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PREFACE

This book is a revision of the seventh edition, which was published in 2004. That
edition has served, just as the earlier ones did, as a textbook for a one-term intro-
ductory course in the theory and application of functions of a complex variable.
This new edition preserves the basic content and style of the earlier editions, the
first two of which were written by the late Ruel V. Churchill alone.

The first objectiveof the book is to develop those parts of the theory that are
prominent in applications of the subject. Thesecond objectiveis to furnish an intro-
duction to applications of residues and conformal mapping. With regard to residues,
special emphasis is given to their use in evaluating real improper integrals, finding
inverse Laplace transforms, and locating zeros of functions. As for conformal map-
ping, considerable attention is paid to its use in solving boundary value problems
that arise in studies of heat conduction and fluid flow. Hence the book may be
considered as a companion volume to theauthors’ text “Fourier Series and Bound-
ary Value Problems,” where another classical method for solving boundary value
problems in partial differential equations is developed.

The first nine chapters of this book have for many years formed the basis of a
three-hour course given each term at The University of Michigan. The classes have
consisted mainly of seniors and graduatestudents concentrating in mathematics,
engineering, or one of the physical sciences. Before taking the course, the students
have completed at least a three-term calculus sequence and a first course in ordinary
differential equations. Much of the material in the book need not be covered in the
lectures and can be left for self-study or used for reference. If mapping by elementary
functions is desired earlier in the course, one can skip to Chap. 8 immediately after
Chap. 3 on elementary functions.

In order to accommodate as wide a range of readers as possible, there are foot-
notes referring to other texts that give proofs and discussions of the more delicate
results from calculus and advanced calculus that are occasionally needed. A bibli-
ography of other books on complex variables, many of which are more advanced,
is provided in Appendix 1. A table of conformal transformations that are useful in
applications appears in Appendix 2.

 x



preface xi

The main changes in this edition appear in the first nine chapters. Many of
those changes have been suggested by users of the last edition. Some readers have
urged that sections which can be skipped or postponed without disruption be more
clearly identified. The statements of Taylor’s theorem and Laurent’s theorem, for
example, now appear in sections that are separate from the sections containing
their proofs. Another significant changeinvolves the extended form of the Cauchy
integral formula for derivatives. The treatment of that extension has been completely
rewritten, and its immediate consequencesare now more focused and appear together
in a single section.

Other improvements that seemed necessary include more details in arguments
involving mathematical induction, a greater emphasis on rules for using complex
exponents, some discussion of residues at infinity, and a clearer exposition of real
improper integrals and their Cauchy principal values. In addition, some rearrange-
ment of material was called for. For instance, the discussion of upper bounds of
moduli of integrals is now entirely in one section, and there is a separate section
devoted to the definition and illustration of isolated singular points. Exercise sets
occur more frequently than in earlier editions and, as a result, concentrate more
directly on the material at hand.

Finally, there is anStudent’s Solutions Manual(ISBN: 978-0-07-333730-2;
MHID: 0-07-333730-7) that is available uponrequest to instructors who adopt the
book. It contains solutions of selected exercises in Chapters 1 through 7, covering
the material through residues.

In the preparation of this edition, continual interest and support has been pro-
vided by a variety of people, especially the staff at McGraw-Hill and my wife
Jacqueline Read Brown.

James Ward Brown





C H A P T E R

1
COMPLEX NUMBERS

In this chapter, we survey the algebraic and geometric structure of the complex
number system. We assume various corresponding properties of real numbers to be
known.

1. SUMS AND PRODUCTS

Complex numberscan be defined as ordered pairs(x, y) of real numbers that are to
be interpreted as points in thecomplex plane,with rectangular coordinatesx andy,
just as real numbersx are thought of as points on the real line. When real numbers
x are displayed as points(x, 0) on thereal axis, it is clear that the set of complex
numbers includes the real numbers as a subset. Complex numbers of the form(0, y)

correspond to points on they axis and are calledpure imaginary numberswhen
y �= 0. They axis is then referred to as theimaginary axis.

It is customary to denote a complex number(x, y) by z, so that (see Fig. 1)

z = (x, y).(1)

The real numbersx andy are, moreover, known as thereal and imaginary partsof
z, respectively; and we write

x = Rez, y = Im z.(2)

Two complex numbersz1 andz2 areequal whenever they have the same real parts
and the same imaginary parts. Thus the statementz1 = z2 means thatz1 and z2

correspond to the same point in the complex, orz, plane.

1



2 Complex Numbers chap. 1

z = (x, y)

i = (0, 1)

x = (x, 0) xO

y

FIGURE 1

The sumz1 + z2 andproduct z1z2 of two complex numbers

z1 = (x1, y1) and z2 = (x2, y2)

are defined as follows:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),(3)

(x1, y1)(x2, y2) = (x1x2 − y1y2, y1x2 + x1y2).(4)

Note that the operations defined by equations (3) and (4) become the usual operations
of addition and multiplication when restricted to the real numbers:

(x1, 0) + (x2, 0) = (x1 + x2, 0),

(x1, 0)(x2, 0) = (x1x2, 0).

The complex number system is, therefore, a natural extension of the real number
system.

Any complex numberz = (x, y) can be writtenz = (x, 0) + (0, y), and it is
easy to see that(0, 1)(y, 0) = (0, y). Hence

z = (x, 0) + (0, 1)(y, 0);

and if we think of a real number as eitherx or (x, 0) and let i denote the pure
imaginary number (0,1), as shown in Fig. 1, it is clear that∗

z = x + iy.(5)

Also, with the convention thatz2 = zz, z3 = z2z, etc., we have

i2 = (0, 1)(0, 1) = (−1, 0),

or

i2 = −1.(6)

∗In electrical engineering, the letterj is used instead ofi.
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Because(x, y) = x + iy, definitions (3) and (4) become

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2),(7)

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(y1x2 + x1y2).(8)

Observe that the right-hand sides of these equations can be obtained by formally
manipulating the terms on the left as if they involved only real numbers and by
replacingi2 by −1 when it occurs. Also, observe how equation (8) tells us thatany
complex number times zero is zero. More precisely,

z · 0 = (x + iy)(0 + i0) = 0 + i0 = 0

for any z = x + iy.

2. BASIC ALGEBRAIC PROPERTIES

Various properties of addition and multiplication of complex numbers are the same
as for real numbers. We list here the more basic of these algebraic properties and
verify some of them. Most of the others are verified in the exercises.

The commutative laws

z1 + z2 = z2 + z1, z1z2 = z2z1(1)

and the associative laws

(z1 + z2) + z3 = z1 + (z2 + z3), (z1z2)z3 = z1(z2z3)(2)

follow easily from the definitions in Sec. 1 of addition and multiplication of complex
numbers and the fact that real numbers obey these laws. For example, if

z1 = (x1, y1) and z2 = (x2, y2),

then
z1 + z2 = (x1 + x2, y1 + y2) = (x2 + x1, y2 + y1) = z2 + z1.

Verification of the rest of the above laws, as well as the distributive law

z(z1 + z2) = zz1 + zz2,(3)

is similar.
According to the commutative law for multiplication,iy = yi. Hence one can

write z = x + yi instead ofz = x + iy. Also, because of the associative laws, a
sumz1 + z2 + z3 or a productz1z2z3 is well defined without parentheses, as is the
case with real numbers.



4 Complex Numbers chap. 1

The additive identity 0= (0, 0) and the multiplicative identity 1= (1, 0) for
real numbers carry over to the entire complex number system. That is,

z + 0 = z and z · 1 = z(4)

for every complex numberz. Furthermore, 0 and 1 are the only complex numbers
with such properties (see Exercise 8).

There is associated with each complex numberz = (x, y) an additive inverse

−z = (−x, −y),(5)

satisfying the equationz + (−z) = 0. Moreover, there is only one additive inverse
for any givenz, since the equation

(x, y) + (u, v) = (0, 0)

implies that

u = −x and v = −y.

For anynonzerocomplex numberz = (x, y), there is a numberz−1 such that
zz−1 = 1. This multiplicative inverse is less obvious than the additive one. To find
it, we seek real numbersu andv, expressed in terms ofx andy, such that

(x, y)(u, v) = (1, 0).

According to equation (4), Sec. 1, which defines the product of two complex num-
bers,u andv must satisfy the pair

xu − yv = 1, yu + xv = 0

of linear simultaneous equations; and simple computation yields the unique solution

u =
x

x2 + y2
, v =

−y

x2 + y2
.

So the multiplicative inverse ofz = (x, y) is

z−1 =
(

x

x2 + y2
,

−y

x2 + y2

)

(z �= 0).(6)

The inversez−1 is not defined whenz = 0. In fact,z = 0 means thatx2 + y2 = 0 ;
and this is not permitted in expression (6).
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in Sec. 2. Inasmuch as such properties continue to be anticipated because they
also apply to real numbers, the reader can easily pass to Sec. 4 without serious
disruption.

We begin with the observation that theexistence of multiplicative inverses
enables us to show thatif a product z1z2 is zero, then so is at least one of the factors
z1 and z2. For suppose thatz1z2 = 0 andz1 �= 0. The inversez−1

1 exists; and any
complex number times zero is zero (Sec. 1). Hence

z2 = z2 · 1 = z2(z1z
−1
1 ) = (z−1

1 z1)z2 = z−1
1 (z1z2) = z−1

1 · 0 = 0.

That is, if z1z2 = 0, eitherz1 = 0 or z2 = 0; or possibly both of the numbersz1 and
z2 are zero. Another way to state this result is thatif two complex numbersz1 and
z2 are nonzero, then so is their productz1z2.

Subtraction and division are defined in terms of additive and multiplicative
inverses:

z1 − z2 = z1 + (−z2),(1)

z1

z2
= z1z

−1
2 (z2 �= 0).(2)

Thus, in view of expressions (5) and (6) in Sec. 2,

z1 − z2 = (x1, y1) + (−x2,−y2) = (x1 − x2, y1 − y2)(3)

and

z1

z2
= (x1, y1)

(

x2

x2
2 + y2

2

,
−y2

x2
2 + y2

2

)

=
(

x1x2 + y1y2

x2
2 + y2

2

,
y1x2 − x1y2

x2
2 + y2

2

)

(4)

(z2 �= 0)

whenz1 = (x1, y1) andz2 = (x2, y2).
Using z1 = x1 + iy1 andz2 = x2 + iy2, one can write expressions (3) and (4)

here as

z1 − z2 = (x1 − x2) + i(y1 − y2)(5)

and

z1

z2
=

x1x2 + y1y2

x2
2 + y2

2

+ i
y1x2 − x1y2

x2
2 + y2

2

(z2 �= 0).(6)

Although expression (6) is not easy to remember, it can be obtained by writing (see
Exercise 7)

z1

z2
=

(x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)
,(7)
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EXERCISES
1. Verify that

(a) (
√

2 − i) − i(1 −
√

2i) = −2i; (b) (2,−3)(−2, 1) = (−1, 8);

(c) (3, 1)(3,−1)

(

1

5
,

1

10

)

= (2, 1).

2. Show that

(a) Re(iz) = − Im z; (b) Im(iz) = Rez.

3. Show that(1 + z)2 = 1 + 2z + z2.

4. Verify that each of the two numbersz = 1 ± i satisfies the equationz2 − 2z + 2 = 0.

5. Prove that multiplication of complex numbers is commutative, as stated at the begin-
ning of Sec. 2.

6. Verify

(a) the associative law for addition of complex numbers, stated at the beginning of
Sec. 2;

(b) the distributive law (3), Sec. 2.

7. Use the associative law for addition and the distributive law to show that

z(z1 + z2 + z3) = zz1 + zz2 + zz3.

8. (a) Write (x, y) + (u, v) = (x, y) and point out how it follows that the complex num-
ber 0= (0, 0) is unique as an additive identity.

(b) Likewise, write (x, y)(u, v) = (x, y) and show that the number 1= (1, 0) is a
unique multiplicative identity.

9. Use−1 = (−1, 0) andz = (x, y) to show that(−1)z = −z.

10. Use i = (0, 1) andy = (y, 0) to verify that−(iy) = (−i)y. Thus show that the addi-
tive inverse of a complex numberz = x + iy can be written−z = −x − iy without
ambiguity.

11. Solve the equationz2 + z + 1 = 0 for z = (x, y) by writing

(x, y)(x, y) + (x, y) + (1, 0) = (0, 0)

and then solving a pair of simultaneous equations inx andy.
Suggestion:Use the fact that no real numberx satisfies the given equation to

show thaty �= 0.

Ans. z =

(

−
1

2
,±

√
3

2

)

.

3. FURTHER PROPERTIES

In this section, we mention a number of other algebraic properties of addition and
multiplication of complex numbers that follow from the ones already described
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multiplying out the products in the numerator and denominator on the right, and
then using the property

z1 + z2

z3
= (z1 + z2)z

−1
3 = z1z

−1
3 + z2z

−1
3 =

z1

z3
+

z2

z3
(z3 �= 0).(8)

The motivation for starting with equation (7) appears in Sec. 5.

EXAMPLE. The method is illustrated below:

4 + i

2 − 3i
=

(4 + i)(2 + 3i)

(2 − 3i)(2 + 3i)
=

5 + 14i

13
=

5

13
+

14

13
i.

There are some expected properties involving quotients that follow from the
relation

1

z2
= z−1

2 (z2 �= 0),(9)

which is equation (2) whenz1 = 1. Relation (9) enables us, for instance, to write
equation (2) in the form

z1

z2
= z1

(

1

z2

)

(z2 �= 0).(10)

Also, by observing that (see Exercise 3)

(z1z2)(z
−1
1 z−1

2 ) = (z1z
−1
1 )(z2z

−1
2 ) = 1 (z1 �= 0, z2 �= 0),

and hence thatz−1
1 z−1

2 = (z1z2)
−1, one can use relation (9) to show that

(

1

z1

)(

1

z2

)

= z−1
1 z−1

2 = (z1z2)
−1 =

1

z1z2
(z1 �= 0, z2 �= 0).(11)

Another useful property, to be derived in the exercises, is
(

z1

z3

)(

z2

z4

)

=
z1z2

z3z4
(z3 �= 0, z4 �= 0).(12)

Finally, we note that thebinomial formula involving real numbers remains
valid with complex numbers. That is, ifz1 and z2 are any two nonzero complex
numbers, then

(z1 + z2)
n =

n
∑

k=0

(n

k

)

zk
1z

n−k
2 (n = 1, 2, . . .)(13)

where
(n

k

)

=
n!

k!(n − k)!
(k = 0, 1, 2, . . . , n)

and where it is agreed that 0!= 1. The proof is left as an exercise.
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EXERCISES
1. Reduce each of these quantities to a real number:

(a)
1 + 2i

3 − 4i
+

2 − i

5i
; (b)

5i

(1 − i)(2 − i)(3 − i)
; (c) (1 − i)4.

Ans. (a) −2/5; (b) −1/2; (c) −4.

2. Show that
1

1/z
= z (z �= 0).

3. Use the associative and commutative laws for multiplication to show that

(z1z2)(z3z4) = (z1z3)(z2z4).

4. Prove that ifz1z2z3 = 0, then at least one of the three factors is zero.
Suggestion:Write (z1z2)z3 = 0 and use a similar result (Sec. 3) involving two

factors.

5. Derive expression (6), Sec. 3, for the quotientz1/z2 by the method described just after
it.

6. With the aid of relations (10) and (11) in Sec. 3, derive the identity
(

z1

z3

) (

z2

z4

)

=
z1z2

z3z4
(z3 �= 0, z4 �= 0).

7. Use the identity obtained in Exercise 6 to derive the cancellation law

z1z

z2z
=

z1

z2
(z2 �= 0, z �= 0).

8. Use mathematical induction to verify the binomial formula (13) in Sec. 3. More pre-
cisely, note that the formula is true whenn = 1. Then, assuming that it is valid
when n = m where m denotes any positive integer, show that it must hold when
n = m + 1.

Suggestion:Whenn = m + 1, write

(z1 + z2)
m+1 = (z1 + z2)(z1 + z2)

m = (z2 + z1)

m
∑

k=0

(

m

k

)

zk
1z

m−k
2

=
m

∑

k=0

(

m

k

)

zk
1z

m+1−k
2 +

m
∑

k=0

(

m

k

)

zk+1
1 zm−k

2

and replacek by k − 1 in the last sum here to obtain

(z1 + z2)
m+1 = zm+1

2 +
m

∑

k=1

[(

m

k

)

+
(

m

k − 1

)]

zk
1z

m+1−k
2 + zm+1

1 .
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Finally, show how the right-hand side here becomes

zm+1
2 +

m
∑

k=1

(

m + 1
k

)

zk
1z

m+1−k
2 + zm+1

1 =
m+1
∑

k=0

(

m + 1
k

)

zk
1z

m+1−k
2 .

4. VECTORS AND MODULI

It is natural to associate any nonzero complex numberz = x + iy with the directed
line segment, or vector, from the origin to the point(x, y) that representsz in the
complex plane. In fact, we often refer toz as the pointz or the vectorz. In Fig. 2
the numbersz = x + iy and −2 + i are displayed graphically as both points and
radius vectors.

z = (x, y)

z =
 x +

 iy
–2 + i

xO–2

(–2, 1)
1

y

FIGURE 2

Whenz1 = x1 + iy1 andz2 = x2 + iy2, the sum

z1 + z2 = (x1 + x2) + i(y1 + y2)

corresponds to the point(x1 + x2, y1 + y2). It also corresponds to a vector with
those coordinates as its components. Hencez1 + z2 may be obtained vectorially as
shown in Fig. 3.

xO

y

z1

z1 +
 z2

z2

z2

FIGURE 3

Although the product of two complex numbersz1 and z2 is itself a complex
number represented by a vector, that vector lies in the same plane as the vectors for
z1 andz2. Evidently, then, this product is neither the scalar nor the vector product
used in ordinary vector analysis.
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The vector interpretation of complex numbers is especially helpful in extending
the concept of absolute values of real numbers to the complex plane. Themodulus,
or absolute value, of a complex numberz = x + iy is defined as the nonnegative
real number

√

x2 + y2 and is denoted by|z|; that is,

|z| =
√

x2 + y2.(1)

Geometrically, the number|z| is the distance between the point(x, y) and
the origin, or the length of the radius vector representingz. It reduces to the usual
absolute value in the real number system wheny = 0. Note that whilethe inequality
z1 < z2 is meaningless unless bothz1 and z2 are real, the statement|z1| < |z2|
means that the pointz1 is closer to the origin than the pointz2 is.

EXAMPLE 1. Since |− 3 + 2i| =
√

13 and|1 + 4i| =
√

17, we know that
the point−3 + 2i is closer to the origin than 1+ 4i is.

The distance between two points(x1, y1) and (x2, y2) is |z1 − z2|. This is
clear from Fig. 4, since|z1 − z2| is the length of the vector representing the
number

z1 − z2 = z1 + (−z2);

and, by translating the radius vectorz1 − z2, one can interpretz1 − z2 as the directed
line segment from the point(x2, y2) to the point(x1, y1). Alternatively, it follows
from the expression

z1 − z2 = (x1 − x2) + i(y1 − y2)

and definition (1) that

|z1 − z2| =
√

(x1 − x2)
2 + (y1 − y2)

2.

xO

y

z1

|z1 – z2|

z1 – z2

z2

–z2

(x2, y2)

(x1, y1)

FIGURE 4

The complex numbersz corresponding to the points lying on the circle with
centerz0 and radiusR thus satisfy the equation|z − z0| = R, and conversely. We
refer to this set of points simply as the circle|z − z0| = R.

EXAMPLE 2. The equation|z − 1 + 3i| = 2 represents the circle whose
center isz0 = (1, −3) and whose radius isR = 2.
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It also follows from definition (1) that the real numbers|z|, Rez = x, and
Im z = y are related by the equation

|z|2 = (Rez)2 + (Im z)2.(2)

Thus

Rez ≤ |Rez| ≤ |z| and Imz ≤ |Im z| ≤ |z|.(3)

We turn now to thetriangle inequality,which provides an upper bound for the
modulus of the sum of two complex numbersz1 andz2:

|z1 + z2| ≤ |z1| + |z2|.(4)

This important inequality is geometricallyevident in Fig. 3, since it is merely a
statement that the length of one side of a triangle is less than or equal to the sum of
the lengths of the other two sides. We can also see from Fig. 3 that inequality (4)
is actually an equality when 0,z1, andz2 are collinear. Another, strictly algebraic,
derivation is given in Exercise 15, Sec. 5.

An immediate consequence of thetriangle inequality is the fact that

|z1 + z2| ≥ ||z1| − |z2||.(5)

To derive inequality (5), we write

|z1| = |(z1 + z2) + (−z2)| ≤ |z1 + z2| + |− z2|,

which means that

|z1 + z2| ≥ |z1| − |z2|.(6)

This is inequality (5) when|z1| ≥ |z2|. If |z1| < |z2|, we need only interchangez1

andz2 in inequality (6) to arrive at

|z1 + z2| ≥ −(|z1| − |z2|),

which is the desired result. Inequality (5) tells us, of course, that the length of one
side of a triangle is greater than or equal to the difference of the lengths of the other
two sides.

Because|− z2| = |z2|, one can replacez2 by −z2 in inequalities (4) and (5) to
summarize these results in a particularly useful form:

|z1 ± z2| ≤ |z1| + |z2|,(7)

|z1 ± z2| ≥ ||z1| − |z2||.(8)

When combined, inequalities (7) and (8) become

||z1| − |z2|| ≤ |z1 ± z2| ≤ |z1| + |z2|.(9)
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EXAMPLE 3. If a point z lies on the unit circle|z| = 1 about the origin, it
follows from inequalities (7) and (8) that

|z − 2| ≤ |z| + 2 = 3

and
|z − 2| ≥ ||z| − 2| = 1.

The triangle inequality (4) can be generalized by means of mathematical induc-
tion to sums involving any finite number of terms:

|z1 + z2 + · · · + zn| ≤ |z1| + |z2| + · · · + |zn| (n = 2, 3, . . .).(10)

To give details of the induction proof here, we note that whenn = 2, inequality
(10) is just inequality (4). Furthermore,if inequality (10) is assumed to be valid
whenn = m, it must also hold whenn = m + 1 since, by inequality (4),

|(z1 + z2 + · · · + zm) + zm+1| ≤ |z1 + z2 + · · · + zm| + |zm+1|
≤ (|z1| + |z2| + · · · + |zm|) + |zm+1|.

EXERCISES
1. Locate the numbersz1 + z2 andz1 − z2 vectorially when

(a) z1 = 2i, z2 =
2

3
− i; (b) z1 = (−

√
3, 1), z2 = (

√
3, 0);

(c) z1 = (−3, 1), z2 = (1, 4); (d) z1 = x1 + iy1, z2 = x1 − iy1.

2. Verify inequalities (3), Sec. 4, involving Rez, Im z, and|z|.
3. Use established properties of moduli to show that when|z3| �= |z4|,

Re(z1 + z2)

|z3 + z4|
≤

|z1| + |z2|
||z3| − |z4||

.

4. Verify that
√

2 |z| ≥ |Rez| + |Im z|.

Suggestion:Reduce this inequality to(|x| − |y|)2 ≥ 0.

5. In each case, sketch the set of points determined by the given condition:

(a) |z − 1 + i| = 1; (b) |z + i| ≤ 3 ; (c) |z − 4i| ≥ 4.

6. Using the fact that|z1 − z2| is the distance between two pointsz1 and z2, give a
geometric argument that

(a) |z − 4i| + |z + 4i| = 10 represents an ellipse whose foci are(0,±4) ;
(b) |z − 1| = |z + i| represents the line through the origin whose slope is−1.
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5. COMPLEX CONJUGATES

The complex conjugate,or simply the conjugate, of a complex numberz = x + iy

is defined as the complex numberx − iy and is denoted byz ; that is,

z = x − iy.(1)

The numberz is represented by the point(x, −y), which is the reflection in the real
axis of the point(x, y) representingz (Fig. 5). Note that

z = z and |z| = |z|

for all z.

xO

y

z

–z

(x, y)

(x, –y) FIGURE 5

If z1 = x1 + iy1 andz2 = x2 + iy2, then

z1 + z2 = (x1 + x2) − i(y1 + y2) = (x1 − iy1) + (x2 − iy2).

So the conjugate of the sum is the sum of the conjugates:

z1 + z2 = z1 + z2.(2)

In like manner, it is easy to show that

z1 − z2 = z1 − z2,(3)

z1z2 = z1 z2,(4)

and
(

z1

z2

)

=
z1

z2
(z2 �= 0).(5)

The sumz + z of a complex numberz = x + iy and its conjugatez = x − iy

is the real number 2x, and the differencez − z is the pure imaginary number 2iy.
Hence

Rez =
z + z

2
and Imz =

z − z

2i
.(6)
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An important identity relating the conjugate of a complex numberz = x + iy

to its modulus is

z z = |z|2,(7)

where each side is equal tox2 + y2. It suggests the method for determining a
quotientz1/z2 that begins with expression (7), Sec. 3. That method is, of course,
based on multiplying both the numerator and the denominator ofz1/z2 by z2, so
that the denominator becomes the real number|z2|2.

EXAMPLE 1. As an illustration,

−1 + 3i

2 − i
=

(−1 + 3i)(2 + i)

(2 − i)(2 + i)
=

−5 + 5i

|2 − i|2
=

−5 + 5i

5
= −1 + i.

See also the example in Sec. 3.

Identity (7) is especially useful in obtaining properties of moduli from properties
of conjugates noted above. We mention that

|z1z2| = |z1||z2|(8)

and
∣

∣

∣

∣

z1

z2

∣

∣

∣

∣

=
|z1|
|z2|

(z2 �= 0).(9)

Property (8) can be established by writing

|z1z2|2 = (z1z2)(z1z2) = (z1z2)(z1 z2) = (z1z1)(z2z2) = |z1|2|z2|2 = (|z1||z2|)2

and recalling that a modulus is never negative. Property (9) can be verified in a
similar way.

EXAMPLE 2. Property (8) tells us that|z2| = |z|2 and |z3| = |z|3. Hence if
z is a point inside the circle centered at the origin with radius 2, so that|z| < 2, it
follows from the generalized triangle inequality (10) in Sec. 4 that

|z3 + 3z2 − 2z + 1| ≤ |z|3 + 3|z|2 + 2|z| + 1 < 25.

EXERCISES
1. Use properties of conjugates and moduli established in Sec. 5 to show that

(a) z + 3i = z − 3i; (b) iz = −iz;

(c) (2 + i)2 = 3 − 4i; (d) |(2z + 5)(
√

2 − i)| =
√

3 |2z + 5|.

2. Sketch the set of points determined by the condition

(a) Re(z − i) = 2; (b) |2z + i| = 4.
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3. Verify properties (3) and (4) of conjugates in Sec. 5.

4. Use property (4) of conjugates in Sec. 5 to show that

(a) z1z2z3 = z1 z2 z3 ; (b) z4 = z4.

5. Verify property (9) of moduli in Sec. 5.

6. Use results in Sec. 5 to show that whenz2 andz3 are nonzero,

(a)

(

z1

z2z3

)

=
z1

z2 z3
; (b)

∣

∣

∣

∣

z1

z2z3

∣

∣

∣

∣

=
|z1|

|z2||z3|
.

7. Show that
|Re(2 + z + z3)| ≤ 4 when |z| ≤ 1.

8. It is shown in Sec. 3 that ifz1z2 = 0, then at least one of the numbersz1 andz2 must
be zero. Give an alternative proof based on the corresponding result for real numbers
and using identity (8), Sec. 5.

9. By factoringz4 − 4z2 + 3 into two quadratic factors and using inequality (8), Sec. 4,
show that ifz lies on the circle|z| = 2, then

∣

∣

∣

∣

1

z4 − 4z2 + 3

∣

∣

∣

∣

≤
1

3
.

10. Prove that

(a) z is real if and only ifz = z;
(b) z is either real or pure imaginary if and only ifz2 = z2.

11. Use mathematical induction to show that whenn = 2, 3, . . . ,

(a) z1 + z2 + · · · + zn = z1 + z2 + · · · + zn; (b) z1z2 · · · zn = z1 z2 · · · zn.

12. Let a0, a1, a2, . . . , an (n ≥ 1) denotereal numbers, and letz be any complex number.
With the aid of the results in Exercise 11, show that

a0 + a1z + a2z2 + · · · + anzn = a0 + a1z + a2z
2 + · · · + anz

n.

13. Show that the equation|z − z0| = R of a circle, centered atz0 with radiusR, can be
written

|z|2 − 2 Re(zz0) + |z0|2 = R2.

14. Using expressions (6), Sec. 5, for Rez and Imz, show that the hyperbolax2 − y2 = 1
can be written

z2 + z2 = 2.

15. Follow the steps below to give an algebraic derivation of the triangle inequality (Sec. 4)

|z1 + z2| ≤ |z1| + |z2|.

(a) Show that

|z1 + z2|2 = (z1 + z2)(z1 + z2) = z1z1 + (z1z2 + z1z2) + z2z2.
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(b) Point out why
z1z2 + z1z2 = 2 Re(z1z2) ≤ 2|z1||z2|.

(c) Use the results in parts(a) and (b) to obtain the inequality

|z1 + z2|2 ≤ (|z1| + |z2|)2,

and note how the triangle inequality follows.

6. EXPONENTIAL FORM

Let r andθ be polar coordinates of the point(x, y) that corresponds to anonzero
complex numberz = x + iy. Sincex = r cosθ andy = r sinθ , the numberz can
be written inpolar form as

z = r(cosθ + i sinθ).(1)

If z = 0, the coordinateθ is undefined; and so it is understood thatz �= 0 whenever
polar coordinates are used.

In complex analysis, the real numberr is not allowed to be negative and is the
length of the radius vector forz ; that is,r = |z|. The real numberθ represents the
angle, measured in radians, thatz makes with the positive real axis whenz is inter-
preted as a radius vector (Fig. 6). As in calculus,θ has an infinite number of possible
values, including negative ones, that differ by integral multiples of 2π . Those values
can be determined from the equation tanθ = y/x, where the quadrant containing the
point corresponding toz must be specified. Each value ofθ is called anargument
of z, and the set of all such values is denoted by argz. Theprincipal valueof argz,
denoted by Argz, is that unique value� such that−π < � ≤ π . Evidently, then,

argz = Arg z + 2nπ (n = 0, ±1, ±2, . . .).(2)

Also, whenz is a negative real number, Argz has valueπ , not −π .

x

y

z = x + iy

r

FIGURE 6

EXAMPLE 1. The complex number−1 − i, which lies in the third quadrant,
has principal argument−3π/4. That is,

Arg(−1 − i) = −
3π

4
.
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It must be emphasized that because of the restriction−π < � ≤ π of the principal
argument�, it is not true that Arg(−1 − i) = 5π/4.

According to equation (2),

arg(−1 − i) = −
3π

4
+ 2nπ (n = 0, ±1, ±2, . . .).

Note that the term Argz on the right-hand side of equation (2) can be replaced by
any particular value of argz and that one can write, for instance,

arg(−1 − i) =
5π

4
+ 2nπ (n = 0, ±1,±2, . . .).

The symboleiθ , or exp(iθ), is defined by means ofEuler’s formulaas

eiθ = cosθ + i sinθ,(3)

whereθ is to be measured in radians. It enables one to write the polar form (1)
more compactly inexponential formas

z = reiθ .(4)

The choice of the symboleiθ will be fully motivated later on in Sec. 29. Its use in
Sec. 7 will, however, suggest that it is a natural choice.

EXAMPLE 2. The number−1 − i in Example 1 has exponential form

−1 − i =
√

2 exp

[

i

(

−
3π

4

)]

.(5)

With the agreement thate−iθ = ei(−θ), this can also be written−1 − i =
√

2e−i3π/4.
Expression (5) is, of course, only one of an infinite number of possibilities for the
exponential form of−1 − i:

−1 − i =
√

2 exp

[

i

(

−
3π

4
+ 2nπ

)]

(n = 0,±1, ±2, . . .).(6)

Note how expression (4) withr = 1 tells us that the numberseiθ lie on the
circle centered at the origin with radius unity, as shown in Fig. 7. Values ofeiθ

are, then, immediate from that figure, withoutreference to Euler’s formula. It is, for
instance, geometrically obvious that

eiπ = −1, e−iπ/2 = −i, and e−i4π = 1.



18 Complex Numbers chap. 1

xO

1

y

FIGURE 7

Note, too, that the equation

z = Reiθ (0 ≤ θ ≤ 2π)(7)

is a parametric representation of the circle|z| = R, centered at the origin with radius
R. As the parameterθ increases fromθ = 0 to θ = 2π , the pointz starts from the
positive real axis and traverses the circle once in the counterclockwise direction.
More generally, the circle|z − z0| = R, whose center isz0 and whose radius isR,
has the parametric representation

z = z0 + Reiθ (0 ≤ θ ≤ 2π).(8)

This can be seen vectorially (Fig. 8) by noting that a pointz traversing the circle
|z − z0| = R once in the counterclockwise direction corresponds to the sum of the
fixed vectorz0 and a vector of lengthR whose angle of inclinationθ varies from
θ = 0 to θ = 2π .

xO

y

z

z0

FIGURE 8

7. PRODUCTS AND POWERS IN EXPONENTIAL FORM

Simple trigonometry tells us thateiθ has the familiar additive property of the expo-
nential function in calculus:

eiθ1eiθ2 = (cosθ1 + i sinθ1)(cosθ2 + i sinθ2)

= (cosθ1 cosθ2 − sinθ1 sinθ2) + i(sinθ1 cosθ2 + cosθ1 sinθ2)

= cos(θ1 + θ2) + i sin(θ1 + θ2) = ei(θ1+θ2).
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Thus, if z1 = r1e
iθ1 andz2 = r2e

iθ2, the productz1z2 has exponential form

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
iθ1eiθ2 = (r1r2)e

i(θ1+θ2).(1)

Furthermore,

z1

z2
=

r1e
iθ1

r2eiθ2
=

r1

r2
·
eiθ1e−iθ2

eiθ2e−iθ2
=

r1

r2
·
ei(θ1−θ2)

ei0
=

r1

r2
ei(θ1−θ2).(2)

Note how it follows from expression (2) that the inverse of any nonzero complex
numberz = reiθ is

z−1 =
1

z
=

1ei0

reiθ
=

1

r
ei(0−θ) =

1

r
e−iθ .(3)

Expressions (1), (2), and (3) are, of course, easily remembered by applying the usual
algebraic rules for real numbers andex .

Another important result that can beobtained formally by applying rules for
real numbers toz = reiθ is

zn = rneinθ (n = 0, ±1,±2, . . .).(4)

It is easily verified for positive values ofn by mathematical induction. To be specific,
we first note that it becomesz = reiθ whenn = 1. Next, we assume that it is valid
when n = m, wherem is any positive integer. In view of expression (1) for the
product of two nonzero complex numbers inexponential form, it is then valid for
n = m + 1:

zm+1 = zmz = rmeimθ reiθ = (rmr)ei(mθ+θ) = rm+1ei(m+1)θ .

Expression (4) is thus verified whenn is a positive integer. It also holds when
n = 0, with the convention thatz0 = 1. If n = −1, −2, . . . , on the other hand, we
definezn in terms of the multiplicative inverse ofz by writing

zn = (z−1)m where m = −n = 1, 2, . . . .

Then, since equation (4) is valid for positive integers, it follows from the exponential
form (3) of z−1 that

zn =
[

1

r
ei(−θ)

]m

=
(

1

r

)m

eim(−θ) =
(

1

r

)−n

ei(−n)(−θ) = rneinθ

(n = −1,−2, . . .).

Expression (4) is now established for all integral powers.
Expression (4) can be useful in finding powers of complex numbers even when

they are given in rectangular form and the result is desired in that form.
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EXAMPLE 1. In order to put(
√

3 + 1)7 in rectangular form, one need only
write

(
√

3 + i)7 = (2eiπ/6)7 = 27ei7π/6 = (26eiπ )(2eiπ/6) = −64(
√

3 + i).

Finally, we observe that ifr = 1, equation (4) becomes

(eiθ )n = einθ (n = 0, ±1,±2, . . .).(5)

When written in the form

(cosθ + i sinθ)n = cosnθ + i sinnθ (n = 0, ±1,±2, . . .),(6)

this is known asde Moivre’s formula. The following example uses a special case
of it.

EXAMPLE 2. Formula (6) withn = 2 tells us that

(cosθ + i sinθ)2 = cos 2θ + i sin 2θ,

or

cos2 θ − sin2 θ + i2 sinθ cosθ = cos 2θ + i sin 2θ.

By equating real parts and then imaginary parts here, we have the familiar trigono-
metric identities

cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 sinθ cosθ.

(See also Exercises 10 and 11, Sec. 8.)

8. ARGUMENTS OF PRODUCTS AND QUOTIENTS

If z1 = r1e
iθ1 andz2 = r2e

iθ2, the expression

z1z2 = (r1r2)e
i(θ1+θ2)(1)

in Sec. 7 can be used to obtain an important identity involving arguments:

arg(z1z2) = argz1 + argz2.(2)

This result is to be interpreted as saying that if values of two of the three (multiple-
valued) arguments are specified, then there is a value of the third such that the
equation holds.

We start the verification of statement (2) by lettingθ1 andθ2 denote any values
of argz1 and argz2, respectively. Expression (1) then tells us thatθ1 + θ2 is a
value of arg(z1z2). (See Fig. 9.) If, on the other hand, values of arg(z1z2) and
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xO

y z1z2

z1

z2

FIGURE 9

argz1 are specified, those values correspond to particular choices ofn andn1 in the
expressions

arg(z1z2) = (θ1 + θ2) + 2nπ (n = 0,±1, ±2, . . .)

and
argz1 = θ1 + 2n1π (n1 = 0, ±1,±2, . . .).

Since
(θ1 + θ2) + 2nπ = (θ1 + 2n1π) + [θ2 + 2(n − n1)π ],

equation (2) is evidently satisfied when the value

argz2 = θ2 + 2(n − n1)π

is chosen. Verification when values of arg(z1z2) and argz2 are specified follows by
symmetry.

Statement (2) is sometimes valid whenarg is replaced everywhere byArg (see
Exercise 6). But, as the following example illustrates, that isnot alwaysthe case.

EXAMPLE 1. Whenz1 = −1 andz2 = i,

Arg(z1z2) = Arg(−i) = −
π

2
but Argz1 + Arg z2 = π +

π

2
=

3π

2
.

If, however, we take the values of argz1 and argz2 just used and select the value

Arg(z1z2) + 2π = −
π

2
+ 2π =

3π

2

of arg(z1z2), we find that equation (2)is satisfied.

Statement (2) tells us that

arg

(

z1

z2

)

= arg(z1z
−1
2 ) = argz1 + arg(z−1

2 );
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and, since (Sec. 7)

z−1
2 =

1

r2
e−iθ2,

one can see that

arg(z−1
2 ) = −argz2.(3)

Hence

arg

(

z1

z2

)

= argz1 − argz2.(4)

Statement (3) is, of course, to be interpreted as saying that the set of all values
on the left-hand side is the same as the set of all values on the right-hand side.
Statement (4) is, then, to be interpreted in the same way that statement (2) is.

EXAMPLE 2. In order to find the principal argument Argz when

z =
−2

1 +
√

3i
,

observe that
argz = arg(−2) − arg(1 +

√
3i).

Since
Arg(−2) = π and Arg(1 +

√
3i) =

π

3
,

one value of argz is 2π/3; and, because 2π/3 is between−π andπ , we find that
Arg z = 2π/3.

EXERCISES
1. Find the principal argument Argz when

(a) z =
i

−2 − 2i
; (b) z = (

√
3 − i)6.

Ans. (a) −3π/4; (b) π .

2. Show that(a) |eiθ | = 1; (b) eiθ = e−iθ .

3. Use mathematical induction to show that

eiθ1eiθ2 · · · eiθn = ei(θ1+θ2+···+θn) (n = 2, 3, . . .).

4. Using the fact that the modulus|eiθ − 1| is the distance between the pointseiθ and 1
(see Sec. 4), give a geometric argument to find a value ofθ in the interval 0≤ θ < 2π

that satisfies the equation|eiθ − 1| = 2.
Ans. π .
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5. By writing the individual factors on the left in exponential form, performing the needed
operations, and finally changing back to rectangular coordinates, show that

(a) i(1 −
√

3i)(
√

3 + i) = 2(1 +
√

3i); (b) 5i/(2 + i) = 1 + 2i;

(c) (−1 + i)7 = −8(1 + i); (d) (1 +
√

3i)−10 = 2−11(−1 +
√

3i).

6. Show that if Rez1 > 0 and Rez2 > 0, then

Arg(z1z2) = Arg z1 + Arg z2,

where principal arguments are used.

7. Let z be a nonzero complex number andn a negative integer(n = −1,−2, . . .). Also,
write z = reiθ andm = −n = 1, 2, . . . . Using the expressions

zm = rmeimθ and z−1 =
(

1

r

)

ei(−θ),

verify that (zm)−1 = (z−1)m and hence that the definitionzn = (z−1)m in Sec. 7 could
have been written alternatively aszn = (zm)−1.

8. Prove that two nonzero complex numbersz1 andz2 have the same moduli if and only
if there are complex numbersc1 andc2 such thatz1 = c1c2 andz2 = c1c2.

Suggestion:Note that

exp

(

i
θ1 + θ2

2

)

exp

(

i
θ1 − θ2

2

)

= exp(iθ1)

and [see Exercise 2(b)]

exp

(

i
θ1 + θ2

2

)

exp

(

i
θ1 − θ2

2

)

= exp(iθ2).

9. Establish the identity

1 + z + z2 + · · · + zn =
1 − zn+1

1 − z
(z �= 1)

and then use it to deriveLagrange’s trigonometric identity:

1 + cosθ + cos 2θ + · · · + cosnθ =
1

2
+

sin[(2n + 1)θ/2]

2 sin(θ/2)
(0 < θ < 2π).

Suggestion:As for the first identity, writeS = 1 + z + z2 + · · · + zn and consider
the differenceS − zS. To derive the second identity, writez = eiθ in the first one.

10. Use de Moivre’s formula (Sec. 7) to derive the following trigonometric identities:

(a) cos 3θ = cos3 θ − 3 cosθ sin2 θ ; (b) sin 3θ = 3 cos2 θ sinθ − sin3 θ .
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11. (a) Use the binomial formula (Sec. 3) and de Moivre’s formula (Sec. 7) to write

cosnθ + i sinnθ =
n

∑

k=0

(n

k

)

cosn−k θ (i sinθ)k (n = 0, 1, 2, . . .).

Then define the integerm by means of the equations

m =
{

n/2 if n is even,
(n − 1)/2 if nis odd

and use the above summation to show that [compare with Exercise 10(a)]

cosnθ =
m

∑

k=0

( n

2k

)

(−1)k cosn−2k θ sin2k θ (n = 0, 1, 2, . . .).

(b) Write x = cosθ in the final summation in part(a) to show that it becomes a
polynomial

Tn(x) =
m

∑

k=0

(

n

2k

)

(−1)kxn−2k(1 − x2)k

of degreen (n = 0, 1, 2, . . .) in the variablex.∗

9. ROOTS OF COMPLEX NUMBERS

Consider now a pointz = reiθ , lying on a circle centered at the origin with radius
r (Fig. 10). Asθ is increased,z moves around the circle in the counterclockwise
direction. In particular, whenθ is increased by 2π , we arrive at the original point;
and the same is true whenθ is decreased by 2π . It is, therefore, evident from Fig. 10
that two nonzero complex numbers

z1 = r1e
iθ1 and z2 = r2e

iθ2

xO

r

y

FIGURE 10

∗These are called Chebyshev polynomials and are prominent in approximation theory.
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are equal if and only if

r1 = r2 and θ1 = θ2 + 2kπ,

wherek is some integer(k = 0,±1, ±2, . . .).
This observation, together with the expressionzn = rneinθ in Sec. 7 for integral

powers of complex numbersz = reiθ , is useful in finding thenth roots of any
nonzero complex numberz0 = r0e

iθ0, wheren has one of the valuesn = 2, 3, . . . .

The method starts with the fact that annth root of z0 is a nonzero numberz = reiθ

such thatzn = z0, or
rneinθ = r0e

iθ0.

According to the statement in italics just above, then,

rn = r0 and nθ = θ0 + 2kπ,

wherek is any integer(k = 0,±1, ±2, . . .). Sor = n
√

r0, where this radical denotes
the uniquepositiventh root of the positive real numberr0, and

θ =
θ0 + 2kπ

n
=

θ0

n
+

2kπ

n
(k = 0, ±1, ±2, . . .).

Consequently, the complex numbers

z = n
√

r0 exp

[

i

(

θ0

n
+

2kπ

n

)]

(k = 0, ±1,±2, . . .)

are thenth roots ofz0. We are able to see immediately from this exponential form
of the roots that they all lie on the circle|z| = n

√
r0 about the origin and are equally

spaced every 2π/n radians, starting with argumentθ0/n. Evidently, then, all of the
distinct roots are obtained whenk = 0, 1, 2, . . . , n − 1, and no further roots arise
with other values ofk. We letck (k = 0, 1, 2, . . . , n − 1) denote these distinct roots
and write

ck = n
√

r0 exp

[

i

(

θ0

n
+

2kπ

n

)]

(k = 0, 1, 2, . . . , n − 1).(1)

(See Fig. 11.)

xO

y

n

ck–1

ck

√
r0

n

FIGURE 11
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The number n
√

r0 is the length of each of the radius vectors representing the
n roots. The first rootc0 has argumentθ0/n; and the two roots whenn = 2 lie at
the opposite ends of a diameter of the circle|z| = n

√
r0, the second root being−c0.

Whenn ≥ 3, the roots lie at the vertices of a regular polygon ofn sides inscribed
in that circle.

We shall letz1/n

0 denote theset of nth roots of z0. If, in particular, z0 is a
positive real numberr0, the symbolr1/n

0 denotes the entire set of roots; and the
symbol n

√
r0 in expression (1) is reserved for the one positive root. When the value

of θ0 that is used in expression (1) is the principal value of argz0 (−π < θ0 ≤ π),
the numberc0 is referred to as theprincipal root. Thus whenz0 is a positive real
numberr0, its principal root is n

√
r0.

Observe that if we write expression (1) for the roots ofz0 as

ck = n
√

r0 exp

(

i
θ0

n

)

exp

(

i
2kπ

n

)

(k = 0, 1, 2, . . . , n − 1),

and also write

ωn = exp

(

i
2π

n

)

,(2)

it follows from property (5), Sec. 7. ofeiθ that

ωk
n = exp

(

i
2kπ

n

)

(k = 0, 1, 2, . . . , n − 1)(3)

and hence that

ck = c0ω
k
n (k = 0, 1, 2, . . . , n − 1).(4)

The numberc0 here can, of course, be replaced by any particularnth root of z0,
sinceωn represents a counterclockwise rotation through 2π/n radians.

Finally, a convenient way to remember expression (1) is to writez0 in its most
general exponential form (compare with Example 2 in Sec. 6)

z0 = r0 ei(θ0+2kπ) (k = 0, ±1, ±2, . . .)(5)

and toformally apply laws of fractional exponents involving real numbers, keeping
in mind that there are preciselyn roots:

z
1/n

0 =
[

r0 ei(θ0+2kπ)
]1/n = n

√
r0 exp

[

i(θ0 + 2kπ)

n

]

= n
√

r0 exp

[

i

(

θ0

n
+

2kπ

n

)]

(k = 0, 1, 2, . . . , n − 1).
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The examples in the next section serve toillustrate this method for finding roots of
complex numbers.

10. EXAMPLES

In each of the examples here, we start with expression (5), Sec. 9, and proceed in
the manner described just after it.

EXAMPLE 1. Let us find all values of(−8i)1/3, or the three cube roots of
the number−8i. One need only write

−8i = 8 exp
[

i
(

−
π

2
+ 2kπ

)]

(k = 0, ±1, ±2, . . .)

to see that the desired roots are

ck = 2 exp

[

i

(

−
π

6
+

2kπ

3

)]

(k = 0, 1, 2).(1)

They lie at the vertices of an equilateral triangle, inscribed in the circle|z| = 2, and
are equally spaced around that circle every 2π/3 radians, starting with the principal
root (Fig. 12)

c0 = 2 exp
[

i
(

−
π

6

)]

= 2
(

cos
π

6
− i sin

π

6

)

=
√

3 − i.

Without any further calculations, it is then evident thatc1 = 2i; and, since
c2 is symmetric to c0 with respect to the imaginary axis, we know that
c2 = −

√
3 − i.

Note how it follows from expressions (2) and (4) in Sec. 9 that these roots can
be written

c0, c0ω3, c0ω
2
3 where ω3 = exp

(

i
2π

3

)

.

x

y
c1

c0c2

2

FIGURE 12
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EXAMPLE 2. In order to determine thenth roots of unity, we start with

1 = 1 exp[i(0 + 2kπ)] (k = 0, ±1, ±2 . . .)

and find that

11/n = n
√

1 exp

[

i

(

0

n
+

2kπ

n

)]

= exp

(

i
2kπ

n

)

(k = 0, 1, 2, . . . , n − 1).(2)

When n = 2, these roots are, of course,±1. Whenn ≥ 3, the regular polygon at
whose vertices the roots lie is inscribed in the unit circle|z| = 1, with one vertex
corresponding to the principal rootz = 1 (k = 0). In view of expression (3), Sec. 9,
these roots are simply

1, ωn, ω
2
n, . . . , ω

n−1
n where ωn = exp

(

i
2π

n

)

.

See Fig. 13, where the casesn = 3, 4, and 6 are illustrated. Note thatωn
n = 1.

x

y

1 x

y

1 x

y

1

FIGURE 13

EXAMPLE 3. The two valuesck (k = 0, 1) of (
√

3 + i)1/2, which are the
square roots of

√
3 + i, are found by writing

√
3 + i = 2 exp

[

i
(π

6
+ 2kπ

)]

(k = 0, ±1,±2, . . .)

and (see Fig. 14)

ck =
√

2 exp
[

i
( π

12
+ kπ

)]

(k = 0, 1).(3)

Euler’s formula tells us that

c0 =
√

2 exp
(

i
π

12

)

=
√

2
(

cos
π

12
+ i sin

π

12

)

,

and the trigonometric identities
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x

y

c0

c1 = –c0
2√

FIGURE 14

cos2
α

2
=

1 + cosα

2
, sin2 α

2
=

1 − cosα

2
(4)

enable us to write

cos2
π

12
=

1

2

(

1 + cos
π

6

)

=
1

2

(

1 +
√

3

2

)

=
2 +

√
3

4
,

sin2 π

12
=

1

2

(

1 − cos
π

6

)

=
1

2

(

1 −
√

3

2

)

=
2 −

√
3

4
.

Consequently,

c0 =
√

2





√

2 +
√

3

4
+ i

√

2 −
√

3

4



 =
1

√
2

(√

2 +
√

3 + i

√

2 −
√

3

)

.

Sincec1 = −c0, the two square roots of
√

3 + i are, then,

±
1

√
2

(√

2 +
√

3 + i

√

2 −
√

3

)

.(5)

EXERCISES
1. Find the square roots of(a) 2i; (b) 1 −

√
3i and express them in rectangular coordi-

nates.

Ans. (a) ± (1 + i); (b) ±
√

3 − i
√

2
.

2. In each case, find all the roots in rectangular coordinates, exhibit them as vertices of
certain squares, and point out which is the principal root:

(a) (−16)1/4; (b) (−8 − 8
√

3i)1/4.

Ans. (a) ±
√

2(1 + i), ±
√

2(1 − i); (b) ±(
√

3 − i), ±(1 +
√

3i).
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3. In each case, find all the roots in rectangular coordinates, exhibit them as vertices of
certain regular polygons, and identify the principal root:

(a) (−1)1/3; (b) 81/6.

Ans. (b) ±
√

2, ±
1 +

√
3i

√
2

, ±
1 −

√
3i

√
2

.

4. According to Sec. 9, the three cube roots of a nonzero complex numberz0 can be
written c0, c0ω3, c0ω

2
3 wherec0 is the principal cube root ofz0 and

ω3 = exp

(

i
2π

3

)

=
−1 +

√
3i

2
.

Show that ifz0 = −4
√

2 + 4
√

2i, thenc0 =
√

2(1 + i) and the other two cube roots
are, in rectangular form, the numbers

c0ω3 =
−(

√
3 + 1) + (

√
3 − 1)i

√
2

, c0ω
2
3 =

(
√

3 − 1) − (
√

3 + 1)i
√

2
.

5. (a) Let a denote any fixed real number and show that the two square roots ofa + i

are

±
√

A exp
(

i
α

2

)

whereA =
√

a2 + 1 andα = Arg(a + i).
(b) With the aid of the trigonometric identities (4) in Example 3 of Sec. 10, show that

the square roots obtained in part(a) can be written

±
1

√
2

(√
A + a + i

√
A − a

)

.

(Note that this becomes the final result in Example 3, Sec. 10, whena =
√

3.)

6. Find the four zeros of the polynomialz4 + 4, one of them being

z0 =
√

2eiπ/4 = 1 + i.

Then use those zeros to factorz2 + 4 into quadratic factors with real coefficients.

Ans. (z2 + 2z + 2)(z2 − 2z + 2).

7. Show that ifc is anynth root of unity other than unity itself, then

1 + c + c2 + · · · + cn−1 = 0.

Suggestion:Use the first identity in Exercise 9, Sec. 8.

8. (a) Prove that the usual formula solves the quadratic equation

az2 + bz + c = 0 (a �= 0)

when the coefficientsa, b, andc are complex numbers. Specifically, by completing
the square on the left-hand side, derive thequadratic formula

z =
−b + (b2 − 4ac)1/2

2a
,

where both square roots are to be considered whenb2 − 4ac �= 0,
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(b) Use the result in part(a) to find the roots of the equationz2 + 2z + (1 − i) = 0.

Ans. (b)

(

−1 +
1

√
2

)

+
i

√
2
,

(

−1 −
1

√
2

)

−
i

√
2

.

9. Let z = reiθ be a nonzero complex number andn a negative integer(n = −1,−2, . . .).

Then definez1/n by means of the equationz1/n = (z−1)1/m where m = −n. By
showing that them values of (z1/m)−1 and (z−1)1/m are the same, verify that
z1/n = (z1/m)−1. (Compare with Exercise 7, Sec. 8.)

11. REGIONS IN THE COMPLEX PLANE

In this section, we are concerned with sets of complex numbers, or points in the
z plane, and their closeness to one another. Our basic tool is the concept of an
ε neighborhood

|z − z0| < ε(1)

of a given pointz0. It consists of all pointsz lying inside but not on a circle
centered atz0 and with a specified positive radiusε (Fig. 15). When the value ofε
is understood or is immaterial in the discussion, the set (1) is often referred to as just
a neighborhood. Occasionally, it is convenient to speak of adeleted neighborhood,
or punctured disk,

0 < |z − z0| < ε(2)

consisting of all pointsz in an ε neighborhood ofz0 except for the pointz0 itself.

x

z

|z – z0|

z0

O

y

ε

FIGURE 15

A point z0 is said to be aninterior point of a setS whenever there is some
neighborhood ofz0 that contains only points ofS; it is called anexterior point of
S when there exists a neighborhood of it containing no points ofS. If z0 is neither
of these, it is aboundary pointof S. A boundary point is, therefore, a point all of
whose neighborhoods contain at least one point inS and at least one point not inS.
The totality of all boundary points is called theboundaryof S. The circle|z| = 1,
for instance, is the boundary of each of the sets

|z| < 1 and |z| ≤ 1.(3)
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A set isopen if it contains none of its boundary points. It is left as an exercise
to show that a set is open if and only if each of its points is an interior point. A set
is closed if it contains all of its boundary points, and theclosureof a setS is the
closed set consisting of all points inS together with the boundary ofS. Note that
the first of the sets (3) is open and that the second is its closure.

Some sets are, of course, neither open nor closed. For a set to be not open,
there must be a boundary point that is contained in the set; and if a set is not closed,
there exists a boundary point not contained in the set. Observe that the punctured
disk 0< |z| ≤ 1 is neither open nor closed. The set of all complex numbers is, on
the other hand, both open and closed since it has no boundary points.

An open setS is connectedif each pair of pointsz1 andz2 in it can be joined
by apolygonal line,consisting of a finite number of line segments joined end to end,
that lies entirely inS. The open set|z| < 1 is connected. The annulus 1< |z| < 2
is, of course, open and it is also connected (see Fig. 16). A nonempty open set
that is connected is called adomain.Note that any neighborhood is a domain. A
domain together with some, none, or all of its boundary points is referred to as a
region.

x
z1

z2

O 1 2

y

FIGURE 16

A setS is boundedif every point ofS lies inside some circle|z| = R; otherwise,
it is unbounded.Both of the sets (3) are bounded regions, and the half plane Rez ≥ 0
is unbounded.

A point z0 is said to be anaccumulation pointof a setS if each deleted
neighborhood ofz0 contains at least one point ofS. It follows that if a setS is
closed, then it contains each of its accumulation points. For if an accumulation
point z0 were not inS, it would be a boundary point ofS; but this contradicts the
fact that a closed set contains all of its boundary points. It is left as an exercise to
show that the converse is, in fact, true. Thus a set is closed if and only if it contains
all of its accumulation points.

Evidently, a pointz0 is not an accumulation point of a setS whenever there
exists some deleted neighborhood ofz0 that does not contain at least one point ofS.
Note that the origin is the only accumulation point of the setzn = i/n (n = 1, 2, . . .).
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EXERCISES
1. Sketch the following sets and determine which are domains:

(a) |z − 2 + i| ≤ 1; (b) |2z + 3| > 4;
(c) Im z > 1; (d) Im z = 1;
(e) 0 ≤ argz ≤ π/4 (z �= 0); (f) |z − 4| ≥ |z|.

Ans. (b), (c) are domains.

2. Which sets in Exercise 1 are neither open nor closed?
Ans. (e).

3. Which sets in Exercise 1 are bounded?
Ans. (a).

4. In each case, sketch the closure of the set:
(a) −π < argz < π (z �= 0); (b) |Rez| < |z|;

(c) Re

(

1

z

)

≤
1

2
; (d) Re(z2) > 0.

5. Let S be the open set consisting of all pointsz such that|z| < 1 or |z − 2| < 1. State
why S is not connected.

6. Show that a setS is open if and only if each point inS is an interior point.

7. Determine the accumulation points of each of the following sets:

(a) zn = in (n = 1, 2, . . .); (b) zn = in/n (n = 1, 2, . . .);

(c) 0 ≤ argz < π/2 (z �= 0); (d) zn = (−1)n(1 + i)
n − 1

n
(n = 1, 2, . . .).

Ans. (a) None; (b) 0; (d) ±(1 + i).

8. Prove that if a set contains each of its accumulation points, then it must be a closed
set.

9. Show that any pointz0 of a domain is an accumulation point of that domain.

10. Prove that a finite set of pointsz1, z2, . . . , zn cannot have any accumulation points.





C H A P T E R

2
ANALYTIC FUNCTIONS

We now consider functions of a complex variable and develop a theory of differ-
entiation for them. The main goal of the chapter is to introduce analytic functions,
which play a central role in complex analysis.

12. FUNCTIONS OF A COMPLEX VARIABLE

Let S be a set of complex numbers. Afunctionf defined onS is a rule that assigns
to eachz in S a complex numberw. The numberw is called thevalueof f at z and
is denoted byf (z); that is,w = f (z). The setS is called thedomain of definition
of f .∗

It must be emphasized that both a domain of definition and a rule are needed
in order for a function to be well defined. When the domain of definition is not
mentioned, we agree that the largest possible set is to be taken. Also, it is not
always convenient to use notation that distinguishes between a given function and
its values.

EXAMPLE 1. If f is defined on the setz �= 0 by means of the equation
w = 1/z, it may be referred to only as the functionw = 1/z, or simply the func-
tion 1/z.

Suppose thatw = u + iv is the value of a functionf at z = x + iy, so that

u + iv = f (x + iy).

∗Although the domain of definition is often adomain as defined in Sec. 11, it need not be.

35
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Each of the real numbersu and v depends on the real variablesx and y, and it
follows that f (z) can be expressed in terms of a pair of real-valued functions of
the real variablesx andy:

f (z) = u(x, y) + iv(x, y).(1)

If the polar coordinatesr andθ , instead ofx andy, are used, then

u + iv = f (reiθ )

wherew = u + iv andz = reiθ . In that case, we may write

f (z) = u(r, θ) + iv(r, θ).(2)

EXAMPLE 2. If f (z) = z2, then

f (x + iy) = (x + iy)2 = x2 − y2 + i2xy.

Hence
u(x, y) = x2 − y2 and v(x, y) = 2xy.

When polar coordinates are used,

f (reiθ ) = (reiθ )2 = r2ei2θ = r2 cos 2θ + ir2 sin 2θ.

Consequently,

u(r, θ) = r2 cos 2θ and v(r, θ) = r2 sin 2θ.

If, in either of equations (1) and (2), the functionv always has value zero, then
the value off is always real. That is,f is a real-valued functionof a complex
variable.

EXAMPLE 3. A real-valued function that is used to illustrate some important
concepts later in this chapter is

f (z) = |z|2 = x2 + y2 + i0.

If n is zero or a positive integer and ifa0, a1, a2, . . . , an are complex constants,
wherean �= 0, the function

P(z) = a0 + a1z + a2z
2 + · · · + anz

n

is a polynomial of degreen. Note that the sum here has a finite number of terms
and that the domain of definition is the entirez plane. QuotientsP(z)/Q(z) of



sec. 12 Exercises 37

polynomials are calledrational functions and are defined at each pointz where
Q(z) �= 0. Polynomials and rational functions constitute elementary, but important,
classes of functions of a complex variable.

A generalization of the concept of function is a rule that assigns more than
one value to a pointz in the domain of definition. Thesemultiple-valued func-
tions occur in the theory of functions of a complex variable, just as they do in
the case of a real variable. When multiple-valued functions are studied, usually
just one of the possible values assigned to each point is taken, in a systematic
manner, and a (single-valued) function is constructed from the multiple-valued
function.

EXAMPLE 4. Let z denote any nonzero complex number. We know from
Sec. 9 thatz1/2 has the two values

z1/2 = ±
√

r exp

(

i
�

2

)

,

where r = |z| and � (−π < � ≤ π) is the principal value of argz. But, if we
choose only the positive value of±

√
r and write

f (z) =
√

r exp

(

i
�

2

)

(r > 0, −π < � ≤ π),(3)

the (single-valued) function (3) is well defined on the set of nonzero numbers in
the z plane. Since zero is the only square root of zero, we also writef (0) = 0. The
function f is then well defined on the entire plane.

EXERCISES
1. For each of the functions below, describe the domain of definition that is understood:

(a) f (z) =
1

z2 + 1
; (b) f (z) = Arg

(

1

z

)

;

(c) f (z) =
z

z + z
; (d) f (z) =

1

1 − |z|2
.

Ans. (a) z �= ±i; (c) Rez �= 0.

2. Write the functionf (z) = z3 + z + 1 in the formf (z) = u(x, y) + iv(x, y).
Ans. f (z) = (x3 − 3xy2 + x + 1) + i(3x2y − y3 + y).

3. Suppose thatf (z) = x2 − y2 − 2y + i(2x − 2xy), wherez = x + iy. Use the expres-
sions (see Sec. 5)

x =
z + z

2
and y =

z − z

2i

to write f (z) in terms ofz, and simplify the result.
Ans. f (z) = z2 + 2iz.
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4. Write the function

f (z) = z +
1

z
(z �= 0)

in the formf (z) = u(r, θ) + iv(r, θ).

Ans. f (z) =
(

r +
1

r

)

cosθ + i

(

r −
1

r

)

sinθ .

13. MAPPINGS

Properties of a real-valued function of a real variable are often exhibited by the
graph of the function. But whenw = f (z), wherez andw are complex, no such
convenient graphical representation of the functionf is available because each of
the numbersz andw is located in a plane rather than on a line. One can, however,
display some information about the function by indicating pairs of corresponding
points z = (x, y) andw = (u, v). To do this, it is generally simpler to draw thez
andw planes separately.

When a functionf is thought of in this way, it is often referred to as amapping,
or transformation. Theimageof a pointz in the domain of definitionS is the point
w = f (z), and the set of images of all points in a setT that is contained inS is
called the image ofT . The image of the entire domain of definitionS is called the
range of f . The inverse imageof a pointw is the set of all pointsz in the domain
of definition of f that havew as their image. The inverse image of a point may
contain just one point, many points, or none at all. The last case occurs, of course,
whenw is not in the range off .

Terms such astranslation, rotation,and reflection are used to convey domi-
nant geometric characteristics of certain mappings. In such cases, it is sometimes
convenient to consider thez andw planes to be the same. For example, the mapping

w = z + 1 = (x + 1) + iy,

wherez = x + iy, can be thought of as a translation of each pointz one unit to the
right. Sincei = eiπ/2, the mapping

w = iz = r exp
[

i
(

θ +
π

2

)]

,

wherez = reiθ , rotates the radius vector for each nonzero pointz through a right
angle about the origin in the counterclockwise direction; and the mapping

w = z = x − iy

transforms each pointz = x + iy into its reflection in the real axis.
More information is usually exhibited by sketching images of curves and

regions than by simply indicating images of individual points. In the following
three examples, we illustrate this with the transformationw = z2. We begin by
finding the images of somecurves in the z plane.
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EXAMPLE 1. According to Example 2 in Sec. 12, the mappingw = z2 can
be thought of as the transformation

u = x2 − y2, v = 2xy(1)

from thexy plane into theuv plane. This form of the mapping is especially useful
in finding the images of certain hyperbolas.

It is easy to show, for instance, that each branch of a hyperbola

x2 − y2 = c1 (c1 > 0)(2)

is mapped in a one to one manner onto the vertical lineu = c1. We start by noting
from the first of equations (1) thatu = c1 when (x, y) is a point lying on either
branch. When, in particular, it lies on theright-hand branch, the second of equations
(1) tells us thatv = 2y

√

y2 + c1. Thus the image of the right-hand branch can be
expressed parametrically as

u = c1, v = 2y
√

y2 + c1 (−∞ < y < ∞);

and it is evident that the image of a point(x, y) on that branch moves upward along
the entire line as(x, y) traces out the branch in the upward direction (Fig. 17).
Likewise, since the pair of equations

u = c1, v = −2y
√

y2 + c1 (−∞ < y < ∞)

furnishes a parametric representation forthe image of the left-hand branch of the
hyperbola, the image of a point goingdownwardalong the entire left-hand branch
is seen to move up the entire lineu = c1.

xO

y

u

u = c1 > 0

v = c2 > 0

O

v

FIGURE 17
w = z2.

On the other hand, each branch of a hyperbola

2xy = c2 (c2 > 0)(3)

is transformed into the linev = c2, as indicated in Fig. 17. To verify this, we
note from the second of equations (1) thatv = c2 when (x, y) is a point on either
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branch. Suppose that (x, y) is on the branch lying in the first quadrant. Then, since
y = c2/(2x), the first of equations (1) reveals thatthe branch’s image has parametric
representation

u = x2 −
c2

2

4x2
, v = c2 (0 < x < ∞).

Observe that
lim
x→0
x>0

u = −∞ and lim
x→∞

u = ∞.

Sinceu depends continuously onx, then, it is clear that as(x, y) travels down the
entire upper branch of hyperbola (3), itsimage moves to the right along the entire
horizontal linev = c2. Inasmuch as the image of the lower branch has parametric
representation

u =
c2

2

4y2
− y2, v = c2 (−∞ < y < 0)

and since
lim

y→−∞
u = −∞ and lim

y→0
y<0

u = ∞,

it follows that the image of a point movingupward along the entire lower branch
also travels to the right along the entire linev = c2 (see Fig. 17).

We shall now use Example 1 to find the image of a certainregion.

EXAMPLE 2. The domainx > 0, y > 0, xy < 1 consists of all points lying
on the upper branches of hyperbolas from the family 2xy = c, where 0< c < 2
(Fig. 18). We know from Example 1 that as a point travels downward along the
entirety of such a branch, its image under the transformationw = z2 moves to the
right along the entire linev = c. Since, for all values ofc between 0 and 2, these
upper branches fill out the domainx > 0, y > 0, xy < 1, that domain is mapped
onto the horizontal strip 0< v < 2.

xB C

E

A D
D′

A′ B′ C′

E′2i

y

u

v

FIGURE 18
w = z2.
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In view of equations (1), the image of a point(0, y) in the z plane is(−y2, 0).
Hence as(0, y) travels downward to the origin along they axis, its image moves
to the right along the negativeu axis and reaches the origin in thew plane. Then,
since the image of a point(x, 0) is (x2, 0), that image moves to the right from the
origin along theu axis as(x, 0) moves to the right from the origin along thex axis.
The image of the upper branch of the hyperbolaxy = 1 is, of course, the horizontal
line v = 2. Evidently, then, the closed regionx ≥ 0, y ≥ 0, xy ≤ 1 is mapped onto
the closed strip 0≤ v ≤ 2, as indicated in Fig. 18.

Our last example here illustrates how polar coordinates can be useful in ana-
lyzing certain mappings.

EXAMPLE 3. The mappingw = z2 becomes

w = r2ei2θ(4)

whenz = reiθ . Evidently, then, the imagew = ρeiφ of any nonzero pointz is found
by squaring the modulusr = |z| and doubling the valueθ of arg z that is used:

ρ = r2 and φ = 2θ.(5)

Observe that pointsz = r0e
iθ on a circler = r0 are transformed into points

w = r2
0ei2θ on the circleρ = r2

0 . As a point on the first circle moves counterclock-
wise from the positive real axis to the positive imaginary axis, its image on the
second circle moves counterclockwisefrom the positive real axis to the negative
real axis (see Fig. 19). So, as all possible positive values ofr0 are chosen, the
corresponding arcs in thez and w planes fill out the first quadrant and the upper
half plane, respectively. The transformationw = z2 is, then, a one to one map-
ping of the first quadrantr ≥ 0, 0 ≤ θ ≤ π/2 in the z plane onto the upper half
ρ ≥ 0, 0 ≤ φ ≤ π of the w plane, as indicated in Fig. 19. The pointz = 0 is, of
course, mapped onto the pointw = 0.

xO

y

r0 uO

v

r 2
0

FIGURE 19
w = z2.

The transformationw = z2 also maps the upper half planer ≥ 0, 0 ≤ θ ≤ π

onto the entirew plane. However, in this case, the transformation is not one to one
since both the positive and negative real axes in thez plane are mapped onto the
positive real axis in thew plane.
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When n is a positive integer greater than 2, various mapping properties of
the transformationw = zn, or w = rneinθ , are similar to those ofw = z2. Such a
transformation maps the entirez plane onto the entirew plane, where each nonzero
point in thew plane is the image ofn distinct points in thez plane. The circle
r = r0 is mapped onto the circleρ = rn

0 ; and the sectorr ≤ r0, 0 ≤ θ ≤ 2π/n is
mapped onto the diskρ ≤ rn

0 , but not in a one to one manner.

Other, but somewhat more involved, mappings byw = z2 appear in Example
1, Sec. 97, and Exercises 1 through 4 of that section.

14. MAPPINGS BY THE EXPONENTIAL FUNCTION

In Chap. 3 we shall introduce and develop properties of a number of elemen-
tary functions which do not involve polynomials. That chapter will start with the
exponential function

ez = exeiy (z = x + iy),(1)

the two factorsex and eiy being well defined at this time (see Sec. 6). Note that
definition (1), which can also be written

ex+iy = exeiy,

is suggested by the familiar additive property

ex1+x2 = ex1ex2

of the exponential function in calculus.
The object of this section is to use the functionez to provide the reader with

additional examples of mappings that continue to be reasonably simple. We begin
by examining the images of vertical and horizontal lines.

EXAMPLE 1. The transformation

w = ez(2)

can be writtenw = exeiy, where z = x + iy, according to equation (1). Thus, if
w = ρeiφ, transformation (2) can be expressed in the form

ρ = ex, φ = y.(3)

The image of a typical pointz = (c1, y) on a vertical linex = c1 has polar
coordinatesρ = expc1 andφ = y in thew plane. That image moves counterclock-
wise around the circle shown in Fig. 20 asz moves up the line. The image of the
line is evidently the entire circle; and each point on the circle is the image of an
infinite number of points, spaced 2π units apart, along the line.
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x

x = c1

y = c2

O

y

uexp c1

c2

O

v

FIGURE 20
w = expz.

A horizontal line y = c2 is mapped in a one to one manner onto the ray
φ = c2. To see that this is so, we note that the image of a pointz = (x, c2) has
polar coordinatesρ = ex andφ = c2. Consequently, as that pointz moves along the
entire line from left to right, its image moves outward along the entire rayφ = c2,
as indicated in Fig. 20.

Vertical and horizontal linesegmentsare mapped onto portions of circles and
rays, respectively, and images of various regions are readily obtained from obser-
vations made in Example 1. This is illustrated in the following example.

EXAMPLE 2. Let us show that the transformationw = ez maps the rect-
angular regiona ≤ x ≤ b, c ≤ y ≤ d onto the regionea ≤ ρ ≤ eb, c ≤ φ ≤ d. The
two regions and corresponding parts of their boundaries are indicated in Fig. 21.
The vertical line segmentAD is mapped onto the arcρ = ea, c ≤ φ ≤ d, which is
labeledA′D′. The images of vertical line segments to the right ofAD and join-
ing the horizontal parts of the boundary are larger arcs; eventually, the image of
the line segmentBC is the arcρ = eb, c ≤ φ ≤ d, labeledB ′C′. The mapping is
one to one ifd − c < 2π . In particular, if c = 0 andd = π , then 0≤ φ ≤ π ; and
the rectangular region is mapped onto half of a circular ring, as shown in Fig. 8,
Appendix 2.
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FIGURE 21
w = expz.
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Our final example here uses the images ofhorizontal lines to find the image
of a horizontal strip.

EXAMPLE 3. Whenw = ez, the image of the infinite strip 0≤ y ≤ π is the
upper halfv ≥ 0 of thew plane (Fig. 22). This is seen by recalling from Example 1
how a horizontal liney = c is transformed into a rayφ = c from the origin. As the
real numberc increases fromc = 0 to c = π , they intercepts of the lines increase
from 0 toπ and the angles of inclination of the rays increase fromφ = 0 to φ = π .
This mapping is also shown in Fig. 6 of Appendix 2, where corresponding points
on the boundaries of the two regions are indicated.

x

ci

i

O

y

uO

v

FIGURE 22
w = expz.

EXERCISES
1. By referring to Example 1 in Sec. 13, find a domain in thez plane whose image under

the transformationw = z2 is the square domain in thew plane bounded by the lines
u = 1, u = 2, v = 1, andv = 2. (See Fig. 2, Appendix 2.)

2. Find and sketch, showing corresponding orientations, the images of the hyperbolas

x2 − y2 = c1 (c1 < 0) and 2xy = c2 (c2 < 0)

under the transformationw = z2.

3. Sketch the region onto which the sectorr ≤ 1, 0 ≤ θ ≤ π/4 is mapped by the trans-
formation(a) w = z2; (b) w = z3; (c) w = z4.

4. Show that the linesay = x (a �= 0) are mapped onto the spiralsρ = exp(aφ) under
the transformationw = expz, wherew = ρ exp(iφ).

5. By considering the images ofhorizontal line segments, verify that the image of the
rectangular regiona ≤ x ≤ b, c ≤ y ≤ d under the transformationw = expz is the
regionea ≤ ρ ≤ eb, c ≤ φ ≤ d, as shown in Fig. 21 (Sec. 14).

6. Verify the mapping of the region and boundary shown in Fig. 7 of Appendix 2, where
the transformation isw = expz.

7. Find the image of the semi-infinite stripx ≥ 0, 0 ≤ y ≤ π under the transformation
w = expz, and label corresponding portions of the boundaries.
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8. One interpretation of a functionw = f (z) = u(x, y) + iv(x, y) is that of avector field
in the domain of definition off . The function assigns a vectorw, with components
u(x, y) and v(x, y), to each pointz at which it is defined. Indicate graphically the
vector fields represented by(a) w = iz; (b) w = z/|z|.

15. LIMITS

Let a functionf be defined at all pointsz in some deleted neighborhood (Sec. l1)
of z0. The statement that thelimit of f (z) as z approachesz0 is a numberw0, or
that

lim
z→z0

f (z) = w0,(1)

means that the pointw = f (z) can be made arbitrarily close tow0 if we choose
the pointz close enough toz0 but distinct from it. We now express the definition
of limit in a precise and usable form.

Statement (1) means that for each positive numberε, there is a positive number
δ such that

|f (z) − w0| < ε whenever 0< |z − z0| < δ.(2)

Geometrically, this definition says that for eachε neighborhood|w − w0| < ε of
w0, there is a deletedδ neighborhood 0< |z − z0| < δ of z0 such that every point
z in it has an imagew lying in theε neighborhood (Fig. 23). Note that even though
all points in the deleted neighborhood 0< |z − z0| < δ are to be considered, their
images need not fill up the entire neighborhood|w − w0| < ε. If f has the constant
value w0, for instance, the image ofz is always the center of that neighborhood.
Note, too, that once aδ has been found, it can be replaced by any smaller positive
number, such asδ/2.
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FIGURE 23

It is easy to show thatwhen a limit of a functionf (z) exists at a pointz0, it is
unique.To do this, we suppose that

lim
z→z0

f (z) = w0 and lim
z→z0

f (z) = w1.

Then, for each positive numberε, there are positive numbersδ0 andδ1 such that

|f (z) − w0| < ε whenever 0< |z − z0| < δ0
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and
|f (z) − w1| < ε whenever 0< |z − z0| < δ1.

So if 0 < |z − z0| < δ, whereδ is any positive number that is smaller thanδ0 and
δ1, we find that

|w1 −w0| = |[f (z)−w0] − [f (z)−w1]| ≤ |f (z)−w0|+ |f (z)−w1| < ε + ε = 2ε.

But |w1 − w0| is a nonnegative constant, andε can be chosen arbitrarily small.
Hence

w1 − w0 = 0, or w1 = w0.

Definition (2) requires thatf be defined at all points in some deleted neigh-
borhood ofz0. Such a deleted neighborhood, of course, always exists whenz0 is
an interior point of a region on whichf is defined. We can extend the definition of
limit to the case in whichz0 is a boundary point of the region by agreeing that the
first of inequalities (2) need be satisfied by only those pointsz that lie in both the
regionand the deleted neighborhood.

EXAMPLE 1. Let us show that iff (z) = iz/2 in the open disk|z| < 1, then

lim
z→1

f (z) =
i

2
,(3)

the point 1 being on the boundary of the domain of definition off . Observe that
whenz is in the disk|z| < 1,

∣

∣

∣

∣

f (z) −
i

2

∣

∣

∣

∣

=
∣

∣

∣

∣

iz

2
−

i

2

∣

∣

∣

∣

=
|z − 1|

2
.

Hence, for any suchz and each positive numberε (see Fig. 24),
∣

∣

∣

∣

f (z) −
i

2

∣

∣

∣

∣

< ε whenever 0< |z − 1| < 2ε.

Thus condition (2) is satisfied by points in the region|z| < 1 whenδ is equal to 2ε
or any smaller positive number.
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z = 2
δ    

  ε
ε

f(z)

FIGURE 24
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If limit (1) exists, the symbolz → z0 implies thatz is allowed to approachz0

in an arbitrary manner, not just from some particular direction. The next example
emphasizes this.

EXAMPLE 2. If

f (z) =
z

z
,(4)

the limit

lim
z→0

f (z)(5)

does not exist. For, if it did exist, it could be found by letting the pointz = (x, y)

approach the origin in any manner. But whenz = (x, 0) is a nonzero point on the
real axis (Fig. 25),

f (z) =
x + i0

x − i0
= 1;

and whenz = (0, y) is a nonzero point on the imaginary axis,

f (z) =
0 + iy

0 − iy
= −1.

Thus, by lettingz approach the origin along the real axis, we would find that the
desired limit is 1. An approach along the imaginary axis would, on the other hand,
yield the limit −1. Since a limit is unique, we must conclude that limit (5) does not
exist.

xz = (x, 0)

z = (0, y)

(0, 0)

y

FIGURE 25

While definition (2) provides a means of testing whether a given pointw0 is
a limit, it does not directly provide a method for determining that limit. Theorems
on limits, presented in the next section, will enable us to actually find many
limits.
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16. THEOREMS ON LIMITS

We can expedite our treatment of limits byestablishing a connection between limits
of functions of a complex variable and limits of real-valued functions of two real
variables. Since limits of the latter type are studied in calculus, we use their definition
and properties freely.

Theorem 1. Suppose that

f (z) = u(x, y) + iv(x, y) (z = x + iy)

and
z0 = x0 + iy0, w0 = u0 + iv0.

Then

lim
z→z0

f (z) = w0(1)

if and only if

lim
(x,y)→(x0,y0)

u(x, y) = u0 and lim
(x,y)→(x0,y0)

v(x, y) = v0.(2)

To prove the theorem, we first assume that limits (2) hold and obtain limit (1).
Limits (2) tell us that for each positive numberε, there exist positive numbersδ1

andδ2 such that

|u − u0| <
ε

2
whenever 0<

√

(x − x0)
2 + (y − y0)

2 < δ1(3)

and

|v − v0| <
ε

2
whenever 0<

√

(x − x0)2 + (y − y0)2 < δ2.(4)

Let δ be any positive number smaller thanδ1 andδ2. Since

|(u + iv) − (u0 + iv0)| = |(u − u0) + i(v − v0)| ≤ |u − u0| + |v − v0|

and
√

(x − x0)2 + (y − y0)2 = |(x − x0) + i(y − y0)| = |(x + iy) − (x0 + iy0)|,

it follows from statements (3) and (4) that

|(u + iv) − (u0 + iv0)| <
ε

2
+

ε

2
= ε

whenever
0 < |(x + iy) − (x0 + iy0)| < δ.

That is, limit (1) holds.
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Let us now start with the assumption that limit (1) holds. With that assump-
tion, we know that for each positive numberε, there is a positive numberδ such
that

|(u + iv) − (u0 + iv0)| < ε(5)

whenever

0 < |(x + iy) − (x0 + iy0)| < δ.(6)

But

|u − u0| ≤ |(u − u0) + i(v − v0)| = |(u + iv) − (u0 + iv0)|,
|v − v0| ≤ |(u − u0) + i(v − v0)| = |(u + iv) − (u0 + iv0)|,

and

|(x + iy) − (x0 + iy0)| = |(x − x0) + i(y − y0)| =
√

(x − x0)2 + (y − y0)2.

Hence it follows from inequalities (5) and (6) that

|u − u0| < ε and |v − v0| < ε

whenever
0 <

√

(x − x0)2 + (y − y0)2 < δ.

This establishes limits (2), and the proof of the theorem is complete.

Theorem 2. Suppose that

lim
z→z0

f (z) = w0 and lim
z→z0

F(z) = W0.(7)

Then

lim
z→z0

[f (z) + F(z)] = w0 + W0,(8)

lim
z→z0

[f (z)F (z)] = w0W0 ;(9)

and, if W0 �= 0 ,

lim
z→z0

f (z)

F (z)
=

w0

W0
.(10)

This important theorem can be proved directly by using the definition of the
limit of a function of a complex variable. But, with the aid of Theorem 1, it follows
almost immediately from theorems on limits of real-valued functions of two real
variables.
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To verify property (9), for example, we write

f (z) = u(x, y) + iv(x, y), F (z) = U(x, y) + iV (x, y),

z0 = x0 + iy0, w0 = u0 + iv0, W0 = U0 + iV0.

Then, according to hypotheses (7) and Theorem 1, the limits as(x, y) approaches
(x0, y0) of the functionsu, v, U , andV exist and have the valuesu0, v0, U0, and
V0, respectively. So the real and imaginary components of the product

f (z)F (z) = (uU − vV ) + i(vU + uV )

have the limitsu0U0 − v0V0 and v0U0 + u0V0, respectively, as(x, y) approaches
(x0, y0). Hence, by Theorem 1 again,f (z)F (z) has the limit

(u0U0 − v0V0) + i(v0U0 + u0V0)

as z approachesz0 ; and this is equal tow0W0. Property (9) is thus established.
Corresponding verifications of properties (8) and (10) can be given.

It is easy to see from definition (2), Sec. 15, of limit that

lim
z→z0

c = c and lim
z→z0

z = z0,

wherez0 and c are any complex numbers; and, by property (9) and mathematical
induction, it follows that

lim
z→z0

zn = zn
0 (n = 1, 2, . . .).

So, in view of properties (8) and (9), the limit of a polynomial

P(z) = a0 + a1z + a2z
2 + · · · + anz

n

asz approaches a pointz0 is the value of the polynomial at that point:

lim
z→z0

P(z) = P(z0).(11)

17. LIMITS INVOLVING THE POINT AT INFINITY

It is sometimes convenient to include with the complex plane thepoint at infinity,
denoted by∞, and to use limits involving it. The complex plane together with this
point is called theextendedcomplex plane. To visualize the point at infinity, one can
think of the complex plane as passing through the equator of a unit sphere centered
at the origin (Fig. 26). To each pointz in the plane there corresponds exactly one
point P on the surface of the sphere. The pointP is the point where the line through
z and the north poleN intersects the sphere. In like manner, to each pointP on the
surface of the sphere, other than the north poleN , there corresponds exactly one
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FIGURE 26

point z in the plane. By letting the pointN of the sphere correspond to the point
at infinity, we obtain a one to one correspondence between the points of the sphere
and the points of the extended complex plane. The sphere is known as theRiemann
sphere,and the correspondence is called astereographic projection.

Observe that the exterior of the unit circle centered at the origin in the complex
plane corresponds to the upper hemisphere with the equator and the pointN deleted.
Moreover, for each small positive numberε, those points in the complex plane
exterior to the circle|z| = 1/ε correspond to points on the sphere close toN . We
thus call the set|z| > 1/ε an ε neighborhood,or neighborhood, of∞.

Let us agree that in referring to a pointz, we mean a point in thefinite plane.
Hereafter, when the point at infinity is to be considered, it will be specifically
mentioned.

A meaning is now readily given to the statement

lim
z→z0

f (z) = w0

when eitherz0 or w0, or possibly each of these numbers, is replaced by the point
at infinity. In the definition of limit in Sec. 15, we simply replace the appropriate
neighborhoods ofz0 and w0 by neighborhoods of∞. The proof of the following
theorem illustrates how this is done.

Theorem. If z0 andw0 are points in thez andw planes, respectively, then

lim
z→z0

f (z) = ∞ if and only if lim
z→z0

1

f (z)
= 0(1)

and

lim
z→∞

f (z) = w0 if and only if lim
z→0

f

(

1

z

)

= w0.(2)

Moreover,

lim
z→∞

f (z) = ∞ if and only if lim
z→0

1

f (1/z)
= 0.(3)
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We start the proof by noting that the first of limits (1) means that for each
positive numberε, there is a positive numberδ such that

|f (z)| >
1

ε
whenever 0< |z − z0| < δ.(4)

That is, the pointw = f (z) lies in theε neighborhood|w| > 1/ε of ∞ whenever
z lies in the deleted neighborhood 0< |z − z0| < δ of z0. Since statement (4) can
be written ∣

∣

∣

∣

1

f (z)
− 0

∣

∣

∣

∣

< ε whenever 0< |z − z0| < δ,

the second of limits (1) follows.
The first of limits (2) means that for each positive numberε, a positive number

δ exists such that

|f (z) − w0| < ε whenever |z| >
1

δ
.(5)

Replacingz by 1/z in statement (5) and then writing the result as
∣

∣

∣

∣

f

(

1

z

)

− w0

∣

∣

∣

∣

< ε whenever 0< |z − 0| < δ,

we arrive at the second of limits (2).
Finally, the first of limits (3) is to be interpreted as saying that for each positive

numberε, there is a positive numberδ such that

|f (z)| >
1

ε
whenever |z| >

1

δ
.(6)

Whenz is replaced by 1/z, this statement can be put in the form
∣

∣

∣

∣

1

f (1/z)
− 0

∣

∣

∣

∣

< ε whenever 0< |z − 0| < δ;

and this gives us the second of limits (3).

EXAMPLES. Observe that

lim
z→−1

iz + 3

z + 1
= ∞ since lim

z→−1

z + 1

iz + 3
= 0

and

lim
z→∞

2z + i

z + 1
= 2 since lim

z→0

(2/z) + i

(1/z) + 1
= lim

z→0

2 + iz

1 + z
= 2.

Furthermore,

lim
z→∞

2z3 − 1

z2 + 1
= ∞ since lim

z→0

(1/z2) + 1

(2/z3) − 1
= lim

z→0

z + z3

2 − z3
= 0.
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18. CONTINUITY

A function f is continuousat a pointz0 if all three of the following conditions are
satisfied:

lim
z→z0

f (z) exists,(1)

f (z0) exists,(2)

lim
z→z0

f (z) = f (z0).(3)

Observe that statement (3) actually contains statements (1) and (2), since the exis-
tence of the quantity on each side of the equation there is needed. Statement (3)
says, of course, that for each positive numberε, there is a positive numberδ such
that

|f (z) − f (z0)| < ε whenever |z − z0| < δ.(4)

A function of a complex variable is said to be continuous in a regionR if it is
continuous at each point inR.

If two functions are continuous at a point, their sum and product are also contin-
uous at that point; their quotient is continuous at any such point if the denominator
is not zero there. These observations are direct consequences of Theorem 2, Sec.
16. Note, too, that a polynomial is continuous in the entire plane because of limit
(11) in Sec. 16.

We turn now to two expected properties of continuous functions whose veri-
fications are not so immediate. Our proofs depend on definition (4) of continuity,
and we present the results as theorems.

Theorem 1. A composition of continuous functions is itself continuous.

A precise statement of this theorem is contained in the proof to follow. We let
w = f (z) be a function that is defined for allz in a neighborhood|z − z0| < δ of a
point z0 , and we letW = g(w) be a function whose domain of definition contains
the image (Sec. 13) of that neighborhood underf . The compositionW = g[f (z)]
is, then, defined for allz in the neighborhood|z − z0| < δ. Suppose now thatf
is continuous atz0 and thatg is continuous at the pointf (z0) in the w plane. In
view of the continuity ofg at f (z0), there is, for each positive numberε, a positive
numberγ such that

|g[f (z)] − g[f (z0)]| < ε whenever |f (z) − f (z0)| < γ.

(See Fig. 27.) But the continuity off atz0 ensures that the neighborhood|z − z0| < δ

can be made small enough that the second of these inequalities holds. The continuity
of the compositiong[f (z)] is, therefore, established.
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FIGURE 27

Theorem 2. If a functionf (z) is continuous and nonzero at a pointz0 , then
f (z) �= 0 throughout some neighborhood of that point.

Assuming thatf (z) is, in fact, continuous and nonzero atz0, we can prove
Theorem 2 by assigning the positive value|f (z0)|/2 to the numberε in statement
(4). This tells us that there is a positive numberδ such that

|f (z) − f (z0)| <
|f (z0)|

2
whenever |z − z0| < δ.

So if there is a pointz in the neighborhood|z − z0| < δ at which f (z) = 0, we
have the contradiction

|f (z0)| <
|f (z0)|

2
;

and the theorem is proved.
The continuity of a function

f (z) = u(x, y) + iv(x, y)(5)

is closely related to the continuity of its component functionsu(x, y) andv(x, y).
We note, for instance, how it follows from Theorem 1 in Sec. 16 thatthe function
(5) is continuous at a pointz0 = (x0, y0) if and only if its component functions are
continuous there.Our proof of the next theorem illustrates the use of this state-
ment. The theorem is extremely importantand will be used often in later chapters,
especially in applications. Before stating the theorem, we recall from Sec. 11 that a
regionR is closed if it contains all of its boundary points and that it isboundedif
it lies inside some circle centered at the origin.

Theorem 3. If a function f is continuous throughout a regionR that is both
closed and bounded, there exists a nonnegative real numberM such that

|f (z)| ≤ M for all points z inR,(6)

where equality holds for at least one suchz.
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To prove this, we assume that the functionf in equation (5) is continuous and
note how it follows that the function

√

[u(x, y)]2 + [v(x, y)]2

is continuous throughoutR and thus reaches a maximum valueM somewhere in
R.∗ Inequality (6) thus holds, and we say thatf is bounded on R.

EXERCISES
1. Use definition (2), Sec. 15, of limit to prove that

(a) lim
z→z0

Rez = Rez0 ; (b) lim
z→z0

z = z0 ; (c) lim
z→0

z2

z
= 0.

2. Let a, b, andc denote complex constants. Then use definition (2), Sec. 15, of limit to
show that
(a) lim

z→z0
(az + b) = az0 + b; (b) lim

z→z0
(z2 + c) = z2

0 + c;

(c) lim
z→1−i

[x + i(2x + y)] = 1 + i (z = x + iy).

3. Let n be a positive integer and letP (z) andQ(z) be polynomials, whereQ(z0) �= 0.
Use Theorem 2 in Sec. 16, as well as limits appearing in that section, to find

(a) lim
z→z0

1

zn
(z0 �= 0); (b) lim

z→i

iz3 − 1

z + i
; (c) lim

z→z0

P (z)

Q(z)
.

Ans. (a) 1/zn
0; (b) 0; (c) P (z0)/Q(z0).

4. Use mathematical induction and property (9), Sec. 16, of limits to show that

lim
z→z0

zn = zn
0

whenn is a positive integer(n = 1, 2, . . .).

5. Show that the limit of the function

f (z) =

(

z

z

)2

as z tends to 0 does not exist. Do this by letting nonzero pointsz = (x, 0) and
z = (x, x) approach the origin. [Note that it is not sufficient to simply consider points
z = (x, 0) andz = (0, y), as it was in Example 2, Sec. 15.]

6. Prove statement (8) in Theorem 2 of Sec. 16 using

(a) Theorem 1 in Sec. 16 and properties of limits of real-valued functions of two real
variables;

(b) definition (2), Sec. 15, of limit.

∗See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 125–126 and
p. 529, 1983.
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7. Use definition (2), Sec. 15, of limit to prove that

if lim
z→z0

f (z) = w0, then lim
z→z0

|f (z)| = |w0|.

Suggestion:Observe how the first of inequalities (9), Sec. 4, enables one to write

||f (z)| − |w0|| ≤ |f (z) − w0|.

8. Write 	z = z − z0 and show that

lim
z→z0

f (z) = w0 if and only if lim
	z→0

f (z0 + 	z) = w0.

9. Show that
lim
z→z0

f (z)g(z) = 0 if lim
z→z0

f (z) = 0

and if there exists a positive numberM such that|g(z)| ≤ M for all z in some
neighborhood ofz0.

10. Use the theorem in Sec. 17 to show that

(a) lim
z→∞

4z2

(z − 1)2
= 4; (b) lim

z→1

1

(z − 1)3
= ∞; (c) lim

z→∞

z2 + 1

z − 1
= ∞.

11. With the aid of the theorem in Sec. 17, show that when

T (z) =
az + b

cz + d
(ad − bc �= 0),

(a) lim
z→∞

T (z) = ∞ if c = 0;

(b) lim
z→∞

T (z) =
a

c
and lim

z→−d/c
T (z) = ∞ if c �= 0.

12. State why limits involving the point at infinity are unique.

13. Show that a setS is unbounded (Sec. 11) if and only if every neighborhood of the
point at infinity contains at least one point inS.

19. DERIVATIVES

Let f be a function whose domain of definition contains a neighborhood|z − z0| < ε

of a pointz0. Thederivativeof f atz0 is the limit

f ′(z0) = lim
z→z0

f (z) − f (z0)

z − z0
,(1)

and the functionf is said to bedifferentiableat z0 whenf ′(z0) exists.
By expressing the variablez in definition (1) in terms of the new complex

variable

	z = z − z0 (z �= z0),
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one can write that definition as

f ′(z0) = lim
	z→0

f (z0 + 	z) − f (z0)

	z
.(2)

Becausef is defined throughout a neighborhood ofz0, the numberf (z0 + 	z) is
always defined for|	z| sufficiently small (Fig. 28).

xO

y

z0

ε

FIGURE 28

When taking form (2) of the definition of derivative, we often drop the subscript
on z0 and introduce the number

	w = f (z + 	z) − f (z),

which denotes the change in the valuew = f (z) of f corresponding to a change	z

in the point at whichf is evaluated. Then, if we writedw/dz for f ′(z), equation
(2) becomes

dw

dz
= lim

	z→0

	w

	z
.(3)

EXAMPLE 1. Suppose thatf (z) = z2. At any pointz,

lim
	z→0

	w

	z
= lim

	z→0

(z + 	z)2 − z2

	z
= lim

	z→0
(2z + 	z) = 2z

since 2z + 	z is a polynomial in	z. Hencedw/dz = 2z, or f ′(z) = 2z.

EXAMPLE 2. If f (z) = z, then

	w

	z
=

z + 	z − z

	z
=

z + 	z − z

	z
=

	z

	z
.(4)



58 Analytic Functions chap. 2

If the limit of 	w/	z exists, it can be found by letting the point
	z = (	x, 	y) approach the origin (0, 0) in the	z plane in any manner. In par-
ticular, as	z approaches (0, 0) horizontally through the points(	x, 0) on the real
axis (Fig. 29),

	z = 	x + i0 = 	x − i0 = 	x + i0 = 	z.

In that case, expression (4) tells us that

	w

	z
=

	z

	z
= 1.

Hence if the limit of	w/	z exists, its value must be unity. However, when	z

approaches (0, 0) vertically through the points(0, 	y) on the imaginary axis, so that

	z = 0 + i	y = 0 − i	y = −(0 + i	y) = −	z,

we find from expression (4) that

	w

	z
=

−	z

	z
= −1.

Hence the limit must be−1 if it exists. Since limits are unique (Sec. 15), it follows
that dw/dz does not exist anywhere.

(0, 0)
FIGURE 29

EXAMPLE 3. Consider the real-valued functionf (z) = |z|2. Here

	w

	z
=

|z + 	z|2 − |z|2

	z
=

(z + 	z)(z + 	z) − zz

	z
= z + 	z + z

	z

	z
.(5)

Proceeding as in Example 2, where horizontal and vertical approaches of	z toward
the origin gave us

	z = 	z and 	z = −	z,
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respectively, we have the expressions

	w

	z
= z + 	z + z when 	z = (	x, 0)

and

	w

	z
= z − 	z − z when 	z = (0, 	y).

Hence if the limit of	w/	z exists as	z tends to zero, the uniqueness of limits,
used in Example 2, tells us that

z + z = z − z,

or z = 0. Evidently, thendw/dz cannot exist whenz �= 0.

To show thatdw/dz does, in fact, exist atz = 0, we need only observe that
expression (5) reduces to

	w

	z
= 	z

when z = 0. We conclude, therefore, thatdw/dz exists only at z = 0, its value
there being 0.

Example 3 shows that a functionf (z) = u(x, y) + iv(x, y) can be differen-
tiable at a pointz = (x, y) but nowhere else in any neighborhood of that point.
Since

u(x, y) = x2 + y2 and v(x, y) = 0(6)

whenf (z) = |z|2, it also shows that the real and imaginary components of a function
of a complex variable can have continuous partial derivatives of all orders at a point
z = (x, y) and yet the function may not be differentiable there.

The functionf (z) = |z|2 is continuous at each point in the plane since its
components (6) are continuous at each point. So the continuity of a function at a
point does not imply the existence of a derivative there. It is, however, true that
the existence of the derivative of a function at a point implies the continuity of the
function at that point.To see this, we assume thatf ′(z0) exists and write

lim
z→z0

[f (z) − f (z0)] = lim
z→z0

f (z) − f (z0)

z − z0
lim
z→z0

(z − z0) = f ′(z0) · 0 = 0,

from which it follows that
lim
z→z0

f (z) = f (z0).

This is the statement of continuity off at z0 (Sec. 18).
Geometric interpretations of derivatives of functions of a complex variable are

not as immediate as they are for derivatives of functions of a real variable. We defer
the development of such interpretations until Chap. 9.
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20. DIFFERENTIATION FORMULAS

The definition of derivative in Sec. 19 is identical in form to that of the derivative
of a real-valued function of a real variable. In fact, the basic differentiation formulas
given below can be derived from the definition in Sec. 19 by essentially the same
steps as the ones used in calculus. In these formulas, the derivative of a functionf

at a pointz is denoted by either

d

dz
f (z) or f ′(z),

depending on which notation is more convenient.
Let c be a complex constant, and letf be a function whose derivative exists

at a pointz. It is easy to show that

d

dz
c = 0,

d

dz
z = 1,

d

dz
[cf (z)] = cf ′(z).(1)

Also, if n is a positive integer,

d

dz
zn = nzn−1.(2)

This formula remains valid whenn is a negative integer, provided thatz �= 0.
If the derivatives of two functionsf andg exist at a pointz, then

d

dz
[f (z) + g(z)] = f ′(z) + g′(z),(3)

d

dz
[f (z)g(z)] = f (z)g′(z) + f ′(z)g(z) ;(4)

and, wheng(z) �= 0,

d

dz

[

f (z)

g(z)

]

=
g(z)f ′(z) − f (z)g′(z)

[g(z)]2
.(5)

Let us derive formula (4). To do this, we write the following expression for
the change in the productw = f (z)g(z):

	w = f (z + 	z)g(z + 	z) − f (z)g(z)

= f (z)[g(z + 	z) − g(z)] + [f (z + 	z) − f (z)]g(z + 	z).

Thus

	w

	z
= f (z)

g(z + 	z) − g(z)

	z
+

f (z + 	z) − f (z)

	z
g(z + 	z) ;

and, letting	z tend to zero, we arrive at the desired formula for the derivative
of f (z)g(z). Here we have used the fact thatg is continuous at the pointz, since
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g′(z) exists; thusg(z + 	z) tends tog(z) as 	z tends to zero (see Exercise 8,
Sec. 18).

There is also a chain rule for differentiating composite functions. Suppose that
f has a derivative atz0 and thatg has a derivative at the pointf (z0). Then the
function F(z) = g[f (z)] has a derivative atz0, and

F ′(z0) = g′[f (z0)]f
′(z0).(6)

If we write w = f (z) andW = g(w), so thatW = F(z), the chain rule becomes

dW

dz
=

dW

dw

dw

dz
.

EXAMPLE. To find the derivative of(2z2 + i)5, write w = 2z2 + i and
W = w5. Then

d

dz
(2z2 + i)5 = 5w44z = 20z(2z2 + i)4.

To start the derivation of formula (6), choose a specific pointz0 at whichf ′(z0)

exists. Writew0 = f (z0) and also assume thatg′(w0) exists. There is, then, someε
neighborhood|w − w0| < ε of w0 such that for all pointsw in that neighborhood,
we can define a function
 having the values
(w0) = 0 and


(w) =
g(w) − g(w0)

w − w0
− g′(w0) when w �= w0.(7)

Note that in view of the definition of derivative,

lim
w→w0


(w) = 0.(8)

Hence
 is continuous atw0.
Now expression (7) can be put in the form

g(w) − g(w0) = [g′(w0) + 
(w)](w − w0) (|w − w0| < ε),(9)

which is valid even whenw = w0; and sincef ′(z0) exists andf is therefore
continuous atz0, we can choose a positive numberδ such that the pointf (z)

lies in the ε neighborhood|w − w0| < ε of w0 if z lies in the δ neighborhood
|z − z0| < δ of z0. Thus it is legitimate to replace the variablew in equation (9) by
f (z) whenz is any point in the neighborhood|z − z0| < δ. With that substitution,
and withw0 = f (z0), equation (9) becomes

g[f (z)] − g[f (z0)]

z − z0
= {g′[f (z0)] + 
[f (z)]}

f (z) − f (z0)

z − z0
(10)

(0 < |z − z0| < δ),
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where we must stipulate thatz �= z0 so that we are not dividing by zero. As already
noted,f is continuous atz0 and
 is continuous at the pointw0 = f (z0). Hence
the composition
[f (z)] is continuous atz0; and since
(w0) = 0,

lim
z→z0


[f (z)] = 0.

So equation (10) becomes equation (6) in the limit asz approachesz0.

EXERCISES
1. Use results in Sec. 20 to findf ′(z) when

(a) f (z) = 3z2 − 2z + 4; (b) f (z) = (1 − 4z2)3 ;

(c) f (z) =
z − 1

2z + 1
(z �= −1/2); (d) f (z) =

(1 + z2)4

z2
(z �= 0).

2. Using results in Sec. 20, show that

(a) a polynomial

P (z) = a0 + a1z + a2z
2 + · · · + anz

n (an �= 0)

of degreen (n ≥ 1) is differentiable everywhere, with derivative

P ′(z) = a1 + 2a2z + · · · + nanz
n−1 ;

(b) the coefficients in the polynomialP (z) in part (a) can be written

a0 = P (0), a1 =
P ′(0)

1!
, a2 =

P ′′(0)

2!
, . . . , an =

P (n)(0)

n!
.

3. Apply definition (3), Sec. 19, of derivative to give a direct proof that

dw

dz
= −

1

z2
when w =

1

z
(z �= 0).

4. Suppose thatf (z0) = g(z0) = 0 and thatf ′(z0) and g′(z0) exist, whereg′(z0) �= 0.
Use definition (1), Sec. 19, of derivative to show that

lim
z→z0

f (z)

g(z)
=

f ′(z0)

g′(z0)
.

5. Derive formula (3), Sec. 20, for the derivative of the sum of two functions.

6. Derive expression (2), Sec. 20, for the derivative ofzn when n is a positive integer
by using

(a) mathematical induction and formula (4), Sec. 20, for the derivative of the product
of two functions;

(b) definition (3), Sec. 19, of derivative and the binomial formula (Sec. 3).
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7. Prove that expression (2), Sec. 20, for the derivative ofzn remains valid whenn is a
negative integer(n = −1,−2, . . .), provided thatz �= 0.

Suggestion:Write m = −n and use the formula for the derivative of a quotient
of two functions.

8. Use the method in Example 2, Sec. 19, to show thatf ′(z) does not exist at any point
z when
(a) f (z) = Rez; (b) f (z) = Im z.

9. Let f denote the function whose values are

f (z) =
{

z2/z when z �= 0,

0 when z = 0.

Show that ifz = 0, then	w/	z = 1 at each nonzero point on the real and imaginary
axes in the	z, or 	x 	y, plane. Then show that	w/	z = −1 at each nonzero point
(	x,	x) on the line	y = 	x in that plane. Conclude from these observations that
f ′(0) does not exist. Note that to obtain this result, it is not sufficient to consider
only horizontal and vertical approaches to the origin in the	z plane. (Compare with
Example 2, Sec. 19.)

21. CAUCHY–RIEMANN EQUATIONS

In this section, we obtain a pair of equationsthat the first-order partial derivatives
of the component functionsu andv of a function

f (z) = u(x, y) + iv(x, y)(1)

must satisfy at a pointz0 = (x0, y0) when the derivative off exists there. We also
show how to expressf ′(z0) in terms of those partial derivatives.

We start by writing

z0 = x0 + iy0, 	z = 	x + i	y,

and

	w = f (z0 + 	z) − f (z0)

= [u(x0 + 	x, y0 + 	y) − u(x0, y0)] + i[v(x0 + 	x, y0 + 	y) − v(x0, y0)].

Assuming that the derivative

f ′(z0) = lim
	z→0

	w

	z
(2)

exists, we know from Theorem 1 in Sec. 16 that

f ′(z0) = lim
(	x,	y)→(0,0)

(

Re
	w

	z

)

+ i lim
(	x,	y)→(0,0)

(

Im
	w

	z

)

.(3)
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Now it is important to keep in mind that expression (3) is valid as(	x, 	y)

tends to(0, 0) in any manner that we may choose. In particular, we let(	x, 	y) tend
to (0, 0) horizontally through the points(	x, 0), as indicated in Fig. 29 (Sec. 19).
Inasmuch as	y = 0, the quotient	w/	z becomes

	w

	z
=

u(x0 + 	x, y0) − u(x0, y0)

	x
+ i

v(x0 + 	x, y0) − v(x0, y0)

	x
.

Thus

lim
(	x,	y)→(0,0)

(

Re
	w

	z

)

= lim
	x→0

u(x0 + 	x, y0) − u(x0, y0)

	x
= ux(x0, y0)

and

lim
(	x,	y)→(0,0)

(

Im
	w

	z

)

= lim
	x→0

v(x0 + 	x, y0) − v(x0, y0)

	x
= vx(x0, y0),

whereux(x0, y0) andvx(x0, y0) denote the first-order partial derivatives with respect
to x of the functionsu andv, respectively, at(x0, y0). Substitution of these limits
into expression (3) tells us that

f ′(z0) = ux(x0, y0) + ivx(x0, y0).(4)

We might have let	z tend to zero vertically through the points(0, 	y). In
that case,	x = 0 and

	w

	z
=

u(x0, y0 + 	y) − u(x0, y0)

i	y
+ i

v(x0, y0 + 	y) − v(x0, y0)

i	y

=
v(x0, y0 + 	y) − v(x0, y0)

	y
− i

u(x0, y0 + 	y) − u(x0, y0)

	y
.

Evidently, then,

lim
(	x,	y)→(0,0)

(

Re
	w

	z

)

= lim
	y→0

v(x0, y0 + 	y) − v(x0, y0)

	y
= vy(x0, y0)

and

lim
(	x,	y)→(0,0)

(

Im
	w

	z

)

= − lim
	y→0

u(x0, y0 + 	y) − u(x0, y0)

	y
= −uy(x0, y0).

Hence it follows from expression (3) that

f ′(z0) = vy(x0, y0) − iuy(x0, y0),(5)

where the partial derivatives ofu andv are, this time, with respect toy. Note that
equation (5) can also be written in the form

f ′(z0) = −i[uy(x0, y0) + ivy(x0, y0)].



sec. 21 Cauchy–Riemann Equations 65

Equations (4) and (5) not only givef ′(z0) in terms of partial derivatives of the
component functionsu and v, but they also provide necessary conditions for the
existence off ′(z0). To obtain those conditions, we need only equate the real parts
and then the imaginary parts on the right-hand sides of equations (4) and (5) to see
that the existence off ′(z0) requires that

ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0).(6)

Equations (6) are theCauchy–Riemann equations,so named in honor of the French
mathematician A. L. Cauchy (1789–1857), who discovered and used them, and
in honor of the German mathematician G. F. B. Riemann (1826–1866), who made
them fundamental in his development of the theory of functions of a complex
variable.

We summarize the above results as follows.

Theorem. Suppose that

f (z) = u(x, y) + iv(x, y)

and thatf ′(z) exists at a pointz0 = x0 + iy0. Then the first-order partial derivatives
ofu andv must exist at(x0, y0), and they must satisfy the Cauchy–Riemann equations

ux = vy, uy = −vx(7)

there. Also,f ′(z0) can be written

f ′(z0) = ux + ivx,(8)

where these partial derivatives are to be evaluated at(x0, y0).

EXAMPLE 1. In Example 1, Sec. 19, we showed that the function

f (z) = z2 = x2 − y2 + i2xy

is differentiable everywhere and thatf ′(z) = 2z. To verify that the Cauchy–Riemann
equations are satisfied everywhere, write

u(x, y) = x2 − y2 and v(x, y) = 2xy.

Thus
ux = 2x = vy, uy = −2y = −vx .

Moreover, according to equation (8),

f ′(z) = 2x + i2y = 2(x + iy) = 2z.
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Since the Cauchy–Riemann equations are necessary conditions for the existence
of the derivative of a functionf at a pointz0, they can often be used to locate points
at whichf doesnot have a derivative.

EXAMPLE 2. Whenf (z) = |z|2, we have

u(x, y) = x2 + y2 and v(x, y) = 0.

If the Cauchy–Riemann equations are to hold at a point(x, y), it follows that 2x = 0
and 2y = 0, or thatx = y = 0. Consequently,f ′(z) does not exist at any nonzero
point, as we already know from Example 3 in Sec. 19. Note that the theorem just
proved does not ensure the existence off ′(0). The theorem in the next section will,
however, do this.

22. SUFFICIENT CONDITIONS FOR DIFFERENTIABILITY

Satisfaction of the Cauchy–Riemann equations at a pointz0 = (x0, y0) is not suffi-
cient to ensure the existence of the derivative of a functionf (z) at that point. (See
Exercise 6, Sec. 23.) But, with certain continuity conditions, we have the following
useful theorem.

Theorem. Let the function

f (z) = u(x, y) + iv(x, y)

be defined throughout someε neighborhood of a pointz0 = x0 + iy0, and suppose
that

(a) the first-order partial derivatives of the functionsu and v with respect tox and
y exist everywhere in the neighborhood;

(b) those partial derivatives are continuous at(x0, y0) and satisfy the Cauchy–
Riemann equations

ux = vy, uy = −vx

at (x0, y0).

Thenf ′(z0) exists, its value being

f ′(z0) = ux + ivx

where the right-hand side is to be evaluated at(x0, y0).

To prove the theorem, we assume that conditions(a) and (b) in its hypothesis
are satisfied and write	z = 	x + i	y, where 0< |	z| < ε, as well as

	w = f (z0 + 	z) − f (z0).
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Thus

	w = 	u + i	v,(1)

where
	u = u(x0 + 	x, y0 + 	y) − u(x0, y0)

and
	v = v(x0 + 	x, y0 + 	y) − v(x0, y0).

The assumption that the first-order partial derivatives ofu andv are continuous at
the point(x0, y0) enables us to write∗

	u = ux(x0, y0)	x + uy(x0, y0)	y + ε1	x + ε2	y(2)

and

	v = vx(x0, y0)	x + vy(x0, y0)	y + ε3	x + ε4	y,(3)

whereε1, ε2, ε3, andε4 tend to zero as(	x, 	y) approaches (0, 0) in the	z plane.
Substitution of expressions (2) and (3) into equation (1) now tells us that

	w = ux(x0, y0)	x + uy(x0, y0)	y + ε1	x + ε2	y(4)

+ i[vx(x0, y0)	x + vy(x0, y0)	y + ε3	x + ε4	y].

Because the Cauchy–Riemann equations are assumed to be satisfied at(x0, y0),

one can replaceuy(x0, y0) by −vx(x0, y0) andvy(x0, y0) by ux(x0, y0) in equation
(4) and then divide through by the quantity	z = 	x + i	y to get

	w

	z
= ux(x0, y0) + ivx(x0, y0) + (ε1 + iε3)

	x

	z
+ (ε2 + iε4)

	y

	z
.(5)

But |	x| ≤ |	z| and |	y| ≤ |	z|, according to inequalities (3) in Sec. 4, and so
∣

∣

∣

∣

	x

	z

∣

∣

∣

∣

≤ 1 and

∣

∣

∣

∣

	y

	z

∣

∣

∣

∣

≤ 1.

Consequently,
∣

∣

∣

∣

(ε1 + iε3)
	x

	z

∣

∣

∣

∣

≤ |ε1 + iε3| ≤ |ε1| + |ε3|

and
∣

∣

∣

∣

(ε2 + iε4)
	y

	z

∣

∣

∣

∣

≤ |ε2 + iε4| ≤ |ε2| + |ε4|;

∗See, for instance, W. Kaplan, “Advanced Calculus,” 5th ed., pp. 86ff, 2003.
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and this means that the last two terms on the right in equation (5) tend to zero
as the variable	z = 	x + i	y approaches zero. The expression forf ′(z0) in the
statement of the theorem is now established.

EXAMPLE 1. Consider the exponential function

f (z) = ez = exeiy (z = x + iy),

some of whose mapping properties were discussed in Sec. 14. In view of Euler’s
formula (Sec. 6), this function can, of course, be written

f (z) = ex cosy + iex siny,

wherey is to be taken in radians when cosy and siny are evaluated. Then

u(x, y) = ex cosy and v(x, y) = ex siny.

Sinceux = vy anduy = −vx everywhere and since these derivatives are everywhere
continuous, the conditions in the above theorem are satisfied at all points in the
complex plane. Thusf ′(z) exists everywhere, and

f ′(z) = ux + ivx = ex cosy + iex siny.

Note thatf ′(z) = f (z) for all z.

EXAMPLE 2. It also follows from our theorem that the functionf (z) = |z|2,
whose components are

u(x, y) = x2 + y2 and v(x, y) = 0,

has a derivative atz = 0. In fact, f ′(0) = 0 + i0 = 0. We saw in Example 2,
Sec. 21, that this functioncannot have a derivative at any nonzero point since
the Cauchy–Riemann equations are not satisfied at such points. (See also Example
3, Sec. 19.)

23. POLAR COORDINATES

Assuming thatz0 �= 0, we shall in this section use the coordinate transformation

x = r cosθ, y = r sinθ(1)

to restate the theorem in Sec. 22 in polar coordinates.
Depending on whether we write

z = x + iy or z = reiθ (z �= 0)
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whenw = f (z), the real and imaginary components ofw = u + iv are expressed
in terms of either the variablesx and y or r and θ . Suppose that the first-order
partial derivatives ofu and v with respect tox and y exist everywhere in some
neighborhood of a given nonzero pointz0 and are continuous atz0. The first-order
partial derivatives ofu and v with respect tor and θ also have those properties,
and the chain rule for differentiating real-valued functions of two real variables can
be used to write them in terms of the ones with respect tox andy. More precisely,
since

∂u

∂r
=

∂u

∂x

∂x

∂r
+

∂u

∂y

∂y

∂r
,

∂u

∂θ
=

∂u

∂x

∂x

∂θ
+

∂u

∂y

∂y

∂θ
,

one can write

ur = ux cosθ + uy sinθ, uθ = −ux r sinθ + uy r cosθ.(2)

Likewise,

vr = vx cosθ + vy sinθ, vθ = −vx r sinθ + vy r cosθ.(3)

If the partial derivatives ofu and v with respect tox and y also satisfy the
Cauchy–Riemann equations

ux = vy, uy = −vx(4)

at z0, equations (3) become

vr = −uy cosθ + ux sinθ, vθ = uy r sinθ + ux r cosθ(5)

at that point. It is then clear from equations (2) and (5) that

rur = vθ , uθ = −rvr(6)

at z0.
If, on the other hand, equations (6) are known to hold atz0, it is straightforward

to show (Exercise 7) that equations (4) musthold there. Equations (6) are, therefore,
an alternative form of the Cauchy–Riemann equations (4).

In view of equations (6) and the expression forf ′(z0) that is found in Exercise 8,
we are now able to restate the theorem in Sec. 22 usingr andθ.

Theorem. Let the function

f (z) = u(r, θ) + iv(r, θ)

be defined throughout someε neighborhood of a nonzero pointz0 = r0 exp(iθ0),

and suppose that

(a) the first-order partial derivatives of the functionsu and v with respect tor and
θ exist everywhere in the neighborhood;
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(b) those partial derivatives are continuous at(r0, θ0) and satisfy the polar form

rur = vθ , uθ = −rvr

of the Cauchy–Riemann equations at(r0, θ0).

Thenf ′(z0) exists, its value being

f ′(z0) = e−iθ (ur + ivr),

where the right-hand side is to be evaluated at(r0, θ0).

EXAMPLE 1. Consider the function

f (z) =
1

z
=

1

reiθ
=

1

r
e−iθ =

1

r
(cosθ − i sinθ) (z �= 0).

Since

u(r, θ) =
cosθ

r
and v(r, θ) = −

sinθ

r
,

the conditions in this theorem are satisfied at every nonzero pointz = reiθ in the
plane. In particular, theCauchy–Riemann equations

rur = −
cosθ

r
= vθ and uθ = −

sinθ

r
= −rvr

are satisfied. Hence the derivative off exists whenz �= 0; and, according to the
theorem,

f ′(z) = e−iθ

(

−
cosθ

r2
+ i

sinθ

r2

)

= −e−iθ e−iθ

r2
= −

1

(reiθ )2
= −

1

z2
.

EXAMPLE 2. The theorem can be used to show that whenα is a fixed real
number, the function

f (z) = 3
√

reiθ/3 (r > 0, α < θ < α + 2π)

has a derivative everywhere in its domain of definition. Here

u(r, θ) = 3
√

r cos
θ

3
and v(r, θ) = 3

√
r sin

θ

3
.

Inasmush as

rur =
3
√

r

3
cos

θ

3
= vθ and uθ = −

3
√

r

3
sin

θ

3
= −rvr
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and since the other conditions in the theorem are satisfied, the derivativef ′(z) exists
at each point wheref (z) is defined. The theorem tells us, moreover, that

f ′(z) = e−iθ

[

1

3( 3
√

r)2
cos

θ

3
+ i

1

3( 3
√

r)2
sin

θ

3

]

,

or

f ′(z) =
e−iθ

3( 3
√

r)2
eiθ/3 =

1

3( 3
√

reiθ/3)2
=

1

3[f (z)]2
.

Note that when a specific pointz is taken in the domain of definition off, the
valuef (z) is one value ofz1/3 (see Sec. 9). Hence this last expression forf ′(z) can
be put in the form

d

dz
z1/3 =

1

3(z1/3)2

when that value is taken. Derivatives of such power functions will be elaborated on
in Chap. 3 (Sec. 33).

EXERCISES
1. Use the theorem in Sec. 21 to show thatf ′(z) does not exist at any point if

(a) f (z) = z ; (b) f (z) = z − z ;
(c) f (z) = 2x + ixy2 ; (d) f (z) = exe−iy .

2. Use the theorem in Sec. 22 to show thatf ′(z) and its derivativef ′′(z) exist every-
where, and findf ′′(z) when

(a) f (z) = iz + 2; (b) f (z) = e−xe−iy ;
(c) f (z) = z3; (d) f (z) = cosx coshy − i sinx sinhy.

Ans. (b) f ′′(z) = f (z); (d) f ′′(z) = −f (z).

3. From results obtained in Secs. 21 and 22, determine wheref ′(z) exists and find its
value when

(a) f (z) = 1/z; (b) f (z) = x2 + iy2; (c) f (z) = z Im z.

Ans. (a) f ′(z) = −1/z2 (z �= 0); (b) f ′(x + ix) = 2x; (c) f ′(0) = 0.

4. Use the theorem in Sec. 23 to show that each of these functions is differentiable in
the indicated domain of definition, and also to findf ′(z):

(a) f (z) = 1/z4 (z �= 0);

(b) f (z) =
√

reiθ/2 (r > 0, α < θ < α + 2π);

(c) f (z) = e−θcos(ln r) + ie−θsin(ln r) (r > 0, 0 < θ < 2π).

Ans. (b) f ′(z) =
1

2f (z)
; (c) f ′(z) = i

f (z)

z
.
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5. Show that whenf (z) = x3 + i(1 − y)3, it is legitimate to write

f ′(z) = ux + ivx = 3x2

only whenz = i.

6. Let u andv denote the real and imaginary components of the functionf defined by
means of the equations

f (z) =
{

z2/z when z �= 0,

0 when z = 0.

Verify that the Cauchy–Riemann equationsux = vy anduy = −vx are satisfied at the
origin z = (0, 0). [Compare with Exercise 9, Sec. 20, where it is shown thatf ′(0)

nevertheless fails to exist.]

7. Solve equations (2), Sec. 23 forux anduy to show that

ux = ur cosθ − uθ

sinθ

r
, uy = ur sinθ + uθ

cosθ

r
.

Then use these equations and similar ones forvx and vy to show that in Sec. 23
equations (4) are satisfied at a pointz0 if equations (6) are satisfied there. Thus com-
plete the verification that equations (6), Sec. 23, are the Cauchy–Riemann equations
in polar form.

8. Let a functionf (z) = u + iv be differentiable at a nonzero pointz0 = r0 exp(iθ0).
Use the expressions forux andvx found in Exercise 7, together with the polar form
(6), Sec. 23, of the Cauchy–Riemann equations, to rewrite the expression

f ′(z0) = ux + ivx

in Sec. 22 as
f ′(z0) = e−iθ (ur + ivr),

whereur andvr are to be evaluated at(r0, θ0).

9. (a) With the aid of the polar form (6), Sec. 23, of the Cauchy–Riemann equations,
derive the alternative form

f ′(z0) =
−i

z0
(uθ + ivθ )

of the expression forf ′(z0) found in Exercise 8.
(b) Use the expression forf ′(z0) in part(a) to show that the derivative of the function

f (z) = 1/z (z �= 0) in Example 1, Sec. 23, isf ′(z) = −1/z2.

10. (a) Recall (Sec. 5) that ifz = x + iy, then

x =
z + z

2
and y =

z − z

2i
.
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By formally applying the chain rule in calculus to a functionF(x, y) of two real
variables, derive the expression

∂F

∂z
=

∂F

∂x

∂x

∂z
+

∂F

∂y

∂y

∂z
=

1

2

(

∂F

∂x
+ i

∂F

∂y

)

.

(b) Define the operator
∂

∂z
=

1

2

(

∂

∂x
+ i

∂

∂y

)

,

suggested by part(a), to show that if the first-order partial derivatives of the
real and imaginary components of a functionf (z) = u(x, y) + iv(x, y) satisfy
the Cauchy–Riemann equations, then

∂f

∂z
=

1

2
[(ux − vy) + i(vx + uy)] = 0.

Thus derive thecomplex form∂f/∂z = 0 of the Cauchy–Riemann equations.

24. ANALYTIC FUNCTIONS

We are now ready to introduce the concept of an analytic function. A functionf of
the complex variablez is analytic at a pointz0 if it has a derivative at each point
in some neighborhood ofz0.

∗ It follows that if f is analytic at a pointz0, it must
be analytic at each point in some neighborhood ofz0. A function f is analytic in
an open setif it has a derivative everywhere in that set. If we should speak of a
function f that is analytic in a setS which is not open, it is to be understood that
f is analytic in an open set containingS.

Note that the functionf (z) = 1/z is analytic at each nonzero point in the finite
plane. But the functionf (z) = |z|2 is not analytic at any point since its derivative
exists only atz = 0 and not throughout any neighborhood. (See Example 3, Sec. 19.)

An entire function is a function that is analytic at each point in the entire finite
plane. Since the derivative of a polynomial exists everywhere, it follows thatevery
polynomial is an entire function.

If a function f fails to be analytic at a pointz0 but is analytic at some point
in every neighborhood ofz0, then z0 is called asingular point,or singularity, of
f . The pointz = 0 is evidently a singular point of the functionf (z) = 1/z. The
function f (z) = |z|2, on the other hand, has no singular points since it is nowhere
analytic.

A necessary, but by no means sufficient, condition for a functionf to be
analytic in a domainD is clearly the continuity off throughoutD. Satisfaction
of the Cauchy–Riemann equations is also necessary, but not sufficient. Sufficient
conditions for analyticity inD are provided by the theorems in Secs. 22 and 23.

Other useful sufficient conditions are obtained from the differentiation formulas
in Sec. 20. The derivatives of the sum and product of two functions exist wherever

∗The termsregular andholomorphicare also used in the literature to denote analyticity.
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the functions themselves have derivatives. Thus,if two functions are analytic in
a domainD, their sum and their product are both analytic inD. Similarly, their
quotient is analytic inD provided the function in the denominator does not vanish at
any point inD. In particular, the quotientP(z)/Q(z) of two polynomials is analytic
in any domain throughout whichQ(z) �= 0.

From the chain rule for the derivative of a composite function, we find that
a composition of two analytic functions is analytic.More precisely, suppose that a
function f (z) is analytic in a domainD and that the image (Sec. 13) ofD under
the transformationw = f (z) is contained in the domain of definition of a function
g(w). Then the compositiong[f (z)] is analytic inD, with derivative

d

dz
g[f (z)] = g′[f (z)]f ′(z).

The following property of analytic functions is especially useful, in addition to
being expected.

Theorem. If f ′(z) = 0 everywhere in a domainD, thenf (z) must be constant
throughoutD.

We start the proof by writingf (z) = u(x, y) + iv(x, y). Assuming that
f ′(z) = 0 in D, we note thatux + ivx = 0 ; and, in view of the Cauchy–Riemann
equations,vy − iuy = 0. Consequently,

ux = uy = 0 and vx = vy = 0

at each point inD.
Next, we show thatu(x, y) is constant along any line segmentL extending

from a pointP to a pointP ′ and lying entirely inD. We let s denote the distance
alongL from the pointP and letU denote the unit vector alongL in the direction
of increasings (see Fig. 30). We know from calculus that the directional derivative
du/ds can be written as the dot product

du

ds
= (gradu) · U,(1)

xO

y

P

DU
L s P′

Q

FIGURE 30
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where gradu is the gradient vector

gradu = ux i + uy j .(2)

Becauseux anduy are zero everywhere inD, gradu is evidently the zero vector
at all points onL. Hence it follows from equation (1) that the derivativedu/ds is
zero alongL; and this means thatu is constant onL.

Finally, since there is always a finite number of such line segments, joined end
to end, connecting any two pointsP andQ in D (Sec. 11), the values ofu at P and
Q must be the same. We may conclude, then, that there is a real constanta such that
u(x, y) = a throughoutD. Similarly, v(x, y) = b ; and we find thatf (z) = a + bi

at each point inD.

25. EXAMPLES

As pointed out in Sec. 24, it is often possible to determine where a given function
is analytic by simply recalling various differentiation formulas in Sec. 20.

EXAMPLE 1. The quotient

f (z) =
z3 + 4

(z2 − 3)(z2 + 1)

is evidently analytic throughout thez plane except for the singular points
z = ±

√
3 and z = ± i. The analyticity is due to the existence of familiar differ-

entiation formulas, which need to be applied only if the expression forf ′(z) is
wanted.

When a function is given in terms of its component functionsu(x, y) and
v(x, y), its analyticity can be demonstrated by direct application of the Cauchy–
Riemann equations.

EXAMPLE 2. If

f (z) = coshx cosy + i sinhx siny,

the component functions are

u(x, y) = coshx cosy and v(x, y) = sinhx siny.

Because

ux = sinhx cosy = vy and uy = − coshx siny = −vx

everywhere, it is clear from the theorem in Sec. 22 thatf is entire.
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Finally, we illustrate how the theorem in Sec. 24 can be used to obtain other
properties of analytic functions.

EXAMPLE 3. Suppose that a function

f (z) = u(x, y) + iv(x, y)

and its conjugate
f (z) = u(x, y) − iv(x, y)

areboth analytic in a given domainD. It is now easy to show thatf (z) must be
constant throughoutD.

To do this, we writef (z) as

f (z) = U(x, y) + iV (x, y)

where

U(x, y) = u(x, y) and V (x, y) = −v(x, y).(1)

Because of the analyticity off (z), the Cauchy–Riemann equations

ux = vy, uy = −vx(2)

hold in D; and the analyticity off (z) in D tells us that

Ux = Vy, Uy = −Vx .(3)

In view of relations (1), equations (3) can also be written

ux = −vy, uy = vx .(4)

By adding corresponding sides of the first of equations (2) and (4), we find that
ux = 0 in D. Similarly, subtraction involving corresponding sides of the second of
equations (2) and (4) reveals thatvx = 0. According to expression (8) in Sec. 21,
then,

f ′(z) = ux + ivx = 0 + i0 = 0 ;

and it follows from the theorem in Sec. 24 thatf (z) is constant throughoutD.

EXAMPLE 4. As in Example 3, we consider a functionf that is analytic
throughout a given domainD. Assuming further that the modulus|f (z)| is constant
throughoutD, one can prove thatf (z) must be constant there too. This result is
needed to obtain an important result later on in Chap. 4 (Sec. 54).

The proof is accomplished by writing

|f (z)| = c for all z in D,(5)
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wherec is a real constant. Ifc = 0, it follows that f (z) = 0 everywhere inD. If
c �= 0, the fact that (see Sec. 5)

f (z)f (z) = c2

tells us thatf (z) is never zero inD. Hence

f (z) =
c2

f (z)
for all z in D,

and it follows from this thatf (z) is analytic everywhere inD. The main result in
Example 3 just above thus ensures thatf (z) is constant throughoutD.

EXERCISES
1. Apply the theorem in Sec. 22 to verify that each of these functions is entire:

(a) f (z) = 3x + y + i(3y − x); (b) f (z) = sinx coshy + i cosx sinhy;

(c) f (z) = e−y sinx − ie−y cosx; (d) f (z) = (z2 − 2)e−xe−iy .

2. With the aid of the theorem in Sec. 21, show that each of these functions is nowhere
analytic:

(a) f (z) = xy + iy; (b) f (z) = 2xy + i(x2 − y2); (c) f (z) = eyeix .

3. State why a composition of two entire functions is entire. Also, state why anylinear
combinationc1f1(z) + c2f2(z) of two entire functions, wherec1 andc2 are complex
constants, is entire.

4. In each case, determine the singular points of the function and state why the function
is analytic everywhere except at those points:

(a) f (z) =
2z + 1

z(z2 + 1)
; (b) f (z) =

z3 + i

z2 − 3z + 2
; (c) f (z) =

z2 + 1

(z + 2)(z2 + 2z + 2)
.

Ans. (a) z = 0,± i; (b) z = 1, 2 ; (c) z = −2,−1 ± i.

5. According to Exercise 4(b), Sec. 23, the function

g(z) =
√

reiθ/2 (r > 0,−π < θ < π)

is analytic in its domain of definition, with derivative

g′(z) =
1

2g(z)
.

Show that the composite functionG(z) = g(2z − 2 + i) is analytic in the half plane
x > 1, with derivative

G′(z) =
1

g(2z − 2 + i)
.

Suggestion:Observe that Re(2z − 2 + i) > 0 whenx > 1.
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6. Use results in Sec. 23 to verify that the function

g(z) = ln r + iθ (r > 0, 0 < θ < 2π)

is analytic in the indicated domain of definition, with derivativeg′(z) = 1/z. Then
show that the composite functionG(z) = g(z2 + 1) is analytic in the quadrant
x > 0, y > 0, with derivative

G′(z) =
2z

z2 + 1
.

Suggestion:Observe that Im(z2 + 1) > 0 whenx > 0, y > 0.

7. Let a functionf be analytic everywhere in a domainD. Prove that iff (z) is real-
valued for allz in D, thenf (z) must be constant throughtoutD.

26. HARMONIC FUNCTIONS

A real-valued functionH of two real variablesx andy is said to beharmonic in a
given domain of thexy plane if, throughout that domain, it has continuous partial
derivatives of the first and second order and satisfies the partial differential equation

Hxx(x, y) + Hyy(x, y) = 0,(1)

known asLaplace’s equation.
Harmonic functions play an importantrole in applied mathematics. For

example, the temperaturesT (x, y) in thin plates lying in thexy plane are often
harmonic. A functionV (x, y) is harmonic when it denotes an electrostatic potential
that varies only withx andy in the interior of a region of three-dimensional space
that is free of charges.

EXAMPLE 1. It is easy to verify that the functionT (x, y) = e−y sinx is
harmonic in any domain of thexy plane and, in particular, in the semi-infinite
vertical strip 0< x < π, y > 0. It also assumes the values on the edges of the strip
that are indicated in Fig. 31. More precisely, it satisfies all of the conditions

xO

y

T = 0 Txx + Tyy = 0

T = sin x

T = 0

FIGURE 31
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Txx(x, y) + Tyy(x, y) = 0,

T (0, y) = 0, T (π, y) = 0,

T (x, 0) = sinx, lim
y→∞

T (x, y) = 0,

which describe steady temperaturesT (x, y) in a thin homogeneous plate in the
xy plane that has no heat sources or sinks and is insulated except for the stated
conditions along the edges.

The use of the theory of functions of a complex variable in discovering solu-
tions, such as the one in Example 1, of temperature and other problems is described
in considerable detail later on in Chap. 10 and in parts of chapters following it.∗

That theory is based on the theorem below, which provides a source of harmonic
functions.

Theorem 1. If a functionf (z) = u(x, y) + iv(x, y) is analytic in a domainD,
then its component functionsu andv are harmonic inD.

To show this, we need a result that is to be proved in Chap. 4 (Sec. 52). Namely,
if a function of a complex variable is analytic at a point, then its real and imaginary
components have continuous partial derivatives of all orders at that point.

Assuming thatf is analytic inD, we start with the observation that the first-
order partial derivatives of its componentfunctions must satisfy the Cauchy–Riemann
equations throughoutD:

ux = vy, uy = −vx .(2)

Differentiating both sides of these equations with respect tox, we have

uxx = vyx, uyx = −vxx .(3)

Likewise, differentiation with respect toy yields

uxy = vyy, uyy = −vxy .(4)

Now, by a theorem in advanced calculus,† the continuity of the partial derivatives
of u and v ensures thatuyx = uxy and vyx = vxy . It then follows from equations
(3) and (4) that

uxx + uyy = 0 and vxx + vyy = 0.

That is,u andv are harmonic inD.

∗Another important method is developed in the authors’ “Fourier Series and Boundary Value Prob-
lems,” 7th ed., 2008.
†See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 199–201, 1983.
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EXAMPLE 2. The function f (z) = e−y sinx − ie−y cosx is entire, as is
shown in Exercise 1(c), Sec. 25. Hence its real component, which is the temperature
function T (x, y) = e−y sinx in Example 1, must be harmonic in every domain of
the xy plane.

EXAMPLE 3. Since the functionf (z) = i/z2 is analytic wheneverz �= 0
and since

i

z2
=

i

z2
·
z2

z2
=

iz2

(zz)2
=

iz2

|z|4
=

2xy + i(x2 − y2)

(x2 + y2)2
,

the two functions

u(x, y) =
2xy

(x2 + y2)2
and v(x, y) =

x2 − y2

(x2 + y2)2

are harmonic throughout any domain in thexy plane that does not contain the origin.

If two given functionsu andv are harmonic in a domainD and their first-order
partial derivatives satisfy the Cauchy–Riemann equations (2) throughoutD, thenv

is said to be aharmonic conjugateof u. The meaning of the word conjugate here
is, of course, different from that in Sec. 5, wherez is defined.

Theorem 2. A functionf (z) = u(x, y) + iv(x, y) is analytic in a domainD
if and only ifv is a harmonic conjugate ofu.

The proof is easy. Ifv is a harmonic conjugate ofu in D, the theorem in Sec.
22 tells us thatf is analytic inD. Conversely, iff is analytic inD, we know from
Theorem 1 thatu andv are harmonic inD ; furthermore, in view of the theorem in
Sec. 21, the Cauchy–Riemann equations are satisfied.

The following example shows that ifv is a harmonic conjugate ofu in some
domain, it isnot, in general, true thatu is a harmonic conjugate ofv there. (See
also Exercises 3 and 4.)

EXAMPLE 4. Suppose that

u(x, y) = x2 − y2 and v(x, y) = 2xy.

Since these are the real and imaginary components, respectively, of the entire func-
tion f (z) = z2, we know thatv is a harmonic conjugate ofu throughout the plane.
But u cannot be a harmonic conjugate ofv since, as verified in Exercise 2(b), Sec.
25, the function 2xy + i(x2 − y2) is not analytic anywhere.

In Chap. 9 (Sec. 104) we shall show that a functionu which is harmonic
in a domain of a certain type always has a harmonic conjugate. Thus, in such
domains, every harmonic function is the real part of an analytic function. It is also
true (Exercise 2) that a harmonic conjugate, when it exists, is unique except for an
additive constant.
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EXAMPLE 5. We now illustrate one method of obtaining a harmonic con-
jugate of a given harmonic function. The function

u(x, y) = y3 − 3x2y(5)

is readily seen to be harmonic throughout the entirexy plane. Since a harmonic
conjugatev(x, y) is related tou(x, y) by means of the Cauchy–Riemann equations

ux = vy, uy = −vx,(6)

the first of these equations tells us that

vy(x, y) = −6xy.

Holding x fixed and integrating each side here with respect toy, we find that

v(x, y) = −3xy2 + φ(x)(7)

whereφ is, at present, an arbitrary function ofx. Using the second of equations (6),
we have

3y2 − 3x2 = 3y2 − φ′(x),

or φ′(x) = 3x2. Thusφ(x) = x3 + C, whereC is an arbitrary real number. Accord-
ing to equation (7), then, the function

v(x, y) = −3xy2 + x3 + C(8)

is a harmonic conjugate ofu(x, y).
The corresponding analytic function is

f (z) = (y3 − 3x2y) + i(−3xy2 + x3 + C).(9)

The formf (z) = i(z3 + C) of this function is easily verified and is suggested by
noting that wheny = 0, expression (9) becomesf (x) = i(x3 + C).

EXERCISES
1. Show thatu(x, y) is harmonic in some domain and find a harmonic conjugatev(x, y)

when
(a) u(x, y) = 2x(1 − y); (b) u(x, y) = 2x − x3 + 3xy2;
(c) u(x, y) = sinhx siny; (d) u(x, y) = y/(x2 + y2).

Ans. (a)v(x, y) = x2 − y2 + 2y; (b) v(x, y) = 2y − 3x2y + y3;
(c) v(x, y) = − coshx cosy; (d) v(x, y) = x/(x2 + y2).

2. Show that ifv andV are harmonic conjugates ofu(x, y) in a domainD, thenv(x, y)

andV (x, y) can differ at most by an additive constant.



82 Analytic Functions chap. 2

3. Suppose thatv is a harmonic conjugate ofu in a domainD and also thatu is a
harmonic conjugate ofv in D. Show how it follows that bothu(x, y) and v(x, y)

must be constant throughoutD.

4. Use Theorem 2 in Sec. 26 to show thatv is a harmonic conjugate ofu in a domain
D if and only if −u is a harmonic conjugate ofv in D. (Compare with the result
obtained in Exercise 3.)

Suggestion:Observe that the functionf (z) = u(x, y) + iv(x, y) is analytic inD

if and only if −if (z) is analytic there.

5. Let the functionf (z) = u(r, θ) + iv(r, θ) be analytic in a domainD that does not
include the origin. Using the Cauchy–Riemann equations in polar coordinates (Sec.
23) and assuming continuity of partial derivatives, show that throughoutD the function
u(r, θ) satisfies the partial differential equation

r2urr (r, θ) + rur(r, θ) + uθθ (r, θ) = 0,

which is thepolar form of Laplace’s equation. Show that the same is true of the
function v(r, θ).

6. Verify that the functionu(r, θ) = ln r is harmonic in the domainr > 0, 0 < θ < 2π

by showing that it satisfies the polar form of Laplace’s equation, obtained in Exercise
5. Then use the technique in Example 5, Sec. 26, but involving the Cauchy–Riemann
equations in polar form (Sec. 23), to derive the harmonic conjugatev(r, θ) = θ . (Com-
pare with Exercise 6, Sec. 25.)

7. Let the functionf (z) = u(x, y) + iv(x, y) be analytic in a domainD, and consider the
families of level curvesu(x, y) = c1 andv(x, y) = c2, wherec1 andc2 are arbitrary
real constants. Prove that these families are orthogonal. More precisely, show that if
z0 = (x0, y0) is a point inD which is common to two particular curvesu(x, y) = c1
andv(x, y) = c2 and if f ′(z0) �= 0, then the lines tangent to those curves at(x0, y0)

are perpendicular.
Suggestion:Note how it follows from the pair of equationsu(x, y) = c1 and

v(x, y) = c2 that

∂u

∂x
+

∂u

∂y

dy

dx
= 0 and

∂v

∂x
+

∂v

∂y

dy

dx
= 0.

8. Show that whenf (z) = z2, the level curvesu(x, y) = c1 and v(x, y) = c2 of the
component functions are the hyperbolas indicated in Fig. 32. Note the orthogonality
of the two families, described in Exercise 7. Observe that the curvesu(x, y) = 0 and
v(x, y) = 0 intersect at the origin but are not, however, orthogonal to each other. Why
is this fact in agreement with the result in Exercise 7?

9. Sketch the families of level curves of the component functionsu and v when
f (z) = 1/z, and note the orthogonality described in Exercise 7.

10. Do Exercise 9 using polar coordinates.

11. Sketch the families of level curves of the component functionsu andv when

f (z) =
z − 1

z + 1
,

and note how the result in Exercise 7 is illustrated here.
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c 1
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c2 < 0
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1  = 0

FIGURE 32

27. UNIQUELY DETERMINED ANALYTIC FUNCTIONS

We conclude this chapter with two sections dealing with how the values of an ana-
lytic function in a domainD are affected by its values in a subdomain ofD or on a
line segment lying inD. While these sections are of considerable theoretical inter-
est, they are not central to our development of analytic functions in later chapters.
The reader may pass directly to Chap. 3 at this time and refer back when necessary.

Lemma. Suppose that

(a) a functionf is analytic throughout a domainD;

(b) f (z) = 0 at each pointz of a domain or line segment contained inD.

Thenf (z) ≡ 0 in D; that is, f (z) is identically equal to zero throughout D.

To prove this lemma, we letf be as stated in its hypothesis and letz0 be any
point of the subdomain or line segment wheref (z) = 0. SinceD is a connected
open set (Sec. 11), there is a polygonal lineL, consisting of a finite number of
line segments joined end to end and lying entirely inD, that extends fromz0 to
any other pointP in D. We letd be the shortest distance from points onL to the
boundary ofD, unlessD is the entire plane; in that case,d may be any positive
number. We then form a finite sequence of points

z0, z1, z2, . . . , zn−1, zn

along L, where the pointzn coincides withP (Fig. 33) and where each point is
sufficiently close to adjacent ones that

|zk − zk−1| < d (k = 1, 2, . . . , n).
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z0

N0
N1

N2 Nn
L

P
z2

zn – 1 znz1

Nn – 1

FIGURE 33

Finally, we construct a finite sequence of neighborhoods

N0, N1, N2, . . . , Nn−1, Nn,

where each neighborhoodNk is centered atzk and has radiusd. Note that these
neighborhoods are all contained inD and that the centerzk of any neighborhood
Nk (k = 1, 2, . . . , n) lies in the preceding neighborhoodNk−1.

At this point, we need to use a result that is proved later on in Chap. 6. Namely,
Theorem 3 in Sec. 75 tells us that sincef is analytic inN0 and sincef (z) = 0 in
a domain or on a line segment containingz0, thenf (z) ≡ 0 in N0. But the pointz1

lies in N0. Hence a second application of the same theorem reveals thatf (z) ≡ 0
in N1; and, by continuing in this manner, we arrive at the fact thatf (z) ≡ 0 in Nn.
SinceNn is centered at the pointP and sinceP was arbitrarily selected inD, we
may conclude thatf (z) ≡ 0 in D. This completes the proof of the lemma.

Suppose now that two functionsf andg are analytic in the same domainD
and thatf (z) = g(z) at each pointz of some domain or line segment contained in
D. The difference

h(z) = f (z) − g(z)

is also analytic inD, and h(z) = 0 throughout the subdomain or along the line
segment. According to the lemma, then,h(z) ≡ 0 throughtD ; that is,f (z) = g(z) at
each pointz in D. We thus arrive at the following important theorem.

Theorem. A function that is analytic in a domainD is uniquely determined
overD by its values in a domain, or along a line segment, contained inD.

This theorem is useful in studying the question of extending the domain of
definition of an analytic function. More precisely, given two domainsD1 andD2,
consider theintersectionD1 ∩ D2, consisting of all points that lie in bothD1 and
D2. If D1 andD2 have points in common (see Fig. 34) and a functionf1 is analytic
in D1, theremayexist a functionf2, which is analytic inD2, such thatf2(z) = f1(z)

for eachz in the intersectionD1 ∩ D2. If so, we callf2 ananalytic continuationof
f1 into the second domainD2.

Whenever that analytic continuation exists, it is unique, according to the
theorem just proved. That is, not more than one function can be analytic inD2 and
assume the valuef1(z) at each pointz of the domainD1 ∩ D2 interior toD2. How-
ever, if there is an analytic continuationf3 of f2 from D2 into a domainD3 which
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D1

D1∩ D2

D3

D2

FIGURE 34

intersectsD1, as indicated in Fig. 34, it is not necessarily true thatf3(z) = f1(z)

for eachz in D1 ∩ D3. Exercise 2, Sec. 28, illustrates this.
If f2 is the analytic continuation off1 from a domainD1 into a domainD2,

then the functionF defined by means of the equations

F(z) =
{

f1(z) whenz is in D1,

f2(z) whenz is in D2

is analytic in theunion D1 ∪ D2, which is the domain consisting of all points that
lie in eitherD1 or D2. The functionF is the analytic continuation intoD1 ∪ D2 of
eitherf1 or f2; andf1 andf2 are calledelementsof F .

28. REFLECTION PRINCIPLE

The theorem in this section concerns the fact that some analytic functions possess
the property thatf (z) = f (z) for all points z in certain domains, while others do
not. We note, for example, that the functionsz + 1 andz2 have that property when
D is the entire finite plane; but the same is not true ofz + i and iz2. The theorem
here, which is known as thereflection principle,provides a way of predicting when
f (z) = f (z).

Theorem. Suppose that a functionf is analytic in some domainD which
contains a segment of thex axis and whose lower half is the reflection of the upper
half with respect to that axis. Then

f (z) = f (z)(1)

for each pointz in the domain if and only iff (x) is real for each pointx on the
segment.

We start the proof by assuming thatf (x) is real at each pointx on the segment.
Once we show that the function

F(z) = f (z)(2)
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is analytic inD, we shall use it to obtain equation (1). To establish the analyticity
of F(z), we write

f (z) = u(x, y) + iv(x, y), F (z) = U(x, y) + iV (x, y)

and observe how it follows from equation (2) that since

f (z) = u(x, −y) − iv(x, −y),(3)

the components ofF(z) andf (z) are related by the equations

U(x, y) = u(x, t) and V (x, y) = −v(x, t),(4)

where t = −y. Now, becausef (x + it) is an analytic function ofx + it , the
first-order partial derivatives of the functionsu(x, t) and v(x, t) are continuous
throughoutD and satisfy the Cauchy–Riemann equations∗

ux = vt , ut = −vx .(5)

Furthermore, in view of equations (4),

Ux = ux, Vy = −vt

dt

dy
= vt ;

and it follows from these and the first of equations (5) thatUx = Vy . Similarly,

Uy = ut

dt

dy
= −ut , Vx = −vx;

and the second of equations (5) tells us thatUy = −Vx . Inasmuch as the first-
order partial derivatives ofU(x, y) and V (x, y) are now shown to satisfy the
Cauchy–Riemann equations and since those derivatives are continuous, we find
that the functionF(z) is analytic inD. Moreover, sincef (x) is real on the segment
of the real axis lying inD, we know thatv(x, 0) = 0 on the segment; and, in view
of equations (4), this means that

F(x) = U(x, 0) + iV (x, 0) = u(x, 0) − iv(x, 0) = u(x, 0).

That is,

F(z) = f (z)(6)

at each point on the segment. According to the theorem in Sec. 27, which tells
us that an analytic function defined on a domainD is uniquely determined by its

∗See the paragraph immediately following Theorem 1 in Sec. 26.
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values along any line segment lying inD, it follows that equation (6) actually holds
throughoutD. Because of definition (2) of the functionF(z), then,

f (z) = f (z) ;(7)

and this is the same as equation (1).
To prove the converse in the theorem, we assume that equation (1) holds and

note that in view of expression (3), the form (7) of equation (1) can be written

u(x, −y) − iv(x, −y) = u(x, y) + iv(x, y).

In particular, if (x, 0) is a point on the segment of the real axis that lies inD,

u(x, 0) − iv(x, 0) = u(x, 0) + iv(x, 0);

and, by equating imaginary parts here, we see thatv(x, 0) = 0. Hencef (x) is real
on the segment of the real axis lying inD.

EXAMPLES. Just prior to the statement of the theorem, we noted that

z + 1 = z + 1 and z2 = z2

for all z in the finite plane. The theorem tells us, of course, that this is true, since
x + 1 andx2 are real whenx is real. We also noted thatz + i and iz2 do not have
the reflection property throughout the plane, and we now know that this is because
x + i and ix2 arenot real whenx is real.

EXERCISES
1. Use the theorem in Sec. 27 to show that iff (z) is analytic and not constant throughout

a domainD, then it cannot be constant throughout any neighborhood lying inD.
Suggestion:Suppose thatf (z) does have a constant valuew0 throughout some

neighborhood inD.

2. Starting with the function

f1(z) =
√

reiθ/2 (r > 0, 0 < θ < π)

and referring to Exercise 4(b), Sec. 23, point out why

f2(z) =
√

reiθ/2
(

r > 0,
π

2
< θ < 2π

)

is an analytic continuation off1 across the negative real axis into the lower half plane.
Then show that the function

f3(z) =
√

reiθ/2
(

r > 0, π < θ <
5π

2

)

is an analytic continuation off2 across the positive real axis into the first quadrant
but thatf3(z) = −f1(z) there.
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3. State why the function

f4(z) =
√

reiθ/2 (r > 0,−π < θ < π)

is the analytic continuation of the functionf1(z) in Exercise 2 across the positive real
axis into the lower half plane.

4. We know from Example 1, Sec. 22, that the function

f (z) = exeiy

has a derivative everywhere in the finite plane. Point out how it follows from the
reflection principle (Sec. 28) that

f (z) = f (z)

for eachz. Then verify this directly.

5. Show that if the condition thatf (x) is real in the reflection principle (Sec. 28) is
replaced by the condition thatf (x) is pure imaginary, then equation (1) in the state-
ment of the principle is changed to

f (z) = −f (z).
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3
ELEMENTARY FUNCTIONS

We consider here various elementary functions studied in calculus and define cor-
responding functions of a complex variable. To be specific, we define analytic
functions of a complex variablez that reduce to the elementary functions in calculus
whenz = x + i0. We start by defining the complex exponential function and then
use it to develop the others.

29. THE EXPONENTIAL FUNCTION
As anticipated earlier (Sec. 14), we define here the exponential functionez by writing

ez = exeiy (z = x + iy),(1)

where Euler’s formula (see Sec. 6)

eiy = cosy + i siny(2)

is used andy is to be taken in radians. We see from this definition thatez reduces
to the usual exponential function in calculus wheny = 0 ; and, following the con-
vention used in calculus, we often write expz for ez.

Note that since thepositiventh root n
√

e of e is assigned toex whenx = 1/n

(n = 2, 3, . . .), expression (1) tells us that the complex exponential functionez is also
n
√

e whenz = 1/n (n = 2, 3, . . .). This is an exception to the convention (Sec. 9) that
would ordinarily require us to interprete1/n as the set ofnth roots ofe.

89
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According to definition (1),exeiy = ex+iy ; and, as already pointed out in
Sec. 14, the definition is suggested by the additive property

ex1ex2 = ex1+x2

of ex in calculus. That property’s extension,

ez1ez2 = ez1+z2,(3)

to complex analysis is easy to verify. To do this, we write

z1 = x1 + iy1 and z2 = x2 + iy2.

Then
ez1ez2 = (ex1eiy1)(ex2eiy2) = (ex1ex2)(eiy1eiy2).

But x1 andx2 are both real, and we know from Sec. 7 that

eiy1eiy2 = ei(y1+y2).

Hence
ez1ez2 = e(x1+x2)ei(y1+y2);

and, since

(x1 + x2) + i(y1 + y2) = (x1 + iy1) + (x2 + iy2) = z1 + z2,

the right-hand side of this last equation becomesez1+z2. Property (3) is now estab-
lished.

Observe how property (3) enables us to writeez1−z2ez2 = ez1, or

ez1

ez2
= ez1−z2.(4)

From this and the fact thate0 = 1, it follows that 1/ez = e−z.
There are a number of other important properties ofez that are expected.

According to Example 1 in Sec. 22, for instance,

d

dz
ez = ez(5)

everywhere in thez plane. Note that the differentiability ofez for all z tells us that
ez is entire (Sec. 24). It is also true that

ez �= 0 for any complex numberz.(6)

This is evident upon writing definition (1) in the form

ez = ρeiφ where ρ = ex andφ = y,
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which tells us that

|ez| = ex and arg(ez) = y + 2nπ (n = 0,±1, ±2, . . .).(7)

Statement (6) then follows from the observation that|ez| is always positive.
Some properties ofez are, however,not expected. For example, since

ez+2πi = eze2πi and e2πi = 1,

we find thatez is periodic,with a pure imaginary period of 2πi:

ez+2πi = ez.(8)

For another property ofez that ex does not have, we note that whileex is
always positive,ez can be negative. We recall (Sec. 6), for instance, thateiπ = −1.
In fact,

ei(2n+1)π = ei2nπ+iπ = ei2nπeiπ = (1)(−1) = −1 (n = 0, ±1,±2, . . .).

There are, moreover, values ofz such thatez is any given nonzero complex number.
This is shown in the next section, where the logarithmic function is developed, and
is illustrated in the following example.

EXAMPLE. In order to find numbersz = x + iy such that

ez = 1 + i,(9)

we write equation (9) as

exeiy =
√

2eiπ/4.

Then, in view of the statment in italics at the beginning of Sec. 9 regarding the
equality of two nonzero complex numbers in exponential form,

ex =
√

2 and y =
π

4
+ 2nπ (n = 0,±1, ±2, . . .).

Because ln(ex) = x, it follows that

x = ln
√

2 =
1

2
ln 2 and y =

(

2n +
1

4

)

π (n = 0,±1, ±2, . . .);

and so

z =
1

2
ln 2 +

(

2n +
1

4

)

πi (n = 0, ±1, ±2, . . .).(10)
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EXERCISES
1. Show that

(a) exp(2 ± 3πi) = −e2; (b) exp

(

2 + πi

4

)

=
√

e

2
(1 + i);

(c) exp(z + πi) = − expz.

2. State why the functionf (z) = 2z2 − 3 − zez + e−z is entire.

3. Use the Cauchy–Riemann equations and the theorem in Sec. 21 to show that the
function f (z) = expz is not analytic anywhere.

4. Show in two ways that the functionf (z) = exp(z2) is entire. What is its derivative?
Ans. f

′
(z) = 2z exp(z2).

5. Write |exp(2z + i)| and |exp(iz2)| in terms ofx andy. Then show that

|exp(2z + i) + exp(iz2)| ≤ e2x + e−2xy .

6. Show that|exp(z2)| ≤ exp(|z|2).
7. Prove that|exp(−2z)| < 1 if and only if Rez > 0.

8. Find all values ofz such that

(a) ez = −2; (b) ez = 1 +
√

3i; (c) exp(2z − 1) = 1.

Ans. (a)z = ln 2 + (2n + 1)πi (n = 0,±1,±2, . . .);

(b) z = ln 2 +
(

2n +
1

3

)

πi (n = 0,±1,±2, . . .);

(c) z =
1

2
+ nπi (n = 0,±1,±2, . . .).

9. Show thatexp(iz) = exp(iz) if and only if z = nπ (n = 0,±1,±2, . . .). (Compare
with Exercise 4, Sec. 28.)

10. (a) Show that ifez is real, then Imz = nπ (n = 0,±1,±2, . . .).
(b) If ez is pure imaginary, what restriction is placed onz?

11. Describe the behavior ofez = exeiy as (a) x tends to−∞; (b) y tends to∞.

12. Write Re(e1/z) in terms ofx andy. Why is this function harmonic in every domain
that does not contain the origin?

13. Let the functionf (z) = u(x, y) + iv(x, y) be analytic in some domainD. State why
the functions

U(x, y) = eu(x,y) cosv(x, y), V (x, y) = eu(x,y) sinv(x, y)

are harmonic inD and whyV (x, y) is, in fact, a harmonic conjugate ofU(x, y).

14. Establish the identity

(ez)n = enz (n = 0,±1,±2, . . .)

in the following way.
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(a) Use mathematical induction to show that it is valid whenn = 0, 1, 2, . . . .

(b) Verify it for negative integersn by first recalling from Sec. 7 that

zn = (z−1)m (m = −n = 1, 2, . . .)

whenz �= 0 and writing(ez)n = (1/ez)m. Then use the result in part(a), together
with the property 1/ez = e−z (Sec. 29) of the exponential function.

30. THE LOGARITHMIC FUNCTION
Our motivation for the definition of the logarithmic function is based on solving the
equation

ew = z(1)

for w, wherez is any nonzerocomplex number. To do this, we note that whenz

andw are writtenz = rei� (−π < � ≤ π) andw = u + iv, equation (1) becomes

eueiv = rei�.

According to the statement in italics at the beginning of Sec. 9 about the equality
of two complex numbers expressed in exponential form, this tells us that

eu = r and v = � + 2nπ

wheren is any integer. Since the equationeu = r is the same asu = ln r, it follows
that equation (1) is satisfied if and only ifw has one of the values

w = ln r + i(� + 2nπ) (n = 0,±1, ±2, . . .).

Thus, if we write

logz = ln r + i(� + 2nπ) (n = 0, ±1, ±2, . . .),(2)

equation (1) tells us that

elogz = z (z �= 0),(3)

which serves to motivate expression (2) as thedefinition of the (multiple-valued)
logarithmic function of a nonzero complex variablez = rei�.

EXAMPLE 1. If z = −1 −
√

3i, thenr = 2 and� = −2π/3. Hence

log(−1 −
√

3i) = ln 2 + i

(

−
2π

3
+ 2nπ

)

= ln 2 + 2

(

n −
1

3

)

πi

(n = 0, ±1,±2, . . .).
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It should be emphasized that it isnot true that the left-hand side of equation
(3) with the order of the exponential and logarithmic functions reversed reduces to
just z. More precisely, since expression (2) can be written

logz = ln |z| + i argz

and since (Sec. 29)

|ez| = ex and arg(ez) = y + 2nπ (n = 0, ±1, ±2, . . .)

whenz = x + iy, we know that

log(ez) = ln |ez| + i arg(ez) = ln(ex) + i(y + 2nπ) = (x + iy) + 2nπi

(n = 0, ±1,±2, . . .).

That is,

log(ez) = z + 2nπi (n = 0, ±1, ±2, . . .).(4)

Theprincipal valueof logz is the value obtained from equation (2) whenn = 0
there and is denoted by Logz. Thus

Logz = ln r + i�.(5)

Note that Logz is well defined and single-valued whenz �= 0 and that

logz = Logz + 2nπi (n = 0, ±1, ±2, . . .).(6)

It reduces to the usual logarithm in calculus whenz is a positive real numberz = r.
To see this, one need only writez = rei0, in which case equation (5) becomes
Logz = ln r. That is, Logr = ln r.

EXAMPLE 2. From expression (2), we find that

log 1 = ln 1 + i(0 + 2nπ) = 2nπi (n = 0, ±1,±2, . . .).

As anticipated, Log 1= 0.

Our final example here reminds us that although we were unable to find loga-
rithms of negativereal numbers in calculus, we can now do so.

EXAMPLE 3. Observe that

log(−1) = ln 1 + i(π + 2nπ) = (2n + 1)πi (n = 0, ±1,±2, . . .)

and that Log(−1) = πi.
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31. BRANCHES AND DERIVATIVES OF LOGARITHMS
If z = reiθ is a nonzero complex number, the argumentθ has any one of the values
θ = � + 2nπ (n = 0, ±1,±2, . . .), where� = Arg z. Hence the definition

logz = ln r + i(� + 2nπ) (n = 0,±1, ±2, . . .)

of the multiple-valued logarithmic function in Sec. 30 can be written

logz = ln r + iθ.(1)

If we let α denote any real number and restrict the value ofθ in expression (1)
so thatα < θ < α + 2π, the function

logz = ln r + iθ (r > 0, α < θ < α + 2π),(2)

with components

u(r, θ) = ln r and v(r, θ) = θ,(3)

is single-valuedand continuous in the stated domain (Fig. 35). Note that if the
function (2) were to be defined on the rayθ = α, it would not be continuous there.
For if z is a point on that ray, there are points arbitrarily close toz at which the
values ofv are nearα and also points such that the values ofv are nearα + 2π .

xO

y

FIGURE 35

The function (2) is not only continuous but also analytic throughout the domain
r > 0, α < θ < α + 2π since the first-order partial derivatives ofu andv are con-
tinuous there and satisfy the polar form (Sec. 23)

rur = vθ , uθ = −rvr

of the Cauchy–Riemann equations. Furthermore, according to Sec. 23,

d

dz
logz = e−iθ (ur + ivr) = e−iθ

(

1

r
+ i0

)

=
1

reiθ
;



96 Elementary Functions chap. 3

that is,

d

dz
logz =

1

z
(|z| > 0, α < argz < α + 2π).(4)

In particular,

d

dz
Logz =

1

z
(|z| > 0, −π < Arg z < π).(5)

A branch of a multiple-valued functionf is any single-valued functionF that
is analytic in some domain at each pointz of which the valueF (z) is one of the
values off . The requirement of analyticity, of course, preventsF from taking on a
random selection of the values off . Observe that for each fixedα, the single-valued
function (2) is a branch of the multiple-valued function (1). The function

Logz = ln r + i� (r > 0,−π < � < π)(6)

is called theprincipal branch.
A branch cutis a portion of a line or curve that is introduced in order to define

a branchF of a multiple-valued functionf . Points on the branch cut forF are
singular points (Sec. 24) ofF , and any point that is common to all branch cuts off

is called abranch point.The origin and the rayθ = α make up the branch cut for
the branch (2) of the logarithmic function. The branch cut for the principal branch
(6) consists of the origin and the ray� = π . The origin is evidently a branch point
for branches of the multiple-valued logarithmic function.

Special care must be taken in using branches of the logarithmic function, espe-
cially since expected identities involving logarithms do not always carry over from
calculus.

EXAMPLE. When the principal branch (6) is used, one can see that

Log(i3) = Log(−i) = ln1 − i
π

2
= −

π

2
i

and

3 Logi = 3
(

ln1 + i
π

2

)

=
3π

2
i.

Hence

Log(i3) �= 3 Logi.

(See also Exercises 3 and 4.)

In Sec. 32, we shall derive some identities involving logarithms thatdo carry
over from calculus, sometimes with qualifications as to how they are to be inter-
preted. A reader who wishes to pass to Sec. 33 can simply refer to results in Sec. 32
when needed.
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EXERCISES
1. Show that

(a) Log(−ei) = 1 −
π

2
i; (b) Log(1 − i) =

1

2
ln 2 −

π

4
i.

2. Show that
(a) loge = 1 + 2nπi (n = 0,±1,±2, . . .);

(b) log i =
(

2n +
1

2

)

πi (n = 0,±1,±2, . . .);

(c) log(−1 +
√

3i) = ln 2 + 2

(

n +
1

3

)

πi (n = 0,±1,±2, . . .).

3. Show that

(a) Log(1 + i)2 = 2 Log(1 + i); (b) Log(−1 + i)2 �= 2 Log(−1 + i).

4. Show that

(a) log(i2) = 2 logi when logz = ln r + iθ

(

r > 0,
π

4
< θ <

9π

4

)

;

(b) log(i2) �= 2 logi when logz = ln r + iθ

(

r > 0,
3π

4
< θ <

11π

4

)

.

5. Show that

(a) the set of values of log(i1/2) is
(

n +
1

4

)

πi (n = 0,±1,±2, . . .)

and that the same is true of(1/2) log i ;
(b) the set of values of log(i2) is not the same as the set of values of 2 logi.

6. Given that the branch logz = ln r + iθ (r > 0, α < θ < α + 2π) of the logarithmic
function is analytic at each pointz in the stated domain, obtain its derivative by
differentiating each side of the identity (Sec. 30)

elogz = z (z �= 0)

and using the chain rule.

7. Find all roots of the equation logz = iπ/2.

Ans. z = i.

8. Suppose that the pointz = x + iy lies in the horizontal stripα < y < α + 2π. Show
that when the branch logz = ln r + iθ (r > 0, α < θ < α + 2π) of the logarithmic
function is used, log(ez) = z. [Compare with equation (4), Sec. 30.]

9. Show that
(a) the functionf (z) = Log(z − i) is analytic everywhere except on the portionx ≤ 0

of the liney = 1;
(b) the function

f (z) =
Log(z + 4)

z2 + i
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is analytic everywhere except at the points±(1 − i)/
√

2 and on the portion
x ≤ −4 of the real axis.

10. Show in two ways that the function ln(x2 + y2) is harmonic in every domain that does
not contain the origin.

11. Show that

Re [log(z − 1)] =
1

2
ln[(x − 1)2 + y2] (z �= 1).

Why must this function satisfy Laplace’s equation whenz �= 1?

32. SOME IDENTITIES INVOLVING LOGARITHMS
If z1 andz2 denote any two nonzero complex numbers, it is straightforward to show
that

log(z1z2) = logz1 + logz2.(1)

This statement, involving a multiple-valued function, is to be interpreted in the same
way that the statement

arg(z1z2) = argz1 + argz2(2)

was in Sec. 8. That is, if values of two of the three logarithms are specified, then
there is a value of the third such that equation (1) holds.

The verification of statement (1) can be based on statement (2) in the following
way. Since|z1z2| = |z1||z2| and since these moduli are all positive real numbers,
we know from experience with logarithms of such numbers in calculus that

ln |z1z2| = ln |z1| + ln |z2|.

So it follows from this and equation (2) that

ln |z1z2| + i arg(z1z2) = (ln |z1| + i argz1) + (ln |z2| + i argz2).(3)

Finally, because of the way in which equations (1) and (2) are to be interpreted,
equation (3) is the same as equation (1).

EXAMPLE. To illustrate statement (1), writez1 = z2 = −1 and recall from
Examples 2 and 3 in Sec. 30 that

log 1 = 2nπi and log(−1) = (2n + 1)πi,

wheren = 0,±1, ±2, . . . . Noting thatz1z2 = 1 and using the values

log(z1z2) = 0 and logz1 = πi,
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we find that equations (1) is satisfied when the value logz2 = −πi is chosen.
If, on the other hand, the principal values

Log 1 = 0 and Log(−1) = πi

are used,

Log(z1z2) = 0 and Logz1 + logz2 = 2πi

for the same numbersz1 andz2. Thus statement (1), which is sometimes true when
log is replaced byLog (see Exercise 1), is not always true when principal values
are used in all three of its terms.

Verification of the statement

log

(

z1

z2

)

= logz1 − logz2,(4)

which is to be interpreted in the same way as statement (1), is left to the exercises.
We include here two other properties of logz that will be of special interest in

Sec. 33. Ifz is a nonzero complex number, then

zn = en logz (n = 0 ± 1, ±2, . . .)(5)

for any value of logz that is taken. Whenn = 1, this reduces, of course, to relation
(3), Sec. 30. Equation (5) is readily verified by writingz = reiθ and noting that
each side becomesrneinθ .

It is also true that whenz �= 0,

z1/n = exp

(

1

n
logz

)

(n = 1, 2, . . .).(6)

That is, the term on the right here hasn distinct values, and those values are thenth
roots of z. To prove this, we writez = r exp(i�), where� is the principal value
of argz. Then, in view of definition (2), Sec. 30, of logz,

exp

(

1

n
logz

)

= exp

[

1

n
ln r +

i(� + 2kπ)

n

]

wherek = 0, ±1, ±2, . . . . Thus

exp

(

1

n
logz

)

= n
√

r exp

[

i

(

�

n
+

2kπ

n

)]

(k = 0, ±1, ±2, . . .).(7)

Because exp(i2kπ/n) has distinct values only whenk = 0, 1, . . . , n − 1, the right-
hand side of equation (7) has onlyn values. That right-hand side is, in fact, an
expression for thenth roots of z (Sec. 9), and so it can be writtenz1/n. This
establishes property (6), which is actually valid whenn is a negative integer too
(see Exercise 5).
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EXERCISES
1. Show that if Rez1 > 0 and Rez2 > 0, then

Log(z1z2) = Log z1 + Log z2.

Suggestion:Write �1 = Argz1 and�2 = Argz2. Then observe how it follows
from the stated restrictions onz1 andz2 that −π < �1 + �2 < π.

2. Show that for any two nonzero complex numbersz1 andz2,

Log(z1z2) = Log z1 + Log z2 + 2Nπi

whereN has one of the values 0,±1. (Compare with Exercise 1.)

3. Verify expression (4), Sec. 32, for log(z1/z2) by

(a) using the fact that arg(z1/z2) = argz1 − argz2 (Sec. 8);
(b) showing that log(1/z) = − logz (z �= 0), in the sense that log(1/z) and − logz

have the same set of values, and then referring to expression (1), Sec. 32, for
log(z1z2).

4. By choosing specific nonzero values ofz1 andz2, show that expression (4), Sec. 32,
for log(z1/z2) is not always valid whenlog is replaced byLog.

5. Show that property (6), Sec. 32, also holds whenn is a negative integer. Do this
by writing z1/n = (z1/m)−1 (m = −n), wheren has any one of the negative values
n = −1,−2, . . . (see Exercise 9, Sec. 10), and using the fact that the property is
already known to be valid for positive integers.

6. Let z denote any nonzero complex number, writtenz = rei� (−π < � ≤ π), and let
n denote any fixed positive integer(n = 1, 2, . . .). Show that all of the values of
log(z1/n) are given by the equation

log(z1/n) =
1

n
ln r + i

� + 2(pn + k)π

n
,

wherep = 0,±1,±2, . . . andk = 0, 1, 2, . . . , n − 1. Then, after writing

1

n
logz =

1

n
ln r + i

� + 2qπ

n
,

whereq = 0,±1,±2, . . . , show that the set of values of log(z1/n) is the same as the set
of values of(1/n) logz. Thus show that log(z1/n) = (1/n) logz where, corresponding
to a value of log(z1/n) taken on the left, the appropriate value of logz is to be selected
on the right, and conversely. [The result in Exercise 5(a), Sec. 31, is a special case of
this one.]

Suggestion:Use the fact that the remainder upon dividing an integer by a positive
integern is always an integer between 0 andn − 1, inclusive; that is, when a positive
integern is specified, any integerq can be writtenq = pn + k, wherep is an integer
andk has one of the valuesk = 0, 1, 2, . . . , n − 1.
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33. COMPLEX EXPONENTS
Whenz �= 0 andthe exponentc is any complex number,the functionzc is defined
by means of the equation

zc = ec logz,(1)

where logz denotes the multiple-valued logarithmic function. Equation (1) provides
a consistent definition ofzc in the sense that it is already known to be valid (see
Sec. 32) whenc = n (n = 0,±1, ±2, . . .) and c = 1/n (n = ±1,±2, . . .). Defini-
tion (1) is, in fact, suggested by those particular choices ofc.

EXAMPLE 1. Powers ofz are, in general, multiple-valued, as illustrated by
writing

i−2i = exp(−2i log i)

and then

log i = ln 1 + i
(π

2
+ 2nπ

)

=
(

2n +
1

2

)

πi (n = 0, ±1,±2, . . .).

This shows that

i−2i = exp[(4n + 1)π ] (n = 0, ±1,±2, . . .).(2)

Note that these values ofi−2i are all real numbers.
Since the exponential function has the property 1/ez = e−z (Sec. 29), one can

see that
1

zc
=

1

exp(c logz)
= exp(−c logz) = z−c

and, in particular, that 1/i2i = i−2i . According to expression (2), then,

1

i2i
= exp[(4n + 1)π ] (n = 0,±1, ±2, . . .).(3)

If z = reiθ andα is any real number, the branch

logz = ln r + iθ (r > 0, α < θ < α + 2π)

of the logarithmic function is single-valued and analytic in the indicated domain
(Sec. 31). When that branch is used, it follows that the functionzc = exp(c logz)

is single-valued and analytic in the same domain. The derivative of such abranch
of zc is found by first using the chain rule to write

d

dz
zc =

d

dz
exp(c logz) =

c

z
exp(c logz)
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and then recalling (Sec. 30) the identityz = exp(logz). That yields the result

d

dz
zc = c

exp(c logz)

exp(logz)
= c exp[(c − 1) logz],

or

d

dz
zc = czc−1 (|z| > 0, α < argz < α + 2π).(4)

The principal value of zc occurs when logz is replaced by Logz in defini-
tion (1):

P.V. zc = ec Log z.(5)

Equation (5) also serves to define theprincipal branch of the functionzc on the
domain|z| > 0, −π < Arg z < π .

EXAMPLE 2. The principal value of(−i)i is

exp[i Log(−i)] = exp
[

i
(

ln 1 − i
π

2

)]

= exp
π

2
.

That is,

P.V. (−i)i = exp
π

2
.(6)

EXAMPLE 3. The principal branch ofz2/3 can be written

exp

(

2

3
Log z

)

= exp

(

2

3
ln r +

2

3
i�

)

= 3√
r2 exp

(

i
2�

3

)

.

Thus

P.V. z2/3 = 3√
r2 cos

2�

3
+ i

3√
r2 sin

2�

3
.(7)

This function is analytic in the domainr > 0, −π < � < π , as one can see directly
from the theorem in Sec. 23.

While familiar laws of exponents used in calculus often carry over to complex
analysis, there are exceptions when certain numbers are involved.

EXAMPLE 4. Consider the nonzero complex numbers

z1 = 1 + i, z2 = 1 − i, and z3 = −1 − i.
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When principal values of the powers are taken,

(z1z2)
i = 2i = eiLog 2 = ei(ln 2+i0) = ei ln 2

and

zi
1 = eiLog(1+i) = ei(ln

√
2+iπ/4) = e−π/4ei(ln 2)/2,

zi
2 = eiLog(1−i) = ei(ln

√
2−iπ/4) = eπ/4ei(ln 2)/2.

Thus

(z1z2)
i = zi

1z
i
2,(8)

as might be expected.
On the other hand, continuing to use principal values, we see that

(z2z3)
i = (−2)i = eiLog(−2) = ei(ln 2+iπ) = e−πei ln 2

and

zi
3 = eiLog(−1−i) = ei(ln

√
2−i3π/4) = e3π/4ei(ln 2)/2.

Hence

(z2z3)
i =

[

eπ/4ei(ln 2)/2] [

e3π/4ei(ln 2)/2] e−2π ,

or

(z2z3)
i = zi

2z
i
3 e−2π .(9)

According to definition (1),the exponential function with basec, wherec is
any nonzero complex constant, is written

cz = ez logc.(10)

Note that althoughez is, in general, multiple-valued according to definition (10),
the usual interpretation ofez occurs when the principal value of the logarithm is
taken. This is because the principal value of loge is unity.

When a value of logc is specified,cz is an entire function ofz. In fact,

d

dz
cz =

d

dz
ez logc = ez logc logc ;

and this shows that

d

dz
cz = cz logc.(11)
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EXERCISES
1. Show that

(a) (1 + i)i = exp
(

−
π

4
+ 2nπ

)

exp

(

i
ln 2

2

)

(n = 0,±1,±2, . . .);

(b) (−1)1/π = e(2n+1)i (n = 0,±1,±2, . . .).

2. Find the principal value of

(a) i i ; (b)
[ e

2
(−1 −

√
3i)

]3πi

; (c) (1 − i)4i .

Ans. (a) exp(−π/2); (b) − exp(2π2); (c) eπ [cos(2 ln 2) + i sin(2 ln 2)].

3. Use definition (1), Sec. 33, ofzc to show that(−1 +
√

3i)3/2 = ± 2
√

2.

4. Show that the result in Exercise 3 could have been obtained by writing

(a) (−1 +
√

3i)3/2 = [(−1 +
√

3i)1/2]3 and first finding the square roots of−1 +
√

3i;
(b) (−1 +

√
3i)3/2 = [(−1 +

√
3i)3]1/2 and first cubing−1 +

√
3i.

5. Show that theprincipal nth root of a nonzero complex numberz0 that was defined in
Sec. 9 is the same as the principal value ofz

1/n

0 defined by equation (5), Sec. 33.

6. Show that ifz �= 0 anda is a real number, then|za | = exp(a ln |z|) = |z|a , where the
principal value of|z|a is to be taken.

7. Let c = a + bi be a fixed complex number, wherec �= 0,±1,±2, . . . , and note that
ic is multiple-valued. What additional restriction must be placed on the constantc so
that the values of|ic| are all the same?

Ans. c is real.

8. Let c, c1, c2, and z denote complex numbers, wherez �= 0. Prove that if all of the
powers involved are principal values, then

(a) zc1zc2 = zc1+c2; (b)
zc1

zc2
= zc1−c2; (c) (zc)n = zc n (n = 1, 2, . . .).

9. Assuming thatf ′(z) exists, state the formula for the derivative ofcf (z).

34. TRIGONOMETRIC FUNCTIONS
Euler’s formula (Sec. 6) tells us that

eix = cosx + i sinx and e−ix = cosx − i sinx

for every real numberx. Hence

eix − e−ix = 2i sinx and eix + e−ix = 2 cosx.

That is,

sinx =
eix − e−ix

2i
and cosx =

eix + e−ix

2
.



sec. 34 Trigonometric Functions 105

It is, therefore, natural todefinethe sine and cosine functions of a complex variable
z as follows:

sinz =
eiz − e−iz

2i
and cosz =

eiz + e−iz

2
.(1)

These functions are entire since they are linear combinations (Exercise 3, Sec. 25)
of the entire functionseiz ande−iz. Knowing the derivatives

d

dz
eiz = ieiz and

d

dz
e−iz = −ie−iz

of those exponential functions, we find from equations (1) that

d

dz
sinz = cosz and

d

dz
cosz = − sinz.(2)

It is easy to see from definitions (1) that the sine and cosine functions remain
odd and even, respectively:

sin(−z) = − sinz, cos(−z) = cosz.(3)

Also,

eiz = cosz + i sinz.(4)

This is, of course, Euler’s formula (Sec. 6) whenz is real.
A variety of identities carry over from trigonometry. For instance (see Exercises

2 and 3),

sin(z1 + z2) = sinz1 cosz2 + cosz1 sinz2,(5)

cos(z1 + z2) = cosz1 cosz2 − sinz1 sinz2.(6)

From these, it follows readily that

sin 2z = 2 sinz cosz, cos 2z = cos2 z − sin2 z,(7)

sin
(

z +
π

2

)

= cosz, sin
(

z −
π

2

)

= − cosz,(8)

and [Exercise 4(a)]

sin2 z + cos2 z = 1.(9)

The periodic character of sinz and cosz is also evident:

sin(z + 2π) = sinz, sin(z + π) = − sinz,(10)

cos(z + 2π) = cosz, cos(z + π) = − cosz.(11)
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Wheny is any real number, definitions (1) and the hyperbolic functions

sinhy =
ey − e−y

2
and coshy =

ey + e−y

2

from calculus can be used to write

sin(iy) = i sinhy and cos(iy) = coshy.(12)

Also, the real and imaginary components of sinz and cosz can be displayed in
terms of those hyperbolic functions:

sinz = sinx coshy + i cosx sinh y,(13)

cosz = cosx coshy − i sinx sinh y,(14)

wherez = x + iy. To obtain expressions (13) and (14), we write

z1 = x and z2 = iy

in identities (5) and (6) and then refer to relations (12). Observe that once expres-
sion (13) is obtained, relation (14) also follows from the fact (Sec. 21) that if the
derivative of a function

f (z) = u(x, y) + iv(x, y)

exists at a pointz = (x, y), then

f ′(z) = ux(x, y) + ivx(x, y).

Expressions (13) and (14) can be used (Exercise 7) to show that

| sinz|2 = sin2 x + sinh2 y,(15)

| cosz|2 = cos2 x + sinh2 y.(16)

Inasmuch as sinhy tends to infinity asy tends to infinity, it is clear from these two
equations that sinz and cosz are not boundedon the complex plane, whereas the
absolute values of sinx and cosx are less than or equal to unity for all values ofx.
(See the definition of a bounded function at the end of Sec. 18.)

A zeroof a given functionf (z) is a numberz0 such thatf (z0) = 0. Since sinz
becomes the usual sine function in calculus whenz is real, we know that the real
numbersz = nπ (n = 0, ±1,±2, . . .) are all zeros of sinz. To show thatthere are
no other zeros,we assume that sinz = 0 and note how it follows from equation (15)
that

sin2 x + sinh2 y = 0.

This sum of two squares reveals that

sinx = 0 and sinhy = 0.
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Evidently, then,x = nπ (n = 0, ±1,±2, . . .) andy = 0 ; that is,

sinz = 0 if and only if z = nπ (n = 0, ±1,±2, . . .).(17)

Since
cosz = − sin

(

z −
π

2

)

,

according to the second of identities (8),

cosz = 0 if and only if z =
π

2
+ nπ (n = 0, ±1,±2, . . .).(18)

So, as was the case with sinz, the zeros of cosz are all real.
The other four trigonometric functions are defined in terms of the sine and

cosine functions by the expected relations:

tanz =
sinz

cosz
, cotz =

cosz

sinz
,(19)

secz =
1

cosz
, cscz =

1

sinz
.(20)

Observe that the quotients tanz and secz are analytic everywhere except at the
singularities (Sec. 24)

z =
π

2
+ nπ (n = 0, ±1,±2, . . .),

which are the zeros of cosz. Likewise, cotz and cscz have singularities at the zeros
of sinz, namely

z = nπ (n = 0, ±1,±2, . . .).

By differentiating the right-hand sides of equations (19) and (20), we obtain the
anticipated differentiation formulas

d

dz
tanz = sec2 z,

d

dz
cotz = − csc2 z,(21)

d

dz
secz = secz tanz,

d

dz
cscz = − cscz cotz.(22)

The periodicity of each of the trigonometric functions defined by equations (19) and
(20) follows readily from equations (10) and (11). For example,

tan(z + π) = tanz.(23)

Mapping properties of the transformationw = sinz are especially important
in the applications later on. A reader who wishes at this time to learn some of
those properties is sufficiently prepared to read Sec. 96 (Chap. 8), where they are
discussed.
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EXERCISES
1. Give details in the derivation of expressions (2), Sec. 34, for the derivatives of sinz

and cosz.

2. (a) With the aid of expression (4), Sec. 34, show that

eiz1eiz2 = cosz1 cosz2 − sinz1 sinz2 + i(sinz1 cosz2 + cosz1 sinz2).

Then use relations (3), Sec. 34, to show how it follows that

e−iz1e−iz2 = cosz1 cosz2 − sinz1 sinz2 − i(sinz1 cosz2 + cosz1 sinz2).

(b) Use the results in part(a) and the fact that

sin(z1 + z2) =
1

2i

[

ei(z1+z2) − e−i(z1+z2)
]

=
1

2i

(

eiz1eiz2 − e−iz1e−iz2
)

to obtain the identity

sin(z1 + z2) = sinz1 cosz2 + cosz1 sinz2

in Sec. 34.

3. According to the final result in Exercise 2(b),

sin(z + z2) = sinz cosz2 + cosz sinz2.

By differentiating each side here with respect toz and then settingz = z1, derive the
expression

cos(z1 + z2) = cosz1 cosz2 − sinz1 sinz2

that was stated in Sec. 34.

4. Verify identity (9) in Sec. 34 using

(a) identity (6) and relations (3) in that section;
(b) the lemma in Sec. 27 and the fact that the entire function

f (z) = sin2 z + cos2 z − 1

has zero values along thex axis.

5. Use identity (9) in Sec. 34 to show that

(a) 1 + tan2 z = sec2 z; (b) 1 + cot2 z = csc2 z.

6. Establish differentiation formulas (21) and (22) in Sec. 34.

7. In Sec. 34, use expressions (13) and (14) to derive expressions (15) and (16) for|sinz|2
and |cosz|2.

Suggestion:Recall the identities sin2 x + cos2 x = 1 and cosh2 y − sinh2 y = 1.

8. Point out how it follows from expressions (15) and (16) in Sec. 34 for|sinz|2 and
|cosz|2 that

(a) |sinz| ≥ |sinx|; (b) |cosz| ≥ |cosx|.
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9. With the aid of expressions (15) and (16) in Sec. 34 for|sinz|2 and|cosz|2, show that

(a) |sinhy| ≤ |sinz| ≤ coshy ; (b) |sinhy| ≤ |cosz| ≤ coshy.

10. (a) Use definitions (1), Sec. 34, of sinz and cosz to show that

2 sin(z1 + z2) sin(z1 − z2) = cos 2z2 − cos 2z1.

(b) With the aid of the identity obtained in part(a), show that if cosz1 = cosz2, then
at least one of the numbersz1 + z2 andz1 − z2 is an integral multiple of 2π .

11. Use the Cauchy–Riemann equations and the theorem in Sec. 21 to show that neither
sinz nor cosz is an analytic function ofz anywhere.

12. Use the reflection principle (Sec. 28) to show that for allz,

(a) sinz = sinz; (b) cosz = cosz.

13. With the aid of expressions (13) and (14) in Sec. 34, give direct verifications of the
relations obtained in Exercise 12.

14. Show that

(a) cos(iz) = cos(iz) for all z;
(b) sin(iz) = sin(iz) if and only if z = nπi (n = 0,±1,±2, . . .).

15. Find all roots of the equation sinz = cosh 4 by equating the real parts and then the
imaginary parts of sinz and cosh 4.

Ans.
(π

2
+ 2nπ

)

± 4i (n = 0,±1,±2, . . .).

16. With the aid of expression (14), Sec. 34, show that the roots of the equaion cosz = 2
are

z = 2nπ + i cosh−1 2 (n = 0,±1,±2, . . .).

Then express them in the form

z = 2nπ ± i ln(2 +
√

3) (n = 0,±1,±2, . . .).

35. HYPERBOLIC FUNCTIONS
The hyperbolic sine and the hyperbolic cosine of a complex variable are defined as
they are with a real variable; that is,

sinhz =
ez − e−z

2
, coshz =

ez + e−z

2
.(1)

Sinceez ande−z are entire, it follows from definitions (1) that sinhz and coshz are
entire. Furthermore,

d

dz
sinhz = coshz,

d

dz
coshz = sinhz.(2)
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Because of the way in which the exponential function appears in definitions
(1) and in the definitions (Sec. 34)

sinz =
eiz − e−iz

2i
, cosz =

eiz + e−iz

2

of sinz and cosz, the hyperbolic sine and cosine functions are closely related to
those trigonometric functions:

−i sinh(iz) = sinz, cosh(iz) = cosz,(3)

−i sin(iz) = sinhz, cos(iz) = coshz.(4)

Some of the most frequently used identities involving hyperbolic sine and
cosine functions are

sinh(−z) = − sinhz, cosh(−z) = coshz,(5)

cosh2 z − sinh2 z = 1,(6)

sinh(z1 + z2) = sinhz1 coshz2 + coshz1 sinhz2,(7)

cosh(z1 + z2) = coshz1 coshz2 + sinhz1 sinhz2(8)

and

sinhz = sinhx cosy + i coshx siny,(9)

coshz = coshx cosy + i sinhx siny,(10)

|sinhz|2 = sinh2 x + sin2 y,(11)

|coshz|2 = sinh2 x + cos2 y,(12)

wherez = x + iy. While these identities follow directly from definitions (1), they
are often more easily obtained from related trigonometric identities, with the aid of
relations (3) and (4).

EXAMPLE. To illustrate the method of proof just suggested, let us verify
identity (11). According to the first of relations (4),|sinhz|2 = |sin(iz)|2. That is,

|sinhz|2 = |sin(−y + ix)|2,(13)

wherez = x + iy. But from equation (15), Sec. 34, we know that

|sin(x + iy)|2 = sin2 x + sinh2 y ;

and this enables us to write equation (13) in the desired form (11).
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In view of the periodicity of sinz and cosz, it follows immediately from relaions
(4) that sinhz and coshz are periodic with period 2πi. Relations (4), together with
statements (17) and (18) in Sec. 34, also tell us that

sinhz = 0 if and only if z = nπi (n = 0, ±1, ±2, . . .)(14)

and

coshz = 0 if and only if z =
(π

2
+ nπ

)

i (n = 0, ±1, ±2, . . .).(15)

The hyperbolic tangent ofz is defined by means of the equation

tanhz =
sinhz

coshz
(16)

and is analytic in every domain in which coshz �= 0. The functions cothz, sechz,
and cschz are the reciprocals of tanhz, coshz, and sinhz, respectively. It is straight-
forward to verify the following differentiation formulas, which are the same as those
established in calculus for the corresponding functions of a real variable:

d

dz
tanhz = sech2z,

d

dz
cothz = −csch2z,(17)

d

dz
sechz = −sechz tanhz,

d

dz
cschz = −cschz cothz.(18)

EXERCISES
1. Verify that the derivatives of sinhz and coshz are as stated in equations (2), Sec. 35.

2. Prove that sinh 2z = 2 sinhz coshz by starting with

(a) definitions (1), Sec. 35, of sinhz and coshz;
(b) the identity sin 2z = 2 sinz cosz (Sec. 34) and using relations (3) in Sec. 35.

3. Show how identities (6) and (8) in Sec. 35 follow from identities (9) and (6), respec-
tively, in Sec. 34.

4. Write sinhz = sinh(x + iy) and coshz = cosh(x + iy), and then show how expres-
sions (9) and (10) in Sec. 35 follow from identities (7) and (8), respectively, in that
section.

5. Verify expression (12), Sec. 35, for|coshz|2.

6. Show that|sinhx| ≤ |coshz| ≤ coshx by using

(a) identity (12), Sec. 35;
(b) the inequalities|sinhy| ≤ |cosz| ≤ coshy, obtained in Exercise 9(b), Sec. 34.

7. Show that

(a) sinh(z + πi) = − sinhz; (b) cosh(z + πi) = coshz;
(c) tanh(z + πi) = tanhz.
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8. Give details showing that the zeros of sinhz and coshz are as in statements (14) and
(l5), Sec. 35.

9. Using the results proved in Exercise 8, locate all zeros and singularities of the hyper-
bolic tangent function.

10. Derive differentiation formulas (17), Sec. 35.

11. Use the reflection principle (Sec. 28) to show that for allz,

(a) sinhz = sinhz; (b) coshz = coshz.

12. Use the results in Exercise 11 to show thattanhz = tanhz at points where coshz �= 0.

13. By accepting that the stated identity is valid whenz is replaced by the real variablex
and using the lemma in Sec. 27, verify that

(a) cosh2 z − sinh2 z = 1; (b) sinhz + coshz = ez.

[Compare with Exercise 4(b), Sec. 34.]

14. Why is the function sinh(ez) entire? Write its real component as a function ofx and
y, and state why that function must be harmonic everywhere.

15. By using one of the identities (9) and (10) in Sec. 35 and then proceeding as in
Exercise 15, Sec. 34, find all roots of the equation

(a) sinhz = i; (b) coshz =
1

2
.

Ans. (a)z =
(

2n +
1

2

)

πi (n = 0,±1,±2, . . .);

(b) z =
(

2n ±
1

3

)

πi (n = 0,±1,±2, . . .).

16. Find all roots of the equation coshz = −2. (Compare this exercise with Exercise 16,
Sec. 34.)

Ans. z = ± ln(2 +
√

3) + (2n + 1)πi (n = 0,±1,±2, . . .).

36. INVERSE TRIGONOMETRIC AND HYPERBOLIC
FUNCTIONS

Inverses of the trigonometric and hyperbolic functions can be described in terms of
logarithms.

In order to define the inverse sine function sin−1 z, we write

w = sin−1 z when z = sinw.

That is,w = sin−1 z when

z =
eiw − e−iw

2i
.

If we put this equation in the form

(eiw)2 − 2iz(eiw) − 1 = 0,
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which is quadratic ineiw, and solve foreiw [see Exercise 8(a), Sec. 10 ], we find
that

eiw = iz + (1 − z2)1/2(1)

where(1 − z2)1/2 is, of course, a double-valued function ofz. Taking logarithms of
each side of equation (1) and recalling thatw = sin−1 z, we arrive at the expression

sin−1 z = −i log[iz + (1 − z2)1/2].(2)

The following example emphasizes the fact that sin−1 z is a multiple-valued function,
with infinitely many values at each pointz.

EXAMPLE. Expression (2) tells us that

sin−1(−i) = −i log(1 ±
√

2).

But
log(1 +

√
2) = ln(1 +

√
2) + 2nπi (n = 0, ±1, ±2, . . .)

and

log(1 −
√

2) = ln(
√

2 − 1) + (2n + 1)πi (n = 0, ±1,±2, . . .).

Since
ln(

√
2 − 1) = ln

1

1 +
√

2
= − ln(1 +

√
2),

then, the numbers

(−1)n ln(1 +
√

2) + nπi (n = 0, ±1,±2, . . .)

constitute the set of values of log(1 ±
√

2). Thus, in rectangular form,

sin−1(−i) = nπ + i(−1)n+1 ln(1 +
√

2) (n = 0,±1, ±2, . . .).

One can apply the technique used to derive expression (2) for sin−1 z to show
that

cos−1 z = −i log
[

z + i(1 − z2)1/2](3)

and that

tan−1 z =
i

2
log

i + z

i − z
.(4)

The functions cos−1 z and tan−1 z are also multiple-valued. When specific branches
of the square root and logarithmic functions are used, all three inverse functions
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become single-valued and analytic because they are then compositions of analytic
functions.

The derivatives of these three functions are readily obtained from their loga-
rithmic expressions. The derivatives of the first two depend on the values chosen
for the square roots:

d

dz
sin−1 z =

1

(1 − z2)1/2
,(5)

d

dz
cos−1 z =

−1

(1 − z2)1/2
.(6)

The derivative of the last one,

d

dz
tan−1 z =

1

1 + z2
,(7)

does not, however, depend on the manner in which the function is made single-
valued.

Inverse hyperbolic functions can be treated in a corresponding manner. It turns
out that

sinh−1 z = log
[

z + (z2 + 1)1/2] ,(8)

cosh−1 z = log
[

z + (z2 − 1)1/2] ,(9)

and

tanh−1 z =
1

2
log

1 + z

1 − z
.(10)

Finally, we remark that common alternative notation for all of these inverse
functions is arcsinz, etc.

EXERCISES
1. Find all the values of

(a) tan−1(2i); (b) tan−1(1 + i); (c) cosh−1(−1); (d) tanh−1 0.

Ans. (a)

(

n +
1

2

)

π +
i

2
ln 3 (n = 0,±1,±2, . . .);

(d) nπi (n = 0,±1,±2, . . .).

2. Solve the equation sinz = 2 for z by

(a) equating real parts and then imaginary parts in that equation;
(b) using expression (2), Sec. 36, for sin−1 z.

Ans. z =
(

2n +
1

2

)

π ± i ln(2 +
√

3) (n = 0,±1,±2, . . .).
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3. Solve the equation cosz =
√

2 for z.

4. Derive formula (5), Sec. 36, for the derivative of sin−1 z.

5. Derive expression (4), Sec. 36, for tan−1 z.

6. Derive formula (7), Sec. 36, for the derivative of tan−1 z.

7. Derive expression (9), Sec. 36, for cosh−1 z.





C H A P T E R

4
INTEGRALS

Integrals are extremely important in the study of functions of a complex variable.
The theory of integration, to be developed in this chapter, is noted for its mathe-
matical elegance. The theorems are generally concise and powerful, and many of
the proofs are short.

37. DERIVATIVES OF FUNCTIONS w (t)

In order to introduce integrals off (z) in a fairly simple way, we need to first
consider derivatives of complex-valued functionsw of a real variablet . We write

w(t) = u(t) + iv(t),(1)

where the functionsu andv are real-valued functions oft . The derivative

w′(t), or
d

dt
w(t),

of the function (1) at a pointt is defined as

w′(t) = u′(t) + iv′(t),(2)

provided each of the derivativesu′ andv′ exists att .
From definition (2), it follows that for every complex constantz0 = x0 + iy0,

d

dt
[z0w(t)] = [(x0 + iy0)(u + iv)]′ = [(x0u − y0v) + i(y0u + x0v)]′

= (x0u − y0v)′ + i(y0u + x0v)′ = (x0u
′ − y0v

′) + i(y0u
′ + x0v

′).

117
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But
(x0u

′ − y0v
′) + i(y0u

′ + x0v
′) = (x0 + iy0)(u

′ + iv′) = z0w
′(t),

and so

d

dt
[z0w(t)] = z0w

′(t).(3)

Another expected rule that we shall often use is

d

dt
ez0t = z0e

z0t,(4)

wherez0 = x0 + iy0. To verify this, we write

ez0t = ex0teiy0t = ex0t cosy0t + iex0t siny0t

and refer to definition (2) to see that

d

dt
ez0t = (ex0t cosy0t)

′ + i(ex0t siny0t)
′.

Familiar rules from calculus and some simple algebra then lead us to the expression

d

dt
ez0t = (x0 + iy0)(e

x0t cosy0t + iex0t siny0t),

or
d

dt
ez0t = (x0 + iy0)e

x0teiy0t.

This is, of course, the same as equation (4).
Various other rules learned in calculus, such as the ones for differentiating

sums and products, apply just as they do for real-valued functions oft . As was the
case with property (3) and formula (4), verifications may be based on corresponding
rules in calculus. It should be pointed out,however, that not every such rule carries
over to functions of type (1). The following example illustrates this.

EXAMPLE. Suppose thatw(t) is continuous on an intervala ≤ t ≤ b; that
is, its component functionsu(t) andv(t) are continuous there. Even ifw′(t) exists
whena < t < b, the mean value theorem for derivatives no longer applies. To be
precise, it is not necessarily true that there is a numberc in the intervala < t < b

such that

w′(c) =
w(b) − w(a)

b − a
.

To see this, consider the functionw(t) = eit on the interval 0≤ t ≤ 2π . When that
function is used,|w′(t)| = |ieit | = 1; and this means that the derivativew′(t) is
never zero, whilew(2π) − w(0) = 0.
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38. DEFINITE INTEGRALS OF FUNCTIONS w(t)

Whenw(t) is a complex-valued function of a real variablet and is written

w(t) = u(t) + iv(t),(1)

whereu andv are real-valued, the definite integral ofw(t) over an intervala ≤ t ≤ b

is defined as
∫ b

a

w(t) dt =
∫ b

a

u(t) dt + i

∫ b

a

v(t) dt,(2)

provided the individual integrals on the right exist. Thus

Re
∫ b

a

w(t) dt =
∫ b

a

Re[w(t)] dt and Im
∫ b

a

w(t) dt =
∫ b

a

Im[w(t)] dt.(3)

EXAMPLE 1. For an illustration of definition (2),
∫ 1

0
(1 + it)2 dt =

∫ 1

0
(1 − t2) dt + i

∫ 1

0
2 t dt =

2

3
+ i.

Improper integrals ofw(t) over unbounded intervals are defined in a simi-
lar way.

The existence of the integrals ofu andv in definition (2) is ensured if those
functions arepiecewise continuouson the intervala ≤ t ≤ b. Such a function is
continuous everywhere in the stated interval except possibly for a finite number of
points where, although discontinuous, it has one-sided limits. Of course, only the
right-hand limit is required ata; and only the left-hand limit is required atb. When
bothu andv are piecewise continuous, the functionw is said to have that property.

Anticipated rules for integrating a complex constant times a functionw(t), for
integrating sums of such functions, and for interchanging limits of integration are
all valid. Those rules, as well as the property

∫ b

a

w(t) dt =
∫ c

a

w(t) dt +
∫ b

c

w(t) dt,

are easy to verify by recalling corresponding results in calculus.
The fundamental theorem of calculus,involving antiderivatives, can, moreover,

be extended so as to apply to integrals of the type (2). To be specific, suppose that
the functions

w(t) = u(t) + iv(t) and W(t) = U(t) + iV (t)

are continuous on the intervala ≤ t ≤ b. If W ′(t) = w(t) whena ≤ t ≤ b, then
U ′(t) = u(t) andV ′(t) = v(t). Hence, in view of definition (2),

∫ b

a

w(t) dt = U(t)

]b

a

+ iV (t)

]b

a

= [U(b) + iV (b)] − [U(a) + iV (a)].
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That is,
∫ b

a

w(t) dt = W(b) − W(a) = W(t)

]b

a

.(4)

EXAMPLE 2. Since (see Sec. 37)

d

dt

(

eit

i

)

=
1

i

d

dt
eit =

1

i
ieit = eit ,

one can see that
∫ π/4

0
eit dt =

eit

i

]π/4

0
=

eiπ/4

i
−

1

i
=

1

i

(

cos
π

4
+ i sin

π

4
− 1

)

=
1

i

(

1
√

2
+

i
√

2
− 1

)

=
1

√
2

+
1

i

(

1
√

2
− 1

)

.

Then, because 1/i = −i,
∫ π/4

o
eit dt =

1
√

2
+ i

(

1 −
1

√
2

)

.

We recall from the example in Sec. 37 how the mean value theorem for deriva-
tives in calculus does not carry over to complex-valued functionsw(t). Our final
example here shows that the mean value theorem forintegrals does not carry over
either. Thus special care must continue to be used in applying rules from calculus.

EXAMPLE 3. Let w(t) be a continuous complex-valued function oft defined
on an intervala ≤ t ≤ b. In order to show that it is not necessarily true that there
is a numberc in the intervala < t < b such that

∫ b

a

w(t) dt = w(c)(b − a),

we write a = 0, b = 2π and use the same functionw(t) = eit (0 ≤ t ≤ 2π) as in
the example in Sec. 37. It is easy to see that

∫ b

a

w(t) dt =
∫ 2π

0
eit dt =

eit

i

]2π

0
= 0.

But, for any numberc such that 0< c < 2π ,

|w(c)(b − a)| = |eic| 2π = 2π;

and this means thatw(c)(b − a) is not zero.
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EXERCISES
1. Use rules in calculus to establish the following rules when

w(t) = u(t) + iv(t)

is a complex-valued function of a real variablet andw′(t) exists:

(a)
d

dt
w(−t) = −w′(−t) wherew′(−t) denotes the derivative ofw(t) with respect to

t , evaluated at−t ;

(b)
d

dt
[w(t)]2 = 2w(t)w′(t).

2. Evaluate the following integrals:

(a)
∫ 2

1

(

1

t
− i

)2

dt ; (b)
∫ π/6

0
ei2 t dt ; (c)

∫ ∞

0
e−z t dt (Rez > 0).

Ans. (a) −
1

2
− i ln 4 ; (b)

√
3

4
+

i

4
; (c)

1

z
.

3. Show that ifm andn are integers,

∫ 2π

0
eimθe−inθ dθ =

{

0 whenm �= n,

2π whenm = n.

4. According to definition (2), Sec. 38, of definite integrals of complex-valued functions
of a real variable,

∫ π

0
e(1+i)x dx =

∫ π

0
ex cosx dx + i

∫ π

0
ex sinx dx.

Evaluate the two integrals on the right here by evaluating the single integral on the
left and then using the real and imaginary parts of the value found.

Ans. −(1 + eπ )/2, (1 + eπ )/2.

5. Let w(t) = u(t) + iv(t) denote a continuous complex-valued function defined on an
interval −a ≤ t ≤ a.

(a) Suppose thatw(t) is even; that is, w(−t) = w(t) for each pointt in the given
interval. Show that

∫ a

−a

w(t) dt = 2
∫ a

0
w(t) dt.

(b) Show that ifw(t) is anodd function, one wherew(−t) = −w(t) for each point
t in the given interval, then

∫ a

−a

w(t) dt = 0.

Suggestion:In each part of this exercise, use the corresponding property of in-
tegrals ofreal-valued functions oft , which is graphically evident.
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39. CONTOURS

Integrals of complex-valued functions of acomplexvariable are defined on curves
in the complex plane, rather than on just intervals of the real line. Classes of curves
that are adequate for the study of such integrals are introduced in this section.

A set of pointsz = (x, y) in the complex plane is said to be anarc if

x = x(t), y = y(t) (a ≤ t ≤ b),(1)

wherex(t) andy(t) are continuous functions of the real parametert . This definition
establishes a continuous mapping of the intervala ≤ t ≤ b into thexy, or z, plane;
and the image points are ordered according to increasing values oft . It is convenient
to describe the points ofC by means of the equation

z = z(t) (a ≤ t ≤ b),(2)

where

z(t) = x(t) + iy(t).(3)

The arcC is a simple arc, or a Jordan arc,∗ if it does not cross itself ; that is,
C is simple if z(t1) �= z(t2) when t1 �= t2. When the arcC is simple except for the
fact thatz(b) = z(a), we say thatC is a simple closed curve, or a Jordan curve.
Such a curve ispositively orientedwhen it is in the counterclockwise direction.

The geometric nature of a particular arc often suggests different notation for
the parametert in equation (2). This is, in fact, the case in the following examples.

EXAMPLE 1. The polygonal line (Sec. 11) defined by means of the equa-
tions

z =
{

x + ix when 0≤ x ≤ 1,

x + i when 1≤ x ≤ 2
(4)

and consisting of a line segment from 0 to 1+ i followed by one from 1+ i to
2 + i (Fig. 36) is a simple arc.

x21

1 + i 2 + i
1

O

y

FIGURE 36

∗Named for C. Jordan (1838–1922), pronouncedjor-don′.
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EXAMPLE 2. The unit circle

z = eiθ (0 ≤ θ ≤ 2π)(5)

about the origin is a simple closed curve, oriented in the counterclockwise direction.
So is the circle

z = z0 + Reiθ (0 ≤ θ ≤ 2π),(6)

centered at the pointz0 and with radiusR (see Sec. 6).

The same set of points can make up different arcs.

EXAMPLE 3. The arc

z = e−iθ (0 ≤ θ ≤ 2π)(7)

is not the same as the arc described by equation (5). The set of points is the same,
but now the circle is traversed in theclockwisedirection.

EXAMPLE 4. The points on the arc

z = ei2θ (0 ≤ θ ≤ 2π)(8)

are the same as those making up the arcs (5) and (7). The arc here differs, however,
from each of those arcs since the circle is traversedtwice in the counterclockwise
direction.

The parametric representation used for any given arcC is, of course, not unique.
It is, in fact, possible to change the interval over which the parameter ranges to any
other interval. To be specific, suppose that

t = φ(τ) (α ≤ τ ≤ β),(9)

whereφ is a real-valued function mapping an intervalα ≤ τ ≤ β onto the interval
a ≤ t ≤ b in representation (2). (See Fig. 37.) We assume thatφ is continuous with

O

t

b

a ( , a)

(  , b)

FIGURE 37
t = φ (τ)
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a continuous derivative. We also assume thatφ′(τ ) > 0 for eachτ ; this ensures that
t increases withτ . Representation (2) is then transformed by equation (9) into

z = Z(τ) (α ≤ τ ≤ β),(10)

where

Z(τ) = z[φ(τ)].(11)

This is illustrated in Exercise 3.
Suppose now that the componentsx′(t) andy ′(t) of the derivative (Sec. 37)

z′(t) = x′(t) + iy′(t)(12)

of the function (3), used to representC, are continuous on the entire intervala ≤ t ≤ b.
The arc is then called adifferentiable arc, and the real-valued function

|z′(t)| =
√

[x′(t)]2 + [y′(t)]2

is integrable over the intervala ≤ t ≤ b. In fact, according to the definition of arc
length in calculus, the length ofC is the number

L =
∫ b

a

|z′(t)| dt.(13)

The value ofL is invariant under certain changes in the representation for
C that is used, as one would expect. More precisely, with the change of variable
indicated in equation (9), expression(13) takes the form [see Exercise 1(b)]

L =
∫ β

α

|z′[φ(τ)]|φ′(τ ) dτ.

So, if representation (10) is used forC, the derivative (Exercise 4)

Z′(τ ) = z′[φ(τ)]φ′(τ )(14)

enables us to write expression (13) as

L =
∫ β

α

|Z′(τ )| dτ.

Thus the same length ofC would be obtained if representation (10) were to be used.
If equation (2) represents a differentiable arc and ifz′(t) �= 0 anywhere in the

interval a < t < b, then the unit tangent vector

T =
z′(t)

|z′(t)|

is well defined for allt in that open interval, with angle of inclination argz′(t). Also,
whenT turns, it does so continuously as the parametert varies over the entire interval
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a < t < b. This expression forT is the one learned in calculus whenz(t) is inter-
preted as a radius vector. Such an arc is said to besmooth. In referring to a smooth
arcz = z(t) (a ≤ t ≤ b), then, we agree that the derivativez′(t) is continuous on the
closed intervala ≤ t ≤ b and nonzero throughout the open intervala < t < b.

A contour, or piecewise smooth arc, is an arc consisting of a finite number of
smooth arcs joined end to end. Hence if equation (2) represents a contour,z(t) is
continuous, whereas its derivativez′(t) is piecewise continuous. The polygonal line
(4) is, for example, a contour. When only the initial and final values ofz(t) are
the same, a contourC is called asimple closed contour. Examples are the circles
(5) and (6), as well as the boundary of a triangle or a rectangle taken in a specific
direction. The length of a contour or a simple closed contour is the sum of the
lengths of the smooth arcs that make up the contour.

The points on any simple closed curve or simple closed contourC are boundary
points of two distinct domains, one of which is the interior ofC and is bounded.
The other, which is the exterior ofC, is unbounded. It will be convenient to accept
this statement, known as theJordan curve theorem, as geometrically evident; the
proof is not easy.∗

EXERCISES
1. Show that ifw(t) = u(t) + iv(t) is continuous on an intervala ≤ t ≤ b, then

(a)
∫ −a

−b

w(−t) dt =
∫ b

a

w(τ) dτ ;

(b)
∫ b

a

w(t) dt =
∫ β

α

w[φ(τ)]φ′(τ ) dτ , whereφ(τ) is the function in equation (9),

Sec. 39.

Suggestion:These identities can be obtained by noting that they are valid for
real-valued functions oft .

2. Let C denote the right-hand half of the circle|z| = 2, in the counterclockwise direction,
and note that two parametric representations forC are

z = z(θ) = 2eiθ

(

−
π

2
≤ θ ≤

π

2

)

and
z = Z(y) =

√

4 − y2 + iy (−2 ≤ y ≤ 2).

Verify that Z(y) = z[φ(y)], where

φ(y) = arctan
y

√

4 − y2

(

−
π

2
< arctant <

π

2

)

.

∗See pp. 115–116 of the book by Newman or Sec. 13 of the one by Thron, both of which are cited
in Appendix 1. The special case in whichC is a simple closed polygon is proved on pp. 281–285
of Vol. 1 of the work by Hille, also cited in Appendix 1.



126 Integrals chap. 4

Also, show that this functionφ has a positive derivative, as required in the conditions
following equation (9), Sec. 39.

3. Derive the equation of the line through the points (α, a) and(β, b) in theτ t plane that
are shown in Fig. 37. Then use it to find the linear functionφ(τ) which can be used in
equation (9), Sec. 39, to transform representation (2) in that section into representation
(10) there.

Ans. φ(τ) =
b − a

β − α
τ +

aβ − bα

β − α
.

4. Verify expression (14), Sec. 39, for the derivative ofZ(τ) = z[φ(τ)].
Suggestion:Write Z(τ) = x[φ(τ)] + iy[φ(τ)] and apply the chain rule for real-

valued functions of a real variable.

5. Suppose that a functionf (z) is analytic at a pointz0 = z(t0) lying on a smooth arc
z = z(t) (a ≤ t ≤ b). Show that ifw(t) = f [z(t)], then

w′(t) = f ′[z(t)]z′(t)

when t = t0.
Suggestion:Write f (z) = u(x, y) + iv(x, y) andz(t) = x(t) + iy(t), so that

w(t) = u[x(t), y(t)] + iv[x(t), y(t)].

Then apply the chain rule in calculus for functions of two real variables to write

w′ = (uxx
′ + uyy

′ ) + i(vxx
′ + vyy

′ ),

and use the Cauchy–Riemann equations.

6. Let y(x) be a real-valued function defined on the interval 0≤ x ≤ 1 by means of the
equations

y(x) =
{

x3 sin(π/x) when 0< x ≤ 1,

0 when x = 0.

(a) Show that the equation

z = x + iy(x) (0 ≤ x ≤ 1)

represents an arcC that intersects the real axis at the pointsz = 1/n (n = 1, 2, . . .)

andz = 0, as shown in Fig. 38.
(b) Verify that the arcC in part (a) is, in fact, asmootharc.

Suggestion:To establish the continuity ofy(x) at x = 0, observe that

0 ≤
∣

∣

∣
x3 sin

(π

x

)
∣

∣

∣
≤ x3

whenx > 0. A similar remark applies in findingy′(0) and showing thaty′(x) is con-
tinuous atx = 0.



sec. 40 Contour Integrals 127

x

C

1O

y

1–
3

1–
2

FIGURE 38

40. CONTOUR INTEGRALS

We turn now to integrals of complex-valued functionsf of the complex variablez.
Such an integral is defined in terms of the valuesf (z) along a given contourC,
extending from a pointz = z1 to a pointz = z2 in the complex plane. It is, therefore,
a line integral ; and its value depends, in general, on the contourC as well as on
the functionf . It is written

∫

C

f (z) dz or
∫ z2

z1

f (z) dz,

the latter notation often being used when the value of the integral is independent
of the choice of the contour taken between two fixed end points. While the integral
may be defined directly as the limit of a sum, we choose to define it in terms of a
definite integral of the type introduced in Sec. 38.

Suppose that the equation

z = z(t) (a ≤ t ≤ b)(1)

represents a contourC, extending from a pointz1 = z(a) to a pointz2 = z(b). We
assume thatf [z(t)] is piecewise continuous(Sec. 38) on the intervala ≤ t ≤ b and
refer to the functionf (z) as being piecewise continuous onC. We then define the
line integral, orcontour integral, of f alongC in terms of the parametert :

∫

C

f (z) dz =
∫ b

a

f [z(t)]z′(t) dt.(2)

Note that sinceC is a contour,z′(t) is also piecewise continuous ona ≤ t ≤ b; and
so the existence of integral (2) is ensured.

The value of a contour integral is invariant under a change in the representation
of its contour when the change is of the type (11), Sec. 39. This can be seen by
following the same general procedure that was used in Sec. 39 to show the invariance
of arc length.
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It follows immediately from definition (2) and properties of integrals of
complex-valued functionsw(t) mentioned in Sec. 38 that

∫

C

z0f (z) dz = z0

∫

C

f (z) dz,(3)

for any complex constantz0, and
∫

C

[

f (z) + g(z)
]

dz =
∫

C

f (z) dz +
∫

C

g(z) dz.(4)

Associated with the contourC used in integral (2) is the contour−C, consisting
of the same set of points but with the order reversed so that the new contour
extends from the pointz2 to the pointz1 (Fig. 39). The contour−C has parametric
representation

z = z(−t) (−b ≤ t ≤ −a).

x

z1

z2

C

–C

O

y

FIGURE 39

Hence, in view of Exercise 1(a), Sec. 38,
∫

−C

f (z) dz =
∫ −a

−b

f [z(−t)]
d

dt
z(−t) dt = −

∫ −a

−b

f [z(−t)] z′(−t) dt

where z′(−t) denotes the derivative ofz(t) with respect tot , evaluated at−t .
Making the substitutionτ = −t in this last integral and referring to Exercise 1(a),
Sec. 39, we obtain the expression

∫

−C

f (z) dz = −
∫ b

a

f [z(τ )]z′(τ ) dτ,

which is the same as
∫

−C

f (z) dz = −
∫

C

f (z) dz.(5)

Consider now a pathC, with representation (1), that consists of a contourC1

from z1 to z2 followed by a contourC2 from z2 to z3, the initial point ofC2 being
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the final point ofC1 (Fig. 40). There is a valuec of t , wherea < c < b, such that
z(c) = z2. Consequently,C1 is represented by

z = z(t) (a ≤ t ≤ c)

andC2 is represented by

z = z(t) (c ≤ t ≤ b).

Also, by a rule for integrals of functionsw(t) that was noted in Sec. 38,
∫ b

a

f [z(t)]z′(t) dt =
∫ c

a

f [z(t)]z′(t) dt +
∫ b

c

f [z(t)]z′(t) dt.

Evidently, then,
∫

C

f (z) dz =
∫

C1

f (z) dz +
∫

C2

f (z) dz.(6)

Sometimes the contourC is called thesumof its legsC1 andC2 and is denoted by
C1 + C2. The sum of two contoursC1 and −C2 is well defined whenC1 and C2

have the same final points, and it is writtenC1 − C2.

x

C1

C2
C

z1

z2

z3

O

y

FIGURE 40
C = C1 + C2

Definite integrals in calculus can be interpreted as areas, and they have other
interpretations as well. Except in special cases, no corresponding helpful interpre-
tation, geometric or physical, is available for integrals in the complex plane.

41. SOME EXAMPLES

The purpose of this and the next section is to provide examples of the definition in
Sec. 40 of contour integrals and to illustrate various properties that were mentioned
there. We defer development of the concept of antiderivatives of the integrandsf (z)

of contour integrals until Sec. 44.

EXAMPLE 1. Let us find the value of the integral

I =
∫

C

z dz(1)
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whenC is the right-hand half

z = 2eiθ

(

−
π

2
≤ θ ≤

π

2

)

of the circle|z| = 2 from z = −2i to z = 2i (Fig. 41). According to definition (2),
Sec. 40,

I =
∫ π/2

−π/2
2eiθ (2eiθ )′ dθ = 4

∫ π/2

−π/2
eiθ (eiθ )′ dθ;

and, since

eiθ = e−iθ and (eiθ )′ = ieiθ ,

this means that

I = 4
∫ π/2

−π/2
e−iθ ieiθ dθ = 4i

∫ π/2

−π/2
dθ = 4πi.

Note thatzz = |z|2 = 4 whenz is a point on the semicircleC. Hence the result
∫

C

z dz = 4πi(2)

can also be written
∫

C

dz

z
= πi.

x

C
2i

–2i

O

y

FIGURE 41

If f (z) is given in the formf (z) = u(x, y) + iv(x, y), wherez = x + iy, one
can sometimes apply definition (2), Sec. 40, using one of the variablesx andy as
the parameter.

EXAMPLE 2. Here we first letC1 denote the polygonal lineOAB shown in
Fig. 42 and evaluate the integral

I1 =
∫

C1

f (z) dz =
∫

OA

f (z) dz +
∫

AB

f (z) dz,(3)
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where

f (z) = y − x − i3x2 (z = x + iy).

The legOAmay be represented parametrically asz = 0 + iy (0 ≤ y ≤ 1); and, since
x = 0 at points on that line segment, the values off there vary with the parameter
y according to the equationf (z) = y (0 ≤ y ≤ 1). Consequently,

∫

OA

f (z) dz =
∫ 1

0
yi dy = i

∫ 1

0
y dy =

i

2
.

On the legAB, the points arez = x + i (0 ≤ x ≤ 1); and, sincey = 1 on this
segment,
∫

AB

f (z) dz =
∫ 1

0
(1 − x − i3x2) · 1dx =

∫ 1

0
(1 − x) dx − 3i

∫ 1

0
x2 dx =

1

2
− i.

In view of equation (3), we now see that

I1 =
1 − i

2
.(4)

If C2 denotes the segmentOB of the line y = x in Fig. 42, with parametric
representationz = x + ix (0 ≤ x ≤ 1), the fact thaty = x on OB enables us to
write

I2 =
∫

C2

f (z) dz =
∫ 1

0
−i3x2(1 + i) dx = 3(1 − i)

∫ 1

0
x2 dx = 1 − i.

Evidently, then, the integrals off (z) along the two pathsC1 andC2 havedifferent
valueseven though those paths have the same initial and the same final points.

Observe how it follows that the integral off (z) over the simple closed contour
OABO, or C1 − C2, has thenonzero value

I1 − I2 =
−1 + i

2
.

xO

y

1 + ii
A B

C1

C2

FIGURE 42

EXAMPLE 3. We begin here by lettingC denote an arbitrarysmootharc
(Sec. 39)

z = z(t) (a ≤ t ≤ b)
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from a fixed pointz1 to a fixed pointz2 (Fig. 43). In order to evaluate the integral
∫

C

z dz =
∫ b

a

z(t)z′(t) dt,

we note that according to Exercise 1(b), Sec. 38,

d

dt

[z(t)]2

2
= z(t)z′(t).

Then, becausez(a) = z1 andz(b) = z2, we have
∫

C

z dz =
[z(t)]2

2

]b

a

=
[z(b)]2 − [z(a)]2

2
=

z2
2 − z2

1

2
.

Inasmuch as the value of this integral depends only on the end points ofC and is
otherwise independent of the arc that is taken, we may write

∫ z2

z1

z dz =
z2

2 − z2
1

2
.(5)

(Compare with Example 2, where the value of an integral from one fixed point to
another depended on the path that was taken.)

x

Cz1

z2

O

y

FIGURE 43

Expression (5) is also valid whenC is a contour that is not necessarily smooth
since a contour consists of a finite number of smooth arcsCk (k = 1, 2, . . . , n),
joined end to end. More precisely, suppose that eachCk extends fromzk to zk+1.
Then

∫

C

z dz =
n

∑

k=1

∫

Ck

z dz =
n

∑

k=1

∫ zk+1

zk

z dz =
n

∑

k=1

z2
k+1 − z2

k

2
=

z2
n+1 − z2

1

2
,(6)

where this last summation has telescoped andz1 is the initial point ofC andzn+1

is its final point.
It follows from expression (6) that the integral of the functionf (z) = z around

each closed contour in the plane has value zero. (Once again, compare with Example
2, where the value of the integral of a given function around a closed contour was
not zero.) The question of predicting when an integral around a closed contour has
value zero will be discussed in Secs. 44, 46, and 48.
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42. EXAMPLES WITH BRANCH CUTS

The path in a contour integral can contain a point on a branch cut of the integrand
involved. The next two examples illustrate this.

EXAMPLE 1. Let C denote the semicircular path

z = 3eiθ (0 ≤ θ ≤ π)

from the pointz = 3 to the pointz = −3 (Fig. 44). Although the branch

f (z) = z1/2 = exp

(

1

2
logz

)

(|z| > 0, 0 < argz < 2π)

of the multiple-valued functionz1/2 is not defined at the initial pointz = 3 of the
contourC, the integral

I =
∫

C

z1/2 dz(1)

nevertheless exists. For the integrand is piecewise continuous onC. To see that this
is so, we first observe that whenz(θ) = 3eiθ ,

f [z(θ)] = exp

[

1

2
(ln 3 + iθ)

]

=
√

3eiθ/2.

x

C

O–3 3

y

FIGURE 44

Hence the right-hand limits of the real and imaginary components of the function

f [z(θ)]z′(θ) =
√

3eiθ/23ieiθ = 3
√

3iei3θ/2 = −3
√

3 sin
3θ

2
+ i3

√
3 cos

3θ

2
(0 < θ ≤ π)

at θ = 0 exist, those limits being 0 andi3
√

3, respectively. This means that
f [z(θ)]z′(θ) is continuous on the closed interval 0≤ θ ≤ π when its value atθ = 0
is defined asi3

√
3. Consequently,

I = 3
√

3i

∫ π

0
ei3θ/2 dθ.
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Since
∫ π

0
ei3θ/2 dθ =

2

3i
ei3θ/2

]π

0
= −

2

3i
(1 + i),

we now have the value

I = −2
√

3(1 + i)(2)

of integral (1).

EXAMPLE 2. Suppose thatC is the positively oriented circle (Fig. 45)

z = Reiθ (−π ≤ θ ≤ π)

about the origin, and lefta denote any nonzero real number. Using the principal
branch

f (z) = za−1 = exp[(a − 1)Log z] (|z| > 0, −π < Arg z < π)

of the power functionza−1, let us evaluate the integral

I =
∫

C

za−1 dz.(3)

x–1

y

C

FIGURE 45

Whenz(θ) = Reiθ , it is easy to see that

f [z(θ)]z′(θ) = iRaeiaθ = −Ra sinaθ + iRa cosaθ,

where the positive value ofRa is to be taken. Inasmuch as this function is piecewise
continuous on−π < θ < π , integral (3) exists. In fact,

I = iRa

∫ π

−π

eiaθ dθ = iRa

[

eiaθ

ia

]π

−π

= i
2Ra

a
·
eiaπ − e−iaπ

2i
= i

2Ra

a
sinaπ.(4)
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Note that ifa is a nonzero integern, this result tells us that
∫

C

zn−1 dz = 0 (n = ±1, ±2, . . .).(5)

If a is allowed to be zero, we have
∫

C

dz

z
=

∫ π

−π

1

Reiθ
iReiθ dθ = i

∫ π

−π

dθ = 2πi.(6)

EXERCISES

For the functionsf and contoursC in Exercises 1 through 7, use parametric repre-
sentations forC, or legs ofC, to evaluate

∫

C

f (z) dz.

1. f (z) = (z + 2)/z andC is

(a) the semicirclez = 2eiθ (0 ≤ θ ≤ π);
(b) the semicirclez = 2eiθ (π ≤ θ ≤ 2π);
(c) the circlez = 2eiθ (0 ≤ θ ≤ 2π).

Ans. (a) −4 + 2πi; (b) 4 + 2πi; (c) 4πi.

2. f (z) = z − 1 andC is the arc fromz = 0 to z = 2 consisting of

(a) the semicirclez = 1 + eiθ (π ≤ θ ≤ 2π);
(b) the segmentz = x (0 ≤ x ≤ 2) of the real axis.

Ans. (a) 0 ; (b) 0.

3. f (z) = π exp(πz) andC is the boundary of the square with vertices at the points 0, 1,
1 + i, andi, the orientation ofC being in the counterclockwise direction.

Ans. 4(eπ − 1).

4. f (z) is defined by means of the equations

f (z) =
{

1 wheny < 0,

4y wheny > 0,

andC is the arc fromz = −1 − i to z = 1 + i along the curvey = x3.
Ans. 2+ 3i.

5. f (z) = 1 andC is an arbitrary contour from any fixed pointz1 to any fixed pointz2
in the z plane.

Ans. z2 − z1.

6. f (z) is the branch

z−1+i = exp[(−1 + i)logz] (|z| > 0, 0 < argz < 2π)

of the indicated power function, andC is the unit circlez = eiθ (0 ≤ θ ≤ 2π).
Ans. i(1 − e−2π ).
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7. f (z) is the principal branch

zi = exp(iLog z) (|z| > 0,−π < Arg z < π)

of this power function, andC is the semicirclez = eiθ (0 ≤ θ ≤ π).

Ans. −
1 + e−π

2
(1 − i).

8. With the aid of the result in Exercise 3, Sec. 38, evaluate the integral
∫

C

zm z ndz,

wherem andn are integers andC is the unit circle|z| = 1, taken counterclockwise.

9. Evaluate the integralI in Example 1, Sec. 41, using this representation forC:

z =
√

4 − y2 + iy (−2 ≤ y ≤ 2).

(See Exercise 2, Sec. 39.)

10. Let C0 andC denote the circles

z = z0 + Reiθ (−π ≤ θ ≤ π) and z = Reiθ (−π ≤ θ ≤ π),

respectively.

(a) Use these parametric representations to show that
∫

C0

f (z − z0) dz =
∫

C

f (z) dz

whenf is piecewise continuous onC.
(b) Apply the result in part(a) to integrals (5) and (6) in Sec. 42 to show that

∫

C0

(z − z0)
n−1 dz = 0 (n = ±1,±2, . . .) and

∫

C0

dz

z − z0
= 2πi.

11. (a) Suppose that a functionf (z) is continuous on a smooth arcC, which has a
parametric representationz = z(t) (a ≤ t ≤ b); that is,f [z(t)] is continuous on
the intervala ≤ t ≤ b. Show that ifφ(τ) (α ≤ τ ≤ β) is the function described
in Sec. 39, then

∫ b

a

f [z(t)]z′(t) dt =
∫ β

α

f [Z(τ)]Z′(τ ) dτ

whereZ(τ) = z[φ(τ)].
(b) Point out how it follows that the identity obtained in part(a) remains valid when

C is any contour, not necessarily a smooth one, andf (z) is piecewise continuous
on C. Thus show that the value of the integral off (z) alongC is the same when
the representationz = Z(τ) (α ≤ τ ≤ β) is used, instead of the original one.
Suggestion:In part (a), use the result in Exercise 1(b), Sec. 39, and then refer to

expression (14) in that section.
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43. UPPER BOUNDS FOR MODULI OF CONTOUR
INTEGRALS

We turn now to an inequality involving contourintegrals that is extremely important
in various applications. We present the result as a theorem but preface it with a
needed lemma involving functionsw(t) of the type encountered in Secs. 37 and 38.

Lemma. If w(t) is a piecewise continuous complex-valued function defined
on an intervala ≤ t ≤ b, then

∣

∣

∣

∣

∫ b

a

w(t) dt

∣

∣

∣

∣

≤
∫ b

a

|w(t)| dt.(1)

This inequality clearly holds when the value of the integral on the left is zero.
Thus, in the verification we may assume that its value is anonzerocomplex number
and write

∫ b

a

w(t) dt = r0 eiθ0.

Solving for r0, we have

r0 =
∫ b

a

e−iθ0w(t) dt.(2)

Now the left-hand side of this equation is a real number, and so the right-hand side
is too. Thus, using the fact that the real part of a real number is the number itself,
we find that

r0 = Re
∫ b

a

e−iθ0w(t) dt,

or

r0 =
∫ b

a

Re[e−iθ0w(t)] dt.(3)

But

Re[e−iθ0w(t)] ≤ |e−iθ0w(t)| = |e−iθ0| |w(t)| = |w(t)|,

and it follows from equation (3) that

r0 ≤
∫ b

a

|w(t)| dt.

Becauser0 is, in fact, the left-hand side of inequality (1), the verification of the
lemma is complete.



138 Integrals chap. 4

Theorem. Let C denote a contour of lengthL, and suppose that a function
f (z) is piecewise continuous onC. If M is a nonnegative constant such that

|f (z)| ≤ M(4)

for all points z on C at whichf (z) is defined, then
∣

∣

∣

∣

∫

C

f (z) dz

∣

∣

∣

∣

≤ ML.(5)

To prove this, letz = z(t) (a ≤ t ≤ b) be a parametric representation ofC.

According to the above lemma,
∣

∣

∣

∣

∫

C

f (z) dz

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ b

a

f [z(t)]z′(t) dt

∣

∣

∣

∣

≤
∫ b

a

|f [z(t)]z′(t)| dt.

Inasmuch as

|f [z(t)]z′(t)| = |f [z(t)]| |z′(t)| ≤ M |z′(t)|

whena ≤ t ≤ b, it follows that
∣

∣

∣

∣

∫

C

f (z) dz

∣

∣

∣

∣

≤ M

∫ b

a

|z′(t)| dt.

Since the integral on the right here represents the lengthL of C (see Sec. 39),
inequality (5) is established. It is, of course, a strict inequality if inequality (4) is
strict.

Note that sinceC is a contour andf is piecewise continuous onC, a numberM
such as the one appearing in inequality (4) will always exist. This is because the real-
valued function|f [z(t)]| is continuous on the closed bounded intervala ≤ t ≤ b

whenf is continuous onC; and such a function always reaches a maximum value
M on that interval.∗ Hence|f (z)| has a maximum value onC whenf is continuous
on it. The same is, then, true whenf is piecewisecontinuous onC.

EXAMPLE 1. Let C be the arc of the circle|z| = 2 from z = 2 to z = 2i

that lies in the first quadrant (Fig. 46). Inequality (5) can be used to show that
∣

∣

∣

∣

∫

C

z + 4

z3 − 1
dz

∣

∣

∣

∣

≤
6π

7
.(6)

This is done by noting first that ifz is a point onC, so that|z| = 2, then

|z + 4| ≤ |z| + 4 = 6

∗See, for instance A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 86–90, 1983.
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x

C

O

2i

2

y

FIGURE 46

and
|z3 − 1| ≥ ||z|3 − 1| = 7.

Thus, whenz lies onC,
∣

∣

∣

∣

z + 4

z3 − 1

∣

∣

∣

∣

=
|z + 4|
|z3 − 1|

≤
6

7
.

Writing M = 6/7 and observing thatL = π is the length ofC, we may now use
inequality (5) to obtain inequality (6).

EXAMPLE 2. HereCR is the semicircular path

z = Reiθ (0 ≤ θ ≤ π),

andz1/2 denotes the branch

z1/2 = exp

(

1

2
logz

)

=
√

reiθ/2
(

r > 0, −
π

2
< θ <

3π

2

)

of the square root function. (See Fig. 47.) Without actually finding the value of the
integral, one can easily show that

lim
R→∞

∫

CR

z1/2

z2 + 1
dz = 0.(7)

For, when|z| = R > 1,
|z1/2| = |

√
Reiθ/2| =

√
R

and
|z2 + 1| ≥ ||z2| − 1| = R2 − 1.

x

CR

O–R R

y

FIGURE 47
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Consequently, at points onCR,
∣

∣

∣

∣

z1/2

z2 + 1

∣

∣

∣

∣

≤ MR where MR =
√

R

R2 − 1
.

Since the length ofCR is the numberL = πR, it follows from inequality (5) that
∣

∣

∣

∣

∫

CR

z1/2

z2 + 1
dz

∣

∣

∣

∣

≤ MRL.

But

MRL =
πR

√
R

R2 − 1
·

1/R2

1/R2
=

π/
√

R

1 − (1/R2)
,

and it is clear that the term on the far right here tends to zero asR tends to infinity.
Limit (7) is, therefore, established.

EXERCISES
1. Without evaluating the integral, show that

∣

∣

∣

∣

∫

C

dz

z2 − 1

∣

∣

∣

∣

≤
π

3

whenC is the same arc as the one in Example 1, Sec. 43.

2. Let C denote the line segment fromz = i to z = 1. By observing that of all the points
on that line segment, the midpoint is the closest to the origin, show that

∣

∣

∣

∣

∫

C

dz

z4

∣

∣

∣

∣

≤ 4
√

2

without evaluating the integral.

3. Show that ifC is the boundary of the triangle with vertices at the points 0, 3i, and−4,
oriented in the counterclockwise direction (see Fig. 48), then

∣

∣

∣

∣

∫

C

(ez − z) dz

∣

∣

∣

∣

≤ 60.

xO– 4

y

3i

C

FIGURE 48
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4. Let CR denote the upper half of the circle|z| = R (R > 2), taken in the counterclock-
wise direction. Show that

∣

∣

∣

∣

∫

CR

2z2 − 1

z4 + 5z2 + 4
dz

∣

∣

∣

∣

≤
πR(2R2 + 1)

(R2 − 1)(R2 − 4)
.

Then, by dividing the numerator and denominator on the right here byR4, show that
the value of the integral tends to zero asR tends to infinity.

5. Let CR be the circle|z| = R (R > 1), described in the counterclockwise direction.
Show that ∣

∣

∣

∣

∫

CR

Log z

z2
dz

∣

∣

∣

∣

< 2π

(

π + ln R

R

)

,

and then use l’Hospital’s rule to show that the value of this integral tends to zero as
R tends to infinity.

6. Let Cρ denote a circle|z| = ρ (0 < ρ < 1), oriented in the counterclockwise direction,
and suppose thatf (z) is analytic in the disk|z| ≤ 1. Show that ifz−1/2 represents
any particular branch of that power ofz, then there is a nonnegative constantM ,
independent ofρ, such that

∣

∣

∣

∣

∣

∫

Cρ

z−1/2f (z) dz

∣

∣

∣

∣

∣

≤ 2πM
√

ρ.

Thus show that the value of the integral here approaches 0 asρ tends to 0.
Suggestion:Note that sincef (z) is analytic, and therefore continuous, throughout

the disk|z| ≤ 1, it is bounded there (Sec. 18).

7. Apply inequality (1), Sec. 43, to show that for all values ofx in the interval−1 ≤ x ≤ 1,
the functions∗

Pn(x) =
1

π

∫ π

0
(x + i

√

1 − x2 cosθ)n dθ (n = 0, 1, 2, . . .)

satisfy the inequality|Pn(x)| ≤ 1.

8. Let CN denote the boundary of the square formed by the lines

x = ±
(

N +
1

2

)

π and y = ±
(

N +
1

2

)

π,

whereN is a positive integer and the orientation ofCN is counterclockwise.

(a) With the aid of the inequalities

|sinz| ≥ |sinx| and |sinz| ≥ |sinhy|,

obtained in Exercises 8(a) and 9(a) of Sec. 34, show that| sinz| ≥ 1 on the vertical
sides of the square and that|sinz| > sinh(π/2) on the horizontal sides. Thus show
that there is a positive constantA, independent of N, such that|sinz| ≥ A for all
pointsz lying on the contourCN .

∗These functions are actually polynomials inx. They are known asLegendre polynomialsand are
important in applied mathematics. See, for example, Chap. 4 of the book by Lebedev that is listed in
Appendix 1.
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(b) Using the final result in part(a), show that
∣

∣

∣

∣

∫

CN

dz

z2 sinz

∣

∣

∣

∣

≤
16

(2N + 1)πA

and hence that the value of this integral tends to zero asN tends to infinity.

44. ANTIDERIVATIVES

Although the value of a contour integral of a functionf (z) from a fixed pointz1

to a fixed pointz2 depends, in general, on the path that is taken, there are certain
functions whose integrals fromz1 to z2 have values that areindependent of path.
(Recall Examples 2 and 3 in Sec. 41.) The examples just cited also illustrate the
fact that the values of integrals around closed paths are sometimes, but not always,
zero. Our next theorem is useful in determining when integration is independent of
path and, moreover, when an integral around a closed path has value zero.

The theorem contains an extension of the fundamental theorem of calculus
that simplifies the evaluation of many contour integrals. The extension involves the
concept on an antiderivative of a continuous functionf (z) on a domainD, or a
functionF (z) such thatF ′(z) = f (z) for all z in D. Note that an antiderivative is, of
necessity, an analytic function. Note, too, thatan antiderivative of a given function
f (z) is unique except for an additive constant. This is because the derivative of the
differenceF(z) − G(z) of any two such antiderivatives is zero ; and, according to
the theorem in Sec. 24, an analytic function is constant in a domainD when its
derivative is zero throughoutD.

Theorem. Suppose that a functionf (z) is continuous on a domainD. If any
one of the following statements is true, then so are the others:

(a) f (z) has an antiderivativeF(z) throughoutD;

(b) the integrals off (z) along contours lying entirely inD and extending from any
fixed pointz1 to any fixed pointz2 all have the same value, namely

∫ z2

z1

f (z) dz = F(z)

]z2

z1

= F(z2) − F(z1)

whereF(z) is the antiderivative in statement (a);

(c) the integrals off (z) around closed contours lying entirely inD all have value
zero.

It should be emphasized that the theorem doesnot claim that any of these
statements is true for a given functionf (z). It says only that all of them are true or
that none of them is true. The next section is devoted to the proof of the theorem
and can be easily skipped by a reader who wishes to get on with other important
aspects of integration theory. But we include here a number of examples illustrating
how the theorem can be used.
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EXAMPLE 1. The continuous functionf (z) = z2 has an antiderivative
F(z) = z3/3 throughout the plane. Hence

∫ 1+i

0
z2 dz =

z3

3

]1+i

0
=

1

3
(1 + i)3 =

2

3
(−1 + i)

for every contour fromz = 0 to z = 1 + i.

EXAMPLE 2. The functionf (z) = 1/z2, which is continuous everywhere
except at the origin, has an antiderivativeF(z) = −1/z in the domain|z| > 0,
consisting of the entire plane with the origin deleted. Consequently,

∫

C

dz

z2
= 0

whenC is the positively oriented circle (Fig. 49)

z = 2eiθ (−π ≤ θ ≤ π)(1)

about the origin.
Note that the integral of the functionf (z) = 1/z around the same circlecannot

be evaluated in a similar way. For, although the derivative of any branchF (z) of
logz is 1/z (Sec. 31),F (z) is not differentiable, or even defined, along its branch
cut. In particular, if a rayθ = α from the origin is used to form the branch cut,F ′(z)
fails to exist at the point where that ray intersects the circleC (see Fig. 49). SoC
does not lie in any domain throughout whichF ′(z) = 1/z, and one cannot make
direct use of an antiderivative. Example 3, just below, illustrates how a combination
of two different antiderivatives can be used to evaluatef (z) = 1/z aroundC.

x

2i

–2i

O

y

C

FIGURE 49

EXAMPLE 3. Let C1 denote the right half

z = 2eiθ

(

−
π

2
≤ θ ≤

π

2

)

(2)
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of the circleC in Example 2. The principal branch

Logz = ln r + i� (r > 0,−π < � < π)

of the logarithmic function serves as an antiderivative of the function 1/z in the
evaluation of the integral of 1/z alongC1 (Fig. 50):

∫

C1

dz

z
=

∫ 2i

−2i

dz

z
= Logz

]2i

−2i

= Log(2i) − Log(−2i)

=
(

ln 2 + i
π

2

)

−
(

ln 2 − i
π

2

)

= πi.

This integral was evaluated in another way in Example 1, Sec. 41, where represen-
tation (2) for the semicircle was used.

x

C1

2i

–2i

O

y

FIGURE 50

Next, letC2 denote theleft half

z = 2eiθ

(

π

2
≤ θ ≤

3π

2

)

(3)

of the same circleC and consider the branch

logz = ln r + iθ (r > 0, 0 < θ < 2π)

of the logarithmic function (Fig. 51). One can write

x

C2

2i

–2i

O

y

FIGURE 51
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∫

C2

dz

z
=

∫ −2i

2i

dz

z
= logz

]−2i

2i

= log(−2i) − log(2i)

=
(

ln 2 + i
3π

2

)

−
(

ln 2 + i
π

2

)

= πi.

The value of the integral of 1/z around the entire circleC = C1 + C2 is thus
obtained:

∫

C

dz

z
=

∫

C1

dz

z
+

∫

C2

dz

z
= πi + πi = 2πi.

EXAMPLE 4. Let us use an antiderivative to evaluate the integral
∫

C1

z1/2 dz,(4)

where the integrand is the branch

f (z) = z1/2 = exp

(

1

2
logz

)

=
√

reiθ/2 (r > 0, 0 < θ < 2π)(5)

of the square root function and whereC1 is any contour fromz = −3 to z = 3 that,
except for its end points, lies above thex axis (Fig. 52). Although the integrand is
piecewise continuous onC1, and the integral therefore exists, the branch (5) ofz1/2

is not defined on the rayθ = 0, in particular at the pointz = 3. But another branch,

f1(z) =
√

reiθ/2
(

r > 0,−
π

2
< θ <

3π

2

)

,

is defined and continuous everywhere onC1. The values off1(z) at all points on
C1 exceptz = 3 coincide with those of our integrand (5); so the integrand can be
replaced byf1(z). Since an antiderivative off1(z) is the function

F1(z) =
2

3
z3/2 =

2

3
r
√

rei3θ/2
(

r > 0,−
π

2
< θ <

3π

2

)

,

x

C1

C2

O

y

–3 3

FIGURE 52



146 Integrals chap. 4

we can now write

∫

C1

z1/2 dz =
∫ 3

−3
f1(z) dz = F1(z)

]3

−3

= 2
√

3(ei0 − ei3π/2) = 2
√

3(1 + i).

(Compare with Example 1 in Sec. 42.)
The integral

∫

C2

z1/2 dz(6)

of the function (5) over any contourC2 that extends fromz = −3 to z = 3 below
the real axis can be evaluated in a similar way. In this case, we can replace the
integrand by the branch

f2(z) =
√

reiθ/2
(

r > 0,
π

2
< θ <

5π

2

)

,

whose values coincide with those of the integrand atz = −3 and at all points on
C2 below the real axis. This enables us to use an antiderivative off2(z) to evaluate
integral (6). Details are left to the exercises.

45. PROOF OF THE THEOREM

To prove the theorem in the previous section, it is sufficient to show that statement
(a) implies statement(b), that statement(b) implies statement(c), and finally that
statement(c) implies statement(a).

Let us assume that statement(a) is true, or thatf (z) has an antiderivativeF (z)
on the domainD being considered. To show how statement(b) follows, we need to
show that integration in independent of path inD and that the fundamental theorem
of calculus can be extended usingF (z). If a contourC from z1 to z2 is a smooth
arc lying inD, with parametric representationz = z(t) (a ≤ t ≤ b), we know from
Exercise 5, Sec. 39, that

d

dt
F [z(t)] = F ′[z(t)]z′(t) = f [z(t)]z′(t) (a ≤ t ≤ b).

Because the fundamental theorem of calculus can be extended so as to apply to
complex-valued functions of a real variable (Sec. 38), it follows that

∫

C

f (z) dz =
∫ b

a

f
[

z(t)
]

z′(t) dt = F [z(t)]

]b

a

= F [z(b)] − F [z(a)].

Sincez(b) = z2 andz(a) = z1, the value of this contour integral is then

F(z2) − F(z1);



sec. 45 Proof of the Theorem 147

and that value is evidently independent of the contourC as long asC extends from
z1 to z2 and lies entirely inD. That is,

∫ z2

z1

f (z) dz = F(z2) − F(z1) = F(z)

]z2

z1

(1)

whenC is smooth. Expression (1) is also valid whenC is any contour, not neces-
sarily a smooth one, that lies inD. For, if C consists of a finite number of smooth
arcsCk (k = 1, 2, . . . , n), eachCk extending from a pointzk to a pointzk+1, then

∫

C

f (z) dz =
n

∑

k=1

∫

Ck

f (z) dz =
n

∑

k=1

∫ zk+1

zk

f (z) dz =
n

∑

k=1

[F(zk+1) − F(zk)].

Because the last sum here telescopes toF(zn+1) − F(z1), we arrive at the expression
∫

C

f (z) dz = F(zn+1) − F(z1).

(Compare with Example 3, Sec. 41.) The fact that statement(b) follows from state-
ment (a) is now established.

To see that statement(b) implies statement(c), we now show that the value of
any integral around a closed contour inD is zero when integration is independent
of path there. To do this, we letz1 andz2 denote two points on any closed contour
C lying in D and form two pathsC1 and C2, each with initial pointz1 and final
point z2, such thatC = C1 − C2 (Fig. 53). Assuming that integration is independent
of path inD, one can write

∫

C1

f (z) dz =
∫

C2

f (z) dz,(2)

or
∫

C1

f (z) dz +
∫

−C2

f (z) dz = 0.(3)

That is, the integral off (z) around the closed contourC = C1 − C2 has value zero.
It remains to show statement(c) implies statement(a). That is, we need to

show that if integrals off (z) around closed contours inD always have value zero,

x

D C2

C1

z1

z2

O

y

FIGURE 53



148 Integrals chap. 4

then f (z) has an antiderivative onD. Assuming that the values of such integrals
are in fact zero, we start by showing that integration is independent of path inD.
We let C1 andC2 denote any two contours, lying inD, from a pointz1 to a point
z2 and observe that since integrals around closed paths lying inD have value zero,
equation (3) holds (see Fig. 53). Thus equation (2) holds. Integration is, therefore,
independent of path inD ; and we can define the function

F(z) =
∫ z

z0

f (s) ds

on D. The proof of the theorem is complete once we show thatF ′(z) = f (z)

everywhere inD. We do this by lettingz + 	z be any point distinct fromz and
lying in some neighborhood ofz that is small enough to be contained inD. Then

F(z + 	z) − F(z) =
∫ z+	z

z0

f (s) ds −
∫ z

z0

f (s) ds =
∫ z+	z

z

f (s) ds,

where the path of integration may be selected as a line segment (Fig. 54). Since

∫ z+	z

z

ds = 	z

(see Exercise 5, Sec. 42), one can write

f (z) =
1

	z

∫ z+	z

z

f (z) ds;

and it follows that

F(z + 	z) − F(z)

	z
− f (z) =

1

	z

∫ z+	z

z

[f (s) − f (z)] ds.

But f is continuous at the pointz. Hence, for each positive numberε, a positive
numberδ exists such that

|f (s) − f (z)| < ε whenever |s − z| < δ.

x

Dz0

s
s

z

y

FIGURE 54
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Consequently, if the pointz + 	z is close enough toz so that|	z| < δ, then
∣

∣

∣

∣

F(z + 	z) − F(z)

	z
− f (z)

∣

∣

∣

∣

<
1

|	z|
ε|	z| = ε;

that is,

lim
	z→0

F(z + 	z) − F(z)

	z
= f (z),

or F ′(z) = f (z).

EXERCISES
1. Use an antiderivative to show that for every contourC extending from a pointz1 to

a pointz2,
∫

C

zn dz =
1

n + 1
(zn+1

2 − zn+1
1 ) (n = 0, 1, 2, . . .).

2. By finding an antiderivative, evaluate each of these integrals, where the path is any
contour between the indicated limits of integration:

(a)
∫ i/2

i

eπz dz ; (b)
∫ π+2i

0
cos

(

z

2

)

dz ; (c)
∫ 3

1
(z − 2)3 dz .

Ans. (a) (1 + i)/π ; (b) e + (1/e); (c) 0.

3. Use the theorem in Sec. 44 to show that
∫

C0

(z − z0)
n−1 dz = 0 (n = ±1,±2, . . .)

whenC0 is any closed contour which does not pass through the pointz0. [Compare
with Exercise 10(b), Sec. 42.]

4. Find an antiderivativeF2(z) of the branchf2(z) of z1/2 in Example 4, Sec. 44, to show
that integral (6) there has value 2

√
3(−1 + i). Note that the value of the integral of the

function (5) around the closed contourC2 − C1 in that example is, therefore,−4
√

3.

5. Show that
∫ 1

−1
zi dz =

1 + e−π

2
(1 − i),

where the integrand denotes the principal branch

zi = exp(i Logz) (|z| > 0,−π < Arg z < π)

of zi and where the path of integration is any contour fromz = −1 to z = 1 that,
except for its end points, lies above the real axis. (Compare with Exercise 7, Sec. 42.)

Suggestion:Use an antiderivative of the branch

zi = exp(i logz)

(

|z| > 0,−
π

2
< argz <

3π

2

)

of the same power function.
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46. CAUCHY–GOURSAT THEOREM

In Sec. 44, we saw that when a continuous functionf has an antiderivative in a
domainD, the integral off (z) around any given closed contourC lying entirely
in D has value zero. In this section, we present a theorem giving other conditions
on a functionf which ensure that the value of the integral off (z) around asimple
closed contour (Sec. 39) is zero. The theorem is central to the theory of functions
of a complex variable; and some modifications of it, involving certain special types
of domains, will be given in Secs. 48 and 49.

We letC denote a simple closed contourz = z(t) (a ≤ t ≤ b), described in the
positive sense(counterclockwise), and we assume thatf is analytic at each point
interior to and onC. According to Sec. 40,

∫

C

f (z) dz =
∫ b

a

f [z(t)]z′(t) dt;(1)

and if
f (z) = u(x, y) + iv(x, y) and z(t) = x(t) + iy(t),

the integrandf [z(t)]z′(t) in expression (1) is the product of the functions

u[x(t), y(t)] + iv[x(t), y(t)], x′(t) + iy′(t)

of the real variablet . Thus
∫

C

f (z) dz =
∫ b

a

(ux′ − vy′) dt + i

∫ b

a

(vx′ + uy′) dt.(2)

In terms of line integrals of real-valued functions of two real variables, then,
∫

C

f (z) dz =
∫

C

u dx − v dy + i

∫

C

v dx + u dy.(3)

Observe that expression (3) can be obtained formally by replacingf (z) anddz on
the left with the binomials

u + iv and dx + i dy,

respectively, and expanding their product.Expression (3) is, of course, also valid
whenC is any contour, not necessarily a simple closed one, and whenf [z(t)] is
only piecewise continuous on it.

We next recall a result from calculus that enables us to express the line inte-
grals on the right in equation (3) as double integrals. Suppose that two real-valued
functionsP(x, y) andQ(x, y), together with their first-order partial derivatives, are
continuous throughout the closed regionR consisting of all points interior to and
on the simple closed contourC. According toGreen’s theorem,

∫

C

Pdx + Qdy =
∫ ∫

R

(Qx − Py) dA.
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Now f is continuous inR, since it is analytic there. Hence the functionsu and
v are also continuous inR. Likewise, if the derivativef ′ of f is continuous inR,
so are the first-order partial derivatives ofu and v. Green’s theorem then enables
us to rewrite equation (3) as

∫

C

f (z) dz =
∫ ∫

R

(−vx − uy) dA + i

∫ ∫

R

(ux − vy) dA.(4)

But, in view of the Cauchy–Riemann equations

ux = vy, uy = −vx,

the integrands of these two double integrals are zero throughoutR. So when f is
analytic inR andf ′ is continuous there,

∫

C

f (z) dz = 0.(5)

This result was obtained by Cauchy in the early part of the nineteenth century.
Note that once it has been established that the value of this integral is zero,

the orientation ofC is immaterial. That is, statement (5) is also true ifC is taken
in the clockwise direction, since then

∫

C

f (z) dz = −
∫

−C

f (z) dz = 0.

EXAMPLE. If C is any simple closed contour, in either direction, then
∫

C

exp(z3) dz = 0.

This is because the composite functionf (z) = exp(z3) is analytic everywhere and
its derivativef ′(z) = 3z2 exp(z3) is continuous everywhere.

Goursat∗ was the first to prove thatthe condition of continuity onf ′ can be
omitted. Its removal is important and will allow us to show, for example, that the
derivativef ′ of an analytic functionf is analytic without having to assume the
continuity of f ′, which follows as a consequence. We now state the revised form
of Cauchy’s result, known as theCauchy–Goursat theorem.

Theorem. If a functionf is analytic at all points interior to and on a simple
closed contourC, then

∫

C

f (z) dz = 0.

∗E. Goursat (1858–1936), pronouncedgour-sah′.
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The proof is presented in the next section, where, to be specific, we assume
thatC is positively oriented. The reader who wishes to accept this theorem without
proof may pass directly to Sec. 48.

47. PROOF OF THE THEOREM

We preface the proof of the Cauchy–Goursat theorem with a lemma. We start by
forming subsets of the regionR which consists of the points on a positively oriented
simple closed contourC together with the points interior toC. To do this, we draw
equally spaced lines parallel to the real and imaginary axes such that the distance
between adjacent vertical lines is the same as that between adjacent horizontal lines.
We thus form a finite number of closed square subregions, where each point ofR lies
in at least one such subregion and each subregion contains points ofR. We refer to
these square subregions simply assquares, always keeping in mind that by a square
we mean a boundary together with the points interior to it. If a particular square
contains points that are not inR, we remove those points and call what remains a
partial square. We thuscover the regionR with a finite number of squares and partial
squares (Fig. 55), and our proof of the following lemma starts with this covering.

Lemma. Let f be analytic throughout a closed regionR consisting of the
points interior to a positively oriented simple closed contourC together with the
points onC itself. For any positive numberε, the regionR can be covered with a
finite number of squares and partial squares, indexed byj = 1, 2, . . . , n, such that
in each one there is a fixed pointzj for which the inequality

∣

∣

∣

∣

f (z) − f (zj )

z − zj

− f ′(zj )

∣

∣

∣

∣

< ε(1)

is satisfied by all points other thanzj in that square or partial square.

xO

y

C

FIGURE 55



sec. 47 Proof of the Theorem 153

To start the proof, we consider the possibility that in the covering constructed
just prior to the statement of the lemma, there is some square or partial square in
which no pointzj exists such that inequality (1) holds for all other pointsz in it.
If that subregion is a square, we construct four smaller squares by drawing line
segments joining the midpoints of its opposite sides (Fig. 55). If the subregion is
a partial square, we treat the whole square in the same manner and then let the
portions that lie outside ofR be discarded. If in any one of these smaller subre-
gions, no pointzj exists such that inequality (1) holds for all other pointsz in it, we
construct still smaller squares and partial squares, etc. When this is done to each of
the original subregions that requires it, we find thatafter a finite number of steps,
the regionR can be covered with a finite number of squares and partial squares
such that the lemma is true.

To verify this, we suppose that the needed pointszj do not exist after subdivid-
ing one of the original subregions a finite number of times and reach a contradiction.
We let σ0 denote that subregion if it is a square; if it is a partial square, we letσ0

denote the entire square of which it is a part. After we subdivideσ0, at least one of
the four smaller squares, denoted byσ1, must contain points ofR but no appropriate
point zj . We then subdivideσ1 and continue in this manner. It may be that after a
squareσk−1 (k = 1, 2, . . .) has been subdivided, more than one of the four smaller
squares constructed from it can be chosen. To make a specific choice, we takeσk

to be the one lowest and then furthest to the left.
In view of the manner in which the nested infinite sequence

σ0, σ1, σ2, . . . , σk−1, σk, . . .(2)

of squares is constructed, it is easily shown (Exercise 9, Sec. 49) that there is a point
z0 common to eachσk; also, each of these squares contains points ofR other than
possiblyz0. Recall how the sizes of the squares in the sequence are decreasing, and
note that anyδ neighborhood|z − z0| < δ of z0 contains such squares when their
diagonals have lengths less thanδ. Everyδ neighborhood|z − z0| < δ therefore con-
tains points ofR distinct fromz0, and this means thatz0 is an accumulation point of
R. Since the regionR is a closed set, it follows thatz0 is a point inR. (See Sec. 11.)

Now the functionf is analytic throughoutR and, in particular, atz0. Conse-
quently,f ′(z0) exists, According to the definition of derivative (Sec. 19), there is,
for each positive numberε, a δ neighborhood|z − z0| < δ such that the inequality

∣

∣

∣

∣

f (z) − f (z0)

z − z0
− f ′(z0)

∣

∣

∣

∣

< ε

is satisfied by all points distinct fromz0 in that neighborhood. But the neighborhood
|z − z0| < δ contains a squareσK when the integerK is large enough that the length
of a diagonal of that square is less thanδ (Fig. 56). Consequently,z0 serves as the
point zj in inequality (1) for the subregion consisting of the squareσK or a part
of σK . Contrary to the way in which the sequence (2) was formed, then, it is not
necessary to subdivideσK . We thus arrive at a contradiction, and the proof of the
lemma is complete.
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Continuing with a functionf which is analytic throughout a regionR consisting
of a positively oriented simple closed contourC and points interior to it, we are
now ready to prove the Cauchy–Goursat theorem, namely that

∫

C

f (z) dz = 0.(3)

Given an arbitrary positive numberε, we consider the covering ofR in the
statement of the lemma. We then define on thej th square or partial square a function
δj (z) whose values areδj (zj ) = 0, wherezj is the fixed point in inequality (1), and

δj (z) =
f (z) − f (zj )

z − zj

− f ′(zj ) whenz �= zj .(4)

According to inequality (1),

|δj (z)| < ε(5)

at all pointsz in the subregion on whichδj (z) is defined. Also, the functionδj (z)

is continuous throughout the subregion sincef (z) is continuous there and

lim
z→zj

δj (z) = f ′(zj ) − f ′(zj ) = 0.

Next, we letCj (j = 1, 2, . . . , n) denote the positively oriented boundaries of
the above squares or partial squares coveringR. In view of our definition ofδj (z),
the value off at a pointz on any particularCj can be written

f (z) = f (zj ) − zjf
′(zj ) + f ′(zj )z + (z − zj )δj (z);

and this means that
∫

Cj

f (z) dz = [f (zj ) − zjf
′(zj )]

∫

Cj

dz + f ′(zj )

∫

Cj

z dz(6)

+
∫

Cj

(z − zj )δj (z) dz.
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But ∫

Cj

dz = 0 and
∫

Cj

z dz = 0

since the functions 1 andz possess antiderivatives everywhere in the finite plane.
So equation (6) reduces to

∫

Cj

f (z) dz =
∫

Cj

(z − zj )δj (z) dz (j = 1, 2, . . . , n).(7)

The sum of alln integrals on the left in equations (7) can be written

n
∑

j=1

∫

Cj

f (z) dz =
∫

C

f (z) dz

since the two integrals along the common boundary of every pair of adjacent subre-
gions cancel each other, the integral being taken in one sense along that line segment
in one subregion and in the opposite sense in the other (Fig. 57). Only the integrals
along the arcs that are parts ofC remain. Thus, in view of equations (7),

∫

C

f (z) dz =
n

∑

j=1

∫

Cj

(z − zj )δj (z) dz ;

and so
∣

∣

∣

∣

∫

C

f (z) dz

∣

∣

∣

∣

≤
n

∑

j=1

∣

∣

∣

∣

∣

∫

Cj

(z − zj )δj (z) dz

∣

∣

∣

∣

∣

.(8)

We now use the theorem in Sec. 43 to find an upper bound for each modulus
on the right in inequality (8). To do this, we first recall that eachCj coincides either

xO

y

C

R S

FIGURE 57
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entirely or partially with the boundary of a square. In either case, we letsj denote
the length of a side of the square. Since, in thej th integral, both the variablez and
the pointzj lie in that square,

|z − zj | ≤
√

2sj .

In view of inequality (5), then, we know that each integrand on the right in inequality
(8) satisfies the condition

|(z − zj )δj (z)| = |z − zj | |δj (z)| <
√

2sjε.(9)

As for the length of the pathCj , it is 4sj if Cj is the boundary of a square. In that
case, we letAj denote the area of the square and observe that

∣

∣

∣

∣

∣

∫

Cj

(z − zj )δj (z) dz

∣

∣

∣

∣

∣

<
√

2sjε4sj = 4
√

2Ajε.(10)

If Cj is the boundary of a partial square, its length does not exceed 4sj + Lj , where
Lj is the length of that part ofCj which is also a part ofC. Again lettingAj denote
the area of the full square, we find that

∣

∣

∣

∣

∣

∫

Cj

(z − zj )δj (z) dz

∣

∣

∣

∣

∣

<
√

2sjε(4sj + Lj ) < 4
√

2Ajε +
√

2SLjε,(11)

whereS is the length of a side of some square that encloses the entire contourC

as well as all of the squares originally used in coveringR (Fig. 57). Note that the
sum of all theAj ’s does not exceedS2.

If L denotes the length ofC, it now follows from inequalities (8), (10), and
(11) that

∣

∣

∣

∣

∫

C

f (z) dz

∣

∣

∣

∣

< (4
√

2S2 +
√

2SL)ε.

Since the value of the positive numberε is arbitrary, we can choose it so that
the right-hand side of this last inequality is as small as we please. The left-hand
side, which is independent ofε, must therefore be equal to zero ; and statement (3)
follows. This completes the proof of the Cauchy–Goursat theorem.

48. SIMPLY CONNECTED DOMAINS

A simply connecteddomainD is a domain such that every simple closed contour
within it encloses only points ofD. The set of points interior to a simple closed
contour is an example. The annular domain between two concentric circles is, how-
ever, not simply connected. Domains that are not simply connected are discussed
in the next section.

The closed contour in the Cauchy–Goursat theorem (Sec. 46) need not be
simple when the theorem is adapted to simply connected domains. More precisely,
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the contour can actually cross itself. The following theorem allows for this possi-
bility.

Theorem. If a function f is analytic throughout a simply connected domain
D, then

∫

C

f (z) dz = 0(1)

for every closed contourC lying in D.

The proof is easy ifC is asimpleclosed contour or if it is a closed contour that
intersects itself afinite number of times. For ifC is simple and lies inD, the function
f is analytic at each point interior to and onC; and the Cauchy–Goursat theorem
ensures that equation (1) holds. Furthermore, ifC is closed but intersects itself a
finite number of times, it consists of a finite number of simple closed contours.
This is illustrated in Fig. 58, where the simple closed contoursCk (k = 1, 2, 3, 4)

make upC. Since the value of the integral around eachCk is zero, according to the
Cauchy–Goursat theorem, it follows that

∫

C

f (z) dz =
4

∑

k=1

∫

Ck

f (z) dz = 0.

Subtleties arise if the closed contour has aninfinite number of self-intersection
points. One method that can sometimes be used to show that the theorem still applies
is illustrated in Exercise 5, Sec. 49.∗

x

C4

C3
C2

C1

C

O

y

FIGURE 58

EXAMPLE. If C denotes any closed contour lying in the open disk|z| < 2
(Fig. 59), then

∫

C

z ez

(z2 + 9)5
dz = 0.

∗For a proof of the theorem involving more general paths of finite length, see, for example, Secs.
63–65 in Vol. I of the book by Markushevich that is cited in Appendix 1.
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This is because the disk is a simply connected domain and the two singularities
z = ±3i of the integrand are exterior to the disk.

C

x

y

2O

FIGURE 59

Corollary. A functionf that is analytic throughout a simply connected domain
D must have an antiderivative everywhere inD.

We begin the proof of this corollary with the observation that a functionf is
continuous on a domainD when it is analytic there. Consequently, since equation
(1) holds for the function in the hypothesis of this corollary and for each closed
contourC in D, f has an antiderivative throughoutD, according to the theorem in
Sec. 44. Note that since the finite plane is simply connected, the corollary tells us
that entire functions always possess antiderivatives.

49. MULTIPLY CONNECTED DOMAINS

A domain that is not simply connected (Sec. 48) is said to bemultiply connected.
The following theorem is an adaptation of the Cauchy–Goursat theorem to multiply
connected domains.

Theorem. Suppose that

(a) C is a simple closed contour, described in the counterclockwise direction;

(b) Ck (k = 1, 2, . . . , n) are simple closed contours interior toC, all described in
the clockwise direction, that are disjoint and whose interiors have no points in
common(Fig. 60).

If a function f is analytic on all of these contours and throughout the multiply
connected domain consisting of the points insideC and exterior to eachCk, then

∫

C

f (z) dz +
n

∑

k=1

∫

Ck

f (z) dz = 0.(1)
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Note that in equation (1), the direction of each path of integration is such that
the multiply connected domain lies to theleft of that path.

To prove the theorem, we introduce a polygonal pathL1, consisting of a finite
number of line segments joined end to end, to connect the outer contourC to the
inner contourC1. We introduce another polygonal pathL2 which connectsC1 to
C2; and we continue in this manner, withLn+1 connectingCn to C. As indicated
by the single-barbed arrows in Fig. 60, two simple closed contoursŴ1 andŴ2 can
be formed, each consisting of polygonal pathsLk or −Lk and pieces ofC andCk

and each described in such a direction that the points enclosed by them lie to the
left. The Cauchy–Goursat theorem can now be applied tof on Ŵ1 andŴ2, and the
sum of the values of the integrals over those contours is found to be zero. Since the
integrals in opposite directions along each pathLk cancel, only the integrals along
C and theCk remain; and we arrive at statement (1).

Corollary. Let C1 and C2 denote positively oriented simple closed contours,
whereC1 is interior to C2 (Fig. 61). If a functionf is analytic in the closed region
consisting of those contours and all points between them, then

∫

C2

f (z) dz =
∫

C1

f (z) dz.(2)

xO

y

C2

C1

FIGURE 61

This corollary is known as theprinciple of deformation of pathssince it tells
us that if C1 is continuously deformed intoC2, always passing through points at
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which f is analytic, then the value of the integral off over C1 never changes. To
verify the corollary, we need only write equation (2) as

∫

C2

f (z) dz +
∫

−C1

f (z) dz = 0

and apply the theroem.

EXAMPLE. WhenC is any positively oriented simple closed contour sur-
rounding the origin, the corollary can be used to show that

∫

C

dz

z
= 2πi.

This is done by constructing a positively oriented circleC0 with center at the origin and
radius so small thatC0 lies entirely insideC (Fig. 62). Since (see Example 2, Sec. 42)

∫

C0

dz

z
= 2πi

and since 1/z is analytic everywhere except atz = 0, the desired result follows.
Note that the radius ofC0 could equally well have been so large thatC lies

entirely insideC0.

x

C0

C

O

y

FIGURE 62

EXERCISES
1. Apply the Cauchy–Goursat theorem to show that

∫

C

f (z) dz = 0

when the contourC is the unit circle|z| = 1, in either direction, and when

(a) f (z) =
z2

z − 3
; (b) f (z) = z e−z; (c) f (z) =

1

z2 + 2z + 2
;

(d) f (z) = sechz; (e) f (z) = tanz; ( f) f (z) = Log (z + 2).
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2. Let C1 denote the positively oriented boundary of the square whose sides lie along the
lines x = ±1, y = ±1 and letC2 be the positively oriented circle|z| = 4 (Fig. 63).
With the aid of the corollary in Sec. 49, point out why

∫

C1

f (z) dz =
∫

C2

f (z) dz

when

(a) f (z) =
1

3z2 + 1
; (b) f (z) =

z + 2

sin(z/2)
; (c) f (z) =

z

1 − ez
.

x1 4

y

C1

C2

FIGURE 63

3. If C0 denotes a positively oriented circle|z − z0| = R , then
∫

C0

(z − z0)
n−1 dz =

{0 when n = ±1,±2, . . . ,

2πi whenn = 0,

according to Exercise 10(b), Sec. 42. Use that result and the corollary in Sec. 49 to
show that ifC is the boundary of the rectangle 0≤ x ≤ 3, 0 ≤ y ≤ 2, described in
the positive sense, then

∫

C

(z − 2 − i)n−1 dz =
{

0 when n = ±1,±2, . . . ,

2πi whenn = 0.

4. Use the following method to derive the integration formula
∫ ∞

0
e−x2

cos 2bx dx =
√

π

2
e−b2

(b > 0).

(a) Show that the sum of the integrals ofe−z2
along the lower and upper horizontal

legs of the rectangular path in Fig. 64 can be written

xa

a + bi–a + bi

–a O

y

FIGURE 64
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2
∫ a

0
e−x2

dx − 2eb2
∫ a

0
e−x2

cos 2bx dx

and that the sum of the integrals along the vertical legs on the right and left can
be written

ie−a2
∫ b

0
ey2

e−i2aydy − ie−a2
∫ b

0
ey2

ei2aydy.

Thus, with the aid of the Cauchy–Goursat theorem, show that

∫ a

0
e−x2

cos 2bx dx = e−b2
∫ a

0
e−x2

dx + e−(a2+b2)

∫ b

0
ey2

sin 2ay dy.

(b) By accepting the fact that∗

∫ ∞

0
e−x2

dx =
√

π

2

and observing that
∣

∣

∣

∣

∫ b

0
ey2

sin 2ay dy

∣

∣

∣

∣

≤
∫ b

0
ey2

dy,

obtain the desired integration formula by lettinga tend to infinity in the equation
at the end of part(a).

5. According to Exercise 6, Sec. 39, the pathC1 from the origin to the pointz = 1 along
the graph of the function defined by means of the equations

y(x) =
{

x3 sin(π/x) when 0< x ≤ 1,

0 when x = 0

is a smooth arc that intersects the real axis an infinite number of times. LetC2 denote
the line segment along the real axis fromz = 1 back to the origin, and letC3 denote
any smooth arc from the origin toz = 1 that does not intersect itself and has only its
end points in common with the arcsC1 andC2 (Fig. 65). Apply the Cauchy–Goursat
theorem to show that if a functionf is entire, then

∫

C1

f (z) dz =
∫

C3

f (z) dz and
∫

C2

f (z) dz = −
∫

C3

f (z) dz.

Conclude that even though the closed contourC = C1 + C2 intersects itself an infinite
number of times,

∫

C

f (z) dz = 0.

∗The usual way to evaluate this integral is by writing its square as

∫ ∞

0
e−x2

dx

∫ ∞

0
e−y2

dy =
∫ ∞

0

∫ ∞

0
e−(x2+y2)dxdy

and then evaluating this iterated integral by changing to polar coordinates. Details are given in, for
example, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 680–681, 1983.
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6. Let C denote the positively oriented boundary of the half disk 0≤ r ≤ 1, 0 ≤ θ ≤ π ,
and letf (z) be a continuous function defined on that half disk by writingf (0) = 0
and using the branch

f (z) =
√

reiθ/2
(

r > 0,−
π

2
< θ <

3π

2

)

of the multiple-valued functionz1/2. Show that
∫

C

f (z) dz = 0

by evaluating separately the integrals off (z) over the semicircle and the two radii
which make upC. Why does the Cauchy–Goursat theorem not apply here?

7. Show that ifC is a positively oriented simple closed contour, then the area of the
region enclosed byC can be written

1

2i

∫

C

z dz.

Suggestion:Note that expression (4), Sec. 46, can be used here even though the
function f (z) = z is not analytic anywhere [see Example 2, Sec. 19].

8. Nested Intervals. An infinite sequence of closed intervalsan ≤ x ≤ bn (n = 0, 1, 2, . . .)

is formed in the following way. The intervala1 ≤ x ≤ b1 is either the left-hand or
right-hand half of the first intervala0 ≤ x ≤ b0, and the intervala2 ≤ x ≤ b2 is then
one of the two halves ofa1 ≤ x ≤ b1, etc. Prove that there is a pointx0 which belongs
to every one of the closed intervalsan ≤ x ≤ bn.

Suggestion:Note that the left-hand end pointsan represent a bounded nonde-
creasing sequence of numbers, sincea0 ≤ an ≤ an+1 < b0 ; hence they have a limit
A asn tends to infinity. Show that the end pointsbn also have a limitB. Then show
that A = B, and writex0 = A = B.

9. Nested Squares. A squareσ0 : a0 ≤ x ≤ b0, c0 ≤ y ≤ d0 is divided into four equal
squares by line segments parallel to the coordinate axes. One of those four smaller
squaresσ1 : a1 ≤ x ≤ b1, c1 ≤ y ≤ d1 is selected according to some rule. It, in turn,
is divided into four equal squares one of which, calledσ2, is selected, etc. (see Sec.
47). Prove that there is a point(x0, y0) which belongs to each of the closed regions
of the infinite sequenceσ0, σ1, σ2, . . . .

Suggestion:Apply the result in Exercise 8 to each of the sequences of closed
intervalsan ≤ x ≤ bn andcn ≤ y ≤ dn (n = 0, 1, 2, . . .).
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50. CAUCHY INTEGRAL FORMULA

Another fundamental result will now be established.

Theorem. Letf be analytic everywhere inside and on a simple closed contour
C, taken in the positive sense. Ifz0 is any point interior toC, then

f (z0) =
1

2πi

∫

C

f (z) dz

z − z0
.(1)

Formula (1) is called theCauchy integral formula. It tells us that if a function
f is to be analytic within and on a simple closed contourC, then the values off
interior to C are completely determined by the values off on C.

When the Cauchy integral formula is written as
∫

C

f (z) dz

z − z0
= 2πif (z0),(2)

it can be used to evaluate certain integrals along simple closed contours.

EXAMPLE. Let C be the positively oriented circle|z| = 2. Since the func-
tion

f (z) =
z

9 − z2

is analytic within and onC and since the pointz0 = −i is interior to C, formula
(2) tells us that

∫

C

z dz

(9 − z2)(z + i)
=

∫

C

z/(9 − z2)

z − (−i)
dz = 2πi

(

−i

10

)

=
π

5
.

We begin the proof of the theorem by lettingCρ denote a positively oriented
circle |z − z0| = ρ, whereρ is small enough thatCρ is interior toC (see Fig. 66).
Since the quotientf (z)/(z − z0) is analytic between and on the contoursCρ and
C, it follows from the principle of deformation of paths (Sec. 49) that

x

z0

O

y

C C

FIGURE 66
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∫

C

f (z) dz

z − z0
=

∫

Cρ

f (z) dz

z − z0
.

This enables us to write
∫

C

f (z) dz

z − z0
− f (z0)

∫

Cρ

dz

z − z0
=

∫

Cρ

f (z) − f (z0)

z − z0
dz.(3)

But [see Exercise 10(b), Sec. 42]
∫

Cρ

dz

z − z0
= 2πi;

and so equation (3) becomes
∫

C

f (z) dz

z − z0
− 2πif (z0) =

∫

Cρ

f (z) − f (z0)

z − z0
dz.(4)

Now the fact thatf is analytic, and therefore continuous, atz0 ensures that
corresponding to each positive numberε, however small, there is a positive number
δ such that

|f (z) − f (z0)| < ε whenever |z − z0| < δ.(5)

Let the radiusρ of the circleCρ be smaller than the numberδ in the second of
these inequalities. Since|z − z0| = ρ < δ whenz is on Cρ , it follows that thefirst
of inequalities (5) holds whenz is such a point; and the theorem in Sec. 43, giving
upper bounds for the moduli of contour integrals, tells us that

∣

∣

∣

∣

∣

∫

Cρ

f (z) − f (z0)

z − z0
dz

∣

∣

∣

∣

∣

<
ε

ρ
2πρ = 2πε.

In view of equation (4), then,
∣

∣

∣

∣

∫

C

f (z) dz

z − z0
− 2πif (z0)

∣

∣

∣

∣

< 2πε.

Since the left-hand side of this inequalityis a nonnegative constant that is less than
an arbitrarily small positive number, itmust be equal to zero. Hence equation (2)
is valid, and the theorem is proved.

51. AN EXTENSION OF THE CAUCHY INTEGRAL
FORMULA

The Cauchy integral formula in the theorem in Sec. 50 can be extended so as to
provide an integral representation for derivatives off at z0. To obtain the extension,
we consider a functionf that is analytic everywhere inside and on a simple closed



166 Integrals chap. 4

contourC, taken in the positive sense. We then write the Cauchy integral formula
as

f (z) =
1

2πi

∫

C

f (s) ds

s − z
,(1)

wherez is interior toC and wheres denotes points onC. Differentiating formally
with respect toz under the integral sign here, without rigorous justification, we find
that

f ′(z) =
1

2πi

∫

C

f (s) ds

(s − z)2
.(2)

To verify that f ′(z) exists and that expression (2) is in fact valid, we ledd

denote the smallest distance fromz to pointss on C and use expression (1) to write

f (z + 	z) − f (z)

	z
=

1

2πi

∫

C

(

1

s − z − 	z
−

1

s − z

)

f (s)

	z
ds

=
1

2πi

∫

C

f (s) ds

(s − z − 	z)(s − z)
,

where 0< |	z| < d (see Fig. 67). Evidently, then,

f (z + 	z) − f (z)

	z
−

1

2πi

∫

C

f (s) ds

(s − z)2
=

1

2πi

∫

C

	z f (s) ds

(s − z − 	z)(s − z)2
.(3)

x

z
s

d

|s – z|

O

y

C

FIGURE 67

Next, we letM denote the maximum value of|f (s)| on C and observe that since
|s − z| ≥ d and |	z| < d,
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|s − z − 	z| = |(s − z) − 	z| ≥ ||s − z| − |	z|| ≥ d − |	z| > 0.

Thus ∣

∣

∣

∣

∫

C

	z f (s) ds

(s − z − 	z)(s − z)2

∣

∣

∣

∣

≤
|	z|M

(d − |	z|)d2
L,

whereL is the length ofC. Upon letting	z tend to zero, we find from this inequality
that the right-hand side of equation (3) also tends to zero. Consequently,

lim
	z→0

f (z + 	z) − f (z)

	z
−

1

2πi

∫

C

f (s) ds

(s − z)2
= 0 ;

and the desired expression forf ′(z) is established.
The same technique can be used to suggest and verify the expression

f ′′(z) =
1

πi

∫

C

f (s) ds

(s − z)3
.(4)

The details, which are outlined in Exercise 9, Sec. 52, are left to the reader. Math-
ematical induction can, moreover, be used to obtain the formula

f (n)(z) =
n!

2πi

∫

C

f (s) ds

(s − z)n+1
(n = 1, 2, . . .).(5)

The verification is considerably more involved than for justn = 1 andn = 2, and
we refer the interested reader to other texts for it.∗ Note that with the agreement
that

f (0)(z) = f (z) and 0!= 1,

expression (5) is also valid whenn = 0, in which case it becomes the Cauchy
integral formula (1).

When written in the form
∫

C

f (z) dz

(z − z0)n+1
=

2πi

n!
f (n)(z0) (n = 0, 1, 2, . . .),(6)

expressions (1) and (5) can be useful in evaluating certain integrals whenf is
analytic inside and on a simple closed contourC, taken in the positive sense, and
z0 is any point interior toC. It has already been illustrated in Sec. 50 whenn = 0.

EXAMPLE 1. If C is the positively oriented unit circle|z| = 1 and

f (z) = exp(2z),

∗See, for example, pp. 299–301 in Vol. I of the book by Markushevich, cited in Appendix 1.
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then ∫

C

exp(2z) dz

z4
=

∫

C

f (z) dz

(z − 0)3+1
=

2πi

3!
f ′′′(0) =

8πi

3
.

EXAMPLE 2. Let z0 be any point interior to a positively oriented simple
closed contourC. Whenf (z) = 1, expression (6) shows that

∫

C

dz

z − z0
= 2πi

and ∫

C

dz

(z − z0)n+1
= 0 (n = 1, 2, . . .).

(Compare with Exercise 10(b), Sec. 42.)

52. SOME CONSEQUENCES OF THE EXTENSION

We turn now to some important consequences of the extension of the Cauchy integral
formula in the previous section.

Theorem 1. If a function f is analytic at a given point, then its derivatives
of all orders are analytic there too.

To prove this remarkable theorem, we assume that a functionf is analytic
at a pointz0. There must, then, be a neighborhood|z − z0| < ε of z0 throughout
which f is analytic (see Sec. 24). Consequently, there is a positively oriented circle
C0, centered atz0 and with radiusε/2, such thatf is analytic inside and onC0

(Fig. 68). From expression (4), Sec. 51, we know that

f ′′(z) =
1

πi

∫

C0

f (s) ds

(s − z)3

x

z0

z

O

y

C0

/2ε

FIGURE 68
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at each pointz interior to C0, and the existence off ′′(z) throughout the neigh-
borhood |z − z0| < ε/2 means thatf ′ is analytic atz0. One can apply the same
argument to the analytic functionf ′ to conclude that its derivativef ′′ is analytic,
etc. Theorem 1 is now established.

As a consequence, when a function

f (z) = u(x, y) + iv(x, y)

is analytic at a pointz = (x, y), the differentiability off ′ ensures the continuity of
f ′ there (Sec. 19). Then, since (Sec. 21)

f ′(z) = ux + ivx = vy − iuy,

we may conclude that the first-order partial derivatives ofu andv are continuous
at that point. Furthermore, sincef ′′ is analytic and continuous atz and since

f ′′(z) = uxx + ivxx = vyx − iuyx,

etc., we arrive at a corollary that was anticipated in Sec. 26, where harmonic func-
tions were introduced.

Corollary. If a function f (z) = u(x, y) + iv(x, y) is analytic at a point
z = (x, y), then the component functionsu andv have continuous partial derivatives
of all orders at that point.

The proof of the next theorem, due to E. Morera (1856–1909), depends on
the fact that the derivative of an analyticfunction is itself analytic, as stated in
Theorem 1.

Theorem 2. Let f be continuous on a domainD. If
∫

C

f (z) dz = 0(1)

for every closed contourC in D, thenf is analytic throughoutD.

In particular, whenD is simply connected, we have for the class of continu-
ous functions defined onD the converse of the theorem in Sec. 48, which is the
adaptation of the Cauchy–Goursat theorem to such domains.

To prove the theorem here, we observe that when its hypothesis is satisfied, the
theorem in Sec. 44 ensures thatf has an antiderivative inD ; that is, there exists
an analytic functionF such thatF ′(z) = f (z) at each point inD. Sincef is the
derivative ofF , it then follows from Theorem 1 thatf is analytic inD.

Our final theorem here will be essential in the next section.
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Theorem 3. Suppose that a functionf is analytic inside and on a positively
oriented circleCR , centered atz0 and with radius R(Fig. 69). If MR denotes the
maximum value of|f (z)| on CR, then

|f (n)(z0)| ≤
n!MR

Rn
(n = 1, 2, . . .).(2)

x

z

z0

O

y
CR

R

FIGURE 69

Inequality (2) is calledCauchy’s inequalityand is an immediate consequence
of the expression

f (n)(z0) =
n!

2πi

∫

CR

f (z) dz

(z − z0)n+1
(n = 1, 2, . . .),

which is a slightly different form of equation (6), Sec. 51, whenn is a positive
integer. We need only apply the theorem in Sec. 43, which gives upper bounds for
the moduli of the values of contour integrals, to see that

|f (n)(z0)| ≤
n!

2π
.

MR

Rn+1
2πR (n = 1, 2, . . .),

whereMR is as in the statement of Theorem 3. This inequality is, of course, the
same as inequality (2).

EXERCISES
1. Let C denote the positively oriented boundary of the square whose sides lie along the

lines x = ± 2 andy = ± 2. Evaluate each of these integrals:

(a)
∫

C

e−z dz

z − (πi/2)
; (b)

∫

C

cosz

z(z2 + 8)
dz ; (c)

∫

C

z dz

2z + 1
;

(d)
∫

C

coshz

z4
dz ; (e)

∫

C

tan(z/2)

(z − x0)2
dz (−2 < x0 < 2).

Ans. (a) 2π ; (b) πi/4 ; (c) −πi/2; (d) 0 ; (e) iπ sec2(x0/2).

2. Find the value of the integral ofg(z) around the circle|z − i| = 2 in the positive sense
when

(a) g(z) =
1

z2 + 4
; (b) g(z) =

1

(z2 + 4)2
.

Ans. (a) π/2 ; (b) π/16.
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3. Let C be the circle|z| = 3, described in the positive sense. Show that if

g(z) =
∫

C

2s2 − s − 2

s − z
ds (|z| �= 3),

theng(2) = 8πi. What is the value ofg(z) when |z| > 3?

4. Let C be any simple closed contour, described in the positive sense in thez plane,
and write

g(z) =
∫

C

s3 + 2s

(s − z)3
ds.

Show thatg(z) = 6πiz whenz is insideC and thatg(z) = 0 whenz is outside.

5. Show that iff is analytic within and on a simple closed contourC andz0 is not on
C, then

∫

C

f ′(z) dz

z − z0
=

∫

C

f (z) dz

(z − z0)2
.

6. Let f denote a function that iscontinuouson a simple closed contourC. Following
a procedure used in Sec. 51, prove that the function

g(z) =
1

2πi

∫

C

f (s) ds

s − z

is analytic at each pointz interior to C and that

g′(z) =
1

2πi

∫

C

f (s) ds

(s − z)2

at such a point.

7. Let C be the unit circlez = eiθ (−π ≤ θ ≤ π). First show that for any real constanta,

∫

C

eaz

z
dz = 2πi.

Then write this integral in terms ofθ to derive the integration formula

∫ π

0
ea cosθ cos(a sinθ) dθ = π.

8. (a) With the aid of the binomial formula (Sec. 3), show that for each value ofn, the
function

Pn(z) =
1

n! 2n

dn

dzn
(z2 − 1)n (n = 0, 1, 2, . . .)

is a polynomial of degreen.∗

∗These are Legendre polynomials, which appear in Exercise 7, Sec. 43, whenz = x. See the footnote
to that exercise.
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(b) Let C denote any positively oriented simple closed contour surrounding a fixed
point z. With the aid of the integral representation (5), Sec. 51, for thenth deriva-
tive of a function, show that the polynomials in part(a) can be expressed in the
form

Pn(z) =
1

2n+1πi

∫

C

(s2 − 1)n

(s − z)n+1
ds (n = 0, 1, 2, . . .).

(c) Point out how the integrand in the representation forPn(z) in part (b) can be
written (s + 1)n/(s − 1) if z = 1. Then apply the Cauchy integral formula to
show that

Pn(1) = 1 (n = 0, 1, 2, . . .).

Similarly, show that

Pn(−1) = (−1)n (n = 0, 1, 2, . . .).

9. Follow these steps below to verify the expression

f ′′(z) =
1

πi

∫

C

f (s) ds

(s − z)3

in Sec. 51.

(a) Use expression (2) in Sec. 51 forf ′(z) to show that

f ′(z + 	z) − f ′(z)

	z
−

1

πi

∫

C

f (s) ds

(s − z)3
=

1

2πi

∫

C

3(s − z)	z − 2(	z)2

(s − z − 	z)2(s − z)3
f (s) ds.

(b) Let D and d denote the largest and smallest distances, respectively, fromz to
points onC. Also, letM be the maximum value of|f (s)| on C andL the length
of C. With the aid of the triangle inequality and by referring to the derivation of
expression (2) in Sec. 51 forf ′(z), show that when 0< |	z| < d, the value of
the integral on the right-hand side in part(a) is bounded from above by

(3D|	z| + 2|	z|2)M
(d − |	z|)2d3

L.

(c) Use the results in parts(a) and (b) to obtain the desired expression forf ′′(z).

10. Let f be an entire function such that|f (z)| ≤ A|z| for all z, whereA is a fixed
positive number. Show thatf (z) = a1z, wherea1 is a complex constant.

Suggestion:Use Cauchy’s inequality (Sec. 52) to show that the second deriva-
tive f ′′(z) is zero everywhere in the plane. Note that the constantMR in Cauchy’s
inequality is less than or equal toA(|z0| + R).

53. LIOUVILLE’S THEOREM AND THE FUNDAMENTAL
THEOREM OF ALGEBRA

Cauchy’s inequality in Theorem 3 of Sec.52 can be used to show that no entire
function except a constant is bounded in thecomplex plane. Our first theorem here,
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which is known asLiouville’s theorem, states this result in a somewhat different
way.

Theorem 1. If a function f is entire and bounded in the complex plane, then
f (z) is constant througout the plane.

To start the proof, we assume thatf is as stated and note that sincef is entire,
Theorem 3 in Sec. 52 can be applied with any choice ofz0 and R. In particular,
Cauchy’s inequality (2) in that theorem tells us that whenn = 1,

|f ′(z0)| ≤
MR

R
.(1)

Moreover, the boundedness condition onf tells us that a nonnegative constantM

exists such that|f (z)| ≤ M for all z ; and, because the constantMR in inequality
(1) is always less than or equal toM, it follows that

∣

∣f ′(z0)
∣

∣ ≤
M

R
,(2)

whereR can be arbitrarily large. Now the numberM in inequality (2) is independent
of the value ofR that is taken. Hence that inequality holds for arbitrarily large
values ofR only if f ′(z0) = 0. Since the choice ofz0 was arbitrary, this means that
f ′(z) = 0 everywhere in the complex plane. Consequently,f is a constant function,
according to the theorem in Sec. 24.

The following theorem, called thefundamental theorem of algebra, follows
readily from Liouville’s theorem.

Theorem 2. Any polynomial

P(z) = a0 + a1z + a2z
2 + · · · + anz

n (an �= 0)

of degreen (n ≥ 1) has at least one zero. That is, there exists at least one pointz0

such thatP(z0) = 0.

The proof here is by contradiction. Suppose thatP(z) is not zero for any value
of z. Then the reciprocal

f (z) =
1

P(z)

is clearly entire, and it is also bounded in the complex plane.
To show that its is bounded, we first write

w =
a0

zn
+

a1

zn−1
+

a2

zn−2
+ · · · +

an−1

z
,(3)

so that

P(z) = (an + w)zn.(4)



174 Integrals chap. 4

Next, we observe that a sufficiently large positive numberR can be found such
that the modulus of each of the quotients in expression (3) is less than the number
|an|/(2n) when |z| > R. The generalized triangle inequality (10), Sec. 4, which
applies ton complex numbers, thus shows that

|w| <
|an|
2

whenever |z| > R.

Consequently,

|an + w| ≥ ||an| − |w|| >
|an|
2

whenever |z| > R.

This inequality and expression (4) enable us to write

|Pn(z)| = |an + w||z|n >
|an|
2

|z|n >
|an|
2

Rn whenever |z| > R.(5)

Evidently, then,

|f (z)| =
1

|P(z)|
<

2

|an|Rn
whenever |z| > R.

So f is bounded in the regionexterior to the disk|z| ≤ R. But f is continuous in
that closed disk, and this means thatf is bounded there too (Sec. 18). Hencef is
bounded in the entire plane.

It now follows from Liouville’s theorem thatf (z), and consequentlyP(z), is
constant. ButP(z) is not constant, and we have reached a contradiction.∗

The fundamental theorem tells us that any polynomialP(z) of degreen (n ≥ 1)

can be expressed as a product of linear factors:

P(z) = c(z − z1)(z − z2) · · · (z − zn),(6)

wherec andzk (k = 1, 2, . . . , n) are complex constants. More precisely, the theorem
ensures thatP(z) has a zeroz1. Then, according to Exercise 9, Sec. 54,

P(z) = (z − z1)Q1(z),

whereQ1(z) is a polynomial of degreen − 1. The same argument, applied toQ1(z),
reveals that there is a numberz2 such that

P(z) = (z − z1)(z − z2)Q2(z),

whereQ2(z) is a polynomial of degreen − 2. Continuing in this way, we arrive at
expression (6). Some of the constantszk in expression (6) may, of course, appear
more than once, and it is clear thatP(z) can have no more thann distinct zeros.

∗For an interesting proof of the fundamental theorem using the Cauchy–Goursat theorem, see R. P.
Boas, Jr.,Amer. Math. Monthly, Vol. 71, No. 2, p. 180, 1964.
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54. MAXIMUM MODULUS PRINCIPLE

In this section, we derive an important result involving maximum values of the
moduli of analytic functions. We begin with a needed lemma.

Lemma. Suppose that|f (z)| ≤ |f (z0)| at each pointz in some neighborhood
|z − z0| < ε in whichf is analytic. Thenf (z) has the constant valuef (z0) through-
out that neighborhood.

To prove this, we assume thatf satisfies the stated conditions and letz1 be any
point other thanz0 in the given neighborhood. We then letρ be the distance between
z1 and z0. If Cρ denotes the positively oriented circle|z − z0| = ρ, centered atz0

and passing throughz1 (Fig. 70), the Cauchy integral formula tells us that

f (z0) =
1

2πi

∫

Cρ

f (z) dz

z − z0
;(1)

and the parametric representation

z = z0 + ρeiθ (0 ≤ θ ≤ 2π)

for Cρ enables us to write equation (1) as

f (z0) =
1

2π

∫ 2π

0
f (z0 + ρeiθ ) dθ.(2)

We note from expression (2) that when a function is analytic within and on a given
circle, its value at the center is the arithmetic mean of its values on the circle. This
result is calledGauss’s mean value theorem.

x

z0

z1

O

y

ε

FIGURE 70

From equation (2), we obtain the inequality

|f (z0)| ≤
1

2π

∫ 2π

0
|f (z0 + ρeiθ )| dθ.(3)

On the other hand, since

|f (z0 + ρeiθ )| ≤ |f (z0)| (0 ≤ θ ≤ 2π),(4)
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we find that
∫ 2π

0
|f (z0 + ρeiθ )| dθ ≤

∫ 2π

0
|f (z0)| dθ = 2π |f (z0)|.

Thus

|f (z0)| ≥
1

2π

∫ 2π

0
|f (z0 + ρeiθ )| dθ.(5)

It is now evident from inequalities (3) and (5) that

|f (z0)| =
1

2π

∫ 2π

0
|f (z0 + ρeiθ )| dθ,

or
∫ 2π

0
[|f (z0)| − |f (z0 + ρeiθ )|] dθ = 0.

The integrand in this last integral is continuous in the variableθ ; and, in view of
condition (4), it is greater than or equal to zero on the entire interval 0≤ θ ≤ 2π .
Because the value of the integral is zero, then, the integrand must be identically
equal to zero. That is,

|f (z0 + ρeiθ )| = |f (z0)| (0 ≤ θ ≤ 2π).(6)

This shows that|f (z)| = |f (z0)| for all points z on the circle|z − z0| = ρ.
Finally, sincez1 is any point in the deleted neighborhood 0< |z − z0| < ε, we

see that the equation|f (z)| = |f (z0)| is, in fact, satisfied by all pointsz lying on any
circle |z − z0| = ρ, where 0< ρ < ε. Consequently,|f (z)| = |f (z0)| everywhere
in the neighborhood|z − z0| < ε. But we know from Example 4. Sec. 25, that when
the modulus of an analytic function is constant in a domain, the function itself is
constant there. Thusf (z) = f (z0) for each pointz in the neighborhood, and the
proof of the lemma is complete.

This lemma can be used to prove the following theorem, which is known as
the maximum modulus principle.

Theorem. If a functionf is analytic and not constant in a given domainD,
then|f (z)| has no maximum value inD. That is, there is no pointz0 in the domain
such that|f (z)| ≤ |f (z0)| for all pointsz in it.

Given thatf is analytic inD, we shall prove the theorem by assuming that
|f (z)| doeshave a maximum value at some pointz0 in D and then showing that
f (z) must be constant throughoutD.

The general approach here is similar to that taken in the proof of the lemma
in Sec. 27. We draw a polygonal lineL lying in D and extending fromz0 to any
other pointP in D. Also, d represents the shortest distance from points onL to the
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boundary ofD. WhenD is the entire plane,d may have any positive value. Next,
we observe that there is a finite sequence of points

z0, z1, z2, . . . , zn−1, zn

alongL such thatzn coincides with the pointP and

|zk − zk−1| < d (k = 1, 2, . . . , n).

In forming a finite sequence of neighborhoods (Fig. 71)

N0, N1, N2, . . . , Nn−1, Nn

where eachNk has centerzk and radiusd, we see thatf is analytic in each of
these neighborhoods, which are all contained inD, and that the center of each
neighborhoodNk (k = 1, 2, . . . , n) lies in the neighborhoodNk−1.

z0

N0
N1

N2 Nn
L

P
z2

zn – 1 znz1

Nn – 1

FIGURE 71

Since |f (z)| was assumed to have a maximum value inD at z0, it also has
a maximum value inN0 at that point. Hence, according to the preceding lemma,
f (z) has the constant valuef (z0) throughoutN0. In particular,f (z1) = f (z0). This
means that|f (z)| ≤ |f (z1)| for each pointz in N1 ; and the lemma can be applied
again, this time telling us that

f (z) = f (z1) = f (z0)

when z is in N1. Sincez2 is in N1, then,f (z2) = f (z0). Hence|f (z)| ≤ |f (z2)|
whenz is in N2 ; and the lemma is once againapplicable, showing that

f (z) = f (z2) = f (z0)

whenz is in N2. Continuing in this manner, we eventually reach the neighborhood
Nn and arrive at the fact thatf (zn) = f (z0).

Recalling thatzn coincides with the pointP , which is any point other thanz0

in D, we may conclude thatf (z) = f (z0) for everypoint z in D. Inasmuch asf (z)

has now been shown to be constant throughoutD, the theorem is proved.
If a functionf that is analytic at each point in the interior of a closed bounded

regionR is also continuous throughoutR, then the modulus|f (z)| has a maximum
value somewhere inR (Sec. 18). That is, there exists a nonnegative constantM such
that |f (z)| ≤ M for all pointsz in R, and equality holds for at least one such point.
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If f is a constant function, then|f (z)| = M for all z in R. If, however,f (z) is not
constant, then, according to the theorem just proved,|f (z)| �= M for any pointz in
the interior ofR. We thus arrive at an important corollary.

Corollary. Suppose that a functionf is continuous on a closed bounded region
R and that it is analytic and not constant in the interior ofR. Then the maximum
value of|f (z)| in R, which is always reached, occurs somewhere on the boundary
of R and never in the interior.

EXAMPLE. Let R denote the rectangular region 0≤ x ≤ π, 0 ≤ y ≤ 1. The
corollary tells us that the modulus of the entire functionf (z) = sinz has a maximum
value inR that occurs somewhere on the boundary ofR and not in its interior. This
can be verified directly by writing (see Sec. 34)

|f (z)| =
√

sin2 x + sinh2 y

and noting that the term sin2 x is greatest whenx = π/2 and that the increasing
function sinh2 y is greatest wheny = 1. Thus the maximum value of|f (z)| in R

occurs at the boundary pointz = (π/2, 1) and at no other point inR (Fig. 72).

xO

1

y

FIGURE 72

When the functionf in the corollary is writtenf (z) = u(x, y) + iv(x, y), the
component functionu(x, y) also has a maximum value inR which is assumed on
the boundary ofR and never in the interior, where it is harmonic (Sec. 26). This is
because the composite functiong(z) = exp[f (z)] is continuous inR and analytic
and not constant in the interior. Hence its modulus|g(z)| = exp[u(x, y)], which is
continuous inR, must assume its maximum value inR on the boundary. In view
of the increasing nature of the exponential function, it follows that the maximum
value ofu(x, y) also occurs on the boundary.

Properties ofminimumvalues of|f (z)| andu(x, y) are treated in the exercises.

EXERCISES
1. Suppose thatf (z) is entire and that the harmonic functionu(x, y) = Re[f (z)] has an

upper boundu0 ; that is,u(x, y) ≤ u0 for all points(x, y) in the xy plane. Show that
u(x, y) must be constant throughout the plane.

Suggestion:Apply Liouville’s theorem (Sec. 53) to the functiong(z) = exp[f (z)].
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2. Show that forR sufficiently large, the polynomialP (z) in Theorem 2, Sec. 53, satisfies
the inequality

|P (z)| < 2|an||z|n whenever |z| ≥ R.

[Compare with the first of inequalities (5), Sec. 53.]
Suggestion:Observe that there is a positive numberR such that the modulus of

each quotient in expression (3), Sec. 53, is less than|an|/n when |z| > R.

3. Let a functionf be continuous on a closed bounded regionR, and let it be analytic
and not constant throughout the interior ofR. Assuming thatf (z) �= 0 anywhere in
R, prove that|f (z)| has aminimum valuem in R which occurs on the boundary ofR

and never in the interior. Do this by applying the corresponding result for maximum
values (Sec. 54) to the functiong(z) = 1/f (z).

4. Use the functionf (z) = z to show that in Exercise 3 the conditionf (z) �= 0 anywhere
in R is necessary in order to obtain the result of that exercise. That is, show that
|f (z)| can reach its minimum value at an interior point when the minimum value is
zero.

5. Consider the functionf (z) = (z + 1)2 and the closed triangular regionR with vertices
at the pointsz = 0, z = 2, andz = i. Find points inR where|f (z)| has its maximum
and minimum values, thus illustrating results in Sec. 54 and Exercise 3.

Suggestion:Interpret|f (z)| as the square of the distance betweenz and−1.
Ans. z = 2, z = 0.

6. Let f (z) = u(x, y) + iv(x, y) be a function that is continuous on a closed bounded
region R and analytic and not constant throughout the interior ofR. Prove that the
component functionu(x, y) has a minimum value inR which occurs on the boundary
of R and never in the interior. (See Exercise 3.)

7. Let f be the functionf (z) = ez andR the rectangular region 0≤ x ≤ 1, 0 ≤ y ≤ π .
Illustrate results in Sec. 54 and Exercise 6 by finding points inR where the component
functionu(x, y) = Re[f (z)] reaches its maximum and minimum values.

Ans. z = 1, z = 1 + πi.

8. Let the function f (z) = u(x, y) + iv(x, y) be continuous on a closed bounded
region R, and suppose that it is analytic and not constant in the interior ofR.
Show that the component functionv(x, y) has maximum and minimum values in
R which are reached on the boundary ofR and never in the interior, where it is
harmonic.

Suggestion:Apply results in Sec. 54 and Exercise 6 to the functiong(z) = −if (z).

9. Let z0 be a zero of the polynomial

P (z) = a0 + a1z + a2z
2 + · · · + anz

n (an �= 0)

of degreen (n ≥ 1). Show in the following way that

P (z) = (z − z0)Q(z)

whereQ(z) is a polynomial of degreen − 1.
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(a) Verify that

zk − zk
0 = (z − z0)(z

k−1 + zk−2z0 + · · · + z zk−2
0 + zk−1

0 ) (k = 2, 3, . . .).

(b) Use the factorization in part(a) to show that

P (z) − P (z0) = (z − z0)Q(z)

whereQ(z) is a polynomial of degreen − 1, and deduce the desired result from
this.



C H A P T E R

5
SERIES

This chapter is devoted mainly to series representations of analytic functions. We
present theorems that guarantee the existence of such representations, and we
develop some facility inmanipulating series.

55. CONVERGENCE OF SEQUENCES

An infinite sequence

z1, z2, . . . , zn, . . .(1)

of complex numbers has alimit z if, for each positive numberε, there exists a
positive integern0 such that

|zn − z| < ε whenever n > n0.(2)

Geometrically, this means that for sufficiently large values ofn, the pointszn lie in
any givenε neighborhood ofz (Fig. 73). Since we can chooseε as small as we please,

x

z

O

y

zn

z2

z3

z1

ε

FIGURE 73
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it follows that the pointszn become arbitrarily close toz as their subscripts
increase. Note that the value ofn0 that is needed will, in general, depend on the
value ofε.

The sequence (1) can have at most one limit. That is, a limitz is unique if it
exists (Exercise 5, Sec. 56). When that limit exists, the sequence is said toconverge
to z ; and we write

lim
n→∞

zn = z.(3)

If the sequence has no limit, itdiverges.

Theorem. Suppose thatzn = xn + iyn (n = 1, 2, . . .) andz = x + iy. Then

lim
n→∞

zn = z(4)

if and only if

lim
n→∞

xn = x and lim
n→∞

yn = y.(5)

To prove this theorem, we first assume that conditions (5) hold and obtain
condition (4) from it. According to conditions (5), there exist, for each positive
numberε, positive integersn1 andn2 such that

|xn − x| <
ε

2
whenever n > n1

and
|yn − y| <

ε

2
whenever n > n2.

Hence ifn0 is the larger of the two integersn1 andn2,

|xn − x| <
ε

2
and |yn − y| <

ε

2
whenever n > n0.

Since

|(xn + iyn) − (x + iy)| = |(xn − x) + i(yn − y)| ≤ |xn − x| + |yn − y|,

then,
|zn − z| <

ε

2
+

ε

2
= ε whenever n > n0.

Condition (4) thus holds.
Conversely, if we start with condition (4), we know that for each positive

numberε, there exists a positive integern0 such that

|(xn + iyn) − (x + iy)| < ε whenever n > n0.
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But
|xn − x| ≤ |(xn − x) + i(yn − y)| = |(xn + iyn) − (x + iy)|

and
|yn − y| ≤ |(xn − x) + i(yn − y)| = |(xn + iyn) − (x + iy)|;

and this means that

|xn − x| < ε and |yn − y| < ε whenever n > n0.

That is, conditions (5) are satisfied.
Note how the theorem enables us to write

lim
n→∞

(xn + iyn) = lim
n→∞

xn + i lim
n→∞

yn

whenever we know that both limits on the right exist or that the one on the left
exists.

EXAMPLE 1. The sequence

zn =
1

n3
+ i (n = 1, 2, . . .)

converges toi since

lim
n→∞

(

1

n3
+ i

)

= lim
n→∞

1

n3
+ i lim

n→∞
1 = 0 + i·1 = i.

Definition (2) can also be used to obtain this result. More precisely, for each positive
numberε,

|zn − i| =
1

n3
< ε whenever n >

1
3
√

ε
.

One must be careful when adapting our theorem to polar coordinates, as the
following example shows.

EXAMPLE 2. When

zn = −2 + i
(−1)n

n2
(n = 1, 2, . . .),

the theorem tells us that

lim
n→∞

zn = lim
n→∞

(−2) + i lim
n→∞

(−1)n

n2
= −2 + i · 0 = −2.

If, using polar coordinates, we write

rn = |zn| and �n = Arg zn (n = 1, 2, . . .),
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where Argzn denotes principal arguments(−π < � ≤ π) of zn, we find that

lim
n→∞

rn = lim
n→∞

√

4 +
1

n4
= 2

but that

lim
n→∞

�2n = π and lim
n→∞

�2n−1 = −π (n = 1, 2, . . .).

Evidently, then, the limit of�n does not exist asn tends to infinity. (See also
Exercise 2, Sec. 56.)

56. CONVERGENCE OF SERIES

An infinite series

∞
∑

n=1

zn = z1 + z2 + · · · + zn + · · ·(1)

of complex numbersconvergesto thesumS if the sequence

SN =
N

∑

n=1

zn = z1 + z2 + · · · + zN (N = 1, 2, . . .)(2)

of partial sumsconverges toS; we then write

∞
∑

n=1

zn = S.

Note that since a sequence can have at most one limit, a series can have at most
one sum. When a series does not converge, we say that itdiverges.

Theorem. Suppose thatzn = xn + iyn (n = 1, 2, . . .) andS = X + iY . Then

∞
∑

n=1

zn = S(3)

if and only if

∞
∑

n=1

xn = X and
∞

∑

n=1

yn = Y.(4)
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This theorem tells us, of course, that one can write

∞
∑

n=1

(xn + iyn) =
∞

∑

n=1

xn + i

∞
∑

n=1

yn

whenever it is known that the two series on the right converge or that the one on
the left does.

To prove the theorem, we first write the partial sums (2) as

SN = XN + iYN ,(5)

where

XN =
N

∑

n=1

xn and YN =
N

∑

n=1

yn.

Now statement (3) is true if and only if

lim
N→∞

SN = S ;(6)

and, in view of relation (5) and the theorem on sequences in Sec. 55, limit (6) holds
if and only if

lim
N→∞

XN = X and lim
N→∞

YN = Y .(7)

Limits (7) therefore imply statement (3), and conversely. SinceXN andYN are the
partial sums of the series (4), the theorem here is proved.

This theorem can be useful in showing that a number of familiar properties
of series in calculus carry over to series whose terms are complex numbers. To
illustrate how this is done, we include heretwo such properties and present them
as corollaries.

Corollary 1. If a series of complex numbers converges, thenth term converges
to zero asn tends to infinity.

Assuming that series (1) converges, we know from the theorem that if

zn = xn + iyn (n = 1, 2, . . .),

then each of the series

∞
∑

n=1

xn and
∞

∑

n=1

yn(8)
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converges. We know, moreover, from calculus that thenth term of a convergent
series of real numbers approaches zero asn tends to infinity. Thus, by the theorem
in Sec. 55,

lim
n→∞

zn = lim
n→∞

xn + i lim
n→∞

yn = 0 + 0 · i = 0 ;

and the proof of Corollary 1 is complete.
It follows from this corollary that the terms of convergent series arebounded.

That is, when series (1) converges, there exists a positive constantM such that
|zn| ≤ M for each positive integern. (See Exercise 9.)

For another important property of series of complex numbers that follows from
a corresponding property in calculus, series (1) is said to beabsolutely convergent
if the series

∞
∑

n=1

|zn| =
∞

∑

n=1

√

x2
n + y2

n (zn = xn + iyn)

of real numbers
√

x2
n + y2

n converges.

Corollary 2. The absolute convergence of a series of complex numbers implies
the convergence of that series.

To prove Corollary 2, we assume that series (1) converges absolutely. Since

|xn| ≤
√

x2
n + y2

n and |yn| ≤
√

x2
n + y2

n,

we know from the comparison test in calculus that the two series

∞
∑

n=1

|xn| and
∞

∑

n=1

|yn|

must converge. Moreover, since the absolute convergence of a series of real num-
bers implies the convergence of the series itself, it follows that the series (8) both
converge. In view of the theorem in this section, then, series (1) converges. This
finishes the proof of Corollary 2.

In establishing the fact that the sum of a series is a given numberS, it is often
convenient to define theremainderρN after N terms, using the partial sums (2) :

ρN = S − SN .(9)

ThusS = SN + ρN ; and, since|SN − S| = |ρN − 0|, we see thata series converges
to a numberS if and only if the sequence of remainders tends to zero.We shall
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make considerable use of this observation in our treatment ofpower series.They
are series of the form

∞
∑

n=0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + · · · + an(z − z0)
n + · · · ,

wherez0 and the coefficientsan are complex constants andz may be any point in a
stated region containingz0. In such series, involving a variablez, we shall denote
sums, partial sums, and remainders byS(z), SN (z), andρN (z), respectively.

EXAMPLE. With the aid of remainders, it is easy to verify that

∞
∑

n=0

zn =
1

1 − z
whenever |z| < 1.(10)

We need only recall the identity (Exercise 9, Sec. 8)

1 + z + z2 + · · · + zn =
1 − zn+1

1 − z
(z �= 1)

to write the partial sums

SN (z) =
N−1
∑

n=0

zn = 1 + z + z2 + · · · + zN−1 (z �= 1)

as

SN (z) =
1 − zN

1 − z
.

If

S(z) =
1

1 − z
,

then,

ρN (z) = S(z) − SN (z) =
zN

1 − z
(z �= 1).

Thus

|ρN (z)| =
|z|N

|1 − z|
,

and it is clear from this that the remaindersρN (z) tend to zero when|z| < 1 but
not when|z| ≥ 1. Summation formula (10) is, therefore, established.
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EXERCISES
1. Use definition (2), Sec. 55, of limits of sequences to verify the limit of the sequence

zn (n = 1, 2, . . .) found in Example 2, Sec. 55.

2. Let �n (n = 1, 2, . . .) denote the principal arguments of the numbers

zn = 2 + i
(−1)n

n2
(n = 1, 2, . . .).

Point out why

lim
n→∞

�n = 0,

and compare with Example 2, Sec. 55.

3. Use the inequality (see Sec. 4)||zn| − |z|| ≤ |zn − z| to show that

if lim
n→∞

zn = z , then lim
n→∞

|zn| = |z|.

4. Write z = reiθ , where 0< r < 1, in the summation formula (10), Sec. 56. Then, with
the aid of the theorem in Sec. 56, show that

∞
∑

n=1

rn cosnθ =
r cosθ − r2

1 − 2r cosθ + r2
and

∞
∑

n=1

rn sinnθ =
r sinθ

1 − 2r cosθ + r2

when 0< r < 1. (Note that these formulas are also valid whenr = 0.)

5. Show that a limit of a convergent sequence of complex numbers is unique by appealing
to the corresponding result for a sequence of real numbers.

6. Show that

if
∞

∑

n=1

zn = S, then
∞

∑

n=1

zn = S.

7. Let c denote any complex number and show that

if
∞

∑

n=1

zn = S, then
∞

∑

n=1

czn = cS.

8. By recalling the corresponding result for series of real numbers and referring to the
theorem in Sec. 56, show that

if
∞

∑

n=1

zn = S and
∞

∑

n=1

wn = T , then
∞

∑

n=1

(zn + wn) = S + T .

9. Let a sequencezn (n = 1, 2, . . .) converge to a numberz. Show that there exists a
positive numberM such that the inequality|zn| ≤ M holds for alln. Do this in each
of the following ways.

(a) Note that there is a positive integern0 such that

|zn| = |z + (zn − z)| < |z| + 1

whenevern > n0.
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(b) Write zn = xn + iyn and recall from the theory of sequences of real numbers that
the convergence ofxn andyn (n = 1, 2, . . .) implies that|xn| ≤ M1 and|yn| ≤ M2
(n = 1, 2, . . .) for some positive numbersM1 andM2.

57. TAYLOR SERIES

We turn now toTaylor’s theorem,which is one of the most important results of the
chapter.

Theorem. Suppose thata functionf isanalytic throughoutadisk|z − z0| < R0 ,
centered atz0 and with radiusR0 (Fig. 74).Thenf (z) has the power series represen-
tation

f (z) =
∞

∑

n=0

an(z − z0)
n (|z − z0| < R0),(1)

where

an =
f (n)(z0)

n!
(n = 0, 1, 2, . . .).(2)

That is, series(1) converges tof (z) whenz lies in the stated open disk.

x

z0

R0

O

y

z

FIGURE 74

This is the expansion off (z) into a Taylor seriesabout the pointz0. It is the
familiar Taylor series from calculus, adapted to functions of a complex variable.
With the agreement that

f (0)(z0) = f (z0) and 0!= 1,

series (1) can, of course, be written

f (z) = f (z0) +
f ′(z0)

1!
(z − z0) +

f ′′(z0)

2!
(z − z0)

2 + · · · (|z − z0| < R0).(3)
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Any function which is analytic at a pointz0 must have a Taylor series aboutz0.
For, if f is analytic atz0, it is analytic throughout some neighborhood|z − z0| < ε

of that point (Sec. 24) ; andε may serve as the value ofR0 in the statement of
Taylor’s theorem. Also, iff is entire,R0 can be chosen arbitrarily large ; and the
condition of validity becomes|z − z0| < ∞. The series then converges tof (z) at
each pointz in the finite plane.

When it is known thatf is analytic everywhere inside a circle centered at
z0, convergence of its Taylor series aboutz0 to f (z) for each pointz within that
circle is ensured; no test for the convergence of the series is even required. In fact,
according to Taylor’s theorem, the series converges tof (z) within the circle about
z0 whose radius is the distance fromz0 to the nearest pointz1 at whichf fails to
be analytic. In Sec. 65, we shall find that this is actually the largest circle centered
at z0 such that the series converges tof (z) for all z interior to it.

In the following section, we shall first prove Taylor’s theorem whenz0 = 0, in
which casef is assumed to be analytic throughout a disk|z| < R0 and series (1)
becomes aMaclaurin series:

f (z) =
∞

∑

n=0

f (n)(0)

n!
zn (|z| < R0).(4)

The proof whenz0 is arbitrary will follow as an immediate consequence. A reader
who wishes to accept the proof of Taylor’s theorem can easily skip to the examples
in Sec. 59.

58. PROOF OF TAYLOR’S THEOREM

To begin the derivation of representation (4), Sec. 57, we write|z| = r and let
C0 denote and positively oriented circle|z| = r0, wherer < r0 < R0 (see Fig. 75).
Sincef is analytic inside and on the circleC0 and since the pointz is interior to

xR0

C0

r0
r

z
s

O

y

FIGURE 75
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C0, the Cauchy integral formula

f (z) =
1

2πi

∫

C0

f (s) ds

s − z
(1)

applies.
Now the factor 1/(s − z) in the integrand here can be put in the form

1

s − z
=

1

s
·

1

1 − (z/s)
;(2)

and we know from the example in Sec. 56 that

1

1 − z
=

N−1
∑

n=0

zn +
zN

1 − z
(3)

whenz is any complex number other than unity. Replacingz by z/s in expression
(3), then, we can rewrite equation (2) as

1

s − z
=

N−1
∑

n=0

1

sn+1
zn + zN 1

(s − z)sN
.(4)

Multiplying through this equation byf (s) and then integrating each side with respect
to s aroundC0, we find that

∫

C0

f (s) ds

s − z
=

N−1
∑

n=0

∫

C0

f (s) ds

sn+1
zn + zN

∫

C0

f (s) ds

(s − z)sN
.

In view of expression (1) and the fact that (Sec. 51)

1

2πi

∫

C0

f (s) ds

sn+1
=

f (n)(0)

n!
(n = 0, 1, 2, . . .),

this reduces, after we multiply through by 1/(2πi), to

f (z) =
N−1
∑

n=0

f (n)(0)

n!
zn + ρN (z),(5)

where

ρN (z) =
zN

2πi

∫

C0

f (s) ds

(s − z)sN
.(6)

Representation (4) in Sec. 57 now follows once it is shown that

lim
N→∞

ρN (z) = 0.(7)
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To accomplish this, we recall that|z| = r and thatC0 has radiusr0, wherer0 > r.
Then, if s is a point onC0, we can see that

|s − z| ≥ ||s| − |z|| = r0 − r.

Consequently, ifM denotes the maximum value of|f (s)| on C0,

|ρN (z)| ≤
rN

2π
·

M

(r0 − r)rN
0

2πr0 =
Mr0

r0 − r

(

r

r0

)N

.

Inasmuch as(r/r0) < 1, limit (7) clearly holds.
To verify the theorem when the disk of radiusR0 is centered at an arbitrary point

z0, we suppose thatf is analytic when|z − z0| < R0 and note that the composite
functionf (z + z0) must be analytic when|(z + z0) − z0| < R0. This last inequality
is, of course, just|z| < R0 ; and, if we writeg(z) = f (z + z0), the analyticity ofg
in the disk|z| < R0 ensures the existence of a Maclaurin series representation:

g(z) =
∞

∑

n=0

g(n)(0)

n!
zn (|z| < R0).

That is,

f (z + z0) =
∞

∑

n=0

f (n)(z0)

n!
zn (|z| < R0).

After replacingz by z − z0 in this equation and its condition of validity, we have
the desired Taylor series expansion (1) in Sec. 57.

59. EXAMPLES

In Sec. 66, we shall see that if there are constantsan (n = 0, 1, 2, . . .) such that

f (z) =
∞

∑

n=0

an(z − z0)
n

for all pointsz interior to some circle centered atz0, then the power series here must
be the Taylor series forf aboutz0, regardless of how those constants arise. This
observation often allows us to find the coefficientsan in Taylor series in more efficient
ways than by appealing directly to the formulaan = f (n)(z0)/n! in Taylor’s theorem.

In the following examples, we use the formula in Taylor’s theorem to find
the Maclaurin series expansions of somefairly simple functions, and we emphasize
the use of those expansions in finding other representations. In our examples, we
shall freely use expected properties of convergent series, such as those verified in
Exercises 7 and 8, Sec. 56.

EXAMPLE 1. Since the functionf (z) = ez is entire, it has a Maclaurin
series representation which is valid for allz. Heref (n)(z) = ez (n = 0, 1, 2, . . .) ;
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and, becausef (n)(0) = 1 (n = 0, 1, 2, . . .), it follows that

ez =
∞

∑

n=0

zn

n!
(|z| < ∞).(1)

Note that ifz = x + i0, expansion (1) becomes

ex =
∞

∑

n=0

xn

n!
(−∞ < x < ∞).

The entire functionz2e3z also has a Maclaurin series expansion. The simplest
way to obtain it is to replacez by 3z on each side of equation (1) and then multiply
through the resulting equation byz2:

z2e3z =
∞

∑

n=0

3n

n!
zn+2 (|z| < ∞).

Finally, if we replacen by n − 2 here, we have

z2e3z =
∞

∑

n=2

3n−2

(n − 2)!
zn (|z| < ∞).

EXAMPLE 2. One can use expansion (1) and the definition (Sec. 34)

sinz =
eiz − e−iz

2i

to find the Maclaurin series for the entire functionf (z) = sinz. To give the details,
we refer to expansion (1) and write

sinz =
1

2i

[ ∞
∑

n=0

(iz)n

n!
−

∞
∑

n=0

(−iz)n

n!

]

=
1

2i

∞
∑

n=0

[

1 − (−1)n
] inzn

n!
(|z| < ∞).

But 1− (−1)n = 0 whenn is even, and so we can replacen by 2n + 1 in this last
series:

sinz =
1

2i

∞
∑

n=0

[

1 − (−1)2n+1] i2n+1z2n+1

(2n + 1)!
(|z| < ∞).

Inasmuch as

1 − (−1)2n+1 = 2 and i2n+1 = (i2)ni = (−1)ni,

this reduces to

sinz =
∞

∑

n=0

(−1)n
z2n+1

(2n + 1)!
(|z| < ∞).(2)
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Term by term differentiation will be justified in Sec. 65. Using that procedure
here, we differentiate each side of equation (2) and write

cosz =
∞

∑

n=0

(−1)n

(2n + 1)!

d

dz
z2n+1 =

∞
∑

n=0

(−1)n
2n + 1

(2n + 1)!
z2n.

That is,

cosz =
∞

∑

n=0

(−1)n
z2n

(2n)!
(|z| < ∞).(3)

EXAMPLE 3. Because sinhz = −i sin(iz) (Sec. 35), we need only replacez

by iz on each side of equation (2) and multiply through the result by−i to see that

sinhz =
∞

∑

n=0

z2n+1

(2n + 1)!
(|z| < ∞).(4)

Likewise, since coshz = cos(iz), it follows from expansion (3) that

coshz =
∞

∑

n=0

z2n

(2n)!
(|z| < ∞).(5)

Observe that the Taylor series for coshz about the pointz0 = −2πi, for
example, is obtained by replacing the variablez by z + 2πi on each side of equation
(5) and then recalling that cosh(z + 2πi) = coshz for all z:

coshz =
∞

∑

n=0

(z + 2πi)2n

(2n)!
(|z| < ∞).

EXAMPLE 4. Another Maclaurin series representation is

1

1 − z
=

∞
∑

n=0

zn (|z| < 1),(6)

since the derivatives of the functionf (z) = 1/(1 − z), which fails to be analytic at
z = 1, are

f (n)(z) =
n!

(1 − z)n+1
(n = 0, 1, 2, . . .).

In particular,f (n)(0) = n! (n = 0, 1, 2, . . .). Note that expansion (6) gives us the
sum of an infinitegeometric series,wherez is the common ratio of adjacent terms :

1 + z + z2 + z3 + · · · =
1

1 − z
(|z| < 1).

This is, of course, the summation formula that was found in another way in the
example in Sec. 56.
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If we substitute−z for z in equation (6) and its condition of validity, and note
that |z| < 1 when| − z| < 1, we see that

1

1 + z
=

∞
∑

n=0

(−1)nzn (|z| < 1).

If, on the other hand, we replace the variablez in equation (6) by 1− z, we
have the Taylor series representation

1

z
=

∞
∑

n=0

(−1)n(z − 1)n (|z − 1| < 1).

This condition of validity follows from the one associated with expansion (6) since
|1 − z| < 1 is the same as|z − 1| < 1.

EXAMPLE 5. For our final example, let us expand the function

f (z) =
1 + 2z2

z3 + z5
=

1

z3
·

2(1 + z2) − 1

1 + z2
=

1

z3

(

2 −
1

1 + z2

)

into a series involving powers ofz. We cannot find a Maclaurin series forf (z)

since it is not analytic atz = 0. But we do know from expansion (6) that

1

1 + z2
= 1 − z2 + z4 − z6 + z8 − · · · (|z| < 1).

Hence, when 0< |z| < 1,

f (z) =
1

z3
(2 − 1 + z2 − z4 + z6 − z8 + · · ·) =

1

z3
+

1

z
− z + z3 − z5 + · · · .

We call such terms as 1/z3 and 1/z negativepowers ofz since they can be written
z−3 andz−1, respectively. The theory of expansions involving negative powers of
z − z0 will be discussed in the next section.

EXERCISES∗

1. Obtain the Maclaurin series representation

z cosh(z2) =
∞

∑

n=0

z4n+1

(2n)!
(|z| < ∞).

∗In these and subsequent exercises on series expansions, it is recommended that the reader use, when
possible, representations (1) through (6) in Sec. 59.
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2. Obtain the Taylor series

ez = e

∞
∑

n=0

(z − 1)n

n!
(|z − 1| < ∞)

for the functionf (z) = ez by

(a) usingf (n)(1) (n = 0, 1, 2, . . .); (b) writing ez = ez−1e.

3. Find the Maclaurin series expansion of the function

f (z) =
z

z4 + 9
=

z

9
·

1

1 + (z4/9)
.

Ans.
∞

∑

n=0

(−1)n

32n+2
z4n+1 (|z| <

√
3).

4. Show that iff (z) = sinz, then

f (2n)(0) = 0 and f (2n+1)(0) = (−1)n (n = 0, 1, 2, . . .).

Thus give an alternative derivation of the Maclaurin series (2) for sinz in Sec. 59.

5. Rederive the Maclaurin series (3) in Sec. 59 for the functionf (z) = cosz by

(a) using the definition

cosz =
eiz + e−iz

2

in Sec. 34 and appealing to the Maclaurin series (1) forez in Sec. 59 ;
(b) showing that

f (2n)(0) = (−1)n and f (2n+1)(0) = 0 (n = 0, 1, 2, . . .).

6. Use representation (2), Sec. 59, for sinz to write the Maclaurin series for the function

f (z) = sin(z2),

and point out how it follows that

f (4n)(0) = 0 and f (2n+1)(0) = 0 (n = 0, 1, 2, . . .).

7. Derive the Taylor series representation

1

1 − z
=

∞
∑

n=0

(z − i)n

(1 − i)n+1
(|z − i| <

√
2).

Suggestion:Start by writing

1

1 − z
=

1

(1 − i) − (z − i)
=

1

1 − i
·

1

1 − (z − i)/(1 − i)
.
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8. With the aid of the identity (see Sec. 34)

cosz = − sin
(

z −
π

2

)

,

expand cosz into a Taylor series about the pointz0 = π/2.

9. Use the identity sinh(z + πi) = −sinhz, verified in Exercise 7(a), Sec. 35, and the
fact that sinhz is periodic with period 2πi to find the Taylor series for sinhz about
the pointz0 = πi.

Ans. −
∞

∑

n=0

(z − πi)2n+1

(2n + 1)!
(|z − πi| < ∞).

10. What is the largest circle within which the Maclaurin series for the function tanhz

converges to tanhz? Write the first two nonzero terms of that series.

11. Show that whenz �= 0,

(a)
ez

z2
=

1

z2
+

1

z
+

1

2!
+

z

3!
+

z2

4!
+ · · · ;

(b)
sin(z2)

z4
=

1

z2
−

z2

3!
+

z6

5!
−

z10

7!
+ · · · .

12. Derive the expansions

(a)
sinhz

z2
=

1

z
+

∞
∑

n=0

z2n+1

(2n + 3)!
(0 < |z| < ∞);

(b) z3 cosh

(

1

z

)

=
z

2
+ z3 +

∞
∑

n=1

1

(2n + 2)!
·

1

z2n−1
(0 < |z| < ∞).

13. Show that when 0< |z| < 4,

1

4z − z2
=

1

4z
+

∞
∑

n=0

zn

4n+2
.

60. LAURENT SERIES

If a functionf fails to be analytic at a pointz0, one cannot apply Taylor’s theorem
at that point. It is often possible, however, to find a series representation forf (z)

involving both positive and negative powers ofz − z0. (See Example 5, Sec. 59,
and also Exercises 11, 12, and 13 for that section.) We now present the theory of
such representations, and we begin withLaurent’s theorem.

Theorem. Suppose that a functionf is analytic throughout an annular domain
R1 < |z − z0| < R2 , centered atz0 , and letC denote any positively oriented simple
closed contour aroundz0 and lying in that domain(Fig. 76). Then, at each point in
the domain,f (z) has the series representation

f (z) =
∞

∑

n=0

an(z − z0)
n +

∞
∑

n=1

bn

(z − z0)n
(R1 < |z − z0| < R2),(1)
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where

an =
1

2πi

∫

C

f (z) dz

(z − z0)n+1
(n = 0, 1, 2, . . .)(2)

and

bn =
1

2πi

∫

C

f (z) dz

(z − z0)−n+1
(n = 1, 2, . . .).(3)

x

z0

R2

C

R1

O

y

z

FIGURE 76

Note how replacingn by −n in the second series in representation (1) enables
us to write that series as

−1
∑

n=−∞

b−n

(z − z0)−n
,

where

b−n =
1

2πi

∫

C

f (z) dz

(z − z0)n+1
(n = −1, −2, . . .).

Thus

f (z) =
−1
∑

n=−∞
b−n(z − z0)

n +
∞

∑

n=0

an(z − z0)
n (R1 < |z − z0| < R2).

If

cn =
{

b−n whenn ≤ −1,

an whenn ≥ 0,

this becomes

f (z) =
∞

∑

n=−∞
cn(z − z0)

n (R1 < |z − z0| < R2),(4)
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where

cn =
1

2πi

∫

C

f (z) dz

(z − z0)n+1
(n = 0, ±1,±2, . . .).(5)

In either one of the forms (1) and (4), the representation off (z) is called aLaurent
series.

Observe that the integrand in expression (3) can be writtenf (z)(z − z0)
n−1.

Thus it is clear that whenf is actually analytic throughout the disk|z − z0| < R2, this
integrand is too. Hence all of the coefficientsbn are zero; and, because (Sec. 51)

1

2πi

∫

C

f (z) dz

(z − z0)n+1
=

f (n)(z0)

n!
(n = 0, 1, 2, . . .),

expansion (1) reduces to a Taylor series aboutz0.
If, however,f fails to be analytic atz0 but is otherwise analytic in the disk

|z − z0| < R2, the radiusR1 can be chosen arbitrarily small. Representation (1) is
then valid in the punctured disk 0< |z − z0| < R2. Similarly, if f is analytic at each
point in the finite plane exterior to the circle|z − z0| = R1, the condition of validity
is R1 < |z − z0| < ∞. Note that iff is analyticeverywherein the finite plane except
at z0, series (1) is valid at each point of analyticity, or when 0< |z − z0| < ∞.

We shall prove Laurent’s theorem first whenz0 = 0, which means that the
annulus is centered at the origin. The verification of the theorem whenz0 is arbitrary
will follow readily; and, as was the case with Taylor’s theorem, a reader can skip
the entire proof without difficulty.

61. PROOF OF LAURENT’S THEOREM

We start the proof by forming a closed annular regionr1 ≤ |z| ≤ r2 that is contained
in the domainR1 < |z| < R2 and whose interior contains both the pointz and the
contour C (Fig. 77). We letC1 and C2 denote the circles|z| = r1 and |z| = r2,

R2O R1

C

C1

C2

r1 r2

s s
r

z

x

y

FIGURE 77
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respectively, and we assign them a positive orientation. Observe thatf is analytic
on C1 andC2, as well as in the annular domain between them.

Next, we construct a positively oriented circleγ with center atz and small
enough to be contained in the interior of the annular regionr1 ≤ |z| ≤ r2, as shown
in Fig. 77. It then follows from the adaptation of the Cauchy–Goursat theorem to
integrals of analytic functions aroundoriented boundaries of multiply connected
domains (Sec. 49) that

∫

C2

f (s) ds

s − z
−

∫

C1

f (s) ds

s − z
−

∫

γ

f (s) ds

s − z
= 0.

But, according to the Cauchy integral formula, the value of the third integral here
is 2πif (z). Hence

f (z) =
1

2πi

∫

C2

f (s) ds

s − z
+

1

2πi

∫

C1

f (s) ds

z − s
.(1)

Now the factor 1/(s − z) in the first of these integrals is the same as in expres-
sion (1), Sec. 58, where Taylor’s theorem was proved ; and we shall need here the
expansion

1

s − z
=

N−1
∑

n=0

1

sn+1
zn + zN 1

(s − z)sN
,(2)

which was used in that earlier section. As for the factor 1/(z − s) in the second
integral, an interchange ofs andz in equation (2) reveals that

1

z − s
=

N−1
∑

n=0

1

s−n
·

1

zn+1
+

1

zN
·

sN

z − s
.

If we replace the index of summationn here byn − 1, this expansion takes the
form

1

z − s
=

N
∑

n=1

1

s−n+1
·

1

zn
+

1

zN
·

sN

z − s
,(3)

which is to be used in what follows.
Multiplying through equations (2) and (3) byf (s)/(2πi) and then integrating

each side of the resulting equations with respect tos aroundC2 andC1, respectively,
we find from expression (1) that

f (z) =
N−1
∑

n=0

anz
n + ρN (z) +

N
∑

n=1

bn

zn
+ σN (z),(4)
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where the numbersan (n = 0, 1, 2, . . . , N − 1) andbn (n = 1, 2, . . . , N) are given
by the equations

an =
1

2πi

∫

C2

f (s) ds

sn+1
, bn =

1

2πi

∫

C1

f (s) ds

s−n+1
(5)

and where

ρN (z) =
zN

2πi

∫

C2

f (s) ds

(s − z)sN
, σN (z) =

1

2πi zN

∫

C1

sNf (s) ds

z − s
.

As N tends to∞, expression (4) evidently takes the proper form of a Laurent
series in the domainR1 < |z| < R2, provided that

lim
N→∞

ρN (z) = 0 and lim
N→∞

σN (z) = 0.(6)

These limits are readily established by a method already used in the proof of Taylor’s
theorem in Sec. 58. We write|z| = r, so thatr1 < r < r2, and letM denote the
maximum value of|f (s)| on C1 andC2. We also note that ifs is a point onC2,
then |s − z| ≥ r2 − r ; and if s is on C1, we have|z − s| ≥ r − r1. This enables us
to write

|ρN (z)| ≤
Mr2

r2 − r

(

r

r2

)N

and |σN (z)| ≤
Mr1

r − r1

( r1

r

)N

.

Since(r/r2) < 1 and(r1/r) < 1, it is now clear that bothρN (z) andσN (z) tend to
zero asN tends to infinity.

Finally, we need only recall the corollary in Sec. 49 to see that the contours
used in integrals (5) here may be replaced by the contourC. This completes the
proof of Laurent’s theorem whenz0 = 0 since, if z is used instead ofs as the
variable of integration, expressions (5) for the coefficientsan andbn are the same
as expressions (2) and (3) in Sec. 60 whenz0 = 0 there.

To extend the proof to the general case in whichz0 is an arbitrary point in the
finite plane, we letf be a function satisfying the conditions in the theorem; and, just
as we did in the proof of Taylor’s theorem, we writeg(z) = f (z + z0). Sincef (z) is
analytic in the annulusR1 < |z − z0| < R2, the functionf (z + z0) is analytic when
R1 < |(z + z0) − z0| < R2. That is, g is analytic in the annulusR1 < |z| < R2,
which is centered at the origin. Now the simple closed contourC in the statement
of the theorem has some parametric representationz = z(t) (a ≤ t ≤ b), where

R1 < |z(t) − z0| < R2(7)

for all t in the intervala ≤ t ≤ b. Hence ifŴ denotes the path

z = z(t) − z0 (a ≤ t ≤ b),(8)
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Ŵ is not only a simple closed contour but, in view of inequalities (7), it lies in the
domainR1 < |z| < R2. Consequently,g(z) has a Laurent series representation

g(z) =
∞

∑

n=0

anz
n +

∞
∑

n=1

bn

zn
(R1 < |z| < R2),(9)

where

an =
1

2πi

∫

Ŵ

g(z) dz

zn+1
(n = 0, 1, 2, . . .),(10)

bn =
1

2πi

∫

Ŵ

g(z) dz

z−n+1
(n = 1, 2, . . .).(11)

Representation (1) in Sec. 60 is obtained if we writef (z + z0) instead ofg(z)

in equation (9) and then replacez by z − z0 in the resulting equation, as well as in
the condition of validityR1 < |z| < R2. Expression (10) for the coefficientsan is,
moreover, the same as expression (2), Sec. 60, since

∫

Ŵ

g(z) dz

zn+1
=

∫ b

a

f [z(t)]z′(t)

[z(t) − z0]n+1
dt =

∫

C

f (z) dz

(z − z0)n+1
.

Similarly, the coefficientsbn in expression (11) are the same as those in expres-
sion (3), Sec. 60.

62. EXAMPLES

The coefficients in a Laurent series are generally found by means other than appeal-
ing directly to their integral representations. This is illustrated in the following
examples, where it is always assumed that when the annular domain is specified, a
Laurent series for a given function in unique. As was the case with Taylor series,
we defer the proof of such uniqueness until Sec. 66.

EXAMPLE 1. Replacingz by 1/z in the Maclaurin series expansion (Sec. 59)

ez =
∞

∑

n=0

zn

n!
= 1 +

z

1!
+

z2

2!
+

z3

3!
+ · · · (|z| < ∞),

we have the Laurent series representation

e1/z =
∞

∑

n=0

1

n! zn
= 1 +

1

1!z
+

1

2!z2
+

1

3!z3
+ · · · (0 < |z| < ∞).
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Note that no positive powers ofz appear here, the coefficients of the positive
powers being zero. Note, too, that the coefficient of 1/z is unity; and, according to
Laurent’s theorem in Sec. 60, that coefficient is the number

b1 =
1

2πi

∫

C

e1/z dz,

whereC is any positively oriented simple closed contour around the origin. Since
b1 = 1, then,

∫

C

e1/z dz = 2πi.

This method of evaluating certain integrals around simple closed contours will be
developed in considerable detail in Chap. 6.

EXAMPLE 2. The functionf (z) = 1/(z − i)2 is already in the form of a
Laurent series, wherez0 = i. That is,

1

(z − i)2
=

∞
∑

n=−∞
cn(z − i)n (0 < |z − i| < ∞)

wherec−2 = 1 and all of the other coefficients are zero. From formula (5), Sec. 60,
for the coefficients in a Laurent series, we know that

cn =
1

2πi

∫

C

dz

(z − i)n+3
(n = 0, ±1,±2, . . .)

whereC is, for instance, any positively oriented circle|z − i| = R about the point
z0 = i. Thus [compare with Exercise 10(b), Sec. 42]

∫

C

dz

(z − i)n+3
=

{

0 when n �= −2,

2πi whenn = −2.

The function

f (z) =
−1

(z − 1)(z − 2)
=

1

z − 1
−

1

z − 2
,(1)

which has the two singular pointsz = 1 andz = 2, is analytic in the domains

|z| < 1, 1 < |z| < 2, and 2< |z| < ∞.

In each of those domains, denoted byD1, D2, and D3, respectively, in Fig. 78,
f (z) has series representations in powers ofz. They can all be found by making
the appropriate replacements forz in the expansion

1

1 − z
=

∞
∑

n=0

zn (|z| < 1)(2)

that was obtained in Example 4, Sec. 59. We consider first the domainD1.
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x

D3

D2

D1

O 1 2

y

FIGURE 78

EXAMPLE 3. The representation inD1 is a Maclaurin series. To find it, we
observe that

|z| < 1 and |z/2| < 1

whenz is in D1; and so we put expression (1) in the form

f (z) = −
1

1 − z
+

1

2
·

1

1 − (z/2)
.

This tells us that

f (z) = −
∞

∑

n=0

zn +
∞

∑

n=0

zn

2n+1
=

∞
∑

n=0

(2−n−1 − 1) zn (|z| < 1).(3)

The representations inD2 andD3 are treated in the next two examples.

EXAMPLE 4. Because 1< |z| < 2 whenz is a point inD2, we know that

|1/z| < 1 and|z/2| < 1

for such points. This suggests writing expression (1) as

f (z) =
1

z
·

1

1 − (1/z)
+

1

2
·

1

1 − (z/2)
.

In view of expansion (2), then,

f (z) =
∞

∑

n=0

1

zn+1
+

∞
∑

n=0

zn

2n+1
(1 < |z| < 2).
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If we replace the index of summationn in the first of these series byn − 1 and then
interchange the two series, we arrive at an expansion having the same form as the
one in the statement of Laurent’s theorem (Sec. 60):

f (z) =
∞

∑

n=0

zn

2n+1
+

∞
∑

n=1

1

zn
(1 < |z| < 2).(4)

Since there is only one Laurent series forf (z) in the annulusD2, expansion (4) is,
in fact, the Laurent series forf (z) there.

EXAMPLE 5. The representation of the function (1) in the unbounded
domain D3, where 2< |z| < ∞, is also a Laurent series. Since|2/z| < 1 when
z is in D3, it is also true that|1/z| < 1. So if we write expression (1) as

f (z) =
1

2
·

1

1 − (1/z)
−

1

z
·

1

1 − (2/z)
,

we find that

f (z) =
∞

∑

n=0

1

zn+1
−

∞
∑

n=0

2n

zn+1
=

∞
∑

n=0

1 − 2n

zn+1
(2 < |z| < ∞).

Replacingn by n − 1 in this last series then gives the standard form

f (z) =
∞

∑

n=1

1 − 2n−1

zn
(2 < |z| < ∞)(5)

used in Laurent’s theorem in Sec. 60. Here, of course, all thean’s in that theorem
are zero.

EXERCISES
1. Find the Laurent series that represents the function

f (z) = z2 sin

(

1

z2

)

in the domain 0< |z| < ∞.

Ans. 1+
∞

∑

n=1

(−1)n

(2n + 1)!
·

1

z4n
.

2. Derive the Laurent series representation

ez

(z + 1)2
=

1

e

[ ∞
∑

n=0

(z + 1)n

(n + 2)!
+

1

z + 1
+

1

(z + 1)2

]

(0 < |z + 1| < ∞).



206 Series chap. 5

3. Find a representation for the function

f (z) =
1

1 + z
=

1

z
·

1

1 + (1/z)

in negative powers ofz that is valid when 1< |z| < ∞.

Ans.
∞

∑

n=1

(−1)n+1

zn
.

4. Give two Laurent series expansions in powers ofz for the function

f (z) =
1

z2(1 − z)
,

and specify the regions in which those expansions are valid.

Ans.
∞

∑

n=0

zn +
1

z
+

1

z2
(0 < |z| < 1); −

∞
∑

n=3

1

zn
(1 < |z| < ∞).

5. Represent the function

f (z) =
z + 1

z − 1

(a) by its Maclaurin series, and state where the representation is valid ;
(b) by its Laurent series in the domain 1< |z| < ∞ .

Ans. (a) −1 − 2
∞

∑

n=1

zn (|z| < 1); (b) 1 + 2
∞

∑

n=1

1

zn
.

6. Show that when 0< |z − 1| < 2,

z

(z − 1)(z − 3)
= −3

∞
∑

n=0

(z − 1)n

2n+2
−

1

2(z − 1)
.

7. Write the two Laurent series in powers ofz that represent the function

f (z) =
1

z(1 + z2)

in certain domains, and specify those domains.

Ans.
∞

∑

n=0

(−1)n+1z2n+1 +
1

z
(0 < |z| < 1);

∞
∑

n=1

(−1)n+1

z2n+1
(1 < |z| < ∞).

8. (a) Let a denote a real number, where−1 < a < 1, and derive the Laurent series
representation

a

z − a
=

∞
∑

n=1

an

zn
(|a| < |z| < ∞).
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(b) After writing z = eiθ in the equation obtained in part(a), equate real parts and
then imaginary parts on each side of the result to derive the summation formulas

∞
∑

n=1

an cosnθ =
a cosθ − a2

1 − 2a cosθ + a2
and

∞
∑

n=1

an sinnθ =
a sinθ

1 − 2a cosθ + a2
,

where−1 < a < 1. (Compare with Exercise 4, Sec. 56.)

9. Suppose that a series
∞

∑

n=−∞
x[n]z−n

converges to an analytic functionX(z) in some annulusR1 < |z| < R2. That sumX(z)

is called thez-transform of x[n] (n = 0,±1,±2, . . .).∗ Use expression (5), Sec. 60,
for the coefficients in a Laurent series to show that if the annulus contains the unit
circle |z| = 1, then theinversez-transform ofX(z) can be written

x[n] =
1

2π

∫ π

−π

X(eiθ )einθ dθ (n = 0,±1,±2, . . .).

10. (a) Let z be any complex number, and letC denote the unit circle

w = eiφ (−π ≤ φ ≤ π)

in thew plane. Then use that contour in expression (5), Sec. 60, for the coefficients
in a Laurent series, adapted to such series about the origin in thew plane, to show
that

exp

[

z

2

(

w −
1

w

)]

=
∞

∑

n=−∞
Jn(z)w

n (0 < |w| < ∞)

where

Jn(z) =
1

2π

∫ π

−π

exp[−i(nφ − z sinφ)] dφ (n = 0,±1,±2, . . .).

(b) With the aid of Exercise 5, Sec. 38, regarding certain definite integrals of even
and odd complex-valued functions of a real variable, show that the coefficients in
part (a) here can be written†

Jn(z) =
1

π

∫ π

0
cos(nφ − z sinφ) dφ (n = 0,±1,±2, . . .).

∗The z-transform arises in studies of discrete-time linear systems. See, for instance, the book by
Oppenheim, Schafer, and Buck that is listed in Appendix 1.
†These coefficientsJn(z) are calledBessel functionsof the first kind. They play a prominent role in
certain areas of applied mathematics. See, for example, the authors’ “Fourier Series and Boundary
Value Problems,” 7th ed., Chap. 9, 2008.
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11. (a) Let f (z) denote a function which is analytic in some annular domain about the
origin that includes the unit circlez = eiφ (−π ≤ φ ≤ π). By taking that circle
as the path of integration in expressions (2) and (3), Sec. 60, for the coefficients
an andbn in a Laurent series in powers ofz, show that

f (z) =
1

2π

∫ π

−π

f (eiφ) dφ +
1

2π

∞
∑

n=1

∫ π

−π

f (eiφ)

[(

z

eiφ

)n

+
(

eiφ

z

)n]

dφ

whenz is any point in the annular domain.
(b) Write u(θ) = Re[f (eiθ )] and show how it follows from the expansion in part(a)

that

u(θ) =
1

2π

∫ π

−π

u(φ) dφ +
1

π

∞
∑

n=1

∫ π

−π

u(φ) cos[n(θ − φ)] dφ.

This is one form of theFourier series expansion of the real-valued function
u(θ) on the interval−π ≤ θ ≤ π . The restriction onu(θ) is more severe than is
necessary in order for it to be represented by a Fourier series.∗

63. ABSOLUTE AND UNIFORM CONVERGENCE
OF POWER SERIES

This section and the three following it are devoted mainly to various properties of
power series. A reader who wishes to simply accept the theorems and the corollary
in these sections can easily skip the proofs in order to reach Sec. 67 more quickly.

We recall from Sec. 56 that a series of complex numbers convergesabsolutely
if the series of absolute values of those numbers converges. The following theorem
concerns the absolute convergence of power series.

Theorem 1. If a power series

∞
∑

n=0

an(z − z0)
n(1)

converges whenz = z1 (z1 �= z0), then it is absolutely convergent at each pointz in
the open disk|z − z0| < R1 whereR1 = |z1 − z0| (Fig. 79).

xO

y

z0

z1

R1

z

FIGURE 79

∗For other sufficient conditions, see Secs. 12 and 13 of the book cited in the footnote to Exercise 10.
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We start the proof by assuming that the series

∞
∑

n=0

an(z1 − z0)
n (z1 �= z0)

converges. The termsan(z1 − z0)
n are thus bounded ; that is,

|an(z1 − z0)
n| ≤ M (n = 0, 1, 2, . . .)

for some positive constantM (see Sec. 56). If|z − z0| < R1 and if we write

ρ =
|z − z0|
|z1 − z0|

,

we can see that

|an(z − z0)
n| = |an(z1 − z0)

n|
(

|z − z0|
|z1 − z0|

)n

≤ Mρn (n = 0, 1, 2, . . .).

Now the series
∞

∑

n=0

Mρn

is a geometric series, which converges sinceρ < 1. Hence, by the comparison test
for series of real numbers,

∞
∑

n=0

|an(z − z0)
n|

converges in the open disk|z − z0| < R1. This completes the proof.
The theorem tells us that the set of all points inside some circle centered atz0

is a region of convergence for the power series (1), provided it converges at some
point other thanz0. The greatest circle centered atz0 such that series (1) converges
at each point inside is called thecircle of convergenceof series (1). The series
cannot converge at any pointz2 outside that circle, according to the theorem ; for
if it did, it would converge everywhere inside the circle centered atz0 and passing
throughz2. The first circle could not, then, be the circle of convergence.

Our next theorem involves terminology that we must first define. Suppose that
the power series (1) has circle of convergence|z − z0| = R, and letS(z) andSN (z)

represent the sum and partial sums, respectively, of that series:

S(z) =
∞

∑

n=0

an(z − z0)
n, SN (z) =

N−1
∑

n=0

an(z − z0)
n (|z − z0| < R).

Then write the remainder function (see Sec. 56)

ρN (z) = S(z) − SN (z) (|z − z0| < R).(2)
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Since the power series converges for any fixed value ofz when|z − z0| < R, we know
that the remainderρN (z) approaches zero for any suchz asN tends to infinity. Accord-
ing to definition (2), Sec. 55, of the limit ofa sequence, this means that corresponding
to each positive numberε, there is a positive integerNε such that

|ρN (z)| < ε whenever N > Nε.(3)

When the choice ofNε depends only on the value ofε and is independent of the
point z taken in a specified region within the circle of convergence, the convergence
is said to beuniform in that region.

Theorem 2. If z1 is a point inside the circle of convergence|z − z0| = R of a
power series

∞
∑

n=0

an(z − z0)
n,(4)

then that series must be uniformly convergent in the closed disk|z − z0| ≤ R1, where
R1 = |z1 − z0| (Fig. 80).

xO

y

z0

z1

R1

R

z

FIGURE 80

Our proof of this theorem depends on Theorem 1. Given thatz1 is a point lying
inside the circle of convergence of series (4), we note that there are points inside that
circle and farther fromz0 thanz1 for which the series converges. So, according to
Theorem 1,

∞
∑

n=0

|an(z1 − z0)
n|(5)

converges. Lettingm andN denote positive integers, wherem > N, one can write
the remainders of series (4) and (5) as

ρN (z) = lim
m→∞

m
∑

n=N

an(z − z0)
n(6)



sec. 64 Continuity of Sums of Power Series 211

and

σN = lim
m→∞

m
∑

n=N

|an(z1 − z0)
n|,(7)

respectively.
Now, in view of Exercise 3, Sec. 56,

|ρN (z)| = lim
m→∞

∣

∣

∣

∣

∣

m
∑

n=N

an(z − z0)
n

∣

∣

∣

∣

∣

;

and, when|z − z0| ≤ |z1 − z0|,
∣

∣

∣

∣

∣

m
∑

n=N

an(z − z0)
n

∣

∣

∣

∣

∣

≤
m

∑

n=N

|an||z − z0|n ≤
m

∑

n=N

|an||z1 − z0|n =
m

∑

n=N

|an(z1 − z0)
n|.

Consequently,

|ρN (z)| ≤ σN when |z − z0| ≤ R1.(8)

SinceσN are the remainders of a convergent series, they tend to zero asN tends to
infinity. That is, for each positive numberε, an integerNε exists such that

σN < ε whenever N > Nε.(9)

Because of conditions (8) and (9), then, condition (3) holds for all pointsz in the
disk |z − z0| ≤ R1; and the value ofNε is independent of the choice ofz. Hence
the convergence of series (4) is uniform in that disk.

64. CONTINUITY OF SUMS OF POWER SERIES

Our next theorem is an important consequence of uniform convergence, discussed
in the previous section.

Theorem. A power series

∞
∑

n=0

an(z − z0)
n(1)

represents a continuous functionS(z) at each point inside its circle of convergence
|z − z0| = R.

Another way to state this theorem is to say that ifS(z) denotes the sum of
series (1) within its circle of convergence|z − z0| = R and if z1 is a point inside
that circle, then for each positive numberε there is a positive numberδ such that

|S(z) − S(z1)| < ε whenever |z − z1| < δ.(2)
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[See definition (4), Sec. 18, of continuity.] The numberδ here is small enough so
that z lies in the domain of definition|z − z0| < R of S(z)(Fig. 81).
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R0

R

O

y

z

FIGURE 81

To prove the theorem, we letSn(z) denote the sum of the firstN terms of series
(1) and write the remainder function

ρN (z) = S(z) − SN (z) (|z − z0| < R).

Then, because
S(z) = SN (z) + ρN (z) (|z − z0| < R),

one can see that

|S(z) − S(z1)| = |SN (z) − SN (z1) + ρN (z) − ρN (z1)|,

or

|S(z) − S(z1)| ≤ |SN (z) − SN (z1)| + |ρN (z)| + |ρN (z1)|.(3)

If z is any point lying in some closed disk|z − z0| ≤ R0 whose radiusR0 is greater
than |z1 − z0| but less than the radiusR of the circle of convergence of series (1)
(see Fig. 81), the uniform convergence stated in Theorem 2, Sec. 63, ensures that
there is a positive integerNε such that

|ρN (z)| <
ε

3
whenever N > Nε.(4)

In particular, condition (4) holds for each pointz in some neighborhood|z − z1| < δ

of z1 that is small enough to be contained in the disk|z − z0| ≤ R0.
Now the partial sumSN (z) is a polynomial and is, therefore, continuous atz1

for each value ofN . In particular, whenN = Nε + 1, we can choose ourδ so small
that

|SN (z) − SN (z1)| <
ε

3
whenever |z − z1| < δ.(5)
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By writing N = Nε + 1 in inequality (3) and using the fact that statements (4) and
(5) are true whenN = Nε + 1, we now find that

|S(z) − S(z1)| <
ε

3
+

ε

3
+

ε

3
whenever |z − z1| < δ.

This is statement (2), and the theorem is now established.
By writing w = 1/(z − z0), one can modify the two theorems in the previous

section and the theorem here so as to apply to series of the type

∞
∑

n=1

bn

(z − z0)n
.(6)

If, for instance, series (6) converges at a pointz1 (z1 �= z0), the series

∞
∑

n=1

bnw
n

must converge absolutely to a continuous function when

|w| <
1

|z1 − z0|
.(7)

Thus, since inequality (7) is the same as|z − z0| > |z1 − z0|, series (6) must con-
verge absolutely to a continuous function in the domainexterior to the circle
|z − z0| = R1, whereR1 = |z1 − z0|. Also, we know that if a Laurent series repre-
sentation

f (z) =
∞

∑

n=0

an(z − z0)
n +

∞
∑

n=1

bn

(z − z0)
n

is valid in an annulusR1 < |z − z0| < R2, then both of the series on the right
converge uniformly in any closed annulus which is concentric to and interior to that
region of validity.

65. INTEGRATION AND DIFFERENTIATION OF POWER
SERIES

We have just seen that a power series

S(z) =
∞

∑

n=0

an(z − z0)
n(1)

represents a continuous function at each pointinterior to its circle of convergence.
In this section, we prove that the sumS(z) is actually analytic within that circle.
Our proof depends on the following theorem, which is of interest in itself.
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Theorem 1. Let C denote any contour interior to the circle of convergence of
the power series(1), and letg(z) be any function that is continuous onC. The series
formed by multiplying each term of the power series byg(z) can be integrated term
by term overC; that is,

∫

C

g(z)S(z) dz =
∞

∑

n=0

an

∫

C

g(z)(z − z0)
n dz.(2)

To prove this theorem, we note that since bothg(z) and the sumS(z) of the
power series are continuous onC, the integral overC of the product

g(z)S(z) =
N−1
∑

n=0

an g(z)(z − z0)
n + g(z)ρN (z),

whereρN (z) is the remainder of the given series afterN terms, exists. The terms
of the finite sum here are also continuous on the contourC, and so their integrals
over C exist. Consequently, the integral of the quantityg(z)ρN (z) must exist; and
we may write

∫

C

g(z)S(z) dz =
N−1
∑

n=0

an

∫

C

g(z)(z − z0)
n dz +

∫

C

g(z)ρN (z) dz.(3)

Now let M be the maximum value of|g(z)| on C, and letL denote the length
of C. In view of the uniform convergence of the given power series (Sec. 63), we
know that for each positive numberε there exists a positive integerNε such that,
for all pointsz on C,

|ρN (z)| < ε whenever N > Nε.

SinceNε is independent ofz, we find that
∣

∣

∣

∣

∫

C

g(z)ρN (z) dz

∣

∣

∣

∣

< MεL whenever N > Nε;

that is,

lim
N→∞

∫

C

g(z)ρN (z) dz = 0.

It follows, therefore, from equation (3) that

∫

C

g(z)S(z) dz = lim
N→∞

N−1
∑

n=0

an

∫

C

g(z)(z − z0)
n dz.

This is the same as equation (2), and Theorem 1 is proved.
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If g(z) = 1 for each value ofz in the open disk bounded by the circle of
convergence of power series (1), the fact that(z − z0)

n is entire whenn = 0, 1, 2, . . .

ensures that
∫

C

g(z)(z − z0)
n dz =

∫

C

(z − z0)
n dz = 0 (n = 0, 1, 2, . . .)

for everyclosedcontourC lying in that domain. According to equation (2), then,
∫

C

S(z) dz = 0

for every such contour ; and, by Morera’s theorem (Sec. 52), the functionS(z) is
analytic throughout the domain. We state this result as a corollary.

Corollary. The sumS(z) of power series(1) is analytic at each pointz interior
to the circle of convergence of that series.

This corollary is often helpful in establishing the analyticity of functions and
in evaluating limits.

EXAMPLE 1. To illustrate, let us show that the function defined by means
of the equations

f (z) =
{

(ez − 1)/z whenz �= 0,

1 when z = 0

is entire. Since the Maclaurin series expansion

ez − 1 =
∞

∑

n=1

zn

n!
(4)

representsez − 1 for every value ofz, the representation

f (z) =
∞

∑

n=1

zn−1

n!
= 1 +

z

2!
+

z2

3!
+

z3

4!
+ · · · ,(5)

obtained by dividing each side of equation (4) byz, is valid whenz �= 0. But series
(5) clearly converges tof (0) whenz = 0. Hence representation (5) is valid for all
z; and f is, therefore, an entire function. Note that since(ez − 1)/z = f (z) when
z �= 0 and sincef is continuous atz = 0,

lim
z→0

ez − 1

z
= lim

z→0
f (z) = f (0) = 1.
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The first limit here is, of course, also evident if we write it in the form

lim
z→0

(ez − 1) − 0

z − 0
,

which is the definition of the derivative ofez − 1 at z = 0.

We observed in Sec. 57 that the Taylor series for a functionf about a pointz0

converges tof (z) at each pointz interior to the circle centered atz0 and passing
through the nearest pointz1 wheref fails to be analytic. In view of our corollary
to Theorem 1, we now know thatthere is no larger circleaboutz0 such that at each
point z interior to it the Taylor series converges tof (z). For if there were such a
circle, f would be analytic atz1; but f is not analytic atz1.

We now present a companion to Theorem 1.

Theorem 2. The power series(1) can be differentiated term by term. That is,
at each pointz interior to the circle of convergence of that series,

S′(z) =
∞

∑

n=1

nan(z − z0)
n−1.(6)

To prove this, letz denote any point interior to the circle of convergence of
series (1). Then letC be some positively oriented simple closed contour surrounding
z and interior to that circle. Also, define the function

g(s) =
1

2πi
·

1

(s − z)2
(7)

at each points on C. Sinceg(s) is continuous onC, Theorem 1 tells us that
∫

C

g(s)S(s) ds =
∞

∑

n=0

an

∫

C

g(s)(s − z0)
n ds.(8)

Now S(z) is analytic inside and onC, and this enables us to write
∫

C

g(s)S(s) ds =
1

2πi

∫

C

S(s) ds

(s − z)2
= S′(z)

with the aid of the integral representation for derivatives in Sec. 51. Furthermore,
∫

C

g(s)(s − z0)
n ds =

1

2πi

∫

C

(s − z0)
n

(s − z)2
ds =

d

dz
(z − z0)

n (n = 0, 1, 2, . . .).

Thus equation (8) reduces to

S ′(z) =
∞

∑

n=0

an

d

dz
(z − z0)

n,

which is the same as equation (6). This completes the proof.
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EXAMPLE 2. In Example 4, Sec. 59, we saw that

1

z
=

∞
∑

n=0

(−1)n(z − 1)n (|z − 1| < 1).

Differentiation of each side of this equation reveals that

−
1

z2
=

∞
∑

n=1

(−1)nn(z − 1)n−1 (|z − 1| < 1),

or
1

z2
=

∞
∑

n=0

(−1)n(n + 1)(z − 1)n (|z − 1| < 1).

66. UNIQUENESS OF SERIES REPRESENTATIONS

The uniqueness of Taylor and Laurent seriesrepresentations, anticipated in Secs. 59
and 62, respectively, follows readily from Theorem 1 in Sec. 65. We consider first
the uniqueness of Taylor series representations.

Theorem 1. If a series

∞
∑

n=0

an(z − z0)
n(1)

converges tof (z) at all points interior to some circle|z − z0| = R, then it is the
Taylor series expansion forf in powers ofz − z0.

To start the proof, we write the series representation

f (z) =
∞

∑

n=0

an(z − z0)
n (|z − z0| < R)(2)

in the hypothesis of the theorem using the index of summationm:

f (z) =
∞

∑

m=0

am(z − z0)
m (|z − z0| < R).

Then, by appealing to Theorem 1 in Sec. 65, we may write

∫

C

g(z)f (z) dz =
∞

∑

m=0

am

∫

C

g(z)(z − z0)
m dz,(3)
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whereg(z) is any one of the functions

g(z) =
1

2πi
·

1

(z − z0)n+1
(n = 0, 1, 2, . . .)(4)

andC is some circle centered atz0 and with radius less thanR.
In view of the extension (6), Sec. 51, of the Cauchy integral formula (see also

the corollary in Sec. 65), we find that
∫

C

g(z)f (z) dz =
1

2πi

∫

C

f (z) dz

(z − z0)n+1
=

f (n)(z0)

n!
;(5)

and, since (see Exercise 10, Sec. 42)
∫

C

g(z)(z − z0)
m dz =

1

2πi

∫

C

dz

(z − z0)n−m+1
=

{0 whenm �= n,

1 whenm = n,
(6)

it is clear that

∞
∑

m=0

am

∫

C

g(z)(z − z0)
m dz = an.(7)

Because of equations (5) and (7), equation (3) now reduces to

f (n)(z0)

n!
= an.

This shows that series (2) is, in fact, the Taylor series forf about the pointz0.
Note how it follows from Theorem 1 that if series (1) converges to zero through-

out some neighborhood ofz0, then the coefficientsan must all be zero.
Our second theorem here concerns the uniqueness of Laurent series represen-

tations.

Theorem 2. If a series

∞
∑

n=−∞
cn(z − z0)

n =
∞

∑

n=0

an(z − z0)
n +

∞
∑

n=1

bn

(z − z0)n
(8)

converges tof (z) at all points in some annular domain aboutz0, then it is the
Laurent series expansion forf in powers ofz − z0 for that domain.

The method of proof here is similar to the one used in proving Theorem 1. The
hypothesis of this theorem tells us that there is an annular domain aboutz0 such
that

f (z) =
∞

∑

n=−∞
cn(z − z0)

n
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for each pointz in it. Let g(z) be as defined by equation (4), but now allown to
be a negative integer too. Also, letC be any circle around the annulus, centered
at z0 and taken in the positive sense. Then, using the index of summationm and
adapting Theorem 1 in Sec. 65 to series involving both nonnegativeand negative
powers ofz − z0 (Exercise 10), write

∫

C

g(z)f (z) dz =
∞

∑

m=−∞
cm

∫

C

g(z)(z − z0)
m dz,

or

1

2πi

∫

C

f (z) dz

(z − z0)n+1
=

∞
∑

m=−∞
cm

∫

C

g(z)(z − z0)
m dz.(9)

Since equations (6) are also valid when the integersm andn are allowed to be
negative, equation (9) reduces to

1

2πi

∫

C

f (z) dz

(z − z0)n+1
= cn, (n = 0,±1, ±2, . . .),

which is expression (5), Sec. 60, for coefficients in the Laurent series forf in the
annulus.

EXERCISES
1. By differentiating the Maclaurin series representation

1

1 − z
=

∞
∑

n=0

zn (|z| < 1),

obtain the expansions

1

(1 − z)2
=

∞
∑

n=0

(n + 1) zn (|z| < 1)

and
2

(1 − z)3
=

∞
∑

n=0

(n + 1)(n + 2) zn (|z| < 1).

2. By substituting 1/(1 − z) for z in the expansion

1

(1 − z)2
=

∞
∑

n=0

(n + 1) zn (|z| < 1),

found in Exercise 1, derive the Laurent series representation

1

z2
=

∞
∑

n=2

(−1)n(n − 1)

(z − 1)n
(1 < |z − 1| < ∞).

(Compare with Example 2, Sec. 65.)
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3. Find the Taylor series for the function

1

z
=

1

2 + (z − 2)
=

1

2
·

1

1 + (z − 2)/2

about the pointz0 = 2. Then, by differentiating that series term by term, show that

1

z2
=

1

4

∞
∑

n=0

(−1)n(n + 1)

(

z − 2

2

)n

(|z − 2| < 2).

4. With the aid of series, show that the functionf defined by means of the equations

f (z) =
{

(sinz)/z whenz �= 0,

1 when z = 0

is entire. Use that result to establish the limit

lim
z→0

sinz

z
= 1.

(See Example 1, Sec. 65.)

5. Prove that if

f (z) =















cosz

z2 − (π/2)2
whenz �= ±π/2,

−
1

π
whenz = ±π/2,

thenf is an entire function.

6. In the w plane, integrate the Taylor series expansion (see Example 4, Sec. 59)

1

w
=

∞
∑

n=0

(−1)n(w − 1)n (|w − 1| < 1)

along a contour interior to the circle of convergence fromw = 1 to w = z to obtain
the representation

Log z =
∞

∑

n=1

(−1)n+1

n
(z − 1)n (|z − 1| < 1).

7. Use the result in Exercise 6 to show that if

f (z) =
Log z

z − 1
whenz �= 1

andf (1) = 1, thenf is analytic throughout the domain

0 < |z| < ∞, −π < Arg z < π.

8. Prove that iff is analytic atz0 and f (z0) = f ′(z0) = · · · = f (m)(z0) = 0, then the
function g defined by means of the equations
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g(z) =















f (z)

(z − z0)m+1
whenz �= z0,

f (m+1)(z0)

(m + 1)!
whenz = z0

is analytic atz0.

9. Suppose that a functionf (z) has a power series representation

f (z) =
∞

∑

n=0

an(z − z0)
n

inside some circle|z − z0| = R. Use Theorem 2 in Sec. 65, regarding term by term
differentiation of such a series, and mathematical induction to show that

f (n)(z) =
∞

∑

k=0

(n + k)!

k!
an+k (z − z0)

k (n = 0, 1, 2, . . .)

when|z−z0| < R. Then, by settingz = z0, show that the coefficientsan (n = 0, 1, 2,. . .)

are the coefficients in the Taylor series forf aboutz0. Thus give an alternative proof of
Theorem 1 in Sec. 66.

10. Consider two series

S1(z) =
∞

∑

n=0

an(z − z0)
n, S2(z) =

∞
∑

n=1

bn

(z − z0)n
,

which converge in some annular domain centered atz0. Let C denote any contour
lying in that annulus, and letg(z) be a function which is continuous onC. Modify
the proof of Theorem 1, Sec. 65, which tells us that

∫

C

g(z)S1(z) dz =
∞

∑

n=0

an

∫

C

g(z)(z − z0)
n dz ,

to prove that
∫

C

g(z)S2(z) dz =
∞

∑

n=1

bn

∫

C

g(z)

(z − z0)n
dz .

Conclude from these results that if

S(z) =
∞

∑

n=−∞
cn(z − z0)

n =
∞

∑

n=0

an(z − z0)
n +

∞
∑

n=1

bn

(z − z0)n
,

then
∫

C

g(z)S(z) dz =
∞

∑

n=−∞
cn

∫

C

g(z)(z − z0)
n dz .

11. Show that the function

f2(z) =
1

z2 + 1
(z �= ± i)
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is the analytic continuation (Sec. 27) of the function

f1(z) =
∞

∑

n=0

(−1)nz2n (|z| < 1)

into the domain consisting of all points in thez plane exceptz = ± i.

12. Show that the functionf2(z) = 1/z2 (z �= 0) is the analytic continuation (Sec. 27) of
the function

f1(z) =
∞

∑

n=0

(n + 1)(z + 1)n (|z + 1| < 1)

into the domain consisting of all points in thez plane exceptz = 0.

67. MULTIPLICATION AND DIVISION OF POWER SERIES

Suppose that each of the power series
∞

∑

n=0

an(z − z0)
n and

∞
∑

n=0

bn(z − z0)
n(1)

converges within some circle|z − z0| = R. Their sumsf (z) andg(z), respectively,
are then analytic functions in the disk|z − z0| < R (Sec. 65), and the product of
those sums has a Taylor series expansion which is valid there:

f (z)g(z) =
∞

∑

n=0

cn(z − z0)
n (|z − z0| < R).(2)

According to Theorem 1 in Sec. 66, the series (1) are themselves Taylor series.
Hence the first three coefficients in series (2) are given by the equations

c0 = f (z0)g(z0) = a0b0,

c1 =
f (z0)g

′(z0) + f ′(z0)g(z0)

1!
= a0b1 + a1b0,

and

c2 =
f (z0)g

′′(z0) + 2f ′(z0)g
′(z0) + f ′′(z0)g(z0)

2!
= a0b2 + a1b1 + a2b0.

The general expression for any coefficientcn is easily obtained by referring to
Leibniz’s rule (Exercise 6)

[f (z)g(z)](n) =
n

∑

k=0

(n

k

)

f (k)(z)g(n−k)(z) (n = 1, 2, . . .),(3)

where
(n

k

)

=
n!

k!(n − k)!
(k = 0, 1, 2, . . . , n),
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for the nth derivative of the product of two differentiable functions. As usual,
f (0)(z) = f (z) and 0!= 1. Evidently,

cn =
n

∑

k=0

f (k)(z0)

k!
·
g(n−k)(z0)

(n − k)!
=

n
∑

k=0

akbn−k;

and so expansion (2) can be written

f (z)g(z) = a0b0 + (a0b1 + a1b0)(z − z0)(4)

+ (a0b2 + a1b1 + a2b0)(z − z0)
2 + · · ·

+

(

n
∑

k=0

akbn−k

)

(z − z0)
n + · · · (|z − z0| < R).

Series (4) is the same as the series obtained by formally multiplying the two
series (1) term by term and collecting the resulting terms in like powers ofz − z0 ;
it is called theCauchy productof the two given series.

EXAMPLE 1. The functionez/(1 + z) has a singular point atz = −1, and
so its Maclaurin series representation is valid in the open disk|z| < 1. The first
three nonzero terms are easily found by writing

ez

1 + z
= ez 1

1 − (−z)
=

(

1 + z +
1

2
z2 +

1

6
z3 + · · ·

)

(1 − z + z2 − z3 + · · ·)

and multiplying these two series term by term. To be precise, we may multiply each
term in the first series by 1, then each term in that series by−z, etc. The following
systematic approach is suggested, where like powers ofz are assembled vertically
so that their coefficients can be readily added:

1 + z +
1

2
z2 +

1

6
z3 + · · ·

−z − z2 −
1

2
z3 −

1

6
z4 − · · ·

z2 + z3 +
1

2
z4 +

1

6
z5 + · · ·

− z3 − z4 −
1

2
z5 −

1

6
z6 − · · ·

...

The desired result is
ez

1 + z
= 1 +

1

2
z2 −

1

3
z3 + · · · (|z| < 1).(5)
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Continuing to letf (z) and g(z) denote the sums of series (1), suppose that
g(z) �= 0 when |z − z0| < R. Since the quotientf (z)/g(z) is analytic throughout
the disk|z − z0| < R, it has a Taylor series representation

f (z)

g(z)
=

∞
∑

n=0

dn(z − z0)
n (|z − z0| < R),(6)

where the coefficientsdn can be found by differentiatingf (z)/g(z) successively
and evaluating the derivatives atz = z0. The results are the same as those found
by formally carrying out the division of the first of series (1) by the second. Since
it is usually only the first few terms thatare needed in practice, this method is not
difficult.

EXAMPLE 2. As pointed out in Sec. 35, the zeros of the entire function
sinhz are the numbersz = nπi (n = 0, ±1,±2, . . .). So the quotient

1

z2 sinhz
=

1

z2(z + z3/3! + z5/5! + · · ·)
,

which can be written

1

z2 sinhz
=

1

z3

(

1

1 + z2/3! + z4/5! + · · ·

)

,(7)

has a Laurent series representation in the punctured disk 0< |z| < π . The denomi-
nator of the fraction in parentheses on the right-hand side of equation (7) is a power
series that converges to(sinhz)/z whenz �= 0 and to 1 whenz = 0. Thus the sum
of that series is not zero anywhere in the disk|z| < π ; and a power series represen-
tation of the fraction in parentheses can be found by dividing the series into unity
as follows:

1 −
1

3!
z2+

[

1

(3!)2
−

1

5!

]

z4 + · · ·

1 +
1

3!
z2 +

1

5!
z4 + · · ·

)

1

1 +
1

3!
z2 +

1

5!
z4 + · · ·

−
1

3!
z2 −

1

5!
z4 + · · ·

−
1

3!
z2 −

1

(3!)2
z4 − · · ·

[

1

(3!)2
−

1

5!

]

z4 + · · ·
[

1

(3!)2
−

1

5!

]

z4 + · · ·

...
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That is,

1

1 + z2/3! + z4/5! + · · ·
= 1 −

1

3!
z2 +

[

1

(3!)2
−

1

5!

]

z4 + · · · ,

or

1

1 + z2/3! + z4/5! + · · ·
= 1 −

1

6
z2 +

7

360
z4 + · · · (|z| < π).(8)

Hence

1

z2 sinhz
=

1

z3
−

1

6
·

1

z
+

7

360
z + · · · (0 < |z| < π).(9)

Although we have given only the first three nonzero terms of this Laurent series,
any number of terms can, of course, be found by continuing the division.

EXERCISES
1. Use multiplication of series to show that

ez

z(z2 + 1)
=

1

z
+ 1 −

1

2
z −

5

6
z2 + · · · (0 < |z| < 1).

2. By writing cscz = 1/ sinz and then using division, show that

cscz =
1

z
+

1

3!
z +

[

1

(3!)2
−

1

5!

]

z3 + · · · (0 < |z| < π).

3. Use division to obtain the Laurent series representation

1

ez − 1
=

1

z
−

1

2
+

1

12
z −

1

720
z3 + · · · (0 < |z| < 2π).

4. Use the expansion

1

z2 sinhz
=

1

z3
−

1

6
·

1

z
+

7

360
z + · · · (0 < |z| < π)

in Example 2, Sec. 67, and the method illustrated in Example 1, Sec. 62, to show that
∫

C

dz

z2 sinhz
= −

πi

3
,

whenC is the positively oriented unit circle|z| = 1.

5. Follow these steps, which illustrate an alternative to straightforward division, to obtain
representation (8) in Example 2, Sec. 67.

(a) Write

1

1 + z2/3! + z4/5! + · · ·
= d0 + d1z + d2z

2 + d3z
3 + d4z

4 + · · · ,
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where the coefficients in the power series on the right are to be determined by
multiplying the two series in the equation

1 =
(

1 +
1

3!
z2 +

1

5!
z4 + · · ·

)

(d0 + d1z + d2z
2 + d3z

3 + d4z
4 + · · ·).

Perform this multiplication to show that

(d0 − 1) + d1z +
(

d2 +
1

3!
d0

)

z2 +
(

d3 +
1

3!
d1

)

z3

+
(

d4 +
1

3!
d2 +

1

5!
d0

)

z4 + · · · = 0

when |z| < π .
(b) By setting the coefficients in the last series in part(a) equal to zero, find the values

of d0, d1, d2, d3, andd4. With these values, the first equation in part(a) becomes
equation (8), Sec. 67.

6. Use mathematical induction to establish Leibniz’ rule (Sec. 67)

(fg)(n) =
n

∑

k=0

(

n

k

)

f (k)g(n−k) (n = 1, 2, . . .)

for the nth derivative of the product of two differentiable functionsf (z) andg(z).
Suggestion: Note that the rule is valid whenn = 1. Then, assuming that it is

valid whenn = m wherem is any positive integer, show that

(fg)(m+1) = (fg′)(m) + (f ′g)(m)

= fg(m+1) +
m

∑

k=1

[(

m

k

)

+
(

m

k − 1

)]

f (k)g(m+1−k) + f (m+1)g.

Finally, with the aid of the identify
(

m

k

)

+
(

m

k − 1

)

=
(

m + 1
k

)

that was used in Exercise 8, Sec. 3, show that

(fg)(m+1) = fg(m+1) +
m

∑

k=1

(

m + 1
k

)

f (k)g(m+1−k) + f (m+1)g

=
m+1
∑

k=0

(

m + 1
k

)

f (k)g(m+1−k).

7. Let f (z) be an entire function that is represented by a series of the form

f (z) = z + a2z
2 + a3z

3 + · · · (|z| < ∞).
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(a) By differentiating the composite functiong(z) = f [f (z)] successively, find the
first three nonzero terms in the Maclaurin series forg(z) and thus show that

f [f (z)] = z + 2a2z
2 + 2(a2

2 + a3)z
3 + · · · (|z| < ∞).

(b) Obtain the result in part(a) in a formal manner by writing

f [f (z)] = f (z) + a2[f (z)] 2 + a3[f (z)] 3 + · · · ,

replacingf (z) on the right-hand side here by its series representation, and then
collecting terms in like powers ofz.

(c) By applying the result in part(a) to the functionf (z) = sinz, show that

sin(sinz) = z −
1

3
z3 + · · · (|z| < ∞).

8. The Euler numbersare the numbersEn (n = 0, 1, 2, . . .) in the Maclaurin series
representation

1

coshz
=

∞
∑

n=0

En

n!
zn (|z| < π/2).

Point out why this representation is valid in the indicated disk and why

E2n+1 = 0 (n = 0, 1, 2, . . .).

Then show that

E0 = 1, E2 = −1, E4 = 5, and E6 = −61.





C H A P T E R

6
RESIDUES AND POLES

The Cauchy–Goursat theorem (Sec. 46) states that if a function is analytic at all
points interior to and on a simple closed contourC, then the value of the integral
of the function around that contour is zero. If, however, the function fails to be
analytic at a finite number of points interior toC, there is, as we shall see in this
chapter, a specific number, called a residue, which each of those points contributes
to the value of the integral. We develop here the theory of residues; and, in Chap. 7,
we shall illustrate their use in certain areas of applied mathematics.

68. ISOLATED SINGULAR POINTS
Recall (Sec. 24) that a pointz0 is called a singular point of a functionf if f fails
to be analytic atz0 but is analytic at some point in every neighborhood ofz0. A
singular pointz0 is said to beisolated if, in addition, there is a deleted neighborhood
0 < |z − z0| < ε of z0 throughout whichf is analytic.

EXAMPLE 1. The function
z + 1

z3(z2 + 1)

has the three isolated singular pointsz = 0 andz = ±i.

EXAMPLE 2. The origin is a singular point of the principal branch (Sec. 31)

Logz = ln r + i� (r > 0, −π < � < π)

229
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of the logarithmic function. It isnot, however, an isolated singular point since every
deletedε neighborhood of it contains points on the negative real axis (see Fig. 82)
and the branch is not even defined there. Similar remarks can be made regarding
any branch

logz = ln r + iθ (r > 0, α < θ < α + 2π)

of the logarithmic function.

xO

y

ε

FIGURE 82

EXAMPLE 3. The function
1

sin(π/z)

has the singular pointsz = 0 andz = 1/n (n = ±1, ±2, . . .), all lying on the seg-
ment of the real axis fromz = −1 to z = 1. Each singular point exceptz = 0 is
isolated. The singular pointz = 0 is not isolated because every deletedε neighbor-
hood of the origin contains other singular points of the function. More precisely,
when a positive numberε is specified andm is any positive integer such that
m > 1/ε, the fact that 0< 1/m < ε means that the pointz = 1/m lies in the deleted
ε neighborhood 0< |z| < ε (Fig. 83).

x1/mO

y

ε

FIGURE 83
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In this chapter, it will be important to keep in mind that if a function is analytic
everywhere inside a simple closed contourC except for afinite number of singular
points

z1, z2, . . . , zn,

those points must all be isolated and the deleted neighborhoods about them can be
made small enough to lie entirely insideC. To see that this is so, consider any
one of the pointszk. The radiusε of the needed deleted neighborhood can be any
positive number that is smaller than the distances to the other singular points and
also smaller than the distance fromzk to the closest point onC.

Finally, we mention that it is sometimes convenient to consider the point
at infinity (Sec. 17) as an isolated singular point. To be specific, if there is a
positive numberR1 such thatf is analytic forR1 < |z| < ∞, then f is said to
have anisolated singular point atz0 = ∞. Such a singular point will be used in
Sec. 71.

69. RESIDUES
Whenz0 is an isolated singular point of a functionf , there is a positive numberR2

such thatf is analytic at each pointz for which 0< |z − z0| < R2. Consequently,
f (z) has a Laurent series representation

f (z) =
∞

∑

n=0

an(z − z0)
n +

b1

z − z0
+

b2

(z − z0)2
+ · · ·+

bn

(z − z0)n
+ · · ·(1)

(0 < |z − z0| < R2),

where the coefficientsan andbn have certain integral representations (Sec. 60). In
particular,

bn =
1

2πi

∫

C

f (z) dz

(z − z0)−n+1
(n = 1, 2, . . .)

where C is any positively oriented simple closed contour aroundz0 that lies in
the punctured disk 0< |z − z0| < R2 (Fig. 84). Whenn = 1, this expression forbn

becomes
∫

C

f (z) dz = 2πib1.(2)

The complex numberb1, which is the coefficient of 1/(z − z0) in expansion (1), is
called theresidueof f at the isolated singular pointz0, and we shall often write

b1 = Res
z=z0

f (z).
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x

z0

R2C

O

y

FIGURE 84

Equation (2) then becomes
∫

C

f (z) dz = 2πi Res
z=z0

f (z).(3)

Sometimes we simply useB to denote the residue when the functionf and the
point z0 are clearly indicated.

Equation (3) provides a powerful method for evaluating certain integrals around
simple closed contours.

EXAMPLE 1. Consider the integral
∫

C

z2 sin

(

1

z

)

dz(4)

whereC is the positively oriented unit circle|z| = 1 (Fig. 85). Since the integrand
is analytic everywhere in the finite plane except atz = 0, it has a Laurent series
representation that is valid when 0< |z| < ∞. Thus, according to equation (3), the
value of integral (4) is 2πi times the residue of its integrand atz = 0.

x

y

C

O 1

FIGURE 85
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To determine that residue, we recall (Sec. 59) the Maclaurin series representa-
tion

sinz = z −
z3

3!
+

z5

5!
−

z7

7!
+ · · · (|z| < ∞)

and use it to write

z2 sin

(

1

z

)

= z −
1

3!
·

1

z
+

1

5!
·

1

z3
−

1

7!
·

1

z5
+ · · · (0 < |z| < ∞).

The coefficient of 1/z here is the desired residue. Consequently,
∫

C

z2 sin

(

1

z

)

dz = 2πi

(

−
1

3!

)

= −
πi

3
.

EXAMPLE 2. Let us show that
∫

C

exp

(

1

z2

)

dz = 0(5)

whenC is the same oriented circle|z| = 1 as in Example 1. Since 1/z2 is analytic
everywhere except at the origin, the same is true of the integrand. The isolated
singular pointz = 0 is interior toC, and Fig. 85 in Example 1 can be used here as
well. With the aid of the Maclaurin series representation (Sec. 59)

ez = 1 +
z

1!
+

z2

2!
+

z3

3!
+ · · · (|z| < ∞),

one can write the Laurent series expansion

exp

(

1

z2

)

= 1 +
1

1!
·

1

z2
+

1

2!
·

1

z4
+

1

3!
·

1

z6
+ · · · (0 < |z| < ∞).

The residue of the integrand at its isolated singular pointz = 0 is, therefore, zero
(b1 = 0), and the value of integral (5) is established.

We are reminded in this example that although the analyticity of a function
within and on a simple closed contourC is a sufficient condition for the value of
the integral aroundC to be zero, it is not anecessarycondition.

EXAMPLE 3. A residue can also be used to evaluate the integral
∫

C

dz

z(z − 2)4
(6)

whereC is the positively oriented circle|z − 2| = 1 (Fig. 86). Since the integrand
is analytic everywhere in the finite plane except at the pointsz = 0 andz = 2, it has
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a Laurent series representation that is valid in the punctured disk 0< |z − 2| < 2,
also shown in Fig. 86. Thus, according to equation (3), the value of integral (6) is
2πi times the residue of its integrand atz = 2. To determine that residue, we recall
(Sec. 59) the Maclaurin series expansion

1

1 − z
=

∞
∑

n=0

zn (|z| < 1)

and use it to write

1

z(z − 2)4
=

1

(z − 2)4
·

1

2 + (z − 2)

=
1

2(z − 2)4
·

1

1 −
(

−
z − 2

2

)

=
∞

∑

n=0

(−1)n

2n+1
(z − 2)n−4 (0 < |z − 2| < 2).

In this Laurent series, which could be written in the form (1), the coefficient of
1/(z − 2) is the desired residue, namely−1/16. Consequently,

∫

C

dz

z(z − 2)4
= 2πi

(

−
1

16

)

= −
πi

8
.

x

C

O 21

y

FIGURE 86

70. CAUCHY’S RESIDUE THEOREM
If, except for afinite number of singular points, a functionf is analytic inside a
simple closed contourC, those singular points must be isolated (Sec. 68). The fol-
lowing theorem, which is known asCauchy’s residue theorem,is a precise statement
of the fact that iff is also analytic onC and if C is positively oriented, then the
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value of the integral off aroundC is 2πi times thesumof the residues off at
the singular points insideC.

Theorem. Let C be a simple closed contour, described in the positive sense.
If a functionf is analytic inside and onC except for a finite number of singular
pointszk (k = 1, 2, . . . , n) insideC (Fig. 87), then

∫

C

f (z) dz = 2πi

n
∑

k=1

Res
z=zk

f (z).(1)

x

C1

C2

C

Cn

zn

z2

z1

O

y

FIGURE 87

To prove the theorem, let the pointszk (k = 1, 2, . . . , n) be centers of positively
oriented circlesCk which are interior toC and are so small that no two of them have
points in common. The circlesCk, together with the simple closed contourC, form
the boundary of a closed region throughout whichf is analytic and whose interior
is a multiply connected domain consisting of the points insideC and exterior to
eachCk. Hence, according to the adaptation of the Cauchy–Goursat theorem to such
domains (Sec. 49),

∫

C

f (z) dz −
n

∑

k=1

∫

Ck

f (z) dz = 0.

This reduces to equation (1) because (Sec. 69)
∫

Ck

f (z) dz = 2πi Res
z=zk

f (z) (k = 1, 2, . . . , n),

and the proof is complete.

EXAMPLE. Let us use the theorem to evaluate the integral
∫

C

5z − 2

z(z − 1)
dz(2)
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whereC is the circle|z| = 2, described counterclockwise. The integrand has the
two isolated singularitiesz = 0 andz = 1, both of which are interior toC. We can
find the residuesB1 at z = 0 andB2 at z = 1 with the aid of the Maclaurin series

1

1 − z
= 1 + z + z2 + · · · (|z| < 1).

We observe first that when 0< |z| < 1 (Fig. 88),

5z − 2

z(z − 1)
=

5z − 2

z
·

−1

1 − z
=

(

5 −
2

z

)

(−1 − z − z2 − · · ·);

and, by identifying the coefficient of 1/z in the product on the right here, we find
that B1 = 2. Also, since

5z − 2

z(z − 1)
=

5(z − 1) + 3

z − 1
·

1

1 + (z − 1)

=
(

5 +
3

z − 1

)

[1 − (z − 1) + (z − 1)2 − · · ·]

when 0< |z − 1| < 1, it is clear thatB2 = 3. Thus
∫

C

5z − 2

z(z − 1)
dz = 2πi(B1 + B2) = 10πi.

x

C

O 1 2

y

FIGURE 88

In this example, it is actually simpler to write the integrand as the sum of its
partial fractions:

5z − 2

z(z − 1)
=

2

z
+

3

z − 1
.
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Then, since 2/z is already a Laurent series when 0< |z| < 1 and since 3/(z − 1)

is a Laurent series when 0< |z − 1| < 1, it follows that
∫

C

5z − 2

z(z − 1)
dz = 2πi(2) + 2πi(3) = 10πi.

71. RESIDUE AT INFINITY
Suppose that a functionf is analytic throughout the finite plane except for a finite
number of singular points interior to a positively oriented simple closed contourC.
Next, letR1 denote a positive number which is large enough thatC lies inside the
circle |z| = R1 (see Fig. 89). The functionf is evidently analytic throughout the
domainR1 < |z| < ∞ and, as already mentioned at the end of Sec. 68, the point at
infinity is then said to be an isolated singular point off .

x

C0

C

R0R1O

y

FIGURE 89

Now let C0 denote a circle|z| = R0, oriented in theclockwisedirection, where
R0 > R1. The residue off at infinity is defined by means of the equation

∫

C0

f (z) dz = 2πi Res
z=∞

f (z).(1)

Note that the circleC0 keeps the point at infinity on the left, just as the singular
point in the finite plane is on the left in equation (3), Sec. 69. Sincef is analytic
throughout the closed region bounded byC andC0, the principle of deformation of
paths (Sec. 49) tells us that

∫

C

f (z) dz =
∫

−C0

f (z) dz = −
∫

C0

f (z) dz.
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So, in view of definition (1),
∫

C

f (z) dz = −2πi Res
z=∞

f (z).(2)

To find this residue, write the Laurent series (see Sec. 60)

f (z) =
∞

∑

n=−∞
cn zn (R1 < |z| < ∞),(3)

where

cn =
1

2πi

∫

−C0

f (z) dz

zn+1
(n = 0, ±1, ±2, . . .).(4)

Replacingz by 1/z in expansion (3) and then multiplying through the result by 1/z2,
we see that

1

z2
f

(

1

z

)

=
∞

∑

n=−∞

cn

zn+2
=

∞
∑

n=−∞

cn−2

zn

(

0 < |z| <
1

R1

)

and

c−1 = Res
z=0

[

1

z2
f

(

1

z

)]

.

Puttingn = −1 in expression (4), we now have

c−1 =
1

2πi

∫

−C0

f (z) dz,

or
∫

C0

f (z) dz = −2πi Res
z=0

[

1

z2
f

(

1

z

)]

.(5)

Note how it follows from this and definition (1) that

Res
z=∞

f (z) = − Res
z=0

[

1

z2
f

(

1

z

)]

.(6)

With equations (2) and (6), the following theorem is now established. This theorem
is sometimes more efficient to use than Cauchy’s residue theorem since it involves
only one residue.

Theorem. If a functionf is analytic everywhere in the finite plane except for a
finite number of singular points interior to a positively oriented simple closed contour
C, then

∫

C

f (z) dz = 2πi Res
z=0

[

1

z2
f

(

1

z

)]

.(7)
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EXAMPLE. In the example in Sec. 70, we evaluated the integral of

f (z) =
5z − 2

z(z − 1)

around the circle|z| = 2, described counterclockwise, by finding the residues of
f (z) at z = 0 andz = 1. Since

1

z2
f

(

1

z

)

=
5 − 2z

z(1 − z)
=

5 − 2z

z
·

1

1 − z

=
(

5

z
− 2

)

(1 + z + z2 + · · ·)

=
5

z
+ 3 + 3z + · · · (0 < |z| < 1),

we see that the theorem here can also be used, where the desired residue is 5. More
precisely,

∫

C

5z − 2

z(z − 1)
dz = 2πi(5) = 10πi,

where C is the circle in question. This is, of course, the result obtained in the
example in Sec. 70.

EXERCISES
1. Find the residue atz = 0 of the function

(a)
1

z + z2
; (b)z cos

(

1

z

)

; (c)
z − sinz

z
; (d)

cotz

z4
; (e)

sinhz

z4(1 − z2)
.

Ans. (a) 1; (b) −1/2 ; (c) 0 ; (d) −1/45 ; (e) 7/6.

2. Use Cauchy’s residue theorem (Sec. 70) to evaluate the integral of each of these
functions around the circle|z| = 3 in the positive sense:

(a)
exp(−z)

z2
; (b)

exp(−z)

(z − 1)2
; (c) z2 exp

(

1

z

)

; (d)
z + 1

z2 − 2z
.

Ans. (a) −2πi; (b) −2πi/e ; (c) πi/3 ; (d) 2πi.

3. Use the theorem in Sec. 71, involving a single residue, to evaluate the integral of each
of these functions around the circle|z| = 2 in the positive sense:

(a)
z5

1 − z3
; (b)

1

1 + z2
; (c)

1

z
.

Ans. (a) −2πi; (b) 0 ; (c) 2πi.

4. Let C denote the circle|z| = 1, taken counterclockwise, and use the following steps
to show that

∫

C

exp

(

z +
1

z

)

dz = 2πi

∞
∑

n=0

1

n! (n + 1)!
.
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(a) By using the Maclaurin series forez and referring to Theorem 1 in Sec. 65, which
justifies the term by term integration that is to be used, write the above integral as

∞
∑

n=0

1

n!

∫

C

zn exp

(

1

z

)

dz.

(b) Apply the theorem in Sec. 70 to evaluate the integrals appearing in part(a) to
arrive at the desired result.

5. Suppose that a functionf is analytic throughout the finite plane except for a finite
number of singular pointsz1, z2, . . . , zn. Show that

Res
z=z1

f (z) + Res
z=z2

f (z) + · · · + Res
z=zn

f (z) + Res
z=∞

f (z) = 0.

6. Let the degrees of the polynomials

P (z) = a0 + a1z + a2z
2 + · · · + anz

n (an �= 0)

and
Q(z) = b0 + b1z + b2z

2 + · · · + bmzm (bm �= 0)

be such thatm ≥ n + 2. Use the theorem in Sec. 71 to show that if all of the zeros of
Q(z) are interior to a simple closed contourC, then

∫

C

P (z)

Q(z)
dz = 0.

[Compare with Exercise 3(b).]

72. THE THREE TYPES OF ISOLATED SINGULAR POINTS
We saw in Sec. 69 that the theory of residues is based on the fact that iff has an
isolated singular point atz0, thenf (z) has a Laurent series representation

f (z) =
∞

∑

n=0

an(z − z0)
n +

b1

z − z0
+

b2

(z − z0)2
+ · · · +

bn

(z − z0)n
+ · · ·(1)

in a punctured disk 0< |z − z0| < R2. The portion

b1

z − z0
+

b2

(z − z0)2
+ · · · +

bn

(z − z0)n
+ · · ·(2)

of the series, involving negative powers ofz − z0, is called theprincipal part of f

at z0. We now use the principal part to identify the isolated singular pointz0 as one
of three special types. This classification will aid us in the development of residue
theory that appears in following sections.

If the principal part off atz0 contains at least one nonzero term but the number
of such terms is only finite, then there exists a positive integerm (m ≥ 1) such that

bm �= 0 and bm+1 = bm+2 = · · · = 0.
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That is, expansion (1) takes the form

f (z) =
∞

∑

n=0

an(z − z0)
n +

b1

z − z0
+

b2

(z − z0)2
+ · · · +

bm

(z − z0)m
(3)

(0 < |z − z0| < R2),

wherebm �= 0. In this case, the isolated singular pointz0 is called apole of order
m.∗ A pole of orderm = 1 is usually referred to as asimple pole.

EXAMPLE 1. Observe that the function

z2 − 2z + 3

z − 2
=

z(z − 2) + 3

z − 2
= z +

3

z − 2
= 2 + (z − 2) +

3

z − 2
(0 < |z − 2| < ∞)

has a simple pole(m = 1) at z0 = 2. Its residueb1 there is 3.

When representation (1) is written in the form (see Sec. 60)

f (z) =
∞

∑

n=−∞
cn(z − z0)

n (0 < |z − z0| < R2),

the residue off at z0 is, of course, the coefficientc−1.

EXAMPLE 2. From the representation

f (z) =
1

z2(1 + z)
=

1

z2
·

1

1 − (−z)
=

1

z2
(1 − z + z2 − z3 + z4 − · · ·)

=
1

z2
−

1

z
+ 1 − z + z2 − · · · (0 < |z| < 1),

one can see thatf has a pole of orderm = 2 at the origin and that

Res
z=0

f (z) = −1.

EXAMPLE 3. The function

sinhz

z4
=

1

z4

(

z +
z3

3!
+

z5

5!
+

z7

7!
+ · · ·

)

=
1

z3
+

1

3!
·

1

z
+

z

5!
+

z3

7!
+ · · ·

(0 < |z| < ∞)

has a pole of orderm = 3 at z0 = 0, with residueB = 1/6.

∗Reasons for the terminologypole are suggested on p. 70 of the book by R. P. Boas that is listed in
Appendix 1.
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There remain two extremes, the case in which every coefficient in the principal
part (2) is zero and the one in which an infinie number of them are nonzero.

When everybn is zero, so that

f (z) =
∞

∑

n=0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + · · ·(4)

(0 < |z − z0| < R2),

z0 is known as aremovable singular point. Note that the residue at a removable
singular point is always zero. If we define, or possibly redefine,f at z0 so that
f (z0) = a0, expansion (4) becomes valid throughout the entire disk|z − z0| < R2.
Since a power series always represents an analytic function interior to its circle of
convergence (Sec. 65), it follows thatf is analytic atz0 when it is assigned the
valuea0 there. The singularityz0 is, therefore,removed.

EXAMPLE 4. The pointz0 = 0 is a removable singular point of the function

f (z) =
1 − cosz

z2

because

f (z) =
1

z2

[

1 −
(

1 −
z2

2!
+

z4

4!
−

z6

6!
+ · · ·

)]

=
1

2!
−

z2

4!
+

z4

6!
− · · ·

(0 < |z| < ∞).

When the valuef (0) = 1/2 is assigned,f becomes entire.

If an infinite number of the coefficientsbn in the principal part (2) are nonzero,
z0 is said to be anessential singular pointof f .

EXAMPLE 5. We recall from Example 1 in Sec. 62 that

e1/z =
∞

∑

n=0

1

n!
·

1

zn
= 1 +

1

1!
·

1

z
+

1

2!
·

1

z2
+ · · · (0 < |z| < ∞).

From this we see thate1/z has an essential singular point atz0 = 0, where the
residueb1 is unity.

This example can be used to illustrate (see Exercise 4) an important result known
asPicard’s theorem. It concerns the behavior of a function near an essential singular
point and states thatin each neighborhood of an essential singular point, a function
assumes every finite value, with one possible exception, an infinite number of times.∗

∗For a proof of Picard’s theorem, see Sec. 51 in Vol. III of the book by Markushevich, cited in
Appendix 1.
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In the remaining sections of this chapter, we shall develop in greater depth
the theory of the three types of isolated singular points just described. The empha-
sis will be on useful and efficient methods for identifying poles and finding the
corresponding residues.

EXERCISES
1. In each case, write the principal part of the function at its isolated singular point and

determine whether that point is a pole, a removable singular point, or an essential
singular point:

(a) z exp

(

1

z

)

; (b)
z2

1 + z
; (c)

sinz

z
; (d)

cosz

z
; (e)

1

(2 − z)3
.

2. Show that the singular point of each of the following functions is a pole. Determine
the orderm of that pole and the corresponding residueB.

(a)
1 − coshz

z3
; (b)

1 − exp(2z)

z4
; (c)

exp(2z)

(z − 1)2
.

Ans. (a) m = 1, B = −1/2 ; (b) m = 3, B = −4/3 ; (c) m = 2, B = 2e2.

3. Suppose that a functionf is analytic atz0, and writeg(z) = f (z)/(z − z0). Show that

(a) if f (z0) �= 0, thenz0 is a simple pole ofg, with residuef (z0);
(b) if f (z0) = 0, thenz0 is a removable singular point ofg.

Suggestion:As pointed out in Sec. 57, there is a Taylor series forf (z) aboutz0
sincef is analytic there. Start each part of this exercise by writing out a few terms
of that series.

4. Use the fact (see Sec. 29) thatez = −1 when

z = (2n + 1)πi (n = 0,±1,±2, . . .)

to show thate1/z assumes the value−1 an infinite number of times in each neighbor-
hood of the origin. More precisely, show thate1/z = −1 when

z = −
i

(2n + 1)π
(n = 0,±1,±2, . . .);

then note that ifn is large enough, such points lie in any givenε neighborhood
of the origin. Zero is evidently the exceptional value in Picard’s theorem, stated in
Example 5, Sec. 72.

5. Write the function

f (z) =
8a3z2

(z2 + a2)3
(a > 0)

as

f (z) =
φ(z)

(z − ai)3
where φ(z) =

8a3z2

(z + ai)3
.
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Point out whyφ(z) has a Taylor series representation aboutz = ai, and then use it to
show that the principal part off at that point is

φ′′(ai)/2

z − ai
+

φ′(ai)

(z − ai)2
+

φ(ai)

(z − ai)3
= −

i/2

z − ai
−

a/2

(z − ai)2
−

a2i

(z − ai)3
.

73. RESIDUES AT POLES
When a functionf has an isolated singularity at a pointz0 , the basic method for
identifying z0 as a pole and finding the residue there is to write the appropriate
Laurent series and to note the coefficient of 1/(z − z0). The following theorem
provides an alternative characterization of poles and a way of finding residues at
poles that is often more convenient.

Theorem. An isolated singular pointz0 of a functionf is a pole of orderm
if and only iff (z) can be written in the form

f (z) =
φ(z)

(z − z0)m
,(1)

whereφ(z) is analytic and nonzero atz0 . Moreover,

Res
z=z0

f (z) = φ(z0) if m = 1(2)

and

Res
z=z0

f (z) =
φ(m−1)(z0)

(m − 1)!
if m ≥ 2.(3)

Observe that expression (2) need not have been written separately since, with
the convention thatφ(0)(z0) = φ(z0) and 0!= 1, expression (3) reduces to it when
m = 1.

To prove the theorem, we first assume thatf (z) has the form (1) and recall
(Sec. 57) that sinceφ(z) is analytic atz0, it has a Taylor series representation

φ(z) = φ(z0) +
φ′(z0)

1!
(z − z0) +

φ′′(z0)

2!
(z − z0)

2 + · · · +
φ(m−1)(z0)

(m − 1)!
(z − z0)

m−1

+
∞

∑

n=m

φ(n)(z0)

n!
(z − z0)

n

in some neighborhood|z − z0| < ε of z0; and from expression (1) it follows that

f (z) =
φ(z0)

(z − z0)m
+

φ′(z0)/1!

(z − z0)m−1
+

φ′′(z0)/2!

(z − z0)m−2
+ · · · +

φ(m−1)(z0)/(m − 1)!

z − z0

+
∞

∑

n=m

φ(n)(z0)

n!
(z − z0)

n−m
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when 0< |z − z0| < ε. This Laurent series representation, together with the fact
thatφ(z0) �= 0, reveals thatz0 is, indeed, a pole of orderm of f (z). The coefficient
of 1/(z − z0) tells us, of course, that the residue off (z) at z0 is as in the statement
of the theorem.

Suppose, on the other hand, that we know only thatz0 is a pole of orderm of
f , or thatf (z) has a Laurent series representation

f (z) =
∞

∑

n=0

an(z − z0)
n +

b1

z − z0
+

b2

(z − z0)2
+ · · · +

bm−1

(z − z0)m−1
+

bm

(z − z0)m

(bm �= 0)

which is valid in a punctured disk 0< |z − z0| < R2. The functionφ(z) defined by
means of the equations

φ(z) =
{

(z − z0)
mf (z) whenz �= z0,

bm whenz = z0

evidently has the power series representation

φ(z) = bm + bm−1(z − z0) + · · · + b2(z − z0)
m−2 + b1(z − z0)

m−1

+
∞

∑

n=0

an(z − z0)
m+n

throughout the entire disk|z − z0| < R2. Consequently,φ(z) is analytic in that disk
(Sec. 65) and, in particular, atz0. Inasmuch asφ(z0) = bm �= 0, expression (1) is
established; and the proof of the theorem is complete.

74. EXAMPLES
The following examples serve to illustrate the use of the theorem in Sec. 73.

EXAMPLE 1. The function

f (z) =
z + 1

z2 + 9

has an isolated singular point atz = 3i and can be written

f (z) =
φ(z)

z − 3i
where φ(z) =

z + 1

z + 3i
.

Sinceφ(z) is analytic atz = 3i and φ(3i) �= 0, that point is a simple pole of the
function f ; and the residue there is

B1 = φ(3i) =
3i + 1

6i
·
−i

−i
=

3 − i

6
.
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The pointz = −3i is also a simple pole off , with residue

B2 =
3 + i

6
.

EXAMPLE 2. If

f (z) =
z3 + 2z

(z − i)3
,

then

f (z) =
φ(z)

(z − i)3
where φ(z) = z3 + 2z.

The functionφ(z) is entire, andφ(i) = i �= 0. Hencef has a pole of order 3 at
z = i, with residue

B =
φ′′(i)

2!
=

6i

2!
= 3i.

The theorem can, of course, be used when branches of multiple-valued functions
are involved.

EXAMPLE 3. Suppose that

f (z) =
(logz)3

z2 + 1
,

where the branch

logz = ln r + iθ (r > 0, 0 < θ < 2π)

of the logarithmic function is to be used. To find the residue off at the singularity
z = i, we write

f (z) =
φ(z)

z − i
where φ(z) =

(logz)3

z + i
.

The functionφ(z) is clearly analytic atz = i; and, since

φ(i) =
(log i)3

2i
=

(ln 1 + iπ/2)3

2i
= −

π3

16
�= 0,

f has a simple pole there. The residue is

B = φ(i) = −
π3

16
.

While the theorem in Sec. 73 can be extremely useful, the identification of an
isolated singular point as a pole of a certain order is sometimes done most efficiently
by appealing directly to a Laurent series.



sec. 74 Examples 247

EXAMPLE 4. If, for instance, the residue of the function

f (z) =
sinhz

z4

is needed at the singularityz = 0, it would be incorrect to write

f (z) =
φ(z)

z4
where φ(z) = sinhz

and to attempt an application of formula (3) in Sec. 73 withm = 4. For it is
necessary thatφ(z0) �= 0 if that formula is to be used. In this case, the simplest way
to find the residue is to write out a few terms of the Laurent series forf (z), as was
done in Example 3 of Sec. 72. There it was shown thatz = 0 is a pole of thethird
order, with residueB = 1/6.

In some cases, the series approach can be effectively combined with the theorem
in Sec. 73.

EXAMPLE 5. Sincez(ez − 1) is entire and its zeros are

z = 2nπi (n = 0, ±1,±2, . . .),

the pointz = 0 is clearly an isolated singular point of the function

f (z) =
1

z(ez − 1)
.

From the Maclaurin series

ez = 1 +
z

1!
+

z2

2!
+

z3

3!
+ · · · (|z| < ∞),

we see that

z(ez − 1) = z

(

z

1!
+

z2

2!
+

z3

3!
+ · · ·

)

= z2
(

1 +
z

2!
+

z2

3!
+ · · ·

)

(|z| < ∞).

Thus

f (z) =
φ(z)

z2
where φ(z) =

1

1 + z/2! + z2/3! + · · ·
.

Sinceφ(z) is analytic atz = 0 andφ(0) = 1 �= 0, the pointz = 0 is a pole of the
secondorder; and, according to formula (3) in Sec. 73, the residue isB = φ ′(0).
Because

φ′(z) =
−(1/2! + 2z/3! + · · ·)

(1 + z/2! + z2/3! + · · ·)2

in a neighborhood of the origin, then,B = −1/2.
This residue can also be found by dividing our series forz(ez − 1) into 1, or

by multiplying the Laurent series for 1/(ez − 1) in Exercise 3, Sec. 67, by 1/z.
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EXERCISES
1. In each case, show that any singular point of the function is a pole. Determine the

orderm of each pole, and find the corresponding residueB.

(a)
z2 + 2

z − 1
; (b)

(

z

2z + 1

)3

; (c)
expz

z2 + π2
.

Ans. (a) m = 1, B = 3; (b) m = 3, B = −3/16 ; (c) m = 1, B = ± i/2π .

2. Show that

(a) Res
z=−1

z1/4

z + 1
=

1 + i
√

2
(|z| > 0, 0 < argz < 2π);

(b) Res
z=i

Log z

(z2 + 1)2
=

π + 2i

8
;

(c) Res
z=i

z1/2

(z2 + 1)2
=

1 − i

8
√

2
(|z| > 0, 0 < argz < 2π).

3. Find the value of the integral
∫

C

3z3 + 2

(z − 1)(z2 + 9)
dz ,

taken counterclockwise around the circle(a) |z − 2| = 2 ; (b) |z| = 4.
Ans. (a) πi; (b) 6πi.

4. Find the value of the integral
∫

C

dz

z3(z + 4)
,

taken counterclockwise around the circle(a) |z| = 2 ; (b) |z + 2| = 3.
Ans. (a) πi/32 ; (b) 0 .

5. Evaluate the integral
∫

C

coshπz

z(z2 + 1)
dz

whenC is the circle|z| = 2, described in the positive sense.
Ans. 4πi.

6. Use the theorem in Sec. 71, involving a single residue, to evaluate the integral off (z)

around the positively oriented circle|z| = 3 when

(a) f (z) =
(3z + 2)2

z(z − 1)(2z + 5)
; (b) f (z) =

z3(1 − 3z)

(1 + z)(1 + 2z4)
; (c) f (z) =

z3e1/z

1 + z3
.

Ans. (a) 9πi; (b) −3πi; (c) 2πi.

7. Let z0 be an isolated singular point of a functionf and suppose that

f (z) =
φ(z)

(z − z0)m
,

wherem is a positive integer andφ(z) is analytic and nonzero atz0. By applying
the extended form (6), Sec. 51, of the Cauchy integral formula to the functionφ(z),



sec. 75 Zeros of Analytic Functions 249

show that

Res
z=z0

f (z) =
φ(m−1)(z0)

(m − 1)!
,

as stated in the theorem of Sec. 73.
Suggestion:Since there is a neighborhood|z − z0| < ε throughout whichφ(z) is

analytic (see Sec. 24), the contour used in the extended Cauchy integral formula can
be the positively oriented circle|z − z0| = ε/2.

75. ZEROS OF ANALYTIC FUNCTIONS
Zeros and poles of functions are closely related. In fact, we shall see in the next
section how zeros can be a source of poles. We need, however, some preliminary
results regarding zeros of analytic functions.

Suppose that a functionf is analytic at a pointz0. We know from Sec. 52 that
all of the derivativesf (n)(z) (n = 1, 2, . . .) exist atz0. If f (z0) = 0 and if there
is a positive integerm such thatf (m)(z0) �= 0 and each derivative of lower order
vanishes atz0 , thenf is said to have azero of orderm at z0. Our first theorem
here provides a useful alternative characterization of zeros of orderm.

Theorem 1. Let a functionf be analytic at a pointz0. It has a zero of order
m at z0 if and only if there is a functiong, which is analytic and nonzero atz0 , such
that

f (z) = (z − z0)
mg(z).(1)

Both parts of the proof that follows use the fact (Sec. 57) that if a function is
analytic at a pointz0, then it must have a Taylor series representation in powers of
z − z0 which is valid throughout a neighborhood|z − z0| < ε of z0.

We start the first part of the proof by assuming that expression (1) holds and
noting that sinceg(z) is analytic atz0 , it has a Taylor series representation

g(z) = g(z0) +
g′(z0)

1!
(z − z0) +

g′′(z0)

2!
(z − z0)

2 + · · ·

in some neighborhood|z − z0| < ε of z0. Expression (1) thus takes the form

f (z) = g(z0)(z − z0)
m +

g′(z0)

1!
(z − z0)

m+1 +
g′′(z0)

2!
(z − z0)

m+2 + · · ·

when|z − z0| < ε. Since this is actually a Taylor series expansion forf (z), accord-
ing to Theorem 1 in Sec. 66, it follows that

f (z0) = f ′(z0) = f ′′(z0) = · · · = f (m−1)(z0) = 0(2)
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and that

f (m)(z0) = m!g(z0) �= 0.(3)

Hencez0 is a zero of orderm of f .
Conversely, if we assume thatf has a zero of orderm at z0 , the analyticity

of f at z0 and the fact that conditions (2) hold tell us that in some neighborhood
|z − z0| < ε, there is a Taylor series

f (z) =
∞

∑

n=m

f (n)(z0)

n!
(z − z0)

n

= (z − z0)
m

[

f (m)(z0)

m!
+

f (m+1)(z0)

(m + 1)!
(z − z0) +

f (m+2)(z0)

(m + 2)!
(z − z0)

2 + · · ·
]

.

Consequently,f (z) has the form (1), where

g(z) =
f (m)(z0)

m!
+

f (m+1)(z0)

(m + 1)!
(z − z0) +

f (m+2)(z0)

(m + 2)!
(z − z0)

2 + · · ·

(|z − z0| < ε).

The convergence of this last series when|z − z0| < ε ensures thatg is analytic in
that neighborhood and, in particular, atz0 (Sec. 65). Moreover,

g(z0) =
f (m)(z0)

m!
�= 0.

This completes the proof of the theorem.

EXAMPLE 1. The polynomialf (z) = z3 − 8 = (z − 2)(z2 + 2z + 4) has a
zero of orderm = 1 at z0 = 2 since

f (z) = (z − 2)g(z),

where g(z) = z2 + 2z + 4, and becausef and g are entire andg(2) = 12 �= 0.
Note how the fact thatz0 = 2 is a zero of orderm = 1 of f also follows from the
observations thatf is entire and that

f (2) = 0 and f ′(2) = 12 �= 0.

EXAMPLE 2. The entire functionf (z) = z(ez − 1) has a zero of order
m = 2 at the pointz0 = 0 since

f (0) = f ′(0) = 0 and f ′′(0) = 2 �= 0.

In this case, expression (1) becomes

f (z) = (z − 0)2g(z),
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whereg is the entire function (see Example 1, Sec. 65) defined by means of the
equations

g(z) =
{

(ez − 1)/z whenz �= 0,

1 whenz = 0.

Our next theorem tells us that the zeros of an analytic function areisolated
when the function is not identically equal to zero.

Theorem 2. Given a functionf and a pointz0 , suppose that

(a) f is analytic atz0 ;

(b) f (z0) = 0 but f (z) is not identically equal to zero in any neighborhood ofz0 .

Thenf (z) �= 0 throughout some deleted neighborhood0 < |z − z0| < ε of z0 .

To prove this, letf be as stated and observe that not all of the derivatives of
f at z0 are zero. If they were, all of the coefficients in the Taylor series forf about
z0 would be zero ; and that would mean thatf (z) is identically equal to zero in
some neighborhood ofz0 . So it is clear from the definition of zeros of orderm at
the beginning of this section thatf must have a zero of some finite orderm at z0.
According to Theorem 1, then,

f (z) = (z − z0)
mg(z)(4)

whereg(z) is analytic and nonzero atz0 .
Now g is continuous, in addition to being nonzero, atz0 because it is ana-

lytic there. Hence there is some neighborhood|z − z0| < ε in which equation (4)
holds and in whichg(z) �= 0 (see Sec. 18). Consequently,f (z) �= 0 in thedeleted
neighborhood 0< |z − z0| < ε; and the proof is complete.

Our final theorem here concerns functions with zeros that are not all isolated.
It was referred to earlier in Sec. 27 and makes an interesting contrast to Theorem 2
just above.

Theorem 3. Given a functionf and a pointz0 , suppose that

(a) f is analytic throughout a neighborhoodN0 of z0 ;

(b) f (z) = 0 at each pointz of a domain D or line segmentL containing z0

(Fig. 90).

Thenf (z) ≡ 0 in N0; that is,f (z) is identically equal to zero throughoutN0.

We begin the proof with the observation that under the stated conditions,
f (z) ≡ 0 in some neighborhoodN of z0. For, otherwise, there would be a deleted
neighborhood ofz0 throughout whichf (z) �= 0, according to Theorem 2 ; and that
would be inconsistent with the condition thatf (z) = 0 everywhere in a domainD
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x

z0

N0

D

L

O

y

FIGURE 90

or on a line segmentL containingz0 . Sincef (z) ≡ 0 in the neighborhoodN , then,
it follows that all of the coefficients

an =
f (n)(z0)

n!
(n = 0, 1, 2, . . .)

in the Taylor series forf (z) aboutz0 must be zero. Thusf (z) ≡ 0 in the neighborhood
N0, since the Taylor series also representsf (z) in N0. This completes the proof.

76. ZEROS AND POLES
The following theorem shows how zeros of orderm can create poles of orderm.

Theorem 1. Suppose that

(a) two functionsp andq are analytic at a pointz0 ;

(b) p(z0) �= 0 and q has a zero of orderm at z0 .

Then the quotientp(z)/q(z) has a pole of orderm at z0 .

The proof is easy. Letp andq be as in the statement of the theorem. Sinceq has
a zero of orderm at z0, we know from Theorem 2 in Sec. 75 that there is a deleted
neighborhood ofz0 throughout whichq(z) �= 0 ; and soz0 is an isolated singular
point of the quotientp(z)/q(z). Theorem 1 in Sec. 75 tells us, moreover, that

q(z) = (z − z0)
mg(z),

whereg is analytic and nonzero atz0 ; and this enables us to write

p(z)

q(z)
=

φ(z)

(z − z0)m
where φ(z) =

p(z)

g(z)
.(1)

Sinceφ(z) is analytic and nonzero atz0 , it now follows from the theorem in Sec.
73 thatz0 is a pole of orderm of p(z)/q(z).
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EXAMPLE 1. The two functions

p(z) = 1 and q(z) = z(ez − 1)

are entire; and we know from Example 2 in Sec. 75 thatq has a zero of order
m = 2 at the pointz0 = 0. Hence it follows from Theorem 1 that the quotient

p(z)

q(z)
=

1

z(ez − 1)

has a pole of order 2 at that point. This was demonstrated in another way in
Example 5, Sec. 74.

Theorem 1 leads us to another method for identifyingsimple poles and find-
ing the corresponding residues. This method, stated just below as Theorem 2, is
sometimes easier to use than the theorem in Sec. 73.

Theorem 2. Let two functionsp andq be analytic at a pointz0 . If

p(z0) �= 0, q(z0) = 0, and q ′(z0) �= 0,

thenz0 is a simple pole of the quotientp(z)/q(z) and

Res
z=z0

p(z)

q(z)
=

p(z0)

q ′(z0)
.(2)

To show this, we assume thatp andq are as stated and observe that because of
the conditions onq, the pointz0 is a zero of orderm = 1 of that function. According
to Theorem 1 in Sec. 75, then,

q(z) = (z − z0)g(z)(3)

whereg(z) is analytic and nonzero atz0. Furthermore, Theorem 1 in this section
tells us thatz0 is a simple pole ofp(z)/q(z); and expression (1) forp(z)/q(z) in
the proof of that theorem becomes

p(z)

q(z)
=

φ(z)

z − z0
where φ(z) =

p(z)

g(z)
.

Since thisφ(z) is analytic and nonzero atz0, we know from the theorem in Sec. 73
that

Res
z=z0

p(z)

q(z)
=

p(z0)

g(z0)
.(4)

But g(z0) = q ′(z0), as is seen by differentiating each side of equation (3) and then
settingz = z0. Expression (4) thus takes the form (2).

EXAMPLE 2. Consider the function

f (z) = cotz =
cosz

sinz
,
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which is a quotient of the entire functionsp(z) = cosz andq(z) = sinz. Its singu-
larities occur at the zeros ofq, or at the points

z = nπ (n = 0, ±1, ±2, . . .).

Since

p(nπ) = (−1)n �= 0, q(nπ) = 0, and q ′(nπ) = (−1)n �= 0,

each singular pointz = nπ of f is a simple pole, with residue

Bn =
p(nπ)

q ′(nπ)
=

(−1)n

(−1)n
= 1.

EXAMPLE 3. The residue of the function

f (z) =
tanhz

z2
=

sinhz

z2 coshz

at the zeroz = πi/2 of coshz (see Sec. 35) is readily found by writing

p(z) = sinhz and q(z) = z2 coshz.

Since

p

(

πi

2

)

= sinh

(

πi

2

)

= i sin
π

2
= i �= 0

and

q

(

πi

2

)

= 0, q ′
(

πi

2

)

=
(

πi

2

)2

sinh

(

πi

2

)

= −
π2

4
i �= 0,

we find thatz = πi/2 is a simple pole off and that the residue there is

B =
p(πi/2)

q ′(πi/2)
= −

4

π2
.

EXAMPLE 4. Since the point

z0 =
√

2eiπ/4 = 1 + i

is a zero of the polynomialz4 + 4 (see Exercise 6, Sec. 10), it is also an isolated
singularity of the function

f (z) =
z

z4 + 4
.

Writing p(z) = z andq(z) = z4 + 4, we find that

p(z0) = z0 �= 0, q(z0) = 0, and q ′(z0) = 4z3
0 �= 0
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and hence thatz0 is a simple pole off . The residue there is, moreover,

B0 =
p(z0)

q ′(z0)
=

z0

4z3
0

=
1

4z2
0

=
1

8i
= −

i

8
.

Although this residue can also be found by the method in Sec. 73, the computation
is somewhat more involved.

There are formulas similar to formula (2) for residues at poles of higher order,
but they are lengthier and, in general, not practical.

EXERCISES
1. Show that the pointz = 0 is a simple pole of the function

f (z) = cscz =
1

sinz

and that the residue there is unity by appealing to

(a) Theorem 2 in Sec. 76 ;
(b) the Laurent series for cscz that was found in Exercise 2, Sec. 67.

2. Show that

(a) Res
z=πi

z − sinhz

z2 sinhz
=

i

π
;

(b) Res
z=πi

exp(zt)

sinhz
+ Res

z=−πi

exp(zt)

sinhz
= −2 cos(πt).

3. Show that

(a) Res
z=zn

(z secz) = (−1)n+1 zn wherezn =
π

2
+ nπ (n = 0,±1,±2, . . .);

(b) Res
z=zn

(tanhz) = 1 wherezn =
(π

2
+ nπ

)

i (n = 0,±1,±2, . . .).

4. Let C denote the positively oriented circle|z| = 2 and evaluate the integral

(a)
∫

C

tanz dz; (b)
∫

C

dz

sinh 2z
.

Ans. (a) −4πi; (b) −πi.

5. Let CN denote the positively oriented boundary of the square whose edges lie along
the lines

x = ±
(

N +
1

2

)

π and y = ±
(

N +
1

2

)

π,

whereN is a positive integer. Show that

∫

CN

dz

z2 sinz
= 2πi

[

1

6
+ 2

N
∑

n=1

(−1)n

n2π2

]

.
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Then, using the fact that the value of this integral tends to zero asN tends to infinity
(Exercise 8, Sec. 43), point out how it follows that

∞
∑

n=1

(−1)n+1

n2
=

π2

12
.

6. Show that
∫

C

dz

(z2 − 1)2 + 3
=

π

2
√

2
,

whereC is the positively oriented boundary of the rectangle whose sides lie along the
lines x = ±2, y = 0, andy = 1.

Suggestion:By observing that the four zeros of the polynomialq(z) = (z2 − 1)2 + 3
are the square roots of the numbers 1±

√
3i, show that the reciprocal 1/q(z) is analytic

inside and onC except at the points

z0 =
√

3 + i
√

2
and − z0 =

−
√

3 + i
√

2
.

Then apply Theorem 2 in Sec. 76.

7. Consider the function

f (z) =
1

[q(z)]2

whereq is analytic atz0, q(z0) = 0, andq ′(z0) �= 0. Show thatz0 is a pole of order
m = 2 of the functionf , with residue

B0 = −
q ′′(z0)

[q ′(z0)]3
.

Suggestion:Note thatz0 is a zero of orderm = 1 of the functionq, so that

q(z) = (z − z0)g(z)

whereg(z) is analytic and nonzero atz0. Then write

f (z) =
φ(z)

(z − z0)2
where φ(z) =

1

[g(z)]2
.

The desired form of the residueB0 = φ′(z0) can be obtained by showing that

q ′(z0) = g(z0) and q ′′(z0) = 2g′(z0).

8. Use the result in Exercise 7 to find the residue atz = 0 of the function

(a) f (z) = csc2 z; (b) f (z) =
1

(z + z2)2
.

Ans. (a) 0 ; (b) −2.

9. Let p and q denote functions that are analytic at a pointz0 , wherep(z0) �= 0 and
q(z0) = 0. Show that if the quotientp(z)/q(z) has a pole of orderm at z0 , thenz0 is
a zero of orderm of q. (Compare with Theorem 1 in Sec. 76.)
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Suggestion:Note that the theorem in Sec. 73 enables one to write

p(z)

q(z)
=

φ(z)

(z − z0)m
,

whereφ(z) is analytic and nonzero atz0 . Then solve forq(z).

10. Recall (Sec. 11) that a pointz0 is an accumulation point of a setS if each deleted neigh-
borhood ofz0 contains at least one point ofS. One form of theBolzano–Weierstrass
theoremcan be stated as follows:an infinite set of points lying in a closed bounded
regionR has at least one accumulation point inR.∗ Use that theorem and Theorem 2
in Sec. 75 to show that if a functionf is analytic in the regionR consisting of all
points inside and on a simple closed contourC, except possibly for poles insideC,
and if all the zeros off in R are interior toC and are of finite order, then those zeros
must be finite in number.

11. Let R denote the region consisting of all points inside and on a simple closed contour
C. Use the Bolzano–Weierstrass theorem (see Exercise 10) and the fact that poles are
isolated singular points to show that iff is analytic in the regionR except for poles
interior to C, then those poles must be finite in number.

77. BEHAVIOR OF FUNCTIONS NEAR ISOLATED
SINGULAR POINTS

As already indicated in Sec. 72, the behavior of a functionf near an isolated singular
point z0 varies, depending on whetherz0 is a pole, a removable singular point, or
an essential singular point. In this section, we develop the differences in behavior
somewhat further. Since the results presented here will not be used elsewhere in the
book, the reader who wishes to reach applications of residue theory more quickly
may pass directly to Chap. 7 without disruption.

Theorem 1. If z0 is a pole of a functionf , then

lim
z→z0

f (z) = ∞.(1)

To verify limit (1), we assume thatf has a pole of orderm at z0 and use the
theorem in Sec. 73. It tells us that

f (z) =
φ(z)

(z − z0)m
,

whereφ(z) is analytic and nonzero atz0. Since

lim
z→z0

1

f (z)
= lim

z→z0

(z − z0)
m

φ(z)
=

lim
z→z0

(z − z0)
m

lim
z→z0

φ(z)
=

0

φ(z0)
= 0,

∗See, for example, A. E. Taylor and W. R. Mann. “Advanced Calculus,” 3d ed., pp. 517 and 521,
1983.
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then, limit (1) holds, according to the theorem in Sec. 17 regarding limits that
involve the point at infinity.

The next theorem emphasizes how the behavior off near a removable singular
point is fundamentally different from behavior near a pole.

Theorem 2. If z0 is a removable singular point of a functionf , thenf is analytic
and bounded in some deleted neighborhood0 < |z − z0| < ε of z0 .

The proof is easy and is based on the fact that the functionf here is analytic
in a disk |z − z0| < R2 when f (z0) is properly defined ;f is then continuous in
any closed disk|z − z0| ≤ ε where ε < R2. Consequently,f is bounded in that
disk, according to Theorem 3 in Sec. 18; and this means that, in addition to being
analytic,f must be bounded in the deleted neighborhood 0< |z − z0| < ε.

The proof of our final theorem, regarding the behavior of a function near an
essential singular point, relies on the following lemma, which is closely related to
Theorem 2 and is known asRiemann’s theorem.

Lemma. Suppose that a functionf is analytic and bounded in some deleted
neighborhood0 < |z − z0| < ε of a pointz0 . If f is not analytic atz0 , then it has
a removable singularity there.

To prove this, we assume thatf is not analytic atz0. As a consequence, the
point z0 must be an isolated singularity off ; andf (z) is represented by a Laurent
series

f (z) =
∞

∑

n=0

an(z − z0)
n +

∞
∑

n=1

bn

(z − z0)n
(2)

throughout the deleted neighborhood 0< |z − z0| < ε. If C denotes a positively
oriented circle|z − z0| = ρ, whereρ < ε (Fig. 91), we know from Sec. 60 that the

x

z0

C

O

y

ε

FIGURE 91
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coefficientsbn in expansion (2) can be written

bn =
1

2πi

∫

C

f (z) dz

(z − z0)−n+1
(n = 1, 2, . . .).(3)

Now the boundedness condition onf tells us that there is a positive constantM

such that|f (z)| ≤ M whenever 0< |z − z0| < ε. Hence it follows from expression
(3) that

|bn| ≤
1

2π
·

M

ρ−n+1
2πρ = Mρn (n = 1, 2, . . .).

Since the coefficientsbn are constants and sinceρ can be chosen arbitrarily small,
we may conclude thatbn = 0 (n = 1, 2, . . .) in the Laurent series (2). This tells us
that z0 is a removable singularity off , and the proof of the lemma is complete.

We know from Sec. 72 that the behavior of a function near an essential singular
point is quite irregular. The next theorem, regarding such behavior, is related to
Picard’s theorem in that earlier section and is usually referred to as theCasorati–
Weierstrass theorem.It states that in each deleted neighborhood of an essential
singular point, a function assumes values arbitrarily close to any given number.

Theorem 3. Suppose thatz0 is an essential singularity of a functionf , and
let w0 be any complex number. Then, for any positive numberε, the inequality

|f (z) − w0| < ε(4)

is satisfied at some pointz in each deleted neighborhood0 < |z − z0| < δ of z0

(Fig. 92).

x uO

y

z0z

O

v

w0

f (z)

ε

FIGURE 92

The proof is by contradiction. Sincez0 is an isolated singularity off , there
is a deleted neighborhood 0< |z − z0| < δ throughout whichf is analytic; and we
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assume that condition (4) isnot satisfied for any pointz there. Thus|f (z) − w0| ≥ ε

when 0< |z − z0| < δ; and so the function

g(z) =
1

f (z) − w0
(0 < |z − z0| < δ)(5)

is bounded and analytic in its domain of definition. Hence, according to our lemma,
z0 is a removable singularity ofg; and we letg be defined atz0 so that it is analytic
there.

If g(z0) �= 0, the functionf (z), which can be written

f (z) =
1

g(z)
+ w0(6)

when 0< |z − z0| < δ, becomes analytic atz0 when it is defined there as

f (z0) =
1

g(z0)
+ w0.

But this means thatz0 is a removable singularity off , not an essential one, and we
have a contradiction.

If g(z0) = 0, the functiong must have a zero of some finite orderm (Sec. 75)
at z0 becauseg(z) is not identically equal to zero in the neighborhood|z − z0| < δ.
In view of equation (6), then,f has a pole of orderm at z0 (see Theorem 1 in
Sec. 76). So, once again, we have a contradiction; and Theorem 3 here is proved.
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7
APPLICATIONS OF RESIDUES

We turn now to some important applications of the theory of residues, which was
developed in Chap. 6. The applications include evaluation of certain types of def-
inite and improper integrals occurring inreal analysis and applied mathematics.
Considerable attention is also given toa method, based on residues, for locating
zeros of functions and to finding inverse Laplace transforms by summing residues.

78. EVALUATION OF IMPROPER INTEGRALS

In calculus, the improper integral of a continuous functionf (x) over the semi-
infinite interval 0≤ x < ∞ is defined by means of the equation

∫ ∞

0
f (x) dx = lim

R→∞

∫ R

0
f (x) dx.(1)

When the limit on the right exists, the improper integral is said toconvergeto that
limit. If f (x) is continuous forall x, its improper integral over the infinite interval
−∞ < x < ∞ is defined by writing

∫ ∞

−∞
f (x) dx = lim

R1→∞

∫ 0

−R1

f (x) dx + lim
R2→∞

∫ R2

0
f (x) dx;(2)

and when both of the limits here exist, we say that integral (2) converges to their
sum. Another value that is assigned to integral (2) is often useful. Namely, the

261
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Cauchy principal value(P.V.) of integral (2) is the number

P.V.
∫ ∞

−∞
f (x) dx = lim

R→∞

∫ R

−R

f (x) dx,(3)

provided this single limit exists.
If integral (2) converges, its Cauchy principal value (3) exists; and that value

is the number to which integral (2) converges. This is because

lim
R→∞

∫ R

−R

f (x) dx = lim
R→∞

[
∫ 0

−R

f (x) dx +
∫ R

0
f (x) dx

]

= lim
R→∞

∫ 0

−R

f (x) dx + lim
R→∞

∫ R

0
f (x) dx

and these last two limits are the same asthe limits on the right in equation (2).
It is not, however, always true that integral (2) converges when its Cauchy

principal value exists, as the following example shows.

EXAMPLE. Observe that

P.V.
∫ ∞

−∞
x dx = lim

R→∞

∫ R

−R

x dx = lim
R→∞

[

x2

2

]R

−R

= lim
R→∞

0 = 0.(4)

On the other hand,
∫ ∞

−∞
x dx = lim

R1→∞

∫ 0

−R1

x dx + lim
R2→∞

∫ R2

0
x dx(5)

= lim
R1→∞

[

x2

2

]0

−R1

+ lim
R2→∞

[

x2

2

]R2

0

= − lim
R1→∞

R2
1

2
+ lim

R2→∞

R2
2

2
;

and since these last two limits do not exist, we find that the improper integral (5)
fails to exist.

But suppose thatf (x) (−∞ < x < ∞) is anevenfunction, one where

f (−x) = f (x) for all x,

andassume that the Cauchy principal value(3) exists. The symmetry of the graph
of y = f (x) with respect to they axis tells us that

∫ 0

−R1

f (x) dx =
1

2

∫ R1

−R1

f (x) dx
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and
∫ R2

0
f (x) dx =

1

2

∫ R2

−R2

f (x) dx.

Thus
∫ 0

−R1

f (x) dx +
∫ R2

0
f (x) dx =

1

2

∫ R1

−R1

f (x) dx +
1

2

∫ R2

−R2

f (x) dx.

If we let R1 and R2 tend to∞ on each side here, the fact that the limits on the
right exist means that the limits on the left do too. In fact,

∫ ∞

−∞
f (x) dx = P.V.

∫ ∞

−∞
f (x) dx.(6)

Moreover, since
∫ R

0
f (x) dx =

1

2

∫ R

−R

f (x) dx,

it is also true that
∫ ∞

0
f (x) dx =

1

2

[

P.V.
∫ ∞

−∞
f (x) dx

]

.(7)

We now describe a method involving sums of residues, to be illustrated in the
next section, that is often used to evaluate improper integrals ofrational functions
f (x) = p(x)/q(x), wherep(x) andq(x) are polynomials with real coefficients and
no factors in common. We agree thatq(z) has no real zeros but has at least one
zeroabovethe real axis.

The method begins with the identification of all thedistinct zeros of the poly-
nomial q(z) that lie above the real axis. They are, of course, finite in number (see
Sec. 53) and may be labeledz1, z2, . . . , zn, wheren is less than or equal to the
degree ofq(z). We then integrate the quotient

f (z) =
p(z)

q(z)
(8)

around the positively oriented boundary of the semicircular region shown in Fig. 93.

x

z1

z2

CR

O–R R

y

zn

FIGURE 93
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That simple closed contour consists of the segment of the real axis fromz = −R

to z = R and the top half of the circle|z| = R, described counterclockwise and
denoted byCR. It is understood that the positive numberR is large enough so that
the pointsz1, z2, . . . , zn all lie inside the closed path.

The parametric representationz = x (−R ≤ x ≤ R) of the segment of the real
axis just mentioned and Cauchy’s residue theorem in Sec. 70 can be used to
write

∫ R

−R

f (x) dx +
∫

CR

f (z) dz = 2πi

n
∑

k=1

Res
z=zk

f (z),

or
∫ R

−R

f (x) dx = 2πi

n
∑

k=1

Res
z=zk

f (z) −
∫

CR

f (z) dz.(9)

If

lim
R→∞

∫

CR

f (z) dz = 0,

it then follows that

P.V.
∫ ∞

−∞
f (x) dx = 2πi

n
∑

k=1

Res
z=zk

f (z);(10)

and if f (x) is even, equations (6) and (7) tell us that
∫ ∞

−∞
f (x) dx = 2πi

n
∑

k=1

Res
z=zk

f (z)(11)

and
∫ ∞

0
f (x) dx = πi

n
∑

k=1

Res
z=zk

f (z).(12)

79. EXAMPLE

We turn now to an illustration of the method in Sec. 78 for evaluating improper
integrals.

EXAMPLE. In order to evaluate the integral
∫ ∞

0

x2

x6 + 1
dx,
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we start with the observation that the function

f (z) =
z2

z6 + 1

has isolated singularities at the zeros ofz6 + 1, which are the sixth roots of−1,
and is analytic everywhere else. The method in Sec. 9 for finding roots of complex
numbers reveals that the sixth roots of−1 are

ck = exp

[

i

(

π

6
+

2kπ

6

)]

(k = 0, 1, 2, . . . , 5),

and it is clear that none of them lies on the real axis. The first three roots,

c0 = eiπ/6, c1 = i, and c2 = ei5π/6,

lie in the upper half plane (Fig. 94) and the other three lie in the lower one.
WhenR > 1, the pointsck (k = 0, 1, 2) lie in the interior of the semicircular region
bounded by the segmentz = x (−R ≤ x ≤ R) of the real axis and the upper half
CR of the circle|z| = R from z = R to z = −R. Integratingf (z) counterclockwise
around the boundary of this semicircular region, we see that

∫ R

−R

f (x) dx +
∫

CR

f (z) dz = 2πi(B0 + B1 + B2),(1)

whereBk is the residue off (z) at ck (k = 0, 1, 2).

x

c2

c1

CR

O–R R

y

c0

FIGURE 94

With the aid of Theorem 2 in Sec. 76, we find that the pointsck are simple
poles off and that

Bk = Res
z=ck

z2

z6 + 1
=

c2
k

6c5
k

=
1

6c3
k

(k = 0, 1, 2).
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Thus

2πi(B0 + B1 + B2) = 2πi

(

1

6i
−

1

6i
+

1

6i

)

=
π

3
;

and equation (1) can be put in the form

∫ R

−R

f (x) dx =
π

3
−

∫

CR

f (z) dz ,(2)

which is valid for all values ofR greater than 1.
Next, we show that the value of the integral on the right in equation (2) tends

to 0 asR tends to∞. To do this, we observe that when|z| = R,

|z2| = |z|2 = R2

and
|z6 + 1| ≥ | |z|6 − 1| = R6 − 1.

So, if z is any point onCR,

|f (z)| =
|z2|

|z6 + 1|
≤ MR where MR =

R2

R6 − 1
;

and this means that
∣

∣

∣

∣

∫

CR

f (z) dz

∣

∣

∣

∣

≤ MR πR,(3)

πR being the length of the semicircleCR. (See Sec. 43.) Since the number

MR πR =
πR3

R6 − 1

is a quotient of polynomials inR and since the degree of the numerator is less than
the degree of the denominator, that quotient must tend to zero asR tends to∞.
More precisely, if we divide both numerator and denominator byR6 and write

MR πR =

π

R3

1 −
1

R6

,

it is evident thatMR πR tends to zero. Consequently, in view of inequality (3),

lim
R→∞

∫

CR

f (z) dz = 0.
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It now follows from equation (2) that

lim
R→∞

∫ R

−R

x2

x6 + 1
dx =

π

3
,

or

P.V.
∫ ∞

−∞

x2

x6 + 1
dx =

π

3
.

Since the integrand here is even, we know from equation (7) in Sec. 78 that
∫ ∞

0

x2

x6 + 1
dx =

π

6
.(4)

EXERCISES

Use residues to evaluate the improper integrals in Exercises 1 through 5.

1.
∫ ∞

0

dx

x2 + 1
.

Ans. π/2.

2.
∫ ∞

0

dx

(x2 + 1)2
.

Ans. π/4.

3.
∫ ∞

0

dx

x4 + 1
.

Ans. π/(2
√

2).

4.
∫ ∞

0

x2 dx

(x2 + 1)(x2 + 4)
.

Ans. π/6.

5.
∫ ∞

0

x2 dx

(x2 + 9)(x2 + 4)2
.

Ans. π/200.

Use residues to find the Cauchy principal values of the integrals in Exercises 6
and 7.

6.
∫ ∞

−∞

dx

x2 + 2x + 2
.

7.
∫ ∞

−∞

x dx

(x2 + 1)(x2 + 2x + 2)
.

Ans. −π/5.

8. Use a residue and the contour shown in Fig. 95, whereR > 1, to establish the inte-
gration formula

∫ ∞

0

dx

x3 + 1
=

2π

3
√

3
.
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xO R

y

Rei 2   /3

FIGURE 95

9. Let m and n be integers, where 0≤ m < n. Follow the steps below to derive the
integration formula

∫ ∞

0

x2m

x2n + 1
dx =

π

2n
csc

(

2m + 1

2n
π

)

.

(a) Show that the zeros of the polynomialz2n + 1 lying above the real axis are

ck = exp

[

i
(2k + 1)π

2n

]

(k = 0, 1, 2, . . . , n − 1)

and that there are none on that axis.
(b) With the aid of Theorem 2 in Sec. 76, show that

Res
z=ck

z2m

z2n + 1
= −

1

2n
ei(2k+1)α (k = 0, 1, 2, . . . , n − 1)

whereck are the zeros found in part(a) and

α =
2m + 1

2n
π.

Then use the summation formula

n−1
∑

k=0

zk =
1 − zn

1 − z
(z �= 1)

(see Exercise 9, Sec. 8) to obtain the expression

2πi

n−1
∑

k=0

Res
z=ck

z2m

z2n + 1
=

π

n sinα
.

(c) Use the final result in part(b) to complete the derivation of the integration formula.

10. The integration formula

∫ ∞

0

dx

[(x2 − a)2 + 1] 2
=

π

8
√

2A3
[(2a2 + 3)

√
A + a + a

√
A − a],
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wherea is any real number andA =
√

a2 + 1, arises in the theory of case-hardening
of steel by means of radio-frequency heating.∗ Follow the steps below to derive it.

(a) Point out why the four zeros of the polynomial

q(z) = (z2 − a)2 + 1

are the square roots of the numbersa ± i. Then, using the fact that the numbers

z0 =
1

√
2
(
√

A + a + i
√

A − a)

and−z0 are the square roots ofa + i (Exercise 5, Sec. 10), verify that± z0 are
the square roots ofa − i and hence thatz0 and−z0 are the only zeros ofq(z) in
the upper half plane Imz ≥ 0.

(b) Using the method derived in Exercise 7, Sec. 76, and keeping in mind thatz2
0 = a + i

for purposes of simplification, show that the pointz0 in part(a) is a pole of order 2
of the functionf (z) = 1/[q(z)]2 and that the residueB1 at z0 can be written

B1 = −
q ′′(z0)

[q ′(z0)]3
=

a − i(2a2 + 3)

16A2z0
.

After observing thatq ′(−z) = − q ′(z) andq ′′(−z) = q ′′(z), use the same method
to show that the point−z0 in part (a) is also a pole of order 2 of the function
f (z), with residue

B2 =
{

q ′′(z0)

[q ′(z0)]3

}

= −B1.

Then obtain the expression

B1 + B2 =
1

8A2i
Im

[

−a + i(2a2 + 3)

z0

]

for the sum of these residues.
(c) Refer to part(a) and show that|q(z)| ≥ (R − |z0|)4 if |z| = R, whereR > |z0|.

Then, with the aid of the final result in part(b), complete the derivation of the
integration formula.

80. IMPROPER INTEGRALS FROM FOURIER ANALYSIS

Residue theory can be useful in evaluating convergent improper integrals of the
form

∫ ∞

−∞
f (x) sinax dx or

∫ ∞

−∞
f (x) cosax dx,(1)

∗See pp. 359–364 of the book by Brown, Hoyler, and Bierwirth that is listed in Appendix 1.
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wherea denotes a positive constant. As in Sec. 78, we assume thatf (x) = p(x)/q(x)

wherep(x) andq(x) are polynomials with real coefficients and no factors in common.
Also, q(x) has no zeros on the real axis and at least one zero above it. Integrals of
type (1) occur in the theory and application of the Fourier integral.∗

The method described in Sec. 78 and used in Sec. 79 cannot be applied directly
here since (see Sec. 34)

|sinaz|2 = sin2 ax + sinh2 ay

and
|cosaz|2 = cos2 ax + sinh2 ay.

More precisely, since

sinhay =
eay − e−ay

2
,

the moduli|sinaz| and |cosaz| increase likeeay asy tends to infinity. The modifi-
cation illustrated in the example below is suggested by the fact that

∫ R

−R

f (x) cosax dx + i

∫ R

−R

f (x) sinax dx =
∫ R

−R

f (x)eiax dx,

together with the fact that the modulus

|eiaz| = |eia(x+iy)| = |e−ayeiax | = e−ay

is bounded in the upper half planey ≥ 0.

EXAMPLE. Let us show that
∫ ∞

−∞

cos 3x

(x2 + 1)2
dx =

2π

e3
.(2)

Because the integrand is even, it is sufficient to show that the Cauchy principal
value of the integral exists and to find that value.

We introduce the function

f (z) =
1

(z2 + 1)2
(3)

and observe that the productf (z)ei3z is analytic everywhere on and above the real
axis except at the pointz = i. The singularityz = i lies in the interior of the semi-
circular region whose boundary consists of the segment−R ≤ x ≤ R of the real

∗See the authors’ “Fourier Series and Boundary Value Problems,” 7th ed., Chap. 6, 2008.
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axis and the upper halfCR of the circle |z| = R (R > 1) from z = R to z = −R

(Fig. 96). Integration off (z)ei3z around that boundary yields the equation

∫ R

−R

ei3x

(x2 + 1)2
dx = 2πiB1 −

∫

CR

f (z)ei3z dz ,(4)

where
B1 = Res

z=i
[f (z)ei3z].

O

y

CR

x–R R

i

FIGURE 96

Since

f (z)ei3z =
φ(z)

(z − i)2
where φ(z) =

ei3z

(z + i)2
,

the pointz = i is evidently a pole of orderm = 2 of f (z)ei3z; and

B1 = φ′(i) =
1

ie3
.

By equating the real parts on each side of equation (4), then, we find that

∫ R

−R

cos 3x

(x2 + 1)2
dx =

2π

e3
− Re

∫

CR

f (z)ei3z dz.(5)

Finally, we observe that whenz is a point onCR,

|f (z)| ≤ MR where MR =
1

(R2 − 1)2

and that|ei3z| = e−3y ≤ 1 for such a point. Consequently,
∣

∣

∣

∣

Re
∫

CR

f (z)ei3z dz

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

CR

f (z)ei3z dz

∣

∣

∣

∣

≤ MR πR.(6)
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Since the quantity

MR πR =
πR

(R2 − 1)2
·

1

R4

1

R4

=

π

R3
(

1 −
1

R2

)2

tends to 0 asR tends to∞ and because of inequalities (6), we need only letR tend
to ∞ in equation (5) to arrive at the desired result (2).

81. JORDAN’S LEMMA

In the evaluation of integrals of the type treated in Sec. 80, it is sometimes necessary
to useJordan’s lemma,∗ which is stated just below as a theorem.

Theorem. Suppose that

(a) a functionf (z) is analytic at all points in the upper half planey ≥ 0 that are
exterior to a circle|z| = R0;

(b) CR denotes a semicirclez = Reiθ (0 ≤ θ ≤ π), whereR > R0 (Fig. 97);

(c) for all points z on CR, there is a positive constantMR such that

|f (z)| ≤ MR and lim
R→∞

MR = 0.

Then, for every positive constant a,

lim
R→∞

∫

CR

f (z)eiaz dz = 0.

x

CR

O RR0

y

FIGURE 97

∗See the first footnote in Sec 39.
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The proof is based onJordan’s inequality:
∫ π

0
e−R sinθ dθ <

π

R
(R > 0).(1)

To verify it, we first note from the graphs (Fig. 98) of the functions

y = sinθ and y =
2θ

π

that

sinθ ≥
2θ

π
when 0≤ θ ≤

π

2
.

y

O

FIGURE 98

Consequently, ifR > 0,

e−R sinθ ≤ e−2Rθ/π when 0≤ θ ≤
π

2
;

and so
∫ π/2

0
e−R sinθ dθ ≤

∫ π/2

0
e−2Rθ/π dθ =

π

2R
(1 − e−R) (R > 0).

Hence
∫ π/2

0
e−R sinθ dθ ≤

π

2R
(R > 0).(2)

But this is just another form of inequality (1), since the graph ofy = sinθ is
symmetric with respect to the vertical lineθ = π/2 on the interval 0≤ θ ≤ π.

Turning now to the proof of the theorem, we accept statements(a)–(c) there
and write

∫

CR

f (z)eiaz dz =
∫ π

0
f (Reiθ ) exp(iaReiθ )Rieiθ dθ.
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Since
∣

∣f (Reiθ )
∣

∣ ≤ MR and
∣

∣exp(iaReiθ )
∣

∣ ≤ e−aR sinθ

and in view of Jordan’s inequality (1), it follows that
∣

∣

∣

∣

∫

CR

f (z)eiaz dz

∣

∣

∣

∣

≤ MRR

∫ π

0
e−aR sinθ dθ <

MRπ

a
.

The final limit in the theorem is now evident sinceMR → 0 asR → ∞.

EXAMPLE. Let us find the Cauchy principal value of the integral
∫ ∞

−∞

x sinx dx

x2 + 2x + 2
.

As usual, the existence of the value in question will be established by our actually
finding it.

We write
f (z) =

z

z2 + 2z + 2
=

z

(z − z1)(z − z1)
,

wherez1 = −1 + i. The pointz1, which lies above thex axis, is a simple pole of
the functionf (z)eiz, with residue

B1 =
z1 eiz1

z1 − z1
.(3)

Hence, whenR >
√

2 and CR denotes the upper half of the positively oriented
circle |z| = R,

∫ R

−R

xeix dx

x2 + 2x + 2
= 2πiB1 −

∫

CR

f (z)eiz dz ;

and this means that
∫ R

−R

x sinx dx

x2 + 2x + 2
= Im(2πiB1) − Im

∫

CR

f (z)eiz dz.(4)

Now
∣

∣

∣

∣

Im
∫

CR

f (z)eiz dz

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

CR

f (z)eiz dz

∣

∣

∣

∣

;(5)

and we note that whenz is a point onCR,

|f (z)| ≤ MR where MR =
R

(R −
√

2)2

and that|eiz| = e−y ≤ 1 for such a point. By proceeding as we did in the examples
in Secs. 79 and 80, wecannot conclude that the right-hand side of inequality
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(5), and hence its left-hand side, tends to zero asR tends to infinity. For the
quantity

MRπR =
πR2

(R −
√

2)2
=

π
(

1 −
√

2

R

)2

does not tend to zero. The above theorem does, however, provide the desired limit,
namely

lim
R→∞

∫

CR

f (z)eiz dz = 0,

since

MR =

1

R
(

1 −
√

2

R

)2
→ 0 as R → ∞ .

So it does, indeed, follow from inequality (5) that the left-hand side there tends
to zero asR tends to infinity. Consequently, equation (4), together with expression
(3) for the residueB1, tells us that

P.V.
∫ ∞

−∞

x sinx dx

x2 + 2x + 2
= Im(2πiB1) =

π

e
(sin 1+ cos 1).(6)

EXERCISES

Use residues to evaluate the improper integrals in Exercises 1 through 8.

1.
∫ ∞

−∞

cosx dx

(x2 + a2)(x2 + b2)
(a > b > 0).

Ans.
π

a2 − b2

(

e−b

b
−

e−a

a

)

.

2.
∫ ∞

0

cosax

x2 + 1
dx (a > 0).

Ans.
π

2
e−a .

3.
∫ ∞

0

cosax

(x2 + b2)2
dx (a > 0, b > 0).

Ans.
π

4b3
(1 + ab)e−ab.

4.
∫ ∞

0

x sin 2x

x2 + 3
dx.

Ans.
π

2
exp(−2

√
3).
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5.
∫ ∞

−∞

x sinax

x4 + 4
dx (a > 0).

Ans.
π

2
e−a sina.

6.
∫ ∞

−∞

x3 sinax

x4 + 4
dx (a > 0).

Ans. πe−a cosa.

7.
∫ ∞

−∞

x sinx dx

(x2 + 1)(x2 + 4)
.

8.
∫ ∞

0

x3 sinx dx

(x2 + 1)(x2 + 9)
.

Use residues to find the Cauchy principal values of the improper integrals in
Exercises 9 through 11.

9.
∫ ∞

−∞

sinx dx

x2 + 4x + 5
.

Ans. −
π

e
sin 2.

10.
∫ ∞

−∞

(x + 1) cosx

x2 + 4x + 5
dx.

Ans.
π

e
(sin 2− cos 2).

11.
∫ ∞

−∞

cosx dx

(x + a)2 + b2
(b > 0).

12. Follow the steps below to evaluate theFresnel integrals, which are important in
diffraction theory:

∫ ∞

0
cos(x2) dx =

∫ ∞

0
sin(x2) dx =

1

2

√

π

2
.

(a) By integrating the function exp(iz2) around the positively oriented boundary of the
sector 0≤ r ≤ R, 0 ≤ θ ≤ π/4 (Fig. 99) and appealing to the Cauchy–Goursat
theorem, show that

∫ R

0
cos(x2) dx =

1
√

2

∫ R

0
e−r2

dr − Re
∫

CR

eiz2
dz

xO R

y

CR

Rei   /4

FIGURE 99
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and
∫ R

0
sin(x2) dx =

1
√

2

∫ R

0
e−r2

dr − Im
∫

CR

eiz2
dz,

whereCR is the arcz = Reiθ (0 ≤ θ ≤ π/4).
(b) Show that the value of the integral along the arcCR in part (a) tends to zero as

R tends to infinity by obtaining the inequality
∣

∣

∣

∣

∫

CR

eiz2
dz

∣

∣

∣

∣

≤
R

2

∫ π/2

0
e−R2 sinφdφ

and then referring to the form (2), Sec. 81, of Jordan’s inequality.
(c) Use the results in parts(a) and(b), together with the known integration formula∗

∫ ∞

0
e−x2

dx =
√

π

2
,

to complete the exercise.

82. INDENTED PATHS

In this and the following section, we illustrate the use ofindentedpaths. We begin
with an important limit that will be used in the example in this section.

Theorem. Suppose that

(a) a functionf (z) has a simple pole at a pointz = x0 on the real axis, with a Laurent
series representation in a punctured disk0 < |z − x0| < R2 (Fig. 100)and with
residueB0 ;

(b) Cρ denotes the upper half of a circle|z − x0| = ρ, whereρ < R2 and the clock-
wise direction is taken.

Then

lim
ρ→0

∫

Cρ

f (z) dz = −B0 πi.

xx0O

y

R2

FIGURE 100

∗See the footnote with Exercise 4, Sec. 49.
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Assuming that the conditions in parts(a) and (b) are satisfied, we start the
proof of the theorem by writing the Laurent series in part(a) as

f (z) = g(z) +
B0

z − x0
(0 < |z − x0| < R2)

where

g(z) =
∞

∑

n=0

an(z − x0)
n (|z − x0| < R2).

Thus
∫

Cρ

f (z) dz =
∫

Cρ

g(z) dz + B0

∫

Cρ

dz

z − x0
.(1)

Now the functiong(z) is continuous when|z − x0| < R2, according to the
theorem in Sec. 64. Hence if we choose a numberρ0 such thatρ < ρ0 < R2 (see
Fig. 100), it must be bounded on thecloseddisk |z − x0| ≤ ρ0, according to Sec.
18. That is, there is a nonnegative constantM such that

|g(z)| ≤ M whenever |z − x0| ≤ ρ0 ;

and since the lengthL of the pathCρ is L = πρ, it follows that
∣

∣

∣

∣

∣

∫

Cρ

g(z) dz

∣

∣

∣

∣

∣

≤ ML = Mπρ.

Consequently,

lim
ρ→0

∫

Cρ

g(z) dz = 0.(2)

Inasmuch as the semicircle−Cρ has parametric representation

z = x0 + ρeiθ (0 ≤ θ ≤ π),

the second integral on the right in equation (1) has the value
∫

Cρ

dz

z − x0
= −

∫

−Cρ

dz

z − x0
= −

∫ π

0

1

ρeiθ
ρieiθ dθ = −i

∫ π

0
dθ = −iπ.

Thus

lim
ρ→0

∫

Cρ

dz

z − x0
= −iπ.(3)

The limit in the conclusion of the theorem now follows by lettingρ tend to
zero on each side of equation (1) and referring to limits (2) and (3).
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EXAMPLE. Modifying the method used in Secs. 80 and 81, we derive here
the integration formula∗

∫ ∞

0

sinx

x
dx =

π

2
(4)

by integratingeiz/z around the simple closed contour shown in Fig. 101. In that
figure,ρ andR denote positive real numbers, whereρ < R; andL1 andL2 represent
the intervals

ρ ≤ x ≤ R and − R ≤ x ≤ −ρ,

respectively, on the real axis. While the semicircleCR is as in Secs. 80 and 81, the
semicircleCρ is introduced here in order to avoid passing through the singularity
z = 0 of the quotienteiz/z.

x

CR

O R

L1

y

L2

–R –

FIGURE 101

The Cauchy–Goursat theorem tells us that
∫

L1

eiz

z
dz +

∫

CR

eiz

z
dz +

∫

L2

eiz

z
dz +

∫

Cρ

eiz

z
dz = 0,

or
∫

L1

eiz

z
dz +

∫

L2

eiz

z
dz = −

∫

Cρ

eiz

z
dz −

∫

CR

eiz

z
dz .(5)

Moreover, since the legsL1 and−L2 have parametric representations

z = rei0 = r (ρ ≤ r ≤ R) and z = reiπ = −r (ρ ≤ r ≤ R),(6)

∗This formula arises in the theory of theFourier integral. See the authors’ “Fourier Series and
Boundary Value Problems,” 7th ed., pp. 150–152, 2008, where it is derived in a completely different
way.
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respectively, the left-hand side of equation (5) can be written
∫

L1

eiz

z
dz −

∫

−L2

eiz

z
dz =

∫ R

ρ

eir

r
dr −

∫ R

ρ

e−ir

r
dr = 2i

∫ R

ρ

sinr

r
dr.

Consequently,

2i

∫ R

ρ

sinr

r
dr = −

∫

Cρ

eiz

z
dz −

∫

CR

eiz

z
dz .(7)

Now, from the Laurent series representation

eiz

z
=

1

z

[

1 +
(iz)

1!
+

(iz)2

2!
+

(iz)3

3!
+ · · ·

]

=
1

z
+

i

1!
+

i2

2!
z +

i3

3!
z2 + · · ·

(0 < |z| < ∞),

it is clear thateiz/z has a simple pole at the origin, with residue unity. So, according
to the theorem at the beginning of this section,

lim
ρ→0

∫

Cρ

eiz

z
dz = −πi.

Also, since
∣

∣

∣

∣

1

z

∣

∣

∣

∣

=
1

|z|
=

1

R

whenz is a point onCR, we know from Jordan’s lemma in Sec. 81 that

lim
R→∞

∫

CR

eiz

z
dz = 0.

Thus, by lettingρ tend to 0 in equation (7) and then lettingR tend to∞, we arrive
at the result

2i

∫ ∞

0

sinr

r
dr = πi,

which is, in fact, formula (4).

83. AN INDENTATION AROUND A BRANCH POINT

The example here involves the same indented path that was used in the example in
Sec. 82. The indentation is, however, due toa branch point, rather than an isolated
singularity.

EXAMPLE. The integration formula
∫ ∞

0

ln x

(x2 + 4)2
dx =

π

32
(ln 2 − 1)(1)
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can be derived by considering the branch

f (z) =
logz

(z2 + 4)2

(

|z| > 0, −
π

2
< argz <

3π

2

)

of the multiple-valued function(logz)/(z2 + 4)2. This branch, whose branch cut
consists of the origin and the negative imaginary axis, is analytic everywhere in the
stated domain except at the pointz = 2i. See Fig. 102, where the same indented
path and the same labelsL1, L2, Cρ, andCR as in Fig. 101 are used. In order that
the isolated singularityz = 2i be inside the closed path, we require thatρ < 2 < R.

x

CR

O R−R

L1

y

L2

2i

−

FIGURE 102

According to Cauchy’s residue theorem,
∫

L1

f (z) dz +
∫

CR

f (z) dz +
∫

L2

f (z) dz +
∫

Cρ

f (z) dz = 2πi Res
z=2i

f (z).

That is,
∫

L1

f (z) dz +
∫

L2

f (z) dz = 2πi Res
z=2i

f (z) −
∫

Cρ

f (z) dz −
∫

CR

f (z) dz.(2)

Since

f (z) =
ln r + iθ

(r2ei2θ + 4)2
(z = reiθ ),

the parametric representations

z = rei0 = r (ρ ≤ r ≤ R) and z = reiπ = −r (ρ ≤ r ≤ R)(3)

for the legsL1 and −L2, respectively, can be used to write the left-hand side of
equation (2) as

∫

L1

f (z) dz −
∫

−L2

f (z) dz =
∫ R

ρ

ln r

(r2 + 4)2
dr +

∫ R

ρ

ln r + iπ

(r2 + 4)2
dr.



282 Applications of Residues chap. 7

Also, since

f (z) =
φ(z)

(z − 2i)2
where φ(z) =

logz

(z + 2i)2
,

the singularityz = 2i of f (z) is a pole of order 2, with residue

φ′(2i) =
π

64
+ i

1 − ln 2

32
.

Equation (2) thus becomes

2
∫ R

ρ

ln r

(r2 + 4)2
dr + iπ

∫ R

ρ

dr

(r2 + 4)2
=

π

16
(ln 2 − 1) + i

π2

32
(4)

−
∫

Cρ

f (z) dz −
∫

CR

f (z) dz ;

and, by equating the real parts on each side here, we find that

2
∫ R

ρ

ln r

(r2 + 4)2
dr =

π

16
(ln 2 − 1) − Re

∫

Cρ

f (z) dz − Re
∫

CR

f (z) dz.(5)

It remains only to show that

lim
ρ→0

Re
∫

Cρ

f (z) dz = 0 and lim
R→∞

Re
∫

CR

f (z) dz = 0.(6)

For, by lettingρ and R tend to 0 and∞, respectively, in equation (5), we then
arrive at

2
∫ ∞

0

ln r

(r2 + 4)2
dr =

π

16
(ln 2 − 1),

which is the same as equation (1).
Limits (6) are established as follows. First, we note that ifρ < 1 andz = ρeiθ

is a point onCρ , then

|logz| = |ln ρ + iθ | ≤ |ln ρ| + |iθ | ≤ − ln ρ + π

and
|z2 + 4| ≥ | |z|2 − 4| = 4 − ρ2.

As a consequence,
∣

∣

∣

∣

∣

Re
∫

Cρ

f (z) dz

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

Cρ

f (z) dz

∣

∣

∣

∣

∣

≤
− ln ρ + π

(4 − ρ2)2
πρ = π

πρ − ρ ln ρ

(4 − ρ2)2
;
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and, by l’Hospital’s rule, the productρ ln ρ in the numerator on the far right here
tends to 0 asρ tends to 0. So the first of limits (6) clearly holds. Likewise, by
writing

∣

∣

∣

∣

Re
∫

CR

f (z) dz

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

CR

f (z) dz

∣

∣

∣

∣

≤
ln R + π

(R2 − 4)2
πR = π

π

R
+

ln R

R
(

R −
4

R

)2

and using l’Hospital’s rule to show that the quotient(ln R)/R tends to 0 asR tends
to ∞, we obtain the second of limits (6).

Note how another integration formula, namely
∫ ∞

0

dx

(x2 + 4)2
=

π

32
,(7)

follows by equating imaginary, rather than real, parts on each side of equation (4) :

π

∫ R

ρ

dr

(r2 + 4)2
=

π2

32
− Im

∫

Cρ

f (z) dz − Im
∫

CR

f (z) dz.(8)

Formula (7) is then obtained by lettingρ andR tend to 0 and∞, respectively, since
∣

∣

∣

∣

∣

Im
∫

Cρ

f (z) dz

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

Cρ

f (z) dz

∣

∣

∣

∣

∣

and

∣

∣

∣

∣

Im
∫

CR

f (z) dz

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

CR

f (z) dz

∣

∣

∣

∣

.

84. INTEGRATION ALONG A BRANCH CUT

Cauchy’s residue theorem can be useful in evaluating a real integral when part of
the path of integration of the functionf (z) to which the theorem is applied lies
along a branch cut of that function.

EXAMPLE. Let x−a , wherex > 0 and 0< a < 1, denote the principal value
of the indicated power ofx; that is,x−a is the positive real number exp(−a ln x).
We shall evaluate here the improper real integral

∫ ∞

0

x−a

x + 1
dx (0 < a < 1),(1)

which is important in the study of thegamma function.∗ Note that integral (1)
is improper not only because of its upper limit of integration but also because
its integrand has an infinite discontinuity atx = 0. The integral converges when
0 < a < 1 since the integrand behaves likex−a nearx = 0 and likex−a−1 as x

∗See, for example, p. 4 of the book by Lebedev cited in Appendix 1.
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tends to infinity. We do not, however, need to establish convergence separately; for
that will be contained in our evaluation of the integral.

We begin by lettingCρ andCR denote the circles|z| = ρ and|z| = R, respec-
tively, whereρ < 1 < R; and we assign them the orientations shown in Fig. 103.
We then integrate the branch

f (z) =
z−a

z + 1
(|z| > 0, 0 < argz < 2π)(2)

of the multiple-valued functionz−a/(z + 1), with branch cut argz = 0, around the
simple closed contour indicated in Fig. 103. That contour is traced out by a point
moving fromρ to R along the top of the branch cut forf (z), next aroundCR and
back toR, then along the bottom of the cut toρ, and finally aroundCρ back toρ.

xR–1

y

CR

FIGURE 103

Now θ = 0 andθ = 2π along the upper and lower “edges,” respectively, of
the cut annulus that is formed. Since

f (z) =
exp(−a logz)

z + 1
=

exp[−a(ln r + iθ)]

reiθ + 1

wherez = reiθ , it follows that

f (z) =
exp[−a(ln r + i0)]

r + 1
=

r−a

r + 1

on the upper edge, wherez = rei0, and that

f (z) =
exp[−a(ln r + i2π)]

r + 1
=

r−ae−i2aπ

r + 1

on the lower edge, wherez = rei2π . The residue theorem thus suggests that
∫ R

ρ

r−a

r + 1
dr +

∫

CR

f (z) dz −
∫ R

ρ

r−ae−i2aπ

r + 1
dr +

∫

Cρ

f (z) dz(3)

= 2πi Res
z=−1

f (z).
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Our derivation of equation (3) is, of course, onlyformal sincef (z) is not analytic,
or even defined, on the branch cut involved. It is, nevertheless, valid and can be
fully justified by an argument such as the one in Exercise 8 of this section.

The residue in equation (3) can be found by noting that the function

φ(z) = z−a = exp(−a logz) = exp[−a(ln r + iθ)] (r > 0, 0 < θ < 2π)

is analytic atz = −1 and that

φ(−1) = exp[−a(ln 1 + iπ)] = e−iaπ �= 0.

This shows that the pointz = −1 is a simple pole of the function (2) and that

Res
z=−1

f (z) = e−iaπ .

Equation (3) can, therefore, be written as

(1 − e−i2aπ )

∫ R

ρ

r−a

r + 1
dr = 2πie−iaπ −

∫

Cρ

f (z) dz −
∫

CR

f (z) dz.(4)

According to definition (2) off (z),
∣

∣

∣

∣

∣

∫

Cρ

f (z) dz

∣

∣

∣

∣

∣

≤
ρ−a

1 − ρ
2πρ =

2π

1 − ρ
ρ1−a

and
∣

∣

∣

∣

∫

CR

f (z) dz

∣

∣

∣

∣

≤
R−a

R − 1
2πR =

2πR

R − 1
·

1

Ra
.

Since 0< a < 1, the values of these two integrals evidently tend to 0 asρ andR

tend to 0 and∞, respectively. Hence, if we letρ tend to 0 and thenR tend to∞
in equation (4), we arrive at the result

(1 − e−i2aπ )

∫ ∞

0

r−a

r + 1
dr = 2πie−iaπ ,

or
∫ ∞

0

r−a

r + 1
dr = 2πi

e−iaπ

1 − e−i2aπ
·
eiaπ

eiaπ
= π

2i

eiaπ − e−iaπ
.

This is, of course, the same as
∫ ∞

0

x−a

x + 1
dx =

π

sinaπ
(0 < a < 1).(5)
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EXERCISES

In Exercises 1 through 4, take the indented contour in Fig. 101 (Sec. 82).

1. Derive the integration formula
∫ ∞

0

cos(ax) − cos(bx)

x2
dx =

π

2
(b − a) (a ≥ 0, b ≥ 0).

Then, with the aid of the trigonometric identity 1− cos(2x) = 2 sin2 x, point out how
it follows that

∫ ∞

0

sin2 x

x2
dx =

π

2
.

2. Evaluate the improper integral
∫ ∞

0

xa

(x2 + 1)2
dx, where − 1 < a < 3 andxa = exp(a ln x).

Ans.
(1 − a)π

4 cos(aπ/2)
.

3. Use the function

f (z) =
z1/3 logz

z2 + 1
=

e(1/3) logz logz

z2 + 1

(

|z| > 0,−
π

2
< argz <

3π

2

)

to derive this pair of integration formulas:

∫ ∞

0

3
√

x ln x

x2 + 1
dx =

π2

6
,

∫ ∞

0

3
√

x

x2 + 1
dx =

π
√

3
.

4. Use the function

f (z) =
(logz)2

z2 + 1

(

|z| > 0,−
π

2
< argz <

3π

2

)

to show that
∫ ∞

0

(ln x)2

x2 + 1
dx =

π3

8
,

∫ ∞

0

ln x

x2 + 1
dx = 0.

Suggestion:The integration formula obtained in Exercise 1, Sec. 79, is needed
here.

5. Use the function

f (z) =
z1/3

(z + a)(z + b)
=

e(1/3) logz

(z + a)(z + b)
(|z| > 0, 0 < argz < 2π)

and a closed contour similar to the one in Fig. 103 (Sec. 84) to show formally that

∫ ∞

0

3
√

x

(x + a)(x + b)
dx =

2π
√

3
·

3
√

a − 3
√

b

a − b
(a > b > 0).
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6. Show that
∫ ∞

0

dx
√

x(x2 + 1)
=

π
√

2

by integrating an appropriate branch of the multiple-valued function

f (z) =
z−1/2

z2 + 1
=

e(−1/2) logz

z2 + 1

over (a) the indented path in Fig. 101, Sec. 82;(b) the closed contour in Fig. 103,
Sec. 84.

7. The beta functionis this function of two real variables:

B(p, q) =
∫ 1

0
tp−1(1 − t)q−1 dt (p > 0, q > 0).

Make the substitutiont = 1/(x + 1) and use the result obtained in the example in Sec.
84 to show that

B(p, 1 − p) =
π

sin(pπ)
(0 < p < 1).

8. Consider the two simple closed contours shown in Fig. 104 and obtained by dividing
into two pieces the annulus formed by the circlesCρ andCR in Fig. 103 (Sec. 84). The
legsL and−L of those contours are directed line segments along any ray argz = θ0 ,
whereπ < θ0 < 3π/2. Also, Ŵρ and γρ are the indicated portions ofCρ , while ŴR

andγR make upCR.

xR

L

–1

y

x
R

–L

y

FIGURE 104

(a) Show how it follows from Cauchy’s residue theorem that when the branch

f1(z) =
z−a

z + 1

(

|z| > 0,−
π

2
< argz <

3π

2

)

of the multiple-valued functionz−a/(z + 1) is integrated around the closed contour
on the left in Fig. 104,

∫ R

ρ

r−a

r + 1
dr +

∫

ŴR

f1(z) dz +
∫

L

f1(z) dz +
∫

Ŵρ

f1(z) dz = 2πi Res
z=−1

f1(z).
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(b) Apply the Cauchy–Goursat theorem to the branch

f2(z) =
z−a

z + 1

(

|z| > 0,
π

2
< argz <

5π

2

)

of z−a/(z + 1), integrated around the closed contour on the right in Fig. 104, to
show that

−
∫ R

ρ

r−ae−i2aπ

r + 1
dr +

∫

γρ

f2(z) dz −
∫

L

f2(z) dz +
∫

γR

f2(z) dz = 0.

(c) Point out why, in the last lines in parts(a) and (b), the branchesf1(z) andf2(z)

of z−a/(z + 1) can be replaced by the branch

f (z) =
z−a

z + 1
(|z| > 0, 0 < argz < 2π).

Then, by adding corresponding sides of those two lines, derive equation (3), Sec.
84, which was obtained only formally there.

85. DEFINITE INTEGRALS INVOLVING
SINES AND COSINES

The method of residues is also useful in evaluating certain definite integrals of the
type

∫ 2π

0
F(sinθ, cosθ) dθ.(1)

The fact thatθ varies from 0 to 2π leads us to considerθ as an argument of a point
z on a positively oriented circleC centered at the origin. Taking the radius to be
unity, we use the parametric representation

z = eiθ (0 ≤ θ ≤ 2π)(2)

to describeC (Fig. 105). We then refer to the differentation formula (4), Sec. 37,
to write

dz

dθ
= ieiθ = iz

and recall (Sec. 34) that

sinθ =
eiθ − e−iθ

2i
and cosθ =

eiθ + e−iθ

2
.

These relations suggest that we make the substitutions

sinθ =
z − z−1

2i
, cosθ =

z + z−1

2
, dθ =

dz

iz
,(3)
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x1O

C

y

FIGURE 105

which transform integral (1) into the contour integral
∫

c

F

(

z − z−1

2i
,
z + z−1

2

)

dz

iz
(4)

of a function ofz around the circleC. The original integral (1) is, of course, simply
a parametric form of integral (4), in accordance with expression (2), Sec. 40. When
the integrand in integral (4) reduces to a rational function ofz , we can evaluate that
integral by means of Cauchy’s residue theorem once the zeros in the denominator
have been located and provided that none lie onC.

EXAMPLE. Let us show that
∫ 2π

0

dθ

1 + a sinθ
=

2π
√

1 − a2
(−1 < a < 1).(5)

This integration formula is clearly valid whena = 0, and we exclude that case in
our derivation. With substitutions (3), the integral takes the form

∫

C

2/a

z2 + (2i/a)z − 1
dz,(6)

whereC is the positively oriented circle|z| = 1. The quadratic formula reveals that
the denominator of the integrand here has the pure imaginary zeros

z1 =

(

−1 +
√

1 − a2

a

)

i, z2 =

(

−1 −
√

1 − a2

a

)

i.

So if f (z) denotes the integrand in integral (6), then

f (z) =
2/a

(z − z1)(z − z2)
.
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Note that because|a| < 1,

|z2| =
1 +

√
1 − a2

|a|
> 1.

Also, since|z1z2| = 1, it follows that |z1| < 1. Hence there are no singular points
on C, and the only one interior to it is the pointz1. The corresponding residueB1

is found by writing

f (z) =
φ(z)

z − z1
where φ(z) =

2/a

z − z2
.

This shows thatz1 is a simple pole and that

B1 = φ(z1) =
2/a

z1 − z2
=

1

i
√

1 − a2
.

Consequently,

∫

C

2/a

z2 + (2i/a)z − 1
dz = 2πiB1 =

2π
√

1 − a2
;

and integration formula (5) follows.

The method just illustrated applies equally well when the arguments of the
sine and cosine are integral multiples ofθ . One can use equation (2) to write, for
example,

cos 2θ =
ei2θ + e−i2θ

2
=

(eiθ )2 + (eiθ )−2

2
=

z2 + z−2

2
.

EXERCISES

Use residues to evaluate the definite integrals in Exercises 1 through 7.

1.
∫ 2π

0

dθ

5 + 4 sinθ
.

Ans.
2π

3
.

2.
∫ π

−π

dθ

1 + sin2 θ
.

Ans.
√

2π .

3.
∫ 2π

0

cos2 3θ dθ

5 − 4 cos 2θ
.

Ans.
3π

8
.
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4.
∫ 2π

0

dθ

1 + a cosθ
(−1 < a < 1).

Ans.
2π

√
1 − a2

.

5.
∫ π

0

cos 2θ dθ

1 − 2a cosθ + a2
(−1 < a < 1).

Ans.
a2π

1 − a2
.

6.
∫ π

0

dθ

(a + cosθ)2
(a > 1).

Ans.
aπ

(√
a2 − 1

)3
.

7.
∫ π

0
sin2n θ dθ (n = 1, 2, . . .).

Ans.
(2n)!

22n(n!)2
π .

86. ARGUMENT PRINCIPLE

A function f is said to bemeromorphicin a domainD if it is analytic throughout
D except for poles. Suppose now thatf is meromorphic in the domain interior to
a positively oriented simple closed contourC and that it is analytic and nonzero
on C. The imageŴ of C under the transformationw = f (z) is a closed contour,
not necessarily simple, in thew plane (Fig. 106). As a pointz traversesC in the
positive direction, its imagesw traversesŴ in a particular direction that determines
the orientation ofŴ. Note that sincef has no zeros onC, the contourŴ does not
pass through the origin in thew plane.

x

z0

z

C

y

u

v

w

w0

FIGURE 106

Let w0 andw be points onŴ, wherew0 is fixed andφ0 is a value of argw0.
Then let argw vary continuously, starting with the valueφ0, as the pointw begins
at the pointw0 and traversesŴ once in the direction of orientation assigned to it
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by the mappingw = f (z). Whenw returns to the pointw0, where it started, argw
assumes a particular value of argw0, which we denote byφ1. Thus the change in
argw asw describesŴ once in its direction of orientation isφ1 − φ0. This change
is, of course, independent of the pointw0 chosen to determine it. Sincew = f (z),
the numberφ1 − φ0 is, in fact, the change in argument off (z) as z describesC
once in the positive direction, starting with a pointz0; and we write

�C argf (z) = φ1 − φ0.

The value of�C argf (z) is evidently an integral multiple of 2π , and the integer

1

2π
�C argf (z)

represents the number of times the pointw winds around the origin in thew plane.
For that reason, this integer is sometimes called thewinding numberof Ŵ with
respect to the originw = 0. It is positive if Ŵ winds around the origin in the
counterclockwise direction and negative if it winds clockwise around that point. The
winding number is always zero whenŴ does not enclose the origin. The verification
of this fact for a special case is left to the reader (Exercise 3, Sec. 87).

The winding number can be determined from the number of zeros and poles of
f interior toC. The number of poles is necessarily finite, according to Exercise 11,
Sec. 76. Likewise, with the understanding thatf (z) is not identically equal to zero
everywhere else insideC, it is easily shown (Exercise 4, Sec. 87) that the zeros of
f are finite in number and are all of finite order. Suppose now thatf hasZ zeros
andP poles in the domain interior toC. We agree thatf hasm0 zeros at a pointz0

if it has a zero of orderm0 there; and iff has a pole of ordermp at z0, that pole is
to be countedmp times. The following theorem, which is known as theargument
principle, states that the winding number is simply the differenceZ − P .

Theorem. Let C denote a positively oriented simple closed contour, and sup-
pose that

(a) a functionf (z) is meromorphic in the domain interior to C;

(b) f (z) is analytic and nonzero on C;

(c) counting multiplicities, Z is the number of zeros and P the number of poles of
f (z) inside C.

Then
1

2π
�C argf (z) = Z − P.

To prove this, we evaluate the integral off ′(z)/f (z) aroundC in two differ-
ent ways. First, we letz = z(t) (a ≤ t ≤ b) be a parametric representation forC,
so that

∫

C

f ′(z)

f (z)
dz =

∫ b

a

f ′[z(t)]z′(t)

f [z(t)]
dt.(1)
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Since, under the transformationw = f (z), the imageŴ of C never passes through
the origin in thew plane, the image of any pointz = z(t) on C can be expressed
in exponential form asw = ρ(t) exp[iφ(t)]. Thus

f [z(t)] = ρ(t)eiφ(t) (a ≤ t ≤ b);(2)

and, along each of the smooth arcs making up the contourŴ, it follows that (see
Exercise 5, Sec. 39)

f ′[z(t)]z′(t) =
d

dt
f [z(t)] =

d

dt
[ρ(t)eiφ(t)] = ρ ′(t)eiφ(t) + iρ(t)eiφ(t)φ′(t).(3)

Inasmuch asρ ′(t) andφ′(t) are piecewise continuous on the intervala ≤ t ≤ b, we
can now use expressions (2) and (3) to write integral (1) as follows:

∫

C

f ′(z)

f (z)
dz =

∫ b

a

ρ ′(t)

ρ(t)
dt + i

∫ b

a

φ′(t) dt = ln ρ(t)
]b

a
+ iφ(t)

]b

a
.

But
ρ(b) = ρ(a) and φ(b) − φ(a) = �C argf (z).

Hence
∫

C

f ′(z)

f (z)
dz = i�C argf (z).(4)

Another way to evaluate integral (4) is to use Cauchy’s residue theorem. To
be specific, we observe that the integrandf ′(z)/f (z) is analytic inside and onC
except at the points insideC at which the zeros and poles off occur. If f has a
zero of orderm0 at z0, then (Sec. 75)

f (z) = (z − z0)
m0g(z),(5)

whereg(z) is analytic and nonzero atz0. Hence

f ′(z0) = m0(z − z0)
m0−1g(z) + (z − z0)

m0g′(z),

or

f ′(z)

f (z)
=

m0

z − z0
+

g′(z)

g(z)
.(6)

Sinceg′(z)/g(z) is analytic atz0, it has a Taylor series representation about that
point ; and so equation (6) tells us thatf ′(z)/f (z) has a simple pole atz0 , with
residuem0. If, on the other hand,f has a pole of ordermp at z0 , we know from
the theorem in Sec. 73 that

f (z) = (z − z0)
−mpφ(z),(7)

whereφ(z) is analytic and nonzero atz0. Because expression (7) has the same form
as expression (5), with the positive integerm0 in equation (5) replaced by−mp,
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it is clear from equation (6) thatf ′(z)/f (z) has a simple pole atz0 , with residue
−mp. Applying the residue theorem, then, we find that

∫

C

f ′(z)

f (z)
dz = 2πi(Z − P).(8)

The conclusion in the theorem now follows by equating the right-hand sides
of equations (4) and (8).

EXAMPLE. The only singularity of the function 1/z2 is a pole of order 2
at the origin, and there are no zeros in the finite plane. In particular, this function
is analytic and nonzero on the unit circlez = eiθ (0 ≤ θ ≤ 2π). If we let C denote
that positively oriented circle, our theorem tells us that

1

2π
�C arg

(

1

z2

)

= −2.

That is, the imageŴ of C under the transformationw = 1/z2 winds around the
origin w = 0 twice in the clockwise direction. This can be verified directly by
noting thatŴ has the parametric representationw = e−i2θ (0 ≤ θ ≤ 2π).

87. ROUCHÉ’S THEOREM

The main result in this section is known asRouché’s theoremand is a consequence
of the argument principle, just developed in Sec. 86. It can be useful in locating
regions of the complex plane in which a given analytic function has zeros.

Theorem. Let C denote a simple closed contour, and suppose that

(a) two functionsf (z) andg(z) are analytic inside and on C;

(b) |f (z)| > |g(z)| at each point on C.

Thenf (z) andf (z) + g(z) have the same number of zeros, counting multiplicities,
insideC.

The orientation ofC in the statement of the theorem is evidently immaterial.
Thus, in the proof here, we may assume that the orientation is positive. We begin
with the observation that neither the functionf (z) nor the sumf (z) + g(z) has a
zero onC, since

|f (z)| > |g(z)| ≥ 0 and |f (z) + g(z)| ≥ | |f (z)| − |g(z)| | > 0

whenz is on C.
If Zf andZf +g denote the number of zeros, counting multiplicities, off (z)

and f (z) + g(z), respectively, insideC, we know from the theorem in Sec. 86
that



sec. 87 Rouché’s Theorem 295

Zf =
1

2π
�C argf (z) and Zf +g =

1

2π
�C arg[f (z) + g(z)].

Consequently, since

�C arg[f (z) + g(z)] = �C arg

{

f (z)

[

1 +
g(z)

f (z)

]}

= �C argf (z) + �C arg

[

1 +
g(z)

f (z)

]

,

it is clear that

Zf +g = Zf +
1

2π
�C argF(z),(1)

where

F(z) = 1 +
g(z)

f (z)
.

But

|F(z) − 1| =
|g(z)|
|f (z)|

< 1;

and this means that under the transformationw = F(z), the image ofC lies in the
open disk|w − 1| < 1. That image does not, then, enclose the originw = 0. Hence
�C argF(z) = 0 and, since equation (1) reduces toZf +g = Zf , Rouch́e’s theorem
is proved.

EXAMPLE 1. In order to determine the number of roots of the equation

z7 − 4z3 + z − 1 = 0(2)

inside the circle|z| = 1, write

f (z) = −4z3 and g(z) = z7 + z − 1.

Then observe that|f (z)| = 4|z|3 = 4 and|g(z)| ≤ |z|7 + |z| + 1 = 3 when|z| = 1.
The conditions in Rouch́e’s theorem are thus satisfied. Consequently, sincef (z) has
three zeros, counting multiplicities, inside the circle|z| = 1, so doesf (z) + g(z).
That is, equation (2) has three roots there.

EXAMPLE 2. Rouch́e’s theorem can be used to give another proof of the
fundamental theorem of algebra (Theorem2, Sec. 53). To give the detals here, we
consider a polynomial

P(z) = a0 + a1z + a2z
2 + · · · + anz

n (an �= 0)(3)

of degreen (n ≥ 1) and show that it hasn zeros, counting multiplicities. We write

f (z) = anz
n, g(z) = a0 + a1z + a2z

2 + · · · + an−1z
n−1
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and let z be any point on a circle|z| = R, whereR > 1. When such a point is
taken, we see that

|f (z)| = |an|Rn.

Also,

|g(z)| ≤ |a0| + |a1|R + |a2|R2 + · · · + |an−1|Rn−1.

Consequently, sinceR > 1,

|g(z)| ≤ |a0|Rn−1 + |a1|Rn−1 + |a2|Rn−1 + · · · + |an−1|Rn−1;

and it follows that

|g(z)|
|f (z)|

≤
|a0| + |a1| + |a2| + · · · + |an−1|

|an|R
< 1

if, in addition to being greater than unity,

R >
|a0| + |a1| + |a2| + · · · + |an−1|

|an|
.(4)

That is,|f (z)| > |g(z)| whenR > 1 and inequality (4) is satisfied. Rouché’s theorem
then tells us thatf (z) and f (z) + g(z) have the same number of zeros, namely
n, inside C. Hence we may conclude thatP(z) has preciselyn zeros, counting
multiplicities, in the plane.

Note how Liouville’s theorem in Sec. 53 only ensured the existence of at least
one zero of a polynomial; but Rouché’s theorem actually ensures the existence of
n zeros, counting multiplicities.

EXERCISES
1. Let C denote the unit circle|z| = 1, described in the positive sense. Use the theorem

in Sec. 86 to determine the value of�C argf (z) when

(a) f (z) = z2 ; (b) f (z) = (z3 + 2)/z ; (c) f (z) = (2z − 1)7/z3.

Ans. (a) 4π ; (b) −2π ; (c) 8π .

2. Let f be a function which is analytic inside and on a positively oriented simple closed
contourC, and suppose thatf (z) is never zero onC. Let the image ofC under the
transformationw = f (z) be the closed contourŴ shown in Fig. 107. Determine the
value of �C argf (z) from that figure; and, with the aid of the theorem in Sec. 86,
determine the number of zeros, counting multiplicities, off interior to C.

Ans. 6π ; 3.

3. Using the notation in Sec. 86, suppose thatŴ does not enclose the originw = 0 and
that there is a ray from that point which does not intersectŴ. By observing that the
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u

v

FIGURE 107

absolute value of�C argf (z) must be less than 2π when a pointz makes one cycle
aroundC and recalling that�C argf (z) is an integral multiple of 2π , point out why
the winding number ofŴ with respect to the originw = 0 must be zero.

4. Suppose that a functionf is meromorphic in the domainD interior to a simple closed
contourC on whichf is analytic and nonzero, and letD0 denote the domain consisting
of all points inD except for poles. Point out how it follows from the lemma in Sec. 27
and Exercise 10, Sec. 76, that iff (z) is not identically equal to zero inD0 , then the
zeros off in D are all of finite order and that they are finite in number.

Suggestion:Note that if a pointz0 in D is a zero off that is not of finite order, then
there must be a neighborhood ofz0 throughout whichf (z) is identically equal to zero.

5. Suppose that a functionf is analytic inside and on a positively oriented simple closed
contourC and that it has no zeros onC. Show that iff hasn zeroszk (k = 1, 2, . . . , n)

insideC, where eachzk is of multiplicity mk, then

∫

C

zf ′(z)

f (z)
dz = 2πi

n
∑

k=1

mkzk.

[Compare with equation (8), Sec. 86, whenP = 0 there.]

6. Determine the number of zeros, counting multiplicities, of the polynomial

(a) z6 − 5z4 + z3 − 2z ; (b) 2z4 − 2z3 + 2z2 − 2z + 9

inside the circle|z| = 1.
Ans. (a) 4 ; (b) 0.

7. Determine the number of zeros, counting multiplicities, of the polynomial

(a) z4 + 3z3 + 6 ; (b) z4 − 2z3 + 9z2 + z − 1; (c) z5 + 3z3 + z2 + 1

inside the circle|z| = 2.
Ans. (a) 3 ; (b) 2 ; (c) 5.

8. Determine the number of roots, counting multiplicities, of the equation

2z5 − 6z2 + z + 1 = 0

in the annulus 1≤ |z| < 2.
Ans. 3.
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9. Show that ifc is a complex number such that|c| > e, then the equationczn = ez has
n roots, counting multiplicities, inside the circle|z| = 1.

10. Let two functionsf andg be as in the statement of Rouché’s theorem in Sec. 87, and
let the orientation of the contourC there be positive. Then define the function

	(t) =
1

2πi

∫

C

f ′(z) + tg′(z)

f (z) + tg(z)
dz (0 ≤ t ≤ 1)

and follow these steps below to give another proof of Rouché’s theorem.

(a) Point out why the denominator in the integrand of the integral defining	(t) is
never zero onC. This ensures the existence of the integral.

(b) Let t and t0 be any two points in the interval 0≤ t ≤ 1 and show that

|	(t) − 	(t0)| =
|t − t0|

2π

∣

∣

∣

∣

∫

C

fg′ − f ′g

(f + tg)(f + t0g)
dz

∣

∣

∣

∣

.

Then, after pointing out why
∣

∣

∣

∣

fg′ − f ′g

(f + tg)(f + t0g)

∣

∣

∣

∣

≤
|fg′ − f ′g|
(|f | − |g|)2

at points onC, show that there is a positive constantA, which is independent of
t and t0, such that

|	(t) − 	(t0)| ≤ A|t − t0|.

Conclude from this inequality that	(t) is continuous on the interval 0≤ t ≤ 1.
(c) By referring to equation (8), Sec. 86, state why the value of the function	 is, for

each value oft in the interval 0≤ t ≤ 1, an integer representing the number of
zeros off (z) + tg(z) insideC. Then conclude from the fact that	 is continuous,
as shown in part(b), thatf (z) andf (z) + g(z) have the same number of zeros,
counting multiplicities, insideC.

88. INVERSE LAPLACE TRANSFORMS

Suppose that a functionF of the complex variables is analytic throughout the
finite s plane except for a finite number of isolated singularities. Then letLR denote
a vertical line segment froms = γ − iR to s = γ + iR, where the constantγ is
positive and large enough that the singularities ofF all lie to the left of that segment
(Fig. 108). A new functionf of the real variablet is defined for positive values of
t by means of the equation

f (t) =
1

2πi
lim

R→∞

∫

LR

estF(s) ds (t > 0),(1)

provided this limit exists. Expression (1) is usually written

f (t) =
1

2πi
P.V.

∫ γ+i∞

γ−i∞
estF(s) ds (t > 0)(2)
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FIGURE 108

[compare with equation (3), Sec.78], and such an integral is called aBromwich
integral.

It can be shown that when fairly general conditions are imposed on the functions
involved, f (t) is the inverse Laplace transform ofF(s). That is, if F(s) is the
Laplace transformof f (t), defined by means of the equation

F(s) =
∫ ∞

0
e−stf (t) dt,(3)

then f (t) is retrieved by means of equation (2), where the choice of the positive
numberγ is immaterial as long as the singularities ofF all lie to the left ofLR.∗

Laplace transforms and their inverses are important in solving both ordinary and
partial differential equations.

Residues can often be used to evaluate the limit in expression (1) when the
function F(s) is specified. To see how this is done, we letsn (n = 1, 2, . . . , N)

denote the singularities ofF(s). We then letR0 denote the largest of their moduli
and consider a semicircleCR with parametric representation

s = γ + Reiθ

(

π

2
≤ θ ≤

3π

2

)

,(4)

whereR > R0 + γ . Note that for eachsn,

|sn − γ | ≤ |sn| + γ ≤ R0 + γ < R.

∗For an extensive treatment of such details regarding Laplace transforms, see R. V. Churchill, “Opera-
tional Mathematics,” 3d ed., 1972, where transformsF(s) with an infinite number of isolated singular
points, or with branch cuts, are also discussed.
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Hence the singularities all lie in the interior of the semicircular region bounded by
CR andLR (see Fig. 108), and Cauchy’s residue theorem tells us that

∫

LR

estF(s) ds = 2πi

N
∑

n=1

Res
s=sn

[estF(s)] −
∫

CR

estF(s) ds.(5)

Suppose now that,for all points s on CR, there is a positive constantMR such
that |F(s)| ≤ MR, whereMR tends to zero asR tends to infinity.We may use the
parametric representation (4) forCR to write

∫

CR

estF(s) ds =
∫ 3π/2

π/2
exp(γ t + Rteiθ )F (γ + Reiθ )Rieiθ dθ.

Then, since

| exp(γ t + Rteiθ )| = eγ teRt cosθ and |F(γ + Reiθ )| ≤ MR,

we find that
∣

∣

∣

∣

∫

CR

estF(s) ds

∣

∣

∣

∣

≤ eγ tMRR

∫ 3π/2

π/2
eRt cosθ dθ.(6)

But the substitutionφ = θ − (π/2), together with Jordan’s inequality (1), Sec. 81,
reveals that

∫ 3π/2

π/2
eRt cosθ dθ =

∫ π

0
e−Rt sinφ dφ <

π

Rt
.

Inequality (6) thus becomes
∣

∣

∣

∣

∫

CR

estF(s) ds

∣

∣

∣

∣

≤
eγ tMRπ

t
,(7)

and this shows that

lim
R→∞

∫

CR

estF(s) ds = 0.(8)

Letting R tend to∞ in equation (5), then, we see that the functionf (t), defined
by equation (1), exists and that it can be written

f (t) =
N

∑

n=1

Res
s=sn

[estF(s)] (t > 0).(9)

In many applications of Laplace transforms, such as the solution of partial
differential equations arising in studies ofheat conduction and mechanical vibrations,
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the functionF(s) is analytic for all values ofs in the finite plane except for an
infinite set of isolated singular pointssn (n = 1, 2, . . .) that lie to the left of some
vertical line Res = γ . Often the method just described for findingf (t) can then be
modified in such a way that the finite sum (9) is replaced by aninfinite seriesof
residues:

f (t) =
∞

∑

n=1

Res
s=sn

[estF(s)] (t > 0).(10)

The basic modification is to replace the vertical line segmentsLR by vertical line
segmentsLN (N = 1, 2, . . .) from s = γ − ibN to s = γ + ibN . The circular arcs
CR are then replaced by contoursCN (N = 1, 2, . . .) from γ + ibN to γ − ibN

such that, for eachN , the sumLN + CN is a simple closed contour enclosing the
singular pointss1, s2, . . . , sN . Once it is shown that

lim
N→∞

∫

CN

estF(s) ds = 0,(11)

expression (2) forf (t) becomes expression (10).
The choice of the contoursCN depends on the nature of the functionF(s).

Common choices include circular or parabolic arcs and rectangular paths. Also, the
simple closed contourLN + CN need not enclose preciselyN singularities. When,
for example, the region betweenLN + CN andLN+1 + CN+1 contains two singular
points of F(s), the pair of corresponding residues ofestF(s) are simply grouped
together as a single term in series (10). Since it is often quite tedious to establish
limit (11) in any case, we shall accept it in the examples and related exercises that
involve an infinite number of singularities.∗ Thus our use of expression (10) will
be only formal.

89. EXAMPLES

Calculation of the sums of the residues ofestF(s) in expressions (9) and (10),
Sec. 88, is often facilitated by techniques developed in Exercises 12 and 13 of this
section. We preface our examples herewith a statement of those techniques.

Suppose thatF(s) has a pole of orderm at a points0 and that its Laurent series
representation in a punctured disk 0< |s − s0| < R2 has principal part

b1

s − s0
+

b2

(s − s0)2
+ · · · +

bm

(s − s0)m
(bm �= 0).

∗An extensive treatment of ways to obtain limit (11) appears in the book by R. V. Churchill that is
cited in the footnote earlier in this section. In fact, the inverse transform to be found in Example 3
in the next section is fully verified on pp. 220–226 of that book.
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Exercise 12 tells us that

Res
s=s0

[estF(s)] = es0t

[

b1 +
b2

1!
t + · · · +

bm

(m − 1)!
tm−1

]

.(1)

When the poles0 is of the forms0 = α + iβ (β �= 0) andF(s) = F(s) at points of
analyticity of F (s) (see Sec. 28), the conjugates0 = α − iβ is also a pole of order
m, according to Exercise 13. Moreover,

Res
s=s0

[estF(s)] + Res
s=s0

[estF(s)](2)

= 2eαtRe

{

eiβt

[

b1 +
b2

1!
t + · · · +

bm

(m − 1)!
tm−1

]}

when t is real. Note that ifs0 is a simple pole (m = 1), expressions (1) and (2)
become

Res
s=s0

[estF(s)] = es0tRes
s=s0

F(s)(3)

and

Res
s=s0

[estF(s)] + Res
s=s0

[estF(s)] = 2eαt Re

[

eiβtRes
s=s0

F(s)

]

,(4)

respectively.

EXAMPLE 1. Let us find the functionf (t) that corresponds to

F(s) =
s

(s2 + a2)2
(a > 0).(5)

The singularities ofF(s) are the conjugate points

s0 = ai and s0 = −ai.

Upon writing

F(s) =
φ(s)

(s − ai)2
where φ(s) =

s

(s + ai)2
,

we see thatφ(s) is analytic and nonzero ats0 = ai. Hences0 is a pole of order
m = 2 of F(s). Furthermore,F(s) = F(s) at points whereF(s) is analytic. Con-
sequently,s0 is also a pole of order 2 ofF(s); and we know from expression (2)
that

Res
s=s0

[estF(s)] + Res
s=s0

[estF(s)] = 2 Re [eiat(b1 + b2t)],(6)
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whereb1 andb2 are the coefficients in the principal part

b1

s − ai
+

b2

(s − ai)2

of F(s) at ai. These coefficients are readily found with the aid of the first two terms
in the Taylor series forφ(s) abouts0 = ai:

F(s) =
1

(s − ai)2
φ(s) =

1

(s − ai)2

[

φ(ai) +
φ′(ai)

1!
(s − ai) + · · ·

]

=
φ(ai)

(s − ai)2
+

φ′(ai)

s − ai
+ · · · (0 < |s − ai| < 2a).

It is straightforward to show thatφ(ai) = −i/(4a) andφ′(ai) = 0, and we find that
b1 = 0 andb2 = −i/(4a). Hence expression (6) becomes

Res
s=s0

[estF(s)] + Res
s=s0

[estF(s)] = 2 Re

[

eiat

(

−
i

4a
t

)]

=
1

2a
t sinat.

We can, then, conclude that

f (t) =
1

2a
t sinat (t > 0),(7)

provided thatF(s) satisfies the boundedness condition stated in italics in Sec. 88.
To verify that boundedness, we lets be any point on the semicircle

s = γ + Reiθ

(

π

2
≤ θ ≤

3π

2

)

,

whereγ > 0 andR > a + γ ; and we note that

|s| = |γ + Reiθ | ≤ γ + R and |s| = |γ + Reiθ | ≥ |γ − R| = R − γ > a.

Since
|s2 + a2| ≥ | |s|2 − a2| ≥ (R − γ )2 − a2 > 0,

it follows that

|F(s)| =
|s|

|s2 + a2|2
≤ MR where MR =

γ + R

[(R − γ )2 − a2] 2
.

The desired boundedness is now established, sinceMR → 0 asR → ∞.

EXAMPLE 2. In order to findf (t) when

F(s) =
tanhs

s2
=

sinhs

s2 coshs
,
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we note thatF(s) has isolated singularities ats = 0 and at the zeros (Sec. 35)

s =
(π

2
+ nπ

)

i (n = 0, ±1,±2, . . .)

of coshs. We list those singularities as

s0 = 0 and sn =
(2n − 1)π

2
i, sn = −

(2n − 1)π

2
i (n = 1, 2, . . .).

Then, formally,

f (t) = Res
s=s0

[estF(s)] +
∞

∑

n=1

{

Res
s=sn

[estF(s)] + Res
s=sn

[estF(s)]

}

.(8)

Division of Maclaurin series yields the Laurent series representation

F(s) =
1

s2
·

sinhs

coshs
=

1

s
−

1

3
s + · · ·

(

0 < |s| <
π

2

)

,

which tells us thats0 = 0 is a simple pole ofF(s), with residue unity. Thus

Res
s=s0

[estF(s)] = Res
s=s0

F(s) = 1,(9)

according to expression (3).
The residues ofF(s) at the pointssn (n = 1, 2, . . .) are readily found by apply-

ing the method of Theorem 2 in Sec. 76 for identifying simple poles and determining
the residues at such points. To be specific, we write

F(s) =
p(s)

q(s)
where p(s) = sinhs and q(s) = s2 coshs

and observe that

sinhsn = sinh
[

i
(

nπ −
π

2

)]

= i sin
(

nπ −
π

2

)

= −i cosnπ = (−1)n+1 i �= 0.

Then, since

p(sn) = sinhsn �= 0, q(sn) = 0, and q ′(sn) = s2
n sinhsn �= 0,

we find that

Res
s=sn

F(s) =
p(sn)

q ′(sn)
=

1

s2
n

= −
4

π2
·

1

(2n − 1)2
(n = 1, 2, . . .).
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[Compare with Example 3 in Sec. 76.] The identities

sinhs = sinhs and coshs = coshs

(see Exercise 11, Sec. 35) ensure thatF(s) = F(s) at points of analyticity of
F(s). Hencesn is also a simple pole ofF(s), and expression (4) can be used
to write

Res
s=sn

[

estF(s)
]

+ Res
s=sn

[

estF(s)
]

(10)

= 2 Re

{

−
4

π2
·

1

(2n − 1)2
exp

[

i
(2n − 1)πt

2

]}

= −
8

π2
·

1

(2n − 1)2
cos

(2n − 1)πt

2
(n = 1, 2, . . .).

Finally, by substituting expressions (9) and (10) into equation (8), we arrive at
the desired result:

f (t) = 1 −
8

π2

∞
∑

n=1

1

(2n − 1)2
cos

(2n − 1)πt

2
(t > 0).(11)

EXAMPLE 3. We consider here the function

F(s) =
sinh(xs1/2)

s sinh(s1/2)
(0 < x < 1),(12)

wheres1/2 denotes any branch of this double-valued function. We agree, however,
to use thesamebranch in the numerator and denominator, so that

F(s) =
xs1/2 + (xs1/2)3/3! + · · ·
s[s1/2 + (s1/2)3/3! + · · ·]

=
x + x3s/6 + · · ·
s + s2/6 + · · ·

(13)

whens is not a singular point ofF(s). One such singular point is clearlys = 0. With
the additional agreement that the branch cut ofs1/2 does not lie along the negative
real axis, so that sinh(s1/2) is well defined along that axis, the other singular points
occur if s1/2 = ±nπi (n = 1, 2, . . .). The points

s0 = 0 and sn = −n2π2 (n = 1, 2, . . .)

thus constitute the set of singular points ofF(s). The problem is now to evaluate
the residues in the formal series representation

f (t) = Res
s=s0

[estF(s)] +
∞

∑

n=1

Res
s=sn

[estF(s)].(14)
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Division of the power series on the far right in expression (13) reveals thats0

is a simple pole ofF(s), with residuex. So expression (3) tells us that

Res
s=s0

[estF(s)] = x.(15)

As for the residues ofF(s) at the singular pointssn = −n2π2 (n = 1, 2, . . .),

we write

F(s) =
p(s)

q(s)
where p(s) = sinh(xs1/2) and q(s) = s sinh(s1/2).

Appealing to Theorem 2 in Sec. 76, as we did in Example 2, we note that

p(sn) = sinh(xs1/2
n ) �= 0, q(sn) = 0, and q ′(sn) =

1

2
s1/2
n cosh(s1/2

n ) �= 0 ;

and this tells us that eachsn is a simple pole ofF(s), with residue

Res
s=sn

F(s) =
p(sn)

q ′(sn)
=

2

π
·
(−1)n

n
sinnπx.

So, in view of expression (3),

Res
s=sn

[estF(s)] = esnt Res
s=sn

F(s) =
2

π
·
(−1)n

n
e−n2π2t sinnπx.(16)

Substituting expressions (15) and (16) into equation (14), we arrive at the
function

f (t) = x +
2

π

∞
∑

n=1

(−1)n

n
e−n2π2t sinnπx (t > 0).(17)

EXERCISES

In Exercises 1 through 5, use the method described in Sec. 88 and illustrated in
Example 1, Sec. 89, to find the functionf (t) corresponding to the given functionF(s).

1. F(s) =
2s3

s4 − 4
.

Ans. f (t) = cosh
√

2t + cos
√

2t .

2. F(s) =
2s − 2

(s + 1)(s2 + 2s + 5)
.

Ans. f (t) = e−t (sin 2t + cos 2t − 1).

3. F(s) =
12

s3 + 8
.

Ans. f (t) = e−2t + et (
√

3 sin
√

3t − cos
√

3t).
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4. F(s) =
s2 − a2

(s2 + a2)2
(a > 0).

Ans. f (t) = t cosat .

5. F(s) =
8a3s2

(s2 + a2)3
(a > 0).

Suggestion:Refer to Exercise 5, Sec. 72, for the principal part ofF(s) at s = ai.

Ans. f (t) = (1 + a2t2) sinat − at cosat .

In Exercises 6 through 11, use the formal method, involving an infinite series of
residues and illustrated in Examples 2and 3 in Sec. 89, to find the functionf (t)

that corresponds to the given functionF(s).

6. F(s) =
sinh(xs)

s2 coshs
(0 < x < 1).

Ans. f (t) = x +
8

π2

∞
∑

n=1

(−1)n

(2n − 1)2
sin

(2n − 1)πx

2
cos

(2n − 1)πt

2
.

7. F(s) =
1

s cosh(s1/2)
.

Ans. f (t) = 1 +
4

π

∞
∑

n=1

(−1)n

2n − 1
exp

[

−
(2n − 1)2π2t

4

]

.

8. F(s) =
coth(πs/2)

s2 + 1
.

Ans. f (t) =
2

π
−

4

π

∞
∑

n=1

cos 2nt

4n2 − 1
.∗

9. F(s) =
sinh(xs1/2)

s2 sinh(s1/2)
(0 < x < 1).

Ans. f (t) =
1

6
x(x2 − 1) + xt +

2

π3

∞
∑

n=1

(−1)n+1

n3
e−n2π2t sinnπx.

10. F(s) =
1

s2
−

1

s sinhs
.

Ans. f (t) =
2

π

∞
∑

n=1

(−1)n+1

n
sinnπt .

11. F(s) =
sinh(xs)

s(s2 + ω2) coshs
(0 < x < 1),

whereω > 0 andω �= ωn =
(2n − 1)π

2
(n = 1, 2, . . .).

Ans. f (t) =
sinωx sinωt

ω2 cosω
+ 2

∞
∑

n=1

(−1)n+1

ωn

·
sinωnx sinωnt

ω2 − ω2
n

.

∗This is actually the rectified sine functionf (t) = | sint |. See the authors’ “Fourier Series and
Boundary Value Problems,” 7th ed., pp. 7–8, 2008.



308 Applications of Residues chap. 7

12. Suppose that a functionF(s) has a pole of orderm at s = s0, with a Laurent series
expansion

F(s) =
∞

∑

n=0

an(s − s0)
n +

b1

s − s0
+

b2

(s − s0)2
+ · · · +

bm−1

(s − s0)m−1
+

bm

(s − s0)m

(bm �= 0)

in the punctured disk 0< |s − s0| < R2, and note that(s − s0)
mF(s) is represented

in that domain by the power series

bm + bm−1(s − s0) + · · · + b2(s − s0)
m−2 + b1(s − s0)

m−1 +
∞

∑

n=0

an(s − s0)
m+n.

By collecting the terms that make up the coefficient of(s − s0)
m−1 in the product

(Sec. 67) of this power series and the Taylor series expansion

est = es0t

[

1 +
t

1!
(s − s0) + · · · +

tm−2

(m − 2)!
(s − s0)

m−2 +
tm−1

(m − 1)!
(s − s0)

m−1 + · · ·
]

of the entire functionest = es0te(s−s0)t , show that

Res
s=s0

[estF(s)] = es0t

[

b1 +
b2

1!
t + · · · +

bm−1

(m − 2)!
tm−2 +

bm

(m − 1)!
tm−1

]

,

as stated at the beginning of Sec. 89.

13. Let the points0 = α + iβ (β �= 0) be a pole of orderm of a functionF(s), which has
a Laurent series representation

F(s) =
∞

∑

n=0

an(s − s0)
n +

b1

s − s0
+

b2

(s − s0)2
+ · · · +

bm

(s − s0)m
(bm �= 0)

in the punctured disk 0< |s − s0| < R2. Also, assume thatF(s) = F(s) at pointss

whereF(s) is analytic.

(a) With the aid of the result in Exercise 6, Sec. 56, point out how it follows that

F(s) =
∞

∑

n=0

an(s − s0)
n +

b1

s − s0
+

b2

(s − s0)2
+ · · · +

bm

(s − s0)m
(bm �= 0)

when 0< |s − s0| < R2. Then replaces by s here to obtain a Laurent series
representation forF(s) in the punctured disk 0< |s − s0| < R2, and conclude
that s0 is a pole of orderm of F(s).

(b) Use results in Exercise 12 and part(a) to show that

Res
s=s0

[estF(s)] + Res
s=s0

[estF(s)] = 2eαt Re

{

eiβt

[

b1 +
b2

1!
t + · · · +

bm

(m − 1)!
tm−1

]}

when t is real, as stated just before Example 1 in Sec. 89.
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14. Let F(s) be the function in Exercise 13, and write the nonzero coefficientbm there
in exponential form asbm = rm exp(iθm). Then use the main result in part(b) of
Exercise 13 to show that whent is real, the sum of the residues ofestF(s) at
s0 = α + iβ (β �= 0) ands0 contains a term of the type

2rm

(m − 1)!
tm−1eαt cos(βt + θm).

Note that ifα > 0, the producttm−1eαt here tends to∞ as t tends to∞. When the
inverse Laplace transformf (t) is found by summing the residues ofestF(s), the term
displayed just above is, therefore, anunstablecomponent off (t) if α > 0 ; and it is
said to be ofresonancetype. If m ≥ 2 andα = 0, the term is also of resonance type.





C H A P T E R

8
MAPPING BY ELEMENTARY

FUNCTIONS

The geometric interpretation of a function of a complex variable as a mapping, or
transformation, was introduced in Secs. 13 and 14 (Chap. 2). We saw there how
the nature of such a function can be displayed graphically, to some extent, by the
manner in which it maps certain curves and regions.

In this chapter, we shall see further examples of how various curves and regions
are mapped by elementary analytic functions. Applications of such results to physical
problems are illustrated in Chaps. 10 and 11.

90. LINEAR TRANSFORMATIONS

To study the mapping

w = Az ,(1)

whereA is a nonzero complex constant andz �= 0, we writeA andz in exponential
form:

A = aeiα, z = reiθ .

Then

w = (ar)ei(α+θ),(2)

and we see from equation (2) that transformation (1) expands or contracts the radius
vector representingz by the factora and rotates it through the angleα about the
origin. The image of a given region is, therefore, geometrically similar to that region.

311
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The mapping

w = z + B,(3)

whereB is any complex constant, is a translation by means of the vector representing
B. That is, if

w = u + iv, z = x + iy, and B = b1 + ib2,

then the image of any point(x, y) in the z plane is the point

(u, v) = (x + b1, y + b2)(4)

in the w plane. Since each point in any given region of thez plane is mapped
into thew plane in this manner, the image region is geometrically congruent to the
original one.

The general (nonconstant)linear transformation

w = Az + B (A �= 0)(5)

is a composition of the transformations

Z = Az (A �= 0) and w = Z + B.

Whenz �= 0, it is evidently an expansion or contraction and a rotation, followed by
a translation.

EXAMPLE. The mapping

w = (1 + i)z + 2(6)

transforms the rectangular region in thez = (x, y) plane of Fig. 109 into the rect-
angular region shown in thew = (u, v) plane there. This is seen by expressing it
as a composition of the transformations

Z = (1 + i)z and w = Z + 2 .(7)

Writing

1 + i =
√

2 exp
(

i
π

4

)

and z = r exp(iθ) ,

one can put the first of transformations (7) in the form

Z = (
√

2r) exp
[

i
(

θ +
π

4

)]

.

This first transformation thus expands the radius vector for a nonzero pointz by the
factor

√
2 and rotates it counterclockwiseπ/4 radians about the origin. The second

of transformations (7) is, of course, atranslation two units to the right.



sec. 91 The Transformation w = 1/z 313

xO A

B B′

A′

y

uO 2

v

XO

Y

1 + 2i

–1 + 3i

B″

A″

1 + 3i

FIGURE 109
w = (1 + i)z + 2.

EXERCISES
1. State why the transformationw = iz is a rotation in thez plane through the angle

π/2. Then find the image of the infinite strip 0< x < 1.
Ans. 0 < v < 1.

2. Show that the transformationw = iz + i maps the half planex > 0 onto the half plane
v > 1.

3. Find and sketch the region onto which the half planey > 0 is mapped by the trans-
formationw = (1 + i)z.

Ans. v > u.

4. Find the image of the half planey > 1 under the transformationw = (1 − i)z.

5. Find the image of the semi-infinite stripx > 0, 0 < y < 2 whenw = iz + 1. Sketch
the strip and its image.

Ans. −1 < u < 1, v < 0.

6. Give a geometric description of the transformationw = A(z + B), whereA and B

are complex constants andA �= 0.

91. THE TRANSFORMATION w = 1/z

The equation

w =
1

z
(1)

establishes a one to one correspondence between the nonzero points of thez and the
w planes. Sincezz = |z|2, the mapping can be described by means of the successive
transformations

Z =
z

|z|2
, w = Z.(2)
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The first of these transformations is an inversion with respect to the unit circle
|z| = 1. That is, the image of a nonzero pointz is the pointZ with the properties

|Z| =
1

|z|
and argZ = argz.

Thus the points exterior to the circle|z| = 1 are mapped onto the nonzero points
interior to it (Fig. 110), and conversely.Any point on the circle is mapped onto
itself. The second of transformations (2) is simply a reflection in the real axis.

xO 1

y

w

Z

z

FIGURE 110

If we write transformation (1) as

T (z) =
1

z
(z �= 0),(3)

we can defineT at the origin and at the point at infinity so as to be continuous on
the extendedcomplex plane. To do this, we need only refer to Sec. 17 to see that

lim
z→0

T (z) = ∞ since lim
z→0

1

T (z)
= lim

z→0
z = 0(4)

and

lim
z→∞

T (z) = 0 since lim
z→0

T

(

1

z

)

= lim
z→0

z = 0.(5)

In order to makeT continuous on the extended plane, then, we write

T (0) = ∞, T (∞) = 0, and T (z) =
1

z
(6)

for the remaining values ofz. More precisely, the first of limits (4) and (5) tells us
that the limit

lim
z→z0

T (z) = T (z0),(7)

which is clearly true whenz0 �= 0 and whenz0 �= ∞, is also true for those two
values ofz0. The fact thatT is continuous everywhere in the extended plane is now
a consequence of limit (7). (See Sec. 18.) Because of this continuity, when the point
at infinity is involved in any discussion of the function 1/z, we tacitly assume that
T (z) is intended.
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92. MAPPINGS BY 1/z

When a pointw = u + iv is the image of a nonzero pointz = x + iy in the finite
plane under the transformationw = 1/z , writing

w =
z

zz
=

z

|z|2

reveals that

u =
x

x2 + y2
, v =

−y

x2 + y2
.(1)

Also, since

z =
1

w
=

w

ww
=

w

|w|2
,

one can see that

x =
u

u2 + v2
, y =

−v

u2 + v2
.(2)

The following argument, based on these relations between coordinates, shows that
the mappingw = 1/z transforms circles and lines into circles and lines.WhenA,
B, C, and D are all real numbers satisfying the conditionB2 + C2 > 4AD, the
equation

A(x2 + y2) + Bx + Cy + D = 0(3)

represents an arbitrary circle or line, whereA �= 0 for a circle andA = 0 for a
line. The need for the conditionB2 + C2 > 4AD whenA �= 0 is evident if, by the
method of completing the squares, we rewrite equation (3) as

(

x +
B

2A

)2

+
(

y +
C

2A

)2

=

(√
B2 + C2 − 4AD

2A

)2

.

WhenA = 0, the condition becomesB2 + C2 > 0, which means thatB andC are
not both zero. Returning to the verification of the statement in italics just above, we
observe that ifx andy satisfy equation (3), we can use relations (2) to substitute for
those variables. After some simplifications, we find thatu andv satisfy the equation
(see also Exercise 14 of this section)

D(u2 + v2) + Bu − Cv + A = 0,(4)

which also represents a circle or line. Conversely, ifu andv satisfy equation (4), it
follows from relations (1) thatx andy satisfy equation (3).

It is now clear from equations (3) and (4) that

(a) a circle(A �= 0) not passing through the origin(D �= 0) in the z plane is trans-
formed into a circle not passing through the origin in thew plane;
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(b) a circle (A �= 0) through the origin(D = 0) in the z plane is transformed into
a line that does not pass through the origin in thew plane;

(c) a line (A = 0) not passing through the origin(D �= 0) in the z plane is trans-
formed into a circle through the origin in thew plane;

(d) a line (A = 0) through the origin(D = 0) in the z plane is transformed into a
line through the origin in thew plane.

EXAMPLE 1. According to equations (3) and (4), a vertical linex = c1

(c1 �= 0) is transformed byw = 1/z into the circle−c1(u
2 + v2) + u = 0, or

(

u −
1

2c1

)2

+ v2 =
(

1

2c1

)2

,(5)

which is centered on theu axis and tangent to thev axis. The image of a typical
point (c1, y) on the line is, by equations (1),

(u, v) =
(

c1

c2
1 + y2

,
−y

c2
1 + y2

)

.

If c1 > 0, the circle (5) is evidently to the right of thev axis. As the point
(c1, y) moves up the entire line, its image traverses the circle once in the clockwise
direction, the point at infinity in the extendedz plane corresponding to the origin
in the w plane. This is illustrated in Fig. 111 whenc1 = 1/3. Note thatv > 0 if
y < 0 ; and asy increases through negative values to 0, one can see thatu increases
from 0 to 1/c1. Then, asy increases through positive values,v is negative andu
decreases to 0.

If, on the other hand,c1 < 0, the circle lies to the left of thev axis. As the point
(c1, y) moves upward, its image still makes one cycle, but in the counterclockwise
direction. See Fig. 111, where the casec1 = −1/2 is also shown.

x

y

u

v

c1 = 1–3

c1 = 1–3
c2 = 1–2

c2 = 1–2

c2 = –1–2

c2 = –1–2
c1 = –1–2

c1 = –1–2

FIGURE 111
w = 1/z.



sec. 92 Exercises 317

EXAMPLE 2. A horizontal liney = c2 (c2 �= 0) is mapped byw = 1/z onto
the circle

u2 +
(

v +
1

2c2

)2

=
(

1

2c2

)2

,(6)

which is centered on thev axis and tangent to theu axis. Two special cases are
shown in Fig. 111, where corresponding orientations of the lines and circles are
also indicated.

EXAMPLE 3. When w = 1/z, the half planex ≥ c1 (c1 > 0) is mapped
onto the disk

(

u −
1

2c1

)2

+ v2 ≤
(

1

2c1

)2

.(7)

For, according to Example 1, any linex = c (c ≥ c1) is transformed into the circle
(

u −
1

2c

)2

+ v2 =
(

1

2c

)2

.(8)

Furthermore, asc increases through all values greater thanc1, the linesx = c move
to the right and the image circles (8) shrink in size. (See Fig. 112.) Since the lines
x = c pass through all points in the half planex ≥ c1 and the circles (8) pass through
all points in the disk (7), the mapping is established.

x

x = c1 x = c

O

y

uO 1—
2c

1—
2c1

v

FIGURE 112
w = 1/z.

EXERCISES
1. In Sec. 92, point out how it follows from the first of equations (2) that whenw = 1/z,

the inequalityx ≥ c1 (c1 > 0) is satisfied if and only if inequality (7) holds. Thus give
an alternative verification of the mapping established in Example 3, Sec. 92.



318 Mapping by Elementary Functions chap. 8

2. Show that whenc1 < 0, the image of the half planex < c1 under the transformation
w = 1/z is the interior of a circle. What is the image whenc1 = 0 ?

3. Show that the image of the half planey > c2 under the transformationw = 1/z is the
interior of a circle whenc2 > 0. Find the image whenc2 < 0 and whenc2 = 0.

4. Find the image of the infinite strip 0< y < 1/(2c) under the transformationw = 1/z.
Sketch the strip and its image.

Ans. u2 + (v + c)2 > c2, v < 0.

5. Find the image of the regionx > 1, y > 0 under the transformationw = 1/z.

Ans.

(

u −
1

2

)2

+ v2 <

(

1

2

)2

, v < 0.

6. Verify the mapping, wherew = 1/z, of the regions and parts of the boundaries indi-
cated in(a) Fig. 4, Appendix 2;(b) Fig. 5, Appendix 2.

7. Describe geometrically the transformationw = 1/(z − 1).

8. Describe geometrically the transformationw = i/z. State why it transforms circles
and lines into circles and lines.

9. Find the image of the semi-infinite stripx > 0, 0 < y < 1 whenw = i/z. Sketch the
strip and its image.

Ans.

(

u −
1

2

)2

+ v2 >

(

1

2

)2

, u > 0, v > 0.

10. By writing w = ρ exp(iφ), show that the mappingw = 1/z transforms the hyperbola
x2 − y2 = 1 into the lemniscateρ2 = cos 2φ. (See Exercise 14, Sec. 5.)

11. Let the circle|z| = 1 have a positive, or counterclockwise, orientation. Determine the
orientation of its image under the transformationw = 1/z.

12. Show that when a circle is transformed into a circle under the transformationw = 1/z,
the center of the original circle isnever mapped onto the center of the image circle.

13. Using the exponential formz = reiθ of z, show that the transformation

w = z +
1

z
,

which is the sum of the identity transformation and the transformation discussed in
Secs. 91 and 92, maps circlesr = r0 onto ellipses with parametric representations

u =
(

r0 +
1

r0

)

cosθ, v =
(

r0 −
1

r0

)

sinθ (0 ≤ θ ≤ 2π)

and foci at the pointsw = ±2. Then show how it follows that this transformation
maps the entire circle|z| = 1 onto the segment−2 ≤ u ≤ 2 of the u axis and the
domain outside that circle onto the rest of thew plane.

14. (a) Write equation (3), Sec. 92, in the form

2Azz + (B − Ci)z + (B + Ci)z + 2D = 0,

wherez = x + iy.
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(b) Show that whenw = 1/z, the result in part(a) becomes

2Dww + (B + Ci)w + (B − Ci)w + 2A = 0.

Then show that ifw = u + iv, this equation is the same as equation (4), Sec. 92.
Suggestion:In part (a), use the relations (see Sec. 5)

x =
z + z

2
and y =

z − z

2i
.

93. LINEAR FRACTIONAL TRANSFORMATIONS

The transformation

w =
az + b

cz + d
(ad − bc �= 0),(1)

wherea, b, c, andd are complex constants, is called alinear fractional transfor-
mation, or Möbius transformation. Observe that equation (1) can be written in the
form

Azw + Bz + Cw + D = 0 (AD − BC �= 0);(2)

and, conversely, any equation of type (2) can be put in the form (1). Since this
alternative form is linear inz and linear inw, another name for a linear fractional
transformation isbilinear transformation.

When c = 0, the conditionad − bc �= 0 with equation (1) becomesad �= 0 ;
and we see that the transformation reduces to a nonconstant linear function. When
c �= 0, equation (1) can be written

w =
a

c
+

bc − ad

c
·

1

cz + d
(ad − bc �= 0).(3)

So, once again, the conditionad − bc �= 0 ensures that we do not have a constant
function. The transformationw = 1/z is evidently a special case of transformation
(1) whenc �= 0.

Equation (3) reveals that whenc �= 0, a linear fractional transformation is a
composition of the mappings.

Z = cz + d, W =
1

Z
, w =

a

c
+

bc − ad

c
W (ad − bc �= 0).

It thus follows that, regardless of whetherc is zero or nonzero,any linear frac-
tional transformation transforms circles and lines into circles and linesbecause
these special linear fractional transformations do. (See Secs. 90 and 92.)

Solving equation (1) forz, we find that

z =
−dw + b

cw − a
(ad − bc �= 0).(4)
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When a given pointw is the image of some pointz under transformation (1), the
point z is retrieved by means of equation (4). Ifc = 0, so thata and d are both
nonzero, each point in thew plane is evidently the image of one and only one
point in the z plane. The same is true ifc �= 0, except whenw = a/c since the
denominator in equation (4) vanishes ifw has that value. We can, however, enlarge
the domain of definition of transformation (1) in order to define a linear fractional
transformationT on theextendedz plane such that the pointw = a/c is the image
of z = ∞ whenc �= 0. We first write

T (z) =
az + b

cz + d
(ad − bc �= 0).(5)

We then write

T (∞) = ∞ if c = 0(6)

and

T (∞) =
a

c
and T

(

−
d

c

)

= ∞ if c �= 0.(7)

In view of Exercise 11, Sec. 18, this makesT continuous on the extendedz plane.
It also agrees with the way in which we enlarged the domain of definition of the
transformationw = 1/z in Sec. 91.

When its domain of definition is enlarged in this way, the linear fractional
transformation (5) is aone to onemapping of the extendedz planeonto the extended
w plane. That is,T (z1) �= T (z2) wheneverz1 �= z2; and, for each pointw in the
second plane, there is a pointz in the first one such thatT (z) = w. Hence, associated
with the transformationT , there is aninverse transformationT −1, which is defined
on the extendedw plane as follows:

T −1(w) = z if and only if T (z) = w.

From equation (4), we see that

T −1(w) =
−dw + b

cw − a
(ad − bc �= 0).(8)

Evidently,T −1 is itself a linear fractional transformation, where

T −1(∞) = ∞ if c = 0(9)

and

T −1
(a

c

)

= ∞ and T −1(∞) = −
d

c
if c �= 0.(10)

If T and S are two linear fractional transformations, then so is the composition
S[T (z)]. This can be verified by combining expressions of the type (5). Note that,
in particular,T −1[T (z)] = z for each pointz in the extended plane.
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There is always a linear fractional transformation that maps three given distinct
pointsz1, z2, andz3 onto three specified distinct pointsw1, w2, andw3, respectively.
Verification of this will appear in Sec. 94, where the imagew of a point z under
such a transformation is given implicitly in terms ofz. We illustrate here a more
direct approach to finding the desired transformation.

EXAMPLE 1. Let us find the special case of transformation (1) that maps
the points

z1 = −1, z2 = 0, and z3 = 1

onto the points
w1 = −i, w2 = 1, and w3 = i.

Since 1 is the image of 0, expression (1) tells us that 1= b/d, or d = b. Thus

w =
az + b

cz + b
[b(a − c) �= 0].(11)

Then, since−1 and 1 are transformed into−i and i, respectively, it follows that

ic − ib = −a + b and ic + ib = a + b.

Adding corresponding sides of these equations, we find thatc = −ib ; and subtrac-
tion reveals thata = ib. Consequently,

w =
ibz + b

−ibz + b
=

b(iz + 1)

b(−iz + 1)
.

We can cancel out the nonzero numberb in this last fraction and write

w =
iz + 1

−iz + 1
.

This is, of course, the same as

w =
i − z

i + z
,(12)

which is obtained by assigning the valuei to the arbitrary numberb.

EXAMPLE 2. Suppose that the points

z1 = 1, z2 = 0, and z3 = −1

are to be mapped onto

w1 = i, w2 = ∞, and w3 = 1.

Sincew2 = ∞ corresponds toz2 = 0, we know from equations (6) and (7) that
c �= 0 andd = 0 in equation (1). Hence

w =
az + b

cz
(bc �= 0).(13)
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Then, because 1 is to be mapped ontoi and−1 onto 1, we have the relations

ic = a + b, −c = −a + b ;

and it follows that

2a = (1 + i)c, 2b = (i − 1)c.

Finally, if we multiply numerator and denominator in the quotient (13) by 2 , make
these substitutions for 2a and 2b, and then cancel out the nonzero numberc, we
arrive at

w =
(i + 1)z + (i − 1)

2z
.(14)

94. AN IMPLICIT FORM

The equation

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
(1)

defines (implicitly) a linear fractional transformation that maps distinct pointsz1,
z2, andz3 in the finitez plane onto distinct pointsw1, w2, andw3, respectively, in
the finitew plane.∗ To verify this, we write equation (1) as

(z − z3)(w−w1)(z2 − z1)(w2 − w3) = (z − z1)(w − w3)(z2 − z3)(w2−w1).(2)

If z = z1, the right-hand side of equation (2) is zero ; and it follows thatw = w1.
Similarly, if z = z3, the left-hand side is zero and, consequently,w = w3. If z = z2,
we have the linear equation

(w − w1)(w2 − w3) = (w − w3)(w2 − w1),

whose unique solution isw = w2. One can see that the mapping defined by
equation (1) is actually a linear fractional transformation by expanding the products
in equation (2) and writing the result in the form (Sec. 93)

Azw + Bz + Cw + D = 0.(3)

The conditionAD − BC �= 0, which is needed with equation (3), is clearly satisfied
since, as just demonstrated, equation (1) does not define a constant function. It is
left to the reader (Exercise 10) to show that equation (1) defines theonly linear
fractional transformation mapping the pointsz1, z2, and z3 onto w1, w2, andw3,
respectively.

∗The two sides of equation (1) arecross ratios, which play an important role in more extensive
developments of linear fractional transformations than in this book. See, for instance, R. P. Boas,
“Invitation to Complex Analysis,” pp. 192–196,1993 or J. B. Conway, “Functions of One Complex
Variable,” 2d ed., 6th printing, pp. 48–55, 1997.
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EXAMPLE 1. The transformation found in Example 1, Sec. 93, required that

z1 = −1, z2 = 0, z3 = 1 and w1 = −i, w2 = 1, w3 = i.

Using equation (1) to write

(w + i)(1 − i)

(w − i)(1 + i)
=

(z + 1)(0 − 1)

(z − 1)(0 + 1)

and then solving forw in terms ofz, we arrive at the transformation

w =
i − z

i + z
,

found earlier.

If equation (1) is modified properly, itcan also be used when the point at infinity
is one of the prescribed points in either the (extended)z or w plane. Suppose, for
instance, thatz1 = ∞. Since any linear fractional transformation is continuous on
the extended plane, we need only replacez1 on the right-hand side of equation (1)
by 1/z1, clear fractions, and letz1 tend to zero :

lim
z1→0

(z − 1/z1)(z2 − z3)

(z − z3)(z2 − 1/z1)
·
z1

z1
= lim

z1→0

(z1z − 1)(z2 − z3)

(z − z3)(z1z2 − 1)
=

z2 − z3

z − z3
.

The desired modification of equation (1) is, then,

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

z2 − z3

z − z3
.

Note that this modification is obtained formally by simply deleting the factors involv-
ing z1 in equation (1). It is easy to check that the same formal approach applies
when any of the other prescribed points is∞.

EXAMPLE 2. In Example 2, Sec. 93, the prescribed points were

z1 = 1, z2 = 0, z3 = −1 and w1 = i, w2 = ∞, w3 = 1.

In this case, we use the modification

w − w1

w − w3
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)

of equation (1), which tells us that

w − i

w − 1
=

(z − 1)(0 + 1)

(z + 1)(0 − 1)
.

Solving here forw, we have the transformation obtained earlier :

w =
(i + 1)z + (i − 1)

2z
.
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EXERCISES
1. Find the linear fractional transformation that maps the pointsz1 = 2, z2 = i, z3 = −2

onto the pointsw1 = 1, w2 = i, w3 = −1.

Ans. w =
3z + 2i

iz + 6
.

2. Find the linear fractional transformation that maps the pointsz1 = −i, z2 = 0, z3 = i

onto the pointsw1 = −1, w2 = i, w3 = 1. Into what curve is the imaginary axisx = 0
transformed?

3. Find the bilinear transformation that maps the pointsz1 = ∞, z2 = i, z3 = 0 onto the
pointsw1 = 0, w2 = i, w3 = ∞.

Ans. w = −1/z.

4. Find the bilinear transformation that maps distinct pointsz1, z2, z3 onto the points
w1 = 0, w2 = 1, w3 = ∞.

Ans. w =
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
.

5. Show that a composition of two linear fractional transformations is again a linear frac-
tional transformation, as stated in Sec. 93. To do this, consider two such transformations

T (z) =
a1z + b1

c1z + d1
(a1d1 − b1c1 �= 0)

and

S(z) =
a2z + b2

c2z + d2
(a2d2 − b2c2 �= 0).

Then show that the compositionS[T (z)] has the form

S[T (z)] =
a3z + b3

c3z + d3
,

where

a3d3 − b3c3 = (a1d1 − b1c1)(a2d2 − b2c2) �= 0.

6. A fixed pointof a transformationw = f (z) is a pointz0 such thatf (z0) = z0. Show
that every linear fractional transformation, with the exception of the identity transfor-
mationw = z, has at most two fixed points in the extended plane.

7. Find the fixed points (see Exercise 6) of the transformation

(a) w =
z − 1

z + 1
; (b) w =

6z − 9

z
.

Ans. (a) z = ±i; (b) z = 3.

8. Modify equation (1), Sec. 94, for the case in which bothz2 and w2 are the point
at infinity. Then show that any linear fractional transformation must be of the form
w = az (a �= 0) when its fixed points (Exercise 6) are 0 and∞.

9. Prove that if the origin is a fixed point (Exercise 6) of a linear fractional transformation,
then the transformation can be written in the form
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w =
z

cz + d
(d �= 0).

10. Show that there is only one linear fractional transformation which maps three given
distinct pointsz1, z2, andz3 in the extendedz plane onto three specified distinct points
w1, w2, andw3 in the extendedw plane.

Suggestion:Let T and S be two such linear fractional transformations. Then,
after pointing out whyS−1[T (zk)] = zk (k = 1, 2, 3), use the results in Exercises 5
and 6 to show thatS−1[T (z)] = z for all z. Thus show thatT (z) = S(z) for all z.

11. With the aid of equation (1), Sec. 94, prove that if a linear fractional transformation maps
the points of thex axis onto points of theu axis, then the coefficients in the transformation
are all real, except possibly for a common complex factor. The converse statement is
evident.

12. Let

T (z) =
az + b

cz + d
(ad − bc �= 0)

be any linear fractional transformation other thanT (z) = z. Show that

T −1 = T if and only if d = −a.

Suggestion:Write the equationT −1(z) = T (z) as

(a + d)[cz2 + (d − a)z − b] = 0.

95. MAPPINGS OF THE UPPER HALF PLANE

Let us determine all linear fractional transformations that map the upper half plane
Im z > 0 onto the open disk|w| < 1 and the boundary Imz = 0 of the half plane
onto the boundary|w| = 1 of the disk (Fig. 113).

u1

v

x

z
z0

z0

|z – z0|

|z – z0|

y

FIGURE 113

w = eiα

(

z − z0

z − z0

)

(Im z0 > 0).

Keeping in mind that points on the line Imz = 0 are to be transformed into
points on the circle|w| = 1, we start by selecting the pointsz = 0, z = 1, and
z = ∞ on the line and determining conditions on a linear fractional transformation

w =
az + b

cz + d
(ad − bc �= 0)(1)

which are necessary in order for the images of those points to have unit modulus.
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We note from equation (1) that if|w| = 1 whenz = 0, then|b/d| = 1; that is,

|b| = |d| �= 0.(2)

Furthermore, statements (6) and (7) in Sec. 93 tell use that the image of the point
z = ∞ is a finite number only ifc �= 0, that finite number beingw = a/c. So the
requirement that|w| = 1 whenz = ∞ means that|a/c| = 1, or

|a| = |c| �= 0 ;(3)

and the fact thata andc are nonzero enables us to rewrite equation (1) as

w =
a

c
·
z + (b/a)

z + (d/c)
.(4)

Then, since|a/c| = 1 and
∣

∣

∣

∣

b

a

∣

∣

∣

∣

=
∣

∣

∣

∣

d

c

∣

∣

∣

∣

�= 0,

according to relations (2) and (3), equation (4) can be put in the form

w = eiα

(

z − z0

z − z1

)

(|z1| = |z0| �= 0),(5)

whereα is a real constant andz0 andz1 are (nonzero) complex constants.
Next, we impose on transformation (5) the condition that|w| = 1 whenz = 1.

This tells us that
|1 − z1| = |1 − z0|,

or
(1 − z1)(1 − z1) = (1 − z0)(1 − z0).

But z1z1 = z0z0 since|z1| = |z0|, and the above relation reduces to

z1 + z1 = z0 + z0 ;

that is, Rez1 = Rez0. It follows that either

z1 = z0 or z1 = z0 ,

again since|z1| = |z0|. If z1 = z0, transformation (5) becomes the constant function
w = exp(iα); hencez1 = z0.

Transformation (5), withz1 = z0, maps the pointz0 onto the originw = 0 ;
and, since points interior to the circle|w| = 1 are to be the images of pointsabove
the real axis in thez plane, we may conclude that Imz0 > 0. Any linear fractional
transformation having the mapping property stated in the first paragraph of this
section must, therefore, be of the form

w = eiα

(

z − z0

z − z0

)

(Im z0 > 0),(6)
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whereα is real.
It remains to show that, conversely, any linear fractional transformation of the

form (6) has the desired mapping property. This is easily done by taking the modulus
of each side of equation (6) and interpreting the resulting equation,

|w| =
|z − z0|
|z − z0|

,

geometrically. If a pointz lies above the real axis, both it and the pointz0 lie on
the same side of that axis, which is the perpendicular bisector of the line segment
joining z0 and z0. It follows that the distance|z − z0| is less than the distance
|z − z0| (Fig. 113); that is,|w| < 1. Likewise, if z lies below the real axis, the
distance|z − z0| is greater than the distance|z − z0|; and so|w| > 1. Finally, if z is
on the real axis,|w| = 1 because then|z − z0| = |z − z0|. Since any linear fractional
transformation is a one to one mapping of the extendedz plane onto the extended
w plane, this shows thattransformation(6) maps the half planeIm z > 0 onto the
disk |w| < 1 and the boundary of the half plane onto the boundary of the disk.

Our first example here illustrates theuse of the result in italics just above.

EXAMPLE 1. The transformation

w =
i − z

i + z
(7)

in Examples 1 in Secs. 93 and 94 can be written

w = eiπ

(

z − i

z − i

)

.

Hence it has the mapping property described in italics. (See also Fig. 13 in
Appendix 2, where corresponding boundary points are indicated.)

Images of the upper half plane Imz ≥ 0 under other types of linear fractional
transformations are often fairly easy to determine by examining the particular trans-
formation in question.

EXAMPLE 2. By writing z = x + iy andw = u + iv, we can readily show
that the transformation

w =
z − 1

z + 1
(8)

maps the half planey > 0 onto the half planev > 0 and thex axis onto theu axis.
We first note that when the numberz is real, so is the numberw. Consequently,
since the image of the real axisy = 0 is either a circle or a line, it must be the real
axis v = 0. Furthermore, for any pointw in the finitew plane,

v = Im w = Im
(z − 1)(z + 1)

(z + 1)(z + 1)
=

2y

|z + 1|2
(z �= −1).
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The numbersy andv thus have the same sign, and this means that points above the
x axis correspond to points above theu axis and points below thex axis correspond
to points below theu axis. Finally, since points on thex axis correspond to points
on theu axis and since a linear fractional transformation is a one to one mapping of
the extended plane onto the extended plane(Sec. 93), the stated mapping property
of transformation (8) is established.

Our final example involves a composite function and uses the mapping dis-
cussed in Example 2.

EXAMPLE 3. The transformation

w = Log
z − 1

z + 1
,(9)

where the principal branch of the logarithmic function is used, is a composition of
the functions

Z =
z − 1

z + 1
and w = Log Z.(10)

According to Example 2, the first of transformations (10) maps the upper half
planey > 0 onto the upper half planeY > 0, wherez = x + iy andZ = X + iY .
Furthermore, it is easy to see from Fig. 114 that the second of transformations
(10) maps the half planeY > 0 onto the strip 0< v < π , wherew = u + iv. More
precisely, by writingZ = R exp(i�) and

Log Z = ln R + i� (R > 0, −π < � < π),

we see that as a pointZ = R exp(i�0) (0 < �0 < π) moves outward from the origin
along the ray� = �0, its image is the point whoserectangular coordinates in the
w plane are(ln R, �0). That image evidently moves to the right along the entire
length of the horizontal linev = �0. Since these lines fill the strip 0< v < π as

uO

v

XO

Y

FIGURE 114
w = Log Z.
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the choice of�0 varies between�0 = 0 to �0 = π , the mapping of the half plane
Y > 0 onto the strip is, in fact, one to one.

This shows that the composition (9) of the mappings (10) transforms the
planey > 0 onto the strip 0< v < π . Corresponding boundary points are shown
in Fig. 19 of Appendix 2.

EXERCISES
1. Recall from Example 1 in Sec. 95 that the transformation

w =
i − z

i + z

maps the half plane Imz > 0 onto the disk|w| < 1 and the boundary of the half plane
onto the boundary of the disk. Show that a pointz = x is mapped onto the point

w =
1 − x2

1 + x2
+ i

2x

1 + x2
,

and then complete the verification of the mapping illustrated in Fig. 13, Appendix 2,
by showing that segments of thex axis are mapped as indicated there.

2. Verify the mapping shown in Fig. 12, Appendix 2, where

w =
z − 1

z + 1
.

Suggestion:Write the given transformation as a composition of the mappings

Z = iz , W =
i − Z

i + Z
, w = −W.

Then refer to the mapping whose verification was completed in Exercise 1.

3. (a) By finding the inverse of the transformation

w =
i − z

i + z

and appealing to Fig. 13, Appendix 2, whose verification was completed in
Exercise 1, show that the transformation

w = i
1 − z

1 + z

maps the disk|z| ≤ 1 onto the half plane Imw ≥ 0 .
(b) Show that the linear fractional transformation

w =
z − 2

z

can be written

Z = z − 1 , W = i
1 − Z

1 + Z
, w = iW.

Then, with the aid of the result in part(a), verify that it maps the disk|z − 1| ≤ 1
onto the left half plane Rew ≤ 0 .



330 Mapping by Elementary Functions chap. 8

4. Transformation (6), Sec. 95, maps the pointz = ∞ onto the pointw = exp(iα), which
lies on the boundary of the disk|w| ≤ 1. Show that if 0< α < 2π and the pointsz = 0
andz = 1 are to be mapped onto the pointsw = 1 andw = exp(iα/2), respectively,
the transformation can be written

w = eiα

[

z + exp(−iα/2)

z + exp(iα/2)

]

.

5. Note that whenα = π/2, the transformation in Exercise 4 becomes

w =
iz + exp(iπ/4)

z + exp(iπ/4)
.

Verify that this special case maps points on thex axis as indicated in Fig. 115.

u1
1–1

v

xEDB

B′

D′

C′

E′A′

A C

y

FIGURE 115

w =
iz + exp(iπ/4)

z + exp(iπ/4)
.

6. Show that if Imz0 < 0, transformation (6), Sec. 95, maps the lower half plane Imz ≤ 0
onto the unit disk|w| ≤ 1.

7. The equationw = log(z − 1) can be written

Z = z − 1, w = logZ.

Find a branch of logZ such that the cutz plane consisting of all points except those
on the segmentx ≥ 1 of the real axis is mapped byw = log(z − 1) onto the strip
0 < v < 2π in the w plane.

96. THE TRANSFORMATION w = sinz

Since (Sec. 34)
sinz = sinx coshy + i cosx sinhy,

the transformationw = sinz can be written

u = sinx coshy, v = cosx sinhy.(1)

One method that is often useful in finding images of regions under this trans-
formation is to examine images of vertical linesx = c1. If 0 < c1 < π/2, points on
the linex = c1 are transformed into points on the curve

u = sinc1 coshy, v = cosc1 sinhy (−∞ < y < ∞),(2)
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which is the right-hand branch of the hyperbola

u2

sin2 c1
−

v2

cos2 c1
= 1(3)

with foci at the points

w = ±
√

sin2 c1 + cos2 c1 = ±1.

The second of equations (2) shows that as a point(c1, y) moves upward along the
entire length of the line, its image moves upward along the entire length of the
hyperbola’s branch. Such a line and its image are shown in Fig. 116, where corre-
sponding points are labeled. Note that, in particular, there is a one to one mapping
of the top half(y > 0) of the line onto the top half(v > 0) of the hyperbola’s
branch. If−π/2 < c1 < 0, the linex = c1 is mapped onto the left-hand branch of
the same hyperbola. As before, corresponding points are indicated in Fig. 116.

x
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A
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E

D

O

y

u
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E′ B′
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O

v

1–1

FIGURE 116
w = sinz.

The line x = 0, or they axis, needs to be considered separately. According
to equations (1), the image of each point(0, y) is (0, sinhy). Hence they axis is
mapped onto thev axis in a one to one manner, the positivey axis corresponding
to the positivev axis.

We now illustrate how these observations can be used to establish the images
of certain regions.

EXAMPLE 1. Here we show that the transformationw = sinz is a one to
one mapping of the semi-infinite strip−π/2 ≤ x ≤ π/2, y ≥ 0 in thez plane onto
the upper halfv ≥ 0 of thew plane.

To do this, we first show that the boundary of the strip is mapped in a one
to one manner onto the real axis in thew plane, as indicated in Fig. 117. The
image of the line segmentBA there is found by writingx = π/2 in equations (1)
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and restrictingy to be nonnegative. Sinceu = coshy andv = 0 whenx = π/2, a
typical point (π/2, y) on BA is mapped onto the point(coshy, 0) in the w plane;
and that image must move to the right fromB ′ along theu axis as(π/2, y) moves
upward fromB. A point (x, 0) on the horizontal segmentDB has image(sinx, 0),
which moves to the right fromD′ to B ′ asx increases fromx = −π/2 to x = π/2 ,
or as(x, 0) goes fromD to B. Finally, as a point(−π/2, y) on the line segment
DE moves upward fromD, its image(−coshy, 0) moves to the left fromD′.

x
BCD

E
M L

A

O

y

u

M′

E′ C′ B′D′

L′

A′

O

v

1–1 FIGURE 117
w = sinz.

Now each point in the interior−π/2 < x < π/2, y > 0 of the strip lies on
one of the vertical half linesx = c1, y > 0 (−π/2 < c1 < π/2) that are shown in
Fig. 117. Also, it is important to notice that the images of those half lines are distinct
and constitute the entire half planev > 0. More precisely, if the upper halfL of a
line x = c1 (0 < c1 < π/2) is thought of as moving to the left toward the positive
y axis, the right-hand branch of the hyperbola containing its imageL′ is opening up
wider and its vertex(sinc1, 0) is tending toward the originw = 0. HenceL′ tends
to become the positivev axis, which we saw just prior to this example is the image
of the positivey axis. On the other hand, asL approaches the segmentBA of the
boundary of the strip, the branch of the hyperbola closes down around the segment
B ′A′ of the u axis and its vertex(sinc1, 0) tends toward the pointw = 1. Similar
statements can be made regarding the half lineM and its imageM ′ in Fig. 117.
We may conclude that the image of each point in the interior of the strip lies in
the upper half planev > 0 and, furthermore, that each point in the half plane is the
image of exactly one point in the interior of the strip.

This completes our demonstration that the transformationw = sinz is a one
to one mapping of the strip−π/2 ≤ x ≤ π/2, y ≥ 0 onto the half planev ≥ 0.
The final result is shown in Fig. 9, Appendix 2. The right-hand half of the strip
is evidently mapped onto the first quadrant of thew plane, as shown in Fig. 10,
Appendix 2.

Another convenient way to find the images of certain regions whenw = sinz

is to consider the images ofhorizontal line segmentsy = c2 (−π ≤ x ≤ π), where
c2 > 0. According to equations (1), the image of such a line segment is the curve
with parametric representation

u = sinx coshc2, v = cosx sinhc2 (−π ≤ x ≤ π).(4)
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That curve is readily seen to be the ellipse

u2

cosh2 c2
+

v2

sinh2 c2
= 1,(5)

whose foci lie at the points

w = ±
√

cosh2 c2 − sinh2 c2 = ±1.

The image of a point(x, c2) moving to the right from pointA to point E in
Fig. 118 makes one circuit around the ellipse in the clockwise direction. Note that
when smaller values of the positive numberc2 are taken, the ellipse becomes smaller
but retains the same foci(±1, 0). In the limiting casec2 = 0, equations (4) become

u = sinx, v = 0 (−π ≤ x ≤ π);

and we find that the interval−π ≤ x ≤ π of thex axis is mapped onto the interval
−1 ≤ u ≤ 1 of theu axis. The mapping is not, however, one to one, as it is when
c2 > 0.

The next example relies on these remarks.
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FIGURE 118
w = sinz.

EXAMPLE 2. The rectangular region−π/2 ≤ x ≤ π/2, 0 ≤ y ≤ b is mapp-
ed byw = sinz in a one to one manner onto the semi-elliptical region that is shown
in Fig. 119, where corresponding boundary points are also indicated. For ifL is a
line segmenty = c2 (−π/2 ≤ x ≤ π/2), where 0< c2 ≤ b, its imageL′ is the top
half of the ellipse (5). Asc2 decreases,L moves downward toward thex axis and the
semi-ellipseL′ also moves downward and tends to become the line segmentE′F ′A′

from w = −1 to w = 1. In fact, whenc2 = 0, equations (4) become

u = sinx, v = 0
(

−
π

2
≤ x ≤

π

2

)

;
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FIGURE 119
w = sinz.

and this is clearly a one to one mapping of the segmentEFA ontoE′F ′A′. Inasmuch
as any point in the semi-elliptical region in thew plane lies on one and only one of
the semi-ellipses, or on the limiting caseE′F ′A′, that point is the image of exactly
one point in the rectangular region in thez plane. The desired mapping, which is
also shown in Fig. 11 of Appendix 2, is now established.

Mappings by various other functions closely related to the sine function are
easily obtained once mappings by the sine function are known.

EXAMPLE 3. One need only recall the identity (Sec. 34)

cosz = sin
(

z +
π

2

)

to see that the transformationw = cosz can be written successively as

Z = z +
π

2
, w = sinZ.

Hence the cosine transformation is the same as the sine transformation preceded by
a translation to the right throughπ/2 units.

EXAMPLE 4. According to Sec. 35, the transformationw = sinhz can be
written w = −i sin(iz), or

Z = iz, W = sinZ, w = −iW.

It is, therefore, a combination of the sinetransformation and rotations through right
angles. The transformationw = coshz is, likewise, essentially a cosine transforma-
tion since coshz = cos(iz).

EXERCISES
1. Show that the transformationw = sinz maps the top half(y > 0) of the vertical line

x = c1 (−π/2 < c1 < 0) in a one to one manner onto the top half(v > 0) of the
left-hand branch of hyperbola (3), Sec. 96, as indicated in Fig. 117 of that section.
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2. Show that under the transformationw = sinz, a linex = c1 (π/2 < c1 < π) is mapped
onto the right-hand branch of hyperbola (3), Sec. 96. Note that the mapping is one to
one and that the upper and lower halves of the line are mapped onto thelower and
upper halves, respectively, of the branch.

3. Vertical half lines were used in Example 1, Sec. 96, to show that the transformation
w = sinz is a one to one mapping of the open region−π/2 < x < π/2, y > 0 onto
the half planev > 0. Verify that result by using, instead, the horizontal line segments
y = c2 (−π/2 < x < π/2), wherec2 > 0.

4. (a) Show that under the transformationw = sinz, the images of the line segments
forming the boundary of the rectangular region 0≤ x ≤ π/2, 0 ≤ y ≤ 1 are the
line segments and the arcD′E′ indicated in Fig. 120. The arcD′E′ is a quarter
of the ellipse

u2

cosh2 1
+

v2

sinh2 1
= 1.

(b) Complete the mapping indicated in Fig. 120 by using images of horizontal line
segments to prove that the transformationw = sinz establishes a one to one
correspondence between the interior points of the regionsABDE andA′B ′D′E′.

xA B

F

i

C
D

y

u
1

A′ B′ C′ D ′

F ′

E′E

v

  /2 FIGURE 120
w = sinz.

5. Verify that the interior of a rectangular region−π ≤ x ≤ π, a ≤ y ≤ b lying above
the x axis is mapped byw = sinz onto the interior of an elliptical ring which has a
cut along the segment−sinhb ≤ v ≤ −sinha of the negative real axis, as indicated
in Fig. 121. Note that while the mapping of the interior of the rectangular region is
one to one, the mapping of its boundary isnot.
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FIGURE 121
w = sinz.

6. (a) Show that the equationw = coshz can be written

Z = iz +
π

2
, w = sinZ.
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(b) Use the result in part(a), together with the mapping by sinz shown in Fig. 10,
Appendix 2, to verify that the transformationw = coshz maps the semi-infinite
strip x ≥ 0, 0 ≤ y ≤ π/2 in thez plane onto the first quadrantu ≥ 0, v ≥ 0 of the
w plane. Indicate corresponding parts of the boundaries of the two regions.

7. Observe that the transformationw = coshz can be expressed as a composition of the
mappings

Z = ez, W = Z +
1

Z
, w =

1

2
W.

Then, by referring to Figs. 7 and 16 in Appendix 2, show that whenw = coshz,
the semi-infinite stripx ≤ 0, 0 ≤ y ≤ π in the z plane is mapped onto the lower half
v ≤ 0 of thew plane. Indicate corresponding parts of the boundaries.

8. (a) Verify that the equationw = sinz can be written

Z = i
(

z +
π

2

)

, W = coshZ, w = −W.

(b) Use the result in part(a) here and the one in Exercise 7 to show that the transfor-
mation w = sinz maps the semi-infinite strip−π/2 ≤ x ≤ π/2, y ≥ 0 onto the
half planev ≥ 0, as shown in Fig. 9, Appendix 2. (This mapping was verified in
a different way in Example 1, Sec. 96, and in Exercise 3.)

97. MAPPINGS BY z 2 AND BRANCHES OF z 1/2

In Chap 2 (Sec. 13), we considered some fairly simple mappings under the trans-
formationw = z2, written in the form

u = x2 − y2, v = 2xy.(1)

We turn now to a less elementary example and then examine related mappings
w = z1/2, where specific branches of thesquare root function are taken.

EXAMPLE 1. Let us use equations (1) to show that the image of the ver-
tical strip 0≤ x ≤ 1, y ≥ 0, shown in Fig. 122, is the closed semiparabolic region
indicated there.

x1 1
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L2L1
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v

B′

C′D ′

FIGURE 122
w = z2.
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When 0< x1 < 1, the point(x1, y) moves up a vertical half line, labeledL1

in Fig. 122, asy increases fromy = 0. The image traced out in theuv plane has,
according to equations (1), the parametric representation

u = x2
1 − y2, v = 2x1y (0 ≤ y < ∞).(2)

Using the second of these equations to substitute fory in the first one, we see that
the image points(u, v) must lie on the parabola

v2 = −4x2
1(u − x2

1),(3)

with vertex at(x2
1, 0) and focus at the origin. Sincev increases withy from v = 0,

according to the second of equations (2), we also see that as the point(x1, y) moves
up L1 from thex axis, its image moves up the top halfL′

1 of the parabola from the
u axis. Furthermore, when a numberx2 larger thanx1 but less than 1 is taken, the
corresponding half lineL2 has an imageL′

2 that is a half parabola to the right of
L′

1, as indicated in Fig. 122. We note, in fact, that the image of the half lineBA in
that figure is the top half of the parabolav2 = −4(u − 1), labeledB ′A′.

The image of the half lineCD is found by observing from equations (1) that a
typical point (0, y), wherey ≥ 0, onCD is transformed into the point(−y2, 0) in
the uv plane. So, as a point moves up from the origin alongCD, its image moves
left from the origin along theu axis. Evidently, then, as the vertical half lines in the
xy plane move to the left, the half parabolas that are their images in theuv plane
shrink down to become the half lineC′D′.

It is now clear that the images of all the half lines between and includingCD

andBA fill up the closed semiparabolic region bounded byA′B ′C′D′. Also, each
point in that region is the image of only one point in the closed strip bounded by
ABCD. Hence we may conclude that the semiparabolic region is the image of the
strip and that there is a one to one correspondence between points in those closed
regions. (Compare with Fig. 3 in Appendix 2, where the strip has arbitrary width.)

As for mappings by branches ofz1/2, we recall from Sec. 9 that the values of
z1/2 are the two square roots ofz when z �= 0. According to that section, if polar
coordinates are used and

z = r exp(i�) (r > 0, −π < � ≤ π),

then

z1/2 =
√

r exp
i(� + 2kπ)

2
(k = 0, 1),(4)

the principal root occurring whenk = 0. In Sec. 32, we saw thatz1/2 can also be
written

z1/2 = exp

(

1

2
logz

)

(z �= 0).(5)
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The principal branchF0(z) of the double-valued functionz1/2 is then obtained by
taking the principal branch of logz and writing (see Sec. 33)

F0(z) = exp

(

1

2
Log z

)

(|z| > 0, −π < Arg z < π).

Since
1

2
Log z =

1

2
(ln r + i�) = ln

√
r +

i�

2

whenz = r exp(i�), this becomes

F0(z) =
√

r exp
i�

2
(r > 0, −π < � < π).(6)

The right-hand side of this equation is, of course, the same as the right-hand side
of equation (4) whenk = 0 and−π < � < π there. The origin and the ray� = π

form the branch cut forF0, and the origin is the branch point.
Images of curves and regions under the transformationw = F0(z) may be

obtained by writingw = ρ exp(iφ), whereρ =
√

r and φ = �/2. Arguments are
evidently halved by this transformation, and it is understood thatw = 0 whenz = 0.

EXAMPLE 2. It is easy to verify thatw = F0(z) is a one to one mapping of
the quarter disk 0≤ r ≤ 2, 0 ≤ θ ≤ π/2 onto the sector 0≤ ρ ≤

√
2, 0 ≤ φ ≤ π/4

in the w plane (Fig. 123). To do this, we observe that as a pointz = r exp(iθ1)

moves outward from the origin along a radiusR1 of length 2 and with angle of
inclination θ1 (0 ≤ θ1 ≤ π/2), its imagew =

√
r exp(iθ1/2) moves outward from

the origin in thew plane along a radiusR′
1 whose length is

√
2 and angle of

inclination isθ1/2. See Fig. 123, where another radiusR2 and its imageR′
2 are also

shown. It is now clear from the figure that if the region in thez plane is thought
of as being swept out by a radius, starting withDA and ending withDC, then the
region in thew plane is swept out by the corresponding radius, starting withD′A′

and ending withD′C′. This establishes a one to one correspondence between points
in the two regions.
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w = F0(z).
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EXAMPLE 3. The transformationw = F0(sinz) can be written

Z = sinz, w = F0(Z) (|Z| > 0, −π < Arg Z < π).

From a remark at the end of Example 1 in Sec. 96, we know that the first trans-
formation maps the semi-infinite strip 0≤ x ≤ π/2, y ≥ 0 onto the first quadrant
of the Z plane. The second transformation, with the understanding thatF0(0) = 0,
maps that quadrant onto an octant in thew plane. These successive transformations
are illustrated in Fig. 124, where corresponding boundary points are shown.
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w = F0(sinz).

When−π < � < π and the branch

logz = ln r + i(� + 2π)

of the logarithmic function is used,equation (5) yields the branch

F1(z) =
√

r exp
i(� + 2π)

2
(r > 0,−π < � < π)(7)

of z1/2, which corresponds tok = 1 in equation (4). Since exp(iπ) = −1, it follows
thatF1(z) = −F0(z). The values±F0(z) thus represent the totality of values ofz1/2

at all points in the domainr > 0,−π < � < π . If, by means of expression (6), we
extend the domain of definition ofF0 to include the ray� = π and if we write
F0(0) = 0, then the values±F0(z) represent the totality of values ofz1/2 in the
entirez plane.

Other branches ofz1/2 are obtained by using other branches of logz in expres-
sion (5). A branch where the rayθ = α is used to form the branch cut is given by
the equation

fα(z) =
√

r exp
iθ

2
(r > 0, α < θ < α + 2π).(8)

Observe that whenα = −π , we have the branchF0(z) and that whenα = π , we
have the branchF1(z). Just as in the case ofF0 , the domain of definition offα can
be extended to the entire complex plane by using expression (8) to definefα at the
nonzero points on the branch cut and by writingfα(0) = 0. Such extensions are,
however, never continuous on the entire complex plane.
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Finally, suppose thatn is any positive integer, wheren ≥ 2. The values ofz1/n

are thenth roots ofz when z �= 0 ; and, according to Sec. 32, the multiple-valued
function z1/n can be written

z1/n = exp

(

1

n
logz

)

= n
√

r exp
i(� + 2kπ)

n
(k = 0, 1, 2, . . . , n − 1),(9)

where r = |z| and � = Arg z. The casen = 2 has just been considered. In the
general case, each of then functions

Fk(z) = n
√

r exp
i(� + 2kπ)

n
(k = 0, 1, 2, . . . , n − 1)(10)

is a branch ofz1/n, defined on the domainr > 0, −π < � < π . Whenw = ρeiφ ,
the transformationw = Fk(z) is a one to one mapping of that domain onto the
domain

ρ > 0,
(2k − 1)π

n
< φ <

(2k + 1)π

n
.

Thesen branches ofz1/n yield the n distinct nth roots ofz at any pointz in the
domainr > 0, −π < � < π . The principal branch occurs whenk = 0, and further
branches of the type (8) are readily constructed.

EXERCISES
1. Show, indicating corresponding orientations, that the mappingw = z2 transforms hor-

izontal linesy = y1 (y1 > 0) into parabolasv2 = 4y2
1(u + y2

1), all with foci at the
origin w = 0. (Compare with Example 1, Sec. 97.)

2. Use the result in Exercise 1 to show that the transformationw = z2 is a one to one
mapping of a horizontal stripa ≤ y ≤ b above thex axis onto the closed region
between the two parabolas

v2 = 4a2(u + a2), v2 = 4b2(u + b2).

3. Point out how it follows from the discussion in Example 1, Sec. 97, that the transfor-
mationw = z2 maps a vertical strip 0≤ x ≤ c, y ≥ 0 of arbitrary width onto a closed
semiparabolic region, as shown in Fig. 3, Appendix 2.

4. Modify the discussion in Example 1, Sec. 97, to show that whenw = z2, the image
of the closed triangular region formed by the linesy = ±x and x = 1 is the closed
parabolic region bounded on the left by the segment−2 ≤ v ≤ 2 of the v axis and
on the right by a portion of the parabolav2 = −4(u − 1). Verify the corresponding
points on the two boundaries shown in Fig. 125.

5. By referring to Fig. 10, Appendix 2, show that the transformationw = sin2 z maps
the strip 0≤ x ≤ π/2, y ≥ 0 onto the half planev ≥ 0. Indicate corresponding parts
of the boundaries.

Suggestion:See also the first paragraph in Example 3, Sec. 13.
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w = z2.

6. Use Fig. 9, Appendix 2, to show that ifw = (sinz)1/4 and the principal branch of
the fractional power is taken, then the semi-infinite strip−π/2 < x < π/2, y > 0 is
mapped onto the part of the first quadrant lying between the linev = u and theu axis.
Label corresponding parts of the boundaries.

7. According to Example 2, Sec. 95, the linear fractional transformation

Z =
z − 1

z + 1

maps thex axis onto theX axis and the half planesy > 0 andy < 0 onto the half
planesY > 0 andY < 0, respectively. Show that, in particular, it maps the segment
−1 ≤ x ≤ 1 of the x axis onto the segmentX ≤ 0 of the X axis. Then show that
when the principal branch of the square root is used, the composite function

w = Z1/2 =
(

z − 1

z + 1

)1/2

maps thez plane, except for the segment−1 ≤ x ≤ 1 of the x axis, onto the right
half planeu > 0.

8. Determine the image of the domainr > 0,−π < � < π in the z plane under each of
the transformationsw = Fk(z) (k = 0, 1, 2, 3), whereFk(z) are the four branches of
z1/4 given by equation (10), Sec. 97, whenn = 4. Use these branches to determine
the fourth roots ofi.

98. SQUARE ROOTS OF POLYNOMIALS

We now consider some mappings that are compositions of polynomials and square
roots.

EXAMPLE 1. Branches of the double-valued function(z − z0)
1/2 can be

obtained by noting that it is a composition of the translationZ = z − z0 with the
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double-valued functionZ1/2. Each branch ofZ1/2 yields a branch of(z − z0)
1/2.

More precisely, whenZ = Reiθ , branches ofZ1/2 are

Z1/2 =
√

R exp
iθ

2
(R > 0, α < θ < α + 2π),

according to equation (8) in Sec. 97. Hence if we write

R = |z − z0|, � = Arg (z − z0), and θ = arg(z − z0),

two branches of(z − z0)
1/2 are

G0(z) =
√

R exp
i�

2
(R > 0, −π < � < π)(1)

and

g0(z) =
√

R exp
iθ

2
(R > 0, 0 < θ < 2π).(2)

The branch ofZ1/2 that was used in writingG0(z) is defined at all points in the
Z plane except for the origin and points on the ray ArgZ = π . The transformation
w = G0(z) is, therefore, a one to one mapping of the domain

|z − z0| > 0, −π < Arg (z − z0) < π

onto the right half Rew > 0 of thew plane (Fig. 126). The transformationw = g0(z)

maps the domain
|z − z0| > 0, 0 < arg(z − z0) < 2π

in a one to one manner onto the upper half plane Imw > 0.
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FIGURE 126
w = G0(z).

EXAMPLE 2. For an instructive but less elementary example, we now con-
sider the double-valued function(z2 − 1)1/2. Using established properties of loga-
rithms, we can write

(z2 − 1)1/2 = exp

[

1

2
log(z2 − 1)

]

= exp

[

1

2
log(z − 1) +

1

2
log(z + 1)

]

,
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or

(z2 − 1)1/2 = (z − 1)1/2(z + 1)1/2 (z �= ±1).(3)

Consequently, iff1(z) is a branch of(z − 1)1/2 defined on a domainD1 andf2(z)

is a branch of(z + 1)1/2 defined on a domainD2, the productf (z) = f1(z)f2(z) is
a branch of(z2 − 1)1/2 defined at all points lying in bothD1 andD2.

In order to obtain a specific branch of(z2 − 1)1/2, we use the branch of
(z − 1)1/2 and the branch of(z + 1)1/2 given by equation (2). If we write

r1 = |z − 1| and θ1 = arg(z − 1),

that branch of(z − 1)1/2 is

f1(z) =
√

r1 exp
iθ1

2
(r1 > 0, 0 < θ1 < 2π).

The branch of(z + 1)1/2 given by equation (2) is

f2(z) =
√

r2 exp
iθ2

2
(r2 > 0, 0 < θ2 < 2π),

where
r2 = |z + 1| and θ2 = arg(z + 1).

The product of these two branches is, therefore, the branchf of (z2 − 1)1/2 defined
by means of the equation

f (z) =
√

r1r2 exp
i(θ1 + θ2)

2
,(4)

where
rk > 0, 0 < θk < 2π (k = 1, 2).

As illustrated in Fig. 127, the branchf is defined everywhere in thez plane except
on the rayr2 ≥ 0, θ2 = 0, which is the portionx ≥ −1 of thex axis.
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O 1–1

y
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The branchf of (z2 − 1)1/2 given in equation (4) can be extended to a function

F(z) =
√

r1r2 exp
i(θ1 + θ2)

2
,(5)
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where
rk > 0, 0 ≤ θk < 2π (k = 1, 2) and r1 + r2 > 2.

As we shall now see, this function is analytic everywhere in its domain of definition,
which is the entirez plane except for the segment−1 ≤ x ≤ 1 of thex axis.

SinceF(z) = f (z) for all z in the domain of definition ofF except on the ray
r1 > 0, θ1 = 0, we need only show thatF is analytic on that ray. To do this, we
form the product of the branches of(z − 1)1/2 and (z + 1)1/2 which are given by
equation (1). That is, we consider the function

G(z) =
√

r1r2 exp
i(�1 + �2)

2
,

where

r1 = |z − 1|, r2 = |z + 1|, �1 = Arg (z − 1), �2 = Arg (z + 1)

and where
rk > 0, −π < �k < π (k = 1, 2).

Observe thatG is analytic in the entirez plane except for the rayr1 ≥ 0, �1 = π .
Now F(z) = G(z) when the pointz lies above or on the rayr1 > 0, �1 = 0 ; for
then θk = �k (k = 1, 2). When z lies below that ray,θk = �k + 2π (k = 1, 2).
Consequently, exp(iθk/2) = −exp(i�k/2); and this means that

exp
i(θ1 + θ2)

2
=

(

exp
iθ1

2

)(

exp
iθ2

2

)

= exp
i(�1 + �2)

2
.

So again,F(z) = G(z). SinceF(z) andG(z) are the same in a domain containing
the rayr1 > 0, �1 = 0 and sinceG is analytic in that domain,F is analytic there.
HenceF is analytic everywhere except on the line segmentP2P1 in Fig. 127.

The functionF defined by equation (5) cannot itself be extended to a function
which is analytic at points on the line segmentP2P1. This is because the value on
the right in equation (5) jumps fromi

√
r1r2 to numbers near−i

√
r1r2 as the point

z moves downward across that line segment, and the extension would not even be
continuous there.

The transformationw = F(z) is, as we shall see, a one to one mapping of the
domainDz consisting of all points in thez plane except those on the line segment
P2P1 onto the domainDw consisting of the entirew plane with the exception of
the segment−1 ≤ v ≤ 1 of thev axis (Fig. 128).

Before verifying this, we note that ifz = iy (y > 0), then

r1 = r2 > 1 and θ1 + θ2 = π;

hence the positivey axis is mapped byw = F(z) onto that part of thev axis for
which v > 1. The negativey axis is, moreover, mapped onto that part of thev axis
for which v < −1. Each point in the upper halfy > 0 of the domainDz is mapped
into the upper halfv > 0 of the w plane, and each point in the lower halfy < 0
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w = F(z).

of the domainDz is mapped into the lower halfv < 0 of the w plane. Also, the
ray r1 > 0, θ1 = 0 is mapped onto the positive real axis in thew plane, and the ray
r2 > 0, θ2 = π is mapped onto the negative real axis there.

To show that the transformationw = F(z) is one to one, we observe that if
F(z1) = F(z2), thenz2

1 − 1 = z2
2 − 1. From this, it follows thatz1 = z2 or z1 = −z2.

However, because of the manner in whichF maps the upper and lower halves of the
domainDz, as well as the portions of the real axis lying inDz, the casez1 = −z2

is impossible. Thus, ifF(z1) = F(z2), thenz1 = z2; andF is one to one.
We can show thatF maps the domainDz onto the domainDw by finding a

functionH mappingDw into Dz with the property that ifz = H(w), thenw = F(z).
This will show that for any pointw in Dw, there exists a pointz in Dz such that
F(z) = w; that is, the mappingF is onto. The mappingH will be the inverse ofF .

To find H , we first note that ifw is a value of(z2 − 1)1/2 for a specificz, then
w2 = z2 − 1; andz is, therefore, a value of(w2 + 1)1/2 for thatw. The functionH

will be a branch of the double-valued function

(w2 + 1)1/2 = (w − i)1/2(w + i)1/2 (w �= ±i).

Followingourprocedure forobtainingthe functionF(z),wewritew − i = ρ1 exp(iφ1)

andw + i = ρ2 exp(iφ2). (See Fig. 128.) With the restrictions

ρk > 0, −
π

2
≤ φk <

3π

2
(k = 1, 2) and ρ1 + ρ2 > 2,

we then write

H(w) =
√

ρ1ρ2 exp
i(φ1 + φ2)

2
,(6)

the domain of definition beingDw. The transformationz = H(w) maps points of
Dw lying above or below theu axis onto points above or below thex axis, respec-
tively. It maps the positiveu axis into that part of thex axis wherex > 1 and the
negativeu axis into that part of the negativex axis wherex < −1. If z = H(w),
thenz2 = w2 + 1; and sow2 = z2 − 1. Sincez is in Dz and sinceF(z) and−F(z)

are the two values of(z2 − 1)1/2 for a point in Dz, we see thatw = F(z) or
w = −F(z). But it is evident from the manner in whichF andH map the upper
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and lower halves of their domains of definition, including the portions of the real
axes lying in those domains, thatw = F(z).

Mappings by branches of double-valued functions

w = (z2 + Az + B)1/2 = [(z − z0)
2 − z2

1]1/2 (z1 �= 0),(7)

whereA = −2z0 andB = z2
0 = z2

1, can be treated with the aid of the results found
for the functionF in Example 2 just above and the successive transformations

Z =
z − z0

z1
, W = (Z2 − 1)1/2, w = z1W.(8)

EXERCISES
1. The branchF of (z2 − 1)1/2 in Example 2, Sec. 98, was defined in terms of the coordi-

natesr1, r2, θ1, θ2. Explain geometrically why the conditionsr1 > 0, 0 < θ1 + θ2 < π

describe the first quadrantx > 0, y > 0 of the z plane. Then show thatw = F(z)

maps that quadrant onto the first quadrantu > 0, v > 0 of thew plane.
Suggestion:To show that the quadrantx > 0, y > 0 in thez plane is described,

note thatθ1 + θ2 = π at each point on the positivey axis and thatθ1 + θ2 decreases
as a pointz moves to the right along a rayθ2 = c (0 < c < π/2).

2. For the mappingw = F(z) of the first quadrant in thez plane onto the first quadrant
in the w plane in Exercise 1, show that

u =
1

√
2

√

r1r2 + x2 − y2 − 1 and v =
1

√
2

√

r1r2 − x2 + y2 + 1,

where
(r1r2)

2 = (x2 + y2 + 1)2 − 4x2,

and that the image of the portion of the hyperbolax2 − y2 = 1 in the first quadrant is
the rayv = u (u > 0).

3. Show that in Exercise 2 the domainD that lies under the hyperbola and in the first
quadrant of thez plane is described by the conditionsr1 > 0, 0 < θ1 + θ2 < π/2.
Then show that the image ofD is the octant 0< v < u. Sketch the domainD and its
image.

4. Let F be the branch of(z2 − 1)1/2 that was defined in Example 2, Sec. 98, and let
z0 = r0 exp(iθ0) be a fixed complex number, wherer0 > 0 and 0≤ θ0 < 2π . Show
that a branchF0 of (z2 − z2

0)
1/2 whose branch cut is the line segment between the

pointsz0 and−z0 can be writtenF0(z) = z0F(Z), whereZ = z/z0.

5. Write z − 1 = r1 exp(iθ1) andz + 1 = r2 exp(i�2), where

0 < θ1 < 2π and − π < �2 < π,



sec. 99 Riemann Surfaces 347

to define a branch of the function

(a) (z2 − 1)1/2 ; (b)

(

z − 1

z + 1

)1/2

.

In each case, the branch cut should consist of the two raysθ1 = 0 and�2 = π .

6. Using the notation in Sec. 98, show that the function

w =
(

z − 1

z + 1

)1/2

=
√

r1

r2
exp

i(θ1 − θ2)

2

is a branch with the same domain of definitionDz and the same branch cut as
the functionw = F(z) in that section. Show that this transformation mapsDz onto the
right half planeρ > 0,−π/2 < φ < π/2, where the pointw = 1 is the image of the
point z = ∞. Also, show that the inverse transformation is

z =
1 + w2

1 − w2
(Rew > 0).

(Compare with Exercise 7, Sec. 97.)

7. Show that the transformation in Exercise 6 maps the region outside the unit circle
|z| = 1 in the upper half of thez plane onto the region in the first quadrant of thew

plane between the linev = u and theu axis. Sketch the two regions.

8. Write z = r exp(i�), z − 1 = r1 exp(i�1), andz + 1 = r2 exp(i�2), where the values
of all three arguments lie between−π and π . Then define a branch of the function
[z(z2 − 1)]1/2 whose branch cut consists of the two segmentsx ≤ −1 and 0≤ x ≤ 1
of the x axis.

99. RIEMANN SURFACES

The remaining two sections of this chapter constitute a brief introduction to the
concept of a mapping defined on aRiemann surface, which is a generalization of
the complex plane consisting of more than one sheet. The theory rests on the fact
that at each point on such a surface only one value of a given multiple-valued
function is assigned. The material in these two sections will not be used in the
chapters to follow, and the reader may skip to Chap. 9 without disruption.

Once a Riemann surface is devised for a given function, the function is single-
valued on the surface and the theory of single-valued functions applies there.
Complexities arising because the function is multiple-valued are thus relieved by a
geometric device. However, the description of those surfaces and the arrangement
of proper connections between the sheets can become quite involved. We limit our
attention to fairly simple examples and begin with a surface for logz.

EXAMPLE 1. Corresponding to each nonzero numberz, the multiple-valued
function

logz = ln r + iθ(1)
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has infinitely many values. To describe logz as a single-valued function, we replace
the z plane, with the origin deleted, by a surface on which a new point is located
whenever the argument of the numberz is increased or decreased by 2π , or an
integral multiple of 2π .

We treat thez plane, with the origin deleted, as a thin sheetR0 which is cut
along the positive half of the real axis. On that sheet, letθ range from 0 to 2π . Let
a second sheetR1 be cut in the same way and placed in front of the sheetR0 . The
lower edge of the slit inR0 is then joined to the upper edge of the slit inR1. On
R1, the angleθ ranges from 2π to 4π ; so, whenz is represented by a point onR1,
the imaginary component of logz ranges from 2π to 4π .

A sheetR2 is then cut in the same way and placed in front ofR1. The lower
edge of the slit inR1 is joined to the upper edge of the slit in this new sheet, and
similarly for sheetsR3, R4, . . . . A sheetR−1 on whichθ varies from 0 to−2π is
cut and placed behindR0, with the lower edge of its slit connected to the upper
edge of the slit inR0; the sheetsR−2, R−3, . . . are constructed in like manner. The
coordinatesr andθ of a point on any sheet can be considered as polar coordinates
of the projection of the point onto the originalz plane, the angular coordinateθ
being restricted to a definite range of 2π radians on each sheet.

Consider any continuous curve on this connected surface of infinitely many
sheets. As a pointz describes that curve, the values of logz vary continuously
since θ , in addition to r, varies continuously; and logz now assumes just one
value corresponding to each point on the curve. For example, as the point makes a
complete cycle around the origin on the sheetR0 over the path indicated in Fig. 129,
the angle changes from 0 to 2π . As it moves across the rayθ = 2π , the point passes
to the sheetR1 of the surface. As the point completes a cycle inR1, the angleθ varies
from 2π to 4π ; and as it crosses the rayθ = 4π , the point passes to the sheetR2.

xO

y

R1R0

FIGURE 129

The surface described here is a Riemann surface for logz. It is a connected
surface of infinitely many sheets, arranged so that logz is a single-valued function
of points on it.

The transformationw = logz maps the whole Riemann surface in a one to one
manner onto the entirew plane. The image of the sheetR0 is the strip 0≤ v ≤ 2π

(see Example 3, Sec. 95). As a pointz moves onto the sheetR1 over the arc shown
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FIGURE 130

in Fig. 130, its imagew moves upward across the linev = 2π , as indicated in that
figure.

Note that logz, defined on the sheetR1, represents the analytic continuation
(Sec. 27) of the single-valued analytic function

f (z) = ln r + iθ (0 < θ < 2π)

upward across the positive real axis. In this sense, logz is not only a single-valued
function of all pointsz on the Riemann surface but also ananalytic function at all
points there.

The sheets could, of course, be cut along the negative real axis or along any
other ray from the origin, and properly joined along the slits, to form other Riemann
surfaces for logz.

EXAMPLE 2. Corresponding to each point in thez plane other than the
origin, the square root function

z1/2 =
√

reiθ/2(2)

has two values. A Riemann surface forz1/2 is obtained by replacing thez plane
with a surface made up of two sheetsR0 andR1, each cut along the positive real
axis and withR1 placed in front ofR0. The lower edge of the slit inR0 is joined
to the upper edge of the slit inR1, and the lower edge of the slit inR1 is joined to
the upper edge of the slit inR0.

As a point z starts from the upper edge of the slit inR0 and describes a
continuous circuit around the origin in thecounterclockwise direction (Fig. 131),

xO

y

R1

R0

R0

FIGURE 131
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the angleθ increases from 0 to 2π . The point then passes from the sheetR0 to
the sheetR1, whereθ increases from 2π to 4π . As the point moves still further, it
passes back to the sheetR0, where the values ofθ can vary from 4π to 6π or from
0 to 2π , a choice that does not affect the value ofz1/2, etc. Note that the value of
z1/2 at a point where the circuit passes from the sheetR0 to the sheetR1 is different
from the value ofz1/2 at a point where the circuit passes from the sheetR1 to the
sheetR0.

We have thus constructed a Riemann surface on whichz1/2 is single-valued for
each nonzeroz. In that construction, the edges of the sheetsR0 andR1 are joined
in pairs in such a way that the resulting surface is closed and connected. The points
where two of the edges are joined are distinct from the points where the other two
edges are joined. Thus it is physically impossible to build a model of that Riemann
surface. In visualizing a Riemann surface, it is important to understand how we are
to proceed when we arrive at an edge of a slit.

The origin is a special point on this Riemann surface. It is common to both
sheets, and a curve around the origin on the surface must wind around it twice in
order to be a closed curve. A point of this kind on a Riemann surface is called a
branch point.

The image of the sheetR0 under the transformationw = z1/2 is the upper
half of the w plane since the argument ofw is θ/2 on R0, where 0≤ θ/2 ≤ π .
Likewise, the image of the sheetR1 is the lower half of thew plane. As defined on
either sheet, the function is the analytic continuation, across the cut, of the function
defined on the other sheet. In this respect, the single-valued functionz1/2 of points
on the Riemann surface is analytic at all points except the origin.

EXERCISES
1. Describe the Riemann surface for logz obtained by cutting thez plane along the

negative real axis. Compare this Riemann surface with the one obtained in Example 1,
Sec. 99.

2. Determine the image under the transformationw = logz of the sheetRn, wheren is
an arbitrary integer, of the Riemann surface for logz given in Example 1, Sec. 99.

3. Verify that under the transformationw = z1/2, the sheetR1 of the Riemann surface
for z1/2 given in Example 2, Sec. 99, is mapped onto the lower half of thew plane.

4. Describe the curve, on a Riemann surface forz1/2, whose image is the entire circle
|w| = 1 under the transformationw = z1/2.

5. Let C denote the positively oriented circle|z − 2| = 1 on the Riemann surface
described in Example 2, Sec. 99, forz1/2, where the upper half of that circle lies
on the sheetR0 and the lower half onR1. Note that for each pointz on C, one can
write

z1/2 =
√

reiθ/2 where 4π −
π

2
< θ < 4π +

π

2
.
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State why it follows that
∫

C

z1/2 dz = 0.

Generalize this result to fit the case of the other simple closed curves that cross from
one sheet to another without enclosing the branch points. Generalize to other functions,
thus extending the Cauchy–Goursat theorem to integrals of multiple-valued functions.

100. SURFACES FOR RELATED FUNCTIONS

We consider here Riemann surfaces for two composite functions involving simple
polynomials and the square root function.

EXAMPLE 1. Let us describe a Riemann surface for the double-valued func-
tion

f (z) = (z2 − 1)1/2 =
√

r1r2 exp
i(θ1 + θ2)

2
,(1)

wherez − 1 = r1exp(iθ1) andz + 1 = r2 exp(iθ2). A branch of this function, with
the line segmentP2P1 between the branch pointsz = ±1 serving as a branch cut
(Fig. 132), was described in Example 2,Sec. 98. That branch is as written above,
with the restrictionsrk > 0, 0 ≤ θk < 2π (k = 1, 2) andr1 + r2 > 2. The branch is
not defined on the segmentP2P1.

x

z

r1

r2

1

P2 P1

O–1

y

FIGURE 132

A Riemann surface for the double-valued function (1) must consist of two
sheetsR0 andR1. Let both sheets be cut along the segmentP2P1. The lower edge
of the slit in R0 is then joined to the upper edge of the slit inR1, and the lower
edge inR1 is joined to the upper edge inR0.

On the sheetR0, let the anglesθ1 and θ2 range from 0 to 2π . If a point
on the sheetR0 describes a simple closed curve that encloses the segmentP2P1

once in the counterclockwise direction, then bothθ1 andθ2 change by the amount
2π upon the return of the point to its original position. The change in(θ1 + θ2)/2 is
also 2π , and the value off is unchanged. If a point starting on the sheetR0 describes
a path that passes twice around just the branch pointz = 1, it crosses from the sheet
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R0 onto the sheetR1 and then back onto the sheetR0 before it returns to its original
position. In this case, the value ofθ1 changes by the amount 4π , while the value
of θ2 does not change at all. Similarly, for a circuit twice around the pointz = −1,
the value ofθ2 changes by 4π , while the value ofθ1 remains unchanged. Again, the
change in(θ1 + θ2)/2 is 2π ; and the value off is unchanged. Thus, on the sheetR0,
the range of the anglesθ1 andθ2 may be extended by changing bothθ1 andθ2 by
the same integral multiple of 2π or by changing just one of the angles by a multiple
of 4π . In either case, the total change in both angles is an even integral multiple
of 2π .

To obtain the range of values forθ1 and θ2 on the sheetR1, we note that if
a point starts on the sheetR0 and describes a path around just one of the branch
points once, it crosses onto the sheetR1 and does not return to the sheetR0. In this
case, the value of one of the angles is changed by 2π , while the value of the other
remains unchanged. Hence, on the sheetR1, one angle can range from 2π to 4π ,
while the other ranges from 0 to 2π . Their sum then ranges from 2π to 4π , and the
value of (θ1 + θ2)/2, which is the argument off (z), ranges fromπ to 2π . Again,
the range of the angles is extended by changing the value of just one of the angles
by an integral multiple of 4π or by changing the value of both angles by the same
integral multiple of 2π .

The double-valued function (1) may now be considered as a single-valued
function of the points on the Riemann surfacejust constructed. The transformation
w = f (z) maps each of the sheets used in the construction of that surface onto the
entirew plane.

EXAMPLE 2. Consider the double-valued function

f (z) = [z(z2 − 1)]1/2 =
√

rr1r2 exp
i(θ + θ1 + θ2)

2
(2)

(Fig. 133). The pointsz = 0, ±1 are branch points of this function. We note that if
the pointz describes a circuit that includes allthree of those points, the argument
of f (z) changes by the angle 3π and the value of the function thus changes. Con-
sequently, a branch cut must run from one of those branch points to the point at
infinity in order to describe a single-valued branch off . Hence the point at infinity
is also a branch point, as one can show by noting that the functionf (1/z) has a
branch point atz = 0.
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z

r1r

L1L2
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1–1

y

FIGURE 133
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Let two sheets be cut along the line segmentL2 from z = −1 to z = 0 and
along the partL1 of the real axis to the right of the pointz = 1. We specify that
each of the three anglesθ, θ1, andθ2 may range from 0 to 2π on the sheetR0 and
from 2π to 4π on the sheetR1. We also specify that the angles corresponding to
a point on either sheet may be changed by integral multiples of 2π in such a way
that the sum of the three angles changes by an integral multiple of 4π . The value
of the functionf is, therefore, unaltered.

A Riemann surface for the double-valued function (2) is obtained by joining
the lower edges inR0 of the slits alongL1 and L2 to the upper edges inR1 of
the slits alongL1 and L2, respectively. The lower edges inR1 of the slits along
L1 andL2 are then joined to the upper edges inR0 of the slits alongL1 andL2,
respectively. It is readily verified with the aid of Fig. 133 that one branch of the
function is represented by its values at points onR0 and the other branch at points
on R1.

EXERCISES
1. Describe a Riemann surface for the triple-valued functionw = (z − 1)1/3, and point

out which third of thew plane represents the image of each sheet of that surface.

2. Corresponding to each point on the Riemann surface described in Example 2, Sec.
100, for the functionw = f (z) in that example, there is just one value ofw. Show that
corresponding to each value ofw, there are, in general, three points on the surface.

3. Describe a Riemann surface for the multiple-valued function

f (z) =
(

z − 1

z

)1/2

.

4. Note that the Riemann surface described in Example 1, Sec. 100, for(z2 − 1)1/2 is
also a Riemann surface for the function

g(z) = z + (z2 − 1)1/2.

Let f0 denote the branch of(z2 − 1)1/2 defined on the sheetR0, and show that the
branchesg0 andg1 of g on the two sheets are given by the equations

g0(z) =
1

g1(z)
= z + f0(z).

5. In Exercise 4, the branchf0 of (z2 − 1)1/2 can be described by means of the equation

f0(z) =
√

r1r2

(

exp
iθ1

2

)(

exp
iθ2

2

)

,

whereθ1 andθ2 range from 0 to 2π and

z − 1 = r1 exp(iθ1), z + 1 = r2 exp(iθ2).
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Note that
2z = r1 exp(iθ1) + r2 exp(iθ2),

and show that the branchg0 of the functiong(z) = z + (z2 − 1)1/2 can be written in
the form

g0(z) =
1

2

(

√
r1 exp

iθ1

2
+

√
r2 exp

iθ2

2

)2

.

Find g0(z)g0(z) and note thatr1 + r2 ≥ 2 and cos[(θ1 − θ2)/2] ≥ 0 for all z, to prove
that |g0(z)| ≥ 1. Then show that the transformationw = z + (z2 − 1)1/2 maps the
sheetR0 of the Riemann surface onto the region|w| ≥ 1, the sheetR1 onto the region
|w| ≤ 1, and the branch cut between the pointsz = ±1 onto the circle|w| = 1. Note
that the transformation used here is an inverse of the transformation

z =
1

2

(

w +
1

w

)

.



C H A P T E R

9
CONFORMAL MAPPING

In this chapter, we introduce and develop the concept of a conformal mapping, with
emphasis on connections between such mappings and harmonic functions (Sec. 26).
Applications to physical problems will follow in Chap. 10.

101. PRESERVATION OF ANGLES

Let C be a smooth arc (Sec. 39), represented by the equation

z = z(t) (a ≤ t ≤ b),

and letf (z) be a function defined at all pointsz on C. The equation

w = f [z(t)] (a ≤ t ≤ b)

is a parametric representation of the imageŴ of C under the transformationw = f (z).
Suppose thatC passes through a pointz0 = z(t0) (a < t0 < b) at whichf is

analytic and thatf ′(z0) �= 0. According to the chain rule verified in Exercise 5,
Sec. 39, ifw(t) = f [z(t)] , then

w′(t0) = f ′[z(t0)]z
′(t0);(1)

and this means that (see Sec. 8)

argw′(t0) = argf ′[z(t0)] + argz′(t0).(2)

355
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Statement (2) is useful in relating the directions ofC and Ŵ at the pointsz0 and
w0 = f (z0), respectively.

To be specific, letθ0 denote a value of argz′(t0) and let φ0 be a value of
argw′(t0). According to the discussion of unit tangent vectorsT near the end of
Sec. 39, the numberθ0 is the angle of inclination of a directed line tangent to
C at z0 and φ0 is the angle of inclination of a directed line tangent toŴ at the
point w0 = f (z0). (See Fig. 134.) In view of statement (2), there is a valueψ0 of
argf ′[z(t0)] such that

φ0 = ψ0 + θ0.(3)

Thus φ0 − θ0 = ψ0, and we find that the anglesφ0 and θ0 differ by the angle of
rotation

ψ0 = argf ′(z0).(4)
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FIGURE 134
φ0 = ψ0 + θ0.

Now let C1 andC2 be two smooth arcs passing throughz0 , and letθ1 andθ2

be angles of inclination of directed lines tangent toC1 andC2, respectively, atz0 .
We know from the preceding paragraph that the quantities

φ1 = ψ0 + θ1 and φ2 = ψ0 + θ2

are angles of inclination of directed lines tangent to the image curvesŴ1 andŴ2 ,
respectively, at the pointw0 = f (z0). Thus φ2 − φ1 = θ2 − θ1; that is, the angle
φ2 − φ1 from Ŵ1 to Ŵ2 is the same inmagnitudeand senseas the angleθ2 − θ1

from C1 to C2. Those angles are denoted byα in Fig. 135.
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Because of this angle-preserving property, a transformationw = f (z) is said
to be conformal at a pointz0 if f is analytic there andf ′(z0) �= 0. Such a trans-
formation is actually conformal at each point in some neighborhood ofz0. For it
must be analytic in a neighborhood ofz0 (Sec. 24); and since its derivativef ′ is
continuous in that neighborhood (Sec. 52), Theorem 2 in Sec. 18 tells us that there
is also a neighborhood ofz0 throughout whichf ′(z) �= 0.

A transformationw = f (z), defined on a domainD, is referred to as a con-
formal transformation, orconformal mapping,when it is conformal at each point in
D. That is, the mapping is conformal inD if f is analytic inD and its derivative
f ′ has no zeros there. Each of the elementary functions studied in Chap. 3 can be
used to define a transformation that is conformal in some domain.

EXAMPLE 1. The mappingw = ez is conformal throughout the entirez
plane since(ez)′ = ez �= 0 for eachz. Consider any two linesx = c1 andy = c2 in
thez plane, the first directed upward and the second directed to the right. According
to Example 1 in Sec. 14, their images under the mappingw = ez are a positively
oriented circle centered at the origin and a ray from the origin, respectively. As illus-
trated in Fig. 20 (Sec. 14), the angle between the lines at their point of intersection
is a right angle in the negative direction, and the same is true of the angle between
the circle and the ray at the corresponding point in thew plane. The conformality
of the mappingw = ez is also illustrated in Figs. 7 and 8 of Appendix 2.

EXAMPLE 2. Consider two smooth arcs which are level curvesu(x, y) = c1

andv(x, y) = c2 of the real and imaginary components, respectively, of a function

f (z) = u(x, y) + iv(x, y),

and suppose that they intersect at a pointz0 wheref is analytic andf ′(z0) �= 0.
The transformationw = f (z) is conformal atz0 and maps these arcs into the lines
u = c1 andv = c2, which are orthogonal at the pointw0 = f (z0). According to our
theory, then, the arcs must be orthogonal atz0. This has already been verified and
illustrated in Exercises 7 through 11 of Sec. 26.

A mapping that preserves the magnitude of the angle between two smooth arcs
but not necessarily the sense is called anisogonal mapping.

EXAMPLE 3. The transformationw = z, which is a reflection in the real
axis, is isogonal but not conformal. If it is followed by a conformal transformation,
the resulting transformationw = f (z) is also isogonal but not conformal.

Suppose thatf is not a constant function and is analytic at a pointz0 . If,
in addition, f ′(z0) = 0, then z0 is called acritical point of the transformation
w = f (z).
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EXAMPLE 4. The pointz0 = 0 is a critical point of the transformation

w = 1 + z2,

which is a composition of the mappings

Z = z2 and w = 1 + Z.

A ray θ = α from the pointz0 = 0 is evidently mapped onto the ray from the point
w0 = 1 whose angle of inclination is 2α, and the angle between any two rays drawn
from z0 = 0 is doubled by the transformation.

More generally, it can be shown that ifz0 is a critical point of a transformation
w = f (z), there is an integerm (m ≥ 2) such that the angle between any two smooth
arcs passing throughz0 is multiplied by m under that transformation. The integer
m is the smallest positive integer such thatf (m)(z0) �= 0. Verification of these facts
is left to the exercises.

102. SCALE FACTORS

Another property of a transformationw = f (z) that is conformal at a pointz0 is
obtained by considering the modulus off ′(z0). From the definition of derivative
and a property of limits involving moduli that was derived in Exercise 7, Sec. 18,
we know that

|f ′(z0)| =
∣

∣

∣

∣

lim
z→z0

f (z) − f (z0)

z − z0

∣

∣

∣

∣

= lim
z→z0

|f (z) − f (z0)|
|z − z0|

.(1)

Now |z − z0| is the length of a line segment joiningz0 andz , and |f (z) − f (z0)|
is the length of the line segment joining the pointsf (z0) andf (z) in the w plane.
Evidently, then, ifz is near the pointz0 , the ratio

|f (z) − f (z0)|
|z − z0|

of the two lengths is approximately the number|f ′(z0)|. Note that|f ′(z0)| represents
an expansion if it is greater than unity and a contraction if it is less than unity.

Although the angle of rotation argf ′(z) (Sec. 101) and thescale factor|f ′(z)|
vary, in general, from point to point, it follows from the continuity off ′ (see
Sec. 52) that their values are approximately argf ′(z0) and |f ′(z0)| at pointsz near
z0. Hence the image of a small region in a neighborhood ofz0 conforms to the
original region in the sense that it has approximately the same shape. A large region
may, however, be transformed into a region that bears no resemblance to the original
one.

EXAMPLE. Whenf (z) = z2, the transformation

w = f (z) = x2 − y2 + i2xy
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is conformal at the pointz = 1 + i, where the half lines

y = x (x ≥ 0) and x = 1 (y ≥ 0)

intersect. We denote those half lines byC1 andC2 (Fig. 136), with positive sense
upward. Observe that the angle fromC1 to C2 is π/4 at their point of intersection.
Since the image of a pointz = (x, y) is a point in thew plane whose rectangular
coordinates are

u = x2 − y2 and v = 2xy,

the half lineC1 is transformed into the curveŴ1 with parametric representation

u = 0, v = 2x2 (0 ≤ x < ∞).(2)

ThusŴ1 is the upper halfv ≥ 0 of thev axis. The half lineC2 is transformed into
the curveŴ2 represented by the equations

u = 1 − y2, v = 2y (0 ≤ y < ∞).(3)

HenceŴ2 is the upper half of the parabolav2 = −4(u − 1). Note that in each case,
the positive sense of the image curve is upward.
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π–2 FIGURE 136
w = z2.

If u andv are the variables in representation (3) for the image curveŴ2 , then

dv

du
=

dv/dy

du/dy
=

2

−2y
= −

2

v
.

In particular,dv/du = −1 whenv = 2. Consequently, the angle from the image
curveŴ1 to the image curveŴ2 at the pointw = f (1 + i) = 2i is π/4, as required
by the conformality of the mapping atz = 1 + i. The angle of rotationπ/4 at the
point z = 1 + i is, of course, a value of

arg[f ′(1 + i)] = arg[2(1 + i)] =
π

4
+ 2nπ (n = 0, ±1, ±2, . . .).

The scale factor at that point is the number

|f ′(1 + i)| = |2(1 + i)| = 2
√

2.
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To illustrate how the angle of rotation and the scale factor can change from
point to point, we note that they are 0 and 2, respectively, at the pointz = 1 since
f ′(1) = 2. See Fig. 136, where the curvesC2 and Ŵ2 are the ones just discussed
and where the nonnegativex axisC3 is transformed into the nonnegativeu axisŴ3.

103. LOCAL INVERSES

A transformationw = f (z) that is conformal at a pointz0 has a local inverse
there. That is, ifw0 = f (z0), then there exists a unique transformationz = g(w),
which is defined and analytic in a neighborhoodN of w0, such thatg(w0) = z0 and
f [g(w)] = w for all pointsw in N . The derivative ofg(w) is, moreover,

g′(w) =
1

f ′(z)
.(1)

We note from expression (1) that the transformationz = g(w) is itself conformal
at w0.

Assuming thatw = f (z) is, in fact, conformal atz0 , let us verify the existence
of such an inverse, which is a direct consequence of results in advanced calculus.∗

As noted in Sec. 101, the conformality of the transformationw = f (z) at z0 implies
that there is some neighborhood ofz0 throughout whichf is analytic. Hence if we
write

z = x + iy, z0 = x0 + iy0, and f (z) = u(x, y) + iv(x, y),

we know that there is a neighborhood of the point(x0, y0) throughout which the
functionsu(x, y) andv(x, y), along with their partial derivatives of all orders, are
continuous (see Sec. 52).

Now the pair of equations

u = u(x, y), v = v(x, y)(2)

represents a transformation from the neighborhood just mentioned into theuv plane.
Moreover, the determinant

J =
∣

∣

∣

∣

ux uy

vx vy

∣

∣

∣

∣

= uxvy − vxuy,

which is known as theJacobian of the transformation, is nonzero at the point
(x0, y0). For, in view of the Cauchy–Riemann equationsux = vy and uy = −vx ,
one can writeJ as

J = (ux)
2 + (vx)

2 = |f ′(z)|2 ;

and f ′(z0) �= 0 since the transformationw = f (z) is conformal atz0 . The above
continuity conditions on the functionsu(x, y) and v(x, y) and their derivatives,

∗The results from advanced calculus to be used here appear in, for instance, A. E. Taylor and W. R.
Mann, “Advanced Calculus,” 3d ed., pp. 241–247, 1983.
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together with this condition on the Jacobian, are sufficient to ensure the existence
of a local inverse of transformation (2) at(x0, y0). That is, if

u0 = u(x0, y0) and v0 = v(x0, y0),(3)

then there is a unique continuous transformation

x = x(u, v), y = y(u, v),(4)

defined on a neighborhoodN of the point (u0, v0) and mapping that point onto
(x0, y0), such that equations (2) hold when equations (4) hold. Also, in addition to
being continuous, the functions (4) have continuous first-order partial derivatives
satisfying the equations

xu =
1

J
vy, xv = −

1

J
uy, yu = −

1

J
vx, yv =

1

J
ux(5)

throughoutN .
If we write w = u + iv andw0 = u0 + iv0, as well as

g(w) = x(u, v) + iy(u, v),(6)

the transformationz = g(w) is evidently the local inverse of the original transfor-
mationw = f (z) at z0. Transformations (2) and (4) can be written

u + iv = u(x, y) + iv(x, y) and x + iy = x(u, v) + iy(u, v);

and these last two equations are the same as

w = f (z) and z = g(w),

whereg has the desired properties. Equations (5) can be used to show thatg is
analytic in N . Details are left to the exercises, where expression (1) forg ′(w) is
also derived.

EXAMPLE. We know from Example 1, Sec. 101, that iff (z) = ez, the
transformationw = f (z) is conformal everywhere in thez plane and, in particular,
at the pointz0 = 2πi. The image of this choice ofz0 is the pointw0 = 1. When
points in thew plane are expressed in the formw = ρ exp(iφ), the local inverse at
z0 can be obtained by writingg(w) = logw, where logw denotes the branch

logw = ln ρ + iφ (ρ > 0, π < θ < 3π)

of the logarithmic function, restricted to any neighborhood ofw0 that does not
contain the origin. Observe that

g(1) = ln 1 + i2π = 2πi
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and that whenw is in the neighborhood,

f [g(w)] = exp(logw) = w.

Also
g′(w) =

d

dw
logw =

1

w
=

1

expz
,

in accordance with equation (1).
Note that if the pointz0 = 0 is chosen, one can use the principal branch

Log w = ln ρ + iφ (ρ > 0, −π < φ < π)

of the logarithmic function to defineg. In this case,g(1) = 0.

EXERCISES
1. Determine the angle of rotation at the pointz0 = 2 + i whenw = z2, and illustrate it

for some particular curve. Show that the scale factor at that point is 2
√

5.

2. What angle of rotation is produced by the transformationw = 1/z at the point

(a) z0 = 1; (b) z0 = i?

Ans. (a) π ; (b) 0.

3. Show that under the transformationw = 1/z , the images of the linesy = x − 1 and
y = 0 are the circleu2 + v2 − u − v = 0 and the linev = 0, respectively. Sketch all
four curves, determine corresponding directions along them, and verify the conformal-
ity of the mapping at the pointz0 = 1.

4. Show that the angle of rotation at a nonzero pointz0 = r0 exp(iθ0) under the trans-
formationw = zn (n = 1, 2, . . .) is (n − 1)θ0. Determine the scale factor of the trans-
formation at that point.

Ans. nrn−1
0 .

5. Show that the transformationw = sinz is conformal at all points except

z =
π

2
+ nπ (n = 0,±1,±2, . . .).

Note that this is in agreement with the mapping of directed line segments shown in
Figs. 9, 10, and 11 of Appendix 2.

6. Find the local inverse of the transformationw = z2 at the point

(a) z0 = 2 ; (b) z0 = −2 ; (c) z0 = −i.

Ans. (a)w1/2 = √
ρ eiφ/2 (ρ > 0,−π < φ < π);

(c) w1/2 = √
ρ eiφ/2 (ρ > 0, 2π < φ < 4π).

7. In Sec. 103, it was pointed out that the componentsx(u, v) andy(u, v) of the inverse
functiong(w) defined by equation (6) there are continuous and have continuous first-
order partial derivatives in a neighborhoodN . Use equations (5), Sec. 103, to show
that the Cauchy–Riemann equationsxu = yv, xv = −yu hold inN . Then conclude that
g(w) is analytic in that neighborhood.
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8. Show that ifz = g(w) is the local inverse of a conformal transformationw = f (z) at
a pointz0, then

g′(w) =
1

f ′(z)

at pointsw in a neighborhoodN whereg is analytic (Exercise 7) .
Suggestion:Start with the fact thatf [g(w)] = w, and apply the chain rule for

differentiating composite functions.

9. Let C be a smooth arc lying in a domainD throughout which a transformation
w = f (z) is conformal , and letŴ denote the image ofC under that transformation.
Show thatŴ is also a smooth arc.

10. Suppose that a functionf is analytic atz0 and that

f ′(z0) = f ′′(z0) = · · · = f (m−1)(z0) = 0, f (m)(z0) �= 0

for some positive integerm(m ≥ 1). Also, write w0 = f (z0).

(a) Use the Taylor series forf about the pointz0 to show that there is a neighborhood
of z0 in which the differencef (z) − w0 can be written

f (z) − w0 = (z − z0)
m f (m)(z0)

m!
[1 + g(z)] ,

whereg(z) is continuous atz0 andg(z0) = 0.
(b) Let Ŵ be the image of a smooth arcC under the transformationw = f (z), as

shown in Fig. 134 (Sec. 101), and note that the angles of inclinationθ0 and φ0
in that figure are limits of arg(z − z0) and arg[f (z) − w0] , respectively, asz
approachesz0 along the arcC. Then use the result in part(a) to show thatθ0 and
φ0 are related by the equation

φ0 = mθ0 + argf (m)(z0).

(c) Let α denote the angle between two smooth arcsC1 andC2 passing throughz0 ,
as shown on the left in Fig. 135 (Sec. 101). Show how it follows from the relation
obtained in part(b) that the corresponding angle between the image curvesŴ1
andŴ2 at the pointw0 = f (z0) is mα. (Note that the transformation is conformal
at z0 whenm = 1 and thatz0 is a critical point whenm ≥ 2.)

104. HARMONIC CONJUGATES

We saw in Sec. 26 that if a function

f (z) = u(x, y) + iv(x, y)

is analytic in a domainD, then the real-valued functionsu andv are harmonic in
that domain. That is, they have continuous partial derivatives of the first and second
order inD and satisfy Laplace’s equation there:

uxx + uyy = 0, vxx + vyy = 0.(1)
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We had seen earlier that the first-order partial derivatives ofu and v satisfy the
Cauchy–Riemann equations

ux = vy, uy = −vx ;(2)

and, as pointed out in Sec. 26,v is called a harmonic conjugate ofu.
Suppose now thatu(x, y) is any given harmonic function defined on asimply

connected(Sec. 48) domainD. In this section, we show thatu(x, y) always has a
harmonic conjugatev(x, y) in D by deriving an expression forv(x, y).

To accomplish this, we first recall some important facts about line integrals in
advanced calculus.∗ Suppose thatP(x, y) andQ(x, y) have continuous first-order
partial derivatives in a simply connected domainD of thexy plane, and let(x0, y0)

and (x, y) be any two points inD. If Py = Qx everywhere inD, then the line
integral

∫

C

P(s, t) ds + Q(s, t) dt

from (x0, y0) to (x, y) is independent of the contourC that is taken as long as
the contour lies entirely inD. Furthermore, when the point(x0, y0) is kept fixed
and (x, y) is allowed to vary throughoutD, the integral represents a single-valued
function

F(x, y) =
∫ (x,y)

(x0,y0)

P(s, t) ds + Q(s, t) dt(3)

of x andy whose first-order partial derivatives are given by the equations

Fx(x, y) = P(x, y), Fy(x, y) = Q(x, y).(4)

Note that the value ofF is changed by an additive constant when a different starting
point (x0, y0) is taken.

Returning to the given harmonic functionu(x, y), observe how it follows from
Laplace’s equationuxx + uyy = 0 that

(−uy)y = (ux)x

everywhere inD. Also, the second-order partial derivatives ofu are continuous
in D; and this means that the first-order partial derivatives of−uy and ux are
continuous there. Thus, if(x0, y0) is a fixed point inD, the function

v(x, y) =
∫ (x,y)

(x0,y0)

−ut (s, t) ds + us(s, t) dt(5)

is well defined for all(x, y) in D; and, according to equations (4),

vx(x, y) = −uy(x, y), vy(x, y) = ux(x, y).(6)

∗See, for example, W. Kaplan, “Advanced Mathematics for Engineers,” pp. 546–550, 1992.
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These are the Cauchy–Riemann equations. Since the first-order partial derivatives
of u are continuous, it is evident from equations (6) that those derivatives ofv are
also continuous. Hence (Sec. 22)u(x, y) + iv(x, y) is an analytic function inD;
andv is, therefore, a harmonic conjugate ofu.

The functionv defined by equation (5) is, of course, not the only harmonic
conjugate ofu. The functionv(x, y) + c, wherec is any real constant, is also a
harmonic conjugate ofu. [Recall Exercise 2, Sec. 26.]

EXAMPLE. Consider the functionu(x, y) = xy, which is harmonic through-
out the entirexy plane. According to equation (5), the function

v(x, y) =
∫ (x,y)

(0,0)

−s ds + t dt

is a harmonic conjugate ofu(x, y). The integral here is readily evaluated by inspec-
tion. It can also be evaluated by integrating first along the horizontal path from the
point (0, 0) to the point(x, 0) and then along the vertical path from(x, 0) to the
point (x, y). The result is

v(x, y) = −
1

2
x2 +

1

2
y2,

and the corresponding analytic function is

f (z) = xy −
i

2
(x2 − y2) = −

i

2
z2.

105. TRANSFORMATIONS OF HARMONIC FUNCTIONS

The problem of finding a function that is harmonic in a specified domain and
satisfies prescribed conditions on the boundary of the domain is prominent in applied
mathematics. If the values of the function are prescribed along the boundary, the
problem is known as a boundary value problem of the first kind, or aDirichlet
problem. If the values of the normal derivative of the function are prescribed on
the boundary, the boundary value problem is one of the second kind, or aNeumann
problem.Modifications and combinations of those types of boundary conditions also
arise.

The domains most frequently encountered in the applications are simply con-
nected; and, since a function that is harmonic in a simply connected domain always
has a harmonic conjugate (Sec. 104), solutions of boundary value problems for such
domains are the real or imaginary components of analytic functions.

EXAMPLE 1. In Example 1, Sec. 26, we saw that the function

T (x, y) = e−y sinx
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satisfies a certain Dirichlet problem for the strip 0< x < π, y > 0 and noted that it
represents a solution of a temperature problem. The functionT (x, y), which is actu-
ally harmonic throughout thexy plane, is the real component of the entire function

−ieiz = e−y sinx − ie−y cosx.

It is also the imaginary component of the entire functioneiz.

Sometimes a solution of a given boundary value problem can bediscovered
by identifying it as the real or imaginary component of an analytic function. But
the success of that procedure depends on the simplicity of the problem and on
one’s familiarity with the real and imaginary components of a variety of analytic
functions. The following theorem is an important aid.

Theorem. Suppose that an analytic function

w = f (z) = u(x, y) + iv(x, y)(1)

maps a domainDz in the z plane onto a domainDw in thew plane. Ifh(u, v) is a
harmonic function defined onDw, then the function

H(x, y) = h[u(x, y), v(x, y)](2)

is harmonic inDz.

We first prove the theorem for the case in which the domainDw is simply con-
nected. According to Sec. 104, that property ofDw ensures that the given harmonic
function h(u, v) has a harmonic conjugateg(u, v). Hence the function

�(w) = h(u, v) + ig(u, v)(3)

is analytic inDw. Since the functionf (z) is analytic inDz , the composite function
�[f (z)] is also analytic inDz. Consequently, the real parth[u(x, y), v(x, y)] of
this composition is harmonic inDz.

If Dw is not simply connected, we observe that each pointw0 in Dw has
a neighborhood|w − w0| < ε lying entirely in Dw. Since that neighborhood is
simply connected, a function of the type (3) is analytic in it. Furthermore, since
f is continuous at a pointz0 in Dz whose image isw0 , there is a neighborhood
|z − z0| < δ whose image is contained in the neighborhood|w − w0| < ε. Hence it
follows that the composition�[f (z)] is analytic in the neighborhood|z − z0| < δ,
and we may conclude thath[u(x, y), v(x, y)] is harmonic there. Finally, sincew0

was arbitrarily chosen inDw and since each point inDz is mapped onto such a
point under the transformationw = f (z), the functionh[u(x, y), v(x, y)] must be
harmonic throughoutDz.

The proof of the theorem for the general case in whichDw is not necessarily
simply connected can also be accomplished directly by means of the chain rule
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for partial derivatives. The computations are, however, somewhat involved (see
Exercise 8, Sec. 106).

EXAMPLE 2. The functionh(u, v) = e−v sinu is harmonic in the domain
Dw consisting of all points in the upper half planev > 0 (see Example 1). If the
transformation isw = z2, we haveu(x, y) = x2 − y2 andv(x, y) = 2xy; moreover,
the domainDz consisting of the points in the first quadrantx > 0, y > 0 of the z

plane is mapped onto the domainDw, as shown in Example 3, Sec. 13. Hence the
function

H(x, y) = e−2xy sin(x2 − y2)

is harmonic inDz.

EXAMPLE 3. A minor modification of Fig. 114 in Example 3, Sec. 95,
reveals that as a pointz = r exp(i�0) (−π/2 < �0 < π/2) travels outward from
the origin along a ray� = �0 in the z plane, its image under the transformation

w = Log z = ln r + i� (r > 0, −π < � < π)

travels along the entire length of the horizontal linev = �0 in the w plane. So the
right half planex > 0 is mapped onto the horizontal strip−π/2 < v < π/2. By
considering the function

h(u, v) = Im w = v,

which is harmonic in the strip, and writing

Log z = ln
√

x2 + y2 + iarctan
y

x
,

where−π/2 < arctant < π/2, we find that

H(x, y) = arctan
y

x

is harmonic in the half planex > 0.

106. TRANSFORMATIONS OF BOUNDARY CONDITIONS

The conditions that a function or its normal derivative have prescribed values along
the boundary of a domain in which it is harmonic are the most common, although
not the only, important types of boundary conditions. In this section, we show that
certain of these conditions remain unaltered under the change of variables associated
with a conformal transformation. These results will be used in Chap. 10 to solve
boundary value problems. The basic technique there is to transform a given boundary
value problem in thexy plane into a simpler one in theuv plane and then to use
the theorems of this and Sec. 105 to write the solution of the original problem in
terms of the solution obtained for the simpler one.
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Theorem. Suppose that a transformation

w = f (z) = u(x, y) + iv(x, y)(1)

is conformal on a smooth arcC, and letŴ be the image ofC under that transfor-
mation. If a functionh(u, v) satisfies either of the conditions

h = h0 or
dh

dn
= 0(2)

along Ŵ , whereh0 is a real constant anddh/dn denotes derivatives normal toŴ,
then the function

H(x, y) = h[u(x, y), v(x, y)](3)

satisfies the corresponding condition

H = h0 or
dH

dN
= 0(4)

along C, wheredH/dN denotes derivatives normal toC.

To show that the conditionh = h0 on Ŵ implies thatH = h0 on C, we note
from equation (3) that the value ofH at any point(x, y) on C is the same as the
value ofh at the image(u, v) of (x, y) under transformation (1). Since the image
point (u, v) lies on Ŵ and sinceh = h0 along that curve, it follows thatH = h0

alongC.
Suppose, on the other hand, thatdh/dn = 0 on Ŵ. From calculus, we know

that

dh

dn
= (gradh) · n,(5)

where gradh denotes the gradient ofh at a point(u, v) on Ŵ andn is a unit vector
normal toŴ at (u, v). Sincedh/dn = 0 at (u, v), equation (5) tells us that gradh
is orthogonal ton at (u, v). That is, gradh is tangent toŴ there (Fig. 137). But
gradients are orthogonal to level curves; and, because gradh is tangent toŴ, we
see thatŴ is orthogonal to a level curveh(u, v) = c passing through(u, v).

xO

y
C

N

grad H

H(x,y) = c 

(x,y)

uO

v

Γ

n
grad h

h(u,v) = c 

(u,v)

FIGURE 137
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Now, according to equation (3), the level curveH(x, y) = c in thez plane can
be written

h[u(x, y), v(x, y)] = c ;

and so it is evidently transformed into the level curveh(u, v) = c under transfor-
mation (1). Furthermore, sinceC is transformed intoŴ and Ŵ is orthogonal to
the level curveh(u, v) = c, as demonstrated in the preceding paragraph, it fol-
lows from the conformality of transformation (1) thatC is orthogonal to the level
curve H(x, y) = c at the point(x, y) corresponding to(u, v). Because gradients
are orthogonal to level curves, this means that gradH is tangent toC at (x, y) (see
Fig. 137). Consequently, ifN denotes a unit vector normal toC at (x, y), gradH

is orthogonal toN. That is,

(gradH) · N = 0.(6)

Finally, since
dH

dN
= (gradH) · N,

we may conclude from equation (6) thatdH/dN = 0 at points onC.
In this discussion, we have tacitly assumed that gradh �= 0. If grad h = 0, it

follows from the identity

|gradH(x, y)| = |gradh(u, v)||f ′(z)|,

derived in Exercise 10(a) of this section, that gradH = 0; hencedh/dn and the
corresponding normal derivativedH/dN are both zero. We have also assumed that

(a) gradh and gradH always exist ;

(b) the level curveH(x, y) = c is smooth when gradh �= 0 at (u, v).

Condition(b) ensures that angles between arcs are preserved by transformation
(1) when it is conformal. In all of our applications, both conditions(a) and(b) will
be satisfied.

EXAMPLE. Consider, for instance, the functionh(u, v) = v + 2. The trans-
formation

w = iz2 = −2xy + i(x2 − y2)

is conformal whenz �= 0. It maps the half liney = x (x > 0) onto the negative
u axis, whereh = 2, and the positivex axis onto the positivev axis, where the
normal derivativehu is 0 (Fig. 138). According to the above theorem, the function

H(x, y) = x2 − y2 + 2

must satisfy the conditionH = 2 along the half liney = x (x > 0) and Hy = 0
along the positivex axis, as one can verify directly.
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uB′
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A′

v

h = 2 FIGURE 138

A boundary condition that is not of one of the two types mentioned in the
theorem may be transformed into a condition that is substantially different from the
original one (see Exercise 6). New boundary conditions for the transformed problem
can be obtained for a particular transformation in any case. It is interesting to note
that under a conformal transformation , the ratio of a directional derivative ofH

along a smooth arcC in the z plane to the directional derivative ofh along the
image curveŴ at the corresponding point in thew plane is|f ′(z)|; usually, this
ratio is not constant along a given arc. (See Exercise 10.)

EXERCISES
1. Use expression (5), Sec. 104, to find a harmonic conjugate of the harmonic function

u(x, y) = x3 − 3xy2. Write the resulting analytic function in terms of the complex
variablez.

2. Let u(x, y) be harmonic in a simply connected domainD. By appealing to results
in Secs. 104 and 52, show that its partial derivatives of all orders are continuous
throughout that domain.

3. The transformationw = expz maps the horizontal strip 0< y < π onto the upper half
planev > 0, as shown in Fig. 6 of Appendix 2 ; and the function

h(u, v) = Re(w2) = u2 − v2

is harmonic in that half plane. With the aid of the theorem in Sec. 105, show that the
function H(x, y) = e2x cos 2y is harmonic in the strip. Verify this result directly.

4. Under the transformationw = expz, the image of the segment 0≤ y ≤ π of the y

axis is the semicircleu2 + v2 = 1, v ≥ 0 (see Sec. 14). Also, the function

h(u, v) = Re

(

2 − w +
1

w

)

= 2 − u +
u

u2 + v2

is harmonic everywhere in thew plane except for the origin; and it assumes the value
h = 2 on the semicircle. Write an explicit expression for the functionH(x, y) in the
theorem of Sec. 106. Then illustrate the theorem by showing directly thatH = 2 along
the segment 0≤ y ≤ π of the y axis.



sec. 106 Exercises 371

5. The transformationw = z2 maps the positivex and y axes and the origin in thez
plane onto theu axis in thew plane. Consider the harmonic function

h(u, v) = Re(e−w) = e−u cosv,

and observe that its normal derivativehv along theu axis is zero. Then illustrate the
theorem in Sec. 106 whenf (z) = z2 by showing directly that the normal derivative
of the functionH(x, y) defined in that theorem is zero along both positive axes in the
z plane. (Note that the transformationw = z2 is not conformal at the origin.)

6. Replace the functionh(u, v) in Exercise 5 by the harmonic function

h(u, v) = Re(−2iw + e−w) = 2v + e−u cosv.

Then show thathv = 2 along theu axis but thatHy = 4x along the positivex axis
andHx = 4y along the positivey axis. This illustrates how a condition of the type

dh

dn
= h0 �= 0

is not necessarilytransformed into a condition of the typedH/dN = h0.

7. Show that if a functionH(x, y) is a solution of a Neumann problem (Sec. 105), then
H(x, y) + A, whereA is any real constant, is also a solution of that problem.

8. Suppose that an analytic functionw = f (z) = u(x, y) + iv(x, y) maps a domainDz

in the z plane onto a domainDw in the w plane; and let a functionh(u, v), with
continuous partial derivatives of the first and second order, be defined onDw. Use the
chain rule for partial derivatives to show that ifH(x, y) = h[u(x, y), v(x, y)], then

Hxx(x, y) + Hyy(x, y) = [huu(u, v) + hvv(u, v)] |f ′(z)|2.

Conclude that the functionH(x, y) is harmonic inDz when h(u, v) is harmonic in
Dw. This is an alternative proof of the theorem in Sec. 105, even when the domain
Dw is multiply connected.

Suggestion:In the simplifications, it is important to note that sincef is analytic ,
the Cauchy–Riemann equationsux = vy, uy = −vx hold and that the functionsu andv

both satisfy Laplace’s equation. Also, the continuity conditions on the derivatives of
h ensure thathvu = huv .

9. Let p(u, v) be a function that has continuous partial derivatives of the first and second
order and satisfiesPoisson’s equation

puu(u, v) + pvv(u, v) = �(u, v)

in a domainDw of thew plane, where� is a prescribed function. Show how it follows
from the identity obtained in Exercise 8 that if an analytic function

w = f (z) = u(x, y) + iv(x, y)

maps a domainDz onto the domainDw, then the function

P (x, y) = p[u(x, y), v(x, y)]



372 Conformal Mapping chap. 9

satisfies the Poisson equation

Pxx(x, y) + Pyy(x, y) = �[u(x, y), v(x, y)] |f ′(z)|2

in Dz.

10. Suppose thatw = f (z) = u(x, y) + iv(x, y) is a conformal mapping of a smooth arc
C onto a smooth arcŴ in the w plane. Let the functionh(u, v) be defined onŴ, and
write

H(x, y) = h[u(x, y), v(x, y)].

(a) From calculus, we know that thex andy components of gradH are the partial
derivativesHx andHy , respectively; likewise, gradh has componentshu andhv .
By applying the chain rule for partial derivatives and using the Cauchy–Riemann
equations, show that if(x, y) is a point onC and(u, v) is its image onŴ, then

|gradH(x, y)| = |gradh(u, v)||f ′(z)|.

(b) Show that the angle from the arcC to gradH at a point(x, y) on C is equal to
the angle fromŴ to gradh at the image(u, v) of the point(x, y).

(c) Let s andσ denote distance along the arcsC andŴ, respectively; and lett and
τ denote unit tangent vectors at a point(x, y) on C and its image(u, v), in the
direction of increasing distance. With the aid of the results in parts(a) and (b)
and using the fact that

dH

ds
= (gradH) · t and

dh

dσ
= (gradh) · τ ,

show that the directional derivative along the arcŴ is transformed as follows:

dH

ds
=

dh

dσ
|f ′(z)|.



C H A P T E R

10
APPLICATIONS OF CONFORMAL

MAPPING

We now use conformal mapping to solve a number of physical problems involving
Laplace’s equation in two independent variables. Problems in heat conduction, elec-
trostatic potential, and fluid flow will be treated. Since these problems are intended
to illustrate methods, they will be kept on a fairly elementary level.

107. STEADY TEMPERATURES

In the theory of heat conduction, theflux across a surface within a solid body at a
point on that surface is the quantity of heat flowing in a specified direction normal
to the surface per unit time per unit area at the point. Flux is, therefore, measured
in such units as calories per second per square centimeter. It is denoted here by�,
and it varies with the normal derivative of the temperatureT at the point on the
surface:

� = −K
dT

dN
(K > 0).(1)

Relation (1) is known asFourier’s law and the constantK is called thethermal
conductivityof the material of the solid, which is assumed to be homogeneous.∗

The points in the solid can be assigned rectangular coordinates in three-
dimensional space, and we restrict our attention to those cases in which the temper-
atureT varies with only thex andy coordinates. SinceT does not vary with the

∗The law is named for the French mathematical physicist Joseph Fourier (1768–1830). His book,
cited in Appendix 1, is a classic in the theory of heat conduction.
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coordinate along the axis perpendicular to thexy plane, the flow of heat is, then,
two-dimensional and parallel to that plane. We agree, moreover, that the flow is in
a steady state; that is,T does not vary with time.

It is assumed that no thermal energy is created or destroyed within the solid.
That is, no heat sources or sinks are present there. Also, the temperature function
T (x, y) and its partial derivatives of the first and second order are continuous at each
point interior to the solid. This statement and expression (1) for the flux of heat are
postulates in the mathematical theory of heat conduction, postulates that also apply
at points within a solid containing a continuous distribution of sources or sinks.

Consider now an element of volume that is interior to the solid and has the
shape of a rectangular prism of unit height perpendicular to thexy plane, with base
�x by �y in the plane (Fig. 139). The time rate of flow of heat toward the right
across the left-hand face is−KTx(x, y)�y ; and toward the right across the right-
hand face, it is−KTx(x + �x, y)�y. Subtracting the first rate from the second,
we obtain the net rate of heat loss from the element through those two faces. This
resultant rate can be written

−K

[

Tx(x + �x, y) − Tx(x, y)

�x

]

�x�y,

or

−KTxx(x, y)�x�y(2)

if �x is very small. Expression (2) is, of course, an approximation whose accuracy
increases as�x and�y are made smaller.

x

(x,y)

y

FIGURE 139

In like manner, the resultant rate of heat loss through the other two faces
perpendicular to thexy plane is found to be

−KTyy(x, y)�x�y.(3)

Heat enters or leaves the element only through these four faces, and the temperatures
within the element are steady. Hence the sum of expressions (2) and (3) is zero;
that is,

Txx(x, y) + Tyy(x, y) = 0.(4)
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The temperature function thus satisfies Laplace’s equation at each interior point of
the solid.

In view of equation (4) and the continuity of the temperature function and its
partial derivatives,T is a harmonic function ofx andy in the domain representing
the interior of the solid body.

The surfacesT (x, y) = c1, wherec1 is any real constant, are theisotherms
within the solid. They can also be considered as curves in thexy plane ; then
T (x, y) can be interpreted as the temperature at a point(x, y) in a thin sheet of
material in that plane, with the faces of the sheet thermally insulated. The isotherms
are the level curves of the functionT .

The gradient ofT is perpendicular to an isotherm at each point on it, and the
maximum flux at such a point is in the direction of the gradient there. IfT (x, y)

denotes temperatures in a thin sheet and ifS is a harmonic conjugate of the function
T , then a curveS(x, y) = c2 has the gradient ofT as a tangent vector at each
point where the analytic functionT (x, y) + iS(x, y) is conformal (see Exercise 7,
Sec. 26). The curvesS(x, y) = c2 are calledlines of flow.

If the normal derivativedT /dN is zero along any part of the boundary of the
sheet, then the flux of heat across that part is zero. That is, the part is thermally
insulated and is, therefore, a line of flow.

The functionT may also denote the concentration of a substance that is diffus-
ing through a solid. In that case,K is the diffusion constant. The above discussion
and the derivation of equation (4) apply as well to steady-state diffusion.

108. STEADY TEMPERATURES IN A HALF PLANE

Let us find an expression for the steady temperaturesT (x, y) in a thin semi-infinite
platey ≥ 0 whose faces are insulated and whose edgey = 0 is kept at temperature
zero except for the segment−1 < x < 1, where it is kept at temperature unity
(Fig. 140). The functionT (x, y) is to be bounded ; this condition is natural if we
consider the given plate as the limiting case of the plate 0≤ y ≤ y0 whose upper
edge is kept at a fixed temperature asy0 is increased. In fact, it would be physically
reasonable to stipulate thatT (x, y) approach zero asy tends to infinity.

x u

z

A T = 0 T = 0 T = 0

T = 1

C′ A′D′

C′ B′

B′

T = 1B C D

r1r2

1–1

y v

FIGURE 140

w = log
z − 1

z + 1

(

r1

r2
> 0,−

π

2
< θ1 − θ2 <

3π

2

)

.
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The boundary value problem to be solved can be written

Txx(x, y) + Tyy(x, y) = 0 (−∞ < x < ∞, y > 0),(1)

T (x, 0) =
{

1 when|x| < 1,

0 when|x| > 1;(2)

also,|T (x, y)| < M whereM is some positive constant. This is a Dirichlet problem
for the upper half of thexy plane. Our method of solution will be to obtain a new
Dirichlet problem for a region in theuv plane. That region will be the image of the
half plane under a transformationw = f (z) that is analytic in the domainy > 0
and conformal along the boundaryy = 0 except at the points(±1, 0), wheref (z)

is undefined. It will be a simple matter to discover a bounded harmonic function
satisfying the new problem. The two theorems in Chap. 9 will then be applied to
transform the solution of the problem in theuv plane into a solution of the original
problem in thexy plane. Specifically, a harmonic function ofu and v will be
transformed into a harmonic function ofx and y, and the boundary conditions in
theuv plane will be preserved on corresponding portions of the boundary in thexy

plane. There should be no confusion if we use the same symbolT to denote the
different temperature functions in the two planes.

Let us write

z − 1 = r1 exp(iθ1) and z + 1 = r2 exp(iθ2),

where 0≤ θk ≤ π (k = 1, 2). The transformation

w = log
z − 1

z + 1
= ln

r1

r2
+ i(θ1 − θ2)

(

r1

r2
> 0, −

π

2
< θ1 − θ2 <

3π

2

)

(3)

is defined on the upper half planey ≥ 0, except for the two pointsz = ±1, since
0 ≤ θ1 − θ2 ≤ π wheny ≥ 0. (See Fig. 140.) Now the value of the logarithm is the
principal value when 0≤ θ1 − θ2 ≤ π , and we recall from Example 3 in Sec. 95
that the upper half planey > 0 is then mapped onto the horizontal strip 0< v < π

in the w plane. As already noted in that example, the mapping is shown with
corresponding boundary points in Fig. 19 of Appendix 2. Indeed, it was that figure
which suggested transformation (3) here. The segment of thex axis betweenz = −1
andz = 1, whereθ1 − θ2 = π , is mapped onto the upper edge of the strip ; and the
rest of thex axis, whereθ1 − θ2 = 0, is mapped onto the lower edge. The required
analyticity and conformality conditions are evidently satisfied by transformation (3).

A bounded harmonic function ofu andv that is zero on the edgev = 0 of the
strip and unity on the edgev = π is clearly

T =
1

π
v ;(4)

it is harmonic since it is the imaginary component of the entire function(1/π)w.
Changing tox andy coordinates by means of the equation

w = ln

∣

∣

∣

∣

z − 1

z + 1

∣

∣

∣

∣

+ i arg

(

z − 1

z + 1

)

,(5)
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we find that

v = arg

[

(z − 1)(z + 1)

(z + 1)(z + 1)

]

= arg

[

x2 + y2 − 1 + i2y

(x + 1)2 + y2

]

,

or

v = arctan

(

2y

x2 + y2 − 1

)

.

The range of the arctangent function here is from 0 toπ since

arg

(

z − 1

z + 1

)

= θ1 − θ2

and 0≤ θ1 − θ2 ≤ π . Expression (4) now takes the form

T =
1

π
arctan

(

2y

x2 + y2 − 1

)

(0 ≤ arctant ≤ π).(7)

Since the function (4) is harmonic in the strip 0< v < π and since transforma-
tion (3) is analytic in the half planey > 0, we may apply the theorem in Sec. 105
to conclude that the function (6) is harmonic in that half plane. The boundary con-
ditions for the two harmonic functions are the same on corresponding parts of the
boundaries because they are of the typeh = h0, treated in the theorem of Sec. 106.
The bounded function (6) is, therefore, the desired solution of the original problem.
One can, of course, verify directly that the function (6) satisfies Laplace’s equation
and has the values tending to those indicated on the left in Fig. 140 as the point
(x, y) approaches thex axis from above.

The isothermsT (x, y) = c1 (0 < c1 < 1) are arcs of the circles

x2 + (y − cot πc1)
2 = csc2 πc1,

passing through the points(±1, 0) and with centers on they axis.
Finally, we note that since the product of a harmonic function by a constant is

also harmonic, the function

T =
T0

π
arctan

(

2y

x2 + y2 − 1

)

(0 ≤ arctant ≤ π)

represents steady temperatures in the given half plane when the temperatureT = 1
along the segment−1 < x < 1 of thex axis is replaced by any constant temperature
T = T0.

109. A RELATED PROBLEM

Consider a semi-infinite slab in the three-dimensional space bounded by the planes
x = ±π/2 andy = 0 when the first two surfaces are kept at temperature zero and
the third at temperature unity. We wish to find a formula for the temperatureT (x, y)

at any interior point of the slab. The problem is also that of finding temperatures in
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a thin plate having the form of a semi-infinite strip−π/2 ≤ x ≤ π/2, y ≥ 0 when
the faces of the plate are perfectly insulated (Fig. 141).

xT = 1

B

A

C

T = 0T = 0

D

y

–
FIGURE 141

The boundary value problem here is

Txx(x, y) + Tyy(x, y) = 0
(

−
π

2
< x <

π

2
, y > 0

)

,(1)

T
(

−
π

2
, y

)

= T
(π

2
, y

)

= 0 (y > 0),(2)

T (x, 0) = 1
(

−
π

2
< x <

π

2

)

,(3)

whereT (x, y) is bounded.
In view of Example 1 in Sec. 96, as well as Fig. 9 of Appendix 2, the mapping

w = sinz(4)

transforms this boundary value problem into the one posed in Sec. 108 (Fig. 140).
Hence, according to solution (6) in that section,

T =
1

π
arctan

(

2v

u2 + v2 − 1

)

(0 ≤ arctant ≤ π).(5)

The change of variables indicated in equation (4) can be written (see Sec. 34)

u = sinx coshy, v = cosx sinhy ;

and the harmonic function (5) becomes

T =
1

π
arctan

(

2 cosx sinhy

sin2 x cosh2 y + cos2 x sinh2 y − 1

)

.

Since the denominator here reduces to sinh2 y − cos2 x, the quotient can be put in
the form

2 cosx sinhy

sinh2 y − cos2 x
=

2(cosx/ sinhy)

1 − (cosx/ sinhy)2
= tan 2α,
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where tanα = cosx/ sinhy. HenceT = (2/π)α; that is,

T =
2

π
arctan

(

cosx

sinhy

)

(

0 ≤ arctant ≤
π

2

)

.(6)

This arctangent function has the range 0 toπ/2 because its argument is nonnegative.
Since sinz is entire and the function (5) is harmonic in the half planev > 0,

the function (6) is harmonic in the strip−π/2 < x < π/2, y > 0. Also, the function
(5) satisfies the boundary conditionT = 1 when|u| < 1 andv = 0, as well as the
conditionT = 0 when|u| > 1 andv = 0. The function (6) thus satisfies boundary
conditions (2) and (3). Moreover,|T (x, y)| ≤ 1 throughout the strip. Expression (6)
is, therefore, the temperature formula that is sought.

The isothermsT (x, y) = c1 (0 < c1 < 1) are the portions of the surfaces

cosx = tan
(πc1

2

)

sinhy

within the slab, each surface passing through the points(±π/2, 0) in thexy plane.
If K is the thermal conductivity, the flux of heat into the slab through the surface
lying in the planey = 0 is

−KTy(x, 0) =
2K

π cosx

(

−
π

2
< x <

π

2

)

.

The flux outward through the surface lying in the planex = π/2 is

−KTx

(π

2
, y

)

=
2K

π sinhy
(y > 0).

The boundary value problem posed in this section can also be solved by the
method of separation of variables.That method is more direct, but it gives the
solution in the form of an infinite series.∗

110. TEMPERATURES IN A QUADRANT

Let us find the steady temperatures in a thin plate having the form of a quadrant if
a segment at the end of one edge is insulated, if the rest of that edge is kept at a
fixed temperature, and if the second edge is kept at another fixed temperature. The
surfaces are insulated, and so the problem is two-dimensional.

∗A similar problem is treated in the authors’ “Fourier Series and Boundary Value Problems,” 7th ed.,
Problem 4, p. 123, 2008. Also, a short discussion of the uniqueness of solutions to boundary value
problems can be found in Chap. 11 of that book.
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The temperature scale and the unit of length can be chosen so that the boundary
value problem for the temperature functionT becomes

Txx(x, y) + Tyy(x, y) = 0 (x > 0, y > 0),(1)
{

Ty(x, 0) = 0 when 0< x < 1,

T (x, 0) = 1 whenx > 1,
(2)

T (0, y) = 0 (y > 0),(3)

whereT (x, y) is bounded in the quadrant. The plate and its boundary conditions
are shown on the left in Fig. 142. Conditions (2) prescribe the values of the normal
derivative of the functionT over a part of a boundary line and the values of the
function itself over another part of that line. The separation of variables method
mentioned at the end of Sec. 109 is not adapted to such problems with different
types of conditions along the same boundary line.

xT = 11
C B

D

A

T = 0

y

u
C′

D ′

B′

T = 1T = 0

A′

v

FIGURE 142

As indicated in Fig. 10 of Appendix 2, the transformation

z = sinw(4)

is a one to one mapping of the semi-infinite strip 0≤ u ≤ π/2, v ≥ 0 onto the quad-
rant x ≥ 0, y ≥ 0. Observe now that the existence of an inverse is ensured by the
fact that the given transformation is both one to one and onto. Since transformation
(4) is conformal throughout the strip except at the pointw = π/2, the inverse trans-
formation must be conformal throughout the quadrant except at the pointz = 1. That
inverse transformation maps the segment 0< x < 1 of thex axis onto the base of
the strip and the rest of the boundary onto the sides of the strip as shown in Fig. 142.

Since the inverse of transformation (4) is conformal in the quadrant, except
whenz = 1, the solution to the given problem can be obtained by finding a function
that is harmonic in the strip and satisfies the boundary conditions shown on the right
in Fig. 142. Observe that these boundary conditions are of the typesh = h0 and
dh/dn = 0 in the theorem of Sec. 106.
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The required temperature functionT for the new boundary value problem is
clearly

T =
2

π
u,(5)

the function(2/π)u being the real component of the entire function(2/π)w. We
must now expressT in terms ofx andy.

To obtainu in terms ofx andy, we first note that according to equation (4)
and Sec. 34,

x = sinu coshv, y = cosu sinhv.(6)

When 0< u < π/2, both sinu and cosu are nonzero; and, consequently,

x2

sin2 u
−

y2

cos2 u
= 1.(7)

Now it is convenient to observe that for each fixedu, hyperbola (7) has foci at the
points

z = ±
√

sin2 u + cos2 u = ±1

and that the length of the transverse axis, which is the line segment joining the
two vertices(± sinu, 0), is 2 sinu. Thus the absolute value of the difference of the
distances between the foci and a point(x, y) lying on the part of the hyperbola in
the first quadrant is

√

(x + 1)2 + y2 −
√

(x − 1)2 + y2 = 2 sinu.

It follows directly from equations (6) that this relation also holds whenu = 0 or
u = π/2. In view of equation (5), then, the required temperature function is

T =
2

π
arcsin

[
√

(x + 1)2 + y2 −
√

(x − 1)2 + y2

2

]

(8)

where, since 0≤ u ≤ π/2, the arcsine function has the range 0 toπ/2.
If we wish to verify that this function satisfies boundary conditions (2), we must

remember that
√

(x − 1)2 denotesx − 1 whenx > 1 and 1− x when 0< x < 1,
the square roots being positive. Note, too, that the temperature at any point along
the insulated part of the lower edge of the plate is

T (x, 0) =
2

π
arcsinx (0 < x < 1).

It can be seen from equation (5) that the isothermsT (x, y) = c1 (0 < c1 < 1)

are the parts of the confocal hyperbolas (7), whereu = πc1/2, which lie in the first
quadrant. Since the function(2/π)v is a harmonic conjugate of the function (5), the
lines of flow are quarters of the confocal ellipses obtained by holdingv constant in
equations (6).
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EXERCISES
1. In the problem of the semi-infinite plate shown on the left in Fig. 140 (Sec. 108),

obtain a harmonic conjugate of the temperature functionT (x, y) from equation (5),
Sec. 108, and find the lines of flow of heat. Show that those lines of flow consist of
the upper half of they axis and the upper halves of certain circles on either side of
that axis, the centers of the circles lying on the segmentAB or CD of the x axis.

2. Show that if the functionT in Sec. 108 is not required to be bounded, the harmonic
function (4) in that section can be replaced by the harmonic function

T = Im

(

1

π
w + A coshw

)

=
1

π
v + A sinhu sinv,

where A is an arbitrary real constant. Conclude that the solution of the Dirichlet
problem for the strip in theuv plane (Fig. 140) would not, then, be unique.

3. Suppose that the condition thatT be bounded is omitted from the problem for temper-
atures in the semi-infinite slab of Sec. 109 (Fig. 141). Show that an infinite number of
solutions are then possible by noting the effect of adding to the solution found there
the imaginary part of the functionA sinz, whereA is an arbitrary real constant.

4. Use the function Logz to find an expression for the bounded steady temperatures
in a plate having the form of a quadrantx ≥ 0, y ≥ 0 (Fig. 143) if its faces are
perfectly insulated and its edges have temperaturesT (x, 0) = 0 andT (0, y) = 1. Find
the isotherms and lines of flow, and draw some of them.

Ans. T =
2

π
arctan

(y

x

)

.

xT = 0

T = 1

y

FIGURE 143

5. Find the steady temperatures in a solid whose shape is that of a long cylindrical wedge
if its boundary planesθ = 0 andθ = θ0 (0 < r < r0) are kept at constant temperatures
zero andT0, respectively, and if its surfacer = r0 (0 < θ < θ0) is perfectly insulated
(Fig. 144).

Ans. T =
T0

θ0
arctan

(y

x

)

.

xr0

y

T = T0

T = 0 FIGURE 144
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6. Find the bounded steady temperaturesT (x, y) in the semi-infinite solidy ≥ 0 if T = 0
on the partx < −1 (y = 0) of the boundary, ifT = 1 on the partx > 1 (y = 0), and
if the strip −1 < x < 1 (y = 0) of the boundary is insulated (Fig. 145).

Ans. T =
1

2
+

1

π
arcsin

[
√

(x + 1)2 + y2 −
√

(x − 1)2 + y2

2

]

(−π/2 ≤ arcsint ≤ π/2).

xT = 1

1

T = 0

y

–1

FIGURE 145

7. Find the bounded steady temperatures in the solidx ≥ 0, y ≥ 0 when the boundary
surfaces are kept at fixed temperatures except for insulated strips of equal width at the
corner, as shown in Fig. 146.

Suggestion:This problem can be transformed into the one in Exercise 6.

Ans.T =
1

2
+

1

π
arcsin

[
√

(x2 − y2 + 1)2 + (2xy)2 −
√

(x2 − y2 − 1)2 + (2xy)2

2

]

(−π/2 ≤ arctant ≤ π/2).

x

i

T = 11

T = 0
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FIGURE 146

8. Solve the following Dirichlet problem for a semi-infinite strip (Fig. 147):

Hxx(x, y)+Hyy(x, y) = 0 (0 < x < π/2, y > 0),

H(x, 0) = 0 (0 < x < π/2),

H(0, y) = 1, H(π/2, y) = 0 (y > 0),

where 0≤ H(x, y) ≤ 1.

Suggestion:This problem can be transformed into the one in Exercise 4.

Ans. H =
2

π
arctan

(

tanhy

tanx

)

.
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x

H = 0

H = 0

H = 1

y

FIGURE 147

9. Derive an expression for temperaturesT (r, θ) in a semicircular plater ≤ 1, 0 ≤ θ ≤ π

with insulated faces ifT = 1 along the radial edgeθ = 0 (0 < r < 1) andT = 0 on
the rest of the boundary.

Suggestion:This problem can be transformed into the one in Exercise 8.

Ans. T =
2

π
arctan

(

1 − r

1 + r
cot

θ

2

)

.

10. Solve the boundary value problem for the platex ≥ 0, y ≥ 0 in thez plane when the
faces are insulated and the boundary conditions are those indicated in Fig. 148.

Suggestion:Use the mapping

w =
i

z
=

iz

|z|2

to transform this problem into the one posed in Sec. 110 (Fig. 142).

x

i

T = 0

T = 1

y

FIGURE 148

11. The portionsx < 0 (y = 0) andx < 0 (y = π) of the edges of an infinite horizontal
plate 0≤ y ≤ π are thermally insulated, as are the faces of the plate. Also, the con-
ditions T (x, 0) = 1 andT (x, π) = 0 are maintained whenx > 0 (Fig. 149). Find the
steady temperatures in the plate.

Suggestion:This problem can be transformed into the one in Exercise 6.

xT = 1

T = 0
y

FIGURE 149
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12. Consider a thin plate, with insulated faces, whose shape is the upper half of the region
enclosed by an ellipse with foci(±1, 0). The temperature on the elliptical part of its
boundary isT = 1. The temperature along the segment−1 < x < 1 of thex axis is
T = 0, and the rest of the boundary along thex axis is insulated. With the aid of
Fig. 11 in Appendix 2, find the lines of flow of heat.

13. According to Sec. 54 and Exercise 6 of that section, iff (z) = u(x, y) + iv(x, y)

is continuous on a closed bounded regionR and analytic and not constant in the
interior of R, then the functionu(x, y) reaches its maximum and minimum values
on the boundary ofR, and never in the interior. By interpretingu(x, y) as a steady
temperature, state a physical reason why that property of maximum and minimum
values should hold true.

111. ELECTROSTATIC POTENTIAL

In an electrostatic force field, thefield intensityat a point is a vector representing
the force exerted on a unit positive charge placed at that point. The electrostatic
potential is a scalar function of the space coordinates such that, at each point, its
directional derivative in any direction is the negative of the component of the field
intensity in that direction.

For two stationary charged particles, the magnitude of the force of attraction or
repulsion exerted by one particle on the other is directly proportional to the product
of the charges and inversely proportional to the square of the distance between
those particles. From this inverse-square law, it can be shown that the potential at
a point due to a single particle in space is inversely proportional to the distance
between the point and the particle. In any region free of charges, the potential due
to a distribution of charges outside that region can be shown to satisfy Laplace’s
equation for three-dimensional space.

If conditions are such that the potentialV is the same in all planes parallel to
the xy plane, then in regions free of chargesV is a harmonic function of just the
two variablesx andy:

Vxx(x, y) + Vyy(x, y) = 0.

The field intensity vector at each point is parallel to thexy plane, withx and y

components−Vx(x, y) and −Vy(x, y), respectively. That vector is, therefore, the
negative of the gradient ofV (x, y).

A surface along whichV (x, y) is constant is an equipotential surface. The
tangential component of the field intensity vector at a point on a conducting sur-
face is zero in the static case since charges are free to move on such a surface.
HenceV (x, y) is constant along the surface of a conductor, and that surface is an
equipotential.

If U is a harmonic conjugate ofV , the curvesU(x, y) = c2 in thexy plane are
calledflux lines.When such a curve intersects an equipotential curveV (x, y) = c1

at a point where the derivative of the analytic functionV (x, y) + iU(x, y) is not
zero, the two curves are orthogonal at that point and the field intensity is tangent to
the flux line there.
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Boundary value problems for the potentialV are the same mathematical prob-
lems as those for steady temperaturesT ; and, as in the case of steady temperatures,
the methods of complex variables are limited to two-dimensional problems. The
problem posed in Sec. 109 (see Fig. 141), for instance, can be interpreted as that of
finding the two-dimensional electrostatic potential in the empty space

−
π

2
< x <

π

2
, y > 0

boundedby theconductingplanesx = ±π/2andy = 0, insulatedat their intersections,
when the first two surfaces are kept at potential zero and the third at potential unity.

The potential in the steady flow of electricity in a conducting sheet lying in a
plane is also a harmonic function at points free from sources and sinks. Gravitational
potential is a further example of a harmonic function in physics.

112. POTENTIAL IN A CYLINDRICAL SPACE

A long hollow circular cylinder is made out of a thin sheet of conducting material,
and the cylinder is split lengthwise to form two equal parts. Those parts are separated
by slender strips of insulating material and are used as electrodes, one of which is
grounded at potential zero and the other kept at a different fixed potential. We take
the coordinate axes and units of length and potential difference as indicated on the
left in Fig. 150. We then interpret the electrostatic potentialV (x, y) over any cross
section of the enclosed space that is distant from the ends of the cylinder as a
harmonic function inside the circlex2 + y2 = 1 in thexy plane. Note thatV = 0
on the upper half of the circle and thatV = 1 on the lower half.

ux

y

w

A′

A 1
E

C

B

D
B′ C′ D ′ E′

V = 0V = 1

V = 1

V = 0

1

v

FIGURE 150

A linear fractional transformation that maps the upper half plane onto the
interior of the unit circle centered at the origin, the positive real axis onto the
upper half of the circle, and the negative real axis onto the lower half of the circle
is verified in Exercise 1, Sec. 95. The result is given in Fig. 13 of Appendix 2;
interchangingz andw there, we find that the inverse of the transformation

z =
i − w

i + w
(1)
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gives us a new problem forV in a half plane, indicated on the right in Fig. 150.
Now the imaginary component of

1

π
Log w =

1

π
ln ρ +

i

π
φ (ρ > 0, 0 ≤ φ ≤ π)(2)

is a bounded function ofu andv that assumes the required constant values on the
two partsφ = 0 andφ = π of the u axis. Hence the desired harmonic function for
the half plane is

V =
1

π
arctan

(

v

u

)

,(3)

where the values of the arctangent function range from 0 toπ .
The inverse of transformation (1) is

w = i
1 − z

1 + z
,(4)

from whichu andv can be expressed in terms ofx andy. Equation (3) then becomes

V =
1

π
arctan

(

1 − x2 − y2

2y

)

(0 ≤ arctant ≤ π).(5)

The function (5) is the potential function for the space enclosed by the cylindrical
electrodes since it is harmonic inside the circle and assumes the required values on
the semicircles. If we wish to verify this solution, we must note that

lim
t→0
t>0

arctant = 0 and lim
t→0
t<0

arctant = π.

The equipotential curvesV (x, y) = c1 (0 < c1 < 1) in the circular region are
arcs of the circles

x2 + (y + tanπc1)
2 = sec2 πc1,

with each circle passing through the points(±1, 0). Also, the segment of thex axis
between those points is the equipotentialV (x, y) = 1/2. A harmonic conjugateU
of V is −(1/π) ln ρ, or the imaginary part of the function−(i/π)Logw. In view
of equation (4),U may be written

U = −
1

π
ln

∣

∣

∣

∣

1 − z

1 + z

∣

∣

∣

∣

.

From this equation, it can be seen that the flux linesU(x, y) = c2 are arcs of circles
with centers on thex axis. The segment of they axis between the electrodes is also
a flux line.

EXERCISES
1. The harmonic function (3) of Sec. 112 is bounded in the half planev ≥ 0 and satisfies

the boundary conditions indicated on the right in Fig. 150. Show that if the imaginary
component ofAew, whereA is any real constant, is added to that function, then the
resulting function satisfies all the requirements except for the boundedness condition.
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2. Show that transformation (4) of Sec. 112 maps the upper half of the circular region
shown on the left in Fig. 150 onto the first quadrant of thew plane and the diameter
CE onto the positivev axis. Then find the electrostatic potentialV in the space
enclosed by the half cylinderx2 + y2 = 1, y ≥ 0 and the planey = 0 whenV = 0 on
the cylindrical surface andV = 1 on the planar surface (Fig. 151).

Ans. V =
2

π
arctan

(

1 − x2 − y2

2y

)

.

x

y

1–1 V = 1

V = 0

FIGURE 151

3. Find the electrostatic potentialV (r, θ) in the space 0< r < 1, 0 < θ < π/4, bounded
by the half planesθ = 0 andθ = π/4 and the portion 0≤ θ ≤ π/4 of the cylindrical
surfacer = 1, whenV = 1 on the planar surfaces andV = 0 on the cylindrical one.
(See Exercise 2.) Verify that the function obtained satisfies the boundary conditions.

4. Note that all branches of logz have the same real component, which is harmonic
everywhere except at the origin. Then write an expression for the electrostatic potential
V (x, y) in the space between two coaxial conducting cylindrical surfacesx2 + y2 = 1
andx2 + y2 = r2

0 (r0 �= 1) whenV = 0 on thefirst surface andV = 1 on the second.

Ans. V =
ln(x2 + y2)

2 lnr0
.

5. Find the bounded electrostatic potentialV (x, y) in the spacey > 0 bounded by an
infinite conducting planey = 0 one strip (−a < x < a, y = 0) of which is insu-
lated from the rest of the plane and kept at potentialV = 1, while V = 0 on the
rest (Fig. 152). Verify that the function obtained satisfies the stated boundary condi-
tions.

Ans. V =
1

π
arctan

(

2ay

x2 + y2 − a2

)

(0 ≤ arctant ≤ π).

xV = 0V = 1

a

V = 0

y

–a

FIGURE 152
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6. Derive an expression for the electrostatic potential in a semi-infinite space that is
bounded by two half planes and a half cylinder, as shown in Fig. 153, whenV = 1 on
the cylindrical surface andV = 0 on the planar surfaces. Draw some of the equipo-
tential curves in thexy plane.

Ans. V =
2

π
arctan

(

2y

x2 + y2 − 1

)

.

xV = 0

V = 1

1

V = 0

y

–1

FIGURE 153

7. Find the potentialV in the space between the planesy = 0 andy = π whenV = 0 on
the parts of those planes wherex > 0 andV = 1 on the parts wherex < 0 (Fig. 154).
Verify that the result satisfies the boundary conditions.

Ans. V =
1

π
arctan

(

siny

sinhx

)

(0 ≤ arctant ≤ π).

xV = 0V = 1

V = 0V = 1

y

FIGURE 154

8. Derive an expression for the electrostatic potentialV in the space interior to a long
cylinder r = 1 whenV = 0 on thefirst quadrant(r = 1, 0 < θ < π/2) of the cylin-
drical surface andV = 1 on the rest(r = 1, π/2 < θ < 2π) of that surface. (See
Exercise 5, Sec. 95, and Fig. 115 there.) Show thatV = 3/4 on the axis of the cylinder.
Verify that the result satisfies the boundary conditions.

9. Using Fig. 20 of Appendix 2, find a temperature functionT (x, y) that is harmonic in
the shaded domain of thexy plane shown there and assumes the valuesT = 0 along
the arcABCandT = 1 along the line segmentDEF. Verify that the function obtained
satisfies the required boundary conditions. (See Exercise 2.)

10. The Dirichlet problem

Vxx(x, y) + Vyy(x, y) = 0 (0 < x < a, 0 < y < b),

V (x, 0) = 0, V (x, b) = 1 (0 < x < a),

V (0, y) = V (a, y) = 0 (0 < y < b)
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for V (x, y) in a rectangle can be solved by the method of separation of variables.∗

The solution is

V =
4

π

∞
∑

n=1

sinh(mπy/a)

m sinh(mπb/a)
sin

mπx

a
(m = 2n − 1).

By accepting this result and adapting it to a problem in theuv plane, find the
potential V (r, θ) in the space 1< r < r0, 0 < θ < π when V = 1 on the part of
the boundary whereθ = π and V = 0 on the rest of the boundary. (See Fig. 155.)

Ans. V =
4

π

∞
∑

n=1

sinh(αnθ)

sinh(αnπ)
·

sin(αn ln r)

2n − 1

[

αn =
(2n − 1)π

ln r0

]

.

x
r0

r0

y

u

v

V = 0

V = 0 V = 0

V = 0

V = 1

V = 0

V = 0

V = 1
1

1n

πi

FIGURE 155

w = logz

(

r > 0,−
π

2
< θ <

3π

2

)

.

11. With the aid of the solution of the Dirichlet problem for the rectangle

0 ≤ x ≤ a, 0 ≤ y ≤ b

that was used in Exercise 10, find the potentialV (r, θ) for the space

1 < r < r0, 0 < θ < π

when V = 1 on the partr = r0, 0 < θ < π of its boundary andV = 0 on the rest
(Fig. 156).

Ans. V =
4

π

∞
∑

n=1

(

rm − r−m

rm
0 − r−m

0

)

sinmθ

m
(m = 2n − 1).

x
r0

y

V = 0

V = 0

V = 1

V = 0
1

FIGURE 156

∗See the authors’ “Fourier Series and Boundary Value Problems,” 7th ed., pp. 120–122 and 224–225,
2008.
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113. TWO-DIMENSIONAL FLUID FLOW

Harmonic functions play an important role in hydrodynamics and aerodynamics.
Again, we consider only the two-dimensional steady-state type of problem. That is,
the motion of the fluid is assumed to be the same in all planes parallel to thexy

plane, the velocity being parallel to that plane and independent of time. It is, then,
sufficient to consider the motion of a sheet of fluid in thexy plane.

We let the vector representing the complex number

V = p + iq

denote the velocity of a particle of the fluid at any point(x, y); hence thex andy

components of the velocity vector arep(x, y) andq(x, y), respectively. At points
interior to a region of flow in which no sources or sinks of the fluid occur, the
real-valued functionsp(x, y) andq(x, y) and their first-order partial derivatives are
assumed to be continuous.

The circulation of the fluid along any contourC is defined as the line integral
with respect to arc lengthσ of the tangential componentVT (x, y) of the velocity
vector alongC:

∫

C

VT (x, y) dσ.(1)

The ratio of the circulation alongC to the length ofC is, therefore, a mean speed of
the fluid along that contour. It is shown in advanced calculus that such an integral
can be written∗

∫

C

VT (x, y) dσ =
∫

C

p(x, y) dx + q(x, y) dy.(2)

WhenC is a positively oriented simple closed contour lying in a simply connected
domain of flow containing no sources or sinks, Green’s theorem (see Sec. 46)
enables us to write

∫

C

p(x, y) dx + q(x, y) dy =
∫ ∫

R

[qx(x, y) − py(x, y)] dA,

whereR is the closed region consisting of points interior to and onC. Thus
∫

C

VT (x, y) dσ =
∫ ∫

R

[qx(x, y) − py(x, y)] dA(3)

for such a contour
A physical interpretation of the integrand on the right in expression (3) for the

circulation along the simple closed contourC is readily given. We letC denote a
circle of radiusr which is centered at a point(x0, y0) and taken counterclockwise.

∗Properties of line integrals in advanced calculus that are used in this and the following section are
to be found in, for instance, W. Kaplan, “Advanced Mathematics for Engineers,” Chap. 10, 1992.
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The mean speed alongC is then found by dividing the circulation by the circumfer-
ence 2πr, and the corresponding mean angular speed of the fluid about the center
of the circle is obtained by dividing that mean speed byr:

l

πr2

∫ ∫

R

1

2
[qx(x, y) − py(x, y)] dA.

Now this is also an expression for the mean value of the function

ω(x, y) =
1

2
[qx(x, y) − py(x, y)](4)

over the circular regionR bounded byC. Its limit asr tends to zero is the value of
ω at the point(x0, y0). Hence the functionω(x, y), called therotation of the fluid,
represents the limiting angular speed of a circular element of the fluid as the circle
shrinks to its center(x, y), the point at whichω is evaluated.

If ω(x, y) = 0 at each point in some simply connected domain, the flow is
irrotational in that domain. We consider only irrotational flows here, and we also
assume that the fluid isincompressibleandfree from viscosity. Under our assumption
of steady irrotational flow of fluids with uniform densityρ, it can be shown that the
fluid pressureP(x, y) satisfies the following special case ofBernoulli’s equation:

P

ρ
+

1

2
|V |2 = c,

wherec is a constant. Note that the pressure is greatest where the speed|V | is least.
Let D be a simply connected domain in which the flow is irrotational. Accord-

ing to equation (4),py = qx throughoutD. This relation between partial derivatives
implies that the line integral

∫

C

p(s, t) ds + q(s, t) dt

along a contourC lying entirely inD and joining any two points(x0, y0) and(x, y)

in D is actually independent of path. Thus, if(x0, y0) is fixed, the function

φ(x, y) =
∫ (x,y)

(x0,y0)

p(s, t) ds + q(s, t) dt(5)

is well defined onD; and, by taking partial derivatives on each side of this equation,
we find that

φx(x, y) = p(x, y), φy(x, y) = q(x, y).(6)

From equations (6), we see that the velocity vectorV = p + iq is the gradient
of φ; and the directional derivative ofφ in any direction represents the component
of the velocity of flow in that direction.

The functionφ(x, y) is called thevelocity potential. From equation (5), it
is evident thatφ(x, y) changes by an additive constant when the reference point
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(x0, y0) is changed. The level curvesφ(x, y) = c1 are calledequipotentials.Because
it is the gradient ofφ(x, y), the velocity vectorV is normal to an equipotential at
any point whereV is not the zero vector.

Just as in the case of the flow of heat, the condition that the incompressible
fluid enter or leave an element of volume only by flowing through the boundary of
that element requires thatφ(x, y) must satisfy Laplace’s equation

φxx(x, y) + φyy(x, y) = 0

in a domain where the fluid is free from sources or sinks. In view of equations (6)
and the continuity of the functionsp andq and their first-order partial derivatives, it
follows that the partial derivatives of the first and second order ofφ are continuous in
such a domain. Hence the velocity potentialφ is aharmonicfunction in that domain.

114. THE STREAM FUNCTION

According to Sec. 113, the velocity vector

V = p(x, y) + iq(x, y)(1)

for a simply connected domain in which the flow is irrotational can be written

V = φx(x, y) + iφy(x, y) = gradφ(x, y),(2)

whereφ is the velocity potential. When the velocity vector is not the zero vector, it
is normal to an equipotential passing through the point(x, y). If, moreover,ψ(x, y)

denotes a harmonic conjugate ofφ(x, y) (see Sec. 104), the velocity vector is tangent
to a curveψ(x, y) = c2. The curvesψ(x, y) = c2 are called thestreamlinesof the
flow, and the functionψ is the stream function.In particular, a boundary across
which fluid cannot flow is a streamline.

The analytic function

F(z) = φ(x, y) + iψ(x, y)

is called thecomplex potentialof the flow. Note that

F ′(z) = φx(x, y) + iψx(x, y)

and, in view of the Cauchy–Riemann equations,

F ′(z) = φx(x, y) − iφy(x, y).

Expression (2) for the velocity thus becomes

V = F ′(z).(3)

The speed, or magnitude of the velocity, is obtained by writing

|V | = |F ′(z)|.
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According to equation (5), Sec. 104, ifφ is harmonic in a simply connected
domainD, a harmonic conjugate ofφ there can be written

ψ(x, y) =
∫ (x,y)

(x0,y0)

−φt (s, t) ds + φs(s, t) dt,

where the integration is independent of path. With the aid of equations (6), Sec. 113,
we can, therefore, write

ψ(x, y) =
∫

C

−q(s, t) ds + p(s, t) dt,(4)

whereC is any contour inD from (x0, y0) to (x, y).
Now it is shown in advanced calculus that the right-hand side of equation (4)

represents the integral with respect to arc lengthσ alongC of the normal compo-
nent VN (x, y) of the vector whosex and y components arep(x, y) and q(x, y),
respectively. So expression (4) can be written

ψ(x, y) =
∫

C

VN (s, t) dσ.(5)

Physically, then,ψ(x, y) represents the time rate of flow of the fluid acrossC.
More precisely,ψ(x, y) denotes the rate of flow, by volume, across a surface of
unit height standing perpendicular to thexy plane on the curveC.

EXAMPLE. When the complex potential is the function

F(z) = Az ,(6)

whereA is a positive real constant,

φ(x, y) = Ax and ψ(x, y) = Ay.(7)

The streamlinesψ(x, y) = c2 are the horizontal linesy = c2/A, and the velocity at
any point is

V = F ′(z) = A.

Here a point(x0, y0) at whichψ(x, y) = 0 is any point on thex axis. If the
point (x0, y0) is taken as the origin, thenψ(x, y) is the rate of flow across any
contour drawn from the origin to the point(x, y) (Fig. 157). The flow is uniform
and to the right. It can be interpreted as the uniform flow in the upper half plane
bounded by thex axis, which is a streamline, or as the uniform flow between two
parallel linesy = y1 andy = y2.

x

V
(x,y)

O

y

FIGURE 157
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The stream functionψ characterizes a definite flow in a region. The question of
whether just one such function exists corresponding to a given region, except possi-
bly for a constant factor or an additive constant, is not examined here. Sometimes,
when the velocity is uniform far from the obstruction or when sources and sinks
are involved (Chap. 11), the physical situation indicates that the flow is uniquely
determined by the conditions given in the problem.

A harmonic function is not always uniquely determined, even up to a constant
factor, by simply prescribing its values on the boundary of a region. In the example
above, the functionψ(x, y) = Ay is harmonic in the half planey > 0 and has
zero values on the boundary. The functionψ1(x, y) = Bexsiny also satisfies those
conditions. However, the streamlineψ1(x, y) = 0 consists not only of the liney = 0
but also of the linesy = nπ (n = 1, 2, . . .). Here the functionF1(z) = Bez is the
complex potential for the flow in the strip between the linesy = 0 andy = π , both
lines making up the streamlineψ(x, y) = 0 ; if B > 0, the fluid flows to the right
along the lower line and to the left along the upper one.

115. FLOWS AROUND A CORNER AND AROUND
A CYLINDER

In analyzing a flow in thexy, or z, plane, it is often simpler to consider a corre-
sponding flow in theuv, or w, plane. Then, ifφ is a velocity potential andψ a
stream function for the flow in theuv plane, results in Secs. 105 and 106 can be
applied to these harmonic functions. That is, when the domain of flowDw in the
uv plane is the image of a domainDz under a transformation

w = f (z) = u(x, y) + iv(x, y),

wheref is analytic, the functions

φ[u(x, y), v(x, y)] and ψ [u(x, y), v(x, y)]

are harmonic inDz. These new functions may be interpreted as velocity potential and
stream function in thexy plane. A streamline or natural boundaryψ(u, v) = c2 in the
uv plane corresponds to a streamline or natural boundaryψ [u(x, y), v(x, y)] = c2 in
thexy plane.

In using this technique, it is often most efficient to first write the complex
potential function for the region in thew plane and then obtain from that the
velocity potential and stream function for the corresponding region in thexy plane.
More precisely, if the potential function in theuv plane is

F(w) = φ(u, v) + iψ(u, v),

the composite function

F [f (z)] = φ[u(x, y), v(x, y)] + iψ [u(x, y), v(x, y)]

is the desired complex potential in thexy plane.
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In order to avoid an excess of notation, we use the same symbolsF,φ, andψ

for the complex potential, etc., in both thexy and theuv planes.

EXAMPLE 1. Consider a flow in the first quadrantx > 0, y > 0 that comes in
downward parallel to they axis but is forced to turn a corner near the origin, as shown in
Fig. 158. To determine the flow, we recall (Example 3, Sec. 13) that the transformation

w = z2 = x2 − y2 + i2xy

maps the first quadrant onto the upper half of theuv plane and the boundary of the
quadrant onto the entireu axis.

xO

y

FIGURE 158

From the example in Sec. 114, we know that the complex potential for a
uniform flow to the right in the upper half of thew plane isF = Aw, whereA is
a positive real constant. The potential in the quadrant is, therefore,

F = Az2 = A(x2 − y2) + i2Axy;(1)

and it follows that the stream function for the flow there is

ψ = 2Axy.(2)

This stream function is, of course, harmonic in the first quadrant, and it vanishes
on the boundary.

The streamlines are branches of the rectangular hyperbolas

2Axy = c2.

According to equation (3), Sec. 114, the velocity of the fluid is

V = 2Az = 2A(x − iy).

Observe that the speed
|V | = 2A

√

x2 + y2

of a particle is directly proportional to its distance from the origin. The value of the
stream function (2) at a point(x, y) can be interpreted as the rate of flow across a
line segment extending from the origin to that point.

EXAMPLE 2. Let a long circular cylinder of unit radius be placed in a
large body of fluid flowing with a uniform velocity, the axis of the cylinder being
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perpendicular to the direction of flow. To determine the steady flow around the
cylinder, we represent the cylinder by the circlex2 + y2 = 1 and let the flow distant
from it be parallel to thex axis and to the right (Fig. 159). Symmetry shows that
points on thex axis exterior to the circle may be treated as boundary points, and
so we need to consider only the upper part of the figure as the region of flow.

x1

y

V

FIGURE 159

Theboundaryof this regionofflow,consistingof theuppersemicircleand theparts
of thex axis exterior to the circle, is mapped onto the entireu axis by the transformation

w = z +
1

z
.

The region itself is mapped onto the upper half planev ≥ 0, as indicated in Fig. 17,
Appendix 2. The complex potential for the corresponding uniform flow in that half
plane isF = Aw, whereA is a positive real constant. Hence the complex potential
for the region exterior to the circle and above thex axis is

F = A

(

z +
1

z

)

.(3)

The velocity

V = A

(

1 −
1

z2

)

(4)

approachesA as |z| increases. Thus the flow is nearly uniform and parallel to the
x axis at points distant from the circle, as one would expect. From expression (4),
we see thatV (z) = V (z); hence that expression also represents velocities of flow
in the lower region, the lower semicircle being a streamline.

According to equation (3), the stream function for the given problem is, in
polar coordinates,

ψ = A

(

r −
1

r

)

sinθ.(5)

The streamlines

A

(

r −
1

r

)

sinθ = c2

are symmetric to they axis and have asymptotes parallel to thex axis. Note that
whenc2 = 0, the streamline consists of the circler = 1 and the parts of thex axis
exterior to the circle.
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EXERCISES
1. State why the components of velocity can be obtained from the stream function by

means of the equations

p(x, y) = ψy(x, y), q(x, y) = −ψx(x, y).

2. At an interior point of a region of flow and under the conditions that we have assumed,
the fluid pressure cannot be less than the pressure at all other points in a neighborhood
of that point. Justify this statement with the aid of statements in Secs. 113, 114, and 54.

3. For the flow around a corner described in Example 1, Sec. 115, at what point of the
regionx ≥ 0, y ≥ 0 is the fluid pressure greatest?

4. Show that the speed of the fluid at points on the cylindrical surface in Example 2,
Sec. 115, is 2A| sinθ | and also that the fluid pressure on the cylinder is greatest at the
pointsz = ±1 and least at the pointsz = ±i.

5. Write the complex potential for the flow around a cylinderr = r0 when the velocity
V at a pointz approaches a real constantA as the point recedes from the cylinder.

6. Obtain the stream functionψ = Ar4 sin 4θ for a flow in the angular region

r ≥ 0, 0 ≤ θ ≤
π

4
that is shown in Fig. 160. Sketch a few of the streamlines in the interior of that region.

x

y

FIGURE 160

7. Obtain the complex potentialF = A sinz for a flow inside the semi-infinite region

−
π

2
≤ x ≤

π

2
, y ≥ 0

that is shown in Fig. 161. Write the equations of the streamlines.

x

y

FIGURE 161
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8. Show that if the velocity potential isφ = A ln r (A > 0) for flow in the regionr ≥ r0 ,
then the streamlines are the half linesθ = c (r ≥ r0) and the rate of flow outward
through each complete circle about the origin is 2πA, corresponding to a source of
that strength at the origin.

9. Obtain the complex potential

F = A

(

z2 +
1

z2

)

for a flow in the regionr ≥ 1, 0 ≤ θ ≤ π/2. Write expressions forV andψ . Note how
the speed|V | varies along the boundary of the region, and verify thatψ(x, y) = 0 on
the boundary.

10. Suppose that the flow at an infinite distance from the cylinder of unit radius in Example 2,
Sec. 115, is uniform in a direction making an angleα with thex axis; that is,

lim
|z|→∞

V = Aeiα (A > 0).

Find the complex potential.

Ans. F = A

(

ze−iα +
1

z
eiα

)

.

11. Write
z − 2 = r1 exp(iθ1), z + 2 = r2 exp(iθ2),

and

(z2 − 4)1/2 =
√

r1r2 exp

(

i
θ1 + θ2

2

)

,

where
0 ≤ θ1 < 2π and 0≤ θ2 < 2π.

The function(z2 − 4)1/2 is then single-valued and analytic everywhere except on the
branch cut consisting of the segment of thex axis joining the pointsz = ±2. We
know, moreover, from Exercise 13, Sec. 92, that the transformation

z = w +
1

w

maps the circle|w| = 1 onto the line segment fromz = −2 to z = 2 and that it maps
the domain outside the circle onto the rest of thez plane. Use all of the observations
above to show that the inverse transformation, where|w| > 1 for every point not on
the branch cut, can be written

w =
1

2
[z + (z2 − 4)1/2] =

1

4

(

√
r1 exp

iθ1

2
+

√
r2 exp

iθ2

2

)2

.

The transformation and this inverse establish a one to one correspondence between
points in the two domains.
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12. With the aid of the results found in Exercises 10 and 11, derive the expression

F = A[z cosα − i(z2 − 4)1/2 sinα]

for the complex potential of the steady flow around a long plate whose width is 4 and
whose cross section is the line segment joining the two pointsz = ±2 in Fig. 162,
assuming that the velocity of the fluid at an infinite distance from the plate isA exp(iα)

whereA > 0. The branch of(z2 − 4)1/2 that is used is the one described in Exercise 11.

x

V

2

–2

y

FIGURE 162

13. Show that if sinα �= 0 in Exercise 12 , then the speed of the fluid along the line
segment joining the pointsz = ±2 is infinite at the ends and is equal toA| cosα| at
the midpoint.

14. For the sake of simplicity, suppose that 0< α ≤ π/2 in Exercise 12. Then show that
the velocity of the fluid along the upper side of the line segment representing the plate
in Fig. 162 is zero at the pointx = 2 cosα and that the velocity along the lower side
of the segment is zero at the pointx = −2 cosα.

15. A circle with its center at a pointx0 (0 < x0 < 1) on thex axis and passing through
the pointz = −1 is subjected to the transformation

w = z +
1

z
.

Individual nonzero pointsz can be mapped geometrically by adding the vectors rep-
resenting

z = reiθ and
1

z
=

1

r
e−iθ .

Indicate by mapping some points that the image of the circle is a profile of the type
shown in Fig. 163 and that points exterior to the circle map onto points exterior to the
profile. This is a special case of the profile of aJoukowski airfoil. (See also Exercises
16 and 17 below.)

16. (a) Show that the mapping of the circle in Exercise 15 is conformal except at the
point z = −1.

(b) Let the complex numbers

t = lim
�z→0

�z

|�z|
and τ = lim

�w→0

�w

|�w|
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u
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v

x0

FIGURE 163

represent unit vectors tangent to a smooth directed arc atz = −1 and that arc’s
image, respectively, under the transformation

w = z +
1

z
.

Show thatτ = −t2 and hence that the Joukowski profile in Fig. 163 has a cusp
at the pointw = −2, the angle between the tangents at the cusp being zero.

17. Find the complex potential for the flow around the airfoil in Exercise 15 when the
velocity V of the fluid at an infinite distance from the origin is a real constantA.
Recall that the inverse of the transformation

w = z +
1

z

used in Exercise 15 is given, withz andw interchanged, in Exercise 11.

18. Note that under the transformationw = ez + z , both halves, wherex ≥ 0 andx ≤ 0,
of the liney = π are mapped onto the half linev = π (u ≤ −1). Similarly, the line
y = −π is mapped onto the half linev = −π (u ≤ −1) ; and the strip−π ≤ y ≤ π is
mapped onto thew plane. Also, note that the change of directions, arg(dw/dz), under
this transformation approaches zero asx tends to−∞. Show that the streamlines of
a fluid flowing through the open channel formed by the half lines in thew plane
(Fig. 164) are the images of the linesy = c2 in the strip. These streamlines also
represent the equipotential curves of the electrostatic field near the edge of a parallel-
plate capacitor.

u

v

FIGURE 164





C H A P T E R

11
THE SCHWARZ–CHRISTOFFEL

TRANSFORMATION

In this chapter, we construct a transformation, known as the Schwarz–Christoffel
transformation, which maps thex axis and the upper half of thez plane onto a
given simple closed polygon and its interior in thew plane. Applications are made
to the solution of problems in fluid flow and electrostatic potential theory.

116. MAPPING THE REAL AXIS ONTO A POLYGON

We represent the unit vector which is tangent to a smooth arcC at a pointz0 by
the complex numbert , and we let the numberτ denote the unit vector tangent to
the imageŴ of C at the corresponding pointw0 under a transformationw = f (z).
We assume thatf is analytic atz0 and thatf ′(z0) �= 0. According to Sec. 101,

argτ = argf ′(z0) + argt.(1)

In particular, if C is a segment of thex axis with positive sense to the right, then
t = 1 and argt = 0 at each pointz0 = x on C. In that case, equation (1) becomes

argτ = argf ′(x).(2)

If f ′(z) has a constant argument along that segment, it follows that argτ is constant.
Hence the imageŴ of C is also a segment of a straight line.

Let us now construct a transformationw = f (z) that maps the wholex axis
onto a polygon ofn sides, wherex1, x2, . . . , xn−1, and ∞ are the points on that
axis whose images are to be the vertices of the polygon and where

x1 < x2 < · · · < xn−1.

403
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The vertices are then points wj = f (xj ) (j = 1, 2, . . . , n − 1) and wn = f (∞).
The functionf should be such that argf ′(z) jumps from one constant value to
another at the pointsz = xj as the pointz traces out thex axis (Fig. 165).

x1
x u

w3

w2

w1

wn

w

t x2 x3 xn – 1

z

y v

FIGURE 165

If the functionf is chosen such that

f ′(z) = A(z − x1)
−k1(z − x2)

−k2 · · · (z − xn−1)
−kn−1,(3)

whereA is a complex constant and eachkj is a real constant, then the argument of
f ′(z) changes in the prescribed manner asz describes the real axis. This is seen by
writing the argument of the derivative (3) as

argf ′(z) = argA − k1 arg(z − x1)(4)

− k2 arg(z − x2) − · · · − kn−1 arg(z − xn−1).

Whenz = x andx < x1,

arg(z − x1) = arg(z − x2) = · · · = arg(z − xn−1) = π.

Whenx1 < x < x2, the argument arg(z − x1) is 0 and each of the other arguments
is π . According to equation (4), then, argf ′(z) increases abruptly by the anglek1π

as z moves to the right through the pointz = x1. It again jumps in value, by the
amountk2π , asz passes through the pointx2, etc.

In view of equation (2), the unit vectorτ is constant in direction asz moves
from xj−1 to xj ; the pointw thus moves in that fixed direction along a straight line.
The direction ofτ changes abruptly, by the anglekjπ , at the image pointwj of
xj , as shown in Fig. 165. Those angleskjπ are the exterior angles of the polygon
described by the pointw.

The exterior angles can be limited to angles between−π andπ , in which case
−1 < kj < 1. We assume that the sides of the polygon never cross one another and
that the polygon is given a positive, or counterclockwise, orientation. The sum of
the exterior angles of aclosedpolygon is, then, 2π ; and the exterior angle at the
vertexwn, which is the image of the pointz = ∞, can be written

knπ = 2π − (k1 + k2 + · · · + kn−1)π.
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Thus the numberskj must necessarily satisfy the conditions

k1 + k2 + · · · + kn−1 + kn = 2, −1 < kj < 1 (j = 1, 2, . . . , n).(5)

Note thatkn = 0 if

k1 + k2 + · · · + kn−1 = 2.(6)

This means that the direction ofτ does not change at the pointwn. Sown is not a
vertex, and the polygon hasn − 1 sides.

The existence of a mapping functionf whose derivative is given by
equation (3) will be established in the next section.

117. SCHWARZ–CHRISTOFFEL TRANSFORMATION

In our expression (Sec. 116)

f ′(z) = A(z − x1)
−k1(z − x2)

−k2 · · · (z − xn−1)
−kn−1(1)

for the derivative of a function that is to map thex axis onto a polygon, let the
factors(z − xj )

−kj (j = 1, 2, . . . , n − 1) represent branches of power functions with
branch cuts extending below that axis. To be specific, write

(z − xj )
−kj = exp[−kj log(z − xj )] = exp[−kj (ln |z − xj | + iθj )]

and then

(z − xj )
−kj = |z − xj |−kj exp(−ikj θj )

(

−
π

2
< θj <

3π

2

)

,(2)

whereθj = arg(z − xj ) andj = 1, 2, . . . , n − 1. This makesf ′(z) analytic every-
where in the half planey ≥ 0 except at then − 1 branch pointsxj .

If z0 is a point in that region of analyticity, denoted here byR, then the function

F(z) =
∫ z

z0

f ′(s) ds(3)

is single-valued and analytic throughout the same region, where the path of inte-
gration fromz0 to z is any contour lying withinR. Moreover,F ′(z) = f ′(z) (see
Sec. 44).

To define the functionF at the pointz = x1 so that it is continuous there, we
note that(z − x1)

−k1 is the only factor in expression (1) that is not analytic atx1.
Hence ifφ(z) denotes the product of the rest of the factors in that expression,φ(z)

is analytic at the pointx1 and is represented throughout an open disk|z − x1| < R1

by its Taylor series aboutx1. So we can write

f ′(z) = (z − x1)
−k1φ(z)

= (z − x1)
−k1

[

φ(x1) +
φ′(x1)

1!
(z − x1) +

φ′′(x1)

2!
(z − x1)

2 + · · ·
]

,
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or

f ′(z) = φ(x1)(z − x1)
−k1 + (z − x1)

1−k1ψ(z),(4)

whereψ is analytic and therefore continuous throughout the entire open disk. Since
1 − k1 > 0, the last term on the right in equation (4) thus represents a continuous
function of z throughout the upper half of the disk, where Imz ≥ 0, if we assign it
the value zero atz = x1. It follows that the integral

∫ z

Z1

(s − x1)
1−k1ψ(s) ds

of that last term along a contour fromZ1 to z , whereZ1 and the contour lie in the
half disk, is a continuous function ofz at z = x1. The integral

∫ z

Z1

(s − x1)
−k1 ds =

1

1 − k1
[(z − x1)

1−k1 − (Z1 − x1)
1−k1]

along the same path also represents a continuous function ofz at x1 if we define
the value of the integral there as its limit asz approachesx1 in the half disk. The
integral of the function (4) along the stated path fromZ1 to z is, then, continuous
at z = x1; and the same is true of integral (3) since it can be written as an integral
along a contour inR from z0 to Z1 plus the integral fromZ1 to z.

The above argument applies at each of then − 1 pointsxj to makeF contin-
uous throughout the regiony ≥ 0.

From equation (1), we can show that for a sufficiently large positive number
R, a positive constantM exists such that if Imz ≥ 0, then

|f ′(z)| <
M

|z|2−kn
whenever |z| > R.(5)

Since 2− kn > 1, this order property of the integrand in equation (3) ensures the
existence of the limit of the integral there asz tends to infinity; that is, a number
Wn exists such that

lim
z→∞

F(z) = Wn (Im z ≥ 0).(6)

Details of the argument are left to Exercises 1 and 2.
Our mapping function, whose derivative is given by equation (1), can be written

f (z) = F(z) + B, whereB is a complex constant. The resulting transformation,

w = A

∫ z

z0

(s − x1)
−k1(s − x2)

−k2 · · · (s − xn−1)
−kn−1 ds + B,(7)

is theSchwarz–Christoffel transformation, named in honor of the two German math-
ematicians H. A. Schwarz (1843–1921) and E. B. Christoffel (1829–1900) who
discovered it independently.

Transformation (7) is continuous throughout the half planey ≥ 0 and is con-
formal there except for the pointsxj . We have assumed that the numberskj satisfy
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conditions (5), Sec. 116. In addition, we suppose that the constantsxj and kj are
such that the sides of the polygon do not cross, so that the polygon is a simple closed
contour. Then, according to Sec. 116, as the pointz describes thex axis in the posi-
tive direction, its imagew describes the polygonP in the positive sense; and there is
a one to one correspondence between points on that axis and points onP . According
to condition (6), the imagewn of the pointz = ∞ exists andwn = Wn + B.

If z is an interior point of the upper half planey ≥ 0 andx0 is any point on the
x axis other than one of thexj , then the angle from the vectort at x0 up to the line
segment joiningx0 andz is positive and less thanπ (Fig. 165). At the imagew0 of
x0, the corresponding angle from the vectorτ to the image of the line segment join-
ing x0 andz has that same value. Thus the images of interior points in the half plane
lie to the left of the sides of the polygon, taken counterclockwise. A proof that the
transformation establishes a one to one correspondence between the interior points
of the half plane and the points within the polygon is left to the reader (Exercise 3).

Given a specific polygonP , let us examine the number of constants in the
Schwarz–Christoffel transformation that must be determined in order to map thex

axis ontoP . For this purpose, we may writez0 = 0, A = 1, andB = 0 and simply
require that thex axis be mapped onto some polygonP ′ similar to P . The size
and position ofP ′ can then be adjusted to match those ofP by introducing the
appropriate constantsA andB.

The numberskj are all determined from the exterior angles at the vertices ofP .
Then − 1 constantsxj remain to be chosen. The image of thex axis is some polygon
P ′ that has the same angles asP . But if P ′ is to be similar toP , thenn − 2 connected
sides must have a common ratio to the corresponding sides ofP ; this condition is
expressed by means ofn − 3 equations in then − 1 real unknownsxj . Thustwo of
the numbersxj , or two relations between them, can be chosen arbitrarily,provided
thosen − 3 equations in the remainingn − 3 unknowns have real-valued solutions.

When a finite pointz = xn on the x axis, instead of the point at infinity,
represents the point whose image is the vertexwn, it follows from Sec. 116 that the
Schwarz–Christoffel transformation takes the form

w = A

∫ z

z0

(s − x1)
−k1(s − x2)

−k2 · · · (s − xn)
−kn ds + B,(8)

wherek1 + k2 + · · · + kn = 2. The exponentskj are determined from the exterior
angles of the polygon. But, in this case, there aren real constantsxj that must
satisfy then − 3 equations noted above. Thusthree of the numbersxj , or three
conditions on thosen numbers, can be chosen arbitrarilywhen transformation (8)
is used to map thex axis onto a given polygon.

EXERCISES
1. Obtain inequality (5), Sec. 117.

Suggestion:Let R be larger than the numbers|xj | (j = 1, 2, . . . , n − 1). Note
that if R is sufficiently large, the inequalities|z|/2 < |z − xj | < 2|z| hold for eachxj

when|z| > R. Then use expression (1), Sec. 117, along with conditions (5), Sec. 116.



408 The Schwarz–Christoffel Transformation chap. 11

2. Use condition (5), Sec. 117, and sufficient conditions for the existence of improper
integrals of real-valued functions to show thatF(x) has some limitWn as x tends
to infinity, whereF(z) is defined by equation (3) in that section. Also, show that the
integral off ′(z) over each arc of a semicircle|z| = R (Im z ≥ 0) approaches 0 asR
tends to∞. Then deduce that

lim
z→∞

F(z) = Wn (Im z ≥ 0),

as stated in equation (6) of Sec. 117.

3. According to Sec. 86, the expression

N =
1

2πi

∫

C

g′(z)

g(z)
dz

can be used to determine the number(N) of zeros of a functiong interior to a
positively oriented simple closed contourC wheng(z) �= 0 on C and whenC lies in
a simply connected domainD throughout whichg is analytic andg′(z) is never zero.
In that expression, writeg(z) = f (z) − w0 , wheref (z) is the Schwarz–Christoffel
mapping function (7), Sec. 117, and the pointw0 is either interior to or exterior to
the polygonP that is the image of thex axis ; thusf (z) �= w0. Let the contourC
consist of the upper half of a circle|z| = R and a segment−R < x < R of thex axis
that contains alln − 1 pointsxj , except that a small segment about each pointxj is
replaced by the upper half of a circle|z − xj | = ρj with that segment as its diameter.
Then the number of pointsz interior to C such thatf (z) = w0 is

NC =
1

2πi

∫

C

f ′(z)

f (z) − w0
dz .

Note thatf (z) − w0 approaches the nonzero pointWn − w0 when |z| = R and R

tends to∞, and recall the order property (5), Sec. 117, for|f ′(z)|. Let theρj tend
to zero, and prove that the number of points in the upper half of thez plane at which
f (z) = w0 is

N =
1

2πi
lim

R→∞

∫ R

−R

f ′(x)

f (x) − w0
dx.

Deduce that since
∫

P

dw

w − w0
= lim

R→∞

∫ R

−R

f ′(x)

f (x) − w0
dx,

N = 1 if w0 is interior toP and thatN = 0 if w0 is exterior toP . Thus show that
the mapping of the half plane Imz > 0 onto the interior ofP is one to one.

118. TRIANGLES AND RECTANGLES

The Schwarz–Christoffel transformation is written in terms of the pointsxj and not
in terms of their images, which are the vertices of the polygon. No more than three
of those points can be chosen arbitrarily; so, when the given polygon has more than
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three sides, some of the pointsxj must be determined in order to make the given
polygon, or any polygon similar to it, be the image of thex axis. The selection of
conditions for the determination of those constants that are convenient to use often
requires ingenuity.

Another limitation in using the transformation is due to the integration that
is involved. Often the integral cannot beevaluated in terms of a finite number
of elementary functions. In such cases, the solution of problems by means of the
transformation can become quite involved.

If the polygon is a triangle with vertices at the pointsw1, w2, andw3 (Fig. 166),
the transformation can be written

w = A

∫ z

z0

(s − x1)
−k1(s − x2)

−k2(s − x3)
−k3 ds + B,(1)

wherek1 + k2 + k3 = 2. In terms of the interior anglesθj ,

kj = 1 −
1

π
θj (j = 1, 2, 3).

Here we have taken all three pointsxj as finite points on thex axis. Arbitrary
values can be assigned to each of them. The complex constantsA andB, which are
associated with the size and position of the triangle, can be determined so that the
upper half plane is mapped onto the given triangular region.

x1
x u

w3 w2

w1

x3

y v

x2

FIGURE 166

If we take the vertexw3 as the image of the point at infinity, the transformation
becomes

w = A

∫ z

z0

(s − x1)
−k1(s − x2)

−k2 ds + B,(2)

where arbitrary real values can be assigned tox1 andx2.
The integrals in equations (1) and (2) do not represent elementary functions

unless the triangle is degenerate with one or two of its vertices at infinity. The
integral in equation (2) becomes anelliptic integral when the triangle is equi-
lateral or when it is a right triangle with one of its angles equal to eitherπ/3
or π/4.
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EXAMPLE 1. For an equilateral triangle,k1 = k2 = k3 = 2/3. It is conve-
nient to writex1 = −1, x2 = 1, andx3 = ∞ and to use equation (2), withz0 = 1,
A = 1, andB = 0. The transformation then becomes

w =
∫ z

1
(s + 1)−2/3(s − 1)−2/3 ds.(3)

The image of the pointz = 1 is clearlyw = 0 ; that is,w2 = 0. If z = −1 in
this integral, one can writes = x, where−1 < x < 1. Then

x + 1 > 0 and arg(x + 1) = 0,

while
|x − 1| = 1 − x and arg(x − 1) = π.

Hence

w =
∫ −1

1
(x + 1)−2/3(1 − x)−2/3 exp

(

−
2πi

3

)

dx(4)

= exp

(

πi

3

)∫ 1

0

2dx

(1 − x2)2/3

when z = −1. With the substitutionx =
√

t , the last integral here reduces to a
special case of the one used in defining the beta function (Exercise 7, Sec. 84). Let
b denote its value, which is positive:

b =
∫ 1

0

2 dx

(1 − x2)2/3
=

∫ 1

0
t−1/2(1 − t)−2/3 dt = B

(

1

2
,

1

3

)

.(5)

The vertexw1 is, therefore, the point (Fig. 167)

w1 = b exp
πi

3
.(6)

The vertexw3 is on the positiveu axis because

w3 =
∫ ∞

1
(x + 1)−2/3(x − 1)−2/3 dx =

∫ ∞

1

dx

(x2 − 1)2/3
.

xx2 w2 w3

w1

x1
u

b

b1–1

y v

FIGURE 167
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But the value ofw3 is also represented by integral (3) whenz tends to infinity along
the negativex axis ; that is,

w3 =
∫ −1

1
(|x + 1||x − 1|)−2/3 exp

(

−
2πi

3

)

dx

+
∫ −∞

−1
(|x + 1||x − 1|)−2/3 exp

(

−
4πi

3

)

dx.

In view of the first of expressions (4) forw1, then,

w3 = w1 + exp

(

−
4πi

3

)
∫ −∞

−1
(|x + 1||x − 1|)−2/3dx

= b exp
πi

3
+ exp

(

−
πi

3

) ∫ ∞

1

dx

(x2 − 1)2/3
,

or

w3 = b exp
πi

3
+ w3 exp

(

−
πi

3

)

.

Solving for w3, we find that

w3 = b.(7)

We have thus verified that the image of thex axis is the equilateral triangle of side
b shown in Fig. 167. We can also see that

w =
b

2
exp

πi

3
when z = 0.

When the polygon is a rectangle, eachkj = 1/2. If we choose±1 and±a as
the pointsxj whose images are the vertices and write

g(z) = (z + a)−1/2(z + 1)−1/2(z − 1)−1/2(z − a)−1/2,(8)

where 0≤ arg(z − xj ) ≤ π , the Schwarz–Christoffel transformation becomes

w = −
∫ z

0
g(s) ds,(9)

except for a transformationW = Aw + B to adjust the size and position of the
rectangle. Integral (9) is a constant times the elliptic integral

∫ z

0
(1 − s2)−1/2(1 − k2s2)−1/2 ds

(

k =
1

a

)

,
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but the form (8) of the integrand indicates more clearly the appropriate branches of
the power functions involved.

EXAMPLE 2. Let us locate the vertices of the rectangle whena > 1. As
shown in Fig. 168,x1 = −a, x2 = −1, x3 = 1, andx4 = a. All four vertices can
be described in terms of two positive numbersb andc that depend on the value of
a in the following manner :

b =
∫ 1

0
|g(x)| dx =

∫ 1

0

dx
√

(1 − x2)(a2 − x2)
,(10)

c =
∫ a

1
|g(x)| dx =

∫ a

1

dx
√

(x2 − 1)(a2 − x2)
.(11)

If −1 < x < 0, then

arg(x + a) = arg(x + 1) = 0 and arg(x − 1) = arg(x − a) = π;

hence

g(x) =
[

exp

(

−
πi

2

)]2

|g(x)| = −|g(x)|.

If −a < x < −1, then

g(x) =
[

exp

(

−
πi

2

)]3

|g(x)| = i|g(x)|.

Thus

w1 = −
∫ −a

0
g(x) dx = −

∫ −1

0
g(x) dx −

∫ −a

−1
g(x) dx

=
∫ −1

0
|g(x)| dx − i

∫ −a

−1
|g(x)| dx = −b + ic.

It is left to the exercises to show that

w2 = −b, w3 = b, w4 = b + ic.(12)

The position and dimensions of the rectangle are shown in Fig. 168.

x w2 w3

w4w1

x2 x4O O u

ic

b–b1 a–a –1

y v

x1 x3 FIGURE 168
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119. DEGENERATE POLYGONS

We now apply the Schwarz–Christoffel transformation to some degenerate polygons
for which the integrals represent elementary functions. For purposes of illustration, the
examples here result in transformations that we have already seen in Chap. 8.

EXAMPLE 1. Let us map the half planey ≥ 0 onto the semi-infinite strip

−
π

2
≤ u ≤

π

2
, v ≥ 0.

We consider the strip as the limiting form of a triangle with verticesw1, w2, and
w3 (Fig. 169) as the imaginary part ofw3 tends to infinity.

x u1–1

x1 x2

w3

w1 w2

y v

FIGURE 169

The limiting values of the exterior angles are

k1π = k2π =
π

2
and k3π = π.

We choose the pointsx1 = −1, x2 = 1, andx3 = ∞ as the points whose images
are the vertices. Then the derivative of the mapping function can be written

dw

dz
= A(z + 1)−1/2(z − 1)−1/2 = A′(1 − z2)−1/2.

Hencew = A′ sin−1 z + B. If we write A′ = 1/a andB = b/a, it follows that

z = sin(aw − b).

This transformation from thew to thez plane satisfies the conditionsz = −1
whenw = −π/2 andz = 1 whenw = π/2 if a = 1 andb = 0. The resulting trans-
formation is

z = sinw,

which we verified in Example 1, Sec. 96, as one that maps the strip onto the half
plane.

EXAMPLE 2. Consider the strip 0< v < π as the limiting form of a rhom-
bus with vertices at the pointsw1 = πi, w2, w3 = 0, andw4 as the pointsw2 and
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w4 are moved infinitely far to the left and right, respectively (Fig. 170). In the limit,
the exterior angles become

k1π = 0, k2π = π, k3π = 0, k4π = π.

We leavex1 to be determined and choose the valuesx2 = 0, x3 = 1, andx4 = ∞.
The derivative of the Schwarz–Christoffel mapping function then becomes

dw

dz
= A(z − x1)

0z−1(z − 1)0 =
A

z
;

thus
w = A Log z + B.

x u
1

x1 x3x2 w3

w1

w4w2

y v

FIGURE 170

Now B = 0 becausew = 0 whenz = 1. The constantA must be real because
the pointw lies on the real axis whenz = x andx > 0. The pointw = πi is the
image of the pointz = x1, wherex1 is a negative number ; consequently,

πi = A Log x1 = A ln |x1| + Aπi.

By identifying real and imaginary parts here, we see that|x1| = 1 andA = 1. Hence
the transformation becomes

w = Log z ;

also,x1 = −1. We already know from Example 3 in Sec. 95 that this transformation
maps the half plane onto the strip.

The procedure used in these two examples is not rigorous because limiting values
of angles and coordinates were not introduced in an orderly way. Limiting values were
used whenever it seemed expedient to do so. But if we verify the mapping obtained, it
is not essential that we justify the steps in our derivation of the mapping function. The
formal method used here is shorter and less tedious than rigorous methods.

EXERCISES
1. In transformation (1), Sec. 118, writez0 = 0, B = 0, and

A = exp
3πi

4
, x1 = −1, x2 = 0, x3 = 1,

k1 =
3

4
, k2 =

1

2
, k3 =

3

4
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to map thex axis onto anisosceles right triangle.Show that the vertices of that triangle
are the points

w1 = bi, w2 = 0, and w3 = b,

whereb is the positive constant

b =
∫ 1

0
(1 − x2)−3/4x−1/2 dx.

Also, show that

2b = B

(

1

4
,

1

4

)

,

whereB is the beta function that was defined in Exercise 7, Sec. 84.

2. Obtain expressions (12) in Sec. 118 for the rest of the vertices of the rectangle shown
in Fig. 168.

3. Show that when 0< a < 1 in expression (8), Sec. 118, the vertices of the rectangle
are those shown in Fig. 168, whereb andc now have the values

b =
∫ a

0
|g(x)| dx, c =

∫ 1

a

|g(x)| dx.

4. Show that the special case

w = i

∫ z

0
(s + 1)−1/2(s − 1)−1/2s−1/2 ds

of the Schwarz–Christoffel transformation (7), Sec. 117, maps thex axis onto the
squarewith vertices

w1 = bi, w2 = 0, w3 = b, w4 = b + ib,

where the (positive) numberb is related to the beta function, used in Exercise 1:

2b = B

(

1

4
,

1

2

)

.

5. Use the Schwarz–Christoffel transformation to arrive at the transformation

w = zm (0 < m < 1),

which maps the half planey ≥ 0 onto the wedge|w| ≥ 0, 0 ≤ argw ≤ mπ and trans-
forms the pointz = 1 into the pointw = 1. Consider the wedge as the limiting case
of the triangular region shown in Fig. 171 as the angleα there tends to 0.

u1

v

FIGURE 171



416 The Schwarz–Christoffel Transformation chap. 11

6. Refer to Fig. 26, Appendix 2. As the pointz moves to the right along the negative
real axis, its image pointw is to move to the right along the entireu axis. As z

describes the segment 0≤ x ≤ 1 of the real axis, its image pointw is to move to the
left along the half linev = πi (u ≥ 1); and, asz moves to the right along that part of
the positive real axis wherex ≥ 1, its image pointw is to move to the right along the
same half linev = πi (u ≥ 1). Note the changes in direction of the motion ofw at
the images of the pointsz = 0 andz = 1. These changes suggest that the derivative
of a mapping function should be

f ′(z) = A(z − 0)−1(z − 1),

whereA is some constant ; thus obtain formally the mapping function

w = πi + z − Log z,

which can be verified as one that maps the half plane Rez > 0 as indicated in the
figure.

7. As the pointz moves to the right along that part of the negative real axis where
x ≤ −1, its image point is to move to the right along the negative real axis in thew

plane. Asz moves on the real axis to the right along the segment−1 ≤ x ≤ 0 and
then along the segment 0≤ x ≤ 1, its image pointw is to move in the direction of
increasingv along the segment 0≤ v ≤ 1 of the v axis and then in the direction of
decreasingv along the same segment. Finally, asz moves to the right along that part
of the positive real axis wherex ≥ 1, its image point is to move to the right along
the positive real axis in thew plane. Note the changes in direction of the motion of
w at the images of the pointsz = −1, z = 0, andz = 1. A mapping function whose
derivative is

f ′(z) = A(z + 1)−1/2(z − 0)1(z − 1)−1/2,

whereA is some constant, is thus indicated. Obtain formally the mapping function

w =
√

z2 − 1 ,

where 0< arg
√

z2 − 1 < π . By considering the successive mappings

Z = z2, W = Z − 1, and w =
√

W,

verify that the resulting transformation maps the right half plane Rez > 0 onto the
upper half plane Imw > 0, with a cut along the segment 0< v ≤ 1 of thev axis.

8. The inverse of the linear fractional transformation

Z =
i − z

i + z

maps the unit disk|Z| ≤ 1 conformally, except at the pointZ = −1, onto the half plane
Im z ≥ 0. (See Fig. 13, Appendix 2.) LetZj be points on the circle|Z| = 1 whose
images are the pointsz = xj (j = 1, 2, . . . , n) that are used in the Schwarz–Christoffel
transformation (8), Sec. 117. Show formally, without determining the branches of the
power functions, that
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dw

dZ
= A′(Z − Z1)

−k1(Z − Z2)
−k2 · · · (Z − Zn)

−kn ,

whereA′ is a constant. Thus show thatthe transformation

w = A′
∫ Z

0
(S − Z1)

−k1(S − Z2)
−k2 · · · (S − Zn)

−kn dS + B

maps the interior of the circle|Z| = 1 onto the interior of a polygon,the vertices of
the polygon being the images of the pointsZj on the circle.

9. In the integral of Exercise 8, let the numbersZj (j = 1, 2, . . . , n) be thenth roots
of unity. Write ω = exp(2πi/n) and Z1 = 1, Z2 = ω, . . . , Zn = ωn−1 (see Sec. 9).
Let each of the numberskj (j = 1, 2, . . . , n) have the value 2/n. The integral in
Exercise 8 then becomes

w = A′
∫ Z

0

dS

(Sn − 1)2/n
+ B.

Show that whenA′ = 1 andB = 0, this transformation maps the interior of the unit
circle |Z| = 1 onto the interior of a regular polygon ofn sides and that the center of
the polygon is the pointw = 0.

Suggestion:The image of each of the pointsZj (j = 1, 2, . . . , n) is a vertex of
some polygon with an exterior angle of 2π/n at that vertex. Write

w1 =
∫ 1

0

dS

(Sn − 1)2/n
,

where the path of the integration is along the positive real axis fromZ = 0 to Z = 1
and the principal value of thenth root of (Sn − 1)2 is to be taken. Then show that
the images of the pointsZ2 = ω, . . . , Zn = ωn−1 are the pointsωw1, . . . , ω

n−1w1,
respectively. Thus verify that the polygon is regular and is centered atw = 0.

120. FLUID FLOW IN A CHANNEL THROUGH A SLIT

We now present a further example of the idealized steady flow treated in Chap. 10,
an example that will help show how sources and sinks can be accounted for in
problems of fluid flow. In this and the following two sections, the problems are
posed in theuv plane, rather than thexy plane. That allows us to refer directly to
earlier results in this chapter without interchanging the planes.

Consider the two-dimensional steady flow of fluid between two parallel planes
v = 0 andv = π when the fluid is entering through a narrow slit along the line
in the first plane that is perpendicular to theuv plane at the origin (Fig. 172). Let
the rate of flow of fluid into the channel through the slit beQ units of volume
per unit time for each unit of depth of the channel, where the depth is measured
perpendicular to theuv plane. The rate of flow out at either end is, then,Q/2.

The transformationw = Log z is a one to one mapping of the upper halfy > 0
of thez plane onto the strip 0< v < π in thew plane (see Example 2 in Sec. 119).
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uu0u1 O

v

x1O x0x1

y

FIGURE 172

The inverse transformation

z = ew = eueiv(1)

maps the strip onto the half plane (see Example 3, Sec. 14). Under transforma-
tion (1), the image of theu axis is the positive half of thex axis, and the image of
the linev = π is the negative half of thex axis. Hence the boundary of the strip is
transformed into the boundary of the half plane.

The image of the pointw = 0 is the pointz = 1. The image of a pointw = u0 ,
whereu0 > 0, is a pointz = x0 , wherex0 > 1. The rate of flow of fluid across a
curve joining the pointw = u0 to a point(u, v) within the strip is a stream function
ψ(u, v) for the flow (Sec. 114). Ifu1 is a negative real number, then the rate of
flow into the channel through the slit can be written

ψ(u1, 0) = Q.

Now, under a conformal transformation, the functionψ is transformed into a func-
tion of x andy that represents the stream function for the flow in the corresponding
region of thez plane; that is, the rate of flow is the same across corresponding
curves in the two planes. As in Chap. 10, the same symbolψ is used to represent
the different stream functions in the two planes. Since the image of the pointw = u1

is a pointz = x1, where 0< x1 < 1, the rate of flow across any curve connecting
the pointsz = x0 andz = x1 and lying in the upper half of thez plane is also equal
to Q. Hence there is a source at the pointz = 1 equal to the source atw = 0.

The same argument applies in general to show thatunder a conformal trans-
formation, a source or sink at a given point corresponds to an equal source or sink
at the image of that point.

As Rew tends to−∞, the image ofw approaches the pointz = 0. A sink of
strengthQ/2 at the latter point corresponds to the sink infinitely far to the left in
the strip. To apply the argument in this case, we consider the rate of flow across a
curve connecting the boundary linesv = 0 andv = π of the left-hand part of the
strip and the rate of flow across the image of that curve in thez plane.

The sink at the right-hand end of the strip is transformed into a sink at infinity
in the z plane.

The stream functionψ for the flow in the upper half of thez plane in this case
must be a function whose values are constant along each of the three parts of thex
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axis. Moreover, its value must increase byQ as the pointz moves around the point
z = 1 from the positionz = x0 to the positionz = x1, and its value must decrease
by Q/2 asz moves about the origin in the corresponding manner. We see that the
function

ψ =
Q

π

[

Arg (z − 1) −
1

2
Arg z

]

satisfies those requirements. Furthermore,this function is harmonic in the half plane
Im z > 0 because it is the imaginary component of the function

F =
Q

π

[

Log (z − 1) −
1

2
Log z

]

=
Q

π
Log (z1/2 − z−1/2).

The functionF is a complex potential function for the flow in the upper half
of thez plane. Sincez = ew, a complex potential functionF(w) for the flow in the
channel is

F(w) =
Q

π
Log (ew/2 − e−w/2).

By dropping an additive constant, one can write

F(w) =
Q

π
Log

(

sinh
w

2

)

.(2)

We have used the same symbolF to denote three distinct functions, once in thez

plane and twice in thew plane.
The velocity vector is

V = F ′(w) =
Q

2π
coth

w

2
.(3)

From this, it can be seen that

lim
|u|→∞

V =
Q

2π
.

Also, the pointw = πi is a stagnation point; that is, the velocity is zero there.
Hence the fluid pressure along the wallv = π of the channel is greatest at points
opposite the slit.

The stream functionψ(u, v) for the channel is the imaginary component of the
function F(w) given by equation (2). The streamlinesψ(u, v) = c2 are, therefore,
the curves

Q

π
Arg

(

sinh
w

2

)

= c2.

This equation reduces to

tan
v

2
= c tanh

u

2
,(4)

wherec is any real constant. Some of these streamlines are indicated in Fig. 172.
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121. FLOW IN A CHANNEL WITH AN OFFSET

To further illustrate the use of the Schwarz–Christoffel transformation, let us find
the complex potential for the flow of a fluid in a channel with an abrupt change in
its breadth (Fig. 173). We take our unit of length such that the breadth of the wide
part of the channel isπ units; thenhπ , where 0< h < 1, represents the breadth of
the narrow part. Let the real constantV0 denote the velocity of the fluid far from
the offset in the wide part ; that is,

lim
u→−∞

V = V0,

where the complex variableV represents the velocity vector. The rate of flow per
unit depth through the channel, or the strength of the source on the left and of the
sink on the right, is then

Q = πV0.(1)

u

V0

w2

w3

w1 w4
v

x
1
x3x1

y

x2

FIGURE 173

The cross section of the channel can be considered as the limiting case of the
quadrilateral with the verticesw1, w2, w3, andw4 shown in Fig. 173 as the first
and last of these vertices are moved infinitely far to the left and right, respectively.
In the limit, the exterior angles become

k1π = π, k2π =
π

2
, k3π = −

π

2
, k4π = π.

As before, we proceed formally, using limiting values whenever it is convenient to
do so. If we writex1 = 0, x3 = 1, x4 = ∞ and leavex2 to be determined, where
0 < x2 < 1, the derivative of the mapping function becomes

dw

dz
= Az−1(z − x2)

−1/2(z − 1)1/2.(2)

To simplify the determination of the constantsA and x2 here, we proceed at
once to the complex potential of the flow. The source of the flow in the channel
infinitely far to the left corresponds to an equal source atz = 0 (Sec. 120). The
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entire boundary of the cross section of the channel is the image of thex axis. In
view of equation (1), then, the function

F = V0 Log z = V0 ln r + iV0 θ(3)

is the potential for the flow in the upper half of thez plane, with the required source
at the origin. Here the stream function isψ = V0 θ . It increases in value from 0 to
V0π over each semicirclez = Reiθ (0 ≤ θ ≤ π) asθ varies from 0 toπ . [Compare
with equation (5), Sec. 114, and Exercise 8, Sec. 115.]

The complex conjugate of the velocityV in the w plane can be written

V (w) =
dF

dw
=

dF

dz

dz

dw
.

Thus, by referring to equations (2) and (3), we can see that

V (w) =
V0

A

(

z − x2

z − 1

)1/2

.(4)

At the limiting position of the pointw1, which corresponds toz = 0, the veloc-
ity is the real constantV0. So it follows from equation (4) that

V0 =
V0

A

√
x2.

At the limiting position ofw4, which corresponds toz = ∞, let the real numberV4

denote the velocity. Now it seems plausible that as a vertical line segment spanning
the narrow part of the channel is moved infinitely far to the right,V approachesV4

at each point on that segment. We could establish this conjecture as a fact by first
finding w as the function ofz from equation (2); but, to shorten our discussion, we
assume that this is true, Then, since the flow is steady,

πhV4 = πV0 = Q,

or V4 = V0/h. Letting z tend to infinity in equation (4), we find that

V0

h
=

V0

A
.

Thus

A = h, x2 = h2(5)

and

V (w) =
V0

h

(

z − h2

z − 1

)1/2

.(6)
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From equation (6), we know that the magnitude|V | of the velocity becomes
infinite at the cornerw3 of the offset since it is the image of the pointz = 1. Also,
the cornerw2 is a stagnation point, a point whereV = 0. Hence, along the boundary
of the channel, the fluid pressure is greatest atw2 and least atw3.

To write the relation between the potential and the variablew, we must integrate
equation (2), which can now be written

dw

dz
=

h

z

(

z − 1

z − h2

)1/2

.(7)

By substituting a new variables, where

z − h2

z − 1
= s2,

one can show that equation (7) reduces to

dw

ds
= 2h

(

1

1 − s2
−

1

h2 − s2

)

.

Hence

w = h Log
1 + s

1 − s
− Log

h + s

h − s
.(8)

The constant of integration here is zero because whenz = h2, the quantitys is zero
and so, therefore, isw.

In terms ofs, the potentialF of equation (3) becomes

F = V0 Log
h2 − s2

1 − s2
;

consequently,

s2 =
exp(F/V0) − h2

exp(F/V0) − 1
.(9)

By substitutings from this equation into equation (8), we obtain an implicit relation
that defines the potentialF as a function ofw.

122. ELECTROSTATIC POTENTIAL ABOUT AN EDGE
OF A CONDUCTING PLATE

Two parallel conducting plates of infinite extent are kept at the electrostatic potential
V = 0, and a parallel semi-infinite plate, placed midway between them, is kept at
the potentialV = 1. The coordinate system and the unit of length are chosen so that
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the plates lie in the planesv = 0, v = π , andv = π/2 (Fig. 174). Let us determine
the potential functionV (u, v) in the region between those plates.

uV = 0

V = 0

V = 1w2

w3

w1

w4

v

x
1
x3

y

–1
x1 x2

FIGURE 174

The cross section of that region in theuv plane has the limiting form of
the quadrilateral bounded by the dashed lines in Fig. 174 as the pointsw1 and
w3 move out to the right andw4 to the left. In applying the Schwarz–Christoffel
transformation here, we let the pointx4, corresponding to the vertexw4, be the point
at infinity. We choose the pointsx1 = −1, x3 = 1 and leavex2 to be determined.
The limiting values of the exterior angles of the quadrilateral are

k1π = π, k2π = −π, k3π = k4π = π.

Thus

dw

dz
= A(z + 1)−1(z − x2)(z − 1)−1 = A

(

z − x2

z2 − 1

)

=
A

2

(

1 + x2

z + 1
+

1 − x2

z − 1

)

,

and so the transformation of the upper half of thez plane into the divided strip in
the w plane has the form

w =
A

2
[(1 + x2) Log(z + 1) + (1 − x2) Log (z − 1)] + B.(1)

Let A1, A2 andB1, B2 denote the real and imaginary parts of the constantsA

and B. When z = x, the pointw lies on the boundary of the divided strip ; and,
according to equation (1),

u + iv =
A1 + iA2

2
{(1 + x2)[ln |x + 1| + i arg(x + 1)](2)

+ (1 − x2)[ln |x − 1| + i arg(x − 1)]} + B1 + iB2.

To determine the constants here, we first note that the limiting position of the
line segment joining the pointsw1 andw4 is theu axis. That segment is the image
of the part of thex axis to the left of the pointx1 = −1; this is because the line
segment joiningw3 and w4 is the image of the part of thex axis to the right of
x3 = 1, and the other two sides of the quadrilateral are the images of the remaining
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two segments of thex axis. Hence whenv = 0 and u tends to infinity through
positive values, the corresponding pointx approaches the pointz = −1 from the
left. Thus

arg(x + 1) = π, arg(x − 1) = π,

and ln|x + 1| tends to−∞. Also, since−1 < x2 < 1, the real part of the quantity
inside the braces in equation (2) tends to−∞. Sincev = 0, it readily follows that
A2 = 0 ; for, otherwise, the imaginary part on the right would become infinite. By
equating imaginary parts on the two sides, we now see that

0 =
A1

2
[(1 + x2)π + (1 − x2)π ] + B2.

Hence

−πA1 = B2, A2 = 0.(3)

The limiting position of the line segment joining the pointsw1 andw2 is the
half line v = π/2 (u ≥ 0). Points on that half line are images of the pointsz = x,
where−1 < x ≤ x2; consequently,

arg(x + 1) = 0, arg(x − 1) = π.

Identifying the imaginary parts on the two sides of equation (2), we thus arrive at
the relation

π

2
=

A1

2
(1 − x2)π + B2.(4)

Finally, the limiting positions of the points on the line segment joiningw3 to
w4 are the pointsu + πi, which are the images of the pointsx when x > 1. By
identifying, for those points, the imaginary parts in equation (2), we find that

π = B2.

Then, in view of equations (3) and (4),

A1 = −1, x2 = 0.

Thusx = 0 is the point whose image is the vertexw = πi/2 ; and, upon substituting
these values into equation (2) and identifying real parts, we see thatB1 = 0.

Transformation (1) now becomes

w = −
1

2
[Log (z + 1) + Log (z − 1)] + πi,(5)

or

z2 = 1 + e−2w.(6)
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Under this transformation, the required harmonic functionV (u, v) becomes a
harmonic function ofx andy in the half planey > 0 ; and the boundary conditions
indicated in Fig. 175 are satisfied. Note thatx2 = 0 now. The harmonic function
in that half plane which assumes those values on the boundary is the imaginary
component of the analytic function

1

π
Log

z − 1

z + 1
=

1

π
ln

r1

r2
+

i

π
(θ1 − θ2),

whereθ1 andθ2 range from 0 toπ . Writing the tangents of these angles as functions
of x andy and simplifying, we find that

tanπV = tan(θ1 − θ2) =
2y

x2 + y2 − 1
.(7)

xV = 0 V = 0V = 1 1–1

z
r2

x1 x3x2

r1

v

FIGURE 175

Equation (6) furnishes expressions forx2 + y2 andx2 − y2 in terms ofu and
v. Then, from equation (7), we find that the relation between the potentialV and
the coordinatesu andv can be written

tanπV =
1

s

√

e−4u − s2,(8)

where
s = −1 +

√

1 + 2e−2u cos 2v + e−4u.

EXERCISES
1. Use the Schwarz–Christoffel transformation to obtain formally the mapping function

given with Fig. 22, Appendix 2.

2. Explain why the solution of the problem of flow in a channel with a semi-infinite
rectangular obstruction (Fig. 176) is included in the solution of the problem treated in
Sec. 121.

FIGURE 176
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3. Refer to Fig. 29, Appendix 2. As the pointz moves to the right along the negative part
of the real axis wherex ≤ −1, its image pointw is to move to the right along the half
line v = h (u ≤ 0). As the pointz moves to the right along the segment−1 ≤ x ≤ 1
of the x axis, its image pointw is to move in the direction of decreasingv along the
segment 0≤ v ≤ h of the v axis. Finally, asz moves to the right along the positive
part of the real axis wherex ≥ 1, its image pointw is to move to the right along the
positive real axis. Note the changes in the direction of motion ofw at the images of
the pointsz = −1 andz = 1. These changes indicate that the derivative of a mapping
function might be

dw

dz
= A

(

z + 1

z − 1

)1/2

,

whereA is some constant. Thus obtain formally the transformation given with the
figure. Verify that the transformation, written in the form

w =
h

π
{(z + 1)1/2(z − 1)1/2 + Log [z + (z + 1)1/2(z − 1)1/2]}

where 0≤ arg(z ± 1) ≤ π , maps the boundary in the manner indicated in the figure.

4. Let T (u, v) denote the bounded steady-state temperatures in the shaded region of
the w plane in Fig. 29, Appendix 2, with the boundary conditionsT (u, h) = 1 when
u < 0 andT = 0 on the rest(B ′C′D′) of the boundary. Using the parameterα, where
0 < α < π/2, show that the image of each pointz = i tanα on the positivey axis is
the point

w =
h

π

[

ln(tanα + secα) + i
(π

2
+ secα

)]

(see Exercise 3) and that the temperature at that pointw is

T (u, v) =
α

π

(

0 < α <
π

2

)

.

5. Let F(w) denote the complex potential function for the flow of a fluid over a step in
the bed of a deep stream represented by the shaded region of thew plane in Fig. 29,
Appendix 2, where the fluid velocityV approaches a real constantV0 as |w| tends to
infinity in that region. The transformation that maps the upper half of thez plane onto
that region is noted in Exercise 3. Use the chain rule

dF

dw
=

dF

dz

dz

dw

to show that
V (w) = V0(z − 1)1/2(z + 1)−1/2;

and, in terms of the pointsz = x whose images are the points along the bed of the
stream, show that

|V | = |V0|

√

∣

∣

∣

∣

x − 1

x + 1

∣

∣

∣

∣

.



sec. 122 Exercises 427

Note that the speed increases from|V0| alongA′B ′ until |V | = ∞ at B ′, then dimin-
ishes to zero atC′, and increases toward|V0| from C′ to D′; note, too, that the speed
is |V0| at the point

w = i

(

1

2
+

1

π

)

h,

betweenB ′ andC′.





C H A P T E R

12
INTEGRAL FORMULAS
OF THE POISSON TYPE

In this chapter, we develop a theory that enables us to solve a variety of boundary
value problems whose solutions are expressed in terms of definite or improper
integrals. Many of the integrals occurring are then readily evaluated.

123. POISSON INTEGRAL FORMULA

Let C0 denote a positively oriented circle, centered at the origin, and suppose that
a functionf is analytic inside and onC0. The Cauchy integral formula (Sec. 50)

f (z) =
1

2πi

∫

C0

f (s) ds

s − z
(1)

expresses the value off at any pointz interior to C0 in terms of the values off
at pointss on C0. In this section, we shall obtain from formula (1) a corresponding
formula for the real component of the functionf ; and, in Sec. 124, we shall use
that result to solve the Dirichlet problem (Sec. 105) for the disk bounded byC0.

We let r0 denote the radius ofC0 and writez = r exp(iθ), where 0< r < r0

(Fig. 177). Theinverse of the nonzero pointz with respect to the circle is the
point z1 lying on the same ray from the origin asz and satisfying the condition
|z1||z| = r2

0 . Because(r0/r) > 1,

|z1| =
r2
0

|z|
=

(

r0

r

)

r0 > r0 ;

429
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xO r0

z1

z

s

y

C0

FIGURE 177

and this means thatz1 is exterior to the circleC0. According to the Cauchy–Goursat
theorem (Sec. 46), then,

∫

C0

f (s) ds

s − z1
= 0.

Hence

f (z) =
1

2πi

∫

C0

(

1

s − z
−

1

s − z1

)

f (s) ds ;

and, using the parametric representations = r0 exp(iφ) (0 ≤ φ ≤ 2π) for C0, we
have

f (z) =
1

2π

∫ 2π

0

(

s

s − z
−

s

s − z1

)

f (s) dφ(2)

where, for convenience, we retain thes to denoter0 exp(iφ). Now

z1 =
r2
0

r
eiθ =

r2
0

re−iθ
=

ss

z
;

and, in view of this expression forz1, the quantity inside the parentheses in equation
(2) can be written

s

s − z
−

s

s − s(s/z)
=

s

s − z
+

z

s − z
=

r2
0 − r2

|s − z|2
.(3)

An alternative form of the Cauchy integral formula (1) is, therefore,

f (reiθ ) =
r2
0 − r2

2π

∫ 2π

0

f (r0e
iφ)

|s − z|2
dφ(4)

when 0< r < r0. This form is also valid whenr = 0 ; in that case, it reduces
directly to

f (0) =
1

2π

∫ 2π

0
f (r0e

iφ) dφ,

which is just the parametric form of equation (1) withz = 0.
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The quantity|s − z| is the distance between the pointss andz , and the law of
cosines can be used to write (see Fig. 177)

|s − z|2 = r2
0 − 2r0r cos(φ − θ) + r2.(5)

Hence, ifu is the real component of the analytic functionf , it follows from for-
mula (4) that

u(r, θ) =
1

2π

∫ 2π

0

(r2
0 − r2)u(r0, φ)

r2
0 − 2r0r cos(φ − θ) + r2

dφ (r < r0).(6)

This is thePoisson integral formulafor the harmonic functionu in the open disk
bounded by the circler = r0.

Formula (6) defines a linear integral transformation ofu(r0, φ) into u(r, θ).
The kernel of the transformation is, except for the factor 1/(2π), the real-valued
function

P(r0, r, φ − θ) =
r2
0 − r2

r2
0 − 2r0r cos(φ − θ) + r2

,(7)

which is known as thePoisson kernel.In view of equation (5), we can also write

P(r0, r, φ − θ) =
r2
0 − r2

|s − z|2
;(8)

and, sincer < r0, it is clear thatP is a positive function. Moreover, sincez/(s − z)

and its complex conjugatez/(s − z) have the same real parts , we find from the
second of equations (3) that

P(r0, r, φ − θ) = Re

(

s

s − z
+

z

s − z

)

= Re

(

s + z

s − z

)

.(9)

ThusP(r0, r, φ − θ) is a harmonic function ofr andθ interior toC0 for each fixed
s on C0. From equation (7), we see thatP(r0, r, φ − θ) is an even periodic function
of φ − θ , with period 2π , and that its value is 1 whenr = 0.

The Poisson integral formula (6) can now be written

u(r, θ) =
1

2π

∫ 2π

0
P(r0, r, φ − θ)u(r0, φ) dφ (r < r0).(10)

Whenf (z) = u(r, θ) = 1, equation (10) shows thatP has the property

1

2π

∫ 2π

0
P(r0, r, φ − θ) dφ = 1 (r < r0).(11)

We have assumed thatf is analytic not only interior toC0 but also onC0 itself
and thatu is, therefore, harmonic in a domain which includes all points on that
circle. In particular,u is continuous onC0. The conditions will now be relaxed.
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124. DIRICHLET PROBLEM FOR A DISK

Let F be a piecewise continuous function (Sec. 38) ofθ on the interval 0≤ θ ≤ 2π .
The Poisson integral transformof F is defined in terms of the Poisson kernel
P(r0, r, φ − θ), introduced in Sec. 123, by means of the equation

U(r, θ) =
1

2π

∫ 2π

0
P(r0, r, φ − θ)F (φ) dφ (r < r0).(1)

In this section, we shall prove thatthe functionU(r, θ) is harmonic inside the
circle r = r0 and

lim
r→r0
r<r0

U(r, θ) = F(θ)(2)

for each fixedθ at whichF is continuous.Thus U is a solution of the Dirichlet
problem for the diskr < r0 in the sense thatU(r, θ) approaches the boundary value
F(θ) as the point(r, θ) approaches(r0, θ) along a radius, except at the finite number
of points (r0, θ) where discontinuities ofF may occur.

EXAMPLE. Before proving the statementin italics, let us apply it to find
the potentialV (r, θ) inside a long hollow circular cylinder of unit radius, split
lengthwise into two equal parts, whenV = 1 on one of the parts andV = 0 on
the other. This problem was solved by conformal mapping in Sec. 112 ; and we
recall how it was interpreted there as a Dirichlet problem for the diskr < 1, where
V = 0 on the upper half of the boundaryr = 1 andV = 1 on the lower half. (See
Fig. 178.)

xO

V = 0

V = 1

1

y

FIGURE 178

In equation (1), writeV for U , r0 = 1, and

F(φ) =

{

0 when 0< φ < π,

1 when π < φ < 2π
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to obtain

V (r, θ) =
1

2π

∫ 2π

π

P(1, r, φ − θ) dφ,(3)

where

P(1, r, φ − θ) =
1 − r2

1 + r2 − 2r cos(φ − θ)
.

An antiderivative ofP(1, r, ψ) is
∫

P(1, r, ψ) dψ = 2 arctan

(

1 + r

1 − r
tan

ψ

2

)

,(4)

the integrand here being the derivative with respect toψ of the function on the right
(see Exercise 3). So it follows from expression (3) that

πV (r, θ) = arctan

(

1 + r

1 − r
tan

2π − θ

2

)

− arctan

(

1 + r

1 − r
tan

π − θ

2

)

.

After simplifying the expression for tan[πV (r, θ)] obtained from this last equation
(see Exercise 4), we find that

V (r, θ) =
1

π
arctan

(

1 − r2

2r sinθ

)

(0 ≤ arctant ≤ π),(5)

where the stated restriction on the values of the arctangent function is physically
evident. When expressed in rectangular coordinates, the solution here is the same
as solution (5) in Sec. 112.

We turn now to the proof that the functionU defined in equation (1) satisfies the
Dirichlet problem for the diskr < r0, as asserted just prior to this example. First of
all, U is harmonic inside the circler = r0 becauseP is a harmonic function ofr and
θ there. More precisely, sinceF is piecewise continuous, integral (1) can be written
as the sum of a finite number of definite integrals each of which has an integrand that
is continuous inr, θ , andφ. The partial derivatives of those integrands with respect
to r andθ are also continuous. Since the order of integration and differentiation with
respect tor andθ can, then, be interchanged and sinceP satisfies Laplace’s equation

r2Prr + rPr + Pθθ = 0

in the polar coordinatesr and θ (Exercise 5, Sec. 26), it follows thatU satisfies
that equation too.

In order to verify limit (2), we need to show that ifF is continuous atθ , there
corresponds to each positive numberε a positive numberδ such that

|U(r, θ) − F(θ)| < ε whenever 0< r0 − r < δ.(6)



434 Integral Formulas of the Poisson Type chap. 12

We start by referring to property (11), Sec. 123, of the Poisson kernel and writing

U(r, θ) − F(θ) =
1

2π

∫ 2π

0
P(r0, r, φ − θ) [F(φ) − F(θ)] dφ.

For convenience, we letF be extended periodically, with period 2π , so that the
integrand here is periodic inφ with that same period. Also, we may assume that
0 < r < r0 because of the nature of the limit to be established.

Next, we observe that sinceF is continuous atθ , there is a small positive
numberα such that

|F(φ) − F(θ)| <
ε

2
whenever |φ − θ | ≤ α.(7)

Evidently,

U(r, θ) − F(θ) = I1(r) + I2(r)(8)

where

I1(r) =
1

2π

∫ θ+α

θ−α

P(r0, r, φ − θ) [F(φ) − F(θ)] dφ,

I2(r) =
1

2π

∫ θ−α+2π

θ+α

P(r0, r, φ − θ) [F(φ) − F(θ)] dφ.

The fact thatP is a positive function (Sec. 123), together with the first of
inequalities (7) just above and property (11), Sec. 123, of that function, enables us
to write

|I1(r)| ≤
1

2π

∫ θ+α

θ−α

P(r0, r, φ − θ) |F(φ) − F(θ)| dφ

<
ε

4π

∫ 2π

0
P(r0, r, φ − θ) dφ =

ε

2
.

As for the integralI2(r), one can see from Fig. 177 in Sec. 123 that the denomi-
nator |s − z|2 in expression (8) forP(r0, r, φ − θ) in that section has a (positive)
minimum valuem as the argumentφ of s varies over the closed interval

θ + α ≤ φ ≤ θ − α + 2π.

So, ifM denotes an upper bound of the piecewise continuous function|F(φ) − F(θ)|
on the interval 0≤ φ ≤ 2π , it follows that

|I2(r)| ≤
(r2

0 − r2)M

2πm
2π <

2Mr0

m
(r0 − r) <

2Mr0

m
δ =

ε

2

wheneverr0 − r < δ where
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δ =
mε

4Mr0
.(9)

Finally, the results in the two preceding paragraphs tell us that

|U(r, θ) − F(θ)| ≤ |I1(r)| + |I2(r)| <
ε

2
+

ε

2
= ε

wheneverr0 − r < δ, whereδ is the positive number defined by equation (9). That
is, statement (6) holds when that choice ofδ is made.

According to expression (1), and sinceP(r0, 0, φ − θ) = 1,

U(0, θ) =
1

2π

∫ 2π

0
F(φ) dφ.

Thusthe value of a harmonic function at the center of the circler = r0 is the average
of the boundary values on the circle.

It is left to the exercises to prove thatP andU can be represented by series
involving the elementary harmonic functionsrn cosnθ andrn sinnθ as follows :

P(r0, r, φ − θ) = 1 + 2
∞

∑

n=1

(

r

r0

)n

cosn(φ − θ) (r < r0)(10)

and

U(r, θ) =
1

2
a0 +

∞
∑

n=1

(

r

r0

)n

(an cosnθ + bn sinnθ) (r < r0),(11)

where

an =
1

π

∫ 2π

0
F(φ) cosnφ dφ, bn =

1

π

∫ 2π

0
F(φ) sinnφ dφ.(12)

EXERCISES
1. Use the Poisson integral transform (1), Sec. 124, to derive the expression

V (x, y) =
1

π
arctan

[

1 − x2 − y2

(x − 1)2 + (y − 1)2 − 1

]

(0 ≤ arctant ≤ π)

for the electrostatic potential interior to a cylinderx2 + y2 = 1 whenV = 1 on the
first quadrant(x > 0, y > 0) of the cylindrical surface andV = 0 on the rest of that
surface. Also, point out why 1− V is the solution to Exercise 8, Sec. 112.

2. Let T denote the steady temperatures in a diskr ≤ 1, with insulated faces, when
T = 1 on the arc 0< θ < 2θ0 (0 < θ0 < π/2) of the edger = 1 andT = 0 on the
rest of the edge. Use the Poisson integral transform (1), Sec. 124, to show that

T (x, y) =
1

π
arctan

[

(1 − x2 − y2)y0

(x − 1)2 + (y − y0)2 − y2
0

]

(0 ≤ arctant ≤ π),

wherey0 = tanθ0 . Verify that this functionT satisfies the boundary conditions.
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3. Verify integration formula (4) in the example in Sec. 124 by differentiating the right-
hand side there with respect toψ.

Suggestion:The trigonometric identities

cos2
ψ

2
=

1 + cosψ

2
, sin2 ψ

2
=

1 − cosψ

2
are useful in this verification.

4. With the aid of the trigonometric identities

tan(α − β) =
tanα − tanβ

1 + tanα tanβ
, tanα + cotα =

2

sin 2α
,

show how solution (5) in the example in Sec. 124 is obtained from the expression for
πV (r, θ) just prior to that solution.

5. Let I denote thisfinite unit impulse function(Fig. 179) :

I (h, θ − θ0) =
{1/h whenθ0 ≤ θ ≤ θ0 + h,

0 when 0 ≤ θ < θ0 or θ0 + h < θ ≤ 2π,

whereh is a positive number and 0≤ θ0 < θ0 + h < 2π . Note that
∫ θ0+h

θ0

I (h, θ − θ0) dθ = 1.

O

1–
h

FIGURE 179

With the aid of a mean value theorem for definite integrals, show that
∫ 2π

0
P (r0, r, φ − θ) I (h, φ − θ0) dφ = P (r0, r, c − θ)

∫ θ0+h

θ0

I (h, φ − θ0) dφ,

whereθ0 ≤ c ≤ θ0 + h, and hence that

lim
h→0
h>0

∫ 2π

0
P (r0, r, φ − θ) I (h, φ − θ0) dφ = P (r0, r, θ − θ0) (r < r0).

Thus the Poisson kernelP (r0, r, θ − θ0) is the limit, ash approaches 0 through positive
values, of the harmonic function inside the circler = r0 whose boundary values are
represented by the impulse function 2πI (h, θ − θ0).

6. Show that the expression in Exercise 8(b), Sec. 62, for the sum of a certain cosine
series can be written
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1 + 2
∞

∑

n=1

an cosnθ =
1 − a2

1 − 2a cosθ + a2
(−1 < a < 1).

Thus show that the Poisson kernel (7), Sec. 123, has the series representation (10),
Sec. 124.

7. Show that the series in representation (10), Sec. 124, for the Poisson kernel converges
uniformly with respect toφ. Then obtain from formula (1) of that section the series
representation (11) forU(r, θ) there.∗

8. Use expressions (11) and (12) in Sec. 124 to find the steady temperaturesT (r, θ) in a
solid cylinderr ≤ r0 of infinite length ifT (r0, θ) = A cosθ . Show that no heat flows
across the planey = 0.

Ans. T =
A

r0
r cosθ =

A

r0
x.

125. RELATED BOUNDARY VALUE PROBLEMS

Details of proofs of results given in this section are left to the exercises. The function
F representing boundary values on the circler = r0 is assumed to be piecewise
continuous.

Suppose thatF(2π − θ) = −F(θ). The Poisson integral transform (1) in Sec.
124 then becomes

U(r, θ) =
1

2π

∫ π

0
[P(r0, r, φ − θ) − P(r0, r, φ + θ)]F(φ) dφ.(1)

This functionU has zero values on the horizontal radiiθ = 0 andθ = π of the circle,
as one would expect whenU is interpreted as a steady temperature. Formula (1)
thus solvesthe Dirichlet problem for the semicircular regionr < r0 , 0 < θ < π ,
whereU = 0 on the diameterAB shown inFig. 180and

lim
r→r0
r<r0

U(r, θ) = F(θ) (0 < θ < π)(2)

for each fixedθ at whichF is continuous.

x

r
r0

A B

y

FIGURE 180

∗This result is obtained whenr0 = 1 by the method of separation of variables in the authors’ “Fourier
Series and Boundary Value Problems,” 7th ed., Sec. 43, 2008.
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If F(2π − θ) = F(θ), then

U(r, θ) =
1

2π

∫ π

0
[P(r0, r, φ − θ) + P(r0, r, φ + θ)]F(φ) dφ;(3)

andUθ (r, θ) = 0 whenθ = 0 or θ = π . Hence formula (3) furnishes a functionU
that is harmonic in the semicircular regionr < r0, 0 < θ < π and satisfies condi-
tion (2) as well as the condition that its normal derivative be zero on the diameter
AB shown inFig. 180.

The analytic functionz = r2
0/Z maps the circle|Z| = r0 in the Z plane onto

the circle|z| = r0 in the z plane, and it maps the exterior of the first circle onto the
interior of the second (see Sec. 91). Writing

z = reiθ and Z = Reiψ ,

we see that

r =
r2
0

R
and θ = 2π − ψ.

The harmonic functionU(r, θ) represented by formula (1), Sec 124, is, then, trans-
formed into the function

U

(

r2
0

R
, 2π − ψ

)

= −
1

2π

∫ 2π

0

r2
0 − R2

r2
0 − 2r0R cos(φ + ψ) + R2

F(φ) dφ,

which is harmonic in the domainR > r0. Now, in general, ifu(r, θ) is harmonic,
so isu(r, −θ). [See Exercise 4.] Hence the function

H(R, ψ) = U

(

r2
0

R
, ψ − 2π

)

,

or

H(R, ψ) = −
1

2π

∫ 2π

0
P(r0, R, φ − ψ)F(φ) dφ (R > r0),(4)

is also harmonic. For each fixedψ at which F(ψ) is continuous, we find from
condition (2), Sec. 124, that

lim
R→r0
R>r0

H(R, ψ) = F(ψ).(5)

Thus formula (4) solvesthe Dirichlet problem for the region exterior to the
circle R = r0 in the Z plane (Fig. 181). We note from expression (8), Sec. 123,
that the Poisson kernelP(r0, R, φ − ψ) is negative whenR > r0. Also,

1

2π

∫ 2π

0
P(r0, R, φ − ψ) dφ = −1 (R > r0)(6)
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and

lim
R→∞

H(R, ψ) =
1

2π

∫ 2π

0
F(φ) dφ.(7)

X

Y

r0

FIGURE 181

EXERCISES
1. Obtain the special case

(a) H(R,ψ) =
1

2π

∫ π

0
[P (r0, R, φ + ψ) − P (r0, R, φ − ψ)]F(φ) dφ ;

(b) H(R,ψ) = −
1

2π

∫ π

0
[P (r0, R, φ + ψ) + P (r0, R, φ − ψ)]F(φ) dφ

of formula (4), Sec. 125, for the harmonic functionH(R,ψ) in the unbounded region
R > r0, 0 < ψ < π , shown in Fig. 182, if that function satisfies the boundary condi-
tion

lim
R→r0
R>r0

H(R,ψ) = F(ψ) (0 < ψ < π)

on the semicircle and(a) it is zero on the raysBA andDE; (b) its normal derivative
is zero on the raysBA andDE.

XEA B D

C

Y

r0

FIGURE 182

2. Give the details needed in establishing formula (1) in Sec. 125 as a solution of the
Dirichlet problem stated there for the region shown in Fig. 180.

3. Give the details needed in establishing formula (3) in Sec. 125 as a solution of the
boundary value problem stated there.

4. Obtain formula (4), Sec. 125, as a solution of the Dirichlet problem for the region
exterior to a circle (Fig. 181). To show thatu(r,− θ) is harmonic whenu(r, θ) is
harmonic, use the polar form

r2urr (r, θ) + rur(r, θ) + uθθ (r, θ) = 0

of Laplace’s equation.
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5. State why equation (6), Sec. 125, is valid.

6. Establish limit (7), Sec. 125.

126. SCHWARZ INTEGRAL FORMULA

Let f be an analytic function ofz throughout the half plane Imz ≥ 0 such that for
some positive constantsa andM, the order property

|zaf (z)| < M (Im z ≥ 0)(1)

is satisfied. For a fixed pointz above the real axis, letCR denote the upper half
of a positively oriented circle of radiusR centered at the origin, whereR > |z|
(Fig. 183). Then, according to the Cauchy integral formula (Sec. 50),

f (z) =
1

2πi

∫

CR

f (s) ds

s − z
+

1

2πi

∫ R

−R

f (t) dt

t − z
.(2)

x

s

z

R–R t

CR

y

FIGURE 183

We find that the first of these integrals approaches 0 asR tends to∞ since, in
view of condition (1),

∣

∣

∣

∣

∫

CR

f (s) ds

s − z

∣

∣

∣

∣

<
M

Ra(R − |z|)
πR =

πM

Ra(1 − |z|/R)
.

Thus

f (z) =
1

2πi

∫ ∞

−∞

f (t) dt

t − z
(Im z > 0).(3)

Condition (1) also ensures that the improper integral here converges.∗ The number
to which it converges is the same as its Cauchy principal value (see Sec. 78), and
representation (3) is aCauchy integral formula for the half planeIm z > 0.

∗See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., Chap. 22, 1983.
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When the pointz lies below the real axis, the right-hand side of equation (2)
is zero; hence integral (3) is zero for such a point. Thus, whenz is above the real
axis, we have the following formula, wherec is an arbitrary complex constant:

f (z) =
1

2πi

∫ ∞

−∞

(

1

t − z
+

c

t − z

)

f (t) dt (Im z > 0).(4)

In the two casesc = −1 andc = 1, this reduces, respectively, to

f (z) =
1

π

∫ ∞

−∞

yf (t)

|t − z|2
dt (y > 0)(5)

and

f (z) =
1

πi

∫ ∞

−∞

(t − x)f (t)

|t − z|2
dt (y > 0).(6)

If f (z) = u(x, y) + iv(x, y), it follows from formulas (5) and (6) that the
harmonic functionsu andv are represented in the half planey > 0 in terms of the
boundary values ofu by the formulas

u(x, y) =
1

π

∫ ∞

−∞

yu(t, 0)

|t − z|2
dt =

1

π

∫ ∞

−∞

yu(t, 0)

(t − x)2 + y2
dt (y > 0)(7)

and

v(x, y) =
1

π

∫ ∞

−∞

(x − t)u(t, 0)

(t − x)2 + y2
dt (y > 0).(8)

Formula (7) is known as theSchwarz integral formula, or the Poisson integral
formula for the half plane. In the next section, we shall relax the conditions for the
validity of formulas (7) and (8).

127. DIRICHLET PROBLEM FOR A HALF PLANE

Let F denote a real-valued function ofx that is bounded for allx and continuous
except for at most a finite number of finite jumps. Wheny ≥ ε and|x| ≤ 1/ε, where
ε is any positive constant, the integral

I (x, y) =

∫ ∞

−∞

F(t) dt

(t − x)2 + y2

converges uniformly with respect tox and y, as do the integrals of the partial
derivatives of the integrand with respect tox and y. Each of these integrals is
the sum of a finite number of improper or definite integrals over intervals where
F is continuous; hence the integrand of each component integral is a continuous
function of t , x, andy wheny ≥ ε. Consequently, each partial derivative ofI (x, y)
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is represented by the integral of the corresponding derivative of the integrand when-
every > 0.

If we write

U(x, y) =
y

π
I (x, y),

then U is the Schwarz integral transformof F , suggested by expression (7),
Sec. 126:

U(x, y) =
1

π

∫ ∞

−∞

yF (t)

(t − x)2 + y2
dt (y > 0).(1)

Except for the factor 1/π , the kernel here isy/|t − z|2. It is the imaginary component
of the function 1/(t − z), which is analytic inz wheny > 0. It follows that the kernel
is harmonic, and so it satisfies Laplace’s equation inx and y. Because the order
of differentiation and integration can be interchanged, the function (1) then satisfies
that equation. Consequently,U is harmonic wheny > 0.

To prove that

lim
y→0
y>0

U(x, y) = F(x)(2)

for each fixedx at which F is continuous, we substitutet = x + y tanτ in inte-
gral (1) and write

U(x, y) =
1

π

∫ π/2

−π/2
F(x + y tanτ) dτ (y > 0).(3)

As a consequence, if

G(x, y, τ ) = F(x + y tanτ) − F(x)

andα is some small positive constant,

π [U(x, y) − F(x)] =

∫ π/2

−π/2
G(x, y, τ ) dτ = I1(y) + I2(y) + I3(y)(4)

where

I1(y) =

∫ (−π/2)+α

−π/2
G(x, y, τ ) dτ, I2(y) =

∫ (π/2)−α

(−π/2)+α

G(x, y, τ ) dτ,

I3(y) =

∫ π/2

(π/2)−α

G(x, y, τ ) dτ.

If M denotes an upper bound for|F(x)|, then|G(x, y, τ )| ≤ 2M. For a given
positive numberε, we selectα so that 6Mα < ε; and this means that
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|I1(y)| ≤ 2Mα <
ε

3
and |I3(y)| ≤ 2Mα <

ε

3
.

We next show that corresponding toε, there is a positive numberδ such that

|I2(y)| <
ε

3
whenever 0< y < δ.

To do this, we observe that sinceF is continuous atx, there is a positive number
γ such that

|G(x, y, τ )| <
ε

3π
whenever 0< y| tanτ | < γ.

Now the maximum value of| tanτ | asτ ranges from

−
π

2
+ α to

π

2
− α

is

tan

(

π

2
− α

)

= cot α.

Hence, if we writeδ = γ tanα, it follows that

|I2(y)| <
ε

3π
(π − 2α) <

ε

3
whenever 0< y < δ.

We have thus shown that

|I1(y)| + |I2(y)| + |I3(y)| < ε whenever 0< y < δ.

Condition (2) now follows from this result and equation (4).
Formula (1) therefore solvesthe Dirichlet problem for the half planey > 0,

with the boundary condition (2). It is evident from the form (3) of expression (1)
that |U(x, y)| ≤ M in the half plane, whereM is an upper bound of|F(x)|; that is,
U is bounded. We note thatU(x, y) = F0 whenF(x) = F0 , whereF0 is a constant.

According to formula (8) of Sec. 126, under certain conditions onF the func-
tion

V (x, y) =
1

π

∫ ∞

−∞

(x − t)F (t)

(t − x)2 + y2
dt (y > 0)(5)

is a harmonic conjugate of the functionU given by formula (1). Actually,for-
mula (5) furnishes a harmonic conjugate ofU if F is everywhere continuous, except
for at most a finite number of finite jumps, and ifF satisfies an order property

|xaF(x)| < M (a > 0).

For, under those conditions, we find thatU and V satisfy the Cauchy–Riemann
equations wheny > 0.

Special cases of formula (1) whenF is an odd or an even function are left to
the exercises.
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EXERCISES
1. Obtain as a special case of formula (1), Sec. 127, the expression

U(x, y) =
y

π

∫ ∞

0

[

1

(t − x)2 + y2
−

1

(t + x)2 + y2

]

F(t) dt (x > 0, y > 0)

for a bounded functionU that is harmonic in thefirst quadrant and satisfies the
boundary conditions

U(0, y) = 0 (y > 0),

lim
y→0
y>0

U(x, y) = F(x) (x > 0, x �= xj ),

where F is bounded for all positivex and continuous except for at most a finite
number of finite jumps at the pointsxj (j = 1, 2, . . . , n).

2. Let T (x, y) denote the bounded steady temperatures in a platex > 0, y > 0, with
insulated faces, when

lim
y→0
y>0

T (x, y) = F1(x) (x > 0),

lim
x→0
x>0

T (x, y) = F2(y) (y > 0)

(Fig. 184). HereF1 and F2 are bounded and continuous except for at most a finite
number of finite jumps. Writex + iy = z and show with the aid of the expression
obtained in Exercise 1 that

T (x, y) = T1(x, y) + T2(x, y) (x > 0, y > 0)

where

T1(x, y) =
y

π

∫ ∞

0

(

1

|t − z|2
−

1

|t + z|2

)

F1(t) dt,

T2(x, y) =
y

π

∫ ∞

0

(

1

|it − z|2
−

1

|it + z|2

)

F2(t) dt.

x

T = F2(y)

T = F1(x)

y

FIGURE 184

3. Obtain as a special case of formula (1), Sec. 127, the expression

U(x, y) =
y

π

∫ ∞

0

[

1

(t − x)2 + y2
+

1

(t + x)2 + y2

]

F(t) dt (x > 0, y > 0)

for a bounded functionU that is harmonic in thefirst quadrant and satisfies the
boundary conditions
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Ux(0, y) = 0 (y > 0),

lim
y→0
y>0

U(x, y) = F(x) (x > 0, x �= xj ),

whereF is bounded for all positivex and continuous except possibly for finite jumps
at a finite number of pointsx = xj (j = 1, 2, . . . , n).

4. Interchange thex andy axes in Sec. 127 to write the solution

U(x, y) =
1

π

∫ ∞

−∞

xF (t)

(t − y)2 + x2
dt (x > 0)

of the Dirichlet problem for the half planex > 0. Then write

F(y) =

{

1 when|y| < 1,

0 when|y| > 1,

and obtain these expressions forU and its harmonic conjugate−V :

U(x, y) =
1

π

(

arctan
y + 1

x
− arctan

y − 1

x

)

, V (x, y) =
1

2π
ln

x2 + (y + 1)2

x2 + (y − 1)2

where−π/2 ≤ arctant ≤ π/2. Also, show that

V (x, y) + iU(x, y) =
1

π
[Log(z + i) − Log(z − i)],

wherez = x + iy.

128. NEUMANN PROBLEMS

As in Sec. 123 and Fig. 177, we write

s = r0 exp(iφ) and z = r exp(iθ) (r < r0).

Whens is fixed, the function

Q(r0, r, φ − θ) = −2r0 ln|s − z| = −r0 ln[r2
0 − 2r0r cos(φ − θ) + r2](1)

is harmonic interior to the circle|z| = r0 because it is the real component of

−2r0 log(z − s),

where the branch cut of log(z − s) is an outward ray from the points. If, moreover,
r �= 0,

Qr(r0, r, φ − θ) = −
r0

r

[

2r2 − 2r0r cos(φ − θ)

r2
0 − 2r0r cos(φ − θ) + r2

]

(2)

=
r0

r
[P(r0, r, φ − θ) − 1]

whereP is the Poisson kernel (7) of Sec. 123.
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These observations suggest that the functionQ may be used to write an integral
representation for a harmonic functionU whose normal derivativeUr on the circle
r = r0 assumes prescribed valuesG(θ).

If G is piecewise continuous andU0 is an arbitrary constant, the function

U(r, θ) =
1

2π

∫ 2π

0
Q(r0, r, φ − θ) G(φ) dφ + U0 (r < r0)(3)

is harmonic because the integrand is a harmonic function ofr and θ . If the mean
value ofG over the circle|z| = r0 is zero, so that

∫ 2π

0
G(φ) dφ = 0,(4)

then, in view of equation (2),

Ur(r, θ) =
1

2π

∫ 2π

0

r0

r
[P(r0, r, φ − θ) − 1] G(φ) dφ

=
r0

r
·

1

2π

∫ 2π

0
P(r0, r, φ − θ) G(φ) dφ.

Now, according to equations (1) and (2) in Sec. 124,

lim
r→r0
r<r0

1

2π

∫ 2π

0
P(r0, r, φ − θ) G(φ) dφ = G(θ).

Hence

lim
r→r0
r<r0

Ur(r, θ) = G(θ)(5)

for each value ofθ at whichG is continuous.
WhenG is piecewise continuous and satisfies condition (4), the formula

U(r, θ) = −
r0

2π

∫ 2π

0
ln[r2

0 − 2r0r cos(φ − θ) + r2] G(φ) dφ + U0 (r < r0),(6)

therefore, solvesthe Neumann problem for the region interior to the circler = r0 ,
whereG(θ) is the normal derivative of the harmonic functionU(r, θ) at the bound-
ary in the sense of condition (5). Note how it follows from equations (4) and (6) that
since lnr2

0 is constant,U0 is the value ofU at the centerr = 0 of the circler = r0.
The valuesU(r, θ) may represent steady temperatures in a diskr < r0 with

insulated faces. In that case, condition (5) states that the flux of heat into the
disk through its edge is proportional toG(θ). Condition (4) is the natural phys-
ical requirement that the total rate of flow of heat into the disk be zero, since
temperatures do not vary with time.

A corresponding formula for a harmonic functionH in the regionexterior to
the circler = r0 can be written in terms ofQ as
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H(R, ψ) = −
1

2π

∫ 2π

0
Q(r0, R, φ − ψ) G(φ) dφ + H0 (R > r0),(7)

whereH0 is a constant. As before, we assume thatG is piecewise continuous and
that condition (4) holds. Then

H0 = lim
R→∞

H(R, ψ)

and

lim
R→r0
R>r0

HR(R, ψ) = G(ψ)(8)

for eachψ at whichG is continuous. Verification of formula (7), as well as special
cases of formula (3) that apply to semicircular regions, is left to the exercises.

Turning now to a half plane, we letG(x) be continuous for all realx, except
possibly for a finite number of finite jumps, and let it satisfy an order property

|xaG(x)| < M (a > 1)(9)

when−∞ < x < ∞. For each fixed real numbert , the function Log|z − t | is har-
monic in the half plane Imz > 0. Consequently, the function

U(x, y) =
1

π

∫ ∞

−∞

ln|z − t | G(t) dt + U0(10)

=
1

2π

∫ ∞

−∞

ln[(t − x)2 + y2] G(t) dt + U0 (y > 0),

whereU0 is a real constant, is harmonic in that half plane.
Formula (10) was written with the Schwarzintegral transform (1), Sec. 127, in

mind ; for it follows from formula (10) that

Uy(x, y) =
1

π

∫ ∞

−∞

y G(t)

(t − x)2 + y2
dt (y > 0).(11)

In view of equations (1) and (2) in Sec. 127, then,

lim
y→0
y>0

Uy(x, y) = G(x)(12)

at each pointx whereG is continuous.
Integral formula (10) evidently solvesthe Neumann problem for the half plane

y > 0, with boundary condition (12). But we have not presented conditions on
G which are sufficient to ensure that the harmonic functionU is bounded as|z|
increases.

WhenG is an odd function, formula (10) can be written

U(x, y) =
1

2π

∫ ∞

0
ln

[

(t − x)2 + y2

(t + x)2 + y2

]

G(t) dt (x > 0, y > 0).(13)
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This represents a function that is harmonic in thefirst quadrantx > 0, y > 0 and
satisfies the boundary conditions

U(0, y) = 0 (y > 0),(14)

lim
y→0
y>0

Uy(x, y) = G(x) (x > 0).(15)

EXERCISES
1. Establish formula (7), Sec. 128, as a solution of the Neumann problem for the region

exterior to a circler = r0, using earlier results found in that section.

2. Obtain as a special case of formula (3), Sec. 128, the expression

U(r, θ) =
1

2π

∫ π

0
[Q(r0, r, φ − θ) − Q(r0, r, φ + θ)] G(φ) dφ

for a functionU that is harmonic in thesemicircular regionr < r0, 0 < θ < π and
satisfies the boundary conditions

U(r, 0) = U(r, π) = 0 (r < r0),

lim
r→r0
r<r0

Ur(r, θ) = G(θ) (0 < θ < π)

for eachθ at whichG is continuous.

3. Obtain as a special case of formula (3), Sec. 128, the expression

U(r, θ) =
1

2π

∫ π

0
[Q(r0, r, φ − θ) + Q(r0, r, φ + θ)] G(φ) dφ + U0

for a functionU that is harmonic in thesemicircular regionr < r0, 0 < θ < π and
satisfies the boundary conditions

Uθ (r, 0) = Uθ (r, π) = 0 (r < r0),

lim
r→r0
r<r0

Ur(r, θ) = G(θ) (0 < θ < π)

for eachθ at whichG is continuous, provided that
∫ π

0
G(φ) dφ = 0.

4. Let T (x, y) denote the steady temperatures in a platex ≥ 0, y ≥ 0. The faces of the
plate are insulated, andT = 0 on the edgex = 0. The flux of heat (Sec. 107) into the
plate along the segment 0< x < 1 of the edgey = 0 is a constantA, and the rest of
that edge is insulated. Use formula (13), Sec. 128, to show that the flux out of the
plate along the edgex = 0 is

A

π
ln

(

1 +
1

y2

)

.
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B

y

u

C′

B′

D ′

A′
v

FIGURE 2
w = z2.
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xc

y

C

D

B

A

u

v

D ′ C′

B′

A′

FIGURE 3
w = z2;
A′B ′ on parabolav2 = −4c2(u − c2).

x
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D

B

y

u

v

B′

C′

A′

D ′

FIGURE 4
w = 1/z.

xA
C

B

y

u

A′

B′

C′

v

FIGURE 5
w = 1/z.

xC B A

D E F

y

uF ′

1

E′D ′ C′B′ A′

v

FIGURE 6
w = expz.



454 Table of Transformations of Regions app. 2

uD ′ E′ A′ B′
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BA
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y

FIGURE 7
w = expz.

uD ′ E′ A′ B′
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F ′

v
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D

BA

E

F C

y

FIGURE 8
w = expz.
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E A
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u
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E′ D ′ C′ B′ A′
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FIGURE 9
w = sinz.

x

y
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B′ A′C′

D ′

1
FIGURE 10
w = sinz.

x

C

F
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B

E
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y

uF ′

1

E′D ′

C′

B′A′

v

FIGURE 11
w = sinz; BCD on line y = b (b > 0),

B ′C ′D′ on ellipse
u2

cosh2 b
+

v2

sinh2 b
= 1.
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x

i

A
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u1 A′
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B′
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FIGURE 12

w =
z − 1

z + 1
.

u
1
C′

E′

A′

B′

D ′

v

x
1

EDCBA

y

FIGURE 13

w =
i − z

i + z
.

xx1x2

AC GE

F

B

D

y

u

v

F ′

A′ E′

R0

C′G′

D ′

B′

1 1–1

FIGURE 14

w =
z − a

az − 1
; a =

1 + x1x2 +
√

(1 − x2
1)(1 − x2

2)

x1 + x2
,

R0 =
1 − x1x2 +

√

(1 − x2
1)(1 − x2

2)

x1 − x2
(a > 1 andR0 > 1 when − 1 < x2 < x1 < 1).
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xx1x2

DA C
E

F

B

y

u

v

F ′

E′

A′D ′

R0

C′

B′

1 1

FIGURE 15

w =
z − a

az − 1
; a =

1 + x1x2 +
√

(x2
1 − 1)(x2

2 − 1)

x1 + x2
,

R0 =
x1x2 − 1 −

√

(x2
1 − 1)(x2

2 − 1)

x1 − x2
(x2 < a < x1 and 0< R0 < 1 when 1< x2 < x1).

x1
D

AE
B

C
y

u2

A′B′C′D ′E′

v

FIGURE 16

w = z +
1

z
.

u
2

E′ D ′ C′ B′ A′

v

x
1

E D
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B A

y

FIGURE 17

w = z +
1

z
.

x1 b
D E A B

C

F

y

uF ′

2

E′D ′

C′

B′A′

v

FIGURE 18

w = z +
1

z
; B ′C ′D′ on ellipse

u2

(b + 1/b)2
+

v2

(b − 1/b)2
= 1.
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x
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EDCBA
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uE′D ′
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D ′ B′
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FIGURE 19

w = Log
z − 1

z + 1
; z = − coth

w

2
.

x1
C

E FD
A

B

y

u

A′ C′B′

F ′ D ′E′

v

FIGURE 20

w = Log
z − 1

z + 1
;

ABC on circlex2 + (y + coth)2 = csc2 h (0 < h < π).

xA
C

F
D

B
E

1

y

uc2c1

B′

C′

A′

E′

D ′

F ′

v
v

v

FIGURE 21

w = Log
z + 1

z − 1
; centers of circles atz = cothcn, radii: cschcn (n = 1, 2).
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E DG CF BA
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A′ B′
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FIGURE 22

w = h ln
h

1 − h
+ ln 2(1 − h) + iπ − h Log(z + 1) − (1 − h) Log(z − 1); x1 = 2h − 1 .

u1
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B′A′
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D ′

v
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FIGURE 23

w =
(

tan
z

2

)2

=
1 − cosz

1 + cosz
.
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FIGURE 24

w = coth
z

2
=

ez + 1
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.
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FIGURE 25

w = Log

(

coth
z

2

)

.
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x
1

EDCBA

y

uA′ B′

E′

C′D ′

v

FIGURE 26
w = πi + z − Log z.

x
–1

EC DBA

y

u
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B′C′

D ′ E′
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FIGURE 27

w = 2(z + 1)1/2 + Log
(z + 1)1/2 − 1

(z + 1)1/2 + 1
.

x
–h2

CFD E BA

y

1
u
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E′ D ′
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v

FIGURE 28

w =
i

h
Log

1 + iht

1 − iht
+ Log

1 + t

1 − t
; t =

(

z − 1

z + h2

)1/2

.
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xDA CB

y

1–1
u

hi
A′ B′

D ′C′

v

FIGURE 29

w =
h

π
[(z2 − 1)1/2 + cosh−1 z].∗

xDE BAF

y

1

C

h
u

A′ B′

D ′

E′F ′

C′

v

FIGURE 30

w = cosh−1
(

2z − h − 1

h − 1

)

−
1

√
h

cosh−1
[

(h + 1)z − 2h

(h − 1)z

]

.

∗See Exercise 3, Sec. 122.
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Absolute convergence, 186,
208–210

Absolute value, 10
Accumulation points, 32–33
Additive identity, 4
Additive inverse, 4, 6
Aerodynamics, 391
Algebraic properties, of complex

numbers, 3–5
Analytic continuation, 84–85,

87
Analytic functions

Cauchy–Goursat theorem
adopted to integrals of,
200

composition of, 74
derivatives of, 169–170
explanation of, 73–76, 229,

231
isolated, 251
properties of, 74–77
real and imaginary

components of, 366
reflection principle and,

85–87
residue and, 238
simply connected domains

and, 158
uniquely determined, 83–85
zeros of, 249–252, 294

Analyticity, 73, 75–76, 215,
229, 231, 250, 405

Angle of inclination, 124, 356,
358

Angle of rotation, 356, 358–360
Angles, preservation of,

355–358

Antiderivatives
analytic functions and, 158
explanation of, 142–149
fundamental theorem of

calculus and, 119
Arc

differentiable, 124
explanation of, 122
simple, 122
smooth, 125, 131, 146

Argument
principle value of, 16, 17,

37
of products and quotients,

20–24
Argument principle, 291–294
Associative laws, 3

Bernoulli’s equation, 392
Bessel functions, 207n
Beta function, 287
Bierwirth, R. A., 269n
Bilinear transformation,

319–322
Binomial formula, 7, 8, 171
Boas, R. P., Jr., 174n, 241n,

322n
Bolzano–Weierstrass theorem,

257
Boundary conditions, 367–370
Boundary of S, 32
Boundary points, 31–32, 329,

339
Boundary value problems, 365,

366, 376, 378, 379, 381,
437–439

Bounded functions, 173, 174

Bounded sets, 32
Branch cuts

contour integrals and,
133–135

explanation of, 96, 405
integration along, 283–285

Branches
of double-valued function,

338, 341–342, 346
integrands and, 145, 146
of logarithmic function,

95–96, 144, 230, 328,
361

of multiple-values function,
246, 281, 284

principal, 96, 102, 229–230
of square root function,

336–338
Branch point

explanation of, 96, 350
indentation around, 280–283
at infinity, 352

Bromwich integral, 299
Brown, G. H., 269n
Brown, J. W., 79n, 207n, 270n,

279n, 307n, 379n, 390n,
437n

Buck, J. R., 207n

Casorati–Weierstrass theorem,
259

Cauchy, A. L., 65
Cauchy–Goursat theorem

applied to integrals of
analytic functions, 200

applied to multiply connected
domains, 158–160

461
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Cauchy–Goursat theorem
(continued)

applied to simply connected
domains, 156–157

explanation of, 151, 229,
279, 430

proof of, 152–156
residue and, 235–236

Cauchy integral formula
consequences of extension of,

168–170
explanation of, 164–165,

200, 429
extension of, 165–168, 218,

248–249
for half plane, 440

Cauchy principal value, 262,
270, 274

Cauchy product, 223
Cauchy–Riemann equations

analyticity and, 75
in complex form, 73
explanation of, 65–66, 360,

371
harmonic conjugate and, 80,

81, 364, 365, 443
partial derivatives and, 66,

67, 69, 70, 86, 365
in polar form, 70, 95
sufficiency of, 66–68

Cauchy’s inequality, 170, 172
Cauchy’s residue theorem,

234–236, 238, 264, 281,
283, 284, 294

Chain rule, 61, 69, 74, 101, 355,
363, 366–367, 426

Chebyshev polynomials, 24n
Christoffel, E. B., 406
Churchill, R. V., 79n, 207n,

270n, 279n, 299n, 301n,
307n, 379n, 390n, 437n

Circle of convergence, 209, 211,
213–214, 216

Circles
parametric representation of,

18
transformations of, 314–317,

400
Circulation of fluid, 391
Closed contour, simple, 125,

150, 235
Closed disk, 278
Closed polygons, 404

Closed set, 32
Closure, 32
Commutative laws, 3
Complex conjugates, 13–14,

421
Complex exponents, 101–103
Complex numbers

algebraic properties of, 3–5
arguments of products and

quotients of, 20–22
complex conjugates of, 13–14
convergence of series of,

185–186
explanation of, 1
exponential form of, 16–18
imaginary part of, 1
polar form of, 16–17
products and powers in

exponential form of,
18–20

real part of, 1
roots of, 24–29
sums and products of, 1–7
vectors and moduli of, 9–12

Complex plane, 1
extended, 50
point at infinity and, 50–51

Complex potential, 393, 394,
426–427

Complex variables
functions of, 35–38
integrals of complex-valued

functions of, 122
Composition of functions, 74
Conductivity, thermal, 373
Conformal mapping

explanation of, 357, 418
harmonic conjugates and,

363–365
local inverses and, 360–362
preservation of angles and,

355–358
scale factors and, 358–360
transformations of boundary

conditions and, 367–370
transformations of harmonic

functions and, 365–367
Conformal mapping applications

cylindrical space potential
and, 386–387

electrostatic potential and,
385–386

flows around corner and
around cylinder and,
395–397

steady temperatures and,
373–375

steady temperatures in half
plane and, 375–377

stream function and,
393–395

temperatures in quadrant and,
379–381

temperatures in thin plate
and, 377–379

two-dimensional fluid flow
and, 391–393

Conjugates
complex, 13–14, 421
harmonic, 80–81, 363–366,

443
Continuous functions

derivative and, 59
explanation of, 53–56, 406

Contour integrals
branch cuts and, 133–135
evaluation of, 142
examples of, 129–132
explanation of, 127–129
moduli of, 137–140
upper bounds for moduli of,

137–140
Contours

in Cauchy–Goursat theorem,
156–157

explanation of, 125
simple closed, 125, 150

Convergence
absolute, 186, 208–210
circle of, 209, 211, 213–214,

216
of sequences, 181–184
of series, 184–189, 208–213,

250
uniform, 210–213

Conway, J. B., 322n
Cosines, 288–290
Critical point, of

transformations, 357–358
Cross ratios, 322n
Curves

finding images for, 38–39
Jordan, 122, 123
level, 82

Cylindrical space, 386–387
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Definite integrals
of functions, 119–120
involving sines and cosines,

288–290
mean value theorem for, 436

Deformation of paths principle,
159–160, 237–238

Degenerate polygons, 413–414
Deleted neighborhood, 31, 251,

258, 259
de Moivre’s formula, 20, 24
Derivatives

of branch ofzc, 101–102
directional, 74
first-order partial, 63–67, 69
of functions, 56–61
of logarithms, 95–96
of mapping function, 413,

416, 426
Differentiability, 66–68
Differentiable arc, 124
Differentiable functions, 56, 59
Differentiation formulas

explanation of, 60–63, 74,
75, 107

verification of, 111
Diffusion, 375
Directional derivative, 74
Dirichlet problem

for disk, 429, 432–435
explanation of, 365, 366
for half plane, 441–443
for rectangle, 389–390
for region exterior to circle,

438–439
for region in half plane, 376
for semicircular region, 438
for semi-infinite strip, 383

Disk
closed, 278
Dirichlet problem for, 429,

432–435
punctured, 31, 224, 240

Distributive law, 3
Division, of power series,

222–225
Domains

of definition of function, 35,
84, 344, 345

explanation of, 32
multiply connected, 158–160
simply connected, 156–158
union of, 85

Double-valued functions
branches of, 338, 341–342,

346
Riemann surfaces for,

351–353

Electrostatic potential
about edge of conducting

plate, 422–425
explanation of, 385–386

Elements of function, 85
Ellipse, 333
Elliptic integral, 409, 411
Entire functions, 73, 173
Equipotentials, 385, 393, 401
Essential singular points, 242
Euler numbers, 227
Euler’s formula, 17, 28, 68, 104
Even functions, 121
Expansion

Fourier series, 208
Maclaurin series, 192–195,

215, 233
Exponential form, of complex

numbers, 16–18
Exponential functions

additive property of, 18–19
with basec,103
explanation of, 89–91
mappings by, 42–45

Extended complex plane, 50
Exterior points, 31

Field intensity, 385
Finite unit impulse function, 436
First-order partial derivatives

Cauchy–Riemann equations
and, 66, 67, 69

explanation of, 63–65
Fixed point, of transformation,

324
Fluid flow

around corner, 395–396
around cylinder, 396–397
in channel through slit,

417–419
in channel with offset,

420–422
circulation of, 391
complex potential of, 393,

394
incompressible, 392
irrotational, 392
in quadrant, 396

two-dimensional, 391–393
velocity of, 392–393

Flux, 373
Flux lines, 385
Formulas

binomial, 7, 8, 171
Cauchy integral, 164–170,

200, 218
de Moivre’s, 20
differentiation, 60–63, 74, 75,

107, 111
Euler’s, 17, 28, 68, 104
integration, 268–269, 279,

280–281, 283, 286, 289
Poisson integral, 429–431
quadratic, 289
Schwarz integral, 440–441
summation, 187, 194

Fourier, Joseph, 373n
Fourier integral, 270, 279n
Fourier series, 208
Fourier series expansion, 208
Fourier’s law, 373
Fractional transformations,

linear, 319–323,
325–327, 341, 416

Fresnel integrals, 276
Functions.See also specific types

of functions
analytic, 73–77, 83–87, 158,

169–170, 200, 231, 238,
249–252, 294

antiderivative of, 158
Bessel, 207n
beta, 287
bounded, 173, 174
branch of, 96, 229–230
Cauchy–Riemann equations

and, 63–66
of complex variables, 35–38
composition of, 74
conditions for differentiability

and, 66–68
continuous, 53–56, 59, 406
definite integrals of, 119–120
derivatives of, 56–61,

117–118
differentiable, 56, 59
differentiation formulas and,

60–63
domain of definition of, 35,

84, 344, 345
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Functions.See also specific types
of functions (continued)

double-valued, 338, 341–342,
346, 351–353

elements of, 85
entire, 73, 173
even, 121
exponential, 18–19, 42–45,

103
finite unit impulse, 436
gamma, 283
graphs of, 38
harmonic, 78–81, 365–367,

435, 437, 438, 442, 443
holomorphic, 73n
hyperbolic, 106, 109–114
inverse, 112–114
limits of, 45–52
logarithmic, 93–96, 98–99,

144
meromorphic, 291
multiple-valued, 37, 246, 281,

284
near isolated singular points,

257–260
odd, 121
piecewise continuous, 119,

127, 137–138, 432–435
polar coordinates and,

68–73
principal part of, 240
range of, 38
rational, 37, 263
real-valued, 36–38, 58–60,

125, 208
regular, 73n
single-valued, 347–349,

399
square root, 349–350
stream, 393–395, 418–419
trigonometric, 104–107,

111–114
zeros of, 106–107

Fundamental theorem of algebra,
173, 174, 295

Fundamental theorem of
calculus, 119, 142, 146

Gamma function, 283
Gauss’s mean value theorem,

175
Geometric series, 194
Goursat, E., 151

Graphs, of functions, 38
Green’s theorem, 150–151

Half plane
Cuchy integral formula in,

440
Dirichlet problem in,

441–443
harmonic function in, 425
mappings of upper, 325–329
Poisson integral formula for,

441
steady temperatures in,

375–377
Harmonic conjugates

explanation of, 80, 363–365
harmonic functions and,

80–81, 366
method to obtain, 81, 443

Harmonic functions
applications for, 78–80, 391,

442, 443
bounded, 376
explanation of, 78–79, 382,

432
in half plane, 425
harmonic conjugate and,

80–81, 366
product of, 377
in semicircular region, 437,

438
theories as source of, 79–80
transformations of, 365–367,

438
values of, 395, 435

Heat conduction, 373.See also
Steady temperatures

Hille, E., 125n
Holomorphic functions, 73n
Hoyler, C. N., 269n
Hydrodynamics, 391
Hyperbolas, 39–41, 331, 381
Hyperbolic functions

explanation of, 106, 109–111
identities involving, 110
inverse of, 112–114

Identities
additive, 4
involving logarithms, 98–99
Lagrange’s trigonometric, 23
multiplicative, 4

Image of point, 38
Imaginary axis, 1

Improper integrals
evaluation of, 262–264
explanation of, 261–262
from Fourier analysis,

269–272
Impulse function, finite unit, 436
Incompressible fluid, 392
Indented paths, 277–280
Independence of path, 142, 147,

394
Inequality

Cauchy’s, 170, 172
involving contour integrals,

137–138
Jordan’s, 273, 274
triangle, 11–12, 174

Infinite sequences, 181
Infinite series

explanation of, 184
of residues, 301, 307

Infinite sets, 301
Infinity

branch point at, 352
limits involving point at,

50–52, 314
residue at, 237–239

Integral formulas
Cauchy, 164–168
Poisson, 429–431
Schwarz, 440–441

Integrals
antiderivatives and, 142–149
Bromwich, 299
Cauchy–Goursat theorem

and, 150–156
Cauchy integral formula and,

164–170, 200, 218
Cauchy principal value of,

262, 270, 274
contour, 127–135, 137–140,

142
definite, 119–120, 288–290
elliptic, 409, 411
Fourier, 270
Fresnel, 276
improper, 261–264,

269–272
line, 127, 364
Liouville’s theorem and

fundamental theorem of
algebra and, 173–174

maximum modulus principle
and, 176–178
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Integrals(continued)
mean value theorem for, 120
multiply connected domains

and, 158–160
simply connected domains

and, 156–158
theory of, 117

Integral transformation, 432,
437, 442

Integration, along branch cuts,
283–285

Integration formulas, 268–269,
279, 280–281, 283, 286,
289

Interior points, 31
Inverse

of linear fractional
transforms, 416

local, 360–362
Inverse functions, 112–114
Inverse hyperbolic functions,

112–114
Inverse image, of point, 38
Inverse Laplace transforms,

298–301, 309
Inverse transform, 301n
Inverse transformation, 320,

347, 354, 387, 401, 418
Inverse trigonometric functions,

112–114
Inverse z-transform, 207
Irrotational flow, 392
Isogonal mapping, 357
Isolated analytic functions, 251
Isolated singular points

behavior of functions near,
257–260

explanation of, 229–231,
240–244, 247

Isolated zeros, 251
Isotherms, 375, 377

Jacobian, 360, 361
Jordan, C., 122n
Jordan curve, 122, 123
Jordan curve theorem, 125
Jordan’s inequality, 273, 274
Jordan’s lemma, 272–275
Joukowski airfoil, 400

Kaplan, W., 67n, 364n, 391n

Lagrange’s trigonometric
identity, 23

Laplace’s equation
harmonic conjugates and,

363, 364
harmonic functions and, 78,

377
polar form of, 82, 439

Laplace transforms
applications of, 300–301
explanation of, 299
inverse, 298–301, 309

Laurent series
coefficients in, 202–205,

207
examples illustrating, 224,

225, 231, 237, 245, 246,
278, 280

explanation of, 199, 201–202
residue and, 238, 240, 247
uniqueness of, 218–219

Laurent’s theorem
explanation of, 197–198, 203
proof of, 199–202

Lebedev, N. N., 141n, 283n
Legendre polynomials, 141n,

171n
Leibniz’s rule, 222, 226
Level curves, 82
l’Hospital’s rule, 283
Limits

of function, 45–47
involving point at infinity,

50–52, 314
of sequence, 181, 184
theorems on, 48–50

Linear combination, 77
Linear transformations

explanation of, 311–313
fractional, 319–323,

325–327, 341, 416
Line integral, 127, 364
Lines of flow, 375
Liouville’s theorem, 173–174,

296
Local inverses, 360–362
Logarithmic functions

branches and derivatives of,
95–96, 144, 230, 361

explanation of, 93–95
identities involving, 98–99
mapping by, 328, 339
principal value of, 94
Riemann surface for,

348–349

Maclaurin series
examples illustrating, 227,

233, 236, 247
explanation of, 190, 204
Taylor’s theorem and,

192–195
Maclaurin series expansion,

192–195, 215, 233
Mann, W. R., 55n, 79n, 138n,

162n, 257n, 360n, 440n
Mappings.See also

Transformations
of circles, 400
conformal, 355–370, 418

(See alsoConformal
mapping)

derivative of, 413, 416, 426
explanation of, 38–42
by exponential function,

42–45
isogonal, 357
linear fractional

transformations as,
327–328

by logarithmic function, 328,
339

one to one, 39, 41–43, 320,
327, 331, 332, 334, 338,
342, 345

polar coordinates to analyze,
41–42

of real axis onto polygon,
403–405

on Riemann surfaces,
347–350

of square roots of
polynomials, 341–346

by trigonometric functions,
330–331

of upper half plane, 325–329
by 1/z,315–317
by z2 and branches ofz1/2,

336–340
Markushevich, A. I., 157n,

167n, 242n
Maximum and minimum values,

176–178
Maximum modulus principle,

176–178
Mean value theorem, 120, 436
Meromorphic functions, 291
Möbius transformation,

319–322
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Moduli
of contour integrals, 137–140
explanation of, 10–12
unit, 325

Morera, E., 169
Morera’s theorem, 169, 215
Multiple-valued functions, 37,

246, 281, 284
Multiplication, of power series,

222–225
Multiplicative identity, 4
Multiplicative inverse, 4, 6, 19
Multiply connected domain,

158–160

Negative powers, 195
Neighborhood

deleted, 31, 251, 258, 259
explanation of, 31, 32
of point at infinity, 51–52

Nested intervals, 163
Nested squares, 163
Neumann problems, 445–448

explanation of, 365
Newman, M.H.A., 125n
Nonempty open set, 32
Numbers

complex, 1–28
pure imaginary, 1
real, 101
winding, 292

Odd functions, 121
One to one mapping, 39, 41–43,

320, 327, 331, 332, 334,
338, 342, 345

Open set
analytic in, 73
connected, 83
explanation of, 32

Oppenheim, A. V., 207n

Parabolas, 337
Partial derivatives

Cauchy–Riemann equations
and, 66, 67, 69, 70, 79,
86

first-order, 63–65
second-order, 364

Partial sums, sequence of, 184
Picard’s theorem, 242
Piecewise continuous functions,

119, 127, 137–138,
432–435

Point at infinity
limits involving, 50–52, 314
neighborhood of, 51–52
residue at, 237–239

Poisson integral formula
for disk, 431
explanation of, 429–431
for half plane, 441

Poisson integral transform, 432,
437

Poisson kernel, 431, 436
Poisson’s equation, 371, 372
Polar coordinates

to analyze mappings, 41–42,
337

convergence of sequences
and, 183–184

explanation of, 16
functions and, 36, 68–73
Laplace’s equation in, 433

Polar form
of Cauchy–Riemann

equations, 70, 95
of complex numbers, 16–17
of Laplace’s equation, 82,

439
Poles

of functions, 249
of orderm,241
residues at, 244–247, 253
simple, 241, 253, 302
zeros and, 249, 252–255

Polygonal lines, 32
Polygons

closed, 404
degenerate, 413–417
mapping real axis onto,

403–405
Polynomials

Chebyshev, 24n
of degreen, 36
as entire function, 73
fundamental theorem of

algebra and, 173, 174
Legendre, 141n, 171n
quotients of, 36–37
square roots of, 341–346
zeros of, 173, 174, 268,

296
Positively oriented curve, 122
Potential

complex, 393, 394, 426–427
in cylindrical space, 386–387

electrostatic, 385–386,
422–425

velocity, 392–393
Powers, of complex numbers, 19
Power series

absolute and uniform
convergence of, 208–211

continuity of sums of,
211–213

explanation of, 187
integration and differentiation

of, 213–217
multiplication and division of,

222–225
Principal branch

of double-valued function,
338

of function, 96, 229–230
of logarithmic function, 362
of zc, 102

Principal part of function, 240
Principal root, 26
Principal value

of argument, 16, 17, 37
Cauchy, 262, 270, 274
of logarithm, 94
of powers, 102, 103

Punctured disk, 31, 224, 240
Pure imaginary numbers, 1
Pure imaginary zeros, 289

Quadrant, temperatures in,
379–381

Quadratic formula, 289

Radio-frequency heating, 269
Range of function, 38
Rational functions

explanation of, 37
improper integrals of, 263

Ratios, cross, 322n
Real axis, 1
Real numbers, 101
Real-valued functions

derivative of, 60
example of, 58–59
explanation of, 36–37
Fourier series expansion of,

208
identities and, 125
properties of, 38

Rectangles
Dirichlet problem for,

389–390
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Rectangles(continued)
Schwarz–Christoffel

transformation and,
412–413

Rectangular form, powers of
complex numbers in,
19–20

Reflection, 38
Reflection principle, 85–87
Regions

in complex plane, 31–33
explanation of, 32
table of transformations of,

452–460
Regular functions, 73n
Removable singular point, 242,

258
Residue applications

argument principle and,
291–294

convergent improper integral
evaluation and, 269–272

definite integrals involving
sines and cosines and,
288–290

examples of, 301–306
improper integral evaluation

and, 261–267
indentation around branch

point and, 280–283
indented paths and, 277–280
integration around branch cut

and, 283–285
inverse Laplace transforms

and, 298–301, 309
Jordan’s lemma and,

272–275
Rouch́e’s theorem and,

294–296
Residues

Cauchy’s theorem of,
234–236, 238, 264, 281,
283, 284, 294

explanation of, 229, 231–234
infinite series of, 301, 307
at infinity, 237–239
at poles, 244–247
poles and, 253–255
sums of, 263

Resonance, 309
Riemann, G. F. B., 65
Riemann sphere, 51
Riemann’s theorem, 258

Riemann surfaces
for composite functions,

351–353
for double-valued function,

351–353
explanation of, 347–350

Roots
of complex numbers, 24–29
principal, 26
of unity, 28, 30

Rotation, 38
Rouch́e’s theorem, 294–296

Scale factors, 358–360
Schafer, R. W., 207n
Schwarz, H. A., 406
Schwarz–Christoffel

transformation
degenerate polygons and,

413–417
electrostatic potential about

edge of conducting plate
and, 422–425

explanation of, 405–407
fluid flow in channel through

slit and, 417–419
fluid flow in channel with

offset and, 420–422
triangles and rectangles and,

408–413
Schwarz integral formula,

440–441
Schwarz integral transform, 442
Second-order partial derivatives,

364
Separation of variables method,

379
Sequences

convergence of, 181–184
explanation of, 181
limit of, 181, 184

Series.See also specific type of
series

convergence of, 184–189,
208–213, 250

explanation of, 184
Laurent, 199, 201–205, 207,

218–219, 224, 225, 231,
237

Maclaurin, 190, 192–195,
204, 215, 233, 236

power, 187, 208–217,
222–225

Taylor, 189–190, 192–195,
217–218, 224

uniqueness of representations
of, 217–219

Simple arc, 122
Simple closed contour, 125, 150,

235
Simple poles

explanation of, 241, 253
residue at, 302

Simply connected domains,
156–158

Single-valued functions,
347–349, 399

Singular points
essential, 242
isolated, 229–231, 240–244,

247, 257–260
removable, 242, 258

Sink, 417, 418, 420
Smooth arc, 125, 131, 146
Sphere, Riemann, 51
Square root function, 349–350
Square roots, of polynomials,

341–346
Squares, 152
Stagnation point, 419
Steady temperatures

conformal mapping and,
373–375

in half plane, 375–377
Stereographic projection, 51
Stream function, 393–397,

418–419
Streamlines, 393–395, 397, 401,

419
Summation formula, 187, 194
Sums

of power series, 211–213
of residues, 263

Taylor, A. E., 55n, 79n, 138n,
162n, 257n, 360n, 440n

Taylor series
examples illustrating,

192–195, 224, 250, 252,
405

explanation of, 189–190
uniqueness of, 217–218

Taylor series expansion, 189,
192, 222

Taylor’s theorem
explanation of, 189
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Taylor’s theorem(continued)
to find Maclaurin series

expansions, 192–195
proof of, 190–192, 201

Temperatures
in half plane, 375–377
in quadrant, 379–381
steady, 373–377
in thin plate, 377–379

Thermal conductivity, 373
Thron, W. J., 125n
Transformations.See also

Mappings
argument principle and, 291
bilinear, 319
of boundary conditions,

367–370
of circles, 314–317, 400
conformal, 355–370, 418

(See alsoConformal
mapping)

critical point of, 357–358
explanation of, 38
fixed point of, 324
of harmonic functions,

365–367, 438
integral, 432, 437, 442
inverse of, 320, 347, 354,

387, 401, 418
kernel of, 431
linear, 311–313
linear fractional, 319–323,

325–327, 341, 416

Schwarz–Christoffel,
405–425 (See also
Schwarz–Christoffel
transformation)

table of, 452–460
w = sinez, 330–334
w = 1/z, 313–317

Transforms
inverse, 301n
inversez-, 207
Laplace, 298–301, 309
Poisson integral, 432, 437
Schwarz integral, 442
z-, 207

Translation, 38
Triangle inequality, 11–12,

174
Triangles, 409–410
Trigonometric functions

definite integrals involving,
288–290

explanation of, 104–107
identities for, 105–107
inverse of, 112–114
mapping by, 330–331
periodicity of, 107, 111
zeros of, 106–107

Two-dimensional fluid flow,
391–393

Unbounded sets, 32
Uniform convergence, 210–213

Unity
nth roots of, 28, 30
radius, 17

Unstable component, 309

Value
absolute, 10
maximum and minimum,

176–178
Vector field, 45
Vectors, 9–12
Velocity potential, 392–393
Viscosity, 392

Winding number, 292

Zero of orderm, 249–250, 252,
253, 256

Zeros
of analytic functions,

249–252, 294
isolated, 251
poles and, 249, 252–255
of polynomials, 173, 174,

268, 296
pure imaginary, 289
in trigonometric functions,

106–107
z-transform

explanation of, 207
inverse, 207
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