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The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical

Association of America was established through a generous gift to the Association

from Mary P. Dolciani, Professor of Mathematics at Hunter College of the City Uni-

versity of New York. In making the gift, Professor Dolciani, herself an exceptionally

talented and successful expositor of mathematics, had the purpose of furthering the

ideal of excellence in mathematical exposition.

The Association, for its part, was delighted to accept the gracious gesture initiat-

ing the revolving fund for this series from one who has served the Association with

distinction, both as a member of the Committee on Publications and as a member of

the Board of Governors. It was with genuine pleasure that the Board chose to name

the series in her honor.

The books in the series are selected for their lucid expository style and stimu-

lating mathematical content. Typically, they contain an ample supply of exercises,

many with accompanying solutions. They are intended to be sufficiently elementary

for the undergraduate and even the mathematically inclined high-school student to

understand and enjoy, but also to be interesting and sometimes challenging to the

more advanced mathematician.
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Preface

Most every mathematics Ph.D. student must take a qualifying exam in com-

plex variables. The task is a bit daunting. Complex variables is one of the

oldest areas in mathematics, it is beautiful and compelling, and there is a

plethora of material. Its literature is vast and diverse. There are a great many

textbooks in the subject, but each has a different point of view and places

different emphases according to the tastes of the author.

Thus it is a bit difficult for the student to focus on what are the essential

parts of this subject. What must one absolutely know for the qualifying

exam? What will be asked? What techniques will be stressed? What are the

key facts?

The purpose of this book is to answer these questions. This is definitely

not a comprehensive textbook like [GRK]. It is rather an entree to the dis-

cipline. The book can also be considered as a refresher for those who have

not seen this lovely subject for a while. It will tell you the key ideas in a

first-semester graduate course in the subject, map out the important theo-

rems, and indicate most of the proofs. By “indicate” we mean that (i) if the

proof is short then we include it, (ii) if the proof is of medium length then

we outline it, and (iii) if the proof is long then we sketch it.

This book has plenty of figures, plenty of examples, copious commen-

tary, and even in-text exercises. Since it is not a formal textbook, it does

not have exercise sets, nor a Table of Notation. We do, however, include a

thorough Glossary in order to facilitate the reader’s rapid acclimatization to

the subject.

This is meant to be a breezy book that you could read at one or two

sittings, just to get the sense of what this subject is about and how it fits

together. It is quite different from a typical mathematics text or monograph.

After reading this book (or even while reading this book), you may want

to pick up a more traditional and comprehensive tome and work your way

ix



“master” — 2010/12/8 — 16:23 — page x — #10
i

i

i

i

i

i

i

i

x A Guide to Complex Variables

through it. The present book will get you started on your journey.

This volume is part of a series by the Mathematical Association of

America that is intended to augment graduate education in this country.

We hope that the present volume is a positive contribution to that effort.

Palo Alto, California Steven G. Krantz
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CHAPTER 1

The Complex Plane

1.1 Complex Arithmetic

1.1.1 The Real Numbers

We assume that the reader is familiar with the real number system R. We

let R
2 D f.x; y/ W x 2 R ; y 2 Rg (Figure 1.1). These are ordered pairs of

real numbers.

( )x, y

FIGURE 1.1. The plane R2.

As we shall see, the complex numbers are nothing other than R
2 equipped

with a special algebraic structure.

1.1.2 The Complex Numbers

The complex numbers C consist of R
2 equipped with some binary algebraic

operations. One defines

.x; y/C .x0; y0/ D .x C x0; y C y0/ ;

.x; y/ � .x0; y0/ D .xx0 � yy0; xy0 C yx0/:

These operations of C and � are commutative and associative.

1
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2 A Guide to Complex Variables

We denote .1; 0/ by 1 and (0,1) by i: If ˛ 2 R, then we identify ˛ with

the complex number .˛; 0/. Using this notation, we see that

˛ � .x; y/ D .˛; 0/ � .x; y/ D .˛x; ˛y/: .1:1:2:1/

As a result, if .x; y/ is any complex number, then

.x; y/ D .x; 0/C .0; y/ D x � .1; 0/C y � .0; 1/ D x � 1C y � i � x C iy :

Thus every complex number .x; y/ can be written in one and only one man-

ner in the form x �1Cy � i with x; y 2 R:We usually write the number even

more succinctly as x C iy: The laws of addition and multiplication become

.x C iy/C .x0 C iy0/ D .x C x0/C i.y C y0/;

.x C iy/ � .x0 C iy0/ D .xx0 � yy0/C i.xy0 C yx0/:

Observe that i � i D �1: Finally, the multiplication law is consistent with

the scalar multiplication introduced in (1.1.2.1).

The symbols z; w; � are frequently used to denote complex numbers.

We usually take z D x C iy ; w D uC iv ; � D � C i�: The real number

x is called the real part of z and is written x D Re z: The real number y is

called the imaginary part of z and is written y D Im z:

The complex number x � iy is by definition the complex conjugate of

the complex number xC iy. If z D xC iy, then we denote the conjugate of

z with the symbol z; thus z D x � iy: The complex conjugate is of interest

because if p is a quadratic polynomial with real coefficients and if z is a

root of p then so is z.

1.1.3 Complex Conjugate

Note that z C z D 2x ; z � z D 2iy:Also

z C w D z C w ; (1.1.3.1)

z � w D z � w : (1.1.3.2)

A complex number is real (has no imaginary part) if and only if z D z. It is

imaginary (has no real part) if and only if z D �z.

1.1.4 Modulus of a Complex Number

The ordinary Euclidean distance of .x; y/ to .0; 0/ is
p
x2 C y2 (Figure

1.2). We also call this number the modulus of the complex number z D
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( , )x  y

FIGURE 1.2. Euclidean distance (modulus) in the plane.

x C iy and we write jzj D
p
x2 C y2: Note that

z � z D x2 C y2 D jzj2:

The distance from z to w is jz � wj: We also have the formulas jz � wj D
jzj � jwj and jRe zj � jzj and jIm zj � jzj:

1.1.5 The Topology of the Complex Plane

If P is a complex number and r > 0, then we set

D.P; r/ D fz 2 C W jz � P j < rg .1:1:5:1/

and

D.P; r/ D fz 2 C W jz � P j � rg: .1:1:5:2/

The first of these is the open disc with center P and radius r ; and the second

is the closed disc with center P and radius r (Figure 1.3). We often use the

symbolsD and D to denote, respectively, the discs D.0; 1/ and D.0; 1/.

P
r

D P r( , ) D̄ P r( , )P
r

FIGURE 1.3. Open and closed discs.

We say that a subset U � C is open if, for each P 2 C, there is an

r > 0 such that D.P; r/ � U . Thus an open set is one with the property

that each point P of the set is surrounded by neighboring points that are

still in the set, the points of distance less than r from P—see Figure 1.4.



“master” — 2010/12/8 — 16:23 — page 4 — #22
i

i

i

i

i

i

i

i
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D P r( , )

P

U

FIGURE 1.4. An open set.

The number r will depend on P . As examples, U D fz 2 C W Re z > 1g is

open, but F D fz 2 C W Re z � 1g is not (Figure 1.5).

U z z= { : Re > 1} F z z= { : Re 1}≤

FIGURE 1.5. Open and non-open sets.

A set E � C is said to be closed if C n E � fz 2 C W z 62 Eg, the

complement of E in C, is open. The set F in the last paragraph is closed.

It is not the case that any given set is either open or closed. For exam-

ple, the set W D fz 2 C W 1 < Re z � 2g is neither open nor closed

(Figure 1.6).

FIGURE 1.6. A set that is neither open nor closed.

We say that a set E � C is connected if there do not exist non-empty

disjoint open sets U and V such that E D .U \ E/ [ .V \ E/. Refer to

Figure 1.7 for an illustration. It is a useful fact that if E � C is an open

set, then E is connected if and only if it is path-connected; this means that
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A

B

E

FIGURE 1.7. The concept of connectivity.

any two points of E can be connected by a continuous path or curve. See

Figure 1.8.

U

U

V
V

A connected set E A disconnected set E

E
E

E

FIGURE 1.8. Path connectedness.

1.1.6 The Complex Numbers as a Field

Let 0 denote the number 0 C i0: If z 2 C, then z C 0 D z: Also, letting

�z D �x � iy; we have z C .�z/ D 0: So every complex number has an

additive inverse, and that inverse is unique.

Since 1 D 1 C i0; it follows that 1 � z D z � 1 D z for every complex

number z: If z ¤ 0, then jzj2 ¤ 0 and

z �
�
z

jzj2

�
D jzj2

jzj2 D 1: .1:1:6:1/

So every non-zero complex number has a multiplicative inverse, and that

inverse is unique. It is natural to define 1=z to be the multiplicative inverse

z=jzj2 of z and, more generally, to define

z

w
D z � 1

w
D zw

jwj2 for w ¤ 0: .1:1:6:2/

We also have z=w D z=w:



“master” — 2010/12/8 — 16:23 — page 6 — #24
i

i

i

i

i

i

i

i

6 A Guide to Complex Variables

Multiplication and addition satisfy the usual distributive, associative,

and commutative laws. Therefore C is a field (see [HER]). The field C

contains a copy of the real numbers in an obvious way: x 2 R corresponds

to x C i0 2 C. This identification respects addition and multiplication, so

C is a field extension of R, a larger field that contains the field R.

1.1.7 The Fundamental Theorem of Algebra

It is not true that every non-constant polynomial with real coefficients has a

real root. For instance, p.x/ D x2 C 1 has no real roots. The Fundamental

Theorem of Algebra states that every polynomial with complex coefficients

has a complex root (see the treatment in ��3.1.4 below). The complex field

C is the smallest field that contains R and has this so-called algebraic clo-

sure property. One of the first powerful and elegant applications of complex

variable theory is to provide a proof of the Fundamental Theorem of Alge-

bra.

1.2 The Exponential and Applications

1.2.1 The Exponential Function

We define the complex exponential as follows:

(1.2.1.1) If z D x is real, then

ez D ex �
1X

jD0

xj

j Š

as in calculus. Here Š denotes “factorial”:

j Š D j � .j � 1/ � .j � 2/ � � � 3 � 2 � 1:

(1.2.1.2) If z D iy is pure imaginary, then

ez D eiy � cos y C i sin y:

(1.2.1.3) If z D x C iy, then

ez D exCiy � ex � eiy D ex � .cos y C i siny/:
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Part and parcel of the last definition of the exponential is the following

complex-analytic definition of the sine and cosine functions:

cos z D eiz C e�iz

2
; (1.2.1.4)

sin z D eiz � e�iz

2i
: (1.2.1.5)

When z D x C i0 is real, this definition coincides with the familiar Euler

formula from calculus:

ei t D cos t C i sin t : .1:2:1:6/

1.2.2 The Exponential Using Power Series

It is also possible to define the exponential using power series:

ez D
1X

jD0

zj

j Š
: .1:2:2:1/

Either definition, that in ��1.2.1 or in ��1.2.2, is correct for any z, and they

are logically equivalent.

1.2.3 Laws of Exponentiation

The complex exponential satisfies familiar rules of exponentiation:

ezCw D ez � ew and .ez/w D ezw : .1:2:3:1/

Also �
ez
�n D ez � � � ez„ ƒ‚ …

n times

D enz : .1:2:3:2/

One may verify these properties directly from the power series definition,

or else use the more explicit definitions in (1.2.1.1)–(1.2.1.3).

1.2.4 Polar Form of a Complex Number

A consequence of our first definition of the complex exponential —see

(1.2.1.2)—is that if � 2 C; j�j D 1; then there is a unique number �;

0 � � < 2�; such that � D ei� (see Figure 1.9). Here � is the signed angle

between the positive x axis and the ray
�!
0�.
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q

= ez iq

FIGURE 1.9. Polar representation of a complex number of modulus 1.

If z is any non-zero complex number, then

z D jzj �
�
z

jzj

�
� jzj � � ; .1:2:4:1/

where � D z=jzj has modulus 1. Letting � be the angle between the real

axis and
�!
0�, we see that

z D jzj � � D jzjei� D rei� ; .1:2:4:2/

where r D jzj: This form is called the polar representation for the com-

plex number z: Some classical books write the expression z D rei� D
r.cos � C i sin �/ as z D rcis� . The reader should be aware of this nota-

tion, which engineers like, though we shall not use it in this book.

EXAMPLE 1.2.4.1 Let z D 1C
p
3i . Then jzj D

q
12 C .

p
3/2 D 2.

Hence

z D 2 �
 
1

2
C i

p
3

2

!
:

The unit-modulus number in parenthesis subtends an angle of �=3 with the

positive x-axis. Therefore

1C
p
3i D z D 2 � ei�=3:

It is often convenient to allow angles that are greater than or equal to 2�

in the polar representation; when we do so, the polar representation is no

longer unique. For if k is an integer, then

ei� D cos � C i sin �

D cos.� C 2k�/C i sin.� C 2k�/

D ei.�C2k�/ : (1.2.4.3)
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1.2.5 Roots of Complex Numbers

The properties of the exponential operation can be used to find the nth roots

of a complex number.

EXAMPLE 1.2.5.1 To find all sixth roots of 2, we let rei� be an arbitrary

sixth root of 2 and solve for r and � . If

�
rei�

�6 D 2 D 2 � ei0 .1:2:5:1:1/

or

r6ei6� D 2 � ei0 ; .1:2:5:1:2/

then it follows that r D 21=6 2 R and � D 0 satisfy this equation. So the

real number 21=6 � ei0 D 21=6 is a sixth root of two. This is not surprising,

but there is more:

We may also solve

r6ei6� D 2 D 2 � e2�i ; .1:2:5:1:3/

giving

r D 21=6 ; � D 2�=6 D �=3: .1:2:5:1:4/

This gives us the number

21=6ei�=3 D 21=6
�
cos �=3C i sin�=3

�
D 21=6

 
1

2
C i

p
3

2

!
.1:2:5:1:5/

as a sixth root of two. Similarly, we can solve

r6ei6� D 2 � e4�i

r6ei6� D 2 � e6�i

r6ei6� D 2 � e8�i

r6ei6� D 2 � e10�i

to obtain the other four sixth roots of 2:

21=6

 
�
1

2
C i

p
3

2

!
.1:2:5:1:6/

�21=6 .1:2:5:1:7/
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21=6

 
�1
2

� i
p
3

2

!
.1:2:5:1:8/

21=6

 
1

2
� i

p
3

2

!
: .1:2:5:1:9/

These are in fact all the sixth roots of 2.

Remark: One could of course continue the procedure in the last example,

solving r6ei6� D 2 � e12�i , etc.. This would simply result in a repetition of

the roots we have already found.

EXAMPLE 1.2.5.2 Let us find all third roots of i . We begin by writing i

as

i D ei�=2: .1:2:5:2:1/

Solving the equation

.rei�/3 D i D ei�=2 .1:2:5:2:2/

yields r D 1 and � D �=6.

Next, we write i D ei5�=2 and solve

.rei�/3 D ei5�=2 .1:2:5:2:3/

to obtain r D 1 and � D 5�=6.

Lastly, we write i D ei9�=2 and solve

.rei�/3 D ei9�=2 .1:2:5:2:4/

to obtain r D 1 and � D 9�=6 D 3�=2.

In summary, the three cube roots of i are

ei�=6 D
p
3

2
C i

1

2
; (1.2.5.2.5)

ei5�=6 D �
p
3

2
C i

1

2
; (1.2.5.2.6)

ei3�=2 D �i : (1.2.5.2.7)

In both Examples, the roots of the complex number are equally spaced

about a circle centered at the origin. See Figures 1.10 and 1.11.
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FIGURE 1.10. The sixth roots of 2.

1

FIGURE 1.11. The third roots of i .

1.2.6 The Argument of a Complex Number

The non-unique angle � associated to a complex number z ¤ 0 is called

its argument, and is written arg z. For instance, arg.1 C i/ D �=4: It is

also correct to write arg.1C i/ D 9�=4; 17�=4;�7�=4; etc. We generally

choose the argument � to satisfy 0 � � < 2� . This is the principal branch

of the argument—see ��9.1.2, ��9.4.2.

Under multiplication of complex numbers, arguments are additive and

moduli multiply. That is, if z D rei� and w D sei then

z � w D rei� � sei D .rs/ � ei.�C /: .1:2:6:1/

1.2.7 Fundamental Inequalities

We next record a few important inequalities.

The Triangle Inequality: If z; w 2 C, then

jz C wj � jzj C jwj: .1:2:7:1/

More generally, ˇ̌
ˇ̌
ˇ̌
nX

jD1
zj

ˇ̌
ˇ̌
ˇ̌ �

nX

jD1
jzj j: .1:2:7:2/

For n D 2, this basic fact can be seen immediately from a picture: any side

of a triangle has length not exceeding the sum of the other two sides. The

general case follows by induction on n. A rigorous proof involves solving

an extremal problem using calculus—see [KRA3].

The Cauchy-Schwarz Inequality: If z1; : : : ; zn and w1; : : : ; wn are com-

plex numbers, then
ˇ̌
ˇ̌
ˇ̌
nX

jD1
zjwj

ˇ̌
ˇ̌
ˇ̌

2

�

2
4

nX

jD1
jzj j2

3
5 �

2
4

nX

jD1
jwj j2

3
5 : .1:2:7:3/
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This result is immediate from the Triangle Inequality: Just square both sides

and multiply everything out.

1.3 Holomorphic Functions

1.3.1 Continuously Differentiable

and C
k

Functions

In this book we will frequently refer to a domain or a region U � C.

Usually this will mean that U is an open set and that U is connected (see

�1.1.5).

Holomorphic functions are a generalization of complex polynomials,

but they are more flexible objects than polynomials. The collection of all

polynomials is closed under addition and multiplication. While the collec-

tion of all holomorphic functions is closed under reciprocals, inverses, ex-

ponentiation, logarithms, square roots, and many other operations as well.

There are several ways to introduce the concept of holomorphic func-

tion. It can be defined using power series, or the complex derivative, or

partial differential equations. We shall touch on all these approaches; but

our initial definition will be by way of partial differential equations. First

we need some preliminary concepts from real analysis.

If U � R
2 is open and f W U ! R is a continuous function, then f is

called C 1 (or continuously differentiable) on U if @f=@x and @f=@y exist

and are continuous on U:We write f 2 C 1.U / for short.

More generally, if k 2 f0; 1; 2; :::g, then a real-valued function f on U

is called C k (k times continuously differentiable) if all partial derivatives

of f up to and including order k exist and are continuous on U: We write

in this case f 2 C k.U /: In particular, a C 0 function is just a continuous

function.

A function f D uC iv W U ! C is called C k if both u and v are C k .

1.3.2 The Cauchy-Riemann Equations

If f is any complex-valued function, then we may write f D uC iv, where

u and v are real-valued functions.

EXAMPLE 1.3.2.1 Consider

f .z/ D z2 D .x2 � y2/C i.2xy/I
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The Complex Plane 13

in this example u D x2 � y2 and v D 2xy: We refer to u as the real part

of f and denote it by Ref ; we refer to v as the imaginary part of f and

denote it by Imf .

Now we formulate the notion of “holomorphic function” in terms of the

real and imaginary parts of f W
Let U � C be an open set and f W U ! C a C 1 function. Write

f .z/ D f .x C iy/ � ef .x; y/ D u.x; y/C iv.x; y/;

with z D x C iy and u and v real-valued functions. If u and v satisfy the

equations
@u

@x
D @v

@y

@u

@y
D �@v

@x
.1:3:2:2/

at every point of U , then the function f is said to be holomorphic (see

��1.3.4, where a formal definition of “holomorphic” is provided). The first

order, linear partial differential equations in (1.3.2.2) are called the Cauchy-

Riemann equations. A practical method for checking whether a given func-

tion is holomorphic is to check whether it satisfies the Cauchy-Riemann

equations. Another intuitively appealing method, which we develop in the

next subsection, is to verify that the function in question depends on z only

and not on z.

1.3.3 Derivatives

We define, for f D uC iv W U ! C a C 1 function,

@

@z
f � 1

2

�
@

@x
� i @

@y

�
f D 1

2

�
@u

@x
C @v

@y

�
C i

2

�
@v

@x
� @u

@y

�
.1:3:3:1/

and

@

@z
f �

1

2

�
@

@x
C i

@

@y

�
f

(1.3.3.2)

D 1

2

�
@u

@x
� @v

@y

�
C i

2

�
@v

@x
C @u

@y

�
:

If z D x C iy; z D x � iy, then one can check directly that

@

@z
z D 1;

@

@z
z D 0 ;

(1.3.3.3)
@

@z
z D 0;

@

@z
z D 1 :
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14 A Guide to Complex Variables

If a C 1 function f satisfies @f=@z � 0 on an open set U , then f does

not depend on z (but it does depend on z). If instead f satisfies @f=@z � 0

on an open set U , then f does not depend on z (but it does depend on

z). The condition @f=@z D 0 is a reformulation of the Cauchy-Riemann

equations—see ��1.3.4.

1.3.4 Definition of Holomorphic Function

Functions f that satisfy .@=@z/f � 0 are the main concern of complex

analysis. A continuously differentiable (C 1) function f W U ! C defined

on an open subset U of C is said to be holomorphic if

@f

@z
D 0 .1:3:4:1/

at every point of U: This last equation is just a reformulation of the Cauchy-

Riemann equations (��1.3.2). To see this, we calculate:

0 D
@

@z
f .z/

D 1

2

�
@

@x
C i

@

@y

�
Œu.z/ C iv.z/�

D
�
@u

@x
� @v

@y

�
C i

�
@u

@y
C @v

@x

�
: (1.3.4.2)

The last complex expression cannot be identically zero unless its real and

imaginary parts are both identically zero. It follows that

@u

@x
� @v

@y
D 0

and
@u

@y
C @v

@x
D 0:

These are the Cauchy-Riemann equations (1.3.2.2).

1.3.5 The Complex Derivative

Let U � C be open, P 2 U; and g W U n fP g ! C a function. We say that

lim
z!P

g.z/ D ` ; ` 2 C ; .1:3:5:1/
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The Complex Plane 15

if for any " > 0 there is a ı > 0 such that when z 2 U and 0 < jz �P j < ı
then jg.z/ � `j < ": This is similar to the calculus definition of limit, but it

allows z to approach P from any direction.

We say that f possesses the complex derivative at P if

lim
z!P

f .z/ � f .P /
z � P

.1:3:5:2/

exists. In that case we denote the limit by f 0.P / or sometimes by

df

dz
.P / or

@f

@z
.P /: .1:3:5:3/

This notation is consistent with that introduced in ��1.3.3: for a holomor-

phic function, the complex derivative calculated according to formula (1.3.5.2)

or according to formula (1.3.3.1) is the same (use the Cauchy-Riemann

equations). We shall say more about the complex derivative in �2.2.3 and

�2.2.4.

P

z
z

FIGURE 1.12. The limit from any direction.

In calculating the limit in (1.3.5.2), z must be allowed to approach

P from any direction (see Figure 1.12). As an example, the function

g.x; y/ D z D x � iy—equivalently, g.z/ D z—does not possess the

complex derivative at 0. To see this, calculate the limit

lim
z!P

g.z/ � g.P /
z � P

with z approaching P D 0 through values z D x C i0. The answer is

lim
x!0

x � 0
x � 0

D 1:

If instead z is allowed to approach P D 0 through values z D iy, then the

value is

lim
y!0

�iy � 0
iy � 0 D �1:
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16 A Guide to Complex Variables

The two answers do not agree. In order for the complex derivative to exist,

the limit must exist and assume only one value no matter how z approaches

P . Therefore this g does not possess the complex derivative at P D 0. A

similar calculation shows that g does not possess the complex derivative at

any point.

If a function f possesses the complex derivative at every point of its

open domain U , then f is holomorphic. This definition is equivalent to

definitions given in ��1.3.2, ��1.3.4. We repeat some of these ideas in �2.2.

1.3.6 Alternative Terminology for

Holomorphic Functions

Some books use the word “analytic” instead of “holomorphic.” Still others

say “differentiable” or “complex differentiable” instead of “holomorphic.”

The use of the term “analytic” derives from the fact that a holomorphic

function has a local power series expansion about each point of its domain

(see ��3.1.6). In fact this power series property is a complete characteriza-

tion of holomorphic functions; we shall discuss it in detail below. The use

of “differentiable” derives from properties related to the complex derivative.

These pieces of terminology and their significance will be sorted out as the

book develops. Somewhat archaic terminology for holomorphic functions,

which may be found in older texts, are “regular” and “monogenic.”

Another piece of terminology that is applied to holomorphic functions is

“conformal” or “conformal mapping.” “Conformality” is an important geo-

metric property of holomorphic functions that make these functions useful

for modeling incompressible fluid flow and other physical phenomena. We

shall discuss conformality in ��2.2.5. See also [KRA6].

1.4 Holomorphic and Harmonic Functions

1.4.1 Harmonic Functions

A C 2 function u is said to be harmonic if it satisfies the equation

�
@2

@x2
C @2

@y2

�
u D 0: .1:4:1:1/

This equation is called Laplace’s equation, and is frequently abbreviated as

4u D 0: .1:4:1:2/
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The Complex Plane 17

1.4.2 How They are Related

If f is a holomorphic function and f D u C iv is the expression of f in

terms of its real and imaginary parts, then both u and v are harmonic. An

elegant way to see this is to observe that

@

@z
f D 0

hence
@

@z

@

@z
f D 0 :

But we may write out the left-hand side of the last equation to find that

1

4
4 f D 0

or

.4u/ C i.4v/ D 0 :

The Laplacian 4 is a real operator, so the only way that the last identity can

be true is if

4u D 0 and 4 v D 0 :

This is what we have asserted.

A converse is true provided the functions involved are defined on a do-

main with no holes:

Theorem: If R is an open rectangle or open disc and if u is a real-

valued harmonic function on R, then there is a holomorphic func-

tion F on R such that ReF D u.

In other words, for such a harmonic function u there exists a harmonic

function v defined on R such that f � uC iv is holomorphic on R. Any

two such functions v must differ by a real constant.

More generally, if U is a region with no holes (a simply connected re-

gion),1 and if u is harmonic on U , then there is a holomorphic function F

on U with ReF D u. Put differently, for such a function u there exists a

harmonic function v defined on U such that f � uC iv is holomorphic on

U . Any two such functions v must differ by a constant. We call the function

v a harmonic conjugate for u.

1We say that a domain U � C is simply connected if any closed curve in U can be

continuously deformed to a point.
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18 A Guide to Complex Variables

To indicate why these statements are true we note that, given u har-

monic, we seek v such that

@v

@x
D �@u

@y
� ˛.x; y/

and
@v

@y
D @u

@x
� ˇ.x; y/

(these are the Cauchy-Riemann equations). We know from calculus that a

pair of equations like this is solvable on a region with no holes precisely

when
@˛

@y
D @ˇ

@x
:

This last is just the condition that u be harmonic, which explains why v,

and hence F D uC iv, exists.

The theorem is false on a domain with a hole, such as an annulus. For

example, the harmonic function u D log.x2 C y2/, defined on the annulus

U D fz W 1 < jzj < 2g, has no harmonic conjugate on U . See also ��7.1.4.
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Complex Line Integrals

2.1 Real and Complex Line Integrals

In this section we shall recast the line integral from calculus in complex

notation. The result will be the complex line integral. The complex line

integral is essential to the Cauchy theory, which we develop below, and that

in turn is key to the argument principle and many of the other central ideas

of the subject.

2.1.1 Curves

It is convenient to think of a curve as a continuous function 
 from a closed

interval Œa; b� � R into R
2 � C. We sometimes lete
 denote the image of

the mapping. Thus

e
 D f
.t/ W t 2 Œa; b�g :

Often we follow the custom of referring to either the function or the image

with the single symbol 
 . It will be clear from context what is meant. Refer

to Figure 2.1.

It is often convenient to write


.t/ D .
1.t/; 
2.t// or 
.t/ D 
1.t/ C i
2.t/: .2:1:1:1/

For example, 
.t/ D .cos t; sin t/ D cos t C i sin t , t 2 Œ0; 2��, describes

the unit circle in the plane. The circle is traversed counterclockwise as t

increases from 0 to 2� . See Figure 2.1.

19
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20 A Guide to Complex Variables

g

a

b
g( )b

g( )a

0

2

g( ) = cos + sint t i t

unit circle

FIGURE 2.1. Curves in the plane.

2.1.2 Closed Curves

The curve 
 W Œa; b� ! C is called closed if 
.a/ D 
.b/. It is called sim-

ple, closed (or Jordan) if the restriction of 
 to the interval Œa; b/, which is

commonly written 

ˇ̌
Œa;b/

, is one-to-one and 
.a/ D 
.b/ (Figure 2.2). In-

tuitively, a simple, closed curve is a curve with no self-intersections, except

of course for the closing up at t D a and b.

γ γ( ) = ( )a b

FIGURE 2.2. A simple, closed curve.

In order to work effectively with 
 we need to impose on it some differ-

entiability properties.

2.1.3 Differentiable and C
k

Curves

A function ' W Œa; b� ! R is called continuously differentiable (or C 1), and

we write ' 2 C 1.Œa; b�/, if

(2.1.3.1) ' is continuous on Œa; b�;

(2.1.3.2) '0 exists on .a; b/;

(2.1.3.3) '0 has a continuous extension to Œa; b�.
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Complex Line Integrals 21

In other words, we require that

lim
t!aC

'0.t/ and lim
t!b�

'0.t/

both exist.

Because

'.b/ � '.a/ D
Z b

a

'0.t/ dt; .2:1:3:4/

the Fundamental Theorem of Calculus holds for ' 2 C 1.Œa; b�/.
A curve 
 W Œa; b� ! C, with 
.t/ D 
1.t/ C i
2.t/ is said to be

continuous on Œa; b� if both 
1 and 
2 are. We write 
 2 C 0.Œa; b�/. The

curve is continuously differentiable (or C 1) on Œa; b�, and we write


 2 C 1.Œa; b�/; .2:1:3:5/

if 
1; 
2 are continuously differentiable on Œa; b�. Under these circumstances,

we will write
d


dt
D d
1

dt
C i

d
2

dt
: .2:1:3:6/

We also write 
 0.t/ or even P
.t/ for d
=dt .

2.1.4 Integrals on Curves

Let  W Œa; b� ! C be continuous on Œa; b�. Write  .t/ D  1.t/C i 2.t/.

Then we define

Z b

a

 .t/ dt �
Z b

a

 1.t/ dt C i

Z b

a

 2.t/ dt: .2:1:4:1/

We summarize the ideas presented thus far by noting that if 
 2 C 1.Œa; b�/
is complex-valued, then


.b/ � 
.a/ D
Z b

a


 0.t/ dt: .2:1:4:2/

2.1.5 The Fundamental Theorem of Calculus

along Curves

Now we state the Fundamental Theorem of Calculus (see [BKR]) adapted

to curves.
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22 A Guide to Complex Variables

Let U � C be a domain and let 
 W Œa; b� ! U be a C 1 curve. If

f 2 C 1.U /, then

f .
.b// � f .
.a// D
Z b

a

�
@f

@x
.
.t// � d
1

dt
C @f

@y
.
.t// � d
2

dt

�
dt:

.2:1:5:1/

For the proof, simply reduce the assertion (2.1.5.1) to the analogous classi-

cal assertion from the calculus.

2.1.6 The Complex Line Integral

When f is holomorphic, then (2.1.5.1) may be rewritten, using the Cauchy-

Riemann equations, as

f .
.b// � f .
.a// D
Z b

a

@f

@z
.
.t// � d


dt
.t/ dt; .2:1:6:1/

where, as earlier, we have taken d
=dt to be d
1=dt C id
2=dt .

This result plays much the same role for holomorphic functions as does

the Fundamental Theorem of Calculus for functions from R to R. The ex-

pression on the right of .2:1:6:1/ is called the complex line integral and is

denoted I




@f

@z
.z/ dz : .2:1:6:2/

More generally, if g is any continuous function whose domain contains the

curve 
 , then the complex line integral of g along 
 is defined to be

I




g.z/ dz �
Z b

a

g.
.t// � d

dt
.t/ dt: .2:1:6:3/

The point here is that
H
dz entails an expression of the form 
 0.t/ dt in

the integrand. Thus the trajectory and orientation of the curve will play a

decisive role in the calculation, interpretation, and meaning of the complex

line integral.

The concept of complex line integral is central to our further consid-

erations in later sections. We shall use integrals like the one on the right

of .2:1:6:3/ even when f is not holomorphic; but we can be sure that the

equality (2.1.6.1) holds only when f is holomorphic.

When 
.a/ D 
.b/ D A and the domain U is simply connected then

the left-hand side of (2.1.6.1) is automatically equal to 0; and the right-hand

side is just the complex line integral of f around a closed curve. So we have

a preview of the Cauchy integral theorem (see ��2.3.1) in this context.
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2.1.7 Properties of Integrals

We conclude this section with some easily proved but useful facts about

integrals.

(2.1.7.1) If ' W Œa; b� ! C is continuous, then

ˇ̌
ˇ̌
ˇ

Z b

a

'.t/ dt

ˇ̌
ˇ̌
ˇ �

Z b

a

j'.t/j dt: .2:1:7:1:1/

(2.1.7.2) If 
 W Œa; b� ! C is a C 1 curve and ' is a continuous function on

the curve 
 , then

ˇ̌
ˇ̌
I




'.z/ dz

ˇ̌
ˇ̌ �

�
max
t2Œa;b�

j'.t/j
�

� `.
/ ; .2:1:7:2:1/

where

`.
/ �
Z b

a

j
 0.t/j dt

is the length of 
 . Note that (2.1.7.2.1) follows from (2.1.7.1.1), and (2.1.7.1.1)

is just calculus.

(2.1.7.3) The calculation of a complex line integral is independent of the

way in which we parametrize the path:

Let U � C be an open set and f W U ! C a continuous

function. Let 
 W Œa; b� ! U be a C 1 curve. Suppose that ' W
Œc; d � ! Œa; b� is a one-to-one, onto, increasing C 1 function with a

C 1 inverse. Lete
 D 
 ı '. Then

I

e

f dz D

I




f dz: .2:1:7:3:1/

The result follows from the change of variables formula in calculus.

The last statement implies that one can use the idea of the integral of a

function f along a curve 
 when the curve 
 is described geometrically but

without reference to a specific parametrization. For instance, “the integral

of z counterclockwise around the unit circle fz 2 C W jzj D 1g” is now

a phrase that makes sense, even though we have not indicated a specific

parametrization of the unit circle. However, the direction counts. The inte-

gral of z counterclockwise around the unit circle is 2�i . If the direction is

reversed, then the integral changes sign: The integral of z clockwise around

the unit circle is �2�i .
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24 A Guide to Complex Variables

2.2 Complex Differentiability

and Conformality

2.2.1 Limits

Until now we have developed a complex differential and integral calculus.

We now unify the notions of partial derivative and total derivative in the

complex context. For convenience, we shall repeat some ideas from �1.3.

2.2.2 Holomorphicity and the

Complex Derivative

Let U � C be an open set and let f be holomorphic on U . Then f 0 exists

at each point of U and

f 0.z/ D @f

@z
.2:2:4:1/

for all z 2 U (where @f=@z is defined as in ��1.3.3). This is because we see

that @f=@x (according to the definition) coincides with df=dz and @f=@y

coincides with idf=dz. Hence

@f

@z
D 1

2

�
@f

@x
� i @f

@y

�
D df

dz
:

As a consequence, we can (and often will) write f 0 for @f=@z when f

is holomorphic. The following result is a converse: If f 2 C 1.U / and f

has a complex derivative f 0 at each point of U , then f is holomorphic on

U . In particular, if a continuous, complex-valued function f on U has a

complex derivative at each point and, if f 0 is continuous on U , then f is

holomorphic onU . Such a function satisfies the Cauchy-Riemann equations

(1.3.2.2).

It is perfectly logical to consider an f that possesses a complex deriva-

tive at each point of U without the additional assumption that f 2 C 1.U /.
It turns out that, under these circumstances, u and v still satisfy the Cauchy-

Riemann equations. It is a deeper result, due to Goursat, that if f has a

complex derivative at each point of U , then f 2 C 1.U / and hence f is

holomorphic. See [GRK], especially the Appendix on Goursat’s theorem,

for details.

2.2.3 Conformality

Now we make some remarks about “conformality.” Stated loosely, a func-

tion is conformal at a pointP 2 C if the function preserves angles at P and
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stretches equally in all directions at P . Holomorphic functions enjoy both

properties. Now we shall discuss them in detail.

Let f be holomorphic in a neighborhood of P 2 C. Let w1; w2 be

complex numbers of unit modulus. Consider the directional derivatives

Dw1
f .P / � lim

t!0

f .P C tw1/ � f .P /
t

.2:2:5:1/

and

Dw2
f .P / � lim

t!0

f .P C tw2/� f .P /

t
: .2:2:5:2/

Then

(2.2.5.3) jDw1
f .P /j D jDw2

f .P /j :

(2.2.5.4) If jf 0.P /j ¤ 0, then the directed angle from w1 to w2 equals

the directed angle from Dw1
f .P / toDw2

f .P /.

The last statement has an important converse: If (2.2.5.4) holds at P ,

then f has a complex derivative at P . If (2.2.5.3) holds at P , then either

f or f has a complex derivative at P . Thus a function that is conformal

in either sense at all points of an open set U must possess the complex

derivative at each point of U . By the discussion in ��2.2.4, f is therefore

holomorphic if it is C 1. Or, by Goursat’s theorem, it would then follow that

the function is holomorphic on U , with the C 1 condition being automatic.

Proof of Conformality: Notice that

Dwj
f .P / D lim

t!0

f .P C twj / � f .P /
twj

� twj
t

D f 0.P / � wj ; j D 1; 2:

The first assertion is now immediate and the second follows from the usual

geometric interpretation of multiplication by a nonzero complex number,

namely that multiplication by rei� ; r ¤ 0; multiplies lengths by r and ro-

tates (around the origin) by the angle �:

The converse to this theorem asserts in effect that if either of statements

(2.2.4.2) or (2.2.4.3) holds at P , then f has a complex derivative at P .

Thus a C 1 function that is conformal in either sense at all points of an open

set U must possess the complex derivative at each point of U . Then f is

holomorphic if it is C 1. We leave the proof of these assertions to the reader.
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It is worthwhile to consider the theorem expressed in terms of real func-

tions. We write f D uC iv; where u; v are real-valued functions. Also we

consider f .x C iy/, and hence u and v, as functions of the real variables

x and y. Thus f , as a function from an open subset of C into C, can be

regarded as a function from an open subset of R
2 into R

2. With f viewed

in these real-variable terms, the first derivative behavior of f is described

by its Jacobian matrix: 0
BB@

@u

@x

@u

@y
@v

@x

@v

@y

1
CCA :

This matrix, evaluated at a point .x0; y0/; is the matrix of the linear trans-

formation that best approximates f .x; y/ � f .x0; y0/ at .x0; y0/: Now the

Cauchy-Riemann equations for f mean exactly that this matrix has the form

�
a �b
b a

�
:

Such a matrix is either the zero matrix or it can be written as the product of

two matrices:

 p
a2 C b2 0

0
p
a2 C b2

!
�
�

cos � � sin �

sin � cos �

�

for some choice of � 2 R: One chooses � so that

cos � D ap
a2 C b2

;

sin � D bp
a2 C b2

:

Such a choice of � is possible because

�
ap

a2 C b2

�2
C
�

bp
a2 C b2

�2
D 1:

Thus the Cauchy-Riemann equations imply that the real Jacobian of f has

the form �
� 0

0 �

�
�
�

cos � � sin �

sin � cos �

�

for some � 2 R; � > 0; and some � 2 R:
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Geometrically, these two matrices have simple meanings. The matrix

�
cos � � sin �

sin � cos �

�

represents a rotation around the origin by the angle �: The matrix

�
� 0

0 �

�

is multiplication of all vectors in R
2 by �: Therefore the product

�
� 0

0 �

�
�
�

cos � � sin �

sin � cos �

�

represents the same operation on R
2 as does multiplication on C by the

complex number �ei� :

For our particular Jacobian matrix

0
BB@

@u

@x

@u

@y
@v

@x

@v

@y

1
CCA ;

we have

� D

s�
@u

@x

�2
C
�
@v

@x

�2
D jf 0.z/j;

in agreement with the theorem.

2.3 The Cauchy Integral Formula

and Theorem

2.3.1 The Cauchy Integral Theorem, Basic Form

If f is a holomorphic function on an open discU in the complex plane, and

if 
 W Œa; b� ! U is a C 1 curve in U with 
.a/ D 
.b/, then

I




f .z/ dz D 0: .2:3:1:1/

There are a number of ways to prove the Cauchy integral theorem. One

of the most natural is by way of a complex-analytic form of Stokes’s the-

orem: If 
 is a simple, closed curve surrounding a region U in the plane
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then I




f .z/ dz D
Z Z

U

@f

@z
dz ^ dz D

Z Z

U

0dz ^ dz D 0 :

An important converse of Cauchy’s theorem is called Morera’s

theorem:

Let f be a continuous function on a connected open set U � C. If

I




f .z/ dz D 0 .2:3:1:2/

for every simple, closed curve 
 in U , then f is holomorphic on U .

In the statement of Morera’s theorem, the phrase “every simple, closed

curve” may be replaced by “every triangle” or “every square” or “every

circle.” Morera’s theorem may also be proved using Stokes’s theorem (as

above). We leave the details to the reader, or see [GRK].

2.3.2 The Cauchy Integral Formula

Suppose thatU is an open set in C and that f is a holomorphic function on

U . Let z0 2 U and let r > 0 be such that D.P; r/ � U . Let 
 W Œ0; 1� ! C

be the C 1 curve 
.t/ D P C r cos.2�t/ C ir sin.2�t/. Then, for each

z 2 D.P; r/,
f .z/ D 1

2�i

I




f .�/

� � z
d�: .2:3:2:1/

One may derive this result directly from Stokes’s theorem (see [KRA5] and

also our Subsection 2.3.1).

2.3.3 More General Forms

of the Cauchy Theorems

Now we present the very useful general statements of the Cauchy integral

theorem and formula. First we need a piece of terminology. A curve 
 W
Œa; b� ! C is said to be piecewise C k if

Œa; b� D Œa0; a1� [ Œa1; a2� [ � � � [ Œam�1; am� .2:3:3:1/

with a D a0 < a1 < � � �am D b and 

ˇ̌
Œaj �1;aj �

is C k for 1 � j � m.

In other words, 
 is piecewise C k if it consists of finitely many C k curves

chained end to end.
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Cauchy Integral Theorem: Let f W U ! C be holomorphic with U � C

an open set. Then I




f .z/ dz D 0 .2:3:3:2/

for each piecewise C 1 closed curve 
 in U that can be deformed in U

through closed curves to a point in U—see Figure 2.3.

γU

FIGURE 2.3. General form of the Cauchy theorem.

Cauchy Integral Formula: Suppose that D.z; r/ � U . Then

1

2�i

I




f .�/

� � z
d� D f .z/ .2:3:3:3/

for any piecewise C 1 closed curve 
 inU nfzg that can be continuously de-

formed in U n fzg to @D.z; r/ equipped with counterclockwise orientation.

See Figure 2.4. One derives this more general version of Cauchy’s formula

with the standard device of deformation of curves.

A topological notion that is special to complex analysis is simple con-

nectivity (see Section 1.4). Simple connectivity is a mathematically rigor-

ous condition that corresponds to the intuitive notion that the region U has

no holes. If U is simply connected, and 
 is a closed curve in U , then it

follows that 
 can be continuously deformed to lie inside a disc in U . It

γ

U

z

FIGURE 2.4. General form of the Cauchy formula.
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30 A Guide to Complex Variables

follows that Cauchy’s theorem applies to 
 . To summarize: on a simply

connected region, Cauchy’s theorem applies without any further hypothe-

ses to any closed curve in 
 . Likewise, in a simply connected U , Cauchy’s

integral formula applied to any simple, closed curve that is oriented coun-

terclockwise and to any point z that is inside that curve.

2.3.4 Deformability of Curves

A central fact about the complex line integral is the deformability of curves.

Let 
 W Œa; b� ! U be a piecewise C 1 curve in a region U of the complex

plane. Let f be a holomorphic function on U . The value of the complex

line integral I




f .z/ dz .2:3:4:1/

does not change if the curve 
 is smoothly deformed within the region U .

For this statement to be valid, the curve 
 must remain inside the region

of holomorphicity U of f while it is being deformed, and it must remain

a closed curve while it is being deformed. Figure 2.5 shows curves 
1; 
2
that can be deformed to one another, and a curve 
3 that can be deformed

to neither of the first two (because of the hole inside 
3).

γ1
γ2

γ3

FIGURE 2.5. Deformation of curves.

2.4 A Coda on the Limitations

of The Cauchy Integral Formula

If f is any continuous function on the boundary of the unit disc D D
D.0; 1/, then the Cauchy integral

F.z/ D 1

2�i

I

@D

f .�/

� � z d�
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defines a holomorphic function F.z/ on D (use Morera’s theorem, for ex-

ample, to confirm this assertion). What does the new function F have to do

with the original function f ? In general, not much.

For example, if f .�/ D �, then F.z/ � 0 (exercise). In no sense is

the original function f any kind of “boundary limit” of the new function

F . The question of which functions f are “natural boundary functions” for

holomorphic functionsF (in the sense that F is a continuous extension of F

to the closed disc) is rather subtle. Its answer is well understood, but is best

formulated in terms of Fourier series and the so-called Hilbert transform.

The complete story is given in [KRA1]. See also [GAR] for a discussion of

the F. and M. Riesz theorem.

Contrast this situation for holomorphic function with the much more

succinct and clean situation for harmonic functions (�7.3).
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CHAPTER 3

Applications of the

Cauchy Theory

3.1 The Derivatives of a

Holomorphic Function

3.1.1 A Formula for the Derivative

Let U � C be an open set and let f be holomorphic on U . Then f 2
C1.U /. Moreover, ifD.P; r/ � U and z 2 D.P; r/, then

�
@

@z

�k
f .z/ D

kŠ

2�i

I

j��P jDr

f .�/

.� � z/kC1 d�; k D 0; 1; 2; : : : : .3:1:1:1/

This formula is obtained by differentiating the standard Cauchy formula

(2.3.2.1) under the integral sign.

3.1.2 The Cauchy Estimates

If f is a holomorphic on a region containing the closed discD.P; r/ and if

jf j � M onD.P; r/, then

ˇ̌
ˇ̌
ˇ
@k

@zk
f .P /

ˇ̌
ˇ̌
ˇ � M � kŠ

rk
: .3:1:2:1/

This is proved by direct estimation of the Cauchy formula (3.1.1.1).

33
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3.1.3 Entire Functions and Liouville’s Theorem

A functionf is said to be entire if it is defined and holomorphic on all of C ,

i.e., f W C ! C is holomorphic. For instance, any holomorphic polynomial

is entire, ez is entire, and sin z; cos z are entire. The function f .z/ D 1=z

is not entire because it is undefined at z D 0. (In a sense that we shall

make precise later (�4.1, ff.), this last function has a singularity at 0.) The

question we wish to consider is: “Which entire functions are bounded?”

This question has a very elegant and complete answer as follows:

Liouville’s Theorem: A bounded entire function is constant.

Proof: Let f be entire and assume that jf .z/j � M for all z 2 C: Fix a

P 2 C and let r > 0. We apply the Cauchy estimate (3.1.2.1) for k D 1 on

D.P; r/. So ˇ̌
ˇ̌ @
@z
f .P /

ˇ̌
ˇ̌ � M � 1Š

r
: .3:1:3:1/

Since this inequality is true for every r > 0; we conclude that

@f

@z
.P / D 0:

Since P was arbitrary, we conclude that

@f

@z
� 0:

Therefore f is constant.

The end of the last proof bears some commentary. We prove that @f=@z �
0. But we know, since f is holomorphic, that @f=@z � 0. It follows from

linear algebra that @f=@x � 0 and @f=@y � 0. Then calculus tells us that

f is constant.

The reasoning that establishes Liouville’s theorem can also be used to

prove this more general fact: If f W C ! C is an entire function and if for

some real number C and some positive integer k, it is true that

jf .z/j � C � .1C jzj/k

for all z, then f is a polynomial in z of degree at most k.
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3.1.4 The Fundamental Theorem of Algebra

One of the most elegant applications of Liouville’s Theorem is a proof of

the Fundamental Theorem of Algebra (see also ��1.1.7):

The Fundamental Theorem of Algebra: Let p.z/ be a non-constant

(holomorphic) polynomial. Then p has a root. That is, there exists

an ˛ 2 C such that p.˛/ D 0.

Proof: Suppose not. Then g.z/ D 1=p.z/ is entire. When jzj ! 1,

jp.z/j ! C1. Thus 1=jp.z/j ! 0 as jzj ! 1I hence g is bounded.

By Liouville’s Theorem, g is constant, hence p is constant. Contradiction.

If a polynomial p has degree k � 1, let ˛1 denote the root provided

by the Fundamental Theorem. By the Euclidean algorithm (see [HUN]), we

may divide z � ˛1 into p with no remainder to obtain

p.z/ D .z � ˛1/ � p1.z/: .3:1:4:1/

Here p1 is a polynomial of degree k�1 . If k�1 � 1, then, by the theorem,

p1 has a root ˛2 . Thus p1 is divisible by .z � ˛2/ and we have

p.z/ D .z � ˛1/ � .z � ˛2/ � p2.z/ .3:1:4:2/

for some polynomial p2.z/ of degree k � 2. This process can be continued

until we arrive at a polynomial pk of degree 0; that is, pk is constant. We

have derived the following fact: If p.z/ is a holomorphic polynomial of

degree k, then there are k complex numbers ˛1; : : : ; ˛k (not necessarily

distinct) and a non-zero constant C such that

p.z/ D C � .z � ˛1/ � � � .z � ˛k/: .3:1:4:3/

If some of the roots of p coincide, then we say that p has multiple roots.

To be specific, if m of the values j̨1
; : : : ; j̨m are equal to some complex

number ˛, then we say that p has a root of orderm at ˛, or that p has a root

of multiplicitym at ˛. It is an easily verified fact that the polynomial p has

a root of order m at ˛ if p.˛/ D 0, p0.˛/ D 0, . . .p.m�1/.˛/ D 0, where

the parenthetical exponent denotes a derivative.

An example will make the idea clear: Let

p.z/ D .z � 5/3 � .z C 2/8 � .z � 3i/ � .z C 6/:

Then p has a root of order 3 at 5, a root of order 8 at �2, and roots of order

1 at 3i and at �6. We also say that p has simple roots at 1 and �6.
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3.1.5 Sequences of Holomorphic Functions and

their Derivatives

A sequence of functions gj defined on a common domain E is said to con-

verge uniformly to a limit function g if, for each " > 0, there is a number

N > 0 such that for all j > N it holds that jgj .x/ � g.x/j < " for every

x 2 E . The key point is that the degree of closeness of gj .x/ to g.x/ is

independent of x 2 E .

Let fj W U ! C ; j D 1; 2; 3 : : : , be a sequence of holomorphic func-

tions on an open set U in C. Suppose that there is a function f W U ! C

such that, for each compact subsetE (a compact set is one that is closed and

bounded—see Figure 3.1) ofU , the restricted sequence fj jE converges uni-

formly to f jE . Then f is holomorphic on U . In particular, f 2 C1.U /.

E

FIGURE 3.1. A compact set.

If fj , f , U are as in the preceding paragraph, then, for any k 2
f0; 1; 2; : : :g, we have

�
@

@z

�k
fj .z/ !

�
@

@z

�k
f .z/ .3:1:5:1/

uniformly on compact sets.1 The proof is immediate from (3.1.1.1), which

we derived from the Cauchy integral formula, for the derivative of a holo-

morphic function.

3.1.6 The Power Series Representation

of a Holomorphic Function

The ideas being considered in this section can be used to develop our un-

derstanding of power series. A power series
1X

jD0
aj .z � P /j .3:1:6:1/

1It is also common to say that the functions converge normally. Recall that a sequence of

functions gj converges uniformly on compact sets to a limit g if, for each compact K � U

and each " > 0, there is an integer N > 0 so large that when j > N then jgj .z/�g.z/j < "
for all z 2 K.
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is defined to be the limit of its partial sums

SN .z/ D
NX

jD0
aj .z � P /j : .3:1:6:2/

We say that the partial sums converge to the sum of the entire series.

Any given power series has a disc of convergence. Let

r D 1

lim supj!1 jaj j1=j
: .3:1:6:3/

The power series .3:1:6:2/ will then converge on the disc D.P; r/ and the

convergence will be absolute and uniform on any discD.P; r 0/with r 0 < r .

In many examples the sequence fjaj j1=j g actually converges as j ! 1.

Then we may take r to be equal to 1= limj!1 jaj j1=j . In case the sequence

fjaj j1=j g does not converge, then one must use the more formal definition

(3.1.6.3) of r . See [KRA3], [RUD1].

The partial sums, being polynomials, are holomorphic on any disc

D.P; r/. If the disc of convergence of the power series is D.P; r/, then

let f denote the function to which the power series converges. Then for any

0 < r 0 < r we have that

SN .z/ ! f .z/

uniformly on D.P; r 0/. We can conclude immediately that f .z/ is holo-

morphic on D.P; r/. Moreover, we know that

�
@

@z

�k
SN .z/ !

�
@

@z

�k
f .z/: .3:1:6:4/

This shows that a differentiated power series has a disc of convergence at

least as large as the disc of convergence (with the same center) of the origi-

nal series, and that the differentiated power series converges on that disc to

the derivative of the sum of the original series.

The most important fact about power series for complex function theory

is this: If f is a holomorphic function on a domain U � C, if P 2 U , and

if the disc D.P; r/ lies in U , then f may be represented as a convergent

power series on D.P; r/. Explicitly, we have

f .z/ D
1X

jD0
aj .z � P /j ; .3:1:6:5/
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where

aj D f .j /.P /

j Š
: .3:1:6:6/

The exponent .j / on f denotes the j th derivative. The provenance of this

formula will be explained below. Thus we have an explicit way of calcu-

lating the power series expansion of any holomorphic function f about a

point P of its domain, and we have an a priori knowledge of the disc on

which the power series representation will converge.

The matter bears further consideration. We know that every smooth

function f .x/ of a real variable has a Taylor series expansion about any

point p in the interior of its domain. This Taylor expansion generically does

not converge and, even when it does converge, it generically does not con-

verge back to f . The situation for a holomorphic function of a complex

variable is markedly different: in that circumstance, the Taylor or power

series expansion always converges. The proof is simplicity itself. Take the

center of the disc in the Cauchy formula to be the origin 0. We write the

Cauchy formula as

f .z/ D
1

2�i

I

@D.0;r/

f .�/

� � z d�

D
I

@D.0;r/

f .�/ �
�
1

�
� 1

1 � z=�

�
d�

D
I

@D.0;r/

f .�/ �

2
41
�

�
1X

jD0
.z=�/j

3
5 d�

D
I

@D.0;r/

f .�/ � 1

�jC1 d� � zj

D
X

j

aj � zj :

We see that

aj D
I

@D.0;r/

f .�/ � 1

�jC1 d� ;

and this corresponds, by the Cauchy formula, to derivatives of f .

The series converges absolutely and uniformly for jzj < r D j�j.
The key point here is that holomorphic functions are analytic because the

Cauchy kernel is analytic. We know from our formula for the derivatives of

a holomorphic function that the j th coefficient of the power series in the last

expansion is f .j /.0/=j Š.
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3.2 The Zeros of a

Holomorphic Function

3.2.1 The Zero Set of a Holomorphic Function

Let f be a holomorphic function. If f is not identically zero, then it turns

out that f cannot vanish at too many points. This once again bears out the

dictum that holomorphic functions are a lot like polynomials. To give this

concept a precise formulation, we need to recall the topological notion of

connectedness (�1.1.5).

3.2.2 Discreteness of the Zeros

of a Holomorphic Function

Let U � C be a connected (��1.1.5) open set and let f W U ! C

be holomorphic. Let the zero set of f be Z D fz 2 U W f .z/ D 0g.

If there exist a z0 2 Z and fzj g1
jD1 � Z n fz0g such that zj ! z0,

then f � 0.

Let us formulate the result in topological terms. A point z0 is said to be

an accumulation point of a set Z if there is a sequence fzj g � Z n fz0g
with limj!1 zj D z0. Then the theorem is equivalent to the statement: If

f W U ! C is a holomorphic function on a connected (��1.1.5) open set

U and if Z D fz 2 U W f .z/ D 0g has an accumulation point in U , then

f � 0.

For the proof, suppose that the point 0 is an interior accumulation point

of zeros fzj g of the holomorphic function f . Thus f .0/ D 0, so we may

write f .z/ D z � f �.z/. Because f � vanishes at fzj g and 0 is still an accu-

mulation point of fzj g, it follows that f �.0/ D 0. Hence f itself has a zero

of order 2 at 0. Continuing in this fashion, we see that f has a zero of infi-

nite order at 0. So the power series expansion of f about 0 is identically 0.

It then follows from an easy connectedness argument (more on this below)

that f � 0.

3.2.3 Discrete Sets and Zero Sets

There is still more terminology concerning the zero set of a holomorphic

function in ��3.2.1. A set S is said to be discrete if for each s 2 S there

is an " > 0 such that D.s; "/ \ S D fsg. See Figure 3.2. People also

say, in a slight abuse of language, that a discrete set has points that are

isolated or that S contains only “isolated points.” The result in ��3.2.2 thus
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FIGURE 3.2. A discrete set.

asserts that if f is a non-constant holomorphic function on a connected

open set, then its zero set is discrete or, less formally, the zeros of f are

isolated. It is important to realize that the result in ��3.2.2 does not rule out

the possibility that the zero set of f can have accumulation points in C nU I
in particular, a non-constant holomorphic function on an open set U can

indeed have zeros accumulating at a point of @U . Consider, for instance,

the function f .z/ D sin.1=Œ1 � z�/ on the unit disc. The zeros of this f

include f1 � 1=Œj��g, and these accumulate at the boundary point 1. See

Figure 3.3.

FIGURE 3.3. Zeros accumulating at a boundary point.

3.2.4 Uniqueness of Analytic Continuation

A consequence of the preceding basic fact (��3.2.2) about the zeros of a

holomorphic function is this: Let U � C be a connected open set and

D.P; r/ � U . If f is holomorphic on U and f
ˇ̌
D.P;r/

� 0, then f � 0 on

U . In fact if f � 0 on a segment then it must follows that f � 0.

Here are some further corollaries:

(3.2.4.1) Let U � C be a connected open set. Let f; g be holomorphic on

U . If fz 2 U W f .z/ D g.z/g has an accumulation point in U , then f � g.

(3.2.4.2) Let U � C be a connected open set and let f; g be holomorphic

on U . If f � g � 0 on U , then either f � 0 on U or g � 0 on U .
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complex values
of the variable

real values
of the variable

FIGURE 3.4. Principle of persistence of functional relations.

(3.2.4.3) Let U � C be connected and open and let f be holomorphic on

U . If there is a P 2 U such that

�
@

@z

�j
f .P / D 0 .3:2:4:3:1/

for every j 2 f0; 1; 2; : : :g, then f � 0.

(3.2.4.4) If f and g are entire holomorphic functions and if f .x/ D g.x/

for all x 2 R � C; then f � g. It also holds that functional identities that

are true for all real values of the variable are also true for complex values of

the variable (Figure 3.4). For instance,

sin2 z C cos2 z D 1 for all z 2 C .3:2:4:4:1/

because the identity is true for all z D x 2 R. This is an instance of the

“principle of persistence of functional relations”—see [GRK].
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CHAPTER 4

Isolated Singularities

and Laurent Series

4.1 The Behavior of a Holomorphic

Function near an Isolated

Singularity

4.1.1 Isolated Singularities

It is often important to consider a function that is holomorphic on a punc-

tured open set U n fP g � C. Refer to Figure 4.1.

U

P

FIGURE 4.1. An isolated singularity.

In this chapter we shall obtain a new kind of infinite series expansion

that generalizes the idea of the power series expansion of a holomorphic

function about a (nonsingular) point—see ��3.1.6. We shall in the process

completely classify the behavior of holomorphic functions near an isolated

singular point (��4.1.3).

43
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4.1.2 A Holomorphic Function on a Punctured

Domain

Let U � C be an open set and P 2 U . We call the domain U n fP g a

punctured domain. Suppose that f W U n fP g ! C is holomorphic. Then

we say that f has an isolated singular point (or isolated singularity) at P .

The implication of the phrase is usually that f is defined and holomorphic

on some such “deleted neighborhood” of P . The specification of the set U

is of secondary interest; we wish to consider the behavior of f “near P .”

4.1.3 Classification of Singularities

There are three possibilities for the behavior of f near P that are worth

distinguishing:

(4.1.3.1) jf .z/j is bounded onD.P; r/nfP g for some r > 0withD.P; r/ �
U ; i.e., there is some r > 0 and some M > 0 such that jf .z/j � M for

all z 2 U \D.P; r/ n fP g.

(4.1.3.2) limz!P jf .z/j D C1.

(4.1.3.3) Neither (i) nor (ii).

Of course elementary logic tells us that these three conditions cover all pos-

sibilities. The description of (4.1.3.3) is not very satisfying, but it turns out

that that is the most subtle situation; there is no simple description of what

goes on near P . We shall say more about each of these three conditions in

the ensuing discussion.

4.1.4 Removable Singularities, Poles,

and Essential Singularities

We shall see momentarily that, if case (4.1.3.1) holds, then f has a limit

at P that extends f so that it is holomorphic on all of U (this is not at all

obvious; it is a theorem of Riemann). It is then commonly said that f has

a removable singularity at P . In case (4.1.3.2), we will say that f has a

pole at P: In case (4.1.3.3), f will be said to have an essential singularity at

P: Our goal in this and the next two subsections is to understand (4.1.3.1)–

(4.1.3.3) in further detail.
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4.1.5 The Riemann Removable

Singularities Theorem

Let f W D.P; r/ n fP g ! C be holomorphic and bounded. Then

(4.1.5.1) limz!P f .z/ exists.

(4.1.5.2) The function bf W D.P; r/ ! C defined by

bf .z/ D

8
<
:
f .z/ if z 6D P

lim
�!P

f .�/ if z D P

is holomorphic.

For the proof, take P D 0 and consider the function g.z/ D z2 � f .z/.
One may verify directly that g is C 1 and satisfies the Cauchy-Riemann

equations on all of D.P; r/ (the boundedness hypothesis is used to check

that both g and its first derivative have limits at 0). Thus g is holomorphic

on the disc, and it vanishes to second order at 0. It follows then that f .z/ D
g.z/=z2 is a bona fide holomorphic function on all of D.P; r/.

4.1.6 The Casorati-Weierstrass Theorem

If f W D.P; r0/ n fP g ! C is holomorphic and P is an essential

singularity of f; then f .D.P; r/ n fP g/ is dense in C for any 0 <

r < r0.

To see why, suppose that the assertion is not true. Then there is a com-

plex value � and a positive number " so that the image of D.P; r/ n fP g
under f does not contain the disc D.�; "/. But then the function g.z/ D
1=Œf .z/� �� is bounded and nonvanishing near P and hence has a remov-

able singularity. We see then that f is bounded near P , and that contradicts

that P is an essential singularity.

Now we have seen that, at a removable singularity P , a holomorphic

function f onD.P; r0/ n fP g can be continued to be holomorphic on all of

D.P; r0/. And, near an essential singularity at P , a holomorphic function g

onD.P; r0/n fP g has image that is dense in C. The third possibility, that h

has a pole at P , has yet to be described. This case will be examined further

in the coming sections.

We next develop a new type of doubly infinite series that will serve as a

tool for understanding isolated singularities—especially poles.
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4.2 Expansion around Singular Points

4.2.1 Laurent Series

A Laurent series on D.P; r/ is a (formal) expression of the form

C1X

jD�1
aj .z � P /j : .4:2:1:1/

The individual terms are each defined for all z 2 D.P; r/ n fP g. The series

sums from j D �1 to j D C1.

4.2.2 Convergence of a Doubly Infinite Series

To discuss convergence of Laurent series, we must first make a general

agreement as to the meaning of the convergence of a “doubly infinite”

series
PC1
jD�1 j̨ : We say that such a series converges if

PC1
jD0 j̨ andPC1

jD1 ˛�j D
P�1
jD�1 j̨ converge in the usual sense. In this case, we set

C1X

�1
j̨ D

0
@

C1X

jD0
j̨

1
AC

0
@

C1X

jD1
˛�j

1
A : .4:2:2:1/

The question of convergence for a bi-infinite series thus devolves to two

separate questions about two subseries.

We can now present the analogues for Laurent series of our basic results

for power series.

4.2.3 Annulus of Convergence

The set of convergence of a Laurent series is either an open set of the form

fz W 0 � r1 < jz � P j < r2g together with perhaps some or all of the

boundary points of the set, or a set of the form fz W 0 � r1 < jz � P j <
C1g together with perhaps some or all of the boundary points of the set.

Such an open set is called an (generalized) annulus centered at P . We shall

let

D.P;C1/ D fz W jz � P j < C1g D C; .4:2:3:1/

D.P; 0/ D fz W jz � P j < 0g D ;; .4:2:3:2/

and

D.P; 0/ D fP g: .4:2:3:3/
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As a result, using this extended notation, all (open) annuli (plural of “annu-

lus”) can be written in the form

D.P; r2/ nD.P; r1/ ; 0 � r1 � r2 � C1: .4:2:3:4/

In precise terms, the “domain of convergence” of a Laurent series is given

as follows:

Let
C1X

jD�1
aj .z � P /j .4:2:3:5/

be a doubly infinite series. There are unique nonnegative extended real

numbers r1 and r2 (r1 or r2 may be 0 or C1) such that the series con-

verges absolutely for all z with r1 < jz � P j < r2 and diverges for z with

jz � P j < r1 or jz � P j > r2 (see (4.2.3.4) ). Also, if r1 < s1 � s2 < r2,

then
PC1
jD�1 jaj .z�P /j j converges uniformly on fz W s1 � jz�P j � s2g

and, consequently,
PC1
jD�1 aj .z�P /j converges absolutely and uniformly

there.

The reason that the domain of convergence takes this form is that we

may rewrite the series (4.2.3.5) as

1X

jD0
aj .z � P /j C

1X

jD1
a�j

�
.z � P /�1

�j
:

We know that the domain of convergence of the first series will have the

form jz � P j < r2 and the domain of convergence of the second series will

have the form j.z � P /�1j < 1=r1. Putting these two conditions together

gives r1 < jz � P j < r2.

4.2.4 Uniqueness of the Laurent Expansion

Let 0 � r1 < r2 � 1. If the Laurent series
PC1
jD�1 aj .z �P /j converges

onD.P; r2/ nD.P; r1/ to a function f , then, for any r satisfying r1 < r <

r2, and each j 2 Z;

aj D
1

2�i

I

j��P jDr

f .�/

.� � P /jC1 d�: .4:2:4:1/

This claim follows from integrating the series term-by-term (most of the

terms integrate to zero) and it shows that the aj s are uniquely determined

by f .

We turn now to establishing that convergent Laurent expansions of func-

tions holomorphic on an annulus do in fact exist.
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z

FIGURE 4.2. The Cauchy integral on an annulus.

4.2.5 The Cauchy Integral Formula

for an Annulus

Suppose that 0 � r1 < r2 � C1 and that f W D.P; r2/ nD.P; r1/ ! C

is holomorphic. Then, for each s1; s2 such that r1 < s1 < s2 < r2 and each

z 2 D.P; s2/ nD.P; s1/, it holds that

f .z/ D 1

2�i

I

j��P jDs2

f .�/

� � z d� � 1

2�i

I

j��P jDs1

f .�/

� � z
d�: .4:2:5:1/

Figure 4.2 shows why this is true. The integral along the two segments

(which coincide, but with opposite orientations) vanishes. What is left is

the integrals along the two circles, with opposite orientations, as indicated

in (4.2.5.1).

4.2.6 Existence of Laurent Expansions

Now we may summarize with our main result:

Theorem: If 0 � r1 < r2 � 1 and f W D.P; r2/ nD.P; r1/ ! C

is holomorphic, then there exist complex numbers aj such that

C1X

jD�1
aj .z � P /j .4:2:6:1/

converges on D.P; r2/ n D.P; r1/ to f . If r1 < s1 < s2 < r2,

then the series converges absolutely and uniformly on D.P; s2/ n
D.P; s1/.

The series expansion is independent of s1 and s2. In fact, for each fixed

j D 0;˙1;˙2; : : : ; the value of

aj D 1

2�i

I

j��P jDr

f .�/

.� � P /jC1 d� .4:2:6:2/

is independent of r provided that r1 < r < r2.
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4.2.7 Holomorphic Functions

with Isolated Singularities

Now let us specialize what we have learned about Laurent series expan-

sions to the case of f W D.P; r/ n fP g ! C holomorphic, that is, to a

holomorphic function with an isolated singularity:

If f W D.P; r/nfP g ! C is holomorphic, then f has a unique Laurent

series expansion

f .z/ D
1X

jD�1
aj .z � P /j .4:2:7:1/

that converges absolutely for z 2 D.P; r/ n fP g. The convergence is uni-

form on compact subsets of D.P; r/ n fP g. The coefficients are given by

aj D 1

2�i

I

@D.P;s/

f .�/

.� � P /jC1 d�; any 0 < s < r: .4:2:7:2/

4.2.8 Classification of Singularities

in Terms of Laurent Series

There are three mutually exclusive possibilities for the Laurent series

1X

jD�1
aj .z � P /j

about an isolated singularityP :

(4.2.8.1) aj D 0 for all j < 0.

(4.2.8.2) For some k � 1; aj D 0 for all �1 < j < �k, but ak ¤ 0.

(4.2.8.3) Neither (i) nor (ii) applies.

These three cases correspond exactly to the three types of isolated sin-

gularities that we discussed in �4.1.3: case (4.2.8.1) occurs if and only if

P is a removable singularity; case (4.2.8.2) occurs if and only if P is a

pole (of order k, meaning that the term a�k in the Laurent expansion in

nonzero—more on this below); and case (4.2.8.3) occurs if and only if P is

an essential singularity.

To put this matter in other words: In case (4.2.8.1), we have a power

series that converges, of course, to a holomorphic function. In case (4.2.8.2),
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x

y

z

pole at P

| f z( )|

P

FIGURE 4.3. A pole.

our Laurent series has the form

1X

jD�k
aj .z � P /j D .z � P /�k

1X

jD�k
aj .z � P /jCk

D .z � P /�k
1X

jD0
aj�k.z � P /j :

Since a�k ¤ 0, we see that, for z near P , the function defined by the series

behaves likea�k �.z�P /�k nearP . In short, the function (in absolute value)

blows up like jz � P j�k as z ! P . A graph in .jzj; jf .z/j/-space would

exhibit a pole-like singularity. This is the source of the terminology “pole.”

See Figure 4.3. Case (4.2.8.3), corresponding to an essential singularity,

is much more complicated; in this case there are infinitely many negative

terms in the Laurent expansion and, by the Casorati-Weierstrass theorem

(��4.1.6), they interact in a complicated fashion.

Picard’s Great Theorem (��9.5.2) will tell us more about the behavior

of a holomorphic function near an essential singularity.

4.3 Examples of Laurent Expansions

4.3.1 Principal Part of a Function

When f has a pole or essential singularity at P; it is customary to call the

negative power part of the Laurent expansion of f around P the principal

part of f at P . (Occasionally we shall also use the terminology “Laurent
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polynomial.”) That is, if

f .z/ D
1X

jD�k
aj .z � P /j .4:3:1:1/

for z near P , then the principal part of f at P is

�1X

jD�k
aj .z � P /j : .4:3:1:2/

As an example, the Laurent expansion about 0 of the function f .z/ D
.z2 C 1/= sin.z3/ is

f .z/ D .z2 C 1/ � 1

sin.z3/

D .z2 C 1/ � 1
z3

� 1

1 � z6=3ŠC � � �

D 1

z3
C 1

z
C (a holomorphic function).

The principal part of f is 1=z3 C 1=z.

For a second example, consider the function

f .z/ D .z2 C 2z C 2/ sin

�
1

z C 1

�
:

Its Laurent expansion about the point �1 is

f .z/ D
�
.z C 1/2 C 1

�
�
�

1

z C 1
� 1

6.z C 1/3
C 1

120.z C 1/5

� 1

5040.z C 1/7
C � � � �

�

D .z C 1/C 5

6

1

.z C 1/
� 19

120

1

.z C 1/3
C 41

5040

1

.z C 1/5
� C � � � :

The principal part of f at the point �1 is

5

6

1

.z C 1/
� 19

120

1

.z C 1/3
C 41

5040

1

.z C 1/5
� C � � � :
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4.3.2 Algorithm for Calculating the Coefficients

of the Laurent Expansion

Let f be holomorphic on D.P; r/ n fP g and suppose that f has a pole of

order k at P . Then the Laurent series coefficients aj of f expanded about

the point P , for j D �k;�k C 1;�k C 2; : : : ; are given by the formula

aj D 1

.k C j /Š

�
@

@z

�kCj �
.z � P /k � f

�ˇ̌ˇ̌
zDP

: .4:3:2:1/

This formula is easily derived by considering the standard power series

coefficients of .z � P /k � f .z/.

4.4 The Calculus of Residues

4.4.1 Functions with Multiple Singularities

It turns out to be useful, especially in evaluating various types of integrals, to

consider functions that have more than one singularity. We want to consider

the following general question:

Suppose that f W U n fP1; P2; : : : ; Png ! C is a holomorphic

function on an open set U � C with finitely many distinct points

P1; P2; : : : ; Pn removed. Suppose further that


 W Œ0; 1� ! U n fP1; P2; : : : ; Png .4:4:1:1/

is a piecewise C 1 closed curve (�2.3.3) that (typically) surrounds

some (but perhaps not all) of the points P1; : : : ; Pn. Then how isH


f related to the behavior of f near the pointsP1; P2; : : : ; Pn?

The first step is to restrict our attention to open sets U for which
H


f

is necessarily 0 if P1; P2; : : : ; Pn are removable singularities of f . See the

next subsection.

4.4.2 The Residue Theorem

Suppose thatU � C is a simply connected open set in C, and thatP1; : : : ; Pn
are distinct points of U . Suppose that f W U n fP1; : : : ; Png ! C is a holo-

morphic function and 
 is a piecewise C 1 curve in U n fP1; : : : ; Png. Set

Rj D the coefficient of .z � Pj /
�1 in the

Laurent expansion of f about Pj : (4.4.2.1)
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FIGURE 4.4. Reduction to simpler curves.

Then I




f D
nX

jD1
Rj �

�I




1

� � Pj
d�

�
: .4:4:2:2/

To see this, first note that the integral over 
 may be broken up into

integrals over smaller curves, each of which surrounds just one pole. See

Figure 4.4. Then each such integral reduces, by deformation of curves, to

an integral around a circle. Thus the result is a straightforward calculation.

4.4.3 Residues

The result just stated is used so often that some special terminology is com-

monly used to simplify its statement. The number Rj is usually called the

residue of f at Pj , written Resf .Pj /. This terminology of considering

the number Rj attached to the point Pj makes sense because Resf .Pj / is

completely determined by knowing f in a small neighborhood of Pj . In

particular, the value of the residue does not depend on what the other points

Pk; k 6D j; might be, or on how f behaves near those points.

4.4.4 The Index or Winding Number

of a Curve about a Point

Another piece of terminology associated with our result deals with the inte-

grals that appear on the right-hand side of (4.4.2.2).

If 
 W Œa; b� ! C is a piecewise C 1 closed curve and if P 62 e
 �

.Œa; b�/, then the index of 
 with respect to P , written Ind
.P /, is defined

to be the number
1

2�i

I




1

� � P d�: .4:4:4:1/
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The index is also sometimes called the “winding number of the curve 


about the point P .” It is a fact that Ind
 .P / is always an integer. This may

be verified by examining a particular differential equation that the curve

will satisfy—see [GRK]. Figure 4.5 illustrates the index of various curves


 with respect to different points P . Intuitively, the index measures the

number of times the curve wraps around P , with counterclockwise being

the positive direction of wrapping and clockwise being the negative.

P

P

P

P

ind ( ) = 1Pg ind ( ) = 2Pg

ind ( ) = –3g P ind ( ) = –1Pg

FIGURE 4.5. The concept of index.

The fact that the index is an integer-valued function suggests that it

counts the topological winding of the curve 
 . In particular, a curve that

traces a circle about the origin k times in a counterclockwise direction has

index k with respect to the origin; a curve that traces a circle about the origin

k times in a clockwise direction has index �k with respect to the origin.

4.4.5 Restatement of the Residue Theorem

Using the notation of residue and index, the Residue Theorem’s formula

becomes

I




f D 2�i �
nX

jD1
Resf .Pj / � Ind
.Pj /: .4:4:5:1/

This formula can be stated informally as “the integral of f around 
 equals

2�i times the sum of the residues counted according to the index of 
 about

the singularities.”
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4.4.6 Method for Calculating Residues

We need a method for calculating residues.

Let f be a function with a pole of order k at P . Then

Resf .P / D 1

.k � 1/Š

�
@

@z

�k�1 �
.z � P /kf .z/

�ˇ̌ˇ̌
ˇ
zDP

: .4:4:6:1/

This is just a special case of the formula (4.3.2.1).

4.4.7 Summary Charts of Laurent Series and

Residues

We provide two charts, the first of which summarizes key ideas about Lau-

rent coefficients and the second of which contains key ideas about residues.

Poles and Laurent Coefficients

Item Formula

j th Laurent coefficient of f

with pole of order k at P

1

.k C j /Š

dkCj

dzkCj Œ.z � P /k � f �
ˇ̌
ˇ̌
zDP

residue of f with a pole of

order k at P

1

.k � 1/Š
dk�1

dzk�1 Œ.z � P /k � f �
ˇ̌
ˇ̌
zDP

order of pole of f at P
least integer k � 0 such that

.z � P /k � f is bounded near P

order of pole of f at P lim
z!P

ˇ̌
ˇ̌ log jf .z/j
log jz � P j

ˇ̌
ˇ̌

4.5 Applications to the Calculation of

Definite Integrals and Sums

4.5.1 The Evaluation of Definite Integrals

One of the most classical and fascinating applications of the calculus of

residues is the calculation of definite, usually improper, real integrals. It

is an over-simplification to call these calculations, taken together, a “tech-

nique”: they are more like a collection of techniques. We present several

instances of the method.
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Techniques for Finding the Residue at P

Function Type of Pole Residue Calculation

f .z/ simple limz!P .z � P / � f .z/

f .z/ pole of order k lim
z!P

�.k�1/.z/

.k � 1/Š
k is the least integer such

that limz!P �.z/ exists, where

�.z/ D .z � P /kf .z/

m.z/

n.z/
m.P / ¤ 0, n.z/ D 0, n0.P / ¤ 0

m.P /

n0.P /

m.z/

n.z/

m has zero of order k at P

n has zero of order .k C 1/ at P
.k C 1/ � m.k/.P /

n.kC1/.P /

m.z/

n.z/

m has zero of order r at P

n has zero of order .`C r/ at P

lim
z!P

�.`�1/.z/

.` � 1/Š
,

�.z/ D .z � P /`m.z/
n.z/

4.5.2 A Basic Example of the Indefinite Integral

To evaluate Z 1

�1

1

1C x4
dx; .4:5:2:1/

we “complexify” the integrand to f .z/ D 1=.1 C z4/ and consider the

integral I



R

1

1C z4
dz:

See Figure 4.6.

Part of the game here is to choose the right piecewise C 1 curve or con-

tour 
R. The appropriateness of our choice is justified (after the fact) by the

calculation that we are about to do. Assume that R > 1. Define


1R.t/ D t C i0 if �R � t � R ;


2R.t/ D Rei t if 0 � t � �:

Call these two curves, taken together, 
 or 
R.
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g
R
2

g
R
1

R–R
x

y

curve g
R

FIGURE 4.6. The contour in Subsection 4.5.2.

Now we setU D C; P1 D 1=
p
2Ci=

p
2; P2 D �1=

p
2Ci=

p
2; P3 D

�1=
p
2 � i=

p
2; P4 D 1=

p
2 � i=

p
2I the points P1; P2; P3; P4 are the

poles of 1=Œ1 C z4�. Thus f .z/ D 1=.1 C z4/ is holomorphic on U n
fP1; : : : ; P4g and the Residue Theorem applies.

On the one hand,

I




1

1C z4
dz D 2�i

X

jD1;2
Ind
 .Pj / � Resf .Pj / ;

where we sum only over the poles of f that lie inside 
 . These are P1 and

P2. An easy calculation shows that

Resf .P1/ D 1

4.1=
p
2C i=

p
2/3

D �1
4

�
1p
2

C i
1p
2

�

and

Resf .P2/ D 1

4.�1=
p
2C i=

p
2/3

D �1
4

�
� 1p

2
C i

1p
2

�
:

Of course the index at each point is 1. So

I




1

1C z4
dz D 2�i

�
�1
4

���
1p
2

C i
1p
2

�
C
�

� 1p
2

C i
1p
2

��

D �p
2
: (4.5.2.2)

On the other hand,

I




1

1C z4
dz D

I


1
R

1

1C z4
dz C

I


2
R

1

1C z4
dz:

Trivially,

I


1
R

1

1C z4
dz D

Z R

�R

1

1C t4
� 1 � dt !

Z 1

�1

1

1C t4
dt .4:5:2:3/
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as R ! C1. That is good, because this last is the integral that we wish to

evaluate. Better still,

ˇ̌
ˇ̌
ˇ

I


2
R

1

1C z4
dx

ˇ̌
ˇ̌
ˇ � flength.
2R/g � max


2
R

ˇ̌
ˇ̌ 1

1C z4

ˇ̌
ˇ̌ � �R � 1

R4 � 1 :

(Here we use the inequality j1C z4j � jzj4 � 1, as well as (2.1.7.2).) Thus

ˇ̌
ˇ̌
ˇ

I


2
R

1

1C z4
dz

ˇ̌
ˇ̌
ˇ ! 0 as R ! 1: .4:5:2:4/

Finally, (4.5.2.2)–(4.5.2.4) taken together yield

�
p
2

D lim
R!1

I




1

1C z4
dz

D lim
R!1

I


1
R

1

1C z4
dz C lim

R!1

I


2
R

1

1C z4
dz

D
Z 1

�1

1

1C t4
dt C 0:

This solves the problem: the value of the integral is �=
p
2.

In other problems, it will not be so easy to pick the contour so that the

superfluous parts (in the above example, this would be the integral over 
2
R

)

tend to zero, nor is it always so easy to prove that they do tend to zero.

Sometimes it is not even obvious how to complexify the integrand.

4.5.3 Complexification of the Integrand

We evaluate Z 1

�1

cos x

1C x2
dx .4:5:3:1/

by using the contour 
R as in Figure 4.7, which is the same as Figure 4.6

from the previous example. The obvious choice for the complexification of

the integrand is

f .z/ D cos z

1C z2
D Œeiz C e�iz�=2

1C z2
D Œeixe�y C e�ixey �=2

1C z2
: .4:5:3:2/

Now jeixe�y j D je�yj � 1 on 
R but je�ixey j D jeyj becomes quite

large on 
R when R is large and positive. There is no evident way to alter
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g
R
2

g
R
1

R–R
x

y

curve g
R

FIGURE 4.7. The contour in Subsection 4.5.3.

the contour so that good estimates result. Instead, we alter the function! Let

g.z/ D eiz=.1C z2/.

On the one hand (forR > 1),
I


R

g.z/ D 2�i � Resg.i/ � Ind
R
.i/

D 2�i

�
1

2ei

�
� 1 D �

e
:

On the other hand, with 
1R.t/ D t;�R � t � R; and 
2R.t/ D Rei t ; 0 �
t � �; we have

I


R

g.z/ dz D
I


1
R

g.z/ dz C
I


2
R

g.z/ dz:

Of course

I


1
R

g.z/ dz !
Z 1

�1

eix

1C x2
dx as R ! 1:

Also
ˇ̌
ˇ̌
ˇ

I


2
R

g.z/ dz

ˇ̌
ˇ̌
ˇ � length.
2R/ � max


2
R

jgj � �R �
1

R2 � 1 ! 0 as R ! 1:

Here we have again used (2.1.7.2).

Thus

Z 1

�1

cos x

1C x2
dx D Re

Z 1

�1

eix

1C x2
dx D Re

��
e

�
D �

e
:

4.5.4 An Example with a More Subtle Choice of

Contour

Let us evaluate Z 1

�1

sin x

x
dx: .4:5:4:1/
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m
R
2

m
R
1

R–R
x

y

curve m
R

m
R
3

m
R
4

1/R

FIGURE 4.8. The contour in Subsection 4.5.4.

Before we begin, we remark that sin x=x is bounded near zero; also, the

integral converges at 1 (as an improper Riemann integral) by integration

by parts. So the problem makes sense. Using the lesson learned from the

last example, we consider the function g.z/ D eiz=z. However, the pole of

eiz=z is at z D 0 and that lies on the contour in Figure 4.8. Thus that con-

tour may not be used. We instead use the contour � D �R that is depicted

in Figure 4.9.

m
R
2

m
R
1

R–R
x

y

curve m
R

m
R
3

m
R
4

1/R

FIGURE 4.9. An altered contour for the integral in Subsection 4.5.4.

Define

�1R.t/ D t; �R � t � �1=R;

�2R.t/ D ei t=R; � � t � 2�;

�3R.t/ D t; 1=R � t � R;

�4R.t/ D Rei t ; 0 � t � �:

Clearly
I

�

g.z/ dz D
4X

jD1

I

�
j
R

g.z/ dz:

On the one hand, for R > 0;

I

�

g.z/ dz D 2�iResg.0/ � Ind�.0/ D 2�i � 1 � 1 D 2�i: .4:5:4:2/
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On the other hand,

I

�1
R

g.z/ dz C
I

�3
R

g.z/ dz !
Z 1

�1

eix

x
dx as R ! 1: .4:5:4:3/

Furthermore,

ˇ̌
ˇ̌
ˇ

I

�4
R

g.z/ dz

ˇ̌
ˇ̌
ˇ �

ˇ̌
ˇ̌
ˇ̌
ˇ̌

I

�4
R

Im y <
p

R

g.z/ dz

ˇ̌
ˇ̌
ˇ̌
ˇ̌

C

ˇ̌
ˇ̌
ˇ̌
ˇ̌

I

�4
R

Im y �
p

R

g.z/ dz

ˇ̌
ˇ̌
ˇ̌
ˇ̌

� AC B:

Now

A � length.�4R \ fz W Im z <
p
Rg/ � maxfjg.z/j W z 2 �4R; y <

p
Rg

� 4
p
R �

�
1

R

�
! 0 as R ! 1:

Also

B � length.�4R \ fz W Im z �
p
Rg/ � maxfjg.z/j W z 2 �4R; y �

p
Rg

� �R �
 
e�

p
R

R

!
! 0 as R ! 1:

So ˇ̌
ˇ̌
ˇ

I

�4
R

g.z/ dz

ˇ̌
ˇ̌
ˇ ! 0 as R ! 1: .4:5:4:4/

Finally,

I

�2
R

g.z/ dz D
Z 2�

�

ei.e
it =R/

ei t=R
�
�
i

R
ei t
�
dt

D i

Z 2�

�

ei.e
it =R/dt:

As R ! 1 this tends to

i

Z 2�

�

1 dt D �i as R ! 1 : .4:5:4:5/

In summary, .4:5:4:2/� .4:5:4:5/ yield

2�i D
I

�

g.z/ dz D
4X

jD1

I

�
j
R

g.z/ dz
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!
Z 1

�1

eix

x
dx C �i as R ! 1:

Taking imaginary parts yields

� D
Z 1

�1

sinx

x
dx:

4.5.5 Making the Spurious Part of the Integral

Disappear

Consider the integral1

Z 1

0

x1=3

1C x2
dx: .4:5:5:1/

We complexify the integrand by setting f .z/ D z1=3=.1 C z2/. On the

simply connected set U D C n fiy W y < 0g; the expression z1=3 is unam-

biguously defined as a holomorphic function by setting z1=3 D r1=3ei�=3

when z D rei� ;��=2 < � < 3�=2. We use the contour displayed in

Figure 4.10.

m
R
2

m
R
1

R–R
x

y

curve m
R

m
R
3

m
R
4

1/R–1/R

FIGURE 4.10. The contour in Subsection 4.5.5.

We must do this since z1=3 is not a well-defined holomorphic function

in any neighborhood of 0. Let us use the notation from the figure. We refer

to the preceding examples for some of the parametrizations that we now

use.

Clearly
I

�3
R

f .z/ dz !
Z 1

0

t1=3

1C t2
dt:

Of course that is good, but what will become of the integral over �1
R

? We

1It is actually possible to calculate this integral using techniques of freshman calculus.
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have

I

�1
R

D
Z �1=R

�R

t1=3

1C t2
dt

D
Z R

1=R

.�t/1=3
1C t2

dt

D
Z R

1=R

ei�=3t1=3

1C t2
dt:

(by our definition of z1=3 !). Thus

I

�3
R

f .z/ dz C
I

�1
R

f .z/ dz !
 
1C

 
1

2
C

p
3

2
i

!!Z 1

0

t1=3

1C t2
dt

as R ! 1.

On the other hand,
ˇ̌
ˇ̌
ˇ

I

�4
R

f .z/ dz

ˇ̌
ˇ̌
ˇ � �R � R1=3

R2 � 1
! 0 as R ! 1

and

I

�2
R

f .z/ dz D
Z �2�

��

.ei t=R/1=3

1C e2it=R2
.i/ei t=Rdt

D R�4=3
Z �2�

��

ei4t=3

1C e2it=R2
dt ! 0 as R ! 1:

So

I

�R

f .z/ dz !
 
3

2
C

p
3

2
i

!Z 1

0

t1=3

1C t2
dt as R ! 1: .4:5:5:2/

The calculus of residues tells us that, forR > 1;
I

�R

f .z/ dz D 2�iResf .i/ � Ind�R
.i/

D 2�i

 
ei�=6

2i

!
� 1

D �

 p
3

2
C i

2

!
: (4.5.5.3)
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Finally, .4:5:5:2/ and .4:5:5:3/ taken together yield

Z 1

0

t1=3

1C t2
dt D �p

3
:

4.5.6 The Use of the Logarithm

While the integral Z 1

0

dx

x2 C 6x C 8
.4:5:6:1/

can be calculated using methods of real-variable calculus, it is enlightening

to perform the integration by complex variable methods. If we endeavor to

use the integrand f .z/ D 1=.z2 C 6z C 8/ together with the idea of the

last example, then there is no “auxiliary radius” that helps. More precisely,

..rei� /2 C 6rei� C 8/ is a constant multiple of r2 C 6r C 8 only if � is an

integer multiple of 2� . The following non-obvious device is often of great

utility in problems of this kind. Define log z on U � C n fx W x � 0g by

log.rei�/ D .log r/C i� when 0 < � < 2�; r > 0:

Here log r is understood to be the standard real logarithm. Then, on U; log

is a well-defined holomorphic function. (There are infinitely many ways to

define the logarithm function on U . One could set

log.rei�/ D .log r/C i.� C 2k�/

for any integer choice of k. What we have done here is called “choosing a

branch” of the logarithm.)

We use the contour �R displayed in Figure 4.11 and integrate the func-

tion g.z/ D log z=.z2 C 6z C 8/. Let

�1R.t/ D t C i=
p
2R; 1=

p
2R � t � R;

�2R.t/ D Rei t ; �0 � t � 2� � �0;

where �0.R/ D tan�1.1=.R
p
2R//,

�3R.t/ D R � t � i=
p
2R; 0 � t � R � 1=

p
2R;

�4R.t/ D e�i t=
p
R; �=4 � t � 7�=4:
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η
R
4

η
R
2

η
R
1

η
R
3 R

–R

Ri

–Ri

curve η
R

FIGURE 4.11. The contour in Subsection 4.5.6.

Now
I

�R

g.z/ dz D 2�i.Res�R
.�2/ � 1C Res�R

.�4/ � 1/

D 2�i

�
log.�2/
2

C
log.�4/

�2

�

D 2�i

�
log 2C �i

2
C

log 4C �i

�2

�

D ��i log 2 : (4.5.6.2)

Also, it is straightforward to check that

ˇ̌
ˇ̌
ˇ

I

�2
R

g.z/ dz

ˇ̌
ˇ̌
ˇ ! 0 .4:5:6:3/

and ˇ̌
ˇ̌
ˇ

I

�4
R

g.z/ dz

ˇ̌
ˇ̌
ˇ ! 0 ; .4:5:6:4/

as R ! 1. The device that makes this technique work is that, as R ! 1,

log.x C i=
p
2R/ � log.x � i=

p
2R/ ! �2�i :

So

I

�1
R

g.z/ dz C
I

�3
R

g.z/ dz ! �2�i
Z 1

0

dt

t2 C 6t C 8
: .4:5:6:5/
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Gnn ip

np–np

–n ip

FIGURE 4.12. The contour in Subsection 4.5.7.

Now (4.5.6.2)–(4.5.6.5) taken together yield

Z 1

0

dt

t2 C 6t C 8
D 1

2
log 2:

4.5.7 Summing a Series Using Residues

We sum the series
1X

jD1

x

j 2�2 � x2
.4:5:7:1/

using contour integration. Define cot z D cos z= sin z. For n D 1; 2; : : : let

�n be the contour (shown in Figure 4.12) consisting of the counterclockwise

oriented square with corners f.˙1˙ i/ �.nC 1
2
/ ��g. For z fixed and n > jzj

we calculate using residues that

1

2�i

I

�n

cot �

�.� � z/
d� D

nX

jD1

1

j�.j� � z/
C

nX

jD1

1

j�.j� C z/

C
cotz

z
�
1

z2
:

When n � jzj, it is easy to estimate the left-hand side in modulus by

�
1

2�

�
� Œ4.2nC 1/�� �

�
C

n.n � jzj/

�
! 0 as n ! 1:

Thus we see that

1X

jD1

1

j�.j� � z/ C
1X

jD1

1

j�.j� C z/
D �cot z

z
C 1

z2
:

We conclude that

1X

jD1

2

j 2�2 � z2
D �cot z

z
C 1

z2
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or
1X

jD1

z

j 2�2 � z2
D �1

2
cot z C 1

2z
:

This is the desired result .

4.6 Singularities at Infinity

4.6.1 Meromorphic Functions

We have considered carefully those functions that are holomorphic on sets

of the form D.P; r/ n fP g or, more generally, of the form U n fP g; where

U is an open set in C and P 2 U . As we have seen in our discussion of the

calculus of residues, sometimes it is important to consider the possibility

that a function could be singular at more than just one point. The precise

definition requires a little preliminary consideration of what kinds of sets

might be appropriate as sets of singularities.

4.6.2 Definition of Meromorphic Function

Now fix an open set U ; we next define the central concept of meromorphic

function on U .

A meromorphic function f on U with singular set S is a function f W
U n S ! C such that

(4.6.2.1) S is discrete;

(4.6.2.2) f is holomorphic on U n S (note that U n S is necessarily open

in C);

(4.6.2.3) for each P 2 S and r > 0 such that D.P; r/ � U and S \
D.P; r/ D fP g; the function f

ˇ̌
D.P;r/nfP g has a (finite order) pole at

P .

For convenience, one often suppresses explicit consideration of the set

S and just says that f is a meromorphic function on U . Sometimes we say,

informally, that a meromorphic function on U is a function on U that is

holomorphic “except for poles.” Implicit in this description is the idea that

a pole is an isolated singularity. In other words, a point P is a pole of f if

and only if there is a discD.P; r/ around P such that f is holomorphic on

D.P; r/ n fP g and has a pole at P . Back on the level of precise language,
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we see that our definition of a meromorphic function on U implies that, for

each P 2 U; either there is a discD.P; r/ � U such that f is holomorphic

on D.P; r/ or there is a disc D.P; r/ � U such that f is holomorphic on

D.P; r/ n fP g and has a pole at P .

4.6.3 Examples of Meromorphic Functions

Meromorphic functions are natural objects to consider, primarily because

they result from considering the (algebraic) reciprocals—or more generally

the quotients—of holomorphic functions:

If U is a connected, open set in C and if f W U ! C is a holomorphic

function having at least some zeros but with f 6� 0; then the function

F W U n fz W f .z/ D 0g ! C .4:6:3:1/

defined by F.z/ D 1=f .z/ is a meromorphic function on U with singular

set (or pole set) equal to fz 2 U W f .z/ D 0g. More generally, meromorphic

functions locally have the form g.z/=f .z/ for f; g holomorphic. In a sense

that can be made precise, all meromorphic functions arise as quotients of

holomorphic functions.

4.6.4 Meromorphic Functions

with Infinitely Many Poles

It is quite possible for a meromorphic function on an open set U to have

infinitely many poles in U . The function 1= sin.1=z/ is an obvious example

on U D D n f0g.

4.6.5 Singularities at Infinity

Our discussion so far of singularities of holomorphic functions can be gen-

eralized to include the limit behavior of holomorphic functions as jzj !
C1. This is a powerful method with many important consequences. Sup-

pose for example that f W C ! C is an entire function. We can associate

to f a new function G W C n f0g ! C by setting G.z/ D f .1=z/. The

behavior of the functionG near 0 reflects, in an obvious sense, the behavior

of f as jzj ! C1: For instance

lim
jzj!C1

jf .z/j D C1 .4:6:5:1/

if and only if G has a pole at 0.
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Suppose that f W U ! C is a holomorphic function on an open set

U � C and that, for some R > 0; U � fz W jzj > Rg. Define G W fz W 0 <
jzj < 1=Rg ! C by G.z/ D f .1=z/. Then we say that

(4.6.5.2) f has a removable singularity at 1 if G has a removable singu-

larity at 0.

(4.6.5.3) f has a pole at 1 if G has a pole at 0.

(4.6.5.4) f has an essential singularity at 1 ifG has an essential singular-

ity at 0.

4.6.6 The Laurent Expansion at Infinity

The Laurent expansion of G around 0; G.z/ D
PC1

�1 anz
n; yields imme-

diately a series expansion for f that converges for jzj > R; namely,

f .z/ � G.1=z/ D
C1X

�1
anz

�n D
C1X

�1
a�nz

n: .4:6:6:1/

The series
PC1

�1 a�nzn is called the Laurent expansion of f around

1. It follows from our definitions and from our earlier discussions that f

has a removable singularity at 1 if and only if the Laurent series of f at 1
has no positive powers of z with non-zero coefficients. Also, f has a pole

at 1 if and only if the series has only a finite number of positive powers of

z with non-zero coefficients. Finally, f has an essential singularity at 1 if

and only if the series has infinitely many positive powers.

4.6.7 Meromorphic at Infinity

Suppose that f W C ! C is an entire function. Then limjzj!C1 jf .z/j D
C1 if and only if f is a nonconstant polynomial. In other words, an entire

function that is not a polynomial will have an essential singularity at infinity.

To see this last assertion, suppose that f has a pole of order k at 1.

Subtracting a polynomialp from f if necessary, we may arrange that f �p
vanishes to order k at the origin. Of course p has degree at most k. Then

the function

g.z/ D f .z/ � p.z/
zk

is entire and is bounded. By Liouville’s theorem, g is constant. It then fol-

lows that f is a polynomial.
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The entire function f has a removable singularity at 1 if and only if f

is a constant. This claim if obvious because f will be bounded.

Suppose that f is a meromorphic function defined on an open set U �
C such that, for some R > 0; we have U � fz W jzj > Rg. We say that f

is meromorphic at 1 if the functionG.z/ � f .1=z/ is meromorphic in the

usual sense on fz W jzj < 1=Rg.

4.6.8 Meromorphic Functions

in the Extended Plane

The definition of “meromorphic at 1” as given is equivalent to requiring

that, for some R0 > R; f has no poles in fz 2 C W R0 < jzj < 1g and that

f has a pole at 1. The point is that a pole should not be an accumulation

point of other poles.

A meromorphic function f on C that is also meromorphic at 1 must

be a rational function, that is, a quotient of polynomials in z. For we can

arrange for one of the poles to be at 1. Multiplying f by a polynomial p,

we may arrange for p � f to have no poles. So it must be a polynomial.

It follows that f is a quotient of polynomials. Conversely, every rational

function is meromorphic on C and at 1.

Remark: It is conventional to rephrase the ideas just presented by saying

that the only functions that are meromorphic in the “extended plane” are

rational functions. We will say more about the extended plane in ��6.3.1–

6.3.3.
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CHAPTER 5

The Argument Principle

5.1 Counting Zeros and Poles

5.1.1 Local Geometric Behavior

of a Holomorphic Function

In this chapter, we shall be concerned with questions that have a geometric,

qualitative nature rather than an analytical, quantitative one. These ques-

tions center around the issue of the local geometric behavior of a holomor-

phic function.

5.1.2 Locating the Zeros

of a Holomorphic Function

Suppose that f W U ! C is a holomorphic function on a connected, open

set U � C and that D.P; r/ � U . We know from the Cauchy integral

formula that the values of f on D.P; r/ are completely determined by the

values of f on @D.P; r/. In particular, the number and even the location of

the zeros of f in D.P; r/ are determined in principle by f on @D.P; r/.

But it is nonetheless a pleasant surprise that there is a simple formula for

the number of zeros of f in D.P; r/ in terms of f (and f 0/ on @D.P; r/.

To obtain a precise formula, we shall have to agree to count zeros according

to multiplicity (see ��3.1.4). We now explain the precise idea.

Let f W U ! C be holomorphic as before, and assume that f has

some zeros in U but that f is not identically zero. Fix z0 2 U such that

f .z0/ D 0. Since the zeros of f are isolated, there is an r > 0 such that

D.z0; r/ � U and such that f does not vanish on D.z0; r/ n fz0g.

Now the power series expansion of f about z0 has a first non-zero term

determined by the least positive integer n such that f .n/.z0/ 6D 0. (Note that

71
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n � 1 since f .z0/ D 0 by hypothesis.) Thus the power series expansion of

f about z0 begins with the nth term:

f .z/ D
1X

jDn

1

j Š

@jf

@zj
.z0/.z � z0/j : .5:1:2:1/

We say that f has a zero of order n (or multiplicity n) at z0. When n D 1,

then we say that z0 is a simple zero of f .

5.1.3 Zero of Order n

The concept of zero of order n, or multiplicity n, for a function f is so

important that a variety of terminology has grown up around it (see also

��3.1.4). It has already been noted that, when the multiplicity n D 1, then

the zero is sometimes called simple. For arbitrary n; we sometimes say that

“n is the order of z0 as a zero of f .” More generally if f .z0/ D ˇ so that,

for some n � 1, the function f . � / � ˇ has a zero of order n at z0, then we

say either that “f assumes the value ˇ at z0 to order n” or that “the order

of the value ˇ at z0 is n.” When n > 1, then we call z0 a multiple point (and

ˇ a multiple value) of the function f .

The next result provides a method for computing the multiplicity n of

the zero at z0 from the values of f; f 0 on the boundary of a disc centered at

z0.

5.1.4 Counting the Zeros

of a Holomorphic Function

If f is holomorphic on a neighborhood of a disc D.P; r/ and has a zero of

order n at P , and no other zeros in the closed disc, then

1

2�i

I

@D.P;r/

f 0.�/

f .�/
d� D n: .5:1:4:1/

More generally, suppose that f has several zeros—with different loca-

tions and different multiplicities—inside a disc: Suppose that f W U ! C

is holomorphic on an open set U � C and that D.P; r/ � U . Suppose

that f is nonvanishing on @D.P; r/ and that z1; z2; : : : ; zk are the zeros of

f in the interior of the disc. Let n` be the order of the zero of f at z`,

` D 1; : : : ; k. Then

1

2�

I

j��P jDr

f 0.�/

f .�/
d� D

kX

`D1
n`: .5:1:4:2/
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z1

z2

z3

zk

P P

zero of order n zeros , …,z z1 k

of orders , …,n n1 k

FIGURE 5.1. Counting the zeros of a holomorphic function.

Figure 5.1 illustrates both these situations.

The reasons for these formulas are quite simple. The primordial situa-

tion is when P D 0 and f .z/ D zk . Then we may compute the integral

(5.1.4.1) directly and the result is immediate. We may write a more general

f as f .z/ D ef .z/ � zk and then the integral (5.1.4.1) reduces, by simple

algebra, to the simpler situation just treated. The integral over a more gen-

eral curve can be reduced to the integral over the boundary of a disc by our

usual device of deformation of curves. Finally, the case of several different

zeros may be reduced to the case of one zero by breaking up the curve of

integration into smaller curves, each having just one zero in its interior.

5.1.5 The Argument Principle

Formula (5.1.4.2), which is often called the argument principle, is both use-

ful and important. For one thing, there is no obvious reason why the integral

in the formula should be an integer, much less the crucial integer that it is.

Since it is an integer, it is a counting function; we need to learn more about

it.

The integral
1

2�

I

j��P jDr

f 0.�/

f .�/
d� .5:1:5:1/

can be reinterpreted as follows: Consider the C 1 closed curve


.t/ D f .P C rei t/ ; t 2 Œ0; 2��: .5:1:5:2/

Then
1

2�

I

j��P jDr

f 0.�/

f .�/
d� D 1

2�

Z 2�

0


 0.t/


.t/
dt; .5:1:5:3/

as you can check by direct calculation. The expression on the right is the

index of the curve 
 with respect to 0 (with the notion of index that we
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P
r

g( ) = ( + )t f P reit

f

O

FIGURE 5.2. The argument principle.

defined earlier—��4.4.4). See Figure 5.2. Thus the number of zeros of f

(counting multiplicity) inside the circle f� W j� � P j D rg is equal to the

index of 
 with respect to the origin. This, intuitively speaking, is equal to

the number of times that the f -image of the boundary circle winds around

0 in C.

The argument principle can be extended to yield information about mero-

morphic functions, too. We can see that there is hope for this notion by

investigating the analogue of the argument principle for a pole.

5.1.6 Location of Poles

If f W U n fQg ! C is a nowhere-zero holomorphic function on U n fQg
with a pole of order n at Q and ifD.Q; r/ � U; then

1

2�

I

@D.Q;r/

f 0.�/

f .�/
d� D �n: .5:1:6:1/

Just as we argued for zeros, the verification of (5.1.6.1) can be reduced to

checking the identity for the function f .z/ D z�k when Q D 0.

5.1.7 The Argument Principle

for Meromorphic Functions

Just as with the argument principle for holomorphic functions, this new

argument principle gives a counting principle for zeros and poles of mero-

morphic functions:

Suppose that f is a meromorphic function on an open set U � C; that

D.P; r/ � U; and that f has neither poles nor zeros on @D.P; r/. Assume

that n1; n2; : : : ; np are the multiplicities of the zeros z1; z2; : : : ; zp of f in

D.P; r/ and m1; m2; : : : ; mq are the orders of the poles w1; w2; : : : ; wq of

f inD.P; r/.
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Then

1

2�

I

@D.P;r/

f 0.�/

f .�/
d� D

pX

jD1
nj �

qX

kD1
mk : .5:1:7:1/

5.2 The Local Geometry of

Holomorphic Functions

5.2.1 The Open Mapping Theorem

The argument principle for holomorphic functions has a consequence that

is one of the most important facts about holomorphic functions considered

as geometric mappings:

Theorem: If f W U ! C is a non-constant holomorphic function

on a connected open set U; then f .U / is an open set in C.

See Figure 5.3. The result says, in particular, that ifU � C is connected and

open and if f W U ! C is holomorphic, then either f .U / is a connected

open set (the non-constant case) or f .U / is a single point.

f

U is an open set f U( ) is an open set

FIGURE 5.3. The open mapping principle.

To see why the open mapping principle is true, let ˇ be a value of the

holomorphic function f . Say that f .b/ D ˇ, and let D.b; r/ be a small

disc as usual in the domain of f . Suppose for simplicity that ˇ is a simple

value of f . Then of course

1 D
1

2�i

I

@D.b;r/

f 0.�/

f .�/ � ˇ d� : .5:2:1:1/

If we perturb ˇ a little bit (a perturbation much smaller than r ), then the

integral will still be integer-valued, and its value will be very close to 1.



“master” — 2010/12/8 — 16:23 — page 76 — #94
i

i

i

i

i

i

i

i

76 A Guide to Complex Variables

So in fact it must be 1. Thus we conclude that f also takes on that small

perturbed value of ˇ. We have argued then that f assumes all values near

ˇ. But this means that the image of f is open.

In the subject of topology, a function f is defined to be continuous if the

inverse image of any open set under f is also open. In contexts where the "�
ı definition makes sense, the "�ı definition (��2.2.1, 2.2.2) is equivalent to

the inverse-image-of-open-sets definition. By contrast, functions for which

the direct image of any open set is open are called “open mappings.”

Here is a quantitative, or counting, statement that comes from the proof

of the open mapping principle: Suppose that f W U ! C is a non-constant

holomorphic function on a connected open set U such that P 2 U and

f .P / D Q with order k. Then there are numbers ı; " > 0 such that each

q 2 D.Q; "/ n fQg has exactly k distinct pre-images in D.P; ı/ and each

pre-image is a simple point of f . The justification is again an application

of (5.2.1.1).

The considerations that establish the open mapping principle can also

be used to establish the fact that if f W U ! V is a one-to-one and onto

holomorphic function, then f �1 W V ! U is also holomorphic.

5.3 Further Results on the

Zeros of Holomorphic Functions

5.3.1 Rouche’s Theorem

Now we consider global aspects of the argument principle.

Suppose that f; g W U ! C are holomorphic functions on an open set

U � C. Suppose also that D.P; r/ � U and that, for each � 2 @D.P; r/,

jf .�/ � g.�/j < jf .�/j C jg.�/j: .5:3:1:1/

Then

1

2�

I

@D.P;r/

f 0.�/

f .�/
d� D

1

2�

I

@D.P;r/

g0.�/

g.�/
d�: .5:3:1:2/

That is, the number of zeros of f in D.P; r/ counting multiplicities equals

the number of zeros of g in D.P; r/ counting multiplicities.

Remark: Rouché’s theorem is often stated with the stronger hypothesis that

jf .�/ � g.�/j < jg.�/j .5:3:1:3/
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f g/

p

r

1

1

image of ( , ) under /D p  r f g

FIGURE 5.4. Rouché’s theorem.

for � 2 @D.P; r/. Rewriting this hypothesis as

ˇ̌
ˇ̌f .�/
g.�/

� 1

ˇ̌
ˇ̌ < 1; .5:3:1:4/

we see that it says that the image 
 under f=g of the circle @D.P; r/ lies in

the discD.1; 1/. See Figure 5.4. Our weaker hypothesis that jf .�/�g.�/j <
jf .�/j C jg.�/j has the geometric interpretation that f .�/=g.�/ lies in the

set C n fx C i0 W x � 0g. Either hypothesis implies that the image of the

circle @D.P; r/ under f has the same winding number around 0 as does the

image under g of that circle.

5.3.2 Typical Application of Rouche’s Theorem

EXAMPLE 5.3.2.1 Let us determine the number of roots of the polyno-

mial f .z/ D z7 C 5z3 � z � 2 in the unit disc. We do so by comparing the

function f to the holomorphic function g.z/ D 5z3 on the unit circle. For

jzj D 1 we have

jf .z/ � g.z/j D jz7 � z � 2j � 4 < jg.�/j � jf .�/j C jg.�/j:

By Rouché’s theorem, f and g have the same number of zeros, counting

multiplicity, in the unit disc. Since g has three zeros, so does f .

5.3.3 Rouche’s Theorem and the

Fundamental Theorem of Algebra

Rouché’s theorem provides a useful way to locate approximately the zeros

of a holomorphic function that is too complicated for them to be obtained

explicitly. As an illustration, we analyze the zeros of a non-constant poly-

nomial

P.z/ D zn C an�1z
n�1 C an�2z

n�2 C � � � C a1z C a0: .5:3:3:1/
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If R is sufficiently large (say R > max
˚
1; n � max0�j�n�1 jaj j

	
) and jzj D

R, then

jan�1zn�1 C an�2zn�2 C � � � C a0j
jznj

< 1: .5:3:3:2/

Thus Rouché’s theorem applies on D.0; R/ with

f .z/ D zn and g.z/ D P.z/:

We conclude that the number of zeros of P.z/ inside D.0; R/, counting

multiplicities, is the same as the number of zeros of zn inside D.0; R/;

counting multiplicities—namely n. Thus we recover the Fundamental The-

orem of Algebra. This example underlines the importance of counting zeros

with multiplicities: the function zn has only one root in the naı̈ve sense of

counting the number of points where it is zero; but it has n roots when they

are counted with multiplicity.

5.3.4 Hurwitz’s Theorem

A second useful consequence of the argument principle is the following

result about the limit of a sequence of zero-free holomorphic functions:

Hurwitz’s theorem: Suppose that U � C is a connected open

set and that ffj g is a sequence of nowhere-vanishing holomorphic

functions on U . If the sequence ffj g converges uniformly on com-

pact subsets of U to a (necessarily holomorphic) limit function f0,

then either f0 is nowhere-vanishing or f0 � 0.

We leave the proof to the reader: Examine the integral

1

2�i

I

@D.P;r/

f 0
j .�/

fj .�/
d�

for a suitable disc in the common domain of the functions in question.

5.4 The Maximum Principle

5.4.1 The Maximum Modulus Principle

We repeat that a domain in C is a connected open set (��1.3.1). A bounded

domain is a connected open set U such that there is an R > 0 with jzj < R
for all z 2 U—or U � D.0; R/.
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The Maximum Modulus Principle

Theorem: Let U � C be a domain. Let f be a holomorphic func-

tion on U . If there is a point P 2 U such that jf .P /j � jf .z/j for

all z 2 U , then f is constant.

Here is a sharper variant of the theorem:

Theorem: Let U � C be a domain and let f be a holomorphic

function on U . If there is a point P 2 U at which jf j has a local

maximum, then f is constant.

There are a variety of ways to prove the maximum modulus principle.

A standard method is to first establish this mean value property: If f is

holomorphic in a neighborhood of D.P; r/ then

f .P / D 1

2�

Z 2�

0

f .P C rei t/ dt :

One establishes this formula by first taking P D 0 and checking the result

for the case f .z/ D zk , any k � 0. Then one extends to an arbitrary

holomorphic function by using power series.

To establish the maximum modulus principle, assume that f is not con-

stant. Let E be the set on which jf j assumes its maximum value jf .P /j �
�. Let w be a point of E that is nearest to @U . If r > 0 is a small number

then

� D jf .w/j D 1

2�

ˇ̌
ˇ̌
Z 2�

0

f .w C rei t/ dt

ˇ̌
ˇ̌ � 1

2�

Z 2�

0

jf .w C rei t/j dt :

Now because w is an extreme point of E , it is not the case that w C rei t

lies in E for all values of t . As a result, jf .w C rei t/j < � for t in an open

arc of Œ0; 2��. Thus

<
1

2�

Z 2�

0

�dt D � :

We conclude that � < �, and that is a contradiction.

We leave the details of the sharper version of the maximum principle

for the interested reader.

5.4.2 Boundary Maximum Modulus Theorem

The following version of the maximum principle is intuitively appealing,

and is frequently useful.
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Theorem: Let U � C be a bounded domain. Let f be a continuous

function on U that is holomorphic on U . Then the maximum value

of jf j on U (which must occur, since U is closed and bounded—see

[RUD1], [KRA3]) must in fact occur on @U .

In other words,

max
U

jf j D max
@U

jf j :

The proof is straightforward and we omit it.

5.4.3 The Minimum Principle

Holomorphic functions (or, more precisely, their moduli) can have interior

minima. The function f .z/ D z2 on D.0; 1/ has the property that z D 0 is

a global minimum for jf j. However, it is not accidental that this minimum

value is 0:

Theorem: Let f be holomorphic on a domainU � C. Assume that

f never vanishes. If there is a point P 2 U such that jf .P /j �
jf .z/j for all z 2 U , then f is constant.

This result is proved by applying the maximum principle to the function

1=f .

There is also a boundary minimum principle:

Theorem: Let U � C be a bounded domain. Let f be a continu-

ous function on U that is holomorphic on U . Assume that f never

vanishes on U . Then the minimum value of jf j on U (which must

occur, since U is closed and bounded—see [RUD1], [KRA3]) must

occur on @U .

In other words,

min
U

jf j D min
@U

jf j:

5.4.4 The Maximum Principle

on an Unbounded Domain

The boundary maximum modulus theorem is not always true on an un-

bounded domain. The standard example is the functionf .z/ D exp.exp.z//

on the domain U D fz D x C iy W ��=2 < y < �=2g. Check for your-

self that jf j = 1 on the boundary of U . But the restriction of f to the real

number line is unbounded at infinity. The theorem does, however, remain
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true with some additional restrictions. The result, known as the Phragmen-

Lindelöf theorem,1 is one method of treating maximum modulus theorems

on unbounded domains (see [RUD2]).

5.5 The Schwarz Lemma

This section treats certain estimates that bounded holomorphic functions on

the unit disc necessarily satisfy. We present the classical, analytic viewpoint

in the subject (instead of the geometric viewpoint—see [KRA2]).

5.5.1 Schwarz’s Lemma

Theorem: Let f be holomorphic on the unit disc. Assume that

(5.5.1.1) jf .z/j � 1 for all z.

(5.5.1.2) f .0/ D 0.

Then jf .z/j � jzj and jf 0.0/j � 1.

If either jf .z/j D jzj for some z ¤ 0 or if jf 0.0/j D 1, then f is a

rotation: f .z/ � ˛z for some complex constant ˛ of unit modulus.

For the proof, consider the function g.z/ D f .z/=z. This function is holo-

morphic and is still bounded by 1 as jzj ! 1. The result then follows from

the maximum principle.

Schwarz’s lemma is a profound geometric fact that has exerted consid-

erable influence in the subject. We cannot explore these avenues here, but

see [KRA2]. One nice application is that the lemma enables one to classify

the invertible holomorphic self-maps of the unit disc (see [GK]). (Here a

self-map of a domain U is a mapping F W U ! U of the domain to itself.)

These are commonly referred to as the conformal self-maps of the disc. The

classification is as follows: If 0 � � < 2� , then define the rotation through

angle � to be the function ��.z/ D ei�z; if a is a complex number of mod-

ulus less than one, then define the associated Möbius transformation to be

'a.z/ D Œz�a�=Œ1�az�. Any conformal self-map of the disc is the compo-

sition of some rotation �� with some Möbius transformation 'a . This topic

is treated in detail in �6.2.

The classification works as follows. Let  be a conformal self-map of

the disc D. Suppose that  .0/ D a. Then consider h D 'a ı  . We see

1This theorem imposes a Tauberian hypothesis on the function to make up for the fact that

the domain is unbounded.
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that h W D ! D and h.0/ D 0. Thus the Schwarz lemma applies and

jh.z/j � jzj. The same reasoning applies to h�1 so that jh.z/j � jzj. We

conclude that jh.z/j D jzj so that h is a rotation. The result follows.

We conclude this section by presenting a generalization of the Schwarz

lemma, in which we consider holomorphic mappings f W D ! D, but we

discard the hypothesis that f .0/ D 0. This result is known as the Schwarz-

Pick lemma.

5.5.2 The Schwarz-Pick Lemma

Theorem: Let f be holomorphic on the unit disc. Assume that

(5.5.2.1) jf .z/j � 1 for all z.

(5.5.2.2) f .a/ D b for some a; b 2 D.0; 1/.

Then

jf 0.a/j � 1 � jbj2
1 � jaj2

: .5:5:2:3/

Moreover, if f .a1/ D b1 and f .a2/ D b2, then
ˇ̌
ˇ̌ b2 � b1
1 � b1b2

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌ a2 � a1
1 � a1a2

ˇ̌
ˇ̌ : .5:5:2:4/

There is a uniqueness result in the Schwarz-Pick Lemma. If either

jf 0.a/j D 1 � jbj2
1 � jaj2 or

ˇ̌
ˇ̌ b2 � b1
1 � b1b2

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ a2 � a1
1 � a1a2

ˇ̌
ˇ̌ with a1 ¤ a2 ;

.5:5:2:5/

then the function f is a conformal self-mapping (one-to-one, onto holo-

morphic function) of D.0; 1/ to itself.

The proof of Schwarz-Pick is nearly obvious. Consider h D 'bıf ı'�a .

Then h W D ! D, h.0/ D 0, and the Schwarz lemma applies.
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CHAPTER 6

The Geometric Theory of

Holomorphic Functions

6.1 The Idea of a Conformal Mapping

6.1.1 Conformal Mappings

The main objects of study in this chapter are holomorphic functions h W
U ! V; with U and V open in C; that are one-to-one and onto. Such a

holomorphic function is called a conformal (or biholomorphic) mapping.

The fact that h is supposed to be one-to-one implies that h0 is nowhere zero

on U (remember that if h0 vanishes to order k � 0 at a point P 2 U , then

h is .k C 1/-to-1 in a small neighborhood of P—see ��5.2.1). As a result,

h�1 W V ! U is also holomorphic, as we discussed in ��5.2.1. A conformal

map h W U ! V from one open set to another can be used to transfer

holomorphic functions on U to V and vice versa: that is, f W V ! C is

holomorphic if and only if f ı h is holomorphic on U I and g W U ! C is

holomorphic if and only if g ı h�1 is holomorphic on V .

Thus, if there is a conformal mapping from U to V; then U and V

are essentially indistinguishable from the viewpoint of complex function

theory. On a practical level, one can often study holomorphic functions on

a rather complicated open set by first mapping it to some simpler open set,

then transferring the holomorphic functions as indicated.

6.1.2 Conformal Self-Maps of the Plane

The simplest open subset of C is C itself. Thus it is natural to begin our

study of conformal mappings by considering the conformal mappings of

83
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C to itself. In fact the conformal mappings from C to C can be explicitly

described as follows:

Theorem: A function f W C ! C is a conformal mapping if and

only if there are complex numbers a; b with a 6D 0 such that

f .z/ D az C b ; z 2 C: .6:1:2:1/

One aspect of the result is fairly obvious: If a; b 2 C and a 6D 0, then

the map z 7! az C b is certainly a conformal mapping of C to C. One

checks easily that z 7! .z � b/=a is the inverse mapping. The interesting

part of the assertion is that these are in fact the only conformal maps of C

to C.

For the proof, note that the holomorphic function f satisfies

lim
jzj!C1

jf .z/j D C1:

That is, given " > 0; there is a number C > 0 such that if jzj > C then

jf .z/j > 1=": The set fz W jzj � 1="g is a compact subset of C: Since

f �1 W C ! C is holomorphic, it is continuous. Because the continuous

image of a compact set is compact, S D f �1�fz W jzj � 1="g
�

is compact.

By the Heine-Borel theorem, S must be bounded. Thus there is a positive

number C such that S � fz W jzj � C g:
Taking contrapositives, we see that if jwj > C then w is not an element

of f �1�fz W jzj � 1="g
�
: Therefore f .w/ is not an element of fz W jzj �

1="g: In other words, jf .w/j > 1=": That is the desired result.

Further understanding of the behavior of f .z/ when z has large absolute

value may be obtained by applying the technique already used in Chapter

4 to talk about singularities at 1. Define, for all z 2 C such that z 6D 0

and f .1=z/ 6D 0; a function g.z/ D 1=f .1=z/: By the discussion in the last

paragraph, there is a number C such that jf .z/j > 1 if jzj > C: Clearly

g is defined on fz W 0 < jzj < 1=C g: Furthermore, g is bounded on this

set by 1: By the Riemann removable singularities theorem, g extends to be

holomorphic on the full discD.0; 1=C/ D fz W jzj < 1=C g: Since f must

blow up at 1 (by Liouville), g.0/ D 0.

Now, because f W C ! C is one-to-one, it follows that g is one-to-one

on the discD.0; 1=C/: In particular, g0.0/ cannot be 0: Since

0 6D jg0.0/j D lim
jzj!0C

ˇ̌
ˇ̌g.z/ � g.0/

z

ˇ̌
ˇ̌ D lim

jzj!0C

ˇ̌
ˇ̌g.z/
z

ˇ̌
ˇ̌ ;
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we see that there is a constant A > 0 such that

jg.z/j � Ajzj

for z sufficiently small. We next translate this to information about the orig-

inal function f .

We claim that there are numbers B;D > 0 such that, if jzj > D, then

jf .z/j < Bjzj :

To see this, as noted above, there is a number ı > 0 such that if jzj < ı then

jg.z/j � Ajzj: If jzj > 1=ı then

jf .z/j D 1

jg.1=z/j
� 1

Aj1=zj
D 1

A
jzj:

Thus the lemma holds with B D 1=A and D D 1=ı:

The proof of our main result is now easily given. By (6.1.2.1), f is a

polynomial of degree at most 1, i.e., f .z/ D az C b for some a; b 2 C.

Clearly f is one-to-one and onto if and only if a ¤ 0. That proves the

result.

One part of the proof just given is worth considering in the more general

context of singularities at 1, as discussed in ��4.7. Suppose now that h is

holomorphic on a set fz W jzj > ˛g, for some positive ˛; and that

lim
jzj!C1

jh.z/j D C1:

Then it remains true that g.z/ � 1=h.1=z/ is defined and holomorphic on

fz W 0 < jzj < �g; some � > 0: Also, by the same reasoning as above, g

extends holomorphically to D.0; �/ with g.0/ D 0: If we do not assume in

advance that h is one-to-one then we may not say (as we did before) that

g0.0/ 6D 0: But g is not constant, since h is not, so there is a positive integer

n and a positive number A such that

jg.z/j � Ajzjn

for all z with jzj sufficiently small. It then follows (as in the proof of Lemma

6.1.2) that

jh.z/j �
1

A
jzjn

for jzj sufficiently large. This line of reasoning, combined with Theorem

3.4.4, recovers Theorem 4.7.6: If h W C ! C is a holomorphic function

such that

lim
jzj!C1

jh.z/j D C1;

then h is a polynomial.
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6.2 Linear Fractional Transformations

6.2.1 Linear Fractional Mappings

The automorphisms (that is, conformal self-mappings) of the unit disc D

are special cases of functions of the form

z 7! az C b

cz C d
; a; b; c; d 2 C: .6:2:1:1/

It is worthwhile to consider functions of this form in generality. One restric-

tion on this generality needs to be imposed, however; if ad � bc D 0, then

the numerator is a constant multiple of the denominator provided that the

denominator is not identically zero. So if ad � bc D 0, then the function is

either constant or has zero denominator and is nowhere defined. Thus only

the case ad � bc 6D 0 is worth considering in detail.

A function of the form

z 7! az C b

cz C d
; ad � bc 6D 0; .6:2:1:2/

is called a linear fractional transformation.

Note that .az C b/=.cz C d/ is not necessarily defined for all z 2 C.

Specifically, if c 6D 0, then it is undefined at z D �d=c. In case c 6D 0,

lim
z!�d=c

ˇ̌
ˇ̌az C b

cz C d

ˇ̌
ˇ̌ D C1: .6:2:1:3/

This observation suggests that one might well, for linguistic convenience,

adjoin formally a point at 1 to C and consider the value of .az C b/=

.cz C d/ to be 1 when z D �d=c .c 6D 0/. Thus we will think of both the

domain and the range of our linear fractional transformation to be C [ f1g
(we sometimes also use the notationbC instead of C[f1g). Specifically, we

are led to the following alternative method for describing a linear fractional

transformation.

A function f W C [ f1g ! C [ f1g is a linear fractional transforma-

tion if there exists a; b; c; d 2 C; ad � bc 6D 0; such that either

(6.2.1.4) c D 0, d ¤ 0, f .1/ D 1, and f .z/ D .a=d/z C .b=d/ for all

z 2 C;

or

(6.2.1.5) c 6D 0; f .1/ D a=c; f .�d=c/ D 1, and f .z/ D .az C b/=

.cz C d/ for all z 2 C, z 6D �d=c.
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It is important to realize that, as before, the status of the point 1 is

entirely formal: we are using it only as a linguistic convenience, to keep

track of the behavior of f .z/ both where it is not defined as a map on C

and to keep track of its behavior when jzj ! C1. The justification for the

particular devices used is the fact that

(6.2.1.6) limjzj!C1 f .z/ D f .1/ [c D 0; case (6.2.1.4) of the defini-

tion]

(6.2.1.7) limz!�d=c jf .z/j D C1 [c 6D 0I case (6.3.1.5) of the defini-

tion].

6.2.2 The Topology of the Extended Plane

The limit properties of f that we described in ��6.2.1 can be considered as

continuity properties of f from C[f1g to C[f1g using the definition of

continuity that comes from the topology on C[f1g. It is easy to formulate

that topology in terms of open sets. It is also convenient to formulate that

same topological structure in terms of convergence of sequences:

A sequence fpi g in C [ f1g converges to p0 2 C [ f1g (written

limi!1 pi D p0) if either

(6.2.2.1) p0 D 1 and limi!C1 jpi j D C1 where the limit is taken for

all i such that pi 2 C;

or

(6.2.2.2) p0 2 C; all but a finite number of thepi are in C and limi!1 pi D
p0 in the usual sense of convergence in C.

6.2.3 The Riemann Sphere

Stereographic projection puts bC D C [ f1g into one-to-one correspon-

dence with the two-dimensional sphere S in R
3,

S D f.x; y; z/ 2 R
3 W x2 C y2 C z2 D 1g

in such a way that topology is preserved in both directions of the correspon-

dence.

In detail, begin by imagining the unit sphere bisected by the complex

plane with the center of the sphere .0; 0; 0/ coinciding with the origin in the

plane—see Figure 6.1. We define the stereographic projection as follows:

If P D .x; y/ 2 C, then connect P to the north pole N of the sphere
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N

Pπ( )P

the - planex y

FIGURE 6.1. Stereographic projection.

with a line segment. The point �.P / of intersection of this segment with

the sphere is called the stereographic projection of P . Under stereographic

projection, the point at infinity in the plane corresponds to the north pole

N of the sphere. For this reason, C [ f1g is often thought of as being a

sphere, and is then called, for historical reasons, the Riemann sphere.

The construction we have just described is another way to think about

the extended complex plane—see ��6.2.2. In these terms, linear fractional

transformations become homeomorphisms of C[f1g to itself. (Recall that

a homeomorphism is, by definition, a one-to-one, onto, continuous mapping

with a continuous inverse.)

Proposition: If f W C [ f1g ! C [ f1g is a linear fractional

transformation, then f is a one-to-one, onto, continuous function.

Also, f �1 W C [ f1g ! C [ f1g is a linear fractional transforma-

tion, and is thus a one-to-one, onto, continuous function.

Proposition: If g W C [ f1g ! C [ f1g is also a linear frac-

tional transformation, then f ıg is a linear fractional transformation.

The simplicity of language obtained by adjoining 1 to C (so that the

composition and inverse properties of linear fractional transformations ob-

viously hold) is well worth the trouble. One does not wish to consider a mul-

tiplicity of special possibilities when composing .AzCB/=.CzCD/ with

.az C b/=.cz C d/ (namely c D 0; c 6D 0; aC C cD 6D 0; aC C cD D 0;

etc.) that arise every time composition is considered.

It is worth summarizing what we have learned in a theorem (see ��6.2.4).

First note that it makes sense now to talk about a homeomorphism from

C [ f1g to C [ f1g being conformal: this means that it (and hence its

inverse) are holomorphic in our extended sense. If ' is a conformal map of

C [ f1g to itself, then, after composing with a linear fractional transfor-

mation, we may suppose that ' maps 1 to itself. Thus '; after composition

with a linear fraction transformation, is linear. It follows that ' itself is lin-

ear fractional. The following result summarizes the situation:
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6.2.4 Conformal Self-Maps

of the Riemann Sphere

Theorem: A function ' is a conformal self-mapping of bC D C [
f1g to itself if and only if ' is linear fractional.

We turn now to the utility of linear fractional transformations (beyond

their having been the form of automorphisms of D—see ��6.2.1–6.2.3—

and the form of all conformal self maps of C [ f1g to itself in the present

section). One of the most frequently occurring uses is the following:

6.2.5 The Cayley Transform

Theorem (The Cayley Transform): The linear fractional transformation

z 7! .i � z/=.i C z/ maps the upper half plane fz W Imz > 0g conformally

onto the unit disc D D fz W jzj < 1g.

6.2.6 Generalized Circles and Lines

Calculations of the type that we have been discussing are straightforward

but tedious. It is thus worthwhile to seek a simpler way to understand what

the image under a linear fractional transformation of a given region is. For

regions bounded by line segments and arcs of circles the following result

gives a method for addressing this issue:

Let C be the set of subsets of C [ f1g consisting of (i) circles and (ii)

sets of the form L[ f1g where L is a line in C. We call the elements of C

generalized circles. Then every linear fractional transformation ' takes el-

ements of C to elements of C. One verifies this last assertion by noting that

any linear fractional transformation is the composition of dilations, transla-

tions, and the inversion map z 7! 1=z; and each of these component maps

clearly sends generalized circles to generalized circles.

6.2.7 The Cayley Transform Revisited

To illustrate the utility of this last result, we return to the Cayley transfor-

mation

z 7! i � z
i C z

: .6:2:7:1/

Under this mapping the point 1 is sent to �1, the point 1 is sent to

.i�1/=.iC1/ D i , and the point �1 is sent to .i �.�1//=.iC.�1// D �i .
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Thus the image under the Cayley transform (a linear fractional transfor-

mation) of three points on R [ f1g contains three points on the unit cir-

cle. Since three points determine a (generalized) circle, and since linear

fractional transformations send generalized circles to generalized circles,

we may conclude that the Cayley transform sends the real line to the unit

circle. Now the Cayley transform is one-to-one and onto from C [ f1g
to C [ f1g. By continuity, it either sends the upper half plane to the

(open) unit disc or to the complement of the closed unit disc. The image

of i is 0, so in fact the Cayley transform sends the upper half plane to the

unit disc.

6.2.8 Summary Chart of

Linear Fractional Transformations

The next chart summarizes the properties of some important linear frac-

tional transformations. Note that U D fz 2 C W Im z > 0g is the upper

half-plane and D D fz 2 C W jzj < 1g is the unit disc; the domain variable

is z and the range variable is w.

Linear Fractional Transformations

Domain Image Conditions Formula

z 2 bC w 2 bC w D
az C b

cz C d

z 2 D w 2 U w D i � 1 � z
1C z

z 2 U w 2 D w D i � z

i C z

z 2 D w 2 D w D z � a
1 � az , jaj < 1

C C L.z1/ D w1 L.z/ D S�1 ı T

L.z2/ D w2 T .z/ D z � z1
z � z3

� z2 � z3
z2 � z1

L.z3/ D w3 S.m/ D m�w1
m�w3

� w2 �w3
w2 �w1



“master” — 2010/12/8 — 16:23 — page 91 — #109
i

i

i

i

i

i

i

i

The Geometric Theory of Holomorphic Functions 91

6.3 The Riemann Mapping Theorem

6.3.1 The Concept of Homeomorphism

Two open sets U and V in C are homeomorphic if there is a one-to-one,

onto, continuous function

f W U ! V with f �1 W V ! U

also continuous. Such a function f is called a homeomorphism from U to

V (see also ��6.3.3).

6.3.2 The Riemann Mapping Theorem

The Riemann mapping theorem, sometimes called the greatest theorem of

the nineteenth century, asserts in effect that any planar domain (other than

the entire plane itself) that has the topology of the unit disc also has the

conformal structure of the unit disc. Even though this theorem has been

subsumed by the great uniformization theorem of Köbe (see [FAK]), it is

still striking in its elegance and simplicity:

If U is an open subset of C; U 6D C; and if U is homeomor-

phic to D; then U is conformally equivalent to D. That is, there

is a holomorphic mapping  W U ! D that is one-to-one and

onto.

6.3.3 The Riemann Mapping Theorem:

Second Formulation

An alternative formulation of this theorem uses the concept of simply con-

nected (see also ��2.3.3.). We say that a connected open set U in the com-

plex plane is simply connected if any closed curve inU can be continuously

deformed to a point. (This is a precise way of saying that U has no holes.

Yet another formulation of the notion is that the complement of U has only

one connected component.)

Theorem: If U is an open subset of C, U 6D C; and if U is simply

connected, then U is conformally equivalent to D.

The proof of the Riemann mapping theorem is long and complex and

introduces many fundamentally new ideas and techniques. We cannot treat

it in detail here, but see [GRK]. The ideas introduced in this proof have been

profoundly influential.
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Key Steps in the Proof of the Riemann Mapping Theorem:

Fix a point P 2 U . Assume for simplicity that U is bounded.

1. Consider

S D ff W f maps D to U ; f .0/ D P gI

2. Define

˛ D sup
f 2S

jf .0/j :

3. Use a normal families argument (Montel’s theorem) to show that there

is a function f0 2 S so that jf 0
0.0/j D ˛.

4. Show, using the argument principle, that f0 must be univalent.

5. Show, with a clever proof by contradiction, that if f0 is not onto then it

cannot be the solution of the extremal problem enunciated in 3.

6. The function f0 is the conformal map that we seek.

The full details of the proof of the Riemann mapping theorem appear in

[GRK].

6.4 Conformal Mappings of Annuli

6.4.1 A Riemann Mapping Theorem for Annuli

The Riemann mapping theorem tells us that, from the point of view of com-

plex analysis, there are only two simply connected planar domains: the disc

and the plane. Any other simply connected region is biholomorphic to one

of these. It is natural then to ask about domains with holes. Take, for exam-

ple, a domain U with precisely one hole. Is it conformally equivalent to an

annulus?

If c > 0 is a constant, then for any R1 < R2 the annuli

A1 � fz W R1 < jzj < R2g and A2 � fz W cR1 < jzj < cR2g .6:4:1:1/

are biholomorphically equivalent under the mapping z 7! cz. The surpris-

ing fact that we shall learn is that these are the only circumstances under

which two annuli are equivalent:
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6.4.2 Conformal Equivalence of Annuli

Let

A1 D fz 2 C W 1 < jzj < R1g .6:4:2:1/

and

A2 D fz 2 C W 1 < jzj < R2g: .6:4:2:2/

Then A1 is conformally equivalent to A2 if and only if R1 = R2.

A perhaps more striking result, and more difficult to prove, is this:

Let U � C be any bounded domain with one hole—this means that

the complement of U has two connected components, one bounded

and one not. Then U is conformally equivalent to some annulus.

See [AHL] as well as [KRA4] for a discursive discussion of this result.

6.4.3 Classification of Planar Domains

The classification of planar domains up to biholomorphic equivalence is a

part of the theory of Riemann surfaces. For now, we comment that one of

the startling classification theorems (a generalization of the Riemann map-

ping theorem) is that any bounded planar domain with finitely many holes

is conformally equivalent to the unit disc with finitely many closed circular

arcs, coming from circles centered at the origin, removed. (Here a “hole”

in the present context means a bounded, connected component of the com-

plement of the domain in C, a concept that coincides with the intuitive idea

of a hole.) An alternative equivalent statement is that any bounded planar

domain with finitely many holes is conformally equivalent to the plane with

finitely many vertical slits (see [AHL]). The analogous result for domains

with infinitely many holes is known to be true when the number of holes is

countable (see [HES]).
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CHAPTER 7

Harmonic Functions

7.1 Basic Properties of

Harmonic Functions

7.1.1 The Laplace Equation

We reiterate the definition of “harmonic”. Let F be a holomorphic function

on an open set U � C. Write F D u C iv; where u and v are real-

valued. The real part u satisfies a certain partial differential equation known

as Laplace’s equation:

�
@2

@x2
C

@2

@y2

�
u D 0: .7:1:1:1/

(The imaginary part v satisfies the same equation.) In this chapter we shall

study systematically those C 2 functions that satisfy this equation. They are

called harmonic functions. (We encountered some of these ideas already in

�1.4.)

7.1.2 Definition of Harmonic Function

Recall the precise definition of harmonic function:

A real-valued function u W U ! R on an open set U � C is harmonic

if it is C 2 on U and

�u � 0; .7:1:2:1/

where the Laplacian �u is defined by

�u D
�
@2

@x2
C

@2

@y2

�
u: .7:1:2:2/

95
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7.1.3 Real- and Complex-Valued

Harmonic Functions

The definition of harmonic function just given applies as well to complex-

valued functions. A complex-valued function is harmonic if and only if its

real and imaginary parts are each harmonic.

The first thing that we need to check is that real-valued harmonic func-

tions are just those functions that arise as the real parts of holomorphic

functions—at least locally.

7.1.4 Harmonic Functions as the Real Parts

of Holomorphic Functions

If u W D.P; r/ ! R is a harmonic function on a discD.P; r/, then there is

a holomorphic function F W D.P; r/ ! C such that ReF � u onD.P; r/.

We already indicated in ��1.4 that proving this result reduces to solving a

coupled system of partial differential equations, a situation which can be

handled with multi-variable calculus.

Note that v is uniquely determined by u except for an additive constant:

the Cauchy-Riemann equations determine the partial derivatives of v and

hence determine v up to an additive constant. One can also think of the

determination, up to a constant, of v by u in another way: Ifev is another

function such that uC iev is holomorphic, thenH � i.v�ev/ D .uC iv/�
.u C iev/ is a holomorphic function with zero real part; hence its image is

not open. ThusH must be a constant, and v andev differ by a constant. Any

(harmonic) function v such that uC iv is holomorphic is called a harmonic

conjugate of u (again see ��1.4.2).

Theorem: If U is a simply connected open set (see ��6.4.3) and if

u W U ! R is a harmonic function, then there is a C 2 (indeed a

C1) harmonic function v such that u C iv W U ! C is holomor-

phic.

Another important relationship between harmonic and holomorphic func-

tions is this:

If u W U ! R is harmonic and if H W V ! U is holomorphic, then

u ıH is harmonic on V .

This result is proved by direct calculation (i.e., differentiation, using the

chain rule).
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7.1.5 Smoothness of Harmonic Functions

If u W U ! R is a harmonic function on an open set U � C, then u 2 C1.

In fact a harmonic function is always real analytic (has a local power se-

ries expansion in powers of x and y). This follows, for instance, because a

harmonic function is locally the real part of a holomorphic function (see

��1.4.2, ��7.1.4). A holomorphic function has a power series expansion

about each point, so is certainly infinitely differentiable.

7.2 The Maximum Principle and the

Mean Value Property

7.2.1 The Maximum Principle

for Harmonic Functions

Theorem: If u W U ! R is harmonic on a connected open set

U and if there is a point P0 2 U with the property that u.P0/ D
maxz2U u.z/, then u is constant on U .

Compare the maximum modulus principle for holomorphic functions in

��5.4.1. The proof, using (7.2.4.1) below, is essentially the same as that for

the maximum principle for holomorphic functions.

7.2.2 The Minimum Principle

for Harmonic Functions

Theorem: If u W U ! R is a harmonic function on a connected

open set U � C and if there is a point P0 2 U such that u.P0/ D
minQ2U u.Q/, then u is constant on U .

Compare the minimum principle for holomorphic functions in ��5.4.3.

Note that the minimum principle for holomorphic functions requires an

extra hypothesis (i.e., nonvanishing of the function) while that for harmonic

functions does not. The difference may be explained by noting that with har-

monic functions we are considering the real-valued function u, while with

holomorphic functions we must restrict attention to the modulus function

jf j.
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7.2.3 The Boundary Maximum

and Minimum Principles

An important and intuitively appealing consequence of the maximum prin-

ciple is the following result (which is sometimes called the “boundary max-

imum principle”). Recall that a continuous function on a compact set as-

sumes a maximum value. When the function is harmonic, the maximum

occurs at the boundary in the following precise sense:

Theorem: Let U � C be a bounded domain. Let u be a continuous,

real-valued function on the closure U of U that is harmonic on U .

Then

max
U

u D max
@U

u: .7:2:3:1/

The analogous result for the minimum is:

Theorem: Let U � C be a domain and let u be a continuous func-

tion on the closure U of U that is harmonic on U . Then

min
U

u D min
@U

u: .7:2:3:2/

Compare the analogous results for holomorphic functions in ��5.4.2, 5.4.3.

7.2.4 The Mean Value Property

Suppose that u W U ! R is a harmonic function on an open set U � C and

that D.P; r/ � U for some r > 0. Then

u.P / D 1

2�

Z 2�

0

u.P C rei�/ d�: .7:2:4:1/

We will see in ��7.4.1 that the mean value property characterizes harmonic

functions.

The mean value property for harmonic functions can be proved on the

unit disc by first verifying it for the monomials zj and zj and then noting

that any harmonic function is in the closed linear span of these. It can also

be checked because a harmonic function is (locally) the real part of a holo-

morphic function and so the result can be derived (by taking the real part)

from that for a holomorphic function. A very interesting proof may also be

gotten from Green’s theorem (see [KRA5]).

We conclude this subsection with two alternative formulations of the

mean value property (MVP). Either one may be derived with simple changes

of variable in the integral. In both cases, u; U; P; r are as above.
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First Alternative Formulation of MVP

u.P / D 1

�r2

ZZ

D.P;r/

u.x; y/ dxdy:

Second Alternative Formulation of MVP

u.P / D 1

2�r

Z

@D.P;r/

u.�/ d�.�/;

where d� is arc-length measure on @D.P; r/.

7.2.5 Boundary Uniqueness

for Harmonic Functions

If u1 W D.0; 1/ ! R and u2 W D.0; 1/ ! R are two continuous functions,

each of which is harmonic on D.0; 1/, and if u1 D u2 on @D.0; 1/ D fz W
jzj D 1g, then u1 � u2. This assertion follows from the boundary maxi-

mum principle (��7.2.3.1) applied to u1 � u2. Thus, in effect, a harmonic

function u on D.0; 1/ that extends continuously to D.0; 1/ is completely

determined by its values on D.0; 1/ n D.0; 1/ D @D.0; 1/. An analogous

result holds on any domain in C.

7.3 The Poisson Integral Formula

7.3.1 The Poisson Integral

The next result builds on the boundary uniqueness idea. After all, if a har-

monic function on the interior of a disc is completely determined by its

boundary values, then we ought to be able to calculate the interior values

from the boundary values. This is in fact what the Poisson integral formula

does for us.

Let u W U ! R be a harmonic function on a neighborhood of D.0; 1/.

Then, for any point a 2 D.0; 1/,

u.a/ D 1

2�

Z 2�

0

u.ei / � 1 � jaj2
ja � ei j2 d : .7:3:1:1/

7.3.2 The Poisson Kernel

The expression

1

2�

1 � jaj2
ja � ei j2 .7:3:2:1/
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is called the Poisson kernel for the unit disc. It is often convenient to rewrite

the formula we have just enunciated by setting a D jajei� D rei� . Then

the result says that

u.rei�/ D 1

2�

Z 2�

0

u.ei /
1 � r2

1 � 2r cos.� �  /C r2
d : .7:3:2:2/

In other words

u.rei�/ D
Z 2�

0

u.ei� /Pr .� �  /d ; .7:3:2:3/

where

Pr .� �  / D 1

2�

1 � r2
1 � 2r cos.� �  /C r2

: .7:3:2:4/

There are a number of ways to verify the Poisson integral formula. First,

one could use Green’s theorem (for which see again [KRA5]). Alternatively,

one could first verify the formula with barehand calculation in the case that

f .z/ D zk or f .z/ D zk . A third possibility is to note that formula (7.3.2.2)

is plainly true at the origin (i.e., when r D 0). Then spread the result to the

rest of the disc using conformal self-maps of the disc and the conformal

invariance of harmonic functions. We leave the details to the reader.

7.3.3 The Dirichlet Problem

The Poisson integral formula both reproduces and creates harmonic func-

tions. But, in contrast to the holomorphic case (�2.4), there is a simple

connection between a continuous function f on @D.0; 1/ and the created

harmonic function u on D. The following theorem states this connection

precisely. The theorem is usually called “the solution of the Dirichlet prob-

lem on the disc”:

7.3.4 The Solution of the

Dirichlet Problem on the Disc

Theorem: Let f be a continuous function on @D.0; 1/. Define

u.z/ D

8
<̂

:̂

1

2�

Z 2�

0

f .ei / � 1 � jzj2
jz � ei j2

d if z 2 D.0; 1/

f .z/ if z 2 @D.0; 1/:
.7:3:4:1/

Then u is continuous on D.0; 1/ and harmonic onD.0; 1/.
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The proof of this theorem is rather technical, and we refer the reader to

[GRK] or [KRA5].

Closely related to this result is the reproducing property of the Poisson

kernel:

Theorem: Let u be harmonic on a neighborhood of D.0; 1/. Then,

for z 2 D.0; 1/,

u.z/ D 1

2�

Z 2�

0

u.ei / � 1 � jzj2
jz � ei j2

d : .7:3:4:2/

Refer to (7.3.1.1). One way to understand this last formula is to verify

by hand that the Poisson kernel is harmonic in the variable z. Then (7.3.4.2)

creates a function that agrees with u on the boundary of the disc and is

harmonic inside, so it must be u itself.

7.3.5 The Dirichlet Problem on a General Disc

A change of variables shows that the results of ��7.3.4 remain true on a

general disc. To wit, let f be a continuous function on @D.P; r/. Define

u.z/ D

8
<̂

:̂

1

2�

Z 2�

0

f .ei / � R � jz � P j2
j.z � P / �Rei j2 d if z 2 D.P;R/

f .z/ if z 2 @D.P;R/:
.7:3:5:1/

Then u is continuous on D.P;R/ and harmonic on D.P;R/.

If instead u is harmonic on a neighborhood of D.P;R/, then, for z 2
D.P;R/,

u.z/ D 1

2�

Z 2�

0

u.P CRei / � R2 � jz � P j2
j.z � P / �Rei j2

d : .7:3:5:2/

7.4 Regularity of Harmonic Functions

7.4.1 The Mean Value Property on Circles

A continuous function h W U ! R on an open set U � C has the "P -

mean value property if, for each point P 2 U , there is an "P > 0 such that

D.P; "P / � U and, for every 0 < " < "P ,

h.P / D 1

2�

Z 2�

0

h.P C "ei�/d�: .7:4:1:1/



“master” — 2010/12/8 — 16:23 — page 102 — #120
i

i

i

i

i

i

i

i

102 A Guide to Complex Variables

The "P -mean value property allows the size of "P to vary arbitrarily

with P .

Theorem: If h W U ! R is a continuous function on an open set U

with the "P -mean value property, then h is harmonic.

Again, the proof of this result is too technical to treat here. See [GRK].

7.4.2 The Limit of a Sequence

of Harmonic Functions

If fhj g is a sequence of real-valued harmonic functions that converges uni-

formly on compact subsets of U to a function h W U ! R, then h is har-

monic on U . This is immediate from the Poisson integral formula, since we

now know that the Poisson kernel is harmonic.

7.5 The Schwarz Reflection Principle

7.5.1 Reflection of Harmonic Functions

We present in this section an application of what we have learned so far to

a question of extension of a harmonic function to a larger domain. This will

already illustrate the importance and power of harmonic function theory and

will provide us with a striking result about holomorphic functions as well.

7.5.2 Schwarz Reflection Principle

for Harmonic Functions

Let V be a connected open set in C. Suppose that

V \ (real axis) D fx 2 R W a < x < bg:

Set U D fz 2 V W Im z > 0g. Assume that v W U ! R is harmonic

and that, for each � 2 V \ (real axis),

lim
U3z!�

v.z/ D 0: .7:5:2:1/

Set eU D fz W z 2 U g. Define

bv.z/ D

8
<
:

v.z/ if z 2 U
0 if z 2 V \ (real axis)

�v.z/ if z 2 eU :
.7:5:2:2/

Thenbv is harmonic on U � � U [ eU [ fx 2 R W a < x < bg.
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x

y

x a= x b=

U

V

FIGURE 7.1. Schwarz reflection.

This result provides a way of extending a harmonic function from a

given open set to a larger (reflected) open set. The method is known as the

Schwarz Reflection Principle. One can think of bU as the reflection of U in

the real axis, and the definition ofbv on bU as the correspondingly appropriate

idea of reflecting the function v. See Figure 7.1.

The proof of Schwarz reflection is a clever argument involving the sym-

metries of the Poisson integral formula. We refer the reader to [GRK] for

the details.

7.5.3 The Schwarz Reflection Principle

for Holomorphic Functions

Theorem: Let V be a connected open set in C such thatV \ (the real axis) D
fx 2 R W a < x < bg for some a; b 2 R. Set U D fz 2 V W Im z >

0g. Suppose that F W U ! C is holomorphic and that

lim
U3z!x

ImF.z/ D 0 .7:5:3:1/

for each � 2 V \ (real axis). Define eU D fz 2 C W z 2 U g. Then

there is a holomorphic functionG on U [eU [fx 2 R W a < x < bg
such that G

ˇ̌
U

D F . In fact '.�/ � limU3z!� ReF.z/ exists for

each � 2 V \ (real axis) and

G.z/ D

8
<̂

:̂

F.z/ if z 2 U
'.z/ C i0 if z 2 V \ (real axis)

F.z/ if z 2 eU :
.7:5:3:2/

7.5.4 More General Versions of the

Schwarz Reflection Principle

Schwarz reflection is not simply a fact about reflection in lines. Since lines

are conformally equivalent (by way of linear fractional transformations) to
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circles, it is also possible to perform Schwarz reflection in a circle (with

suitably modified hypotheses). More is true: One can conformally map a

neighborhood of any real analytic curve to a line segment; so, with some

extra effort, Schwarz reflection may be performed in any real analytic arc.

7.6 Harnack’s Principle

7.6.1 The Harnack Inequality

Theorem: Let u be a non-negative, harmonic function on D.0; R/.

Then, for any z 2 D.0; R/,

R � jzj
RC jzj

� u.0/ � u.z/ � RC jzj
R � jzj

� u.0/: .7:6:1:1/

More generally:

Let u be a non-negative, harmonic function on D.P;R/. Then, for

any z 2 D.P;R/,

R � jz � P j
RC jz � P j � u.P / � u.z/ � RC jz � P j

R � jz � P j � u.P /: .7:6:1:2/

These extremely useful estimates are a direct reflection of the size of the

Poisson kernel. The reader may provide the details.

7.6.2 Harnack’s Principle

Theorem: Let u1 � u2 � : : : be harmonic functions on a con-

nected open setU � C. Then either uj ! 1 uniformly on compact

sets or there is a (finite-valued) harmonic function u on U such that

uj ! u uniformly on compact sets.

The reader may prove this assertion as a simple application of the Har-

nack inequalities and a little logic.

7.7 The Dirichlet Problem and

Subharmonic Functions

7.7.1 The Dirichlet Problem

Let U � C be an open set,U 6D C. Let f be a given continuous function on

@U . Does there exist a continuous function u on U such that u
ˇ̌
@U

D f and
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u is harmonic on U ? If u exists, is it unique? These two questions taken to-

gether are called the Dirichlet problem for the domain U . (We have already

solved the Dirichlet problem whenU is the unit disc—see ��7.3.1, ��7.3.4.)

It has many motivations from physics (see [COH], [LOG]). For instance,

suppose that a flat, thin film of heat-conducting material is in thermal equi-

librium. That is, the temperature at each point of the film is constant with

passing time (��14.2.2). Then its temperature at various points is a harmonic

function (see [KRA1]). Physical intuition suggests that if the boundary @U

of the film has a given temperature distribution f W @U ! R, then the tem-

peratures at interior points are uniquely determined. Historically, physicists

have found this intuition strongly compelling.

From the viewpoint of mathematical proof, as opposed to physical in-

tuition, the situation is more complicated. The result of ��7.3.4 asserts in

effect that the Dirichlet problem on the unit disc always has a solution. On

any bounded domain U , it has only one solution corresponding to any given

boundary function f , because of the (boundary) maximum principle: If u1
and u2 are both solutions, then u � u1 � u2 is harmonic and is zero on

the boundary, so that u1 � u2 � 0, hence u1 � u2. While this reasoning

demonstrates that the Dirichlet problem on a bounded open set U can have

at most one solution, it is also the case that on more complicated domains

the Dirichlet problem may not have any solution.

7.7.2 Conditions for Solving

the Dirichlet Problem

The Dirichlet problem is not always solvable on the domain U D D.0; 1/ n
f0g; in fact the data f .z/ D 1 when jzj D 1 and f .z/ D 0when z D 0 have

no solution—see [GK, p. 229]. Thus some conditions on @U are necessary

in order that the Dirichlet problem be solvable for U . It will turn out that

if @U consists of smooth curves, then the Dirichlet problem is always solv-

able. The best possible general result is that if each connected component

of the boundary of U contains more than one point, then the Dirichlet prob-

lem can always be solved. Later, we shall enunciate a classical condition for

solvability of the Dirichlet formulated in the language of barriers.

7.7.3 Motivation for Subharmonic Functions

We first consider the concept of subharmonicity. This is a complex-analytic

analogue of the notion of convexity that we motivate by considering convex-

ity on the real line. For the moment, fix attention on functions F W R ! R.
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y f x= ( )
y h x= ( )

a b

( , ( ))a  f a
( , ( ))b  f b

FIGURE 7.2. A convex function.

On the real line, the analogue of the Laplacian is the operator d 2=dx2.

The analogue of real-valued harmonic functions (that is, the functions u

with 4u D 0) are therefore the functions h.x/ such that Œd 2=dx2�Œh.x/� �
0; these are the linear ones. Let S be the set of continuous functions f W
R ! R such that whenever I D Œa; b� � R and h is a real-valued harmonic

function on R with f .a/ � h.a/ and f .b/ � h.b/, then f .x/ � h.x/

for all x 2 I . (Put simply, if a harmonic function h is at least as large

as f at the endpoints of an interval, then it is at least as large as f on

the entire interval.) Which functions are in S‹ The answer is the collection

of all convex functions (in the usual sense). Refer to Figure 7.2.1 These

considerations give us a geometric way to think about convex functions

(without resorting to differentiation). See [HOR] for more on this view of

subharmonic functions.

7.7.4 Definition of Subharmonic Function

Our definition of subharmonic function on a domain in C (or R
2) is moti-

vated by the discussion of convexity in the preceding subsection.

Definition: Let U � C be an open set and f a real-valued, con-

tinuous function on U . Suppose that for each D.P; r/ � U and

every real-valued harmonic function h defined on a neighborhood

of D.P; r/ which satisfies f � h on @D.P; r/, it holds that f � h

on D.P; r/. Then f is said to be subharmonic on U .

7.7.5 Other Characterizations of

Subharmonic Functions

A function f W U ! R that is C 2 is subharmonic if and only if 4f � 0

everywhere. This is analogous to the fact that a C 2 function on (an open

1Recall here that a function f W Œa; b� ! R is said to be convex if, whenever c;d 2
Œa; b� and 0 � � � 1 then f..1 � �/c C �d/ � .1 � �/f.c/ C �f.d/.
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set in) R is convex if and only if it has non-negative second derivative

everywhere—and the proof is quite similar. The next result allows us to

identify many subharmonic functions that are only continuous, not C 2, so

that the 4f � 0 criterion is not applicable.

Let f W U ! R be continuous. Suppose that, for each D.P; r/ � U ,

f .P / � 1

2�

Z 2�

0

f .P C rei�/d� .7:7:5:1/

(this is called the sub-mean value property). Then f is subharmonic. This

result is derived directly from the mean value property for harmonic func-

tions.

Conversely, if f W U ! R is a continuous, subharmonic function and

if D.P; r/ � U , then the inequality .7:7:5:1/ holds.

7.7.6 The Maximum Principle

A consequence of the sub-mean value property (7.7.5.1) is the maximum

principle for subharmonic functions:

If f is subharmonic on U and if there is a P 2 U such that f .P / �
f .z/ for all z 2 U , then f is constant.

If f is holomorphic then jf j is subharmonic; this explains why a holo-

morphic function satisfies the maximum principle. The proof of this new

maximum principle is identical to proofs of this principle that we have seen

in other contexts—see, for example, ��7.2.1, 7.2.2, 7.2.3.

7.7.7 Lack of A Minimum Principle

There is no “minimum principle” for subharmonic functions because sub-

harmonicity is a “one-sided” property. Put in other words, the negative of a

subharmonic function is not subharmonic.

7.7.8 Basic Properties of

Subharmonic Functions

Here are some properties of subharmonic functions. The third of these ex-

plains why subharmonic functions are a much more flexible tool than holo-

morphic or even harmonic functions. The proofs are immediate from the

definitions and the properties of harmonic functions discussed thus far.
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1. If f1; f2 are subharmonic functions on U , then so is f1 C f2.

2. If f1 is subharmonic on U and ˛ > 0 is a constant, then f̨1 is subhar-

monic on U .

3. If f1; f2 are subharmonic on U then

g.z/ � maxff1.z/; f2.z/g

is also subharmonic on U .

7.7.9 The Concept of a Barrier

The next notion that we need to introduce is that of a barrier. Namely, we

want to put a geometric-analytic condition on the boundary of a domain

that will rule out examples like the punctured disc in ��7.7.2 (in which the

Dirichlet problem could not be solved). The definition of a barrier at a point

P 2 @U is a bit technical, but the existence of a barrier will turn out to

be exactly the hypothesis needed for the construction of the solution of the

Dirichlet problem.

Definition: Let U � C be an open set and P 2 @U . We call a

function b W U ! R a barrier for U at P if

(7.7.9.1) b is continuous;

(7.7.9.2) b is subharmonic on U I
(7.7.9.3) b

ˇ̌
@U

� 0I
(7.7.9.4) fz 2 @U W b.z/ D 0g D fP g.

Thus the barrier b singles out P in a special function-theoretic fashion.

If U is bounded by a C 1 smooth curve (no corners present), then every

point of @U has a barrier (just conformally map U to a disc). See Figure

7.3.

U

P

FIGURE 7.3. The concept of a barrier.
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7.8 The General Solution

of the Dirichlet Problem

7.8.1 Enunciation of the Solution

of the Dirichlet Problem

Let U be a bounded, connected open subset of C such that U has a barrier

bP for each P 2 @U . Then the Dirichlet problem can always be solved

on U . That is, if f is a continuous function on @U , then there is a unique

function u continuous on U , harmonic on U , such that u
ˇ̌
@U

D f .

The result in the preceding paragraph is the standard textbook result

about regularity for the Dirichlet problem. More advanced techniques es-

tablish that if each connected component of @U has at least two points then

the Dirichlet problem is solvable on U .

The solution of the Dirichlet problem in the generality that we have been

discussing here is a technical tour de force. See [GRK] for all the details.

The basic idea is that (i) there exists some subharmonic function whose

boundary limits lie below the given boundary data function f ; (ii) we define

a new function u to be the pointwise supremum of all such subharmonic

functions; and (iii) then the Harnack principle and the maximum principle

(along with the barriers) can be used to show that the functionu constructed

in (ii) is harmonic and agrees with f at each boundary point.
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CHAPTER 8

Infinite Series

and Products

8.1 Basic Concepts Concerning

Infinite Sums and Products

8.1.1 Uniform Convergence of a Sequence

Let U � C be an open set and gj W U ! C functions. Recall (��3.1.5) that

the sequence fgj g is said to converge uniformly on compact subsets of U

to a function g if the following condition holds: For each compact K � U

(see ��3.1.5) and each " > 0 there is an N > 0 such that if j > N , then

jg.z/ � gj .z/j < " for all z 2 K. In general, the choice of N depends on "

and on K, but not on the particular point z 2 K.

8.1.2 The Cauchy Condition for a

Sequence of Functions

Because of the completeness (see [RUD1], [KRA2]) of the complex num-

bers, a sequence of functions is uniformly convergent on compact sets if

and only if it is uniformly Cauchy on compact sets. A sequence of functions

is said to be uniformly Cauchy on compact sets if, for each K compact in U

and each " > 0, there is an N > 0 such that: for all j; k > N and all z 2 K
we have jgj .z/ � gk.z/j < ". The Cauchy condition is useful because it

does not make explicit reference to the limit function g. One can thereby

verify uniform convergence to some limit without previously determining

the limit function explicitly.

111
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8.1.3 Normal Convergence of a Sequence

For the purposes of complex analysis, the basic fact about uniform conver-

gence on compact sets is our result that states that if fgj g are holomorphic

functions on U and if the gj converge uniformly on compact subsets of U

to a function g, then g is holomorphic (��3.1.5). In these circumstances we

will say that fgj g converges normally to g.

8.1.4 Normal Convergence of a Series

If f1; f2; : : : are functions on U , then we may study the convergence prop-

erties of
1X

jD1
fj : .8:1:4:1/

The series converges normally if its sequence of partial sums

SN .z/ D
NX

jD1
fj .z/ ; N D 1; 2; : : : .8:1:4:2/

converges normally in U . The function

f .z/ D
1X

jD1
fj .z/ .8:1:4:3/

will then be holomorphic because it is the normal limit of the partial sums

SN (each of which is holomorphic).

8.1.5 The Cauchy Condition for a Series

There is a Cauchy condition for normal convergence of a series: the series

1X

jD1
fj .z/ .8:1:5:1/

is said to be uniformly Cauchy on compact sets if, for each compact K � U

and each " > 0, there is an N > 0 such that for all M � L > N it holds

that ˇ̌
ˇ̌
ˇ̌
MX

jDL
fj .z/

ˇ̌
ˇ̌
ˇ̌ < ": .8:1:5:2/

(This is just a reformulation of the Cauchy condition for the sequence of

partial sums SN .z/.) It is easy to see that a series that is uniformly Cauchy

converges normally to its limit function.
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8.1.6 The Concept of an Infinite Product

Now we turn to products. One of the principal activities in complex analy-

sis is to construct holomorphic or meromorphic functions with certain pre-

scribed behavior. For some problems of this type, it frequently turns out

that infinite products are more useful than infinite sums. The reason is that,

for instance, if we want to construct a function that will vanish on a certain

infinite set faj g, then we could hope to find individual functions fj that

vanish at aj and then multiply the fj ’s together. This process requires that

we make sense of the notion of infinite product.

8.1.7 Infinite Products of Scalars

We begin with infinite products of complex numbers, and then adapt the

ideas to infinite products of functions. For reasons that will become apparent

momentarily, it is convenient to write products in the form

1Y

jD1
.1C aj /; .8:1:7:1/

where aj 2 C. The symbol
Q

stands for multiplication. We want to define

what it means for such a product to converge.

8.1.8 Partial Products

Define the partial products PN of .8:1:7:1/ to be

PN D
NY

jD1
.1C aj / � .1C a1/ � .1 C a2/ � � � .1 C aN /: .8:1:8:1/

We might be tempted to say that the infinite product

1Y

jD1
.1C aj / .8:1:8:2/

converges if the sequence of partial products fPN g converges. For technical

reasons, a different definition is more useful.

8.1.9 Convergence of an Infinite Product

An infinite product
1Y

jD1
.1C aj / .8:1:9:1/
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is said to converge if

(8.1.9.2) Only a finite number aj1
; : : : ; ajk

of the aj ’s are equal to �1.

(8.1.9.3) If N0 > 0 is so large that aj ¤ �1 for j > N0, then

lim
N!C1

NY

jDN0C1
.1C aj / .8:1:9:3:1/

exists and is non-zero.

8.1.10 The Value of an Infinite Product

If
1Y

jD1
.1C aj /

converges, then we define its value to be (withN0 as in (8.1.9.3))
2
4
N0Y

jD1
.1 C aj /

3
5 � lim

N!C1

NY

N0C1
.1 C aj /: .8:1:10:1/

8.1.11 Products That Are Disallowed

As the exposition develops, it will become clear why we wish to disallow

products with

lim
N!C1

NY

jDN0C1
.1C aj / D 0: .8:1:11:1/

8.1.12 Condition for Convergence

of an Infinite Product

If
1X

jD1
jaj j < 1 ; .8:1:12:1/

then
1Y

jD1
.1 C jaj j/ .8:1:12:2/

converges. (See (8.1.12.6), (8.1.12.7) for part of the mathematical reason as

to why these assertions are true.) These facts all hinge on the basic identity

e˛ D 1C ˛ C � � � .
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If
1Y

jD1
.1C jaj j/ .8:1:12:3/

converges, then
1X

jD1
jaj j .8:1:12:4/

converges.

Let aj 2 C. Set

PN D
NY

jD1
.1C aj / ; ePN D

NY

jD1
.1 C jaj j/: .8:1:12:5/

Then

(8.1.12.6) ePN � exp .ja1j C � � � C jaN j/.

(8.1.12.7) jPN � 1j � ePN � 1.

If the infinite product
1Y

jD1
.1C jaj j/ .8:1:12:8/

converges, then so does
1Y

jD1
.1 C aj /: .8:1:12:9/

If
1X

jD1
jaj j < 1 ; .8:1:12:10/

then
1Y

jD1
.1C aj / .8:1:12:11/

converges.

This last is our most useful convergence result for infinite products. It is

so important that it is worth restating in a standard alternative form: If

1X

jD1
j1� aj j < 1 ; .8:1:12:12/
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then
1Y

jD1
aj .8:1:12:13/

converges. The proof is just a change of notation.

8.1.13 Infinite Products of

Holomorphic Functions

We now apply these considerations to infinite products of holomorphic

functions.

Let U � C be open. Suppose that fj W U ! C are holomorphic and

that
1X

jD1
jfj j .8:1:13:1/

converges uniformly on compact subsets of U . Then the sequence of partial

products

FN .z/ D
NY

jD1
.1C fj .z// .8:1:13:2/

converges uniformly on compact subsets of U . In particular, the limit of

these partial products defines a holomorphic function on U .

8.1.14 Vanishing of an Infinite Product

The function f defined on a domain U by the product

f .z/ D
1Y

jD1
.1 C fj .z// .8:1:14:1/

vanishes at a point z0 2 U if and only if fj .z0/ D �1 for some j . The

multiplicity of the zero at z0 is the sum of the multiplicities of the zeros of

the functions 1C fj at z0.

8.1.15 Uniform Convergence of an

Infinite Product of Functions

Remark: For convenience, one says that the product
Q1
1 .1 C fj .z// con-

verges uniformly on a set E if

(8.1.15.1) It converges for each z inE;
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and

(8.1.15.2) The sequence f
QN
1 .1 C fj .z//g converges uniformly on E toQ1

1 .1C fj .z//.

Then our main convergence result can be summarized as follows:

8.1.16 Condition for the Uniform Convergence

of an Infinite Product of Functions

Theorem: If
P1
jD1 jfj j converges uniformly on compact sets, then

the product
Q1
1 .1C fj .z// converges uniformly on compact sets.

The convergence conditions in ��8.1.9 are satisfied automatically in the

situation of this last theorem.

8.2 The Weierstrass

Factorization Theorem

8.2.1 Prologue

One of the most significant facts about a polynomial functionp.z/ of z 2 C

is that it can be factored (see ��3.1.4):

p.z/ D c �
kY

jD1
.z � aj /: .8:2:1:1/

Among other things, such a factorization facilitates the study of the zeros of

p. In this section we shall show that in fact any entire function can be fac-

tored so that each multiplicative factor possesses precisely one zero (of first

order). Since a function holomorphic on all of C (called an entire function)

can have infinitely many zeros, the factorization must be an infinite product

in at least some cases. We consider such a factorization in this section.

8.2.2 Weierstrass Factors

To obtain the Weierstrass factors, we define

E0.z/ D 1 � z .8:2:2:1/

and for 1 � p 2 Z we let

Ep.z/ D .1 � z/ exp

�
z C z2

2
C � � � C zp

p

�
: .8:2:2:2/
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Each Ep is holomorphic on all of C. The factorization theory hinges on a

technical calculation that says that, in some sense, Ep is close to 1 if jzj is

small. This assertion is not surprising since

�
z C z2

2
C � � � C zp

p

�
.8:2:2:3/

is the initial part of the power series of � log.1 � z/. Thus

.1 � z/ exp

�
z C

z2

2
C � � � C

zp

p

�
.8:2:2:4/

might be expected to be close to 1 for z small (and p large).

8.2.3 Convergence of the Weierstrass Product

Theorem: Let fang1
nD1 be a sequence of non-zero complex numbers

with no accumulation point in the complex plane (note, however,

that the ans need not be distinct). If fpng is a sequence of positive

integers that satisfy

1X

nD1

�
r

janj

�pnC1
< 1 .8:2:3:1/

for every r > 0, then the infinite product

1Y

nD1
Epn

�
z

an

�
.8:2:3:2/

(called a Weierstrass product) converges uniformly on compact sub-

sets of C to an entire function F . The zeros of F are precisely the

points fang, counted with multiplicity.

8.2.4 Existence of an Entire Function

with Prescribed Zeros

Let fang1
nD1 be any sequence in the plane with no finite accumulation point.

Then there exists an entire function f with zero set precisely equal to

fang1
nD1 (counting multiplicities). The function f is given by a Weierstrass

product.
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8.2.5 The Weierstrass Factorization Theorem

Theorem: Let f be an entire function. Suppose that f vanishes to

order m at 0, m � 0. Let fang be the other zeros of f; listed with

multiplicities. Then there is an entire function g such that

f .z/ D zm � eg.z/
1Y

nD1
En�1

�
z

an

�
: .8:2:5:1/

8.3 The Theorems of Weierstrass

and Mittag-Leffler

8.3.1 The Concept of Weierstrass’s Theorem

Let U � C be a domain. The only necessary condition that we know for a

set faj g � U to be the zero set of a function f holomorphic on U is that

faj g has no accumulation point in U . It is remarkable that this condition is

also sufficient: that is the content of Weierstrass’s theorem.

8.3.2 Weierstrass’s Theorem

Theorem: Let U � C be any open set. Let a1; a2; : : : be a finite or

infinite sequence in U (possibly with repetitions) that has no accu-

mulation point in U . Then there exists a holomorphic function f on

U whose zero set is precisely faj g.

The function f is constructed by taking an infinite product. The proof

converts the problem to a situation on the entire plane, and then uses the

Weierstrass product.

We next want to formulate a result about maximal domains of existence

(or domains of definition) of holomorphic functions. But first we need a

geometric fact about open subsets of the plane.

8.3.3 Construction of a Discrete Set

Let U �
¤

C be any open set. Then there exists a countably infinite set

A � U such that

(8.3.3.1) A has no accumulation point in U .

(8.3.3.2) Every P 2 @U is an accumulation point of A.

See Figure 8.1. Details of this construction appear in [GRK, p. 268].
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U

FIGURE 8.1. Any domain in C is a domain of holomorphy.

8.3.4 Domains of Existence

for Holomorphic Functions

Theorem: Let U � C be any proper, connected, open subset. There

is a function f holomorphic on U such that f cannot be analyti-

cally continued past any P 2 @U .

To verify this last result, just apply Weierstrass’s theorem to the discrete

set described in ��8.3.3. This yields a non-constant holomorphic function f

onU whose zero set accumulates at every boundary point ofU . If f were to

analytically continue to any strictly larger open set eU , then eU would contain

a point of @U , hence would have an interior accumulation point of the zeros

of f . Thus f would be identically zero, and that would be a contradiction.

8.3.5 The Field Generated by the

Ring of Holomorphic Functions

Another important corollary of Weierstrass’s theorem is that, for any open

U , the field generated by the ring of holomorphic functions onU is the field

of all meromorphic functions on U . In simpler language:

Let U � C be open. Let m be meromorphic on U . Then there are

holomorphic functions f; g on U such that

m.z/ D f .z/

g.z/
: .8:3:5:1/

8.3.6 The Mittag-Leffler Theorem

Since it is possible to prescribe zeros of a holomorphic function on any

openU; then of course we can (in principle) prescribe poles—since 1=f has

poles exactly where f has zeros. But we can do better: with a little extra

work we can prescribe the negative power portion of the Laurent series on

any discrete subset of U .
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We now formulate the basic result on prescribing pole behavior, known

as the Mittag-Leffler theorem, in two different but equivalent ways: one

qualitative and the other quantitative.

Mittag-Leffler Theorem: First Version

Let U � C be any open set. Let ˛1; ˛2; : : : be a finite or countably

infinite set of distinct elements of U with no accumulation point in

U . Suppose, for each j , that Uj is a neighborhood of j̨ . Further

assume, for each j , that mj is a meromorphic function defined on

Uj with a pole at j̨ and no other poles. Then there exists a mero-

morphic function m on U such that m � mj is holomorphic on Uj
for every j .

The Mittag-Leffler Theorem: Alternative Formulation

Let U � C be any open set. Let ˛1; ˛2; : : : be a finite or countably

infinite set of distinct elements of U , having no accumulation point

in U . Let sj be a sequence of Laurent polynomials (or “principal

parts”),

sj .z/ D
�1X

`D�p.j /
a
j

`
� .z � j̨ /

` .8:3:6:1/

(see ��4.3.1). Then there is a meromorphic function on U whose

principal part at each j̨ is sj .

8.3.7 Prescribing Principal Parts

The theorems of Weierstrass and Mittag-Leffler can be combined to allow

specification of a finite part of the Laurent series at a discrete set of points:

Let U � C be an open set and let ˛1; ˛2; : : : be a finite or countably

infinite set of distinct points of U having no interior accumulation

point in U . For each j let there be given an expression

tj .z/ D
N.j /X

`D�M.j/
a
j

`
� .z � j̨ /

`; .8:3:7:1/

with M.j /; N.j / � 0. Then there is a meromorphic functionm on

U , holomorphic on U n f j̨ g, such that: if �M.j / � ` � N.j /,

then the `th Laurent coefficient of m at j̨ is a`j .



“master” — 2010/12/8 — 16:23 — page 122 — #140
i

i

i

i

i

i

i

i

122 A Guide to Complex Variables

8.4 Normal Families

8.4.1 Normal Convergence

A sequence of functions fj on an open set U � C is said to converge

normally to a limit function f0 on U (see ��8.1.3) if ffj g converges to f0
uniformly on compact subsets of U . That is, the convergence is normal if,

for each compact setK � U and each " > 0, there is an N > 0 (depending

on K and ") such that when j > N and z 2 K, then jfj .z/ � f0.z/j < "

(see ��8.1.3, 3.1.5).

The functions fj .z/ D zj converge normally on the unit disc D to the

function f0.z/ � 0. The sequence does not converge uniformly on all ofD

to f0, but does converge uniformly on each compact subset of D.

8.4.2 Normal Families

Let F be a family of (holomorphic) functions with common domain U . We

say that F is a normal family if every sequence in F has a subsequence that

converges uniformly on compact subsets of U , i.e., converges normally on

U .

Let F be a family of functions on an open set U � C. We say that

F is bounded if there is a constant N > 0 such that jf .z/j � N for all

z 2 U and all f 2 F . We say that F is bounded on compact sets if for each

compact set K � U there is a constant M D MK such that for all f 2 F

and all z 2 K we have

jf .z/j � M: .8:4:2:1/

8.4.3 Montel’s Theorem, First Version

Theorem: Let F D ff˛g˛2A be a bounded family of holomorphic

functions on an open set U � C. Then there is a sequence ffj g �
F such that fj converges normally on U to a limit (holomorphic)

function f0.

Thus a bounded family of holomorphic functions is normal.

8.4.4 Montel’s Theorem, Second Version

Theorem: Let U � C be an open set and let F be a family of

holomorphic functions on U that is bounded on compact sets. Then

there is a sequence ffj g � F that converges normally on U to a

limit (necessarily holomorphic) function f0.



“master” — 2010/12/8 — 16:23 — page 123 — #141
i

i

i

i

i

i

i

i

Infinite Series and Products 123

Thus a family of holomorphic functions that is bounded on compact sets

is normal. Montel’s theorem is proved with a judicious application of the

Ascoli-Arzela theorem. The hypotheses of equiboundedness and equiconti-

nuity are derived from the Cauchy estimates.

8.4.5 Examples of Normal Families

(8.4.5.1) Consider the family F D fzj g1
jD1 of holomorphic functions. If

we take U to be any subset of the unit disc, then F is bounded (by 1) so

Montel’s theorem (first version) guarantees that there is a subsequence

that converges uniformly on compact subsets. In this case it is plain by

inspection that any subsequence will converge uniformly on compact

sets to the identically zero function.

The family F fails to be bounded on compact sets for any U that con-

tains points of modulus greater than one. Thus neither version of Mon-

tel’s theorem would apply on such a U . And there is no convergent

sequence in F for such a U .

(8.4.5.2) Let F D fz=j g1
jD1 on C. Then there is no bound M such that

jz=j j � M for all j and all z 2 C. But for each fixed compact subset

K � C there is a constant MK such that jz=j j < MK for all j and

all z 2 K. (For instance, MK D maxfjzj W z 2 Kg would do.) There-

fore the second version of Montel’s theorem applies. And indeed the

sequence fz=j g1
jD1 converges normally to 0 on C.

(8.4.5.3) Let S be the schlicht functions on the unit disc. These are the

holomorphic functions that are univalent, take 0 to 0, and have derivative

1 at the origin. Then S is a normal family.
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CHAPTER 9

Analytic Continuation

9.1 Definition of an

Analytic Function Element

9.1.1 Continuation of Holomorphic Functions

Suppose that V is a connected, open subset of C and that f1 W V ! C

and f2 W V ! C are holomorphic functions. If there is an open, non-

empty subset U of V such that f1 � f2 on U , then f1 � f2 on all of V

(see ��3.2.3). Put another way, if we are given f holomorphic on U , then

there is at most one way to extend it to V so that the extended function

is holomorphic. (There might not even be one such extension: if V is the

unit disc and U the disc D.3=4; 1=4/, then the function f .z/ D 1=z does

not extend. Or if U is the plane with the non-positive real axis removed,

V D C, and f .rei�/ D r1=2ei�=2, �� < � < � , then again no extension

from U to V is feasible.)

This chapter deals with the question of when this extension process can

be carried out, and in particular what precise meaning can be given to ex-

tending f from U to as large a set V as possible. Since there are potentially

many different ways to carry out this analytic continuation process, there are

questions of ambiguity and redundancy. These all will be addressed here.

9.1.2 Examples of Analytic Continuation

We introduce the basic issues of analytic continuation by way of three ex-

amples:

125
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EXAMPLE 9.1.2.1 Define

f .z/ D
1X

jD0
zj : .9:1:2:1:1/

This series converges normally on the disc D D fz 2 C W jzj < 1g.

It diverges for jzj > 1. Is it safe to say that D is the natural domain of

definition for f (refer to ��8.3.2, ��8.3.4 for this terminology)? Or can we

continue f to a larger open set?

We cannot discern easily the answer to this question simply by examin-

ing the power series. Instead, we should sum the series and observe that

f .z/ D 1

1 � z
: .9:1:2:1:2/

This formula for f agrees with the original definition of f as a series;

however, the formula (9.1.2.1.2) makes sense for all z 2 Cnf1g. In our new

terminology, to be made more precise later, f has an analytic continuation

to C n f1g.

Thus we see that the natural domain of definition for f is the rather

large set C n f1g. However, the original definition, by way of a series, gave

little hint of this fact.

EXAMPLE 9.1.2.2 Consider the function

�.z/ D
Z 1

0

tz�1e�t dt: .9:1:2:2:1/

This function is known as the gamma function of Euler. Let us make the

following quick observations:

(9.1.2.2.2) The term tz�1 has size jtz�1j D tRe z�1. Thus the singularity at

the origin will be integrable when Re z > 0.

(9.1.2.2.3) Because of the presence of the exponential factor, the integrand

will be integrable at infinity.

(9.1.2.2.4) The function� is holomorphic on the domainU0 � fz W Re z >

0g: the functions Z 1=a

a

tz�1e�t dt; .9:1:2:2:5/

with a > 0, are holomorphic by differentiation under the integral sign

(or use Morera’s theorem—��2.3.2), and �.z/ is the normal limit of

these integrals as a ! 0C.
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The given definition .9:1:2:2:1/ of �.z/ makes no sense when Re z � 0

because the improper integral diverges at 0. Can we conclude from this

observation that the natural domain of definition of � is U0?

Let us examine this question by integrating by parts:

�.z/ D
Z 1

0

tz�1e�t dt D 1

z
tze�t

ˇ̌
ˇ̌
1

0

C 1

z

Z 1

0

tze�t dt: .9:1:2:2:6/

An elementary analysis shows that, as long as Re z ¤ 0; the boundary terms

vanish (in the limit). Thus we see that

�.z/ D 1

z

Z 1

0

tze�t dt: .9:1:2:2:7/

Now, whereas the original definition (9.1.2.2.1) of the gamma function made

sense on U0; this new formula (which agrees with the old one on U0) ac-

tually makes sense on U1 � fz W Re z > �1g n f0g. No difficulty about

the convergence of the integral as the lower limit tends to 0C occurs if

z 2 fz W Re z > �1g.

We can integrate by parts once again, and find that

�.z/ D 1

z.z C 1/

Z 1

0

tzC1e�t dt: .9:1:2:2:8/

This last formula makes sense on U2 D fz W Re z > �2g n f0;�1g.

Continuing this process, we may verify that the gamma function, origi-

nally defined only on U0; can be “analytically continued” to U D fz 2 C W
z ¤ 0;�1;�2; : : :g.

In the first two examples, the functions are given by a formula that only

makes sense on a certain open set; yet there is in each case a device for

extending the function to a larger open set. By our uniqueness results for

analytic functions, there can be at most one way to effect this analytic con-

tinuation to a fixed, larger (connected) open set. In the next example, we

learn about possible ambiguities in the process when one attempts continu-

ation along two different paths.

EXAMPLE 9.1.2.3 Consider the function f .z/, initially defined on the

disc D..1 C i0/; 1=2/ by f .rei�/ D r1=2ei�=2. Here it is understood that

��=4 < � < �=4. This function is well-defined and holomorphic; in

fact it is the function usually called the principal branch of
p
z. Note that

Œf .z/�2 D z.
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x

y

1

FIGURE 9.1. Analytic continuation to

a second disc.

x

y

1

FIGURE 9.2. Continuation to a third

disc.

Imagine analytically continuing f to a second disc, as shown in Figure

9.1. This is easily done, using the same definition f .rei�/ D r1=2ei�=2. If

we continue to a third disc (Figure 9.2), and so on, we end up defining the

square root function at z D �1. See Figure 9.3. Indeed, we find that f .�1/
has the value i .

x

y

1–1

FIGURE 9.3. Analytic continuation of

the square root function.

x

y

1

FIGURE 9.4. Analytic continuation in

the other direction.

However, we might have begun our analytic continuation process as

shown in Figure 9.4. We begin at 1, and iterate the continuation process in

a clockwise direction so that process ends at z D �1. Doing so, we would

have found that f .�1/ D �i .
Thus we see that the process of analytic continuation can be ambiguous.

In the present example, the ambiguity is connected to the fact that a holo-

morphic square root function cannot be defined in any neighborhood of the

origin; yet our two paths of analytic continuation encircle the origin.

It is because of the phenomena illustrated in these three examples that

we must take a detailed and technical approach to the process of analytic

continuation. Even making the questions themselves precise takes some

thought.
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U

V

ƒ defined here

g defined here

FIGURE 9.5. Direct analytic continuation.

9.1.3 Function Elements

A function element is an ordered pair .f; U /; where U is a disc D.P; r/

and f is a holomorphic function defined on U . If W is an open set, then a

function element inW is a pair .f; U / such that U � W .

9.1.4 Direct Analytic Continuation

Let .f; U / and .g; V / be function elements. We say that .g; V / is a direct

analytic continuation of .f; U / if U \ V ¤ ; and f and g are equal on

U \ V (Figure 9.5). Obviously .g; V / is a direct analytic continuation of

.f; U / if and only if .f; U / is a direct analytic continuation of .g; V /.

9.1.5 Analytic Continuation of a Function

If .f1; U1/; : : : ; .fk ; Uk/ are function elements and if each .fj ; Uj / is a

direct analytic continuation of .fj�1; Uj�1/, j D 2; : : : ; k, then we say

that .fk; Uk/ is an analytic continuation of .f1; U1/ (Figure 9.6).

Clearly .fk ; Uk/ is an analytic continuation of .f1; U1/ if and only if

.f1; U1/ is an analytic continuation of .fk ; Uk/. Also if .fk ; Uk/ is an an-

alytic continuation of .f1; U1/ via a chain .f1; U1/; : : : ; .fk; Uk/ and if

.fkC`; UkC`/ is an analytic continuation of .fk ; Uk/ via a chain .fk ; Uk/,

.fkC1; UkC1/; : : : ; .fkC`; UkC`/, then stringing the two chains together into

.f1; U1/; : : : ; .fkC`; UkC`/ exhibits .fkC` ; UkC`/ as an analytic continua-

tion of .f1; U1/. Clearly any function element .f; U / is an analytic contin-

uation of itself.

9.1.6 Global Analytic Functions

Thus we have an equivalence relation (see [KRA3, p. 52] for this termi-

nology) by way of analytic continuation on the set of function elements:



“master” — 2010/12/8 — 16:23 — page 130 — #148
i

i

i

i

i

i

i

i

130 A Guide to Complex Variables

U1

ƒ defined here1

ƒ defined here2

ƒ defined here3

ƒ defined here4

ƒ defined here5

ƒk defined here

U2

U3

U4

U5

Uk

...

FIGURE 9.6. Analytic continuation of a function element.

namely, two function elements are equivalent if one is the analytic continu-

ation of the other. The equivalence classes ([KRA3, p. 53]) induced by this

relation are called (global) analytic functions. However, a caution is in or-

der: global analytic functions are not yet functions in the usual sense, and

they are not analytic in any sense that we have defined as yet. Justification

for the terminology will appear in due course.

The initial element .f; U / D .f1; U1/ uniquely determines the global

analytic function, or equivalence class, that contains it. But a global analytic

function may include more than one function element of the form .f; U / for

a fixed disc U (see Example 9.1.2.3). Indeed, a global analytic function f

may have in effect more than one value at a point: two function elements

.f1; U / and .f2; U / can be equivalent even though f1.P / ¤ f2.P /, where

P is the center of the disc U . If f denotes the global analytic function cor-

responding to .f; U /, then we call .f; U / a branch of f.

9.1.7 An Example of Analytic Continuation

EXAMPLE 9.1.7.1 Let U D D.1Ci0; 1=2/ and let f be the holomorphic

function log z. Here log z is understood to be defined to be log jzj C i arg z,

and ��=4 < arg z < �=4. As in Example 9.1.2.3, the function element

.f; U / can be analytically continued to the point �1 C i0 in (at least) two

different ways, depending on whether the continuation is along a curve pro-

ceeding clockwise about the origin or counterclockwise about the origin.
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In fact, all the branches of log z can be obtained by analytic continuation

of the log jzjCiarg z branch onD.1C0i; 1=2/ (by continuing several times

around the origin, either clockwise or counterclockwise). Thus the idea of

branches of log z (��4.5.6, ��9.1.2) is consistent with the general analytic

continuation terminology just introduced.

In some situations, it is convenient to think of a function element as a

convergent power series. Then the role of the open disc U is played by the

domain of convergence of the power series. This is a useful heuristic idea

for the reader to bear in mind. From this viewpoint, two function elements

.f1; U / and .f2; V / at a point P (such that U and V are discs centered at

the same point P ) should be regarded as equal if f1 � f2 on U \ V .

9.2 Analytic Continuation along a Curve

9.2.1 Continuation on a Curve

Let 
 W Œ0; 1� ! C be a curve and let .f; U / be a function element with 
.0/

the center of the disc U (Figure 9.7). An analytic continuation of .f; U /

along the curve 
 is a collection of function elements .ft ; Ut/, t 2 Œ0; 1�,

such that

g(1)

g

U

g(0)

FIGURE 9.7. Analytic continuation along a curve.

(9.2.1.1) .f0; U0/ D .f; U /.

(9.2.1.2) For each t 2 Œ0; 1�, the center of the disc Ut is 
.t/, 0 � t � 1.

(9.2.1.3) For each t 2 Œ0; 1�, there is an " > 0 such that, for each t 0 2 Œ0; 1�
with jt 0 � t j < ", it holds that

(a) 
.t 0/ 2 Ut and hence Ut 0 \ Ut ¤ ;;

(b) ft � ft 0 on Ut 0 \ Ut (so that .ft ; Ut/ is a direct analytic continua-

tion of .ft 0 ; Ut 0/). Refer to Figure 9.8.
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Ut

γ(0)

γ(1)

γ( )t

FIGURE 9.8. Direct analytic continuation.

Let .f; U / be a function element with U a disc having center P . Let 


be a curve such that 
.0/ D P . Any two analytic continuations of .f; U /

along 
 agree in the following sense: if .fm; Um/ is the terminal element of

one analytic continuation .ft ; Ut/ and if .efem; eUem/ is the terminal element

of another analytic continuation .efet ; eUet /, then fm and efem are equal on

Um \ eUem.

9.2.2 Uniqueness of Continuation along a Curve

Thus we see that the analytic continuation of a given function element along

a given curve is essentially unique, if it exists. From here on, to avoid being

pedantic, we shall regard two analytic continuations .ft ; Ut/ and .ef t ;eU t /
as equal, or equivalent, if ft D ef t on Ut \ eU t for all t . With this termino-

logical convention (which will cause no trouble), the result of �9.2.1 says

exactly that analytic continuation of a given function element along a curve

is unique.

9.3 The Monodromy Theorem

The fundamental issue to be addressed in the present section is this:

9.3.1 Unambiguity of Analytic Continuation

Let P and Q be points in the complex plane. Let .f; U / be a func-

tion element such that U is a disc centered at P . If 
1; 
2 are two

curves that begin at P and terminate at Q then does the terminal
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element of the analytic continuation of .f; U / along 
1 equal the

terminal element of the analytic continuation of .f; U / along 
2 (on

their common domain of definition)?

We shall begin to answer this question in ��9.3.2. The culmination of

our discussion will be the monodromy theorem in ��9.3.5.

9.3.2 The Concept of Homotopy

Let W be a domain in C. Let 
0 W Œ0; 1� ! W and 
1 W Œ0; 1� ! W be

curves. Assume that 
0.0/ D 
1.0/ D P and that 
0.1/ D 
1.1/ D Q. We

say that 
0 and 
1 are homotopic in W (with fixed endpoints) if there is a

continuous function

H W Œ0; 1�� Œ0; 1� ! W .9:3:2:1/

such that

(9.3.2.2) H.0; t/ D 
0.t/ for all t 2 Œ0; 1�I

(9.3.2.3) H.1; t/ D 
1.t/ for all t 2 Œ0; 1�I

(9.3.2.4) H.s; 0/ D P for all s 2 Œ0; 1�I

(9.3.2.5) H.s; 1/ D Q for all s 2 Œ0; 1�.

Then H is called a homotopy (with fixed endpoints) of the curve 
0 to the

curve 
1. Refer to Figure 9.9 to view two curves that are homotopic and two

that are not.

µ τ

γ

is homotopic to

is homotopic to

is homotopic to either or

is homotopic to either or

η

γ τ µ

η τ µ

not

not

τ

η

γ

µ

FIGURE 9.9. The concept of homotopy.
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9.3.3 Fixed Endpoint Homotopy

Note: Since we are only interested in homotopies with fixed endpoints, we

shall omit the phrase “with fixed endpoints” in the remainder of our discus-

sion.

Intuitively, we think of a homotopyH as follows. Let Hs.t/ D H.s; t/.

Then condition (9.3.2.2) says that H0 is the curve 
0. Condition (9.3.2.3)

says thatH1 is the curve 
1. Condition (9.3.2.4) says that all the curves Hs
begin at P . Condition (9.3.2.5) says that all the curves Hs terminate at Q.

The homotopy amounts to a continuous deformation of 
0 to 
1 with all

curves in the process restricted to lie inW .

We introduce one last piece of terminology:

9.3.4 Unrestricted Continuation

Let W be a domain and let .f; U / be a function element in W . We say

.f; U / admits unrestricted continuation in W if there is an analytic con-

tinuation .ft ; Ut/ of .f; U / along every curve 
 that begins at P and lies

in W .

9.3.5 The Monodromy Theorem

One situation, in practice the primary situation, in which the question raised

in ��9.3.1 always has an affirmative answer is given by the following theo-

rem:

The Monodromy Theorem: Let W � C be a connected open set.

Let .f; U / be a function element with U � W . Let P denote the

center of the disc U . Assume that .f; U / admits unrestricted con-

tinuation in W . If 
0; 
1 are each curves that begin at P , terminate

at some pointQ, and are homotopic inW , then the analytic contin-

uation of .f; U / to Q along 
0 equals the analytic continuation of

.f; U / to Q along 
1.

Refer to Figure 9.10.

9.3.6 Monodromy and Globally Defined

Analytic Functions

LetW � C be a connected open set. Assume further thatW is topologically

simply connected, in the sense that any two curves that begin at the same



“master” — 2010/12/8 — 16:23 — page 135 — #153
i

i

i

i

i

i

i

i

Analytic Continuation 135

f
P

Q

U

W

g1g0

FIGURE 9.10. The concept of monodromy.

point and end at the same point (possibly different from the initial point) are

homotopic—see the related discussion of simple connectivity in ��2.3.3.

Assume that .f; U / admits unrestricted continuation in W . Then there is a

globally defined holomorphic function F on W that equals f on U .

In view of the monodromy theorem, we now can understand how it

can be that the function
p
z, and more generally the function log z, cannot

be analytically continued in a well-defined fashion to all of C n f0g. The

difficulty is with the two curves specified in Example 9.1.2.3, or in Example

of 9.1.7.1: they are not homotopic in the region C n f0g (which is the region

of definition of the analytic function being considered).

9.4 The Idea of a Riemann Surface

9.4.1 What is a Riemann Surface?

In this section we give an intuitive description of the concept of what is

called a Riemann surface.

The idea of a Riemann surface allows one to visualize geometrically

the behavior of function elements and their analytic continuations. At the

moment, a global analytic function is an analytic object. A global analytic

function is the set of all function elements obtained by analytic continuation

along curves (from a base point P 2 C) of a function element .f; U / at P .

Such a set, which amounts to a collection of convergent power series at

different points of the plane C, does not seem very geometric in any sense.

But it can be given the structure of a surface, in the intuitive sense of that

word, quite easily. (The precise definition and detailed definition of what

a surface is would take us too far afield: we shall be content here with the

informal idea that a surface is a two-dimensional object that locally looks

like an open set in the plane. A more precise definition would be that a
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surface is a topological space that is locally homeomorphic to C. See [LST],

[ONE] for a more detailed discussion of surfaces.)

9.4.2 Examples of Riemann Surfaces

The idea that we need is most easily appreciated by first working with a few

examples. Consider the function element .f; U / defined on U D D.1 C
0i; 1=2/ by

z D rei� 7! r1=2ei�=2; .9:4:2:1/

where r > 0 and ��=4 < � < �=4 makes the rei� representation of

z 2 D.1; 1/ unique. This function element is the principal branch of
p
z at

z D 1 that we have already discussed in Example 9.1.2.3. The functional

element .f; U / can be analytically continued along every curve 
 emanating

from 1 and lying in C n f0g. Let us denote by R (for “Riemann surface”)

the totality of all function elements obtained by such analytic continuations.

In set-theoretic terms, R is just the global analytic function
p
z, just as we

defined this concept earlier in ��9.1.6. All we are trying to do now is to

visualize R in some sense.

Note that every point of R lies over a unique point of Cnf0g. A function

element .f; U / 2 R is associated to the center of U , that is to say, .f; U /

is a function element at a point of C n f0g. So we can define a projection

� W R ! C n f0g by

�..f; U // D the center of the disc U: .9:4:2:2/

This is just new terminology for a situation that we have already discussed.

The projection � of R is two-to-one onto C n f0g. In a neighborhood

of a given z 2 C n f0g, there are exactly two holomorphic branches of
p
z.

(If one of these is .f; U /, then the other is .�f; U /. But there is no way to

decide which of .f; U / and .�f; U / is the square root in any sense that can

be made to vary continuously over all of C n f0g.) We can think of R as a

surface in the following manner:

Let us define neighborhoods of “points” .f; U / in R by declaring a

neighborhood of .f; U / to be

˚
.fp ; Up/ W p 2 U and .fp ; Up/ is a direct

analytic continuation of .f; U / to p
	
: (9.4.2.3)
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This new definition may seem formalistic and awkward, but it has the at-

tractive property that it makes � W R ! C n f0g locally one-to-one. Every

.f; U / has a neighborhood that maps, under � , one-to-one onto an open

subset of C n f0g. This gives a way to think of R as being locally like an

open set in the plane.

Let us try to visualizeR still further. LetW D Cnfz D xCi0 W x � 0g.

Then ��1.W / decomposes naturally into two components, each of which is

an open set in R. (Since we have defined neighborhoods of points in R, we

naturally have a concept of open set in R as well.) These two components

are “glued together” in R itself:R is connected, while��1.W / is not. Note

that, on each of the connected components of ��1.W /, the projection � is

one-to-one. All of this language is just a formalization of the fact that, on

W , there are two holomorphic branches of
p
z—namely rei� 7! r1=2ei�=2

and rei� 7! �r1=2ei�=2, �� < � < � .

Each of the components of ��1.W / can be thought of as a “copy” of

W , since � maps a given component one-to-one onto W . See Figure 9.11.

FIGURE 9.11. Forming a Riemann surface.

How are these “copies,” say Q1 and Q2, glued together to form R? We

join the second quadrant edge of Q1 to the third quadrant edge of Q2 and

the second quadrant edge of Q2 to the third quadrant edge of Q1. Of course

these joins cannot be simultaneously performed in three-dimensional space.

So our picture is idealized. See Figure 9.12. Tacitly, in our construction of

R, we have restored the negative real axis.

FIGURE 9.12. Idealized picture of a Riemann surface.
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9.4.3 The Riemann Surface

for the Square Root Function

We have now constructed a surface, known as the “Riemann surface for the

function
p
z.” This surface that we have obtained by gluing together the two

copies ofW is in fact homeomorphic to the topological space that we made

from R (the set of function elements) when we defined neighborhoods in

R. So we can regard our geometric surface, built from gluing the two copies

of W together, and the function element space R, as being the same thing,

that is the same surface.

9.4.4 Holomorphic Functions

on a Riemann Surface

Since� W R ! Cnf0g is locally one-to-one, we can even use this projection

to describe what it means for a function F W R ! C to be holomorphic.

Namely, F is holomorphic if F ı ��1 W �.U / ! C is holomorphic for

each open set U in R with � one-to-one on U . With this definition in mind,

f .z/ D
p
z becomes a well-defined, “single-valued” holomorphic function

on R. To wit, if .f; U / is a function element in R, located at P 2 C n f0g,

i.e., with �.f; U / D P , then we set

F..f; U // D f .P /: .9:4:4:1/

In this setup, F 2..f; U // D �.f 2; U / D P [since f 2.z/ D z]. Therefore

F is the square root function, in the sense described.

There are similar pictures for n
p
z—see Figure 9.13. Note that the Rie-

mann surface for n
p
z has n sheets, joined together in sequence.

..
.

FIGURE 9.13. The Riemann surface for n
p

z.
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9.4.5 The Riemann Surface for the Logarithm

It requires some time, and some practice, to become familiar with the con-

struction of a Riemann surface from a given function. To get accustomed

to it further, let us now discuss briefly the Riemann surface for “log z”

(see also Example 9.1.7.1). More precisely, we begin with the “principal

branch” rei� 7! log r C i� defined on D.1 C 0i; 1=2/ by requiring that

��=4 < � < �=4 and we consider all its analytic continuations along

curves emanating from 1. We can visualize the “branches” here by not-

ing that, again with W D C n .f0g [ the negative real axis/, ��1.W / has

infinitely many components—each a copy of W—on which � maps one-

to-one onto W . Namely, these components are the “branches” of logz on

W :

rei� 7! log r C i� C 2�ik; k 2 Z; .9:4:5:1/

where �� < � < � . Picture each of these (infinitely many) images stacked

one above the other (Figure 9.14). We join them in an infinite spiral, or

screw, with the upper edge of the kth surface being joined to the lower edge

of the .k�1/st surface. Observe that going around the origin (counted clock-

wise in C n f0g) corresponds to going around and up one level on the spiral

surface. This is the geometric representation of the fact that, when we an-

alytically continue a branch of log r C i� C 2�ik once around the origin

counterclockwise then k increases by 1. This time there is no joining of the

first and last “sheets.” The spiral goes on without limit in both directions.

..
.

..
.

FIGURE 9.14. The Riemann surface for the logarithm.

9.4.6 Riemann Surfaces in General

The idea that we have been discussing, of building surfaces from function

elements, can be carried out in complete generality: Consider the set of all
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analytic function elements that can be obtained by analytic continuation

(along some curve in C) of a given function element .f; U /. This is what

we called earlier a global analytic function. Then this set of function ele-

ments can actually (and always) be regarded as a connected surface: There

is a projection onto an open set in C obtained by sending each function

element to the point of C at which it is located. This projection is a local

identification of the set of function elements with part of C, and so it in

effect exhibits the set of function elements as being two-dimensional, i.e., a

surface; after this observation, everything proceeds as in the examples. The

reader is invited to experiment with these new ideas—see particularly the

discussion and exercises in [GK].

9.5 Picard’s Theorems

9.5.1 Value Distribution for Entire Functions

The image, or set of values, of an entire function must be quite large. This

statement is true in a variety of technical senses, and Nevanlinna theory

gives a detailed development of the concept. Here we simply enunciate the

theorems of Picard which give some sense of the robustness of entire func-

tions.

9.5.2 Picard’s Little Theorem

Theorem: If the range of a holomorphic function f W C ! C omits

two points of C, then f is constant.

The entire function f .z/ D ez shows that an entire function can omit

one value (in this case, the value 0). But the theorem says that the only way

that it can omit two values is if the function in question is constant.

9.5.3 Picard’s Great Theorem

The following theorem, known as the great theorem of Picard, strengthens

the Little Theorem (see ��9.5.4 for the explication of this connection).

Theorem: Let U be a region in the plane, P 2 U; and suppose that

f is holomorphic on U n fP g and has an essential singularity at P .

If " > 0, then the restriction of f to U \ ŒD.P; "/ n fP g� assumes

all complex values except possibly one.



“master” — 2010/12/8 — 16:23 — page 141 — #159
i

i

i

i

i

i

i

i

Analytic Continuation 141

9.5.4 The Little Theorem, the Great Theorem,

and the Casorati-Weierstrass Theorem

Compare Picard’s great theorem with the Casorati/Weierstrass theorem

(��4.1.6). The Casorati/Weierstrass theorem says that, in a deleted neighbor-

hood of an essential singularity, a holomorphic function assumes a dense set

of values. Picard’s theorem refines this to “all values except possibly one.”

What is the connection between the great theorem and the little the-

orem? And how do these two theorems relate to the results about entire

functions that we have already seen?

A non-constant entire function cannot be bounded near infinity, or else

it would be bounded on C and hence (by Liouville’s theorem—��3.1.3) be

constant. So it has either a pole or an essential singularity at infinity. In the

first instance, the function is a polynomial (see ��4.6.6). But then the Fun-

damental Theorem of Algebra (��1.1.7) tells us that the function assumes

all complex values. In the second instance, the great theorem applies at the

point 1 and implies the little theorem.

Nevanlinna theory is an analytic refinement of the ideas we have been

discussing here. There is a delicate interplay between the rate of growth (at

1) of an entire function and the distribution of its zeros.
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Glossary of Terms

from Complex Variable

Theory and Analysis

accumulation point Let a1; a2; : : : be points in the complex plane. A point

b is an accumulation point of the sequence faj g if the aj get arbitrarily close

to b. More formally, we require that for each " > 0 there exists an N > 0

such that when j > N , then jaj � bj < ". ��3.2.2.

analytic continuation The procedure for enlarging the domain of a holo-

morphic function. ��9.1.1, ��9.1.2.

analytic continuation of a function If .f1; U1/; : : : ; .fk; Uk/ are function

elements and if each .fj ; Uj / is a direct analytic continuation of .fj�1; Uj�1/,
j D 2; : : : ; k, then we say that .fk ; Uk/ is an analytic continuation of

.f1; U1/: ��9.1.5.

analytic continuation of a function element along a curve An analytic

continuation of .f; U / along the curve 
 is a collection of function elements

.ft ; Ut/, t 2 Œ0; 1�, such that

1) .f0; U0/ D .f; U /.

2) For each t 2 Œ0; 1�, the center of the disc Ut is 
.t/, 0 � t � 1.

3) For each t 2 Œ0; 1�, there is an " > 0 such that, for each t 0 2 Œ0; 1�
with jt 0 � t j < ", it holds that

(a) 
.t 0/ 2 Ut and hence Ut 0 \ Ut ¤ ;;

(b) ft � ft 0 on Ut 0 \ Ut [so that .ft ; Ut/ is a direct analytic

continuation of .ft 0 ; Ut 0/]. ��9.2.1.

143
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annulus A set of one of the forms fz 2 C W 0 < jzj < Rg or fz 2 C W r <
jzj < Rg or fz 2 C W r < jzj < 1g. ��4.2.3.

argument If z D rei� is a complex number written in polar form, then �

is the argument of z. ��1.2.6.

argument principle Let f be a function that is holomorphic on a domain

that contains the closed disc D.P; r/. Assume that no zeros of f lie on

@D.P; r/. Then, counting the zeros of f according to multiplicity,

1

2�i

I

@D.P;r/

f 0.�/

f .�/
d� D # zeros of f insideD.P; r/: ��5.1.5

argument principle for meromorphic functions Let f be a holomorphic

function on a domain U � C. Assume that D.P; r/ � U , and that f has

neither zeros nor poles on @D.P; r/. Then

1

2�i

I

@D.P;r/

f 0.�/

f .�/
d� D

pX

jD1
nj �

qX

kD1
mk ;

where n1; n2; : : : ; np are the multiplicities of the zeros z1; z2; : : : ; zp of f

in D.P; r/ and m1; m2; : : : ; mq are the orders of the poles w1; w2; : : : ; wq
of f inD.P; r/. ��5.1.7.

associative law If a; b; c are complex numbers, then

.a C b/C c D a C .b C c/ (Associativity of Addition)

and
.a � b/ � c D a � .b � c/: (Associativity of Multiplication)

��1.1.2, 1.1.6.

assumes the value ˇ to order n A holomorphic function assumes the value

ˇ to order n at the point P if the function f .z/ � ˇ vanishes to order n at

P . ��5.1.3.

barrier Let U � C be an open set and P 2 @U: We call a function

b W U ! R a barrier for U at P if

1. b is continuous;

2. b is subharmonic on U ;

3. b
ˇ̌
@U

� 0;

4. fz 2 @U W b.z/ D 0g D fP g.
��7.7.9.
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biholomorphic mapping See conformal mapping. ��6.1.1

f (counting multiplicities), the Baj
are Blaschke factors, and F is a non-

vanishing Hardy space function. ��9.1.7, ��12.3.7.

boundary maximum principle for harmonic functions Let U � C be

a bounded domain. Let u be a continuous function on U that is harmonic

on U . Then the maximum value of u on U (which must occur, since U is

closed and bounded—see [RUD1], [KRA2]) must occur on @U: ��7.2.3.

boundary maximum principle for holomorphic functions Let U � C be

a bounded domain. Let f be a continuous function onU that is holomorphic

on U . Then the maximum value of jf j on U (which must occur, since U is

closed and bounded—see [RUD1], [KRA2]) must occur on @U: ��5.4.2.

boundary minimum principle for harmonic functions Let U � C be

a bounded domain. Let u be a continuous function on U that is harmonic

on U . Then the minimum value of u on U (which must occur, since U is

closed and bounded—see [RUD1], [KRA2]) must occur on @U: ��7.2.3.

boundary minimum principle for holomorphic functions Let U � C be

a bounded domain. Let f be a continuous function onU that is holomorphic

onU . Assume that f is non-vanishing. Then the minimum value of f onU

(which must occur, since U is closed and bounded—see [RUD1], [KRA2])

must occur on @U . ��5.4.3.

boundary uniqueness for harmonic functions Let U � C be a bounded

domain. Let u1 and u2 be continuous functions on U that are harmonic on

U . If u1 D u2 on @U then u1 D u2 on all of U . ��7.2.5.

bounded on compact sets Let F be a family of functions on an open set

U � C: We say that F is bounded on compact sets if for each compact set

K � U , there is a constantM D MK such that for all f 2 F and all z 2 K
we have

jf .z/j � M: ��8.4.3.

bounded holomorphic function A holomorphic function f on a domain

U is said to be bounded if there is a positive constant M such that

jf .z/j � M

for all z 2 U .
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Cauchy estimates If f is holomorphic on a region containing the disc

D.P; r/ and if jf j � M on D.P; r/, then

ˇ̌
ˇ̌
ˇ
@k

@zk
f .P /

ˇ̌
ˇ̌
ˇ � M � kŠ

rk
: ��3.1.2.

Cauchy integral formula Let f be holomorphic on an open set U that

contains the closed disc D.P; r/. Let 
.t/ D P C rei t . Then, for each

z 2 D.P; r/,
f .z/ D 1

2�i

I




f .�/

� � z
d�:

See ��2.3.2. The formula is also true for certain more general curves (��2.3.3).

Cauchy integral formula for an annulus Let f be holomorphic on an

annulus fz 2 C W r < jz � P j < Rg. Let r < s < S < R. Then for each

z 2 D.P; S/ nD.P; s/ we have

f .z/ D 1

2�i

I

j��P jDS

f .�/

� � z
d� � 1

2�i

I

j��P jDs

f .�/

� � z
d�:

��2.3.3, ��4.2.5.

Cauchy integral theorem If f is holomorphic on a disc U and if 
 W
Œa; b� ! U is a closed curve, then

I




f .z/ dz D 0: ��2.3.1.

The formula is also true for certain more general curves (��2.3.3).

Cauchy-Riemann equations If u and v are real-valued, continuously dif-

ferentiable functions on the domain U , then u and v are said to satisfy the

Cauchy-Riemann equations on U if

@u

@x
D @v

@y
and

@v

@x
D �@u

@y
: ��1.3.2.

Cauchy-Schwarz Inequality The statement that if z1; : : : zn and w1; : : : ;

wn are complex numbers, then

ˇ̌
ˇ̌
ˇ̌
nX

jD1
zjwj

ˇ̌
ˇ̌
ˇ̌

2

�
nX

jD1
jzj j2

nX

jD1
jwj j2: ��1.2.7.
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Cayley transform This is the function

f .z/ D i � z

i C z

that conformally maps the upper half plane to the unit disc. ��6.2.5.

classification of singularities in terms of Laurent series Let the holo-

morphic function f have an isolated singularity at P , and let

1X

jD�1
aj .z � P /j

be its Laurent expansion. Then

� If aj D 0 for all j < 0, then f has a removable singularity at P .

� If, for some k < 0, aj D 0 for j < k and ak ¤ 0, then f has a pole of

order k at P .

� If there are infinitely many non-zero aj with negative index j , then f
has an essential singularity at P .

��4.1.3, ��4.2.8.

clockwise The direction of traversal of a curve 
 such that the region inte-

rior to the curve is always on the right. ��2.1.1.

closed curve A curve 
 W Œa; b� ! C such that 
.a/ D 
.b/. ��2.1.2.

closed disc of radius r and center P A disc in the plane having radius r

and center P and including the boundary of the disc. ��1.1.5.

closed set A set E in the plane with the property that the complement of E

is open. ��1.1.5.

commutative law If a; b; c are complex numbers, then

a C b D b C a (Commutativity of Addition)

and

a � b D b � a : (Commutativity of Multiplication)

��1.1.2, ��1.1.6.

compact set A set K � C is compact if it is both closed and bounded.

��3.1.5.
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complex derivative If f is a function on a domain U , then the complex

derivative of f at a point P in U is the limit

lim
z!P

f .z/ � f .P /
z � P : ��1.3.5.

complex differentiable A function f is differentiable on a domain U if it

possesses the complex derivative at each point of U . ��1.3.6.

complex line integral Let U be a domain, g a continuous function on U ,

and 
 W Œa; b� ! U a curve. The complex line integral of g along 
 is

I




g.z/ dz �
Z b

a

g.
.t// � d

dt
.t/ dt: ��2.1.6.

complex numbers Any number of the form x C iy with x and y real.

��1.1.2.

condition for the uniform convergence of an infinite product of func-

tions Let U � C be a domain and let fj be holomorphic functions on U .

Assume that
1X

jD1
jfj j

converges uniformly on compact subsets of U . Then the sequence of partial

products

FN .z/ �
NY

jD1
.1C fj .z//

converges uniformly on compact sets to a holomorphic limitF.z/. We write

F.z/ D
1Y

jD1
.1C fj .z//: ��8.1.12, ��8.1.15.

condition for the convergence of an infinite product of numbers If

1X

jD1
jaj j < 1 ;

then both
1Y

jD1
.1 C jaj j/
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and
1Y

jD1
.1C aj /

converge. ��8.1.12.

conformal A function f on a domain U is conformal if it preserves angles

and dilates equally in all directions. A holomorphic function is conformal,

and conversely. ��1.3.6, ��2.2.3.

conformal mapping Let U , V be domains in C. A function f W U ! V

that is holomorphic, one-to-one, and onto is called a conformal mapping or

conformal map. ��6.1.1.

conformal self-map Let U � C be a domain. A function f W U ! U that

is holomorphic, one-to-one, and onto is called a conformal (or biholomor-

phic) self-map of U . ��5.5.1.

conjugate If z D x C iy is a complex number, then z D x � iy is its

complex conjugate. ��1.1.3

connected A set E in the plane is connected if there do not exist disjoint

and non-empty open sets U and V such that E D .U \ E/ [ .V \ E/.

��1.1.5.

continuing a function element Finding additional function elements that

are analytic continuations of the given function element. ��9.1.2, ��9.1.3,

��9.1.4.

continuous A function f with domain S is continuous at a point P in S

if the limit of f .x/ as x approaches P is f .P /. An equivalent definition,

coming from topology, is that f is continuous provided that, whenever V

is an open set in the range of f , then f �1.V / is open in the domain of f .

continuously differentiable A function f with domain (the open set) S

is continuously differentiable if the first derivative(s) of f exist at every

point of S and if each of those first derivative functions is continuous on S .

��1.3.1, ��2.1.3.

continuously differentiable, k times A function f with domain S such

that all derivatives of f up to and including order k exist and each of those

derivative functions is continuous on S . ��1.3.1.

convergence of a Laurent series The Laurent series

1X

jD�1
aj .z � P /j



“master” — 2010/12/8 — 16:23 — page 150 — #168
i

i

i

i

i

i

i

i

150 A Guide to Complex Variables

is said to converge if each of the power series

0X

jD�1
aj .z � P /j and

1X

1

aj .z � P /j

converges. ��4.2.2.

convergence of an infinite product An infinite product

1Y

jD1
.1C aj /

is said to converge if

1. Only a finite number aj1
; : : : ; ajk

of the aj ’s are equal to �1.

2. If N0 > 0 is so large that aj ¤ �1 for j > N0, then

lim
N!C1

NY

jDN0C1
.1C aj /

exists and is non-zero.
��8.1.9.

convergence of a power series The power series

1X

jD0
aj .z � P /j

is said to converge at z if the partial sums SN .z/ converge as a sequence of

numbers. ��3.1.6.

converges uniformly See uniform convergence.

countable set A set S is countable if there is a one-to-one, onto function

f W S ! N.

countably infinite set See countable set.

counterclockwise The direction of traversal of a curve 
 such that the

region interior to the curve is always on the left. ��2.1.1.

counting function This is a function from classical number theory that aids

in counting the prime numbers.

curve A continuous function 
 W Œa; b� ! C. ��2.1.1.

deformability Let U be a domain. Let 
 W Œa; b� ! U and � W Œa; b� ! U

be curves in U . We say that 
 is deformable to � in U if there is a contin-
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uous function H.s; t/, 0 � s; t � 1 such that H.0; t/ D 
.t/, H.1; t/ D
�.t/, and H.s; t/ 2 U for all .s; t/. ��2.3.4.

deleted neighborhood Let P 2 C. A set of the form D.P; r/ n fP g is

called a deleted neighborhood of P . ��4.1.2.

denumerable set A set that is either finite or countably infinite.

derivative with respect to z If f is a continuously differentiable function

on a domain U , then the derivative of f with respect to z on U is

@f

@z
D 1

2

�
@

@x
� i @

@y

�
f: ��1.3.3.

derivative with respect to z If f is a continuously differentiable function

on a domain U , then the derivative of f with respect to z on U is

@f

@z
D 1

2

�
@

@x
C i

@

@y

�
f: ��1.3.3.

differentiable See complex differentiable.

direct analytic continuation Let .f; U / and .g; V / be function elements.

We say that .g; V / is a direct analytic continuation of .f; U / if U \V ¤ ;
and f D g on U \ V: ��9.1.4.

Dirichlet problem on the disc Given a continuous function f on the

boundary of the unit disc @D.0; 1/, find a continuous function u onD.0; 1/

whose restriction to @D.0; 1/ equals f . ��7.3.4.

Dirichlet problem on a general domain Let U � C be a domain. Let f

be a continuous function on @U . Find a continuous function u on U such

that u agrees with f on @U . ��7.7.1, ��7.8.1.

disc of convergence A power series

1X

jD0
aj .z � P /j

converges on a disc D.P; r/, where

r D 1

lim supj!1 jaj j1=j
:

The discD.P; r/ is the disc of convergence of the power series. ��3.1.6.
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discrete set A set S � C is discrete if for each s 2 S there is an " > 0

such thatD.s; "/ \ S D fsg. See also isolated point. ��3.2.3.

distributive law If a; b; c are complex numbers, then the distributive laws

are

a � .b C c/ D ab C ac

and
.b C c/ � a D baC ca:

��1.1.6.

domain A set U in the plane that is both open and connected. ��1.3.1.

domain of a function The domain of a function f is the set of numbers or

points to which f can be applied.

entire function A holomorphic function whose domain is all of C. ��3.1.3.

equivalence class If R is an equivalence relation on a set S , then the sets

Es � fs0 2 S W .s; s0/ 2 Rg are called equivalence classes. See [KRA3] for

more on equivalence classes and equivalence relations.

equivalence relation Let R be a relation on a set S . We call R an equiva-

lence relation if R is

� reflexive: For each s 2 S , .s; s/ 2 R.

� symmetric: If s; s0 2 S and .s; s0/ 2 R, then .s0; s/ 2 R.

� transitive: If .s; s0/ 2 R and .s0; s00/ 2 R, then .s; s00/ 2 R.

An equivalence relation results in the set S being partitioned into equiv-

alence classes. ��10.1.6

essential singularity If the point P is a singularity of the holomorphic

function f , and if P is neither a removable singularity nor a pole, then P

is called an essential singularity. ��4.1.4, ��4.1.6, ��4.2.8.

Euclidean algorithm The algorithm for long division in the theory of arith-

metic. ��3.1.4.

Euler product formula For Re z > 1, the infinite product
Q
p2P .1�1=pz/

converges and
1

�.z/
D
Y

p2P

�
1 � 1

pz

�
:

Here P D f2; 3; 5; 7; 11; : : :g is the set of prime numbers.
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exponential, complex The function ez. ��1.2.1.

extended line The real line (lying in the complex plane) with the point at

infinity adjoined. ��6.3.7.

extended plane The complex plane with the point at infinity adjoined. See

stereographic projection. ��4.6.8, ��6.2.2, ��6.2.3.

extended real numbers The real numbers with the points C1 and �1
adjoined. ��4.2.3.

field A number system that is closed under addition, multiplication, and di-

vision by non-zero numbers and in which these operations are commutative

and associative. ��1.1.6.

finite set A set S is finite if it can be put in one-to-one correspondence with

a set of the form f1; 2; : : : ; N g.

formula for the derivative Let U � C be an open set and let f be

holomorphic on U: Then f is infinitely differentiable on U . Moreover, if

D.P; r/ � U and z 2 D.P; r/, then

�
@

@z

�k
f .z/ D kŠ

2�i

I

j��P jDr

f .�/

.� � z/kC1 d�; k D 0; 1; 2; : : : :

��3:1:1:

function element An ordered pair .f; U / where U is an open disc and f

is a holomorphic function defined on U . ��9.1.3.

Fundamental Theorem of Algebra The statement that every non-constant

polynomial has a root. ��1.1.7, ��3.1.4.

Fundamental Theorem of Calculus along Curves Let U � C be a do-

main and 
 D .
1; 
2/ W Œa; b� ! U a C 1 curve. If f 2 C 1.U /, then

f .
.b// � f .
.b// D
Z b

a

�
@f

@x
.
.t// �

d
1

dt
C
@f

@y
.
.t// �

d
2

dt

�
dt:

��2:1:5:

gamma function If Re z > 0, then define

�.z/ D
Z 1

0

tz�1e�t dt: ��9.1.2

generalized circles and lines In the extended plane bC D C [ f1g, a

generalized line (generalized circle) is an ordinary line union the point at

infinity. Topologically, an extended line is a circle. ��6.2.6.
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global analytic function We have an equivalence relation by way of ana-

lytic continuation on the set of function elements. The equivalence classes

([KRA3, p. 53]) induced by this relation are called global analytic functions.

��9.1.6.

greatest lower bound See infimum.

harmonic A function u on a domain U is said to be harmonic of 4u D 0

on U , that is, if u satisfies the Laplace equation. ��1.4.1.

harmonic conjugate If u is a real-valued harmonic function on a domain

U , then a real-valued harmonic function v on U is said to be conjugate to u

if h D uC iv is holomorphic. ��1.4.2.

Harnack inequality Let u be a non-negative, harmonic functionD.0; R/.

Then, for any z 2 D.0; R/,

R � jzj
RC jzj � u.0/ � u.z/ � RC jzj

R � jzj � u.0/:

Let u be a non-negative, harmonic function on D.P;R/: Then, for any

z 2 D.P;R/,

R � jz � P j
RC jz � P j � u.P / � u.z/ � RC jz � P j

R � jz � P j � u.P /: ��7.6.1

Harnack principle Let u1 � u2 � : : : be harmonic functions on a con-

nected open set U � C: Then either uj ! 1 uniformly on compact sets

or there is a harmonic function u on U such that uj ! u uniformly on

compact sets. ��7.6.2.

holomorphic A continuously differentiable function on a domain U is

holomorphic if it satisfies the Cauchy-Riemann equations on U or (equiva-

lently) if @f=@z D 0 on U . ��1.3.2, ��1.3.4, ��1.3.5.

holomorphic function on a Riemann surface A function F is holomor-

phic on the Riemann surface R if F ı ��1 W �.U / ! C is holomorphic

for each open set U in R with � one-to-one on U . Here � is a coordinate

(chart) map on R. ��9.4.4.

homeomorphic Two open sets U and V in C are homeomorphic if there

is a one-to-one, onto, continuous function f W U ! V with f �1 W V ! U

also continuous. ��6.3.1.
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homeomorphism A homeomorphism of two sets A;B � C is a one-to-

one, onto continuous mapping F W A ! B with a continuous inverse.

��6.3.1.

homotopic See deformability, homotopy. ��9.3.2.

homotopy LetW be a domain in C: Let 
0 W Œ0; 1� ! W and 
1 W Œ0; 1� !
W be curves. Assume that 
0.0/ D 
1.0/ D P and that 
0.1/ D 
1.1/ D
Q:We say that 
0 and 
1 are homotopic inW (with fixed endpoints) if there

is a continuous function

H W Œ0; 1�� Œ0; 1� ! W

such that

1) H.0; t/ D 
0.t/ for all t 2 Œ0; 1�I
2) H.1; t/ D 
1.t/ for all t 2 Œ0; 1�I
3) H.s; 0/ D P for all s 2 Œ0; 1�I
4) H.s; 1/ D Q for all s 2 Œ0; 1�:

Then H is called a homotopy (with fixed endpoints) of the curve 
0 to the

curve 
1. The two curves 
0; 
1 are said to be homotopic. ��9.3.2.

Hurwitz’s theorem Suppose thatU � C is a domain and that ffj g is a se-

quence of nowhere-vanishing holomorphic functions on U: If the sequence

ffj g converges uniformly on compact subsets of U to a (necessarily holo-

morphic) limit function f0, then either f0 is nowhere-vanishing or f0 � 0:

��5.3.4.

image of a function The set of values taken by the function.

imaginary part If z D x C iy is a complex number, then its imaginary

part is y. ��1.1.2.

imaginary part of a function f If f D uC iv is a complex-valued func-

tion, withu and v real-valued functions, then v is its imaginary part. ��1.3.2.

index Let U be a domain and 
 W Œ0; 1� ! U a piecewise C 1 curve in

U . Let P 2 U be a point that does not lie on 
 . Then the index of 
 with

respect to P is defined to be

Ind
 .P / � 1

2�i

I




1

� � P
d�:

The index is always an integer. ��4.4.4.
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infimum Let S � R be a set of numbers. We say that a number m is an

infimum for S if m � s for all s 2 S and there is no number greater thanm

that has the same property. Every set of real numbers that is bounded below

has an infimum. The term “greatest lower bound” has the same meaning.

infinite product An expression of the form
Q1
jD1.1C aj /. ��8.1.6.

integer A whole number, or one of � � � � 3;�2;�1; 0; 1; 2; 3; : : : .

integral representation of the beta function, alternate form For z; w 62
f0;�1;�2; : : :g,

B.z; w/ D 2

Z �=2

0

.sin �/2z�1.cos �/2w�1 d�:

irrational numbers Those real numbers that have non-terminating, non-

repeating decimal expansions.

isolated point A point s of a set S � C is said to be isolated if there is an

" > 0 such that D.s; "/\ S D fsg. ��3.2.3.

isolated singularity See singularity.

isolated singular point See singularity.

Jordan curve See simple, closed curve.

k times continuously differentiable function A function f with domain

S such that all derivatives of f up to and including order k exist and each

of those derivatives is continuous on S . ��1.3.1.

Laplace equation The partial differential equation

4u D 0: ��7.1.1

Laplace operator or Laplacian This is the partial differential operator

4 D @2

@x2
C @2

@x2
: ��7.1.2

Laurent series A series of the form

1X

jD�1
aj .z � P /j :

See also power series. ��4.2.1.
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Laurent series expansion about 1 Fix a positive number R. Let f be

holomorphic on a set of the form fz 2 C W jzj > Rg. DefineG.z/ D f .1=z/

for jzj < 1=R. If the Laurent series expansion of G about 0 is

1X

jD�1
aj z

j ;

then the Laurent series expansion of f about 1 is

1X

jD�1
aj z

�j : ��4.6.7

least upper bound See supremum.

limit of the function f at the point P Let f be a function on a domain U .

The complex number ` is the limit of the f at P if for each " > 0 there is a

ı > 0 such that, whenever z 2 U and 0 < jz�P j < ı, then jf .z/�P j < ".
��2.2.1.

linear fractional transformation A function of the form

z 7! az C b

cz C d
;

for a; b; c; d complex constants with ac � bd ¤ 0. ��6.2.1.

Liouville’s theorem If f is an entire function that is bounded, then f is

constant. ��3.1.3.

locally A property is true locally if it is true on compact sets.

maximum principle for harmonic functions If u is a harmonic function

on a domainU and if P inU is a local maximum for u, then u is identically

constant. ��7.2.3.

maximum principle for holomorphic functions If f is a holomorphic

function on a domain U and if P in U is a local maximum for jf j, then f

is identically constant. ��5.4.2.

maximum principle for subharmonic functions If u is subharmonic on

U and if some point P 2 U is a local maximum for u, then u is identically

constant. ��7.7.6.

mean value property for harmonic functions Let u be harmonic on an

open set containing the closed discD.P; r/. Then

u.P / D 1

2�

Z 2�

0

u.P C rei�/ d�: ��7.2.4



“master” — 2010/12/8 — 16:23 — page 158 — #176
i

i

i

i

i

i

i

i

158 A Guide to Complex Variables

This identity also holds for holomorphic functions.

meromorphic at 1 Fix a positive number R. Let f be holomorphic on a

set of the form fz 2 C W jzj > Rg. Define G.z/ D f .1=z/ for jzj < 1=R.

We say that f is meromorphic at 1 provided thatG is meromorphic in the

usual sense on fz 2 C W jzj < 1=Rg. ��4.6.8.

meromorphic function Let U be a domain and fPj g a discrete set in U . If

f is holomorphic on U n fPj g and f has a pole at each of the fPj g, then f

is said to be meromorphic on U . ��4.6.1.

minimum principle for harmonic functions If u is a harmonic function

on a domain U and ifP in U is a local minimum for u, then u is identically

constant. ��7.2.3.

minimum principle for holomorphic functions If f is a holomorphic

function on a domain U , if f does not vanish on U , and if P in U is a local

minimum for jf j, then f is identically constant. ��5.4.3.

Mittag-Leffler theorem Let U � C be any open set. Let ˛1; ˛2; : : : be

a finite or countably infinite set of distinct elements of U with no accumu-

lation point in U: Suppose, for each j , that Uj is a neighborhood of j̨ .

Further assume, for each j , that mj is a meromorphic function defined on

Uj with a pole at j̨ and no other poles. Then there exists a meromorphic

m on U such that m�mj is holomorphic on Uj for every j: ��8.3.6.

Mittag-Leffler theorem, alternative formulation LetU � C be any open

set. Let ˛1; ˛2; : : : be a finite or countably infinite set of distinct elements

of U , having no accumulation point in U . Let sj be a sequence of Laurent

polynomials (or “principal parts”),

sj .z/ D
�1X

`D�p.j /
a
j

`
� .z � j̨ /

`:

Then there is a meromorphic function on U whose principal part at each j̨

is sj : ��8.3.6.

Möbius transformation This is a function of the form

'a.z/ D z � a
1 � az

for a fixed complex constant a with modulus less than 1. Such a function

'a is a conformal self-map of the unit disc. ��5.5.1.
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modulus If z D x C iy is a complex number, then jzj D
p
x2 C y2 is its

modulus. ��1.1.4.

monodromy theorem Let W � C be a domain. Let .f; U / be a function

element, with U � W: Let P denote the center of the disc U: Assume that

.f; U / admits unrestricted continuation in W . If 
0; 
1 are each curves that

begin at P , terminate at some point Q, and are homotopic in W , then the

analytic continuation of .f; U / to Q along 
0 equals the analytic continua-

tion of .f; U / to Q along 
1: ��9.3.5.

monogenic See holomorphic.

Montel’s theorem Let F D ff˛g˛2A be a family of holomorphic functions

on an open set U � C: If there is a constant M > 0 such that

jf .z/j � M ; for all z 2 U ; f 2 F ;

then there is a sequence ffj g � F such that fj converges normally on U to

a limit (holomorphic) function f0: ��8.4.3, ��8.4.4.

Montel’s theorem, second version Let U � C be an open set and let F be

a family of holomorphic functions on U that is bounded on compact sets.

Then there is a sequence ffj g � F that converges normally on U to a limit

(necessarily holomorphic) function f0: ��8.4.4.

Morera’s theorem Let f be a continuous function on a connected open

set U � C. If I




f .z/ dz D 0

for every simple, closed curve 
 in U , then f is holomorphic on U . The

result is true if it is only assumed that the integral is zero when 
 is a rect-

angle, or when 
 is a triangle. ��2.3.1.

multiple root Let f be either a polynomial or a holomorphic function on an

open set U . Let k be a positive integer. If P 2 U and f .P / D 0; f 0.P / D
0; : : : ; f .k�1/.P / D 0, then f is said to have a multiple root at P . The root

is said to be of order k. See vanishes to order k. ��3.1.4.

multiple singularities Let U � C be a domain and P1; P2; : : : be a dis-

crete set inU . If f is holomorphic on U nfPj g and has a singularity at each

Pj , then f is said to have multiple singularities in U . ��4.4.1.

multiplicity of a zero or root The number k in the definition of multiple

root. ��5.1.2.
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neighborhood of a point in a Riemann surface We define neighborhoods

of a “point” .f; U / in R by

f.fp ; Up/ W p 2 U and .fp ; Up/ is a direct

analytic continuation of .f; U / to pg:

��9.4.2.

normal convergence of a sequence A sequence of functions gj on a do-

main U is said to converge normally to a limit function g if the fj converge

uniformly on compact subsets of U to g. ��8.1.3.

normal convergence of a series A series of functions
P1
jD1 gj on a do-

main U is said to converge normally to a limit function g if the partial sums

SN D
PN
jD1 gj converge uniformly on compact subsets of U to g. ��8.1.4

normal family Let F be a family of (holomorphic) functions with com-

mon domain U . We say that F is a normal family if every sequence in F

has a subsequence that converges uniformly on compact subsets of U , i.e.,

converges normally on U . See Montel’s theorem. ��8.4.2.

one-to-one A function f W S ! T is said to be one-to-one if whenever

s1 ¤ s2, then f .s1/ ¤ f .s2/.

onto A function f W S ! T is said to be onto if whenever t 2 T , then

there is an s 2 S such that f .s/ D t .

open disc of radius r and center P A disc D.P; r/ in the complex plane

having radius r and center P and not including the boundary of the disc.

��1.1.5.

open mapping A function f W S ! T is said to be open if whenever

U � S is open, then f .U / � T is open. ��5.2.1.

open mapping theorem If f W U ! C is a holomorphic function on a

domain U , then f .U / will also be open. ��5.2.1.

open set A set U in the plane with the property that each point P 2 U has

a discD.P; r/ such that D.P; r/ � U . ��1.1.5.

order of a pole See pole.

order of a root See multiplicity of a root and vanishes to order k.

partial fractions A method for decomposing a rational function into a sum

of simpler rational components. Useful in integration theory, as well as in

various algebraic contexts. See [THO] for details.
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partial product For an infinite product
Q1
jD1.1C aj /, the partial product

is

PN D
NY

jD1
.1C aj /: ��8.1.8

partial sums of a power series If

1X

jD0
aj .z � P /j

is a power series, then its partial sums are the finite sums

SN .z/ �
NX

jD0
aj .z � P /j

for N D 0; 1; 2; : : : . ��3.1.6.

path See curve. ��2.1.1.

path-connected Let E � C be a set. If, for any two pointsA and B in E

there is a curve 
 W Œ0; 1� ! E such that 
.0/ D A and 
.1/ D B , then we

say that E is path-connected. ��1.1.5.

Picard’s Great Theorem Let U be a region in the plane, P 2 U; and

suppose that f is holomorphic on U n fP g and has an essential singularity

at P: If " > 0, then the restriction of f to U \ ŒD.P; "/ n fP g� assumes all

complex values except possibly one. ��9.5.3

Picard’s Little Theorem If the range of an entire function f omits two

points of C, then f is constant. In other words, an entire function assumes

all complex values except possibly one. ��9.5.2.

piecewise C k A curve 
 W Œa; b� ! C is said to be piecewise C k if

Œa; b� D Œa0; a1� [ Œa1; a2� [ � � � [ Œam�1; am�

with a D a0 < a1 < � � �am D b and 

ˇ̌
Œaj �1;aj �

is C k for 1 � j � m.

��2.3.3.

point at 1 A point which is adjoined to the complex plane to make it

topologically a sphere. ��6.2.3.

Poisson integral formula Let u W U ! R be a harmonic function on a

neighborhood of D.0; 1/: Then, for any point a 2 D.0; 1/,

u.a/ D 1

2�

Z 2�

0

u.ei / � 1 � jaj2
ja � ei j2 d : ��7.3.1
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Poisson kernel for the unit disc This is the function

1

2�

1 � jaj2
ja � ei j2

that occurs in the Poisson integral formula. ��7.3.2.

polar form of a complex number A complex number z written in the form

z D rei� with r � 0 and � 2 R. The number r is the modulus of z and � is

its argument. ��1.2.4.

polar representation of a complex number See polar form. ��1.2.4.

pole Let P be an isolated singularity of the holomorphic function f . If

P is not a removable singularity for f but there exists a k > 0 such that

.z � P /k � f is a removable singularity, then P is called a pole of f . The

least k for which this condition holds is called the order of the pole. ��4.1.4,

��4.2.8.

polynomial A polynomial is a function p.z/ [resp. p.x/] of the form

p.z/ D a0 C a1z C � � �ak�1z
k�1 C akz

k ;

[resp. p.x/ D a0 C a1x C � � �ak�1xk�1 C akx
k] where a0; : : : ; ak are

complex constants. ��1.1.7.

power series A series of the form

1X

jD0
aj .z � P /j :

More generally, the series can have any limits on the indices:

1X

jDm
aj .z � P /j or

nX

jDm
aj .z � P /j : ��3.1.6

prime number This is an integer (whole number) that has no integer divi-

sors except 1 and itself. The first few positive prime numbers are 2, 3, 5, 7,

11, 13, 17, 19, 23. By convention, 1 is not prime.

prime number theorem This is the statement that

lim
x!1

�.x/

.x= logx/
D 1:

Here �.x/ is the “prime number counting function.”
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principal branch Usually that branch of a holomorphic function that fo-

cuses on values of the argument 0 � � < 2� . The precise definition of

“principal branch” depends on the particular function being studied. ��1.2.6,

��9.1.7.

principle of persistence of functional relations If two holomorphic func-

tions defined in a domain containing the real axis agree for real values of

the argument, then they agree at all points. ��3.2.4.

principal part Let f have a pole of order k at P . The negative power part

�1X

jD�k
aj .z � P /j

of the Laurent series of f about P is called the principal part of f at P .

��4.3.1.

range of a function Any set containing the image of the function.

rank of an entire function If f is an entire function and faj g its zeros

counting multiplicity, then the rank of f is the least positive integer p such

that X

an¤0
janj�.pC1/ < 1:

We denote the rank of f by p D p.f /.

rational function A rational function is a quotient of polynomials. ��4.6.8.

rational number system Those numbers that are quotients of integers or

whole numbers. A rational number has either terminating or repeating dec-

imal expansions. ��1.1.1.

real-analytic A function f of one or several real variables is called real

analytic if it can locally be expressed as a convergent power series.

real number system Those numbers consisting of either terminating or

non-terminating decimal expansions. ��1.1.1.

real part If z D xC iy is a complex number, then its real part is x. ��1.1.2.

real part of a function f If f D u C iv is a complex-valued function,

with u, v real-valued functions, then u is its real part. ��1.3.2.

region See domain. ��1.3.1.

regular See holomorphic.
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regular boundary point Let f be holomorphic on a domain U . A point

P of @U is called regular if f extends to be a holomorphic function on an

open set containingU and also the point P .

relation Let S be a set. A relation on S is a collection of some (but not

necessarily all) of the ordered pairs .s; s0/ of elements of S . See also equiv-

alence relation.

removable singularity Let P be an isolated singularity of the holomorphic

function f . If f can be defined at P so as to be holomorphic in a neigh-

borhood of P , then P is called a removable singularity for f . ��4.1.4,

��4.2.8.

residue If f has Laurent series

1X

jD�1
aj .z � P /j

about P , then the number a�1 is called the residue of f at P . We denote

the residue by Resf .P /. ��4.4.3.

residue, formula for Let f have a pole of order k at P . Then the residue

of f at P is given by

Resf .P / D 1

.k � 1/Š

�
@

@z

�k�1 �
.z � P /kf .z/

�ˇ̌ˇ̌
ˇ
zDP

: ��4:4:6

residue theorem Let U be a domain and let the holomorphic function f

have isolated singularities at P1; P2; : : : ; Pm 2 U . Let Resf .Pj / be the

residue of f at Pj . Also let 
 W Œ0; 1� ! U n fP1; P2; : : : ; Pmg be a piece-

wise C 1 curve. Let Ind
.Pj / be the winding number of 
 about Pj . Then

I




f .z/ dz D 2�i

mX

jD1
Resf .Pj / � Ind
 .Pj /: ��4.4.2

Riemann hypothesis The celebrated Riemann Hypothesis is the conjecture

that all the zeros of the zeta function � in the critical strip fz 2 C W 0 <
Re z < 1g actually lie on the critical line fz W Re z D 1=2g:

Riemann mapping theorem Let U � C be a simply connected domain,

and assume that U ¤ C. Then there is a conformal mapping ' W U !
D.0; 1/. ��6.3.2.
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Riemann removable singularities theorem If P is an isolated singularity

of the holomorphic function f and if f is bounded in a deleted neighbor-

hood of P , then f has a removable singularity at P . ��4.1.5.

Riemann sphere See extended plane.

Riemann surface The idea of a Riemann surface is that one can visualize

geometrically the behavior of function elements and their analytic contin-

uations. A global analytic function is the set of all function elements ob-

tained by analytic continuation along curves (from a base point P 2 C) of

a function element .f; U / at P . Such a set, which amounts to a collection

of convergent power series at different points of the plane C, can be given

the structure of a surface, in the intuitive sense of that word. ��9.4.1.

right turn angle The oriented angle of turning when traversing the bound-

ary of a polygon that is under study with the Schwarz-Christoffel mapping.

ring A number system that is closed under addition and multiplication. See

also field.

root of a function or polynomial A value in the domain at which the

function or polynomial vanishes. See also zero. ��1.1.7.

rotation A function z 7! eiaz for some fixed real number a. We sometimes

say that the function represents “rotation through an angle a.” ��6.2.1.

Rouché’s theorem Let f; g be holomorphic functions on a domainU � C.

Suppose that D.P; r/ � U and that, for each � 2 @D.P; r/,

jf .�/ � g.�/j < jf .�/j C jg.�/j: .�/

Then the number of zeros of f inside D.P; r/ equals the number of zeros

of g inside D.P; r/. The hypothesis .�/ is sometimes replaced in practice

with

jf .�/ � g.�/j < jg.�/j

for � 2 @D.P; r/. ��5.3.1.

Runge’s theorem Let K � C be compact. Let f be holomorphic on a

neighborhood ofK: Let S � bC nK contain one point from each connected

component of bC nK: Then, for any " > 0, there is a rational function r.z/

with poles in S such that

max
z2K

jf .z/ � r.z/j < ":
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Runge’s theorem, corollary for polynomials Let K � C be compact and

assume that bC nK is connected. Let f be holomorphic on a neighborhood

of K. Then for any " > 0 there is a holomorphic polynomial p.z/ such that

max
K

jp.z/ � f .z/j < ":

schlicht function A holomorphic function f on the unit disc D is called

schlicht if

1. f is one-to-one.

2. f .0/ D 0.

3. f 0.0/ D 1.

In this circumstance we write f 2 S.

Schwarz-Christoffel mapping A conformal mapping from the upper half

plane to a polygon.

Schwarz-Christoffel parameter problem The problem of determining

the pre-vertices of a Schwarz-Christoffel mapping.

Schwarz lemma Let f be holomorphic on the unit disc. Assume that

1. jf .z/j � 1 for all z.

2. f .0/ D 0:

Then jf .z/j � jzj and jf 0.0/j � 1:

If either jf .z/j D jzj for some z ¤ 0 or if jf 0.0/j D 1, then f is a

rotation: f .z/ � ˛z for some complex constant ˛ of unit modulus. ��5.5.1.

Schwarz-Pick lemma Let f be holomorphic on the unit disc. Assume that

1. jf .z/j � 1 for all z.

2. f .a/ D b for some a; b 2 D.0; 1/:

Then

jf 0.a/j � 1 � jbj2
1 � jaj2

:

Moreover, if f .a1/ D b1 and f .a2/ D b2, then

ˇ̌
ˇ̌ b2 � b1
1 � b1b2

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌ a2 � a1
1 � a1a2

ˇ̌
ˇ̌ :
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There is a “uniqueness” result in the Schwarz-Pick Lemma. If either

jf 0.a/j D 1 � jbj2
1 � jaj2

or

ˇ̌
ˇ̌ b2 � b1
1 � b1b2

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ a2 � a1
1 � a1a2

ˇ̌
ˇ̌ ;

then the function f is a conformal self-mapping (one-to-one, onto holo-

morphic function) of D.0; 1/ to itself. ��5.5.2.

Schwarz reflection principle for harmonic functions Let V be a con-

nected open set in C: Suppose that V \ (real axis) D fx 2 R W a < x < bg:
Set U D fz 2 V W Im z > 0g: Assume that v W U ! R is harmonic and

that, for each � 2 V \ (real axis),

lim
U3z!�

v.z/ D 0:

Set eU D fz W z 2 U g: Define

bv.z/ D

8
<
:

v.z/ if z 2 U
0 if z 2 V \ (real axis)

�v.z/ if z 2 eU :

Thenbv is harmonic on U � � U [ eU [ fx 2 R W a < x < bg: ��7.5.2.

Schwarz reflection principle for holomorphic functions Let V be a con-

nected open set in C such that V \ (the real axis) D fx 2 R W a < x < bg
for some a; b 2 R: Set U D fz 2 V W Im z > 0g: Suppose that F W U ! C

is holomorphic and that

lim
U3z!x

ImF.z/ D 0

for each x 2 R with a < x < b: Define eU D fz 2 C W z 2 U g: Then there

is a holomorphic function G on U � � U [ eU [ fx 2 R W a < x < bg
such that G

ˇ̌
U

D F: In fact '.x/ � limU3z!x ReF.z/ exists for each

x D x C i0 2 .a; b/ and

G.z/ D

8
<
:

F.z/ if z 2 U
'.x/C i0 if z 2 fx 2 R W a < x < bg
F.z/ if z 2 eU :

��7:5:2

simple, closed curve A curve 
 W Œa; b� ! C such that 
.a/ D 
.b/ but

the curve crosses itself nowhere else. ��2.1.2.



“master” — 2010/12/8 — 16:23 — page 168 — #186
i

i

i

i

i

i

i

i

168 A Guide to Complex Variables

simple root Let f be either a polynomial or a holomorphic function on an

open set U . If f .P / D 0 but f 0.P / ¤ 0, then f is said to have a simple

root at P . See also multiple root. ��3.1.4.

simply connected A domain U in the plane is simply connected if one

of the following three equivalent conditions holds: it has no holes, or if its

complement has only one connected component, or if each closed curve in

U is homotopic to a point. ��1.4.2.

singularity Let f be a holomorphic function onD.P; r/ n fP g (that is, on

the disc minus its center). Then the point P is said to be a singularity of f .

��4.1.4.

singularity at 1 Fix a positive number R. Let f be holomorphic on the

set fz 2 C W jzj > Rg. Define G.z/ D f .1=z/ for jzj < 1=R. Then

� If G has a removable singularity at 0, then we say that f has a remov-

able singularity at 1.

� If G has a pole at 0, then we say that f has a pole at 1.

� IfG has an essential singularity at 0, then we say that f has an essential

singularity at 1.
��4.6.6.

small circle mean value property A continuous function h on a domain

U � C is said to have this property if, for each point P 2 U , there is a

number "P > 0 such that D.P; "P / � U and, for every 0 < " < "P ,

h.P / D 1

2�

Z 2�

0

h.P C "ei�/ d�:

A function with the small circle mean value property on U must be har-

monic on U .

smooth curve A curve 
 W Œa; b� ! C is smooth if 
 is a C k function

(where k suits the problem at hand, and may be 1) and 
 0 never vanishes.

��7.7.2.

smooth deformability Deformability in which the functionH.s; t/ is smooth.

See deformability. ��2.3.4.

solution of the Dirichlet problem on the disc Let f be a continuous

function on @D.0; 1/. Define

u.z/ D

8
<̂

:̂

1

2�

Z 2�

0

f .ei / � 1 � jzj2
jz � ei j2

d if z 2 D.0; 1/

f .z/ if z 2 @D.0; 1/:
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Then u is continuous on D.0; 1/ and harmonic on D.0; 1/: ��7.3.4.

special function These are particular functions that arise in theoretical

physics, partial differential equations, and mathematical analysis. See gamma

function, beta function.

stereographic projection A geometric method for mapping the plane to a

sphere. ��6.2.3.

subharmonic Let U � C be an open set and f a real-valued continuous

function on U: Suppose that for each D.P; r/ � U and every real-valued

harmonic function h defined on a neighborhood of D.P; r/ that satisfies

f � h on @D.P; r/, it holds that f � h on D.P; r/: Then f is said to be

subharmonic on U: ��7.7.3, ��7.7.4.

sub-mean value property Let f W U ! R be continuous. Then f satisfies

the sub-mean value property if, for each D.P; r/ � U ,

f .P / � 1

2�

Z 2�

0

f .P C rei�/d�: ��7.7.5

supremum Let S � R be a set of numbers. We say that a number M is a

supremum for S if s � M for all s 2 S and there is no number less thanM

that has the same property. Every set of real numbers that is bounded above

has a supremum. The term “least upper bound” has the same meaning.

topology A mathematical structure specifying open and closed sets and a

notion of convergence. ��1.1.5.

triangle inequality The statement that if z; w are complex numbers then

jz C wj � jzj C jwj: ��1.2.7

uniform convergence for a sequence Let fj be a sequence of functions

on a set S � C. The fj are said to converge uniformly to a function g on

S if for each " > 0 there is a number N > 0 such that if j > N , then

jfj .s/ � g.s/j < " for all s 2 S . In other words, fj .s/ converges to g.s/ at

the same rate at each point of S . ��3.1.5.

uniform convergence for a series The series

1X

jD1
fj .z/



“master” — 2010/12/8 — 16:23 — page 170 — #188
i

i

i

i

i

i

i

i

170 A Guide to Complex Variables

on a set S � C is said to converge uniformly to a limit function F.z/ if its

sequence of partial sums converges uniformly to F . Equivalently, the series

converges uniformly to F if for each " > 0 there is a number N > 0 such

that if J > N , then ˇ̌
ˇ̌
ˇ̌
JX

jD1
fj .z/ � F.z/

ˇ̌
ˇ̌
ˇ̌ < "

for all z 2 S . ��8.1.4.

uniform convergence on compact subsets for a sequence Let fj be a

sequence of functions on a set S � C. The fj are said to converge uni-

formly on compact subsets of S to a function g on S if, for each compact

K � S and for each " > 0, there is a N > 0 such that if j > N , then

jfj .k/ � g.k/j < " for all k 2 K. In other words, fj .k/ converges to g.k/

at the same rate at each point of K. ��8.1.1, ��8.1.3.

uniform convergence on compact subsets for a series The series

1X

jD1
fj .z/

on a set S � C is said to be uniformly convergent on compact sets to a

limit function F.z/ if, for each " > 0 and each compact K � S , there is an

N > 0 such that if J > N , then
ˇ̌
ˇ̌
ˇ̌
NX

jD1
f .z/ � F.z/

ˇ̌
ˇ̌
ˇ̌ < "

for every z 2 K. In other words, the series converges at the same rate at

each point of K. ��8.1.4, ��8.1.5.

uniformly Cauchy for a sequence Let gj be a sequence of functions on a

set S � C. The sequence is uniformly Cauchy if, for each " > 0, there is an

N > 0 such that for all j; k > N and all z 2 S we have jgj .z/�gk.z/j < ":
��8.1.2.

uniformly Cauchy for a series Let
P1
jD1 gj be a series of functions on

a set S � C. The series is uniformly Cauchy if, for each " > 0, there

is an N > 0 such that: for all M � L > N and all z 2 S we have

j
PM
jDL gj .z/j < ": ��8.1.5.

uniformly Cauchy on compact subsets for a sequence Let gj be a se-

quence of functions on a set S � C. The sequence is uniformly Cauchy
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on compact subsets of S if, for each K compact in S and each " > 0,

there is an N > 0 such that for all `; m > N and all k 2 K we have

jg`.k/ � gm.k/j < ": ��8.1.2.

uniformly Cauchy on compact subsets for a series Let
P1
jD1 gj be a

series of functions on a set S � C. The series is uniformly Cauchy on

compact subsets if, for each compact set K in S and each " > 0, there

is an N > 0 such that for all M � L > N and all k 2 K we have

j
PM
jDL gj .k/j < ": ��8.1.5.

uniqueness of analytic continuation Let f and g be holomorphic func-

tions on a domain U . If there is a disc D.P; r/ � U such that f and g

agree on D.P; r/, then f and g agree on all of U . More generally, if f

and g agree on a set with an accumulation point in U , then they agree at all

points of U . ��3.2.3.

unrestricted continuation Let W be a domain and let .f; U / be a func-

tion element in W: We say .f; U / admits unrestricted continuation in W if

there is an analytic continuation .ft ; Ut/ of .f; U / along every curve 
 that

begins at P and lies in W . ��9.3.4.

value of an infinite product If
Q1
jD1.1 C aj / converges, then we define

its value to be

2
4
N0Y

jD1
.1 C aj /

3
5 � lim

N!C1

NY

N0C1
.1 C aj /:

See convergence of an infinite product. ��8.1.10.

vanishes to order k A holomorphic function on a domain U vanishes to

order k � 1 at P 2 U if f .0/.P / D 0; : : : ; f .k�1/.P / D 0, but f .k/.P / ¤
0. ��4.1.5, ��4.6.7.

vanishing of an infinite product of functions The function f defined on

a domain U by the infinite product

f .z/ D
1Y

jD1
.1 C fj .z//

vanishes at a point z0 2 U if and only if fj .z0/ D �1 for some j: The

multiplicity of the zero at z0 is the sum of the multiplicities of the zeros of

the functions 1C fj at z0: ��8.1.13.
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Weierstrass factor These are the functions

E0.z/ D 1 � z

and, for 1 � p 2 Z,

Ep.z/ D .1 � z/ exp

�
z C z2

2
C � � � C zp

p

�
:

Weierstrass factors are used in the factorization of entire functions. See

Weierstrass factorization theorem. ��8.2.2

Weierstrass factorization theorem Let f be an entire function. Suppose

that f vanishes to order m at 0, m � 0. Let fang be the other zeros of f;

listed with multiplicities. Then there is an entire function g such that

f .z/ D zm � eg.z/
1Y

nD1
En�1

�
z

an

�
:

Here, for each j , Ej is a Weierstrass factor. ��8.2.5.

Weierstrass (canonical) product Let faj g1
jD1 be a sequence of non-zero

complex numbers with no accumulation point in the complex plane (note,

however, that the aj ’s need not be distinct). If fpng are positive integers that

satisfy
1X

nD1

�
r

janj

�pnC1
< 1

for every r > 0, then the infinite product

1Y

nD1
Epn

�
z

an

�

(called a Weierstrass product) converges uniformly on compact subsets of

C to an entire function F: The zeros of F are precisely the points fang,

counted with multiplicity. ��8.2.2, ��8.2.3.

Weierstrass theorem Let U � C be any open set. Let a1; a2; : : : be a

finite or infinite sequence in U (possibly with repetitions) that has no ac-

cumulation point in U: Then there exists a holomorphic function f on U

whose zero set is precisely faj g: ��8.3.2.

whole number See integer.

winding number See index.
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zero If f is a polynomial or a holomorphic function on an open set U , then

P 2 U is a zero of f if f .P / D 0. See root of a function or polynomial.

��3.2.1.

zero set If f is a polynomial or a holomorphic function on an open set U ,

then the zero set of f is Z D fz 2 U W f .z/ D 0g. ��3.2.1.

zeta function For Re z > 1, define

�.z/ D
1X

nD1

1

nz
D

1X

nD1
e�z logn:
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Ck function, 12

"P -mean value property, 101

i , definition of, 2

accumulation point, 39

analytic continuation

along a curve, 131

equivalence of two, 132

examples of, 125, 130

fundamental issue, 133

of a function element, 129

unambiguity of, 132

angles in complex analysis, 8

annuli

conformal equivalence of, 93

conformal mapping of, 92

annulus of convergence of a Laurent se-

ries, 46

argument of a complex number, 11

argument principle, 73, 74

for meromorphic functions, 74

arguments and multiplication, 11

associative law, 6

associativity of addition, 1

associativity of multiplication, 1

barriers, 108

and the Dirichlet problem, 108

behavior near an isolated singularity, 44

biholomorphic, 83

biholomorphic mappings of the plane,

84

boundary maximum and minimum prin-

ciples for harmonic functions, 98

boundary maximum modulus theorem,

79

boundary uniqueness for harmonic func-

tions, 99

bounded on compact sets, 122

branch of a holomorphic function, 130

branches of log z, 139

Casorati-Weierstrass theorem, 45

Cauchy condition for a sequence, 111

Cauchy condition for a series, 112

Cauchy condition, uniform, 111

Cauchy estimates, 33

Cauchy integral formula, 28

general form, 28

Cauchy integral formula for an annulus,

48

Cauchy integral theorem, 27, 28

general form, 28

Cauchy-Riemann equations, 13, 14

Cauchy-Schwarz inequality, 11

Cayley transform, 89

cis notation, 8

closed set, 3

coefficients of a Laurent expansion, cal-

culating, 52

commutative law, 6

commutativity of addition, 1

commutativity of multiplication, 1

compact set, 36

complex derivative, 15

complex differentiability, 24

complex line integral, 22

complex number system, 1

complex number,

additive inverse for, 5

argument, 11

argument of, 11

177
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conjugate, 2

imaginary part, 2

modulus, 2

polar representation, 8

real part, 2

roots of, 9

complex numbers as a field, 5

complex numbers,

addition, 2

algebraic operations, 1

multiplication, 2

multiplicative inverse, 5

notation for, 2

standard form, 2

topology of, 3

conformal, 16, 24, 25, 83

conformal mapping, 16

of annuli, 92

conformal mappings, 83

of the plane, 84

conformal self-mappings of the extended

plane, 87

conformal self-maps of the plane, 83

conformality, 24

characterization of holomorphicity in

terms of, 25

continuation of a holomorphic function,

125

continuation, unrestricted, 134

continuity, definitions of, 76

continuously differentiable function, 12,

20

convergence of a power series, 37

convexity, 105

cosine function, 7

counterclockwise, 19

curve, 19

closed, 20

simple, closed, 20

deformability of curves, 30

deleted neighborhood, 44

direct analytic continuation, 129

Dirichlet problem, 100

on a general disc, solution of, 101

on a general domain, 105

on the disc, 100

on the disc, solution of, 100, 101

conditions on the boundary for solv-

ing, 105

solution of for a general domain, 109

uniqueness of the solution, 105

disc of convergence of a power series,

37, 38

disc

closed, 3

open, 3

discrete set, 39

construction of, 119

distributive law, 6

domain, 12, 78

of convergence of a Laurent series,

47

domains indistinguishable from the point

of view of complex analysis, 83

domains of existence for holomorphic

functions, 120

domains with one hole, 92, 93

doubly infinite series, convergence of,

46

entire function, 34

with a removable singularity at in-

finity, 70

entire functions with prescribed zeros,

118

equivalence classesof function elements,

130

essential singularities in terms of Lau-

rent series, 49

essential singularity, 44, 69

at infinity, 69

Euclidean algorithm, 35

Euler formula, 7

exponential function, 7

exponential using power series, 7

exponentiation, laws of, 7

extended complex plane, 88

field, 6

generated by the ring of holomorphic

functions, 120
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function element, 129

functions with multiple singularities, 52

FundamentalTheorem of Algebra, 6, 35,

77

Fundamental Theorem of Calculus, 21

FundamentalTheorem of Calculus along

curves, 21

generalized circles, 89

global analytic functions, 129, 130

globally defined analytic functions, 134

Goursat’s theorem, 24

harmonic conjugate, 17, 18, 96

harmonic function, 16, 95

as the real part of a holomorphic func-

tion, 96

smoothness of, 96

harmonic functions, 95

as real parts of holomorphic func-

tions, 96

limit of a sequence of, 102

real- and complex-valued, 96

reflection of, 102

Harnack’s inequality, 104

Harnack’s principle, 104

holomorphic function, 13–15

alternative terminology for, 16

definition of, 14

derivatives of, 33

pre-images of, 76

holomorphic functions, 12

and polynomials, 12

and the complex derivative, 16

by way of partial differential equa-

tions, 12

in terms of derivatives, 13

on a punctured domain, 44

with isolated singularities, 49

holomorphicity and the complex deriva-

tive, 24

homeomorphism, 88, 91

homotopic, 133

homotopy, 133

concept of, 133

fixed endpoint, 134

Hurwitz’s theorem, 78

imaginary part of a complex-valued func-

tion, 12

independence of parametrization, 23

index, 53

as an integer-valued function, 54

of a curve with respect to a point, 53

notation for, 53

inequalities, fundamental, 11

infinite product, 113

of holomorphic functions, 116

of scalars, 113

convergence of, 113, 114

multiplicity of zeros of, 116

uniform convergence of, 116, 117

value of, 114

vanishing of, 116

infinite products, disallowed, 114

integrals on curves, 21

integrals

calculation of using residues, 55

properties of, 23

isolated singular point, 44

isolated singularities, 43

Laplace operator, 16

Laplace’s equation, 16, 95

Laplacian, 16, 95

Laurent expansion

at 1, 69

existence of, 47, 48

uniqueness of, 47

Laurent series, 46

convergence of, 46

limit of a sequenceof holomorphic func-

tions, 36

linear fractional transformations, 86, 88

and the point at infinity, 86

lines as generalized circles, 89

Liouville’s theorem, 34

generalization of, 34

location of poles, 74

location of zeros, 72

Möbius transformation, 81
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maximum modulus principle, 79

maximum principle

for harmonic functions, 97

for subharmonic functions, 107

on an unbounded domain, 80

mean value property for harmonic func-

tions, 98

meromorphic at 1, 69, 70

meromorphic functions, 67

as quotients of holomorphic functions,

68

examples of, 68

in the extended plane, 70

with infinitely many poles, 68

minimum principle, 80

for harmonic functions, 97

lack of for subharmonic functions,

107

Mittag-Leffler theorem, 121

alternative version, 121

monodromy theorem, 134

Montel’s theorem, 122

first version, 122

second version, 122

Morera’s theorem, 28

multiple singularities, 67

multiplicative identity, 2

multiplicity of a root, 35

normal convergence, 112, 122

of a sequence, 112

of series, 112

normal family, 122

examples of, 123

north pole, 87

open mapping theorem, 75

open mappings, 76

open set, 3

partial product, 113

Phragmen-Lindelöf theorem, 81

Picard’s Great Theorem, 50, 140

Picard’s Little Theorem, 140

planar domains, classification of, 93

point at infinity, 88

Poisson integral formula, 99

Poisson kernel, 100

polar form of a complex number, 7

pole, 44, 69

at infinity, 69

of order k, 55

poles in terms of Laurent series, 49

poles, location of, 74

polynomials, factorization of, 35

power series, 16, 37

and holomorphic functions, 37

differentiation of, 37

partial sums of, 37

representation of a holomorphic func-

tion, 36

prescribing principal parts, 121

principal branch of a holomorphic func-

tion, 127, 136

principal part of a function, 50

principal parts, prescribing, 121

principle of persistence of functional re-

lations, 41

radius of convergence of a power series,

37

rational functions, characterization of, 70

real part of a complex-valued function,

12

reals as a subfield of the complex num-

bers, 6

removable singularities in terms of Lau-

rent series, 49

removable singularity, 69

at infinity, 69

residue theorem, 52, 54

residues

calculus of, 52

method for calculating, 55

notation for, 53

Riemann hypothesis, 164

Riemann mapping theorem, 91

Riemann removable singularities theo-

rem, 44, 45

Riemann sphere, 87, 88

conformal self-mappings of, 89

Riemann surface
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examples of, 136

for log z, 139

for
p

z, 138

holomorphic functions on, 138

idea of, 135

projection in the definition of, 136

topology of, 135, 136

Riemann surfaces and branches of a holo-

morphic function, 136

Riemann surfaces in a general context,

140

ring, 120

Rouché’s theorem, 76

and the FundamentalTheorem of Al-

gebra, 77

and the winding number, 77

applications of, 77

scalar multiplication, 2

Schwarz lemma, 81

uniqueness in, 81

Schwarz reflection principle, 103

for harmonic functions, 102

for holomorphic functions, 103

general versions of, 103

Schwarz’s lemma, 81

Schwarz-Pick lemma, 82

uniqueness in, 82

self-maps of the disc, 81

simple root, 35

simply connected, 17, 91

sine function, 7

singular set, 67

singularities

at infinity, 68

classification of, 44

classification of in terms of Laurent

series, 49

stereographic projection, 87

sub-mean value property, 107

subharmonic, 106

subharmonic functions,

definition of, 106

characterizations of, 107

motivation for, 105

properties of, 107

surfaces, gluing of, 137

Triangle Inequality, 11

uniform Cauchy condition for a series,

112

uniform convergence on compact sub-

sets, 111

unique continuation for holomorphic func-

tions, 39

uniqueness of analytic continuation, 40

along a curve, 132

unrestricted continuation, 134

value ˇ to order n, 72

value distribution theory, 140

Weierstrass factorization theorem, 119

Weierstrass factorization, motivation for,

117

Weierstrass factors, 117

Weierstrass product, 118

convergence of, 118

Weierstrass’s theorem, 119

concept of, 119

winding number, 53

zero of order n, 72

zero set of a holomorphic function, 39

zero

multiplicity of, 72

order of, 72

simple, 72

zeros of a holomorphic function, 39

counting, 72

locating, 71



“master” — 2010/12/8 — 16:23 — page 182 — #200
i

i

i

i

i

i

i

i



“master” — 2010/12/8 — 16:23 — page 183 — #201
i

i

i

i

i

i

i

i

About the Author

Steven G. Krantz was born in San Francisco, California and grew up in

Redwood City, California. He received his undergraduate degree from the

University of California at Santa Cruz and the Ph.D. from Princeton Univer-

sity. Krantz has held faculty positions at UCLA, Princeton University, Penn

State University, and Washington University in St. Louis. He is currently

Deputy Director of the American Institute of Mathematics.

Krantz has written 160 scholarly papers and over 50 books. At least five

of the latter are about aspects of complex analysis. Krantz is the holder of

the Chauvenet Prize and the Beckenbach Book Award, both awarded by the

Mathematical Association of America. He won the UCLA Alumni Asso-

ciation Distinguished Teaching Award. He is the author of How to Teach

Mathematics.

He has directed 16 Ph.D. students. Krantz serves on the editorial boards

of six journals and is Editor-in-Chief of two.

183


	Cover
	Copyright page
	Title page
	Preface
	Contents
	1 The Complex Plane
	1.1 Complex Arithmetic
	1.1.1  The Real Numbers
	1.1.2 The Complex Numbers
	1.1.3 Complex Conjugate
	1.1.4 Modulus of a Complex Number
	1.1.5 The Topology of the Complex Plane
	1.1.6 The Complex Numbers as a Field
	1.1.7 The Fundamental Theorem of Algebra

	1.2 The Exponential and Applications
	1.2.1 The Exponential Function
	1.2.2 The Exponential Using Power Series
	1.2.3 Laws of Exponentiation
	1.2.4 Polar Form of a Complex Number
	1.2.5 Roots of Complex Numbers
	1.2.6 The Argument of a Complex Number
	1.2.7 Fundamental Inequalities

	1.3 Holomorphic Functions
	1.3.1 Continuously Differentiable and C^k Functions
	1.3.2 The Cauchy-Riemann Equations
	1.3.3 Derivatives
	1.3.4 Definition of Holomorphic Function
	1.3.5 The Complex Derivative
	1.3.6 Alternative Terminology for Holomorphic Functions

	1.4 Holomorphic and Harmonic Functions
	1.4.1 Harmonic Functions
	1.4.2 How They are Related


	2 Complex Line Integrals
	2.1 Real and Complex Line Integrals
	2.1.1 Curves
	2.1.2 Closed Curves
	2.1.3 Differentiable and C^k Curves
	2.1.4 Integrals on Curves
	2.1.5 The Fundamental Theorem of Calculus along Curves
	2.1.6 The Complex Line Integral
	2.1.7 Properties of Integrals

	2.2 Complex Differentiability and Conformality
	2.2.1 Limits
	2.2.2 Holomorphicity and the Complex Derivative
	2.2.3 Conformality

	2.3 The Cauchy Integral Formula and Theorem
	2.3.1 The Cauchy Integral Theorem, Basic Form
	2.3.2 The Cauchy Integral Formula
	2.3.3 More General Forms of the Cauchy Theorems
	2.3.4 Deformability of Curves

	2.4 A Coda on the Limitations of The Cauchy Integral Formula

	3 Applications of the Cauchy Theory
	3.1 The Derivatives of a Holomorphic Function
	3.1.1 A Formula for the Derivative
	3.1.2 The Cauchy Estimates
	3.1.3 Entire Functions and Liouville’s Theorem
	3.1.4 The Fundamental Theorem of Algebra
	3.1.5 Sequences of Holomorphic Functions and their Derivatives
	3.1.6 The Power Series Representation of a Holomorphic Function

	3.2 The Zeros of a Holomorphic Function
	3.2.1 The Zero Set of a Holomorphic Function
	3.2.2 Discreteness of the Zeros of a Holomorphic Function
	3.2.3 Discrete Sets and Zero Sets
	3.2.4 Uniqueness of Analytic Continuation


	4 Isolated Singularities and Laurent Series
	4.1 The Behavior of a Holomorphic Function near an Isolated Singularity
	4.1.1 Isolated Singularities
	4.1.2 A Holomorphic Function on a Punctured Domain
	4.1.3 Classification of Singularities
	4.1.4 Removable Singularities, Poles, and Essential Singularities
	4.1.5 The Riemann Removable Singularities Theorem
	4.1.6 The Casorati-Weierstrass Theorem

	4.2 Expansion around Singular Points
	4.2.1 Laurent Series
	4.2.2 Convergence of a Doubly Infinite Series
	4.2.3 Annulus of Convergence
	4.2.4 Uniqueness of the Laurent Expansion
	4.2.5 The Cauchy Integral Formula for an Annulus
	4.2.6 Existence of Laurent Expansions
	4.2.7 Holomorphic Functions with Isolated Singularities
	4.2.8 Classification of Singularities in Terms of Laurent Series

	4.3 Examples of Laurent Expansions
	4.3.1 Principal Part of a Function
	4.3.2 Algorithm for Calculating the Coefficients of the Laurent Expansion

	4.4 The Calculus of Residues
	4.4.1 Functions with Multiple Singularities
	4.4.2 The Residue Theorem
	4.4.3 Residues
	4.4.4 The Index or Winding Number of a Curve about a Point
	4.4.5 Restatement of the Residue Theorem
	4.4.6 Method for Calculating Residues
	4.4.7 Summary Charts of Laurent Series and Residues

	4.5 Applications to the Calculation of Definite Integrals and Sums
	4.5.1 The Evaluation of Definite Integrals
	4.5.2 A Basic Example of the Indefinite Integral
	4.5.3 Complexification of the Integrand
	4.5.4 An Example with a More Subtle Choice of Contour
	4.5.5 Making the Spurious Part of the Integral Disappear
	4.5.6 The Use of the Logarithm
	4.5.7 Summing a Series Using Residues

	4.6 Singularities at Infinity
	4.6.1 Meromorphic Functions
	4.6.2 Definition of Meromorphic Function
	4.6.3 Examples of Meromorphic Functions
	4.6.4 Meromorphic Functions with Infinitely Many Poles
	4.6.5 Singularities at Infinity
	4.6.6 The Laurent Expansion at Infinity
	4.6.7 Meromorphic at Infinity
	4.6.8 Meromorphic Functions in the Extended Plane


	5 The Argument Principle
	5.1 Counting Zeros and Poles
	5.1.1 Local Geometric Behavior of a Holomorphic Function
	5.1.2 Locating the Zeros of a Holomorphic Function
	5.1.3 Zero of Order n
	5.1.4 Counting the Zeros of a Holomorphic Function
	5.1.5 The Argument Principle
	5.1.6 Location of Poles
	5.1.7 The Argument Principle for Meromorphic Functions

	5.2 The Local Geometry of Holomorphic Functions
	5.2.1 The Open Mapping Theorem

	5.3 Further Results on the Zeros of Holomorphic Functions
	5.3.1 Rouche’s Theorem
	5.3.2 Typical Application of Rouche’s Theorem
	5.3.3 Rouche’s Theorem and the Fundamental Theorem of Algebra
	5.3.4 Hurwitz’s Theorem

	5.4 The Maximum Principle
	5.4.1 The Maximum Modulus Principle
	5.4.2 Boundary Maximum Modulus Theorem
	5.4.3 The Minimum Principle
	5.4.4 The Maximum Principle on an Unbounded Domain

	5.5 The Schwarz Lemma
	5.5.1 Schwarz’s Lemma
	5.5.2 The Schwarz-Pick Lemma


	6 The Geometric Theory of Holomorphic Functions
	6.1 The Idea of a Conformal Mapping
	6.1.1 Conformal Mappings
	6.1.2 Conformal Self-Maps of the Plane

	6.2 Linear Fractional Transformations
	6.2.1 Linear Fractional Mappings
	6.2.2 The Topology of the Extended Plane
	6.2.3 The Riemann Sphere
	6.2.4 Conformal Self-Maps of the Riemann Sphere
	6.2.5 The Cayley Transform
	6.2.6 Generalized Circles and Lines
	6.2.7 The Cayley Transform Revisited
	6.2.8 Summary Chart of Linear Fractional Transformations

	6.3 The Riemann Mapping Theorem
	6.3.1 The Concept of Homeomorphism
	6.3.2 The Riemann Mapping Theorem
	6.3.3 The Riemann Mapping Theorem: Second Formulation

	6.4 Conformal Mappings of Annuli
	6.4.1 A Riemann Mapping Theorem for Annuli
	6.4.2 Conformal Equivalence of Annuli
	6.4.3 Classification of Planar Domains


	7 Harmonic Functions
	7.1 Basic Properties of Harmonic Functions
	7.1.1 The Laplace Equation
	7.1.2 Definition of Harmonic Function
	7.1.3 Real- and Complex-Valued Harmonic Functions
	7.1.4 Harmonic Functions as the Real Parts of Holomorphic Functions
	7.1.5 Smoothness of Harmonic Functions

	7.2 The Maximum Principle and the Mean Value Property
	7.2.1 The Maximum Principle for Harmonic Functions
	7.2.2 The Minimum Principle for Harmonic Functions
	7.2.3 The Boundary Maximum and Minimum Principles
	7.2.5 Boundary Uniqueness for Harmonic Functions

	7.3 The Poisson Integral Formula
	7.3.1 The Poisson Integral
	7.3.2 The Poisson Kernel
	7.3.3 The Dirichlet Problem
	7.3.4 The Solution of the Dirichlet Problem on the Disc
	7.3.5 The Dirichlet Problem on a General Disc

	7.4 Regularity of Harmonic Functions
	7.4.1 The Mean Value Property on Circles
	7.4.2 The Limit of a Sequence of Harmonic Functions

	7.5 The Schwarz Reflection Principle
	7.5.1 Reflection of Harmonic Functions
	7.5.2 Schwarz Reflection Principle for Harmonic Functions
	7.5.3 The Schwarz Reflection Principle for Holomorphic Functions
	7.5.4 More General Versions of the Schwarz Reflection Principle

	7.6 Harnack’s Principle
	7.6.1 The Harnack Inequality
	7.6.2 Harnack’s Principle

	7.7 The Dirichlet Problem and Subharmonic Functions
	7.7.1 The Dirichlet Problem
	7.7.2 Conditions for Solving the Dirichlet Problem
	7.7.3 Motivation for Subharmonic Functions
	7.7.4 Definition of Subharmonic Function
	7.7.5 Other Characterizations of Subharmonic Functions
	7.7.6 The Maximum Principle
	7.7.7 Lack of A Minimum Principle
	7.7.8 Basic Properties of Subharmonic Functions
	7.7.9 The Concept of a Barrier

	7.8 The General Solution of the Dirichlet Problem
	7.8.1 Enunciation of the Solution of the Dirichlet Problem


	8 Infinite Series and Products
	8.1 Basic Concepts Concerning Infinite Sums and Products
	8.1.1 Uniform Convergence of a Sequence
	8.1.2 The Cauchy Condition for a Sequence of Functions
	8.1.3 Normal Convergence of a Sequence
	8.1.4 Normal Convergence of a Series
	8.1.5 The Cauchy Condition for a Series
	8.1.6 The Concept of an Infinite Product
	8.1.7 Infinite Products of Scalars
	8.1.8 Partial Products
	8.1.9 Convergence of an Infinite Product
	8.1.10 The Value of an Infinite Product
	8.1.11 Products That Are Disallowed
	8.1.12 Condition for Convergence of an Infinite Product
	8.1.13 Infinite Products of Holomorphic Functions
	8.1.14 Vanishing of an Infinite Product
	8.1.15 Uniform Convergence of an Infinite Product of Functions
	8.1.16 Condition for the Uniform Convergence of an Infinite Product of Functions

	8.2 The Weierstrass Factorization Theorem
	8.2.1 Prologue
	8.2.2 Weierstrass Factors
	8.2.3 Convergence of the Weierstrass Product
	8.2.4 Existence of an Entire Function with Prescribed Zeros
	8.2.5 The Weierstrass Factorization Theorem

	8.3 The Theorems of Weierstrass and Mittag-Leffler
	8.3.1 The Concept of Weierstrass’s Theorem
	8.3.2 Weierstrass’s Theorem
	8.3.3 Construction of a Discrete Set
	8.3.4 Domains of Existence for Holomorphic Functions
	8.3.5 The Field Generated by the Ring of Holomorphic Functions
	8.3.6 The Mittag-Leffler Theorem
	8.3.7 Prescribing Principal Parts

	8.4 Normal Families
	8.4.1 Normal Convergence
	8.4.2 Normal Families
	8.4.3 Montel’s Theorem, First Version
	8.4.4 Montel’s Theorem, Second Version
	8.4.5 Examples of Normal Families


	9 Analytic Continuation
	9.1 Definition of an Analytic Function Element
	9.1.1 Continuation of Holomorphic Functions
	9.1.2 Examples of Analytic Continuation
	9.1.3 Function Elements
	9.1.4 Direct Analytic Continuation
	9.1.5 Analytic Continuation of a Function
	9.1.6 Global Analytic Functions
	9.1.7 An Example of Analytic Continuation

	9.2 Analytic Continuation along a Curve
	9.2.1 Continuation on a Curve
	9.2.2 Uniqueness of Continuation along a Curve

	9.3 The Monodromy Theorem
	9.3.1 Unambiguity of Analytic Continuation
	9.3.2 The Concept of Homotopy
	9.3.3 Fixed Endpoint Homotopy
	9.3.4 Unrestricted Continuation
	9.3.5 The Monodromy Theorem
	9.3.6 Monodromy and Globally Defined Analytic Functions

	9.4 The Idea of a Riemann Surface
	9.4.1 What is a Riemann Surface?
	9.4.2 Examples of Riemann Surfaces
	9.4.3 The Riemann Surface for the Square Root Function
	9.4.4 Holomorphic Functions on a Riemann Surface
	9.4.5 The Riemann Surface for the Logarithm
	9.4.6 Riemann Surfaces in General

	9.5 Picard’s Theorems
	9.5.1 Value Distribution for Entire Functions
	9.5.2 Picard’s Little Theorem
	9.5.3 Picard’s Great Theorem
	9.5.4 The Little Theorem, the Great Theorem, and the Casorati-Weierstrass Theorem


	Glossary of Terms from Complex Variable Theory and Analysis
	Bibliography
	Index
	About the Author

