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Chapter 1

SECTION 2

1.

(@) (N2-i)-iQ-2i)=2-i-i—-~2==2i
(b) (2,-3)(-2,1)=(—4+3,6+2)=(-1,8);

11 11
(c) (3’1)(3’_1)(?—1_6)_(10’0)(5’5)—(2’1)'

(a) Re(iz) =Re[i(x +iy)]=Re(-y+ix)=—-y=-Imz;

(b) Im(iz) =Imfi(x +iy)] = Im(-y+ix)=x=Rez.

(142 =(1+2)(1+2)=1+2)- 1+(A+2)z=1-A+2)+ z(1+2)

=l+z+z+2° =1+2z+7".
If z=1+i then 22 —2z+2=(1%i)?-2(0%i)+2=%2i-2F2i+2=0.

To prove that multiplication is commutative, write

42y = (X, Y)(X2,¥,) = (X%, = Y Y55 V1%, + X13,)
= (X%, = Yo Y Yo Xy + X 01) = (X, Y,)(X, 3)) = 2,2,

(a) To verify the associative law for addition, write

(2, +2,)+ 23 =[(x,3) + (2, )1+ (X3, 3) = (%, + X5, 3, + y,) +(X3,53)
=((x + )+ x5, () +y,) + y3) = (% + (%, + x3), y +(y, +33))
= (2, Y + (X + X3, ¥, + ¥3) = (%, 3,) (x5, ¥,) + (X3, 13)]
=7, +(z, + 35).



(b) To verify the distributive law, write

2z +2,) = (6, (X, 1) + (x5, 9,)]1 = (5, )(x, + x5, 3+ y,)
= (xx; + XX, = YY) = ¥¥,» X, + yX, + Xy, + xy,)
= (XX = yy; + XX, =YYy, X, + Xy, + yx, + X3;)
= (XX, = Yy, yX; + 2x9) + (X%, = Yy, ¥X, + XY;)
= (X, Y)(x, 3,) + (X, y)(x,,y,) = 25, + 22,.

9. (—I)Z = (_1’0)(x7 )’) = (_x’_y) =-2Z.

11. The problem here is to solve the equation z> +z+1=0 for z=(x,y) by writing
(%, y)(x, y) + (x,y)+(1,0) = (0,0).
Since
(x* =y* +x+1,2xy+ y)=(0,0),
it follows that
¥*—~y’+x+1=0 and 2xy+y=0.

By writing the second of these equations as (2x+1)y =0, we see that either 2x+1=0 or

y=0. If y=0, the first equation becomes x>+ x+1=0, which has no real roots
(according to the quadratic formula). Hence 2x+1=0, or x=—1/2. In that case, the first

equation reveals that y* = 3/4, or y =++/3/2. Thus

1 .3
= ==, =
z=(x,y) ( > )
SECTION 3
1. (a) 1+21. + 2—01 _ (1+2l')(3+4l.) + (2—.1)(—51) _ -5+ 10i + -5-10i =_g;
34 5i (3-4i)3+4i) (50)(-5i) 25 25 5
5i 5i 5i 1

(b) , . — = . — = - =——
(1-H2-dB-i) (A-3)3B-i) -10i 2

(c) (1=d'=[A-DA-DI =(-2i)* =-4.

1 z z
2. —— == =—=z (z#0).
1/z z%' z 1 (z%0)



3. (35, 0z324) = 4[2,(232)1 = 31[(2,23)24 1 = 21[(252,)24)] = 21[25(2,24)] = (2,23 )(2524)-

R e
3 )\ 2 2 2 L )\ 2, 22 ) 43

I A Li e
22 \H N2 2, ¥4 ) % &)

SECTION 4

. 2 .
1. (a) z =2i, Zz=-3-—l

y
2,-2,
%
2+,
0 X
22
(b) z,=(-+3,1), z,=(~3,0)
Yy
% 4+2,

%




(c) z=(31D, z=(14)

3Z1+2,

&

(d) zy=x+iy, z,=x -1y

4+, x

Inequalities (3), Sec. 4, are
Rez<IRezl<lzl and Imz<IImzl <zl

These are obvious if we write them as
x<ld</x*+y* and y<Iyl<q/x*+y .

In order to verify the inequality v2 1zl >IRezl+|ImzI, we rewrite it in the following ways:

N24/x2 4+ 2 1xl+ 1y,
2(x* + y*) 21xl + 2xliyl + 1yl
|xf? = 2lxliyl + 1y >0,
(Ixl=1y? > 0.

This last form of the inequality to be verified is obviously true since the left-hand side is a
perfect square.



5. (a) Rewrite Iz—1+il=1as |c—(1—i)|=1. This is the circle centered at 1—i with radius 1.
It is shown below.

6. (a) Write lz—4il+Iz+4il=10 as Iz - 4il+lz— (—4i)l=10 to see that this is the locus of all
points z such that the sum of the distances from z to 4i and —4i is a constant. Such a
curve is an ellipse with foci +4i.

(b) Write lz—1l=Iz+il as lz—1l=lz—(-i)l to see that this is the locus of all points z such
that the distance from z to 1 is always the same as the distance to —i. The curve is,
then, the perpendicular bisector of the line segment from 1 to —i.

SECTION 5

() Q+if=(2+i) =Q-if=4-4i+’=4-4i-1=3-4i;
(d) 12Z2+5)(W2 =DI=12Z +511W2 —il=12z+ 51W2 +1 =3 12z +5I.

2. (a) Rewrite Re(Z—i)=2 as Re[x+i(-y—-1)]=2, or x=2. This is the vertical line
through the point z =2, shown below.




(b) Rewrite 127 +il=4 as 2

il i .. . i
7+ 5 ' =4, 0r |z— —‘ = 2. This is the circle centered at — with

radius 2, shown below.

if2

3. Write z, = x, +iy, and z, = x, +iy,. Then

7 =2, = (X +iy) — (x5, +iy,) = (X, — ) +i(y, — y,)

=X —x) =iy -y)=0-)—(x,—iy,) =7, - %,
and

E = (x; +iy Nx, +iy,) = (X%, = yy,) +i(yx, + x,5,)
= (X%, = ) ,) — (%, + %, y,) = (X — iy, X, —1y,) =22,

4. (a) 72,2, =(3,)5, =225, % = (z, 22)23 =2,2,%;

2a_== —===

(b) z*=7'7"=7"z =zzzz=(22)(22)=zzzz=24.

23%3 2R3 2
(b) 7 |zt izl
2213 IZ2Z3I |Z2”Z3I

7. In this problem, we shall use the inequalities (see Sec. 4)
IRezISIzl and |z, +z, + 23| S|g) |+ |2] + ey
Specifically, when 1zI<1,

[Re(2+Z+2")| <12+ 2+ 1S 2+ +12' | = 2+12l+I S 2+ 1+ 1= 4.



9. First write z* —4z% +3 = (2> —1)(z* = 3). Then observe that when lzl=2,

and

122 = 1212711 = [1zP -1 | =14 - 11=3

12” =312 |I12?1-131| = |1z -3| =14 - 3I=L.

Thus, when Izl=2,

Iz* — 472 +31=12 =111z = 3123-1=3.

Consequently, when z lies on the circle |zl=2,

10. (a)

(b)

11. (a)

1l_1 1
|

<—.
2472 +3] 1Y -422+317 3

Prove that z isreal & 7=z

(&) Suppose that 7 =z, so that x—iy=x+iy. This means that i2y=0, or y=0.
Thus z=x+i0=x, or z is real.

(=) Suppose that z is real, so that z=x+i0. Then Z=x-i0=x+i0=z.

Prove that z is either real or pure imaginary < 7> =z°.

(<) Suppose that z°=z>. Then (x—iy)* =(x+iy)’, or i4xy=0. But this can be
only if either x=0 or y=0, or possibly x=y=0. Thus z is either real or pure
imaginary.

(=) Suppose that z is either real or pure imaginary. If z is real, so that z = x, then
72 = x* = 7%, If z is pure imaginary, so that z =iy, then z° = (—iy)’ = (iy)’ = Z°.

We shall use mathematical induction to show that
m:z} +Z,+ 473, (n=2,3,...).

This is known when n =2 (Sec. 5). Assuming now that it is true when n =m, we may
write

yHz et 2, H 2, =@t et 2,) H 2,

=(gy+++2,)+ 4,

=4+ 5+ 4Z,) + 7,

= Z] + Z2+. ' '+.Z—m + zm+l'



(b) In the same way, we can show that

zlzz..-znzzl 2'2---2" (n=2,3,...).

This is true when n =2 (Sec. 5). Assuming that it is true when n = m, we write

%2 Tt = (220 2 )21 = (2125 2) T

=(2% " 2 )2t =220 ZonZmr -

Z+Z

13. The identities (Sec. 5) zz =IzI* and Rez = enable us to write 1z —z,l=R as

(Z _Zo)(Z_ZO) = st
Z— (2 +Z) + 2% = R,

|21 — 2Re(2zy) + 12, = R®.

14. Since x= % and y= %’ the hyperbola x*> —y* =1 can be written in the following
i

ways:
(z+2)2_(z—2)2=
2 2i ’
2427 +7 -2 +7° )
4 4 ’
272+ 272 1
4 ,
Z+7 =
SECTION 8

1. (a) Since

arg(_2 l_ 21_) = argi —arg(-2 — 2i),

one value of arg( ) is E—(—3—”), or 271 Consequently, the principal value is
—2-2j 2 4 4
57 _ 2w, or —-—?ﬂ.
4 4

(b) Since

arg(+/3 —i)° = 6arg(\/3 - i),



one value of arg(+/3 —i)® is 6 z , or —7. So the principal value is -7+ 2, or 7.
s 6

The solution 0 = & of the equation le”® —11=2 in the interval 0 <8< 27 is geometrically
evident if we recall that ” lies on the circle 1zl=1 and that le® — 11 is the distance between
the points ¢ and 1. See the figure below.

Here z=re® is any nonzero complex number and n a negative integer (n=-1,-2,...).
Also, m=-n=1,2,.... By writing

(Zm )—1 = (rmeimG)—l — _I”Tei(—me)
r
and
Y = [1 ei(—e)]m _ (l)m gemo - 1 m®.
r r rt

we see that (z")"'=(z")". Thus the definition z" =(z™")™ can also be written as
Zn = (Zm )—l‘

First of all, given two nonzero complex numbers z, and z,, suppose that there are complex
numbers ¢, and ¢, such that z, = c,c, and z, = ¢,C,. Since

Iz l=lcllc,l and Iz,l=lc,lic,|=lclIc,|,
it follows that iz,1=lz,|.
Suppose, on the other hand, that we know only that Iz,|=Iz,|. We may write

7 =rexp(i6,) and gz, =r exp(i6,).

If we introduce the numbers

¢ =r exp(i 6 ; 02) and ¢, = exp(i % ; %, ),

we find that

cc,=r exp(i % ; % )exp(i i 5 % ) =r,exp(if) =z,




10

and

G, =r, exp(i d ; %, )exp(—i d ; % ) =r,exp0, =z,.

That is,

z=¢c, and z,=cC,.
If S=1+z+7"+--+7", then

S—zS=(+z+2++") = (z+ 2+ 2+ -+ =1-"".

n+l1

Hence S = 1- , provided z #1. That is,

=2

n+l
—Z

l1+z+ 7+ +7" =
I-z

Putting z =" (0 < @ <27) in this identity, we have

. e o — gin+8
1+e +e?+ - +e™ = .
1_ etG

Now the real part of the left-hand side here is evidently

1+ cos@+cos26+---+cosnf;

and, to find the real part of the right-hand side, we write that side in the form

.0 AN .2n+1)0
1 —expli(n+1)0] exp 15 exp 12 exp IT

I —exp(i6) exp(—i —g—) exp(-—i g) - exp(i g)

(z#1).



10.

11

which becomes

6 .. 0 Qn+1)0 .. 2n+1)8
COSE—ISIHE—COS——lSln-— i

]

1

-2i sing
2

or

.0 . (2n+Dhoe| . 0 2n+1)0
sm5+sm—2— +1 COS—E—COS————-————

2
2sin 9
The real part of this is clearly
| sin 2n+1)0
4+ ______2_9_ ,
2 2sin—
2

and we arrive at Lagrange's trigonometric identity:

sin (2n+1)0

1+cosB+cosZB+---+cosn0=l+————29— 0<6<2nm).
2sin—

We know from de Moivre's formula that

(cos @ +isin 6)’ = cos360 +isin 36,
or
cos’ 8+ 3cos’ O(isin 0) + 3cos O(isin ) + (isin ) = cos30 + isin 36.

That is,
(cos’ @ —3cos @sin’® ) + i(3cos’ Bsin 6 —sin® 6) = cos 30 + isin 36.

By equating real parts and then imaginary parts here, we arrive at the desired trigonometric
identities:

(a) cos30 =cos’ @ —3cosBsin’ 0; (b) sin30 =3cos’ Osin O —sin’ 6.
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SECTION 10

1. (a)

(b)

»

Since 2i= 2exp[i(§ + 2k7r)] (k=0,%1,%2,...), the desired roots are

(2i)2 =2 exp[i(—;E + kn‘)]

That is,

. /3 n 1 i
=2 '”/4_4/2( Z 4isi _)_1/2(___;__]_“.'
Co e cos isin ) i

and
¢, =(V2e™h)e™ = —c, = —(1+i),

¢, being the principal root. These are sketched below.

y

St

Observe that 1—+/3i = 2exp|:i(—§ + 2k7t)} (k=0,%1,%2,...). Hence

(1-+/3i)"? =2 exp[i(—% + kn)]

The principal root is
i T .. T V3 i) _3-i
c, =V2e ’6=w/§(cos—6——zs1ng)=\f2_(—§——5)= 5
and the other root is
c1=(ﬁe—in/6)ein=_c0=_%l.

These roots are shown below.

<D\
¥

(k=0,1).

(k=0,1).



2.

13

(a) Since —16 =16expli(w +2kx)] (k=0,%1,12,...), the needed roots are

(=16)" = 2exp i(ﬁ + H)] (k=0,1,2,3).
4 2
The principal root is
‘ 1 I
c, =2e™* = 2(cos—7—t— + isinf) = 2(———— + —) =21 +i).
0 4 4 2 2 1+

The other three roots are
¢ =(2e™e™? = i =2(1+i)i=—2(1-1),

c, ___(2einl4)ein' =—c, =—’\/§(l+i),
and

¢y =(26™*)e™? = ¢ (i) = V2(1 +i)(=i) =v2(1 - i).

The four roots are shown below.

(b) First write —8 — 83i = 16exp i(—zg + 2k7£)] (k=0,%£1,%2,...). Then

(-8—8+/3i)"* = zexp[i(—% + %”)] (k=0,1,2,3).

The principal root is

co =2 = 2(cos%——isin%) = Z(Q—LJ =+3-i.
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The others are
c, = (2e7™)e™? = ¢yi =1+ 3i,
¢, = (e %)™ = —c, = —(\3 i),
¢, = (267 ™) = ¢ (=i) = —(1 +/30).

These roots are all shown below.

G

%]

3. (a) By writing —1=1expli(z+2km)] (k=0,%1,£2,...), we see that

(-3 = explii(E + 21(—”)] (k=0,1,2).
3 3
The principal root is
=€’ = cos—;r— +isinZ = ! +;/§l .

The other two roots are

and

All three roots are shown below.




15

(b) Since 8 =8expli(0+2km)] (k=0,%+1,%2,...), the desired roots of 8 are

816 = ﬁexp(ik?”) (k=0,1,2,3,4,5),
the principal one being
¢, = V2.
The others are
) 1 3 1+/3i
= 2m/3= 2( £+~£)= 2l =+ —j |= ,
G \2e \/_cos3 zsm3 «/_2 21 7
L 1 3 1-+/3i
= (\[2e7" )" =«/§(cos£— 'sinﬁ) —D=—2| =i |=- s
¢, =(N2e")e 3 ising (=1 ! 2
C3 = ‘\/Eei” = _ﬁ’
¢, =(2e™)e"™ =—¢, = - 1 -:[\2{5 ,
and
¢ = (V2e?™)el™ = ¢, = 1 :/}2/_31 .
All six roots are shown below.
y
A

The three cube roots of the number z, = —d\2 +42i = 8exp(i§4£) are evidently

(10)1/3 = 2exp|:i(§ + zgz)] (k=0,1,2).

In particular,

¢, = 2exp(i%) =V2(1+i).
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—1+4/3i

With the aid of the number @, = , we obtain the other two roots:

V2

¢, = 2 = (C,0,)®, = [—(«5 + 11/% (3- 1)1(—“2 «fii) _(3-1 4—5(@ +1)i

¢ = e, =1+ )( 1+ﬁ) —(\/§+1)+(\/§—1)i,

5. (a) Let a denote any fixed real number. In order to find the two square roots of a+i in
exponential form, we write

A=la+il=Va’+1 and «a=Arg(a+i).

Since
a+i=Aexpli(a +2knm)] (k=0,1,%2,...),

we see that

(a+i)? =vA exp[i(% + kﬂ)] (k=0,1).
That is, the desired square roots are

JAe®? and v Ae®%™ = —JAe®?,

(b) Since a+i lies above the real axis, we know that 0 < & < w. Thus 0< % < 12[—, and this

tells us that cos(%) >0 and sin(g-) > 0. Since coso = %’ it follows that

cos% = 1+ cosa __1_\/1+£_«/A+a

2 V7 2 2V A 244
1-cosa ___1_\/1_2_\/A—-a
V2 V2V A A24A°

i«fx(cos%ﬂsm ) w/‘(l//é}g ://é\/ﬁ)

and

.o
sin—
2

Consequently,

+\/Zeia/2

—_ \/A+a +ivA-a).

<‘
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6. The four roots of the equation z*+4 =0 are the four fourth roots of the number —4. To
find those roots, we write —4 = 4expli(r+2kn)] (k=0,11,12,...). Then

)4 =42 exp[ (4 kz” )J =~/2e™ e/ (k=0,1,2,3).

To be specific,

co=\/§ei"’4=\/_(cosz+zs1n”) w/_(\/— \/_)—1+i,

¢ =™ =(1+i)i=—1+i,

¢, =ce” =(1+i)~1)=~1-i,

e, =c ™ =(1+i)(-i)=1-i.
This enables us to write

H4=(z-c)(z-¢)(z-c)(z-¢)
=[z-c)(z-c)]-(z—¢,) (z—¢y)]
=[z+D)=ilz+D+i]-[(z—-D-illz-D+1i]
=[z+1)*+1]-[z-)* +1]
=(2*+22+2)(2* - 22+2).

7. Let c be any nth root of unity other than unity itself. With the aid of the identity (see
Exercise 9, Sec. 8),

1424 224 pg = L2 (z#]1),
1-z
we find that
l4ctcrtert=12C 1714
l1-¢ 1-¢

9, Observe first that

qro b m ®rov m

(Zum)-l=[Wexpi(e+2kn)]—l= 1 expi(—e 2km) 1 1( 9) 1(—2k7t)
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and

m & m

(Y = K/; i(=0+2km) 1 z( e) i(2kn’)’

where £ =0,1,2,...,m -1. Since the set

expﬂ'@— (k=0,1,2,....m-1)
m
is the same as the set
exp—l—(—gfﬂ (k=0,1,2,...,m-1),
m

but in reverse order, we find that (") = (z™)""™.

SECTION 11

1. (a) Writelz—2+ils1 as I1z—-(2-i)ls 1 to see that this is the set of points inside and on the
circle centered at the point 2 — i with radius 1. It is not a domain.

(b) Write 12z +3|> 4 as > 2 to see that the set in question consists of all points

-

exterior to the circle with center at —3/2 and radius 2. It is a domain.
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(c) Write Imz>1 as y>1 to see that this is the half plane consisting of all points lying
above the horizontal line y = 1. It is a domain.

(d) The set Imz =1 is simply the horizontal line y =1. It is not a domain.

(f) The set Iz—4I2lzl can be written in the form (x —4)® + y*> 2 x? + y*, which reduces to
x < 2. This set, which is indicated below, is not a domain. The set is also geometrically
evident since it consists of all points z such that the distance between z and 4 is greater
than or equal to the distance between z and the origin.
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4. (a) The closure of the set - <argz < (z = 0) is the entire plane.

(b) We first write the set IRezl<lzl as Ixl<+/x*+y*, or x* <x®+y’. But this last

inequality is the same as y*> >0, or |yi> 0. Hence the closure of the set |Rezl<lzl is the
entire plane.

(c) Since l=_§:=_£2_=_§2_—_£y_2, the set Re(—l—) s—l— can be written as —; u > sl, or
2 Z 2" x"+y 2/ 2 x“+y
(x> =2x)+y* =2 0. Finally, by completing the square, we arrive at the inequality

(x = 1)* + y* = 1%, which describes the circle, together with its exterior, that is centered
at z =1 with radius 1. The closure of this set is itself.
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(d) Since 7> =(x+iy)’* = x* —y* +i2xy, the set Re(z*)>0 can be written as y* < x?, or
Iyl<lxl. The closure of this set consists of the lines y=+x together with the shaded
region shown below.

5. The set S consists of all points z such that I1zl< 1 or 1z —2l< 1, as shown below.

Since every polygonal line joining z, and z, must contain at least one point that is not in S, it
is clear that S is not connected.

8. We are given that a set S contains each of its accumulation points. The problem here is to
show that S must be closed. We do this by contradiction. We let z, be a boundary point of §

and suppose that it is not a point in S. The fact that z, is a boundary point means that every
neighborhood of z, contains at least one point in S; and, since z, is not in S, we see that
every deleted neighborhood of S must contain at least one point in S. Thus z, is an
accumulation point of S, and it follows that z, is a point in S. But this contradicts the fact
that z, is not in S. We may conclude, then, that each boundary point z, must be in S. That
is, S is closed.
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Chapter 2

SECTION 12

1. (a) The function f(z)=

> is defined everywhere in the finite plane except at the

Z°+1
points z=zi, where z>+1=0.

1
(b) The function f(z)= Arg{—) is defined throughout the entire finite plane except for the
Z

point z=0.

(c) The function f(z)=—£—_: is defined everywhere in the finite plane except for the
Z+2Z

imaginary axis. This is because the equation z+Z =0 is the same as x=0.

(d) The function f(z)=

P is defined everywhere in the finite plane except on the
-lz

circle 1z1=1, where 1-1z*=0.

+7 -
3. Using x=2"% and y=u, write
2 2i

f(@=x*—y’—2y+i(2x—2xy)
_(z+7)’ +(z—f)2

4
2 —2 2 -2

2T . 2T,
=t 2 -+ —=7 7 +2k.
2 2

(z+2)(z-2)

+i(z—2)+i(z+2)—

SECTION 18

5. Consider the function

f(Z)=(§} =[x+l:y] (z#0),
z x—1iy

where z=x+1iy. Observe that if z=(x,0), then

f(z)=[x+iOJ -1

x—1i0

and if z=(0,y),

2
0+iy

= —2 | =1.
f(@) (O—iy)
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But if z=(x,x),

Flo)= xX+ix 2= 1_-!1 2=_1
x—ix 1-i '

This shows that f(z) has value 1 at all nonzero points on the real and imaginary axes but
value —1 at all nonzero points on the line y=x. Thus the limit of f(z) as z tends to 0
cannot exist.

2

10. (a) To show that im

- =4, we use statement (2), Sec. 17, and write
Z—yo0 Z—

(b) To establish the limit m =00, we refer to statement (1), Sec. 17, and write

z—>1(z_1)3
lim L =lim(z-1)*=0
-1 1/(2_1)3 -l ’
22+1

(c) To verify that lim

=oo, we apply statement (3), Sec. 17, and write

1_1 z-2°
o Z - _
]1_1}3 2 -0 1 2_0
b4 1 p4 +Z

~ | +1

Z

11. In this problem, we consider the function

az+b

(ad—bc#0).
cz+d

T(z)=
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(a) Suppose that ¢=0. Statement (3), Sec. 17, tells us that lim 7(z) = since

Z9eo

1
im _im B _C o
0 T(l/z) 0a+bz a

(b) Suppose that ¢#0. Statement (2), Sec. 17, reveals that lim T(z)=2 since

Fam ol C

b T 1 =ﬁma+bz___g.
=0 |z ] 0c+dz ¢

Also, we know from statement (1), Sec. 16, that lim 7(z)=co since

z~dfc

1 lim cz+d=

im ——= 0.
z>-dfc T(2) >-dfc qz+ b

SECTION 20

1.

(a) If f(z)=37"~2z+4, then

f’(z)=—‘-1—(3z2—2z+4)=3—d—z2—2iz+i4=3(2z)—2(1)+0=6z—2.
dz dz dz dz

(b) If f(z)=(1-4z")’, then

f'(z)=3(1"422)2di(1-4zz)=3(1—42:2)2(—82)=—24z(1—4z2)2.
Z
(c) Iff(z)=z——1 z¢_l then

2z+1 2 )

4 d
(2z+1)d_z(z—1)—(z—l)d—Z(ZZ“)=(2z+1)(1)—(z—1)2= 3

(2z+1)? (2z+1)? (2z+1)*

f'(@)=

244
@ 1 f@)=EE (220, then
Z

ZZ_d_(1+ZZ)4_(1+22)4_‘£_z2
dz

2 243 _ 2.4
Fl)=—% _2401+2)’Q0)-(1+2")*22

(Z2)2 (ZZ)Z

_22(1+2%)’[42° = (1+2")] _2(1+2°)' (32’ -1

4 3
¥4 <
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3. If w=1/z (z#0), then
1 1 A
+Az 7z (z+A%)z

Aw= f(z+Az)- f(2)=
Z

Hence
.‘.i_vf).=1imé_’f.=' __—1 _i_
dz 40A7 &90(z+A7)z 77

4. We are given that f(z )=g(z,)=0 and that f’(zo) and g’(zo) exist, where g’(z0)¢0.
According to the definition of derivative,

f@)-f(z, ) f(z)

f(z,))=lm
Z—)Zo Z ZO Z—)Z0 Z a— ZO
Similarly,
§(z)= lmng(z) 8(z,) llmg(z)
32y Z— Z 9 7— Z
Thus
L@ @IG=z) S I@IEmR) e
2 g(2) HZo 8(2)/(z—-z) hmg(z)/(z Z,) g(z)
SECTION 23

1. (a) f(R)=7=x—iy. SO u=x,v=—)y.
Inasmuch as u_ =V, = 1=~1, the Cauchy-Riemann equations are not satisfied
anywhere.

(b) f()=z-7=(x+iy)—(x—iy)=0+i2y. So u=0,v=2y.

Since u = v, = 0=2, the Cauchy-Riemann equations are not satisfied anywhere.
(c) f(z)=2x+ixy>. Here u=2x,v=xy’.

u=v =2=2xy=>xy=1.

U, == =0=—y’=y=0.

Substituting y=0 into xy=1, we have 0=1. Thus the Cauchy-Riemann equations do
not hold anywhere.

(d) f(z)=e’e?=e*(cosy—isiny)=e*cosy—ie*siny. So u=e*cosy, v=—e*siny.
ux=vy=>e"cosy=—e"cosy=>2e"cosy=0=>cosy=0. Thus
n
y=5+n7r (n=0,x1,%£2,...).

U ==v, =—¢'siny=e"siny=2e*sny=0=sny=0. Hence
y=nn (n=0,x£1,%£2,..).
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Since these are two different sets of values of y, the Cauchy-Riemann equations cannot
be satisfied anywhere.

zZ X ., =Yy

1 17
3. (a) f(R)=—=—T=—=———+i——. So
2 227 Iz x4y x"+y
u= 2x > and v= 2_yz'
X' +y X' +y
Since
y =x —2xy
= =y and y =———=—v (2 +y*#0),

x—(x2+y2)2_ y y_(x2+y2)2— x

f’(2) exists when z#0. Moreover, when z#0,

2_ .2 2 2
f’(Z)=u +iv = y2 x2 2+i 22xy2 2=_x :2xy2 Zy
A C o 5 N C o 3% (x*+y%)
e @ @ 1

@+ @ @@ &
(b) f(z)=x*+iy*. Hence u=x>andv=y". Now
x=vy=>2x=2yﬁy=x and uy=—vx=>0=0.
So f’(z) exists only when y=x, and we find that
f’(x+ix)=ux(x,x)+ivx(x,x)=2x+i0=2x.
(c) f(z)=zImz=(x+iy)y=xy+iyz. Here u=xyandv=y2. We observe that
u=v = y=2y=y=0 and u==v =>x=0.
Hence f’(z) exists only when z=0. In fact,

£/(0)=u_(0,0)+iv (0,0)=0+i0=0.

4. (a) f(z)=i4=(i4cos49]+i(——17dn46] (z#0). Since
r

4 r

J

~
u v

4
ru =——4—cos49=v and u =——sin48=-rv ,
r r4 [} 2} r4 r



fis analytic in its domain of definition. Furthermore,

. . 4
f’(z)=e"o(ur+ivr)=e"o[—-—soos40+if;sin40)

r r

4 _ 4 . .
=——se"e(cos40—isin49)=——5e"9e"49

(b) f(z)=\/;ei9’2=\/;cosg+i\/;sing (r>0,a<0<a+2x). Since
%r——% ‘w—%

u v

\/; 0 r.o

ru =——cos—=v, and u =———sin—=-rv,
T2 2 2 2 r
f1is analytic in its domain of definition. Moreover,

. 0

Q= +iv)=e™ ( cos— + J
2z ; f [4 2\/-— ) lzJ— 2
e -19 i6/2
cos—+isin—
2\/— [ ] W

1
2\/;e’9’2 2f(2)

(c) f(z)=53‘ecos(lnr2+ig“’sin(1nr) (r>0,0<0<2x). Since

v
u v

ru,=—e’sin(lnr)=v, and u,=-e’cosnr)=-rv,

f1is analytic in its domain of definition. Also,

f’(Z)=€_w(u,+iv,)=e“'|: e sm(lnr) e cos(lnr)]

r r

l [e cos(Inr) +ie” s1n(lnr):|—tM
e

5. When f(z)=x’+i(1-y)’, we have u=x"andv=(1-y)’. Observe that

x

u =vy=>3x2=—3(1—y)2=>x2+(1—y)2=0 and u =-v =0=0.

27
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7.

Evidently, then, the Cauchy-Riemann equations are satisfied only when x=0 and y=1.
That is, they hold only when z = i. Hence the expression

f'@)=u_+iv_=3x"+i0=3x"
is valid only when z = i, in which case we see that f’(i)=0.

Here u and v denote the real and imaginary components of the function f defined by means
of the equations

=2
Z /7 when z#0,
(2)=
f 0 when z=0.

Now

3_3 2 3_ 2
=22y Y 30

x*+y x*+y

u v

when z#0, and the following calculations show that
u, (0,0)= vy(0,0) and u (0,0)= -V, (0,0):

u(0+Ax,0)-u(0,0) . Ax

u (0 0)= lim = lim —=1,
Axr—0 Ax A0 Ax

y (0 0)= fim u(0,0+ Ay)—u(0,0) lim-0—=0,
Ay—0 Ay Ay—0 Ay

v (0,0)= lim v(0+ Ax,0)—v(0,0) ]im£=0,
Ax—0 Ax Ax—0 Ax

v, (0,0)= im 70.0+40=v0.0) _ o AV
Ay—0 Ay Ay—>0 Ay

Equations (2), Sec. 23, are

u cos@+u snl=u ,
X y r

—y rsinB+u rcos@=u_.
x y (4
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Solving these simultaneous linear equations for u_and u, we find that

sin@ ) cosf
u =u cos@~u — and u =u snb+u .
x r 2] y r 6
r r
Likewise,

sin@ ) cosf
v =v cos@—v — and v =v snf+v .

x r ] r y r [’} r

Assume now that the Cauchy-Riemann equations in polar form,
T =v,, u,=-rv,
are satisfied at z . It follows that

sin@ cos@ . ) cosf
u =u cosf@—-u —=vy +v sinf@=v sin@+v
x r [} r ] r r r ] r

) cos@ sin@ sinf@
u =u sinb+u =y ——v cos@=~| v cos@—v — |=—v .
y r [¢] r 2] r r r ‘] r x

9. (a) Write f(z)=u(r,0)+iv(r,0). Then recall the polar form
ru=v,, u,=-rv

of the Cauchy-Riemann equations, which enables us to rewrite the expression (Sec. 23)

fz)=e"u +iv)

for the derivative of fat a point z =(r,,6,) in the following way:

o 1 i —i —i
’ R ) e - . - .
f(z)=e [rvo ru"J — (u,+v,)) - (u,+,).
0
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(b) Consider now the function

f(Z)——=L=1e_ie = l(cosG-—isinG): cosd _;snf
¥4 re r r r r
With
cos6 sin@

u(r 9)———- and v(r,0)=——,
r

r

the final expression for f’(z,) in part () tells us that

when z#0.
10. (a) We consider a function F(x,y), where

z+7 -7
x=—— and y=——mor
2i

Formal application of the chain rule for multivariable functions yields

QE gl_ﬂ’_éc_ a_FQX_o"F Q_Ii 1 8F+ oF
dz Jdxdz dydz Jx dy 2i ox dy)

(b) Now define the operator

9 190,91
07 2lox dy)
suggested by part (a), and formally apply it to a function f(z)=u(x,y)+wv(x,y):

Q;f_:l if_.i_l_a_‘i =l§£+.’.2i
0z 2\dx dy) 20x 29y

=—;-(ux+ivx)+§(uy+ivy)=%[(ux—vy)+i(vx+uy)}

If the Cauchy-Riemann equations u =v,u =—v_are satisfied, this tells us that

af/ oz =0.
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SECTION 25

1.

(a) f(z2)=3x+y+i(3y—x) is entire since
——— ——
u =3=yv and u =l=-v.
X y y X

(b) f(z)=sinxcoshy+icosxsinhy is entire since

"'

u \4
ux=cosxcoshy=vy and uy=sinxsinhy=-—vx.
Ve oy g .y . .
(c) f(z)=e’sinx—ie™ cosx=¢e™sinx+i(—e™” cosx) is entire since

\_W_/

¥ v

u =e’cosx=v_ and u =—e’sinx=-v.
x y y x
(d) f(z)=(z*-2)e"e™® is entire since it is the product of the entire functions

g(z)=z>-2 and h(z)=e e =¢ *(cosy—isiny)=e *cos y+i(—e *siny).

The function g is entire since it is a polynomial, and 4 is entire since

u =—e ‘cosy=v_ and u =—e sny=-v.
X y y X

(a) f(z)=xy+iy is nowhere analytic since
—-— &

u=v =>y=1 and U ==v, =x=0,
which means that the Cauchy-Riemann equations hold only at the point z=(0,1)=i.
— Yl — Y .. — .y . . .
(c) f(2)=e€’e"=e’(cosx+isinx)=¢’ cosx+ie’sinx is nowhere analytic since
u \4
u =v =—e’sinx=¢’sinx=>2e’snx=0=>sinx=0
and
u,==v, = e’ cosx=—e’ cosx =>2e’ cosx=0=>cosx=0.
More precisely, the roots of the equation snx=0 are nwr (n=0,%1,+2,.), and

cosnmt=(—1)"#0. Consequently, the Cauchy-Riemann equations are not satisfied
anywhere.

Suppose that a function f(z)=u(x,y)+i(x,y) is analytic and real-valued in a domain D.
Since f(z) is real-valued, it has the form f(z)=u(x,y)+i0. The Cauchy-Riemann equations
W=V ,U ==V thus become “,=0’“y=0; and this means that u(x,y)=a, where a is a

(real) constant. (See the proof of the theorem in Sec. 24.) Evidently, then, f(z)=a. That is,
f is constant in D,
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SECTION 26

1. (a) 1t is straightforward to show that u tu = 0 when u(x,y)=2x(1-y). To find a
harmonic conjugate v(x,y), we start with u_(x,y)=2-2y. Now
u =y =v = 2-2y=3v(x,y)=2y~y* +¢(x).
Then
U, ==v, =-2x=—¢'(x)=¢'(x)=2x = ¢(x)= x’+c.
Consequently, A
v(x,y))=2y—-y +(x*+c)=x" -y’ +2y+c.
(b) 1t is straightforward to show that u_+u_ =0 when u(x,y)=2x~ x’+3xy’>. To find a
harmonic conjugate v(x,y), we start with u_(x,y)=2-3x"+3y". Now
u=v =v = 2-3x>+3y* =v(x,y) =2y-3x"y+ ¥ +§(x).
Then
u =-v =6xy=6xy—¢’(x)=¢’(x)=0=¢(x)=c.

y
Consequently,
v(x,))=2y-3x’y+y’ +c.

(c) It is straightforward to show that un+uyy=0 when u(x,y)=snhxsiny. To find a

harmonic conjugate v(x,y), we start with u_(x,y)=coshxsiny. Now

u=v =v = coshxsin y => v(x,y)=—coshxcos y+@(x).
Then
U ==v = sinhxcos y=sinhxcos y—¢’(x) = ¢'(x)=0= ¢(x)=c.

Consequently,
v(x,y)=—coshxcosy+c.

(d) 1t is straightforward to show that uxx+uw=0 when u(x,y)= 2y To find a
X" +y
. . . 2xy
harmonic conjugate v(x,y), we start with # (x,y)=-——-——. Now
: (x"+y%)
2xy x
U =y =y =—————m—m—=y(X,y)= > 2+q)(x).

x y y (x2+y2)2 x+y
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Then

2_ .2 2_ .2
4= T Gy PP =0=6 =

Consequently,

Suppose that v and V are harmonic conjugates of u in a domain D. This means that
u=v, u=-v and u =V, u=-V,
x y ¥y x x y y x

If w=v-V, then,
w=y -V =-u+u =0 and w =v -V =y —u =0.
x x x y y y y y x x
Hence w(x,y)=c, where c is a (real) constant (compare the proof of the theorem in Sec. 24).
That is, v(x,y)-V(x,y)=c.
Suppose that # and v are harmonic conjugates of each other in a domain D. Then

u=v, u=-v and v=u, v=-u.
y x x ¥y ¥y

It follows readily from these equations that

ux=0, uy=0 and vx=0, vy=0.

Consequently, u(x,y) and v(x,y) must be constant throughout D (compare the proof of the
theorem in Sec. 24).

The Cauchy-Riemann equations in polar coordinates are

ru =v, and u,==rv.

Now

mo=v,=m tu =v,
and

Uy =—1V U, =—1v .
Thus

2 oy oy .
ru_tmotu =mw, - g
and, since v, =V, we have

2 -
r u”+mr+u69—0,
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which is the polar form of Laplace's equation. To show that v satisfies the same equation,
we observe that

1 1
u9=—rvr =>Vr =—;—u8 =>V” =-r—2uo—;u9r
and

rur =v9=>voo=m,9.

Since U, =Uu,, then,

2 = —_— — =
rv +m +v, =u —m, —u,+m 0.

If u(r,0)=Inr, then

r2u” +mu tu, = rz[—iz]+r(-1—]+0=0.
r r

This tells us that the function u=Inr is harmonic in the domain r>0,0<0<2x. Now it

: . - 1
follows from the Cauchy-Riemann equation ru_=v, and the derivative u =— that v =1;
r

thus v(r,0)=0+¢(r), where ¢(r) is at present an arbitrary differentiable function of r. The
other Cauchy-Riemann equation u, =—-rv_ then becomes 0=-r¢’(r). That is, ¢’(r)=0; and

we see that ¢(r)=c, where ¢ is an arbitrary (real) constant. Hence v(r,0)=0+c is a
harmonic conjugate of u(r,0)=Inr.
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Chapter 3

SECTION 29

1.

(a) exp(2+3mi)=e’exp(23mi)=—e’, since exp(+3mi)=—L

2+4’“'=[exp%J[exp§]=J;[mg+m§]
f(f f] \f o

(c) exp(z+mi)=(expz)(expmi)=—expz, since expmi=—1.

(b) exp

First write
exp(z)=exp(x—iy)=e*e™® =e*cosy—ie*siny,
where z=x+iy. This tells us that exp(z)=u(x,y)+w(x,y), where
u(x,y)y=e'cosy and w(x,y)=—e"siny.

Suppose that the Cauchy-Riemann equations u=v and u =-v_are satisfied at some point

z=x+i. It is easy to see that, for the functions u and v here, these equations become cos

y =0 and sin y = 0. But there is no value of y satisfying this pair of equations. We may
conclude that, since the Cauchy-Riemann equations fail to be satisfied anywhere, the function
exp(Z) is not analytic anywhere.

The function cxp(zz) is entire since it is a composition of the entire functions z> and expz;

and the chain rule for derivatives tells us that

o)l 2ol

Alternatively, one can show that exp(z2) is entire by writing

exp(zz) = exp[(x + iy)z] = exp(x2 - yz)exp(iny)

= exp(x2 - yz)cos(2xy)+ iexp(x2 - yz)sin(ny)

Vv
u v

and using the Cauchy-Riemann equations. To be specific,

u =2x exp(x2 - yz)cos(ny) - Zye)(p(x2 - yz)sin(ny) =v,
and
u, = —2yexp(x2 - yz)cos(2xy) - 2xexp(x2 - yz)sin(2xy) =—
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Furthermore,

dizexp(z2)= u +iv = 2(x+iy)[exp(x2 - y2)cos(2xy)+ie)'1p(x2 —~ yz)sin(2xy)]

=2z exp(zz).

We first write
lexp(2z-+)|=[expl2x-+i(2y+D)| =¢>

and
Iexp(iz2)| = Iexp[—2xy+ i(x*— yz)]l =e2?,
Then, since
Iexp(2z+i)+exp(iz2)| <|exp(2z+ i)|+|exp(iz2) ,
it follows that
|exp(2z +i)+exp(®)|<e* +e7?.

First write
lexp(z2)| = |exp[(x+ iy)2]l = Iexp(x2 -y)+ i2xy| =exp(x’~y?)

and

exp(izl?) =exp(x* +y).

Since x*—y*<x?+y?, it is clear that exp(x®—y*)<exp(x’+y*). Hence it follows from the
above that

<exp(lzP).

-
To prove that |exp(—2z)l <l Rez>0, write
Iexp(—ZZ)I = |exp(—2x —i2 y)l =exp(—2x).

It is then clear that the statement to be proved is the same as exp(-—2x) <1 x>0, which is
obvious from the graph of the exponential function in calculus.



8.

(a) Write e*==2 as e'e” =2¢™. This tells us that

e*=2 and y=m+2nm
That is,

x=In2 and y=Q2n+hm
Hence

z=2+Q2n+)7xi
(b) Write e’ =14++/3i as e*e” =2¢"™ | from which we see that

X

e*=2 and y=-7—;-+2n7t
That is,

x=I2 and y=(2n+§-)7£
Consequently,
1
= 1112+[2n+gj7ti
(c) Write exp(2z—1)=1 as ¢* "¢’ =1¢'® and note how it follows that

e '=1 and 2y=0+2nrn

Evidently, then,

x=— and y=nn
2 y

and this means that

1 .
Z=—+nm
2

This problem is actually to find all roots of the equation

exp()=exp(iz) .
To do this, set z = x + iy and rewrite the equation as

ee " =e’e”.
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(n=0,%1,£2,.).

(n=0,%x1,22,..).

(n=0,£1,%£2,..).

(n=0,£1,£2,.).

(n=0,%£1,%2,..).

(n=0,£1,%2,.).

(n=0,£1,%£2,.).

(n=0,£1,%£2,..);

(n=0,21,%2,..).
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10.

12.

13.

Now, according to the statement in italics at the beginning of Sec. 8 in the text,
e’=e” and —-x=x+2nm,
where n may have any one of the values n=0,+1,+2,... Thus
y=0 and x=nx (n=0,%x1,£2,.).

The roots of the original equation are, therefore,

Z=nnw (n=0,%£1,%2,..).

(a) Suppose that e° is real. Since e’=e"cosy+ie*siny, this means that e*siny=0.
| YY y y Y

Moreover, since e” is never zero, siny=0. Consequently, y=nm (n=0,£1,%+2,...); that
is, Imz=nn(n=0,£1,%2,..)).

(b) On the other hand, suppose that ¢° is pure imaginary. It follows that cosy=0, or that

y=12t—+mt(n=0,i1,i2,...). That is, Imz=-§+mt(n=0,i1,i2,...).

We start by writing

zZ x=iy x .=y
2= 2 2= 2 2+l

Iz x"+y" x"+y

1z
z Z x*+y?

Because Re(e?)=e"cosy, it follows that

Re(e"*)=exp 2x ~ |cos 2—y2 =exp X leos| —2— |.
x'+y X +y P +y* x*+y

is analytic in every domain that does not contain the origin, Theorem 1 in Sec. 25

Since e

ensures that Re(e') is harmonic in such a domain.
If f(z)=u(x,y)+w(x,y) is analytic in some domain D, then

'@ = "V cosv(x,y)+ie" Y sinv(x, y).

Since e’® is a composition of functions that are analytic in D, it follows from Theorem 1 in
Sec. 26 that its component functions

U(x,y)=€““Y cosv(x,y), V(x,y)=e"""sinv(x,y)
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are harmonic in D. Moreover, by Theorem 2 in Sec. 25, V(x,y) is a harmonic conjugate of
U(x,y).
14. The problem here is to establish the identity

(expz)" =exp(nz) (n=0,£1,£2,.).

(a) To show that it is true when n=0,1,2,..., we use mathematical induction. It is obviously
true when n=0. Suppose that it is true when n=m, where m is any nonnegative
integer. Then

(expz)™' =(expz)”(expz) = exp(mz)expz =exp(mz+z) = expl(m+1)z].

(b) Suppose now that n is a negative integer (n=-1,-2,...), and write m=-n=12,.... In
view of part (a),
1) 1 1 1
(expz)" = = = = =exp(nz).
€xpz (expz)” exp(mz) exp(—nz)

SECTION 31

L (a) Log(—ei):1n|-ei|+iArg(.ei)=1ne_12t.i= 1_.75.,;

(b) Log(l—i)=1n|1—i|+iArg(1—i)=mﬁ—%:%mz—%i.

2. (a) loge=hhe+i(0+2nm)=142nmi (n=0,11,+2,...).

(b) logi=lnl+i(§+2n7t)=(2n+%)ni (n=0,£1,£2,..).

(c) bg(—1+\/§i)= ]n2+i(23—7—t+2nrc)= ln2+2(n+§)7ti (n=0,£1%£2,...).

3. (a) Observe that
Log(1+i)? = Log(2i) = In2+ =i
and 2
2Log(1+i)=2(]n 2+i-§-)=h2+§i.

Thus
Log(1+i)* = 2Log(1+1).
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(b)

(b)

S. (a)

On the other hand,
Log(~1+i)* = Log(~2i)= 1112—-72£i
and
2Log(—1+i)=2| In 2+i§7£ =1n2+—?zt-i.
4 2
Hence
Log(—1+i)* # 2Log(=1+1).
Consider the branch

logz=Inr+i0 r>0,F<<2 |
4 4
Since

log(i®)=log(~l)=h1+ir=7i and 2logi=2[1n1+i§J=m,

we find that log(i*)=2logi when this branch of logz is taken.
Now consider the branch
11
logz=Inr+i0 r>0,-3£<0<—” .
4 4
Here

log(i®)=log(~)=Inl+ir=mi and 210gi=2(lnl+i57n]=57ti.

Hence, for this particular branch, log(i®) # 2logi.

The two values of i"* are ¢™* and ¢"*™*. Observe that
inl4 | 1) .
log(e™")= ]nl+t[2+ 2nﬂ)=(2n+z)m (n=0,£1,%2,.)
and
isnl4 | 5= 1| .
log(e”™")=Inl+i -:‘—+2n7r = (2n+1)+z i (n=0,£1,£2,.).

Combining these two sets of values, we find that

log(i”2)={n+i}7ri (n=0,%1,£2,..).
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On the other hand,
1
-l—logi=-1— Inl+i £+2n7r =| n+— (7 (n=0,£1,%2,..).
2 2 2 4

Thus the set of values of log(i"?) is the same as the set of values of %logi, and we may

write
log(i"z):-;—logi.
(b) Note that

log(i2)= og(-D)=hl+(x+2nr)i=2n+)mi (n=0,x1,£2,.)
but that

2logi= 2lm1+i[-’25+2nn]]=(4n+1)m (n=0,£1,£2,.).

Evidently, then, the set of values of log(iz) is not the same as the set of values of 2logi.
That is,

log(i®) #2logi.

in/2 __ -

7. To solve the equation logz=in/2, write exp(logz)=exp(iz/2), or z=e i

10. Since In(x*+y?) is the real component of any (analytic) branch of 2logz, it is harmonic in
every domain that does not contain the origin. This can be verified directly by writing

u(x,y)=In(x+y*) and showing that u_(x,y)+ u_(x,y)=0.
SECTION 32
1. Suppose that Rez >0andRez, >0. Then

z,=rexpi® and z =rexpi0,,

where

——<0O <— and —£<G) <—.
2 2



42

The fact that -7 <© +0O, <7 enables us to write
Log(z,z,) = Logl@t,r,) exp i(®, + ©,)] = In(r,r,) +i(©, + O,)
=(nr, +i0,) + (nr, +i0,) = Log(r, exp i©,) + Log(r, exp iO,)
= Logz, +Logz,.

3. We are asked to show in two different ways that

z
log[—’J=logzl—logz2 (z,#0,2,#0).
z

2

. . Z . .
(a) One way is to refer to the relation arg[—‘}= argz, —argz, in Sec. 7 and write

z
F4 z
og| = |=h
ZZ

2
L
< Z

2z
+iarg[—l}= (Inlz I+iargz )—(nlz, |+iargz )=logz —logz,.

2 2

(b) Another way is to first show that log[lJ=—logz (z#0). To do this, we write z=re”

Z

and then

1 1 1) . .

log| — |=log| —e™ |=In| — |+i(-6+2nm)=—[Inr+i(6—2nr)]=-logz,

Z r r

where n=0,11,+2..... This enables us to use the relation
log(z,z,)=logz, +logz,

and write

z 1 1
log| + |=log| z,— |=logz,+log| — |=logz,—logz,.
z2 z2 Z2
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5. The problem here is to verify that

"= exp[llong (n=-1,-2,.),
n

given that it is valid when n=12,... To do this, we put m=—n, where n is a negative

integer. Then, since m is a positive integer, we may use the relations z'=1/z and 1/e*=¢™

to write
1 -1
Z1/n - (z]/rn)—l = [exp[_logZ)]
m
1 1 1
=1/ exp| —logz | [=exp| ——logz |=exp| —logz |.
m m n

SECTION 33

1. Ineach part below, n=0,%1,12,....

(a) (1+i)"=exp[ilog(1+i)]=exp{i[ 2+i[-§+2n7tﬂ}

= exp{%an - (-} + Znﬂ)] = exp(—% - Znn) exp(—;-InZ).

Since n takes on all integral values, the term —2n7 here can be replaced by +2nz. Thus

A+ =exp(—§+ 2n7r]exp(—i—]n2].
(b) (=1 = exp[%log(—l)] = exp{%[lnl+ i+ 2n7t):|} = exp[(2n + 1)i].

2. (a) P.V. ii=exp(tLogi)=exp[i(lnl+i§]]=exp(—§).

(b) P.V. [-;-(—1—«/51'”” =exp{3mog{§(—1—\/5i)}}=exp{m[lne—izgn

=exp(2n?)exp(i3m) =—exp(27?).

(c) P.V. (1—i>“"=exp[4z1.og(1—i)]=exp[“i(m\/E-i%ﬂ:e"efmﬁ
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= e”"[cos(41In \/5) + isin(4 1n\/-2—)] = e”"[cos(2In2) + isin(21n2)}.

Since —1+ \/gi =2¢*™?, we may write
(-1+ \/5i)3/2 - CXP[%IOg(_I + \/—3-i)] = exp {%[an + t(%ﬁ + 2n7t)]}
= exp[In(2*%) + (3n + D)mi] = 242 exp[(3n + D7i),

where n=0,+1,42.... Observe that if n is even, then 3n+1 is odd; and so exp[(3n+Dmi]=-1.
On the other hand, if n is odd, 3n+1 is even; and this means that exp[(3n+1)mi]=1. So only

two distinct values of (-1+ \/-3_i)3’2 arise. Specifically,

(—1+\/§i)3’2 = 12\/5.

We consider here any nonzero complex number z, in the exponential form z =r exp 0,

C
where —7<®_ <m. According to Sec. 9, the principal value of 7™ is {/Z exp[i—o—]; and,
n

according to Sec. 33, that value is

C) ¢
exp(%Logz)= exp[%(lnr0 +i0, )]= exp(ln Q/:o-)exp(i—’—zg]= %exp[i-;"—}

These two expressions are evidently the same.

Observe that when c=a+bi is any fixed complex number, where ¢#0,+1,12,.., the power

i‘=exp(clogi)= exp{(a+bi)|:ln1+i(%+ Znﬂ)]}
=exp[—b[§+2n7r]+ia(§-+ 2nnJ] (n=0,£1,22,.).

I l= exp[—b(g-+ 2n7rﬂ (n=0,£1,42,.),

i can be written as

Thus

and it is clear that 1i°| is multiple-valued unless b = 0, or ¢ is real. Note that the restriction
c#0,%+1,12,.. ensures that i° is multiple-valued even when b = 0.



SECTION 34

1. The desired derivatives can be found by writing

d . d(e*—e* t(d , d _,
—sinzg =— =—| —e“——e
dz dz 2i 2i\ dz dz

= zii(ie“z +ie™)

and

3. We know from Exercise 2(b) that
sin(z+z2)=sinzoosz2+ooszsinz2.

Differentiating each side yields

cos(z+z,) =coszcosz, —sinzsinz,.

Then, by setting z =z,, we have
cos(z, +2,) =c08z,€0sZ, —sinz, sinz,.
5. (a) From the identity sin>z+cos’z=1, we have

- 2 2
sin“z C€oOs“z 1
+ = , or l+tan’z=sec’z.

cos’z cos’z cos’z

(b) Also,

sin’z cos’z 1 2 2
— t———=-——, or l+cot"z=csc"z.
sn“z sn°z Sn°z

7. From the expression

sinz = sinxcosh y+ icos xsinh y,

45
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we find that
I'sinz P= sin® x cosh® y + cos’ x sinh®
y y
= sin® x(1 + sinh? y)+ (1—sin® x)sinh’ y
=sin’ x +sinh? y.
The expression
cosz=cosxcosh y+isinxsinhy,

on the other hand, tells us that

| cos z = cos® x cosh® y + sin® xsinh? y
= cos® x(1+ sinh? y) + (1 - cos® x)sinh® y

= cos’ x +sinh y,

Since sinh’ y is never negative, it follows from expressions (15) and (16) in Sec. 34 that

(a) Isinz*>sin*x, or Isinzl>Isinx|
and that
(b) lcoszP>cos*x, or lcosz!>lcosxl.

In this problem we shall use the identities
Isinz *=sin® x+sinh’ y, lcosz=cos®x+sinh’y.
(a) Observe that
sinh® y=Isinz > —sin® x <Isinz I’
and
I'sinz I*=sin® x + (cosh” y — 1) = cosh® y — (1 - sin’ x)
= cosh® y — cos® x < cosh® y.
Thus
sinh’ y<lsinz’<cosh’y, or lIsinhyl<lsinzI<coshy.
(b) On the other hand,
sinh® y=Icosz > —cos® x<lcosz I’
and
| cosz = cos® x + (coshz y—1) = cosh? y — (1 cos® x)

= cosh’ y —sin” x < cosh’ y.
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Hence
sinh’ y <lcosz’<cosh’y, or Isinhyl<|cosz|<coshy.

11. By writing f(z) =sinZ = sin(x — iy) = sinxcosh y —icos x sinh y, we have

F@)=u(x,y)+(x,y),
where
u(x,y)=sinxcoshy and v(x,y)=—cosxsinhy.

If the Cauchy-Riemann equations u =v,u =-v areto hold, it is easy to see that

cosxcoshy=0 and sinxsinh y=0.
Since coshy is never zero, it follows from the first of these equations that cosx=0; that is,

x=;+n7t (n=0%1,%2,.). Furthermore, since sinx is nonzero for each of these values of x,

the second equation tells us that sinhy=0, or y=0. Thus the Cauchy-Riemann equations
hold only at the points

z=12t-+n7r (n=0%1,£2,.).
Evidently, then, there is no neighborhood of any point throughout which f is analytic, and we

may conclude that sinZ is not analytic anywhere.
The function f(z)=cosz =cos(x —iy) = cos xcosh y + isin xsinh y can be written as

f@=u(x,y)+(x,y),
where
u(x,y)=cosxcoshy and v(x,y)=sinxsinhy.

If the Cauchy-Riemann equations U=V, U ==V hold, then

sinxcoshy=0 and cosxsinhy=0.

The first of these equations tells us that sinx=0, or x=nz (n=0,%1,+2,..). Since cosnm 0,

it follows that sinhy=0, or y=0. Consequently, the Cauchy-Riemann equations hold only
when

z=nrw (n=0x1,£2,.).

So there is no neighborhood throughout which f is analytic, and this means that cosz is
nowhere analytic.
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14. (a)

(b)

Use expression (14), Sec. 34, to write

cos(iz) = cos(—y + ix) = cos ycosh x — isin ysinh x
and
cos(iz) = cos(y + ix) = cos ycosh x — isin ysinh x.

This shows that cos(iz) = cos(i7) for all z.

Use expression (13), Sec. 34, to write

sin(iz) = sin(—~y + ix) = —sin ycosh x — i cos ysinh x
and
sin(iz) = sin(y + ix) = sin ycosh x + i cos ysinh x.

Evidently, then, the equation sin(iz) = sin(iZ) is equivalent to the pair of equations
sin ycoshx =0, cosysinhx=0.

Since coshx is never zero, the first of these equations tells us that sny=0.
Consequently, y=nn (n=0,%£1,£2,...). Since cosnm=(-1)"#0, the second equation

tells us that smhx=0, or that x=0. So we may conclude that sin(iz) = sin(i7) if and
only if z=0+mnw=nmi (n=0,x1,%2,...).

15. Rewriting the equation sinz = cosh4 as sinxcoshy+icosxsinhy=cosh4, we see that we
need to solve the pair of equations

sinxcoshy=cosh4, cosxsinhy=0

for x and y. If y=0, the first equation becomes sin x = cosh4, which cannot be satisfied by
any x since sinx<1 and cosh4 >1. So y#0, and the second equation requires that cosx=0.
Thus

x=-72£+nn: (n=0+1,42,.).

Since

sin(§+n7t]=(—l)”,

the first equation then becomes (—1)" cosh y = cosh4, which cannot hold when #n is odd. If n
is even, it follows that y==+4. Finally, then, the roots of sinz =cosh4 are

z=[§—+2nn)i4i (n=0+£1£2,.).
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16. The problem here is to find all roots of the equation cosz=2. We start by writing that

equation as cosxcoshy—isinxsinhy=2. Thus we need to solve the pair of equations
cosxcoshy=2, sinxsinhy=0

for x and y. We note that y#0 since cosx=2 if y=0, and that is impossible. So the second
in the pair of equations to be solved tells us that sinx=0, or that x=n7 (n=0%1,%+2,..). The

first equation then tells us that (~1)" coshy=2; and, since coshy is always positive, n must

be even. That is, x=2nr (n=0z%1,%2,.). But this means that coshy = 2, or y=cosh™2.
Consequently, the roots of the given equation are

z=2nm+icosh™2 (n=0%£1,£2,.).
To express cosh™ 2, which has two values, in a different way, we begin with

y=cosh™2,0r coshy=2. This tells us that ¢’ +¢~ =4; and, rewriting this as

() =4(e”)+1=0,

we may apply the quadratic formula to obtain ¢’ =2£+/3, or y= ]n(2i\/§). Finally, with the
observation that

In(2—v3)=In a=32+3) =ln[ ! ]:—m(2+J§),
2+\/§ 2+\/§

we arrive at this alternative form of the roots:

2=2nm+iln2+V3) (n=0%1,£2,.).

SECTION 35

1.

To find the derivatives of sinhz and coshz, we write

2

d . d| e —e* 1d et +e’
—sinhz =— e
dz dz

and

d dle*+e* 1d et —e’
—coshz=— =——-+(e*+e )= =sinhz.
dz ¢ dz( ) ( ¢ 2 z

Identity (9), Sec. 34, is sin’z+cos’z=1. Replacing z by iz here and using the identities

sin(iz) =isinhz and cos(iz) = coshz,
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we find that i*sinh® z + cosh’z =1, or
cosh?z —sinh*z =1.

Identity (6), Sec. 34, is cos(z, +z,) = cos z, cos z, — sinz, sinz,. Replacing z, by iz, and z,
by iz, here, we have cos[i(z, + z,)] = cos(iz, )cos(iz,) — sin(iz, )sin(iz, ). The same identities that
were used just above then lead to

cosh(z, + z,) = coshz, cosh z, +sinhz, sinhz,.

6. We wish to show that
Isinh xi<Icosh zI< cosh x

in two different ways.

(a) Identity (12), Sec. 35, is Icoshz” = sinh® x +cos’ y. Thus Icoshz® —sinh® x 2 0; and this
tells us that sinh?x<Icoshzl’*,orlsinhxi<Icoshzl. On the other hand, since
Icosh zI* = (cosh? x — 1) + cos? y = cosh? x — (1 - cos’ y) = cosh® x — sin’y, we know that
Icosh zI? —cosh? x < 0. Consequently, Icoshz® < cosh® x, or IcoshzI< cosh x.

(b) Exercise 9(b), Sec. 34, tells us that Isinh yl<lcoszI< coshy. Replacing z by iz here and
recalling that cosiz = coshz and iz = —y + ix, we obtain the desired inequalities.

7. (a) Observe that

. L e ) Gl _ e iyt ef—e .
sinh(z + i) = = = =- = —sinhz.
2 2 2 2
(b) Also,
L e p e T Gl Lo et et el te
cosh(z+ mi) = = = = = —coshz.
2 2 2 2

(c¢) From parts (a) and (b), we find that

sinh(z+ @) —sinhz _ sinhz

tanh(z + mi) = -
cosh(z+ mi) —coshz coshz

= tanh z.

9. The zeros of the hyperbolic tangent function

sinhz

tanhz =
coshz
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are the same as the zeros of sinhz, which are z=nzi (n=0,%1,+2,...). The singularities of

tanhz are the zeros of coshz, or z= (g + nn’)i (n=0,£1,%£2,...).

15. (a)

(b)

Observe that, since sinhz =i can be written as sinh xcos y + icosh xsiny = i, we need to
solve the pair of equations

sinhxcosy=0, coshxsiny=1.

If x=0, the second of these equations becomes siny=1; and so y=§+2n7c

(n=0,%£1,%£2,...). Hence

z=(2n+—;—)m' (n=0,£1,%2,...).

If x # 0, the first equation requires that cosy=0, or y= —72£ +nrw (n=0,21,+2,...).

The second then becomes (—1)"coshx =1. But there is no nonzero value of x satisfying
this equation, and we have no additional roots of sinhz =1i.

. 1 - . 1 .
Rewriting coshz = 3 as coshxcosy+isinhxsiny = > we see that x and y must satisfy

the pair of equations

1 . .
coshxcosy= 5 sinhxsiny = 0.

L . . 1
If x =0, the second equation is satisfied and the first equation becomes cosy = 3

Thus y= cos™ % = ig- +2nn (n=0,x1,%2,...), and this means that

z=(2ni%)7ti (n=0,%1,%£2,...).

If x#0, the second equation tells us that y = nw (n=0,%1,£2,...). The first then

1 . . . .
becomes (—1)" coshx = > But this equation in x has no solution since coshx > 1 for all

x. Thus no additional roots of coshz = % are obtained.
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16.

Let us rewrite coshz=-2 as coshxcosy+isinhxsiny=-2. The problem is evidently to
solve the pair of equations

coshxcosy=-2, sinhxsiny=0.
If x=0, the second equation is satisfied and the first reduces to cosy=—2. Since there

is no y satisfying this equation, no roots of coshz = -2 arise.
If x#0, we find from the second equation that siny=0, or y=nz (n=0,%£1,£2,...). Since

cosnm = (—1)", it follows from the first equation that (—1)" cosh x =-2. But this equation can
hold only when 7 is odd, in which case x = cosh™ 2. Consequently,

z=cosh™ 2+ 2n+ i (n=0,%1,%2,...).

Recalling from the solution of Exercise 16, Sec. 34, that cosh™ 2 = +1n(2 +/3), we note that
these roots can also be written as

z=*In(2+/3)+2n+Dri (n=0,+1,£2,...).
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Chapter 4

SECTION 38
21 Y 2y 2t 1 1
2. (a) -—i | dt=|| =——1|dt-2i| —=-—-2iln2=———iln4;
(] el - oo
nl6 i2 /6 .
(b) Iei2’dt= ¢ o cosErianT -1 =-\-/—_?1+i;
) 2| 2 3 3 | 4 4

(c) Since le™**l=¢™®*, we find that

[ b -zt t=b
1
Je‘“dt=lim e'”dt=lim[e ] =1 lim(l—e"bz)=— when Re z > 0.

b—roo b—roo]| — b—yeo
0 0 21, < Z

3. The problem here is to verify that

ije,,,ﬂe_,,,ode_ 0 when m#n,
0 2 when m=n.

To do this, we write
2n 2n
I= J.e'”ee"‘o do= je“'"'""’de
0 0

and observe that when m#n,

2z
i(m—n)8
1= < 1 ' .
i(m—n) 0 i(m—n) i(m—n)
When m=n, Ibecomes
2r
I=[do=2r;
0
and the verification is complete.

4. First of all,

4 ¥ n
j e gl = _[ ¢* cosxdx+i j e*sinxdx.
0 1] 0

But also,

]t'e(m)xdx: " =e"ei”—1=—e"—l_l—i=_1+e”+i1+e".
0 1+ 0 1+i 1+ 1-i 2 2
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Equating the real parts and then the imaginary parts of these two expressions, we find that

1+€”

1+e” x
¢ and [ sinxdv="",
) 2

n
je‘ cosx dx=—

0

S. (a) Suppose that w(r) is even. It is straightforward to show that u(f) and v(f) must be even.
Thus

j w(t)dt = j u(t)de+i j v(t)dt =2ju(t)dt+ 2i jv(t)dt

-a -a 0 0

= Zl:ju(t)dt+ ijv(t)dt:' = 2].w(t)dt.

0 0 0

(b) Suppose, on the other hand, that w(f) is odd. It follows that u(f) and v(f) are odd, and so

j w(t)dt = j‘ u(t)de+i j v(t)dt=0+i0=0.

SECTION 39
1. (a) Start by writing
I= _[ w(=t)dt = j u(—t)dt+ij v(-t)dt.
-b -b -b

The substitution 7=—¢ in each of these two integrals on the right then yields

I= —ju(r)d’r —i j v(t)dt= ju(r)dr +i j v(T)dt = jw(r)dr.
b b a a a

That is,

_f w(=t)dt= j'w(r)d‘c.
-b a

(b) Start with

I= jw(t)dt = iu(t)dt+ i jv(t)dt

and then make the substitution #=¢(7) in each of the integrals on the right. The result
is
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B B B
1= [ulp(OW' (D)dT+i VgD (T)dr= [wlp(D)l¢' (2)dr.

That is,

b B
[widr=[wig(@ @)ar.

. The slope of the line through the points (,a) and (8,b) inthe 7¢ plane is

So the equation of that line is

_b-a
B-o

Solving this equation for ¢, one can rewrite it as

t—a (T-a).

Since t=¢(7), then,

_b-a _ af-ba
¢(1)—ﬂ_ar+ B .

If Z(7)=z[¢(7)], where z(¢)=x(t)+iy(t) and t=¢(7), then

Z(7)=x[¢()}+ [ ¢(7)].

Hence
, d . d ’ ’ (R4 ’
Z(1)= %x[¢(f)] + tzykﬁ(f)] = x"[¢(D)e"(7) + iy’ [¢p(D)]¢’ ()

= {x'[p(D]+ iy [Pp(D)]}¢'(7) = 2 [P(D)¢’ (),
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5. If w(t)=flz(1)] and f(2)=u(x,y)+i(x,y), z(£)=x(t)+iy(t), we have

W(t)=u[x(t),y(()]+ wlx(®), y(O)].

The chain rule telis us that

du dv
-——-ux+uy and —=vx+vy,
dt dt

and so
w'(t)= (uxx’ +u y)+ i(vxx'+ v, ).
In view of the Cauchy-Riemann equations u_= v, and u ==, then,
W)= x" —v y)+i(v x"+u y)=(u_+i )(x'+’).

That is,
w'(O)={u [x@),yO)]+ [x(0), yOINX' O+ O]= 2]’ (¢)

when t= -

SECTION 42

1. (a) Let C be the semicircle z=2¢® (0<0< ), shown below.

y

a

2 0

X

Then
J.iz-dz . ( +3)dz=j(1+—2.—9)2iei"de=2ij(e""+1)de
¢ b4 0 2¢' 0

i0 z
=2i[e—,+9] = 2i(i+ M +i) = —4 + 27i.
1
0

(b) Now let C be the semicircle z=2e® (1 <0<2x) just below.

y
-2 2

ANF
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This is the same as part (a), except for the limits of integration. Thus

0 2r
j—z—i%dz 2:[——+0} =2i(—i+2m—i—7)=4+27i.

n

(c) Finally, let C denote the entire circle z=2¢” (0<0<2x). In this case,

jc—dz Ari,

the value here being the sum of the values of the integrals in parts (a) and (b).

(a) Thearcis C:z=1+e€” (®<0<2x). Then

27 2n e,'zo 2%
_ i9 0 g _ [ i20 g0 _
Ic(z—l)dz—— f(1+e —1ie d0—tIe dG—zli—% j|

=_(ei4zz 12n) (1 D=0.

(b) Here C:z=x(0<x<2). Then

2 2 2
X
jc(z—l)dz= { (x—l)dx=|:7—x] =0.

0

In this problem, the path C is the sum of the paths C,, C,, C;, and C, that are shown below.

The function to be integrated around the closed path C is f(z)=me™*. We observe that

C=C +C,+C,+C, and find the values of the integrals along the individual legs of the
square C.

(i) Since C,is z=x(0<x<1),

1
JC ne™dz = n‘J.e’”dx =e" —1.
1
[1]
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(ii) Since C,is z=1+iy(0<y<1),

1 1
IC me™dz= n’Je"‘Hy idy= e"fciJ-e""'y dy=2e".
2
0

0

(iii) Since Cyis z=(1-x)+i(0<x <),

1 1
nZ _ ml(l-x)-il, _ n -KX — %
JCane dz—ﬂje (—Ddx=me Je dx=e"-1.
0

0

(iv) Since C,is z=i(l-y)(0<y<1),
1 1
L73 T ~w(l=y)i, | L imy g
_[04 e dz—ﬂje (—z)dy—mje dy=-2.
0 0
Finally, then, since

Jcﬂe"idz = IC e dz+ JC e dz+ IC e dz+ J'C e dz,
we find that l 2 3 ‘
Jcne”zdz =4(e" -1).

4. The path C is the sum of the paths

C,:z=x+ix’ (-12x<0) and C,:z=x+ix’ (0<x<1),
Using

f(z)=lonC, and f(z)=4y=4x3onC2,
we have
0 1
[ f@dz=] f)de+ jc F(2)de = j I(1+ 3x%)dx + [ 4231+ i3x%)dx
0
= jdx+3zj 2dx+4j' 3dx+121_[x5dx
0 . . s .
—I:x] +l|: :| +[x ] +21[x ]0 =1+i+14+2i=2+3i.
S. The contour C has some parametric representation z=z(t)(a<t<b), where z(a)=z and
z(b)=z,. Then

jcdz = iz'(t)dt = [z(t)]: =z(b)-z(a)=2z,-z,.
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To integrate the branch

Z—l+1 - e(-—l+t)bgz

(1z>0,0<argz<2m)

around the circle C:z=¢" (0<0<2x), write

2r 2n 2n
J'C 7 dz:J'ce(-Hi)bgz dz= J’e(-1+i)(h1+i9) e®d0=i e_ie_eeiod6=iJ.e_9d9=i(1—e_2”).
0 0 0

Let C be the positively oriented circle lzl=1, with parametric representation
z=¢€"(0<0<2n), and let m and n be integers. Then

jCzMZ"dz=T(ef”)m( ) igdg=i j im0 =46 1)

0

But we know from Exercise 3, Sec. 38, that

2n
L h
Iemee‘”9d9= 0 when m#n,
27 when m=n.

Consequently,

m—n 0 when m+l1#n,
J "7 dz= ]
¢ 2xi when m+1=n.

Note that C is the right-hand half of the circle x’+y*=4. So, on C, x=+/4—y*. This

suggests the parametric representation C:z= \/4— y* +iy(-2<y<2), to be used here. With
that representation, we have

=i(—y+y)dy+ij [\/‘l_yz_zn/dey
2 ] sl (3]

-2 -—y
N - .- R T .
=4z[s1n '(1)—sin '(—1)]:4,[5_(_5J]=4m.
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10. (a) Since
| fa=2)de= [ f(Re")Ric"de
and

| f@dz= j f(Re®)Rie*d,

we have

ICO fz—z)dz= jc f(2)dz.
(b) The results

dz
C

°Z—2Z,

=2ri

J @2 d=0(n=4142..) and |
are immediate consequences of part (a) and integrals (5) and (6) in Sec. 42.

11. (@) The function f(z) is continuous on a smooth arc C, which has a parametric

representation z=2z(t)(a<t<b). Exercise 1(b), Sec. 38, enables us to write

b B
[ flziz @de=[ flz@) 9w (D),

where

Z(t)=z[¢(7)] (@<t<p).
But expression (14), Sec. 38, tells us that

P ()=Z'(7);

and so

b B
[ ol 0di=] flz@)z (D).

(b) Suppose that C is any contour and that f(z) is piecewise continuous on C. Since C can
be broken up into a finite chain of smooth arcs on which f(z) is continuous, the
identity obtained in part (@) remains valid.
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SECTION 43

1. Let C be the arc of the circle 1z|=2 shown below.

Without evaluating the integral, let us find an upper bound for To do this, we

d.
J.c-z2__z__1_ )

note that if z is a point on C,
|2 -1|2]1221-1=|1zP ~1| =14-11=3,
Thus

1
-1

1
Iz2-1

<l
3

1 1
Also, the length of Cis Z(47£)=7t. So, taking M =§ and L=, we find that

<mr==2.
3

d
J-szil

2. The path Cis as shown in the figure below. The midpoint of C is clearly the closest point on

2
C to the origin. The distance of that midpoint from the origin is clearly T’ the length of C

being \/—2- .
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2

Hence if z is any point on C, Iz|2—2—. This means that, for such a point

Consequently, by taking M =4 and L =«/_2- , we have

d.
&

SML=4\/5.

3. The contour C is the closed triangular path shown below.

3i

.4 olx

To find an upper bound for Uc(ez ~2)dz l, we let z be a point on C and observe that

le"—ZISIe“I+IZI=e"+\/x2+y2.

But ¢* <1 since x<0, and the distance \/x2+y2 of the point z from the origin is always

less than or equal to 4. Thus le*~Z <5 when z is on C. The length of C is evidently 12.
Hence, by writing M =5 and L = 12, we have

| jc(ez—Z)dz|SML=60.

4. Note that if |zl=R (R>2), then

12221121z P +1=2R*+1

and

lz4+5z2+4l=Iz2+1|Iz2+4|2|IzI2 —1||tz|2—4|=(R2—1)(R2—4).



Thus

2z2-1

12z2° -1l < 2R*+1
2 +57°+4

1zt +522+41 (RE—1XR*—4)

when 1zl=R (R>2). Since the length of C R is TR, then,

T 1
_2+__
<_TRQR’+D) _ R[ R2) .
T (R -1)Y(R*—4) ( 1)[ 4]’
l-—— [ 1-—
R? R?

and it is clear that the value of the integral tends to zero as R tends to infinity.

J' 272 -1 2
Gz +57%+4

5. Here C_ is the positively oriented circle Izl=R(R>1). If zisapointon C,, then

Logz

2

___IlnR+z®ISInR+I®IS7r+lnR
2

R’ R? R’

since —w<O<z. The length of C_ is, of course, 277R. Consequently, by taking

=R hd L=27R,
R2
we see that
Lo
=y sm:m(’”m}
G 72 R
Since
im 7r+]nR=lim 1/R=0’
R—yo0 R Ro= ]
it follows that
Lo
im £2 4z =o0.
R 9C 2

63
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6. Let Cp be the positively oriented circle |zl=p (0<p<1), shown in the figure below, and
suppose that f(z) is analytic in the disk 1z1<1.

y

C

P
[14

N>

We let z™* represent any particular branch

1 1 1 0
2" =exp| ~—logz |=exp| ——(Inr+i6) |=—=exp| —i— (r>0,a<0<a+2n)

2 2 Jr 2
of the power function here; and we note that, since f(z) is continuous on the closed
bounded disk 1zI<1, there is a nonnegative constant M such that | f(z)I<M for each point z

in that disk. We are asked to find an upper bound for . To do this, we

J‘Cp Z_1/2f(Z)dZ

observe that if z is a point on Cp ,

Iz—l/zf(z),='z—1/2 I lf(Z)l < %

Since the length of the path C, is 27p, we may conclude that

J‘CP Z‘mf(z)dz

<M omp= 27M\[p.
7P
Note that, inasmuch as M is independent of p, it follows that

. -1/2 _
lim fc,, 22 f(2)dz = 0.

7. Consider the functions
Pn(x)=lj(x+iV1—x2 cose) do (n=0,1,2,..),
n 1]
where —1<x <1. Since

|x+i\/1—x2 cos0| =x?+(1-x)cos’ 0 Syx’ +(1-x%) =1,
it follows that
|Pn(x)|slj|x+h/1—x2 coselndesljde= 1
nO 7[0
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SECTION 45

1.

The function z" (n = 0,1,2,...) has the antiderivative z"*'/(n+1) everywhere in the finite
plane. Consequently, for any contour C from a point z, to a point z,,

2 n+l %2 n+l n+l
2z Z Z 1
jC anz = J-anz =[ :l -2 _ _ (Z;H — zln+1).
4 4

n+l| n+l n+l n+l

1

i1 . .
e ™" i+l 1+i
’ n T

NE L
—+i —+i

i +2i —i
,, 59
(b) _[ cos(%) dz=2|:sin(§ﬂo =25in(-g—+i)=2e 2 —2-ie 2 =—i(ei”’2e"—e"i”’2e)

0

e 1 1
=—i| —+ie|=—+e=e+—.
e e e

3 473
g | &= 1 1
(c) !(z 2) dz—li y } 770

Note the function (z --2:0)"‘1 (n=%1,%2,...) always has an antiderivative in any domain that
does not contain the point z=2z,. So, by the theorem in Sec. 44,

Jc (z—2,)"'dz=0

for any closed contour C, that does not pass through z,.

Let C denote any contour from z=-1 to z=1 that, except for its end points, lies above the
real axis. This exercise asks us to evaluate the integral

1
I= Jzidz,
-1
where 7' denotes the principal branch

7 =exp(iLogz) (Iz1>0,— w < Argz < 7).
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An antiderivative of this branch cannot be used since the branch is not even defined at
z=—1. But the integrand can be replaced by the branch

7' = exp(ilogz) (Izl >0, - g <argz< 37”)

since it agrees with the integrand along C. Using an antiderivative of this new branch, we
can now write

is1 !
b4 1 . . 1 ,
[ = - Dt — (=1 1= plF+Dogl _ ,(1+D)log(-D
[i+1:|_1 i+1[() D ] i+1[ :I

1 (i+1XIn1+i0) (i+1)Inl+im) 1 -r _im 1+e—” 1—i
=—le - =——(1-e"€e" )= —
i+1[ ¢ ] i+1( e7e") 147 1-i
1+e”
= 1-19).
> (1-19)

SECTION 49

2. The contours C, and C, are as shown in the figure below.

In each of the cases below, the singularities of the integrand lie inside C, or outside of C,;
and so the integrand is analytic on the contours and between them. Consequently,

jcl f(@dz= ICZ f(@)dz.
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(a) When f(z)= 3—71—_*-_—1-, the singularities are the points z =
Z

1
+—i.
3

(b) When f(z)= ,2;2, the singularities are at z =2nx (n=0,x1,+£2,...).
sin(z/2)

(c)When f(z)= T—Z-— the singularities are at z = 2n7mi (n =0,+1,+2,...).

(a) In order to derive the integration formula in question, we integrate the function et
around the closed rectangular path shown below.

y
—a+ bi a+ bi
.

-a 0 a X

Since the lower horizontal leg is represented by z=x (—a< x<a), the integral of

z

e along that leg is

j‘e"‘zdx = 2:‘1‘e"t2 dx.

-a 0

Since the opposite direction of the upper horizontal leg has parametric representation
z=x+bi (—a < x < a), the integral of v along the upper leg is

a a a a
- 2 2 _+2 2 2 . 2 12 .
-je G+ e = _gb je 5 gmi2br gy — gt j e cos2bxdx +ie’ _[ ¢ sin2bxdx,

—-a -a -a -a

or simply

a

—2¢” J e cos2bxdx.

0

Since the right-hand vertical leg is represented by z =a+iy (0 <y <b), the integral of

-_— 2 . .
e * along itis

b b

. . 2. . — 2 2 . ,
Ie @ idy = je* jey e *dy.
(1]

0
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Finally, since the opposite direction of the left-hand vertical leg has the representation
z=-a+iy (0 <y<b), the integral of e’ along that vertical leg is

b b
—J ~(atiy)’ idy =—ie™* je’zen“ydy.
0

0

According to the Cauchy-Goursat theorem, then,

2I < dx —2e J'e"‘2 cos2bxdx +ie™® je’ze"z“ydy —ie™ jeyz e*dy=0;

0 0 0

and this reduces to

a a b

—x? _p? _y2? (a2 ip? 2,
je * cos2bxdx=e™" Ie “dx et )Jey sin2aydy.
0 0

0

(b) We now let a— e in the final equation in part (a), keeping in mind the known
integration formula

and the fact that

b b
2.2 2 T 2
e @t )Iey sin2aydy|< e “*? )jey dy— 0 as a — .
0 0

The result is

j e cos2bxdx = -‘/—f-e-”z (b>0).
0

6. We let C denote the entire boundary of the semicircular region appearing below. It is made
up of the leg C; from the origin to the point z =1, the semicircular arc C, that is shown, and
the leg C; from z = -1 to the origin. Thus C=C, +C, +C,.
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We also let f(z) be a continuous function that is defined on this closed semicircular region
by writing f(0) =0 and using the branch

f(z)=re®”? (r>0,——;[-<0<37n)

of the multiple-valued function z'>. The problem here is to evaluate the integral of f(z)
around C by evaluating the integrals along the individual paths C,, C,,and C, and then

adding the results. In each case, we write a parametric representation for the path (or a
related one) and then use it to evaluate the integral along the particular path.

(i) C;:z=re® (0<r<1). Then

1

( 2 2
- 3/2
Llf(z)dz .({«/r'ldr-—li r ] =—,

0
(i) C,:z=1-€°(0<0<m). Then
2

T . Tt r2 . o2 2 .
ch f(Qydz= _([e'm -ie"d0 = z_(’;e'””de = z[ge’”’zl =—3—(—z -D= —§(I+z).

(iii) —=C;: z=re™ (0<r<1). Then

l in .l . 2 ! 2
_[Csf(z)dz=—J._C3f(2)dz=—‘([\/;e ’2(—1)dr=l‘([\/;dr=z[§r3’2:| =§,,

0

The desired result is
Jf(z)dz=j f(z)dz+J f(z)dz+j f(z)dz=g-—g(1+i)+gi=0.
C C, G, Gy 3 3 3

The Cauchy-Goursat theorem does not apply since f(z) is not analytic at the origin, or even

defined on the negative imaginary axis.

SECTION 52

1.

In this problem, we let C denote the square contour shown in the figure below.

5
|

~2i
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e *dz

(@) Icz—(ni/Z)

=2mife|  =2mi(-i)=2x.

2 .
(b) JC cosz dZ:J'C(cosz)/(z +8)dz=27ti|: czosz] . =2m(§)=1f4—‘.

(2" +8) z—0 18
(c) zdz = z/2 dz=27[l[_z_j| =2ﬂi(—l)=—ﬂ,
€2z+1 Yz-(-1/2) 212 4 2
coshz ., ¢ coshz _2mi| d’ m,
(d) .[c z* dz_J.c(z_O)3+1 dz= 3 [ECOShZ}FO—?(O)_O'
(e) J tan(z/zz) dz = tan(z/l2+)l dz= 2 [itan(i)]
C(z=xy) C(z—x,) 1! Ldz 2) ] en,

=27 (lsec2 ﬁ) = iﬂ:secz(—xl) when -2 < x, < 2.
2 2 2

2. Let C denote the positively oriented circle 1z —il=2, shown below.
y

2i

N

-2

(a) The Cauchy integral formula enables us to write

J' dz dz J~1/(z+2i)
c c

- z—2i

2 - . - = dZ=27[i( 1 ) =27a(i)=£
Z7+4 I (z-2i)z+20) 2+2i) i 4i) 2

(b) Applying the extended form of the Cauchy integral formula, we have

f dz dz J-I/(z+2i)2 2mi|d 1
¢ z=2i

E+aY e @=2if@+2iy =20 CTN | dz 2+ 20y

[ —2 } -4mi  -4Ami @
= 27[1 3 = ~ = -=—,
(z+2iy |, @) —(16)4)i 16
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3. Let C be the positively oriented circle Izl= 3, and consider the function

2 — —
so)=[ 2222 — 2 ds (1% 3).

We wish to find g(z) when z =2 and when Izl > 3 (see the figure below).

\C

We observe that

257 —s5-2

g@)=] =— -

ds=27i[25* —s-2]| _ =2n7i(4)=8nmi.

On the other hand, when Iz|> 3, the Cauchy-Goursat theorem tells us that g(z) = 0.

5. Suppose that a function f is analytic inside and on a simple closed contour C and that z, is
not on C. If z; is inside C, then

=2mif’(z,) and jc fQdz _ 1 _fla)de =217|tif'(zo).

(z—z)" ‘c(z—z)"

I f (z)dz

Thus

Jf’(z)dz J f(ydz
€ z-2 C(z=2)*

The Cauchy-Goursat theorem tells us that this last equation is also valid when z, is exterior
to C, each side of the equation being 0.

7. Let C be the unit circle z=¢” (~r<0< ), and let a denote any real constant. The
Cauchy integral formula reveals that

JC——-dz I—dz 27171[ “‘] 0=2n’i.

Z =




On the other hand, the stated parametric representation for C gives us

Je—dz— IM ’9d0—tjexp[a(coseﬂsme)]de
€z

J elO .
n n
= iIe“°°39e“8i“ °do = ije“°°se[cos(a sin 0) + isin(asin 6)]d6
- -r
n n
=— je““’“’ sin(asin 0)d@ + i Ie"mo cos(asin 0)d@.
r -n

. . . . e”
Equating these two different expressions for the integral Jc—dz, we have
z

- Ie“““" sin(asin 6)dO + i _[e“°°so cos(asin 0)d6 = 2.

- -

Then, by equating the imaginary parts on each side of this last equation, we see that
T

I e’ cos(asin0)d0=2rx;

-n

and, since the integrand here is even,

I e““ cos(asin 0)d0 = .
0

(a) The binomial formula enables us to write

n

1 d" (5 oy 1 d M) 2n-2k, vk
P.(2)= ~1)'= 1),
D= @Y = dz"z(sz H

k=0

We note that the highest power of z appearing under the derivative is z*", and
differentiating it n times brings it down to z". So P,(z) is a polynomial of degree n. )

(b) We let C denote any positively oriented simple closed contour surrounding a fixed point z.
The Cauchy integral formula for derivatives tells us that

n n 1 2 _ 1y
4 poq)y =i LDy (n=0,1,2,...).
dz" 2midc(s—z)
Hence the polynomials P,(z) in part (a) can be written
1 (s -1)"
P (2)= ds n=0,1,2,...).
e M ( )



(c) Note that

(s’ =1
(S _ 1)n+l - (S

_(s=D"(s+1)
_ 1)n+l

_(s+1)
s—1 -~

Referring to the final result in part (b), then, we have

1 (s -1 1
n+l n+l dS
2" midc(s—-1)

s+, 1.,

Pl
()= 2"277:1‘3s 1 2"

Also, since

(s"=1D" (s=D"(s+D" _(s=1"
(s+ )" (s+ )" s+1°
we have
1 s?—1 1 s—1 1 .
=t (O L LGl L,
2" mide(s+1) 2 2m c s+1 2

9, We are asked to show that

J' f (S)ds
L(s—2)

(a) In view of the expression for f'(z) in the lemma,

fle+h)-f@) _ 1

=1

J 1 1 f(s)ds
2mig| (s—z—Az) (s—2)*| Az

(n=0,1,2,

=(-1)" (n=0,1,2,..

Az
_ 1 20s-2)-Az
- 27riJc‘(s—z—Az)2(s—z)2f(s)ds'
Then
f'(Z+AZ)—f'(Z)__L f(s)ds _ 1 2s—z)— Az _ )
Az ”il(s‘z)s 2”i‘[[(s--z—Az)z(S—z)z (s—z)s]f(S)ds
- 3(s — 2)Az — 2(Az)’
27t1-l‘(s 2= A7) (s— 3f( $)ds.

o)

D
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(b) We must show that

(c)

(3DIAzZl +21AzP )M
f(s)ds|< 1A

J 3(s - 2)Az — 2(Az)?
C(s—z—A2)*(s—2)°

Now D, d, M, and L are as in the statement of the exercise in the text. The triangle
inequality tells us that

13(s — 2)Az — 2(Az)* 1< 3ls — 21 1Azl + 21Az < 3DIAZ) + 21 Az .

Also, we know from the verification of the expression for f'(z) in the lemma that
Is —z— Azl 2 d —|Azl> 0; and this means that

I(s —z— Az)*(s — 2)’| 2 (d -1Azl)*d’ > 0.
This gives the desired inequality.

If we let Az tend to O in the inequality obtained in part (b) we find that

2
1 J 3(s — 2)Az - 2(Az) F(s)ds =0.

80 27 IC (5 — 2 = Az)* (s — 2)°

This, together with the result in part (a), yields the desided expression for f"(z).
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Chapter S

SECTION 56

1. Let us use definition (2), Sec. 55, to show that the sequence

z, =—2+i("12) (n=12,..)
n

1
converges to —2. Observe that |zn - (—2)‘ =—. Thus, for each £€>0,
n
fz,, - (-—2)| <& whenever n>n,y,

where n, is any positive integer such that n, 2

4~

2. Note that if z, =248 (n=1,2,..), then
n

2
0,, =Argz,, -0 and O,,  =Argz,, ,—0 (n=12,..)
Hence the sequence ©, (n=1,2,...) does converge.

3. Suppose that limz, =z. That is, for each €> 0, there is a positive integer n, such that
n—yoo
Iz, — zI< € whenever n > n,. In view of the inequality (see Sec. 4)
Iz, —zl 2 iz, 1-lzll,

it follows that 11z, 1-1zll< € whenever n > n,. Thatis, limlz I=lzl.
n—so0

4. The summation formula found in the example in Sec. 56 can be written

oo

2z”=1—z— when Izl<1.

n=1 =2z
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If we put z= re?, where 0 < r < 1, the left-hand side becomes

Y (re®y =Y r"e™ =Y r"cosnf+iy. r"sinnd;
n=1 n=1 n=1

n=1

and the right-hand side takes the form

re 1-re™® _ re’® —r? _rcos@—r’ +irsin @
1—re® 1—re™ 1-re +e®)+r? 1-2rcos@+r’
Thus
rcos@ —rt ) rsin@

Zr" cosn@+ izr" sinnf =
n=1 n=1

i )
1-2rcos@+r* 1-2rcos@+r?

Equating the real parts on each side here and then the imaginary parts, we arrive at the
summation formulas

rsin@
1-2rcos@+r?’

rcos 9 —r?
1-2rcos@+r?

and Zr” sinnf =

n=1

Zr” cosnf =
n=1

where 0 <r <1. These formulas clearly hold when r =0 too.

Suppose that ¥z, =S. To show that Y z, =S5, we write z, =x, +iy,, S=X+i¥ and

n=1 n=1

appeal to the theorem in Sec. 56. First of all, we note that

ixn =X and iyn =Y.
n=1

n=1

Then, since Z(—yn) =-Y, it follows that

n=1

ifn = i(xn —iy)= i[xn +i(-y)]=X-iY=S5.
n=l1 n=1

n=1



1. Replace z by z” in the known series

oo 2n
b4
coshz =
¢ g(zn)!
to get
) o0 Z4n
cosh(z°) =
@) ;(Zn)!

Then, multiplying through this last equation by z, we have the desired result:

oo 4n+1

zcosh(z?) = 2 (22n) '
n=0 M
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8. Suppose that izu =S and iwn =T. In order to use the theorem in Sec. 56, we write
n=1 n=1
z,=x,+iy,, S=X+i¥ and w,=u,+iv,, T=U+iV.
Now
ixn =X, iyn =Y and iun =U, ivn =V
n=1 n=1 n=1 n=1
Since
i(xn +u,)=X+U and i(yn +v,)=Y+V,
n=1 n=1
it follows that
i[(x,, +u,)+i(y, +v,)I=X+U+i(Y+V).
n=1
That is,
i[(x,, +iy,) +(u, +iv,)]= X +iY + (U +iV),
n=1
or
i(zn +w,)=S+T.
n=1
SECTION 59

(Izl< )

(Izl< o).

(Izl< 00).
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2. (b) Replacing z by z—1 in the known expansion

r: =§% (1zl< o0),
we have
e = i‘a_(_z__;'l)_n (Izl< 00).
So
e =ele= eg%—!ll (Izl< o).

Z _z 1
49 9 1+(z /9)

To do this, we first replace z by —(z* /9) in the known expansion

! =Yz (zl< 1),
l—Z n=0

as well as its condition of validity, to get

(1< 3).

1+(z /9) ZO

Then, if we multiply through this last equation by g, we have the desired expansion:

f@)= Z3w (121 <V3).

6. Replacing z by z* in the representation

2n+1

sinz = g(-— 2nt D! (1zl< 00),
we have

i ) oo Z4n+2

sin(z )=;(—1) oD (1zl< o0).
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Since the coefficient of z" in the Maclaurin series for a function f(z) is f"(0)/n!, this
shows that

f0)=0 and f*Y(0)=0 (n=0,1,2,...).

The function % has a singularity at z =1. So the Taylor series about z=1i is valid when
-z

lz—il<+2 , as indicated in the figure below.

To find the series, we start by writing

1 1 1 1
1-z (-i)—(z~i) 1=i 1—(z=i)/(1-i)

This suggests that we replace z by (z —i)/ (1-i)in the known expansion

=Yz lzI<1
- 2;) (zl<1)
and then multiply through by ——. The desired Taylor series is then obtained:
—i
SR, Wil (Iz—il<2).

The identity sinh(z + i) = —sinh z and the periodicity of sinhz, with period 27i, tell us that
sinh z = —sinh(z + 7i) = —sinh(z — 7i).

So, if we replace z by z — i in the known representation

oo 2n+l1

sinhz = 2(2n+1)! (Izl< o0)

n=0
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and then multiply through by —1, we find that

o\2n+1

sinhz = - %%}%— (Iz = 7il< o).

13. Suppose that 0 <1zl <4. Then 0<Iz/4l<1, and we can use the known expansion

SR, W (zl<1).

SECTION 62

1. We may use the expansion

s1nz—2(—- (2 D! (Izl< o)

to see that when 0< izl < oo,

oo 3 e (_l)n 1
Zsm( ) Z2n+1)' 4"'1+z(2n+1)!'z4"'

BL, (Iz<1).

1 _1 11_—_12(_1) =2(—nl+)1 (1<lzl< o0).
Z < =0

Replacing n by n—1 in this last series and then noting that

D =)D = -,
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we arrive at the desired expansion:

1 00 (_1)n+1
— (1 <lzl< o),
1+z ,,2;1 Z"
The singularities of the function f(z)=— N are at the points z=0 and z=1. Hence
z ——

there are Laurent series in powers of z for the domains 0<lzl<1 and I<lzi<eo (see the
figure below).

To find the series when 0 < lzl< 1, recall that % = 21" (Izl< 1) and write
- n=0

As for the domain 1 < |zl< oo, note that 11/ zl <1 and write

1 1 I 1Y = 1 = 1
R IR

< n=0 Z n=3

. . . +1 . . -
(a) The Maclaurin series for the function Z_l is valid when Izl< 1. To find it, we recall
Z —
the Maclaurin series representation

L=§w:z" (Izl<1)

for L and write
1-z

Z_+1__ __L= S - no ntl n
e (Z+l)1—z (-z 1)n2=oz Zz ZZ

=3 r-Sr=-1-232 (< 1).
n=1

n=1 n=0
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(b) To find the Laurent series for the same function when I<lzl< e, we recall the

1 .
—|<1 here, we may write

. . 1 . .
Maclaurin series for T that was used in part (a). Since

-2 2z
1+1
z+1 Z 1 N1} o1 1
—_—=—2 4= |—=] 14— - | = -
z-1 1—— [ Z)l_l ( Z);(ZJ ;zn ; "
z z
S YL YR NP b (1 <Izl< o).
n=0z n=1Z n:lZ
7. The function f(z)= 1+ 2 has isolated singularities at z =0 and z =i, as indicated in
Z(1+z

the figure below. Hence there is a Laurent series representation for the domain 0 <lzl< 1

and also one for the domain 1<Izl< e, which is exterior to the circle lzl= 1.

To find each of these Laurent series, we recall the Maclaurin series representation

—1——=iz" (lzl< D).

o0

f(z):l.__l_2=12(_z) 2( l)n -1 _ +Z( l)n 2nl_z( 1)n+l 2,,+|

Z 1+z Zn:o n=0

On the other hand, when 1 <lzl< oo,

1 1 1 < (=D
f(Z)=—3'_T=TZ( ) z(2n+3 Zl 2n)+1'

n=0 <

In this second expansion, we have used the fact that (1) = (=1)""'(=1)? = (-1)"*".



8. (a)

(b)

10. (a)
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Let a denote a real number, where —1 < a <1. Recalling that

- i 2 (Izl<1)

1
1-z

enables us to write

or

a =z“_n (lal<izl< oo).

e —a q
But
a _ a (cos@—a)—isin® acosf—a’—iasin6
e?—a (cos@—a)+isin@ (cos@—a)—isinf 1-2acos8 +a*
and
Za"e”i”o = Za” cosnf — iZa” sinn6.
n=1 n=1 n=}
Consequently,
oo 2 oo .
acosf—a . asin @
Za" cosnf = and Za"smn0=

o 1-2acos@+a® 1-2acos+a’

n=1

when —-l<a<1.

Let z be any fixed complex number and C the unit circle w = e (=& < ¢ < 1) in the w

plane. The function
1
f(w)=exp[5(w——)]
2 w

has the one singularity w =0 in the w plane. That singularity is, of course, interior to
C, as shown in the figure below.
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1Y
Ql

w plane

Now the function f(w) has a Laurent series representation in the domain 0 <lwl< oo,
According to expression (5), Sec. 55, then,

RE S

where the coefficients J,(z) are
J,(2)=— | exp[g(w_;)] dw (n=0,£1,22,...)
n 2 e o E1,42,...).

Using the parametric representation w = e (—~z < ¢ < 7) for C, let us rewrite
this expression for J (z) as follows:

| = exp[g(e"" —e® ] | |
M@= 2mi _J; ~ ginhe ie*d¢ = Eiexp[iz single ™d¢.
That is,
J,(2)= 51; Iexp[-i(nq) —zsin¢)]d¢ (n=0,£1,42,...).

(b) The last expression for J, (z) in part (a) can be written as
J(2)= ﬁ [Icos(ng — zsin §) - isin(ng - zsin §)1d¢

= 5%_J;COS(n(i’ —zsin¢)d¢ —#;‘isin(nq) — zsing)d¢

=—1—2jcos(n¢—zsin¢)d¢——’—o (n=0,%112,..).
2r -2



That is,

J,(2)=—| cos(ng —zsin 9)d¢

8-
© Sy By
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(n=0,£1,%2,...).

11. (a) The function f(z) is analytic in some annular domain centered at the origin; and the

unit circle C:z=e"” (-m < ¢ < 1) is contained in that domain, as shown below.

(N
N

For each point z in the annular domain, there is a Laurent series representation

f@)= ianz" +22§
n=0 n=1 4

where

f(2)dz f(e¢), T
n 27[le n+l 27[1-[ !¢(n+1) ¢d¢ ”:[rf(e¢)e ¢d¢

and

n

f(@)dz _ f(e®) S < I
2mJl —n+l 2m_[ io(nth) ¢ ¢d¢"’2—7‘[':[(f(3¢)e ¢d¢

Substituting these values of a, and b, into the series, we then have

f@y= J f(e*)e™dg 2 +2 Jf( e '"¢d¢

nO

or

f@)=== j F(e*)dp + —Z jf( * ){( - ) (%”dcb

n-—l -

(n=0,1,2,..)

(n=12,...).
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(b) Put z=¢" in the final result in part (a) to get

1= J f(e"’)d¢+——-2 J [0 4 e 0-0]ap,

"“ -

or

f(e"’)——— j F(e*)d +— 2 j f(e®)cos[n(8 - p)1do.

nln-

If u(6) = Re f(e"), then, equating the real parts on each side of this last equation yields

u(e)—-— ju(¢)d¢+ 2 Ju(@)costno - ¢)1ds.

nl_,,

SECTION 66

1. Differentiating each side of the representation

L=y (zl<1),
-2 o

we find that

(1- z) dzZ %“Z _Z"Z —2(”+1)Z (Izl< D).

Another differentiation gives

(i- z) i"“)z ‘2(””)—2 -Zn(n+1)z"‘-2(n+1)(n+2>z (zl< 1).
=0 n=0

2. Replace z by 1/(1-z) on each side of the Maclaurin series representation (Exercise 1)

(1_ > —Z(n+1)z (z< 1),
n=0

as well as in its condition of validity. This yields the Laurent series representation

1_3E@e-b (1<Iz—11< o).
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3. Since the function f(z)=1/z has a singular point at z =0, its Taylor series about z, =2 is
valid in the open disk |1z —2l< 2, as indicated in the figure below.

To find that series, write

1

1 1 1

. 2+(2-2) 2 1+(z-2)/2

to see that it can be obtained by replacing z by —(z—2)/2 in the known expansion

Specifically,

or

1_
z

1 <« n
)t
1S -7
237

3 Sortz-2r
n=0

Differentiating this series term by term, we have

Thus

(="
2n+]

R

1

2n+2

i _ o (D™ "
n(z=2)""'=3Y (n+1(z-2)
n=0

pNEICE 1)(-2—'—2)
n=0 2

Consider the function defined by the equations

fo)= {(sin 2)/z whenz#0,

1 when z=0.

When z #0, f(z) has the power series representation

(Izl<1).

(Iz-2Ik2),

(Iz—-2I<2).

(Iz-2I<2).

(Iz-2<2).
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1 2 7 27
—_— —_— ... =1___+__....
U (Z 317 s ) 317 st

Since this representation clearly holds when z =0 too, it is actually valid for all z. Hence f
is entire.

Let C be a contour lying in the open disk lw—1i<1 in the w plane that extends from the
point w =1 to a point w = z, as shown in the figure below.

According to Theorem 1 in Sec. 65, we can integrate the Taylor series representation

LS w1y (w—1I<1)
n=0

w

term by term along the contour C. Thus

dw — n n _°° n n
C_W_=J'C§(_1) (w—1) dw_;(—-l) [Lw=1y"aw.
But
dw _ d_w=[Logw];"=Logz—L0g1=Logz
Cw . W
and
T e Oy Vi N et
[Low-1 —!(w 1) dw—[ i
Hence
¢ (-1)° i _ o (D .
Logz = - = -1 lz-1l< 1);
082 ;Hl(z ) 2 —(z-1) (z-1<1)

and, since (—1)"" = (=1)""(=1)? =(=1)""", this result becomes

(_1)n+l
n

Logz=i (z-D" (Iz—1i< ).
n=}
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SECTION 67

z

e
w2 +1

find the Laurent series for f that is valid in the punctured disk 0 <lzl< 1, shown below.
y
!/ x

1. The singularities of the function f(z)= are at z=0,%i. The problem here is to

We begin by recalling the Maclaurin series representations

2 3
L— E_ Z_ E_ ves oo
e —1+1!+2!+3!+ (Izl< o)
and
11 PN SRS I (Iz1< 1),
-z
which enable us to write
1, 1,
e=l+z+-2"+=2"+" lzi< e0
> - ( )
and
f P S N (Izl< 1).
7 +1

Multiplying these last two series term by term, we have the Maclaurin series representation
z

LA P P P
2 +1 276
-7 -7~
z4+...
1, 5,
=l+z—-—z"——=2+,
2 6

which is valid when Izi< 1. The desired Laurent series is then obtained by multiplying each

. . 1
side of the above representation by —:
b4

eZ 1 1 52
11, 5, 0<lz<1).
W@+ 2z 276" O <l<h




90

We know the Laurent series representation

1 _i_l.l+_7_z+... (O<lzl< )
Z’sinhz 7z 6 z 360

from Example 2, Sec. 67. Expression (3), Sec. 60, for the coefficients b, in a Laurent series

. 1, . .
tells us that the coefficient b, of — in this series can be written
b4
1 d.
b = 2

' 2midcz?sinhz’

. . ) . 1
where C is the circle |zl= 1, taken counterclockwise. Since b =— g, then,

The problem here is to use mathematical induction to verify the differentiation formula
 (n
[f(2)g()]" = Z( k)f “(2)g" P (2) (n=12,..).

k=0

The formula is clearly true when n =1 since in that case it becomes

[f(2)g(D)] = f()g' () + f(2)g(2).

We now assume that the formula is true when n =m and show how, as a consequence, it is
true when n =m+ 1. We start by writing

(DI ={lf(@)g@IN"™ =[f(2)g' @)+ f'(2)g)]™

=[f(2)g' ("™ +[f’(2)g()I™

k=0

- 2(:' FP@E" @) + i(:)f"‘“’(z)g"""‘)(z)
k=0

m m+l
= Z(Z’ FR@8" @)+ Z(km 1)f"”(z)g‘""“*“(z)
k=t \*

k=0

=f<z>g""“’(z)+f{(km)+(k"_1 1Hf""(z)g“"“‘“(z)+f”"“’(zm(z).
k=1
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But

my (m\__m m! _ (m+1)! _(m+1)_
k) \k=1) km—-k)! (k=Dm-k+)! kim+1-k)! { k J

and so

m+1

[f(z)g(z)]""*"=f(z)g‘"”“(z)+2[ ¢ )f"”<z>g""*""’<z)+f‘"'*"(z)g(z),

m
k=1
or

m+1 + 1
[f(2)g()]™" = Z(m L )f""(z)g"”*""’(z).
k=0

The desired verification is now complete.
We are given that f(z) is an entire function represented by a series of the form
fR)=z+az’ +a+- (Izl< o).

(a) Write g(z) = f[f(2)] and observe that

fif @)= g0)+& 1(,0) e g;( e g';(!()) ¢

+-- (Izl< o0).

It is straightforward to show that

g'(@) = fIf(D)f(2),

g (@)= f'If QIS @F + fIf(1f (),
and
g” (@)= "I QIS @F +2f @ F @ L @1+ L@ @ f" @) + L @1 (2).

Thus
g(0)=0, g'0)=1 g"(0)=4a,, and g"(0)= 12(a§ +a,),

and so
fUf@Dl=2z+2a,2" +2(a; + a))7’+- (Izl< oo).
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(b) Proceeding formally, we have

U @1= f(@)+alf QT +alf () +--
=zt+a’ +al+-)+ a,(z+ a7 + a2+ ) + a(z+a, 2 + a2+ )+
2

=+ +a,+-)+ (a2 +2a2+ )+ (@2’ + )

= z+2a222 +2(c122 +a3)z3+---.

(c) Since

3
inz=z-% ez 24022 4= L) 0
sinz=z 3!+ =z+0z +( 6)Z+ (Izl< 00),
the result in part (a), with a, =0 and a, = —%, tells us that

sin(sinz) =z — §z3+- - (Izl< o).

8. We need to find the first four nonzero coefficients in the Maclaurin series representation

1 ~E ( n)
=) L2z lzl<—|.
coshz 4= n! 2

This representation is valid in the stated disk since the zeros of coshz are the numbers

/4 . . . . T, .
= (E+ nn)t (n=0,£1,%2,...), the ones nearest to the origin being z = iil' The series

contains only even powers of z since coshz is an even function; that is, E, ,, =0
(n=0,1,2,...). To find the series, we divide the series
2 4 6
2.7 .z 1, 1, 1 4
coshz=1+-"—-+—+"—+ =1+-"+—7* +—7+.- Izl< o0
2! 4! 6! 2 24 720 ( )
into 1. The result is
1 1 ,. 5 4 61 4 ( Jr)
=l-=2"+—z7" ———Z7"+ lzdb<—1,
coshz 2 24 720 2

or



1
coshz
Since
1
coshz
this tells us that
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(lzl < g)

T
Izl < —
(Z 2

)
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Chapter 6
SECTION 71
1. (a) Letus write
1 2-_—1. 1 =_1.(1...z+Z2_z3+...)=l_1+z_.z2+...
z+z° z 1+z 2z Z

(b)

(c)

(d)

The residue at z =0, which is the coefficient of l is clearly 1.
z

We may use the expansion

2 4 6

.7z
cosz=1-—+"-"4

2! 4! 6!

to write

Zcos(l)—Z(l-i.i.’.i.i-i.i.'—...)—Z__l_._l_-'.i.i_
2 20 22 41 6 20z 4 2

) ) 1 . 1
The residue at z =0, or coefficient of —, is now seen to be —5.
Z

Observe that

z—sinz 1 . 1 2 2 Z 7
=—(z—51nz)=— 2—|z=-"—+F - ||=-
Z z Z ! ! ! !

Z
Write
cotz 1 cosz
2t 7% sinz
and recall that
2 4 2 4
2"z VA 4
cosz=l—-—+"—. =] =3 _...
2! 4 2 24
and
3 z5 ZS ZS
SNZ=7——+——+ s mzg—"fp———...

(O <zl 1).
(Izl< o)
1.1,
6! 2’
(0 <lzl< 00).
(0 <lzl< o0),

(Izl< o0)

(Izl< o0).



(e)
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Dividing the series for sinz into the one for cosz, we find that

. oo (O<lzlc 7).

Thus

- - R Pl F (O <lzl< 7).

3
cotzllzz+” 1 11 11
Z Z

Note that the condition of validity for this series is due to the fact that sinz =0 when

z=nm(n=0,£1,%2,...). Itis now evident that co‘ttz has residue —%5. at z=0.
b4
Recall that
3 5
. 7z
smhz-—z+§+§+~- (Izl< o0)
and
1 2
—=14z+7 +- (Izl< o0).
1-z

There is a Laurent series for the function
sinh z 1, . ( 1 )
—7——~ =—-(sinhz)| —
z4(1_22) z4 ( ) 1__22
that is valid for 0 <lzl<1. To find it, we first multiply the Maclaurin series for sinhz

1
1-z

and >

. 1 1 1
i) )= (42 g+ et e )

L N
6 120

1
3 5
brd +_..Z L R
6
Zs+...

L S (0 <lzi<1).
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We then see that

. (0 <lzl<1).

This shows that the residue of f;nhzT at z=01s Z
*(1-2%) 6

2. Ineach part, C denotes the positively oriented circle Izl= 3.

(a) To evaluate jc exp(2—z) dz, we need the residue of the integrand at z =0. From
b4

the Laurent series

2 )

_ 2 3
exp(=2) _ 1(1_z+z 2 +...)=i__1_.l+_1__i+... (0 <izl< o),
z z

we see that the required residue is —1. Thus

€ - . .
jcipz(z—“dz = 27i(~1) = =27,

(c) Likewise, to evaluate the integral JC 7 exp(l)dz, we must find the residue of the
z

integrand at z =0. The Laurent series

ZZCX (l)—z2(1+_1.1+_1_i+_1_i+i_1_+)
PZ Nz 202 32 a7

which is valid for 0 <lzl< oo, tells us that the needed residue is % Hence

) 1) (1) i
—|dz=2mi| = |=Z2.
ch exp(Z Z i S 3
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z+1
2 =2z

(d) As for the integral L dz, we need the two residues of

z+1  z+1
-2z z2z-2)

one at z=0 and one at z=2. The residue at z =0 can be found by writing

e R CI IR
2(z=2) b4 z—2 2 z) 1-(z/2)

which is valid when 0<lzl<2, and observing that the coefficient of 1 in this last
b4

1 . . .
product is —3 To obtain the residue at z =2, we write

2z-2)  z2-2 24(z-2) 2

2
=l(1+i) 1_2_2+(Z_22) —,
2 z2—2 2 2

which is valid when 0 <lz - 2l< 2, and note that the coefficient of

2+l (z=2)+3 1 1(1+ 3 ) 1
z2—-2) 1+(z-2)/2

in this product
z2—2

is % Finally, then, by the residue theorem,

[ dz=2m‘(—l+§)=2m:
€z" -2z 2 2

In each part of this problem, C is the positively oriented circle Izl=2.

ZS
(a) If f(z)=——, then
1-z2

1 (1 1 1 1 1 1 1
—Zf(—)= | —_——.—.(1+z3+z6+...)= _____ ZZ—'“

2 \z) - ¥ 1-z z 2z

when 0 <lzl< 1. This tells us that

J f()dz=2miRes —%-f(l) =2mi(-1)=-27i.
¢ =0 727" \z
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(b) When f(z)=—1— we have
1+z

2’

izf(l)= ! ! =1-z*+7'—- (O<lzi<1).

Thus

j f(z)dz=2rmiRes izf(l) =2mi(0)=0.
¢ =0 7" \z

(c) If f(2)= —1-, it follows that iz f (l) = l Evidently, then,
b4 b4 z) z

[ f(2)dz=2miRes 1 f(l) = 27i(1) = 27i.
¢ =0z \z
4. Let Cdenote the circle Izl=1, taken counterclockwise.

. . - 2" .
(a) The Maclaurin series e* = Z_T (Izl< o0) enables us to write
n=0 n:

J.CCXP(Z + —i—)dz = Iceze”zdz = L e”ziz—! dz= ii' c 7" exP(l)dz.

(b) Referring to the Maclaurin series for e* once again, let us write

1 — 1 1 — 1
z”exp(z)=z"2—-—7=2—z" k (n=0,12,...).

1. ) ) )
Now the — in this series occurs when n~k=-1, or k=n+1. So, by the residue
V4
theorem,

1 1
"exp| — |dz=2mi n=0,12,...).
Jes p(z) TS ( )

The final result in part (a) thus reduces to

1 > 1
exp| z+— |dz=2mi ) ——.
'[C p(z z) ¢ l,,zon!(n+1)!
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6. We are given two polynomials

P(2)=a,+az+az +--+az" (a, #0)
and
Q@) =by+bz+bz*+---+b, 7" (b, #0),
where m2n+2.
Itis straightforward to show that

m-2 m-3 m-4 m-n-2
_1_ P(1/2) _a?" " +az" " +a,2" " +---+az

#0).
00/2)  bz"+b" +b" 4+ +b, (z#0)

Observe that the numerator here is, in fact, a polynomial since m—n—-22>0. Also, since
b, #0, the quotient of these polynomials is represented by a series of the form

d,+dz+d,z* +---. Thatis,

P(/z)

0172 =d,+dz+d, 2" +-- (0<IzI< R);

1
_2

1 P(1/2)
2 0/2)

Suppose now that all of the zeros of Q(z) lie inside a simple closed contour C, and
assume that C is positively oriented. Since P(z)/ Q(z) is analytic everywhere in the finite
plane except at the zeros of Q(z), it follows from the theorem in Sec. 64 and the residue just

obtained that
jCP(Z)dz 2miRe [1 P(”Z)] 27i-0=0.
0(z) 20 - Q1/z)

If C is negatively oriented, this result is still true since then

J P(z) J’ P(Z)
C

has residue Q at z = 0.

and we see that

Q(Z) ¢ Q(z)
SECTION 72
1. (a) From the expansion
. z .2
e -1+i—!+§+—3—!+--- (Izl< o),

we see that

zexp(l)=z+l+l-l+l-i+“- (O<|z|<oo)_
Z .
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(b)

(c)

(d)

(e)

The principal part of zexp(—l—) at the isolated singular point z = 0 is, then,
b4

11 1 1

20z 3! 2
and z =0 is an essential singular point of that function.

2

The isolated singular point of is at z=-1. Since the principal part at z=—1

+z
involves powers of z+1, we begin by observing that

=@+ =2z-1=(z+1)*=2(z+ 1) +1.

This enables us to write

2 2 _
z =(z+1) 2(Z+1)+1=(z+1)—2+ 1 .
1+z z+1 z+1

Since the principal part is —%, the point z =—1 is a (simple) pole.
b4

. . . . . sin .
The point z =0 is the isolated singular point of ——z—, and we can write
b4

sing 1 2.7 _ 7
(Z ...)_1_.5_!..}.5_... (0 <lzl< o).

The principal part here is evidently 0, and so z =0 is a removable singular point of the

. sinz
function —=,

<

cosz . .
1s z=0. Since

The isolated singular point of

2 4 3
cosz__l(1 .z ...)=_1__£+Z__... (0 <lzl< o),
0z

the principal part is l This means that z =0 is a (simple) pole of o8z
Z b4

- we find that the principal part of at its

1
2-2° (-2)" 2~z
isolated singular point z =2 is simply the function itself. That point is evidently a pole
(of order 3).

Upon writing
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2. (a) The singular pointis z=0. Since

_ 2 4 6 3
ﬂ=_1_{1_(1+z_+z_+5_+...)]=_L.l_i_z__...

3 3

b4 Z 21 4! 6! 2t z 4 6!
1 1
when 0 <lzl< oo, we have m =1 and B=——2—'=——2—.

(b) Here the singular point is also z=0. Since

_ 2.2 3.3 4 _4 5.5
l_e..)%_)(_z_g_)_=i4 1- 1+_2_£+2Z +2Z +2Z .|.zz e
2z 2 2! 3! 4! 5!

2’ 4
when 0 <lzl< o, we have m =3 and B= == 3
- - exp(22) .. _
(c) The singular point of ——— : —— 1. The Taylor series
z —
2 2 30 1)3
exp(zz) = e2(z—l)82 = e2[1 + 2(Z 1) + 2 (Z 1) + 2 (Z 1) +“.j| (|z|< °°)
1! 2! 3!
enables us to write the Laurent series
exp(2z) _ L 1 2 1 2% 2?
=e +—-—+—+— D+ 0 <lz—1l< o0).
(z—1)? [(2—1)2 TP TR TREETACI ( )
2 2 2
Thus m=2 and B=e 1 =2e".
3. Since fis analytic at z,, it has a Taylor series representation
Z ”
f@)=f( 0)+f( 0)( -7+ f (ZO)(z 7)) +- (z—z,l<R).
Let g be defined by means of the equation
f(2)

8(2)=
-2
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(a) Suppose that f(z,) # 0. Then

_lz [f(zo)+f(°)(z +L (Z")(z 20)" + }

0

=f(zo)+f'(z0)+f"(z°)(z—zo)+-“ (0 <lz—zjl< Ry).
-2, 1! 2!

This shows that g has a simple pole at z,, with residue f (z9)-
(b) Suppose, on the other hand, that f (25) =0. Then

g(z)=—1—[—f%‘ﬁ(z—zo) f(z" 0 (z~z)) +- }
L1

_f (z9) , f7
1!

(Zo (z— z0)+ (0<|Z—ZO|< Ro)

Since the principal part of g at z, is just 0, the point z =0 is a removable singular
point of g.

5. Write the function
8 3.2
f@= i 22)3 (a>0)
as
_9(z) 84’7’
h = .
—ai ,)3 where  ¢(z) @t al)

f(@)=
Since the only singularity of ¢(z) is at z=—ai, ¢(z) has a Taylor series representation
02) = 9(ai+ L8 o iy + LD ;i (12— ail< 2a)
about z =ai. Thus
f(z)— [«P( i)+ ¢ ( )( ai)+£”2('ii)~(z—ai)2 +] (0<lz-ail<2a).
Now straightforward differentiation reveals that

, 16a‘iz — 847> ” 16a*(z* - 4aiz —
$()=—ET30L ang gr(g) =10 )

(z+ai) (z+ai)’
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Consequently,
(ai) = —a%, ¢’(ai)=-—§, and  ¢”(ai) = —i.

This enables us to write

f@)=

s [—azi—g(z — ai) —%(z —ai)’ + ] (0 <lz—ail< 2a).

The principal part of f at the point z = ai is, then,

i/2  al2 4l
z—ai (z-ai)’ (z-ai)*

SECTION 74

. +2 . . . - P(z)
1. (a) The function f(z)= " has an isolated singular point at z = 1. Writing f(z) = P
z —

where ¢(z) = z” +2, and observing that ¢(z) is analytic and nonzero at z =1, we see
that z=1 is a pole of order m =1 and that the residue there is B= ¢(1) =3.

(b) If we write

3
f(@)= (ZZZ+ 1) = ¢(Z)1 =, where ¢(z)= %,
]
we see that z= ——21— is a singular point of f. Since ¢(z) is analytic and nonzero at that
point, f has a pole of order m =3 there. The residue is

p=2"l2_ 3
2! 16

(c) The function
eXpz _ expz
2+ (- mi)(z+ m)

has poles of order m =1 at the two points z = xmi. The residue at z = 7i is

expmi -1 i
B] = - =—-:=— ,
2mi 2mi 2rm

andtheone at z=—mi is

_exp(—m’)_ -1 __L
-2 —2m 2r

B,
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1/4

+1

2. (a) Write the function f(z)= £ (1zI>0,0<argz<2rm) as
z

#(2)

1
T where ¢(z)=z”4=e4lgz(lzl>0,0<argz<27t).
z

f2)=

The function ¢(z) is analytic throughout its domain of definition, indicated in the
figure below.

/- Branch cut

X

—
Q

Also,

1 1 .

~log(~1) —(Inl+irm) . n .. T 1+i

¢ =e* =e"™* = cos = +isin— = —— # (.
4 4 42

P-D=(-D"" =e

This shows that the function f has a pole of order m =1 at z = -1, the residue there

being
B=¢(-="F-
(b) Write the function f(z)= Zzlg‘l—glz)z as
1@=22 where 9(2)- T

From this, it is clear that f(z) has a pole of order m=2 at z=i. Straightforward
differentiation then reveals that

Logz yon  TH20
B —p="22

e —
= (2 +1) 8
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(c) Write the function

1/2
4

f(z )‘( 1) (IzI>0,0<argz < 2m)
as
¢( ) ZI/Z
(2)=———= where ¢(z)= —
/ (z—i) ¢ (z+i)
Since
' 2+ — 47"
¢ =8 -
2(z+1)
and
iV = pinld ___L_L 12 inl4 =__1_+L
N2 A2 N2 A2
R 12 1=
es———r = =—,
ey 0%
(a) We wish to evaluate the integral
J‘ 328 +2 .
cz—1)(2+9)

where C is the circle |z — 2l = 2, taken in the counterclockwise direction. That circle and
the singularities z =1, + 3i of the integrand are shown in the figure just below.

Xi3i

<
- X
e
9}

X-3i

Observe that the point z =1, which is the only singularity inside C, is a simple pole of
the integrand and that

Res 320 +2 3z +2 _
zl (z-1)(2? +9) 22 +9 =1

According to the residue theorem, then,

3
J' #dz - zm(l) = 7Ti.
C(z—-D(z" +9) 2

1
>




106

(b) Let us redo part (a)when C is changed to be the positively oriented circle Izl= 4, shown
in the figure below.

-X

X-3i

In this case, all three singularities z=1, +3i of the integrand are interior to C. We
already know from part (a) that

322 +2 1
eS———————=—.
=l (z—-1)(Z*+9) 2

It is, moreover, straightforward to show that

Res 3742 3242 _15+49i
== +9) (-D+3) ], 12
and
32 42 322 +2 :l 15-49i
Res 5 _ - — .
=S (-1 +9) (2-D@E-3)]_, 12

The residue theorem now tells us that
3 . .
J 3z +22 dz=2m,(l+15+491+15 49’)=67ti.
C(z—=1)(z"+9) 12 12
4. (a) Let C denote the positively oriented circle Izl=2, and note that the integrand of the

. dz
1ntegr al JC m

has singularities at z =0 and z =—4. (See the figure below.)

_'4‘ ( ‘/ 2 X
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To find the residue of the integrand at z = 0, we recall the expansion

1 v
—_—=>)7 (Izi<1)
1-z ;
and write
1 1 1 o D" s
= -= O<lzl< 4).
Z(z+4) 4z3[1+(z/4)] 4z' & ( ) 2 I ( )
Now the coefficient of l here occurs when n =2, and we see that
b4
Res 3; = —1-
=0 7°(z+4) 64
Consequently,
dz ( 1 ) i
J. 5= 27| — = —.
€z’ (z+4) 64) 32
Let us replace the path C in part (a) by the positively oriented circle 1z + 2l = 3, centered

—?2 and with radius 3. It is shown below.

<
1~

We already know from part (a) that

Res .T._l___ - i‘
=0 7°(z+4) 64
To find the residue at —4, we write
3 L = ) , where ¢(z)= —13-
Z(z+4) z—-(—4) z

This tells us that z=—4 is a simple pole of the integrand and that the residue there is
¢(—4)=-1/64. Consequently,

J’_3__£k__=2m'(L__l_) 0.
€z (z+4) 64 64
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5. Let us evaluate the integral IC%SE-ZZ%E, where C is the positively oriented circle Izl=2.
2(z

All three isolated singularities z =0,%i of the integrand are interior to C. The desired

residues are

coshmz cosh n'zJ
es—s =— =1,
=0 z(z°+1)  zZ°+1 1,5

9

es coshmz coshn‘z] _1
= (22 +1)  z(z+i) |, 2

and
es coshzz _ cosh an 1
=i+ 2=, 2

Consequently,
f E%l;_”z_“% 2ni(1+-1-+l)=4”i'
c Z(Z + 1) 2 2

6. In each part of this problem, C denotes the positively oriented circle 1zl= 3.

(a) 1t is straightforward to show that

2 2
Gzt oL f( 1 ) ___G+2?
Z(z=1)2z+5) 22" \z) zZ(1-2)2+52)

if f(z)=

This function —17 f (l) has a simple pole at z =0, and
7 \z

2

J’ (3z+2) dz=2mi Res[—lyf(l)]=2m'(2)=97ti-
€ z2(z=1(2z+5) =0Lz" Az 2

(b) Likewise,

. _ 2(1-3p) 1 (1)_ z-3
lff(z)_(l+z)(1+224)’ then z2f z —z(z+1)(z4+2).

The function % f (1) has a simple pole at z =0, and we find here that
2 7\z

3
IC 2 (1-32) dz=2m‘Rf:s[%f(%)]=2ni(—%)=—3m’-

(1+2)(1+27%) 20 | 7
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(c) Finally,

3 il/z b4
if f(z)=f——e—;, then — f(l) ¢

+2 2'\z) 2+
The point z =0 is a pole of order 2 of —17 f (1) The residue is ¢'(0), where
7 7\z

eZ
3

1+2z

0(2)=

Since
1+ 2%)e* —e*37?
(1+2°)

¢’ (z) =

k4

the value of ¢’(0) is 1. So

3 1z

e P VoI o v A
IC T dz =27 l}zeos[—;f(—z—)] =2mi(l)=2mi.

1+z2 b4

SECTION 76
1. (a) Write

1 .
cscz=——=—=, where p(z)=1 and g(z)=sinz.

Since
p0)=1#£0, g(0)=sin0=0, and ¢’(0)=cosO=1=#0,
z =0 must be a simple pole of cscz, with residue

O _1_

q'0) 1

(b) From Exercise 2, Sec. 67, we know that

1.1 1 1],
cscz —z+§z+[(3!)2 —a]z +ee (0 <lzi< 7).

Since the coefficient of l here is 1, it follows that z =0 is a simple pole of cscz, the
<
residue being 1.
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2. (a) Write

z—sinhz _ p(2)
Zfsinhz  g(2)°

where p(z)=z—sinhz and ¢(z)=z’sinhz.

Since
p(r)=mi#0, q(mi)=0, and gq'(mi)=nr>=#0,
it follows that

z—sinhz _ p(mi) _mi_ i

Res—— TN 2 .
=ni z°sinhz q'(mi)) m =

(b) Write

exp(zt) _ p(z)
sinhz  ¢g(2)

, where p(z)=exp(zt) and ¢(z) =sinhz.

It is easy to see that

exp(zt) _ p(-mi) _

Res PG _ p(mi) _

=—exp(inrt) and Res = —exp(—int).
z=xi sinhz q'(ﬂ'i) p( ) z=-mi ginhz q’(—ﬂi) p( )
Evidently, then,
Res ______e)fp(zt) + Res ex.p(zt) =-2 CXPUM) + expl(-im) _ —2cos mt.
z=ri ginhz z=-# sinhz 2
3. (a) Write
f@)= g_(_z_)’ where p(z)=z and ¢(z) = cosz.
q(2)
Observe that
/4
q(_2.+,m)=o (n=0,£1,42,...).

Also, for the stated values of n,

p(ﬁ + nn) =2 inm #0 and q’(—’—r— + nn) = —sin(z + mr) =(-1D)""20.
2 2 2 2
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So the function f(z) = 2
cosz

has poles of order m =1 at each of the points
r
zZ, =E+n7t (n=0,x1,12,...).

The corresponding residues are

(b) Write

p(2)

tanhz = T)—, where p(z) =sinhz and g(z) = coshz.
q(z

Both p and g are entire, and the zeros of g are (Sec. 34)

z=(§+mz)i (n=0,+1,%2,...)
In addition to the fact that q((% + nn)i) =0, we see that
p((-’zf + nn’)i) = sinh(—z’fi + nm’) = icosnm=i(=1)" 20
and

q'((g + nn‘)l) = sinh(gi + nm’) =i(-=1)" #0.

So the points z= (%+nn’)i (n=0,t1,42,...) are poles of order m=1 of tanhz, the

residue in each case being
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4. Let Cbe the positively oriented circle 1zI= 2, shown just below.

(a)

(b)

Cf,
Q 2 x

To evaluate the integral J.C tan zdz, we write the integrand as
tanz = pT(Z)l, where p(z)=sinz and ¢(z)=cosz,
q(z

and recall that the zeros of cosz are z= g +nr (n=0,%£1,12,...). Only two of those

zeros, namely z=%x7/2, are interior to C, and they are the isolated singularities of
tan z interior to C. Observe that

Restanz=22 _ | and Restang=2C"2 __
z=7/2 q’(x/2) 2=—7f2 q'(-7/2)

Hence
_[Ctanzdz = 2mi(~1~1) = —4 .

The problem here is to evaluate the integral J - To do this, we write the

Csinh2z
integrand as

1 _p@

R her =1 and =sinh2z.
b2z a2) where p(z) and ¢g(z)=sinh2z

Now sinh2z =0 when 2z = nmi (n=0,%1,2,...), or when

1=— (n=0,+1,%2,...).

Three of these zeros of sinh2z, namely 0 and i%’-, are inside C and are the isolated

singularities of the integrand that need to be considered here. It is straightforward to
show that

Res— L PO __ 1 _1
=0 sinh2z ¢’(0) 2cosh0 2’
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1 _pm/ 1 1 1
=m2sinh2z  ¢'(mif2) 2cosh(m) 2cosm 2’
and
Res L - PCm2) _ 1 1 1
=—mi2sinh2z q'(—mi/2) 2cosh(-mi) 2cos(-m) 2
Thus

dz .(l 1 1 ) )
J - =2 ————— = —7Ii.
¢sinh2z 2 2 2

1 1
(W43
2

Within C,, the function ———— has isolated singularities at
Z'sinz

z=0 and z=#nm (n=12,...,N).

To find the residue at z=0, we recall the Laurent series for cscz that was found in
Exercise 2, Sec. 67, and write

1 —i_cscz—i l+_.l_z+ 1 __1_ zs+...
Z'sing 7 2z 3! 3n* 5!

+[(31!)2 _3_1_'] g (0 <lzl< 7).
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This tells us that

has a pole of order 3 at z =0 and that
Z’sinz

1 1

Res
=0 z’sinz 6

As for the points z=tnzw (n=1,2,...,N), write

L _p@

— , where p(z)=1 and g(z)=z’sinz.
Z'sinz q(2)

Since
p(nm)=1#0, q(*nm)=0, and ¢'(xnm)=n’*n’cosnm=(-1)"n’n* #0,

it follows that

1 1 Gl VA Gl O
Res = n 2.2 2,2 °
s=tnr z2sing  (=1)'n’m® (1" n’z;

So, by the residue theorem,

[ = L 4= omi [+22(_D]

v z°sinz “n'm
Rewriting this equation in the form

N (_1)n+l TCZ T j dz

n® 12 4

Cy Z sin Z

n=1

and recalling from Exercise 8, Sec. 43, that the value of the integral here tends to zero as N
tends to infinity, we arrive at the desired summation formula:

H

(_1)n+1 ”2

The path C here is the positively oriented boundary of the rectangle with vertices at the
points £2 and +2 +i. The problem is to evaluate the integral

J' dz
(> =1 +3
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The isolated singularities of the integrand are the zeros of the polynomial
q(z)=(* -1’ +3.

Setting this polynomial equal to zero and solving for z*, we find that any zero z of ¢(z) has
the property z> =1+ V3i. Itis straightforward to find the two square roots of 1+ v3i and
also the two square roots of 1—+/3i. These are the four zeros of g(z). Only two of those
Zeros,

in, \/§+l = —im, _\/§+i
ZO = ‘\/Ee /6 = _——\/i and _ZO = _'\/Ee /6 = ’\/'2— ’

lie inside C. They are shown in the figure below.

24 y c 2+i
4‘
X X
"Zo 2
>
-2 o 2 x

To find the residues at z, and —Z,, we write the integrand of the integral to be evaluated as

1 _ P2
@ -1°+3 q(2)’

where p(z) =1 and g(z) =(z> —1)* +3.

This polynomial g(z) is, of course, the same g(z) as above; hence g(z,) = 0. Note, too, that
p and g are analytic at z;, and that p(z,)# 0. Finally, it is straightforward to show that

q'(2)=4z (22 - 1) and hence that
q'(20) = 420(2 —1) = =26 + 6v2i # 0.
We may conclude, then, that z, is a simple pole of the integrand, with residue

p(zy) _ 1
q'(z,) 26 +6~/2i°

Similar results are to be found at the singular point —Z,. To be specific, it is easy to see that
9'(-2) =—q'(Z) = —q"(zy) =26 + 62i 2 0,

the residue of the integrand at —Z, being
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P(—ZO) = 1
q'(-7Z) 276 +6+2i

Finally, by the residue theorem,

J dz —27u'( 1 N 1 )_n
c(z2-1)*+3 2J6 +642i 246 +642i) 242°

We are given that f(z)=1/[q(z))*, where g is analytic at z,, g(z,)=0, and ¢'(z,)#0.
These conditions on g tell us that ¢ has a zero of order m=1 at Z,- Hence
4(2) = (2~ 29)8(z), where g is a function that is analytic and nonzero at z,; and this enables
us to write

1
)T

¢(z)

———)2—, where ¢(z5 =

f(@)=
(z—z,

So fhas a pole of order 2 at z,, and

N
Res /()= ¢'(zp) == 22 0

But, since g(z) =(z—2,)g(z), we know that

9'(2)=(2-2)8'(x)+8(z) and ¢"(z)=(z—2))¢"(2)+28"(2).
Then, by setting z = z, in these last two equations, we find that
q'(z0) = 8(zy) and q"(z))=2g"(z).

Consequently, our expression for the residue of fat z, can be put in the desired form:

q”(zy)
Res f(z) =——"%.
z=0 [q (Zo)]3
(a) To find the residue of the function csc’ z at z =0, we write

csciz= L =,
[q(2)]

where ¢(z) =sinz.

Since q is entire, g(0) =0, and ¢’(0) =1# 0, the result in Exercise 7 tells us that

Rescsc2z=——i,—£0—)—3= )
2=0 [q'(0)]



(b) The residue of the function

! 7 at z=0 canbe obtained by writing
z+72°)

1
(z + z2)2 g’

where ¢(z)=z+ i

Inasmuch as q is entire, q(0)=0, and ¢’(0) =1 # 0, we know from Exercise 7 that

1 q"(0)
R = — =
= (z+22) g OF
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Chapter 7

SECTION 79

21 i around the simple

1. To evaluate the integral dex_, we integrate the function f(z) =
o X +1 T+

closed contour shown below, where R > 1.

y

= 4
»

We see that
R
j 2‘1" +J’ Zdz =27iB,
X+l dazi 4l
where
1 1 1
B:Res 3 =RCS .1 = . =_
=i 741 z=i (Z—l)(Z+l) Z+1 =i 2i
Thus

fdx__j dz

_Rx2+1_ Gz +1

Now if z is a point on C,,
1z* +1121IzP ~11= R* - 1;

and so

>N

-0 as R—o oo,

J' dz < R
G+l RP-1 1

Finally, then

g'—uﬁ
[
&
]
N
=
© Sy 8
]
SR
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The integral J(—-zix—— can be evaluated using the function f(z)= ;2 and the same
x
0

+1) (Z*+1)
simple closed contour as in Exercise 1. Here

R dZ

[ ——=+] ——==2niB,

S (x +l) Ce (2" +1)

where B=Res Zr Since
z=i (7
1 $(z) 1
= , where )=——=,
@+ (z=i)’ Y= iy

we readily find that B=¢’(i) = —!— , and so
4;’

f_f!x__J_I _dz
P+ 2 Ya (4D

If z is a point on C,, we know from Exercise 1 that

12+ 112 R* —1;
thus
r
3
J 2dz 3 R __R 5—>0 as R— oo
CG(z"+1) -1

The desired result is, then,

T dx n T dx
_J_;(x2+1)2=3 -!

the fourth roots of —1, and noting that two of them are below the real axis. In fact, if we
consider the simple closed contour shown below, where R >1, that contour encloses only
the two roots

inld __

z,=e +

-
-

and

. o 1 i ; 1 i
22 - et3n‘/4 — em‘/4eml2 =( = —

N

N
[\
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X X
(43 Z;
> 4 x
4 R
Now
t dx dz
_J;ex“ +1 +ch 2+ 27i(B, +B,),
where
5 =13=e1§z4+1 and B, =I:}=2§z4+1'
The method of Theorem 2 in Sec. 76 tells us that z, and z, are simple poles of — 1 and
b4
that
B=-1 3-.3 39 gL 2. 3
4z z 4z, 2, 4

since z; =—1and z; = —1. Furthermore,

1 1 1 ] j
Bl + 32 =—Z(Zl +22) = —Z[(—ﬁ%—ﬁ)ﬁ— (—-—-—2—+—2)} =——2~"E.

Hence
]'1 dx __7_{__“‘ dz
Lxt+l N2 Jazt+
Since
I#—‘S fR —0 as R— oo,
Gz +1 R =1
we have




x%dx
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We wish to evaluate the integral I . We use the simple closed contour

o (X +1)(x% +4)
shown below, where R > 2.

G
X 2i
Xi

-t

-
R
2

We must find the residues of the function f(z)=—; z 5
(z+1)(z" +4)

z=1i and z=2i. They are

B 2
z 1
B =Resf(z)=|—————| =-—=
L f@ _(z+i)(zz+4)]z=’ 6i
and
[ 2
b4 1
B, =Res = —=— =—
LY F@ _(z2+1)(z+2i)l=2' 3i
Thus
z x> dx 22 dz
[=5—+] =27 +B,),
_R(x +1)(x“+4) ‘GRzZZ+1)z"+4)
or
j'; x*dx _r_ 22 dz
JE A +4) 3 Y@+ +4)

If z is a point on Cg, then

at its simple poles

122+ 12Nz -11=R*~1 and Iz*+412lz*-4I=R*-4.
Consequently,
b/
2 3 -
j 5 Zde |S > 71:R2 = R —0as R—> oo;
G+ T (R -DR-4) ((_1Y,_4
R? R’

and we may conclude that

T

;’;(x +1)(x +4) ~6

b4

jf x2dx T
J P+ +4) 3
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oo 2
5. The integral I 5 ad d’; 5 can be evaluated with the aid of the function
0 (X +9)(x" +4)
Z2
J&= oy

and the simple closed contour shown below, where R > 3.

y
Cr X 3i
X 2i
0 > x
R
We start by writing
R 2 2
J‘ 2 a di 2 J 2 < dg 2 = 2ﬂi(B] + B2)9
RETHD(xT+4)" Y (ZT+9)("+4)
where
Z z*
B =Res—; —— and B, =Res
=3 (22 +9)(2* +4) = (A4
Now

72 3
Bl = ~, 2 ) =-7 =
(z+3))(z"+4)" |, 50
To find B,, we write

Z’ _ 92 2

@+ -2 " MO ey
Then
13
B, =¢'(2i) = 200"
This tells us that
"f x?dx _m 22dz
(X2 +9)(x* +4)* 100 Jer (2 +9)(2% +4)*

-R

Finally, since

J‘ 2’ dz | R’
Ce

< —>0 as R— oo,
(22 +9)(2+ 4| (RP=—9)(R* - 4)’

we find that

J‘ x*dx ]: T
2 (P H9)(x% +4) 100’ 2 (x° +9)(x T4 200




7.

In order to show that

T xdx __T
DT +H2x+2) 5

we introduce the function

z
(Z+ D) +2z+2)

f@)=

and the simple closed contour shown below.

y

Cr

X X

-1+

>

Observe that the singularities of f(z) are at i, gz,

Z, =—1—1i in the lower half plane. Also, if R> 2 , we see that

R
| fode+ [ f@)dz=2xi(B, + B),

where

B, =Res f(z)= [————z—-——] N

2=y

@ +e-2) ],

and

B, = lES‘SJ“(Z) = [

Evidently, then,

b4 1
=—=—1
(z+i)(zz+2z+2)]2=,. 10 5

R
L(f +1)(x? +2x+2) 5
Since

b4 J- zdz
(2 +INE+22+2)

J' zdz _ J' zdz
(2 +1)(2° +22+2)| (P +D)z-2z0z-3)

as R — oo, this means that

lim f xdx =z
Rom d (2% +1)(x° +2x+2) 5

This is the desired result.

*®-DR-—2Y P
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=-141i and their conjugates —i,
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oo

dx

8. The problem here is to establish the integration formula .[—3—_ = z—f_ using the simple

o X +1 343
closed contour shown below, where R > 1.

i y

Ren/3
Cr

inl/3

There is only one singularity of the function f(z)=—; l+ T namely z, =™, that is interior
b4

to the closed contour when R>1. According to the residue theorem,

jclfdi 1+Ickz3di 1+ch 9 _ ) niRes

2 +1 =20 70 +1

where the legs of the closed contour are as indicated in the figure. Since C, has parametric
representation z=r (0<r <R),
[ dz__ i dr
az’+1 {r+1

and, since —C, can be represented by z = re’””* (0<r<R),

d R l2ﬂ/3d irr.R d
Iczz3i1=—jczz+1 :.; TR eznj_r

(re”™?)® +1 0r3+1'
Furthermore,
1 1 1
Res =e—,
=20 7° +1 323 3273
Consequently,
R
: dr 2mi dz

1 — 273 S L

( )‘('). r3 +1 3ez27r/3 J'CR z3 +1
But

1 2nR

7 1~ 3 —0 as R— oo,

d
chz3-zk1 :

This gives us the desired result, with the variable of integration r instead of x:

_ 27i _ 2mi V1 2r
r3 +1 3(ei27r/3 _ei4n’/3 ‘e_i6”/3) 3(ei27t/3 _e-—i27r/3) 3Sln(27t/ 3) 3\/7

Oty §
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9. Let m and n be integers, where 0 <m <n. The problem here is to derive the integration
formula

o 2m
Jf—dx = lcsc(2m+ ! 71').
o X +1 2n 2n

(a) The zeros of the polynomial z** +1 occur when z*" =—1. Since

.(2k+1)7t] (k=0,1,2,....2n—1),

—HVem = ax [
(-1 p|i o

it is clear that the zeros of z>” +1 in the upper half plane are

k=0,12,...,n—-1
o ( )

¢ = exp[i 2k + l)n]

and that there are none on the real axis.

(b) With the aid of Theorem 2 in Sec. 76, we find that

2m

2m
4 _ 4 _ 1 am-nmy
Res 2n - -1~ Ck
=a 2" +1  2nc; 2n

(k=0,1,2,...,n-1).

) 2m+1 .
Putting o = T, we can write

G exp[i 2k + )72m—2n+ 1)}

2n

— exp[i 2k + 1);2m + D”]exp[—i(Zk + 1)) = —el e
n

Thus

2m

I}ﬁszfn = =—-21;ei(2"+')“ (k=0,1,2,...,n—1).

In view of the identity (see Exercise 9, Sec. 8)

= (z#1),
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then,
2m . n—1 . i2on —io
b4 T ; ; T o,1—e e
2 Res 2o T oS ey M pa Lo e
e 77" + 1 n i n I-e e
o & -1 o 28 om
n e%“—e™ n €%—e psina

The residue theorem tells us that

R x2m 2 2m
j > dx+I dz = 2mZRes
Jex 1 G +1 e 27"+
or
R 2m 2m
X T .z
J. 2n dx = s - 2n dZ.
+1 nsina Yz +1

Observe that if z is a point on C,, then

Iz>"l=R*™ and Iz*"+1i=R* —1.

Consequently,
1
2m 2m —2n D2n—m)-1
j 22 dz| < f n'R-R_2 =& —0;
Cz? +1 R" -1 R™ 11
R2n

and the desired integration formula follows.

10. The problem here is to evaluate the integral

{[(x2 —a)P+11°

where a is any real number. We do this by following the steps below.
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(a) Let us first find the four zeros of the polynomial

(b)

g(2)=(*-a)* +1.

Solving the equation g(z) =0 for z°, we obtain z> =a=*i. Thus two of the zeros are
the square roots of a + i, and the other two are the square roots of a—i. By Exercise 5,
Sec. 10, the two square roots of a +i are the numbers

_L(
)

VA+a+iJA—a) and -z,

where A=+a’+1. Since(+Z,)* =z =a+i=a—i, the two square roots of a—i, are
evidently

Z, and -—2Z,.

The four zeros of g(z) just obtained are located in the plane in the figure below, which
tells us that z, and -z, lie above the real axis and that the other two zeros lie below it.

y
o °
_Z() ZO
o X
® [

Let g(z) denote the polynomial in part (a); and define the function

1

J&=ror

which becomes the integrand in the integral to be evaluated when z = x. The method
developed in Exercise 7, Sec. 76, reveals that z, is a pole of order 2 of f. To be

specific, we note that g is entire and recall from part (a) that g(z,) = 0. Furthermore,
q'(z)=4z(z*-a) and z; =a+i, as pointed out above in part (a). Consequently,
q’(z,) = 4z,(z2 - a) = 4iz, # 0. The exercise just mentioned, together with the relations
7 =a+i and 1+a’ = A%, also enables us to write the residue B, of fat z;:

_4"(z) _ 12zg-4a _3z—a_3@+i)-a a—i_a-i2d’ +3)
' Ig()T (4iz,))  16iz2z, 16i(a+i)z, a—i 164’2,

As for the point —Z;, we observe that

q'(-2)=—-¢'(z) and q"(-2)=q"(2).
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(c)

Since q(-z,)=0 and ¢'(-z,) = —-q'(zy) = 4iZ, # 0, the point —Z, is also a pole of order
2 of f. Moreover, if B, denotes the residue there,

__ 4% _ TG _ { q"(z) }__F
2 e = \13 , 3 ’ 3 1
[T [9°(z)F  [[9°(z)]

Thus

. 2
B +B,=B~B =2ImB =—_Im| 22120 +3) |
8A%i Zy

We now integrate f(z) around the simple closed path in the figure below, where
R>Izyl and C;, denotes the semicircular portion of the path. The residue theorem tells
us that

R
[FGdx+ [ f2)dz=2niB, + B,),
-R

or
g dx T —a+i(2a® +3) dz
J 2 T = s m —J. 7
Rl(x"—a)y +1° 44 Z % [q(2)]
In order to show that
[ _dx _
Ro=dCp [q(DF

we start with the observation that the polynomial ¢(z) can be factored into the form

q(z)= (z - zo)(z + zo)(z —Z )z +7,).

Recall now that R>Iz,l. If z is a point on C,, so that Izl= R, then

22 25/2llzl-lz,ll = R~Iz,| and lzZI2lizl—IZl1= R—Iz,|.
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This enables us to see that Ig(z)l = (R«Izol)4 when z ison C,. Thus

' (I P
[q(2)F | (R-lg,))°
for such points, and we arrive at the inequality
1 7R r'd
.[ s g R g >
c [g(2)] (R-z,)) (1_ Iz_ol)
R

which tells us that the value of this integral does, indeed, tend to O as R tends to oo.
Consequently,

) _ . 2

P.V.I : abc2 - 752 m a+i(2a”+3) .
S I(x"=a) +11° 4A Zy

But the integrand here is even, and

—a+i2a’ +3) | _ —a+i(2a’+3) JA+a-iNA-a
Im[ 2, ]_Im[ﬁ«/A+a+i\/A—a NA+a-ivA-a |

So, the desired result is

T dx __z
(¥ -a’+1F  824°

[2a® +3)VA+a +aVA=a],

where A=+a’ +1.

SECTION 81
cosxdx
(x2 + az)(x2 + b2)
1
(2 +a* )" +b%)

inside the simple closed contour shown below, where R >a. The other singularities are, of

1. The problem here is to evaluate the integral j , where a>b>0. Todo

this, we introduce the function f(z)= , whose singularities ai and bi lie

course, in the lower half plane.

EX
=
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According to the residue theorem,

jg e” dx

-R (x2 +a2)(x2 +b2) +5[f(Z)e dz =2mi(B, + B,)),

where
. e’ e’
B, =Res = =
1= Resl/ @7 [(z +ai)z’ + th‘, 2a(b’* - a*)i
and
. e” e’
B, =Res “1= = ———,
2 b [f(@)e"] (z* +a’Xz + bi) L 2b(@ - b
That is,
R T e—b e—a .
£ __ - “d,
JR(x +a )(x +b?) az—b?‘(b a ) C'[f(Z)e ‘
or :
£ cosxdx T (et e R i
_J:Q(,\¢2+az)(x2+b2)_(12—b2 (—b—— a )_ eé[f(z)e “

Now, if z is a point on Ces

If(RIsM, where M,= I

(RZ _a2)(R2 _b2)

and le“l= e <1. Hence

7R

ReJ'CR f(2)e"de| < ’ICR f(z)e“dzl <M nR= B a5 —0as R— oo,
So it follows that
oo -b -a
j 2 cozsxd;x N 2” 2 -2 (a>b>0).
J(x+a ) x +b) a*-b*\ b a

co
Saxdx where a=>0. The function

2. This problem is to evaluate the integral I

Ox +1

has the singularities *i; and so we may integrate around the simple closed

1
f(Z)_Zz'f'l

contour shown below, where R > 1.
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We start with
R iax
e .
dx + | f(2)e"dz = 2miB,
_J;xz +1 CJ; f@)
where
. emz e—a
B=Res| f(z)e” |= =<
[f( ) ] [z+ iL. 2i
Hence
eiwc .
dx=me™ — | f(z)e"“dz,
_J;xz +1 C-[ f@
or
£ cosax )
_ka2+1dx=”e -Reé[f(z)e dz,
Since
|f()I< M, where M, = __2_1_’
R -1
we know that
: i R
Re | f(z)e™dz|< “dg| < ;
C{ f@ é[f(z)e el
and so
J- C(;de dx = e
> x"+1
That is,
T cosax n
di=e” az0).
I x2+1 2 ( )

xsin2x . .
———dx, we first introduce the function

4. To evaluate the integral j >
0 X T

z__ z
2+3 (2-z)z-7)

f(@)=

where z, =+/3i. The point z, lies above the x axis, and 7, lies below it. If we write

f(z)eiZZ — ¢(Z) Where ¢(Z) — zexp(izz)
2= -z ’
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we see that z, is a simple pole of the function f(z)e'’* and that the corresponding residue is

B =gtz = VIR _enp2)

Now consider the simple closed contour shown in the figure below, where R > /3.

Ce X

> :

i2z

Integrating f(z)e'* around the closed contour, we have

R xein
— ‘R _ i2z
_jR S =2miB, jCR f(2)e® dz.

Thus

R .
J‘ xsinx

x+3

dr=Im(27iB) ~1m [ f(z)e™ dz.

-R

Now, when z is a point on C,,

|f(Z)|SMR, where MR= —0 as R— oo

R2
and so, by the theorem in Sec. 81,

: {2z -
Ilel—r)ll ICR f(2)e“*dz=0.

Consequently, since

'ImJ'CR f(2)e™ dzl < ILR f()e™* dz‘,

we arrive at the result

T xsinx
J. 13 dx = nexp(—2x/§),

—oo 0

oo

J'xsinx
x*+3

dx = —;Eexp(— 24/3).
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o0

3 .
. . X" sinax
The integral to be evaluated is I-—————

4

dx, where a>0. We define the function
x +4

—00

z3

-+

f(@)=

2 ; and, by computing the fourth roots of —4, we find that the singularities

Zl=\/§eixl4=1+i and Zz='\/_2_ei3”/4='\/§einl4ei”/2=(1+i)i=—l+i

both lie inside the simple closed contour shown below, where R>+/2. The other two
singularities lie below the real axis.

y
(&
X X
2 4
o ’ R X

The residue theorem and the method of Theorem 2 in Sec. 76 for finding residues at simple
poles tell us that

R 3 ‘
[S—ax+ J’C f(2)edz =2mi(B, + B,),
Rx t 4 R
where
3 iaz 3 iaz, faz, ia(1+i) -a ia
e ze e e e‘e
B, =Res—; == = =
=u72"+4 4z 4 4 4
and
z3eiaz z;eiazz eiazz eia(-—1+i) e—ae—ia
B2 = Res 3 = = = =
=5 7" +4 4z, 4 4 4
Since

. Caf€re™Y
27mi(B, + B)) = mie “(T)=me “cosa,

we are now able to write

R 13 .
J'x sinax

xt+4

dx = e * cosa—Im JC f(2)e“dz.
-R &
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Furthermore, if z is a point on Cy, then
3

If(I<M, where MR=E;R—4—>O as R — oo;

and this means that

—0 as R~ oo,

’Im J. e

< l J. f@eaz

according to limit (1), Sec. 74. Finally, then,

o0 3 .
I ad fmaxdx= e cosa (a>0).
Sox +4
. T Xsinxdx ) .
8. In order to evaluate the integral I 5 > , we introduce here the function
o (X +1D(x"+9)
3
b4 . e . .
)= . Its singularities in the upper half plane are i and 3i, and we
f(@) Z1DET9) g pper half p

consider the simple closed contour shown below, where R > 3.

Cr

Since
3 iz 7
, ze 1
Res| f(2)e" |[=| ————| =-—
\e [f( ) ] l:(z+i)(22+9)dz=i 16¢
and
3 i ]
. ze 9
Res e |= - ’
2=3i [f(Z) ] l:(Z2+1)(Z+3i)Jz=3i 16¢”

the residue theorem tells us that

jc f(z)e"de=2m(—L+ 2 )

R
J;(x2+1)(x +9) 16e  16¢°

or

R 3 .
x sinxdx wt(9 ;
=22 —1)-1 2.
_J;(x2+1)(x2+9) Se(ez ) m|. e ds
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Now if z is a point on Cp, then

R
f(Z) R where R (R2 _ 1)(R2 - 9) as

So, in view of limit (1), Sec. 74,

ICR f(z)e“dz

'ImJ.C f(Z)eide‘S —0 as R— oo

and this means that

T X’sinxdx n(9 T xX’sinxdx (9
J‘ 2 2 =-|=z—1) or _[ 2 P = -1
(x*+D(x*+9) 8ele o (X +D(x"+9) 16e\e

The Cauchy principal value of the integral j % can be found with the aid of the
X x

function f(z)= ﬁ and the simple closed contour shown below, where R> 5.
z 4

Using the quadratic formula to solve the equation z°+4z+5=0, we find that f has

singularities at the points z; =—2+i and z, =—2—i. Thus f(z)= —1————;—, where z,
(z—z)z-%)
is interior to the closed contour and Z, is below the real axis.
y
Cr
X 2y
o > R x
The residue theorem tells us that
t e"dx
—+ z)e"dz =2miB,
_J;xz +4x+5 ICRf( )
where
iz 4]
B=Re sl: ¢ — } = —;
=u | (2-4)0z2-3) | (%)
and so

f sinxdx 2 mie™
j sy 20
x“+4x+5 (z,—-%)

]— Imjc f(z)e“dz,

-R
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10.

or
T sin x dx
dx+4x+5

Now, if z is a point on C,, then le“l=¢™ <1 and

. iz
—;st—ImLRf(z)e dz.

1 1

1f(2)I€M, where M,= = .

/ i " (R-Iz)(R-1Z))  (R—-+5)
Hence

. soeta s, roresad s Monr= TR 0 a5 R
Ce Cr (R-+/5)
and we may conclude that
P.V. J- zsmxdx =——sin2
Jx +4x+5 e

To find the Cauchy principal value of the improper integral

z+1 _ z+1
22 +4z+5 (z-7)z-3%)
the same simple closed contour as in Exercise 9. In this case,

the function f(z)=

T (x+1Dcosx

5 dx, we shall use
' X" +4x+5

, where z; =-2+i, and 7, =-2-1, and

R .
(x+1e" dx By
e rvrr Al S
where
B=Res (z+1)e" _(&+ e _ (~1+De™
=u | (2-)0(2-7) (z—-72) 2ei
Thus
R
(x+1Dcosx . ;
———dx=Re(27miB) - ‘)
_‘Lx2+4x+5 (2miB) J-Ckf(Z)e
or

g (x+1)cosx

b2
dx =—(sin2 —cos2)—
Xt +4x+5 e( ) L{ﬂ

Finally, we observe that if z is a point on Cj, then

R+1 R+1

7)edz.

| f(z)ISM, where M,=

(R=IgD)(R-1Zl)  (R-~5)

— 0 as R— o,
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The theorem in Sec. 81 then tells us that

Rejc f(Z)eide| < UC f(z)eizdz‘ —0 as R—» oo,

and so
(x+1)cosx

P.V.
I x*+4x+5

~—o0

dx = Z (sin2 — cos2).
e

12. (a) Since the function f(z)=exp(iz?) is entire, the Cauchy-Goursat theorem tells us that its
integral around the positively oriented boundary of the sector 0<r<R, 0<0<rm/4
has value zero. The closed path is shown below.

y

Reir/d

A parametric representation of the horizontal line segment from the origin to the point
Ris z=x (0< x<R), and a representation for the segment from the origin to the point

Re™* is z=re™* (0<r<R). Thus

R R

.2 .2 . 2
J.e"‘ dx+IC e dz—-e"”“‘[e" dr=0,
0 R

0

or
R

R

.2 . 2 .2
Ie"‘ dx=e'”’4je" dr—J e’ dz.
0

0 Ca

By equating real parts and then imaginary parts on each side of this last equation, we

see that
R

J'cos(xz)dx = %fe"zdr —Re JC e dz
and ’ ’

R
fsin(xz)dx = e dr— Imjc e dz.
0 R

lR
7]
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(b) A parametric representation for the arc C, is z= Re” (0< 60 < n/4). Hence

nl4 nl4
) p2,0i20 . . . —R%si ip2 )
J‘C etz dZ = IelR e Rletade — lR J’e sm29etR cosZOelee.
R
0 0

Since |e"R2 °°52"| =1 and |ei9| =1, it follows that

nl4

e’ dz <R [e 2049,
Cr °

Then, by making the substitution ¢ =20 in this last integral and referring to the form
(2), Sec. 81, of Jordan's inequality, we find that
nl2 R T o

J‘ eizzdzisﬁje—kzsm'pdﬁbﬁ—' >=———>0as R—> oo,
Cr 2 4 2 2R 4R

(c) In view of the result in part (b) and the integration formula

]:e‘xzdx=—\/2—g,

it follows from the last two equations in part {a) that

T nw, 1m T a2, 1lx
:':cos(x )dx—E\/; and ‘([sm(x )dx—E\/;.

SECTION 84

1. The main problem here is to derive the integration formula

]3 cos(ax) —2cos(bx) dx = g(b —a) (a20,b20),
0

X

using the indented contour shown below.

y




Applying the Cauchy-Goursat theorem to the function

e:az _ e:bz

f@)= Z

we have
[ f@de+] fde+ | f@)de+] fde=0,
or

[ f@de+ [, forde=—[ f@de-], ford.

Since L, and —L, have parametric representations
L:z=re®=r(p<r<R) and -L,:z=re"=-r(p<r<R),

we can see that

r R _jar ~ibr
e —é
dr+ [£—3°—dr
o r

p

2
r

R . jar —iary ¢ ibr —ibr R _
=J(e +e " )—(e"" +e )dr=2J'cos(ar) zcos(br)dr'
r

P

p

Thus

r

R
R S T
p

In order to find the limit of the first integral on the right here as p — 0, we write

f<z>=-t-[(1+z’z~z+<wzf+<iaz>’+...)_(1+zzz.+@i+@i+...ﬂ
Z 1! 2! 3! 1! 21 3!

_Hazb) L 0<id<)

2z
From this we see that z =0 is a simple pole of f(z), with residue B, =i(a—b). Thus

lim L,, f(2)dz = —B, i = —i(a — b)i = ni(a — b).

139
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As for the limit of the value of the second integral as R — oo, we note that if z is a point on
C,, then

le“l+le®] e +e™®” 1+1 2
S = S = —.
f@) <= R R R

Consequently,

‘s—zi-nR=z£—->0 as R— oo,
R R

It is now clear that letting p — 0 and R — o yields

ZT cos(ar);; cos(br) dr = 1i(b—a).

This is the desired integration formula, with the variable of integration r instead of x.
Observe that when a =0 and b =2, that result becomes

J- 1- co§(2x) dx

0

But cos(2x) =1-2sin’ x, and we arrive at

Let us derive the integration formula

T S ) (-l<a<3)
° (x* +1) 4cos(a7t/2) ’

where x* = exp(alnx) when x >0. We shall integrate the function

a

_ exp(alogz)

f(Z)_( T2 (241

T in
1zZI>0,—-—<argz < — |,
(z " <argz 2)

whose branch cut is the origin and the negative imaginary axis, around the simple closed
path shown below.
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Branch cut

By Cauchy's residue theorem,

J-Ll f(2)dz+ LR f(2)dz+ J.Lz f(Ddz+ jc,, f(2)dz =2miRes f(z).
That is,

| f@de+ [ f@dz=2miRes f@)- | f)d=[ [z

Since
LI:z=rei°=r(pSrSR) and —lq:z=rei”=—r(pSrSR),

the left-hand side of this last equation can be written

R ea(lnr+i0) R ea(lnr+in’) "
JLlf(Z)dZ_J‘—sz(Z)dZ=l‘[mz—dr—p(r2+1)2e dr
R ra R ra R ra
= |——=dr+e | —5—5dr=(1+¢"" d
!(r2+1)2 rTe {(r2+1)2 r=(l+e )l(r2+1)2 r

Also,

Resf(2)=¢() where $(2)=——
z=i (z+1i)

?

the point z =i being a pole of order 2 of the function f(z). Straightforward differentiation
reveals that

¢/(Z) = e(a—l)logz[a(Z + l) - 22}

(z+i)’
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and from this it follows that

- iarml/2 l-a
Resf(z) —ie ( 2 )

We now have

R a
(1+eialr) r dr = ”( a) um'/2 f(Z)dZ f(Z)dZ
{ (r*+1) 2 j J

Once we show that

lim L,, f(@)dz=0 and lim jCR f(2)dz=0,

we arrive at the desired result:

I _r-a) €% e p(l-a) 2 __(-ar
2 (r? +1) 2 l4eTm Ty gy goodan ] 2)

The first of the above limits is shown by writing

pa n,pa+l
< 2 =10
T U=-p P U=y

and noting that the last term tends to 0 as p — 0 since a+1>0. As for the second limit,

a a+1
(R* - 1) (R* -1)?

and the last term here tends to 0 as R — oo since 3—a > 0.

The problem here is to derive the integration formulas

I = IV_lnx n2 ]3

— and
0x+1

by integrating the function

Z
3

1/3 logz (1/3)logz lOgZ
241 22 +1

n kY4
= IzI>0,-= <=,
f()= (z 2<argz 2)
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around the contour shown in Exercise 2. As was the case in that exercise,
| f@dz+ [, f)de=27iRes f(2)- [, f()de- |, fD)dz

Since

RUETE
¢_(Z_)T where ¢(Z) - _—lgg_é
—1 Z+i

f@)=

the point z =i is a simple pole of f(z), with residue
Resf(z)=¢@) = e,
The parametric representations
L:z=reé®=r(p<r<R) and -L,:z=re"=—r(p<r<R)
can be used to write

R
_ Vrinr
L f(2)dz = ! ol

e,~,,,3jg§/—lnr+ I V_

rr+1

and L_, f()dz =

Thus

e = [ f@de=| fla)de

rr+1

Jv_lnr ei,,,3j$’v_lnr+l7l';v_ ”2
p

By equating real parts on each side of this equation, we have

ffi/?lnrd :V_l nr
241

2

Ldr~ msin(7/3) j V_ldr = ——7;—31n(7r/6)

+cos(r/ 3)j

—Re jcp f(z)dz—-Re jck f(2)dz;
and equating imaginary parts yields

RV;Inr

£ r r’
in(w/3
sin( );': T

dr+rm n/3 dr=— n/6
r+ mcos( )_! o r > cos( )

—Im fc f(2)dz—Im JC f(2)dz.

Now sin(n/3)=g, cos(n/3)=%, sin(7r/6)=%, c:os(ﬂ:/6)=iz—?i and it is routine to

show that
lim L,, f@dz=0 and lim jcn f(R)dz =
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Thus
jV_lnr z3§ r ?
dr— _[2 dr=——,
29 r'+1 2 yro+l 4
«/—JV_Inr J _ \/3
o T +1 r? +l )
That is,
2
31_75 312_ " b
2! 2 4
2
—*[—5—1,+—12=”*/§.
2 2 4

Solving these simultaneous equations for 7, and 12, we arrive at the desired integration
formulas.

4. Let us use the function

(log2)® ( _z §z)
f(@)= 24l IzI> 0, 2<argz<2

and the contour in Exercise 2 to show that

o0 2 oo
[ 4y =T and [ X ge=o0,
0 o X +1

Integrating f(z) around the closed path shown in Exercise 2, we have
| f@de+ ], f@dz=27iRes f0)- [ fde~ [, f@de

Since

2
where ¢(z)=—-—(10gz,) ;

Z+i

f()—¢(—).

the point z =1 is a simple pole of f(z) and the residue is

w2 . 2 2
Res ()= g = LS (I Z/D %
z=i 2i 2i 8i

Also, the parametric representations

Liz=re®=r(<r<R) and —-L:z=re"=—r(p<r<R)
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enable us to write

R 2 R . 2
(Inr) (Inr+im)
dz = d d dz = | ~—————dr.
[, rdz £r2+1 and [, fla)dz { ) dr
Since
R 2 R R
(Inr) o f dr . ¢ Inr
J f@dz+ ], fayaz £r2+1 ' ”£r2+1 m{r2+1 ’
then,
(lnr) 7 dr % lnr o
2] o { e +2m£—r2 dr=-"-- Ic,, f@de~ | f)dz.

Equating real parts on each side of this equation, we have

2J(lnr) zjfer:__I =_”73_Rejcpf(z)dz—ReICRf(z)dz;

and equating imaginary parts yields

R
1
271,'J' ,.2n_:1 dr=ImICP f(z)dz—ImLR f(2)dz.
p

It is straightforward to show that
lim Ic,, f@dz=0 and lim Jc,, f()dz =

Hence

1 T d 3
zj(nr) 2J‘rz-:l 7;

and

r+l1

Finally, inasmuch as (see Exercise 1, Sec. 79),

k4

I ar =«
0 rr+1 2
we arrive at the desired integration formulas.
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T Wx
J

S. Here we evaluate the integral | ——————
(x+a)(x+b)

dx, where a>b>0. We consider the

0
function

1

(z+a)z+b) (z+a)z+b)

(IzI>0,0< argz < 2m)

and the simple closed contour shown below, which is similar to the one used in Sec. 77. The
numbers p and R are small and large enough, respectively, so that the points z=—a and
z =—b are between the circles.

—> Branch cut
P 44— R x

A parametric representation for the upper edge of the branch cut from p to R is z=re®
(p <r < R), and so the value of the integral of f along that edge is

1 .
J@ exp[g(]nrHO)] Y R Y ]
s (r+a)r+b) 5 (r+a)(r+b)

A representation for the lower edge from p to is R is z=re”" (p<r<R). Hence the
value of the integral of f along that edge from R to p is

R exp[% (Inr+ i2n)] R
_ | iy = _ei2n!3
(r+a)r+b) ;‘:(r+a)(r+b)

p

According to the residue theorem, then,

:(/'r_.
(r+a)r+b)

D Sy 2y

R
dr+ dz — e*"™'? dr+ dz=2mi(B +B,),
r C{f(z)z e 1( C{f(z)z mi(B, + B,)

r+ a)(r+b)
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where
ex [llo (—a)] ex [l(lna + iﬂ')]
B = Res f(2) = PV 3 g _ P 3 =_em/3 Va
z=-a —a+b a-b a-b
and
ex [-1- lo (—b)} ex [l(lnb + in)]
B, = Res f() = P 3 g _ Y 3 =em/3 %
z=-b ~b+a ~b+a a—b
Consequently,

R . inl3
(1 _ ei2n/3)ILdr __2mie (a -¥b) - _[f(z)dz - If(z)dz.
Cp Cr

p(r+a)(r+b) - a-b
Now
S——iﬂi——amm=—3£ﬁég—u+0aspﬁO
(a-p)b-p) (a~p)(b-p)
and
AR 2nR? 1
f(Z) Z‘ m2 R = (—mﬁ—)o as R— oo,

Hence

]‘” - _2meiﬁ/3(%_%) . e—iu’/?’ _ 27[1.(%_%)

) (r+a)(r+b) (1 _ei21r/3)(a —b) L - (ein/3 _e—in/3)(a —b)

nda-3b) _nXa-b)_27 Ya-¥b

~sin(z/3)a-b) _«_ng(a_b) V3 a-b

Replacing the variable of integration r here by x, we have the desired result:

5y 2m Naip
¢ (x+a)(x+b) N3 a-b

(a>b>0).
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6. (a) Let us first use the branch

1
172 exp(——logz)
z 2 /3 37:)
= = [21>0,—-—<argz<—
f&=a5 Z+1 (z g SHBLST

and the indented path shown below to evaluate the improper integral

]“ dx
 Vx(x® +1)°
y

L
. 'ﬁ g
P R =x
Branch cut

Cauchy's residue theorem tells us that
Jf@det [ f@de+ [, fQ@det [ fo)dz=2niRes (o)

or

Jf@dz+ [, f)dz=2niRes f0) [ fdz~ [ fla)d.

Since
Liz=reé®=r(p<r<R) and —L:z=re"=-r(p<r<R),

we may write

t ar fodr & dr
-[14 J(@)dz +J‘lq fleydz = ;’: Nri2 +1) l;[ Nr(r?+1) - l);[ r(? +1y

Thus
R
. dr .
(1 - l)"[-—\/;—(r:—i_)- =27 %SiSf(Z) - J.C,, f(Z)dZ - J.CR f(Z)dZ
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Now the point z =i is evidently a simple pole of f(z), with residue

ll ] ex ——1— ln1+i£
Res =] 2] -l 2 P T )] e i
eti] 2 2i 2 2i\2)
Furthermore,
Tp n+p
f(dz}| < = —0as p—0
I, Jpt-ph 1-p7 " BP
and
. f(z)dzls ™R ___ =z <0 as R
SRNCE Py
Finally, then, we have
~f dr n(l1-1i)
1- = ,
( t)“[ﬁ(r2+1) NG

which is the same as

TL=£
Dx(xP 41 A2

To evaluate the improper integral J‘;df— , we now use the branch
s Vx(x* +1)

1
z_]/z exp(—glogZJ
f@Q)=——= 3
2" +1 2 +1

(121> 0,0 <argz < 27)

and the simple closed contour shown in the figure below, which is similar to Fig. 103 in
Sec. 84. We stipulate that p <1 and R > 1, so that the singularities z =i are between
C, and C,.

Branch cut

X
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Since a parametric representation for the upper edge of the branch cut from p to R is
z=re" (p<r<R), the value of the integral of f along that edge is

R exp[—%(ln r+ iO)] R i

r=|—————dr.
rr+1 o Ar(r? +1)

p

A representation for the lower edge from p tois R is (p <r < R), and so the value of
the integral of f along that edge from R to p is

R exp[——l—(ln r+i2 75)]
- 2 ldr =—e™"

R R
1 1
dr = dr.
rf+1 '!Vr(r2+1) ! ;[x/?(rzﬂ) ’

p

Hence, by the residue theorem,
R R
[—dr+ [ @)z + [———s—dr + [ f(2)dz = 27i(B, + B,),
oANre? ey 2 ANrt

where

2i 2i 2i

1 ¥
12 exp[—%logi] expli—i(lnlﬂi):l inia
Bl=Re'sf(z)=[z ] = e
z=i z+l =i

and
1 ) 1 3z
oy of-tesc] o]
B .—_R = = = = e .
2 zf_isf(Z) [Z_i]z=_i oy oY Y
That is,
T
2 _____d = —in/4_ -i3rn/4 _ d - d .
{W(rzﬂ) r=ne e"™") !f(z) z é[f(z) Z
Since
2 p 27 +p
J(2)dz|< = —>0as p—0
k. Vp(i-p*) " 1-p P
and

2r

(o)

—0 as R— oo,

2nR
f, f(z)dz)s TR
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we now find that
e—in:l4 _e—i37t/4 3 ﬂe—inM +e—i3n:/4ei7r

J—lz dr=rx
P r(r +1) 2 2

ein’/4 +e "

~in/4 n
=g————=7Cco8| — |=—.
2 ‘ 5(4) ;)

When x, instead of r, is used as the variable of integration here, we have the desired

result:
j_dx_=1
cAx(xT D) 27
SECTION 85
1. Write
Zj” - 1 _@_J dz
C — N DI iy’
05+4s1n9 5+4(z 2? ] iz 22°+5iz-2
i

where C is the positively oriented unit circle Izl=1. The quadratic formula tells us that the
singular points of the integrand on the far right here are z=—i/2 and z=-2i. The point
z=—i/2 is a simple pole interior to C; and the point z =-2i is exterior to C. Thus

2r
j——d(-’,——_z Res[__l_] 27:1'[ 1 ] =2ni(l.)=2_”_
o d+4sin6 e==il2| 27* + 5iz =2 4z+5il—in 3i 3

2. To evaluate the definite integral in question, write

"f do _J‘ 1 _(_lE_J- 4izdz
_”1+sin20 C1+(z_z“)2 iz Jct-622+1"
2i

where C is the positively oriented unit circle |zl=1. This circle is shown below.
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Solving the equation (z*)* —6(z*)+1=0 for z* with the aid of the quadratic formula, we
find that the zeros of the polynomial z* —6z* +1 are the numbers z such that z2 =3+ 2+/2.

Those zeros are, then, z =+43+ 242 and z= \/3 2+/2. The first two of these zeros are

exterior to the circle, and the second two are inside of it. So the singularities of the
integrand in our contour integral are

3-24/2 and 2, ==z,

indicated in the figure. This means that

T do
————=27i(B +B,),
_J;1+sin20 (B +B)
where
4iz 4iz i i i
B, =Res 1 = = =
=n 7% —67° +1 4z13—-12z, -3 (B3-2v2)-3 22
and
B, =Res diz _34111 = 2’ =
=278 — 622 +1 -4z,+12zl -3  2\2
Since
i) 27 V2
27i(B, + B)) =27i| ~—= |=~—=-—==+/2m,
l( 1 2) l( \/5) ’\/—2— \/—2— \/——
the desired result is
————=A/27.
J’1+sm 7} V2

7. Let C be the positively oriented unit circle Izl=1. In view of the binomial formula (Sec. 3)

ﬂ I(Z )"
iZ 22n+1( 1)1

Isinz” 0d0 = 5J51n2” 0d6 = —J' (

22n+1( 1) J‘Z( ) 2"‘k(_z‘l)"z_1dz

_ 1 L (2n k 2n-2k-1
P )
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Now each of these last integrals has value zero except when k =n:

[ 2de=2mi.
Consequently,
Tt (-=1)"2 i !
T
0 27 (=" (nY) 27"(n")
SECTION 87

5. We are given a function f that is analytic inside and on a positively oriented simple closed
contour C, and we assume that f has no zeros on C. Also, f has n zeros z, (k=1,2,...,n)

inside C, where each z, is of multiplicity m,. (See the figure below.)

Y C

0 x
The object here is to show that

2f'@) ;5o N
J.Cmdz = kaz:lmkzk.

To do this, we consider the kth zero and start with the fact that

f@=(@—-z)™ 8(),

where g(z) is analytic and nonzero at z,. From this, it is straightforward to show that

2f'@)_ mz 8@ _mz-z)tmz 28 _ 28, mz

f@  z-z 8@ z-7 g " g z-z
Since the term %(Z)) here has a Taylor series representation at z,, it follows that —Z—}J:—((—i)
8(z z
has a simple pole at z, and that
Res 2f @) _

=u  f(z) = -

An application of the residue theorem now yields the desired result.
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6.

(a)

(b)

To determine the number of zeros of the polynomial z® - 5z* + z> — 2z inside the circle
IzI=1, we write

f(2)=-5z* and g(2)= P +72 -2z,
We then observe that when z is on the circle,
If(2)=5 and g <1 +1zP+2iz1=4.

Since 1f(z)I>1g(z)l on the circle and since f(z) has 4 zeros, counting multiplicities,
inside it, the theorem in Sec. 87 tells us that the sum

f@+8(x)=2"-5z"+’ -2
also has four zeros, counting multiplicities, inside the circle.
Let us write the polynomial 2z* —2z* + 272 ~27+9 as the sum f(2)+ g(z), where
f(2)=9 and g(z)=2z"-27"+27"-2z.
Observe that when z is on the circle Izl=1,
If(D=9 and Ig(z) <2z + 21z + 21z + 21zl = 8.

Since 1f(z)I>1g(z)l on the circle and since f(z) has no zeros inside it, the sum
f(2)+8(2)=2z" —22° + 222 =2z +9 has no zeros there either.

7. Let C denote the circle Izl=2.

(a)

The polynomial z* +3z* +6 can be written as the sum of the polynomials

f(@)=37 and g(z)=7*+6.
On C,
If(D=3IzP=24 and lg(z)l=1z*+6I<izl*+6=22.

Since 1f(z)I>1g(z)l on C and f(z) has 3 zeros, counting multiplicities, inside C, it
follows that the original polynomial has 3 zeros, counting multiplicities, inside C.

(b) The polynomial z* —2z* +9z* + z—1 can be written as the sum of the polynomials

f(2)=9z* and g()=z" -2 +z7-1.
On C,

If(=91zP =36 and lg(z)l=1z* —27* +z 1< Izl* + 21z +1zl+1 = 35.
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Since If(z)l>1g(z)l on C and f(z) has 2 zeros, counting multiplicities, inside C, it
follows that the original polynomial has 2 zeros, counting multiplicities, inside C.

(c) The polynomial z° +3z° +z* +1 can be written as the sum of the polynomials
p p

f()=72" and gz)=372"+7"+1.
On C,

| f()I=1zP=32 and Ig(z2)|=132>+ 22 +11<31zP +1zF +1=129.

Since 1f(z)I>1g(z)l on C and f(z) has S zeros, counting multiplicities, inside C, it
follows that the original polynomial has 5 zeros, counting multiplicities, inside C.

SECTION 89

1. The singularities of the function

2s°

F(s)= st—4

are the fourth roots of 4. They are readily found to be
s=1/2 "2 (k=0,1,2,3),
V2, V2i, —+2, and -+2i

See the figure below, where y > V2 and R>+2 +7.

or

&L,

L\V2
N\

S~y 7-iR
The function
2s3est

e"F(s)=
(5) st—4
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has simple poles at the points

o =2, sl=«/5i, s,=—+2, and s3=-\/§i;

and

=0 s=5, =0 55 § —

1 Vs 1 _p 1,
=5e‘5’+5e"/§‘+—e Vi p e

ew/it +e—«/7: eiw/it +e—i\/§t
= +
2 2

= cosh~/2¢ + cos V2t

Suppose now that s is a point on C,, and observe that

Isl=ly+ Re®I<y+R=R+y and Isl=ly+Re®I>1y—RI=R-y>+2.

It follows that
125°1=2IsP <2(R+ 7)°

and

Is* =4l > sl* 412 (R-y)* -4 >0.
Consequently,

3
IF)I<2BEN 5 a5 Ros oo,
(R—y)" -4

This ensures that

f(t)=cosh~/2t + cos/2t.

The polynomials in the denominator of

25 -2

= D 1 2545)
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have zeros at s =—1 and s =-1%+2i. Let us, then, write

Ry 257D
(s+D(s—s5)s—35)

where s, =—1+2i. The points —1, s,, and 5, are evidently simple poles of e”F(s) with the
following residues:

BF&%?[”F“)]{“} ==,

(s—sXs-7)
st es"(2s —2) 1 i -t it
B =Relerrol- R = (3

B - RCS[C“F(S)] — 9511(23‘.1 —_ 2) — esli(zsl - 2) - E — (l + i)e_,e_,‘zt
3, G +DG —s) | (s +D(s—5) 2 '

It is easy to see that

Bl + B2 + B3 =—¢ ! +(l_i)e—‘ei2f +(l+i)e—te—i2t
2 2 2 2

~ _ e12t _ it ei2t + e—i2t o
=—e' +e ’( 5 +— =e”'(sin2¢ + cos2t - 1).
i

Now let s be any point on the semicircle shown below, where ¥ >0 and R > V5+7.

Since

Isl=17+ Re“IS Y+ R=R+7y and lsl=ly+ Re®I2ly - Ri= R—y>+5,
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we find that
125-21< 215l +2 S 2(R+ 7) +2,
s+ 112 Nsl-112 (R- 7)— 1> 0,
and
15> + 25+ Sl=ls — slls = 51 2 (sl-15,1)* 2 [(R— y)* =5 | >0.
Thus
F)=—==2 ¢ 2RI ,0as Rsoe,

Is+1s* +2s+51 [(R- y)_l][(R_ y) _ﬁ]
and we may conclude that

f(®)=e"(sin2t +cos2t - 1).

4. The function
st —a?
a (s2 + az)2

F(s) (a>0)

has singularities at s =+ai. So we consider the simple closed contour shown below, where
Y>0and R>a+7.

g ¥ +iR
CR
ai X
‘ LR
ol 17
—ai X
g 7R
Upon writing
¢(s) s'—a’

F(s)= —  where ¢(s)=

(s —ai) (s+ai)?’
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we see that @(s) is analytic and nonzero at s, =ai. Hence s, is a pole of order m =2 of
F(s). Furthermore, F(s)= F(5) at points where F(s) is analytic. Consequently, 5, is also
a pole of order 2 of F(s); and we know from expression (2), Sec. 82, that

Res [ F(s)]+ Res[e"F(s)| = 2Rele” (b + b)),

5=5,

where b, and b, are the coefficients in the principal part

bl b2
.+ 2
s—ai (s—ai)

of F(s) at ai. These coefficients are readily found with the aid of the first two terms in the

Taylor series for ¢(s) about s, = ai:

[¢( HD+——= (s ai)+-- ]

1
(s—ai)

__$(@) +¢'(“i?+--. (0 <ls - ail< 2a).
(s—ai)* s-—ai

It is straightforward to show that ¢(ai)=1/2 and ¢’(ai) =0, and we find that b, =0 and
b, =1/2. Hence

Res [e"F (s)] +Res [e"F (s)] =2 Re[ei“’ (% t)] = tcosat.

We can, then, conclude that
f(t)=tcosat (a>0),
provided that F(s) satisfies the desired boundedness condition. As for that condition, when
zisapointon Cg,
IZ=ly+Re®I<y+R=R+7y and Izl=ly+ Re’I2ly-RI=R-y>a;
and this means that
12> —a®I<IzZP+a* S(R+y)* +a* and 122 +a12IzP -’12 (R-y)* -a®>>0.

Hence
(R+y)+d°
(R-7)*-a’}

—0 as R— oo,

IF(2)l <
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We are given

F(s) = Snh(xs) O<x<l),
s° coshs
which has isolated singularities at the points
5,=0, 5 =70, hg 5 = 2n2D, (n=12,.).
2 2
This function has the property F(s) = F(5), and so
f(t)=Res[e"F(s)]+ Z{Res [¢"F(s)]+Res [e“F(s)]}.
§=5¢ el BN 5=5,
To find the residue at s, =0, we write
i 3134 32
s12nh(xs)=xf+(xs2) /3!+ =x+x;9 /6+ (O<|sl<£).
s'coshs  s*(1+s57/21+-)  s+5°/2+

Division of series then reveals that s, is a simple pole of F(s), with residue x; and,

according to expression (3), Sec. 89,

Res[e"F(s)] = Rzes F(s)==x.

$=59
As for the residues of F(s) at the singular points s, (n=1,2,...), we write
_ p(s) o _ 2
F(s)= _U where  p(s)=sinh(xs) and g(s)=s"coshs.
q(s

We note that

2n-1

p(s,)=isin 5 ”x;tO and ¢(s,)=0;

furthermore, since
q’(s)=2scoshs + s* sinhs,

we find that

q'(s,)=

22 _ —1\2 2
_(2n 41) T iann=br _ . (2n 41) il sin(nn'—z)

n\_ Qn-1’n’

. T .
SINN7TCOS — — COS RSN —)
2 2 4

=_,-M( (—1)"i £ 0.
4
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In view of Theorem 2 in Sec. 76, then, s, is a simple pole of F(s), and

ResF(s)=—p(s") =—42-- L > sin (2n = 1)7x .
5=5, q'(s,)) =m (2n-1) 2

Expression (4), Sec. 89, now gives us

st st 4 _1 i . 2 "1 . 2 —1 mt
Res [e" F(s)]+ Res [e F(s)]=2Re{;r7.( 2(n _)1)2 oin 27 . )erexp[l( n - ) ]}

=i2. -1 2sin(2n_1)mcos(2n_l)m.
n° (2n-1) 2 2

Summing all of the above residues, we arrive at the final result:

_ .. 8% D" . 2n-nx Q2n-1)mt
O =x+ = ”z:} 2n—1 sin 5 cos > .

The function
1

scosh(s"?)’

172

where it is agreed that the branch cut of s'° does not lie along the negative real axis, has

(2n-1)>*#?
4

1/2

isolated singularities at s, =0 and when cosh(s"'“) =0, or at the points s, =—

(n=1,2,...). The point s, is a simple pole of F(s), as is seen by writing

1 1 1
scosh(s?)  s[1+(s"2)2 1214 (") 1414+ s+t /24501 24 4

and dividing this last denominator into 1. In fact, the residue is found to be 1; and

expression (3), Sec. 89, tells us that

Res[e”F(s)| = Res F(s)=1.

=S¢

As for the other singularities, we write

F(s)= 2 where  p(s)=1 and g(s) = scosh(s"?).
q(s)
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Now

p(s,)=1#0 and gq(s,)=0;

also, since

q'(s)= %sm sinh(s"?) + cosh(s"'?),

it is straightforward to show that

oy @n-Dr . T =(2n—-1)7t oy
q(s,)= -——-——4 sm(mt 2) —4 D" #0.

So each point s, is a simple pole of F(s), and

Res F(s) = pls,) _4 (="
q(s) 7 2n—1

Consequently, according to expression (3), Sec. 89,

_1\* _1\2 2
Res[e"F(s)] = e™ Res F(s) = 1 expl - (20=1) 77 (n=12,...).
$=8p S=Sp T 2n-1 4

Finally, then,
f(#)=Res[e"F(s)|+ Y Res[e" F(s)],
s=5q ol S5

or

122
f0=1+25 g, [__—(2” i)’”].

8. Here we are given the function

coth(ms/2)  cosh(zs/2)
st +1 (s* + Dsinh(zs / 2)’

F(s)=

which has the property F(s)= F(5). We consider first the singularities at s =%i. Upon
writing

cosh(ms/2)
(s+i)sinh(zs / 2)’

F(s)= M where @(s) =
s—1
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we find that, since ¢(i) =0, the point i is a removable singularity of F(s) [see Exercise 3
(b), Sec. 72]; and the same is true of the point —i. At each of these points, it follows that the
residue of e”F(s) is 0. The other singularities occur when @s/2=nmi (n=0,%1,%12,...),

or at the points s =2ni (n=0,%11,£2,...). To find the residues, we write
F(s)= Ps) where p(s) = cosh(ﬂ) and g(s)=(s* + l)sinh(E)
q(s) 2 2

and note that
p(2ni) = cosh(nmi) = cos(nm) = (-1)" #0 and ¢g(2ni)=0.

Furthermore, since

g ="+ )= cosh( 5 )+2ss1nh( > )

we have
¢'(2ni) = (—4n* + l)gcosh(nm') =(=4n*+ 1)§cos(mz) L 2an" =D e o,
Thus
ResF(s)=22m) __ 2 _1 (n=0,%1,+2,...).
s=2ni q’(2ni) n 4n® -1

Expressions (3) and (4) in Sec. 89 now tell us that

st — -_— 2
Res[e F(s)] = Iieos F(s)= po

5=0
and
. 2 1 4 cos2nt
Res|e*F(s)|+ Res|e”F(s)|=2Re e‘z”’(——-——) =—— n=12,...).
s=2ni ()] s=—2m'[ ()] [ T 4n® -1 n 4n’ -1 ( )

The desired function of ¢ is, then,

2 4 cos2nt
n=—-— :
f® a1




164

9, The function

: 1/2
F(s) = Snh(xs 1,2)) O<x<l),

s% sinh(s

172

where it is agreed that the branch cut of s'“ does not lie along the negative real axis, has

172

isolated singularities at s=0 and when sinh(s"’)=0, or at the points s=-n’n’

(n=1,2,...). The point s =0 is a pole of order 2 of F(s), as is seen by first writing

sinh(xs"?) _ xs'? 4 (xs"?)’ 1314+ (x5"?)* /514« x4+ x5/ 6+ x°52 1120 +---
s’sinh(s"?)  $*[s"2 (") 1314 (") 51+ S 45164501120+

and dividing the series in the denominator into the series in the numerator. The result is

. 172
sinh(xs ™) _xi2+l(x3—-x)l+--- (0 <lsl< 7*).
§

s’ sinh(s"?) 6 s

In view of expression (1), Sec. 82, then,
Res [e“F(s)] = l(x3 —-x)+xt= lx(x2 -1+ xt.
5=0 6 6

As for the singularities s =~n’z’ (n=1,2,...), we write

F(s) =%s; where  p(s) =sinh(xs"?) and g(s) = s* sinh(s"?).
q(s

Observe that p(-n’z’)#0 and q(-n’7?)=0. Also, since
q’(s) = 2s sinh(s"?) + %ssm cosh(s'?),

it is easy to see that g’(—n’z®)# 0. So the points s=—n’n’ (n=1,2,...), are simple poles

of F(s), and

p(s) 2sinh(xs'"?) 2 =D
Res F(s)=|—— = ——— =—- sinnmwx =
o (s) I:q’(s):|s=—n2n‘2 [SSI/ZCOSh(Sl/Z) o o) n (n=12,..).
Thus, in view of expression (3), Sec. 89,
_ 1yt s 2
Res [e"F(s)]= 2 CEV i (n=12,..).

s=-n"m T n
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Finally, since

£(t)=Res[e"F(s)] + zRes [e*Fs).

we arrive at the expression

1 2 2 (_l)nH -n’z% .
f(t)=—6—x(x —1)+xt+—7-t—;2 e e sinnmx.
n=1
The function
1 1
F(s)=—~-
(5) s ssinhs

has isolated singularities at the points

5=0 and s,=nm, 5, =—nmi (n=12,...).
Now
ssinhs=s(s+%s3+---)=s2 +%s4+~-- (0 <lsl< o),

and division of this series into 1 reveals that

1 1 1 1
F(s)=— | —+ =4+ |===4... 0 <lsi< m).
(S) S2 (sl 6 ) 6 ( § )

This shows that F(s) has a removable singularity at s,. Evidently, then, ¢”F(s) must also

have a removable singularity there; and so

Res[e”F(s)]=0.

§=5¢

To find the residue of F(s) at s, =nmi(n=1,2,...), we write

F(s)= —P% where p(s)=sinhs—s and g(s)=s’sinhs
q(s

and observe that
p(nmiy=-nmi#0, q(nmi)=0, and ¢'(nmi)=n"a*(-1)"" 20.

Consequently, F(s) has a simple pole at s,, and

Res F(s) = pami)  -nmi _ (-1)

= = i(n=12,...).
qg'(nmi) n’m*(-)""'  nzm ( )
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Since F(s)= F(3), the points 5, are also simple poles of F(s); and we may write

1’

nmw

Res[e"F(s)]+ Res[e"F(s)] = 2Re{£:1)— ie""“j' =2 Re[ (icosnmt —sin nm)]
s=5, 5=5, nw

(___1 n+l

=2 sinnmt.

nw
Hence the desired result is
f()=Res[e"F(s)]+ i{Res [e"F(s)]+ Res [es'F(s)]},
§=50 nei L5=5n 5=5,

or

2 o0 (__l)n+1 .
== sinnt.
f@ HZ .
11. We consider here the function
F(s) = —,Sih(xs) 0<x<l),
s(s” + @ )coshs
2n-Hrm . -
where @ >0 and w 2 0, = - (n=1,2,...). The singularities of F(s) are at

§=0, s=xwi, and s=ztw,i (n=12,..).
Because the first term in the Maclaurin series for sinh(xs) is xs, it is easy to see that s =0 is

a removable singularity of e” F(s) and that

Res [e”F (s)] =0.

=54

To find the residue of F(s) at s = @i, we write

_ o) _ sinh(xs)
Fl)= S — i where  (s) s(s + wi)coshs’

from which it follows that s = @i is simple pole and

sinh(xwi) _ isinwx
wi2wicosh(wi) —2w’cosw’

Res F(s) = ¢(wi) =

THE UNIVERSITY OF QUEENSLAND LIBRARY
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Since F(s) = F(5), then,

Res [e"’F(s)] +Res [e“F(s)] _ 2Re[ isin wx ie"“"} _o_ Sinex . _sinoxsinor

. . inwt = —
-2m° cosw 20° cosw W cosw

As for the residues at s = w,i (n=1,2,...), we put F(s) in the form

p(s)
q(s)

Now p(w,i) =sinh(xw,i) = isinw,x # 0 and g(®,i)=0. Also, since

F(s)= where p(s) = sinh(xs) and ¢(s)= (s’ + w’s)coshs.

q’(s) = (s* + @’s)sinh s + (3s* + @*)coshss,

we find that
q'(00) = (-0 + ©’w,i)sinh(w,) = -o,(0’ - ©})sinw, #0.

Hence we have a simple pole ats = w,i, with residue

Res F(s) = p’(wnz‘) _ zgmwnzx . -
s=wyi 9 (w,i) -0, (0°-,)sinw,
Consequently,
isinw, x ; sin @ xsinw, ¢
Res|e”F(s)|+ Res [e"F(s)|=2Re ;I @, Ol | = 2 i
s=w,|i[ ] s=-m.i[ )] [—a)"(a)z—co,f)sinw,l o, (0° - ©’)sinw,

) ) n n )
But sinw, = sm(nﬂ - 5) = (~1)"*!, and this means that

_1yn+l : :
Res[e"F(s)] + Res [¢"F(5)] =2 S SO xsin 0]
S==—,i [1)] () (0,,

s=@,i =
" n

Finally,

f(1y=Res[e"F(s)] + {ls{:%s [¢"F(s)]+ Res [e“F(s)]} + i{gg s[e“F(s)]+ Res [e“F(s)]}.

§=—W,1
n=1 »

That is,

n+l1

sin x sin @t = (—1 sin @, xsin @t
. +22( Ly o
° cos @ - o, 0 -,

f@)=



