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PREFACE

Complex variables, and its more advanced version, complex analysis, is one of the 

most fascinating areas in pure and applied mathematics. It all started when 

mathematicians were mystified by equations that could only be solved if you could 

take the square roots of negative numbers. This seemed bizarre, and back then 

nobody could imagine that something as strange as this could have any application 

in the real world. Thus the term imaginary number was born and the area seemed 

so odd it became known as complex. 

These terms have stuck around even though the theory of complex variables has 

found a home as a fundamental part of mathematics and has a wide range of physical 

applications. In mathematics, it turns out that complex variables are actually an 

extension of the real variables. 

A student planning on becoming a professional pure or applied mathematician 

should definitely have a thorough grasp of complex analysis.

Perhaps the most surprising thing about complex variables is the wide range of 

applications it touches in physics and engineering. In many of these applications, 

complex variables proves to be a useful tool. For example, because of Euler’s 

identity, a formula we use over and over again in this book, electromagnetic fields 

are easier to deal with using complex variables. 

Other areas where complex variables plays a role include fluid dynamics, the study 

of temperature, electrostatics, and in the evaluation of many real integrals of functions 

of a real variable.

In quantum theory, we meet the most surprising revelation about complex 

variables. It turns out they are not so imaginary at all. Instead, they appear to be as 

“real” as real numbers and even play a fundamental role in the working of physical 

systems at the microscopic level.

In the limited space of this book, we won’t be able to cover the physical 

applications of complex variables. Our purpose here is to build a solid foundation 

to get you started on the subject. This book is filled with a large number of solved 

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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examples (many of which are at the advanced undergraduate level) that will show 

you how to tackle problems in complex variables, with explicit detail. 

Topics covered include:

• Complex numbers, variables, and the polar representation

• Limits and continuity

• Derivatives and the Cauchy-Riemann equations

• Elementary functions like the exponential and trigonometric functions

• Complex integration

• The residue theorem

• Conformal mapping

• Sequences, infi nite series, and Laurent series

• The gamma and zeta functions

• Solving boundary value problems

This book should provide the reader with a good introduction to the subject of 

complex variables. After completing this book, you will be able to deepen your 

knowledge of the subject by consulting one of the excellent texts listed in the 

references at the end of the book.

I would like to thank Steven G. Krantz for his very thoughtful and thorough 

review of this manuscript.

David McMahon



CHAPTER 1

Complex Numbers

In the early days of modern mathematics, people were puzzled by equations like 

this one:

 x
2 1 0+ =  

The equation looks simple enough, but in the sixteenth century people had no 

idea how to solve it. This is because to the common-sense mind the solution seems 

to be without meaning:

 x = ± −1

For this reason, mathematicians dubbed −1 an imaginary number. We abbreviate 

this by writing “i” in its place, that is:

 i = −1  (1.1)

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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So we see that i
2 1= − , and we can solve equations like x

2 1 0+ = . Note that 

electrical engineers use j = −1, but we will stick with the standard notation used 

in mathematics and physics.

The Algebra of Complex Numbers
More general complex numbers can be written down. In fact, using real numbers a

and b we can form a complex number:

 c a ib= +  (1.2)

We call a the real part of the complex number c and refer to b as the imaginary part 

of c. The numbers a and b are ordinary real numbers. Now let c a ib= +  and  k m in= +  
be two complex numbers. Here m and n are also two arbitrary real numbers (not 

integers, we use m and n because I am running out of symbols to use). We can form 

the sum and difference of two complex numbers by adding (subtracting) their real 

and imaginary parts independently. That is:

 
c k a ib m in a m i b n

c k a ib m in

+ = + + + = + + +
− = + − + =

( ) ( )

( ) (aa m i b n− + −) ( )

To multiply two complex numbers, we just multiply out the real and imaginary 

parts term by term and use i
2 1= − , then group real and imaginary parts at the end:

 

ck a ib m in am ian ibm i bn

am ian ibm

= + + = + + +
= + + −

( )( ) 2

bbn

am bn i an bm= − + +( ) ( )

To divide two complex numbers and write the result in the form c a ib= + , we’re 

going to need a new concept, called the complex conjugate. We form the complex 

conjugate of any complex number by letting i i→ − . The complex conjugate is 

indicated by putting a bar on top of the number or variable. Again, let c a ib= + . 

Then the complex conjugate is

 c a ib= −  (1.3)

It’s easy to see that if c is purely real, that is, c a= , then the complex conjugate is 

c a a= = . On the other hand, if c is purely imaginary, then c ib= . This means that 

c ib ib c= = − = − . Taking the complex conjugate twice gives back the original number:

 c a ib a ib c= − = + =



CHAPTER 1 Complex Numbers 3

Notice what happens when we multiply a complex number by its conjugate:

 
cc a ib a ib a iab iba i b

a i b a

= + − = − + −

= − = +

( )( ) 2 2 2

2 2 2 2
bb

2

We call the quantity cc  the modulus of the complex number c and write

 c cc
2 =  (1.4)

Note that in physics, the complex conjugate is often denoted by an asterisk, that 

is, c
*. The modulus of a complex number has geometrical signifi cance. This is 

because we can view a complex number as a vector in the plane with components 

given by the real and imaginary parts. The length of the vector corresponds to the 

modulus. We will discuss this concept again later (see Fig. 1.1). 

Now we can fi nd the result of c k/ , provided that k ≠ 0 of course. We have

 c

k

a ib

m in

a ib

m in

m in

m in

am ibm ian

=
+
+

=
+
+

−
−

=
+ −

( )

( )

++
+

=
+
+

+
−
+

bn

m n

am bn

m n
i

bm an

m n

2 2

2 2 2 2

y

x
Re

Im

z = x + iy

z = x – iy

r

θ

Figure 1.1 The complex plane, showing z = x + iy and its complex conjugate 

as vectors.
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We say that two complex numbers are equal if and only if their real and imaginary 

parts are equal. That is, c a ib= +  and k m in= +  are equal if and only if

 

a m b n

c k

= =
⇒ =

Complex Variables
In the early days, all of this probably seemed like a neat little trick that could be 

used to solve obscure equations, and not much more than that. But in reality it 

opened up a Pandora’s box of possibilities that is still being dealt with today. It 

turns out that an entire branch of analysis called complex analysis can be constructed, 

which really supersedes real analysis. Complex analysis has not only transformed 

the world of mathematics, but surprisingly, we fi nd its application in many areas of 

physics and engineering. For example, we can use complex numbers to describe the 

behavior of the electromagnetic fi eld. In atomic systems, which are described by 

quantum mechanics, complex numbers and complex functions play a central role, 

and actually appear to be a fundamental part of nature. Complex numbers are often 

hidden. For example, as we’ll see later, the trigonometric functions can be written 

down in surprising ways like:

 
cos sinθ θ

θ θ θ θ

=
+

=
+− −

e e e e

i

i i i i

2 2

It appears that complex numbers are not so “imaginary” after all; rather they are 

used in a wide variety of engineering and science applications.

The fi rst step in moving forward toward a calculus based on complex numbers is 

to abstract the notion of a complex number to a complex variable. This is the same as 

abstracting the notion of a real number to a variable like x that we can use to solve 

algebraic equations. We use z to represent a complex variable. Its real and imaginary 

parts are represented by the real variables x and y, respectively. So we write

 z x iy= +  (1.5)

The complex conjugate is then

 
z x iy= −

A complex number and its conjugate have an interesting origin in the study of 

polynomials with real coeffi cients. Let p be a polynomial with real coeffi cients and 

suppose that a complex number z is a root of p. Then it follows that the complex 

conjugate z  is a root of p also.
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The modulus of the complex variable z is given by

 z x y z x y
2 2 2 2 2= + ⇒ = +  (1.6)

The same rules for addition, subtraction, multiplication, and division we illustrated 

with complex numbers apply to complex variables. So if z x iy= +  and w u iv= +  then

 
zw x iy u iv xu yv i yu xv= + + = − + +( )( ) ( ) ( )

We can graph complex numbers in the x-y plane, which we sometimes call the 

complex plane or the z plane. The y axis is the imaginary axis and the x axis is the 

real axis. A complex number z x iy= +
 
can be depicted as a vector in the complex 

plane, with a length r given by its modulus:

 r z x y= = +2 2  (1.7)

We also keep track of the angle θ  that this vector makes with the real axis. The 

complex conjugate is a vector refl ected across the real axis. This is easy to understand 

since we form the conjugate by letting y y→ − . These ideas are illustrated in Fig. 1.1.

Let z x iy= +  and w u iv= +  be two complex variables. Then

 

z w z w

zw z w

z

w

z

w

+ = +

=







=

  (1.8)

These properties are easy to demonstrate. For example, we prove the fi rst one:

 

z w x iy u iv

x u i y v

x u i y v

+ = + + +

= + + +
= + − +

( ) ( )

( ) ( )

( ) ( )

== − + −
= +

x iy u iv

z w

Rules for the Complex Conjugate
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If z ≠ 0, we can form the multiplicative inverse of z which we denote by z−1. The 

inverse has the property that

 zz
− =1 1 (1.9)

It is given by

 z
z

z z

− = =1

2

1
 (1.10)

We can verify that this works explicitly in two ways:

 

zz z
z

z

z

z

zz x iy
x iy

x y

x y

x

−

−

= = =

= +
−
+

=
+

1

2

2

2

1

2 2

2 2

1

( )
22 2

1
+

=
y

Notice that the inverse gives us a way to write the quotient of two complex numbers, 

allowing us to do division:

 z

w

zw

ww

zw

w
= =

2

EXAMPLE 1.1

Find the complex conjugate, sum, product, and quotient of the complex numbers

 z i w i= − = +2 3 1

SOLUTION

To fi nd the complex conjugate of each complex number we let i i→ − . Hence

 

z i i

w i i

= − = +

= + = −

2 3 2 3

1 1
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The sum of the two complex numbers is formed by adding the real and imaginary 

parts, respectively:

 z w i i i i+ = − + + = + + − + = −( ) ( ) ( ) ( )2 3 1 2 1 3 1 3 2

We can form the product as follows:

 

zw i i

i i i

i

= − +

= − + −
= + + − +
= −

( )( )

( ) ( )

2 3 1

2 3 2 3

2 3 3 2

5

2

ii

 

Finally, we use the complex conjugate of w to form the quotient:

 

z

w

z

w

w

w

i

i

i

i

i i
= 





=
−
+

−
−

=
− −( )

( )

( )

( )

2 3

1

1

1

2 3 2 ++
+ − −

=
− −

+
=

− −3

1

2 3 5

1 1

1 5

2

2

2

i

i i i

i i

EXAMPLE 1.2

Earlier, we said that if z x iy= + , then x is the real part of z [denoted by writing 

x z= Re( )  say] and that y is the imaginary part of z [ y z= Im( )]. Derive expressions 

that allow us to defi ne the real and imaginary parts of a complex number using only 

z and its complex conjugate.

SOLUTION

First let’s write down the complex variable and its complex conjugate:

 
z x iy z x iy= + = −

Now we see that this is just simple algebra. We can eliminate y from both equations 

by adding them:

 
z z x iy x iy x+ = + + − = 2

So, we fi nd that the real part of z is given by

 Re( )z x
z z

= =
+
2

  (1.11)
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Now, let’s subtract the complex conjugate from z instead, which allows us to 

eliminate x:

 

z z x iy x iy x iy x iy iy

z y
z z

i

− = + − − = + − + =

⇒ = =
−

( )

Im( )

2

2

  

(1.12)

EXAMPLE 1.3

Find z
2
if z i i i= + − +( ) ( )]2 4 1 2/[ .

SOLUTION

Note that when the modulus sign is not present, we square without computing the 

complex conjugate. That is z zz z z z
2 2= = ⋅but , which is a different quantity. So 

in this case we have

z
i

i i

i

i i

2

2

2

4 1 2

2

4 1 2

2

=
+

− +






=
+

− +






+

( )

( )

ii

i i

i i

i i

4 1 2

4 4

1 2 1 2

2

− +






=
+ +

− + − +






( )

( )( )

=
+

− −






=
+ − +

− − −

3 4

3 4

3 4 3 4

3 4 3

i

i

i i

i

( )( )

( )( ++










4i)
(multiply and divide by complex cconjugate of denominator)

=
− − + −

+
9 12 12 16

9 1

i i

22 12 16

25

25
1

i i− +
=

−
= −

EXAMPLE 1.4

Show that 1/i i= − .

SOLUTION

This is easy, using the rule we’ve been applying for division. That is:

 
z

w

z

w

w

w
= 
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Hence

 

1 1

12
i i

i

i

i

i

i
i=

−
−







=
−

−
=

−
− −

= −
( ) ( )

EXAMPLE 1.5

Find z if z z i( )7 14 5 0+ − = .

SOLUTION

One obvious solution to the equation is z = 0. The other one is found to be

 

7 14 5 0

7 14 5

2
5

7

z i

z i

z i

+ − =
⇒ = − +

= − +

or

Expansions of complex numbers can be written down immediately using Pascal’s 

triangle, which lists the coeffi cients in an expansion of the form ( )x y
n+ . We list the 

fi rst fi ve rows here:

 

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

 (1.13)

The fi rst row corresponds to ( )x y+ 0, the second row to ( )x y+ 1, and so on. For 

example, looking at the third row we have coeffi cients 1, 2, 1. This means that

 
( )x y x xy y+ = + +2 2 22

EXAMPLE 1.6

Write ( )2 4− i in the standard form a ib+ .

Pascal’s Triangle
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SOLUTION

The coeffi cients for the fourth power are found in row fi ve of Pascal’s triangle. In 

general:

 
( )x y x x y x y xy y+ = + + + +4 4 3 2 2 3 44 6 4

Hence

 

( ) ( )( ) ( )( ) ( )( ) (2 2 4 2 6 2 4 24 4 3 2 2 3− = + − + − + − + −i i i i ii

i i i i

)

( ) ( ) ( )

4

2 3 416 32 24 8= − + − + − + −

Now let’s look at some of the terms involving powers of –i individually. First we 

have

 ( ) ( ) ( )( )− = − = + − = −i i
2 2 21 1 1 1

The last two terms are

 ( ) ( ) ( )( ) ( )( )( )− = − = − ⋅ = − − = +i i i i i i
3 3 3 21 1 1 1

    ( ) [( ) ] ( )− = − = − = +i i
4 2 2 21 1

Therefore we have

 

( ) ( ) ( ) ( )2 16 32 24 8

16 32 2

4 2 3 4− = − + − + − + −
= − −

i i i i i

i 44 8 1

7 24

+ +
= − −

i

i

Axioms Satisfi ed by the Complex 
Number System

We have already seen some of the basics of how to handle complex numbers, like 

how to add or multiply them. Now we state the formal axioms of the complex 

number system which allow mathematicians to describe complex numbers as a 
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fi eld. These axioms should be familiar since their general statement is similar to 

that used for the reals. We suppose that u, w, z are three complex numbers, that is, 

u w z, , ∈ℂ. Then these axioms follow:

 z w zw+ ∈and (closure law)ℂ    (1.14)

   (1.15)

 
  (1.16)

  (1.17)

  (1.18)

 

z w w z

u w z

+ = +

+ +

(commutative law of addition)

( ) == + +

=

( )u w z

zw wz

(associative law of additio)

(ccommutative law of multiplication)

u wz u( ) (= ww z

u w

)

(

(associative law of multiplication)

+ zz uw uz) = + (distributive law)  (1.19)

The identity with respect to addition is given by z i= +0 0 , which satisfi es

 z z+ = +0 0   (1.20)

The identity with respect to multiplication is given by z i= + =1 0 1, which satisfi es

 z z z⋅ = ⋅ =1 1   (1.21)

For any complex number z there exists an additive inverse, which we denote by –z 

that satisfi es

 z z z z+ − = − + =( ) ( ) 0    (1.22)

There also exists a multiplicative inverse z
−1

, which we have seen satisfi es

 zz z z
− −= =1 1 1  (1.23)

A set that satisfi es properties in Eqs. (1.14)–(1.23) is called a fi eld. The algebraic 

closure property in Eq. (1.14) illustrates that you can add two complex numbers together 

and you get another complex number (that is what we mean by closed). The complex 

numbers are the smallest algebraically closed fi eld that contains the reals as a subset. 
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Properties of the Modulus
We have already seen that the modulus or magnitude or absolute value of a com-

plex number is defi ned by multiplying it by its complex conjugate and taking the 

positive square root. The absolute value operator satisfi es several properties. Let 
z z z zn1 2 3, , , ,… be complex numbers. Then 

 z z z z1 2 1 2=  (1.24)

 z z z z z z z zn n1 2 3 1 2 3… …=  (1.25)

 
z

z

z

z

1

2

1

2

=  (1.26)

A relationship called the triangle inequality deserves special attention:

 z z z z1 2 1 2+ ≤ +  (1.27)

   z z z z z zn n1 2 1 2+ + + ≤ + + +⋯ ⋯  (1.28)

 z z z z1 2 1 2+ ≥ −  (1.29)

 z z z z1 2 1 2− ≥ −  (1.30)

Also note that wz zw zw z w+ = ≤2 2Re( ) .

The Polar Representation
In Fig. 1.1, we showed how a complex number can be represented by a vector in the 

x-yplane. Using polar coordinates, we can develop an equivalent polar representation 

of a complex number. We say that z x iy= +
 
is the Cartesian representation of a 

complex number. To write down the polar representation, we begin with the 

defi nition of the polar coordinates ( , )r θ :

 x r y r= =cos sinθ θ   (1.31)
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We have already seen that when we represent a complex number as a vector in 

the plane the length of that vector is r. Hence, carrying forward with the vector 

analogy, the modulus of z is given by

r x y x iy= + = +2 2  (1.32)

Using Eq. (1.31), we can write z x iy= +  as

z x iy r ir

r i

= + = +
= +

cos sin

(cos sin )

θ θ
θ θ  (1.33)

Note that r > 0  and that we have tan /θ = y x  as a means to convert between 

polar and Cartesian representations.

THE ARGUMENT OF Z

The value of θ for a given complex number is called the argument of z or arg z. The

principal value of arg z which is denoted by Arg z is the value − < ≤π πΘ . The 

following relationship holds:

arg , , ,...z z n n= + = ± ±Arg 2 0 1 2π    (1.34)

The principal value can be specifi ed to be between 0 and 2π .

EULER’S FORMULA

Euler’s formula allows us to write the expression cos sinθ θ+ i  in terms of a 

complex exponential. This is easy to see using a Taylor series expansion. First let’s 

write out a few terms in the well-known Taylor expansions of the trigonometric 

functions cos and sin:

cos
! !

θ θ θ θ= − + − +1
1

2

1

4

1

6

2 4 6
⋯    (1.35)

sin
! !

θ θ θ θ= − + −
1

3

1

5

3 5
⋯   (1.36)
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Now, let’s look at eiθ. The power series expansion of this function is given by

 

e i i i i i
iθ θ θ θ θ θ= + + + + +1

1

2

1

3

1

4

1

5

2 3 4 5( )
!
( )

!
( )

!
( ) ++

= + − − + + +

⋯

⋯1
1

2

1

3

1

4

1

5

2 3 4 5
i i iθ θ θ θ θ

! ! !

(Now group terms—looking for sin and cosine)

= 1−− + −






+ − + +



1

2

1

4

1

3

1

5

2 4 3 5θ θ θ θ θ
! ! !

⋯ ⋯i i i


= − + −






+ − + +



1
1

2

1

4

1

3

1

5

2 4 3 5θ θ θ θ θ
! ! !

⋯ ⋯i 



= +cos sinθ θi

So, we conclude that

 e i
iθ θ θ= +cos sin   (1.37)

 e i
i− = −θ θ θcos sin   (1.38)

As noted in the introduction, these formulas can be inverted using algebra to 

obtain the following relationships:

 cosθ
θ θ

=
+ −

e e
i i

2
  (1.39)

 sinθ
θ θ

=
− −

e e

i

i i

2
  (1.40)

These relationships allow us to write a complex number in complex exponential 

form or more commonly polar form. This is given by

 z re
i= θ  (1.41)

The polar form can be very useful for calculation, since exponentials are so simple 

to work with. For example, the product of two complex numbers  z re w e
i i= =θ φρand

is given by

 zw re e r e
i i i= = +( )( )( )θ φ θ φρ ρ  (1.42)
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Notice that moduli multiply and arguments add. Division is also very simple:

 
z

w

re

e

r
e e

r
e

i

i

i i i= = = −( )
θ

φ
θ φ θ φ

ρ ρ ρ
   (1.43)

The reciprocal of a complex number takes on the relatively simple form:

 z re z
r

e
i i= ⇒ =− −θ θ1 1

  (1.44)

Raising a complex number to a power is also easy:

 z re r e
n i n n in= =( )θ θ   (1.45)

The complex conjugate is just

 z re
i= − θ  (1.46)

Euler’s formula can be used to derive some interesting expressions. For example, 

we can easily derive one of the most mysterious equations in all of mathematics:

 
e i

e

i

i

π

π

π π= +

⇒ + =

cos sin

1 0
   

(1.47)

DE MOIVRE’S THEOREM

Let z r i z r i1 1 1 1 2 2 2 2= + = +(cos sin ) (cos sin )θ θ θ θand . Using trigonometric identities 

and some algebra we can show that

     z z r r i1 2 1 2 1 2 1 2= + + +[cos( ) sin( )]θ θ θ θ   (1.48)

 z z
r

r
i1 2

1

2

1 2 1 2/ [cos( ) sin( )]= − + −θ θ θ θ   (1.49)

 
z z z r r r in n n1 2 1 2 1 2 1 2… … ⋯= + + + + + +[cos( ) sin(θ θ θ θ θ ⋯⋯+θn )]  (1.50)
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De Moivre’s formula follows:

 z r i r n i n
n n n= + = +[ (cos sin )] (cos sin )θ θ θ θ  (1.51)

The nth Roots of Unity
Consider the equation

 z
n = 1

where n is a positive integer. This innocuous looking equation actually has a bit of 

hidden data in it, this comes from the fact that

 ( )e e e e
z n z z z= ⋯

The nth roots of unity are given by

 cos / sin / , , , ,/2 2 0 1 2 12
k n i k n e k n

k i nπ π π+ = = −…  (1.52)

If w e
i n= 2π /  then the n roots are 1 2 1, , , ,w w w

n
…

− . 

EXAMPLE 1.7

Show that cos cos cosh sin sinhz x y i x y= − .

SOLUTION

This can be done using Euler’s formula:

 

cos( )
( ) ( )

x iy
e e

e e

i x iy i x iy

ix y ix y

+ =
+

=
+

+ − +

− − +

2

2

==
+ + +− − + − − +

e e e e
ix y ix y ix y ix y

4  
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Now we can add and subtract some desired terms:

 

e e e e

e e e

ix y ix y ix y ix y

ix y ix y ix

− − + − − +

+ − +

+ + +

=
+ +

4
−− − − + − + − + − −

+

+ − + + −

=

y ix y ix y ix y ix y ix y

ix

e e e e e

e

4
yy ix y ix y ix y ix y ix y ix y

e e e e e e+ + +
−

− −− + − − − + − + − +

4

++

=
+





+





−
−

− −

− −

e

e e e e e

ix y

ix ix y y ix

4

2 2

ee e e

e e e

ix y y

ix ix y

− −

−







−





=
+





2 2

2

++





−
−





−





− − −
e

i
e e

i

e e
y ix ix y y

2 2 2

== −cos cosh sin sinhx y i x y

EXAMPLE 1.8

Show that sin ln( )− = − ± −1 21z i iz z .

SOLUTION

We start with the relation

 cos sin2 2 1θ θ+ =

This means that we can write

 cos sinθ θ= ± −1 2

Now let θ = −sin 1
z . Then we have

 cos(sin ) sin (sin )− −= ± − = ± −1 2 1 21 1z z z

This is true because sin(sin ( ))− =1 φ φ. Now we turn to Euler’s formula:

 e i
iθ θ θ= +cos sin
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Again, setting θ = −sin 1
z  we have

 e z i z

z iz

i zsin cos(sin ) sin(sin )
−

= +

= ± − +

− −1 1 1

21

Taking the natural logarithm of both sides, we obtain the desired result:

 
i z iz z

z i iz z

sin ln( )

sin ln( )

−

−

= ± −

⇒ = − ± −

1 2

1 2

1

1

EXAMPLE 1.9

Show that e re
z iln = θ.

SOLUTION

We use the fact that θ θ π= + =2 0 1 2n nfor , , ,...  to get

 

e e

e

e

e

z re

r e

r i

r i

i

i

ln ln( )

ln ln( )

ln

ln (

=

=

=

=

+

+

+

θ

θ

θ

θθ π

θ π

θ θπ π

+

=

= + =

2

2

2 2

n

i i n

i i

re e

re n i n re

)

(cos sin )

EXAMPLE 1.10

Find the fourth roots of 2.

SOLUTION

We fi nd the nth roots of a number a by writing r e ae
n in iθ = 0 and equating moduli 

and arguments, and repeating the process by adding 2π . This may not be clear, but 

we’ll show this with the current example. First we start out with

 

( )

/

re e

r

i iθ

θ

4 0

1 4

2

2 0

=

⇒ = =

This is the fi rst of four roots. The second root is

 

( )

/

re r e e

r

i i iθ θ π

θ
π

4 4 4 2

1 4

2

2
2

= =

⇒ = =
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So the second root is z e i i
i= = + =2 2 2 2 21 4 2 1 4 1 4/ / / /[cos( / ) sin( / )]π π π . Next, we have

 ( )

/

re r e e

r

i i iθ θ π

θ π

4 4 4 4

1 4

2

2

= =

⇒ = =

And the root is

 z e i
i= = + = −2 2 21 4 1 4 1 4/ / /(cos sin )π π π

The fourth and fi nal root is found using

 ( )

/

re r e e

r

i i iθ θ π

θ
π

4 4 4 6

1 4

2

2
3

2

= =

⇒ = =

In Cartesian form, the root is

 z e i
i= = 





+ 








2 2
3

2

3

2

1 4 1 4/ / cos sinπ π π 


= −i21 4/

Summary

The imaginary unit i = −1 can be used to solve equations like x
2 1 0+ = . By 

denoting real and imaginary parts, we can construct complex numbers that we can 

add, subtract, multiply, and divide. Like the reals, the complex numbers form a 

fi eld. These notions can be abstracted to complex variables, which can be written in 

Cartesian or polar form.

Quiz
 1. What is the modulus of z

i
=

−1

4
?

 2. Write z
i

i i
=

−
+ −
2 4

3 2 5  in standard form z x iy= + .
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 3. Find the sum and product of z i w i= + = −2 3 3, .

 4. Write down the complex conjugates of z i w i= + = −2 3 3, .

 5. Find the principal argument of 
i

i− −2 2
.

 6. Using De Moivre’s formula, what is sin3θ ?

 7. Following the procedure outlined in Example 1.7, fi nd an expression for 

sin( )x iy+ .

 8. Express cos−1
z in terms of the natural logarithm.

 9. Find all of the cube roots of i.

 10. If z e w e
i i= =16 2 2π πand / , what is 

z

w
?



CHAPTER 2

Functions, Limits, 
and Continuity

In the last chapter, although we saw a couple of functions with complex argument 

z, we spent most of our time talking about complex numbers. Now we will introduce 

complex functions and begin to introduce concepts from the study of calculus like 

limits and continuity. Many important points in the fi rst few chapters will be covered 

several times, so don’t worry if you don’t understand everything right away.

Complex Functions
When we write z, we are denoting a complex variable, which is a symbol that can 

take on any value of a complex number. This is the same concept you are used to 

from real variables where we use x or y to represent a variable. We defi ne a function

of a complex variable w f z= ( ) as a rule that assigns to each z ∈ℂ  a complex 

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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number w. If the function is defi ned only over a restricted set S, then w f z= ( ) 

assigns to each z S∈  the complex number w and we call S the domain of the function. 

The value of a function at z a=  is indicated by writing f a( ).

EXAMPLE 2.1

Consider the function f z z( ) = 3
 and consider its value at z i z i= = +, .1

SOLUTION

In the fi rst case we set z i=  and so we have

 f i i i i i( ) ( )= = = −3 2

Now we let z i= +1 . Since

 z i i i i i
2 21 1 1 1 2 1 2= + = + + = + − =( ) ( )( )

The value of the function is

 f i i i i i i i( ) ( ) ( ) ( ) ( )1 1 1 1 2 1 2 23 2+ = + = + + = + = − +

A complex function can be a function of the complex conjugate z  as well, so we 

could write f z z( , ). That is, we are treating z  and its conjugate z  as independent 

variables the way we might for a function of x and y, g x y( , ). Just as we could 

compute partial derivatives ∂ ∂ ∂ ∂g x g y/ /and  to determine how g depends on x and 

y, we can determine how a complex function depends on z  and its conjugate z  by 

computing partial derivatives of the function with respect to each of these variables.

As we will see in the next chapter, functions that do not depend on z  have important 

properties, and in fact the study of complex analysis is the study of functions for 

which ∂ ∂ =f z/ 0.

EXAMPLE 2.2

Suppose that f z z z f i( ) . ( )= +2 1Find

SOLUTION

In Example 2.1, we saw that z i i
2 21 2= + =( ) . The complex conjugate of z i= +1  is 

given by

 z i= −1
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So we have

 f i z z i i i i i( ) ( ) ( ) ( )1 1 1 2 1 2 22 2+ = = + − = − = +

The domain of a function can be restricted to a region where the function is well 

behaved. For example, the function

 f z
z

( ) =
1

is not defi ned at the origin. Let S be a domain that includes a region where the 

function is defi ned. Suppose that D is a region where the function is not defi ned. We 

can indicate that we are excluding a certain set from the domain of the function 

using the notation

 z S D∈ \  (2.1)

For example, letting f z z( ) /= 1 , we see that the function is defi ned throughout the 

complex plane except at the origin. We can indicate this by writing

 z ∈ℂ \ { }0  (2.2)

Simply put, the domain of a function is a region where the function does not 

blow up.

EXAMPLE 2.3

What is the domain of defi nition for f z z( ) /( )= +1 1 2 .

SOLUTION

We can factorize the denominator and write the function in the following way:

 f z
z i z i z

( )
( )( )

=
+

=
+ − +

1

1

1
2

We can see that the function goes to infi nity if

 z i= ±

Therefore the function is defi ned throughout the complex plane except at the 

points z i= ± .

Something we’ll repeatedly emphasize in the next couple of chapters is that a 

function, just like a complex number, can be written in terms of real and imaginary 

parts. Recall that the complex variable z can be written as z x iy= + . We call x the 
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real part of z and y the imaginary part of z, but both x and y are themselves real 

variables. This concept carries over to a complex function, which can be written in 

the form f z f x iy u x y iv x y( ) ( ) ( , ) ( , )= + = + . The real part of f is given by

 Re( ) ( , )f u x y=  (2.3)

And the imaginary part of f is given by

 Im( ) ( , )f v x y=  (2.4)

Notice that we can write down the complex conjugate of a function. With f z( ) = 

f x iy u x y iv x y( ) ( , ) ( , )+ = +  the complex conjugate is given by

 f z f x iy u x y iv x y( ) ( ) ( , ) ( , )= + = −  (2.5)

The same rule applied to complex numbers and complex variables was used, namely, 

we let i i→ −  in order to obtain the complex conjugate. Note that u x y v x y( , ) ( , )and  

are unchanged by this operation because they are both real functions of the real 

variables x and y. 

In chap. 1, we learned how to write the real and imaginary parts of z in terms of
 

z z, using Eqs. (1.11) and (1.12). We can write down analogous formulas for the 

real and imaginary parts of a function. First let’s consider the real part of a complex 

function. We can add the function to its complex conjugate

 f f u iv u iv u+ = + + − = 2

Hence the real part of a complex function is given by

 u x y
f z f z

( , )
( ) ( )

=
+
2

 (2.6)

And we can take the difference between a function and its complex conjugate:

 f f u iv u iv iv− = + − − =( ) 2

This gives us the imaginary part of a complex function:

 v x y
f z f z

i
( , )

( ) ( )
=

−
2

 (2.7)

EXAMPLE 2.4

What is the complex conjugate of f (z) = 1/z.
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SOLUTION

First of all we can write the function as

 f z f x iy
x iy

( ) ( )= + =
+
1

Therefore the complex conjugate is

 f
x iy x iy z

=
+







=
−

=
1 1 1

EXAMPLE 2.5

What are the real and imaginary parts of f z z z( ) ( / )= + 1 .

SOLUTION

We let z x iy= + . Then we have

 f x iy x iy
x iy

( )+ = + +
+
1

We need to write the second term in standard Cartesian notation. This is done by 

multiplying and dividing by its complex conjugate:

 1 1
2 2

x iy x iy

x iy

x iy

x iy

x y+
=

+
−
−







=
−
+

So, we have

 f x iy x iy
x iy

x y

x
x

x y
iy

iy

x y

+( ) = + +
−
+

= +
+

+ −
+

=

2 2

2 2 2 2

xx xy x

x y
i

y x y y

x y

3 2

2 2

3 2

2 2

+ +
+

+
+ −

+






 

So the real part of the function is

 Re( ) ( , )f
x xy x

x y
u x y=

+ +
+

=
3 2

2 2
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The imaginary part of the function is

 Im( ) ( , )f
y x y y

x y
v x y=

+ −
+

=
3 2

2 2

Note that we can write the real and imaginary parts in terms of z z, as follows. 

We have

 f z z
z

z
z

( ) = + = +
1 1

Now

 f f z
z

z
z

z z
z

zz

z

zz

z z

zz
zz

z z

+ = + + + = + + +

=
+





+
+

1 1

zzz

z z zz z z

zz
=

+ + +2 2

 

So

 Re( )f
f f z z zz z z

zz
=

+
=

+ + +
2 2

2 2

To get the imaginary part we calculate

 f f z
z

z
z

z z
z

zz

z

zz

z z

zz

− = + − +





= + − −

=
+





1 1

zzz
z z

zz

z z zz z z

zz

−
+





=
+ − −2 2

 

Therefore

 Im( )f
f f

i

z z zz z z

izz
=

−
=

+ − −
2 2

2 2



CHAPTER 2 Functions, Limits, and Continuity 27

In chap. 1 we also learned that a complex number z x iy= +  can be written in the 

polar representation z re
i= θ. The same is true with complex functions. That is, we 

can write

 f z f re
i( ) ( )= θ

 (2.8)

The function can also be written in terms of real and imaginary parts that are 

functions of the real variables r and θ . This is done as follows:

 f re u r iv r
i( ) ( , ) ( , )θ θ θ= +  (2.9)

EXAMPLE 2.6

Write the function f (z) = z + (1/z) in the polar representation. What are the real and 

imaginary parts of the function?

SOLUTION

We write the function in the polar representation by letting z re
i= θ
. This gives

 
f z z

z

re
re

re
r

e

i

i

i i

( ) = +

= +

= + −

1

1

1

θ
θ

θ θ

 

Recalling Euler’s formula, we can write e i
i± = ±θ θ θcos sin . So the function becomes

 
f re

r
e

r i
r

i

i i= +

= + + −

=

−θ θ

θ θ θ θ

1

1
(cos sin ) (cos sin )

ccos sin

cos
( )

θ θ

θ

r
r

i r
r

r
r

+



 + −





= +

1 1

12 ++ −i
r

r
sin

( )
θ 2 1

 

This allows us to identify the real part of the function as

 u r
r

r( , )
cos

( )θ
θ

= +2 1
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The imaginary part of the function is given by

 v r
r

r( , )
sin

( )θ
θ

= −2 1

Note that both the real and imaginary parts of the function are real functions of the 

real variables ( , )r θ .

Plotting Complex Functions
One of the most useful tools in the study of real functions is the ability to graph or 

plot them. This lets us get a feel for the functions behavior, for example we can see 

how it behaves as x gets large or look for points of discontinuity. 

Unfortunately, in the case of a complex function we can’t just plot the function 

the way we would a real function f x( ) of the real variable x. But, there are a few 

things we can look at. We can plot

• The real part of f z( )

• The imaginary part of f z( )  

• The modulus or absolute value f z( )  

In addition, if the function is written in polar representation, we can plot the 

argument of the function arg( ( ))f z . We can also make a level set or contour plots of 

these items, or can plot them for a fi xed point on the real or imaginary axis.

EXAMPLE 2.7

Plot the real and imaginary parts of f (z) = z + (1/z).

SOLUTION

In Example 2.5 we found that

 Re( ) ( , )f
x xy x

x y
u x y=

+ +
+

=
3 2

2 2

and

 Im( ) ( , )f
y x y y

x y
v x y=

+ −
+

=
3 2

2 2

Note that there is a singularity at the origin. A plot of the real part of the function is 

shown in Fig. 2.1. The imaginary part of the function has a similar form, as shown 

in Fig. 2.2. At the origin, the imaginary part of the function also blows up.
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Figure 2.2 A plot of Im( ) ( ) ) ( , ).f y x y y x y v x y= + − + =3 2 2 2/(
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Figure 2.1 A plot of Re( ) ( ) ) ( , )f x xy x x y u x y= + + + =3 2 2 2/( . The spike at the origin is a 

point where the function blows up.
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EXAMPLE 2.8

Plot the absolute value of the function f (z) = z + (1/z).

SOLUTION

Let’s write down the absolute value of the function. It is given by

 f z f z f z( ) ( ) ( )=

So we have

 f z f z z
z

z
z

zz
z

z

z

z zz

( ) ( ) = +





+





= + + +

=

1 1

1

zz z

zz

z z

zz zz

z z z z

zz

2 2 2 2

2 2 2 2

1

1

+
+

+

=
+ + +

 

Now we write this in terms of x and y:

 f z
z z z z

zz

x iy x iy x iy

( )

( ) ( ) ( )

2
2 2 2 2

2 2 2

1
=

+ + +

=
+ − + + ++ − +

+

=
− + − − +

( )

( )( )

x iy

x y

x y ixy x y ixy

2

2 2

2 2 2 2

1

2 2 2xx y

x y

x x y y x y

x y

2 2

2 2

4 2 2 4 2 2

2 2

2 1

2 2 2 1

− +
+

=
+ + + − +

+

 

Notice that this function will blow up at the origin, where x y= = 0. The absolute 

value is the square root:

 f z
x x y y x y

x y
( ) =

+ + + − +
+

4 2 2 4 2 2

2 2

2 2 2 1

A plot of this function is shown in Fig. 2.3.

EXAMPLE 2.9

Plot the real part of f z z z( ) ( / )= + 1  along the line x i+ 2 , for − ≤ ≤10 10x .
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SOLUTION

Plotting with the real or imaginary part fi xed like this is another way to study the 

behavior of the function. The real part is given by

 Re( ) ( , )f
x xy x

x y
u x y=

+ +
+

=
3 2

2 2

Setting y = 2 gives

 u x
x x

x
( , )2

5

4

3

2
=

+
+

 

A plot of this function is shown in Fig. 2.4.

EXAMPLE 2.10

Generate a contour plot of f (z) = 1/z.

SOLUTION

A contour plot is a good way of visualizing where a function is increasing, 

decreasing, or blowing up. We show a contour plot of f z z( ) = 1/  in Fig. 2.5 

generated with computer software. The plot shows increasing values in lighter 

Figure 2.3 A plot of f z f z z z( ) ( ) ( )for /= + 1 .
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Figure 2.4 A plot of Re( ) ( ) ) ( , )f x xy x x y u x y= + + + =3 2 2 2/(  with y = 2.

–10 –5 5 10
x

–10

–5

5

10
Re ( f )

–4 –2 0 2 4

–4

–2

0

2

4

Figure 2.5 A contour plot of f z z( ) = 1/ , showing zones where the function is 

increasing in magnitude and the point where it blows up at the origin.
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colors—note the area about and including the origin is white indicating that the 

function blows up there.

In many cases that we encounter in the theory of complex variables a function is 

multivalued. This is due to the periodic nature of the cosine and sin functions, 

Euler’s formula e i
iθ θ θ= +cos sin  and the fact that we can write z re

i= θ  in the polar 

representation. 

We say that a complex function f (z) is single valued if only one value of w 

corresponds to each value of z where w f z= ( ). If more than one value of w corresponds 

to each value of z, we say that the function is multivalued. A classic example of a 

multivalued function in complex variables is ln z, which we discuss in chap. 4.

Multivalued Functions

Our fi rst foray into the application of calculus to functions of a complex variable 

comes with the study of limits. Consider a point in the complex plane z a=  and let  

f z( ) be defi ned and single valued in some neighborhood about a. The neighborhood 

may include the point a, or we may omit a  in which case we say that the function 

is defi ned and single valued in a deleted neighborhood of a. The limit ℓ of f z( )
 
as 

z a→  is written as

 lim ( )
z a

f z
→

= ℓ  (2.10)

Formally, what this means is that for any number ε > 0 we can fi nd a δ > 0  such 

that f z a( ) − < ε whenever 0 < − <z a δ . For the limit to exist, it must be 

independent of the direction in which we approach z a= . Note that a limit only 

exists if the limit is independent of the way that we approach the point in question, 

a point which is illustrated in Example 2.14.

Limits in the theory of complex variables satisfy the same properties that limits 

do in the real case. Specifi cally, let us defi ne

 lim ( ) lim ( )
z a z a

f z A f z B
→ →

= =

Limits of Complex Functions
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Then the following hold

 lim ( ) ( ) lim ( ) lim ( )
z a z a z a

f z g z f z g z A B
→ → →

+{ } = + = +  (2.11)

 lim ( ) ( ) lim ( ) lim ( )
z a z a z a

f z g z f z g z A B
→ → →

−{ } = − = +  (2.12)

 lim ( ) ( ) lim ( ) lim ( )
z a z a z a

f z g z f z g z A
→ → →

{ } = { }{ } = BB  (2.13)

 lim
lim

limz a

z a

z a

f z

g z

f z

g z

A

B→

→

→

( )
( )

=
( )
( )

=  (2.14)

Property in Eq. (2.14) holds as long as B ≠ 0.

Limits can be calculated in terms of real and imaginary parts. Let f u iv= + ,
z x iy= + , and z x iy w u iv0 0 0 0 0= + = +, . Then

 lim ( )
z z

f z w
→

=
0

0

If and only if

 lim ( , ) lim ( , )
x x

y

x x

y

u x y u v x y v
→
→

→
→

= =
0 0

0

0

0

0
 (2.15)

OPEN DISKS

Frequently, in complex analysis we wish to consider a circular region in the complex 

plane. We call such a region a disk. Suppose that the radius of the disk is a. If the 

points on the edge of the disk, that is, the points lying on the circular curve defi ning 

the border of the disk are not included in the region of consideration, we say that the 

disk is open.

Consider a disk of radius one centered at the origin. We indicate this by writing

 z < 1

This is illustrated in Fig. 2.6.

If the disk of radius r is instead centered at a point a, then we would write

 z a r− <
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For example:

 z − <3 5

describes a disk of radius fi ve centered at the point z = 3. This is shown in Fig. 2.7.

EXAMPLE 2.11

Compute lim( )
z

iz
→

−
3

1 2/ in the open disk z < 3.

SOLUTION

Notice that the point z = 3  is on the boundary of the domain of the function. Just 

plugging in we fi nd

 lim
z

iz
i

→

−
= − +

3

1

2

1

2

3

2

1–1 x

y

Figure 2.6 The disk z < 1 is centered at the origin. The boundary is indicated with a dashed 

line, which is sometimes done to indicate it is not included in the region of defi nition. 

8–2 x

y

Disk centered at point 

z = 3 on x axis.

Figure 2.7 The disk described by z − <3 5.
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Let’s confi rm this by applying the formal defi nition of the limit. Notice that

 
f z

iz iz
i

i
z

z

( )

( )

− =
−

=
−

+ −

= −

=
−

ℓ
1

2

1

2

1

2

3

2

2
3

3

2

So we’ve found that given any ε > 0

 f z i( ) − +



 <

1

2

3

2
ε

whenever

 0 3 2< − <z ε

EXAMPLE 2.12

Compute lim( )( )
z i

z z i
→

+2
.

SOLUTION

For illustration purposes, we compute the limits of z z i
2 and +  independently and 

then apply Eq. (2.13). First we have

 lim
z i

z i
→

= = −2 2 1

Secondly

 lim
z i

z i i i i
→

+ = + = 2

Hence

 lim( )( ) ( )( )
z i

z z i i i
→

+ = − = −2 1 2 2

EXAMPLE 2.13

Using the theorems on limits from Eqs. (2.11)–(2.14) evaluate lim (
z i

f z
→2

) when 

f z z z( ) .= + +2 2 5
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SOLUTION

We have

 

lim lim lim lim
z i z i z i z i

z z z z
→ → → →

+ + = + +
2

2

2

2

2 2
2 5 2 5

== ( )( ) + +

=
→ → → →

lim lim lim lim
z i z i z i z i

z z z
2 2 2 2

2 5

2ii i i

i

i

( )( ) + ( ) +
= − + +
= +

2 2 2 5

4 4 5

1 4

EXAMPLE 2.14

Show that the limit lim
z

z z
→0

/  does not exist.

SOLUTION

A limit only exists if the limit is independent of the way that we approach the point 

in question. For this limit, let’s calculate it in two different ways. The fi rst way we’ll 

calculate it is by approaching the origin along the x axis. This means that we set 

y = 0, so

 z

z

x iy

x iy

x

xy
=

−
+

→ =
=0

1

Hence

 lim
z

z

z→
= +

0
1

Now, instead we choose to approach the origin along the y axis. This means that we 

will have to set x = 0. So we obtain

 z

z

x iy

x iy

iy

iyx
=

−
+

→
−

= −
=0

1

That is

 lim
z

z

z→
= −

0
1

Since we obtained two different values for the limit by approaching the origin in 

two different directions, the limit cannot exist.
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Limits Involving Infi nity
A limit lim ( )

z a
f z

→
blows up or goes to infi nity lim ( )

z a
f z

→
= ∞

 
if and only if

 lim
( )z a f z→

=
1

0  (2.16)

The limit as z goes to infi nity is equal to ℓ if and only if

 lim
z

f
z→







=
0

1
ℓ   (2.17)

If Eq. (2.17) holds, then we can write lim ( )
z

f z
→∞

= ℓ. Finally, lim ( )
z

f z
→∞

= ∞  if and 

only if

 lim
( / )z f z→

=
0

1

1
0  (2.18)

EXAMPLE 2.15

Show that

 

lim
z

z

z→−

+
+

= ∞
2

5

2

SOLUTION

We do this using Eq. (2.16). We have

 lim lim
z z

z

z

z

z→− →−

+
+

→
+
+

=
− +
− +

= =
2 2

5

2

2

5

2 2

2 5

0

3
0

Hence, lim( ) )
z

z z
→−

+ + = ∞
2

5 2/( .

Continuity
A function f z( ) is continuous at a point z a=  if the following three conditions are 

satisfi ed:

• lim ( )
z a

f z
→  

exists

• f a( )
 
exists

• lim ( ) ( )
z a

f z f a
→

=
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EXAMPLE 2.16

Suppose that

 f z
z z i

z i
( ) =

≠
=





2

0

for

for

Show that the function is not continuous.

SOLUTION

We know intuitively that the function is not continuous since the value of the 

function changes suddenly at the point z i= . It is not too much work to show that 

the limit exists. We have

 z a z i z i z i i z i i i
2 2 2 2 1 2 3− = − + < − + < − +{ } < +{ } =δ δ δ δ

Take δ εequal to the minimum of 1 3,  and then z i z i
2 2− < − <ε δwhenever . So 

the limit exists. In particular

 lim
z i

z i
→

= = −2 2 1

The function also meets the second condition, namely that it is defi ned at the point 

z i= :

 f i( ) = 0

where the analysis fails in comparing the limit of the function as it approaches the 

point to its value at the point. In this case:

 lim ( )

lim ( ) ( )

z i

z a

z i f i

f z f a

→

→

= = − =

⇒ ≠

2 2 1 0and

This establishes in a formal sense what we already knew intuitively, that the function 

is not continuous at z i= .

EXAMPLE 2.17

Show that f z z( ) = 3  is continuous at z i= .

SOLUTION

The function is continuous at z i= . We have

 lim
z i

z i i
→

= = −3 3
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Since

 f i i i z f i
z i

( ) ,lim ( )= = − =
→

3 3

and we conclude that the function is continuous at z i= . The limit can be evaluated 

using the ε δ,  approach achieving the same results.

Summary
In this chapter, we introduced some notions that will allow us to develop a calculus 

of complex variables. Namely, we introduced the concept of a function. We indicated 

that a function of a complex variable can be single or multiple valued. In a region 

where a function is single valued, we demonstrated how to compute basic limits 

and explored an elementary notion of continuity. We also illustrated how plots of 

complex functions can be generated.

Quiz
 1. Evaluate f i( )1+  when f z z i( ) = +2

. 

 2. Evaluate f i( )1+  when f z z i( ) = +2
.

 3. Find f z f z z zz i( ) ( )when = + +2 2 .

 4. What is the real part of f z z= + +2 3?

 5. Write f u x y iv x y= +( , ) ( , )  if f z z= − +1
2
.

 6. Find lim ( )
z i

z
→ +

+
2

2 1  for the real part of z
2 1+ .

 7. Compute lim
( )z

z

z→∞ −

2

21
.

 8. Compute lim
z i

iz

z i→

+
+

3 1
.

 9. Find lim
z

z

z→0

2

.

10. Is f z
z

z
( ) =

−
−

3 3

1

2

 continuous?



CHAPTER 3

The Derivative and 
Analytic Functions

The next step in extending the calculus of real variables to include complex 

variables is to defi ne the notion of a derivative. You won’t be surprised to fi nd out 

that computing derivatives or shall we say determining when a function is 

differentiable is a little more involved when considering functions of a complex 

variable. While we will see that many of the basic theorems about derivatives 

carry over from real to complex variables, there are some differences. In particular, 

we’re going to have to pay attention to how we approach the origin when 

computing the limits used to defi ne the derivative, and we’ll fi nd the unusual 

result that some functions of a complex variable are continuous but not 

differentiable. After learning this we’ll see that functions of a complex variable 

that are differentiable satisfy a nice set of equations known as the Cauchy-Riemann 

equations, one of the most elegant results in pure and applied mathematics. 

Loosely speaking, a function which satisfi es the Cauchy-Riemann equations is 

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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called analytic. Finally, we close the chapter with a look at a special type of 

function that satisfi es Laplace’s equation which we call a harmonic function. 

Harmonic functions are functions of the real variables x and y but they can be 

used to construct a complex function, which is analytic.

The Derivative Defi ned
Consider some point z

0
 in the complex plane and let f z( ) be some function such 

that its domain contains a neighborhood of z
0
. The derivative of f z( ) at the point z0 

is defi ned by the limit

 ′ =
−
−→

f z
f z f z

z zz z
( ) lim

( ) ( )
0

0

0
0

  (3.1)

If this limit exists for all points in a domain D, we say that f z( ) is differentiable 

in D. At the given point, if the limit exists we say that f z( ) is complex differentiable 

at the point z
0
.

We can write this limit in a form that may be more familiar to you, considering what 

you learned in elementary calculus. First lets defi ne ∆ = −z z z
0
. Then the derivative of 

f z( ) at the point z0 can be written as

 ′ =
+ ∆ −

∆∆ →
f z

f z z f z

zz
( ) lim

( ) ( )
0

0

0 0
 (3.2)

In a moment, we’ll be able to use this limit to write down the derivative in terms of 

Leibniz notation. Right now, we stop to make some important defi nitions.

Defi nition: Analytic and Entire Functions

Suppose that f z( ) is differentiable in an ε-neighborhood of the point z
0
. That is, we 

defi ne the domain D such that

 
z z− <

0
ε

for some ε > 0. If ′f z( ) exists for all z D∈  then we say that f z( ) is analytic at the 

point z
0
.

As you might guess, many functions are differentiable everywhere—that is, 

throughout the entire complex plane. This turns out to be true for many but not all 

functions of a complex variable. However, if f z( ) is analytic on the whole complex 

plane then we say that the function f z( ) is entire.
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Now let’s return to the defi nition of the derivative and consider Leibniz notation, 

which as you know from the calculus of real variables makes life a whole lot easier. 

To do this we make the notational defi nition w f z= ( ) . Then

 ∆ = −w f z f z( ) ( )0

With this notation together with the defi nition ∆ = −z z z
0
 and, we have

 ′ =
∆
∆

=
∆ →

f z
w

z

dw

dzz
( ) lim0

0
 (3.3)

Let’s explore the computation of derivatives with some examples.

EXAMPLE 3.1

Let f z z( ) = 2
 and fi nd its derivative at any point z.

SOLUTION

Letting w z= 2 and using the defi nition given in we have

 
lim

( )

∆ →

+ ∆ −
∆z

z z z

z0

2 2

While it’s really elementary in this specifi c case, we can expand the term ( )z z+ ∆ 2
 

using the binomial theorem. You should familiarize yourself with this technique so 

that you can handle more complicated cases. The binomial theorem tells us that

 
( )x y x xy y+ = + +2 2 22

Hence

 ( ) ( ) ( )z z z z z z+ ∆ = + ∆ + ∆2 2 22

and so

 

lim
( )

lim
( ) ( )

∆ → ∆ →

+ ∆ −
∆

=
+ ∆ + ∆ −

z z

z z z

z

z z z z

0

2 2

0

2 22 zz

z

z z z

z

z

z

z z

2

0

2

0

2

2

∆

=
∆ + ∆

∆
= +

∆ →

∆ → ∆

lim
( ) ( )

lim lim
→→

∆

=
0

2

z

z

Leibniz Notation
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So we see that in the case of complex variables as in the calculus of a real variable

 
d

dz
z z( )2 2=

as expected. You might fi nd this obvious, but it’s comforting to know that what we 

learned in elementary calculus of real variables carries over to the complex case.

Unfortunately, everything that we learned in elementary calculus does not carry 

over. For example, consider a function that is continuous but not differentiable. Take 

f z z( ) = . Using the defi nition of the complex conjugate described in Chap. 1, we 

know that

 
f z z x iy x iy( ) = = + = −

To see why this function is not differentiable, we consider approaching a point 
z x iy

0 0 0
= +  in two different ways. If a function is differentiable, it will not matter 

how we approach the point. We should be able to approach z x iy
0 0 0

= +  in two 

different ways and get the same value for the limit, which defi nes the derivative. In 

the case of f z z( ) = , things don’t work out that way.

What we’ll do in this case is approach the origin in two different ways. First 

we’ll try it along the x axis so that we set ∆ = ∆z x( , )0 . Then we will try it along the 

y axis, and in that case we’ll set ∆ = ∆z y( , )0 . Then we will compare the results.

Now, notice that for f z z( ) =

 
∆
∆

=
+ ∆ −

∆
=

+ ∆ −
∆

=
∆
∆

w

z

z z z

z

z z z

z

z

z

If we set ∆ = ∆z x( , )0  then we have

 
z z z

z

x iy x x iy

x

x iy x x iy

x

x+ ∆ −
∆

=
+ + ∆ − +

∆
=

− + ∆ − +
∆

=
∆( )

∆∆
=

x
1

That is, taking the limit along the x axis gives

 

dw

dz
= 1

Now, let’s instead consider approaching the origin along the y axis. Recall that 

this means we’ll set ∆ = ∆z y( , )0 . Therefore

 

z z z

z

x iy i y x iy

i y

x iy i y x iy

i

+ ∆ −
∆

=
+ + ∆ − +

∆
=

− − ∆ − +
∆

( )

yy

y

y
= −

∆
∆

= −1
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This means that taking the limit along the y axis gives us

 
dw

dz
= −1

We conclude that the derivative of f z z( ) =  does not exist, even though the 

function is continuous everywhere.

So far we’ve seen that the basic defi nition of the derivative used in calculus works with 

complex variables, but that not all functions of a complex variable are differentiable 

even if they are continuous. Remember, a function that is differentiable in some region 

D of the complex plane is called analytic. We’ll see in the later section that using an 

elegant formulation called the Cauchy-Riemann equations makes it a simple matter to 

show whether or not a given function is analytic. What does this mean for us? We can 

dispense with having to examine pesky limits. Matters will simplify and we can just 

calculate derivatives like we would in elementary calculus.

When computing derivatives of a function of a complex variable, several key 

results carry over from the calculus of real variables. These include

• Rules for computing the derivative of a constant

• Rules for computing the derivative of a polynomial

• The product rule

• The quotient rule

Let’s start by considering the derivative of a constant. Let α  be a constant which 

is a complex number. Then

 
d

dz
α = 0   (3.4)

It follows that if a constant multiplies some function f z( ), we can pass it right 

through a derivative operator

 
d

dz
f

df

dz
( )α α=  (3.5)

The next we consider is the derivative of a polynomial. The rule used to com-

pute the derivative of a polynomial in complex variables turns out to be the same 

Rules for Differentiation
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as we use with real variables. We have already seen that ′ =f z z( ) 2  when f z z( ) = 2. 

Generally:

 
dz

dz
nz

n

n= −1  (3.6)

Now let f z g z( ) ( )and
 
be two complex functions. It is not hard to show that

 
d

dz
f g

df

dz

dg

dz
( )± = ±  (3.7)

Combining this with Eqs. (3.5) and (3.6) we are able to write down the derivative 

of any polynomial. Later, we’ll see an important by-product of this result. If we 

expand some complex function in a series:

 f z a zn

n

n

( ) =
=

∞

∑
0

Then we can differentiate the function by differentiating the series term by term 

using what we already know:

 
df

dz

d

dz
a z na z

n

n

n
n

n

n

=






=
=

∞
−

=

∞

∑ ∑
0

1

1

When we study series in detail in a later chapter, note that we will need to consider 

the radius of convergence of the series.

EXAMPLE 3.2

Find the derivative of f z z z( ) = + −5 3 22
.

SOLUTION

This is an elementary problem we can solve by applying the rules for derivatives 

stated so far. We have

 

df

dz

d

dz
z z

d

dz
z

d

dz
z

d

dz

= + −

= + −

=

( )

( ) ( ) ( )

5 3 2

5 3 2

2

2

110 3z +
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The derivatives of many common functions like the exponential and trig functions 

follow from ordinary calculus as well. One way this can be understood is by noting 

that these functions can be expanded in a series and differentiated term by term. We 

can also momentarily return to the use of limits and compute the derivatives that 

way, obtaining many familiar results.

EXAMPLE 3.3

Find ′ =f z f z e
z( ) ( )when .

SOLUTION

Using the defi nition of the derivative given in Eq. (3.2) we have

 

d

dz
e

e e

z

e e e

z

e

z

z

z z z

z

z z z

=
−

∆

=
−

∆

=

∆ →

+∆

∆ →

∆

lim

lim

0

0

zz

z

z
e

z
lim
∆ →

∆ −
∆0

1

To proceed, we write down the real and imaginary parts explicitly. Recall Euler’s for- 

mula e i
iθ θ θ= +cos sin . This allows us to write e e e e e y i y

z x iy x iy x= = = ++ (cos sin ). 

So, the limit can be written as

 

e
e

z
e

e

x i y

e

z

z

z

z

z

x i y

lim lim
∆ →

∆

∆ →

∆ + ∆−
∆

=
−

∆ + ∆

=

0 0

1 1

zz

x
y

x

z

e y i y

x i y

e

lim
(cos sin )

li

∆ →
∆ →

∆ ∆ + ∆ −
∆ + ∆

=

0
0

1

mm
(cos ) sin

∆ →
∆ →

∆ ∆∆ − + ∆
∆ + ∆x

y

x x
e y ie y

x i y0
0

1

Now, as ∆ →x 0, e x∆ → 1, and as ∆ →y 0 , cos ∆ →y 1. Hence the real part of the 

numerator goes as 

 e y
x∆ ∆ − → − =(cos ) ( )1 1 1 1 0

Derivatives of Some Elementary Functions
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So let’s concentrate on the imaginary part and set ∆ →x 0. We will expand the sin 

function in Taylor, giving us

 

lim
sin

lim
( ) / ! ( ) / !

∆ → ∆ →

∆
∆

=
∆ − ∆ + ∆ −

y y

y

y

y y y

0 0

3 53 5 ⋯⋯
⋯

∆
= −

∆
+

∆
−







=
∆ →y

y y

y
lim

( )

!

( )

!0

2 4

1
3 5

1

This means

 lim
∆ →

∆ −
∆

=
z

z
e

z0

1
1

Therefore it must be the case that

 
d

dz
e

e e

z
e

z

z

z z z

z=
−

∆
=

∆ →

+∆

lim
0

Other derivatives of elementary functions also correspond to the results you’re 

familiar with from the calculus of real variables:

 

d

dz
z z

d

dz
z z

d

dz
z z

d

dz

sin cos cos sin

sinh cosh c

= = −

= oosh sinhz z=

 

  

(3.8)

The Product and Quotient Rules
The product and quotient rules also carry over to the case of complex variables. We 

have

 

d

dz
fg

df

dz
g

dg

dz
f( ) = +

 
 (3.9)

Provided that g z( ) ≠ 0 :

 
d

dz

f

g

f g g f

g







=
′ − ′

2
 (3.10)

Finally, we note the chain rule for composite functions. If F z g f z( ) [ ( )]=
 
then

 ′ = ′ ′F z g f z f z( ) [ ( )] ( )  (3.11)
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EXAMPLE 3.4

Find the derivatives of

 F z
z

z
F z z1 2

2 31

2 1
1 2( ) ( ) ( )=

+
+

= −

SOLUTION

In the fi rst case, we use the quotient rule making the following identifi cations

 f z z f z

g z z g z

( ) ( )

( ) ( )

= + ⇒ ′ =
= + ⇒ ′ =

1 1

2 1 2

Hence

 ′ − ′
=

+ − +
+

= −
+

f g g f

g

z z

z z
2 2

1 2 1 2 1

2 1

1

2 1

( )( ) ( )( )

( ) ( ))2

Note that this result is valid provided that 2 1 0 1 2z z+ ≠ ≠ −or / , otherwise the 

derivative would blow up.

Considering the second function, we can use the rule for the derivative of a 

composite function with

 
f z z f z z

g z f z g z f

( ) ( )

( ) ( ) ( )

= − ⇒ ′ = −

= ⇒ ′ =

1 2 4

3

2

3 2

And so:

 F z z2

2 212 1 2′ = − −( )

Before proceeding to the Cauchy-Riemann equations, we note two important 

theorems.

THEOREM 3.1

If f z( ) is differentiable at a point z
0
, then it is also continuous at z

0
.

PROOF

Writing out the defi nition of the derivative in terms of the limit, we have

 ′ =
−
−→

f z
f z f z

z zz z
( ) lim

( ) ( )
0

0

0
0
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Now, notice that

 
lim ( ) ( ) lim

( ) ( )
(

z z z z
f z f z

f z f z

z z
z z

→ →
− =

−
−

−
0 0

0

0

0

00

0 0
0

0

)

( ) lim( )= ′ − =
→

f z z z
z z

This means that

 lim ( ) ( )
z z

f z f z
→

=
0

0

Hence it follows that if ′f z( ) exists at z
0
, f z( ) is continuous there. 

THEOREM 3.2: L’HOPITAL’S RULE

Let f z g z( ) ( )and  be two functions that are analytic at a point z
0
. Then provided 

that ′ ≠g z( )0 0, if f z g z( ) ( )0 0 0= =  then

 lim
( )

( )
lim

( )

( )z z z z

f z

g z

f z

g z→ →
=

′
′0 0

  (3.12)

EXAMPLE 3.5

Find the following limit:

 lim
z i

z i

z z i→

−
− + +2 1

SOLUTION

We see that f i i i g i i i i i i( ) ( )= − = = − + + = − − + + =0 1 1 1 02and , so we apply the 

rule. Computing the derivatives we get

 ′ = − =

′ = − + + = −

f z
d

dz
z i

g z
d

dz
z z i z

( ) ( )

( ) ( )

1

1 2 12

Therefore

 lim lim
z i z i

z i

z z i z i→ →

−
− + +

=
−

=
−2 1

1

2 1

1

2 1
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Now let’s work our way up to one of the most important and elegant results in all of 

mathematics, the Cauchy-Riemann equations. These equations, which were inde-

pendently discovered by the mathematicians Augustin Louis Cauchy (1789–1857) 

and George Friedrich Bernhard Riemann (1826–1866) (Riemann derived them in 

his doctoral dissertation) allow us to quickly determine whether or not a function is 

analytic. To start, we write a function f z( ) of a complex variable in terms of real 

and imaginary parts:

 f z u x y iv x y( ) ( , ) ( , )= +   (3.13)

The real and imaginary parts are themselves functions, but they are real functions 

of the real variables x and y.

What we’ll be after in determining whether or not a function is analytic is to fi nd 

out how that function depends on z zand . First we make a defi nition.

Defi nition: Continuously Differentiable Function

Consider an open region D in the complex plane and a function f D: →
 
ℂ. If this 

function is continuous and if the partial derivatives ∂ ∂ ∂ ∂f x f y/ /and  exist and are 

continuous, we say that f is continuously differentiable in D. If f is k times 

continuously differentiable where k = 0 1 2, , ,... (that is, k derivatives of f exist and 

are continuous) we say that f is C
k. If f is C

0, this is a continuous function which 

is not differentiable. 

Now, how do we determine if a function is analytic? If f is a continuously 

differentiable function on some region D then it is analytic if it has no dependence 

on z . That function is analytic in a domain D provided that

 
df

d z
= 0  (3.14)

This condition must hold for all points in D. Note that a function which is analytic 

is also called holomorphic. Later we will see that we can form a local power series 

expansion of a holomorphic or analytic function.

Now let’s go back to writing a function of a complex variable in terms of real and 

imaginary parts as in Eq. (3.13). We want to think about how to compute the 

derivative d/dz in terms of derivatives with respect to the real variables x and y. Let’s 

go back to basics. Remember that z x iy= + . This tells us that

 
∂
∂

=
∂
∂

=
z

x

z

y
i1 and  (3.15)

The Cauchy-Riemann Equations
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Since z x iy= − , it is the case that

 
∂
∂

=
∂
∂

= −
z

x

z

y
i1 and  (3.16)

These formulas can be inverted. Recalling from Chap. 1 that x z z= +( )/2 and 
y z z i( )= − /2  we fi nd that

 
∂
∂

= =
∂
∂

x

z

x

z

1

2
 (3.17)

and

 
∂
∂

= −
∂
∂

= +
y

z

i y

z

i

2 2
 (3.18)

(remember that 1 /i i= − .) Using these results we can write the derivatives ∂ ∂/ z  and 

∂ ∂/ z  in terms of the derivatives ∂ ∂ ∂ ∂/ and /x y. In the fi rst case we have

 
∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

−
∂
∂z

x

z x

y

z y x

i

y

1

2 2
 (3.19)

Similarly

 
∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

+
∂
∂z

x

z x

y

z y x

i

y

1

2 2
 (3.20)

Now we can use these results to write the derivatives df dz df d z/ and /
 
in terms 

of derivatives with respect to the real variables x and y:

 

∂
∂

=
∂
∂

−
∂
∂







=
∂
∂

−
∂
∂







+
f

z x
i

y
f

x
i

y
u iv

1

2

1

2
(( )

=
∂
∂

+
∂
∂







+
∂
∂

−
∂
∂







1

2 2

u

x

v

y

i v

x

u

y

 

(3.21)

 

∂
∂

=
∂
∂

+
∂
∂







=
∂
∂

+
∂
∂







+
f

z x
i

y
f

x
i

y
u iv

1

2

1

2
(( )

=
∂
∂

−
∂
∂







+
∂
∂

+
∂
∂







1

2 2

u

x

v

y

i v

x

u

y

 

(3.22)

Now we are in a position to determine whether or not a function is analytic—that 

is, if it has no dependence on z—by examining how it depends on the real variables 
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x and y. No dependence on z  implies that the real and imaginary parts of Eq. (3.22) must 

independently vanish. This gives us the Cauchy-Riemann equations.

Defi nition: The Cauchy-Riemann Equations

Using Eq. (3.22) the requirement that ∂ ∂ =f z/ 0 leads to ( ) ( )∂ − ∂ ∂ =u dx v y/ / 0  

and ( ) ( )∂ ∂ + ∂ ∂ =v x u y/ / 0. This gives the Cauchy-Riemann equations:

 

∂
∂

=
∂
∂

∂
∂

= −
∂
∂

u

x

v

y

u

y

v

x

 (3.23)

The Cauchy-Riemann equations can also be derived by looking at limits. We do 

this by writing everything in terms of real and imaginary parts to that once again we 

take f z u x y iv x y z x iy z x i( ) ( , ) ( , ), ,= + = + ∆ = ∆ +and0 0 0 ∆∆y. Now following what 

we did earlier and taking w f z= ( ) for notational convenience, we have

 ∆ = + ∆ −

= + ∆ + ∆ − +

w f z z f z

u x x y y u x y i

( ) ( )

( , ) ( , )

0 0

0 0 0 0 [[ ( , ) ( , )]v x x y y v x y0 0 0 0+ ∆ + ∆ −

If the function f z( )  is differentiable, we can approach the origin in any way we like. 

So we try this in two ways, fi rst along the x axis (and hence setting ∆ =y 0) and then 

along the y axis (and setting ∆ =x 0). Going with the fi rst case, we set ∆ =y 0  and get

 
∆
∆

=
+ ∆ −

∆
+

+ ∆ −w

z

u x x y u x y

x
i

v x x y v( , ) ( , ) [ ( , )0 0 0 0 0 0 (( , )]x y

x

0 0

∆

Now, taking the limit ∆ →x 0  we see that these expressions are nothing other 

than partial derivatives. That is:

 

lim lim
( , ) ( , )

∆ → ∆ →

∆
∆

=
+ ∆ −

∆
+

x x

w

z

u x x y u x y

x
i

0 0

0 0 0 0 llim
[ ( , ) ( , )]

∆ →

+ ∆ −
∆

=
∂
∂

+
∂
∂

x

v x x y v x y

x

u

x
i

v

x

0

0 0 0 0

If the derivative ′f z( )  exists, we must obtain the same answer even if we choose 

another way for ( , )∆ ∆x y to go to zero. Now we use the other option, approaching 

the origin along the y axis. Hence we set ∆ =x 0. This time we have

 
∆
∆

=
+ ∆ −

∆
+

+ ∆ −w

z

u x y y u x y

i y

v x y y v( , ) ( , ) [ ( , )0 0 0 0 0 0 (( , )]x y

y

0 0

∆
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Taking the limit as ∆ →y 0, once again we obtain partial derivatives. This time, 

however, they are with respect to y:

 

lim lim
( , ) ( , )

∆ → ∆ →

∆
∆

=
+ ∆ −

∆
+

y y

w

z

u x y y u x y

i y0 0

0 0 0 0 llim
[ ( , ) ( , )]

∆ →

+ ∆ −
∆

= −
∂
∂

+
∂
∂

y

v x y y v x y

y

i
u

y

v

0

0 0 0 0

yy

This must agree with our previous result. It can only do so if the real and imaginary 

parts of both limits are equal. Imposing this condition on the real part of each limit we 

obtain the fi rst of the Cauchy-Riemann equations:

 
∂
∂

=
∂
∂

u

x

v

y

Equating imaginary parts, we fi nd the second of the Cauchy-Riemann equations:

 
∂
∂

= −
∂
∂

u

y

v

x

EXAMPLE 3.6

Is the function f z z( ) = 2 analytic?

SOLUTION

Writing the function in terms of real and imaginary parts, we have

 f z z x iy x iy

x y i xy

( ) ( )( )= = + +

= − +

2

2 2 2

Hence, in this case

 u x y x y v x y xy( , ) ( , )= − =2 2 2

Now let’s compute the relevant partial derivatives. We fi nd

 

∂
∂

=
∂
∂

= −

∂
∂

=
∂
∂

=

u

x
x

u

y
y

v

x
y

v

y
x

2 2

2 2
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We see immediately that

 

∂
∂

=
∂
∂

u

x

v

y         

and

       

∂
∂

= −
∂
∂

u

y

v

x

The Cauchy-Riemann equations are satisfi ed, so we conclude the function is analytic.

EXAMPLE 3.7

Is f z z( ) = 2
analytic?

SOLUTION

This time the situation is a little bit different. We will see that the function is only 

differentiable at the origin. Again, we write the function in terms of real and imaginary 

parts:

 f z z zz x iy x iy x y( ) ( )( )= = = + − = +2 2 2

Therefore

 u x y x y v x y( , ) ( , )= + =2 2 0

So while

 
∂
∂

=
∂
∂

=
u

x
x

u

y
y2 2and

We have

 
∂
∂

=
∂
∂

=
v

x

v

y
0

So unfortunately, the Cauchy-Riemann equations cannot be satisfi ed, unless 

x y= = 0. We conclude the function is not analytic. Another way to look at this is 

that the function has z dependence:

 
∂
∂

=
∂

∂
= ≠

f

z z
zz z( ) 0

(unless of course, z = 0.) This illustrates the fact that a function which depends on 
z is not analytic.
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EXAMPLE 3.8

Is f z e
z( ) =  analytic?

SOLUTION

We write the function in terms of real and imaginary parts as

 e e e e
z x iy x iy= =+

Now use Euler’s formula to write

 e y i y
iy = +cos sin

So we have

 e e y i y e y ie y
z x x x= + = +(cos sin ) cos sin

Therefore

 u x y e y v x y e y
x x( , ) cos ( , ) sin= =

We fi nd the following partial derivatives of these functions:

 

∂
∂

=
∂
∂

= −

∂
∂

=
∂
∂

=

u

x
e y

u

y
e y

v

x
e y

v

y
e

x x

x x

cos sin

sin coss y

Since u v u v
x y y x

= = −and , the Cauchy-Riemann equations are satisfi ed, and we 

conclude the function is analytic.

Defi nition: The Derivative of a Continuously Differentiable 
Function

If the partial derivatives u u v v
x y x y
, , , and  are continuous at a point ( , )x y0 0  and the 

Cauchy-Riemann equations hold then

 ′ = +

′ =

f z u x y iv x y

f z v x y

x x

y

( ) ( , ) ( , )

( ) ( , )

0 0 0 0 0

0 0 0 −− iu x yy ( , )0 0

 (3.24)
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It follows from the Cauchy-Riemann equations that we can write

 
df

dz

f

x
i

f

y
=

∂
∂

−
∂
∂

 (3.25)

In many cases it is convenient to work with the polar representation of a complex 

function where we write z in the form z re
i= θ . Then

 f z u r iv r( ) ( , ) ( , )= +θ θ  (3.26)

In this case the Cauchy-Riemann equations assume the form:

 
∂
∂

=
∂
∂

∂
∂

= −
∂
∂

u

r r

v v

r r

u1 1

θ θ
 (3.27)

These equations hold provided that f z( ) is defi ned throughout an ε  neighborhood 

of a nonzero point z r e
i

0 0
0= θ
 and the fi rst-order partial derivatives u v u v

r r
, , ,θ θand

exist and are continuous everywhere in the ε  neighborhood.

EXAMPLE 3.9

Let  f  be the principal square root function 

 f z z( ) =

with z re
i= θ  defi ned such that r > − < <0 and π θ π . Is this function analytic?

SOLUTION

We write the function in terms of the polar representation:

 f z z re r e
i i( ) /= = =θ θ 2

Using Euler’s formula this can be written as

 f z r e r i r
i( ) cos( / ) sin( / )/= = +θ θ θ2 2 2

So we have

 u r r v r r( , ) cos( / ) ( , ) sin( / )θ θ θ θ= =2 2and

The Polar Representation
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This means that

 
∂
∂

=
∂
∂

= −

∂
∂

=

u

r r

u r

v

r r

1

2
2

2
2

1

2

cos( / ) sin( / )

sin

θ
θ

θ

(( / ) cos( / )θ
θ

θ2
2

2
∂
∂

=
v r

Since we have the following relationships:

 ru
r

v

u
r

rv

r

r

= =

= − = −

2
2

2
2

cos( / )

sin( / )

θ

θ

θ

θ

The polar form of the Cauchy-Riemann equations are satisfi ed and the given 

function is analytic on the specifi ed domain.

In an analogous manner to Eq. (3.25), using the Cauchy-Riemann equations it 

can be shown that

 ′ =
∂
∂

+
∂
∂







−
f z e

u

r
i

v

r

i( ) θ  (3.28)

EXAMPLE 3.10

Does the derivative of f z z( ) /= 1  exist? If so what is ′f z( ) in polar form?

SOLUTION

First let’s write the function in polar form:

 f z
z re r

e
i

i( ) = = = −1 1 1
θ

θ

Using Euler’s formula, we can split this into real and imaginary parts:

 f z
r

i
r

( ) cos sin= −
1 1

θ θ

Computing the derivatives we fi nd

 
∂
∂

= −
∂
∂

= −

∂
∂

=
∂
∂

= −

u

r r

u

r

v

r r

v

1 1

1

2

2

cos sin

sin

θ
θ

θ

θ
θ

11

r
cosθ
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It’s apparent that these results satisfy

 r
u

r

v
r

v

r

u∂
∂

=
∂
∂

−
∂
∂

=
∂
∂θ θ

and

This means that the derivative exists, since the Cauchy-Riemann equations are 

satisfi ed (provided that r > 0). Using Eq. (3.28) we can fi nd f ′(z). We obtain

 

′ =
∂
∂

+
∂
∂







= − +− −
f z e

u

r
i

v

r
e

r

i

r

i i( ) cosθ θ θ
1

2 2
ssin

(cos sin )

(

θ

θ θ
θ

θ







= − −

= −

−

−
−

e

r
i

e

r
e

i

i

i

2

2

θθ

θ

θ

)

= −

= − = −

−
e

r

r e z

i

i

2

2

2 2 2

1 1

Let’s take a step back and formally defi ne the term analytic. We say that a function 

f z( ) is analytic in an open set S if its derivative exists and is continuous at every 

point in S. If you hear a mathematician say that a complex function is regular or 

holomorphic, the meaning is the same. 

A function can’t be analytic if its derivative only exists at a point. If we say that f (z) 

is analytic at some point z
0
 then this means it is analytic throughout some neighborhood 

of z
0
. So, recalling Example 3.7, while f z z( ) = 2

 satisfi es the Cauchy-Riemann 

equations at the origin, it is not analytic because it does not satisfy the Cauchy-

Riemann equations at any point displaced from the origin (or at any nonzero point). 

As a result we cannot construct a neighborhood about the origin where the Cauchy-

Riemann equations would be satisfi ed, so the function is not analytic.

Defi nition: Singularity

Suppose that a function f z( ) is not analytic at some point z
0, but it’s analytic in a 

neighborhood that contains z
0
. In this case, we say that z

0
 is a singularity or singular

Some Consequences of the 
Cauchy-Riemann Equations
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point of f (z). Singularities will take center stage when we talk about power series 

expansions of complex functions.

Defi nition: Necessary and Suffi cient Conditions 
for a Function to Be Analytic

There are two necessary conditions a function f z( ) must satisfy to be analytic. 

These are

• f z( ) must be continuous

• The Cauchy-Riemann equations must be satisfi ed

These conditions, however, are not suffi cient to say a function is analytic. To 

satisfy the suffi ciency condition for differentiability at a point z
0
, a function f z( )

must satisfy the following conditions:

• It must be defi ned throughout an ε-neighborhood of the point z
0
.

• The fi rst-order partial derivatives u u v v
x y x y
, , , and  must exist everywhere 

throughout the ε-neighborhood.

• The partial derivatives must be continuous at z
0
 and the Cauchy-Riemann 

equations must be satisfi ed.

SOME PROPERTIES OF ANALYTIC FUNCTIONS

Let f z g z( ) ( )and  be two analytic functions on some domain D. Then

• The sum and difference f g±  is also analytic in D.

• The product f z g z( ) ( ) is analytic in D.

• If g z( ) does not vanish at any point in D, then the quotient f z g z( ) / ( ) is 

analytic in D.

• The composition of two analytic functions g f z f g z[ ( )] [ ( )]or  is analytic in D

EXAMPLE 3.11

Determine whether or not the function f z z z z( ) ( ) ( )( )]= + + +2 21 2 3/[  is analytic.

SOLUTION

Since z
2 1+  and ( )( )z z+ +2 32  are both analytic (note there is no z  dependence), 

and the quotient of two analytic functions is analytic, we conclude that f (z) is 

analytic. However, this is not true at any singular points of the function, which are 

points for which the denominator vanishes. The singular points in this case are

 z i= − ±2 3
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So, we say that f (z) is analytic throughout the complex plane except at these 

points, which are the singularities of the function.

An important theorem which is a consequence of the Cauchy-Riemann equations 

tells us if a function is constant in a domain D.

THEOREM 3.3

If ′ =f z( ) 0 everywhere in a domain D, then f (z) must be constant in D.

An important class of functions known as harmonic functions play an important 

role in many areas of applied mathematics, physics, and engineering. We say that a 

function u x y( , ) is a harmonic function if it satisfi es Laplace’s equation in some 

domain of the x-y plane:

 
∂
∂

+
∂
∂

=
2

2

2

2
0

u

x

u

y
 (3.29)

Here, we have assumed that u x y( , ) has continuous fi rst and second partial 

derivatives with respect to both x and y. An important application of harmonic 

functions in physics and engineering is in the area of electrostatics, for example. 

Harmonic functions also fi nd application in the study of temperature and fl uid fl ow.

It turns out that the Cauchy-Riemann equations can help us fi nd harmonic 

functions, as the next theorem illustrates.

THEOREM 3.4

Suppose that f z u x y iv x y( ) ( , ) ( , )= +  is an analytic function in a domain D. If 

follows that u x y v x y( , ) ( , )and  are harmonic functions.

PROOF

The proof is actually easy. Since f (z) is analytic, then the Cauchy-Riemann equations 

are satisfi ed:

 
∂
∂

=
∂
∂

∂
∂

= −
∂
∂

u

x

v

y

u

y

v

x
and

Now let’s take the derivative of the fi rst equation with respect to x:

 
∂
∂

=
∂
∂ ∂

2

2

2
u

x

v

x y

Harmonic Functions
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Taking the derivative of the second Cauchy-Riemann equation with respect to y gives

 
∂
∂

= −
∂
∂ ∂

2

2

2
u

y

v

y x

Since partial derivatives commute (that is, their order does not matter) it is the 

case that

 
∂
∂ ∂

=
∂
∂ ∂

2 2
v

x y

v

y x

From which it follows that

 
∂
∂

= −
∂
∂

⇒
∂
∂

+
∂
∂

=

2

2

2

2

2

2

2

2
0

u

x

u

y

u

x

u

y

So we’ve shown that if a function is analytic, then the real part u x y( , ) satisfi es 

Laplace’s equation. A similar procedure can be used to show that the imaginary part 

v x y( , ) is harmonic as well.

Defi nition: Harmonic Conjugate

Suppose that u and v are two harmonic functions in a domain D. If their fi rst-order 

partial derivatives satisfy the Cauchy-Riemann equations, then we say that v is the 

harmonic conjugate of u.

THEOREM 3.5

A function f z u x y iv x y( ) ( , ) ( , )= +  is analytic if and only if v x y( , ) is the harmonic 

conjugate of u x y( , ).

EXAMPLE 3.12

Is u x y e x
y( , ) sin= −

 
a harmonic function? If so write down an analytic function f z( ) 

such that u is its real part.

SOLUTION

We compute the partial derivatives of u. We fi nd

 
∂
∂

= ⇒
∂
∂

= −

∂
∂

= − ⇒
∂

− −

−

u

x
e x

u

x
e x

u

y
e x

y y

y

cos sin

sin

2

2

22

2

u

y
e x

y

∂
= − sin
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It’s clear that the function is harmonic since

 
∂
∂

+
∂
∂

= − + =− −
2

2

2

2
0

u

x

u

y
e x e x

y ysin sin

Using the Cauchy-Riemann equations, we have

 

∂
∂

= =
∂
∂

∂
∂

= − = −
∂
∂

−

−

u

x
e x

v

y

u

y
e x

v

x

y

y

cos

sin

So it must be the case that v x y e x
y( , ) cos= − −

. The analytic function we seek is 

therefore

 f z u x y iv x y e x ie x
y y( ) ( , ) ( , ) sin cos= + = −− −

The refl ection principle allows us to determine when the following condition is 

satisfi ed:

 f z f z( ) ( )=  (3.30)

If f z( )  is analytic in a domain D that contains a segment of the x axis, then 

Eq. (3.30) holds if and only if f (x) is real for each point of the segment of x 

contained in D.

EXAMPLE 3.13

Do f z z( ) = +1 and g z z i( ) = +  satisfy the refl ection principle?

SOLUTION

Since f x x( ) = +1 is a real number in all cases, the refl ection principle is satisfi ed. In this 

simple example we can actually see this immediately since f z z z f z( ) ( )= + = + =1 1 . 

In the second case, we have g x x i( ) = + , which is not a real number. The refl ection pri-

nciple is not satisfi ed which means that g z g z( ) ( )≠ . This function is also simple enough 

so that we can verify this explicitly—we have g z z i z i( ) = + = − , but g z z i( ) = + .

The Refl ection Principle
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Summary
In this chapter, we learned how to determine if a function of a complex variable is 

differentiable or analytic. The necessary condition for a function to be analytic 

is that it be continuous and satisfy the Cauchy-Riemann equations. If a function 

is analytic, then its real and imaginary parts are harmonic functions, that is, they 

satisfy Laplace’s equation.

Quiz
 1. Let f z z

n( ) = . Using the limit procedure outlined in Example 3.1, fi nd ′f z( ).

 2. Let f z z( ) = 2
. Find 

∆
∆
w

z
. Does the derivative exist?

 3. Compute ′ = − +f z f z z z( ) ( )when 3 6 48 2 .

 4. What is the derivative of f z
z

z
( )

( )
=

+3 2 2

2
?

 5. What is lim
z

z

z iz i→

−
+ − +1 2

1

1
?

 6. Show that e
z is not analytic using the Cauchy-Riemann equations.

 7. Is f x iy= −
 
differentiable at the origin?

 8. Let f z e
iz( ) = . Is this function entire?

 9. Does f re
i=

3 3θ /

 
have a derivative everywhere in the domain 

r > < <0 0 2, θ π ?

 10. Let u x y x y( , ) = −2 2. Is this function harmonic? If so, what is the harmonic 

conjugate?



CHAPTER 4

Elementary Functions

In this chapter we introduce some of the elementary functions in the context of 

complex analysis. Our discussion will include polynomials, rational functions, the 

exponential and logarithm, trigonometric functions and their inverses, and fi nally, 

the hyperbolic functions and their inverses.

A polynomial is a function f z( ) that can be written in the form

 f z a a z a z a zn

n( ) = + + + +0 1 2

2
⋯  (4.1)

The highest power n is called the degree of the polynomial and a j are constants 

called coeffi cients. In general, the coeffi cients can be complex numbers.

Complex Polynomials

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Since z x iy= + , a complex polynomial can be viewed as a polynomial in the real 

variables x and y with complex coeffi cients. For example, consider

 f z iz z( ) = − +5 2 2  (4.2)

We can write this as

 

f z iz z

i x iy x iy

ix y x

( )

( ) ( )

= − +

= − + + +

= − + +

5 2

5 2

5 2

2

2

2 ++ −

= + − + + −

i xy y

x y y i xy x

4 2

5 2 2 4

2

2 2 ( )

Following the last chapter, we can identify

 

u x y x y y

u

x
x

u

y
y

( , ) = + − +

⇒
∂
∂

=
∂
∂

= − +

5 2 2

4 4 1

2 2

and

 

v x y xy x

v

x
y

v

y
x

( , ) = −

⇒
∂
∂

= −
∂
∂

=

4

4 1 4

Notice that u v u vx y y x= = −and , so this is an analytic function. We can also verify 

this by noticing that

 
∂
∂

=
∂

∂
− + =

f

z z
iz z( )5 2 02

We can generate some plots to look at the behavior of the function. When studying 

a complex function, you might want to plot its modulus and the real and imaginary 

parts to see where interesting features appear. Let’s plot f z f z f z( ) ( ) ( )= . This is 

shown in Fig. 4.1.

Obviously, the function has some interesting behavior around the origin. We see 

more by looking at the contour plot, shown in Fig. 4.2.

The most interesting behavior seems to be around x = 0 . At this point, the real 

and imaginary parts of the function are given by

 u y y y v y( , ) ( , )0 5 2 0 02= − + =

Plotting the modulus of f with x = 0 , we see the two zeros in y as shown in Fig. 4.3.
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Figure 4.1 A plot of f z f z f z( ) ( ) ( )=  for the function defi ned in Eq. (4.2).
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Figure 4.2 A contour plot showing the modulus of f z iz z( ) = − +5 2
2
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Figure 4.3 A plot of the modulus of f z( ) with x = 0.
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Figure 4.4 The real part of f z( ).
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You can also look at the real and imaginary parts to learn about the function. In 

Fig. 4.4, we show a plot of the real part of Eq. (4.2) and in Fig. 4.5, we show a 

contour plot of the real part of the function. A plot of the imaginary part of Eq. (4.2) 

and its contours are shown in Figs. 4.6 and 4.7, respectively.
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Figure 4.5 A contour plot of the real part of f z( ).
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Figure 4.6 The imaginary part of Eq. (4.2).
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The Complex Exponential
We have already seen the exponential function e

z
. In this section, we review some 

of it’s properties. Using z x iy= +  we have already noted that the complex exponential 

can be written as

 e e e
z x iy=  (4.3)

Using Euler’s formula we have

 e y i y
iy = +cos sin  (4.4)

Expanding out Eq. (4.3) we have the real and imaginary parts of the complex 

exponential:

 
Re( ) ( , ) cos

Im( ) ( , ) sin

e u x y e y

e v x y e y

z x

z x

= =

= =
 (4.5)

Figure 4.7 A contour plot of the imaginary part of the function.
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Looking at these functions, you can see that both the real and imaginary parts 

increase without bound as x → ∞. In Fig. 4.8, we show a plot of the real part of e
z
 

for 0 1 2 2≤ ≤ − ≤ ≤x y, π π . The oscillations due to the cos function in the y direction 

are readily apparent, as is the fact that the function is increasing rapidly in the x 

direction.

A contour plot of the real part of e
z
 is shown in Fig. 4.9. The oscillations along 

the y direction are apparent. 

The additive property of exponents, that is, e e e
a b a b= +  also carries over to the 

complex case. This is due to the way we add complex numbers. Let 

z x iy z x iy1 1 1 2 2 2= + = +and . Then we know that z z x x i y y1 2 1 2 1 2+ = + + +( ) ( ). Now 

we utilize the fact that exponents add for real numbers. That is:

 

e e e e

e e e e

e

z z x iy x iy

x iy x iy

1 2 1 1 2 2

1 1 2 2

=

=

=

+ +

( )( )

( xx x iy iy

x x iy iy

e e e

e e e

1 2 1 2

1 2 1 2

)( )

( )= +

Figure 4.8 A plot of the real part of e
z
.
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We can’t just assume the additive property holds for e e
iy iy

1 2. But we can show it does 

fairly easily:

 

e e y i y y i y

y

iy iy1 2

1 1 2 2

1

= + +

=

(cos sin )(cos sin )

cos ccos sin sin (sin cos cos sin )y y y i y y y y2 1 2 1 2 1 2− + +

= ccos( ) sin( )

exp[ ( )]

y y i y y

i y y

1 2 1 2

1 2

+ + +

= +

So we’ve got

 
e e e e e

e e e

z z x x iy iy

x x i y y z

1 2 1 2 1 2

1 2 1 2 1

=

= =

+

+ +( )

( )

++z2

It follows that

 e

e
e

z

z

z z
1

2

1 2= −  (4.6)

Using e0 1= , you can deduce from Eq. (4.6) that 1/e e
z z= −  as in the real case.

Figure 4.9 A contour plot of the real part of e
z
.
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EXAMPLE 4.1

Evaluate exp[(1 + pi)/4].

SOLUTION

We write this as

 

exp ( )

(cos

/ / /1

4 4

1 4 4 4 4

4

+



 = =

=

π

π

π πi
e e

e
e

e

i i

// sin )

( )

4 4

1

2

1

2

1

2
14 4

+

= +





= +

i

e i e i

π /

EXAMPLE 4.2

Find e
z
.

SOLUTION

We have

 e e e e e y i y
z x iy x iy x= = = ++ (cos sin )

So

 

e e y i y

e y i y

e

e

z x

x

x

x

= +

= +

= ⋅

=

(cos sin )

cos sin

1

EXAMPLE 4.3

Show that e
z  is a periodic function with period 2k iπ , where k is an integer.

SOLUTION

We have

 

e e e

e k i k

e

z k i z k i

z

z

+ =

= +

=

2 2

2 2

π π

π π(cos sin )
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EXAMPLE 4.4

What is the argument of ez?

SOLUTION

In polar coordinates, a complex variable is written as

 z re
i= θ

Hence

 e e e
z z i= θ

for some θ  which is arg( )e
z . We have already seen in Example 4.2 that e e

z x= . We 

also know that

 e e e
z x iy=

Therefore, comparing with e e e
z z i= θ , we conclude that arg( )e y

z = . But we aren’t 

quite done. Since the cosine and sin functions are 2π  periodic, and e y i y
iy = +cos sin , 

we can add any integer multiple of 2π  to the argument without changing anything. 

So the argument is really given by

 arg( ) , , ,e y n n
z = + = ± ±2 0 1 2π …

You know from elementary calculus that the logarithm is the inverse, if you will, of 

the exponential. That is:

 e x
xln =

A similar function exists in complex variables. Due to the periodic nature of ez, we 

will see that the complex logarithm is a multivalued function. We defi ne the natural 

logarithm in the following way. Let z e
w= . Then

 w z= ln  (4.7)
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Now use the polar representation of z, namely, z re
i= θ. Now we have

 w z re r e r i
i i= = = + = +ln ln( ) ln ln lnθ θ θ  (4.8)

Using the fact that the cosine and sin functions are 2π  periodic, the correct 

representation is actually

 w r i k k= + +( ) = ± ±ln , , ,...θ π2 0 1 2   (4.9)

A key aspect of defi nition in Eq. (4.9) is that the complex natural logarithm is a 

multivalued function. Defi nition in Eq. (4.8), for which k = 0, is called the principal

value or the principal branch of ln z . In that case, we are restricting the argument to 

0 2≤ <θ π . Note that this choice is not unique, all that is required is that we select 

an interval of length 2π . So it is equally valid to choose the principal branch for 

− < ≤π θ π .

You have already seen the use of trigonometric functions in the theory of complex 

variables. Here we state some familiar results for reference. First, we write the 

cosine and sin functions in terms of the complex exponential. This follows from 

Euler’s identity. You should already be familiar with these results:

 cos z
e e

iz iz

=
+ −

2
 (4.10)

 sin z
e e

i

iz iz

=
− −

2
 (4.11)

The tangent function can be written in terms of exponentials using Eqs. (4.10) and 

(4.11):

 tan
sin

cos
z

z

z
i

e e

e e

iz iz

iz iz
= = −

−
+

−

−
 (4.12)

Trigonometric Functions
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Likewise, we have the cotangent function which is just the reciprocal of 

Eq (4.12):

 cot
cos

sin
z

z

z
i

e e

e e

iz iz

iz iz
= =

+
−

−

−
 (4.13)

The secant and cosecant functions can also be written down in terms of exponentials. 

These are given by

 sec
cos

z
z e e

iz iz
= =

+ −

1 2
 (4.14)

 csc
sin

z
z

i

e e
iz iz

= =
− −

1 2
 (4.15)

All of the results from trigonometry using real variables carry over to complex 

variables. We illustrate this in the next two examples.

EXAMPLE 4.5

Show that

 sin( ) sin cos cos sinx iy x iy x iy+ = +

SOLUTION

Using Euler’s identity:

 

sin( )
( ) ( )

x iy
e e

i

e e e e

i x iy i x iy

ix y ix

+ =
−

=
−

+ − +

− −

2
yy

y y

i

x i x e x i x e

i

i x

2

2
=

+ − −

=

−(cos sin ) (cos sin )

sin (( ) cos ( )

sin
( ) (

e e

i

x e e

i

x
e e

y y y y

i iy i i

+
+

−

=
+

− −

−

2 2
yy i iy i iy

x
e e

i

x iy x

) ( ) ( )

cos

sin cos cos sin

2 2
+

−

= +

−

iiy
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EXAMPLE 4.6

Show that cos sin .2 2 1z z+ =

SOLUTION

We start by writing z x iy= +  and utilize the fact that cos sin2 2 1x x+ = , when x is a 

real variable. Using the result of the last example we have

 
sin( ) sin cos cos sin

cos( ) cos

x iy x iy x iy

x iy x

+ = +
+ = ccos sin siniy x iy−

Therefore

 

sin (sin cos cos sin ) sin cos co2 2 2 2
z x iy x iy x iy= + = + ss sin

cos sin cos sin

cos (cos co

2 2

2

2

x iy

x x iy iy

z x

+

= ss sin sin ) cos cos sin sin

c

iy x iy x iy x iy− = +
−

2 2 2 2 2

2 oos sin cos sinx x iy iy

So it follows that

 

cos sin sin cos cos sin cos si2 2 2 2 2 2 2z z x iy x iy x+ = + + nn cos sin

cos cos sin sin cos

x iy iy

x iy x iy x+ + −2 2 2 2 2 ssin cos sin

cos cos sin cos cos

x iy iy

x iy x iy= + +2 2 2 2 22 2 2 2

2 2 2

x iy x iy

iy x x

sin sin sin

cos (cos sin ) s

+

= + + iin (cos sin )

cos sin

2 2 2

2 2

iy x x

iy iy

+

= +

Now we expand each terms using Euler’s identity:

 

cos
( ) ( )

2

2

2

2

iy
e e

e e

i iy i iy

y y

=
+





=
+





−

− 22 2 2 2

4
=

+ +−
e e

y y

and

 

sin
( ) ( )

2

2

2

2

iy
e e

i

e e

i

i iy i iy

y y

=
−





=
−




−

−


= −

+ −





−2 2 2 2

4

e e
y y
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Therefore

 cos sin2 2

2 2 2 22

4

2

4
iy iy

e e e e
y y y y

+ =
+ +

−
+ −





− −

== + =
1

2

1

2
1

Hence, cos sin2 2 1z z+ = .

Following real variables, the trigonometric functions of a complex variable have 

inverses. Let z w= cos . Then we defi ne the inverse w z= −cos 1 , which we call the 

arc cosine function or cosine inverse. There is an inverse trigonometric function for 

each of the trigonometric functions defi ned in Eqs. (4.10)–(4.15). The inverses are 

written in terms of the complex logarithm (see Example 1.8 for a derivation). The 

formulas are

 cos ln− = + −( )1 21
1z

i
z z  (4.16)

 sin ln− = + −( )1 21
1z

i
iz z  (4.17)

 tan ln− =
+
−







1 1

2

1

1
z

i

iz

iz
 (4.18)

 sec ln− =
+ −









1

21 1 1
z

i

z

z
 (4.19)

 csc ln− =
+ −









1

21 1
z

i

i z

z
 (4.20)

 cot ln− =
+
−







1 1

2
z

i

z i

z i
 (4.21)

The Hyperbolic Functions
The complex hyperbolic functions are defi ned in terms of the complex exponential 

as follows:

 cosh z
e e

z z

=
+ −

2
 (4.22)
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 sinh z
e e

z z

=
− −

2
 (4.23)

These functions show some interesting features. Let’s take a closer look at cosh z. 

A plot of cosh z  is shown in Fig. 4.10 focusing on the region 0 1≤ ≤x . Note the 

oscillations along the y direction.

These oscillations result from the fact that this function has trigonometric 

functions with y argument. To see this, we write the hyperbolic cosine function in 

terms of z x iy= + :

 

cosh

(cos sin

( )

z
e e

e e

e y i y

z z

x iy x iy

x

=
+

=
+

=
+

−

+ − +

2

2

)) (cos sin )

cos cosh sin sinh

+ −

= +

−
e y i y

y x i y x

x

2

Figure 4.10 A plot of cosh z xwith 0 1≤ ≤ .
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From here, we see that the modulus is given by

 cosh cos cosh sin sinhz y x y x= +2 2 2 2

These oscillations actually sit inside a kind of half-pipe. This is shown in 

Fig. 4.11.

To see what’s happening, consider a plot of cosh sinh2 2
x x+ . The function 

quickly grows out of control, as shown in Fig. 4.12.

If we look at the real part of cosh z  alone, the oscillations are stronger. Compare 

Fig. 4.13, which shows the real part of the function, to Fig. 4.11, which shows the 

modulus over the same region. The differences are also apparent in the contour 

plots, which are shown side by side in Fig. 4.14. The oscillations are highly visible 

in the contour plot of the real part of the function, shown on the right.

The reason that the oscillations appear more prominent in plots of the real part of 

the function is that we have

 cosh cos cosh sin sinhz y x i y x= +

Figure 4.11 Looking at cosh z  over a wider region, we see that the oscillations sit in a 

region which is surrounded by exponential growth on both sides.
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So the exponential growth of the real part of the function is governed by cosh x, 

which blows up much slower than cosh sinh2 2
x x+ . A plot of cosh x is shown over 

the same interval in Fig. 4.15 for comparison with Fig. 4.12. Be sure to compare the 

vertical axis of the two plots.

Figure 4.12 A plot of cosh sinh
2 2

x x+ , with exponential growth for positive and 

negative values of x.
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Figure 4.13 The real part of cosh z.
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Several relations exist which correlate the hyperbolic and trig functions for complex 

arguments. These include

 cosh cosiz z=  (4.24)

  sinh siniz i z=  (4.25)

     cos coshiz z=  (4.26)

      sin sinhiz i z=  (4.27)

Figure 4.15 The real part of cosh z  is infl uenced heavily by cosh x.
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Figure 4.14 Contour plots of the modulus (on the left) and real part (on the right) of cosh z.
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These formulas are very easy to derive. For example:

 sin
( ) ( )

iz
e e

i
i
e e

i
e e

i
i iz i iz z z z z

=
−

= −
−

=
−

=
− − −

2 2 2
ssinh z

The following identities, carried over from real variables, also hold

                    cosh( ) cosh− =z z  (4.28)

                       sinh( ) sinh− = −z z  (4.29)

 cosh sinh2 2 1z z− =  (4.30)

  sinh( ) sinh cosh cosh sinhz w z w z w+ = +  (4.31)

 cosh( ) cosh cosh sinh sinhz w z w z w+ = +  (4.32)

The following identities incorporate trigonometric functions:

                      sinh sinh cos cosh sinz x y i x y= +  (4.33)

                     cosh cosh cos sinh sinz x y i x y= +  (4.34)

  sinh sinh sinz x y
2 2 2= +  (4.35)

 cosh sinh cosz x y
2 2 2= +  (4.36)

The hyperbolic functions are periodic. Looking at defi nitions in Eqs. (4.33) and 

(4.34), we see that this is due to the fact sinh coshz zand  that incorporate the 

trigonometric functions cosine and sin directly in their defi nitions. Therefore the 

period of the hyperbolic functions is given by

 2πi  (4.37)

The zeros of the hyperbolic functions are given by

  cosh , , ,...z z n n= = +



 = ± ±0

2
0 1 2if

π
π  (4.38)

  sinh , , ,...z z n i n= = = ± ±0 0 1 2if π  (4.39)
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We can also defi ne the other hyperbolic functions analogous to the tangent, cosecant, 

and secant functions. In particular:

 tanh z
e e

e e

z z

z z
=

−
+

−

−
 (4.40)

 sech z
e e

z z
=

+ −

2
 (4.41)

 csch z
e e

z z
=

− −

2
 (4.42)

With the analogous identities

 1 2 2− =tanh z zsech  (4.43)

 tanh( )
tanh tanh

tanh tanh
z w

z w

z w
± =

±
±1

 (4.44)

The hyperbolic functions also have inverses. Like the trigonometric functions, these 

inverses are defi ned using logarithms. Since the inverses are defi ned in terms of 

logarithms they are multivalued functions. These are given by

 cosh ln− = + −( )1 2 1z z z  (4.45)

 sinh ln− = + +( )1 2 1z z z  (4.46)

 tanh ln− =
+
−







1 1

2

1

1
z

z

z
 (4.47)

Complex Exponents
Consider a function f z z( ) = α

, where α  is a complex number. This function can be 

written in a convenient form using the exponential and natural log as follows:

 f z z e
z( ) ln= =α α  (4.48)
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This can be generalized to the case when the exponent of a function is another 

complex function, that is,

 f z e
g z g z f z

( ) ( ) ( ) ln ( )= [ ]  (4.49)

From these defi nitions, we can see that powers of a complex variable z are 

multivalued functions. 

EXAMPLE 4.7

Consider i
i  and determine if it is multivalued.

SOLUTION

Using Eq. (4.48) we write

 i i i
i = exp( ln )

Now

 ln ln ln/
i e i n i n

i= ⋅( ) = + +



 = +

1 1
2

2
2

22π π
π

π
π


 = ± ±for n 0 1 2, , ,...

where Eq. (4.9) was used. So we have

 i i i i i n
i = = +

















=exp( ln ) exp
π

π
2

2 eexp − +











π
π

2
2n

where n = ± ±0 1 2, , ,..., demonstrating that this is a multivalued function—in fact it 

has infi nitely many values. Interestingly, they are all real numbers. Consider n = 0  

for which i
i = =exp( ) . .π /2 4 81

In Chap. 3, we have already studied derivatives in detail. In this section, we list 

some derivatives of the elementary functions for reference. Given a polynomial

 f z a a z a z a zn

n( ) = + + + +0 1 2

2
⋯

Derivatives of Some Elementary Functions
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The derivative is given by

 
df

dz
a a z na zn

n= + + + −
1 2

12 ⋯

The derivative of the exponential function ez is

 
d

dz
e e

z z=  (4.50)

This result holds for the entire complex plane. Therefore the exponential function 

is analytic everywhere or we can say that it is entire.

The derivative of the logarithm is a bit more tricky. If we defi ne

 ln lnz r i= + θ

where θ  is restricted to the domain α θ α π< < + 2 , then we have a single-valued 

function with real and imaginary parts given by

 u r v= =ln θ

These functions satisfy the Cauchy-Riemann equations, since

 

∂
∂

=
∂
∂

=

∂
∂

=
∂
∂

u

r r

v

r
u

r

v

1
1

θ

θ

and

 
∂
∂

= −
∂
∂

=
u

r
v

rθ
0

Given that the Cauchy-Riemann equations are satisfi ed, we can use Eq. (3.28), 

which stated that

 ′ =
∂
∂

+
∂
∂







−
f z e

u

r
i

v

r

i( ) θ

So we’ve got

 
d

dz
z e

u

r
i

v

r
e

r
i

i iln =
∂
∂

+
∂
∂







= +





− −θ θ 1
0 ==

1

re
iθ



CHAPTER 4 Elementary Functions 87

That is, the derivative of the natural logarithm for complex variables is the same as 

that in the calculus of real variables, namely:

 
d

dz
z

z
ln =

1
 (4.51)

This result is valid when z > 0 and α α π< < +arg z 2 .

The derivatives of the trigonometric functions also correspond to the results we 

expect. Let’s derive one example and then just state the other results. You can show that

 cos cos( ) cos cosh sin sinhz x iy x y i x y= + = −

So we have u x y x y v x y x y( , ) cos cosh ( , ) sin sinh= = −and . Then

 

∂
∂

= −
∂
∂

=

∂
∂

= −

u

x
x y

u

y
x y

v

x
x

sin cosh cos sinh

cos sinh yy
v

y
x y

∂
∂

= − sin cosh

So it follows that

 
∂
∂

=
∂
∂

∂
∂

= −
∂
∂

u

x

v

y

u

y

v

x

Since the Cauchy-Riemann equations are satisfi ed, we can write

 
′ =

∂
∂

+
∂
∂

= − −

f z
u

x
i

v

x

x y i x y

( )

sin cosh cos sinh

But sin sin( ) sin cosh cos sinhz x iy x y i x y= + = + , therefore:

 
d

dz
z zcos sin= −  (4.52)

You can also derive this very easily using the exponential representation of the sin 

and cosine functions. Other results can be derived similarly:

 
d

dz
z zsin cos=  (4.53)
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Since the exponential function is entire, the cosine and sin functions are also entire. 

Other derivatives follow from elementary calculus:

          
d

dz
z z

d

dz
z ztan sec cot csc= = −2 2  (4.54)

 
d

dz
z z z

d

dz
z z zsec sec tan csc csc cot= = −  (4.55)

The derivatives of the hyperbolic functions can be derived easily using exponential 

representations:

 
d

dz
z z

d

dz
z zcosh sinh sinh cosh= =  (4.56)

 
d

dz
z ztanh = sech 2  (4.57)

 
d

dz
z z zsech sech= − tanh  (4.58)

Finally, we note the derivative of a complex exponent:

 
d

dz
z z

α αα= −1  (4.59)

Note, however, that since this is a multivalued function, this holds for z > 0, 

0 2< <arg z π  or some other interval.

Branches
A multivalued function repeats itself when z moves in a complete circle about the origin 

in the complex plane. When 0 2≤ <θ π , the function is single valued. We say that we 

are on one branch of the function. But as we let z traverse the circle again so we enter 

the region where 2π θ< , the function repeats. We say that we’ve entered another branch 

of the function. A multivalued function like this repeats itself any number of times.

For convenience, a barrier is set up at our choosing in the complex plane where we 

do not allow z to cross. This barrier is called a branch cut. The point from which the 

branch cut originates is called a branch point. The branch cut extends out from 

the branch point to infi nity. For example, for a multivalued function, we can take the 

branch point to be the origin and the branch cut can extend out from the origin to 

positive infi nity (Fig. 4.16). 
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In this chapter, we described the basic properties of some elementary functions 

encountered in complex variables. These included polynomials, the complex 

exponential, the trig functions, the logarithm, the hyperbolic functions, and functions 

with complex exponents. 

Quiz
1. Prove that cos( ) cos cos sin sinx iy x iy x iy+ = − .

2. If f x e
x( ) = , then f can never be negative. Is the same true of ez?

3. Find a compact expression for e i2 3+ π .

4. Find an identity for 1 2+ tan z  by using Eq. (4.12).

5. Find an identity for tan( )z w+ .

6. Are the inverse trig functions multivalued?

Figure 4.16 Some multivalued functions repeats themselves after z has completely gone 

around the origin. We prevent the function from being multivalued by staying on one 

branch. This means we cannot cross the branch cut, which we have chosen in this case to be 

the line from the origin to positive infi nity. Note that a circle does not have to be used, we 

just have to let z go completely around the origin—a circle was used here for simplicity.

0

Summary
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CHAPTER 5

Sequences and 
Series

It is common practice and often a necessity to represent a function of a real variable 

using an infi nite series expansion. It turns out that this is also true when working 

with complex functions. As we will see, there are some new concepts involved 

when working with complex functions. We begin by considering sequences.

Consider the positive integers n = 1 2 3, , ,...  and consider a function on the positive 

integers, which we denote by f n( ). We call such a function a sequence. The output 

of the function is a number: f n an( ) = . So a sequence is an ordered set of numbers 
a a a1 2 3, , ,...  and we refer to an

as the nth term in the sequence. Sequences can also 

be indicated using curly braces, so we can write { ( )} { }f n anor .

Sequences

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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THE LIMIT OF A SEQUENCE

It is desirable to fi nd the limit of an infi nite sequence to determine whether or not 

the sequence converges or approaches a specifi c fi nite value as n goes to infi nity. 

Limits of sequences are defi ned in the standard way. Suppose that the limit of a 

sequence f n an( ) =  is ℓ. Then this means that, given any positive number ε  we 

can fi nd a number N depending on ε  such that

 a n Nn − < >ℓ ε for all  (5.1)

Using standard notation you are familiar with from calculus, we can write

 lim
n

na
→∞

= ℓ  (5.2)

If the limit of a sequence exists, we say that the sequence is convergent. If the limit 

does not exist or is infi nite, then the sequence is divergent. Note that the limit of a 

given sequence is unique.

The limits of sequences satisfy all of the standard properties you are familiar 

with from your study of the limits of functions. Let us denote two sequences 

a bn nand such that lim lim
n

n
n

na A b B
→∞ →∞

= =and . Then

 

lim( )

lim lim lim

n
n n

n
n n

n
n

n

a b A B

a b a

→∞

→∞ →∞

± = ±

= ( ) →→∞

→∞

→∞

→∞

( ) =

= =

b AB

a

b

a

b

A

B

n

n

n

n

n
n

n
n

lim
lim

lim

 (5.3)

The last result holding provided that B ≠ 0.

SEQUENCES OF COMPLEX FUNCTIONS

So far we haven’t said anything about complex variables—we’ve just sketched out 

the notion of sequences in general. These ideas can be carried over to complex 

functions f zn ( ) defi ned on some region R of the complex plane. If f z( ) exists and 

is fi nite, and

 lim ( ) ( )
n

nf z f z
→∞

=  (5.4)
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on R we say that the sequence f zn ( ) converges to f z( ) on R. The formal defi nition 

of this limit follows from Eq. (5.1). That is, given any ε > 0 there exists an N 

depending on ε  such that

 f z f zn ( ) ( )− < ε  (5.5)

for n N> . If the limit does not exist or is infi nite, then the sequence is divergent.

EXAMPLE 5.1

Let a sequence zn be defi ned as

 z
n

in = +
2

3
2

Does this sequence converge? Find an N such that Eq. (5.5) is satisfi ed.

SOLUTION

We examine the limit of this sequence. We have

 lim lim lim lim
n

n
n n n

z
n

i
n

i
→∞ →∞ →∞ →∞

= + = + = +
2

3
2

3 0
2 2

33 3i i=

That is, the sequence converges and its limit is 3i. Formally, given any ε > 0 we 

need to fi nd an N such that ( / ) /2 3 3 22 2
n i i n+ − = < ε  for n N> . So we have

 
2 2

2
n

n< ⇒ >ε
ε

This means that Eq. (5.5) is satisfi ed if we take

 N =
2

ε

Note that since N depends on ε, the sequence is not uniformly convergent (see Sec. 

“Uniformly Converging Series” later in the chapter).



94 Complex Variables Demystifi ed

Infi nite Series
By summing up the individual terms in a sequence we can construct a series. This 

can be done using so-called partial sums. That is, let { ( )}a zn  be some complex 

sequence. Then we can form partial sums as follows:

 

S a z

S a z a z

S a z a z an n

1 1

2 1 2

1 2

=

= +

= + + +

( )

( ) ( )

( ) ( ) (

⋮

⋯ zz)

So, the nth partial sum is constructed by adding up the fi rst n terms of the sequence. 

If we let n → ∞, we obtain an infi nite series:

 a zn

n

( )
=

∞

∑
1

 (5.6)

If the following condition holds:

 lim ( ) ( )
n

nS z S z
→∞

=  (5.7)

where S z( ) is a fi nite quantity we say that the series is convergent. If Eq. (5.7) does 

not hold then the series is divergent. A necessary but not suffi cient condition for a 

series to be convergent is that the following condition holds:

 lim ( )
n

na z
→∞

= 0  (5.8)

In the next section, we’ll review some tests that can be used to determine whether 

or not a series converges.

Convergence
An important concept used in working with series in complex analysis is the radius 

of convergence R. Simply put, we want to know over what region R of the complex 

plane does the series converge. It may be that the series converges everywhere, or 

it could turn out that the series only converges inside the unit disc, say.
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First let’s take a look at sequences again. If each term in a sequence is larger than 

or equal to the previous term, which means that

 a an n+ ≥1

We say that the sequence is monotonic increasing. On the other hand, if

 a an n+ ≤1

then the sequence is monotonic decreasing. If each term in the sequence is bounded 

above by some constant M:

 
a Mn <

 (5.9)

then we say that the sequence is bounded. A bounded monotonic sequence (either 

increasing or decreasing) converges.

CAUCHY’S CONVERGENCE CRITERION

Saying that a sequence converges is the same as saying that it has a limit, so we can 

formalize the notion of convergence. Leave it up to Cauchy to have done that for 

us. So, { }an  converges if given an ε > 0  we can fi nd an N such that

 a a m n Nm n− < >ε for ,

Cauchy’s convergence criterion is necessary and suffi cient to show convergence of 

a sequence.

CONVERGENCE OF A COMPLEX SERIES

Remember that any complex function f z( ) can be written in terms of real and 

imaginary parts, just like a complex number. The real and imaginary parts are 

themselves real functions. So one way to check convergence is to check the 

convergence of the real and imaginary parts—assuming we have a series 

representation available—and seeing if they converge. So a necessary and suffi cient 

condition that a series of the form ∑ +a ibj j converges is that the two series 

∑ ∑a bj jand  both converge.
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Convergence Tests
The following convergence tests can be used to evaluate whether or not a series 

converges. If we say that a series ∑ an converges absolutely, we mean that

 an

n=

∞

∑
1

 (5.10)

converges. The fi rst test that we can apply for convergence is the comparison test. 

The comparison test tells us that if ∑ bn  converges and a bn n≤ , then the series 

∑ an  converges absolutely. If ∑ bn  diverges and a bn n≥ , the series ∑ an  also 

diverges. However, we can’t say anything about the series ∑ an.

The ratio test is a nice test that appeals to common sense. We take the ratio of the 

terms an+1  to an and take the limit n → ∞. Let

 lim
n

n

n

a

a
R

→∞

+ =1  (5.11)

There are two possibilities:

• If R < 1  then the series converges absolutely.

• If R > 1  then the series is divergent.

If R = 1then no information is available from the test.

The nth root test checks the limit:

 lim
n

n
n a R

→∞
=  (5.12)

The possibilities here are the same we encountered with the ratio test. These are

• If R < 1  then the series converges absolutely.

• If R > 1  then the series is divergent.

If R = 1then no information is available from the test.
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Raabe’s test checks the limit:

 lim
n

n

n

n
a

a→∞

+−






1 1  (5.13)

Again

• If R < 1  then the series converges absolutely.

• If R > 1  then the series is divergent.

If R = 1then no information is available from the test.

Finally, we consider the Weierstrass M-test. Suppose that a z Mn n( ) ≤ . If Mn  

does not depend on z in some region of the complex plane where a z Mn n( ) ≤ holds 

and ∑ Mn 
converges, then ∑ a zn ( )

 
is uniformly convergent. 

We often fi nd in the limits we compute that N depends on ε . When a series is 

uniformly convergent, then for any ε > 0  there is an N not depending on ε  such that 

a z R n Nn ( ) − < >ε for , where R is the limit. That is, if the same N holds for all z 

in a given region D of the complex plane, then we say that the convergence is 

uniform.

A series that can be written as

 a a z a z a z zn

n

n

0 1 2

2

0

0

+ + + = −
=

∞

∑⋯ ( )  (5.14)

where the an are constants is called a power series. When the series converges for 

z z R− <0  we say that R is the radius of convergence. The series diverges if 

z z R− >0 . For z z R− =0 , the series may converge or it may diverge. Often in 

complex analysis, the region over which the series converges is a disc so the term 

radius has a literal geometric interpretation. 

Uniformly Converging Series

Power Series
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Taylor and Maclaurin Series
Suppose that a complex function f z( ) is analytic in some region of the complex 

plane and let z0  be a point inside that region. Then f z( ) has a power series expansion 

with expansion coeffi cients calculated by computing derivatives of the function at 

that point, giving the Taylor series expansion of the function:

 

f z f z f z z z
f z

z z( ) ( ) ( )( )
( )

!
( )= + ′ − +

′′
−

+ +

0 0 0

0

0

2

2

⋯
ff z

n
z z

n

n

( ) ( )

!
( )0

0− +⋯
 (5.15)

If we set z0 0= , that is take the series expansion about the origin, we have a 

Maclaurin series.

Theorems on Power Series
The most important fact about a convergent power series you should fi le away in 

your mind is that within the radius of convergence, you can differentiate a power 

series term by term, or you can integrate it term by term along any curve that lies 

within its radius of convergence (see Chaps. 6 and 7).

EXAMPLE 5.2

Find the Taylor expansion of f z z z( ) /( )= − +1 1 2
 about the origin.

SOLUTION

We will calculate the fi rst two derivatives. First, note that

 f ( )0
1

1 0 0
1

2
=

− +
=

The fi rst derivative is

 
′ =

− +
= −

− +
− +

⇒ ′ =

f z
d

dz z z z z
z

f

( )
( )

( )

( )

1

1

1

1
1 2

0 1

2 2 2
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The second derivative is

 

′′ = −
− +

− +






=
− +

f z
d

dz z z
z

z z

( )
( )

( )

(

1

1
1 2

2

1

2 2

2 ))
( )

( )

( )

3

2

2 2
1 2

2

1

0 0

− + −
− +

′′ =

z
z z

f

Finally, the third derivative is

 

′′′ =
− +

− + −
− +




f z

d

dz z z
z

z z
( )

( )
( )

( )

2

1
1 2

2

12 3

2

2 2





= −
− +
− +

+
− +

− +
6 1 2

1

12 1 2

1

3

2 4 2 3

( )

( )

( )

( )

z

z z

z

z z

′′′ = −f ( )0 6

So we have

 
f z f z f

z
f

z
f( ) ( ) ( )

!
( )

!
( )= + ′ + ′′ + ′′′ +

=

0 0
2

0
3

0

1

2 3

⋯

++ − +z z
3
⋯

EXAMPLE 5.3

Use the Weierstrass M test to determine whether or not the series ∑ +a nx b nxn ncos sin  

converges, provided that the series ∑ ∑a bn nand  converge and if x ∈ −[ ]π π, .

SOLUTION

The values of cos sinnx nxand  may be positive, negative, or zero. However, we 

know that they are bounded by 1, that is for all n:

 cos sinnx nx≤ ≤1 1and

It follows that

 a nx a b nx bn n n ncos sin≤ ≤and
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Now, since the series ∑ ∑a bn nand  converge, given ε > ≥0 and n m:

 a b a a bm m m n n+ + + + + <+1 ⋯ ε

We then have

 
a mx b mx a nx b nx

a b a

m m n n

m m m

cos sin cos sin+ + + +

≤ + + +

⋯

11 + + + <⋯ a bn n ε
 

We have thus constructed a series of numbers that converges ∑ +a bn n for which 

a b a kx b kxk k k k+ ≥ +cos sin  for all x ∈ −[ , ]π π . By the Weierstrass M test, 

∑ +a nx b nxn ncos sin  is uniformly convergent. Since cos sinnx nxand  are periodic 

with period 2π , the series is uniformly convergent for − ∞ < <∞x .

Some Common Series
There are many functions which are encountered over and over again in analysis and 

applied mathematics. You should be familiar with their power series representations. 

Some of the functions we take note of and their Taylor expansions are

 e z z
n

z
n

z
z n n

n

= + + + + + =
=

∞

∑1
1

2

1 12

0! ! !
⋯ ⋯  (5.16)

 sin
! ! !

( )

( )!
z z

z z z

n
z

n

n= − + − + +
−

−

−
−

3 5 7 1

2 1

3 5 7

1

2 1
⋯ ++ =

−
−

−
−

=

∞

∑⋯
( )

( )!

1

2 1

1

2 1

1

n

n

n n
z  (5.17)

 cos
! ! !

( )

( )!

(
z

z z z

n
z

n

n= − + − + +
−

+ =
−

1
2 4 6

1

2

12 4 6

2
⋯ ⋯

))

( )!

n

n

n n
z

2

2

1=

∞

∑  (5.18)

 ln( )
( ) ( )

1
2 3

1 12 3 1 1

+ = − + + +
−

+ =
−− −

z z
z z

n
z

n
z

n

n

n

n
⋯ ⋯

nn=

∞

∑
1

 (5.19)

 tan
( ) ( )−

−
−= − + − +

−
−

+ =
−1

3 5 1

2 1

3 5

1

2 1

1
z z

z z

n
z

n

n

n

⋯ ⋯

−−
−

=

∞

−∑
1

2 1

1 2 1n
z

n

n

 (5.20)
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If r < 1, then the geometric series converges as

 r
r

n

n=

∞

∑ =
−0

1

1
 (5.21)

The harmonic series is divergent:

 
1

1 nn

= ∞
=

∞

∑  (5.22)

But the alternating harmonic series is convergent:

 
( )

ln
−

=
−

=

∞

∑ 1
2

1

1

n

n n
 (5.23)

EXAMPLE 5.4

A Bessel function is one that solves the differential equation x2(d2y/dx2) + x(dy/dx) + 

(x2 − a2)y = 0.

The series representation of the Bessel function is given by J x n

n

0 0 1( ) [{( ) /= ∑ −=
∞

 
(n!)2’}(x/2)2].

Show that we can write:

 J x x d0
0

21

2
( ) cos( cos( ))= ∫π

φ φ
π

SOLUTION

We use the series representation of the cosine function:

 

1

2

1

2

1

20

2
2

π
φ φ

π
φ

π
cos( cos( ))

( )

( )!
( cos )x d

n
x

n

∫ =
− nn

n

n

n

n

d

n
x d

=

∞

∑∫

∫=
−

0
0

2

0

2
21

2

1

2

π

π

φ

π
φ φ

( )

( )!
( cos )

==

∞

=

∞

∑

∫∑=
−

=

0

2 2

0

2

0

1

2

1

2

1

π
φ φ

π( )

( )!
(cos )

n

n n

n n
x d

22

1

2

2 2

0

2

0π
φ φ

π( )

( )!
(cos )

−
∫∑

=

∞ n

n n

n n
x d
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You can verify that

 (cos )
( )!

( !)
φ φ π

π
2

0

2

2 2

2

2
2n

n
d

n

n∫ =

Hence

 

1

2

1

2

1

20

2
2

π
φ φ

π
φ

π
cos( cos( ))

( )

( )!
(cosx d

n
x

n

n∫ =
−

))

( )

( )!

( )!

( !

2

0

2

0

2

2

1

2

1

2

2

2

n

n

n

n

n

d

n
x

n

n

π
φ

π

∫∑
=

∞

=
−

))

( )

( !)

( )

( !)

2
0

2

2

2
0

2

2

1

2

1

π
n

n n

n
n

n

n

x

n

=

∞

=

∞

∑

∑=
−

=
− xx

J x
n

n

20

2

0





 =

=

∞

∑ ( )

EXAMPLE 5.5

Given that

 sinh x
e e

x x

=
− −

2

fi nd a series representation for sinh−1
x.

SOLUTION

The Maclaurin theorem can be used to write a series representation of sinh x. This 

is given by

 sinh
! ! ! ( )!

x x
x x x

n
x

n

n

= + + + + =
+

+

=

∞

∑
3 5 7

2 1

03 5 7

1

2 1
⋯

The inverse will have some series expansion which we write as

 sinh− = + + + +1

0 1 2

2

3

3
x b b x b x b x ⋯

We label the coeffi cients in the series expansion of sinh by a j . We fi nd that

 

b a

b
a

b
a

a

b
a

a

0 0

1

1

2

2

1

3

3

1

5 2

0

1
1 0

1
2

= =

= = = − =

= 22

1 3

1

6
−( ) = −a a
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Therefore it follows that

 sinh− = − +1 31

6
x x x ⋯

EXAMPLE 5.6

Find a series expansion of f z z
k( ) ( )= +1  about z = 0.

SOLUTION

We seek a series representation of the form:

 f z z z
f z

nn

n
n

( ) ( )
( )

!
= −

=

∞

∑ 0

0

0

Taking z0 0= , we have the following relations:

 

f

f z k z f k

f z

k

( ) ,

( ) ( ) ( )

( )

0 1

1 01

=

′ = + ⇒ ′ =

′′

−

== − + ⇒ ′′ = −

′′′

−
k k z f k k

f z

k( )( ) ( ) ( )

(

1 1 0 12

)) ( )( )( ) ( ) (= − − + ⇒ ′′′ = −−
k k k z f k k

k1 2 1 0 13 ))( )k − 2

At z0 0=  the series representation is

 

f z z z
f z

n

f
df

dz

d

n

n
n

z

( ) ( )
( )

!

( )
!

= −

= + +

=

∞

=

∑ 0

0

0

00
1

2

22

2 0

3

3 0

2

1

3

1
1

2
1

f

dz

d f

dz

kx k k z
k

z z= =+ +

= + + − +

!

( )
(

⋯

kk k
z

k

n
z

n

n

− −
+

=




=

∞

∑

1 2

6

3

0

)( )
⋯

EXAMPLE 5.7

Find a series representation of f z z( ) = cos  about the point z = π /4.
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SOLUTION

While we could do a Taylor expansion, a little algebraic manipulation will give the 

same result. We can fi nd a series representation of this function by fi rst recalling that

 cos( ) cos cos sin sina b a b a b+ = −

Now let z w= + π /4. Then we have

 

f z z w

w w

( ) cos cos( )

cos cos / sin sin /

= = +
= −

=

π
π π

/4

4 4

11

2
(cos sin )w w−

Expanding each trigonometric function we get

 

f z
w w

w
w w

( )
! ! ! !

= − + + − − + −









1

2
1

2 4 3 5

2 4 3 5

⋯ ⋯




= − − + + − +






= −

1

2
1

2 3 4 5

1

2
1

2 3 4 5

w
w w w w

! ! ! !
⋯

(( )
( )

!

( )

!

( )

!

(
z

z z z
− −

−
+

−
+

−
−π

π π π
/

/ / /
4

4

2

4

3

4

4

2 3 4
zz −

+






π /4

5

5)

!
⋯

EXAMPLE 5.8

Find the disc of convergence for ∑ =
∞
n

n n
n z n1[( ! )/ ] .

SOLUTION

We can fi nd the disc of convergence for this series by using the ratio test. We have

 a
n z

n
a

n z

n
n

n

n n

n

n+

+

+=
+
+

=1

1

1

1

1

( )!

( )

!

Therefore the ratio of the (n + 1) term to the nth term is

 a

a

n z

n

n z

n

n zn

n

n

n

n

n

n

+
+

+

+

=
+
+

=
+1

1

1

11

1

1( )!

( )
/

! ( )!

(( ) !n

n

n z
n

n

n+ +1 1
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Now recall that 

 ( )! ( ) ( )( ) ( ) !n n n n n n n+ = + − − ⋅ = +1 1 1 2 2 1 1⋯

So the ratio simplifi es to

 

a

a

n z

n

n

n z

n z

n

n

n

n

n

n

n

n

+
+

+

+

=
+
+

=
+1

1

1

11

1

1( )!

( ) !

( )

( ++

=
+
+

=
+

=

+

+

1

1

1

1

1

1

)

( )

( )

( )

n

n

n

n

n

n

n

n

n

z

n z n

n

z n

n

zn

n
nn

n n

n

z

n
1

1
1

1
+





=
+





Recalling that

 lim
n

n

n
e

→∞
+





=1
1

 (5.24)

The ratio test in this case becomes

 lim lim
n

n
n

n

z

n

z

n

z

e→∞ →∞
+





=
+





=
1

1
1

1

Therefore the series converges when

 
z

e
< 1

and diverges when

 
z

e
> 1

In other words, the series is convergent if z e< , so the radius of convergence is 

given by R e= .
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EXAMPLE 5.9

Consider the series ∑ >=
∞
n

n a
z n n a1 0[ /{ (log ) }], where . Determine the radius of 

convergence.

SOLUTION

To fi nd the radius of convergence for this series we use the root test:

 lim
n

n
n a L

→∞
=

In this case we’ve got

 

lim lim (log )

lim exp (log )

n
n

n

n

an

n

a

a n n

n n

→∞ →∞

→∞

=

= nn

n n
n

a

n
n e







= +





=
→∞

lim exp log log(log )
1 0 == 1

Hence the radius of convergence is R = 1.

EXAMPLE 5.10

Describe the convergence of the series:

 z

n z

n

n
n

2
1 1( )−=

∞

∑

SOLUTION

First, consider the case where zn = 1. It is clear that this will cause the series to blow 

up. This means that the nth roots of unity are not permitted for this series, that is

 z e n k n
ik n≠ ≥ =2 1 0 1 2π / , , ,...,for −−1

So we conclude the series is divergent for z = 1. Now we check the case of z < 1. 

Notice that since z < 1:

 
z

z

z

z
z z

n

n

n

n

n n

1 1
1

1

1
1

1
−

=
−





=
−

<
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The series

 S
nn

=
=

∞

∑ 1
2

1

is convergent. We have

 
z

n z n

n

n2 21

1

( )−
≤

Since z zn n/ ( )1 1− < . Therefore by the Weierstrass M test, n

n nz n z=
∞∑ −1

2
1[ /{ ( )}] is 

convergent absolutely inside the unit disc.

Finally, we consider the case where z > 1. It is easy to see that the series converges 

in this case since

 
z

z

z

z
n

n

n

n

1

1

1
1

1
−

=
−

→ → ∞as

EXAMPLE 5.11

Describe the convergence of the series F z n z
n

n( ) [( ) /( )]= ∑ − +=
∞ −

1

11 .

SOLUTION

Notice that since the series contains z  and not z, the series is actually a series of 

real numbers. Suppose that we pick some arbitrary z ∈ℂ. Then we can pick a k that 

satisfi es

 
k z k

n k n z n k

≤ < +

⇒ + ≤ + < + +

1

1

Which means that

 
1

1

1 1

n k n z n k+ +
<

+
≤

+

It follows that

 
1

1

1 1

1 2 1n k m n zn m k n+ +
= <

+=

∞

= +

∞

=

∞

∑ ∑ ∑
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Now, ( / )12 mm k= +
∞∑  is the tail of the harmonic series, which is divergent. 

Therefore the series [( ) /( )]− +∑ −
=

∞
1 1

1

n

n n z  does not converge absolutely. 

However, the series does converge. Notice that

 lim
( )

n

n

n z→∞

−−
+

=
1

0
1

Furthermore, it is the case that

 a
n z

a
n z

n n+ =
+ +

≤ =
+1

1

1

1

Since lim
n

na
→∞

= 0, the series converges (but not absolutely, as we’ve already 

established). Now we investigate whether or not it converges uniformly. Consider 

the sum

 F z F z
n z

N

n

n N

( ) ( )
( )

− =
−

+−

−

=

∞

∑2 1

1

2

1

Let n k k n n N k N= ⇒ = = =2 2 2, / , .and for  So we can write

 

F z F z
k z

k

N

k

k N

( ) ( )
( )

− =
−

+

=
+ +

−

−

=

∞

∑2 1

2 11

2

1

2 1 zz k z

k z k z

k N

k N

−
+








= −
+ + +

≤

=

∞

=

∞

∑

∑

1

2

1

2 1 2

1

( )( )

(( )( ) ( )2 1 2

1

1

1

2k k n n Nn Nk N +
<

+
=

=

∞

=

∞

∑∑

Therefore, it is possible to choose a positive integer M such that

 F z F z n Mn( ) ( )− < >ε for all

So the series converges uniformly.
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EXAMPLE 5.12

Let the domain of defi nition D be the unit disc and show that ∑ = −=
∞
n

n
nz z z1

21/( ) .

SOLUTION

You can check to see if the series converges inside the unit disc. Since it does, we can

differentiate it term by term. Let’s recall the geometric series in Eq. (5.21):

 r
r

n

n=

∞

∑ =
−0

1

1

Notice what happens if we take the derivative with respect to r of both sides:

 

d

dr
r

d

dr
r nr

d

dr r

n

n

n n

nn=

∞
−

=

∞

=

∞

∑ ∑∑= =

−
=

0

1

10

1

1

1

1( −− r)2

This demonstrates that

 nr
r

n

n

−

=

∞

∑ =
−

1

1
2

1

1( )

The geometric series is convergent provided that r < 1. In the complex plane, this 

is the same as saying that z lies in the unit disc. Hence

 nz
z

n

n

−

=

∞

∑ =
−

1

1
2

1

1( )

Now multiply both sides by z to obtain the desired result:

 
nz

z

z

n

n=

∞

∑ =
−1

21( )

A Laurent series is a serial representation of a function of a complex variable f z( ).

A major difference you will notice when comparing a Laurent series to a Taylor series 

or power series expansion is that a Laurent series includes terms with negative powers. 

Laurent Series
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In principle, the powers can range all the way down to −∞, but in many if not most 

cases only a few terms with negative power are included. So, generally speaking, the 

Laurent series of a complex function f z z z( ) about the point = 0 is given by

 f z a z zn

n

n

( ) ( )= −
=−∞

∞

∑ 0
 (5.25)

The coeffi cients in the expansion are calculated using Cauchy’s integral formula, 

which we discuss in the Chaps. 6 and 7. Stating it for the record:

 a
i

f z dz

z z
nn n

=
−

=+∫
1

2
0 1 2

0

1π
( )

( )
, , ,� for ....  (5.26)

The integral is taken along curves defi ning an annulus enclosing the point z0. In 

Eq. (5.26), the curve used for the integration is the outer curve defi ning the annulus. 

The negative coeffi cients in the series are calculated using

 a
i

f z z z dz nn

n= − =−1

2
1 2 30

1

π
( ) ( ) , , ,..for ..�∫  (5.27)

In this case the inner curve is used (see Fig. 5.1). By the deformation of path 

theorem, we know that we can use any concentric circle enclosing the singular 

point z0 to calculate the integral. As a result, formula in Eq. (5.26) is universally 

valid for n = ± ±0 1 2, , ,...

A Laurent series can be written in the form

 f z a a z z a z z
a

z z

a

z
( ) ( ) ( )

(
= + − + − + +

−
+

−
− −

0 1 0 2 0

2 1

0

2
⋯

zz0

2)
+⋯  (5.28)

Figure 5.1 An illustration of an annular region used for integration in the determination 

of the coeffi cients of a Laurent expansion.

C2

C1
z0•
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The summation including the terms with negative indices is called the principal

part of the series:

 
a

z z

a

z z

− −

−
+

−
+1

0

2

0

2( )
⋯  (5.29)

We call the points z0 that give rise to terms with inverse powers of z z− 0 in a Laurent 

expansion singular points or singularities. Colloquially speaking, singularities 

represent points at which a function will blow up. It is also a point at which the 

function is not differentiable. 

The analytic part of the series is given by the part of the expansion, which 

resembles an ordinary power series expansion:

 a a z z a z z0 1 0 2 0

2+ − + − +( ) ( ) ⋯  (5.30)

The fi rst type of singularity we encounter is called a removable singularity, because 

it is a point z z= 0 at which the function appears to blow up, but at which a formal 

calculation lim ( )
z z

f z
→ 0

exists. The quintessential example (which we will remind you 

of again in Chap. 7) is f z z z( ) (sin )/= . The value f ( )0 is not defi ned, but lim ( )
z

f z
→

= 1.

If you grasp this then you understand the concept of the removable singularity.

Suppose that the principal part of a Laurent series only has a fi nite number of 

terms:

 
a

z z

a

z z

a

z z

n

n

− − −

−
+

−
+ +

−
1

0

2

0

2

0( ) ( )
⋯  (5.31)

Then the point z z= 0  is called a pole of order n. A pole causes the function to blow 

up at z z= 0 . If a−1 is the only nonzero coeffi cient in the principal part of the series, 

we say that z z= 0  is a simple pole.

An essential singularity is one which results in an infi nite number of inverse 

power terms in the Laurent expansion. That is, the principal part of the Laurent 

expansion is nonterminating. 

A branch point z z= 0  is a point of a multivalued function where the function 

changes value when a curve winds once around z0 .

Types of Singularities
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A singularity at infi nity is a zero of f z( )  if we let z w= 1/ and then consider the 

function F w f z( ) ( )= 1/ .

Entire Functions
We fi rst met the concept of an entire function in Chap. 3. Now that we have 

introduced the concept of a Laurent series, we have a systematic way to determine 

if a function is entire. An entire function is analytic throughout the entire complex 

plane. The Laurent expansion of an entire function cannot contain a principal part. 

Or expressed another way, an entire function has a Taylor series expansion with an 

infi nite radius of convergence. The radius of convergence is infi nite since the 

function is analytic on the entire complex plane.

Meromorphic Functions
A meromorphic function is analytic everywhere in the complex plane except at a 

fi nite number of poles. 

EXAMPLE 5.13

Describe the singularities of f z z z( ) /[( )( ) ]= − +1 2 4 3
. Is this function entire?

SOLUTION

The function f z( ) has singularities at z z= = −2 4and . The pole at z = 2 is a simple 

pole because the power of this term is −1. The pole at z = −4 is a pole of order 3.

The function is not entire, because it is not analytic at the poles. Since there are 

a fi nite number of poles, the function is meromorphic.

EXAMPLE 5.14

Suppose that f z z z( ) ( )cos[ / ( )]= − +1 1 2 . Find the Laurent expansion of this 

function about the point z = −2 and describe the nature of any singularities. Identify 

the analytic and principal parts of the series expansion.

SOLUTION

Recall the power series expansion of the cosine function:

 cos
! !

z z z z= − + − +1
1

2

1

4

1

6

2 4 6
⋯
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Now let w z= + 2  to simplify notation. Then

 cos cos
!

1

2

1
1

1

2

1 1

4

2

z w w+






= 



 = − 



 +

11 1

6

1
4 6

w w





 − 



 +

!
⋯

The term z w− = −1 3 and so

 

f z z
z

w
w

w

( ) ( ) cos ( )cos

(

= −
+







= − 





=

1
1

2
3

1

−− − 



 + 



 − 



3 1

1

2

1 1

4

1 1

6

1
2 4 6

)
! !w w w

++







= − − 



 + 



 +

⋯

w w
w w

w3
1

2

1 3

2

1 1

4

2 2

!

11 3

4

1

3
1

2

3

2

1

4

4 4

2

w w

w
w w w





 − 



 +

= − − + +

!

!

⋯

33 4

2 3

3

4

1
1

2 2

3

2 2

1

4 2

3

− +

= − −
+

+
+

+
+

−

!

( ) ( ) !( )

w

z
z z z

⋯

44 2 4!( )z +
+⋯

Terms of the form ( )z
n+ −2  go on forever in this series, so the point z = −2 is an 

essential singularity. The analytic part of the Laurent expansion is

 z −1

The principal part of the Laurent expansion is

 −
+

+
+

+
+

−
+

+
1

2 2

3

2 2

1

4 2

3

4 22 3 4( ) ( ) !( ) !( )z z z z
⋯

EXAMPLE 5.15

Given that f z e z z
z( ) /( ) ( / ) ( / ) ( / )= − = − + +1 1 1 1 2 1 12 ⋯ , describe the nature of any 

singularities and write down the analytic and principal parts of the expansion. Is the 

function entire?

SOLUTION

The function is not entire because it has a singularity at z = 0. Since this is the only 

singular point, the function is meromorphic. The principal part of the Laurent 

expansion includes the single term

 
1

z
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The analytic part is given by

 − + +
1

2

1

12
z ⋯

EXAMPLE 5.16

What are the singular points of f z z a( ) /( )= +3 2 2
.

SOLUTION

Notice that

 f z
z a z ia z ia

( )
( )( )

=
+

=
+ −

3 3
2 2

Therefore the function has two isolated singular points at z ia= ± . Since there are a 

fi nite number of singular points, the function is meromorphic. 

Summary
In this chapter we investigated complex sequences and series. A sequence of 

complex numbers is a function of the integers. The behavior of a sequence can be 

investigated in the limit of the argument as it tends to infi nity. A sequence can 

describe an individual term in a series, which can be used to represent a complex 

function. The convergence of series can be investigated using various tests such as 

the ratio test. Of particular interest in the study of complex variables, is the Laurent 

series, and we classify functions of a complex variable by looking at singularities 

which occur in the series expansion.

Quiz
 1. Does the sequence 1

2
+

z

n
 converge? If so fi nd an N so that you can defi ne 

its limit.

 2. Find cosk
k

n

θ
=

∑
0

.

 3. Find the radius of convergence for the Maclaurin expansion of z zcot .

 4. Find the radius of convergence for ( ( ) )3 1
1

+ −
=

∞

∑ n n n

n

z .

 5. Is the sequence 
1

1+






nz

convergent? If so over what values of z?
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 6. Find the Maclaurin expansion of f z
z

z
( ) =

+4 9
.

 7. Describe the convergence of 
z

n n

n

n ( )+=

∞

∑
11

.

 8. Find the Taylor series expansion of sinh z about the point z i0 = π .

 9. Parseval’s theorem tells us that if f z a zn

n

n

( ) =
=

∞

∑
0

 then 
1

2

2

0

2

π
θθπ

f re d
i( ) =∫  

a rn

n

n

2 2

0=

∞

∑ . Use it to fi nd a series representation for 
1

2 0

2

π
θθπ

e d
r cos∫ .

 10. Find the Laurent series expansion of f z
z z

z( )
( )

=
−

+
−

< <
1

1

1

2
1 2

2
for .

 11. Expand f z
z z

z
( )

sin
=

−
2

 in a Laurent series and describe the singularity 

at z = 0.
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CHAPTER 6

Complex Integration

The study of elementary calculus involves differentiation and integration. We studied 

differentiation of complex functions in Chap. 3, now we turn to the problem of 

integration. It turns out that integration of complex functions is a very elegant 

procedure. The techniques developed here can not only be used to integrate complex 

functions but they can also be used as a toolbox to evaluate many integrals of real 

functions. We start the chapter with a simple evaluation of complex functions that 

are parameterized by a real parameter t and then introduce contour integration. 

Complex integration involves integration along a curve.

Complex Functions w(t)
Suppose that a complex-valued function w = f (z)

 
is defi ned in terms of one real 

variable t as follows:

 w t u t iv t( ) ( ) ( )= +   (6.1)

and that we are considering an interval a t b≤ ≤ .

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Now, the defi nite integral of w f z= ( ) can be written as

 w t dt u t dt i v t dt
a

b

a

b

a

b

( ) ( ) ( )∫ ∫ ∫= +

The integral of the complex function w f z= ( ) has been translated into two 

integrals of the real functions u t v t( ) ( )and . We can integrate these functions using 

the fundamental theorem of calculus provided that certain conditions are met.

Make the defi nitions:

 

dU

dt
u t

dV

dt
v t= =( ) ( )and

Then it follows that

 

w t dt u t dt i v t dt

U b U a i

a

b

a

b

a

b

( ) ( ) ( )

( ) ( ) [

∫ ∫ ∫= +

= − + VV b V a( ) ( )]−

EXAMPLE 6.1

Compute the integral ( )1 2

0

2

−∫ it dt.

SOLUTION

The fi rst step is to write the integrand in terms of real and imaginary parts. In this case

 

( ) ( )( )1 1 1

1 2

1 2

2

2

2

− = − −

= − −

= − −

it it it

i t t

t i t

This leads us to make the following defi nitions:

 
u t t v t t( ) ( )= − = −1 22 and

The integral can then be written as

 

( ) ( ) ( )

( )

1

1

2

0

2

0

2

0

2

2

0

2

− = +

= −

∫ ∫ ∫
∫

it dt u t dt v t dt

t ddt i t dt− ∫ 2
0

2
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These are elementary integrals that are easy to evaluate:

 

( )1 2
3

2

0
2

8

3
42

0

2

0

2
3

2− − = − − = − − = −∫ ∫t dt i t dt t
t

it i
22

3
4− i

EXAMPLE 6.2

Evaluate e dt
i t2

0

5π /

∫ .

SOLUTION

Using tools from elementary calculus we have

 

e dt
i
e

i
e

i
e

i t i t i t i2

0

4
2 21

2

4

0 2

4

0 2

π ππ π/
// /

∫ = = − = − 22

2
+

i

Now use Euler’s formula:

 e i i
iπ π π/ cos( ) sin( )2 2 2= + =/ /

And so the integral evaluates to

 
e dt

i
i

i ii t2

0

4

2 2

1

2

π /

( )∫ = − + =
+

If f z( ) is a function that depends on one real variable t such that f u t iv t= +( ) ( ) 

then we can use theorems from the calculus of real variables to handle more complex 

integrals. Suppose that α = +c id  is a complex constant. You will recall from the 

calculus of real variables that we can pull a constant outside of an integral. The 

same holds true here, where we have

 
α f dt c id u iv dt c id u dt i c

a

b

a

b

a

b

∫ ∫ ∫= + + = + + +( )( ) ( ) ( iid v dt
a

b

)∫  (6.2)

Let g be another complex function depending on a single real variable such that 

g t r t is t( ) ( ) ( )= + . The integral of the sum or difference f g± is

 ( )f g dt fdt g dt
a

b

a

b

a

b

± = ±∫ ∫ ∫   (6.3)

Properties of Complex Integrals
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Of course, we can also add the real and imaginary parts of the two functions:

 ( ) ( ) ( ) ( ) (f g dt u iv r is dt u r dt i
a

b

a

b

a

b

± = + ± + = ± +∫ ∫ ∫ vv s dt
a

b

±∫ )

The product of two complex functions of a single real variable can be integrated 

as follows:

 
( ) ( )( ) ( ) (fg dt u iv r is dt ur vs dt i

a

b

a

b

a

b

∫ ∫ ∫= + + = − + vvr us dt
a

b

+∫ )  (6.4)

As in the calculus of real variables, we can split up an interval a t b≤ ≤ . Suppose 

that a c b< < . Then we can write

 f t dt f t dt f t dt
a

b

a

c

c

b

( ) ( ) ( )∫ ∫ ∫= +  (6.5)

Exchanging the limits of integration introduces a minus sign:

 f t dt f t dt
a

b

b

a

( ) ( )∫ ∫= −   (6.6)

The next example is somewhat contrived, since we could calculate the desired result 

easily, but it illustrates how the formulas could be applied and gives us practice 

calculating an integral of a complex function.

EXAMPLE 6.3

Given that ∫ = − −+
0

2 2 2 1 2
π π/ / / [( ) / ]e dt e i

t it , fi nd ∫ +
π

π

/

/

4

2

e dt
t it

 
by calculating ∫ +

0

4π /
e dt

t it
.

SOLUTION

The integral is easy to calculate. We have

 

e dt e dt
i
e

t it i t i t+ +( ) +( )∫ ∫= =
+0

4
1

0

4
11

1

4

0

π π π/ / /
==

+
−+( )1

1
1

1 4

i
e

i
( )

/π

Euler’s formula tells us that

 e e e e i
i i1 4 4 4 4 4 4+( ) = = +π π π π π π/ / / / (cos( / ) sin( / )))

A table of trigonometric functions can be consulted to learn that

 
cos( / ) sin( / )π π4 4

2

2

1

2
= = =
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And so

 
e

e
i

i( ) /

/

( )1 4

4

2
1+ = +π

π

Hence the integral is

 

e dt
i

e
i

et it i+ +∫ =
+

− =
+

+
0

4
1 4

41

1
1

1

1 2
1

π π
π

/
( ) /

/

( ) ( ii
e

i
)

/

−






= −
+

1
2

1

1

4π

Writing the last term in standard form we obtain

 

1

1

1

1

1

1

1

2+
=

+
−
−







=
−

i i

i

i

i

Therefore:

 

e dt
e it it+∫ = −

−
0

4
4

2

1

2

π π
/

/

Now we use to write an expression that can be used to fi nd the desired integral:

 

e dt e dt e dt

e

t it t it t it+ + +∫ ∫ ∫= +

⇒

0

2

0

4

4

2π π

π

π/ /

/

/

tt it t it t it
dt e dt e dt

e

+ + +∫ ∫ ∫= −

=

π

π π π

π

/

/ / /

4

2

0

2

0

4

// / /2 4 2

2

1

2 2

1

2 2

1

2
−

−





− −
−





= −
−i e i e i

π π 





− +
−





= −

e i

e e

π

π π

/

/ /

4

2 4

2

1

2

2 2

So far, we’ve seen how to evaluate integrals of simple functions of a complex 

variable—that were defi ned in terms of a single real parameter we called t. Now it’s 

time to generalize and consider a more general case, where we just say we’re 

integrating a function of a complex variable f z z( ), where ∈ℂ. This can be done 

using a technique called contour integration. 

The reason integrals of complex functions are done the way they are is that while 

an integral of a real-valued function is defi ned on an interval of the line, an integral 

Contours in the Complex Plane
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of a complex-valued function is defi ned on a curve in the complex plane. We say 

that a set of points in the complex plane z x y= ( , )
 
is an arc if x x t y y t= =( ) ( )and

 
are continuous functions of a real parameter t which ranges over some interval (i.e., 

a t b≤ ≤ ). A complex number z can be written as

 
z t x t iy t( ) ( ) ( )= +

Defi ne a curve as a continuous function γ ( )t  that maps a closed interval a t b≤ ≤  

to the complex plane. If the curve γ ( )t  that defi nes a given arc does not cross itself, 

which means that γ γ( ) ( )t t1 2≠  when t t
1 2

≠ , then we say that γ ( )t  is a simple curve 

or Jordan arc. A simple curve is illustrated in Fig. 6.1.

If the curve crosses over itself at any point, then it is not simple. An example of 

this is shown in Fig. 6.2.

The curves in Figs. 6.1 and 6.2 are open. If γ γ( ) ( )a b= , that is γ ( )t
 
assumes 

the same value at the endpoints of the interval a t b≤ ≤ , but at no other points, 

then we say that γ ( )t  is a simple closed curve or closed contour. This is shown in 

Fig. 6.3.

Formally, we say that a curve γ ( )t is a simple closed curve if γ γ( ) ( )a b=  and

γ ( )t  is one-to-one. 

Figure 6.1 A curve γ ( )t  is said to be simple if it does not cross itself.

Figure 6.2 A curve which crosses itself at one or more points is not simple.
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When using contour integration, the sense or direction in which the curve is 

traversed is important. To understand this, we consider a simple example, the unit 

circle centered about the origin. For example, consider

 z e
i= θ

where 0 2≤ ≤θ π . If you put in some values as q ranges over the given interval 

increasing from 0, you will note that the points sweep out the circle in the counter-

clockwise direction. To see this, write the points in the complex plane as z x y= ( , ). 

Let’s plug in a few points:

 

θ

θ π π

= ⇒ = = + =

= ⇒ = =

0 0 0 1 0

4

0

4

z e i

z e

i

i

cos sin ( , )

/ cos/ (( / ) sin( / ) ,

/ c/

π π

θ π π

4 4
1

2

1

2

2 2

+ =







= ⇒ = =

i

z e
i oos( / ) sin( / ) ( , )

cos sin

π π

θ π ππ

2 2 0 1+ =

= ⇒ = = +

i

z e i
i ππ = −( , )1 0

Following the curve in the counter-clockwise direction can be said to be in the 

positive sense since it moves with increasing angle. When drawing a contour, we 

use an arrow to indicate the directional sense we are using to move around it. This 

is illustrated in Fig. 6.4.

If we move around the curve in the opposite direction, which is clockwise, we’ll 

call that negative because we will be moving opposite to the direction of increasing 

angles. Now consider the function:

 z e
i= − θ

Figure 6.3 A simple, closed curve.



124 Complex Variables Demystifi ed

This also describes the unit circle, but we are traversing the circle in the counter-

clockwise direction. Notice that

 

θ

θ π π

= ⇒ = = − =

= ⇒ = =

−

−

0 0 0 1 0

4

0

4

z e i

z e

i

i

cos sin ( , )

/ c/ oos( / ) sin( / ) ,

/

π π

θ π π

4 4
1

2

1

2

2

− = −





= ⇒ = −

i

z e
i // cos( / ) sin( / ) ( , )

cos

2 2 2 0 1= − = −

= ⇒ = =−

π π

θ π π

i

z e
i ππ π− = −i sin ( , )1 0

The case of traversing a circle in the clockwise or negative direction is illustrated 

in Fig. 6.5.

Complex Line Integrals
In this section, we will formalize what we’ve done so far with integration a bit. First 

let’s review important properties a function must have so that we can integrate it.

DEFINITION: CONTINUOUSLY DIFFERENTIABLE FUNCTION

Let a function f t( )
 
map the interval a t b≤ ≤  to the real numbers. Formally, we write 

f a b: [ , ] → ℝ. We say that f t( )
 
is continuously differentiable over this interval, 

which we indicate by writing f C a b∈ 1([ , ])
 
if the following conditions are met:

• The derivative df/dt exists on the open interval a t b< < .

• The derivative df/dt has a continuous extension to a t b≤ ≤ .

Figure 6.4 A closed contour traversed in the positive sense, which is counter-clockwise. 

We say that this is in the positive sense because the curve is traversed in the direction of 

increasing angle q in the complex plane.

x

y
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This allows us to utilize the fundamental theorem of calculus. This tells us that

 f t dt f b f a
a

b

( ) ( ) ( )∫ = −  (6.7)

Now we will extend this to curves in the complex plane. Suppose that a curve 

γ ( ) ( ) ( )t f t ig t= + .

DEFINITION: CONTINUOUSLY DIFFERENTIABLE CURVE

Let γ ( )t
 
be a curve, which maps the closed interval a t b≤ ≤  to the complex plane. 

We say that γ ( )t
 
is continuous on a t b≤ ≤  if f t g t( ) ( )and

 
are both continuous on 

a t b≤ ≤ . If f t g t( ) ( )and
 
are both continuously differentiable functions on a t b≤ ≤ , 

then the curve γ ( )t
 
is continuously differentiable. This is indicated by writing 

γ ∈C a b
1([ , ]).

If γ ( )t  is continuously differentiable and γ ( ) ( ) ( )t f t ig t= + , then the derivative is 

given by

 
d

dt

df

dt
i

dg

dt

γ
= +  (6.8)

We’ve already seen that we can write the integral of w t u t iv t( ) ( ) ( )= +  as 

∫ + ∫
a

b

a

b
u t dt i v t dt( ) ( ) . If the curve γ ( ) ( ) ( )t f t ig t= +

 
is continuously differentiable, 

then we can write what might be called the fundamental theorem of calculus for 

curves in the complex plane:

 ′ = −∫ γ γ γ
a

b

t dt b a( ) ( ) ( )   (6.9)

x

y

Figure 6.5 Traversing the contour in the negative or clockwise direction.
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This result can be extended further. We consider a domain D in the complex plane 

and a curve γ ( )t
 
which maps a real, closed interval a t b≤ ≤  into D. If there is a 

continuously differentiable function h, which maps D into the real numbers, then the 

integral along the curve is given by

 
∂
∂

+
∂
∂







=∫
h

x
t

df

dt

h

y
t

dg

dt
dt h b

a

b

γ γ γ( ) ( ) ( ( ))) ( ( ))− h aγ  (6.10)

DEFINITION: COMPLEX LINE INTEGRAL OR CONTOUR INTEGRAL

Now suppose that the curve γ ( )t  is a simple closed curve. Then the complex line 

integral of a function F z( )
 
of a complex variable is written as

 F z dz F t
d

dt
dt

a

b

( ) ( ( ))�∫ ∫= γ
γ

   (6.11)

The integral in Eq. (6.11) is known as a contour integral.

EXAMPLE 6.4

Suppose that 0 1≤ ≤t , f z z( ) =  and we integrate along the curve γ ( ) ( )t i t= + −1 1 . 

Calculate ∫ f z dz( ) .

SOLUTION

This can be done by using Eq. (6.11). Given that γ ( ) ( )t i t= + −1 1 , we see that

 
d

dt
i

γ
= −1

We also have that

 f z f t z i t( ) ( ( )) ( )= = = + −γ 1 1

and so

 

F t
d

dt
dt i t i dt

i

a

b

( ( )) ( ( ) )( )

(

γ
γ

∫ ∫= + − −

= −

1 1 1

1

0

1

)) ( ( ) )

( ) ( )

(

1 1

1 1
2

1

0

0

1

2

+ −

= − + −






=

∫ i t dt

i t i
t

ii
i

−
+





= −1
1

2
1)
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EXAMPLE 6.5

Suppose that f z z( ) = +2 1. Integrate f z( )
 
around the unit circle.

SOLUTION

We can integrate around the unit circle by defi ning the curve:

 γ ( )t e
it=

The interval mapped by this curve to the complex plane is 0 2≤ ≤t π . We fi nd that 

the derivative of the curve is

 
d

dt

d

dt
e ie

it itγ
= =( )

Using Eq. (6.11) we have

 

f z dz f t
d

dt
dt

d

dt
dt

a

b

( ) ( ( )) ( )�∫ ∫ ∫= = +

=

γ
γ

γ
γπ

2

0

2

1

((( ) )( )

( )

e ie dt

i e e dt

it it

i t it

2

0

2

3

0

2

1

1

+

= +

=

∫
∫

π

π

33

2

0

1

3
1 1 0

3

6 2

e e

e e

i t it

i i

+

= − + − =

π

π π( ) ( )

This result follows since for any even m, e m i m i
imπ π π= + = + =cos( ) sin( ) 1 0 1.

Now let’s take a turn that we’re going to use to develop the groundwork for residue 

theory, the topic of the next chapter. First let’s begin by looking at complex integration 

once again. We’ll dispense with the parameter t and instead focus on functions of x 

and y. So we have

 w f z u x y iv x y= = +( ) ( , ) ( , )

The Cauchy-Goursat Theorem
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With z x iy= + , then

 dz dx idy= +   (6.12)

So we can write the integral of a complex function along a curve γ  in the following 

way:

 f z dz u iv dx idy udx vdy i vdx ud( ) ( )( )
γ γ γ
∫ ∫ ∫= + + = − + + yy

γ
∫  (6.13)

With this in hand, we can defi ne the fundamental theorem of calculus for a 

function of a complex variable as follows. Suppose that f z( )
 
has an antiderivative. 

That is:

 f z
dF

dz
( ) =

The fundamental theorem of calculus then becomes

 f z dz
dF

dz
dz F z

b

a
F b F a( ) ( ) ( ) ( )

γ γ
∫ ∫= = = −  (6.14)

To prove this result, we use F z U iV( ) = + . We are assuming that f and F are analytic. 

Now, using the results of Chap. 3 we know that

 f z
dF

dz

U

x
i

V

x

V

y
i

U

y
( ) = =

∂
∂

+
∂
∂

=
∂
∂

−
∂
∂

and so

 
f z dz

dF

dz
dz

U

x
dx

U

y
dy i

V

x
dx

( )
γ γ

γ γ

∫ ∫

∫ ∫

=

=
∂
∂

+
∂
∂

+
∂
∂

++
∂
∂











V

y
dy

But since U U x y= ( , ) using the chain rule we know that

 dU
U

x
dx

U

y
dy=

∂
∂

+
∂
∂
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and similarly for dV. Hence

 

f z dz
dF

dz
dz

dU i dV

U
z b

z a
iV

b

a

F

( ) =

= +

=
=
=

+

=

∫ ∫

∫ ∫
γ γ

γ γ

bb F a( ) − ( )

The fundamental theorem of calculus allows us to evaluate many integrals in the 

usual way.

EXAMPLE 6.6

Find ∫γ f z dz( )

 

when f z z
n( ) =  for the case of z a z b( ) ( )= ≠ = , and when the curve is 

closed, that is when a b= .

SOLUTION

The fundamental theorem allows us to evaluate the integral in the same way we 

would in the calculus of real variables. We have

 z dz
z

n

z b

z a

n

n

γ
∫ =

+
=
=

+1

1

When z a z b( ) ( )= ≠ =  this is just

 
1

1

1 1

n
b a

n n

+
−+ +( )

If the curve is closed, then a b=  and we have the result:

 z dz
n

γ
∫ = 0

This result holds provided that n ≠ −1.

The case when n = −1 introduces us to an interesting phenomena or feature of 

complex integration. This is the fact that the contour we select for our integration 

will determine what the result is. First let’s do the integral

 
dz

zγ
∫
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using Eq. (6.11), choosing the unit circle as our contour and letting 0 2≤ ≤t π . So, 

γ ( )t e
it= . Then we have

 

dz

z e

d

dt
e dt

e ie dt

i

it

it

it it

γ

π

π

∫ ∫

∫

=

=

=

−

1

0

2

0

2

( )

( )

ddt i
0

2

2
π

π∫ =

Let’s look at the integration another way. Now, the domain of f z z( ) /= 1  is the 

complex plane less the origin. We write this formally as ℂ\ { }0 . The antiderivative 

of f z( ) is F z z r i( ) ln ln= = + θ . The domain of the antiderivative is ℂ \ ( , ]−∞ 0 . We 

can do the integral avoiding ℂ \ ( , ]−∞ 0  by taking the contour shown in Fig. 6.6 

(notice it is not a closed contour).

To do the integral with this contour, we choose

 a re b re
i i= =− π π,

Note that

 
ln( ) ln( ) ln

ln( ) ln( ) ln

b re r i

a re r i

i

i

= = +

= = −−

π

π

π

π

Using the fundamental theorem of calculus, the integral is

 
dz

z
z

b

a
b z r i r i i

γ

π π∫ = = − = + − − =ln( ) ln( ) ln( ) ln (ln ) 22π

z = 0•
a

b

Figure 6.6 A contour that has the point z = 0, a singularity of f z z( ) /= 1 , inside the path.
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This is the same result we obtained using the unit circle and Eq. (6.11). In both 

cases, the singularity of f z( ), the point z = 0 was included inside the path. What 

if we take a closed contour that does not include z = 0? Such a contour is shown 

in Fig. 6.7.

This time we have a b=  and so

 
dz

z�∫ = 0

This result suggests the theorem of Cauchy.

THEOREM 6.1: CAUCHY’S INTEGRAL THEOREM

Let U be a simply connected domain and defi ne a function f U: →ℂ. The Cauchy’s 

integral theorem tells us that if w f z= ( ) is analytic on a simple, closed curve γ  and 

in its interior, then

 f z dz( )
γ�∫ = 0  (6.15)

Note that, we take the integration along the curve to be in the positive sense. We 

can indicate this explicitly by writing

 
γ

f z dz( )�∫
To prove the theorem, we write

 f z dz u iv dx idy udx vdy i( ) ( )( )
γ γ γ γ
� � � �∫ ∫ ∫ ∫= + + = − + vvdx udy+

We can rewrite this result in terms of partial derivatives and then use Cauchy-Riemann 

to prove the theorem (we can do this because the assumption of the theorem is that the 

function is analytic). First we call upon Green’s theorem which states that

 Pdx Qdy
Q

x

P

y
dxdy

R

+ =
∂
∂

−
∂
∂





∫ ∫∫γ

z = 0•

a = b

Figure 6.7 We pick a contour that avoids the singularity all together.
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where R is a closed region in the plane. Now recall that the Cauchy-Riemann 

equations tell us

 
∂
∂

= −
∂
∂

u

y

v

x

Green’s theorem together with this result gives

 udx vdy
u

y

v

x
dxdy

v

x

v

x
dxdy− = −

∂
∂

−
∂
∂

=
∂
∂

−
∂
∂∫ ∫∫ ∫∫

γ
� == 0

Similarly, we have

 i vdx udy i
u

x

v

y
dxdy+ =

∂
∂

−
∂
∂∫ ∫∫

γ
�

But the other Cauchy-Riemann equation states that

 
∂
∂

=
∂
∂

u

x

v

y

So the second term vanishes as well. This proves the theorem.

The fundamental theorem of calculus in Eq. (6.14) is actually a consequence of 

Cauchy’s integral theorem. The converse, if you will, of Cauchy’s integral theorem 

is called Morera’s theorem.

THEOREM 6.2: MORERA’S THEOREM

Let f z( )
 
be a continuous, complex-valued function on an open set D in the complex 

plane. Suppose that 

 f z dz( )
γ�∫ = 0

for all closed curves g. Then it follows that f z( )
 
is analytic.

Next, we extend Cauchy’s integral theorem to include singularities in the integrand.

THEOREM 6.3: THE CAUCHY’S INTEGRAL FORMULA

Let f z( )
 
be analytic on a simple closed contour γ  and suppose that f z( )

 
is also 

analytic everywhere on its interior. If the point z
0 is enclosed by g, then

 
f z

z z
dz i f z

( )
( )

−
=∫

0

0
2

γ
π�   (6.16)
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EXAMPLE 6.7

Let γ  be the unit circle traversed in a positive sense and suppose that

 f z
z

z
( ) =

−4 2

Find [ ( ) / { ( / )}]f z z i dz−∫ 2
γ
� .

SOLUTION

We can apply the Cauchy’s integral formula since z i
0

2= /  is inside the circle and 

f z( ) is analytic in the given domain (the function has a singularity at z = ±2, but 

these points are outside the unit circle). Hence

 
f z

z i
dz i f i i

i

i

( )
( )

−
= ⋅ =

− ( )



∫ /

/
/

/2
2 2 2

2

4 2
2

γ
π π� 







= −
4

17

π

EXAMPLE 6.8

Let f z z( ) = −5 2  and γ  be the circle defi ned by |z| = 2. Compute

 

5 2

1

z

z
dz

−
−∫ γ�

SOLUTION

The function f z z( ) = −5 2  is clearly analytic on and inside the curve. Also, the 

point z = 1 lies inside |z| = 2. So, we can use Eq. (6.16) to evaluate the integral. 

We have

 5 2

1
2 2 5 2 6

0

z

z
dz i f z i i

−
−

= = − =∫ π π π
γ

( ) ( )�

In this chapter, complex integration was fi rst considered along a curve parameterized 

with a single real parameter. Integration in this case is straight forward. We then 

built up to the Cauchy’s integral formula, by developing the fundamental theorem 

of calculus for a function of a complex variable and then stating and proving 

Cauchy’s integral theorem. In the next chapter, we introduce the elegant theory of 

residues which is an extension of Cauchy’s integral formula.

Summary
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Quiz
 1. Evaluate ∫ −

0

1 3( )t i dt.

 2. Compute ∫0

6 2π /
e dt

i t .

 3. Calculate ∫
+

0

2π /
e dt

t it .

 4. Find ∫ ∫
+

0 0

π π
e t dt e dt

t t itsin using .

 5. Suppose that m and n are integers such that m n≠ . Find ∫
−

0

2π θ θe d
i m n( )

.

 6. Integrate f z z( ) = 2 around the unit circle which is defi ned by 

γ ( ) cos sint t i t= +  and t ∈[ , )0 2π .

 7. Use complex integration to fi nd 
ds

s

x

1 20 +∫ .

 8. Consider a positively oriented circle with |z| = 2. Evaluate 
zdz

z z i( )( )4 2− +∫� .

 9. Let γ  be the positively oriented unit circle and f z z( ) = . Evaluate 
zdz

z2 1+∫� .

 10. Let γ  be a positively oriented curve defi ned by a square with sides located 

at x y= ± = ±3 3and . Evaluate 
sin

( )

z

z z

dz

+



 +

∫ π
2

162
� .



CHAPTER 7

Residue Theory

In the last chapter, we introduced the notion of complex integration. An important 

part of our development was the statement of Cauchy’s integral formula. In this 

chapter, we’re going to extend this technique using residue theory. This is an elegant 

formulation that not only allows you to calculate many complex integrals, but also 

gives you a trick you can use to calculate many real integrals. We begin by stating 

some theorems related to Cauchy’s integral formula.

We begin the chapter by writing down another form of Cauchy’s integral formula. 

First let’s write Eq. (6.16) in the following way:

 f a
i

f z

z a
dz( )

( )
=

−∫
1

2π γ
�  (7.1)

Theorems Related to Cauchy’s Integral Formula

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Now let’s take the derivative of this expression, with respect to a. This gives

 ′ =
−













=∫f a
d

da i

f z

z a
dz

i

d

da

f
( )

( ) (1

2

1

2π πγ
�

zz

z a
dz

i

f z

z a
dz

) ( )

( )−






=
−∫ ∫

γ γπ� �
1

2 2

We can repeat this process multiple times. That is, take the derivative again. Each time 

the exponent, which is negative, cancels out the minus sign we pick up by computing 

the derivative with respect to a of z a− . For example, the second derivative is

 ′′ =
−









 =∫f a

d

da i

f z

z a
dz

i

f z
( )

( )

( )

( )1

2

1
2π πγ

� (( )z a
dz

−∫ 3

γ
�

This process can be continued. For an arbitrary n, we obtain a second Cauchy’s 

integral formula for the nth derivative of f a( ):

 f a
n

i

f z

z a
dz

n

n

( ) ( )
! ( )

( )
=

− +∫2 1π γ
�   for n = 1 2 3, , ,...  (7.2)

There are two facts you should come away with from Cauchy’s integral formulas:

• If a function f (z) is known on a simple closed curve g, then that function is 

known at all points inside g. Moreover, all of the functions derivatives can 

be found inside g.

• If a function is analytic in a simply connected region of the complex plane, 

and hence has a fi rst derivative, all of its higher derivatives exist in that 

simply connected region.

Now we turn to a statement known as Cauchy’s inequality. This statement is 

related to Eq. (7.2), which gives us an expression we can use to calculate the 

derivative of an analytic function in a simply connected region. Consider a circle of 

radius r, which has the point z a=  at its center, and suppose that f (z) is analytic on 

the circle and inside the circle. Let M be a positive constant such that | ( ) |f z M≤  in 

the region | |z a r− < . Then

 f a
Mn

r

n

n

( ) ( )
!

≤  (7.3)

The next theorem, which is due to Liouville, tells us that an entire function cannot 

be bounded unless it is a constant. This statement is called Liouville’s theorem but 

it was fi rst proved by Cauchy. So maybe we should call it the Cauchy-Liouville 

theorem. In any case, it simply says that if f (z) is analytic and bounded in the entire 

complex plane, that is, f z M( ) <  for some constant M, then f (z) is a constant.
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Liouville’s theorem implies the fundamental theorem of algebra. Consider a 

polynomial with degree n ≥ 1 and coeffi cient an ≠ 0: 

 
P z a a z a z a zn

n( ) = + + + +0 1 2

2
⋯

The fundamental theorem of algebra tells us that every polynomial P z( ) has at least 

one root. The proof follows from Liouville’s theorem and the use of a proof by 

contradiction. Suppose that instead P z( ) ≠ 0 for all z. Then 

 f z
P z

( )
( )

=
1

is analytic throughout the complex plane and is bounded outside some circle z r= . 

Moreover, the assumption that P z( ) ≠ 0 implies that f P= 1/  is also bounded for 
z r≤ . Hence 1/ ( )P z  is bounded in the entire complex plane. Using Liouville’s 

theorem, 1/ ( )P z  must be a constant. This is a contradiction, since P(z) = a
0
 +

a z a z a zn

n

1 2

2+ + +⋯  is clearly not constant. Therefore P z( )  must have at least one 

root such that P z a a z a z a zn

n( ) = + + + + =0 1 2

2 0⋯  is satisfi ed.

Next we state the maximum modulus theorem and the minimum modulus theorem. 

The maximum modulus theorem tells us the following. Let f (z) be a complex-

valued function which is analytic inside and on a simple closed curve g. If f (z) is not 

a constant, then the maximum value of f z( )  is found on the curve g.

Now we state the minimum modulus theorem. Assume once again that f (z) is a 

complex-valued function which is analytic inside and on a simple closed curve g. If 

f z( ) ≠ 0 inside g, then f z( )  assumes its minimum value on the curve g.

The next theorem is the deformation of path theorem. Consider a domain D in 

the complex plane, and two curves in D we call γ γ1 2and . We suppose that 

γ γ1 2is larger than or lies outside of , and that γ 1  can be deformed into γ 2 without 

leaving the domain D [that is, we can shrink the fi rst curve down to the second one 

without crossing any holes or discontinuities in the domain (Fig. 7.1)]. If f (z) is 

analytic in D then

 
f z dz f z dz( ) ( )

γ γ1 2

� �∫ ∫=
 (7.4)

Next, we state Gauss’ mean value theorem. Consider a circle g of radius r centered 

at the point a. Let f (z) be a function, which is analytic on and inside g. The mean 

value of f (z) on g  is given by f (a):

 f a f a re d
i( ) ( )= +∫

1

2 0

2

π
θθπ

 (7.5)
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Once again, let f (z) be a function, which is analytic on and inside a simple, closed 

curve g. Now assume that f (z) has a fi nite number of poles inside g. If M is the 

number of zeros of f (z) inside g and N is the number of poles inside g, the argument 

theorem states that

 

1

2π γi

f z

f z
dz M N

′
= −∫

( )

( )�  (7.6)

Next is a statement of Rouche’s theorem. Let f (z) and g (z) be two functions, which 

are analytic inside and on a simple closed curve g. If g z f z( ) ( )≤ on γ , then 

f z g z f z( ) ( ) ( )+ and  have the same number of zeros inside g.

Finally, we end our whirlwind tour of theorems and results related to the Cauchy’s 

integral formula with a statement of Poisson’s integral formula for a circle. This 

expresses the value of a harmonic function inside of a circle in terms of its values 

on the boundary. Let f (z) be analytic inside and on the circle g, centered at the origin 

with radius R. Suppose that z re
i= θ
 is any point inside g. Then

 f z
R r f

R Rr r

i

( )
( ) (Re )

cos( )
=

−
− − +∫

1

2 2

2 2

2 20

2

π θ φ

φπ
ddφ  (7.7)

EXAMPLE 7.1

This example illustrates the solution of Laplace’s equation on a disk. First show 

that 

 u r a a r n b r nn

n

n

n

n

( , ) cos sinθ θ θ= + +
=

∞

∑0

1

Figure 7.1 A graphic illustration of the deformation of path theorem.

g1

g2

Can have hold inside 

second curve.

If first curve has to 

cross hole to deform 

into second curve, 

theorem does not work.
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is the solution of Laplace’s equation on the disc 0 1≤ ≤r  with Dirichlet boundary 

conditions:

 

1 1
0 0 1 0 2

1

2

2

2
r r

r
u

r r

u

r
r

u

∂
∂

∂
∂







+
∂
∂

= < < ≤ ≤,

(

θ π

,, ) ( ), ( , )θ θ θ= →f u r rbounded as 0

Show the coeffi cients in the series expansion are given by

 a f d a f n d bn n0
0

2

0

21

2

1
= = =∫ ∫π

θ θ
π

θ θ θ
π π

( ) ( ) cos
11

0

2

π
θ θ θ

π
f n d( )sin∫

Use the result to deduce Poisson’s integral formula for a circle of radius one:

 u r
r

r r
f d( , )

cos( )
( )θ

π θ φ
φ φ

π
=

−
− − +∫

1

2

1

1 2

2

20

2

SOLUTION

We try separation of variables. Let u r R r( , ) ( ) ( )θ θ= Θ . Then it follows that

 
∂
∂

=
∂
∂

∂
∂

=
∂
∂

∂
∂

=
∂u

r

R

r

u

r

R

r

u
R rΘ Θ( ) ( ) ( )θ θ

θ

2

2

2

2

2

2

2ΘΘ
∂θ 2

The statement of the problem tells us that

 
∂
∂

+
∂
∂

+
∂
∂

=
2

2 2

2

2

1 1
0

u

r r

u

r r

u

θ

Hence

 0
1 12

2 2

2

2
=

∂
∂

+
∂
∂

+
∂
∂

R

r r

R

r r
R rΘ Θ

Θ
( ) ( ) ( )θ θ

θ

We divide every term in this expression by u r R r( , ) ( ) ( )θ θ= Θ . This allows us to 

write

 
r

R

R

r

r

R

R

r

2 2

2

2

2

1∂
∂

+
∂
∂

= −
∂
∂Θ

Θ
θ
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The left-hand side and the right-hand side are functions of r only and θ  only, 

respectively. Therefore they can be equal only if they are both equal to a constant. 

We call this constant n2. Then we have the equation in θ :

 − = ⇒ + =
1

0
2

2

2

2

2

2

Θ
Θ Θ

Θ
d

d
n

d

d
n

θ θ

Note that partial derivatives can be replaced by ordinary derivatives at this point, 

since each equation involves one variable only. This familiar differential equation 

has solution given by

 Θ( ) cos sinθ θ θ= +a n b nn n

Now, turning to the equation in r, we have

 
r

R

d R

dr

r

R

dR

dr
n r

d R

dr
r

dR

dr
n R

2 2

2

2 2

2

2

2 0+ = ⇒ + − =

You should also be familiar with this equation from the study of ordinary differential 

equations. It has solution

 R r c r c rn

n

n

n( ) = + −
−

The total solution, by assumption is the product of both solutions, that is, 
u r R r( , ) ( ) ( )θ θ= Θ . So we have

 u r c r c r a n b nn

n

n

n

n n( , ) ( )( cos sin )θ θ θ= + +−
−

The condition that u r( , )θ  is bounded as r → 0  imposes a requirement that the 

constant c n− = 0  since

 
c

r
rn

n

− → ∞ →as 0

Therefore, we take u r c r a n b nn

n

n n( , ) ( )( cos sin )θ θ θ= + . We can just absorb the 

constant cn  into the other constants, and still designate them by the same letters. 

Then

 u r r a n b n
n

n n( , ) ( cos sin )θ θ θ= +
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The most general solution is a superposition of such solutions which ranges over all 

possible values of n. Therefore we write

 u r r a n b n a r a
n

n n

n

n

n( , ) ( cos sin ) ( cosθ θ θ= + = +
=

∞

∑
0

0 nn b nn

n

θ θ+
=

∞

∑ sin )
1

To proceed, the following orthogonality integrals are useful:

  sin sinm n d
n

n

mnθ θ θ
πδπ

0

2 0

0 0∫ =
≠
=





for

for
 (7.8)

 cos cosm n d
n

n

mn

mn

θ θ θ
πδ
πδ

π

0

2 0

2 0∫ =
≠
=




for

for
 (7.9)

 sin cosm n dθ θ θ
π

=∫ 0
0

2

 (7.10)

Here, δmn m n= =1 0for ,  which is the Kronecker delta function. Now we apply the 

boundary condition u f( , ) ( )1 θ θ=  for 0 2≤ ≤θ π :

 f a r a n b n
n

n n

n

( ) ( cos sin )θ θ θ= + +
=

∞

∑0

1

 (7.11)

Multiply through this expression by sin mθ  and integrate. We obtain

 

f m d a m d

a n m dn

( )sin sin

cos sin

θ θ θ θ θ

θ θ

π π

0

2

0
0

2

∫ ∫=

+ θθ θ θ θ

θ

π π

0

2

0

2

1
∫ ∫∑ +( )

=

=

∞

b n m d

b n

n

n

n

sin sin

sin sin mm d b b
n

n mn

n

mθ θ πδ π
π

0

2

1 1
∫∑ ∑( ) = =

=

∞

=

∞

where Eqs. (7.8)–(7.10) were used. We conclude that

 b f n dn = ∫
1

0

2

π
θ θ θ

π
( )sin
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Now we return to Eq. (7.11), and multiply by cos mθ and integrate. This time

 

f m d a m d

a n m dn

( ) cos cos

cos cos

θ θ θ θ θ

θ θ

π π

0

2

0
0

2

∫ ∫=

+ θθ θ θ θ

θ

π π

0

2

0

2

1
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=
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∞
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a n

n
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n
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n mn

n

mθ θ πδ π
π

0

2

1 1
∫∑ ∑( ) = =

=

∞

=

∞

Hence

 a f m dm = ∫
1

0

2

π
θ θ θ

π
( ) cos

To obtain the constant a0, we integrate without fi rst multiplying by any trig functions, 

that is:

 

f d a d a n d b n dn n( ) cos sinθ θ θ θ θ θ θ
π π π
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2

0
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2
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2
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00
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0
0

2

2

1

2

π

π

π

π
θ θ

∫∑

∫

( )
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∞

n

a

a f d( )

This should be obvious since
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n

n d
n

n

θ θ θ

θ θ θ

π π

π
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2
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2

0

1
0
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∫ = =

= − ==∫ 0
0

2π

Now we are in a position to derive Poisson’s formula. We have

 

u r f d

r f n d
n

( , ) ( )

( ) cos c

θ
π

φ φ

π
φ φ φ

π

π
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+ ( )
∫

∫
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2

1

0

2

0

2

oos ( )sin sinn f n d n
n

θ
π

φ φ φ θ
π
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We can move the summation inside the integrals:

 

u r f d f r n n
n

n

( , ) ( ) ( ) cos cosθ
π

φ φ φ
π

θ
π

= +∫ ∑
=

∞1
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1
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∑
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d
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n
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1
( ) sin sin 
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∫

∫ ∑
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d
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n

φ

π
φ φ θ φ

π

π
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0

2

1

1

2
1 2( ) cos cos 22

1

2
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1

0

2

r n n

d f r

n

n

sin sin

( )

θ φ

π
φ φ

π

=

∞

∑

∫









= + nn

n

n n n n(cos cos sin sin )θ φ θ φ+






=

∞

∑
1

Now recall that

 cos cos sin sin cos( ( ))n n n n nθ φ θ φ θ φ+ = −

It’s also true that

 1 2
1

1 21

2

2
− −[ ] =

−
− − +=

∞

∑ r n
r

r r

n

n

cos ( )
cos( )

θ φ
θ φ

 (7.12)

So, we arrive at the Poisson formula for a disc of radius one:

 u r
r

r r
f d( , )

cos( )
( )θ

π θ φ
φ φ

π
=

−
− − +∫

1

2

1

1 2

2

20

2

This tells us that the value of a harmonic function at a point inside the circle is the 

average of the boundary values of the circle. 

The Dirac delta function has two important properties. First if we integrate over the 

entire real line then the result is unity:

 δ ( )x dx
−∞

∞

∫ = 1

The Cauchy’s Integral Formula as a 
Sampling Function
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Second, it acts as a sampling function—that is, it picks out the value of a real 

function f (x) at a point:

 f x x a dx f a( ) ( ) ( )
−∞

∞

∫ − =δ

In complex analysis, the function 1 / z plays an analogous role. It has a singularity 

at z = 0, and

 
1

2

0

1π
γ

i

dz

z
=

if 0 is not in the interior of

iif 0 is in the interior of γγ



∫�

It also acts as a sampling function for analytic functions f (z) in that

 f a
i

f z dz

z a
( )

( )
=

−∫
1

2π γ
�

Some Properties of Analytic Functions
Now we are going to lay some more groundwork before we state the residue 

theorem. In this section, we consider some properties of analytic functions.

AN ANALYTIC FUNCTION HAS A LOCAL POWER 
SERIES EXPANSION

Suppose that a function f (z) is analytic inside a disc centered at a point a of radius r: 

z a r− < . Then f (z) has a power series expansion given by

 f z a z an

n

n

( ) ( )= −
=

∞

∑
0

 (7.13)

The coeffi cients of the expansion can be calculated using the Cauchy’s integral 

formula in Eq. (7.2):

 a
f a

n
n

n

=
( ) ( )

!
 (7.14)
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INTEGRATION OF THE POWER SERIES EXPANSION 
GIVES ZERO

Note the following result:

 ( )
ln( )

z a dz
m

z a m

m− =
≠ −

− = −


∫

γ

0 1

1

if

if

Hence

 f z dz a z a dzn

n

n( ) ( )
γ γ
∫ ∑ ∫= −

=

∞

0

since n is never equal to −1.

A FUNCTION f(z) THAT IS ANALYTIC IN A PUNCTURED 
DISC HAS A LAURENT EXPANSION

Consider the punctured disc of radius r centered at the point a. We denote this by 

writing 0 < − <z a r. If f (z) is analytic in this region, it is analytic inside the disc 

but not at the point a. In this case, the function has a Laurent expansion:

 f z a z an

n

n

( ) ( )= −
=−∞

∞

∑  (7.15)

As stated in Chap. 5, we can classify the points at which the function blows up or 

goes to zero. A removable singularity is a point a at which the function appears to 

be undefi ned, but it can be shown by writing down the Laurent expansion that in 

fact the function is analytic at a. In this case the Laurent expansion in Eq. (7.15) 

assumes the form

 f z a z an

n

n k

( ) ( )= −
=

∞

∑

where k ≥ 0. Then it turns out the point z a=  is a zero of order k.

On the other hand, suppose that the series expansion retains terms with n < 0:

 f z a z an

n

n k

( ) ( )= −
=−

∞

∑

Then we say that the point z a=  is a pole of order k. Simply put, a pole is a point 

that behaves like the point z = 0  for g z( ) /= 1 2 . That is, as z a→ , then f z( ) → ∞
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.

A function might have multiple poles. For example, in Fig. 7.2 we illustrate the 

poles of the modulus of the gamma function, Γ( )z , which are points where the 

function blows up.

A Laurent series expansion of this type can be split into two parts:

 f z a z a a z a a z an

n

n k

n

n

n k

n( ) ( ) ( ) ( )= − = − + −
=−

∞

=−

−

∑ ∑
1

nn

n

F G
=

∞

∑ = +
0

The second series, which we have denoted by G, looks like a plain old Taylor 

expansion. The other series, which we have denoted by F, is called the principal

part and it includes the singularities (the real ones—the poles) of the function.

EXAMPLE 7.2

Is the point z = 0 a removable singularity of f z z z( ) (sin )/= ?

SOLUTION

At fi rst glance, the behavior of the function at z = 0 can’t really be determined. To 

see what’s going on we expand the sin function in Taylor:

 

f z
z

z z
z z z

z

( )
sin

! !

!

= = − + +





= − +

1 1

3

1

5

1
1

3

3 5

2

⋯

11

5

4

!
z +⋯

Figure 7.2 When the real part of z is negative, the modulus of the gamma function 

blows to infi nity at several points. These points are the poles of the function.

5

0

Im(z) Re(z)

–5–5

0

5
0

2

4

6

|Γ(z)|
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From this expression, it’s easy to see that

 lim ( ) lim
sin

lim
! !z z z

f z
z

z
z z

→ → →
= = − + +

0 0 0

2 41
1

3

1

5
⋯⋯ = 1

Therefore, the point z = 0 is a zero of order one.

EXAMPLE 7.3

Describe the nature of the singularities of f z e z
z( ) /= .

SOLUTION

We follow the same procedure used in Example 7.2. First expand in Taylor:

 f z
e

z z
z

z z

z

z z
z

( ) = = + + + +





= + + +

1
1

2 3

1
1

2

2 3 2

! !
⋯

66
+⋯

The principal part of this series expansion is given by 1/z. It follows that the point 

z = 0  is a pole of order one.

EXAMPLE 7.4

Is the point z = 0 a removable singularity of f z z z( ) (sin )/= 4
?

SOLUTION

Contrast this solution with that found in Example 7.2. Expanding in Taylor we 

fi nd

 

f z
z

z z
z z z z( )

sin

! ! !
= = − + − −





=

4 4

3 5 71 1

3

1

5

1

7
⋯

11 1

6

1

5

1

73

3

z z
z z− + − +

! !
⋯

This time, the singularity cannot be removed. So the point z = 0  is a pole. The 

principal part in this series expansion is

 
1 1

63
z z
−

The leading power (most negative power) in the expansion gives the order of the 

pole. Hence z = 0  is a pole of order three.
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ESSENTIAL SINGULARITY

Next we consider the essential singularity. In this case, the Laurent series expansion 

of the function includes a principal part that is nonterminating. That is, all terms out 

to minus infi nity are included in the Laurent expansion with negative n, that is, 

there are no nonzero terms in the expansion for n < 0:

 f z a z an

n

n

( ) ( )= −
=−∞

∞

∑

EXAMPLE 7.5

Describe the nature of the singularity at z = 0 for f z e
z( ) /= 1
.

SOLUTION

This function is the classic example used to illustrate an essential singularity. We 

just write down the series expansion:

 

f z e

z z z z

z( )

!

=

= + + 




+ 




+

1

2 3

1
1 1

2

1 1

6

1 1

4

1





+ 




+

= + + + +− − −

4 5

1 2 3

1

5

1

1
1

2

1

6

1

! z

z z z

⋯

44

1

5

4 5

! !
z z
− −+ +⋯

This series expansion has a nonterminating principal part. Therefore z = 0  is an 

essential singularity.

The Residue Theorem
Now we’re in a position where we can describe one of the central results of complex 

analysis, the residue theorem. We consider a function f z( ) in a region enclosed by 

a curve γ  that includes isolated singularities at the points z z zk1 2, ,..., . The function 

is analytic everywhere on the curve and inside it except at the singularities. This is 

illustrated in Fig. 7.3.

We can use the deformation of path theorem to shrink the curve down. In fact, 

we can shrink it down into isolated curves enclosing each singularity. This is shown 

in Fig. 7.4.
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After application of the deformation of path theorem, the integral is broken up 

into a sum of integrals about each singular point:

 f z dz f z dz

j
j

k

( ) ( )
γ γ
∫ ∫∑=

=1

This expression can be written in terms of the Laurent expansion. Note that there 

will be a series expansion (which is local) about each singular point:

 f z dz a z z dz a z

j j

n

j

j

n

n

n

j

n

( ) ( ) (
γ γ
∫ ∑∫ ∑= − =

=−∞

∞

=−∞

∞

−− =∫ −z dz a ij

n j

j

)
γ

π12

We call the coeffi cient in the expansion a
j

−1 the residue. Summing over all of the 

integrals for each singular point, we get the residue theorem. This states that the 

integral is proportional to the sum of the residues:

 f z dz i
j

k

( )
γ

π�∫ ∑=
=

2
1

residues  (7.16)

Figure 7.3 A function f z( ) is analytic in a certain region enclosed by a curve, except at 

a set of isolated singularities.

z0•
z1•

zk•

Figure 7.4 If the region is simply connected, we can apply the deformation of path 

theorem to shrink the curve down, until we have circles around each isolated 

singular point.

z0•
z1•

zk•

g1

g2

gk
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Residues are computed by fi nding the limit of the function f z( ) as z  approaches 

each singularity. This is done for a singularity at z a=  as follows:

 residue =
−

− 
→

−

−lim
( )!

( ) ( )
z a

k

k

k

k

d

dz
z a f z

1

1

1

1   (7.17)

where k is the order of the singularity.

EXAMPLE 7.6

Compute the integral

 
5 2

2

z

z z
dz

−
−( )∫

γ
�

where g  is a circle of radius r = 3  centered at the origin.

SOLUTION

The singularities of this function are readily identifi ed to be located at z = 0 2, . Both 

singularities are enclosed by the curve, since z < 3 in both cases. To fi nd each 

residue, we compute the limit of the function for each singularity. The residue 

corresponding to z = 0 is

 lim
( )

lim
( )z z

z
z

z z

z

z→ →

−
−

=
−
−

=
−
−

=
0 0

5 2

2

5 2

2

2

2
1

The residue corresponding to the singularity at z = 2 is

 lim( )
( )

lim
z z

z
z

z z

z

z→ →
−

−
−

=
−

= =
2 2

2
5 2

2

5 2 8

2
4

Therefore using Eq. (7.16) the integral evaluates to

 
5 2

2
2 2 1 4 10

z

z z
dz i residues i i

−
−

= = + =∫ ∑
( )

( )
γ

π π π�

EXAMPLE 7.7

Compute the integral of ∫γ [(cosh ) / ]z z dz
3

, where g  is the unit circle centered about the 

origin.

SOLUTION

The function has a singularity at z = 0 of 3d order. Using

 f a
n

i

f z

z a
dz

n

n

( )
+=

−∫( )
! ( )

( )2 1π γ
�
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We have

 cosh

!
(cosh ) (cosh )

z

z
dz

i d

dz
z i zz z3

2

2 0

2

2�∫ = ==

π
π == =0 πi

One of the most powerful applications of the residue theorem is in the evaluation of 

defi nite integrals of functions of a real variable. We start by considering

 
f dcos ,sinθ θ θ

π
( )∫0

2

Now, write the complex variable z in polar form on the unit circle, that is, let z e
i= θ. 

Notice that

 
dz ie d d

iz
dz

i

z
dz

i= ⇒ = = −θ θ θ
1

As θ  increases from 0 to 2π , one sees that the complex variable z moves around the 

unit circle in a counter clockwise direction. Using Euler’s formula, we can also 

rewrite cosθ  and sinθ  in terms of complex variables. In the fi rst case:

 cosθ
θ θ

θ
θ θ

θ=
+

=
+




=

+−
−e e

e
e e

e

i i

i

i i

i2

1

2

1

2

2 2

==
+z

z

2 1

2

Similarly, we fi nd that

 
sinθ =

−z

iz

2 1

2

Taking these facts together, we see that ∫0

2π θ θ θf d(cos ,sin )  can be rewritten as a 

contour integral in the complex plane. We only need to include residues that are 

inside the unit circle.

EXAMPLE 7.8

Compute ∫ −0

2 24 8π θ θ[ /( cos )]d .

Evaluation of Real, Defi nite Integrals
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SOLUTION

Using d i z dzθ = −( / )  together with cos ( ) /θ = +z z
2 1 2  we have

 

d
i

dz

z
z

z

θ
θ

π

24 8
24 8

1

2

0

2

2−
= −

−
+















∫ cos �∫∫

∫

∫

= −
− −

=
− +

=
−

i
dz

z z

i
dz

z z

i dz

z z

24 4 4

4 24 4

4 6

2

2

2

�

�

++∫ 1�

We will choose the unit circle for our contour. To fi nd the singularities, we fi nd the 

roots of the denominator. Some algebra shows that they are located at z = ±3 2 2.

The fi rst residue is given by

 lim
z

z
z z→ +

− −( )
− −( ) − +( ) =3 2 2

3 2 2
1

3 2 2 3 2 2

1

4 2

The residue corresponding to z = −3 2 2  is given by

 

lim
z

z
z z→ −

− +( )
− −( ) − +( ) = −3 2 2

3 2 2
1

3 2 2 3 2 2

1

4 2

You should always check that your singularities lie inside the curve you are using 

to integrate. If they do not, they do not contribute to the integral. In this case, both 

residues do not contribute. This is because

 z = + >3 2 2 1

lies outside the unit circle. So we will only include the second residue, because the 

singularity it corresponds to, z = − <3 2 2 1 and so is inside the unit circle.

Using Eq. (7.16) we have

 dz

z z
i i

i
2 6 1

2 2
1

4 2 2− +
= = −




= −∫ ∑� π π

π
residues

22
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Hence

 d i dz

z z

i iθ
θ

ππ

24 8 4 6 1 4 2 20

2

2−
=

− +
= −




=∫ ∫cos �

ππ
8 2

The next type of defi nite integral we consider is one of the form

 f x
mx

mx
dx( )

cos

sin−∞

∞

∫








This type of integral can be converted into a contour integral of the form

 f z e dz
imz( )�∫  (7.18)

To obtain the desired result, we take the real or imaginary part of Eq. (7.18) 

depending on whether or not a cos or sin function is found in the original integral. 

A useful tool when evaluating integrals of the form in Eq. (7.18) is called Jordan’s 

lemma. Imagine that we choose γ  to be a semicircle located at the origin and in the 

upper half plane, as illustrated in Fig. 7.5.

Jordan’s lemma states that

 
lim
R

C

mz
f z e dz

→∞
( ) =∫

1

0
 (7.19)

Jordan’s lemma does not hold in all cases. To use Eq. (7.19), if m > 0 then it must 

be the case that f z( ) → 0 as R →∞. We can also apply it in the following case:

 lim ( )
R

C

f z dz
→∞ ∫ =

1

0

provided that f z( ) → 0 faster than 1/z as R →∞. 

Figure 7.5 A semicircle in the upper half plane, of radius R.
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EXAMPLE 7.9

Compute ∫−∞
∞ [(cos )/ ]kx x dx

2 .

SOLUTION

We can compute this integral by computing

 
cos

Re
kx

x
dx I z2−∞

∞

∫ =

where

 I P
e

z
dzz

ikz

=
−∞

∞

∫ 2

The P stands for principal part. To do the integral, we will take a circular contour 

in the upper half plane which omits the origin. This is illustrated in Fig. 7.6.

Now we can write out the integral piecewise, taking little chunks along the curves 

C C1 2and . Note that when directly on the real axis, we set z x→ . This gives

 
e

z
dz

e

x
dx

e

z
dz

e

x
dx

ikz ikx ikz

C

ikx

r

R

2 2 2 2

2

= + + +∫ ∫−RR

r
ikz

C

e

z
dz∫∫ ∫ =� 2

1

0

The entire sum of these integrals equals zero because the contour encloses no 

singular points. However, individual integrals in this expression are not all zero. By 

Jordan’s lemma:

 
e

z
dz

ikz

C

2

1

0∫ =

So, we only need to calculate the residues for the curve C2
. This curve is in the 

clockwise direction, so we need to add a minus sign when we do our calculation. 

Figure 7.6 We use a semicircular contour in the upper half plane, omitting the origin 

using a small semicircle or radius r that gives us a curve that omits the origin.

–R –r r R
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0
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Also, up to this point, we have been using full circles in our calculations. The curve 

in this case is a semicircle, so Eq. (7.16) is written as

 f z dz i
j

k

( )
γ

π�∫ ∑= −
=

residues
1

The singularity at z = 0 is inside the curve C
2
, of order two. The residue corresponding 

to this singularity is
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dz
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Therefore
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−∞

∞

Therefore we fi nd that

 
cos

Re
kx

x
dx I P

e

x
dx

e

z
dzz

ikx ikz

C

2 2 2−∞

∞

−∞

∞

∫ ∫= = = −
11

∫ = −πk

The integral of a rational function f x( )

 f x dx( )
−∞

∞

∫
can be calculated by computing

 f z dz( )∫�

Integral of a Rational Function
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using the contour shown in Fig. 7.5, which consists of a line along the x axis from 

–R to R and a semicircle above the x axis the same radius. Then we take the limit 

R →∞ .

EXAMPLE 7.10

Consider the Poisson kernel

 p x
y

x y
y ( ) =

+
1

2 2π

Treating y as a constant, use the residue theorem to show that its Fourier transform 

is given by [ /( )]1 2π e
k y− .

SOLUTION

The Fourier transform of a function f x( ) is given by the integral

 F k f x e dx
ikx( ) ( )=

−∞

∞ −∫
1

2π  (7.20)

So, we are being asked to evaluate the integral

 I
y

x y
e dx

ikx=
+−∞

∞ −∫
1

2

1
2 2π π

We do this by considering the contour integral

 1

2 2 2 2π
y

z y
e dz

ikz

+∫ −
�

First, note that

 
1

2

1

22 2 2 2π π
y

x y

y

z iy z iy+
=

+ −( )( )

Therefore, there are two simple poles located at z iy= ± . These lie directly on the y

axis, one in the upper half plane and one in the lower half plane. To get the right 

answer for the integral we seek, we need to compute using both cases. First we 

consider the pole in the upper half plane. The residue corresponding to z iy= +  is

 a z iy
ye

z iy z iy

ye
ikz

z iy

ky

−

−

=+= −
+ −

=1 22 2
( )

( )( )π π 22 22

1

4( )iy i
e

ky=
π
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Applying the residue theorem, we fi nd that

 I
y

x y
e dx i

i
e

ikx ky=
+

= 



 =−∞

∞ −∫
1

2

1
2

1

42 2 2π π
π

π
ee

ky

2π

However, now let’s consider enclosing the other singularity, which would be an 

equally valid approach. The singularity is located at z iy= − , which is below the 

x axis, so we would need to use a semicircle in the lower half plane to enclose it. 

This time the residue is

 a z iy
ye

z iy z iy i

ikz

z iy−

−

=−= +
+ −

= −1 2 22

1

4
( )

( )( )π π
ee

ky−

Using this result, we obtain

 I
y

x y
e dx i

i
e

ikx ky=
+

= 



−∞

∞ − −∫
1

2

1
2

1

42 2 2π π
π

π
==

−
e

ky

2π

Combining both results gives the correct answer, which is

 I
e

k y

=
−

2π
EXAMPLE 7.11

Compute the integral given by

 I
x

x
dx=

+−∞

∞

∫
2

41

SOLUTION

This integral is given by

 I i= ∑2π residues in upper half plane

We fi nd the residues by considering the complex function

 f z
z

z
( ) =

+

2

4 1

The singularities are found by solving the equation

 z
4 1 0+ =

This equation is solved by z = −( ) /1 1 4. But, remember that − =1 e
iπ.
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That is, there are four roots given by

 z e

e

e

e

e

i n

i

i

i

i

= =






( ) +( )1 4 2 1

4

3 4

5 4

7 4
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/

/

π

π

π

π

π







These are shown in Fig. 7.7. Notice that two of the roots are in the upper half plane, 

while two of the roots are in the lower half plane. We reject the roots in the lower 

half plane because we are choosing a closed semicircle in the upper half plane (as 

in Fig. 7.5) as our contour. We only consider the singularities that are inside the 

contour, the others do not contribute to the integral.

We proceed to compute the two residues. They are all simple so in the fi rst case 

we have
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( )( )(/
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1

4
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i π /

Figure 7.7 An illustration of the roots in Example 7.11. For our contour, we will enclose 

the upper half plane, so we ignore the roots that lie in the lower half plane.
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And so, shows that the residue corresponding to the pole at z i= exp /4( )3π  is given 

by z e e
i i= ⇒ −3 4 41 4π π/ /( / ) . Hence

 

residues∑ = − −

= − +

1

4

1

4

1

4
4

4 3 4
e e

i

i iπ π

π

/ /

(cos / sinππ π π/ cos / sin / )
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1 1
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i i ii
i

= −
2 2

Therefore the integral evaluates to

 I i i
i

= = −


∑2 2
2 2

π πresidues in upper half plane





=

π

2

EXAMPLE 7.12

Compute ∫ − +−∞
∞ [(cos )/( )] .x x x dx

2 2 2

SOLUTION

We can compute this integral by considering

 e

z z
dz

e dz

z i z i

iz iz

2 2 2 1 1− +
=

− + − −∫ ∫� � [ ( )][ ( )]

The root z i= +1  lies in the upper half plane, while the root z i= −1  lies in the lower 

half plane. We choose a contour which is a semicircle in the upper half plane, 

enclosing the fi rst root. This is illustrated in Fig. 7.8.

The residue is given by
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Therefore we have

 e dz

z z
i

e e

i e
e

iz i

i

2

1

2 2
2

2− +
=







=∫

−

� π
π

But, using Euler’s identity, we have

 e i
i = +cos sin1 1

And so

 e dz

z z e
i

e

iz

2 2 2
1 1

− +
= +∫�
π π

cos( ) sin( )

Now, we have
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C
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+
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1
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== +
π π
e

i
e

cos( ) sin( )1 1

Now we let R →∞. By Jordan’s lemma:

 e dz

z z

iz

C

2 2 2
0

1
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Figure 7.8 The contour used in Example 7.12.
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So we have

cos sin
cos(

xdx

x x
i

xdx

x x e
2 22 2 2 2− +

+
− +

=
−∞

∞

−∞

∞

∫ ∫
π

11 1) sin( )+ i
e

π

Equating real and imaginary parts gives the result we are looking for:

cos
cos( )

xdx

x x e
2 2 2

1
− +

=
−∞

∞

∫
π

By computing the Laurent expansion of an analytic function in a region containing 

one or more singularities, we were able to arrive at the residue theorem which can 

be used to calculate a wide variety of integrals. This includes integrals of complex 

functions, but the residue theorem can also be used to calculate certain classes of 

integrals involving functions of a real variable.

Quiz
 1. Compute 

sinh z

z
dz

3γ∫ .

 2. Compute 
sinh z

z
dz

4γ∫ .

 3. Find the principal part of f z
z

( )
( )

=
+
1

1 3 2 .

 4. What are the singular points and residues of 
sin z

z z +





5

2

π
?

 5. What are the singularities and residues of 
sin

( )

z

z z
2 π −

?

 6. Evaluate dθ
θ

π

24 60

2

−∫ sin
.

Summary
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 7. Using the technique outlined in Example 7.9, compute 
0

2

2

∞

∫
sin x

x
dx .

 8. Use the residue theorem to compute lim
R R

R dx

x→∞ − +∫ 1 2
.

 9. Compute x

x x
dx

2

2 2

3

1 4

+
+ +−∞

∞

∫ ( )( )
.

10. Compute 
cos x

x
dx

1 2+−∞

−∞

∫ .



More Complex 
Integration and the 

Laplace Transform

In this chapter, we consider a few more integrals that can be evaluated using the 

residue theorem and then consider the Laplace transform.

Consider the Fesnel integrals which are given by

 cos( ) sin( )t dt t dt
2

0

2

0 2 2

∞ ∞

∫ ∫= =
π

 (8.1)

CHAPTER 8

Contour Integration Continued

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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These integrals can be evaluated by considering a wedge in the fi rst quadrant of the 

complex plane with angle α π= /4. This is illustrated in Fig. 8.1.

The three legs along the contour have been denoted by I, II, and III. We consider 

the analytic function

 f z e
z( ) = − 2

 (8.2)

If we integrate the function in Eq. (8.2) around C, we will fi nd it to be zero. This can 

be done using the residue theorem which tells us that

 e dz i
z

C

−∫ ∑=
2

2π enclosed residues

This function has no singularities, a fact we can verify explicitly by writing down 

its series representation:

 e z z z
z− = − + − +

2

1
1

2

1

3

2 4 6

! !
⋯

Therefore

 enclosed residues∑ = 0

And so ∫ =−
C

z
e dz

2

0. Now let’s try a different approach. First we break up the 

integral into separate integrals along each of the curves I, II, and III:

 e dz e dz e dz e dz
z

C

z

I

z

II

z

III

− − − −∫ ∫ ∫ ∫= + +
2 2 2 2

Figure 8.1 The contour C used to evaluate the integrals in Eq. (8.1).

y

xI 

II III

p/4
C
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We take the radius of the wedge to be fi xed (for now) at r R= . Now write down the 

polar representation:

 z re
i= θ

and

 dz dr e ire d
i i= +( )θ θ θ

These quantities will assume different values on each leg of the contour. First consider 

curve I, which lies on the x axis. Along curve I, d z r dz drθ θ= = ⇒ = =0 0, , , .

Curve II is a circular path at radius R. So while θ varies, r is fi xed. So along curve II, 

r R dr dz iRe d
i= = ⇒ =, ,0 θ θ. 

Finally, along curve III, θ  is once again fi xed like it was on curve I. But this 

time, θ π θ π= = =/ , , /4 0 4
d dz e dr

i . Using these results the integral becomes

 e dz e dr e iRe d e
z

C

r
R

R e i r
i− − − −∫ ∫ ∫= + +

2 2 2 2

0 0

4 θπ θ θ
/ 22 20

4e

R

ii

e dr
θ π∫ /

Now, we let R →∞. On curve II, as R →∞ we have

 lim
/

R

R e i
e iRe d

i

→∞

−∫ =
2 2

0

4

0
θπ θ θ

because is much faster thane R
R ei− → →∞

2 2

0
θ

. Earlier, we found out that ∫ =−
C

z
e dz

2

0. 

Then we wrote ∫ = ∫ + ∫ + ∫− − −
C

z R r R e i

Re dz e dr e iRe d
i2 2 2 2

0 0

4 0π θθ

θ/
ee e dr

r e i
i− 2 2 4θ π /  but just 

noted that as R →∞∫ =−
0

4 2 2

0π θθ

θ/ .e iRe d
R e i

i

 So we’re left with

 lim /

R

r
R

r e
R

i
e dr e e dr

i

→∞

− −∫ ∫−{ } =2 2 2

0 0

4 0
θ π

The fi rst integral can be looked up in a table:

 e dr
r−∞

∫ =
2

0 2

π  (8.3)

Using Euler’s identity:

 e i
iiπ π π/ cos sin4 4 4

1

2
= + =

+
/ /
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Therefore

 

π
2

1

2

1

2

2

0

2 2

0
=

+
=

+
+−∞ ∞

∫ ∫
i

e dr
i

r i r
ir {cos( ) sin( )}ddr

r dr r dr
i

r= + +
∞ ∞

∫ ∫
1

2

1

2 2

2

0

2

0

2cos( ) sin( ) {cos( )) sin( )}−
∞

∫ r dr
2

0

Now equate real and imaginary parts. Clearly Im( / )π 2 0= , so it follows that

 

i
r r dr

r dr

2
02 2

0

2

0

{cos( ) sin( )}

cos( ) sin

− =

⇒ =

∞

∞

∫

∫ (( )r dr
2

0

∞

∫

Equating real parts and using ∫ = ∫∞ ∞
0

2

0

2cos( ) sin( )r dr r dr gives

 

π
2

1

2

1

2

2

2

2

0

2

0

2= + =
∞ ∞

∫ ∫cos( ) sin( ) cos( )r dr r dr r drr

r dr

0

2

0 2 2

∞

∞

∫

∫⇒ =cos( )
π

Next, we consider the integral ∫ +0

21x
dz z[ /( )], which you’ve already seen in Chap. 6. 

Here, we show how to do it using natural logarithms and a little trick. First we 

factor the integrand:

 
dz

z

dz

z i z i i

dz

z i i

dz

z

x x

1

1

2

1

220 0+
=

− +
=

−
−

+∫ ∫( )( ) ii

xx

00 ∫∫

The last step used partial fraction decomposition. These integrals can be solved 

readily to give

 
dz

z i
z i z i

xx

1

1

2 020 +
= − − +{ }∫ ln( ) ln( )

In Fig. 8.2, we draw both lines on a triangle which will help us evaluate the integral.

Notice from Fig. 8.2 that

 tan tanθ θ= = ⇒ = −z

i
z z

1
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Moreover we have

 

ln( ) ln( ) ln arg( ) ln arg(z i z i z i i z i z i i− − + = − + − − + + zz i

i z i i z i

i i z

+{ }
= − − +

= = −

)

arg( ) arg( )

tan2 2 1θ

Therefore the integral can be evaluated in the following way:

 
dz

z i
i z

x
x

x

1

1

2
2

020

1 1

+
= =∫ − −{ tan } tan

So far we’ve seen how complex integration can make many integrals that seem 

impossible to evaluate much easier to tackle. Now we turn our attention to the 

notion of a transform, which is a method that takes the representation of a function 

in terms of one variable (say time or position) and represents it in terms of a different 

variable like frequency. This type of mathematical operation leads to simplifi cation 

of many tasks like solving differential equations, which can be turned into algebraic 

relationships. The fi rst transform we will investigate is the Laplace transform.

The Laplace transform is a useful mathematical tool that converts functions of 

time into functions of a complex variable denoted by s. This technique is very 

useful because the Laplace transform allows us to convert ordinary differential 

equations into algebraic equations which are usually easier to solve.

Figure 8.2 We draw triangles to evaluate ∫ + = − − +{ }
0

2
1 1 2

x
dz z i z i z i[ /( )] ( / ) ln( ) ln( )  at 

the upper and lower limits.

z – i

z + i–i

i

q

q

The Laplace Transform
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A Laplace transform can be used to transform a function of time t or position x 

into a function of the complex variable s. In the defi nitions that follow, we will stick 

to considering functions of time, but keep in mind that x could equally well be used 

in place of t. We write the complex variable s in terms of real and imaginary parts 

as follows:

 s i= +σ ω  (8.4)

where σ = Re( )s  and ω = Im( )s  are real variables. The defi nition of the Laplace 

transform is given in terms of an integral. The Laplace transform F s( ) of a function 

f t( ) is given by

 F s f t e dt
st( ) ( )=

−∞

∞ −∫  (8.5)

This can be written in an abstract form as

 F s f t( ) ( )= { }L  (8.6)

where L •{ } is the Laplace transform viewed as an operator acting on the function 

f t( ). Let’s compute a few Laplace transforms using Eq. (8.5).

EXAMPLE 8.1

Find the Laplace transform of f t t( ) ( )= θ , where θ( )t
t

t
=

>
≤





1 0

0 0
 (see Fig. 8.3).

SOLUTION

Inserting this function into the defi ning integral in Eq. (8.5) we fi nd

 F s t e dt e dt
s

e
s

st st st( ) ( )= = = −
∞
=

−∞

∞ − −∞ −∫ ∫θ
0

1

0

1

Therefore we have the Laplace transform pair

 L θ( )t
s

{ } = 1

EXAMPLE 8.2

Find the Laplace transform of (see Fig. 8.4)

 f t e u t
at( ) ( )= −
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SOLUTION

Again using the defi ning integral we have

 

F s e t e dt e e dt e
at st at st a( ) ( ) (= = =−

−∞

∞ − − −∞ − +∫ ∫θ
0

ss t

s a t

dt

s a
e

s a

)

( )

( ) ( )
|

0

0

1 1

∞

− + ∞

∫
= −

+
=

+
So we have the Laplace transform pair

 L{ ( )}e t
s a

at− =
+

θ
1

Figure 8.3 In Example 8.1, we fi nd the Laplace transform of f t t( ) ( )= θ . This function 

is called the Heaviside or unit step function.

1
s{q(t)} =

–1 –0.5 0.5 1

0.2

0.4

0.6

0.8

1

Figure 8.4 In Example 8.2, we compute the Laplace transform of f t e u t
at

( ) ( )= −
.

–3 –2 –1 1 2 3

0.2

0.4

0.6

0.8

1

1.2
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EXAMPLE 8.3

Find the Laplace transform of x t te t
at( ) ( )= − θ .

SOLUTION

The function is displayed in Fig. 8.5. Proceeding, we have

 F s te t e dt te e dt te
at st at st( ) ( )= = =−

−∞

∞ − − −∞ −∫ ∫θ
0

(( )a s t
dt

+∞

∫0

This is a familiar integral to most readers. No doubt many recall that this integral can be 

done using integration by parts. It’s always good to review so let’s quickly go through the 

process to refresh our memories. We start by recalling the integration by parts formula:

 udv uv vdu∫ ∫= −

In the case at hand, we set

 

u t du dt

dv e dt v
s a

e
s a t s a t

= ⇒ =

= ⇒ = −
+

− + − +( ) ( )1

Therefore, applying the integration by parts formula we obtain

 

F s
s a

te
s a

e dt
s a t s a t( ) ( ) ( )= −

+
∞
+

+
− + − +∞

∫
1

0

1

0

=
+

= −
+

− +∞

∫
1

1

0

2

s a
e dt

s a
e

s a t( )

( )

−− + ∞
=

+
( )

( )

s a t

s a0

1
2

Figure 8.5 In Example 8.3 we fi nd the Laplace transform of x t te t
at

( ) ( )= − θ .

1 2 3 4 5

0.1

0.2

0.3

0.4
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So, we have derived the Laplace transform pair:

 L te t
s a

at−{ } =
+

θ( )
( )

1
2

EXAMPLE 8.4

Let α > −1. The factorial function is defi ned by α α! = ∫∞ −
0 e t dt

t . Find −( )1 2/ ! and 

then show that the Laplace transform of t
β

 is given by β β!/s +1
.

SOLUTION

Using the defi nition α α! = ∫∞ −
0 e t dt

t
 we have

 ( )! /− = − −∞

∫1 2 1 2

0
/ e t dt

t

Let t x= . Then [ /( )] ,1 2 2
t dt x t x= =  and

 

( )! /− =

= = 





− −∞

−∞

∫

∫

1 2

2 2
1

2

1 2

0

0

2

/ e t dt

e dx e

t

x −−

−∞

∞

∫ =x
dx

2

π

Using Eq. (8.5) the Laplace transform of t
β
 is

 e t dt
st−∞

∫0

β

Let r st= . Then dr sdt t r s= = ⇒, /

 e t dt e
r

s

dr

s s
e r

st r r−∞ −∞

+
−∞

∫ ∫ ∫= 



 =

0 0 1 0

1β
β

β
ββ

β

β
dr

s
= +

!
1

IMPORTANT PROPERTIES OF THE LAPLACE TRANSFORM

The Laplace transform is a linear operation. This follows readily from the defi ning 

integral. Suppose that F s f t1 1( ) { ( )}=L  and F s f t2 2( ) { ( )}=L . Also, let α β,  be two 

constants. Then

 L { ( ) ( )} [ ( ) ( )]α β α βf t f t f t f t e dt
st

1 2 1 2+ = + −

−∞

∞

∫  (8.7)
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Now, we can just use the linearity properties of the integral. We have

 

[ ( ) ( )] [ ( ) (α β α βf t f t e dt f t e f t
st st

1 2 1 2+ = +−

−∞

∞ −∫ )) ]

( ) ( )

e dt

f t e dt f t e dt

st

st st

−

−∞

∞

−

−∞

∞ −

∫

∫= +α β1 2−−∞

∞

−

−∞

∞ −

−∞

∞

∫

∫ ∫= +

=

α β

α

f t e dt f t e dt

F

st st

1 2

1

( ) ( )

(( ) ( )s F s+ β 2

The next property we want to look at is time scaling. Suppose that we have a 

continuous function of time f t( )  and some constant a > 0. Given that

 F s f t e dt
st( ) ( )=

−∞

∞ −∫
what is the Laplace transform of the time scaled function f at( )? The defi ning 

integral is

 L f at f at e dt
st( ) ( ){ } = −

−∞

∞

∫

Let’s fi x this up with a simple change of variables. Let 

 u at du adt= ⇒ =

Furthermore, we can write

 t
u

a
=

So we have

 L f at f at e dt
a

f u e du
st su a( ) ( ) ( ) /{ } = =−

−∞

∞ −

−∞

∞

∫ ∫
1

Let’s write the argument of the exponential in a more suggestive way

 − = − 

 = −

su

a

s

a
u uθ

where for the moment we have defi ned another new variable θ = s a/ . This change 

makes the above integral look just like a plain old Laplace transform. Since the 
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integration variable u is just a “dummy” variable, we can call it anything we like. 

Let’s put in the aforementioned changes and also let u t→

 

L f at
a

f u e du
a

f u e du
su a u( ) ( ) ( )/{ } = =−

−∞

∞ −

−∞

∞

∫
1 1 θ∫∫

∫= =−

−∞

∞1 1

a
f t e du

a
F

t( ) ( )θ θ

Now we change back θ = s a/  and we have discovered that

 L { ( )}f at
a

F
s

a
= 





1

More generally, if we let a assume negative values as well, this relation is written as

 L { ( )}f at
a

F
s

a
= 





1
 (8.8)

The next property we wish to consider is time shifting. Suppose that

 F s f t( ) { ( )}=L

What is the Laplace transform of x t to( )− ? Using the defi nition of the Laplace 

transform we have

 L { ( )} ( )f t t f t t e dto o

st− = −
−∞

∞ −∫

Once again, we can proceed with a simple change of variables. We let u t to= −  

from which it follows immediately that du dt= . Then

 
L { ( )} ( ) ( )

f t t f u e duo

s u to− =
−∞

∞ − +∫
=

−∞

∞ − −∫ f u e e du
su sto( )

Notice that s and to are not integration variables, so given any term that is a function 

of these variables alone, we can just pull it outside the integral. This gives

 L { ( )} ( ) ( )f t t e f u e du e f to

st su sto o− = =−

−∞

∞ − −

−∞

∞

∫ ∫∫ − −=e dt e F s
st sto ( )

We conclude that the effect of a time shift by to is to multiply the Laplace transform 

by e
sto− .
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DIFFERENTIATION

When we consider the derivative of a function of time, we encounter one of the 

most useful properties of the Laplace transform which makes it well suited to use 

when solving ordinary differential equations. Starting with the defi ning integral 

consider the Laplace transform

 L
df

dt{ }
We only consider functions that vanish when t < 0. This is just

 
df

dt
e dt

st

0

∞ −∫

Let’s use our old friend integration by parts to move the derivative away from f t( ). 

We obtain

 
df

dt
e dt f t e s f t e dt

st st st

0 00

∞ − − −∞

∫ ∫=
∞
+( ) ( )

We consider the boundary term fi rst. Clearly f t e
st( ) −  goes to zero at the upper limit 

because the decaying exponential goes to zero as t →∞. Therefore

 f t e f
st( ) ( )− ∞

= −
0

0

Now take a look at the integral in the second term. This is nothing other than the 

Laplace transform of f t( ). So, we fi nd that

 L
df

dt
f sF s{ } = − +( ) ( )0   (8.9)

Now let’s consider differentiation with respect to s. That is:

 
d

ds
F s

d

ds
f t e dt

st[ ( )] ( )=
−∞

∞ −∫

The integration is with respect to t, so it seems fair enough that we can slide the 

derivative with respect to s on inside the integral. This gives

 
d

ds
F s

d

ds
f t e dt f t

d

ds
e

st st[ ( )] [ ( ) ] ( ) ( )= =−

−∞

∞ −∫ −−∞

∞ −

−∞

∞

∫ ∫= −dt t f t e dt
st( )
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We can move the minus sign to the other side, that is:

 − = −

−∞

∞

∫
dF

ds
t f t e dt

st( )

This tells us that the Laplace transform of t f t( )  is given by

 L { ( )}t f t
dF

ds
= −  (8.10)

EXAMPLE 8.5

Given that

 L {cos ( )}β
β

tu t
s

s
=

+2 2

Find L { cos ( )}t tu tβ  (see Fig. 8.6).

SOLUTION

We obtain the result by computing the derivative of s s/( )2 2+ β  and adding a minus 

sign. First we recall that the derivative of a quotient is given by

 f

g

f g g f

g






′
=

′ − ′
2

Figure 8.6 In Example 8.5, we compute the Laplace transform of t tu tcos ( )β . The 

function is shown here with β π= .

1 2 3 4 5 6 7

–6

–4

–2

2

4

6
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In the case of s s/( )2 2+ β  we have

 
f s f

g s g s

= ⇒ ′ =

= + ⇒ ′ =

1

22 2β

And so

 
f

g

f g g f

g

s s s

s






′
=

′ − ′
=

+ −
+

=
2

2 2

2 2 2

2( ) ( )

( )

β
β

β 22 2

2 2 2

−
+

s

s( )β

Applying Eq. (8.10) we add a minus sign and fi nd that.

EXAMPLE 8.6

Find the solution of

 
dy

dt
A t= cos

for t ≥ 0 where A is a constant and y 0 1( ) = . See Fig. 8.7.

SOLUTION

This is a very simple ordinary differential equation (ODE) and it can be verifi ed by 

integration that the solution is y t A t( ) sin= +1  (see Fig. 8.6). Since this is an easy 

ODE to solve it’s a good one to use to illustrate the method of the Laplace transform. 

Taking the Laplace transform of the left side, we have

 L
dy

dt
y sY s sY s{ } = − + = − +( ) ( ) ( )0 1

Figure 8.7 A plot of the solution to dy dt A t/ cos=  with A = 1 and y( )0 1= .

1 2 3 4

0.5

1

1.5

2

2.5

3
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In the chapter quiz, you will show that

 L {cos ( )}β
β

tu t
s

s
=

+2 2

This tells us that the Laplace transform of the right-hand side of the differential 

equation is

 L { cos }A t A
s

s
=

+2 1

(remember, t ≥ 0 was specifi ed in the problem, so we don’t need to explicitly include 

the unit step function). Equating both sides gives us an equation we can solve 

algebraically

 − + =
+

1
12

sY s A
s

s
( )

Adding 1 to both sides we obtain

 sY s A
s

s
( ) = +

+
1

12

Now we divide through by s, giving an expression for the Laplace transform of y t( )

 Y s
s

A
s

( ) = +
+

1 1

12

Earlier we found that

 L { ( )}u t
s

=
1

Since it has been specifi ed that t ≥ 0, this is the same as stating that

 L 1
1{ } =
s

In the chapter quiz, you will show that

 F s
s

( ) =
+
β
β2 2
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is the Laplace transform of f t t u t( ) sin ( )= ( )β . Putting these results together, by 

inspection of

 Y s
s

A
s

( ) = +
+

1 1

12

We conclude that

 y t A t( ) sin= +1

EXAMPLE 8.7

Abel’s integral equation is

 f x
t

x t
dt

x

( )
( )

=
−∫

φ
0

The function f x( ) is given while φ is an unknown. Using the Laplace transform, 

show that

 
π π
s

F s
s

s( ) ( )= Φ

And that we can solve for the unknown using φ π( ) ( / ) [ ( ) / ]x f t x t dt
x

= −∫1
0

.

SOLUTION

The integral of a function of time multiplied by another function of time which is 

shifted is called convolution. This is defi ned as

 f t g x t dt f g( ) ( )− = ∗∫    (8.11)

It can be shown that the Laplace transform turns convolution into multiplication:

 L { } ( ) ( )f g F s G s∗ =   (8.12)

If we take

 
g x

x
( ) =

1



CHAPTER 8 More Complex Integration 179

Then

 f x
t

x t
dt g

x

( )
( )

=
−

= ∗∫
φ

φ
0

Using the results of Example 8.3, we have

 L { } ( )
( )!

( )φ
π

∗ =
−

=g s
s

s
s

Φ Φ
1 2/

It follows that π π/ ( ) ( / ) ( )s F s s s= Φ . That is, Φ( ) / ( )s s F s= π . Now, the Laplace 

transform has an inverse. Since we know that the Laplace transform of a convolution 

is a product and we know what the Laplace transform of a derivative is, then

 

L L

L

− = − 







= − 






1 1

1 1

{ ( )} ( )

( )

Φ s
s

F s

s
s

F s

π

π
π



= − 







= ∗




=

1 1

1 1 1

π
π

π π

L s
s

F s

d

dx
f x

x

( )

( )
dd

dx

f t

x t
dt

x ( )

−∫0

The inverse Laplace transform is defi ned as follows. Consider the function 
g t e f t

ct( ) ( )= −
 where c is a real constant. Now, using Fourier transforms:

 

g t e G d

e e g

i t

i t i

( ) ( )

(

=

=

−∞

∞

−∞

∞ −

−∞

∞

∫

∫ ∫

ω

ω ωτ

ω ω

π
τ

1

2
))

( )

d d

e e e f d
i t i c

τ ω

τ τω ωτ τ







=
−∞

∞ −∞ −∫ ∫0

The Bromvich Inversion Integral
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Using g t e f t
ct( ) ( )= − , we obtain the relation

 f t e e f d d
c i t c i( ) ( )( ) ( )= +

−∞

∞ − +∞

∫ ∫
1

2 0π
τ τ ωω ω τ

Now let z c i= + ω , then

 f t
i

e e f d dz
z t

c i

c i
z( ) ( )=

− ∞

+ ∞ −∞

∫ ∫
1

2 0π
τ ττ

And we obtain the Bromwich inversion integral:

 f t
i

e F z dz
zt

c i

c i

( ) ( )=
− ∞

+ ∞

∫
1

2π
 (8.13)

The Bromwich contour is a line running up and down the y axis from c iR− to 

c iR+ (then we let R →∞). 

EXAMPLE 8.8

Find the inverse Laplace transform of F s s( ) /( )= +1 2 2ω .

SOLUTION

Notice that

 F s
s s i s i

( )
( )( )

=
+

=
− +

1 1
2 2ω ω ω

So this function has two singularities (simple poles) at s i= ± ω . The inversion 

integral in Eq. (8.13) in this case becomes

 f t
i

e

s i s i
ds

st

c i

c i

( )
( )( )

=
− +− ∞

+ ∞

∫
1

2π ω ω

The residue at s i= + ω  is

 ( )
( )( )

s i
e

s i s i s i

e

i

st i t

−
− + =

=ω
ω ω ω ω

ω

2
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The other residue is

 ( )
( )( )

s i
e

s i s i s i

e

i

st i t

+
− + =

= −
−

ω
ω ω ω ω

ω

2

The integral is already divided by 2πi, so by the residue theorem 

 f t res
e

i

e

i

t
i t i t

( )
sin

= = − =∑
−ω ω

ω ω
ω
ω2 2

In this chapter, we explored more complex integrals and introduced the Laplace 

transform, a tool which can be used to solve differential equations algebraically. 

The inverse Laplace transform is defi ned using a contour integral called the 

Bromvich inversion integral.

Quiz

 1. Calculate the Laplace transform of cosωt.

 2. Find the Laplace transform of cosh at where a is a constant.

 3. Using the Bromvich inversion integral, fi nd the inverse Laplace transform 

of 
e

s

k s−

.

 4. Using the Bromvich inversion integral, fi nd the inverse Laplace transform 

of 
s

s
2 2+ω

.

 5. Using the Bromvich inversion integral and α α! = ∫∞ −
0 e t dt

t
, fi nd the inverse 

Laplace transform of F s s( ) = −α
.

Summary
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CHAPTER 9

Mapping and 
Transformations

In this chapter, we will introduce a few of the techniques that can be used to 

transform a region of the complex plane into another different region of the complex 

plane. You may want to do this because it will be convenient for a given problem 

you’re solving. There are many types of transformations that can be applied in the 

limited space we have, we won’t be able to cover but a small fraction of them. Our 

purpose here is to introduce you to a few of the common transformations used and 

get you used to the concepts involved.

Let us defi ne two complex planes. The fi rst is the z plane defi ned by the coordinates 

x and y. We will now introduce a second plane, which we call the w plane, defi ned 

by two coordinates that are denoted by u and v. Mapping is a transformation between 

points in the z plane and points in the w plane. This is illustrated in Fig. 9.1.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Linear Transformations
A linear transformation is one that relates w to z by a linear equation of the form

 w z= +α β  (9.1)

where α βand  are complex constants. Consider for a moment the transformation

 w z=α

To see the effect of this transformation, we can write each factor in the polar 

representation. Let

 α φ= ae
i

and as usual, denote z re
i= θ . Then

 w z ae re are
i i i= = = +α φ θ φ θ( )( ) ( )

If a > 1, then the transformation expands the radius vector of z through the 

transformation r ar→ . If a < 1, then the transformation contracts the radius vector 

of z as r ar b r→ = ( / )1 , where b > 1 . The transformation rotates the point z by an 

angle given by

 
φ α= arg( )

about the origin. The w plane is defi ned by the coordinate w u iv= + .

EXAMPLE 9.1

Explain what the transformation w iz=  does to the line y x= + 2  in the x-y plane.

z plane w plane

x

y

u

v

Figure 9.1 Mapping is a transformation of points in the z plane to points 

in a new w plane.
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SOLUTION

Note that

 
w iz i x iy y ix= = + = − +( )

So we have the relations

 

u y

v x

= −
=

Hence

 
y x u v= + ⇒ − = +2 2

That is, the line is transformed to

 v u= − − 2

This linear transformation maps one line into another one, as illustrated in Fig. 9.2.

EXAMPLE 9.2

Consider the transformation w i z= +( )1  on the rectangular region shown in Fig. 9.3.

SOLUTION

Notice that

 1 2
1

2
2 4 4 2 4+ =

+




= + =i

i
i e

i(cos / sin / ) /π π π

–3 –2 –1 1 2
x

y

z plane

3
–1

1

2

3

4

5

–3 –2 –1 1 2
x

v

w plane

3

–5

–4

–3

–2

–1

1

Figure 9.2 The transformation w iz=  described in Example 9.1.
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This tells us that the transformation will stretch lengths by 2  and rotate points in 

a counterclockwise direction about the origin by the angle π /4. The transformed 

points are

 

w i z i x iy x y i x y

u x y v x y

= + = + + = − + +
⇒ = − = +

( ) ( )( ) ( )1 1

So the points on the rectangle are transformed according to

 

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) (

1 0 1

1 0 2

0 1

0 0 0

→
→
→ −
→

i

i i

i i

,, )0

The transformed rectangle is illustrated in Fig. 9.4.

1

i

x

y

Figure 9.3 A rectangular region to be transformed by w i z= +( )1  in Example 9.2.

p/4
u

v

Figure 9.4 The rectangle in Fig. 9.3 transformed by w i z= +( )1 . It is rotated by π /4 

about the origin and lengths are increased by ℓ ℓ→ 2 .
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If the transformation is of the form w z= +α β , the effect is to translate the 

region to the left or to the right by the magnitude of the real part of β , and up or 

down by the magnitude of the imaginary part of β . Consider the transformation

 w i z= + +( )1 3

on the rectangular region shown in Fig. 9.3. The effect of this transformation is to 

fi rst rotate and expand lengths, and then to translate along the real axis. The points 

at the four corners of the rectangle are transformed according to

 

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( ,

1 0 4

1 3 2

0 2

0 0 3

→
→
→
→

i

i i

i i

00)

The transformed rectangular region looks something like that in Fig. 9.5.

Now let’s consider a square region in the z plane defi ned by 0 1 0 1≤ ≤ ≤ ≤x y, . 

Consider the transformation

 w z i= + +1

All this does is shift the square over to the right one unit and up one unit. This is 

illustrated in Fig. 9.6.

p/4
u

v

Figure 9.5 Adding a translation along the real axis to the transformation 

of Example 9.2.
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The Transformation zn

The transformation w z
n=  changes lengths according to r r

n→  and increases 

angles by a factor of n. Letting z re
i= θ , we see that the transformation is given in 

polar coordinates as

 w z re r e
n i n n in= = =( )θ θ

Before considering a mapping of a region, we let x a=  be a vertical line in the 

plane. The transformation w z= 2 gives

 w z a iy a y i ay

u a y v ay

= = + = − +

⇒ = − =

2 2 2 2

2 2

2

2

( )

This allows us to set

 y
v

a
=

2

Hence the transformation is a parabola in the w plane described by the equation

 u a
v

a
= − 





2

2

2

EXAMPLE 9.3

Consider the transformation of the quarter plane as shown in Fig. 9.7 under the 

mapping w z= 2 .

w = z + 1 + i

Figure 9.6 Consider a region that is a square by the origin. The transformation 

w z i= + +1  shifts the square up and over.
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SOLUTION

We have seen that the effect of w z
n=  is to increase angles by a factor of n. Indeed, 

in this case

 w z re r e
i i= = =2 2 2 2( )θ θ

Hence, angles are doubled. So the angle π /2  that defi nes the quarter plane is 

expanded as π π/2→ . That is, the quarter plane is mapped to the upper half plane 

by this transformation. This is shown in Fig. 9.8.

Generally speaking, consider a triangular region in the x-y plane with angle 

θ π= /n. The mapping w z
n=  maps this region to the half plane. This is illustrated 

in Fig. 9.9.

x

y

Figure 9.7 In Example 9.3 we apply the transformation w z= 2
 to the quarter plane 

defi ned by 0 0≤ ≤x y, .

u

v

Figure 9.8 The transformation w z
n=  has mapped the quarter plane to the half plane.
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Conformal Mapping
Let C C1 2and  be two curves in the z plane. Suppose that a given transformation w 

maps these curves to curves ′ ′C C1 2and  in the w plane. Let θ  be the angle between 

the curves C C1 2and  and φ  be the angle between curves ′ ′C C1 2and . If θ φ=  in both 

magnitude and sense, we say that the mapping is conformal. Put another way, a 

conformal mapping preserves angles. There is an important theorem related to 

conformal mappings.

Suppose that f z( ) is analytic and that ′ ≠f z( ) 0 in some region R of the complex 

plane. It follows that the mapping w f z= ( ) is conformal at all points of R.

The Mapping 1/z
Consider the transformation w z= 1/ . Notice that we can write

 w
z

z

zz

x iy

x iy x iy

x

x y
i

y

x y
= = =

−
+ −

=
+

−
+

1
2 2 2 2( )( )

By inverting the transformation, it is easy to see that the coordinates in the z plane are 

related to coordinates in the w plane in the same way:

 x
u

u v
y

v

u v
=

+
= −

+2 2 2 2

Therefore the mapping w z= 1/

• Transforms lines in the z plane to lines in the w plane

• Transforms circles in the z plane to circles in the w plane

x

u

v

w = zn

y

q = p/n

Figure 9.9 A infi nite sector defi ned by a triangular wedge with θ π= /n is mapped to the 

upper half plane by the transformation w z
n=  if n ≥ 1 2/ .
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In particular

• A circle that does not pass through the origin in the z plane is transformed 

into a circle not passing through the origin in the w plane.

• A circle passing through the origin in the z plane is transformed into a line 

that does not pass through the origin in the w plane.

• A line not passing through the origin in the z plane is transformed into a 

circle through the origin in the w plane.

• A line through the origin in the z plane is transformed into a line through 

the origin in the w plane.

Let’s try to understand how w z= 1/  maps lines into lines. A line in the complex 

plane that passes through the origin is a set of points of the form

 z re
ia=

where a is some fi xed angle. Under the mapping w z= 1/ , we obtain a set of points:

 w
z r

e
ia= = −1 1

This is another line that passes through the origin.

An important mapping w z= 1/  transforms a disk in the z plane into the exterior 

of the disk in the w plane. Consider the disk shown in Fig. 9.10. The mapping 

w z= 1/  maps this to the exterior of the circle of radius 1/r . This is illustrated in 

Fig. 9.11. 

The mapping w z= 1/  takes the point z = 0 to z = ∞, and takes z = ∞ to z = 0. 

x

y

r

Figure 9.10 A disk of radius r in the z plane.
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Mapping of Infi nite Strips
There are several important transformations that can be applied to infi nite strips to 

map them to the upper half of the w plane. Consider a strip of height a in the y

direction that extends to ±∞ along the x axis. This is illustrated in Fig. 9.12. When 

fi guring out how a transformation will work out, we pick out a few key points. 

These are denoted by A-F in the fi gure.

The exponential function sends horizontal lines in the z plane into rays in the w

plane. That is, consider the transformation

 w e
z=

This maps the lines as shown in Fig. 9.13.

u

v

1/r

Figure 9.11 The transformation w z= 1/  has mapped the disk in Fig. 9.9 to the entire w 

plane minus the region covered by the disk of radius 1/r.

x

y

a

ABC

D E F

Figure 9.12 An infi nite strip in the z plane.
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If we apply the transformation

 w e
z a= π /  (9.2)

to the infi nite strip shown in Fig. 9.12, the result is a mapping to the upper half of 

the w plane, shown in Fig. 9.14. The points A, B, C, D, E, and F map to the points 

′ ′ ′ ′ ′ ′A B C D E F, , , , , and , respectively.

Now consider a vertical strip, as shown in Fig. 9.15. We can map this to the upper 

half plane of Fig. 9.14 using the transformation

 w
z

a
= sin

π
 (9.3)

x

y

w = ez

u

v

Figure 9.13 The exponential function maps horizontal lines to rays.

u

v

A′ B′ C′ D′ E′ F′

1 –1

Figure 9.14 A mapping w e
z a= π /

 to the infi nite strip shown in Fig. 9.11 maps it to the 

upper half plane.
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Rules of Thumb
Here are a few basic rules of thumb to consider when doing transformations. They 

can be illustrated considering the square region shown in Fig. 9.6. In that section, 

we saw how to shift the position of the square by adding a constant, that is, we 

wrote down a linear transformation of the form w z a= + . Let’s review the other 

types of transformations that are possible. A transformation of the type

 w az=

will expand the region if a > 1 and will shrink the region if a < 1. Consider the 

fi rst case with w z= 2 . This expands the square region from 0 1 0 1≤ ≤ ≤ ≤x y,  to 

0 2 0 2≤ ≤ ≤ ≤x y, . This is illustrated in Fig. 9.17.

x

y

a

A

B
C D

Figure 9.15 To map a vertical strip to the upper half plane, we utilized the 

transformation w z a= sin /π . It maps to the region shown in Fig. 9.16.

u

v

A′ B′ C′ D′ E′

1 –1

Figure 9.16 The transformation w z a= sin( / )π  maps the region in Fig. 9.15 to the 

region in Fig. 9.16 with corresponding points indicated.



CHAPTER 9 Mapping and Transformations 195

Now suppose that w z= ( / )1 2 . This shrinks the square, as shown in Fig. 9.18. 

To rotate the region by an angle φ , we use a transformation of the form

 w e z
i= φ

 (9.4)

For our square, this rotates the square by φ  in the counterclockwise direction assuming 

that φ > 0. This is illustrated in Fig. 9.19.

In this section, we consider a transformation of the type:

 
Tz

az b

cz d
ad bc=

+
+

− ≠ 0
  

(9.5)

w = 2z

Figure 9.17 For review, a transformation of the form w az=  expands the region of 

interest if | |a >1.

w = 1/2z

Figure 9.18 We shrink the square by the transformation w az=  when | |a <1.

Möbius Transformations
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This type of transformation goes under the various names bilinear transformation, 

fractional transformation, or Möbius transformation. The transformation shown in 

Eq. (9.5) is actually a composition of three different transformations. These are

• Dilation, which can be written as the linear transformation az.

• Translation, which is written as z b+ .

• Reciprocation, which is the transformation 1/z .

The requirement that ad bc− ≠ 0  is based on the following. The derivative of 

Eq. (9.5) is given by

 
( )

( ) ( )

( )
Tz

a cz d c az b

cz d
′ =

+ − +
+ 2

Evaluating this at z = 0 we have

 
( ) ( )

( )
Tz

ad bc

d
′ =

−
0

2

This tells us that the transformation in Eq. (9.5) will be a constant unless ad bc− ≠ 0. 

A transformation of the type in Eq. (9.5) maps circles in the z plane to circles in the w 

plane. Straight lines are also mapped into straight lines.

Now suppose that z z z z0 1 2 3, , , and  are four distinct points in the complex plane. 

The cross ratio is given by

 

( )( )

( )( )

z z z z

z z z z

3 0 1 2

1 0 3 2

− −
− −

 (9.6)

w = eifz

f

Figure 9.19 A rotation is implemented with a transformation of the form w e z
i= φ

.
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The cross ratio is invariant under a Möbius transformation. That is if z wj j→  

under a Möbius transformation, then

 
( )( )

( )( )

( )( )z z z z

z z z z

w w w w3 0 1 2

1 0 3 2

3 0 1 2− −
− −

→
− −

(( )( )w w w w1 0 3 2− −

There are a few Möbius transformations of interest. Let a be a complex number 

with | |a < 1 and suppose that | |k = 1. Then

 
w k

z a

az
=

−
−1  

(9.7)

maps the unit disk from the z plane to the unit disk in the w plane. Now let a be a 

complex number with the requirement that Im( )a > 0. The transformation

 
w k

z a

z a
=

−
−  

(9.8)

maps the upper half of the z plane to the unit disk in the w plane. Notice that when 

z is purely real, | | | |w k= = 1.

EXAMPLE 9.4

Consider a disk of radius r = 2  centered at the point z i= − +1 . Find a transformation 

that will take this to the entire complex plane with a hole of radius 1/2 centered at 

the origin.

SOLUTION

Since these transformations are linear, we can do this by taking multiple 

transformations in succession. First we illustrate what we’re starting with, a disk of 

radius r = 2  centered at the point z i= − −1 . This is shown in Fig. 9.20.

Figure 9.20 In Example 9.4, we start with a region defi ned by a disk 

centered at z i= − +1 .
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The fi rst step is to move the disk to the origin. We do this using

 Z z z z i= − = + −0 1

The result is the disk shown in Fig. 9.21.

Now we want to transform the disk shown in Fig. 9.21 so that the region of 

defi nition is the entire complex plane minus a hole where the disk was. We do this 

using an inverse transformation:

 w
Z

=
1

The result is shown in Fig. 9.22.

Figure 9.21 A disk at the origin is obtained from the disk shown in Fig. 9.20 via the 

transformation Z z z z i= − = + −0 1 . We denote this the Z plane.

Figure 9.22 The transformation 1/Z  changes the region to the entire complex plane with 

a hole punched out in the middle. The radius of the hole is 1/r  if the radius of the disk we 

started with was Z re
i= θ
. In our example, r = 2 so the hole here has a radius ρ = 1 2/ .
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The complete transformation in this example can be written as

 
w

z i
=

+ −
1

1

This is a Möbius transformation as in Eq. (9.5) with a b= =0 1, , c d i= = − +1 1, and .

EXAMPLE 9.5

Construct a Möbius transformation that maps the unit disk to the left half plane 

Re( )z < 0 and one that maps the unit disk to the right half plane Re( )z > 0.

SOLUTION

The fi rst transformation we want to consider is illustrated in Fig. 9.23.

First we consider the boundary of the disk, which is the unit circle, that is the set 

of points | |z = 1. For the transformation shown in Fig. 9.23 to work, we must map 

the points on the unit circle to the imaginary axis. In the form of a Möbius 

transformation, the mapping will be of the form

 Tz
az b

cz d
=

+
+  

This transformation has a pole located at the point z d c= − / . We are free to pick a 

point on the unit circle to map to the pole, so we choose z = 1. With this choice we 

have the freedom to fi x c and d, so we choose c d= = −1 1, . So

 Tz
az b

z
=

+
−1  

Figure 9.23 We want to map the unit disk to the left half plane.
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Second, we need to pick a point z on the unit circle such that Tz = 0. We have 

already used the point z = 1, so we choose z = −1. This forces us to take a b=  since 

Tz = 0 when z = −1. We can choose a = 1 giving us the transformation

 Tz
z

z
=

+
−

1

1

Now we can see how the transformation maps the rest of the unit disk. The simplest 

point to check is the point z = 0 at the center of the disk. We have

 Tz( )0
0 1

0 1
1=

+
−

= −

So the transformation maps the center of the disk z = 0 to the point z = −1 which is 

in the left half plane. Hence this is the transformation that we want.

To transform the unit disk to the right half plane instead, it turns out we are 

almost there. All we have to do is rotate the transformed region shown in Fig. 9.22. 

The angle that is required is π , and a rotation is implemented by multiplication by 

e
iθ. So the transformation that takes the unit disk to the right half plane is given by

 Tz e
z

z

z

z

i=
+
−

= −
+
−







π 1

1

1

1

EXAMPLE 9.6

Consider a mapping that will transform the unit disk into the upper half plane.

SOLUTION

We again seek a transformation of the form

 Tz
az b

cz d
=

+
+

This time we choose to map the point z = −1 onto the pole at z d c= − / . If we choose 

c d= =1 1, then  as well and the transformation is given by

 Tz
az b

z
=

+
+1
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Following the last example, now we need to pick a point z on the unit circle such 

that Tz = 0. We have already used the point z = −1, so we choose z = +1. This 

forces us to take a b= −  since Tz = 0 when z = 1. We can choose b = 1 giving us the 

transformation

 Tz
z

z
=

−
+

1

1

Now we check how this transformation maps the point z = 0 at the center of the disk. 

We fi nd

 Tz( )0
1 0

0 1
1=

−
+

= +

This is a point in the right half plane. So the transformation does not map to the 

upper half plane. We can make it do so with another rotation, given by e i
iπ /2 = . 

Hence, the transformation that will map the unit circle to the upper half plane is

 Tz i
z

z
=

−
+

1

1

Notice that it takes the point z i= →0 , which is in the upper half plane.

The fi xed points of a transformation are those for which

 Tz
az b

cz d
z=

+
+

=  (9.9)

A fi xed point is one that is left invariant by a transformation.

EXAMPLE 9.7

Find the fi xed points of

 Tz
z

z
=

−
+

1

4

Fixed Points
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SOLUTION

The fi xed points are those for which

 

z

z
z

z z

−
+

=

⇒ + + =

1

4

3 1 02

There are two fi xed points:

 z = − ±
3

2

5

2

Summary
In this chapter, we introduced the notion of a transformation, which allows us to 

transform a region in the complex plane into a different region. This is a useful 

technique for solving differential equations, among other applications. 

Quiz
 1. Consider a horizontal line y = a in the z plane and let w = z2. What kind of 

curve results in the w plane?

 2. Let x a=  be a vertical line in the z plane, and let w e
z= . What kind of 

curve results in the w plane?

 3. Construct a Möbius transformation that maps the upper half of the z plane 

to the unit disk in the w plane with z i w= → = 0  and the point at infi nity is 

mapped to w = −1.

 4. Find the fi xed points of the transformation Tz
z

z
=

+
−

1

1
.

 5. Find a Möbius transformation that maps the points 

z w i i= − = −{ , , } { , , }1 0 1 1onto .

 6. Find a Möbius transformation that maps the upper half plane ( y > 0) to the 

half plane v > 0 and the x axis to the u axis.



CHAPTER 10

The Schwarz-
Christoffel 

Transformation

The Schwarz-Christoffel transformation is a transformation that maps a simple 

closed polygon to the upper half plane. The transformation can be used in applications 

such as fl uid dynamics and electrostatics. In this chapter, we will introduce some 

basics about the transformation.

The Riemann Mapping Theorem
The Riemann mapping theorem establishes the existence of a transformation that 

will map a region R of the z plane to a region ′R  of the w plane. Let w f z= ( ) be 

an analytic function in R and let R be enclosed by a simple closed curve C. 

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Suppose that the region ′R  is the unit disk at the origin bounded by the unit circle 

′C , that is a circle with radius w = 1.

The Riemann mapping theorem says that the function w f z= ( ) exists, that it 

maps each point of the region R into a point in ′R , and it maps each point on C to a 

point on ′C . Furthermore this mapping is one to one. There are three arbitrary real 

constants associated with the mapping w f z= ( ). To fi nd them, we establish a 

correspondence between the origin of the w plane and a point belonging to R and 

between a point on ′C  and a point on C.

If z R0 ∈  with f z f z( ) ( )0 00 0= ′ >and  then the mapping w f z= ( ) is unique.

The Schwarz-Christoffel Transformation
The Schwarz-Christoffel transformation maps

• The interior of a polygon to the upper half plane

• The boundary of the polygon to the real axis

Here we give a heuristic explanation of the transform (not a formal derivation) and 

state the result. Our discussion is out of Levinson and Redheffer (see the bibliography 

list at the end of the book).

Consider the polygon shown in Fig. 10.1. In what follows, we assume the polygon 

is in the w plane and that it is mapped to the upper half of the z plane.

As noted in the fi gure, the curve enclosing the region is traversed in the positive 

or counterclockwise sense. We defi ne the interior angles at the vertices by

 
α π α π α π1 2, , ,… n

Now we assume the existence of a function w f z= ( ) that maps the interior of the 

polygon to the upper half plane (the existence of the function is implied by the 

Riemann mapping theorem). If this mapping is one-to-one and conformal (angle 

preserving) then it follows that f z( )
 
is analytic for y > 0 and continuous for y ≥ 0.

Figure 10.1 A polygon to be mapped to the upper half plane.
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We can also assume the existence of an inverse mapping, which we denote by 

z g w= ( ). The inverse mapping is analytic on the polygon’s interior. Moreover, it is 

continuous in the interior of the polygon and on it’s boundary. 

The boundary of the polygon is mapped onto the real axis. Suppose that the 

vertices of the polygon are mapped onto the points of the real x axis denoted by

 
x x xn1 2, , ,…

Now, since w f z= ( ), it follows that

 
dw f z dz= ′( )  (10.1)

Next we assume that the mapping and its inverse w f z z g w= =( ), ( ) are analytic on 

the sides of the polygon in addition to its interior. Picking a point w on the polygon 

which is not a vertex, the image of w is a point z. The point dz is a positive vector 

on the real axis x. This is shown in Fig. 10.2.

It should follow that dw is a vector on the edge of the polygon pointing in the 

positive sense (in the counterclockwise direction). This is shown in Fig. 10.3.

The arguments of ′ ′f wand  are then related in the following way:

 arg[ ( )] arg′ = 





f z
dw

dz
 (10.2)

dz

z
x

Figure 10.2 dz is a vector on the x axis of the z plane.

w

dw

Figure 10.3 If we take dz to be a positive pointing vector on the real axis, then dw is a 

vector on the edge of the polygon pointing in the positive sense.
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Now imagine moving the point w around the polygon and moving the image point 

z in the positive direction along the x axis. Each time a point w moves past a vertex 

of angle α π1 , the argument changes as π α( )1 1− . But arg dz = 0. Therefore, to the 

left of the point x1 
arg[ ( )]′f z  is a constant, but at the point x1 it will change by 

π α( )1 1−  to maintain Eq. (10.2). 

As z moves from x x x x< >1 1to , arg[( )]z x− 1  decreases from π to 0. This means 

that the argument of ( )z x− −
1

11α  is changed by π α( )1 1− . This change will occur at 

every vertex. So we choose

 ′ = − − −− − −
f z A z x z x z xn

n( ) ( ) ( ) ( )/ / /

1

1

2

11 2α π α π α π
⋯

11
 (10.3)

Then, using Eq. (10.1)

 
dw

dz
A z x z x z xn

n= − − −− − −
( ) ( ) ( )/ / /

1

1

2

1 11 2α π α π α π
⋯  (10.4)

Integrating, we obtain the form w f z= ( ):

 w A z x z x z x dzn
n= − − − +− − −

( ) ( ) ( )/ / /

1

1

2

1 11 2α π α π α π
⋯ BB∫  (10.5)

The constants A and B are in general complex that indicate the orientation, size, and 

location of the pentagon in the w plane. To obtain the mapping in Eq. (10.5), three 

points out of x x xn1 2, ,...,  can be chosen. If a point x j  is taken at infi nity then the 

factor ( )
/

z x j
j− −α π 1

 is not included in Eq. (10.5).

EXAMPLE 10.1

Find the image in the upper half plane using the transformation

 
w

t k t
dt

z

=
− −∫

1

1 12 2 20 ( )( )

when 0 1< <k .

SOLUTION

Looking at Eq. (10.5), we see that this mapping is a Schwarz-Christoffel 

transformation. Let’s rewrite the integral in a more suggestive form:

 
w t k t dt

z

= − −− −∫ ( ) ( )/ /1 12 1 2 2 2 1 2

0

Now the transformation looks like Eq. (10.5). To fi nd the vertices of the polygon, 

we look for the zeros of the integrand. First consider 1 02− =t , which tells us that 

z = ±1. Next we have 1 02 2− =k t  from which it follows that z k= ±( / )1 . Since 

each term in the Schwarz-Christoffel transformation is of the form ( )
/

z x j
j− −α π 1
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and the exponents in this example are α πj / /− = −1 1 2 , it follows that α α π1 2 2= = / , 

or each angle is increased by π /2 at each vertex. The polygon described by this is 

a rectangle. The height of the rectangle is found from

 
h t k t dt

k

= − −− −∫ ( ) ( )/ /
/

1 12 1 2 2 2 1 2

1

1

The width of the rectangle is

 
W t k t dt= − −− −∫2 1 12 1 2 2 2 1 2

0

1

( ) ( )/ /

Looking at the defi nition of the transformation, w t k t dt( ) / ( )( )0 1 1 1 02 2 2

0

0

= − −  =∫ , 

so the origin of the w plane is mapped to the origin of the z plane. The vertices of 

the polygon are located at ( , ),( , ),( , ), ( , )− −W W W ih W ih0 0 and . The transformation 

is illustrated in Fig. 10.4. 

w plane z plane

w = f (z)

Figure 10.4 The transformation in Example 10.1 maps a rectangle to the upper half plane.

Summary
In this chapter, we wrapped up the discussion of mappings or transformations begun 

in Chap. 9. First we stated the Riemann mapping theorem, which guarantees the 

existence of a mapping between a region of the w plane and a region of the z plane. 

Next we introduced the Schwarz-Christoffel transformation, which allows us to 

map a polygon to the upper half plane.

 Quiz
 1. What type of region does the transformation w A

dt

t
B=

−
+∫

1 2
 map to 

the upper half plane?
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CHAPTER 11

The Gamma and 
Zeta Functions

In this chapter, we review two important functions related to complex analysis, the 

gamma and zeta functions.

The Gamma Function
The gamma function can be defi ned in terms of complex variable z provided that  

Re(z) > 0 as follows:

 Γ( )z t e dt
z t= − −∞

∫ 1

0
 (11.1)

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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We can show that Eq. (11.1) is convergent in the right-hand plane by examining its 

behavior at t = 0 and as t →∞. Using | |z z≤ Re  we have

 t e t
z t z− − −≤1 1Re

This tells us that Eq. (11.1) is fi nite at t = 0. As t →∞, note that we have

 t e t e e
z t z t t− − − − −≤ ≤1 1 2Re /

This shows that the integral is convergent for large t. If n is a positive integer, then 

 Γ( ) ( ) !n n n n+ = − =1 1 1⋯  (11.2)

This follows from the recursion relation for the gamma function, which holds for 

any z (not just integers):

 Γ Γ( ) ( )z z z+ =1  (11.3)

EXAMPLE 11.1

Prove the recursion relation in Eq. (11.3) for the gamma function.

SOLUTION

This can be done using the defi nition in Eq. (11.1). We calculate Γ( )z +1 :

 Γ( )z t e dt
z t+ = −∞

∫1
0

Now notice what happens if we take the derivative of the integrand:

 
d

dt
t e z t e t e

z t z t z t( )− − − −= −1

It follows that

 t e z t e
d

dt
t e

z t z t z t− − − −= −1 ( )
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So the integral can be written as

 
Γ( )

( )

z t e dt

z t e
d

dt
t e

z t

z t z t

+ =

= −





−∞

− − −

∫1
0

1

00

1

0 0

∞

− −∞ −∞

∫

∫ ∫= −

dt

z t e dt
d

dt
t e dt

z t z t( )

Looking at the second term, we have

 
d

dt
t e dt t e t e

z t z t

t
t

z t( ) ( ) lim lim−∞ −
=
∞

→∞

−∫ = = −
0 0

tt

z t
t e

→

− = − =
0

0 0 0

Therefore

 

Γ( )z t e dt

z t e dt

z t e

z t

z t

z t

+ =

=

=

−∞

− −∞

− −∞

∫

∫

∫

1
0

1

0

1

0
ddt

z z z⇒ + =Γ Γ( ) ( )1

EXAMPLE 11.2

Show that an alternative defi nition of the gamma function is given by

 Γ( )z x e dx
z x= − −∞

∫2 2 1

0

2

 (11.4)

SOLUTION

This is a simple substitution problem. We start with Eq. (11.1) and choose

 t x= 2

It follows that

 dt xdx= 2
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Hence

 

Γ( )

( )

z t e dt

x e x dx

x

z t

z x

z

=

=

=

− −∞

− −∞

−

∫
∫

1

0

2 1

0

2 2

2

2

2
00

2 1

0

2

2

2

∞ −

−∞ −

∫
∫=

e x dx

x e dx

x

z x

This works provided that Re( )z > 0.

EXAMPLE 11.3

Show that x x dx n
n ln = − +∫ 1 1 2

0

1

/( ) , if n > −1.

SOLUTION

We begin by making the substitution

 x e
u=

Then of course:

 dx e du
u=

Now the integral can be written in the following way:

 x x dx e e e du

e e e

n u n u u

u n u

ln ( ) ln( )

( ) ln( )

0

1 0

∫ ∫=

= −

∞

uu

u n

du

ue du

0

1

0

∞

+∞

∫
∫= − ( )

In the fi rst step, we used x e
u=  to note that,

 when and whenx u x= ⇒ = ∞ =0 1, , , 
u = 0

 
To see how this works note that, ln ln( ) , lnx e u x u

u= = ∴ = ⇒ = = ∞0 0 . Now 
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we can do another substitution. This time we let − = +t u n( )1 . Then dt n du= − +( )1 . 

And so

 x x dx ue du

e
t

n

dt

n u n

t

ln ( )

0

1
1

0

1

∫ ∫= −

= −
−
+







+∞

−

−− +

= −
+








= −
+

∞

−∞

∫

∫

( )

( )

( )

1

1

1

1

0

20

2

n

e
t

n
dt

n
e

t

−−∞

∫ t
t dt

0

But, using Eq. (11.1) together with Eq. (11.2)

 e t dt
t−∞

∫ = = =
0

2 1 1Γ( ) !

Therefore

 
x x dx

n

n ln
( )0

1

2

1

1
∫ = −

+

EVALUATING Γ( )z  WHEN 0 < Z < 1

It is given as a defi nition in most texts that

 Γ
1

2






= π  (11.5)

Using the recursion formula in Eq. (11.3), it is possible to evaluate the gamma 

function for 0 1< <z  if Re( )z > 0. This result is established in the next example.

EXAMPLE 11.4

Show that Γ Γ Γ( ) ( ) /sin , ( / )z z z1 1 2− = =π π πand hence that ..

SOLUTION

In Example 11.2, we showed that

 Γ( )z x e dx
z x= − −∞

∫2 2 1

0

2
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It follows that (considering real z such that 0 1< <z ):

 Γ Γ( ) ( )n n x e dx y e dy
n x n y1 2 22 1

0

1 2

0

2 2

− = { }− −∞ − −∞

∫ ∫{{ }
= −∞ − − +∞

∫∫4 2 1

0

1 2

0

2 2

x y e dx dy
n n x y( )

Now rewrite the integral in terms of polar coordinates x r y r= =cos , sinθ θ  to give

 Γ Γ( ) ( ) tan
/

n n re drd
n r1 4 1 2

00

2 2

− = −∞ −∫∫ θ θ
π

Integration over r can be done readily yielding

 Γ Γ( ) ( ) tan
/

n n d
n1 2 1 2

0

2

− = −∫ θ θ
π

 (11.6)

In order to calculate Eq. (11.6), we will have to take a major aside. We will show 

how to calculate the integral

 
x

x
dx

p−∞

+∫
1

0 1

using residue theory. This can be done by calculating the contour integral

 
z

z
dz

p−

+∫
1

1�

The point z = 0 is a branch point and the point z = −1 is a simple pole. We can deal 

with the branch point by considering the contour shown in Fig. 11.1.

–1

A

D

B
E

e

F

GH

R

Figure 11.1 The contour used to evaluate [ /( )]z z dz
p− +∫ 1 1�  has an inner circle of radius 

ε  and an outer circle of radius R. It encloses the singularity at z = −1 while avoiding the 

branch point at z = 0.
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Now, recalling that − =1 e
iπ  we fi nd that the residue corresponding to the 

singularity at z = −1 is given by

 lim( ) lim ( )

z

p

z e

p i p
z

z

z
z e

i→−

−

→

− −+
+

= =
1

1

1 11
1 π

π

Hence by the Cauchy residue theorem

 
z

z
dz ie

p

i p

−
−

+
=∫

1
1

1
2� π π( )

This means that integrating around the contour we will have

 

AB BDEFG GH HJA

i p
ie∫ ∫ ∫ ∫+ + + = −2 1π π( )

On the large exterior circle we have z R
i= e θ  while on the small interior circle 

we have z e
i= ε θ . That is the integral can be written as

 

x

x
dx

Re iRe d

Re

xe
p i p i

i

R
− −

+
+

+
+∫∫

1 1

0

2

1 1

( ) (θ θ

θ

π

ε

θ 22 1

2

1

1 1

π

π

ε θ θ

θ

ε ε θ
ε

i p

iR

i p i

i

dx

xe

e i e d

e

) ( )− −

+
+

+∫ 22

0

12

π

ππ

∫

= −
ie

i p( )

Now take the limit as ε → →∞0 and R . Then

 

BDEFG HJA

∫ ∫= = 0

Giving

 

x

x
dx

xe dx

xe
ie

p i p

i

i p

−∞ −∞

+
−

+
=∫ ∫

1

0

2 1

201 1
2

( ) (
π

π π −−

−
−∞ −⇒ −

+
=∫

1

2 1
1

0

11
1

2

)

( ) ( )( )

π

π ππe
x

x
dx ie

p i

p

i p

This allows us to write

 
x

x
dx

i e

e

i

e

p p i

p i p i

−∞ −

−+
=

−
=∫

1

0

1

2 11

2

1

2π
π

π

π π

( )

( ) −−
=−

e p
p iπ

π
πsin
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After this long detour, we have calculated Eq. (11.6):

 Γ Γ( ) ( ) tan
sin

/

n n d
n

n1 2 1 2

0

2

− = =−∫ θ θ
π
π

π
 (11.7)

Setting n = 1 2/  it follows that

 Γ

Γ

1

2 2

1

2

2













= =

⇒ 



 =

π
π

π

π

sin( / )

Note that while we calculated Eq. (11.7) for real z  such that 0 1< <z , the result can 

be extended using analytic continuation.

EXAMPLE 11.5

Using the gamma function, show that e dx
x−∞

∫
4

0
.

SOLUTION

This integral can be written as a gamma function by using a substitution. We take

 u x du xdx= ⇒ =2 2

That is:

 

x u dx
du

u
= ⇒ =

2

Substituting we fi nd

 
e dx e u

du

e u du

x u

u

−∞ − −∞

− −∞

∫ ∫

∫

=

=

=

4 2

2

0

1 2

0

1 2

0

2

1

2

/

/

11

4

1

4
Γ




To get the last step, the result of Example 11.2, Γ( )z x e dx
z x= − −∞

∫2 2 1

0

2

, was used. 

Now noting that

 Γ( ) ( )!z z= −1
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It follows that

 Γ
1

4

1

4
1

3

4






= −






= −






! !

But we know

 ( )!
!

!
( )!

z
z

z
z

z

z
− = =

+
+

1
1

1
or

This follows from the defi nition of factorial where n n n! ( )= −1 1⋯ . Setting 

z = −3 4/  we fi nd that

 −






=
− +







− +
=







3

4

3

4
1

3

4
1

4
1

4
!

!

!

Therefore

 

e dx
x−∞

∫ = 





= −





= 


4

0

1

4

1

4

1

4

3

4

1

4
4

1

4

Γ

!

!



=
1

4
!

EXAMPLE 11.6

Show that Γ Γ[( / ) ] [( / ) ] ( )1 2 1 2 1− + = − −
n n

nπ .

SOLUTION

Recalling that

 Γ Γ( ) ( )
sin

z z
z

− =1
π
π

Setting z n= −( / )1 2  we obtain

 Γ Γ
1

2

1

2 1

2

−






+





=

−






=n n

n

π

π

π

sin sin
ππ

π
2
−







n
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Let’s take a look at the denominator for a few values of n:

 

n n

n

= −




= 




= +

= −

0
2 2

1

1
2

: sin sin

: sin

π
π

π

π
nn

n

π
π

π
π




= −




= −




= −

=

sin sin

:

2 2
1

2 ssin sin sin
π

π
π

π
π

2 2
2

3

2
−




= −




= − 





n  = +

= −




= −




= −

1

3
2 2

3n n: sin sin sin
π

π
π

π
55

2
1

π




= −

We conclude that sin( / ) ( )π π2 1− = −n
n
. So, we obtain

 Γ Γ
1

2

1

2

2

1−





+




=

−





= − −
n n

n

nπ
π

πsin

( ) ππ

EXAMPLE 11.7

Find Γ( / )−1 2 .

SOLUTION

To determine the value of Γ( / )−1 2 , we must use the recursion relation together with 

analytic continuation to extend the defi nition into the left half of the complex plane 

[since Re( )z < 0 ]. We already know that

 Γ
1

2






= π

Now we use

 Γ Γ( ) ( )z z z+ =1

From which it follows that

 Γ Γ−





= −






= −

1

2

1

2

1

2
2 π



CHAPTER 11 The Gamma and Zeta Functions 219

In this section, we list a few properties of the gamma function that can be useful for 

calculation. A variation of the recursion formula shows that the gamma function is 

an analytic function except for simple poles which are found in the left-hand plane 

(see Fig. 7.2 or Figs. 11.2 and 11.3 for an illustration). The following relationship 

holds:

 Γ
Γ

( )
( )

( )( ) ( )
z

z n

z z z z n
=

+ +
+ + +

1

1 2 ⋯
 (11.8)

This tells us that the gamma function is a meromorphic function. It has simple poles 

located at 0 1 2 3, , , ,− − − … but is analytic everywhere else in the complex plane for 

Re( ) ( )z n> − +1 . In Example 11.8, we’ll show how to arrive at formula in Eq. (11.8). 

When you read the example, note how n is arbitrary, so we can expand Γ( )z  arbitrarily 

throughout the complex plane and it will only contain simple poles.

Euler’s constant is defi ned to be

 γ = + + + + −







=

→∞
lim ln .
p p

p1
1

2

1

3

1
0 5772157⋯ ⋯ (11.9)

5

0

Im(z) Re(z)

–5 –5

0

5
0

2

4

6

|Γ(z)|

Figure 11.2 An illustration of the simple poles of the gamma function on the 

negative real axis.

More Properties of the Gamma Function
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Using Euler’s constant, we can write down an infi nite product representation of 

the gamma function:

 1
1

1Γ( )

/

z
ze

z

k
e

z z k

k

= +





−

=

∞

∏γ  (11.10)

Using Gauss’ Π  function Π( , )z k :

 Π( , )
( )( ) ( )

z k
k

z z z k
k

z=
⋅ ⋅

+ + +
1 2 3

1 2

⋯

⋯

 (11.11)

The gamma function can be written as

 
Γ Π( ) lim ( , )z z k

k
+ =

→∞
1

 

 (11.12)

The duplication formula tells us that

 2
1

2
22 1z

z z z
− +




=Γ Γ Γ( ) ( )π  (11.13)

Figure 11.3 A contour plot of the modulus of the gamma function, in the x-y plane.

–4 –2 0 2 4

–4

–2

0

2

4
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EXAMPLE 11.8

Show that

 Γ
Γ

( )
( )

( )( ) ( )
z

z n

z z z z n
=

+ +
+ + +

1

1 2 ⋯

SOLUTION

Using the recursion formula:

 Γ Γ( ) ( )z z z+ =1

Therefore it follows that

 Γ
Γ

( )
( )

z
z

z
=

+1

We can apply the recursion formula again, letting z z→ +1, which gives

 

Γ Γ

Γ
Γ

( ) ( ) ( )

( )
( )

( )

z z z

z
z

z

+ = + +

⇒ + =
+
+

2 1 1

1
2

1

And so

 Γ
Γ Γ

( )
( ) ( )

( )
z

z

z

z

z z
=

+
=

+
+

1 2

1

If you carry out this procedure n times, the result follows.

EXAMPLE 11.9

Show that the gamma function is analytic on the right half plane.

SOLUTION

Consider

 Γε ε

ε
( )

/

z t e dt
z t= − −∫ 1

1

We can immediately show this function is analytic by computing the derivative with 

respect to z :

 
d

d z

d

d z
t e dt

d

d z
t e dt

z t z tΓε

ε

ε

ε

ε
= =− − − −∫ ∫1

1
1

1/ /

( ) == 0

Taking the limit ε → 0 , the result follows.
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EXAMPLE 11.10

Find the residue of the gamma function at the singularity located at z n= − , where 

n is an integer.

SOLUTION

Computing the residue of the function as written in Eq. (11.8), we have

 

lim ( ) ( ) lim ( )
( )

( )z n z n
z n z z n

z n

z z→− →−
+ = +

+ +
+

Γ
Γ 1

1 (( ) ( )

lim
( )

( )( ) (

z z n

z n

z z z zz n

+ +

=
+ +

+ + +→−

2

1

1 2

⋯

⋯

Γ
nn

n n n

n

−

=
( )

− − + − + −

=
− −

1

1

1 2 1

1

1 1

)

( )( ) ( )

( )

( ) ( )

Γ

Γ
⋯

(( )( )( ) ( )

( )
( )

( )( )

n n

n n n

n

− − − −

= −
− −

1 1 2 1

1
1

1 2 1

⋯

⋯

Γ
==

−( )

!

1 n

n

The gamma function is the only meromorphic function which has the following three 

properties:

• Γ Γ( ) ( )z z z+ =1

• Γ( )1 1=

• log ( )Γ x  is convex

EXAMPLE 11.11

Show that the gamma function is logarithmically convex on the real axis.

SOLUTION

Saying that the gamma function is logarithmically convex on the real axis means 

that if we take it’s log and then fi nd the second derivative, then let z x→ , the result 

will be positive.

This is done using the infi nite product representation of Eq. (11.10). We reproduce 

it here for convenience:

 
1

1
1Γ( )

/

z
ze

z

k
e

z z k

k

= +





−

=

∞

∏γ



CHAPTER 11 The Gamma and Zeta Functions 223

First, we take the logarithm of the left-hand side:

 log
( )

log ( ) log ( )
1 1

Γ
Γ Γ

z
z z= = −−

Recalling that the log of a product is the sum of the logs, that is log AB = log A + 

log B, on the right-hand side we fi nd

 

log
( )

log

log

/1
1

1Γ z
ze

z

k
e

z

z z k

k

= +





= +

−

=

∞

∏γ

γ zz
z

k

z

k

z

k

+ +



 −













=

∞

∑ log

log ( )

1
1

Γ == − − − +



 +





=

∞

=

∞

∑ ∑log logz z
z

k

z

kk k

γ 1
1 1

Therefore

 

∂
∂

= − − +
−

+
















+

=

∞

∑
z

z
z k z

k

kk

log ( )Γ
1 1 1

1

1

1

γ 





















= − − +
−
+






+








1 1 1

z z k k
γ



= − − + 



 +






=

∞

=

∞

∑

∑

k

kz k

z

z k

1

1

1 1
γ

Computing the second derivative we fi nd

 ∂
∂

= +
+=

∞

∑
2

2 2 2
1

1 1

z
z

z z kk

log ( )
( )

Γ

Evaluating this for real argument:

 ∂
∂

= +
+

> >
=

∞

∑
2

2 2 2
1

1 1
0 0

x
x

x x k
x

k

log ( )
( )

Γ when

Showing that the gamma function is logarithmically convex for real argument in the 

right half plane.



224 Complex Variables Demystifi ed

Contour Integral Representation 
and Stirling’s Formula

We close by noting that the gamma function can be written as

 1 1

2Γ( )z i

e

t
dt

t

z
= ∫π �

  (11.14)

The contour used comes in from the negative real axis, goes counterclockwise 

about the origin and out along the negative real axis, avoiding the branch point at 

the origin.

The Stirling approximation for the gamma function is given by

 Γ( ) /
z e z

z z+ ≈ − +1 2 1 2π   (11.15)

The Beta Function
The beta function is defi ned by the following integral, where Re(m) > 0 and 

Re(n) > 0 :

 B m n t t dt
m n( , ) ( )= −− −∫ 1 1

0

1

1  (11.16)

By using the substitution t = sin2θ , we can move to polar coordinates and write 

the beta function in terms of trigonometric functions. First note that

 dt d= 2sin cosθ θ θ

Using cos sin2 2 1θ θ+ = , we have

 
B m n t t dt

m n

m

( , )

(sin ) (co
/

= −( )

=

− −

−

∫

∫

1 1

0

1

2

0

2 1

1

θ
π

ss ) sin cos

(sin ) (cos
/

2 1

2

0

2 2 1
2

2

2

θ θ θ θ

θ θ
π

n

m

d
−

−

= ∫ ))2 1n
d

− θ



CHAPTER 11 The Gamma and Zeta Functions 225

The beta function is related to the gamma function via

 B m n
m n

m n
( , )

( ) ( )

( )
=

+
Γ Γ
Γ

 (11.17)

Furthermore, we can write

 B p p
t

t
dt p p

p

p

( , ) ( ) ( )
sin

1
1

1
1

0
− =

+
= − =

−∞

∫ Γ Γ
π
π

 (11.18)

provided that 0 1< <Re( )p .

The Riemann zeta function was studied by Riemann for number theory. It has the 

following series representation:

 ζ ( )z
k

z z z z
k

= + + + =
=

∞

∑1

1

1

2

1

3

1

1

⋯  (11.19)

While this series is defi ned for Re( )z > 0, analytic continuation can be used to 

extend the zeta function to other values of z. Notice that we can write Eq. (11.19) as

 ζ ( )
log log

z
k e e

e
z

k
k

k
z k

k

z
z= = = =

=

∞

=

∞

=

∞
−∑ ∑ ∑1 1 1

1 1 1

llogk

k=

∞

∑
1

The zeta function can be defi ned in terms of the gamma function via the following 

relationship:

 ζ ( )
( )

z
z

t

e
dt

z

t
=

+

−∞

∫
1

1

1

0Γ
 (11.20)

Another way to relate the zeta and gamma functions—and to defi ne a recursion 

relation for the zeta function—is by using

 ζ π
π

ζ( ) ( ) cos ( )1 2
2

1− = 





− −
z z

z
z

z zΓ  (11.21)

When 0 1< <x  a plot of | ( ) |ζ z  shows a series of ridges located at different points 

along the imaginary axis. These ridges are characterized by the fact that they are 

monotonically decreasing. This is illustrated in Fig. 11.4. A plot over a wider range of 

the real axis is shown in Fig. 11.5, and a contour plot of the zeta function is shown in 

Fig. 11.6.

The Riemann Zeta Function
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Figure 11.4 A plot of the modulus of the Riemann zeta function. | ( ) |ζ x iy+  is 

characterized by monotonically decreasing ridges.
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Figure 11.5 A wider view of the modulus of the Riemann zeta function.
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An unproven conjecture by Riemann is that all of the zeros of ζ ( )z  can be found 

on the line Re( )z = 1 2/ . We show a plot of | ( ) |ζ 1 2/ + iy  in Fig. 11.7, where you can 

see the zeros of the function for 0 50≤ ≤y . The real and imaginary parts of 

ζ ( )1 2/ + iy
 
are illustrated in Figs. 11.8 and 11.9, respectively. While Riemann’s 

conjecture has yet to be proven, Hardy demonstrated that there are infi nitely many 

zeros along the line Re( )z = 1 2/ .

In Fig. 11.10, we consider the Riemann zeta function for real argument. A plot 

of ζ ( )x  shows an asymptote at x = 1 where the function blows up. 

Like the gamma function, the Riemann zeta function has a representation in 

terms of infi nite products. This is given by

 
1

1
1

2
1

1

3
1

1

5
1

ζ ( )z
z z z

= −





−





−





= −⋯
11

p
z

p





∏  (11.22)

The interesting (and maybe somewhat mysterious) feature of Eq. (11.22) is that 

the product is taken over all positive primes p.

EXAMPLE 11.12

Is the Riemann zeta function analytic in a region of the complex plane for which 

Re( )z ≥ +1 ε  where ε > 0?

–4 –2 0 2 4

–4

–2

0

2

4

Figure 11.6 A contour plot of the Riemann zeta function in the x-y plane.
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SOLUTION

To determine if the zeta function is analytic, take the series representation

 ζ ( )z
k

z
k

=
=

∞

∑ 1

1

If Re( )z ≥ +1 ε , then this means that x ≥ +1 ε . And so

 

1 1 1 1 1
1

k e e k k
z z k x k x
= = = ≤

+ln ln ε
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Figure 11.7 A plot of | ( / ) |ζ 1 2+ iy  along the imaginary axis, showing the zeros 

of the zeta function.
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Figure 11.8 A plot of the real part of the zeta function for x = 1 2/ .
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The series

 
1
1

k
+∑ ε

is convergent, so by the Weierstrass M-test ζ ( ) ( / )z kk

z=∑ =
∞

1 1  is convergent as well. 

In fact, the zeta function converges uniformly for Re( )z ≥ +1 ε . This proves that if 

Re( )z ≥ +1 ε , the zeta function is analytic.

The zeta function has a single simple pole located at z = 1. The residue corresponding 

to this singularity is one.
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Figure 11.9 A plot of the imaginary part of the zeta function for x = 1 2/ . 
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Figure 11.10 A plot of the Riemann zeta function with real argument. Note the 

asymptote at x = 1 where the function blows up.
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Summary
In this chapter, we introduced three special functions from complex analysis. These 

include the gamma function, the beta function, and the Riemann zeta function. 

These functions can be represented in different ways, using series, infi nite products, 

or integral representations (in the case of the gamma and beta functions). 

Quiz
 1. Using Eqs. (11.1) and (11.2) calculate 0!.

 2. Consider Gauss’ Π  function. What is lim ( , )
k

k
→∞

Π 3 ?

 3. Compute y y dy
3 2 2

0

4

16/ −∫  using gamma or beta functions.

 4. Find x x dx
0

4

4∫ −  using gamma and beta functions.

 5. Using the gamma function, calculate cos( ) .t dt
3

0

∞

∫
 6. Find an expression for Γ Γ( ) ( )z z−  and use it to calculate Γ −




1

2
 by 

considering Γ Γ( ) ( ).z z1−

 7. Considering that f z z
n n

n

( ) ( )
!

!( )!
= + =

−=

∞

∑1
0

α α
α , fi nd an expression for 

d f dz
n n

z/ =0 in terms of gamma functions.

 8. How can you prove that ζ ( )1  is divergent?

 9. Evaluate 
Γ

Γ
( )

( )

z n

n n
z

+
.

 10. Describe the points at which f z z
z

( ) ( )= −
−

ζ
1

1
 is not analytic.



CHAPTER 12

Boundary Value 
Problems

Complex analysis can be utilized to solve partial differential equations. In this 

chapter, we consider Dirichlet problems, which involve the specifi cation of a 

function that solves Laplace’s equation in a region R of the x-y plane and takes on 

prescribed values on the boundary of the region which a curve is enclosing R that 

we denote by C. A Neumann problem is one that specifi es the derivative of the 

function on the boundary. Conformal mapping can be used to arrive at a solution to 

these types of problems.

Laplace’s Equation and Harmonic Functions
Let’s review the concept of a harmonic function, which was introduced in Chap. 3. 

We say that a function φ( , )x y  is a harmonic function in a region R of the x-y plane 

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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if it satisfi es Laplace’s equation:

 ∇ =
∂
∂

+
∂
∂

=2

2

2

2

2
0φ

φ φ
x y

 (12.1)

We often use the shorthand notation φ φ φ φxx yyx y= ∂ ∂ = ∂ ∂2 2 2 2/ /and  to indicate 

partial derivatives. Recall that if a complex function f z u x y iv x y( ) ( , ) ( , )= +  is 

analytic in a region R then it follows that u x y( , ) and v x y( , ) are harmonic functions. 

Moreover,u x y( , ) and v x y( , ) are harmonic conjugates, meaning that one can be 

determined from the other by integration and the addition of an arbitrary constant (see 

Chap. 3).

In polar coordinates, Eq. (12.1) becomes

 
∂
∂

+
∂
∂

+
∂
∂

=
2

2 2

2

2

1 1
0

u

r r

u

r r

u

θ
 (12.2)

The fi rst two examples review the concept of harmonic conjugate.

EXAMPLE 12.1

Find the harmonic conjugate of u x y x x y( , ) /( ).= +2 2

SOLUTION

First we compute the derivatives of the function with respect to x and y:

 
∂
∂

=
∂
∂ +







u

x x

x

x y
2 2

This derivative can be computed using the rule for quotients:

 
f

g

f g g f

g






′
=

′ − ′
2

Setting f x=  and g x y= +2 2
 we have

 ′ = ′ =f g x1 2and

Therefore

 
∂
∂

=
∂
∂ +






=

+ −
+

=
u

x x

x

x y

x y x x

x y

y
2 2

2 2

2 2 2

22( )

( )

−−
+

x

x y

2

2 2 2( )

A similar procedure yields the derivative with respect to y:

 
∂
∂

=
∂
∂ +






=

−
+

u

y y

x

x y

xy

x y
2 2 2 2 2

2

( )
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The Cauchy-Riemann equations tell us that

 

∂
∂

=
∂
∂

∂
∂

= −
∂
∂

u

x

v

y

v

x

u

y

Hence we have the following relationship:

 
∂
∂

=
∂
∂

=
+

⇒ =
+∫

v

x

u

y

xy

x y

v x y y
x

x y
dx

2

2

2 2 2

2 2 2

( )

( , )
( )

++ F y( )

If we let s x y ds xdx= + ⇒ =2 2 2  then

 
v x y y

ds

s
F y y

s
F y

y

x y
F y( , ) ( ) ( ) ( )= + = − + =

−
+

+∫ 2 2 2

1

Now, we also have the other Cauchy-Riemann equation at our disposal, which says

 
∂
∂

=
∂
∂

=
−
+

v

y

u

x

y x

x y

2 2

2 2 2( )
 (12.3)

If we take the derivative with respect to y of v x y y x y F y( , ) [ /( ) ] ( )= − + +2 2 2 , we obtain

 
∂
∂

=
∂
∂

−
+






+ ′ =

−
+

v

y y

y

x y
F y

y x

x y( )
( )

( )2 2

2 2

2 2 2
++ ′F y( )

Comparison with Eq. (12.3) tells us that
 

′ =F y( ) 0, which means that F y( ) is some 

constant. Choosing it to be 0, we fi nd that the harmonic conjugate to u x y( , ) is

 
v x y

y

x y
( , )

( )
=

−
+2 2 2

EXAMPLE 12.2

Find the harmonic conjugate of u r r( , ) lnθ = .

SOLUTION

To solve this problem, we recall the form of the Cauchy-Riemann equations in 

polar coordinates, given in Eq. (3.27):

 
∂
∂

=
∂
∂

∂
∂

= −
∂
∂

u

r r

v v

r r

u1 1

θ θ
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Since u is a function of r only, we can immediately deduce that

 
∂
∂

= ⇒ = +
u

v r A f
θ

θ θ0 ( , ) ( )

where A is some constant. Now

 

∂
∂

=
∂
∂

=
u

r r
r

r
ln

1

But by the Cauchy-Riemann equations, we have that ∂ ∂ = ∂ ∂u r r v/ ( / )( / )1 θ . 

Therefore, ∂ ∂ =v / θ 1 which we can use to write

 
v r d B( , )θ θ θ= = +∫

where B is some constant. Comparison with v r A f( , ) ( )θ θ= +  leads us to

 f ( )θ θ=

Ignoring the constants of integration, we conclude that the harmonic conjugate 

of u r r( , ) lnθ =  is

 
v r( , )θ θ=

Solving Boundary Value Problems Using 
Conformal Mapping

In this section, we apply conformal mapping techniques to the solution of boundary 

value problems with Dirichlet and Neumann boundary conditions. First, we state 

Poisson’s formulas, which give the solutions to the Dirichlet problem on the unit 

disk and for the upper half plane.

 1. Let C be the unit circle and R its interior. Suppose that f r( , )θ  is harmonic in R

and that it assumes the value g( )θ  on the curve C, that is, f g( , ) ( )1 θ θ= . Then 

the solution to Laplace’s equation on the unit disk is given by Poisson’s formula 

for a circle which states that

 f r
r g d

r r
( , )

( ) ( )

cos( )
θ

π
φ φ

θ φ
π

=
−

− − +∫
1

2

1

1 2

2

20

2

 (12.4)
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Next we consider a function f x y( , ) , which is harmonic in the upper half plane  

y > 0 and assumes the value f x y g x( , ) ( )=  on the boundary, which in this case is 

the x axis, that is, −∞ < < ∞x . The solution to Laplace’s equation for the upper half 

plane is given by

 f x y
y g s

y x s
ds( , )

( )

( )
=

+ −−∞

∞

∫
1

2 2π
 (12.5)

We call Eq. (12.5) Poisson’s formula for the half plane.

We can solve a wide variety of boundary value problems for a simply connected 

region R by using conformal mapping techniques. The idea is to map the region R 

to the unit disk or to the half plane. The mapping function that we use must be 

analytic. There are three steps involved in obtaining a solution:

• Use a conformal transformation to map the boundary value problem for a 

region R to a boundary value problem on the unit disk or half plane.

• Solve the problem using Eq. (12.4) or (12.5).

• Find the inverse of the solution (that is apply the inverse of the conformal 

mapping) to write down the solution in the region R.

Remember that a simply connected region is one that includes no singularities. 

While the mapping of the region R to a region ′R  in the w plane must be conformal, 

the mapping of the boundary does not have to be conformal.

Three theorems are useful for solving these types of problems. The fi rst tells us 

that a map w f z= ( ) has a unique inverse. The second tells us that a harmonic 

function is transformed into a harmonic function under an analytic mapping 

w f z= ( ), and fi nally we learn that if the boundary value of a function is constant in 

the z plane, then it is in the w plane as well.

THEOREM 12.1

Let w f z= ( ) be analytic in a region R of the z plane. Then there exists a unique 

inverse z g w= ( ) in R if ′ ≠f z( ) 0 in R.

THEOREM 12.2

Let U x y( , ) be a function in some region R of the z plane and suppose that w f z= ( ) 

is analytic with ′ ≠f z( ) 0. Then if φ( , )u v  is harmonic in the w plane where 

U z w( ) ( )= φ  are related by w f z= ( ), then U x y( , ) is harmonic.

THEOREM 12.3

Let U x y A( , ) = , where A is a constant on the boundary or part of the boundary C of 

a region R in the z plane. Then its image φ( , )u v A=  on the boundary of the region 

′R  of the w plane. If the normal derivative with respect to the boundary ∂ ∂ =U n/ 0  

in the z plane, then ∂ ∂ =φ / n 0 on the boundary of ′R  in the w plane as well. 
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We prove theorem 12.2. We know that φ( , )u v  is harmonic in the w plane. This 

tells us that

 
φ φ

uu vv
+ = 0

The coordinates u and v are functions of x and y. So we can take the derivatives of 

U x y( , ) using the chain rule and the fact that U z w( ) ( )= φ :

 U u v U u v

U u u v

x u x v x y u y v y

xx uu x uv x

= + = +

⇒ = +

φ φ φ φ

φ φ2 2 xx vv x u xx v xx

yy uu y uv y y v

v u v

U u u v

+ + +

= + +

φ φ φ

φ φ φ

2

2 2 vv y u yy v yyv u v
2 + +φ φ

But the Cauchy-Riemann equations are also satisfi ed by u and v since we assumed 

that w f z= ( ) is analytic. So

 
u v u vx y y x= = −

Moreover, since the transformation is analytic, and f u iv= + , the coordinate 

functions u and v are harmonic, that is, u u v v
xx yy xx yy
+ = + = 0. It follows that

 
U U u u u uxx yy uu vv x uu vv y u xx y+ = + + + + +( ) ( ) (φ φ φ φ φ2 2

yy v xx yyv v) ( )+ + =φ 0

This concludes the proof, which showed that if φ( , )u v  is harmonic in the w plane, 

then U x y( , ) is harmonic in the z plane.

Summarizing, the three theorems stated above tell us that given a mapping 

w f z= ( ) that is analytic and that takes a region R of the z plane to a region ′R  of the 

w plane, we have an inverse mapping z w z= −1( ). If φ( , )u v  solves φ φ
uu vv
+ = 0 in 

some region ′R  of the w plane and φ( ) ( )w U z=  then it follows that U x y( , ) satisfi es 

U Uxx yy+ = 0.

EXAMPLE 12.3

Consider the quarter plane defi ned by 0 0< < ∞ < < ∞x y, . Solve Laplace’s equation:

 

∂
∂

+
∂
∂

=
2

2

2

2
0

f

x

f

y

with Dirichlet boundary conditions given by f y f x( , ) , ( , )0 1 0 0= = .

SOLUTION

We can apply conformal mapping to this problem by recalling that the map w z
n=  

increases angles by n meaning that θ θ→ n . For practice, let’s look at the quarter 

plane, shown in Fig. 12.1.
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We want a mapping that will take the angle
 
π π/2 → , so that we can double the 

region and use Poisson’s formula for the half plane. Recalling our discussion in 

Chap. 9, the transformation or mapping that will accomplish this is:

 w z= 2

which is given by

 
w x iy x y i xy

u x y v xy

= + = − +

⇒ = − =

( )2 2 2

2 2

2

2

Notice that as x →∞ for fi xed y ≠ 0 that v →+∞. It also the case that as y →∞ for 

fi xed x ≠ 0 that v →+ ∞. Since 0 0< < ∞ < < ∞x y, , the other extreme is x y= =0 0or  

and in either case v = 0. So, we see that we have 0 < < ∞v . On the other hand, suppose 

that x y= →∞0, . Then u →−∞. If y x= →∞0,  then u →+∞. So we have 

−∞< < ∞u .

So this map successfully generates the entire upper half plane from the quarter 

plane, as also explained in Chap. 9. The w plane is illustrated in Fig. 12.2.

To solve the problem in the upper half plane, we use Eq. (12.5). In the w plane 

this is

 

φ
π

( , )
( )

( )
u v

v g s

v u s
ds=

+ −−∞

∞

∫
1

2 2

The boundary condition given is f y f x( , ) , ( , )0 1 0 0= =  (in the z plane). Notice this 

is a Dirichlet boundary condition since the value of the function is being specifi ed 

on the boundary. These boundary conditions translate into g u u( , )0 1 0= − ∞ < <for  

and g u u( , )0 0 0= < < ∞for . This is because when x = 0, we have u y v= − =2 0, . 

Given the range of 0 < < ∞y  this fi xes the boundary condition to 1 when − ∞< <u 0 

and 0 when 0 < < ∞u .

x

y

Figure 12.1 The problem in Example 12.3 is specifi ed in the quarter plane 
0 0< < ∞ < < ∞x y, .
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Hence

 

φ
π π

( , )
( )

( )

( )

(
u v

v g s

v u s
ds

v g s

v u
=

+ −
=

+ −−∞

∞

∫
1 1

2 2 2
ss

ds
v g s

v u s
ds

v

v u s

)

( )

( )

(

2

0

2 20

2

1

1

−∞

∞

∫ ∫+
+ −

=
+ −

π

π ))
tan tan

2

0
1 11 0 1

−∞

− −∫ =
−



 −∞

=
−

ds
s u

v

u

vπ π

 − −




= − 





−

1

2

1

2

1 1

π
π

π
tan

u

v

Now

 lim tan
,v u u

u

v→ = >

− 



 =0 0

1

0

1 1

2π

So φ( , )u u0 0 0= >when  as required. Secondly:

 lim tan
,v u u

u

v→ = <

− 




= −

0 0

1

0

1 1

2π

which leads to φ( , )u u0 1 0= <when . Inverting the transformation gives

 φ
π

π

( , ) tan

( , ) tan

u v
u

v

f x y

= − 





⇒ = −

−

−

1

2

1

1

2

1

1

1 xx y

xy

2 2

2

−





v

u

Figure 12.2 The mapping w z= 2
 transforms the quarter plane shown in Fig. 12.1 into the 

entire upper half plane.
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We have

 
f y f x y

x y x y
( , ) lim ( , ) lim tan

, ,
0

1

2

1

0 0 0 0
= = −

→ > → >

−

π
11

2 2

0 0

1

2

1

2

1

x y

xy

x y

−













= −
→ >

−

π
lim tan

,

xx y

xy

2 2

2

1

2

1

2
1

−




= − −


 =π

π

and

 

f x f x y
y x y x

( , ) lim ( , ) lim tan
, ,

0
1

2

1

0 0 0 0
= = −

→ > → >

−

π
11

2 2

0 0

2

1

2

1

x y

xy

y x

−















= −
→ >π
lim tan

,

−− −




= − 



 =

1
2 2

2

1

2

1

2
0

x y

xy π
π

Therefore the boundary conditions in the problem are satisfi ed.

EXAMPLE 12.4

Consider the unit disk with boundary values specifi ed by

 g( )θ
θ π

π θ π
=

< <
< <





1 0

0 2

and fi nd a solution to Laplace’s equation inside the unit disk.

SOLUTION

This can be done directly using Poisson’s formula. Denoting the solution by f r( , )θ  

we have

 

f r
g

r r
d( , )

( )

cos( )
θ

π
φ
θ φ

φ

π

π
=

− − +

=
−

∫
1

2 1 2

1

2

1

1 2

20

2

rr r
d

r

rcos( )
tan

sin

θ φ
φ

π
θπ

− +
= −

−




∫ −

20

1

2
1

1 2

1


Alternatively, if you would prefer to avoid the integral, the problem can be solved 

by mapping the unit disk to the upper half plane, as shown in Fig. 12.3. The points 

A, B, C, D, and E map to the points ′ ′ ′ ′ ′A B C D E, , , , , respectively.

The following transformation will work:

 w i
z

z
=

−
+







1

1
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Here is how it maps the points A, B, C, D, and E in the fi gure:

 

A A i

B B i

= − ⇒ ′ =
+
−






→∞

= ⇒ ′ =
−
+







1
1 1

1 1

1
1 1

1 1
==

= ⇒ ′ =
−
+






=

= ⇒ ′ =
−
+






0

0
1 0

1 0

1

1

C C i i

D i D i
i

i
= +1

The solution to the Dirichlet problem in the upper half plane is given by

 Φ = −






−1
1 1

π
tan

u

v

Now notice that

 

w i
z

z
i

x iy

x iy

i
x iy

=
−
+






=

− −
+ +







=
− −

1

1

1

1

1

11

1

1

1 22

+ +






+ −
+ −







=
− − −

x iy

x iy

x iy

i
x i y y

22

2 2 2 2

2 2

1

2

1

1

1+( ) +





=

+ +
+

− +
+x y

y

x y
i

x y

( )

( )

( xx y)2 2+

Figure 12.3 In Example 12.4 we map the unit disk to the upper half plane.

A B
C

D

E′

C′

B′ D′ A′

E
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So we have

 

u
y

x y
v

x y

x y
=

+ +
=

− +
+ +

2

1

1

12 2

2 2

2 2( )

( )

( )
and

These functions can be rewritten in terms of polar coordinates using x r= cos ,θ  

y r= sinθ :

 

u
r

r r
v

r

r
=

+ +
=

−
+

2

1

1

12 2 2

2sin

( cos ) sin ( cos

θ
θ θ θ

and
)) sin

,

sin

2 2 2

2

2

1

+

⇒ =
−

r

u

v

r

r

θ
θ

Hence

 f
r

r
= −

−






−1
1 2

1

1

2π
θ

tan
sin

EXAMPLE 12.5

Consider a disk 0 ≤ <r R and solve Laplace’s equation with Neumann boundary 

conditions given by

 

∂
∂

=
u

r
R g( , ) ( )θ θ

 u r r( , )θ is bounded as → 0

and

 g d u r r dr d
R

( ) ( , )θ θ θ θ
π π

0

2

00

2

0∫ ∫∫= =

SOLUTION

Laplace’s equation in polar coordinates is given by

 
1 1

0 0 0 2
2

2

2
r r

r
u

r r

u

r
r a

u a

∂
∂

∂
∂





 +

∂
∂

= ≤ < ≤ ≤θ π

θ,(( ) = ( ) ( ) →g u r rθ θ, , bounded as 0

We solved this problem for 0 1≤ <r  and different boundary conditions using 

separation of variables in Example 7.1. We can use the same general solution found 

there and apply the present boundary conditions. We had found that

 
u r c r c r a n b nn n

n

n

n

n n( , ) ( )( cos sin )θ θ θ= + +−
−
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The requirement that u r( , )θ  remain bounded as r → 0 means that

 c
n− = 0

Hence we take

 
u r r a n b nn

n

n n( , ) ( cos sin )θ θ θ= +

The total solution is a superposition of all the solutions u rn ( , )θ :

    
u r u r r a n b nn

n

n

n n

n

( , ) ( , ) ( cos sin )θ θ θ θ= = +
=

∞

=

∞

∑
0 0

∑∑ ∑= + +
=

∞

a r a n b n
n

n n

n

0

1

( cos sin )θ θ

The derivative of this expression with respect to the radial coordinate is

 
∂
∂

= +−

=

∞

∑u

r
r nr a n b n

n

n n

n

( , ) ( cos sin )θ θ θ1

1

So we have

 g
u

r
R n R a n b n

n

n n

n

( ) ( , ) ( cos sin )θ θ θ θ=
∂
∂

= +−

=

∞

∑ 1

1

This satisfi es

 

g d n R a n b n
n

n n

n

θ θ θ θ
π

( ) = +




∫ ∑ −

=

∞

0

2
1

1

( cos sin )


= +( )
∫

∫ ∫−

0

2

1

0

2

0

2

π

π π

θ

θ θ θ θ

d

n R a n d b n d
n

n ncos sin
nn=

∞

∑ =
1

0

as required. Multiplying through g( )θ  by sin mθ  and integrating we obtain

g m d n R a n m b n
n

n nθ θ θ θ θ θ
π

( ) = +∫ −

0

2
1sin ( cos sin sin siin )

cos sin

m d

n R a n

n

n

n

θ θ

θ

π

π

=

∞

−

∑∫

∫









=

1
0

2

1

0

2

mm d b n m d

nR b

n

n

n

n

θ θ θ θ θ

π

π
+( )

=

∫∑
=

∞

−

sin sin

( )(

0

2

1

1 δδ

π

mn

n

m

mmR b

)
=

∞

−

∑
=

1

1
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(see Example 7.1). Therefore the coeffi cient in the expansion is given by

 
b

nR
g n dn n

= − ∫
1

1 0

2

π
θ θ θ

π
( )sin

Now we repeat the process, multiplying through g( )θ  by cos mθ  and integrating

 

g m d n R a n m b n
n

n n( ) cos ( cos cos sin cθ θ θ θ θ θ
π

0

2
1∫ = +− oos )

cos cos

m d

n R a n

n

n

n

θ θ

θ

π

π
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∞

−

∑∫

∫









=

1
0

2

1

0

2

mm d b n m d

nR a

n

n

n

n

θ θ θ θ θ

π

π
+( )

=

∫∑
=

∞

−

sin cos
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0

2

1

1 δδ

π

mn

n

m

mmR a

)
=

∞

−

∑
=

1

1

Hence

 a
nR

g n dn n
= − ∫

1
1 0

2

π
θ θ θ

π
( ) cos

The problem also requires that the solution satisfy

 u r r dr d
R

( , )θ θ
π

00

2

0∫∫ =

We have

 

u r r dr d a r a n b n
R

n

n n

n

( , ) ( cos sin )θ θ θ θ
π

00

2

0∫∫ = + +
=11

00

2

0
0

0

2

∞

∑∫∫

∫ ∫









= +

r dr d

r dr a d r a

R

R
n

n

θ

θ

π

π
coos sinn d b n d

a r d

n

n

θ θ θ θ
π π

0

2

0

2

1

0

∫ ∫∑ +( )







=

=

∞

rr d a R
R

0 0

2

0 2∫ ∫ =θ π
π

( )

Therefore a
0

0=  and we can take

 

u r r a n b n
n

n n

n

( , ) ( cos sin )θ θ θ= +
=

∞

∑
1
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Using a nR g n dn

n= − ∫[ /( )] ( )cos1 1

0

2

π θ θ θ
π

 and b nR g n dn

n= − ∫[ /( )] ( )sin1 1

0

2

π θ θ θ
π

, 

the solution can be written as

 

u r r a n b n

r
nR

g

n

n n

n

n

n

( , ) ( cos sin )

(

θ θ θ

π

= +

=

=

∞

−

∑
1

1

1
φφ φ φ θ

π
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π π
) cos cos ( )sin

0

2
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nR
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n
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=
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∞
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∑
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n
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1
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1
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n
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1π
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n
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dφ

Green’s Functions
A Green’s function G z( ) in a region Ω is a harmonic function at all points z ∈Ω 

except at the point z z=
0
, which is a logarithmic pole. Therefore G z z z( ) ln+ − 0

 is 

harmonic for all z ∈Ω. In addition, G z( ) = 0 on the boundary ∂Ω Ωof .

The Green’s function satisfi es

                         

∂
∂

+
∂
∂

= − − =
2

2

2

2 0 0 0 0 0
G

x

G

y
x x y y G x y x yδ ( , ), ( , , , ) if ( , )x y ∈∂Ω          (12.6)

where δ ( )z z− 0  is the Dirac delta function. We consider three fundamental cases. 

The Green’s function in the upper half plane with singularity at z z=
0 

is

 G z z
z z

z z
( , ) ln0

0

0

1

2
=

−
−π

 (12.7)

Using Eq. (12.7), we can obtain the Green’s function for the quarter plane 0 < < ∞x , 

0 < < ∞y  by using the map w z= 2
. After some algebra you can show that

 

G z z
z z

z z

x x y y

( , ) ln

ln
( )

0

2

0

2

2

0

2

0

2

0

1

2

1

4

=
−
−

=
− + −

π

π

22

0

2

0

2

0

2

0

2

( ) + + +( ){ }
− + +( ) +

}{( )

( ) }{(

x x y y

x x y y x xx y y0

2

0

2) + −( ){ }
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Finally, the Green’s function for the unit disk (with singularity z
0
 inside the unit 

disk) is given by

 G z z
z z

z z
( , ) ln0

0

0

1

2 1
=

−
−π

 (12.8)

EXAMPLE 12.6

Consider the strip 0 < < −∞ < < ∞y xπ ,  and fi nd the Green’s function for Laplace’s 

equation with Dirichlet boundary conditions.

SOLUTION

The strip is shown in Fig. 12.4.

The strip can be mapped to the upper half plane using w e
z= . We can write down 

the Green’s function for the strip immediately using Eq. (12.7) together with w e
z= :

 

G z z
e e

e e

z z

z z
( , ) ln0

1

2

0

0
=

−
−π

EXAMPLE 12.7

Find the Green’s function for the half disk 0 1 0< < < <r , θ π .

SOLUTION

The problem can be done by using conformal mapping twice. The fi rst map we can 

apply takes the half disk to the quarter plane:

 w i
z

z
=

−
+

1

1
 (12.9)

This is illustrated in Fig. 12.5.

A second mapping can be applied to take the quarter plane to the half plane. This 

is W w= 2. This is shown in Fig. 12.6.

ABC

D

E′C′B′ D′A′

E

Figure 12.4 A strip of height B = π  is to be mapped to the upper half plane in Example 12.6.
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Now we have the half plane and can apply what we already know. Using Eq. 12.7, 

we have

 G W W
W W

W W
( , ) ln0

0

0

1

2
=

−
−π

Reversing course, we get the Green’s function for the quarter plane:

 G w w
w w

w w
( , ) ln0

2

0

2

2

0

2

1

2
=

−
−π

Finally, to get the Green’s function for the half-disk, we utilize Eq. (12.9), 

w i z z= − +( )/( )1 1 . This expression is just substituted for w in G w w( , )0 . Some 

tedious algebra gives the fi nal answer:

 

G z z

z z

z
z

z zz z z
( , ) ln0

0

0

2 0

2

0

2

0 0

1

2

1
1

=

−
+( ) +( )

+ − −π zz
2

Figure 12.5 The mapping w i z z= − +( )/( )1 1  takes the half disk to the quarter plane.

1 – z
1 + z

w = i

z  plane

w plane

Figure 12.6 The transformation W w= 2 maps the quarter plane to the half plane.

W = w2

w plane 

W plane
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In this chapter, we introduced the application of conformal mapping to the solution 

of Laplace’s equation. It can be applied by using conformal mapping to transform 

any region into a region with a known solution such as the upper half plane. The idea 

of Green’s functions was also introduced, and the use of conformal maps to write 

down Green’s functions for Laplace’s equation in different regions was described.

 Quiz
 1. Find the harmonic conjugate of the Poisson kernel P r

r

r r
( , )

cos
.θ

π θ
=

−
− +

1

2

1

1 2

2

2

 2. Find the harmonic conjugate of u x y x y( , ) ln( )= +
1

2

2 2
.

 3. Suppose that φ( , )u v v=  in the horizontal strip − < <π π/ /2 2v . Is the 

function harmonic? Find a map that maps the right half plane x > 0 in the 

z plane onto this strip and fi nd a function that is harmonic on the right half 

plane. 

 4. Solve Φ Φ
xx yy

y+ = >0 0,  if Φ( , )x
A x

B x

C x

0
1

1 1

1

=






< −
− < <

>

 5. Find the Green’s function for a triangular wedge in the quarter plane with 

angle α (Hint: The transformation z
k
 expands angles, choose a transformation 

to take α π→  to cover the entire upper half plane).

Summary
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Final Exam

 1. Using the defi nition of the derivative of a complex function in terms of 

limits, fi nd f ′(z) when f (z) = z3.

 2. If f (z) = z fi nd 
∆
∆
w

z
 and determine if the function is differentiable.

 3. Find the derivative of f (z) = 3z2 − 2z.

 4. Find the derivative of f z
z

z
( ) =

+

3

21
.

 5. Find the derivative of f (z) = (2z2 + 2i)5.

 6. Is  f = 2x + ixy2 analytic?

 7. Is the function f x iy x i xy y x iy= + − − − +( ) ( )( )3 2 22  analytic?

 8. Find f ′(z) when f r e
i= 3 2θ / .

 9. In what domain is f x y i x y= +cosh cos sinh sin  analytic?

 10. Let f = u + iv be analytic. Show that v is harmonic.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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 11. Consider the gamma function. Starting with the standard defi nition, 

Γ (z) = ∫
∞ − −
0

1
t e dt

z t ,  use t
u

= 



ln

1
 to reexpress the gamma function in 

terms of the natural logarithm.

 12. Find the harmonic conjugate of u
x y

x y x y
=

−
− +

2 2

2 2 2 2 24( )
.

  In questions 13 to 25, use integral theorems from complex variables to 

evaluate the following integrals.

 13. 
dx

x2 20 +∫
sin

π

14.
dx

x5 40 +∫ cos

π

15.
cos cosx a

x a
dx

−
−−∞

∞

∫ 2 2

16.
x dx

x

3

3 20 2( )+

∞

∫

 17. sech2
x x dxcos

−∞

∞

∫

18.
e

x
dx

i x2

21 4+−∞

∞

∫

 19. 1

2 1 20

2 dθ
θ

π

+∫
cos

20.
x x

x x
dx

sin

( )( )2 20 3 4+ +

∞

∫

21. x

x
dx

( )+

∞

∫
3 20

 22. 
1

2 42π
sin

( )

x

x x
dx

+−∞

∞

∫

 23. e x dx
x−∞

∫
2

2
0

cos

24.
cos x dx

x1 20 +

∞

∫

 25. 
dθ

θ
π

6 30 −∫ cos
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Write the following in the standard form z = x + iy.

 26. (1 + 2i)3

 27. (1 + i)3

 28. 
6

3

i zz+

 29. What are the real and imaginary parts of 1 2+ z z?

 30. What is the modulus of 1 2+ z z?

 31. Find the modulus of z = (2 + i)2.

 32. Find the modulus of z
i

=
−1 2

3
.

 33. What is the residue of at f z
z

( ) =
1

 at z = 0?

 34. What is the residue of f z
z

( ) =
1

3
 at z = 0?

 35. Find the residue of at 
sin z

z1 3+
z = −1.

 36. What are the singularities of f z
z

z z
( )

( )( )
=

+ +

2

2 1 4
?

 37. What is the residue of f z
z

z z
( )

( )( )
=

+ +

2

2 1 4
 for z = −4?

 38. What is the residue of f z
z

z z
( )

( )( )
=

+ +

2

2 21 2
 when z = −2?

 39. Find the singularities and their order of f z
z

z z z
( )

( )( )
=

+ −

2

24 2
.

Find the Laplace transform of the following:

 40. e−x cos x

 41. eix

 42. sinh x

 43. t2 e−1

If possible, use the Bromvich inversion integral to fi nd the inverse Laplace transform 

of the following:

44. s

s
2 1+

 45. 
1

12
s −
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 46. 
1

22
s +

47.
s

s
2 2+

48.
1

4 82
s s+ −

 49. 
s

s s s( )( )2 1 3+ −

 50. 
4
5

s

Find the series expansions of the following functions about the origin. Identify the 

principal part if it exists:

 51. tan z

 52. ez

 53. 
e

z

z

3

 54. cos z

55.
sin z

z
2

56.
sinh z

z

 57. 
cosh z

z
3

 58. ln | |z − 2

 59. 
1 1

1z

z

z
ln

+
−

 60. 
1

1 2 2
z z z( )( )+ −

Calculate the following limits:

 61. lim
z i

z
→2

2

 62. lim
z

z
→2

2

 63. lim
z i

z
→ +1
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 64. lim
z

iz
e

→π

 65. lim
cos

z

z

z→π

 66. lim
sin

z

z

z→0

π
π

 67. lim
z

z

z→∞ +2 6

 68. lim
sinz

z

z→0

 69. lim
( )z

z

z→ −1 21

 70. lim
( )z i

z

z→ −2 21

Write the following as polynomials in z and z :

 71. x + y2

 72. x3

 73. 2x − iy

 74. 2x + 6iy

 75. 4y2

Compute the following derivatives:

 76. 
∂
∂

+
z

x y( )2

77.
∂
∂

+
z

x y( )2

 78. 
∂
∂x

z( )3

79.
∂
∂x

z
2

 80. 
∂
∂x

z| |2

Find the real and imaginary parts of the following functions:

 81. f z zz( ) =
 82. f (z) = z2
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 83. f (z) = ez

 84. f z
z

( ) =
1

 (in polar coordinates)

 85. f z z( ) /= 1 3

For each of the following functions, indicate where the function may not be analytic.

 86. f
z

=
+
1

1 2

 87. f
z

z
=

sin

 88. f = 1 − z2

 89.  f z z= −1 2

 90.  f
z

z z
=

− +
2

1 2( )( )

 91. Find the harmonic conjugate function of u y x y= −3 23 .

 92. Evaluate exp
1

2 4
+



i

π
.

 93. Evaluate exp(2 + 3pi).

 94. Evaluate log1.

 95. Calculate (1 + i)i.

 96. Find ei(2n+1) where n is an integer.

 97. Evaluate sin z +





π
2

.

 98. Find sin iy.

 99. Find cos iy.

 100. Find the roots of the equation sin z = cosh 4.



Quiz Solutions

Chapter 1
 1. 1/8 

 2. 
1

5

7

5
− i

 3. z + w = 5 + 2i, zw = 9 + 7i

 4. z i w i= − = +2 3 3,

 5. −3 4π /

 6. 3 2 3cos sin sinθ θ θ−
 7. sin cosh cos sinhx y i x y+

 8. − ± −i z zln( )2 1

 9. 
3

2

1

2

3

2

1

2
+





 − +





 −i i i, ,

10. 8eip/2
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Chapter 2
 1. 3i

 2. 2 + i

 3. z zz i
2 2+ −

 4. 
f f z z z z+

=
+ + + +

2

6

2

2 2

 5. u x y x y v x y y( , ) , ( , )= + + = −1 2 2

 6. 4

 7. 1

 8. −i

 9. 0

 10. No, f (1) does not exist.

Chapter 3
 1. nz

n−1

 2. 
∆
∆

= + ∆ +
∆
∆

w

z
z z z

z

z
, no.

 3. 24z7 − 12z

 4. −
+

6
2 32

4

z z

z

 5. −
i

3

 6. u e y v
x

x

y
= ≠cos

 7. u v
x y

= = −1 1, ,  so the Cauchy-Riemann equations are never satisfied, not 

even at the origin. So it is not differentiable.

 8. Yes

 9. The Cauchy-Riemann equations are satisfied, so the derivative exists 

everywhere in the specified domain.

 10. Yes, v x y xy( , ) = 2
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Chapter 4
 1. Use the same steps applied in Example 4.5.

 2. Consider e
z = −1 where e y n n

x = = + = ± ±1 2 1 0 1 2, ( ), , , ,π . . . .

 3. e2

 4. 1 + tan2 z = sec2 z

 5. 
tan tan

tan tan

z w

z w

+
−1

 6. Yes, they must be multi-valued, because they are defined in terms of the 

natural log function.

Chapter 5

 1. N
z

= 2
ε

 2. cos

sin
( )

sin( )

n

n

θ
θ

θ2

1

2

2







+





/

 3. p

 4. 4

 5. Uniformly convergent to 0, |z| ≥ 2.

 6. 
( )−

+
+

=

∞

∑ 1

32 2

4 1

0

n

n

n

n

z

 7. Converges absolutely

 8. −
−

+

+

=

∞

∑ ( )

( )!

z i

n

n

n

π 2 1

0 2 1

 9. 
( )

( !)

r

n

n

n

/2 2

2
0=

∞

∑

 10. z
n

z
n

n

n

nn

+
+
+

=

∞

=−∞

−

∑∑ ( )1

2 2
0

1

 11. Removable singularity.
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Chapter 6
 1. −5/4

 2. 
3

4

+ i

 3. 
1

2

2+



 +

i
i e( )/π

 4. 
1

2

+ e
π

 5. 0

 6. 0

 7. arctan (x)

 8. 
2

5

π

 9. −pi

 10. −
+

8

642

π
π

i

Chapter 7
 1. 0

 2. i
π
3

 3. 
1

9

1

1

2

3

1

12( )z z+
+

+

 4. Singularities: 0 5 2, ,− π / residues: 0 2 5, / π
 5. Singularities: 0, p, residues: 1/p, 0

 6. 
π

3 15

 7. p /2

 8. p

 9. 
5

6

π

 10. 
π
e
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Chapter 8
 1. 

s

s
2 2+ω

 2. 
s

s a
2 2−

 3. f t
t

e
k t( ) /= −1 2 4

π
 4. cos wt

 5. f x t( )
sin

( )!=




 −−απ

π
αα 1

Chapter 9
 1. A parabola described by u

v

a
a= 



 −

2

2

2

 2. x = a is mapped to a circle |w| = ea

3. w
i z

i z
=

−
+

 4. z = ±2 2

5. w
i z

i z
=

−
+

 6. Tz
z

z
=

−
+

1

1

Chapter 10
 1.  It maps an infinitely high vertical strip with v ≥ 0 of width W = Ap + B to the 

upper half plane.
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Chapter 11
 1. 1

 2. 6

3. 64

21

2 1

4

2

π
Γ

















 4. 2p

 5. 
Γ

1

3

2 3







 6. Γ Γ Γ( ) ( )
sin

, ( )z z
z z

− = − − = −
π

π
π1 2 2/

7.
Γ

Γ
( )

( )

α
α

+
− +

1

1n

 8. This gives the harmonic series.

 9. 1

 10. The function is entire—it is analytic everywhere in the complex plane.

Chapter 12

 1. v r
r

r r
( , )

sin

cos
θ

π
θ
θ

=
− +1 2 2

 2. v x y
y

x
v( , ) arctan= 



 + 0

where v
0
 is a constant

 3. Yes, w z U x y
y

x
= = 



ln , ( , ) arctan .

 4. 
A B y

x

B C y

x
C

−
+





 +

−
−





 +− −

π π
tan tan1 1

1 1

 5. G z z
z z

z z
( , ) ln

/ /

/ /0

0

0

1

2
=

−

−π

π α π α

π α π α



CHAPTER 1

Final Exam 
Solutions

 1. Use to get( ) ( )x y x x y xy y f z z+ = + + + ′ =3 3 2 2 3 23 3 3 ..

 2. 1, yes.

 3. 6z − 2

 4. 3

1

2 4

2 2

z z

z

+
+( )

 5. 20z(2z2 + 2i)4

 6. No

 7. No, note that f z z z z( ) = −3 2

 8. 
1

3
3 2 2( )/

r e
iθ
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 9. The function is entire.

 10. u v u v v v
xy yy xy xx xx yy
= = − ⇒ + =, 0

 11. ln
1

0

1

1

u
du

z















∫

−

 12. v
xy

x y x y
=

−
− +

2

42 2 2 2 2( )

 13. 
π

6

 14. p /3

 15. −
π sin a

a

 16. 
2

9 3

3 π

 17. 
2π

πsinh

 18. 
π
2e

 
19.

 

π

2

 20. 
π
e

e
2

2 3 1( )− −

 21. 
π

2 3

 22. 
sinh( )1

4e

 23. 
π

2e

 24. 
π
2e

 25. 
π

3 3

 26. − +3 4i

 27. −2 + 2i

 28. 
x y

i
2 2

3
2

+
+
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 29. Re , Im= + + = +1 3 2 2 3
x xy yx y

 30. ( ) ( )1 3 2 2 2 3+ + + +x xy yx y

 31. 5

 32. 
5

3

 33. 1

 34. 0

 35. −
sin( )1

3

 36. z i z= ± = −, 4

 37. 16/17

 38. −4/25

 39. z = −0 1,  order 1, z = 2 order 2

 40. 
1

1 1 2

+
+ +

s

s( )

 41. 
1

s i−

 42. 
1

12
s −

 43. 
2

1 3( )+ s

 44. 
e

e
t

t

−

+
2

1 2( )

 45. sinh t

 46. 
sin 2

2

t

 47. cos 2t

 48. 
e

e
t

t

− +

−
2 1 3

4 3

4 3
1

( )

( )

 49. 
1

10
33( cos sin )e t t

t − −

 50. 
t

4

6

 51. z
z z

+ + +
3 5

3

2

15
⋯
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 52. 
1

1
2 6 24

2 3

z

z z z
+ + + + +⋯ , principal part 

1

z

 53. 
1 1 1

2

1

3 4 53 2

3

z z z

z z
+ + + + + +

! ! !
⋯, principal part 

1 1 1

23 2
z z z
+ +

 54. 1
2 4

2 4

− + −
z z

! !
⋯

 55. 
1

3 5 7

3 5

z

z z z
− + − +

! ! !
⋯ , principal part 

1

z

 56. 1
3 5

2 4

+ + +
z z

! !
⋯

 57. 
1 1

2 4 63

3

z z

z z
+ + + +

! !
⋯ , principal part 

1 1

23
z z
+

 58. i
z z

π + − + −ln2
2 8

2

⋯

 59. 
i

z

z zπ
+ + + +2

2

3

2

5

2 4

⋯ , principal part 
i

z

π

 60. 
1

4

3

16 16

9

64

2 3

z

z z z
+ − + +⋯, principal part 

1

4z

 61. −4

 62. 4

 63. 1 − i

 64. −1

 65. −1/p

 66. 1

 67. 0

 68. 1

 69. ∞

 70. − +
2

25
4 3( )i
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 71. 
z z z zz z+

− + −
2 4 2 4

2 2

 72. 
1

8
3 33 2 2 3( )z z z zz z+ + +

 73. 
z z+ 3

2

 74. z i z i( ) ( )1 3 1 3+ + −

 75. z zz z
2 22− +

 76. x
i

+
1

2

 77. x
i

−
1

2

 78. 3 6 32 2
x i xy y+ −

 79. 2 2x i y+

 80. 2x

 81. u x y v= + =2 2 0,

 82. u x y v xy= − =2 2 2,

 83. u e y v e y
x x= =cos , sin

 84. u
r

v
r

= =
cos

,
sinθ θ

 85. u r v r= =1 3 1 33 3/ /cos , sinθ θ/ /

 86. Analytic except at z i= ±

 87. Analytic except at z = 0

 88. Is entire

 89. Not analytic, depends on z

 90. Analytic except at z = −1 2,

 91. v x xy= −3 23

 92. 
e

i
2

1( )+

 93. −e
2

 94. 2 0 1 2n i nπ = ± ±, , ,...

 95. exp ln− + +






π
π

4
2

2
2n

i
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 96. ( ) /−1 1 π

 97. cos z

 98. i ysinh

 99. cosh y

 100. 
π

π
2

2 4 0 1 2+




 ± = ± ±n i n, , , ,...
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INDEX

* (asterisk), 3

{ } (curly braces), 91

AA
Abel’s integral equation, 178

Absolute value, 12, 30

Absolutely converging series, 96

Addition:

and analytic functions, 60

of arguments, 15

associative law of, 11

commutative law of, 11

of complex numbers, 2, 7

of exponents, 71, 72

identity with respect to, 11

of real/imaginary parts, 120

(See also Sum(s))

Additive inverse, 11

Alternating harmonic series, 101

Analytic function(s):

Cauchy-Riemann equations for determining, 51, 53–57

continuously differentiable, 51–53, 56–57

defi ned, 42, 45, 59

essential singularity of, 148

harmonic, 61–63

Laurent expansion of punctured disc, 145–147

local power series expansion of, 144

necessary/suffi cient conditions for, 60

properties of, 60–61, 144–148

refl ection principle of, 63

and singularity, 59–60

zero result of power series expansion integration, 145

Analytic part, of series, 111, 114

Annular region, 110

Antiderivative, 127

Arc, 122

Arc cosine function, 78

Argument(s), 13

addition of, 15

of exponent, 74

Argument theorem, 138

Associative law, 11

Asterisk (*), 3

BB
Bessel function, 101

Beta function, 224–225

Bilinear transformation, 196

Binomial theorem, 43

“Blowing up,” function, 28, 29, 32, 33, 146

Boundary value problems, 234–245

Green’s function for Laplace equation with Dirichelet, 245

Laplace equation inside unit disk with, 239–241

Laplace equation with Dirichelet, 236–239

Laplace equation with Newmann, 241–244

theorems for solving, 235

Bounded sequence, 95

Branch, of function, 88–89

Branch cut, 88

Branch point, 88, 111

Bromwich contour, 180

Bromwich inversion integral, 179–181

CC
Cartesian representation, 12

Cauchy, Augustin Louis, 51

Cauchy-Goursat theorem, 127–133

Cauchy-Riemann equation(s):

and analytic functions, 41–42

and continuously differentiable functions, 56–57

defi ned, 53–54

discovery of, 51
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Cauchy-Riemann equation(s) (Cont.):

examples using, 54–56

fi rst, 54

and harmonic functions, 61–63

polar representation of, 57–59

satisfying conditions of, 54–56

second, 54

and singularity, 59–60

Cauchy’s convergence criterion, 95

Cauchy’s inequality, 136

Cauchy’s integral formula, 135–143

and argument theorem, 138

and Cauchy’s inequality, 136

defi ned, 132–133

and deformation of path theorem, 137, 138

and Gauss’ mean value theorem, 137

and Liouville’s theorem, 136–137

and maximum/minimum modulus theorem, 137

and Poisson’s integral formula for circles, 

138–143

and Rouche’s theorem, 138

as sampling function, 143–144

statement of, 135–136

Cauchy’s integral theorem, 131–132

Chain rule, 48

Circles:

mapping, 191–192

Poisson’s formula for, 138–143, 234

Clockwise direction, 124, 125, 154

Closed contour, 122

Closure law, 11

Coeffi cients, 65

Commutative law, 11

Comparison test, 96

Complex analysis, 4

Complex conjugate, 2–9

forming, 2–3

of function, 24–25

rules for, 5–9

of variable, 4

Complex differentiable function, 42

Complex exponential, 14, 70–75

Complex exponents, 84–85, 88

Complex functions, 21–40

conjugate, complex (see Complex conjugate)

continuity of, 38–40

defi ned, 21–22

derivative of, 46

domain of, 23–24

infi nity, limits involving, 38

limits of, 33–38

multi-/single-valued, 33

plotting, 28–33

polar representation of, 27–28

real/imaginary parts of, 24–28

sequences of, 92–93

Complex integration/integrals, 117–133, 163–167

and Cauchy-Goursat theorem, 127–133

contour, 121–124

of functions, 117–119

line, 124–127

properties of, 119–121

Complex line integrals, 124–127

Complex numbers, 1–19

addition of, 2, 7

algebra of, 2–4

axioms for, 10–11

conjugate rule for, 5–9

modulus of, 3, 12

multiplication of, 7

nth roots of unity for, 16–19

and Pascal’s triangle, 9–10

polar representation of, 12–16

subtraction of, 8

variables, complex, 4–5

Complex plane, 5, 121–124

Complex polynomials, 65–70

Complex series, convergence of, 95

Conformal mapping, 190, 234

Conjugate:

complex (see Complex conjugate)

harmonic, 62–63, 232–234

Conjugate rule, for complex numbers, 5–9

Constant:

derivative of, 45

Euler’s, 219

Continuous functions, conditions needed for, 38–40

Continuously differentiable curve, 125–126

Continuously differentiable functions:

defi ned, 51–53, 124, 125

derivative of, 56–57

Contour integral:

conversion to, 153

defi ned, 126–127

of gamma function, 224

Contour integration, 121–124, 163–167

Contour plot:

of cosh, 82

of function, 31–33

of gamma function modulus, 220

of imaginary part, 70

of modulus, 67, 220

of real part, 69

of Riemann zeta function, 227

Convergence:

disc of, 104–105

of series, 94–95, 106–108

tests of, 96–97
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Convergent sequence, 92

Convergent series, 94–95, 97, 108

Convolution, 178–179

Cosecant function:

derivative of, 88

hyperbolic, 84

in terms of exponentials, 76

Cosine function:

derivative of, 87

hyperbolic, 79–84

series representation of, 101–104

Taylor expansion of, 100

in terms of exponentials, 75–78

Cosine inverse, 78

Cotangent function, 76, 88

Counterclockwise direction, 123

Cross ratio, 196–197

Curly braces ({ }), 91

Curve:

closed, 122, 123

continuously differentiable, 125–126

direction/sense of, 123

open, 122

simple, 122, 123

DD
De Moivre’s theorem, 15–16

Defi nite integrals, evaluation of real, 151–155

Deformation of path theorem, 137, 138, 148, 149

Degree, of polynomial, 65

Deleted neighborhood, 33

Dependence, 51–53

Derivative(s):

of complex exponent, 88

of complex functions, 46

of constant, 45

defi ned, 42

of elementary functions, 47–48, 85–88

of exponential function, 86

of hyperbolic functions, 88

and Leibniz notation, 43–45

of logarithm, 86

of natural logarithm, 87

polar representation of, 57–59

of polynomial, 45–46

product/quotient rules for, 48–50

rules for computing, 45–46

of trigonometric functions, 87–88

Difference, integral of, 119

Differentiation:

of Laplace transform, 174–179

rules for, 45–46

Dilation, 196

Dirac delta function, 143–144, 244

Direction, of curve, 123

Dirichlet boundary conditions, 236, 237, 245

Disc:

of convergence, 104–105, 109

punctured, 145–147

Disks:

Laplace’s equation inside unit disk, 239–241

Laplace’s equation on, 138–139

open, 34–37

Distributive law, 11

Divergent sequence, 92

Divergent series, 94

Division:

and analytic functions, 60

of complex numbers, 2, 8–9, 15, 49

Domain, of function, 22–24

Duplication formula, 220

EE
Elementary functions, 65–89

branches of, 88–89

complex exponentials, 70–75

complex exponents, 84–85

complex polynomials, 65–70

derivatives of, 85–88

hyperbolic, 78–84

trigonometric, 75–78

Entire function, 42, 112

Equality (of complex numbers), 4

Essential singularity, 111, 148

Euler’s constant, 219

Euler’s formula, 13–15

Expansion, of region, 194, 195

Exponential function, derivative of, 86

Exponents:

additive property of, 71, 72

argument of, 74

complex, 84–85, 88

FF
Fesnel integrals, 163–164

Field, 11

Final examination:

answers, 261–265

problems, 249–254

Fixed points, of transformation, 201–202

Fourier transform, 156, 179

Fractional transformation, 196

Function(s):

complex (see Complex functions)

continuous, 38–40

continuously differentiable (see Continuously differentiable 

functions)

entire, 42, 112
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Function(s) (Cont.):

functions, 78–84

gamma (see Gamma function)

harmonic (see Harmonic functions)

hyperbolic, 78–84

limits of, 33–38

meromorphic, 112–114

multi-/single-valued, 33

plotting, 28–33, 66–70

Fundamental theorem:

of algebra, 137

of calculus, 127–128

GG
Gamma function, 209–224

alternative defi nition of, 211–213

beta function related to, 225

contour plot of modulus of, 220

defi ned, 209

as logarithmically convex on real axis, 222–223

as meromorphic function, 219

properties of, 219–223

recursion relation for, 210–211

residue of, 222

Stirling approximation for, 224

when 0 < z < 1, 213–218

zeta function in terms of, 225

Gauss’ mean value theorem, 137

Gauss’ Π function, 220

Geometric series, 101

Green’s functions, 244–246

Green’s theorem, 131–132

HH
Harmonic conjugate, 62–63, 232–234

Harmonic functions, 42, 61–63, 231–232

Harmonic series, 101

Heaviside step function, 169

Holomorphic functions, 51, 59

Hyperbolic functions, 78–84

cosine, 79–84

derivatives of, 88

period of, 83

sin, 82–84

tan/sec/csc, 84

II
Identity:

with respect to addition, 11

with respect to multiplication, 11

Imaginary axis, 5

Imaginary number (i), 1

Imaginary part(s):

addition of, 120

of complex number, 2

contour plot of, 70

of function, 24, 26

limits in terms of, 34

Infi nite series, 94

Infi nite strips, 192–194

Infi nity:

limits involving, 38

singularity at, 112

Integral(s):

complex (see Complex integration/integrals)

contour (see Contour integral)

of difference, 119

of rational function, 155–161

Integration by parts formula, 170

Invariant, 201

Inverse:

additive, 11

cosine, 78

of exponential, 74

of formulas, 14

of Laplace transform, 179–181

multiplicative, 6, 11

Inverse mapping, 205

Inverse trigonometric function, 78

JJ
Jordan arc, 122

Jordan’s lemma, 153, 154

KK
Kronecker delta function, 141

LL
Laplace equation, inside unit disk, 239–241

Laplace transform, 167–181

defi ned, 167–168

and differentiation, 174–179

examples of, 168–171

inverse of, 179–181

properties of, 171–173

Laplace transform pair, 168, 169

Laplace’s equation:

on disks, 138–139

and harmonic function, 231–232

with Neumann boundary conditions, 241

Laurent series, 109–111, 113, 149

Laurent series expansion, 145, 146, 148

Leibniz notation, 43–45

L’Hopital’s rule, 50
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Limits:

of complex functions, 33–37

of integration, 120

involving infi nity, 38

of sequences, 92

Line integrals, complex, 124–127

Linear transformations, 184–188

Linearity properties, of integral, 172

Liouville’s theorem, 136–137

Logarithm:

defi ned, 74–75

derivative of, 86

Taylor expansion of, 100

MM
Maclaurin series, 98, 102

Magnitude, 12

Mapping:

1/z, 190–192

conformal, 190, 234

illustration of, 183–184

of infi nite strips, 192–194

Riemann theorem of, 203–204

of Schwarz-Christoffel transformation, 

204–207

Maximum modulus theorem, 137

Meromorphic function, 112–114

Minimum modulus theorem, 137

Möbius transformations, 195–201

Modulus:

of complex number, 3, 12

of complex variable, 5

contour plot of, 67, 220

of gamma function, 220

maximum/minimum modulus theorem, 137

multiplication of, 15

properties of, 12

of Riemann zeta function, 226, 227

Monotonic decreasing sequence, 95

Monotonic increasing sequence, 95

Morera’s theorem, 132

Multiple poles, 146

Multiplication:

and analytic functions, 60

associative law of, 11

commutative law of, 11

of complex numbers, 2, 7, 14, 48

and convolution, 178–179

of moduli, 15

(See also Product)

Multiplicative inverse, 6, 11

Multivalued functions, 33, 88, 89

NN
Natural logarithm, 74–75, 87

Necessary condition (of analytic function), 60

Negative direction, 123–125

Neighborhood, deleted, 33

Neumann boundary conditions, 241

Neumann problem, 231

Nonterminating principal part, 148

nth root test, 96

nth roots of unity, 16–19

nth term in sequence, 91

OO
ODE (ordinary differential equation), 176

1/z mapping, 190–192

Open curve, 122

Open disks, 34–37

Ordinary differential equation (ODE), 176

Orthogonality integrals, 141

PP
Parabola, 188

Partial fraction decomposition, 166

Partial sums, 94

Pascal’s triangle, 9–10

Period, of hyperbolic functions, 83

Plotting:

of complex exponential, 70–72

of complex functions, 28–33, 66–70

Poisson kernel, 156

Poisson’s formula:

for circles, 138–143, 234

for half plane, 235

Polar form, 14

Polar representation:

of Cauchy-Riemann equations, 57–59

of complex functions, 27–28

of complex numbers, 12–16

Pole of order n, 111

Polygons, mapping, 205–206

Polynomials:

complex, 65–70

defi ned, 65

derivative of, 45–46

Positive primes, 227

Positive sense, 123, 124

Power, raising to a, 15

Power series:

defi ned, 97

Taylor/Maclaurin, 98

theorems on, 98–100
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Power series expansion, 14, 144, 145

Primes, positive, 227

Principal branch, 75

Principal part, 154

defi ned, 146

nonterminating, 148

of series, 111, 113

Principal value, 13, 75

Product:

and analytic functions, 60

of complex functions, 120

Product rule, 48

Punctured disc, 145–147

QQ
Quiz solutions, 255–260

Quotient, 60

Quotient rule, 49

RR
Raabe’s test, 97

Radius of convergence, 94, 97, 104–106

Ratio test, 96, 104–105

Rational function, integral of, 155–161

Rays, 192

Real axis, 5

Real part(s):

addition of, 120

of complex number, 2, 7

of function, 24, 25

limits in terms of, 34

Reciprocal, of complex numbers, 15

Reciprocation, 196

Rectangular region, transformation of, 

185–188

Recursion formula, 221

Recursion relation, 210

Refl ection principle, 63

Removable singularity, 111, 145, 147

Residue theorem, 148–151, 164

Residues, 149–161

computing, 150–152

defi ned, 149

and rational function integrals, 155–161

and real defi nite integrals, 151–155

Riemann, George Friedrich Bernhard, 51

Riemann mapping theorem, 203–204

Riemann zeta function, 225–229

as analytic function, 227–229

contour plot of modulus of, 227

modulus of, 226

Root (of number), 16–19

Root test, 106

Rotation, of region, 195, 196

Rouche’s theorem, 138

SS
Sampling function, 143–144

Schwarz-Christoffel transformation, 

203–207

applications of, 203

defi ned, 203

mapping, 204–207

Secant function:

derivative of, 88

hyperbolic, 84

in terms of exponentials, 76

Sense, of curve, 123

Sequences, 91–93

bounded, 95

of complex functions, 92–93

limits of, 92

monotonic increasing/decreasing, 95

Series:

alternating harmonic, 101

of Bessel function, 101

common, 100–109

convergence of, 94–97, 106–109

of cosine function, 101–104

disc of convergence for, 104–105

geometric, 101

harmonic, 101

of hyperbolic sine, 102–103

infi nite, 94

Laurent, 109–111

power, 97–100

radius of convergence for, 106

and singularity, 111–112

Taylor/Maclaurin, 98

Shrinkage, of region, 194, 195

Simple closed curve, 122, 123

Simple curve, 122, 123

Simply connected region, 235

Sin function:

derivative of, 87

hyperbolic, 82–84

series representation of, 102–103

Taylor expansion of, 100

in terms of exponentials, 75–78

Single-valued functions, 33

Singular point of z, 59–60, 111, 114

Singularity, 111

defi ned, 59–60

essential, 111, 148

of function, 146–147, 150

at infi nity, 112
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nature of, 147

at origin, 28

removable, 111, 145, 147

Square region, transformation of, 

187–188

Standard Cartesian notation, 25

Stirling approximation, 224

Subtraction:

and analytic functions, 60

of complex numbers, 2, 8

Suffi ciency condition (of analytic function), 60

Sum(s):

and analytic functions, 60

integral of, 119

partial, 94

TT
Tangent function:

derivative of, 88

hyperbolic, 84

Taylor expansion of, 100

in terms of exponentials, 75

Taylor series expansion, 13, 98, 100

Time scaling, 172–173

Time shifting, 173

Transform:

defi ned, 167

Laplace (see Laplace transform)

Transformation(s):

fi xed points of, 201–202

linear, 184–188

Möbius, 195–201

rules of thumb for, 194–195

Schwarz-Christoffel, 203–207

zn, 188–190

(See also Mapping)

Translation, 196

Triangle inequality, 12

Triangular region, transformation of, 189–190

Trigonometric functions, 75–78, 87–88

(See also specifi c trigonometric functions, 

e.g., Cosine function)

UU
Uniformly convergent series, 97, 108

Unit step function, 169

VV
Value, of function, 22

WW
Weierstrass M-test, 97, 99–100, 107

XX
x axis, approaching origin along, 37

YY
y axis, approaching origin along, 37

ZZ
z plane, 5

Zeta function, Riemann (see Riemann zeta function)

zn transformation, 188–190




