nk, then a2 − b2 = (a + b)(a − b) =

(a + b)nk.
15. Sketch. (→) If n1 mod d = n2 mod d , then

n1 ≡ [n2 mod d] ≡ n2 (mod d). (←) If n1 ≡ n2
(mod) d , then [n1 mod d] ≡ n2 (mod d). Note
that 0 ≤ n1 mod d < d .

17. 8763+ 536 ≡ 13+ 11 ≡ 24 (mod 25).
19. 4. 21. 16.
23. 1. 25. 1.

27. Note that 03 − 0− 1 ≡ −1 ≡ 2 (mod 3),
13 − 1− 1 ≡ −1 ≡ 2 (mod 3), and
23 − 2− 1 ≡ 5 ≡ 2 (mod 3).

29. Sketch. If n ≡ 1, 2, or 4 (mod 7), then
n3 ≡ 1 (mod 7). If n ≡ 3, 5, or 6 (mod 7), then
n3 ≡ −1 (mod 7).

31. (a) If n is odd, then n ≡ 1, 3, 5, or 7 (mod 8).
(b) Multiply part (a) by n.

33. If n− r = 3k, then 2n − 2r = 2r (2n−r − 1) =
2r (8k − 1) and 8k ≡ 1k ≡ 1 (mod 7).

35. If m | (a − b) and n | (a + b), then mn divides
(a + b)(a − b) = (a2 − b2).

37. 23.
39. “PZSNQRURHGJUX”.
41. “BORAT”.
43. Sketch. Suppose to the contrary that x ≡ y

(mod n), and say x > y. Then n | (x − y).
However, 0 ≤ x − y < n. This is a
contradiction.

45. Apply Lemma 3.31, Lemma 3.29, and
Exercise 43.

47. (a) y = 2. (b) y = 14. (c) Discover.
(d) MasterCard.

49. 16.
51. Sketch. When p | a , a p ≡ 0 ≡ a (mod p). When

p � | a , multiply both sides of a p−1 ≡ 1 (mod p)
by a .

53. 2253 ≡ 162 �≡ 2 (mod 253).
55. Sketch. Observe that x ∈ {1, . . . , p − 1} and

x2 ≡ 1 (mod p) iff x = 1 or p − 1. Hence, the
suggested pairing off of values in the product
( p − 1)! gives ( p − 1)! = ( p − 1) · 1 p−3

2 · 1 ≡
−1 (mod p).

57. 10d1 + 9d2 + 8d3 + 7d4 + 6d5 + 5d6 + 4d7 +
3d8 + 2d9 + d10 = −(d1 + 2d2 + 3d3 + 4d4 +
5d5 + 6d6 + 7d7 + 8d8 + 9d9 + 10d10)+
11(d1+d2+d3+d4+d5+d6+d7+d8+d9+d10).

59. x = 3. 61. x = 2, y = 5.
63. [2]3. 65. [3]4.
67. [1]10.
69. {k : k ≡ a (mod n)} = {k : k ≡ b (mod n)} iff

a ≡ b (mod n).
71. Proof. (⊆) Suppose k ∈ [a ]n + [b]n. So k = s + t

for some s ∈ [a ]n and t ∈ [b]n. Thus
s ≡ a (mod n) and t ≡ b (mod n). Since
s + t ≡ a + b (mod n), it follows that
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k ∈ [a + b]n. (⊇) Suppose k ∈ [a + b]n. So
k ≡ a + b (mod n). That is, n | (k − a − b). Note
that k = a + (k − a ) and k − a ≡ b (mod n).
Therefore, k ∈ [a ]n + [b]n.

73. Apply Exercises 71 and 72.
75. Sketch. Any k ≡ a (mod n) can be written as

k = 0+ k.
77. Note that n = 10(10k−1ak + 10k−2ak−1+ · · ·+

a1) + a0 and 10(10k−1ak + 10k−2ak−1+ · · ·+ a1)
≡ 0 (mod 5). So n ≡ 0+ a0 ≡ a0 (mod 5).

79. Note that 10kak + 10k−1ak−1 + · · · + 100a0 ≡
1kak + 1k−1ak−1 + · · · + 10a0 (mod 9). Also, n is
divisible by 3 iff n ≡ 0, 3, or 6 (mod 9).

Chapter 3 Review

1. If m = 2 j and n = 2k, then mn = 2(2 jk).
2. If n = 2k, then n2 = 4k2.
3. No.
4. Sketch. (a + b)3 − b3 = a (a2 + 3ab + 3b2).
5. b = ak iff b = (−a )(−k).
6. No. No. 7. Yes.
8. If n = a j and n+ 2 = ak,

then 2 = (n+ 2) − n = a (k − j).
9. 91.
10. Proof. Let n ∈ Z with n �= 0. Case 1: n > 0. So

n > 0, n | n, and n | −n. Also, if c | n and c | −n,
then, in particular, c | n, whence c ≤ n. So
gcd(n, −n) = n = |n|. Case 2: n < 0. So −n > 0,
−n | n, and −n | −n. Also, if c | n and c | −n,
then, in particular, c | −n, whence c ≤ −n.
So gcd(n, −n) = −n = |n|.

11. (a) a = 2, b = 3, m = 2, n = 2. (b) Proof. Let
d = gcd(a , b). Since d | a and d | b, it follows
that d | am and d | bn. Therefore, d ≤
gcd(am, bn). (c) gcd(a , b) > 1, and at least one
of m > 1 or n > 1.

12. 840.
13. Sketch. Let i = max{ j, k}. So mi > 0, m j | mi ,

and mk | mi . If c ∈ Z+, m j | c, and mk | c, then
mi | c, whence mi ≤ c.

14. 5. 15. False.
16. 12 remainder 5.
17. (a) 6 and 1. (b) −6 and 3.
18. 2 remain, and each player will have 17.
19. If n = 3q + r , then n3 − n = 3(9q 3 + 3q 2r +

qr2 − q ) + r3 − r . Consider r = 0, 1, or 2.

20. Proof. Suppose n is odd. So n = 2k+ 1 for some
k ∈ Z. So n2 = 4k2 + 4k + 1 = 4(k2 + k) + 1.
Since n2 mod 4 = 1 �= 0, we see that 4 � | n2.

21. (a) 6. (b) −7. (c) 6. (d) −5.

22. If n = 4k, then k = n
4 ≤ n+2

4 < n
4 + 1 = k + 1.

23. Sketch. Certainly �x� ∈ Z and �x� − 1 <

�x� ≤ �x�.
24. 3. No. 25. “MDPSZIDXSQ”.
26. n

gcd(b,n) . 27. x = 3 and y = −2.

28. Sketch. Let x = −11, y = 24.
29. 22. 30. 5.
31. x = −1, y = 2. 32. x = 5, y = −16.
33. Apply Corollary 3.17 and Corollary 3.19.
34. Sketch. 6 | 52n iff 3 | 26n iff 3 | n, by Euclid’s

Lemma.
35. No.
36. (a) Since 5 | (25x + 10y) for all integers x, y,

only multiples of 5 can be achieved. (b) 5¢ and
15¢. (c) n¢ for all odd n < 25.

37. 6 3
4 = 27

4 . 38. 1.414 = 157
111 >

√
2.

39. 1.625 = 1609
990 . 40. If r = a

b , then 3r
4 = 3a

4b .

41. Sketch. Write r = a
b . Then r2 = a2

b2 .

42. If gcd(a , b) = 1, then gcd(a2, b2) = 1.
43. 0.45.
44. Sketch. Write

√
7 = a

b in lowest terms.
So b
√

7 = a . So b27 = a2. So 7 | a2.
By Corollary 3.19, 7 | a . Write a = 7c.
So b27 = a2 = 49c2. So b2 = 7c2. So 7 | b2.
By Corollary 3.19, 7 | b. So gcd(a , b) ≥ 7.
This is a contradiction.

45. Proof. Suppose r = 5+
√

7
3 is rational. So√

7 = 3r − 5. However, 3r − 5 is rational, and√
7 is irrational. This is a contradiction.

Therefore, r = 5+
√

7
3 must be irrational.

46. Sketch. Write log3 11 = a
b with a , b ∈ Z+. So

3
a
b = 11. So 3a = 11b . By the Fundamental

Theorem of Arithmetic, this is impossible.

47. Sketch. (a) Suppose r = e2−4
3 ∈ Q. However, we

get e2 = 3r + 4 ∈ Q. (b) Write ln 2 = a
b for a ,

b ∈ Z+. So e
a
b = 2. However, ea = 2b ∈ Z.

48. Sketch. Observe that
√

3+√2 is a root of
f (x) = x4 − 6x2 + 7. By the Rational Roots
Theorem, f has no rational roots.
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49. Sketch. Observe that
3
√

2√
5

is a root of

f (x) = 125x6 − 4. By the Rational Roots
Theorem, f has no rational roots.

50. Sketch. Observe that 1
2

√
2+
√

2+√2 is a root

of f (x)= 256x8 − 512x6 + 320x4 − 64x2 + 2. By
the Rational Roots Theorem, f has no rational
roots.

51. Yes, they are the same as the roots of
15x2 − 8x + 12.

52. Wednesday.
53. If a − b = nk, then ac − bc = n(kc).
54. (a) 7. (b) 11.
55. If n is odd, then n ≡ 1 or 3 (mod 4). In both

cases, n2 ≡ 1 (mod 4).
56. If n �≡ 0 (mod 3), then n ≡ 1 or 2 (mod 3). In

both cases, n2 ≡ 1 (mod 3).
57. “RSA”. 58. −9.
59. (a) 32. (b) “The package has been received” is

the message that was sent.
60. 4. 61. [2]5.
62. [1]3. 63. [4]7.
64. Proof. Since a ≡ a (mod n), we have

a ∈ [a ]n.

Chapter 4

Section 4.1

1. 3628800. 3. 21. 5. 126.

7. n!
k!(n−k)! = n!

(n−k)!(n−(n−k))! .

9. False. 11. False. 13. 4, 2, 0, −2.
15. 6, 12, 40, 180. 17. 7, 9, 11, 13.
19. 47. 21. ∀ n ≥ 1, tn = 2n.
23. ∀ n ≥ 0, sn = 3 · 2n.
25. ∀ n ≥ 0, sn = (−1)n(2n+ 1).

27. ∀ n ≥ 1, sn = 1
n .

29. (a) $6180 after 1 period. $6365.40 after
2 periods. (b) 1000(1+ i)2. No. (c) ∀ n ≥ 0,
sn = P(1+ i)n. A geometric sequence.
Note that s0 = P , s1 = P + Pi = P(1+ i),
s2 = s1(1+ i) = P(1+ i)(1+ i) = P(1+ i)2, etc.
This is a geometric sequence with multiplying
factor r = i and s0 = P .

31. ∀ n ≥ 0, tn = 10n−2. 33. ∀ n ≥ 0, tn = 7+ 2n.
35. ∀ n ≥ 0, tn = (−1)n n

n+2 .

37. 4, 10, 28, 82. 39. 5, 3, 1, −1.

41. −1, −4, −19, −94. Use s1 = − 1
4 .

43. t1 = 2, and ∀ n ≥ 2, tn = 2+ tn−1.
45. s0 = 3, and ∀ n ≥ 1, sn = 2sn−1.
47. s0 = 1, and ∀ n ≥ 1, sn = sn−1 + (−1)n4n.

49. s1 = 1, and ∀ n ≥ 2, sn = n−1
n sn−1.

51. (a) s2 = 2050, s3 = 3152.50. (b) 1348.63.
(c) s0 = 0, and ∀ n ≥ 1, sn = (1+ i)sn−1 + D.

53. sk+1 = 3sk − 2. 55. sk+1 = sk − 2.
57. s2 = 8, s3 = −29, sk+1 = 5sk−1 − 3sk .
59. ∀ n ≥ 2, sn = sn−1 − 2.
61. ∀ n ≥ 2, sn = 5sn−2 − 3sn−1.
63. (a) In Mathematica, use

In[1]:= AppRt2[n_]
:= 1 + 1/(1 + AppRt2[n - 1])

In[2]:= AppRt2[0] := 1

(b) 1.41421. (c) The 12th.

Section 4.2

1. 65
24 ≈ 2.708. 3.

∑10
i=1 i3 = 3025.

5.
∑10

i=1 2i = 2047. 7.
∑9

i=1(−2)i = −342.

9.
∑n

i=2 3i2 = n(n+1)(2n+1)
2 − 3.

11.
∑n

i=1 4i = 4
3 (4n − 1).

13.
∑n

i=2(−3)i = 9−(−3)n+1

4 .

15. (a) s2 = D(1+ i) + D, s3 = [D(1+ i)+
D](1+ i)+ D = D(1+ i)2 + D(1+ i) + D.
s4 = [D(1+ i)2 + D(1+ i) + D](1+ i) + D =
D(1+ i)3 + D(1+ i)2 + D(1+ i) + D. (b)
406.04. (c) sn =

∑n−1
j=0 D(1+ i) j = D (1+i)n−1

i .
(d) 788.49. (e) Deposit D = i F

(1+i)N−1 .

17. n4 + 2n3 − 2n2 − 4n = n(n+ 2)(n2 − 2).

19. 2n3−3n2+n
6 = n(n−1)(2n−1)

6 .

21.
3−( 1

3 )n

2 . 23. 2101 − 210.

25. 5
3 (465 − 16). 27. 2(1− 1

3100 ).

29.
∑n

i=1(4i − 3) = 4
∑n

i=1 i − 3
∑n

i=1 1 =
4 n(n+1)

2 − 3n = n(2n− 1).

31.
∑n

i=1(3i2 − i) = 3
∑n

i=1 i2 −∑n
i=1 i =

3 n(n+1)(2n+1)
6 − n(n+1)

2 = n2(n+ 1).
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33.
∑2n

i=1 i = 2n(2n+1)
2 = n(2n+ 1).

35.
∑n

i=1(2i + 1) = 2
∑n

i=1 i +∑n
i=1 1 =

2 n(n+1)
2 + n = n(n+ 2).

37.
∏n

i=1 k. 39. 2
n(n+1)

2 .

41. Since 2S = (n+ 1) + (n+ 1) + · · · + (n+ 1)︸ ︷︷ ︸
n times

=

n(n+ 1), it follows that S = n(n+1)
2 .

43. n2(n+1)2(2n2+2n−1)
12 .

45. (a) s6

(b) s5. (c) an =
∑n−1

i=0 ( 1
4 )i . (d) an = 4

3 (1− 1
4n ).

Section 4.3

1. Proof. Base case: (n = 3). Note that 32+1 ≥ 3(3).
Inductive step: Suppose k ≥ 3 and k2 + 1 ≥ 3k.
(Goal: (k + 1)2 + 1 ≥ 3(k + 1).) Observe that
(k + 1)2 + 1 = k2 + 2k + 1+ 1 = (k2 + 1)+
(2k + 1) ≥ 3k + (2k + 1) ≥ 3k + 3 = 3(k + 1).

3. Sketch. Check the case when n = 3. Inductive
step: If k ≥ 3 and k2 ≥ 2k + 1, then (k + 1)2 =
k2+ (2k+1) ≥ 2k+1+ (2k+1) = 2k+ (2k+2) ≥
2k + 3 = 2(k + 1) + 1.

5. Sketch. Check the case when n = 4. If k ≥ 4
and 2k ≥ k2, then 2k+1 = 2 · 2k ≥ 2 · k2 ≥
k2 + (2k + 1) = (k + 1)2.
The last inequality follows from Exercise 3.

7. Sketch. Check the case when n = 4. If k ≥ 4
and k! ≥ k2, then (k+1)! = (k+1) · k! ≥
(k+1) · k2 ≥ (k+1)2. Note that k2 ≥ k + 1 for
k ≥ 4.

9. Sketch. Check the case when n = 4. If k ≥ 4
and k! > 2k , then (k + 1)! = (k + 1) · k! >

(k + 1) · 2k ≥ 2 · 2k = 2k+1.
11. Proof. Base case: (n = 0). Note that 3 | (40 − 1).

Inductive step: Suppose k ≥ 0 and 3 | (4k − 1).
So, 4k − 1 = 3c for some c ∈ Z. (Goal:
3 | (4k+1 − 1).) Observe that 4k+1 − 1 =
4 · 4k − 1 = (3+ 1)4k − 1 = 3 · 4k + (4k − 1) =
3 · 4k + 3c = 3(4k + c). Thus, 3 | (4k+1 − 1).

13. Sketch. Check the case when n = 0. Suppose
k ≥ 0 and 4 | (6k − 2k). For some c ∈ Z,

6k+1 − 2k+1 = 6 · 6k − 2 · 2k = 4 · 6k +
2(6k − 2k) = 4 · 6k + 2(4c) = 4(6k + 2c).

15. Sketch. Check the case when n = 0. Suppose
k ≥ 0 and k3 − k = 6c for some c ∈ Z. So
(k + 1)3 − (k + 1) = (k3 − k) + 3k2 + 3k =
6(c+ k2+k

2 ). Since k2 and k have the same parity,
k2+k

2 ∈ Z.

17. Proof. Base case: (n = 1). Note that 31 + 1 = 4.
Inductive step: Suppose k ≥ 1 and sk = 3k + 1.
(Goal: sk+1 = 3k+1 + 1.) So sk+1 = 3sk − 2 =
3(3k+1) − 2 = 3k+1 + 1.

19. Sketch. Check the case when n = 2. If k ≥ 2
and sk = 9− 2k, then sk+1 = sk − 2 =
9− 2k − 2 = 9− 2(k + 1).

21. (a) s0 = 0, s1 = D, s2 = (i + 2)D.
(b) (1+ i)(D (1+i)n−1−1

i ) + D = D (1+i)n−1
i .

(c) Check the case when n = 0. If k ≥ 0 and
sk = D (1+i)k−1

i , then sk+1 = (1+ i)sk + D =
(1+ i)[D (1+i)k−1

i ]+ D = D (1+i)k+1−1
i .

(d) $5237.69.
23. (a) A∩ ((B1 ∪ B2) ∪ B3) = ( A∩ (B1 ∪ B2))∪

( A∩ B3) = ( A∩ B1) ∪ ( A∩ B2) ∪ ( A∩ B3).
(b) Sketch. Note the case when n = 1. Suppose
k ≥ 1 and, for all sets B1, B2, . . . , Bk ,
A∩ (B1 ∪ B2 ∪ · · · ∪ Bk) = ( A∩ B1) ∪ ( A∩ B2)∪
· · · ∪ ( A∩ Bk). Let B1, B2, . . . , Bk+1 be any sets.
Observe that A∩ ((B1 ∪ B2 ∪ · · · ∪ Bk) ∪ Bk+1) =
( A∩ (B1 ∪ B2 ∪ · · · ∪ Bk)) ∪ ( A∩ Bk+1) =
( A∩ B1) ∪ ( A∩ B2) ∪ · · · ∪ ( A∩ Bk+1).
(c) Reverse ∩ and ∪ in part (b).

25. (a) ¬(( p1∨ p2)∨ p3)≡ ¬( p1∨ p2) ∧¬p3 ≡
¬p1 ∧ ¬p2 ∧ ¬p3 (b) Sketch. Note the case
when n = 1. Suppose k ≥ 1 and, for all
statement forms p1, p2, . . . , pk , ¬( p1 ∨ p2 ∨ · · ·
∨pk) ≡ ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pk . Let p1, p2, . . . ,
pk+1 be any statement forms. Observe that
¬(( p1∨ p2∨· · ·∨ pk)∨ pk+1)≡ ¬( p1∨ p2∨· · ·∨ pk)∧
¬pk+1 ≡ ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pk+1. (c) Reverse
∧ and ∨ in part (b).

27. (a) Sketch. Note the case when m = 1. Suppose
k ≥ 1 and, ∀ a1, . . . , ak , b1, . . . , bk ∈ Z, if a1 ≡ b1
(mod n), a2 ≡ b2 (mod n), . . . , ak ≡ bk (mod n),

then
∑k

i=1 ai ≡
∑k

i=1 bi (mod n). Let a1, a2, . . . ,
ak+1, b1, b2, . . . , bk+1 be any integers. Suppose
a1 ≡ b1 (mod n), a2 ≡ b2 (mod n), . . . , ak+1 ≡
bk+1 (mod n). Hence,

∑k+1
i=1 ai ≡ (

∑k
i=1 ai )+

ak+1 ≡ (
∑k

i=1 bi ) + bk+1 ≡
∑k+1

i=1 bi (mod n).
(b) A similar proof replacing sums with
products works here.
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29. Sketch. Note max({s1}) = s1. Suppose k ≥ 1,
and any set S with |S| = k has a maximal
element. Suppose S = {s1, s2, . . . , sk+1} has
k + 1 elements. The set {s1, s2, . . . , sk} has a
maximal element, say s j .

So max(S) =
{

s j if s j > sk+1
sk+1 otherwise.

31. Proof. Base case: (n = 1). Obvious. Inductive

step: Suppose k ≥ 1 and

[
1 1

0 1

]k

=
[

1 k

0 1

]
.

Observe that

[
1 1

0 1

]k+1

=
[

1 1

0 1

][
1 1

0 1

]k

=[
1 1

0 1

][
1 k

0 1

]
=
[

1 k + 1

0 1

]
.

33. Sketch. In the inductive step, observe that[
1 1

0 2

]k+1

=
[

1 1

0 2

][
1 1

0 2

]k

=[
1 1

0 2

][
1 2k−1

0 2k

]
=
[

1 2k+1−1

0 2k+1

]
.

35. Sketch. In the inductive step, observe that[
cos θ sin θ

− sin θ cos θ

]k+1

=[
cos θ sin θ

− sin θ cos θ

][
cos θ sin θ

− sin θ cos θ

]k

=
[

cos θ sin θ

− sin θ cos θ

][
cos kθ sin kθ

− sin kθ cos kθ

]
=[

cos(k + 1)θ sin(k + 1)θ

− sin(k + 1)θ cos(k + 1)θ

]
.

37. (a) sin(2θ ) = sin θ cos θ + cos θ sin θ =
2 sin θ cos θ . (b) sin 4θ = 2 sin 2θ cos 2θ =
4 sin 2θ cos 2θ . (c) Sketch. If k ≥ 1 and sin 2kθ =
2k sin θ

∏k−1
i=0 cos 2iθ , then sin 2k+1θ =

sin(2(2kθ )) = 2 sin 2kθ cos 2kθ =
2k+1 sin θ

∏k
i=0 cos 2iθ .

39. ∀ n ≥ 0, n ≥ 1.
41. Proof. Suppose ∀ n ≥ a , P(n). Suppose k ≥ a

and P(k) holds. Since k + 1 ≥ a , it follows that
P(k + 1) also holds.

43. Sketch. Check the case when n = 0. If k ≥ 0
and 5k ≡ 1 (mod 4), then 5k+1 ≡ 5 · 5k ≡
1 · 1 ≡ 1 (mod 4).

45. (a) 1, 1, 2, 5, 14. (b) Sketch. Check the case
when n = 0. If k ≥ 0 and Ck = 1

k+1

(2k
k

)
, then

Ck+1 = 2(2(k+1)−1)
k+2 Ck = 2(2k+1)

k+2 · 1
k+1

(2k
k

) =
1

k+2

(2(k+1)
k+1

)
. (c) n = 0: a ; n = 1: ab; n = 2: (ab)c,

a (bc); n = 3: (ab)(cd), ((ab)c)d, (a (bc))d,
a ((bc)d), a (b(cd)); n = 4: (abc)(de) in two
ways, (ab)(cde) in two ways, a (bcde) in five
ways, (abcd)e in five ways.

Section 4.4

1. Proof. Base case: (n = 1). Note that
∑1

i=1 0 = 0.
Inductive step: Suppose k ≥ 1 and

∑k
i=1 0 = 0.

(Goal:
∑k+1

i=1 0 = 0.) Observe that∑k+1
i=1 0 = (

∑k
i=1 0) + 0 = 0+ 0 = 0.

3. (a) Sketch. Check the case when n = 1. If k ≥ 1
and

∑k
i=1 i = k(k+1)

2 , then
∑k+1

i=1 i =∑k
i=1 i +

(k + 1) = k(k+1)
2 + (k + 1) = (k+1)(k+2)

2 . (b)

n(n+ 1). (c) n(n+2)
4 . (d) n2−1

4 .

5. Proof. Base case: (n = 1). Note that∑1
i=1(3i2 − i) = 2 = 12(1+ 1). Inductive step:

Suppose k ≥ 1 and
∑k

i=1(3i2 − i) = k2(k + 1).

(Goal:
∑k+1

i=1 (3i2 − i) = (k + 1)2(k + 2).) So∑k+1
i=1 (3i2 − i) =∑k

i=1(3i2 − i)+ (3(k + 1)2−
(k + 1)) = k2(k + 1) + 3(k + 1)2 − (k + 1) =
(k + 1)[k2 + 3(k + 1) − 1] = (k + 1)2(k + 2).
That is,

∑k+1
i=1 (3i2 − i) = (k + 1)2(k + 2).

7. Sketch. Check the case when n = 1. If k ≥ 1
and

∑k
i=1(4i − 3) = k(2k − 1), then∑k+1

i=1 (4i − 3) = k(2k − 1) + (4k + 1) =
(k + 1)(2(k + 1) − 1).

9. Prove
∑n

i=1(2i + 1) = n(n+ 2).

11. Prove
∑n

i=0 2i = 2n+1 − 1.
13. Sketch. Check the case when n = 2. If k ≥ 0

and
∑k

i=2 i2i = (k − 1)2k+1, then
∑k+1

i=2 i2i =
(k − 1)2k+1 + (k + 1)2k+1 = k2k+2.

15. Sketch. Check the case when n = 1. If k ≥ 1
and

∑k
i=1 i22i = (k2 − 2k + 3)2k+1 − 6, then∑k+1

i=1 i22i = [(k2 − 2k + 3)2k+1 − 6]+
(k + 1)22k+1 = ((k + 1)2 − 2(k + 1) + 3)2k+2 − 6.

17. Sketch. Check the case when n = 1. If k ≥ 1
and

∑k
i=1(i · i !) = (k + 1)!− 1, then∑k+1

i=1 (i · i !) = [(k + 1)!− 1]+ (k + 1) · (k + 1)! =
(k + 2)!− 1.

19. Proof. Base case: (n = 1). Note that
∑2

i=1 i =
3 = 1(2 · 1+ 1). Inductive step: Suppose k ≥ 1
and

∑2k
i=1 i = k(2k + 1). Observe that
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∑2(k+1)
i=1 i =∑2k

i=1 i + (2k + 1) + (2k + 2) =
k(2k + 1) + (2k + 1) + (2k + 2) =
(k + 1)(2(k + 1) + 1).

21. Sketch. Check the case when n = 1. If k ≥ 1
and

∑k
i=1

1
i(i+1) = k

k+1 , then
∑k+1

i=1
1

i(i+1) =
k

k+1 + 1
(k+1)(k+2) = k+1

k+2 .

23. Sketch. In the inductive step, we have∑k+1
i=1

1
2i = (1− 1

2k ) + 1
2k+1 = 1− 1

2k+1 .

25. Proof. Base case: (n = 1). Note that
∏1

i=1
i

i+2 =
1
3 = 2

(1+1)(1+2) . Inductive step: Suppose k ≥ 1 and∏k
i=1

i
i+2 = 2

(k+1)(k+2) . (Goal:
∏k+1

i=1
i

i+2 =
2

(k+2)(k+3) .) Observe that
∏k+1

i=1
i

i+2 = (
∏k

i=1
i

i+2 )×
( k+1

k+3 ) = ( 2
(k+1)(k+2) )( k+1

k+3 ) = 2
(k+2)(k+3) .

27. Sketch. Check the case when n = 1. If k ≥ 1
and

∏k
i=1 r2i = rk(k+1), then

∏k+1
i=1 r2i =

(rk(k+1))(r2(k+1)) = r (k+1)(k+2).
29. Sketch. In the inductive step, we have

x2k+1 − y2k+1 = (x2k − y2k
)(x2k + y2k

) =
(x − y)

∏k
i=0(x2 i + y2i

).
31. Proof. Base case: (n = 0). We have s1 ≥ 2s0 ≥ s0.

Inductive step: Suppose k ≥ 0 and
sk+1 ≥

∑k
i=0 si . Observe that sk+2 ≥ 2sk+1 =

sk+1 + sk+1 ≥ sk+1 +
∑k

i=0 si =
∑k+1

i=0 si .

33. Proof. Base case: (n = 1). Note that
∑1

i=1
1
i2 =

1 = 3
2 − 1

2 . Inductive step: Suppose k ≥ 1 and∑k
i=1

1
i2 ≥ 3

2 − 1
k+1 . (Goal:

∑k+1
i=1

1
i2 ≥ 3

2 − 1
k+2 .)

Observe that
∑k+1

i=1
1
i2 =

∑k
i=1

1
i2 + 1

(k+1)2 ≥
3
2 − 1

k+1 + 1
(k+1)2 ≥ 3

2 − 1
k+2 .

35. Proof. Base case: (n = 1). Note that∑1
i=1

1
i2 = 1 = 2− 1. Inductive step: Suppose

k ≥ 1 and
∑k

i=1
1
i2 ≤ 2− 1

k . (Goal:
∑k+1

i=1
1
i2 ≤

2− 1
k+1 .) Observe that

∑k+1
i=1

1
i2 =

∑k
i=1

1
i2 +

1
(k+1)2 ≤ 2− 1

k + 1
(k+1)2 ≤ 2− 1

k+1 .

37. Sketch. We focus on + since − is handled
similarly. Suppose

∑b
i=a (si + ti ) =

∑b
i=a si +∑b

i=a ti . Then,
∑b+1

i=a (si + ti ) =
∑b

i=a (si + ti )+
sb+1 + tb+1 =

∑b
i=a si +

∑b
i=a ti+ sb+1 + tb+1 =∑b+1

i=a si +
∑b+1

i=a ti .

Section 4.5

1. Proof. Base cases: (n = 0, 1). Note that
0 = 20 − 1 and 1 = 21 − 1. Inductive step:
Suppose k ≥ 1 and that, for each 0 ≤ i ≤ k,

si = 2i − 1. (Goal: sk+1 = 2k+1 − 1.) We have
sk+1 = 3sk − 2sk−1 = 3(2k − 1) − 2(2k−1 − 1) =
3 · 2k − 3− 2k + 2 = 2 · 2k − 1 = 2k+1 − 1.

3. Sketch. Check the cases when n = 0, 1, 2. If
k ≥ 2 and, for each 0 ≤ i ≤ k, si = 5i − 3i − 2i ,
then sk+1 = 10sk − 31sk−1 + 30sk−2 =
10(5k − 3k − 2k) − 31(5k−1 − 3k−1 − 2k−1) +
30(5k−2 − 3k−2 − 2k−2) = 5k+1 − 3k+1 − 2k+1.

5. Sketch. Check the cases when n = 0, 1.
Suppose k ≥ 1 and that, for each 0 ≤ i ≤ k, si is
odd. We have c ∈ Z such that sk+1 =
3sk−1−2sk = 3(2c+1)−2sk = 2(3c− sk +1)+1.

7. (a) 6, 30, 114. (b)Sketch. Check the cases when
n = 0, 1. If k ≥ 1 and, for each 0 ≤ i ≤ k,
si = 2 · 3i − 3 · 2i , then sk+1 = −6sk−1 + 5sk =
−6(2 · 3k−1 − 3 · 2k−1) + 5(2 · 3k − 3 · 2k) =
6 · 3k − 6 · 2k = 2 · 3k+1 − 3 · 2k+1.
(c) sn+1 − sn = 4 · 3n − 3 · 2n ≥ 3(3n − 2n) ≥ 0.

9. (a) 3, 7, 17. (b) Sketch. Check the cases when
n = 0, 1. If k ≥ 1 and, for each 0 ≤ i ≤ k, si =
1
2 ((1+√2)i + (1−√2)i ), then sk+1 =
2sk + sk−1 = 2( 1

2 )[(1+√2)k+ (1−√2)k]+
1
2 ((1+√2)k−1 + (1−√2)k−1) = 1

2 ((1+√
2)k+1 + (1−√2)k+1). (c) 7, 0, 2, 2, 2, 0, 5.

11. Sketch. Check the cases when n = 0, 1.
Suppose k ≥ 1 and, for each 0 ≤ m ≤ k,∑m

i=0(−1)i =
{

1 if m is even,
0 if m is odd. .

Observe that
∑k+1

i=0 (−1)i =∑k−1
i=0 (−1)i +

(−1)k + (−1)k+1 =∑k−1
i=0 (−1)i . Since k + 1

and k − 1 have the same parity, the result
follows.

13. (a) Sketch. Note that $4 and $5 are achievable.
Suppose k ≥ 5 and that, for each 4 ≤ i ≤ k, it is
possible to attain $i with $2 bills and $5 bills.
Since, for some a , b ∈ N, $(k − 1) = a × $2+
b×$5, we have $(k+1) = (a +1)×$2+ b×$5.
(b) Increase.

15. Sketch. Check the cases when n = 25, 26,
27, 28. Suppose k ≥ 28 and that, for each
25 ≤ i ≤ k, it is possible to attain i inches from
4-inch bricks and 9-inch bricks and a sheet of
plywood 1 inch thick. If (k − 3) inches =
a × 4 inches+ b × 9 inches+ 1, then
(k + 1) inches = (a + 1) × 4 inches+
b × 9 inches+ 1.

17. (a) Sketch. Base cases: 4(5¢) = 20¢ = 2(10¢) and
5(5¢) = 25¢ = 1(25¢). Inductive step: Use
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(k + 1)(5¢) = (k − 1)(5¢) + 10¢.
(b) 5, 6, 7, 8, 9, 15, 16, 17, 18, 19¢.

19. 22 · 32 · 5 · 7. 21. 3 · 7 · 132.
23. 210 · 35 · 52 · 7 · 11.
25. (a) Sketch. Note the case when n = 2. If k ≥ 2

and each integer i with 2 ≤ i ≤ k has a squared
prime divisor, then consider the case when
k + 1 is prime and the case when k + 1 is
composite. (b) Sketch. Write n = p

e1

1 · p
e2

2 · · · · ·
pem

m . So, n2 = ( p
2
1)e1 · ( p

2
2)e2 · · · · · ( p

2
m)em . Take

p = p1.
27. Assume p1 < p2 < · · · < pm. Let

d = p
min{e1, f1}
1 p

min{e2, f2}
2 · · · p

min{em, fm}
m ,

a = p
e1

1 p
e2

2 · · · pem
m , and b = p

f1

1 p
f2

2 · · · p fm
m . So

d > 0, d | a , and d | b. Suppose c ∈ Z+, c | a ,
and c | b. Let c = q

g1

1 q
g2

2 · · · q gn
n be the standard

factorization. Since c | a , we have q1 | a ,
whence q1= p1. Moreover, q

g1

1 | p
e1

1 and
thus g1 ≤ e1. Similarly, g1 ≤ f1. Hence,
g1 ≤ min{e1, f1}. Repeating this argument,
we see that c | d , whence c ≤ d .

29. Apply the result in Exercise 27.
31. (a) Prove existence and uniqueness separately.

For existence, break the inductive step into
cases based on the parity of n. In each case, the
binary representation bmbm−1 · · · b1b0 for n div 2
can be used to get the binary representation
bmbm−1 · · · b1b0r for n, where r = 0 if n is even,
and r = 1 if n is odd. (b) Generalize part (a).

33. Sketch. In the inductive step, use the fact that

n∑
i=1

i k+1

=
(n+ 1)((n+ 1)k+1 − 1) −∑k

j=1

[(k+2
j

)∑n
i=1 i j

]
k + 2

and n is a factor of (n+ 1)k+1 − 1.
35. Sketch. Inductive step:∑k+1

i=0 Fi = (Fk+2 − 1) + Fk+1 = Fk+3 − 1.

37. Sketch. Inductive step:[
1 1

1 0

]k+1

=
[

Fk Fk−1

Fk−1 Fk−2

][
1 1

1 0

]
=
[

Fk+1 Fk

Fk Fk−1

]
.

39. Sketch. Certainly gcd(F0, F1) = 1. If c divides
Fn and Fn+1, then c divides Fn−1 = Fn+1 − Fn,
which would be impossible by the inductive
hypothesis.

41. Proof. Assume conditions (i) and (ii) in the
hypotheses of the theorem. Suppose it is not
true that P(n) holds ∀ n ≥ a . Let S be the set of
those integers n ≥ a for which P(n) does not
hold. By our assumptions, S is nonempty.
Hence, by the Generalized Well-Ordering
Principle, S has a smallest element, say s. Since
P(a ), P(a + 1), . . . , P(b) all hold, it must be
that s > b. Therefore, s − 1 ≥ b. Since a , . . . ,
s − 1 /∈ S, it follows that P(a ), . . . , P(s − 1) all
hold. However, for k = s − 1, by condition (ii),
P(k + 1) must also hold. That is, P(s) holds.
This contradicts the fact that s ∈ S.

43. Sketch. Attempting to write 23 = 5t + 2c for
t = 0, . . . , 4 shows that it is impossible. Now
observe that 24, . . . , 28 are achievable. For any
number of points k ≥ 29, we can always score
(k − 5) points first and then score another try.

Section 4.6

1. (n−1)!
(k−1)!(n−k)!

n!
(k+1)!(n−1−k)!

(n+1)!
k!(n+1−k)! =

(n−1)!
k!(n−1−k)!

n!
(k−1)!(n+1−k)!

(n+1)!
(k+1)!(n−k)! .

3. x5 + 5x4 y+ 10x3 y2 + 10x2 y3 + 5xy4 + y5.
5. 729x6 + 1458x5 y+ 1215x4 y2 + 540x3 y3 +

135x2 y4 + 18xy5 + y6.
7. 32x5 − 80x4 y+ 80x3 y2 − 40x2 y3 + 10xy4 − y5.
9. xn − nxn−1 + (n

2

)
xn−2 − (n

3

)
xn−3 + · · · + (−1)n.

11. (a) xn + 1
2 nxn−1 + 1

4

(n
2

)
xn−2 + 1

8

(n
3

)
xn−3 + · · · +

1
2n . (b) 1

2n−5

(
n− n

5

) = 1
2n−5

(n
5

)
.

13. x8 + 4x6 y2 + 6x4 y4 + 4x2 y6 + y8.
15. 243x10 + 405x8 y3 + 270x6 y6 + 90x4 y9 +

15x2 y12 + y15.
17. (a) x2n + nx2n−2 + (n

2

)
x2n−4 + (n

3

)
x2n−6+ · · ·+

nx2 + 1. (b)
(n

4

)
.

19.
(n

2

)
nn−2 − (n

3

)
nn−3 + · · · + (−1)n−1n2 + (−1)n.

21. (a) 2.7048, 2.7169, 2.7181.
(b)
∑n

i=0
1
i !

(n−1)(n−2)···(n−i+1)
ni−1 .

23.
(100

40

)
360240. 25.

(400
10

)
210.

27. 0. 29. (a) 15
128 . (b) 105

512 . (c) 0.

31. Proof. 9n = (1+ 8)n =∑n
i=0

(n
i

)
1n−i 8i =∑n

i=0

(n
i

)
8i .

33. Consider (10+ 2)n.
35. Consider (5+ 3)n = (23)n.
37. Consider (3− 1)n.
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39. (a) Expand (2+ 22)n and simplify.
(b)
∑n

i=0

(n
i

)
2i = 3n.

41. Consider (1− 1
3 )n.

43. Proof. Suppose a and b are relatively prime. By
Corollary 3.14, we get ax + by = 1, for some
x, y ∈ Z. So bn yn = (1− ax)n = 1− nax+(n

2

)
a2x2 − (n

3

)
a3x3 + · · · + (−1)nanxn = 1+

x(−na +(n
2

)
a2x− (n

3

)
a3x2 + · · · + (−1)nanxn−1).

With c = −na + (n
2

)
a2x − (n

3

)
a3x2 + · · · +

(−1)nanxn−1, we have bn yn = 1− xc. That is,
cx + bn yn = 1. By Corollary 3.14, a and bn are
relatively prime.

Chapter 4 Review

1. 8, 64, 320, 1280, 4480.
2. 3, 5, 21, 437, 190965. 3. ∀ n ≥ 1, sn = n

2n .
4. s0 = −6, and ∀ n ≥ 1, sn = sn−1 + 12.
5. ∀ n ≥ 0, sn = −2(−3)n.
6. (a) $505.01 and $563.58. (b) st = P(1+ r

m )mt.

7. ∀ n ≥ 0, sn = 8 · 2n
(n+3

3

)
.

8. s
2
k − 4. 9.

∑n
i=3 3 · 2i−1.

10. 125250. 11. 411−1
3 .

12. 1010200. 13. n(2n2−9n+13)
6 .

14. 1−(−2)n+1

3 .

15. (a) $63,612.07 and $33,795.91. (b) M =
$83,395.81.

16. (a) 2
35

∑198
i=0( 1

3 )i . (b)
1−( 1

3 )199

34 .
17. Sketch. Check the case when n = 9. If k ≥ 9

and k! > 4k , then (k + 1)! = (k + 1)k! >

(k + 1)4k ≥ 4k+1.
18. Sketch. Check the case when n = 6. If k ≥ 6

and k2 > 4(k + 2), then (k + 1)2 = k2 + 2k + 1 >

4(k + 2) + 2k + 1 > 4(k + 3).
19. Sketch. Check the case when n = 0. If k ≥ 0

and 3k ≥ k2 + 1, then 3k+1 = 3 · 3k ≥
3(k2 + 1) ≥ (k + 1)2 − 1.

20. Sketch. Check the case when n = 0. Suppose
k ≥ 0 and k3 − 4k + 6 = 3c for some c ∈ Z.
Hence, (k + 1)3 − 4(k + 1) + 6 = k3 + 3k2+
3k + 1− 4k − 4+ 6 = (k3 − 4k + 6)+
(3k2 + 3k − 3) = 3(c + k2 + 3k + 1).

21. Sketch. Check the case when n = 0. Suppose
k ≥ 0 and 7k − 1 = 6c for some c ∈ Z. Hence,
7k+1 − 1 = (6+ 1) · 7k − 1 = 6(7k + c).

22. Sketch. Check the case when n = 0. Suppose
k ≥ 0 and 5k − 2k = 3c for some c ∈ Z. Hence,
5k+1 − 2k+1 = (3+ 2) · 5k − 2 · 2k = 3(5k + 2c).

23. (a) 300, 601.50, 904.51. (b) Sketch. If sk =
60000(1.005k − 1), then sk+1 = 1.005sk + 300 =
(1.005)60000(1.005k − 1) + 300 =
60000(1.005k+1 − 1).

24. Use the fact that a (x1 + · · · + xk + xk+1) =
a ((x1+· · ·+xk)+xk+1) = a (x1+· · ·+xk)+axk+1.

25. Sketch. Note that min({s1}) = s1. Suppose
k ≥ 1 and, any set S with |S| = k has a minimal
element. If s j = min({s1, s2, . . . , sk}), then

min({s1, s2, . . . , sk , sk+1}) =
{

s j if s j < sk+1
sk+1 otherwise.

26. Sketch. Check the case when n = 1. If k ≥ 1
and

∑k
i=1( 1

i − 1
i+1 ) = 1− 1

k+1 , then∑k+1
i=1 ( 1

i − 1
i+1 ) = (1− 1

k+1 ) + ( 1
k+1 − 1

k+2 ) =
1− 1

k+2 .

27. Sketch. Check the case when n = 1. If k ≥ 1
and

∑k
i=1(3i + 1) = k

2 (3k + 5), then∑k+1
i=1 (3i + 1) = k

2 (3k + 5) + (3k + 4) =
k+1

2 (3(k + 1) + 5).

28. Sketch. Check the case when n = 1. If k ≥ 1
and

∑k
i=1 3i = 3

2 (3k − 1), then
∑k+1

i=1 3i =
3
2 (3k − 1) + 3k+1 = 3

2 (3k+1 − 1).

29. Sketch. Check the case when n = 0. If k ≥ 0
and

∑k
i=0(i + 1)2i = k2k+1 + 1, then∑k+1

i=0 (i + 1)2i = k2k+1 + 1+ (k + 2)2k+1 =
(k + 1)2k+2 + 1.

30. Sketch. Check the case when n = 1. If k ≥ 1
and

∑k
i=1(3i2 + 5i) = k(k + 1)(k + 3), then∑k+1

i=1 (3i2 + 5i) = k(k + 1)(k + 3) + (3(k + 1)2 +
5(k + 1)) = (k + 1)((k + 1) + 1)((k + 1) + 3).

31. Sketch. Check the case when n = 1. If k ≥ 1
and

∑k
i=1 i4i = 4

9 [4k(3k − 1) + 1], then∑k+1
i=1 i4i = 4

9 [4k(3k − 1) + 1]+ (k + 1)4k+1 =
4
9 [4k+1(3k + 2) + 1].

32. Use the fact that

b
∑n+1

i=1
ai = b

(
∑n

i=1
ai )+an+1 = b

(
∑n

i=1
ai )ban+1 .

33. Sketch. Check the cases when n = 0, 1.
Suppose k ≥ 1 and that, for each 0 ≤ i ≤ k,
3 | si . We have c, d ∈ Z such that sk+1 =
2sk−1 + sk = 2(3c) + (3d) = 3(2c + d).

34. Sketch. Check the cases when n = 0, 1.
Suppose k ≥ 1 and that, for each 0 ≤ i ≤ k,
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si = 4 · 5i + 3 · 4i . So sk+1 = −20sk−1 + 9sk =
−20(4 · 5k−1 + 3 · 4k−1) + 9(4 · 5k + 3 · 4k) =
4 · 5k+1 + 3 · 4k+1.

35. Sketch. Check the cases when n = 0, 1.
Suppose k ≥ 0 and that, for 0 ≤ i ≤ k,
si = 2i+1 + 3 · 22i . So sk+1 = 6sk − 8sk−1 =
6(2k+1 + 3 · 22k) − 8(2k + 3 · 22(k−1)) =
2(k+1)+1 + 3 · 22(k+1).

36. (a) Four 3¢ stamps and one 8¢ stamp.
(b) Sketch. 14 = 2(3) + 1(8), 15 = 5(3), and
16 = 2(8). Further, k + 1 = (k − 2) + 1(3).
Therefore, if, for some k ≥ 16, we can obtain
(k − 2)¢, then an additional 3¢ stamp will yield
(k + 1)¢.

37. 7 · 11 · 13. 38. 23 · 34 · 112.

39. 22 · 52 · 72 · 11 · 23 · 43 · 47.

40. Use the fact that
∑n+1

i=1 Li = (
∑n

i=1 Li ) + Ln+1 =
(Ln+2 − 3) + Ln+1 = (Ln+1 + Ln+2) − 3 =
Ln+3 − 3.

41. Sketch. Check the cases when n = 0, 1.
Suppose k ≥ 1 and that, for each 0 ≤ i ≤ k, si =
3i (3i − 1). So sk+1 = 3(4sk − 9sk−1) =
3(4[3k(3k − 1)]− 9[3k−1(3k−1 − 1)] =
3k+1(3k+1 − 1).

42. x4 + 4x3 y+ 6x2 y2 + 4xy3 + y4.
43. 6561x8 − 69984x7 y+ 326592x6 y2 −

870912x5 y3 + 1451520x4 y4 − 1548288x3 y5 +
1032192x2 y6 − 393216xy7 + 65536y8.

44. x10 − 5x8 y2 + 10x6 y4 − 10x4 y6 + 5x2 y8 − y10.

45.
(100

10

)
290. 46. −(100

25

)
325.

47. 0. 48. Consider (1+ 5)n.
49. Consider (1+ 22)n.
50. Consider (3+ (−4))n.

Chapter 5

Section 5.1

1. (a) False. (b) True. (c) False.
3. (a) True. (b) False. (c) True.
5. True. 7. False.
9. (a) No. (b) Brazil, Colombia, Guyana.
11. The “is a son of” relation.
13. ⊇. 15. ⊥. 17. R itself.
19. (a) GameCo. (b) No. (c) Yes.

21.

2

{0, 1, 2}
{1, 2}
{0, 2}
{0, 1}
{2}
{1}
{0}

1
0

∅
23. NBA Dunkfest GameCo

MediCompRx Tracker
Skate Rats

25. 8

2

6

4

27.

{1, 2} {2, 3}

{1} {2}

{1, 2, 3}

29.
0 3 6 9

0
1
2

⎡
⎢⎣1 0 0 0

1 1 1 1
1 0 1 0

⎤
⎥⎦

31. ∅ {1} {2} {1, 2}
∅
{1}
{2}

{1, 2}

⎡
⎢⎢⎢⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎥⎦

33. (a) y

x
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(b) y

x

35. (a) y

x

(b) y

x

37. through 53.
Exercise Reflexive Symmetric Antisymmetric Transitive

37 F T F F
39 T T F F
41 F T T T
43 F F T T
45 F F T F
47 T T F T
49 T F F F
51 T F F T
53 T F T T

55. Symmetric.
57. Sketch. If R is symmetric, then x R y ↔

y R x ↔ x R−1 y. If R−1 = R, then x R y ↔
x R−1 y ↔ y R x.

59. Note that R ∩ R−1 ⊆ � iff ∀ x, y ∈ X,
(x, y) ∈ R ∩ R−1 → (x, y) ∈ � iff ∀ x, y ∈ X,
x R y ∧ y R x → x = y.

Section 5.2

1. The arguments used in Example 5.18 from
Section 5.1 show that the “divides” relation on
X = Z+ is reflexive, antisymmetric, and
transitive.

3. Proof. Let x, y, z be arbitrary elements of X.
Reflexive: Since x R x, we have x R−1 x.
Antisymmetric: Suppose x R−1 y and y R−1 x.
That is, y R x and x R y. Hence, x = y.
Transitive: Suppose x R−1 y and y R−1 z. That is,
y R x and z R y. Thus, z R x, and we have
x R−1 z.

5. Just the one in Exercise 53.
7. No. It is not antisymmetric.
9. No. It is not reflexive.
11. Yes.
13.

∅

{a, b}

{b}{a}

15.

1

72

3

9

2

3624

4 6

188 12
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17. (a) No.
(b) O−, O+, A−, A+.
(c)

O�

A
 B
AB�

A� B�O


AB


(d) AB


O�

A
 B
AB�

A� B�O


19. One of the lines in the triangle would follow
from the other two by transitivity.

21. b12vitamin � b6vitamin.
23. (2, −3, 1, 0) � (2, −1, 5, 3).
25. an−1an−2 · · · a0 < bn−1bn−2 · · · b0 iff an−12n−1+

an−22n−2+· · ·+a0 < bn−12n−1+bn−22n−2+· · · +
b0 iff an−1 = bn−1, . . . , ak = bk and ak−1 < bk−1.

27. Sketch. Reflexive: �x� = �x�. Symmetric:
�x� = �y� → �y� = �x�. Transitive: �x� = �y�,
�y� = �z� → �x� = �z�.

29. It all follows from the fact that = is an
equivalence relation.

31. Sketch. Reflexive: With c = 1, we have cx1 = x1
and cy1 = y1. Symmetric: cx1 = x2, cy1 = y2 →
1
c x2 = x1, 1

c y2 = y1. Transitive: cx1 = x2,
cy1 = y2, dx2 = x3, dy2 = y3 → cdx1 = x3,
cdy1 = y3.

33. For example, it is not reflexive.
35. Just the one in Exercise 47.

37. Since R is symmetric, x ∈ [y] iff x R y iff y R x
iff y ∈ [x].

39. (m1 − n1, 0) if m1 ≥ n1, and (0, n1 −m1) if
m1 < n1.

41.

⎛
⎝ x1√

x
2
1+y

2
1

, y1√
x

2
1+y

2
1

⎞
⎠.

43. Yes. 45. No. 47. No.
49. Each integer is either odd or even, and not

both.
51. Each (a , b) ∈ Z×Z∗ is in Aa

b
and in no other Ar .

53. ∀ n ∈ Z, let An = [n, n+ 1).
55. ∀ b ∈ Z, let Ab = {(m, n) : m, n ∈ N and

m− n = b}.
57. ∀m ∈ R, let Am = {(x, y) : y = mx}.

Additionally, let A∞ = {(x, y) : x = 0}.
59. (a) {apple}, {eat, ear}, {peace}, {car, call}.

(b) {apple, peace}, {call}, {eat, car, ear}.
(c) {apple, eat, peace, ear}, {car, call}.

61. m R n ↔ m− n is even.
63. (a1, b1) R (a2, b2) ↔ a1

b1
= a2

b2
.

65. (a) “has the same suffix as” or “has the same
file type as.” (b) “has the same base (or file)
name as.”

67. Sketch. (→) Suppose A is the partition of X
corresponding to R. Let R′ be the equivalence
relation on X corresponding to A. Argue that
x R′ y iff ∃ A∈ A such that x, y ∈ A iff x R y.
Hence R = R′. (←) Suppose R is the equi-
valence relation on X corresponding to A. Let
A′ = {[x]R : x ∈ X} be the partition of X
corresponding to R. Argue that if A∈ A, then
A= [y]R for some y ∈ A. Conclude that
A ⊆ A′, and, since A and A′ are both
partitions, A = A′.

69. Sketch. (⊆) Suppose x ∈
(⋃

A∈A1
A
)
∪(⋃

A∈A2
A
)

. In the case that x ∈ A1 for some
A1 ∈ A1, we have x ∈ ⋃A∈A1∪A2

A. The
symmetric case is handled similarly.
(⊇) Suppose x ∈ ⋃A∈A1∪A2

A. If x ∈ A0 for
some A0 ∈ A1, then x ∈ ⋃A∈A1

A. The
symmetric case is handled similarly.

Section 5.3

1. No. 3. It is not. 5. It is not.
7. (a) It is not. (b) It is. 9. It is.
11. (a) It is not. (b) It is not. (c) It is.
13. (a) It is not. (b) It is.
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15. Yes. It is a constant function.
17. Domain = {−3, −2, . . . , 3} and range =

{0, 1, 4, 9}.
19. Domain = {0, 1, . . . , 4} and range =

{1, 2, 4, 8, 16}.
21. Domain = R and range = [−1,∞).
23. Domain = [1,∞) and range = [0,∞).
25. Domain = R\{−1} and range = R\{0}.
27. f (0) = f (4) = 4, f (1) = f (3) = 1, f (2) = 0,

f (5) = 9, f (6) = 16.
29. Sketch. 0 ≤ x ≤ 2 iff 0 ≤ 3x ≤ 6 iff

−2 ≤ 3x − 2 ≤ 4.
31. Sketch. If 0 ≤ x ≤ 2, then 0 ≤ x2 ≤ 4. If 0 ≤

y ≤ 4, then 0 ≤ √y ≤ 2 and f (
√

y) = y.

33. (g ◦ f )(n) = (n!)2. 35. (g◦ f )(x) = −2 − 9x.

37. (g ◦ f )(x) = 1
|x| . 39. (a) Yes. (b) 4.

41. The “is the grandfather of” relation.
43. (a) Sketch. (→) Suppose R is transitive. If there

is some y such that (x, y) ∈ R and (y, z) ∈ R,
then (x, z) ∈ R. Hence, R◦ R ⊆ R. (←) Suppose
R ◦ R ⊆ R. If (x, y) ∈ R and (y, z) ∈ R, then
(x, z) ∈ (R ◦ R) ⊆ R. Hence, R is transitive. (b)
Sketch. Suppose R is reflexive and transitive. If
(x, y) ∈ R, then (x, y) ∈ (R◦R) (since (x, x) ∈ R
and (x, y) ∈ R). By part (a), the converse holds.

45. (a) No.
(b) Artist Music Company

MandM Aristotle Records
Fifty Percent Bald Boy Records
MandM Bald Boy Records
M.C. Escher Aristotle Records

(c) Aristotle Records and Bald Boy Records.
47. (a) Programmer Client

Martha Lang GameCo
Megan Johnson MediComp
Charles Murphy GameCo

(b) Only GameCo.
49. (a) y

x

y  � 1 � x2 

(b) Yes. Domain = R. (c) Range = (−∞, 1].
51. (a) y

x

(b) No. (c) None.
53. (a) y

x

x2 � y2 � 1

(b) No. (c) None.
55. The relation is a function iff each row has at

most one 1.
57. (a) ∀ x ∈ R, (( f + g) ◦ h)(x) = ( f + g)(h(x)) =

f (h(x)) + g(h(x)) = ( f ◦ h)(x) + (g ◦ h)(x) =
( f ◦ h + g ◦ h)(x). (b) Define f (x) = x2 and
g(x) = h(x) = 1.

59. (a) ∀ x ∈ R, (c( f ◦ g))(x) = c(( f ◦ g)(x)) =
c( f (g(x))) = (c f )(g(x)) = ((c f ) ◦ g)(x). (b) Let
c = 2, f (x) = x, and g(x) = 1.

61. Yes.

Section 5.4

1. (a) ∀ k ∈ Z, f (k, 1) = k. (b) f (2, 1) = f (1, 2).

3. If x
3
1 + 8 = x

3
2 + 8, then x1 = x2.

5. ∀ y ∈ R+, f

(
−1+
√

1+4y

2

)
= y.

7. Sketch. Suppose x1 �= x2. If x1 < x2, then
f (x1) < f (x2). In any case, f (x1) �= f (x2).

9. (a) If [n′] = [n] then 6 | (n′ − n), so
6 | (2n′ − 2n). Hence, [2n′] = [2n].
(b) f ([0]) = f ([3]). (c) gcd(2, 6) �= 1.

11. (a) 535. (b) 0000000003216 and 0000000009461.
13. (a) ∀ x ∈ X, p(x, y0) = x. (b) If (x1, y0) =

(x2, y0), then x1 = x2. (c) ∀ x ∈ X, ( p ◦ i)(x) =
p(x, y0) = x. (d) ∀ x ∈ X, y ∈ Y, (i ◦ p)(x, y) =
(x, y0).
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15. Suppose i(a1) = i(a2). Then a1 = a2.
17. If B ⊆ [0, 1], then f (B) = B.
19. f and g are onto. f and g are not one-to-one.
21. One-to-one.
23. ∀ x ∈ X, ( f ◦ idX)(x) = f (idX(x)) = f (x) and

(idX ◦ f )(x) = idX( f (x)) = f (x).
25. Exercise 3 established that f is one-to-one.

Since f ((y− 8)
1
3 ) = y, we see that f is also

onto.
27. Sketch. −2 �→ 0, −1 �→ 2, 0 �→ 4, 1 �→ 6, 2 �→ 8.
29. Sketch. ∀ j ∈ Z, if −n ≤ j ≤ n then 1 ≤ j + 1+

n ≤ 2n+ 1 and f ( j + 1+ n) = j . So f is onto.
If k1 − 1− n = k2 − 1− n then k1 = k2. So f is
one-to-one.

31. (a) If [k ′] = [k] then [mk ′] = [mk] and
[m+ k ′] = [m+ k]. (b) Sketch. (→) Suppose f
is a bijection. Since f is onto, there is some
k ∈ Z such that [mk] = f ([k]) = [1]. Since
1 ≡ mk (mod n), there is j ∈ Z such that
km+ jn = 1. So gcd(m, k) = 1. (←) Suppose
gcd(m, k) = 1. So there are j, k ∈ Z such that
mk + nj = 1. That is, f ([k]) = [mk] = [1].
Hence, for each y ∈ Z, f ([ky]) = [y]. Thus f is
onto. Now suppose f ([k1]) = f ([k2]). So
mk1 ≡ mk2 (mod n). Hence, k1 ≡ k2 (mod n).
That is, [k1] ≡ [k2]. So f is one-to-one.
(c) All m ∈ Z.

33. If every column contains at most one 1, then f
is one-to-one.

35. (b) If we have y ∈ Y such that g(y) = z, and
we have x ∈ X such that f (x) = y, then
(g ◦ f )(x) = z. (c) This follows from parts
(a) and (b).

37. Sketch. (→) Suppose f is symmetric and
x ∈ X. Since (x, f (x)) ∈ f , ( f (x), x) ∈ f . So
( f ◦ f )(x) = f ( f (x)) = x. (←) Suppose
f ◦ f = idX and (x, y) ∈ f . Since x =
( f ◦ f )(x) = f ( f (x)) = f (y), (y, x) ∈ f .

39. (a) Sketch. Suppose f (x1) = f (x2). Thus,
g( f (x1)) = g( f (x2)). Since g ◦ f is one-to-one,
x1 = x2. So f is one-to-one. (b) X = Y = Z =
(0,∞) f (x) = 1+√x, g(x) = (x − 1)2.

41. (a) Apply Exercise 39(a). (b) Apply
Exercise 40(a). (c) X = Y = Z = [0,∞),
f (x) = 1+√x, g(x) = (x − 1)2.

43. (a) Sketch. Suppose f and g are increasing. If
x < y, then f (x) < f (y), whence g( f (x)) <

g( f (y)). (b) ∀ x ∈ R, f (x) = g(x) = −x.

45. ∀ x ∈ R, g( f (x)) = g(2x + 5) = 2x+5−5
2 = x and

f (g(x)) = f ( x−5
2 ) = 2( x−5

2 ) + 5 = x.

47. g( f (2)) = g(1) = 2, g( f (3)) = g(3) = 3,
g( f (4)) = g(6) = 4, and g( f (5)) = g(10) = 5.
One similarly shows that f ◦ g = id.

49. ∀ x ∈ R, g( f (x)) = g(4− 2x) = 2− 1
2 (4− 2x) =

2− 2+ x = x and f (g(x)) = f (2− 1
2 x) =

4− 2(2− 1
2 x) = 4− 4+ x = x.

51. ∀ r ∈ Q+, ( f ◦ f )(r ) = f ( 1
r ) = 1

1
r

= r .

53. f −1(x) = 3

√
x−1

4 .

55. Phone Number Name

555-3148 Blair, Tina
555-3992 Walsh, Carol
555-4500 Tillman, Paul
555-6301 Jennings, Robert

The function need not be one-to-one and need
not be onto.

57. By Theorem 5.10(a), f −1 is a function. Since
f −1 and f are inverses of one another,
Theorem 5.10 (b) tells us that f −1 is a bijection.

59. (a) Sketch. Suppose f1 and f2 are one-to-
one. Suppose that ( f1 × f2)((x′1, x′2)) =
( f1 × f2)((x1, x2)). Since f1(x′1) = f1(x1)
and f2(x′2) = f2(x2), x′1 = x1 and x′2 = x2.
(b) Sketch. Suppose f1 and f2 are onto. Suppose
(y1, y2) ∈ Y1 × Y2. We have x1 ∈ X1 and x2 ∈ X2
such that ( f1 × f2)((x1, x2)) = ( f1(x1), f2(x2)) =
(y1, y2). (c) This follows from parts (a) and (b).

61. (a) Motivation.

0 1 3 6

2 4 7

85

9

n

m

(b) Sketch. ∀m ∈ N, g(m+ 1) = m. So g is
onto. If n1 − 1 = n2 − 1, then n1 = n2. So g
is one-to-one. (c) This follows from part
(b) and Exercise 59(c). (d) This follows
from part (c), part (a), Exercise 57, and
Theorem 5.9(c).

63. (a)−2. (b) 4. (c) 1
4 . (d)−1. 65. log2 3.
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67. (a) Since b0 = 1. (b) Since blogb y+logb z =
blogb yblogb z = yz. (c) Since ba logb y =
(blogb y)a = y a .

69. If a , b ∈ Z+ and 2a = 2b , then the Fundamental
Theorem of Arithmetic tells us that a = b.

Section 5.5

1. (a) {1, 2, 6}. (b) No.
3. f ([−2, 2]) = [−3, 5] since, {t : t ∈ R and

2s + 1 = t for some − 2 ≤ s ≤ 2} = {t : t ∈ R
and − 2 ≤ t−1

2 ≤ 2} = {t : t ∈ R and − 3 ≤
t ≤ 5}.

5. f ([1, 3]) = [2, 10]. 2 ≤ t ≤ 10 iff
1 ≤√t − 1 ≤ 3 and f (

√
t − 1) = t.

7. Sketch. (⊆) Suppose z ∈ g(range( f )). So we
have some x ∈ X such that z = g( f (x)). Hence,
z ∈ range(g ◦ f ). (⊇) Suppose z ∈ range(g ◦ f ).
So we have x ∈ X such that g( f (x)) = z. Since
f (x) ∈ range( f ), we see that z ∈ g(range( f )).

9. (a) {0, 1, 2, 4}. (b) {3}. (c) No. f −1({120}) = {5}.
11. f −1({−1}) = O, the set of odd integers.
13. The set of relatively prime pairs of positive

integers.
15. f −1([1, 4]) = [−2, −1] ∪ [1, 2]. Sketch. If

x ∈ [−2, −1] ∪ [1, 2], then x2 ∈ [1, 4]. If
x ∈ (−∞, −2) ∪ (−1, 1) ∪ (2,∞), then
x2 ∈ [0, 1) ∪ (4,∞).

17. Sketch. (⊆) Suppose (x, y) ∈ f (R). So y = x.
Hence, g(x, y) = 0 and (x, y) ∈ g−1({0}). (⊇)
Suppose (x, y) ∈ g−1({0}). So x − y = 0. Since
y = x, it follows that f (x) = (x, y) and
(x, y) ∈ f (R).

19. (a) Eagles and Huskies. Image. (b) KSU,
Northwestern, UNH, and Villanova. Inverse
image.

21. (a) The set E of even integers. (b) {3, 5, 7}.
23. (a) {0}, {1}, and {0, 1}. R({0, 1}) =

{A : A⊂ Z, A∩ {0, 1} �= ∅}. (b) {0, 1, 2, 3, 4, 6}.
25. (a) No. (b) A wrench and pliers. Inverse image.

(c) Susan Brower and Abe Roth. Image.
27. (a) Sketch. Suppose S1 ⊆ S2 and y ∈ f (S1). So

y = f (x) for some x ∈ S1 ⊆ S2. Thus y ∈ f (S2).
(b) Sketch. Suppose T1 ⊆ T2 and x ∈ f −1(T1).
So f (x) ∈ T1 ⊆ T2. Thus x ∈ f −1(T2).

29. (a) and (b) follow from the fact that, ∀ x ∈ X,
f (x) ∈ Y. (c) X = Y = R and f (x) = x2.

31. (a) Sketch. (⊆) Suppose x ∈ f −1(T1 ∪ T2). So
f (x) ∈ T1 ∪ T2. For i = 1, 2, if f (x) ∈ Ti , then
x ∈ f −1(Ti ). Hence, x ∈ f −1(T1) ∪ f −1(T2). (⊇)
By Exercise 27(b), for i = 1, 2, f −1(Ti ) ⊆
f −1(T1 ∪ T2). Hence, f −1(T1) ∪ f −1(T2) ⊆
f −1(T1 ∪ T2). (b) Sketch. By Exercise 27(b),
for i = 1, 2, f −1(T1 ∩ T2) ⊆ f −1(Ti ). So
f −1(T1 ∩ T2) ⊆ f −1(T1) ∩ f −1(T2). Now
suppose x ∈ f −1(T1) ∩ f −1(T2). So for
i = 1, 2, f (x) ∈ Ti . Since f (x) ∈ T1 ∩ T2,
x ∈ f −1(T1 ∩ T2).

33. (a) Sketch. Suppose x ∈ S∩ f −1(T). Since x ∈ S
and f (x) ∈ T , f (x) ∈ f (S) ∩ T .
(b) Sketch. Suppose x ∈ S∩ f −1(T). By part (a),
f (x) ∈ f (S) ∩ T . So x ∈ f −1( f (S) ∩ T).

35. (a) Sketch. (→) Suppose f is one-to-one and
F ( A1) = F ( A2). So f ( A1) = f ( A2). Suppose
x ∈ A1. So f (x′) = f (x) ∈ f ( A1) = f ( A2) for
some x′ ∈ A2. Thus, x = x′ ∈ A2. By symmetry,
A1 = A2. (←) Suppose F is one-to-one and
f (x1) = f (x2). Since F ({x1}) = f ({x1}) =
f ({x2}) = F ({x2}), {x1} = {x2}, whence x1 = x2.
(b) Sketch. (→) Suppose f is onto and
B ∈ P(Y). Since f is onto, F ( f −1(B)) =
f ( f −1(B)) = B. (←) Suppose F is onto and
y ∈ Y. We have some A⊆ X such that f ( A) =
F ( A) = {y}. Pick x ∈ A. So for some x ∈ A,
f (x) = y.

37. {0}. 39. [1,∞). 41. [0, 1].
43.
⋃

x∈[3,4) Ax. 45.
⋂

α is a vowel Aα .

47. Generalize the argument from Exercise 32(a).
49. Generalize the argument from Exercise 31(b).
51. (a) Sketch. Suppose x ∈ ⋃i∈J Ai . So x ∈ Ai0

for some i0 ∈ J ⊆ I. Thus, x ∈ ⋃i∈I Ai .
(b) Sketch. Suppose x ∈ ⋂i∈I Ai . Since J ⊆ I , in
particular, ∀ i ∈ J , x ∈ Ai . Thus, x ∈ ⋂i∈J Ai .

53. (a) Proof. (⊆) Suppose x ∈ B ∪⋂i∈I Ai . If
x ∈ B, then, ∀ i ∈ I, x ∈ B ∪ Ai . So
x ∈ ⋂i∈I (B ∪ Ai ). If x ∈ ⋂i∈I Ai , then ∀ i ∈ I,
x ∈ Ai ⊆ B ∪ Ai . So x ∈ ⋂i∈I (B ∪ Ai ). (⊇)
Suppose x ∈ ⋂i∈I (B ∪ Ai ). So, ∀ i ∈ I, x ∈
B ∪ Ai . If x �∈ B, then it must be that, ∀ i ∈ I,
x ∈ Ai . So x ∈ ⋂i∈I Ai . In any case,
x ∈ B ∪⋂i∈I Ai . (b) Proof. (⊆) Suppose
x ∈ B ∩⋃i∈I Ai . So x ∈ B and x ∈ Ai0 for some
i0 ∈ I. Thus x ∈ B ∩ Ai0 ⊆

⋃
i∈I (B ∩ Ai ). (⊇)

Suppose x ∈ ⋃i∈I (B ∩ Ai ). So x ∈ B ∩ Ai0

for some i0 ∈ I. Hence, x ∈ B and
x ∈ Ai0 ⊆

⋃
i∈I Ai . Thus x ∈ B ∩⋃i∈I Ai .
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55. Use Exercise 53(b) and the fact that
S\T = S ∩ Tc .

57. Yes.

Section 5.6

1. 76. 3. 3. 5. 4.
7. The function f : {0, 1, . . . , n} →

{1, 2, . . . , n+ 1} given by f (k) = k + 1 is a
bijection.

9. The function f : {n2, n2 + 1, . . . , (n+ 1)2} →
{1, 2, . . . , 2n+ 1} given by f (k) = k − n2 + 1 is
a bijection.

11. The function f : N → Z− given by
f (n) = −n− 1 is a bijection.

13. The function f : Z+ → {k2 : k ∈ Z+} given by
f (m) = m2 is a bijection.

15. For (a), (b), and (c), the function given by
f (x) = x−a

b−a is a bijection.

17. f (x) = b−x
b−a gives a bijection.

19. For (a) and (b), f (x) = x−a
b−x gives a bijection.

21. f (x) =
{

x−a
2(b−a ) if x ∈ [a , b),
1
2 + x−c

2(d−c) if x ∈ [c, d)
gives a

bijection.
23. Proof. Suppose A has the same cardinality as

B. So we have a bijection f : A→ B. Since
f −1 : B → A is also a bijection, B has the same
cardinality as A.

25. Sketch. Suppose to the contrary that A has
cardinality m. So m ∈ N, and we have a
bijection f : A→ {1, 2, . . . , m}. In particular, f
is one-to-one. If n > m, then f cannot exist, by
the Pigeon Hole Principle. If n < m, a
contradiction occurs with f −1.

27. Apply the contrapositive of Corollary 5.13.
29. There are 216 possible integers, and

70000 > 216.
31. Use Exercise 59(c) from Section 5.4.
33. Assume m ≥ 1 and A= {1, . . . , m}. By

induction on n, we can prove that, for any
n ≥ 1, |A× {1, . . . , n}| = mn.

35. Exercise 61(c) from Section 5.4 gives a bijection
Z+ × Z+ → Z+.

37. Sketch. Let C1 and C2 be countable sets. So we
have bijections f : C1 → Z+ and g : C2 → Z+.
By Exercise 59(c) from Section 5.4, we know
that f × g : C1 × C2 → Z+ × Z+ is a bijection.
Exercise 35 gives a bijection h : Z+ × Z+ → Z+.

The composite h ◦ ( f × g) is the desired
bijection.

39. h(1) = z and ∀ k ≥ 2, h(k) = g(k − 1).
41. (a) Show: ∀ n ∈ N, for any set B with

cardinality n and any subset A⊆ B, that A is
finite. Sketch. Note the case when n = 0, so
B = ∅. Let k ≥ 0 and suppose, for any set B of
cardinality k and any subset A⊆ B, that A is
finite. Let B be a set with cardinality k + 1, and
suppose A⊆ B. If A= B, then A has
cardinality k + 1 and is finite as well. If A⊂ B,
then define B ′ = B\{b}, where b ∈ B\A. Since
B ′ has cardinality k and A⊆ B ′, A is finite.
(b) This is the contrapositive of part (a).

43. (a) Proof. Suppose A⊆ Z+, and define the
function f : Z+ → A by f (n) = min( A\{ f (1),
f (2), . . . , f (n− 1)}). In fact, f is an increasing
function. Hence, f is one-to-one. Now
suppose a ∈ A⊆ Z+. Let m be the cardinality
of {k : k ∈ A and k ≤ a}. In fact, f (m) = a . So f
is onto. Therefore, f is a bijection.
(b) Proof. Suppose g : A→ Z+ is one-to-one.
Let A′ = g( A), and define g′ : A→ A′ by
g′(a ) = g(a ). Since g′ is a bijection, A′ is an
infinite subset of Z+. By part (a), A′ is
countably infinite. Hence, A is countably
infinite.

45. Proof. Suppose B is countable. If A is finite,
then A is countable. So it suffices to assume
that A is infinite. We have a bijection f : B →
Z+. Let i : A→ B be the inclusion. So g = f ◦ i
is a one-to-one map A→ Z+. By Exercise 43, A
is countably infinite, hence countable.

47. Proof. The bijection b : Z+ → Z given by

b(n) =
{

n
2 if n is even
1−n

2 if n is odd
,

together with the results in Exercise 61 from
Section 5.4, enables us to construct a bijection
g : Z+ → Z× Z+. Since h : Z× Z+ → Q defined
by h((m, n)) = m

n is onto, the composite h ◦ g is
an onto map Z+ → Q. By Exercise 44, Q is
countably infinite.

49. Proof. Since B is countable, we have a bijection
g : Z+ → B. For each b ∈ B, since Ab is
countable, we have a bijection fb : Z+ → Ab .
We claim that h : Z+ × Z+ → ⋃

b∈B Ab defined
by h((m, n)) = fg(m)(n) is onto. Suppose
a ∈ ⋃b∈B Ab . So a ∈ Ab0 for some b0 ∈ B. Since
g is onto, we have m ∈ Z+ such that g(m) = b0.
Since fb0 is onto, we have n ∈ Z+ such that
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fb0 (n) = a . Thus, h((m, n)) = fb0 (n) = a . So h is
onto. Since Exercise 61 from Section 5.4
guarantees a bijection b : Z+ → Z+ × Z+, we
have an onto map h ◦ b : Z+ → ⋃

b∈B Ab . By
Exercise 44,

⋃
b∈B Ab is countable.

Chapter 5 Review

1. (a) Yes. (b) No. (c) No.
2. 0 1 2

0

1

2

3

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

1 0 0

0 1 0

0 0 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3. x R−1 y iff y = 2x.
4. The transpose of the matrix in Exercise 2.
5. (a) No. (b) Yes. (c) Computer science and

mathematics.
6.

b

{a, b}
{b}
{a}
∅

a

7. (a) NNSE. (b) No.
(c)

N

W E

S
8. (a) No. (b) Yes. (c) No.
9. y

x
y2 � x2 � 1

10. x R−1 y iff x2 − y2 = 1.
11. Reflect the graph from Exercise 9 about the

line y = x.
12. Not reflexive. Symmetric. Not antisymmetric.

Not transitive.

13. Not reflexive. Not symmetric. Antisymmetric.
Transitive.

14. That R is reflexive, antisymmetric, and
transitive follows from the fact that both R1
and R2 are.

15. =.
16.

1

6 1510

2 53

30

17. (6, −1, −3, 5, 2) % (6, −1, 2, −4, 7).
18. (a) (40, 16, 4) ≺ (40, 18, 2) in the lexicographic

ordering, but (40, 16, 4) is a better record than
(40, 18, 2). (b) Use triples (W, T, L) instead.

19. Sketch. Reflexive: x2 = x2. Symmetric: If x2 = y2,
then y2 = x2. Transitive: If x2 = y2 and y2 = z2,
then x2 = z2.

20. (a) [x] = {x, −x}. (b) |x|.
21. ∀m, n ∈ Z, if m �= n, then

(m− 1, m] ∩ (n− 1, n] = ∅. Also,⋃
n∈Z(n− 1, n] = R.

22. (a) A vertical line through (x, 0). (b) Each point
(x, y) lies on a unique vertical line {x} × R.

23. No.
24. ∀ x ∈ [0,∞), let Ax = {−x, x}.
25. x R y iff �x� = �y�.
26. (x1, y1) R (x2, y2) iff x1 = x2.
27. f (1) is not defined uniquely.
28. No.
29. Domain = {2, 3, 4, 5} and range = {1, 3, 6, 10}.
30. ∀ x ∈ R, −1 ≤ x ≤ 2 iff 0 ≤ 2− x ≤ 3.
31. Domain = R\{2} and range = R\{1}.
32. g ◦ f : Z+ → R is given by (g ◦ f )(n) = n− 2.
33. (a) Of Mice and Cats and Raisons of Wrath.

(b) Publisher Customer

Book Farm Raul Cortez
Authority Pubs Mary Wright
Word Factory Mary Wright
Book Farm David Franklin

(c) Raul Cortez and David Franklin.
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34. Observe that x R y and y S z iff z S−1 y and
y R−1 x. Hence, x (S ◦ R) z iff z (R−1 ◦ S−1) x.

35. If 3n1 − 2 = 3n2 − 2, then n1 = n2.
36. f (0) = f (1) but 0 �= 1.
37. f (−1) = 0, f (2) = 3, and f (−3) = f (3) = 8.
38. f (x) = −11 is impossible.
39. (a) 84. (b) 036−77−5484 and 036−77−5709.
40. Sketch. (One-to-one) If r1

n =
r2

n , then r1 = r2.
(Onto) If s ∈ Q, then f (ns) = s.

41. Sketch. (One-to-one) If f (n1) = f (n2), then n1
and n2 must have the same parity, whence
must be equal. (Onto)
∀ (m, i) ∈ Z× {0, 1}, f (2m+ i) = (m, i).

42. Since f is one-to-one, so is f ′. Since
Y′ = range( f ) = range( f ′), f ′ is onto.

43. (a) Proof. Suppose f : [0, 2] → [0, 1]. Let
x ∈ [0, 2]. Since f (x) ∈ [0, 1], it follows that
g( f (x)) = f (x). Hence g ◦ f = f . (b) Define
f (x) = x

2 .

44. Confirm that ∀ x ∈ R, f (g(x)) = x and
g( f (x)) = x.

45. Proof. Suppose f : X → Y. Let g1 : Y → X and
g2 : Y → X be inverses of f . That is,
g1 ◦ f = idX, f ◦ g1 = idY, g2 ◦ f = idX, and
f ◦ g2 = idY. It follows that g2 = g2 ◦ idY =
g2 ◦ ( f ◦ g1) = (g2 ◦ f ) ◦ g1 = idX ◦ g1 = g1.

46. 3. 47. 1.
48. (a) {−1, 0, 4}. (b) {−1, 0, 1, 2}.
49. (a) [0, 4]. (b) [−√3,

√
3].

50. S f (S)

{1} {−1}
[0, 1] [−1, 1]

(−1, 0) (1, 3)

T f −1(T )

{1} {0}
[1, 4) [−1, 0]

(−4, −2) ∅
51. (a) Megan Johnson, Martha Lang, and Abe

Roth. (b) Inverse image.
52. (a) False. Let f (x) = 0, S1 = {−1}, and S2 = {1}.

(b) True.
f −1(T1�T2) = f −1(T1 ∩ T2

c) ∪ f −1(T2 ∩ T1
c) =

( f −1(T1)∩( f −1(T2))c)∪( f −1(T1)∩( f −1(T2))c) =
f −1(T1)� f −1(T2).

53. (0, 5). 54. {0}.
55. S = ⋃r∈[80,115) Ar . Also,

S = A80 ∪ A90 ∪ A100 ∪ A110 ∪ A115.
56. Sketch. Let j ∈ I. (⊆) If x ∈ ⋃i∈I (B ∪ Ai ), then

we have some i0 ∈ I such that x ∈ B ∪ Ai0 ⊆
B ∪⋃i∈I Ai . (⊇) If x ∈ B ∪⋃i∈I Ai , then

consider the cases when x �∈ B and when
x ∈ B.

57. f : {−100, −99, . . . , 200} → {1, 2, . . . , 301}
defined by f (n) = n+ 101 is a bijection.

58. 3.
59. f : [−1, 0) → (1, 7] defined by f (x) = 1− 6x is

a bijection.
60. f : {2k : k ∈ Z, 0 ≤ k ≤ n} → {1, 2, . . . , n+ 1}

defined by f (m) = m
2 + 1 is a bijection.

61. f : Z → T defined by f (n) = 10n is a bijection.
62. The function f : A× B → B × A defined by

(a , b) �→ (b, a ) is a bijection.
63. False. Let A= B = C = (0, 1) and D = (0, 2).
64. Proof. Suppose to the contrary that, for some

m ∈ N, there is a bijection f : [1, 2] →
{1, 2, . . . , m}. Let i : {1+ 1

n : 1 ≤ n ≤ m+ 1} →
[1, 2] be the inclusion of a set of cardinality
m+ 1. The composite f ◦ i is a one-to-one map
that contradicts the Pigeon Hole Principle.

65. f : {3k : k ∈ Z+} → Z+ defined by f (n) = n
3 is a

bijection.
66. Proof. Suppose to the contrary that R2 is

countable. Then the subset R×{0} is countable.
Since R and R× {0} have the same cardinality,
R is countable. This is a contradiction.

Chapter 6

Section 6.1

1. 48. 3. 372.
5. 10. The number of choices for the second letter

depends on the first letter.
7. (a) 18. (b) No.
9. (a) 17576000. (b) 17558424. (c) 17557425.
11. 1680 days. 13. 81250. 15. 436700160.
17. 10000. 19. 156000000. 21. 4096.
23. 1099511627776. 25. 60.
27. 312. 29. 766. 31. 11.
33. 250. 35. 1131. 37. 333.
39. 380. 41. 86. 43. 21828.

45. 23957. 47. 31591.

Section 6.2

1. 24. 3. 720. 5. P(200, 10).
7. 116280. 9. 336. 11. 4845.
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13. 312500. 15. 191362500. 17. 239400.

19. 840. 21. 230230.
23. (a) 792. (b) 180.
25. 16134720. 27. 1058400.
29. (a) P(15, 5)4 P(15, 4). (b) i. 5!P(15, 5)3 P(15, 4).

ii. 4!P(15, 5)4.
31. 720. 33. 1250. 35. 300.
37. 3. 39. 15. 41. 60.
43. 21090-9000.
45. (a) 6 bars. (b) 3 bars will be long.
47. (a) $360. (b) $116280. (c) When the horses

favored to win do well, the superfecta payoff
is less than $116,280.

Section 6.3

1. 69300. 3. 2430. 5. 176.
7. 22. 9. 834222844. 11. 16.
13. 334. 15. 214. 17. 1081.
19. (a) 1679616. (b) 1679616. (c) 3358976.
21. 24976. 23. 1267500. 25. 1645020.
27. 48. 29. 360.
31. (a) “MEET ME”. (b) y = 4x + 3 and 4 is

relatively prime to 27. (c) 486.
33. 641.
35. Theorem: If A1, A2, . . . , An are disjoint sets, then

|A1 ∪ A2 ∪ · · · ∪ An| = |A1| + |A2| + · · · + |An|.
Sketch. (By induction) Check the cases when
n = 1 and n = 2. Suppose k ≥ 2 and A1, . . . ,
Ak+1 are disjoint sets. Observe that |A1 ∪ A2 ∪
· · ·∪ Ak ∪ Ak+1| = |A1∪ A2∪· · ·∪ Ak |+ |Ak+1| =
|A1| + |A2| + · · · + |Ak | + |Ak+1|.

37. 15. 39. 21. 41. 156.
43. 4320. 45. 6. 47. 12.

49. 15. 51. 75.

Section 6.4

1. (a) 0.063. (b) 0.021.

3. 1
6 . 5. 5

18 .

7. (a) {TTT, TTH, THT, THH, HTT, HTH, HHT,
HHH}. (b) 1

2 .

9. (a) {00, 01, 02, 03, 10, 11, 12, 13, 20, 21, 22,
23, 30, 31, 32, 33}. (b) 3

8 .

11. 1
9 . 13. 5

9 .

15. 24279264
93384347 ≈ .2600.

17. (a) 1332603
1867686940 ≈ .0007. (b) No.

(c) 1866354337
1867686940 ≈ .9993.

19. 28
153 . 21. 37

256 .

23. (a) 63
256 ≈ .2461. (b) Bet against it.

25. 1
720 . 27. 1

2 .

29. Probability Complement Principle: If E is an
event in a sample space S, then P(E) =
1− P(Ec). Assumption: The outcomes in S are
equally likely. Proof. P(E) = |E |

|S| = |S|−|Ec |
|S| =

1− |Ec |
|S| = 1− P(Ec).

31. 1
575757 .

33. If we let p(n) be the probability that at least
two of n people have the same birthday, then
p(n) = 1− P(365,n)

365n . (a) p(15) ≈ .253.
(b) p(30) ≈ .706. (c) n = 23.

35. 2
9 . 37. 2

3 .

39. Sketch. Pretend one die is red and the others
are green. Since the total sum is the red plus
the green, an inductive argument works.

41. 1
3 . 43. 1381

749398 ≈ .0018.

45. 16
25 . 47. 1

18 . 49. 5
9 .

51. 7
27 . 53. 1

3 . 55. 2
5 .

57. (a) Yes. (b) No.
59. Sketch. (→) Suppose E and F are

independent. So P(E | F ) = P(E∩F )
P(F ) =

P(E) P(F )
P(F ) = P(E). Similarly, P(F | E) = P(F ).

(←) Suppose P(E | F ) = P(E). So P(E ∩ F ) =
P(E | F ) P(F ) = P(E) P(F ).

61. (a) 26%. (b) 6
13 ≈ .4615.

63. 38
39 ≈ .974.

65. Sketch. P(Fk | E) = P(Fk∩E)
P(E) = P(E |Fk ) P(Fk )

P(E) . Now
use Theorem 6.11 to rewrite P(E).

Section 6.5

1. 1296. 3. 210. 5. 105.

7. 36. 9. 149.

11. (a) 1
16 , 1

4 , 3
8 , 1

4 , 1
16 . (b) p = 1

8 .

13. 5108. 15. 3744.
17. 300. 19. 536100.
21. N = 1280 and p ≈ .00001392.
23. N = 261840 and p ≈ .00284725.
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25. N = 5374512 and p ≈ .05844242.
27. N = 3075072 and p ≈ .03343832.
29. 66. 31. 455.
33. 45. 35. 126.
37. (a) 165. (b) No.

39. 4
7 . 41. 252.

43. N = 224848 and p ≈ .00168067.
45. N = 41584 and p ≈ .00031083.
47. N = 6461620 and p ≈ .04829870.
49. N = 6180020 and p ≈ .04619382.
51. N = 58627800 and p ≈ .43822546.
53. P( A wins) ≈ .3864 and P(B wins) ≈ .6136.
55. P( A wins) ≈ .2828 and P(B wins) ≈ .7172.
57. P( A wins) ≈ .4754, P(B wins) ≈ .5211, and

P(tie) ≈ .0035.

Section 6.6

1. (a) 39!. (b) 39!
2 . 3. 3.

5. (a) 5040. (b) 1440. (c) 6! = 720.
7. 7567560. 9. 30.
11. 19!

3 . 13. 20.
15. 180. 17. 10.
19. 1466593128. 21. 6844101264.
23. 2027025.

25.
(50

3 )(47
3 )···(23

3 )(20
2 )(18

2 )···(2
2)

(10!)2 .

27.
(60

6 )(54
6 )···(6

6)
(

5!
2

)10

10! .

29. 90720. 31. 12623055048283680000.
33. 130. 35. 64.
37. 120. 39. 30.

Chapter 6 Review

1. 362880. 2. 15552. 3. 486720.
4. 200. 5. 1267. 6. 7893600.

7. 1657. 8. 720.
9. (a) 970200. (b) 940800.
10. 765529380.
11. {a , b}, {a , c}, {a , d}, {a , e}, {a , f }, {b, c},

{b, d}, {b, e}, {b, f }, {c, d}, {c, e}, {c, f },
{d , e}, {d , f }, {e, f }.

12. 24024. 13. 120. 14. 403.
15. 219. 16. 482. 17. 12866.
18. 159. 19. 4000. 20. 2509.

21. 1
18 .

22. Approximately yes, but the probability is not
exactly .01.

23. 21
32 . 24. 44

4165 .

25. 1
2 . 26. 8400

81719 ≈ .10.

27. 1927
191919 ≈ .01. 28. (a) 3

11 . (b) No.

29. (a) 83%. (b) 45
83 ≈ .5422.

30. No. 31. 90. 32. 95.
33. 90. 34. 1872. 35. 1302540.
36. 14664. 37. 732160. 38. 2532816.
39. 165984. 40. 1844. 41. 205792.
42. 365772. 43. 9730740. 44. 6608748.

45. 169
330 ≈ .5121. 46. 4598126.

47. 5481
456976 ≈ .0120.

48. (a) 19!. (b) 20. (c) 13
20 .

49. 1260. 50. 352716.
51. 165646455975. 52. 65.
53. 630.
54. (a) 116280. (b) 4651200.
55. (a) 252. (b) 386. 56. 486.
57. 3072. 58. 36!. 59. 252.
60. 1182. 61. 905

3876 . 62. 1
2 .

63. (a) 4
17 . (b) 1

425 . 64. 69729
1059380 ≈ .0658.

Chapter 7

Section 7.1

1. 93. 3. 27880. 5. 14637.

7. (a) 317
512 ≈ .62. (b) 7

1024 ≈ .0068.

9. 63713
111860 ≈ .5696. 11. 271

351 ≈ .7721.

13. 80. 15. 400. 17. 480.

19. φ( p
k1

1 · · · pkm
m ) = φ( p

k1

1 )φ( p
k2

2 ) · · ·φ( pkm
m ) =

p
k1

1 (1− 1
p1

) p
k2

2 (1− 1
p2

) · · · pkm
m (1− 1

pm
) can be

reorganized to give the desired result.
21. Sketch. Let p and q be the only prime divisors

of n. So φ(n) = n− n
p − n

q + n
pq =

n(1− 1
p − 1

q + 1
pq ) = n(1− 1

p )(1− 1
q ).

23. 4250.

25. 11
30 = .36 agrees with 1

e to 2 decimal places.

27. (a) 19
30 ≈ .633. (b) 1

120 . (c) 11
120 .
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29. .36787944.
31. |Ac

1 ∩ Ac
2 ∩ · · · ∩ Ac

n| = |( A1 ∪ A2 ∪ · · · ∪ An)c | =
|U |−|A1∪A2∪· · ·∪An| = |U |−

∑n
i=1(−1)i−1Si =

|S0| +
∑n

i=1(−1)i Si =
∑n

i=0(−1)i Si .
33. |A1∩ A2∩ A3|+ |A1∩ A2∩ A4|+ |A1∩ A2∩ A5| +

|A1∩ A3∩ A4|+ |A1∩ A3∩ A5|+ |A1∩ A4∩ A5| +
|A2∩ A3∩ A4|+ |A2∩ A3∩ A5|+ |A2∩ A4∩ A5| +
|A3 ∩ A4 ∩ A5|.

35. |A1 ∩ A2 ∩ A3| = |U | − (|Ac
1| + |Ac

2| + |Ac
3|)+

(|Ac
1∩Ac

2|+|Ac
1∩Ac

3|+|Ac
2∩Ac

3|)−|Ac
1∩Ac

2∩Ac
3|.

37. 5103000.

39. (a) 5
324 ≈ .0153. (b) 38045

139968 ≈ .2718. (c) 13.

41. n4 − 4n3 + 5n2 − 2n = n(n− 1)2(n− 2).
43. n5 − 6n4 + 14n3 − 15n2 + 6n =

n(n− 1)(n− 2)(n2 − 3n+ 3).

Section 7.2

1. 210. 3. 6306300. 5. 27720.
7. (a) 12612600. (b) 7567560. (c) 4204200.
9. 5775. 11. 37642556952.
13. (a) 212837625. (b) 5108103000.
15. (a) 29640619008000. (b) 4940103168000.

(c) 2858856.
17. (0, 0, 3), (0, 1, 2), (1, 0, 2), (0, 2, 1), (1, 1, 1),

(2, 0, 1), (0, 3, 0), (1, 2, 0), (2, 1, 0), (3, 0, 0).
19. x2 − 2xy+ 2xz+ y2 − 2yz+ z2.
21. x4 + 4x3 y+ 4x3 + 6x2 y2 + 12x2 y+ 6x2 + 4xy3 +

12xy2 + 12xy+ 4x + y4 + 4y3 + 6y2 + 4y+ 1.

23. 4x2 + 4xy− 4xz+ y2 − 2yz+ z2.

25.
( 300

100,50,40,60,20,30

)
. 27. 0.

29. −( 100
25,10,40,25

)
. 31. −80720640.

33. 680.
35. There are n! ways to order the n items. We

shall understand that the first k1 go into
category 1, the next k2 go into category 2, and
so forth. Since, within each category, order is
not important, we must divide n! by k1!k2! · · ·
km!, the number of different orderings leaving
items within their categories. We get n!

k1!k2!···km! ,
which is

( n
k1,k2,...,km

)
.

37. Consider 3n = (1+ 1+ 1)n.
39. Consider 6n = (3+ 2+ 1)n.

Section 7.3

1. 1+ 2x + 3x2 + 4x3 + · · · =∑∞
i=0(i + 1)xi .

3. 1+ x2 + x4 + x6 + · · · =∑∞
i=0 x2i .

5. 1 · 1+ 1 · x2 + 1 · x4 + x · 1+ x · x2 + x · x4+
x2 · 1+ x2 · x2 + x2 · x4 = 1+ x2 + x4 + x + x3+
x5 + x2 + x4 + x6 = 1+ x + 2x2 + x3 + 2x4+
x5 + x6.

7. (1 · x + 1 · x2 + x · x + x · x2)(1+ x3) =
(x + x2 + x2 + x3)(1+ x3) = x · 1+ x · x3+
x2 · 1+ x2 · x3 + x2 · 1+ x2 · x3 + x3 · 1+
x3 · x3 = x + x4 + x2 + x5 + x2 + x5 + x3+
x6 = x + 2x2 + x3 + x4 + 2x5 + x6.

9. c0 = 1, c5 = 1, c10 = 2, c15 = 2, c20 = 2,
c25 = 1, c30 = 1, and, otherwise, ci = 0.

11. i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ci 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ci 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1

13. i 0 5 10 15 20 25 30 35 40 45 50 55 60

ci 1 1 2 2 2 3 2 3 2 2 2 1 1

15. 11. 17. 29.

19. (a) 18. (b) 27256
31977 ≈ .8524. (c) 23

159885 ≈ .00014.

21. ci =
(n

i

)
a i , for i = 0, 1, . . . , n.

23. ∀ i ≥ 0, ci =
(i+3

i

)
.

25.
(149

100

)
. 27.

(149
100

)+ (148
99

)
.

29. 6175. 31. 15805.

33. (a) 351. (b) 56. (c) 3.
35. 81. 37. 1602.
39. When there are finitely many items, say n, in

general, the number of ways of selecting n− i
is the same as the number of ways of
de-selecting i .

41. ∀ i ≥ 0, ci = (−1)i
(i+n−1

i

)
.
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Section 7.4

1.

3. ◦ r0 r1 r2 r3

r0 r0 r1 r2 r3

r1 r1 r2 r3 r0

r2 r2 r3 r0 r1

r3 r3 r0 r1 r2

5. (a) f1. (b) f3. (c) No.
7. 6. 9. 10.

11. (a) 126. (b) 90. (c) 60.
13. 57. 15. 280. 17. 36.
19. 834. 21. 34. 23. 8.
25. (a) 39. (b) 135. (c) 57.
27. 165. 29. 3375. 31. 1135.
33. Sketch. gx = x iff g−1gx = g−1x iff x = g−1x iff

g−1x = x.
35. 1493. 37. 2420. 39. 6.

Section 7.5

1. Each of the
(n

k

)
subsets of {1, 2, . . . , n} of size k

can be uniquely represented by a binary se-
quence of length n with k ones, as in Exam-
ple 7.20(a). For each i , group together those
that start with i ones followed by a zero. The
size of this group is

(n−i−1
k−i

)
.

3. The subsets of {1, 2, . . . , n} of size k can be split
into (i) those containing both 1 and 2, (ii) those
containing exactly one of 1 or 2, and (iii) those
containing neither 1 nor 2.

5. Of the
(3n

n

)
paths from (0, 2n) to (n, 0) in the

(2n+ 1) by (n+ 1) rectangular grid of points
([0, n]× [0, 2n]) ∩ (Z× Z), for each 0 ≤ i ≤ n,
the number that pass through (i, i) is(2n

i

)( n
n−i

) = (2n
i

)(n
i

)
.

7. A Canadian doubles tournament starts with
3n players and ends with 3n − 1 losers and
1 champion. For each 1 ≤ k ≤ n, round k has
3n−k+1 competitors, of which 2

3 are eliminated
as losers.

9. Of the set of base-3 sequences of length n,
3n − 2n contain at least one 2. For each
1 ≤ j ≤ n, let Aj be those that have a 2 in
position j . For each 1 ≤ j1 < j2 < · · · <
ji ≤ n, |Aj1 ∩ Aj2 ∩ · · · ∩ Aji | = 3n−i .
By the Principle of Inclusion-Exclusion,
3n − 2n =∑n

i=1(−1)i−1
(n

i

)
3n−i .

11. For each k, there are
(n

k

)
choices for a team of

size k and then k choices for its captain. All
together, there are n choices for a team captain
and then 2n−1 choices for the remaining team
members.

13. The number of ways to split 2n people into

2 teams of size n is (2n
n )
2 . The number of ways

for you to pick your n− 1 teammates is
(2n−1

n−1

)
.

15. The 3n base-3 sequences of length n can be
partitioned according to triples (k0, k1, k2),
where k0 is the number of zeros, k1 is the
number of ones, and k2 is the number of twos
in the sequence.

17. (a)
(a+b+c

a ,b,c

)
. (b) Consider an (i + 1) by ( j + 1) by

(k + 1) rectangular grid of points. In a path
from S to F , the final position before reaching
F must be exactly one of the 3 pictured points
x, y, or z. The number of paths to x is

( n−1
i−1, j,k

)
,

the number to y is
( n−1

i, j−1,k

)
, and the number to

z is
( n−1

i, j,k−1

)
.

y

x

z

F

19. The identity permutation of {1, 2, . . . , n}
moves none of its elements. Of the n!− 1
nonidentity permutations of {1, 2, . . . , n}, for
each 1 ≤ i ≤ n− 1, the number for which i + 1
is the largest position moved is |Pi | = i · i !.

21. If a fair coin is tossed n times, then the proba-
bility that at least one head will occur is 1− 1

2n .
For each 1 ≤ k ≤ n, the probability that the
first head occurs on toss k is

( 1
2

)k−1( 1
2

) = 1
2k .

23. Assume that you are one of the 6 people. Of
the other 5 people, there must be either
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3 whom you have met before or 3 whom you
have not met before. Without loss of general-
ity, assume that there are 3 whom you have
met before. If two of them have met each other
before, then you and those two are a set of 3
who have met each other before. Otherwise,
those 3 are a set who have never met each
other before.

25. 2.
27. (a) List the n− 1 terms on the non-base sides of

the n-gon. Parentheses go around any pair that
sits on a common triangle. Collapse each such
triangle to its interior side, write the resulting
product from the exterior sides on that interior
side, and regard it as a single term. Now repeat
this process on the resulting smaller polygon.
This establishes a one-to-one correspondence
between triangulations of the n-gon and
parenthesizations of a product of n− 1 terms.
(b) Tn = Cn−2 = 1

n−2+1

(2(n−2)
n−2

) = 1
n−1

(2n−4
n−2

)
.

29. The coins are on squares of the same color.
That leaves 30 squares of that color and 32 of
the other color. Since each domino covers one
square of each color, they cannot be used to fill
the rest of the board.

31. The first re-deal leaves the selected card within
the first 3 rows. The second re-deal leaves the
card in the first row. Thus, the column specifies
the card.

Chapter 7 Review

1. 92903176. 2. 2880. 3. 1123.

4. 2197
8330 ≈ .2637. 5. 887

2907 ≈ .3051.

6. 31150. 7. 3
8 . 8. 60.

9. 7560. 10. 35840.
11. (a) 514594080. (b) 2858856. (c) 192972780.
12. x2 + 2xy+ 2xz+ 2xw + y2 + 2yz+ 2yw + z2 +

2zw + w2.

13. 320250
( 80

20,50,10

)
. 14. 9777287520.

15. 1− x + 2x2 − 2x3 + 3x4 − 3x5 + · · · has
ci = (−1)i� i+1

2 �.
16. i 0 5 10 15 20 25 30 35 40 45 50

ci 1 1 2 1 2 2 3 3 3 3 3

i 55 60 65 70 75 80 85 90 95 100

ci 3 3 3 3 2 2 1 2 1 1

17. 17. 18. 49. 19. 44.
20. 10015005. 21. 673. 22. 7211.
23. r4. 24. 13. 25. 217045.

26. 240. 27. 4995.
28. Sketch. Suppose g1, g2 ∈ G and Fix(g2) = X.

(⊆) If x ∈ Fix(g2g1), then x = g2g1x = g1x,
whence x ∈ Fix(g1). (⊇) Similar.

29. 4624. 30. 94.
31. Paths from c0,0 to cn+1,k must pass through

cn,k−1 or cn,k .
32. There are

(n
k

)
subsets of size k from

{1, 2, . . . , n}. For each k − 1 ≤ i ≤ n− 1, there
are
( i

k−1

)
for which i + 1 is the largest element.

33. For i = 0, 1, . . . , k, the number of paths from
S = c0,0 to F = c3n,k through c2n,i is

(2n
i

)( n
k−i

)
.

Each path from S to F goes through exactly
one of these.

34. Here R = “(” and D = “)”. Our binary
sequences never have more D’s than R’s at
any point.

35. The same formula A �→ A� {n} defines both a
function and its inverse. This bijection
therefore establishes the equality.

36. 4371. 37. 1414910.

38.
( 52

13,13,13,13

)
. 39. 33.

40. (a) 54. (b) 896
8671 ≈ .1033. (c) The outcomes are

not equally likely.
41. Let ck be the coefficient of xk in (1+ x + x2)4 =

(1− x3)4 1
(1−x)4 , and suppose k ≥ 12. From the

left-hand side, it is obvious that ck = 0. Since
the right-hand side equals (1− 4x3 + 6x6−
4x9 + x12) 1

(1−x)4 , we see also that ck =
(k+3

k

)−
4
( k

k−3

)+ 6
(k−3

k−6

)− 4
(k−6

k−9

)+ ( k−9
k−12

)
.

42. (a) 63063000. (b) 15766392.
43. 17. 44. 10.

Chapter 8

Section 8.1

1. N

LC

S
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3. BA

C

DE

F

5.

Milton

Rosewood

Brockton

Connor

Blake

Clay

Rockport

Salmon

Lyme

Berwick

Colby

Ridgeway
Kenmore

Fairmont

7. The graph is simple.
9. The graph is not simple, because it has

multiple edges.
11. Yes.
13. No. Edge e needs vertex 4.
15. E = {{1, 2}, {2, 3}, {2, 5}}.
17. E = {{1, 3}, {3, 5}, {1, 5}}.
19. A B

F

D

21. No. An endpoint is missing.
23. Yes.
25. No. Two edges intersect in infinitely many

points.
27. Yes.
29. Let e �→ {u, v} be an edge. The walk u, e , v, e , u

is not a path.
31. Yes. 33. 2. 35. 2.
37. 5. 39. Yes. 41. No.
43. (a) Colby, Lyme, Clay, Rosewood. (b) Yes.
45. Sketch. Suppose d = dist(u, w) ≥ 1. Let P be a

path of length d from u to w. Let v be the last
vertex on P before w. So dist(u, v) ≤ d − 1. If
there were a path of length l < d − 1 from u to
v, then there would be a path of length
l + 1 < d from u to w. Thus, dist(u, v) = d − 1.

47. Sketch. Let P and Q be distinct paths from u to
v. We can find a portion of P followed by a
portion of Q that forms a cycle.

49. Sketch. By symmetry, we must start along
edge 3 or edge 4. Case 1: If we take edge 3, then
without loss of generality, we take edge 1. We
must then, without loss of generality, take
edge 5. We then finish with 7, 4, 2 or 7, 4, 6 or
6, 2 or 6, 4, 7 and get stuck without hitting
every edge. Case 2: If we take edge 4, then
without loss of generality, we take edge 1.
Subcase 2a: Take edge 3 next, then 7, and,
without loss of generality, 5. After taking 2 or
6, we get stuck. Subcase 2b: Take edge 2 next,
and then, without loss of generality, 5. If we
take 6, then we get stuck. Otherwise, we take
edge 7, then take 3, and get stuck.

51. (a) n = 2, 3, 4, 5, or 6. (b) 2.
53. Calculus and Discrete Math.

Section 8.2

1. A B C D E F
A

B

C

D

E

F

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3. 1 2 3 4 5 6
1

2

3

4

5

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 1 0 0

1 1 1 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= A

5. 1 2 3 4 5 6
1

2

3

4

5

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 1

1 0 1 0 1 0

0 1 0 1 0 0

0 0 1 0 1 0

0 1 0 1 0 1

1 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= A
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7. 2 5 1 4 6 3
2

5

1

4

6

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 1 1 0

0 0 0 1 0 0

1 1 1 0 1 1

0 1 0 1 0 0

0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= B

9. 1 3

4 5

2
11.

[
16 13

18 9

]

13. (a)

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(b)

PA=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 1 0 1

0 0 0 1 0 0

1 1 1 0 1 1

0 0 0 1 1 0

0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(c)

PAPT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 1 1 0

0 0 0 1 0 0

1 1 1 0 1 1

0 1 0 1 0 0

0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

15.

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 1 1

1 1 1 0 1 1

1 1 1 0 1 1

0 0 0 5 1 1

1 1 1 1 2 1

1 1 1 1 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

17.

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 1 0 2 0

0 3 0 2 0 2

1 0 2 0 2 0

0 2 0 2 0 1

2 0 2 0 3 0

0 2 0 1 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

19. Sketch. Let i, j be vertices. For each 0 ≤ k ≤
n− 1, there is a walk of length k from i to j iff
Ak has a positive value in entry i, j . In a graph
on n vertices, if there is a path between two
vertices, then the distance between them
cannot be greater than n− 1.

21. 1 : 4; 2 : 4; 3 : 4; 4 : 1, 2, 3, 5, 6;
5 : 4, 6; 6 : 4, 5.

23. 1 : 2, 6; 2 : 1, 3, 5; 3 : 2, 4; 4 : 3, 5;
5 : 2, 4, 6; 6 : 1, 5.

25.

7

2

6 5

1 43

27. 1 2 3 4

29. 21

3

45

6

31. 21

3

45

6

33. (1, 1) (2, 1)

(2, 2)(1, 2)

(1, 3)

35. 0 1

37. (a) P7. (b) Yes. (c) Colby, Lyme, Milton.
39. (a) No. (b) Just exclude Sud.
41. No. They differ by more than one digit.
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43. (a) 1101. (b) Male, A+.
45. (a) No. (b) Yes.
47. Calculus Comp. Sci.

Math

Physics

Chemistry

Diff. Eq.

Discrete Math

Linear Algebra

Group Theory

49. Yes. Let V1 contain the odd-numbered vertices,
and V2 the even.

51. Sketch. Let V1, V2 bipartition G, and let W be
the vertex set of a subgraph H of G. Then,
W ∩ V1, W ∩ V2 bipartition H.

53. It is not bipartite, because it contains a 3-cycle.
55. |V| = n and |E | = n− 1.
57. |V| = n and |E | = (n

2

)
.

59. |V| = 8 and |E | = 12.
61. |V| = 20 and |E | = 30.
63. |V| = 16 and |E | = 32. 65. n− 1.
67. 1, for n ≥ 2. 69. 3.
71. 5. 73. 4.
75. 1 2 3 4 5

1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

77. (1, 1) (1, 2) (2, 1) (2, 2) (2, 3) (2, 4)
(1, 1)

(1, 2)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 1

0 0 1 1 1 1

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

79. 000 : 001, 010, 100; 001 : 000, 011, 101;
010 : 000, 011, 110; 011 : 001, 010, 111;
100 : 000, 101, 110; 101 : 001, 100, 111;
110 : 010, 100, 111; 111 : 011, 101, 110.

Section 8.3

1. Define f (1) = 3, f (2) = 4.
3. Define f (1) = (2, 1), f (2) = (1, 1), f (3) =

(2, 2).

5. Define f (1) = 7, f (2) = 8, f (3) = 9, f (4) =
6, f (5) = 10. Also match up the parallel edges
connecting 1 and 4 with those connecting 6
and 7.

7. Define f (1) = 9, f (2) = 6, f (3) = 10, f (4) =
7, f (5) = 8.

9. Define f (1) = 8, f (2) = 9, f (3) = 6, f (4) =
7, f (5) = 10.

11. (a) We can define f ( A) = G, f (B) = J ,
f (C) = H, f (D) = K , f (E) = I , and
f (F ) = L .
(b) Time Period Study Group Meeting

1 German, Kuwait
2 Indochina, Japanese
3 History, Latin

13. Define f (1, 1) = 1, f (1, 2) = 3, f (1, 3) = 5,
f (2, 1) = 2, f (2, 2) = 4, f (2, 3) = 6.

15. Define f (0) = 15, f (1) = 12, f (2) = 14,
f (3) = 13, f (4) = 11, f (5) = 8, f (6) = 10,
f (7) = 9.

17. From the first graph to the second graph,
define ∀ i, f (i) = i + 10. The same formula
works from the second to the third.

19. 12. 21. 4. 23. 2n. 25. 2(n!)2.
27. Sketch. First observe that f (v0), f (e1),

f (v1), . . . , f (vn) is a walk in H. Second, note
that because fV is a bijection, if there are no
vertex repetitions in the list v0, v1, . . . , vn,
then there cannot be any in the list f (v0),
f (v1), . . . , f (vn).

29. {1, 2}

{2, 5} {1, 3}

{4, 5}
{2, 3}

{3, 5}

{1, 5}

{2, 4}{1, 4}

{3, 4}

31. Sketch. It suffices to show that the cycles
6, 8, 10, 7, 9, 6 and 1, 2, 7, 10, 5, 1 and 6, 8, 3,
4, 9, 6 all work. Rotations handle the rest.

33. Sketch. Aut(Cn) = Dn ⊇ Zn. Given vertices i, j ,
rotation r j−i moves i to j .

35. Sketch. Suppose G ∼= H by isomorphism
f : G → H. Define f −1 : H → G by taking
f
−1
V : VH → VG to be the inverse of

fV : VG → VH and f
−1
E : EH → EG to be the



A44 Answers to Selected Exercises

inverse of fE : EG → EH . Then f −1 is a graph
isomorphism.

37. Sketch. (→) Obvious. (←) Suppose v1, v2 ∈ V.
So there exist automorphisms f1 and f2 such
that f1(u) = v1 and f2(u) = v2. Let f =
f2 ◦ f

−1
1 . Observe that f is an automorphism

and f (v1) = v2.
39. Sketch. (→) Suppose f : G → H is an

isomorphism, and let D : H → R2 be any
drawing of H. Then D ◦ f : G → R2 is a
drawing of G with the same image.

41. Define f (1) = f (2) = f (3) = f (5) = 5, f (4) =
4, f (6) = 6.

43. Sketch. Suppose there is one. Without loss of
generality, say f (1)= 1 and f (2)= 2. If f (3) =
3, then {1, 3} needs to be an edge of C4. If
f (3) = 4, then {2, 4} needs to be an edge of C4.
These contradictions show that f cannot exist.

45. No. Triangle 1, 2, 3 has no place to go.
47. ∀ i , define f (1, i) = 1 and f (2, i) = 2.
49. m ≤ n.

Section 8.4

1. (a) has 6 vertices, whereas (d) has only 5.
3. (a) has 6 edges, whereas (c) has 7.
5. 5, 2, 2, 1, 1, 1. 7. 3, 3, 2, 2, 2, 2.
9. δ((b)) = 2 and δ((g)) = 1.
11. They do not have a common degree sequence.
13. The subgraph induced by the degree-3 vertices

is P2 on the left graph and 
2 on the right
graph. See Exercise 28 in Section 8.3.

15. The computers of degree 3 are adjacent in the
left configurations, but not in the right.

17. The grid on the left has a power station of
degree 4, and that on the right does not.

19. All vertices in the first graph have degree 4,
whereas vertex “German” in the second graph
has degree 3.

21.

, , , , , , , , , , , , , , , , ,

23.

25.

27. None.
29.

31. Sketch. If there are an odd number of
odd-degree vertices, then

∑
v∈V deg(v) is odd.

However,
∑

v∈V deg(v) = 2|E | is even.
33. |V| = 2n and |E | = n2n−1.
35.

2

3

1

4

6

5

37.

4 3

5

6 1

2

39. Define f : C5
c → C5 by f (1) = 1, f (2) =

3, f (3) = 5, f (4) = 2, f (5) = 4.
41. C6.
43. The complements C6 and C3 + C3, respectively,

are not isomorphic. One is connected, and the
other is not.

45. Sketch. Suppose G ∼= H via isomorphism
f : VG → VH . The induced map f : EG → EH is
a bijection mapping edges to edges iff the
induced map f : EG

c → EH
c is a bijection

mapping non-edges to non-edges.
47. The idea is in the proof for Exercise 45.
49. True. Apply Lemma 8.8.
51.
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53. 6 1

4 3

25

55. 6 1

4 3

25

57. 59.

61. For (a), the distributive laws for sets give
VG ∩ (VH ∪ VK ) = (VG ∩ VH) ∪ (VG ∩ VK ) and
EG ∩ (EH ∪ EK ) = (EG ∩ EH) ∪ (EG ∩ EK ). The
result now follows from the definitions of
graph unions and intersections. Part (b)
follows similarly.

63. Define f (1) = (1, 1), f (2) = (1, 2), f (3) =
(1, 3), f (4) = (2, 1), f (5) = (2, 2), f (6) = (2, 3).

65. Fix v ∈ VG and w ∈ VH . Then {v} × H ∼= H and
G × {w} ∼= G.

Section 8.5

1.

3. 1 2 3

4 5

5. A simple directed graph.

3

1 2

5 4

7. Not a simple directed graph.

3

2

4

1

9. Yes.
11. 1, 2, 3, 5 and 1, 2, 4, 5.
13.

3

1 2

5 4

15.

3

2

4

1

17. Three strong components.

3

1 2

5 4

19. Two strong components.

3

2

4

1

21. Yes.
23. Define f (1) = 6, f (2) = 5, f (3) = 4.
25. Define f (1) = 7, f (2) = 5, f (3) = 8, f (4) = 6.
27. Vertex In-degree Out-degree

1 0 2
2 1 1
3 2 2
4 1 1
5 2 0

29. Vertex In-degree Out-degree

1 2 1
2 1 3
3 2 1
4 1 1

31. Vertex In-degree Out-degree

1 0 2
2 2 1
3 1 1
4 1 0

33. In the left graph, vertex 2 has in-degree 3, and
no vertex in the right graph has that.
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35. In the right graph, vertex 5 has in-degree 3,
and no vertex in the left graph has that.

37. The left graph has one vertex (namely, 1) with
in-degree 1, and the right graph has more
(namely, 6, 7, 8). Hence, they are not
isomorphic.

39. Define f (1) = 4, f (2) = 3.

41.

43.

45. Sketch. For each path P in G, we have the
underlying path P in G.

47. Sketch. Suppose G ∼= H via isomorphism
f : G → H. Define f : G → H by f (v) = f (v)
and f (e) = f (e) for all vertices v and edges e
in G. Observe that f is an isomorphism. The
converse is false.

49. 1 2 3
1

2

3

⎡
⎢⎣

0 0 1

1 0 0

0 1 0

⎤
⎥⎦= A,

1 2 3
1

2

3

⎡
⎢⎣

0 1 0

0 0 1

1 0 0

⎤
⎥⎦= A2.

51. A+ AT .
53.
∑n

j=1 ak, j = outdeg(vk),
∑n

i=1 ai,k = indeg(vk),
and

∑n
i=1
∑n

j=1 ai, j = |E |.
55. No. p(1, 3) + p(1, 2) = .5 �= 1.

57. 1 2 3 4
1

2

3

4

⎡
⎢⎢⎢⎢⎣

0 .4 .6 0

0 0 1 0

0 0 1 0

0 .2 .8 0

⎤
⎥⎥⎥⎥⎦= M,

1 2 3 4
1

2

3

4

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

⎤
⎥⎥⎥⎥⎦= M2.

59. (a)

(30, 15)

(15, 15)

(15, 40)

(15, 30)

(0, 40)

(0, 30)

(0, 15)

(0, 0)

(15, 0)

(30, 0)

(40, 15)

(40, 0)

AS WS

D

AR WR

(b) 15. (c) 13.
61. For a fixed i , the sum of the weights of the

edges of the form (i, j) must be 1, by the
definition of a Markov chain graph. The
column sums need not be 1. See Exercise 57,
for example.

63. (a) .173 after two at bats, and .266 after three at
bats. (b) .590. Start matters, since the values in
column 4 of M∞ vary.

65. (a)

11.8

.2

.5 .5

.3

.1WD
Pass

Calc.

Alg.

Trig.

.6

(b) Calculus, trigonometry, and algebra have
period 3. Withdraw and pass have period 1.
(c) 68.2% go from calculus to pass. 72.7% go
from algebra to withdraw.

67. (a)

.2

Check

Win

Fold

Bet

.3
.3

.2

1

1

.3
.4 .2

.1

(b) Bet Check Fold Win
Bet

Check

Fold

Win

⎡
⎢⎢⎢⎢⎣

0 0 .333 .667

0 0 .5 .5

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦≈ M∞

(c) If the computer bets on the first turn, then
the computer probably wins. If the computer
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checks on the first turn, then there is an even
chance of winning and losing. (d) No.

Chapter 8 Review

1.

Ost

Nord

Süd

West

2. Roch
Buff

Ith Bing

Syr

3. (a) 1 2

4 3
(b) ∅. (c) 2. (d) Yes.

4. (a)

da

e

c

b

2

4 3

2

5

(b) 1, a , 3, e , 4, b, 1. (c) No. (d) The subgraph
induced by {1, 3, 4} and the subgraph induced
by {2, 5}.

5. (a) Yes. (b) Yes. 6. (a) Yes. (b) Yes. (c) Yes.
7. (a) 1 2 3 4

1

2

3

4

⎡
⎢⎢⎢⎢⎣

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 1

⎤
⎥⎥⎥⎥⎦

(b) 1 : 2, 3; 2 : 1, 4; 3 : 1, 4; 4 : 2, 3, 4.
8. (a)

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦= P .

(b)
⎡
⎢⎢⎢⎢⎣

1 0 0 1

0 1 1 1

1 0 0 1

0 1 1 0

⎤
⎥⎥⎥⎥⎦= P A.

(c) It is the adjacency matrix relative to the
vertex ordering 2, 4, 3, 1.

9. NW NE

E

SESW

W

10. (1, 1) (2, 1)

(1, 2)

(1, 3)

11. 1 2 3 4 5 6

12. (a) 1

4

3 2

(b) 1, 2, 3, 1, 4.

13. (a) See Figure 8.19. (b) 2. (c) Yes, 0101, a
left-handed male. (d) 0001 is equidistant from
0000 and 0101.

14. Sketch. Every pair of vertices in W must be
connected by an edge of G that also must be an
edge of H.

15. (a) No. (b) Yes. (c) Yes.
16. Let V1 = {111, 100, 001, 010} and

V2 = {000, 011, 110, 101}.
17. No. It contains 5-cycles.
18. No. It could contain 3-cycles.
19. Define f (1) = 5, f (2) = 6, f (3) = 8, f (4) = 7.
20. Define f (1) = 2, f (a ) = c, f (b) = d.
21. Define f (1) = 3, f (2) = 6, f (3) = 5,

f (4) = 4, f (5) = 1, f (6) = 2.
22. Sketch. For each vertex b1b2 · · · bn in Qn, we

can find an automorphism f of Qn such that
f (00 · · · 0) = b1b2 · · · bn.

23. No. 24. No.

25. Define f (1) = f (4) = a , f (2) = b, f (3) = c.
26. 2. 27. 48.
28. No. There is no K4 in the octahedron.
29. It follows from Corollary 8.12.
30. The graph on the left has maximum degree 4,

and that on the right has maximum degree 5.
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31. The degree sequences are different.
32. Let U be the set of vertices in the left graph of

degree 2 or 3, and similarly define W for the
right graph. The subgraphs induced by U and
W are not isomorphic, so the graphs cannot be
isomorphic.

33. No.
34.

,

35.

,

36. Pictured is the complement of the left graph.

5 2

1

3

6

4

37. Sketch. V(Gc )c = VGc = VG and
E(Gc )c = (EGc )c = (EG

c)c = EG .
38. (a) (b)

39. (a) The subgraph induced by {000, 010}.
(b) The subgraph induced by
{000, 001, 010, 011, 100, 110}.

40. Sketch. For all u ∈ VG , v ∈ VH , d ∈ EG , and
e ∈ EH , define f (u, v) = (v, u), f (d , v) = (v, d),
and f (u, e) = (e, u). This gives an isomor-
phism f : G × H → H × G.

41. (a) (b)1

4 3

2 1

4 3

2

(c) All of G is one. (d) 1

4 3

2

(e) Vertex In-degree Out-degree

1 0 2
2 2 0
3 0 2
4 2 0

42. Yes.
43. Define f (1) = 7, f (2) = 11, f (3) = 9, f (4) =

10, f (5) = 8, f (6) = 12.
44. The left graph has a vertex with out-degree 3,

and the right graph does not.
45. They are not. The left graph has a vertex with

out-degree 0, and the right graph does not.

46.

, , ,

47.

, , , , ,

, , ,

48. 1 2 3 4 5 6
1

2

3

4

5

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0

0 0 1 1 1 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

49. No, its strong components are two isolated
vertices, and the subgraph induced by the
other three.

50. No.
51. 1 2 3 4

1

2

3

4

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 0 1

0 .2 .8 0

.3 0 .7 0

⎤
⎥⎥⎥⎥⎦

52. (a)

C D

B

.8

.2 .6

.2

.4.3

1

.5

A
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(b) .08 is the relevant value in M2.
(c) Irreducible, since M3 has all nonzero en-
tries. Regular, since all states are aperiodic.
(d) 4

9 ≈ .4444.

Chapter 9

Section 9.1

1. Isolated vertices 1, 3, and 5.
3.

5

f

2 3

5. κ = 1. It is connected, and {4} disconnects it.
7. κ = 2. The removal of one vertex leaves a

connected graph, and {1, 5} disconnects it.
9. κ = 1. It is connected, and {4} disconnects it.
11. κ = 3. The graph is vertex transitive. The

removal of one vertex leaves a graph that no
one vertex will disconnect. Also, δ(G) = 3.

13. (a) K3,3. (b) κ = 3, by Theorem 9.4. (c) No.
15. Proof. Suppose G is connected and δ(G) = 1.

So 1 ≤ κ(G) ≤ δ(G) = 1. Hence, κ(G) = 1.
17. (a) Proof. Suppose G has n vertices and n

edges. Then nδ(G) ≤∑v∈V deg(v) =
2|E | = 2n. Thus, κ(G) ≤ δ(G) ≤ 2. Since
κ(Cn) = 2, the cycle Cn has the highest possible
connectivity.
(b) See Theorem 9.3.
(c)

(d) Probably the last, since the greatest number
of components can be left by removing a single
vertex.

19. Sketch. Here nδ(G) ≤∑v∈V deg(v) = 2|E | <
2� 3n

2 �. It follows that δ(G) < 3. Hence κ(G) ≤
δ(G) ≤ 2.

21. By Theorem 9.3, each component must be a
cycle. Of course, a graph is the disjoint union
of its components.

23. Sketch. Let D be a κ-set for G, and let v ∈ D.
Suppose v is not adjacent to some component

of G\D. Then D′ = D\{v} disconnects G. Thus,
κ(G) ≤ |D′| < |D|, a contradiction.

25. Take two copies of Kd+1 and let u and v be one
vertex from each. Make a new graph G by
pasting together u and v to make a new single
vertex w that will have degree 2d. Note that
δ(G) = d, and {w} is a κ-set.

27. Note that G × P2 contains subgraphs G × {1}
and G × {2} that are isomorphic copies of G.
Let D be a κ-set for G × P2. At least one
of the copies of G must be disconnected in
(G × P2)\D. Moreover, D must contain at least
one vertex in each copy of G. So at least one of
the vertices of D was not needed to disconnect
the copy of G that got disconnected. Hence,
κ(G) ≤ κ(G × P2) − 1.

29. λ = 1. The graph is connected, and edge {1, 4}
disconnects it.

31. λ = 2. It follows from Exercise 7 that
2 = κ ≤ λ. Also, the edges {{6, 1}, {1, 2}}
disconnect the graph.

33. λ = 2. The removal of a single edge will not
disconnect the graph, yet {{4, 5}, {5, 6}}will.

35. λ = 3. Apply Theorem 9.6 and Exercise 11(b).
37. λ = 3. Apply Theorem 9.6 and Exercise 13.

There are multiple λ-sets.
39. For λ(G) ≤ 1, consider cases based on whether

G is connected or not.
41. n− 1 = κ(Kn) ≤ λ(Kn) ≤ δ(Kn) = n− 1.
43. 1 2

3

5 4

45. (a) κ = 1. (b) λ = 1.
47. (a) κ = 1. (b) λ = 1.
49. κ = λ = 1.
51. If S disconnects G, then S disconnects G.

Section 9.2

1. Neither. There are four vertices of odd degree.
3. An Euler trail. 1, c, 3, f, 4, d, 2, a , 1, b, 2, e,

5, h, 5, g, 4.
5. An Euler trail. 5, 6, 1, 2, 3, 4, 5, 2.
7. An Euler circuit. 6, n, 8, l, 7, j, 6, k, 7, o,

10, q , 9, p, 9, m, 6.
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9. An Euler circuit. The graph is 4-regular.
11. A (romantic) Euler trail.
13. 1 2

529
28 30

23 22

731
6 3 4

12 21
11

8

24

13 20

32

27

26

25

14

19

16

17
9 10

18 15

15. Yes. Connect the two odd-degree vertices with
an edge.

17. No. c.
19. The layout of the hallways determines a graph

in which vertices represent intersections (cross
ways) or corners, and edges represent hall-
ways. Since each hallway must be both
mopped and waxed, each edge is doubled.
Thus, every vertex has even degree and Euler's
Theorem applies.

21. Vertex repetitions in an Euler circuit determine
where to begin and end the cycles. Each cycle
will use two edges at each of its vertices.

23. Even n.
25. Both m and n even.
27. 2. 29. (a) 2. (b) 2.
31. Neither. 33. An Euler circuit.
35. Neither.
37. Note that G ′ is strongly connected and each

vertex now has equal in- and out-degrees.
39. Mimic the proof of Theorem 9.7(a).
41. Use a directed graph.

Section 9.3

1.

3.

5.

7.

9. The edges incident with degree-2 vertices
must be included. However, premature
3-cycles are then formed.

11. Since the edges incident with degree-2 vertices
must be included, all edges get included.
However, a Hamiltonian cycle is not formed.

13. After all of the edges incident with degree-2
vertices get included, the bottom-middle
vertex is then incident with 3 edges of the
cycle, which is impossible.

15. It is not Hamiltonian.
17. It is not Hamiltonian.
19. Yes.
21. Km,n is Hamiltonian iff m = n.
23. 3.

25. ∀ n ≥ 3, (n−1)!
2 . 27. Consider K2k,k .

29. Apply Theorems 9.2 and 9.11.
31. See Example 8.23, and take advantage of the

symmetries. We may assume that 1, 2, 3 is part
of a Hamiltonian cycle. If the cycle further
contains 1, 2, 3, 4, then it suffices to assume
that it contains 1, 2, 3, 4, 5, and we see that this
cannot be extended to a Hamiltonian cycle. If
the cycle instead contains 1, 2, 3, 8, then it
suffices to assume that it contains 6, 1, 2, 3, 8,
and we see that this cannot be extended to a
Hamiltonian cycle.

33. (1, 1), (1, 2), . . . , (1, n), (2, n), (2, n− 1), . . . ,
(2, 1), (1, 1) is a Hamiltonian cycle.

35. (1, 1), (1, 2), . . . , (1, n), (2, n), (2, n− 1), . . . ,
(2, 2), (3, 2), (3, 3), . . . , (3, n), (3, 1), (2, 1), (1, 1)
is a Hamiltonian cycle.

37. 1, 2, 5, 6, 3, 4, 1. 39. 1, 4, 3, 2.
41. The lower-right vertex has out-degree zero.
43. (a) No. (b) Yes. (c) Yes.
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45. Sketch. Let v be a vertex with the maximum
possible out-degree. Let Aout be the set of
heads of edges with tail v. Let Ain be the set of
tails of edges with head v. Let u be any vertex
in Ain. If there is no edge with tail in Aout and
head u, then u has higher out-degree than v, a
contradiction. Hence, u is distance 2 from v.

Section 9.4

1.
1 2

3 4 5

3.

Printer Speakers

Mouse

Monitor

Tower

Power Strip

Keyboard

5.

7.

9.

11. |R| = 8.
13.

versus

15. |V| − |E | + |R| = c + 1.
17. Proof. Suppose G contains a subdivision H of

K5 or K3,3. Suppose to the contrary that G is

planar. Then H is planar, and hence K5 or K3,3
is planar. This is a contradiction.

19. ∀ n ≥ 5, Kn contains K5 as a subgraph.
21. It is not planar, since it contains a K3,3

subdivision.
23. It is planar.
25. This is K3,3, which is not planar.
27. It is planar. 29. It is not planar.
31. K5 is the only one.
33. Proof. Let G be a planar graph. Suppose to the

contrary that δ(G) ≥ 6. Then 3|V| = 1
2 (6|V|) ≤

1
2

∑
v∈V deg(v) = |E | ≤ 3|V| − 6, a

contradiction.
35. Let V={0, 1, . . . , n− 1}, E0={{0, 1},

{0, 2}, . . . , {0, n− 2}}, E1 = {{1, 2}, {2, 3}, . . . ,
{n− 3, n− 2}, {n− 2, 1}}, E2 = {{n− 1, 1},
{n− 1, 2}, . . . , {n− 1, n− 2}}, E = E0 ∪ E1 ∪ E2,
and G = (V, E). Draw the cycle induced by
{1, 2, . . . , n− 2} in the unit circle, put 0 at the
origin, and put n+ 1 outside of the unit circle.
So G can be seen to be planar. Note that
|V| = n and |E | = 3(n− 2) = 3n− 6.

37. A planar embedding is pictured.

A single edge added must be a diameter across
the picture. The resulting graph then contains
K3,3 as a subgraph, so it is not planar.

39. ν = 0 by Exercise 23.
41. ν = 1 by Exercise 25 and Example 9.19.
43. ν = 0 by Exercise 27.
45. ν = 1. The graph is not planar and can be

drawn with one crossing.
47. This drawing has two crossings.

3027

29

24

25
21

22

23

28

26
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49.

51.

53. One crossing is possible as shown.

Now apply the result in Exercise 37.
55. True. The properties of being connected and

having only even degrees are preserved in
subdivisions.

Section 9.5

1. No.
3. χ = 2.
5. Since ω = 3 and a 3-coloring is pictured, χ = 3.

2 2

2 3

1
3

7. χ = 2. This graph is K3,3.
9. Let (V1, V2) be a bipartition. Use color 1 on the

vertices in V1 and color 2 on V2.
11. It is easy to produce a 4-coloring of the

Gro·· tzsch graph. So we establish that χ = 4 by
showing that at least 4 colors are needed.
Sketch. The outer 5-cycle is “uniquely”
3-colorable. This then forces all three colors to
be used on the 5 neighbors of the center vertex.
Now, the center vertex requires a fourth color.

13. By symmetry, it suffices to consider three cases.

3
3 1

3
3

3
1

3 1

2
222

3 1

1

1

3 1

2
2

2

3

2

1

1

1 2

12

None is bipartite, and each has a 3-coloring.
15. Time Period Committee Meeting

1 German, Japanese
2 History, Kuwait
3 Indochina, Latin

17. Since C5 is not bipartite, 3 colors are needed.
One color class must be of size 1. The other
color classes are then forced.

19. The sizes of the color classes do not match up
in the pictured colorings.
1 2

1

31

1 2

1

32

21. χ = 3. The 5-cycles need 3 colors, and a
3-coloring is easily found.

23. χ = 4. A 4-coloring is easily found. A
3-coloring is seen to be impossible, by trying
to construct one.

25. χ = 4. Try starting a 3-coloring from the
middle vertex, and observe that it fails.

27. For any subset W of V, the set W is indepen-
dent in Gc iff W induces a clique in G.

29. The graph with vertices {acid, bleach, sulfides,
ammonia, hydrogen peroxide}, whose edges
reflect potential dangerous chemical reactions,
has chromatic number 2. Putting acids and
ammonia in cabinet 1 and bleach, sulfides, and
hydrogen peroxide in cabinet 2 is safe.

31. 1

2 1

2

3

1

2

33.

312

1 3 1
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35. Proof. (→) Suppose G and H are bipartite.
So χ (G), χ (H) ≤ 2, by Theorem 9.19. Thus,
χ (G × H) ≤ 2, by Theorem 9.28. Hence, G × H
is bipartite, by Theorem 9.19. (←) Suppose
G×H is bipartite. So χ (G), χ (H) ≤ max{χ (G),
χ (H)} = χ (G × H) ≤ 2. Hence, G and H are
bipartite.

37. (a)

(b) Use the result from Exercise 14, together
with the observation that vertex n must receive
a color different from those of 1, 2, . . . , n− 1.

39. Use the Greedy Coloring Algorithm, and color
the highest-degree vertex first. At most d2 + 1
colors will be used.

41. (a) Say v1 and v2 are combined to form v. A
χ (G ′)-coloring of G ′ gives a χ (G ′)-coloring of
G with v1 and v2 the same color. (b) Let G be
C6 and identify two opposite vertices (such as
1 and 4).

43. Sketch. Let v be a vertex such that G\{v} is
disconnected, and let H1, . . . , Hc be the
components of G\{v}. Argue that, for each
1 ≤ i ≤ c, the subgraph induced by Hi ∪ {v}
can be colored with at most �(G) colors.
Further, all of these colorings can be arranged
to give v the same color.

45. 3.
47. (a) By the Four Color Theorem, the map can be

colored using only four colors. (b) 4. (c) The
states PA, MD, VA, KY, and OH form a 5-cycle
that requires 3 colors by Exercise 14. Since WV
is adjacent to each of these, a fourth color is
required.

Chapter 9 Review

1. (a) G is connected, and the removal of the
central vertex disconnects it. (b) No single
edge disconnects G, but two do.

2. 5 = min{5, 7}.
3. 4, since 4 = κ ≤ λ ≤ δ = 4.
4. κ = 1 for all paths on 2 or more vertices.
5. 2, since 2 = κ ≤ λ ≤ δ = 2.

6. κ(G) = 2, since the top-middle and bottom-
middle vertices form a disconnecting set, and
no single vertex does.

7. False. κ(G) ≤ λ(G).
8. True.
9. Sketch. The complement of the pair of vertices

not joined by an edge forms a κ-set.
10. Since κ(G) ≤ λ(G) ≤ δ(G) = 3, it suffices to

observe that no two vertices disconnect G.
11. λ = min{m, n}, since min{m, n} = κ ≤ λ ≤ δ =

min{m, n}.
12.

Start

14

10

713

8

21

312

59
46

11

13. There are four vertices of odd degree.
14. An Euler circuit exists, since each vertex has

even degree and the graph is connected.
15. There is no Euler circuit, since two vertices

have odd degree. There is an Euler trail
(1, 1), (2, 1), (1, 2), (2, 2), (1, 1), (2, 3), (1, 2).

16. Neither. There are eight vertices of degree 3.
17. 1, 2, 3, 4, 1, 3, 5, 2, 4, 1 is an Euler circuit.
18. There is no Euler circuit, since two vertices

have odd degree. There is an Euler trail
1, 2, 3, 4, 5, 6.

19. An Euler circuit is shown.

Start

98

67

5
4

3

12

10

11

2

1

Since there are no vertices of odd degree, there
is no Euler trail.

20. An Euler circuit is shown.

Start

14

10

713

8

21

312

59
46

11

Since each vertex has outdeg = indeg, there is
no Euler trail.
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21. An Euler trail is shown.

122

43 18

14F

S

10

13

67
5

9 11

Since vertex S has outdeg = indeg+ 1, there is
no Euler circuit.

22. Odd n ≥ 5.
23.

Start
1

24

23

9

18

4

15

3

16

10

13

7

20

2

8 11

21 14

6 5

19 12

22 17

24. 6 11

7

14

15

12 3

20

2126

10

19

5

23

32

31

13 4

2530

1 2

8 9

2429

2227

1716

28 18

25. (1,1), (2,1), (1,2), (2,2), (1,3), (2,3), (1,4),
(2,4), (1,1).

26. Six.
27. The edges incident with the degree-2 vertices

form a cycle prematurely.
28. No. Edges incident with the degree-2 vertices

form a cycle prematurely.
29. Proof. Suppose G is Hamiltonian with

Hamiltonian cycle C . Since C is a subgraph of
G, we have 2 = δ(C) ≤ δ(G).

30. No. The corresponding graph does not have a
Hamiltonian cycle.

31. A Hamiltonian cycle is shown.

Start

8

7 6

1

52

3
4

32. (a) Zed. (b) Zed, Xia, Quo, Jack. (c) Yes, the
Hamiltonian path is unique.

33. From any one vertex, you can follow the
Hamiltonian cycle to any other.

34. |V| = 15.
35. The subgraph obtained by deleting the center

vertex is a subdivision of K5.
36. Sketch. Since 5|R| ≤ 2|E |, we have 2 = |V|−

|E | + |R| ≤ |V| − |E | + 2
5 |E |.

37. The values |V| = 10 and |E | = 15 do not
satisfy the inequality in Exercise 36.

38. K4 is planar, and all others are subgraphs
of K4.

39.

40. The face labels on the left correspond to the
vertex labels on the right.

1

23

4

1

4

3 2

41. No. Subdivide an edge of K5. The result
contains neither K5 nor K3,3.

42. A planar embedding is pictured.

43. The following graph is isomorphic to K3,3,

and the circuit board contains a subgraph that
is a subdivision of it.

44. It is not planar. It is a subdivision of K3,3.
45. ν = 1. 46. ν = 1.
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47. χ = 4. Try starting a 3-coloring from the
middle vertex, and observe that it fails.

48.

49. ω = 3, α = 3, χ = 3.
50. ω = 3, α = 3, χ = 3.
51. Three sessions are needed since Chess, Math,

and NHS form a 3-clique. It is possible by the
schedule: (1) Archery, NHS (2) Chess, Student
Council (3) Math.

52. The Greedy Coloring Algorithm gives the
4-coloring on the left, whereas the 3-coloring
on the right is optimal.

1 13

2 2

4

43

1 13

2 3

2

23

53. �(G) + δ(Gc) = n− 1.
54.

1
2

1
3

2
32

55. (a) It is easy to do in three colors. (b) Three.
(c) The regions Alberta, Northwest Territories,
and Saskatchewan form a 3-clique that
requires three colors.

Chapter 10

Section 10.1

1. No. 3. min{m, n} = 1.
5. No. 7. No.
9. Yes. 11. 5.
13. (a) Yes. (b) No. (c) No. There are distinct

shortest paths from Center to Main.
15. The existence of paths in G makes G

connected. Uniqueness of paths implies that
no cycle can exist in G.

17. Proof. (→) Suppose G has a unique spanning
tree T . So VT = VG . Suppose that outside
of T there is some edge e �→ {u, v}. Hence, in T
there is a path P from u to v. If we let d be the

first edge on P , then (T\{d}) ∪ {e} is a spanning
tree, different from T . So it must be that
ET = EG , and hence T = G. (←) If G is a tree,
then only G itself can be its own spanning tree.

19. Sketch. Suppose G is connected and |E | =
|V| − 1. Let T be a spanning tree for G. Since
|ET | = |VT | − 1 = |V| − 1 = |E |, it follows that
ET = E and G = T is a tree.

21. Proof. (→) Suppose T is a tree with exactly
2 leaves, and let P be a longest path in T .
Note that the two ends of P must be leaves.
Suppose that there are vertices outside of P ,
and let v be one of greatest possible distance
from P . Then v must be a third leaf. Since there
can be no vertices outside of P , it follows that
T = P . (←) Obvious.

23. n− c. 25. Just K1,n.
27. Sketch. Argue that trees are planar. So

|V| − |E | + 1 = 2.

29.
(n

2

)+ n.

31. ET = {{1, 2}, {2, 3}, . . . , {n− 1, n}}.
33. Remove an edge from the Hamiltonian cycle

guaranteed in Example 9.13.
35. Proof. Suppose G has a spanning tree T . Let u

and v be vertices in G. The path from u to v in
T is also a path in G. So G is connected.

37. (a) 3, 5. (b) 2. (c) 2. (d) 3. (e) Yes. (f) Yes.
39. (a) 4. (b) 2. (c) 2. (d) 3. (e) No. (f) No.
41. (a) No, grandchild. (b) Parent. (c) Leaves. (d) 3.

(e) Yes.
43. No. The tree in Figure 10.9 is balanced with v2

as the root, but not with v1 as the root.
45. False.
47. Sketch. (i) Each vertex is either internal or a

leaf. (ii) There are n− 1 vertices other than the
root. Direct the edges from parent to child.
Each non-root vertex is the head of a unique
edge with internal tail. Each internal vertex is
the tail of m edges. So mi = n− 1.

49. n = ml−1
m−1 and i = l−1

m−1 . 51. 31.

53. Sketch. Alter the proof of Theorem 10.7,
changing inequalities to equalities.

55.

take

calculus

all

students
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57. eat

drink

and

be

merry

59.

B W W B W BB W

B B B B WB BB B B B W

W WW B W BW W

61.

B B W WW WB B W W

W BB W W BB WB WW B B WW BB WW B W BB W

63. L. 65. V.

Section 10.2

1. [1, 2, 4, 3, 5, 6, 7].
3. [1, 2, 4, 6, 5, 3, 7].

1

4 5

2

6

3

7

5. [1, 3, 4, 5, 2, 6].

3

1
4

2

5 6

7. [1, 2, 3, 5, 4, 6].

4

1

2

3

5 6

9. [5, 4, 3, 7, 6, 2, 1].

11. [7, 6, 3, 5, 4, 2, 1].
3

4 2

6

5

7

1

13. [4, 6, 5, 3, 2, 1].
1 2 3

4 5 6

15. [6, 5, 3, 4, 2, 1].

42

1 3

5 6

17. Yes. K3 with labels 1, 2, 3 is the smallest
example.

19. Yes. For C4, input orderings 1, 2, 3, 4 and
1, 4, 2, 3 give different trees (from root 1).

21. No. K1,3 with the degree-3 vertex labeled 1 and
the others 2, 3, 4 yields the same list L as does
P4 with consecutive labels 2, 3, 1, 4.

23. 1, 2, 4. No; 1, 3, 4 is another.
25. True. From each vertex, the path in the

breadth-first search tree to the root is a shortest
such path.

27. Yes.
29. Let v be a vertex of G = (V, E).

Perform Breadth-First Search for G starting at
v to obtain edge set F .
If |F | = |V| − 1, then G is connected.
Otherwise, G is not.

31. Yes.
33. *

P 


1 *

in

35. (a) S L − n 1 − ÷ . (b) ÷ − S L − n 1 .
(c) S − L ÷ n − 1 .

37. 4. 39. 3.
41. Boston, New York, Toronto, Baltimore, Tampa

Bay.
43. Hamiltonian cycle adcbe is found.
45. Depth-First Search completes, finding no

Hamiltonian cycle.
47. Colorings 1 1 2 ? and

1 2 1 ? are attempted,
before realizing none can be found.

49. Coloring 1 2 ? is
attempted, before realizing none can be found.

51. Consider a graph H in which the vertices are
paths of length at most k in Kn. Also add a
trivial vertex to H that connects to each path
of length 0. The graph H will be a tree with
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leaves corresponding to permutations of
size k. So Depth-First Search will find each of
these leaves.

Section 10.3

1. (a) 1

3

2

23

24

1 3 1

(b) $120,000.
3. (a) 35

2

1

3

1

2

4

1 2

1 3

v

(b) $130,000.
5. (a)

v6 3

33

4

4

4

2 2 2

11 1

v3v2

v8v7

v1

v4 v5

(b) $120,000.
7. (a) v 3

1 1 3

1 1

3

3

35

5

32 2

1 2

33

2

The answer depends on
an edge ordering.

(b) $270,000.

9. (a)

v8v5

2

2

3

v4

v7

12

1

4

1

3 1 2

1 3

v3v2

v10v9

v1

v6

Order:
1, 1, 1, 1, 1, 2, 2,
2, 3

(b) $140,000.

11. (a)
11

3

1

2

1

4

4

4 2

4 2

v Order:
1, 1, 2, 2, 1, 1, 3, 2
Assuming the top
left edge of weight 1
is added first.

(b) $130,000.

13. (a)

v8

1

2

5

5

3

v4

v12

v7

21

1

3

3

2

5

2

4 5

1 1

v3v2

v11v10v9

v1

v5 v6

Order:
1, 2, 1, 4, 1, 1, 1,
2, 2, 2, 3
Assuming the
top left edge of
weight 1 is
added first.

(b) $200,000.
15. (a)

v 2

2 2 6

2 2

2

1

24

4

15 6

3 1

61

1

Order:
1, 1, 2, 2, 1, 2,
4, 2, 1, 2, 1, 4, 2
Assuming the
bottom left
edge of weight
1 is added
first.

The answer depends on an edge ordering.
(b) $250,000.

17. Certainly not if it is a loop, but yes otherwise.
19. True. 21. $18,500.
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23. Apply the result from Exercise 19.
25. (a)

1

3

2

23

24

1 3 1

v

(b) 8 PSI.
27. (a)

35

2

1

3

1

2

4

1 2

1 3

v

(b) 8 PSI.
29. (a)

v6 3

33

4

4

4

2 2 2

1
1

1

v3v2

v8v7

v1

v4 v5

The answer is not unique since any of the three
edges incident with the right middle vertex
may be chosen.
(b) 8 PSI.

31. (a)
v 3

1 1 3

1 1

3

3

35

5

32 2

1 2

33

2

(b) 11 PSI.
33. False.
35. Take C4 with three edges of weight 1 and one

of weight 2, and let v be an endpoint of the
weight-2 edge.

37. No. 39. True.
41. Adams 12, Johnson 7, Kennedy 5, Lincoln 7,

Nixon 6, Polk 18.
43. Let G = C4 with three edges of weight 1 and

one of weight 2. Suppose v1 is an endpoint of
the weight-2 edge, and v2 is not.

45. Yes. 47. A shortest path tree.

Section 10.4

1. location = 0.
low = 1, high = 6, mid = 3.
low = 4, high = 6, mid = 5.
low = 4, high = 5, mid = 4.
low = 4, high = 4.
location = 4.

3. location = 0.
low = 1, high = 7, mid = 4.
low = 1, high = 4, mid = 2.
low = 3, high = 4, mid = 3.
low = 4, high = 4.
location = 0. Value not found.

5. The first.
7. (a) 0.0000000105 second. (b) 500 second.
9. Proof. Certainly, �log2(k + 2)� ≥ �log2(k + 1)�.

So suppose, to the contrary, that
�log2(k + 1)� = n < �log2(k + 2)�. Hence,
log2(k + 1) ≤ n < log2(k + 2). That is,
k + 1 ≤ 2n < k + 2. Since 1 ≤ 2n − k < 2, it
follows that 2n − k = 1. However, k = 2n − 1 is
now odd, a contradiction.

11. Maximum.

Let max = 1.
For i = 2 to n,

If A[i] > A[max], then
Let max = i .

Return max.

13. n− 1.
15. ∀ x > 0, |g(x)| ≤ |g(x)|.
17. ∀ x > 0, |cg(x)| ≤ |c||g(x)| and |g(x)| ≤

| 1c ||cg(x)|.
19. False. 21. True.
23. Sketch. Say, for i = 1, 2, that ∀ x > di , | fi (x)| ≥

Ci |g(x)|. Let C = C1 + C2 and d = max{d1, d2}.
So ∀ x > d, | f1(x)+ f2(x)| ≤ | f1(x)| + | f2(x)| ≤
C1|g(x)| + C2|g(x)| = C |g(x)|.

25. Sketch. Suppose f (x) ∈ O(g(x)). By Exer-
cise 15, g(x) ∈ O(g(x)). So Exercise 23 finishes
the job.
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27. Sketch. c = c · 1 ∈ O(g(x)) by Exercise 17. So
Exercise 23 finishes the job.

29. (a) Simple. (b) Compound. (c) 65 months.
31. Sketch. (⊆) ∀ n > 0, log2 n ≤ 1+ �log2 n�. (⊇)

∀ n > 0, 1+ �log2 n� ≤ 2�log2 n� ≤ 4 log2 n.

33. Sketch. (⊆) ∀ n > 0, n
2 log2

n
2 ≤ n log2 n. (⊇)

∀ n > 3, n log2 n ≤ n log2 n+ n(log2 n− 2) =
2n(log2 n− 1) = 4( n

2 log2
n
2 ).

35. Sketch. (→) Say ∀ x > d1, | f (x)| ≤ C ′
1|g(x)|

and ∀ x > d2, |g(x)| ≤ C ′
2| f (x)|. Let

d = max{d1, d2}, C1 = 1
C ′2

, and C2 = C ′
1. (←) Let

d1 = d2 = d , C ′
1 = C2, and C ′

2 = 1
C1

.

37. Apply Exercise 35.

39. False. 41. True.
43. (a) The second. (b) The first. (c) The first.
45. Apply Exercise 17.
47. Sketch. (i) For 2 ≤ n, we have

1 = log2 2 ≤ log2 n. (ii) Let C be given. For any
choice of n > 2C , we have log2 n > C .

49. Sketch. This follows from Exercise 47 by
multiplying by n.

51. Sketch. (i) By induction, we see that
∀ n ≥ 4, n2 ≤ 2n. (ii) Let C be given. It suffices
to consider C ∈ Z with C ≥ 10. By induction,
we see that ∀C ≥ 10, 2C > C3. That is, for
n = C , 2n > Cn2.

Section 10.5

1. l � 1, m � 2, h � 4

a1 a2 a3 a4

a2 � x ?

a3 � x ?

FT

FT

a4

a4 � x ?
FT

Return
04

Return

l � h � 4

a3

a3 � x ?
FT

Return
03

Return

l � h � 3

l � m � 1, h � 2

a3 a4

a1 � x ?
FT

a2

a2 � x ?
FT

Return
02

Return

l � h � 2

a1

a1 � x ?
FT

Return
01

Return

l � h � 1

a1 a2

l � m � 3, h � 4

3.

A[3] � A[2]?

A[2] � A[1]?
FT

FT

A[4] � A[3]?
FT

Return
34

Return

A[4] � A[2]?
FT

Return
24

Return

A[3] � A[1]?
FT

A[4] � A[3]?
FT

Return
34

Return

A[4] � A[1]?
FT

Return
14

Return

5.
i = 2 : 7 5 3 1

i = 3 : 5 7 3 1

i = 4 : 3 5 7 1

end : 1 3 5 7

7. i = 2 : 4 2 6 1 5 3

i = 3 : 2 4 6 1 5 3

i = 4 : 2 4 6 1 5 3

i = 5 : 1 2 4 6 5 3

i = 6 : 1 2 4 5 6 3

end : 1 2 3 4 5 6
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9.

b a

a � b ?
FT

Return

a b

a b

Return

11. 7 5 3 1

7 5

7 5

3 1

3 1

1 3 5 7

5 7

7 5

1 3

3 1

13. 24 6 1 5 3

1 5 34 2 6

2 64

2 6

5 31

5 3

21 3 4 5 6

1 3 52 4 6

2 64

2 6

3 51

5 3

15. i = 6, j = 1 : 4 2 6 1 5 3

j = 2 : 2 4 6 1 5 3

j = 3 : 2 4 6 1 5 3

j = 4 : 2 4 1 6 5 3

j = 5 : 2 4 1 5 6 3

i = 5, j = 1 : 2 4 1 5 3 6

j = 2 : 2 4 1 5 3 6

j = 3 : 2 1 4 5 3 6

j = 4 : 2 1 4 5 3 6

i = 4, j = 1 : 2 1 4 3 5 6

j = 2 : 1 2 4 3 5 6

j = 3 : 1 2 4 3 5 6

i = 3, j = 1 : 1 2 3 4 5 6

j = 2 : 1 2 3 4 5 6

i = 2, j = 1 : 1 2 3 4 5 6

end : 1 2 3 4 5 6

17. i = 5, j = 1 : 7 5 4 2 1

j = 2 : 5 7 4 2 1

j = 3 : 5 4 7 2 1

j = 4 : 5 4 2 7 1

i = 4, j = 1 : 5 4 2 1 7

j = 2 : 4 5 2 1 7

j = 3 : 4 2 5 1 7

i = 3, j = 1 : 4 2 1 5 7

j = 2 : 2 4 1 5 7

i = 2, j = 1 : 2 1 4 5 7

end : 1 2 4 5 7

19. i = 1 : 3 8 6 1 4

i = 2 : 1 8 6 3 4

i = 3 : 1 3 6 8 4

i = 4 : 1 3 4 8 6

end : 1 3 4 6 8

21. i = 1 : 6 5 4 3 2 1

i = 2 : 1 5 4 3 2 6

i = 3 : 1 2 4 3 5 6

i = 4 : 1 2 3 4 5 6

i = 5 : 1 2 3 4 5 6

end : 1 2 3 4 5 6

23. n(n−1)
2 .
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25. a b c

b a c

a � b ?

a b c

b � c ?a � c ?

FT

FT FT

FT FT FT

a b c

a � b ?

b a c

b � a ?
FT

b � c ?

a c b

a � c ?

b c a

Impossible ImpossibleReturn Return
abcbac

Return
bcacba

Return Return Return
acbcab

27.

a b

b � a ?
FT

Return

b a

a b

Return

29. No. 31. Bubble Sort.
33. Order can be changed.
35. Same order.

37. Sketch. 2ck+1 = 2
c� k+1

2 �+c� k+1
2 �+k

= 2
c� k+1

2 �2
c� k+1

2 �2k

≤ 2k� k+1
2 �2� k+1

2 �� k+1
2 �2� k+1

2 �

= 1
2k+2 ·
{

(k + 1)2(k+1) if k is odd
kk(k + 2)k+2 if k is even

≤ (k + 1)2(k+1).
39. The worst-case complexity is n− 1. Moreover,

every input of size n uses n− 1 comparisons.

41. 653 1 4

631 5 4

6 5 4

4 5 6

31

4 5

4 5

,

,

,

mid � 2

mid � 3

mid � 1

6

54

43. 21 3 4

21 3 4

2 3 4

2 3 4

1

3 4

3 4

,

,

,

mid � 1

mid � 1

mid � 1

2

43

45. n(n−1)
2 .

Chapter 10 Review

1. Sketch. Suppose G is connected. So G has a
spanning tree T . Hence, |EG | ≥ |ET | = |V| − 1.

2. 4, 2, . . . , 2, 1, 1, 1, 1 or 3, 3, 2, . . . , 2, 1, 1, 1, 1.
3. 18. 4. 30. 5. 3n+ 1.
6. In a path with endpoints u and v, all vertices

except u and v have degree 2.
7. (a) 4, 6, 7. (b) 2. (c) 1. (d) 2. (e) No. (f) Yes.

(g) Yes.
8. No. Two opposite edges on the square Q2 form

a subgraph that is a forest on the vertex set.
However, it is not a spanning forest, which
should be a tree in this case.

9. i = n− l and m = n−1
n−l . 10. 31.
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11. True. Sketch. Let v be the root. Let P be a path
whose length is the diameter, and let u1 and u2
be its endpoints. There is a path Q1 from u1 to
v and a path Q2 from v to u2. Note that the
lengths of Q1 and Q2 cannot exceed the height
of the tree. Since Q1 followed by Q2 is a walk
from u1 to u2, its length is at least that of P .
Thus, twice the height is at least the diameter.

12.

having

fun

whenflies

time

are you

13.

B B B W W B B B W W B BB B W W

14. U.

15. 1, 2, 3, 5, 4, 6, 7.
16. 1, 2, 4, 3, 5, 6.

3

6

1 2

4 5

17. 1, 2, 3, 4, 6, 5.

52

1 6

3 4

18. 3, 4, 6, 7, 5, 2, 1.

19. 5, 4, 6, 3, 2, 1.
3

6

1 2

4 5

20. 3, 2, 6, 5, 4, 1.

52

1 6

3 4

21.

r

T

V*

�

n

*

22. (a) b1 b2 + 2 ÷ h ∗ . (b) ∗ ÷ + b1 b2 2 h .
(c) b1 + b2 ÷ 2 ∗ h .

23. 12. 24. 7.
25. Los Angeles, Houston, Chicago, New York,

Boston.
26. vw, vwy.
27. 113

1

4

2

7

5

8

6 12

10 9

v

28. (a) 111

2

3

4

6

8

9

10 12

7 5

v

(b) $400,000.
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29. 311

1

7

10

8

12

4

6 9

2 5

v

1, 2, 5, 6, 3, 8, 4, 11
30. (a) 49

6

8

10

12

11

3

1 7

5 2

v

1, 4, 5, 6, 2, 9, 10, 3

(b) $400,000.
31. 113

1

4

2

7

5

8

6 12

10 9

v

32. (a)
111

2

3

4

6

8

9

10 12

7 5

v

(b) 18 minutes.
33. (a) True. (b) True.
34. (a) 200+ 200+ 150 = $550. (b) A shortest path

tree.
35. (a) $31,000. (b) A minimum spanning tree.
36. l=1 m=3 h=5

1 2 4 6 8

l=m=4 h=5

6 8

l=h=4

6

Return location = 0.

37. 50 seconds.
38. n− 1.
39. True.
40. False.
41. False.
42. True.
43. False.
44. (a) The first. (b) The second. (c) 21 years.
45. ∃C ∈ R+ such that ∀ x > 0, | f (x)| ≤ C · 1.
46. O(log2 n) ⊂ O(n) by Theorem 10.16.

O(n) ⊆ O(n
3
2 ) by Lemma 10.11.

47. Yes, O(n− 1) ⊆ O(n2).
48. Yes. Minimum always uses n− 1 comparisons.
49.

FT

FT

loc � 3 loc � 2

FT

loc � 3 loc � 1

loc � 1

a b c

b � a ?

loc � 2

a b c

b � c ?

loc � 1

a b c

c � a ?

50. i = 2 : 6 3 8 2 5

i = 3 : 3 6 8 2 5

i = 4 : 3 6 8 2 5

i = 5 : 2 3 6 8 5

end : 2 3 5 6 8

51. 4 3 2 1

4 3

4 3

2 1

2 1

1 2 3 4

3 4

4 3

1 2

2 1
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52. i = 4, j = 1 : 4 2 1 3

j = 2 : 2 4 1 3

j = 3 : 2 1 4 3

i = 3, j = 1 : 2 1 3 4

j = 2 : 1 2 3 4

end : 1 2 3 4

53. i = 1 : 2 4 3 1

i = 2 : 1 4 3 2

i = 3 : 1 2 3 4

end : 1 2 3 4

54. In order.

55. No.
56. 13 6 4

31 6 4

6 4

4 6

31

, mid � 2

, mid � 2

64

57. No.
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+, 463
3n+ 1 problem, 75
[a ]n, 156, 240
∧, 10
α(G), 542
�, 606(

n
k1,k2,···,km

)
, 373(

n
k

)
, 167, 313, 373

∩, 42, 44
χ (G), 539
∪, 43, 44, 463
�(G), 460
δ(G), 460
λ-set, 501
λ(G), 501
∅, 26, 91
∀ , 32
∼=, 447
↔, 12, 92
→, 10
∈, 23, 25
�x�, 118
�x�, 118
|, 105

n, 436
¬, 10
�∈, 23
� , 25
∨, 10
ω(G), 540
c , 42, 44
π , 149
�, 177
\, 43, 44
⊂, 25
⊆, 25
�, 43, 44
∃ , 33
×, 45, 47, 463
5-Card Stud, 343, 348
6-Card Stud, 361
7-Card Stud, 350

A
AT , 228, 234
absolute value, 96
absorbing chain, 481
absorbing state, 481

Absorption Rules, 16, 48
Addition Principle, 321
adjacency list, 433
adjacency matrix, 429, 477
adjacent, 419
algebraic number, 146
algorithm, 108, 131, 574, 600, 630
and, 10
annuity, 175, 183, 192, 219
antisymmetric, 229
aperiodic state, 479
Appel, 547
Archimedean Principle, 629
argument, 54
argument form, 55
arithmetic sequence, 170
arrow diagram, 226
Associativity, 16, 48
associativity, 392
average-case complexity, 603
axiom, 28
Aut(G), 447

B
backtrack search, 581
balanced tree, 565
Barber Puzzle, 31
base, 1, 124, 209
base 2, 2
base case, 186, 187
Basic Logical Equivalences, 16
Basic Set Operations, 44
Basic Valid Argument Forms, 57
Bayes, 334
Bayes’ Formula, 334
Bernoulli’s inequality, 194
big-O, 604
big-�, 606
bijection, 262
bijective, 262
binary, 1, 2, 209
binary linear code, 121
Binary Search, 601
binary search tree, 567
binary tree, 565
BINGO, 318
binomial coefficient, 167, 212,

313, 373

Binomial Theorem, 213, 376
bipartite, 436
bipartition, 436
birthday problem, 338
bit, 1, 18
blood type, 246
Boole, 11
Boolean variable, 1, 11
bound variable, 34
bounded function, 36
Breadth-First Search, 574, 575
breadth-first search tree, 574
Brooks, 544
Brooks’ Theorem, 544
Bubble Sort, 617, 618
Burnside, 394
Burnside’s Formula, 394
byte, 323

C
Cn, 434
C++, 11, 29, 51, 115, 169, 173
Cantor, 290
cardinality, 27, 286
cardinality n, 286
cases, 94
Catalan numbers, 195
Cayley, 561
ceiling, 118
check digit, 120, 264
child, 564
chromatic number, 539
chromatic polynomial, 373
cipher, 122
circuit, 423
class, 480
class NP, 608
class P, 608
clique, 540
clique number, 540
closed formula, 171
code word, 121
codomain, 251
collisions, 264
color class, 538
coloring, 538
combination, 313, 315
combinatorial proof, 403, 404

I1



I2 Index

common divisor, 107
Commutativity, 16, 48
comparable, 235
complement, 42, 44, 463
Complement Principle, 322
complete bipartite graph, 438
complete graph, 435
complex numbers, 194
component, 424
composite, 106, 111
composition of functions, 36, 253
composition of relations, 259
compound interest, 174, 218, 610
conclusion, 54
conditional, 11
conditional probability, 332
congruent, 150, 240
connected, 424
connectivity, 498, 503
constant function, 36, 41
constant multiple of functions, 36
contradiction, 13, 58, 88
contrapositive, 15, 16, 90
Contrapositive Implication, 57
converse, 15, 16
corollary, 119
corresponding equivalence, 244
corresponding partition, 243
Count, 609
countable, 290
countably infinite, 290
counterexample, 71
covered by a walk, 507
crossing, 421
crossing number, 533
cube, 439, 456
cube root, 94
cycle, 423, 434
cyclic group, 352, 392

D
Dn, 392
database, 225
De Moivre’s theorem, 194
De Morgan, 17
De Morgan’s Laws, 16, 17, 48,

193, 286
decimal, 1
decimal form, 138
decreasing function, 36
deg(v), 460
degree, 462
degree of a vertex, 460, 476
degree sequence, 460, 461
denomination, 343
Density of the Rationals, 142, 629

Depth-First Search, 574, 577
depth-first search tree, 577
derangement, 368
determinant of a matrix, 135
diagonal argument, 290
diameter, 446
difference of sets, 43, 44
digital circuit, 18
digraph, 226, 472
dihedral group, 352, 392
Dijkstra, 593
Dijkstra’s Algorithm, 593
Direct Implication, 57
directed graph, 226, 472
disconnected, 424
disconnecting set, 498
disconnecting set of edges, 501
disjoint sets, 45, 241, 321
disjoint union, 45
disjoint union of graphs, 463
dist, 423, 593
distance, 423
Distributivity, 16, 48, 192, 286
div, 115
divides, 105
divisible, 105
Division Algorithm, 115
divisor, 105
DNA, 217, 309
dodecahedron, 148, 353, 456
domain, 251
Double Complement, 48, 89
Double Negative, 16
drawing, 421
dual graph, 529

E
e, 216, 255, 370
edge, 419, 472
edge connectivity, 501
element, 23, 25
Eliminating a Possibility, 57
empty graph, 436
empty set, 26, 49, 89, 91
end of a walk, 422
endpoints, 419, 472
equality of functions, 254
equality of sets, 24, 42
equally likely, 329
equally likely outcomes, 329
equivalence class, 239
equivalence class mod n, 157, 240
equivalence relation, 238
equivalent under R, 238
Eratosthenes, 111
ergodic, 481

Euclid, 130, 133
Euclid’s algorithm, 108, 131, 153
Euclid’s Lemma, 133
Euler, 325, 367, 416, 507
Euler circuit, 507, 508, 512
Euler number e, 149, 165, 182, 216,

255, 370
Euler phi-function, 325, 367, 371
Euler trail, 507, 508, 512
Eulerian graph, 507
Euler’s Formula, 530
even, 104, 105
event, 329
eventually, 604
exclusive or, 12
existential statement, 33
experiment, 329
exponential algorithm, 608
Extended Euclidean Algorithm, 133

F
face card, 343
factor, 105
factorial, 167, 311
false negative result, 340
false positive result, 340
Fermat, 155
Fermat’s Little Theorem, 155
Fibonacci, 205
Fibonacci sequence, 205
finite, 27, 286
fixed points, 395
floor, 118
football, 206
For, 631
for all, for any, for every, 32
for large values, 604
forest, 559
Four Color Theorem, 546
free variable, 32
Frobenius Coin Exchange

Problem, 211
full tree, 565
function, 251
Fundamental Theorem of

Arithmetic, 204

G
G-equivalent, 394
gate, 19
Gauss, 179
generating function, 381
geometric sequence, 170
gcd, 107
GIMPS, 115



Index I3

golden ratio, 147
graph, 416, 419
graph automorphism, 447
graph isomorphism, 447
graph map, 452
graph of a function, 255
greatest common divisor, 107,

130, 131
greedy algorithm, 542
group, 156, 157, 392
group action, 394
growth rate, 604
Gro·· tzsch graph, 541, 548, 555
Guthrie, 546

H
Haken, 547
Hamilton, 517
Hamiltonian cycle, 517
Hamiltonian graph, 517
Hamiltonian path, 517
hand, 343
hash function, 263
hash table, 264
hashing, 263
Hasse, 236
Hasse diagram, 236
head, 472
Heawood, 547
height of a tree, 565
Hermite, 149
hexadecimal, 2, 4
Hexagon Identity, 216
homeomorphic, 532
Horizontal Line Range

Test, 256
Horizontal Line Test, 266
hydrocarbon, 560

I
In, 431
icosahedron, 148, 457
identity, 392
identity function, 261
identity matrix, 431
If, 631
if and only if, 12, 92
if-then, 10
iff, 12
image of a function, 251
image of a relation, 283
image of a set, 276
image of an element, 251
In Particular, 57
in-degree, 476

incident, 419
inclusion function, 271
Inclusion-Exclusion, 323,

331, 365
incomparable, 235
increasing function, 36
indeg(v), 476
independence number, 542
independent events, 333
independent set, 542
indexed collection, 280
indexing a sequence, 169
indexing set, 280
indicator function, 252
induced subgraph, 421
induction, 186, 188, 203
inductive hypothesis, 186
inductive step, 186, 187
infinite, 27, 286
infix, 581
initial condition, 171
injection, 271
injective, 262
inorder traversal, 580
input-output table, 19
Insertion Sort, 613, 614
integer, 24
internal vertices, 560
intersection, 42, 44, 280
intersection of graphs, 463
interval, 26
invalid argument form, 55
invariant, 458
inverse, 15, 392
inverse functions, 266
inverse image of a relation, 283
inverse image of a set, 276
inverse modulo n, 153
inverse of a function, 268
inverse of a relation, 225
irrational number, 142
irreducible, 480
ISBN, 120, 161, 263
isolated vertex, 460
isomer, 561
isomorphic, 447

K
Kn, 435
Km,n, 438
k-coloring, 539
κ-set, 498
κ(G), 498
Kempe, 546
Kruskal, 588
Kruskal’s Algorithm, 588

Kuratowski, 532
Kuratowski’s Theorem, 532
Ko··nigsberg Bridge Problem, 415,

507, 508

L
Lambert, 149
Lamé, 132
Laws of Exponents, 628
lcm, 112
leaf, 460, 560
least common multiple, 112
Least Upper Bound Property,

142, 628
left child, 566
left subtree, 566
lemma, 109
length of a walk, 422
Let, 630
level of a vertex, 564
lexicographic order, 238
Librarian’s Dilemma, 28
Lindemann, 149
linear cipher, 153
linear combination, 130
linear order relation, 237
linearly ordered set, 237
list notation, 24
ln, 269
local variable, 83, 95
logb , 143, 269
logarithm, 143
logarithmic algorithm, 608
logical expression, 10
logically equivalent, 14
loop, 419, 472
lowest terms, 138
Lucas sequence, 208

M
m-ary tree, 565
mapping a set, 251
mapping an element, 251
Maple, 30, 32, 51, 54, 108, 115, 118,

123, 133, 168, 169, 173, 177, 181,
215, 374, 380, 431, 433

Mathematica, 29, 31, 51, 53, 108, 115,
118, 123, 133, 168, 169, 173, 177,
181, 215, 374, 380, 431, 433

Markov, 478
Markov chain, 478
mathematical induction, 186,

188, 203
matrix, 135, 194, 227, 429, 430
matrix multiplication, 194, 430



I4 Index

matrix powers, 433
matrix products, 431
Maximum, 609
maximum degree, 460, 461
Maximum Principle, 125
Merge Sort, 615
Mersenne, 115
Mersenne prime, 74, 115
message, 121
minimum degree, 460, 461
minimum spanning tree, 588
mod, 115, 150, 151
modulo, 150, 240
Monty Hall problem, 338
mortgage, 175, 183, 192, 219
multinomial coefficient, 373
Multinomial Theorem, 376
multiple, 105
multiple edge, 419, 472
Multiplication Principle,

304, 306
multiplicative inverse, 153
mutually exclusive

events, 330

N
n-ary relation, 222
n-prism, 471, 550
N, 25
n choose k, 168, 313
n-fold product, 47
n-tuple, 47
natural exponential, 255
natural logarithm, 269
natural number, 25
nearest neighbor decoding, 122
negation, 10
negative integer, 25
negative real number, 25
neighbor, 419
nondecreasing function, 36
nonempty, 26
nonincreasing function, 36
nontrivial automorphism, 447
not, 10
NP, 608
NP-complete, 583, 608

O
O, 604
Obtaining And, 57
Obtaining Or, 57
octahedron, 456
octal, 4
odd, 104

one-to-one, 262
one-to-one correspondence, 262
onto, 262
or, 10
orbit, 394
order, 606
ordered binary tree, 566
ordered pairs, 45
ordered rooted tree, 566
Otherwise, 631
out-degree, 476
outcome, 329
outdeg(v), 476

P
P(E | F ), 332
P(E), 329
P(n, k), 313
P(x), 329
Pn, 434
P( A), 48
Pk (V), 418
P, 608
palindrome, 309
parallel edges, 419
parent, 565
parity, 103
parity check digit, 121
partial order relation, 235
partial ordering, 235
partially ordered set, 235
partition, 242
Pascal’s Identity, 197, 212,

403, 413
Pascal’s triangle, 211
path, 423, 434
pendant vertex, 460
period, 479
periodic, 36, 94
periodic state, 479
permutation, 311, 312, 315
permutation matrix, 431
Petersen graph, 450, 457
Pigeon Hole Principle, 93,

288, 289
planar embedding, 527
planar graph, 527
platonic solids, 438
Plinko, 343, 347
poker, 343
polynomial, 255
polynomial algorithm, 608
poset, 235
positive integer, 25
positive real number, 25
postfix, 580

Postnet code, 315
postorder traversal, 580
power series, 382
power set, 48
precedence, 11
prefix, 581
premise, 54
preorder traversal, 580
Prim, 590
prime, 74, 106, 111, 114
Prim’s Algorithm, 590
Principle of Generalization,

59, 61, 75
Principle of Induction, 188, 210
Principle of Mathematical

Induction, 203
Principle of Specification, 59
prism, 471, 550
probability, 329
Probability Complement

Principle, 330
product, 46
product notation, 181
product of functions, 36
product of graphs, 463
product of sets, 45
proof by contradiction, 88
proper subset, 25
proposition, 17
pseudocode, 630
public key encryption, 155
Pythagoras, 142
Pythagorean Theorem, 100
Po·· lya, 397

Q
Qn, 439
Q, 24, 291
quadratic formula, 97
quadtree, 568
quantifier, 32
Quick Sort, 617, 620
quotient, 115
quotient map, 271

R
R, 24
R+, 25, 88
R−, 25
range, 251
rational number, 24, 136,

138, 291
Rational Roots Theorem, 144
real function, 35, 255
real number, 24
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recurrence relation, 171
recurrent, 481
recursion, 171
recursive formula, 171
reflexive, 229
region, 529
regular, 460, 462, 480
reindexing, 170
related to, 222
relation, 222, 224
relatively prime, 107
remainder, 115
removal of vertices, edges, 498
repeating decimals, 136
representative, 239
restricted function, 276
Return, 630
right child, 566
right subtree, 566
root, 41, 144, 564
rooted tree, 564
roulette wheel, 335, 363
round, 126
RSA encryption, 154
rugby, 210
run of cards, 343
Russell, 27
Russell’s Paradox, 28

S
sample space, 329
saturated hydrocarbons, 560
Secret Santas, 368, 369
Selection Sort, 617, 619
Separate Cases, 57
sequence, 168
Sequential Search, 600
series, 177
set, 23
set builder notation, 24
set difference, 43
set equality, 24, 42
set notation, 24
shift cipher, 122
shortest path tree, 593
Sieve of Eratosthenes, 111
sigma notation, 177
simple directed graph, 472
simple graph, 419
simple interest, 585, 610
singleton, 26

space complexity, 602
spanning forest, 563
spanning tree, 563
standard deck of cards, 343
standard factorization, 204
start of a walk, 422
statement, 9
statement form, 10
statement variable, 10
strong component, 475
strong induction, 203
strongly connected, 475
subdivide an edge, 532
subdivision of a graph, 532
subgraph, 421, 473
subset, 25, 28, 42, 77
Substitution, 57
suit, 343
sum of functions, 36
summation notation, 177
surjective, 262
symmetric, 229
symmetric difference, 43, 44
Syracuse Problem, 75

T
tail, 472
target, 251
Tarski, 38
tautology, 13
ternary, 209
Texas Hold’em, 350, 361
theorem, 17
there are, there exists, there is, 33
time complexity, 602
total order relation, 237
totally ordered set, 237
tournament, 521
trail, 423
transcendental number, 147
transient, 481
transition matrix, 478
transitive, 229
Transitivity, 57
transpose matrix, 228, 234
traveling salesman problem, 582
tree, 559
triangle inequality, 99
Trichotomy Law, 628
truth table, 10
tuple, 47

U
unbound variable, 32
uncountable, 290
underlying graph, 474
union, 43, 44, 241, 280
union of graphs, 463
Unique Factorization Theorem, 204
universal set, 26
universal statement, 32
universe, 26, 49
UPC, 120

V
vacuously true, 11, 33
valid argument form, 55
Venn diagram, 44
vertex, 419, 472
vertex transitive, 450
Vertical Line Test, 256

W
walk, 422, 473
weak component, 475
weakly connected, 475
weight of a code, 121
weight of edge, 587
weight of subgraph, 588
weighted distance, 593
weighted graph, 587
well-defined, 252
Well-Ordering Principle, 113, 125,

188, 294, 295
wheel graph, 550
While, 632
Wiles, 155
Wilson’s Theorem, 161
word, 238
worst-case complexity, 603

Y
Yahtzee, 349

Z
Zn, 392
Z, 24, 89
Z+, 25
Z−, 25
Zn, 157
Zero Multiplication Property, 628



TOPIC: LOGIC

Symbol Meaning Page Symbol Meaning Page

¬p not p 10 NOT NOT gate 19
p ∧ q p and q 10

AND AND gate 19p ∨ q p or q 10

OR OR gate 19
p → q if p then q 10
p ⊕ q p exclusive or q 12
p ↔ q p if and only if q 12 ∀ x ∈ U , p(x) for all x in U , p(x) 32
t tautology 13
f contradiction 13

∃ x ∈ U such that
p(x)

there is some x in U
such that p(x) 33

p ≡ q p is logically equivalent to q 14 ∴ r therefore r 55

TOPIC: SETS

x ∈ A x is an element of A 23 A∩ B A intersect B 42
{x1, x2, . . . , xn} list notation for a set 24 A∪ B A union B 43
{x : p(x)} set builder notation 24 A\B A minus B 43
A= B set equality 24 A�B A symmetric

difference B 43Z the set of integers 24
A× B product of A and B 45R the set of real numbers 24
(x, y) ordered pair 45Q the set of rational numbers 24
A1 × A2 × · · · × An n-fold product 47N the set of natural numbers 25
(x1, x2, . . . , xn) ordered n-tuple 47A+ the positive elements of A 25
P( A) power set of A 48A− the negative elements of A 25 ⋃
A∈A

A union of sets from A 241A⊆ B A is a subset of B 25 ⋃
i∈I

Ai indexed union of
sets 280

A⊂ B A is a proper subset of B 25

⋂
i∈I

Ai indexed intersection
of sets 280

U universal set 26
∅ the empty set 26
|A| the cardinality of A 27
Ac A complement 42

TOPIC: NUMBER THEORY

d | n d divides n 105 [a ]n equivalence class
of a modulo n 157gcd(m, n) greatest common divisor of

m and n 107 Zn set of equivalence
classes modulo n 157lcm(m, n) least common multiple of m

and n 112 {sn}n≥a sequence
sa , sa+1, sa+2, . . . 169n div d quotient of n divided by d 115

b∑
i=a

si sum sa + sa+1
+ · · · + sb

177n mod d remainder of n divided by d 115

b∏
i=a

si product sa sa+1
· · · · · sb 181

�x� floor of x 118
�x� ceiling of x 118
a ≡ b (mod n) a is congruent to b

modulo n 150



TOPIC: FUNCTIONS AND RELATIONS

Symbol Meaning Page Symbol Meaning Page

c f scalar multiple of a function 36 ex the natural exponential function 255
f · g product of functions 36 S ◦ R composition of relations 259
f + g sum of functions 36 idX identity function 261
f ◦ g composition of functions 36 f −1 inverse of function f 266
xRy x is related to y 222 logb x logarithm base b of x 269
R−1 inverse of relation R 225 ln(x) the natural logarithm of x 269
[x]R equivalence class of x 239 f (S) image of set S 276
f : X → Y f is a function from X to Y 251 f −1(T) inverse image of set T 276
x �→ y x maps to y 251 O(g(x)) big-O of g(x) 604
bx an exponential function 255 �(g(x)) big-� of g(x) 606

TOPIC: COUNTING AND PROBABILITY

n! n factorial 311
( n

k1,k2,...,km

)
multinomial coefficient 373

P(n, k) permutations of k objects from n 313 Zn cyclic group of order n 392(n
k

)
binomial coefficient 313 Dn dihedral group of order 2n 392

P(E) probability of event E 329 Orb(x) orbit of set element x 394
P(E | F ) probability of E given F 332 Fix(g) fixed points of group element g 395

TOPIC: GRAPH THEORY

G = (V, E) graph G with vertices G ∪ H union of graphs 463
V and edges E 419 G ∩ H intersection of graphs 463

e �→ {u, v} edge e is assigned endpoints
u and v 419

G × H product of graphs 463
G = (V, E) directed graph with vertices

dist(u, v) distance from u to v 423 V and edges E 472
Pn path on n vertices 434 e �→ (u, v) edge e is assigned tail u

and head v 472Cn cycle on n vertices 434
Kn complete graph on n vertices 435 G underlying graph of G 474

n empty graph on n vertices 436 indeg(v) in-degree of vertex v 476
Km,n complete bipartite graph 438 outdeg(v) out-degree of vertex v 476
Qn n-cube 439 κ(G) connectivity of G 498
G ∼= H graph isomorphism 447 λ(G) edge connectivity of G 501
Aut(G) automorphisms of a graph G 447 D(G) dual of planar graph G 529
f : G → H graph map 452 v(G) crossing number of G 533
deg(v) degree of vertex v 460 χ (G) chromatic number of G 539
�(G) maximum degree in G 460 ω(G) clique number of G 540
δ(G) minimum degree in G 460 α(G) independence number of G 542
Gc complement of graph G 463 (T, v) rooted tree T with root v 564
G + H disjoint union of graphs 463 Dist(u, v) weighted distance from u to v 593

TOPIC: MATRICES

[ai, j ] entries in a matrix 429 An nth power of matrix A 194
AT transpose of matrix A 228 In n by n identity matrix 431
AB product of two matrices 194
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