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Abstract

These notes collect the basic results in commutative algebra used in the rest of my

notes and books.
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Notations and conventions

Our convention is that rings have identity elements,1 and homomorphisms of rings respect

the identity elements. A unit of a ring is an element admitting an inverse. The units of a ring

A form a group, which we denote by2 A�. Throughout “ring” means “commutative ring”.

Following Bourbaki, we let ND f0;1;2; : : :g. For a field k, kal denotes an algebraic closure

of k.

X � Y X is a subset of Y (not necessarily proper).

X
def
D Y X is defined to be Y , or equals Y by definition.

X � Y X is isomorphic to Y .

X ' Y X and Y are canonically isomorphic

(or there is a given or unique isomorphism).

Prerequisites

A knowledge of the algebra usually taught in advanced undergraduate or first-year graduate

courses.
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1An element e of a ring A is an identity element if eaD aD ae for all elements a of the ring. It is usually

denoted 1A or just 1. Some authors call this a unit element, but then an element can be a unit without being a

unit element. Worse, a unit need not be the unit.
2This notation differs from that of Bourbaki, who writes A� for the multiplicative monoid AXf0g and A�

for the group of units. We shall rarely need the former, and � is overused.
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1 Rings and algebras

A ring is an integral domain if it is not the zero ring and if ab D 0 in the ring implies that

aD 0 or b D 0.

Let A be a ring. A subring of A is a subset that contains 1A and is closed under addition,

multiplication, and the formation of negatives. An A-algebra is a ring B together with a

homomorphism iB WA! B . A homomorphism of A-algebras B! C is a homomorphism

of rings 'WB! C such that '.iB.a//D iC .a/ for all a 2 A.

Elements x1; : : : ;xn of an A-algebra B are said to generate it if every element of B can

be expressed as a polynomial in the xi with coefficients in iB.A/, i.e., if the homomorphism

of A-algebras AŒX1; : : : ;Xn�! B acting as iB on A and sending Xi to xi is surjective.

When A � B and x1; : : : ;xn 2 B , we let AŒx1; : : : ;xn� denote the A-subalgebra of B

generated by the xi .

A ring homomorphism A! B is of finite type, and B is a finitely generated A-algebra,

if B is generated by a finite set of elements as an A-algebra, i.e, if B is a quotient of a

polynomial ring AŒX1; : : : ;Xn�. An A-algebra B is finitely presented if it is the quotient of

a polynomial ring kŒX1; : : : ;Xn� by a finitely generated ideal.

A ring homomorphism A! B is finite, and B is a finite3 A-algebra, if B is finitely

generated as an A-module. If A! B and B! C are finite ring homomorphisms, then so

also is their composite A! C .

Let k be a field, and let A be a k-algebra. When 1A ¤ 0, the map k! A is injective,

and we can identify k with its image, i.e., we can regard k as a subring of A. When 1A D 0,

the ring A is the zero ring f0g.

Let AŒX� be the ring of polynomials in the symbol X with coefficients in A. If A is an

integral domain, then deg.fg/D deg.f /Cdeg.g/, and so AŒX� is also an integral domain;

moreover, AŒX�� D A�.

Let A be an integral domain and an algebra over a field k. If A is finite over k (more

generally, if every element of A is algebraic over k), then A is a field. To see this, let a be a

nonzero element of A. Because A is an integral domain, the k-linear map x 7! axWA! A

is injective, and hence is surjective if A is finite, which shows that a has an inverse. More

generally, if a is algebraic over k, then kŒa� is finite over k, and hence contains an inverse of

a; again A is a field.

Products and idempotents

An element e of a ring A is idempotent if e2D e. For example, 0 and 1 are both idempotents

— they are called the trivial idempotents. Idempotents e1; : : : ; en are orthogonal if eiej D 0

for i ¤ j . Every sum of orthogonal idempotents is again idempotent. A set fe1; : : : ; eng of

orthogonal idempotents is complete if e1C�� �CenD 1. Every set of orthogonal idempotents

fe1; : : : ; eng can be made into a complete set of orthogonal idempotents by adding the

idempotent e D 1� .e1C�� �C en/.

If AD A1� � � ��An (direct product of rings), then the elements

ei D .0; : : : ;
i

1; : : : ;0/; 1� i � n;

3This is Bourbaki’s terminology (AC V ÷1, 1). Finite homomorphisms of rings correspond to finite maps of

varieties and schemes. Some other authors say “module-finite”.
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form a complete set of orthogonal idempotents in A. Conversely, if fe1; : : : ; eng is a com-

plete set of orthogonal idempotents in A, then Aei becomes a ring4 with the addition and

multiplication induced by that of A, and A' Ae1� � � ��Aen.

2 Ideals

Let A be a ring. An ideal a in A is a subset such that

˘ a is a subgroup of A regarded as a group under addition;

˘ a 2 a, r 2 A H) ra 2 a:

The ideal generated by a subset S of A is the intersection of all ideals a containing S — it

is easy to verify that this is in fact an ideal, and that it consists of all finite sums of the form
P

risi with ri 2A, si 2 S . The ideal generated by the empty set is the zero ideal f0g. When

S D fa;b; : : :g, we write .a;b; : : :/ for the ideal it generates.

An ideal is principal if it is generated by a single element. Such an ideal .a/ is proper if

and only if a is not a unit. Thus a ring A is a field if and only if 1A ¤ 0 and A contains no

nonzero proper ideals.

Let a and b be ideals in A. The set faCb j a 2 a; b 2 bg is an ideal, denoted aCb. The

ideal generated by fab j a 2 a; b 2 bg is denoted by ab. Clearly ab consists of all finite

sums
P

aibi with ai 2 a and bi 2 b, and if a D .a1; : : : ;am/ and b D .b1; : : : ;bn/, then

abD .a1b1; : : : ;aibj ; : : : ;ambn/. Note that ab� aAD a and ab� AbD b, and so

ab� a\b: (1)

The kernel of a homomorphism A! B is an ideal in A. Conversely, for every ideal a in

a ring A, the set of cosets of a in A forms a ring A=a, and a 7! aCa is a homomorphism

'WA! A=a whose kernel is a. There is a one-to-one correspondence

fideals of A containing ag
b 7!'.b/
 �����!
'�1.b/ [b

fideals of A=ag: (2)

For an ideal b of A, '�1'.b/D aCb.

The ideals of A�B are all of the form a� b with a and b ideals in A and B . To see

this, note that if c is an ideal in A�B and .a;b/ 2 c, then .a;0/ D .1;0/.a;b/ 2 c and

.0;b/D .0;1/.a;b/ 2 c. Therefore, cD a�b with

aD fa j .a;0/ 2 cg; bD fb j .0;b/ 2 cg:

An ideal p in A is prime if p¤ A and ab 2 p) a 2 p or b 2 p. Thus p is prime if and

only if the quotient ring A=p is nonzero and has the property that

ab D 0 H) aD 0 or b D 0;

i.e., A=p is an integral domain. In particular, the zero ideal is prime if and only if the ring is

an integral domain. Note that if p is prime and a1 � � �an 2 p, then at least one of the ai 2 p

(because either a1 2 p or a2 � � �an 2 p; if the latter, then either a2 2 p or a3 � � �an 2 p; etc.).

When p is prime, we write �.p/ for the field of fractions of A=p.

4But Aei is not a subring of A if n¤ 1 because its identity element is ei ¤ 1A: However, the map a 7!

aei WA! Aei realizes Aei as a quotient of A.
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An ideal m in A is maximal if it is a maximal element of the set of proper ideals in A.

Therefore an ideal m is maximal if and only if the quotient ring A=m is nonzero and has no

proper nonzero ideals (by (2)), and so is a field. Note that

m maximal H) m prime.

A multiplicative subset of a ring A is a subset S with the property:

1 2 S; a;b 2 S H) ab 2 S:

For example, the following are multiplicative subsets:

the multiplicative subset f1;f; : : : ;f r ; : : :g generated by an element f of A;

the complement of a prime ideal (or of a union of prime ideals);

1Ca
def
D f1Ca j a 2 ag for any ideal a of A.

PROPOSITION 2.1. Let S be a subset of a ring A, and let a be an ideal disjoint from S .

The set of ideals in A containing a and disjoint from S contains maximal elements (i.e., an

element not properly contained in any other ideal in the set). If S is multiplicative, then

every such maximal element is prime.

PROOF. The set ˙ of ideals containing a and disjoint from S is nonempty (it contains a).

If A is noetherian (see ÷3 below), ˙ automatically contains maximal elements. Otherwise,

we apply Zorn’s lemma. Let b1 � b2 � �� � be a chain of ideals in ˙ , and let bD
S

bi .

Then b 2˙ , because otherwise some element of S lies in b, and hence in some bi , which

contradicts the definition of ˙ . Therefore b is an upper bound for the chain. As every chain

in ˙ has an upper bound, Zorn’s lemma implies that ˙ has a maximal element.

Now assume that S is a multiplicative subset of A, and let c be maximal in ˙ . Let

bb0 2 c. If b is not in c, then cC .b/ properly contains c, and so it is not in ˙ . Therefore

there S contains an element in cC .b/, say,

f D cCab; c 2 c; a 2 A:

Similarly, if b0 is not in c, then S contains an element

f 0 D c0Ca0b; c0 2 c; a0 2 A:

Now

ff 0 D cc0Cabc0Ca0b0cCaa0bb0 2 c;

which contradicts

ff 0 2 S:

Therefore, at least one of b or b0 is in c, which is therefore prime. 2

COROLLARY 2.2. Every proper ideal in a ring is contained in a maximal ideal.

PROOF. Apply the proposition with S D f1g. 2

The radical rad.a/ of an ideal a is

ff 2 A j f r 2 a, some r 2 N, r > 0g:
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An ideal a is said to be radical if it equals its radical. Thus a is radical if and only if the

quotient ring A=a is reduced, i.e., without nonzero nilpotent elements (elements some power

of which is zero). Since integral domains are reduced, prime ideals (a fortiori maximal

ideals) are radical. The radical of .0/ consists of the nilpotent elements of A — it is called

the nilradical of A.

If b$ b0 under the one-to-one correspondence (2) between ideals of A and ideals of

A=a, then A=b' .A=a/=b0, and so b is prime (resp. maximal, radical) if and only if b0 is

prime (resp. maximal, radical).

PROPOSITION 2.3. Let a be an ideal in a ring A.

(a) The radical of a is an ideal.

(b) rad.rad.a//D rad.a/.

PROOF. (a) If f 2 rad.a/, then clearly af 2 rad.a/ for all a 2A. Suppose that a;b 2 rad.a/,

with say ar 2 a and bs 2 a. When we expand .aCb/rCs using the binomial theorem, we

find that every term has a factor ar or bs , and so lies in a.

(b) If ar 2 rad.a/, then ars D .ar/s 2 a for some s > 0, and so a 2 rad.a/. 2

Note that (b) of the proposition shows that rad.a/ is radical. In fact, it is the smallest

radical ideal containing a.

If a and b are radical, then a\b is radical, but aCb need not be: consider, for example,

aD .X2�Y / and bD .X2CY /; they are both prime ideals in kŒX;Y � (by 4.10 below), but

aCbD .X2;Y /, which contains X2 but not X .

PROPOSITION 2.4. The radical of an ideal is equal to the intersection of the prime ideals

containing it. In particular, the nilradical of a ring A is equal to the intersection of the prime

ideals of A.

PROOF. If aD A, then the set of prime ideals containing it is empty, and so the intersection

is A. Thus we may suppose that a is a proper ideal of A. Then rad.a/ �
T

p�a p because

prime ideals are radical and rad.a/ is the smallest radical ideal containing a.

For the reverse inclusion, let f … rad.a/. According to Proposition 2.1, there exists a

prime ideal containing a and disjoint from the multiplicative subset f1;f; : : :g. Therefore

f …
T

p�a p. 2

DEFINITION 2.5. The Jacobson radical J of a ring is the intersection of the maximal ideals

of the ring:

J.A/D
\

fm jm maximal in Ag:

A ring A is local if it has exactly one maximal ideal. For such a ring, the Jacobson

radical is m.

PROPOSITION 2.6. An element c of A is in the Jacobson radical of A if and only if 1�ac

is a unit for all a 2 A.

PROOF. We prove the contrapositive: there exists a maximal ideal m such that c …m if and

only if there exists an a 2 A such that 1�ac is not a unit.

(: As 1�ac is not a unit, it lies in some maximal ideal m of A (by 2.2). Then c …m,

because otherwise 1D .1�ac/Cac 2m.

): Suppose that c is not in the maximal ideal m. Then mC .c/DA, and so 1DmCac

for some m 2m and a 2 A. Now 1�ac 2m, and so it is not a unit. 2
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PROPOSITION 2.7 (PRIME AVOIDANCE). Let p1; : : : ;pr , r � 1, be ideals in A with p2; : : : ;pr

prime. If an ideal a is not contained in any of the pi , then it is not contained in their union.

PROOF. When r D 1, there is nothing to prove, and so we may assume that r > 1 and

(inductively) that the statement is true for r �1. Then a is not contained in the union of the

ideals p1; : : : ;pi�1;piC1; : : : ;pr , and so there exists an ai 2 aX
S

j¤i pj . If some ai does

not lie in pi , then that ai 2 aX
S

1�i�r pi , and the proof is complete. Thus suppose that

every ai 2 pi , and consider

aD a1 � � �ar�1Car 2 a:

I claim that a belongs to no pi . Because pr is prime and none of the elements a1; : : : ;ar�1

lies in pr , their product does not lie in pr ; as ar 2 pr , we see that a … pr . Next consider a

prime pi with i � r �1. In this case a1 � � �ar�1 2 pi because the product involves ai , but

ar … pi , and so again a … pi . This completes the proof. 2

ASIDE 2.8. In general, the condition in (2.7) that the ideals p2; : : : ;pr be prime is necessary: the

ideal .x;y/ in F2Œx;y� is the union of three smaller nonprime ideals. However, when A contains an

infinite field, the condition can be dropped (see mo108594, Mohan).

Extension and contraction of ideals

Let 'WA! B be a homomorphism of rings.

NOTATION 2.9. For an ideal b of B , '�1.b/ is an ideal in A, called the contraction of b to

A, which is often denoted bc . For an ideal a of A, the ideal in B generated by '.a/ is called

the extension of a to B , and is often denoted ae. When ' is surjective, '.a/ is already an

ideal, and when A is a subring of B , bc D b\A.

2.10. There are the following equalities (a;a0 ideals in A; b;b0 ideals in B):

.aCa0/e D aeCa0e; .aa0/e D aea0e; .b\b0/c D bc \b0c ; rad.b/c D rad.bc/:

2.11. Obviously (i) a� aec and (ii) bce � b (a an ideal of A; b an ideal of B). On applying

e to (i), we find that ae � aece , and (ii) with b replaced by ae shows that aece � ae; therefore

ae D aece. Similarly, bcec D bc : It follows that extension and contraction define inverse

bijections between the set of contracted ideals in A and the set of extended ideals in B:

fbc � A j b an ideal in Bg
a 7!ae

 ��!
bc [b

fae � B j a an ideal in Ag

Note that, for every ideal b in B , the map A=bc! B=b is injective, and so bc is prime

(resp. radical) if b is prime (resp. radical).

The Chinese remainder theorem

Recall the classical form of the theorem: let d1; :::;dn be integers, relatively prime in pairs;

then for any integers x1; :::;xn, the congruences

x � xi mod di

have a simultaneous solution x 2 Z; moreover, if x is one solution, then the other solutions

are the integers of the form xCmd with m 2 Z and d D
Q

di :
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We want to translate this in terms of ideals. Integers m and n are relatively prime if and

only if .m;n/D Z, i.e., if and only if .m/C .n/D Z. This suggests defining ideals a and b

in a ring A to be relatively prime (or coprime) if aCbD A.

If m1; :::;mk are integers, then
T

.mi /D .m/ where m is the least common multiple of

the mi . Thus
T

.mi /� .
Q

mi /, which equals
Q

.mi /. If the mi are relatively prime in pairs,

then mD
Q

mi , and so we have
T

.mi /D
Q

.mi /. Note that in general,

a1 �a2 � � �an � a1\a2\ :::\an;

but the two ideals need not be equal.

These remarks suggest the following statement.

THEOREM 2.12 (CHINESE REMAINDER THEOREM). Let a1; : : : ;an be ideals in a ring A.

If ai is relatively prime to aj whenever i ¤ j , then the map

a 7! .: : : ;aCai ; : : :/WA! A=a1� � � ��A=an (3)

is surjective with kernel
Q

ai (so
Q

ai D
T

ai ).

PROOF. Suppose first that nD 2. As a1Ca2 DA, there exist ai 2 ai such that a1Ca2 D 1.

Then a1x2Ca2x1 maps to .x1 moda1;x2 moda2/, which shows that (3) is surjective.

For each i , there exist elements ai 2 a1 and bi 2 ai such that

ai Cbi D 1, all i � 2:

The product
Q

i�2.ai Cbi /D 1, and lies in a1C
Q

i�2 ai , and so

a1C
Y

i�2

ai D A:

We can now apply the theorem in the case nD 2 to obtain an element y1 of A such that

y1 � 1 mod a1; y1 � 0 mod
Y

i�2

ai :

These conditions imply

y1 � 1 mod a1; y1 � 0 mod aj , all j > 1:

Similarly, there exist elements y2; :::;yn such that

yi � 1 mod ai ; yi � 0 mod aj for j ¤ i:

The element x D
P

xiyi maps to .x1 moda1; : : : ;xn modan/, which shows that (3) is

surjective.

The kernel of the map is
T

ai , and so it remains to prove that
T

ai D
Q

ai . Obviously
Q

ai �
T

ai . Suppose first that nD 2, and let a1Ca2 D 1, as before. For c 2 a1\a2, we

have

c D a1cCa2c 2 a1 �a2

which proves that a1\a2 D a1a2. We complete the proof by induction. This allows us to

assume that
Q

i�2 ai D
T

i�2 ai . We showed above that a1 and
Q

i�2 ai are relatively prime,

and so

a1 �
�

Y

i�2
ai

�

D a1\
�

Y

i�2
ai

�

by the nD 2 case. Now a1 �
�
Q

i�2 ai

�

D
Q

i�1 ai and a1\
�
Q

i�2 ai

�

D a1\
�
T

i�2 ai

�

D
T

i�1 ai , which completes the proof. 2
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3 Noetherian rings

PROPOSITION 3.1. The following three conditions on a ring A are equivalent:

(a) every ideal in A is finitely generated;

(b) every ascending chain of ideals a1 � a2 � �� � eventually becomes constant, i.e., for

some m, am D amC1 D �� � :

(c) every nonempty set of ideals in A has a maximal element.

PROOF. (a)) (b): If a1 � a2 � �� � is an ascending chain, then aD
S

ai is an ideal, and

hence has a finite set fa1; : : : ;ang of generators. For some m, all the ai belong am, and then

am D amC1 D �� � D a:

(b)) (c): Let ˙ be a nonempty set of ideals in A. If ˙ has no maximal element, then

the axiom of dependent choice5 shows that there exists a strictly ascending sequence of

ideals in ˙ , which contradicts (b).

(c)) (a): Let a be an ideal, and let ˙ be the set of finitely generated ideals contained

in a. Then ˙ is nonempty because it contains the zero ideal, and so it contains a maximal

element cD .a1; : : : ;ar/. If c¤ a, then there exists an element a 2 aX c, and .a1; : : : ;ar ;a/

will be a finitely generated ideal in a properly containing c. This contradicts the definition of

c. 2

A ring A is noetherian if it satisfies the equivalent conditions of the proposition. For

example, fields and principal ideal domains are noetherian. On applying (c) to the set of all

proper ideals containing a fixed proper ideal, we see that every proper ideal in a noetherian

ring is contained in a maximal ideal. We saw in (3.6) that this is, in fact, true for every ring,

but the proof for non-noetherian rings requires Zorn’s lemma.

A quotient A=a of a noetherian ring A is noetherian, because the ideals in A=a are all of

the form b=a with b an ideal in A, and every set of generators for b generates b=a.

PROPOSITION 3.2. Let A be a ring. The following conditions on an A-module M are

equivalent:

(a) every submodule of M is finitely generated (in particular, M is finitely generated);

(b) every ascending chain of submodules M1 �M2 � �� � eventually becomes constant.

(c) every nonempty set of submodules of M has a maximal element.

PROOF. Essentially the same as that of (3.1). 2

An A-module M is noetherian if it satisfies the equivalent conditions of the proposition.

Let AA denote A regarded as a left A-module. Then the submodules of AA are exactly the

ideals in A, and so AA is noetherian (as an A-module) if and only if A is noetherian (as a

ring).

PROPOSITION 3.3. Let

0!M 0
˛
�!M

ˇ
�!M 00! 0

be an exact sequence of A-modules.

5This says: Let R be a binary relation on a nonempty set X , and suppose that, for each a in X , there exists

a b such that aRb; then there exists a sequence .an/n2N of elements of X such that anRanC1 for all n. It is

strictly stronger than the axiom of countable choice but weaker than the axiom of choice. See the Wikipedia

(axiom of dependent choice).
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(a) If N � P are submodules of M such that ˛ .M 0/\N D ˛ .M 0/\P and ˇ .N /D

ˇ .P /, then N D P .

(b) If M 0 and M 00 are finitely generated, so also is M .

(c) M is noetherian if and only if M 0 and M 00 are both noetherian.

PROOF. (a) Let x 2 P . The second condition implies that there exists a y 2 N such

that ˇ.y/ D ˇ.x/. Now ˇ.x�y/ D 0, and so x�y 2 ˛M 0\P D ˛M 0\N . Thus x D

.x�y/Cy 2N .

(b) Let S 0 be a finite set of generators for M , and let S 00 be a finite subset of M such

that ˇS 00 generates M 00. The submodule N of M generated by ˛S 0 [ S 00 is such that

˛M 0\N D ˛M 0 and ˇN DM 00. Therefore (a) shows that N DM .

(c)): An ascending chain of submodules of M 0 or of M 00 gives rise to an ascending

chain in M , and therefore becomes constant.

(: Consider an ascending chain of submodules of M . As M 00 is Noetherian, the image

of the chain in M 00 becomes constant, and as M 0 is Noetherian, the intersection of the chain

with ˛M 0 becomes constant. Now the (a) shows that the chain itself becomes constant. 2

For example, a direct sum

M DM1˚M2

of A-modules is noetherian if and only if M1 and M2 are both noetherian.

PROPOSITION 3.4. Every finitely generated module over a noetherian ring is noetherian.

PROOF. Let M be a module over a noetherian ring A. If M is generated by a single element,

then M �A=a for some ideal a in A, and the statement is obvious. We argue by induction on

the minimum number n of generators of M . Clearly M contains a submodule N generated

by n�1 elements such that the quotient M=N is generated by a single element, and so the

statement follows from (3.3). 2

PROPOSITION 3.5. Every finitely generated module M over a noetherian ring A contains a

finite chain of submodules M �Mr � �� � �M1 � 0 such that each quotient Mi=Mi�1 is

isomorphic to A=pi for some prime ideal pi .

PROOF. The annihilator of an element x of M is

ann.x/
def
D fa 2 A j ax D 0g:

It is an ideal in A, which is proper if x ¤ 0. I claim that every ideal a that is maximal

among the annihilators of nonzero elements of A is prime. Let aD ann.x/, and let ab 2 a,

so that abx D 0. Then a� .a/Ca� ann.bx/. If b … a, then bx ¤ 0, and so aD ann.bx/

by maximality, which implies that a 2 a.

We now prove the proposition. Note that, for every x 2M , the submodule Ax of M is

isomorphic to A=ann.x/. If M is nonzero, then there exists a nonzero x such that ann.x/

is maximal, and so M contains a submodule M1 D Ax isomorphic to A=p1 with p1 prime.

Similarly, M=M1 contains a submodule M2=M1 isomorphic A=p2 for some prime ideal p2,

and so on. The chain 0�M1 �M2 � �� � terminates because M is noetherian (by 3.4). 2

ASIDE 3.6. The proofs of (2.1) and (3.5) are two of many in commutative algebra in which an ideal,

maximal with respect to some property, is shown to be prime. For a general examination of this

phenomenon, see Lam and Reyes, J. Algebra 319 (2008), no. 7, 3006–3027.
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THEOREM 3.7 (HILBERT BASIS THEOREM). Every finitely generated algebra over a noethe-

rian ring is noetherian.

PROOF. Let A be noetherian. Since every finitely generated A-algebra is a quotient of a

polynomial algebra, it suffices to prove the theorem for AŒX1; : : : ;Xn�. Note that

AŒX1; : : : ;Xn�D AŒX1; : : : ;Xn�1�ŒXn�: (4)

This simply says that every polynomial f in n symbols X1; : : : ;Xn can be expressed uniquely

as a polynomial in Xn with coefficients in kŒX1; : : : ;Xn�1�,

f .X1; : : : ;Xn/D a0.X1; : : : ;Xn�1/Xr
nC�� �Car.X1; : : : ;Xn�1/:

Thus an induction argument shows that it suffices to prove the theorem for AŒX�.

Recall that for a polynomial

f .X/D c0XrC c1Xr�1C�� �C cr ; ci 2 A; c0 ¤ 0;

c0 is the leading coefficient of f .

Let a be an ideal in AŒX�, and let a.i/ be the set of elements of A that occur as the

leading coefficient of a polynomial in a of degree i (we also include 0). Then a.i/ is

obviously an ideal in A, and a.i �1/� a.i/ because, if cX i�1C�� � 2 a, then so also does

X.cX i�1C�� �/.

Let b be an ideal of AŒX� contained in a. Then b.i/� a.i/, and if equality holds for all

i , then bD a. Indeed, let f be a polynomial of degree i in a. Because b.i/D a.i/, there

exists a g 2 b such that deg.f �g/ < degf . On repeating this argument with f �g, we

eventually find that f 2 b.

As A is noetherian, the sequence of ideals

a.1/� a.2/� �� � � a.i/� �� �

eventually becomes constant, say, a.d/D a.d C1/D : : : (and then a.d/ contains the lead-

ing coefficients of all polynomials in a). For each i � d , choose a finite generating set

fci1; ci2; : : :g for a.i/, and for each .i;j /, choose a polynomial fij 2 a of degree i with lead-

ing coefficient cij . The ideal b generated by the fij is contained in a and has the property

that b.i/D a.i/ for all i . Therefore bD a, and a is finitely generated. 2

COROLLARY 3.8. When R is noetherian, every finitely generated R-algebra is finitely

presented.

PROOF. Obvious. 2

NAKAYAMA’S LEMMA 3.9. Let A be a ring, let a be an ideal in A, and let M be an A-

module. Assume that a is contained in all maximal ideals of A and that M is finitely

generated.

(a) If M D aM , then M D 0:

(b) If N is a submodule of M such that M DN CaM , then M DN .
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PROOF. (a) Suppose that M ¤ 0. Choose a minimal set of generators fe1; : : : ; eng for M ,

n� 1, and write

e1 D a1e1C�� �Canen, ai 2 a:

Then

.1�a1/e1 D a2e2C�� �Canen

and, as 1�a1 lies in no maximal ideal, it is a unit. Therefore e2; : : : ; en generate M , which

contradicts the minimality of the original set.

(b) The hypothesis implies that M=N D a.M=N /, and so M=N D 0. 2

Recall (2.5) that the Jacobson radical J of A is the intersection of the maximal ideals of

A, and so the condition on a is that a � J. In particular, the lemma holds with aD J; for

example, when A is a local ring, it holds with a the maximal ideal in A.

COROLLARY 3.10. Let A be a local ring with maximal ideal m and residue field k
def
D A=m,

and let M be a finitely generated module over A. The action of A on M=mM factors through

k, and elements a1; : : : ;an of M generate it as an A-module if and only if the elements

a1CmM;: : : ;anCmM

span M=mM as k-vector space.

PROOF. If a1; : : : ;an generate M , then it is obvious that their images generate the vector

space M=mM . Conversely, suppose that a1CmM;: : : ;anCmM span M=mM , and let N

be the submodule of M generated by a1; : : : ;an. The composite N !M !M=mM is

surjective, and so M DN CmM . Now Nakayama’s lemma shows that M DN . 2

COROLLARY 3.11. Let A be a noetherian local ring with maximal ideal m. Elements

a1; : : : ;an of m generate m as an ideal if and only if a1Cm2; : : : ;anCm2 span m=m2 as a

vector space over A=m. In particular, the minimum number of generators for the maximal

ideal is equal to the dimension of the vector space m=m2.

PROOF. Because A is noetherian, m is finitely generated, and we can apply the preceding

corollary with M Dm. 2

EXAMPLE 3.12. Nakayama’s lemma may fail if M is not finitely generated. For example,

let Z.p/ D f
m
n
j p does not divide ng and consider the Z.p/-module Q. Then Z.p/ is a local

ring with maximal ideal .p/ (see ÷5 below) and QD pQ but Q¤ 0.

DEFINITION 3.13. Let A be a noetherian ring.

(a) The height ht.p/ of a prime ideal p in A is the greatest length d of a chain of distinct

prime ideals

pD pd � pd�1 � �� � � p0: (5)

(b) The (Krull) dimension of A is supfht.p/ j p� A; p primeg.

Thus, the Krull dimension of a ring A is the supremum of the lengths of chains of prime

ideals in A (the length of a chain is the number of gaps, so the length of (5) is d ). For

example, the integral domains of dimension 0 are the fields. The height of a nonzero prime

ideal in a principal ideal domain is 1, and so such a ring has Krull dimension 1 (provided it
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is not a field). It is sometimes convenient to define the Krull dimension of the zero ring to be

�1.

We shall see in ÷19 that the height of every prime ideal in a noetherian ring is finite.

However, the Krull dimension of the ring may be infinite, because it may contain a sequence

of prime ideals whose heights tend to infinity (Krull 1938).6

LEMMA 3.14. In a noetherian ring, every set of generators for an ideal contains a finite

generating set.

PROOF. Let S be a set of generators for a, and let a0 be maximal among the ideals generated

by finite subsets of S . Then a0 contains every element of S (otherwise it wouldn’t be

maximal), and so equals a. 2

THEOREM 3.15 (KRULL INTERSECTION THEOREM). Let a be an ideal in a noetherian

ring A. If a is contained in all maximal ideals of A, then
T

n�1 a
n D f0g:

PROOF. We shall show that, for every ideal a in a noetherian ring,

\

n�1
an D a �

\

n�1
an: (6)

When a is contained in all maximal ideals of A, Nakayama’s lemma then shows that
T

n�1 a
n

is zero.

Let a1; : : : ;ar generate a. Then an consists of finite sums

X

i1C���CirDn

ci1���ir
a

i1

1 � � �a
ir
r ; ci1���ir

2 A:

In other words, an consists of the elements of A of the form g.a1; : : : ;ar/ for some homoge-

neous polynomial g.X1; : : : ;Xr/ 2 AŒX1; : : : ;Xr � of degree n.

Let Sm denote the set of homogeneous polynomials f of degree m such that f .a1; : : : ;ar/2
T

n�1 a
n, and let c be the ideal in AŒX1; : : : ;Xr � generated by

S

m Sm. Because AŒX1; : : : ;Xr �

is noetherian, c is finitely generated, and so c is generated by a finite set ff1; : : : ;fsg of

elements of
S

m Sm. Let di D degfi , and let d Dmaxdi .

Let b 2
T

n�1 a
n; then b 2 adC1, and so b D f .a1; : : : ;ar/ for some homogeneous

polynomial f of degree d C1. By definition, f 2 SdC1 � c, and so

f D g1f1C�� �Cgsfs

for some gi 2 AŒX1; : : : ;Xn�. As f and the fi are homogeneous, we can omit from each gi

all terms not of degree degf �degfi , since these terms cancel out. In other words, we may

choose the gi to be homogeneous of degree degf �degfi D d C1�di > 0. In particular,

the constant term of gi is zero, and so gi .a1; : : : ;ar/ 2 a. Now

b D f .a1; : : : ;ar/D
X

i
gi .a1; : : : ;ar/ �fi .a1; : : : ;ar/ 2 a �

\

n
an;

which completes the proof of (6). 2

6In Nagata 1962, p.203, there is the following example. Let N D I0 t I1 t : : : be a partition of N into

finite sets with strictly increasing cardinality. Let A D kŒX0;X1; : : :� be the polynomial ring in a countably

infinite number of symbols, and let pi be the prime ideal in A generated by the Xj ’s with j in Ii . Let S be the

multiplicative set AX
S

pi . Then S�1A is noetherian and regular, and the prime ideal S�1pi has height jIi j.
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The equality (6) can also be proved using primary decompositions — see (17.15).

PROPOSITION 3.16. In a noetherian ring, every ideal contains a power of its radical; in

particular, some power of the nilradical of the ring is zero.

PROOF. Let a1; : : : ;an generate rad.a/. For each i , some power of ai , say a
ri

i , lies in a.

Then every term of the expansion of

.c1a1C�� �C cnan/r1C���Crn ; ci 2 A;

has a factor of the form a
ri

i for some i , and so lies in a. 2

ASIDE 3.17. In a noetherian ring, every ideal is finitely generated, but there is little that one can say

in general about the number of generators required. For example, in kŒX� every ideal is generated by

a single element, but in kŒX;Y � the ideal .X;Y /n requires at least nC1 generators.

ASIDE 3.18. The following example shows that the Krull intersection theorem fails for nonnoethe-

rian rings. Let A be the ring of germs of C1 functions at 0 on the real line. Then A is a local

ring with maximal ideal m equal to the set of germs zero at 0, and
T

n�1m
n consists of the germs

whose derivatives at zero are all zero. It therefore contains e�1=x2
. [Every germ of a function at

0 is represented by a function f on an open neighbourhood U of 0; two pairs .f;U / and .f 0;U 0/

represent the same germ if and only if f and f 0 agree on some neighbourhood of 0 in U \U 0.]

4 Unique factorization

Let A be an integral domain. An element a of A is said to be irreducible if it is neither zero

nor a unit and admits only trivial factorizations, i.e.,

aD bc H) b or c is a unit.

The element a is said to be prime if it is neither zero nor a unit and .a/ is a prime ideal, i.e.,

ajbc H) ajb or ajc:

An integral domain A is called a unique factorization domain if every nonzero nonunit

a in A can be written as a finite product of irreducible elements in exactly one way up to

units and the order of the factors. In more detail, the uniqueness means that if

aD
Y

i2I
ai D

Y

j2J
bj

with each ai and bj irreducible, then there exists a bijection i 7! j.i/WI ! J such that

bj.i/ D ai �unit for each i . Every principal ideal domain is a unique factorization domain

(proved in most algebra courses).

PROPOSITION 4.1. Let A be an integral domain, and let a be an element of A that is neither

zero nor a unit. If a is prime, then a is irreducible, and the converse holds when A is a

unique factorization domain.
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PROOF. Assume that a is prime. If a D bc, then a divides bc and so a divides b or c.

Suppose the first, and write b D aq. Now aD bc D aqc, which implies that qc D 1 because

A is an integral domain, and so c is a unit. We have shown that a is irreducible.

For the converse, assume that a is irreducible and that A is a unique factorization domain.

If ajbc, then bc D aq for some q 2 A. On writing each of b, c, and q as a product of

irreducible elements, and using the uniqueness of factorizations, we see that a differs from

one of the irreducible factors of b or c by a unit. Therefore a divides b or c. 2

PROPOSITION 4.2. Let A be an integral domain in which every nonzero nonunit element is

a finite product of irreducible elements. If every irreducible element of A is prime, then A is

a unique factorization domain.

PROOF. Suppose that

a1 � � �am D b1 � � �bn (7)

with the ai and bi irreducible elements in A. As a1 is prime, it divides one of the bi , which

we may suppose to be b1, say b1 D a1u. As b1 is irreducible, u is a unit. On cancelling a1

from both sides of (7), we obtain the equality

a2 � � �am D .ub2/b3 � � �bn:

Continuing in this fashion, we find that the two factorizations are the same up to units and

the order of the factors. 2

PROPOSITION 4.3. Let A be an integral domain in which every ascending chain of principal

ideals becomes constant (e.g., a noetherian integral domain). Then every every nonzero

nonunit element in A is a finite product of irreducible elements.

PROOF. The hypothesis implies that every nonempty set of principal ideals has a maximal

element (cf. the proof of 3.1). Assume that A has nonfactorable elements, and let .a/ be

maximal among the ideals generated by such elements. Then a is not itself irreducible, and

so aD bc with neither b nor c units. Now .b/ and .c/ both properly contain .a/, and so b

and c are both factorable, which contradicts the nonfactorability of a. 2

PROPOSITION 4.4. Let A be a unique factorization domain with field of fractions F . If an

element f of AŒX� factors into the product of two nonconstant polynomials in F ŒX�, then it

factors into the product of two nonconstant polynomials in AŒX�.

In other words, if f is not the product of two nonconstant polynomials in AŒX�, then it

is irreducible in F ŒX�.

PROOF. Let f D gh in F ŒX�. For suitable c;d 2A, the polynomials g1 D cg and h1 D dh

have coefficients in A, and so we have a factorization

cdf D g1h1 in AŒX�.

If an irreducible element p of A divides cd , then, looking modulo .p/, we see that

0D g1 �h1 in .A=.p// ŒX�.
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According to Proposition 4.1, the ideal .p/ is prime, and so .A=.p// ŒX� is an integral

domain. Therefore, p divides all the coefficients of at least one of the polynomials g1;h1,

say g1, so that g1 D pg2 for some g2 2 AŒX�. Thus, we have a factorization

.cd=p/f D g2h1 in AŒX�.

Continuing in this fashion, we can remove all the irreducible factors of cd , and so obtain a

factorization of f in AŒX�. 2

The proof shows that every factorization f D gh in F ŒX� of an element f of AŒX�

gives a factorization f D .cg/.c�1h/ in AŒX� for a suitable c 2 F .

Let A be a unique factorization domain. A nonzero polynomial

f D a0Ca1XC�� �CamXm

in AŒX� is said to be primitive if the coefficients ai have no common factor other than units.

Every polynomial f in F ŒX� can be written f D c.f / �f1 with c.f / 2 F and f1 primitive.

The element c.f /, which is well-defined up to multiplication by a unit, is called the content

of f . Note that f 2 AŒX� if and only if c.f / 2 A.

PROPOSITION 4.5. The product of two primitive polynomials is primitive.

PROOF. Let

f D a0Ca1XC�� �CamXm

g D b0Cb1XC�� �CbnXn;

be primitive polynomials, and let p be an irreducible element of A. Let ai0
be the first

coefficient of f not divisible by p and bj0
the first coefficient of g not divisible by p. Then

all the terms in
P

iCjDi0Cj0
aibj are divisible by p, except ai0

bj0
, which is not divisible

by p. Therefore, p doesn’t divide the .i0C j0/th-coefficient of fg. We have shown that

no irreducible element of A divides all the coefficients of fg, which must therefore be

primitive. 2

Each of the last two propositions is referred to as Gauss’s lemma (Gauss proved them

with AD Z).

PROPOSITION 4.6. Let A be a unique factorization domain with field of fractions F . For

polynomials f;g 2 F ŒX�, c.fg/D c.f / � c.g/; hence every factor in AŒX� of a primitive

polynomial is primitive.

PROOF. Let f D c.f /f1 and g D c.g/g1 with f1 and g1 primitive. Then

fg D c.f /c.g/f1g1

with f1g1 primitive, and so c.fg/D c.f /c.g/. 2

COROLLARY 4.7. The irreducible elements in AŒX� are the irreducible elements a of A

and the nonconstant primitive polynomials f such that f is irreducible in F ŒX�.

PROOF. Obvious from (4.4) and (4.6). 2
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THEOREM 4.8. If A is a unique factorization domain, then so also is AŒX�.

PROOF. Let f 2 AŒX�, and write f D c.f /f1. Then c.f / is a product of irreducible

elements in A. If f1 is not irreducible, then it can be written as a product of two polynomials

of lower degree, which are necessarily primitive (4.6). Continuing in this fashion, we find

that f1 is a product of irreducible primitive polynomials, and hence that f is a product of

irreducible elements in AŒX�.

According to Proposition 4.2, in order prove that AŒX� is a unique factorization domain,

it remains to show that each irreducible element of AŒX� is prime.

Let a be an irreducible element of A. If a divides the product gh of g;h 2 AŒX�, then it

divides c.gh/D c.g/c.h/. As a is prime, it divides c.g/ or c.h/, and hence also g or h.

Let f be a nonconstant primitive polynomial in AŒX� such that f is irreducible in F ŒX�.

If f divides the product gh of g;h 2 AŒX�, then it divides g or h in F ŒX�. Suppose the

first, and write f q D g with q 2 F ŒX�. Then c.q/D c.f /c.q/D c.f q/D c.g/ 2 A, and

so q 2 AŒX�. Therefore f divides g in AŒX�. 2

Let k be a field. A monomial in X1; : : : ;Xn is an expression of the form

X
a1

1 � � �X
an
n ; aj 2 N:

The total degree of the monomial is
P

ai . The degree, deg.f /, of a nonzero polyno-

mial f .X1; : : : ;Xn/ is the largest total degree of a monomial occurring in f with nonzero

coefficient. Since

deg.fg/D deg.f /Cdeg.g/;

kŒX1; : : : ;Xn� is an integral domain and kŒX1; : : : ;Xn�� D k�. Therefore, an element f of

kŒX1; : : : ;Xn� is irreducible if it is nonconstant and f D gh H) g or h is constant.

THEOREM 4.9. The ring kŒX1; : : : ;Xn� is a unique factorization domain.

PROOF. This is trivially true when nD 0, and an induction argument using (4), p.11, proves

it for all n. 2

COROLLARY 4.10. A nonzero proper principal ideal .f / in kŒX1; : : : ;Xn� is prime if and

only f is irreducible.

PROOF. Special case of (4.1). 2

5 Rings of fractions

Recall that a multiplicative subset of a ring is a nonempty subset closed under the formation

of finite products. In particular, it contains 1 (the empty product).

Let S be a multiplicative subset of a ring A. Define an equivalence relation on A�S by

.a;s/� .b; t/ ” u.at �bs/D 0 for some u 2 S:

Write a
s

for the equivalence class containing .a;s/, and define addition and multiplication of

equivalence classes according to the rules:

a
s
C b

t
D atCbs

st
; a

s
b
t
D ab

st
:
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It is easily checked these do not depend on the choices of representatives for the equivalence

classes, and that we obtain in this way a ring

S�1AD fa
s
j a 2 A; s 2 Sg

and a ring homomorphism a 7! a
1
WA

iS
�! S�1A whose kernel is

fa 2 A j saD 0 for some s 2 Sg:

If S contains no zero-divisors, for example, if A is an integral domain and 0 … S , then . At

the opposite extreme, if 0 2 S , then S�1A is the zero ring.

A homomorphism A! B factors through A
iS
�! S�1A if and only if the image of S in

B consists of units. More formally:

PROPOSITION 5.1. The pair .S�1A;iS / has the following universal property:

every element of S maps to a unit in S�1A, and

any other ring homomorphism ˛WA! B with this

property factors uniquely through iS

A S�1A

B:

iS

˛
9Š

PROOF. Let ˛WA!B be such a homomorphism, and let ˇWS�1A!B be a homomorphism

such that ˇ ı iS D ˛. Then

s
1

a
s
D a

1
H) ˇ. s

1
/ˇ.a

s
/D ˇ.a

1
/ H) ˛.s/ˇ.a

s
/D ˛.a/;

and so

ˇ.a
s
/D ˛.a/˛.s/�1: (8)

This shows that there can be at most one ˇ such that ˇ ı iS D ˛. We define ˇ by the formula

(8). Then

a
s
D b

t
H) u.at �bs/D 0 some u 2 S

˛.u/2B�

H) ˛.a/˛.t/�˛.b/˛.s/D 0;

which shows that ˇ is well-defined, and it is easy to check that it is a homomorphism. 2

As usual, this universal property determines the pair .S�1A;iS / uniquely up to a unique

isomorphism.7

When A is an integral domain and S D AXf0g, the ring S�1A is the field of fractions

F of A. In this case, for any other multiplicative subset T of A not containing 0, the ring

T �1A can be identified with the subring of F consisting of the fractions a
t

with a 2 A and

t 2 T .

7Recall the proof: let .A1; i1/ and .A2; i2/ have the universal property in the proposition; because every

element of S maps to a unit in A2, there exists a unique homomorphism ˛WA1! A2 such that ˛ ı i1 D i2
(universal property of A1; i1/; similarly, there exists a unique homomorphism ˛0WA2!A1 such that ˛0 ı i2D i1;

now

˛0 ı˛ ı i1 D ˛0 ı i2 D i1 D idA1
ıi1;

and so ˛0 ı ˛ D idA1
(universal property of A1; i1); similarly, ˛ ı ˛0 D idA2

, and so ˛ and ˛0 are inverse

isomorphisms (and they are uniquely determined by the conditions ˛ ı i1 D i2 and ˛0 ı i2 D i1).
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EXAMPLE 5.2. Let h 2 A. Then Sh D f1;h;h2; : : :g is a multiplicative subset of A, and we

let Ah D S�1
h

A. Thus every element of Ah can be written in the form a=hm, a 2 A, and

a
hm D

b
hn ” hN .ahn�bhm/D 0; some N:

If h is nilpotent, then Ah D 0, and if A is an integral domain with field of fractions F and

h¤ 0, then Ah is the subring of F of elements that can be written in the form a=hm, a 2 A,

m 2 N:

PROPOSITION 5.3. For every ring A and h 2 A, the map
P

aiX
i 7!

P ai

hi defines an

isomorphism

AŒX�=.1�hX/! Ah:

PROOF. If hD 0, both rings are zero, and so we may assume h¤ 0. In the ring

AŒx�
def
D AŒX�=.1�hX/;

1D hx, and so h is a unit. Let ˛WA! B be a homomorphism of rings such that ˛.h/ is a

unit in B . The homomorphism

P

i aiX
i 7!

P

i ˛.ai /˛.h/�i WAŒX�! B

factors through AŒx� because 1�hX 7! 1�˛.h/˛.h/�1D 0, and this is the unique extension

of ˛ to AŒx�. Therefore AŒx� has the same universal property as Ah, and so the two are

(uniquely) isomorphic by an A-algebra isomorphism that makes h�1 correspond to x. 2

Let S be a multiplicative subset of a ring A, and let S�1A be the corresponding ring of

fractions. For every ideal a in A, the ideal generated by the image of a in S�1A is

S�1aD fa
s
j a 2 a; s 2 Sg:

If a contains an element of S , then S�1a contains 1, and so is the whole ring. Thus some of

the ideal structure of A is lost in the passage to S�1A, but, as the next proposition shows,

some is retained.

PROPOSITION 5.4. Let S be a multiplicative subset of the ring A, and consider extension

a 7! ae D S�1a and contraction a 7! ac D fa 2 A j a
1
2 ag of ideals with respect to the

homomorphism iS WA! S�1A. Then

ace D a for all ideals of S�1A

aec D a if a is a prime ideal of A disjoint from S:

Moreover, the map p 7! pe is a bijection from the set of prime ideals of A disjoint from S

onto the set of all prime ideals of S�1A; the inverse map is p 7! pc .

PROOF. Let a be an ideal in S�1A. Certainly ace � a. For the reverse inclusion, let b 2 a.

We can write bD a
s

with a 2A, s 2 S . Then a
1
D s.a

s
/ 2 a, and so a 2 ac . Thus bD a

s
2 ace ,

and so a� ace.

Let p be a prime ideal of A disjoint from S . Clearly pec � p. For the reverse inclusion,

let a 2 pec so that a
1
D a0

s
for some a0 2 p, s 2 S . Then t .as�a0/D 0 for some t 2 S , and

so ast 2 p. Because st … p and p is prime, this implies that a 2 p, and so pec � p.
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Let p be a prime ideal of A disjoint from S , and let xS be the image of S in A=p.

Then .S�1A/=pe ' xS�1.A=p/ because S�1A=pe has the correct universal property, and
xS�1.A=p/ is an integral domain because A=p is an integral domain and xS doesn’t contain

0. Therefore pe is prime. From (2.11) we know that pc is prime if p is, and so p 7! pe and

p 7! pc are inverse bijections on the two sets. 2

COROLLARY 5.5. If A is noetherian, then so also is S�1A for any multiplicative set S:

PROOF. As bc is finitely generated, so also is .bc/e D b. 2

PROPOSITION 5.6. Let 'WA! B be a ring homomorphism. A prime ideal p of A is the

contraction of a prime ideal in B if and only if pD pec .

PROOF. If pD qc , then pec D qcec 2.11
D qc D p. Conversely, suppose that pD pec , and let

S D AX p. Let s 2 S ; if '.s/ 2 pe, then s 2 pec D p, contradicting the definition of S .

Therefore '.S/ is a multiplicative subset of B disjoint from pe, and so there exists a prime

ideal q in B containing pe and disjoint from '.S/ (apply 2.1). Now '�1.q/ contains p and

is disjoint from S , and so it equals p. 2

EXAMPLE 5.7. Let p be a prime ideal in A. Then Sp D AXp is a multiplicative subset of

A, and we let Ap D S�1
p A. Thus each element of Ap can be written in the form a

c
, c … p, and

a
c
D b

d
” s.ad �bc/D 0, some s … p:

According to (5.4), the prime ideals of Ap correspond to the prime ideals of A disjoint from

AXp, i.e., contained in p. Therefore, Ap is a local ring with maximal ideal mD pe D fa
s
j

a 2 p; s … pg.

PROPOSITION 5.8. Let m be a maximal ideal of a ring A, and let nDmAm be the maximal

ideal of Am: For all n, the map

aCmn 7! aCnnWA=mn! Am=nn

is an isomorphism. Moreover, it induces isomorphisms

mr=mn! nr=nn

for all pairs .r;n/ with r � n.

PROOF. The second statement follows from the first, because of the exact commutative

diagram .r < n/:

0 mr=mn A=mn A=mr 0

0 nr=nn Am=nn Am=nr 0:

' '

We consider extension and contraction with respect to a 7! a
1
WA! Am. In order to

show that the map A=mn! Am=nn is injective, we have to show that .mn/ec D mn. If

a 2 .mn/ec , then a
1
D b

s
with b 2 mn and s 2 S . Then s0sa 2 mn for some s0 2 S , and so
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s0saD 0 in A=mn. The only maximal ideal containing mn is m, and so the only maximal

ideal in A=mn is m=mn. As s0s is not in m=mn, it must be a unit in A=mn, and so aD 0 in

A=mn, i.e., a 2mn. We have shown that .mn/ec �mn, and the reverse inclusion is always

true.

We now prove that A=mn! Am=nn is surjective. Let a
s
2 Am, a 2 A, s 2 AXm. The

only maximal ideal of A containing mn is m, and so no maximal ideal contains both s and

mn. Therefore .s/Cmn D A, and so sbCq D 1 for some b 2 A and q 2mn. Hence

s.ba/D a.1�q/: (9)

Because s is invertible in Am=nn, a
s

is the unique element of this ring such that s a
s
D a. But

(9) shows that the image of ba in Am also has this property and therefore equals a
s

. 2

PROPOSITION 5.9. In a noetherian ring, only 0 lies in all powers of all maximal ideals.

PROOF. Let a be an element of a noetherian ring A. If a¤ 0, then its annihilator fb j baD 0g

is a proper ideal in A, and so it is contained in some maximal ideal m. Then a
1

is nonzero in

Am, and so a
1
… .mAm/n for some n (by the Krull intersection theorem 3.15), which implies

that a …mn (by 5.8). 2

Modules of fractions

Let S be a multiplicative subset of the ring A, and let M be an A-module. Define an

equivalence relation on M �S by

.m;s/� .n; t/ ” u.tm� sn/D 0 for some u 2 S:

Write m
s

for the equivalence class containing .m;s/, and define addition and scalar multipli-

cation by the rules:

m
s
C n

t
D mtCns

st
; a

s
m
t
D am

st
; m;n 2M; s; t 2 S; a 2 A:

It is easily checked these do not depend on the choices of representatives for the equivalence

classes, and that we obtain in this way an S�1A-module

S�1M D fm
s
jm 2M; s 2 Sg

and a homomorphism m 7! m
1
WM

iS
�! S�1M of A-modules whose kernel is

fa 2M j saD 0 for some s 2 Sg:

A homomorphism M !N of A-modules factors through M ! S�1M if and only if

every element of S acts invertibly on N . More formally:

PROPOSITION 5.10. The pair .S�1M;iS / has the following universal property:

every element of S acts invertibly on S�1M , and

any homomorphism M !N of A-modules such

that every element of S acts invertibly on N factors

uniquely through iS

M S�1M

N:

iS

9Š
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PROOF. Similar to that of Proposition 5.1. 2

In particular, for any homomorphism ˛WM ! N of A-modules, there is a unique

homomorphism S�1˛WS�1M ! S�1N such that S�1˛ ı iS D iS ı˛:

M S�1M

N S�1N:

iS

˛ S�1˛

iS

In this way, M  S�1M becomes a functor from A-modules to S�1A-modules.

PROPOSITION 5.11. The functor M  S�1M is exact. In other words, if the sequence of

A-modules

M 0
˛
�!M

ˇ
�!M 00

is exact, then so also is the sequence of S�1A-modules

S�1M 0
S�1˛
����! S�1M

S�1ˇ
����! S�1M 00:

PROOF. Because ˇı˛D 0, we have 0DS�1.ˇı˛/DS�1ˇıS�1˛. Therefore Im.S�1˛/�

Ker.S�1ˇ/. For the reverse inclusion, let m
s
2 Ker.S�1ˇ/ where m 2M and s 2 S . Then

ˇ.m/
s
D 0 and so, for some t 2 S , we have tˇ.m/D 0. Then ˇ.tm/D 0, and so tmD ˛.m0/

for some m0 2M 0. Now

m
s
D tm

ts
D ˛.m0/

ts
2 Im.S�1˛/:

2

PROPOSITION 5.12. Let M be an A-module. The canonical map

M !
Y

fMm jm a maximal ideal in Ag

is injective.

PROOF. Let m 2M map to zero in all Mm. The annilator aD fa 2 A j amD 0g of m is

an ideal in A. Because m maps to zero Mm, there exists an s 2 AXm such that smD 0.

Therefore a is not contained in m. Since this is true for all maximal ideals m, aDA (by 2.2),

and so it contains 1. Now mD 1mD 0. 2

COROLLARY 5.13. The A-module M D 0 if Mm D 0 for all maximal ideals m.

PROOF. Immediate consequence of the lemma. 2

PROPOSITION 5.14. A sequence

M 0
˛
�!M

ˇ
�!M 00 (10)

is exact if and only if

M 0m
˛m

�!Mm

˛m

�!M 00m (11)

is exact for all maximal ideals m.



6 INTEGRALITY 23

PROOF. The necessity is a special case of (5.11). For the sufficiency, let N DKer.ˇ/= Im.˛/.

Because the functor M  Mm is exact,

Nm D Ker.ˇm/= Im.˛m/:

If (11) is exact for all m, then Nm D 0 for all m, and so N D 0 (by 5.13). But this means

that (10) is exact. 2

COROLLARY 5.15. A homomorphism M !N of A-modules is injective (resp. surjective)

if and only if Mm!Nm is injective (resp. surjective) for all maximal ideals m:

PROOF. Apply the proposition to 0!M !N (resp. M !N ! 0). 2

EXAMPLE 5.16. Let M be an A-module. For h 2 A, let Mh D S�1
h

M where Sh D

f1;h;h2; : : :g. Then every element of Mh can be written in the form m
hr , m 2M , r 2 N, and

m
hr D

m0

hr0 if and only if hN .hr 0

m�hrm0/D 0 for some N 2 N.

EXERCISE 5.17. A multiplicative subset S of a ring A is said to be saturated if

ab 2 S H) a and b 2 S:

(a) Show that the saturated multiplicative subsets of A are exactly the subsets S such that

AXS is a union of prime ideals.

(b) Let S be a multiplicative subset of A, and let zS be the set of a 2 A such that ab 2 S

for some b 2 A. Show that zS is a saturated multiplicative subset of A (hence it is the

smallest such subset containing S), and that AX zS is the union of the prime ideals

of A not meeting S . Show that for any A-module M , the canonical homomorphism

S�1M ! zS�1M is bijective. In particular, S�1A' zS�1A. (Cf. Bourbaki AC, II ÷2,

Exercises 1,2.)

6 Integrality

Let A be a subring of a ring B . An element ˛ of B is said to be integral over A if it is a root

of a monic8 polynomial with coefficients in A, i.e., if it satisfies an equation

˛nCa1˛n�1C�� �Can D 0; ai 2 A:

If every element of B is integral over A, then B is said to be integral over A.

In the next proof, we shall need to apply Cramer’s rule. As usually stated in linear

algebra courses, this says that, if x1; : : : ;xm is a solution to the system of linear equations

m
X

jD1

cij xj D di ; i D 1; : : : ;m;

then

xj D
det.Cj /

det.C /
; (12)

8A polynomial is monic if its leading coefficient is 1, i.e., f .X/DXnC terms of degree less than n.
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where C D .cij / and

Cj D

0

B

@

c11 � � � c1;j�1 d1 c1;jC1 � � � c1m
:::

:::
:::

:::
:::

cm1 � � � cm;j�1 dm cm;jC1 � � � cmm

1

C

A
:

When one rewrites (12) in the form

det.C / �xj D det.Cj /,

this statement becomes true over any ring (whether or not det.C / is a unit). The proof is

elementary— expand out the right hand side of

detCj D det

0

B

@

c11 : : : c1j�1

P

c1j xj c1jC1 : : : c1m
:::

:::
:::

:::
:::

cm1 : : : cmj�1

P

cmj xj cmjC1 : : : cmm

1

C

A

using standard properties of determinants.

PROPOSITION 6.1. Let A be a subring of a ring B . An element ˛ of B is integral over A if

and only if there exists a faithful9 AŒ˛�-submodule M of B that is finitely generated as an

A-module.

PROOF. )W Suppose that

˛nCa1˛n�1C�� �Can D 0; ai 2 A:

Then the A-submodule M of B generated by 1, ˛, ..., ˛n�1 has the property that ˛M �M ,

and it is faithful because it contains 1.

(W Let M be an A-module in B with a finite set fe1; : : : ; eng of generators such that

˛M �M and M is faithful as an AŒ˛�-module. Then, for each i ,

˛ei D
P

aij ej , some aij 2 A:

We can rewrite this system of equations as

.˛�a11/e1�a12e2�a13e3�� � � D 0

�a21e1C .˛�a22/e2�a23e3�� � � D 0

� � � D 0:

Let C be the matrix of coefficients on the left-hand side. Then Cramer’s formula tells us that

det.C / �ei D 0 for all i . As M is faithful and the ei generate M , this implies that det.C /D 0.

On expanding out the determinant, we obtain an equation

˛nC c1˛n�1C c2˛n�2C�� �C cn D 0; ci 2 A:
2

PROPOSITION 6.2. An A-algebra B is finite if it is generated as an A-algebra by a finite

number of elements, each of which is integral over A.

9An A-module M is faithful if aM D 0, a 2 A, implies aD 0.
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PROOF. Suppose that B D AŒ˛1; : : : ;˛m� and that

˛
ni

i Cai1˛
ni�1
i C�� �Caini

D 0; aij 2 A; i D 1; : : : ;m.

Any monomial in the ˛i ’s divisible by some ˛
ni

i is equal (in B) to a linear combination of

monomials of lower degree. Therefore, B is generated as an A-module by the monomials

˛
r1

1 � � �˛
rm
m , 1� ri < ni . 2

COROLLARY 6.3. An A-algebra B is finite if and only if it is finitely generated and integral

over A.

PROOF. (: Immediate consequence of the proposition.

): As an A-module, B is faithful (because a �1B D a), and so (6.1) shows that every

element of B is integral over A. As B is finitely generated as an A-module, it is certainly

finitely generated as an A-algebra. 2

The proof shows that, if an A-algebra B is generated by a finite number of elements each

of which is integral over A, then it is finitely generated as an A-module.

THEOREM 6.4. Let A be a subring of a ring B . The elements of B integral over A form a

subring of B .

PROOF. Let ˛ and ˇ be two elements of B integral over A. As just noted, AŒ˛;ˇ� is finitely

generated as an A-module. It is stable under multiplication by ˛˙ˇ and ˛ˇ and it is faithful

as an AŒ˛˙ˇ�-module and as an AŒ˛ˇ�-module (because it contains 1A). Therefore (6.1)

shows that ˛˙ˇ and ˛ˇ are integral over A. 2

DEFINITION 6.5. Let A be a subring of the ring B . The integral closure of A in B is the

subring of B consisting of the elements integral over A.

PROPOSITION 6.6. Let A be an integral domain with field of fractions F , and let E be a

field containing F . If ˛ 2E is algebraic over F , then there exists a d 2 A such that d˛ is

integral over A.

PROOF. By assumption, ˛ satisfies an equation

˛mCa1˛m�1C�� �Cam D 0; ai 2 F:

Let d be a common denominator for the ai , so that dai 2 A for all i , and multiply through

the equation by dm:

dm˛mCa1dm˛m�1C�� �Camdm D 0:

We can rewrite this as

.d˛/mCa1d.d˛/m�1C�� �Camdm D 0:

As a1d; : : : ;amdm 2 A, this shows that d˛ is integral over A. 2

COROLLARY 6.7. Let A be an integral domain and let E be an algebraic extension of the

field of fractions of A. Then E is the field of fractions of the integral closure of A in E.
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PROOF. In fact, the proposition shows that every element of E is a quotient ˇ=d with ˇ

integral over A and d 2 A. 2

DEFINITION 6.8. An integral domain A is is said to be integrally closed or normal if it is

equal to its integral closure in its field of fractions F , i.e., if

˛ 2 F; ˛ integral over A H) ˛ 2 A:

PROPOSITION 6.9. Every unique factorization domain is integrally closed.

PROOF. An element of the field of fractions of A not in A can be written a=b with a;b 2 A

and b divisible by some irreducible element p not dividing a. If a=b is integral over A, then

it satisfies an equation

.a=b/nCa1.a=b/n�1C�� �Can D 0; ai 2 A:

On multiplying through by bn, we obtain the equation

anCa1an�1bC�� �Canbn D 0:

The element p then divides every term on the left except an, and hence must divide an.

Since it doesn’t divide a, this is a contradiction. 2

Let F � E be fields, and let ˛ 2 E be algebraic over F . The minimum polynomial

of ˛ over F is the unique element of smallest degree in the set of monic polynomials in

F ŒX� having ˛ as a root. If f is the minimum polynomial of ˛, then the homomorphism

X 7! ˛WF ŒX�! F Œ˛� defines an isomorphism F ŒX�=.f /! F Œ˛�, i.e., F Œx� ' F Œ˛�,

x$ ˛.

PROPOSITION 6.10. Let A be a normal integral domain, and let E be a finite extension of

the field of fractions F of A. An element of E is integral over A if and only if its minimum

polynomial over F has coefficients in A.

PROOF. Let ˛ be integral over A, so that

˛mCa1˛m�1C�� �Cam D 0; some ai 2 A; m > 0.

Let ˛0 be a conjugate of ˛, i.e., a root of the minimum polynomial f .X/ of ˛ over F in

some field containing L. Then there is an F -isomorphism (see above)

� WF Œ˛�! F Œ˛0�; �.˛/D ˛0

On applying � to the above equation we obtain the equation

˛0mCa1˛0m�1C�� �Cam D 0;

which shows that ˛0 is integral over A. As the coefficients of f are polynomials in the

conjugates of ˛, it follows from (6.4) that the coefficients of f .X/ are integral over A. They

lie in F , and A is integrally closed, and so they lie in A. This proves the “only if” part of the

statement, and the “if” part is obvious. 2
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COROLLARY 6.11. Let A be a normal integral domain with field of fractions F , and let

f .X/ be a monic polynomial in AŒX�. Then every monic factor of f .X/ in F ŒX� has

coefficients in A.

PROOF. It suffices to prove this for an irreducible monic factor g of f in F ŒX�. Let ˛ be

a root of g in some extension field of F . Then g is the minimum polynomial of ˛, which,

being also a root of f , is integral over A. Therefore g has coefficients in A. 2

PROPOSITION 6.12. Let A� B be rings, and let A0 be the integral closure of A in B . For

any multiplicative subset S of A, S�1A0 is the integral closure of S�1A in S�1B .

PROOF. Let b=s 2 S�1A0 with b 2 A0 and s 2 S . Then

bnCa1bn�1C�� �Can D 0

for some ai 2 A, and so

�

b
s

�n

C
a1

s

�

b
s

�n�1

C�� �C
an

sn D 0:

Therefore b=s is integral over S�1A. This shows that S�1A0 is contained in the integral

closure of S�1B .

For the converse, let b=s be integral over S�1A with b 2 B and s 2 S . Then

�

b
s

�n

C
a1

s1

�

b
s

�n�1

C�� �C
an

sn
D 0:

for some ai 2 A and si 2 S . On multiplying this equation by sns1 � � �sn, we find that

s1 � � �snb 2 A0, and therefore that b=s D s1 � � �snb=ss1 � � �sn 2 S�1A0. 2

COROLLARY 6.13. Let A� B be rings, and let S be a multiplicative subset of A. If A is

integrally closed in B , then S�1A is integrally closed in S�1B .

PROOF. Special case of the proposition in which A0 D A. 2

PROPOSITION 6.14. The following conditions on an integral domain A are equivalent:

(a) A is an integral domain;

(b) Ap is integrally closed for all prime ideals p;

(c) Am is integrally closed for all maximal ideals m.

PROOF. The implication (a))(b) follows from (6.13), and (b))(c) is obvious. For (c))(a),

let A0 be the integral closure of A in its field of fractions F . Then .A0/m is the integral

closure of Am in F (by 6.12). If (c) holds, then Am! .A0/m is surjective for all maximal

ideals m, which implies that A! A0 is surjective (by 5.15), and so A is integrally closed.2

PROPOSITION 6.15. If A is a normal integral domain, so also is the polynomial ring AŒX�.

PROOF. Omitted for the present. 2
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The going-up theorem

PROPOSITION 6.16. Let A� B be integral domains, with B integral over A. Then B is a

field if and only if A is a field.

PROOF. Suppose that A is a field, and let b be a nonzero element of B . Then

bnCa1bn�1C�� �Can D 0

for some ai 2A, and we may suppose that n is the minimum degree of such a relation. Then,

as B is an integral domain, an ¤ 0, and the equation

b � .bn�1Ca1bn�2C�� �Can�1/a�1
n D�1

shows that b has an inverse in B .

Conversely, suppose that B is a field, and let a be a nonzero element of A. Then a has

an inverse a�1 in B , and

a�nCa1a�.n�1/C�� �Can D 0

for some ai 2 A. On multiplying through by an�1, we find that

a�1Ca1Ca2a � � �Canan�1 D 0,

and so
a�1 D�.a1Ca2a � � �Canan�1/ 2 A:

2

COROLLARY 6.17. Let A� B be rings with B integral over A. Let q be a prime ideal of

B , and let pD q\A. Then q is maximal if and only if p is maximal.

PROOF. Apply the proposition to A=p� B=q. 2

COROLLARY 6.18 (INCOMPARABILITY). Let A� B be rings with B integral over A, and

let q� q0 be prime ideals of B . If q\AD q0\A, then qD q0.

PROOF. Let p D q\A D q0\A. Then Ap � Bp, and Bp is integral over Ap. The ideals

qBp� q0Bp are both prime ideals of Bp lying over pAp, which is maximal, and so qBpD q0Bp

(by 6.17). Now

q
5.4
D .qBp/

c D
�

q0Bp

�c 5.4
D q0:

2

THEOREM 6.19. Let A� B be rings with B integral over A, and let p be a prime ideal of

A. Then there exists a prime ideal q of B such that pD q\A.

PROOF. We have Ap � Bp, and Bp is integral over Ap. Let n be a maximal ideal in Bp

(which exists by 2.2). Then n\Ap is maximal (6.17). But pAp is the unique maximal ideal

of Ap, and so n\Ap D pAp. Let q be the inverse image of n in B . Then q\A is the inverse

image of pAp in A, because the diagram

B Bp

A Ap

commutes. But the inverse image of pAp in A is p (as pec D p; see 5.4). Therefore

q\AD p. 2
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COROLLARY 6.20. Let A� B be rings with B integral over A. Let p� p0 be prime ideals

of A, and let q be a prime ideal of B such that q\AD p. Then there exists a prime ideal q0

of B containing q and such that q0\AD p0.

PROOF. We have A=p � B=q, and B=q is integral over A=p. According to the theorem,

there exists a prime ideal q00 in B=q such that q00\ .A=p/D p0=p. The inverse image q0 of

q00 in B has the required properties. 2

COROLLARY 6.21. Let A � B be rings with B integral over A, and let p1 � �� � � pn be

prime ideals in A. Let

q1 � �� � � qm .m < n/ (13)

be prime ideals in B such that qi \AD pi for all i �m. Then (13) can be extended to a

chain of prime ideals

q1 � �� � � qn

such that qi \AD pi for all i � n.

PROOF. Immediate consequence of Corollary 6.20. 2

Theorem 6.19 and its corollaries are referred to as the going-up theorem (of Cohen and

Seidenberg).

The going-down theorem

Before proving the going-down theorem, we need to extend some of the definitions and

results from earlier in this section.

Let A� B be rings, and let a be an ideal of A. An element b of B is said to be integral

over a if it satisfies an equation

bnCa1bn�1C�� �Can D 0 (14)

with the ai 2 a. The set of elements of B integral over a is called the integral closure of a in

B . The proof of Proposition 6.1 shows that b 2 B is integral over a if there exists a faithful

AŒb�-submodule M of B such that bM � aM and M is finitely generated as an A-module.

Note that if bm is integral over a, so also is b (the equation (14) for bm can be read as a

similar equation for b).

LEMMA 6.22. Let A0 be the integral closure of A in B . Then the integral closure of a in B

is the radical of aA0.

PROOF. Let b 2 B be integral over a. From (14) we see that b 2 A0 and that bn 2 aA0, and

so b is in the radical of aA0.

Conversely, let b be in the radical of aA0, so that

bm D
X

i
aixi ; some m > 0, ai 2 a; xi 2 A0:

As each xi is integral over A, M
def
D AŒx1; : : : ;xn� is a finite A-algebra (see 6.2). As bnM �

M , we see that bn is integral over a, which implies that b is integral over a. 2
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In particular, the integral closure of a in B is an ideal in A0, and so it is closed under the

formation of sums and (nonempty) products.

PROPOSITION 6.23. Let A be a normal integral domain, and let E extension of the field

of fractions F of A. If an element of E is integral over an ideal a in A, then its minimum

polynomial over F has coefficients in the radical of a.

PROOF. Let ˛ be integral over a, so that

˛nCa1˛n�1C�� �Can D 0

for some n > 0 and ai 2 a. As in the proof of (6.10), the conjugates of ˛ satisfy the same

equation as ˛, and so are also integral over a. The coefficients of the minimum polynomial

of ˛ over F are polynomials without constant term in its conjugates, and so they are also

integral over a. As these coefficients lie in F , they lie in the integral closure of a in F , which

is the radical of a (by 6.22). 2

THEOREM 6.24. Let A� B be integral domains with A normal and B integral over A. Let

p0 � p be prime ideals in A, and let q be a prime ideal in B such that q\AD p. Then there

exists a prime ideal q0 � q in B such that q0\AD p0.

PROOF. The prime ideals of B contained in q are the contractions of prime ideals in Bq (see

5.4), and so we have show to that p0 is the contraction of a prime ideal of Bq, or, equivalently

(see 5.6), that

A\
�

p0Bq

�

D p0.

Let b 2 p0Bq. Then b D y=s with y 2 p0B and s 2 B Xq. By (6.22), y is integral over

p0, and so (by 6.23) the minimum equation

ymCa1ym�1C�� �Cam D 0 (15)

of y over the field of fractions F of A has coefficients ai 2 p
0.

Suppose that b 2 A\p0Bq. Then b�1 2 F , and so, on replacing y with bs in (15) and

dividing through by bm, we obtain the minimum equation for s over F :

smC .a1=b/sm�1C�� �C .am=bm/D 0: (16)

But b is integral over A, and so (by 6.10), each coefficient ai=bi 2 A. Suppose that

b … p0. The coefficients ai=bi 2 p0, and so (16) shows that sm 2 p0B � pB � q, and so s 2 q,

which contradicts its definition. Hence b 2 p0, and so A\p0Bq D p0 as required. 2

COROLLARY 6.25. Let A� B be integral domains with A normal and B integral over A.

Let p1 � �� � � pn be prime ideals in B , and let

q1 � �� � � qm (m < n) (17)

be prime ideals in B such that qi \AD pi for all i . Then (17) can be extended to a chain of

prime ideals

q1 � �� � � qn

such that qi \AD pi for all i:

PROOF. Immediate consequence of the theorem. 2

Theorem 6.24 and its corollary are referred to as the going-down theorem (of Cohen

and Seidenberg).
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The Noether normalization theorem

THEOREM 6.26 (NOETHER NORMALIZATION THEOREM). Every finitely generated alge-

bra A over a field k contains a polynomial algebra R such that A is a finite R-algebra.

In other words, there exist elements y1; : : : ;yr of A such that A is a finitely generated

kŒy1; : : : ;yr �-module and y1; : : : ;yr are algebraically independent10 over k.

PROOF. We use induction on the minimum number n of generators of A as a k-algebra. If

nD 0, there is nothing to prove, and so we may suppose that n� 1 and that the statement is

true for k-algebras generated by n�1 (or fewer) elements.

Let AD kŒx1; : : : ;xn�. If the xi are algebraically independent, then there is nothing to

prove, and so we may suppose that there exists a nonconstant polynomial f .T1; : : : ;Tn/ such

that f .x1; : : : ;xn/D 0. Some Ti occurs in f , say T1, and we can write

f D c0T N
1 C c1T N�1

1 C�� �C cN ; ci 2 kŒT2; : : : ;Tn�; c0 ¤ 0:

If c0 2 k, then the equation

0D f .x1; : : : ;xn/D c0xN
1 C c1.x2; : : : ;xn/xN�1

1 C�� �C cN .x2; : : : ;xn/

shows that x1 is integral over kŒx2; : : : ;xn�. By induction, there exist algebraically indepen-

dent elements y1; : : : ;yr such that kŒx2; : : : ;xn� is finite over kŒy1; : : : ;yr �. It follows that A

is finite over kŒy1; : : : ;yr � (a composite of finite ring homorphisms is finite).

If c0 … k, then we choose different generators for A. Fix an integer m > 0, and let

x01 D x1;x02 D x2�xm2

1 ; : : : ;x0n D xn�xmn

1 :

Then

kŒx01; : : : ;x0n�D kŒx1; : : : ;xn�D A

because each x0i 2 kŒx1; : : : ;xn� and, conversely, each

xi 2 kŒx1;x02; : : : ;x0n�D kŒx01; : : : ;x0n�:

When we let

g.T1; : : : ;Tn/D f .T1;T2CT m2

1 ; : : : ;TnCT mn

1 / 2 kŒT1; : : : ;Tn�;

then

g.x01; : : : ;x0n/D f .x01;x02Cx0m
2

1 ; : : : ;x0nCx0m
n

1 /D 0:

I claim that, if m is chosen sufficiently large, then

g.T1; : : : ;Tn/D c00T N
1 C c01T N�1

1 C�� �C c0N ;

with c0i 2 kŒT2; : : : ;Tn� and c00 2 k�, and so the previous argument applies:

10Recall that this means that the homomorphism of k-algebras kŒX1; : : : ;Xr �! kŒy1; : : : ;yr � sending Xi to

yi is an isomorphism, or, equivalently, that

P.y1; : : : ;yr /D 0; P 2 kŒX1; : : : ;Xr � H) P D 0:
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To prove the claim, let

f .T 1; : : : ;Tn/D
X

cj1���jn
T

j1

1 � � �T
jn
n :

Choose m so large that the numbers

j1Cm2j2C�� �Cmnjn; (18)

are distinct when .j1; : : : ;jn/ runs over the n-tuples with cj1;:::;jn
¤ 0. Then

f .T1;T2CT m2

1 ; : : : ;TnCT mn

1 /D cT N
1 C c1T N�1

1 C�� �

with c 2 kXf0g and N equal to the largest value of (18). 2

REMARK 6.27. When k is infinite, there is a simpler proof of a somewhat stronger result:

let AD kŒx1; : : : ;xn�; then there exist algebraically independent elements f1; : : : ;fr that

are linear combinations of the xi such that A is finite over kŒf1; : : : ;fr � (see 8.13 of my

algebraic geometry notes).

EXERCISE 6.28. A ring A is said to be normal if Ap is a normal integral domain for all

prime ideals p in A. Show that a noetherian ring is normal if and only if it is a finite product

of normal integral domains.

7 Artinian rings

A ring A is artinian if every descending chain of ideals a1 � a2 � �� � in A eventually

becomes constant; equivalently, if every nonempty set of ideals has a minimal element.

Similarly, a module M over a ring A is artinian if every descending chain of submodules

N1 �N2 � �� � in M eventually becomes constant.

PROPOSITION 7.1. An artinian ring has Krull dimension zero; in other words, every prime

ideal is maximal.

PROOF. Let p be a prime ideal of an artinian ring A, and let A0DA=p. Then A0 is an artinian

integral domain. For any nonzero element a of A0, the chain .a/ � .a2/ � �� � eventually

becomes constant, and so an D anC1b for some b 2 A0 and n � 1. We can cancel an to

obtain 1D ab. Thus a is a unit, A0 is a field, and p is maximal: 2

COROLLARY 7.2. In an artinian ring, the nilradical and the Jacobson radical coincide.

PROOF. The first is the intersection of the prime ideals (2.4), and the second is the intersec-

tion of the maximal ideals (2.5). 2

PROPOSITION 7.3. An artinian ring has only finitely many maximal ideals.

PROOF. Let m1\ : : :\mn be minimal among finite intersections of maximal ideals in an

artinian ring, and let m be another maximal ideal in the ring. If m is not equal to one of the

mi , then, for each i , there exists an ai 2mi Xm. Now a1 � � �an lies in m1\ : : :\mn but not

in m (because m is prime), contradicting the minimality of m1\ : : :\mn. 2
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PROPOSITION 7.4. In an artinian ring, some power of the nilradical is zero.

PROOF. Let N be the nilradical of the artinian ring A. The chain N�N2 � � � � eventually

becomes constant, and so Nn DNnC1 D �� � for some n� 1. Suppose that Nn ¤ 0. Then

there exist ideals a such that a �Nn ¤ 0, for example N, and we may suppose that a has been

chosen to be minimal among such ideals. There exists an a 2 a such that a �Nn ¤ 0, and

so aD .a/ (by minimality). Now .aNn/Nn D aN2n D aNn ¤ 0 and aNn � .a/, and so

aNn D .a/ (by minimality again). Hence aD ax for some x 2Nn. Now aD ax D ax2 D

�� � D a0D 0 because x 2N. This contradicts the definition of a, and so Nn D 0. 2

LEMMA 7.5. Let A be a ring in which some finite product of maximal ideals is zero. Then

A is artinian if and only if it is noetherian.

PROOF. Suppose that m1 � � �mn D 0 with the mi maximal ideals (not necessarily distinct),

and consider

A�m1 � �� � �m1 � � �mr�1 �m1 � � �mr � �� � �m1 � � �mn D 0:

The action of A on the quotient Mr
def
Dm1 � � �mr�1=m1 � � �mr factors through the field A=mr ,

and the subspaces of the vector space Mr are in one-to-one correspondence with the ideals

of A contained between m1 � � �mr�1 and m1 � � �mr . If A is either artinian or noetherian, then

Mr satisfies a chain condition on subspaces and so it is finite-dimensional as a vector space

and both artinian and noetherian as an A-module. Now repeated applications of Proposition

3.3 (resp. its analogue for artinian modules) show that if A is artinian (resp. noetherian),

then it is noetherian (resp. artinian) as an A-module, and hence as a ring. 2

THEOREM 7.6. A ring is artinian if and only if it is noetherian of dimension zero.

PROOF. ): Let A be an artinian ring. After (7.1), it remains to show that A is noetherian,

but according to (7.2), (7.3), and (7.4), some finite product of maximal ideals is zero, and so

this follows from the lemma.

(: Let A be a noetherian ring of dimension zero. The zero ideal admits a primary

decomposition (17.11), and so A has only finitely many minimal prime ideals, which are all

maximal because dimAD 0. Hence N is a finite intersection of maximal ideals (2.4), and

since some power of N is zero (3.16), we again have that some finite product of maximal

ideals is zero, and so can apply the lemma. 2

THEOREM 7.7. Every artinian ring is (uniquely) a product of local artinian rings.

PROOF. Let A be artinian, and let m1; : : : ;mr be the distinct maximal ideals in A. We saw

in the proof of (7.6) that some product m
n1

1 � � �m
nr
r D 0. For i ¤ j , the ideal m

ni

i Cm
nj

j is

not contained in any maximal ideal, and so equals A. Now the Chinese remainder theorem

2.12 shows that

A' A=m
n1

1 � � � ��A=mnr
r ,

and each ring A=m
ni

i is obviously local. 2

PROPOSITION 7.8. Let A be a local artinian ring with maximal ideal m. If m is principal,

so also is every ideal in A; in fact, if mD .t/, then every ideal is of the form .tr/ for some

r � 0.
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PROOF. Because m is the Jacobson radical of A, some power of m is zero (by 7.4); in

particular, .0/D .tr/ for some r . Let a be a nonzero ideal in A. There exists an integer r � 0

such that a�mr but a 6�mrC1. Therefore there exists an element a of a such that aD ctr

for some c 2 A but a … .trC1/. The second condition implies that c …m, and so it is a unit;

therefore aD .a/. 2

EXAMPLE 7.9. The ring AD kŒX1;X2;X3; : : :�=.X1;X2
2 ;X3

3 ; : : :/ has only a single prime

ideal, namely, .x1;x2;x3; : : :/, and so has dimension zero. However, it is not noetherian

(hence not artinian).

ASIDE 7.10. Every finitely generated module over a principal Artin ring is a direct sum of cyclic

modules (see mo22722).

8 Direct and inverse limits

Direct limits

DEFINITION 8.1. A partial ordering � on a set I is said to be directed, and the pair .I;�/

is called a directed set, if for all i;j 2 I there exists a k 2 I such that i;j � k.

DEFINITION 8.2. Let .I;�/ be a directed set, and let A be a ring.

A direct system of A-modules indexed by .I;�/

is a family .Mi /i2I of A-modules together with a

family .˛i
j WMi !Mj /i�j of A-linear maps such

that ˛i
i D idMi

and ˛
j

k
ı˛i

j D ˛i
k

all i � j � k.

Mk

Mi Mj

˛i
k

˛i
j

˛
j

k

An A-module M together with a family .˛i WMi!

M/i2I of A-linear maps satisfying ˛i D ˛j ı˛i
j

all i � j is said to be a direct limit of the sys-

tem ..Mi /; .˛
i
j // if it has the following universal

property: for any other A-module N and fam-

ily .ˇi WMi ! N / of A-linear maps such that

ˇi D ˇj ı˛i
j all i � j , there exists a unique mor-

phism ˛WM ! N such that ˛ ı ˛i D ˇi for all

i .

M

Mi Mj

N

˛i

˛i
j

˛j

ˇ i

ˇj

˛

As usual, the universal property determines the direct limit (if it exists) uniquely up to a

unique isomorphism. We denote it lim
�!

.Mi ;˛
j
i /, or just lim

�!
Mi .

CRITERION

An A-module M together with A-linear maps ˛i WMi !M such that ˛i D ˛j ı˛i
j for all

i � j is the direct limit of a system .Mi ;˛
j
i / if and only if

(a) M D
S

i2I ˛i .Mi /, and

(b) mi 2Mi maps to zero in M if and only if it maps to zero in Mj for some j � i .
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CONSTRUCTION

Let

M D
M

i2I

Mi=M 0

where M 0 is the A-submodule generated by the elements

mi �˛i
j .mi / all i < j , mi 2Mi :

Let ˛i .mi /Dmi CM 0. Then certainly ˛i D ˛j ı˛i
j for all i � j . For every A-module N

and A-linear maps ˇj WMj !N , there is a unique map
M

i2I

Mi !N;

namely,
P

mi 7!
P

ˇi .mi /, sending mi to ˇi .mi /, and this map factors through M and is

the unique A-linear map with the required properties.

Direct limits of A-algebras, etc., are defined similarly.

AN EXAMPLE

PROPOSITION 8.3. For every multiplicative subset S of a ring A, S�1A' lim
�!

Ah, where

h runs over the elements of S (partially ordered by division).

PROOF. When hjh0, say, h0 D hg, there is a unique homomorphism Ah! Ah0 respecting

the maps A! Ah and A! Ah0 , namely, a
h
7! ag

h0
, and so the rings Ah form a direct system

indexed by the set S . When h 2 S , the homomorphism A! S�1A extends uniquely to a

homomorphism a
h
7! a

h
WAh! S�1A (see 5.1), and these homomorphisms are compatible

with the maps in the direct system. Now apply the criterion p. 34 to see that S�1A is the

direct limit of the Ah. 2

EXACTNESS

PROPOSITION 8.4. The direct limit of a system of exact sequences of modules is exact.

This means the following: suppose that .Mi ;˛
i
j /, .Ni ;ˇ

i
j /, and .Pi ;


i
j / are direct

systems with repect to the directed set I , and let

0! .Mi ;˛
i
j /

.ai /
�! .Ni ;ˇ

i
j /

.bi /
�! .Pi ;


i
j /! 0

be a sequence of maps of direct systems; if the sequences

0!Mi
ai
�!Ni

bi
�! Pi ! 0

are exact for all i , then the direct limit sequence

0! lim
�!

Mi

lim
�!

ai

�! lim
�!

Ni

lim
�!

bi

�! lim
�!

Pi ! 0

is exact.

PROOF. Let .ni / 2 lim
�!

Ni . If .bi .ni //D 0, then there exists an i0 such that bi .ni /D 0 for

all i � i0. Let mi D 0 unless i � i0, in which case we let mi be the unique element such

that ai .mi /D ni . Then .mi / maps to .ni /. This proves exactness at lim
�!

Ni , and the proof of

exactness at the other terms is obvious. 2



8 DIRECT AND INVERSE LIMITS 36

Inverse limits

Inverse limits are the same as direct limits except that the directions of the arrows is reversed.

Thus, formally, the theory of inverse limits is the same as that of inverse limits. However, in

concrete categories, they behave very differently. For example, the inverse limit of a system

of exact sequences of modules need not be exact.

We shall consider inverse limits only in the case that the indexing set if N with its usual

ordering. Thus, an inverse system of A-modules is nothing more than a sequence of modules

and A-homomorphisms

M0
˛0
 �M1

˛1
 � �� �

˛n�1
 � Mn

˛n
 � �� � :

A homomorphism .Mn;˛n/! .Nn;ˇn/ of inverse systems is a sequence of A-homomorphisms


nWMn!Nn such that ˇn ı
nC1 D 
n ı˛n for all n 2 N.

Given an inverse system .Mn;˛n/ of A-modules, we define lim
 �

Mn and lim
 �

1 Mn to be

the kernel and cokernel of the map

.mn/n2N 7! .mn�˛n.mnC1//W
Y

Mn!
Y

Mn:

PROPOSITION 8.5. For any inverse system .Mn;˛n/ and A-module N ,

Hom.lim
 �

Mn;N /' lim
 �

Hom.Mn;N /:

PROOF. Obvious. 2

PROPOSITION 8.6. For any inverse system of exact sequence

0! .Mn;˛n/! .Nn;ˇn/! .Pn;
n/! 0;

there is an exact sequence

0! lim
 �

Mn! lim
 �

Nn! lim
 �

Pn! lim
 �

1 Mn! lim
 �

1 Nn! lim
 �

1 Pn! 0:

PROOF. The sequence

0!
Y

Mn!
Y

Nn!
Y

Pn! 0

is exact, and so this follows from the snake lemma. 2

COROLLARY 8.7. If the maps ˛nWMnC1!Mn are all surjective, then the sequence

0! lim
 �

Mn! lim
 �

Nn! lim
 �

Pn! 0

is exact.

PROOF. The hypothesis implies that lim
 �

1 Mn D 0 (axiom of determined choice). 2

ASIDE 8.8. Direct (resp. inverse) limits are also called inductive (resp. projective) limits or colimits

(resp. limits).
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9 Tensor Products

Tensor products of modules

Let A be a ring, and let M , N , and P be A-modules. A map �WM �N ! P of A-modules

is said to be A-bilinear if

�.xCx0;y/D �.x;y/C�.x0;y/; x;x0 2M; y 2N

�.x;yCy0/D �.x;y/C�.x;y0/; x 2M; y;y0 2N

�.ax;y/D a�.x;y/; a 2 A; x 2M; y 2N

�.x;ay/D a�.x;y/; a 2 A; x 2M; y 2N;

i.e., if � is A-linear in each variable.

M �N T

T 0:

�

�0 9Š linear

An A-module T together with an A-bilinear map

�WM �N ! T

is called the tensor product of M and N over A if it has the

following universal property: every A-bilinear map

�0WM �N ! T 0

factors uniquely through �.

As usual, the universal property determines the tensor product uniquely up to a unique

isomorphism. We write it M ˝A N . Note that

HomA-bilinear.M �N;T /' HomA-linear.M ˝A N;T /:

CONSTRUCTION

Let M and N be A-modules, and let A.M�N / be the free A-module with basis M �N . Thus

each element A.M�N / can be expressed uniquely as a finite sum

X

ai .xi ;yi /; ai 2 A; xi 2M; yi 2N:

Let P be the submodule of A.M�N / generated by the following elements

.xCx0;y/� .x;y/� .x0;y/; x;x0 2M; y 2N

.x;yCy0/� .x;y/� .x;y0/; x 2M; y;y0 2N

.ax;y/�a.x;y/; a 2 A; x 2M; y 2N

.x;ay/�a.x;y/; a 2 A; x 2M; y 2N;

and define

M ˝A N D A.M�N /=P:

Write x˝y for the class of .x;y/ in M ˝A N . Then

.x;y/ 7! x˝yWM �N !M ˝A N
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is A-bilinear — we have imposed the fewest relations necessary to ensure this. Every element

of M ˝A N can be written as a finite sum11

X

ai .xi ˝yi /; ai 2 A; xi 2M; yi 2N;

and all relations among these symbols are generated by the following relations

.xCx0/˝y D x˝yCx0˝y

x˝ .yCy0/D x˝yCx˝y0

a.x˝y/D .ax/˝y D x˝ay:

The pair .M ˝A N;.x;y/ 7! x˝y/ has the correct universal property because any bilinear

map �0WM �N ! T 0 defines an A-linear map A.M�N / ! T 0, which factors through

A.M�N /=K, and gives a commutative triangle.

EXTENSION OF SCALARS

Let A be a commutative ring and let B be an A-algebra (not necessarily commutative) such

that the image of A! B lies in the centre of B . Then M  B˝A M is a functor from

left A-modules to left B-modules. Let M be an A-module and N a B-module; an A-linear

map ˛WM !N defines a B-linear map ˇWB˝A M !N such that b˝m 7! b �˛.m/, and

˛$ ˇ is an isomorphism:

HomA-linear.M;N /' HomB-linear.B˝A M;N /. (19)

If .e˛/˛2I is a family of generators (resp. basis) for M as an A-module, then .1˝e˛/˛2I is

a family of generators (resp. basis) for B˝A M as a B-module.

BEHAVIOUR WITH RESPECT TO DIRECT LIMITS

PROPOSITION 9.1. Direct limits commute with tensor products:

lim
�!
i2I

Mi ˝A lim
�!
j2J

Nj ' lim
�!

.i;j /2I�J

Mi ˝A Nj :

PROOF. Using the universal properties of direct limits and tensor products, one sees easily

that lim
�!

.Mi ˝A Nj / has the universal property to be the tensor product of lim
�!

Mi and

lim
�!

Nj . 2

Tensor products of algebras

Let k be a ring, and let A and B be k-algebras. A k-algebra C together with homomorphisms

i WA! C and j WB ! C is called the tensor product of A and B if it has the following

universal property:

11“An element of the tensor product of two vector spaces is not necessarily a tensor product of two vectors,

but sometimes a sum of such. This might be considered a mathematical shenanigan but if you start with the

state vectors of two quantum systems it exactly corresponds to the notorious notion of entanglement which so

displeased Einstein.” Georges Elencwajg on mathoverflow.net.
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for every pair of homomorphisms (of k-algebras)

f WA! R and gWB ! R, there exists a unique

homomorphism .f;g/WC ! R such that .f;g/ ı

i D ˛ and .f;g/ıj D ˇ,

A C B

R

i j

f g9Š .f;g/

If it exists, the tensor product, is uniquely determined up to a unique isomorphism by this

property. We write it A˝k B . Note that the universal property says that

Hom.A˝k B;R/' Hom.A;R/�Hom.B;R/ (20)

(k-algebra homomorphisms).

CONSTRUCTION

Regard A and B as k-modules, and form the tensor product A˝k B . There is a multiplication

map A˝k B �A˝k B! A˝k B for which

.a˝b/.a0˝b0/D aa0˝bb0; all a;a0 2 A; b;b0 2 B:

This makes A˝k B into a ring, and the homomorphism

c 7! c.1˝1/D c˝1D 1˝ c

makes it into a k-algebra. The maps

a 7! a˝1WA! A˝k B and b 7! 1˝bWB! A˝k B

are homomorphisms, and they make A˝k B into the tensor product of A and B in the above

sense.

EXAMPLE 9.2. The algebra A, together with the maps

k �! A
idA
 � A,

is k˝k A (because it has the correct universal property). In terms of the constructive

definition of tensor products, the map c˝a 7! caWk˝k A! A is an isomorphism.

EXAMPLE 9.3. The ring kŒX1; : : : ;Xm;XmC1; : : : ;XmCn�, together with the obvious inclu-

sions

kŒX1; : : : ;Xm� ,! kŒX1; : : : ;XmCn�  - kŒXmC1; : : : ;XmCn�

is the tensor product of the k-algebras kŒX1; : : : ;Xm� and kŒXmC1; : : : ;XmCn�. To verify

this we only have to check that, for every k-algebra R, the map

Hom.kŒX1; : : : ;XmCn�;R/! Hom.kŒX1; : : :�;R/�Hom.kŒXmC1; : : :�;R/

induced by the inclusions is a bijection. But this map can be identified with the bijection

RmCn!Rm�Rn:

In terms of the constructive definition of tensor products, the map

kŒX1; : : : ;Xm�˝k kŒXmC1; : : : ;XmCn�! kŒX1; : : : ;XmCn�

sending f ˝g to fg is an isomorphism.
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REMARK 9.4. (a) Let k ,! k0 be a homomorphism of rings. Then

k0˝k kŒX1; : : : ;Xn�' k0Œ1˝X1; : : : ;1˝Xn�' k0ŒX1; : : : ;Xn�:

If AD kŒX1; : : : ;Xn�=.g1; : : : ;gm/, then

k0˝k A' k0ŒX1; : : : ;Xn�=.g1; : : : ;gm/:

(b) If A and B are algebras of k-valued functions on sets S and T respectively, then the

definition

.f ˝g/.x;y/D f .x/g.y/; f 2 A, g 2 B , x 2 S , y 2 T;

realizes A˝k B as an algebra of k-valued functions on S �T .

The tensor algebra of a module

Let M be a module over a ring A. For each A� 0, set

T rM DM ˝A � � �˝A M (r factors),

so that T 0M D A and T 1M DM , and define

TM D
M

r�0
T rM:

This can be made into a noncommutative A-algebra, called the tensor algebra of M , by

requiring that the multiplication map

T rM �T sM ! T rCsM

send .m1˝�� �˝mr ; mrC1˝�� �˝mrCs/ to m1˝�� �˝mrCs .

M TM

R

A-linear 9ŠA-algebra

The pair .TM;M ! TM/ has the following universal prop-

erty: every A-linear map from M to an A-algebra R (not neces-

sarily commutative) extends uniquely to an A-algebra homomor-

phism TM !R.

If M is a free A-module with basis x1; : : : ;xn, then TM is

the (noncommutative) polynomial ring over A in the noncommut-

ing symbols xi (because this A-algebra has the same universal

property as TM ).

The symmetric algebra of a module

The symmetric algebra Sym.M / of an A-module M is the quotient of TM by the ideal

generated by all elements of T 2M of the form

m˝n�n˝m; m;n 2M:

It is a graded algebra Sym.M /D
L

r�0 Symr.M/ with Symr.M/ equal to the quotient of

M˝r by the A-submodule generated by all elements of the form

m1˝�� �˝mr �m�.1/˝�� �˝m�.r/; mi 2M; � 2 Br (symmetric group).
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M Sym.M/

R

A-linear 9ŠA-algebra

The pair .Sym.M /;M ! Sym.M// has the following

universal property: every A-linear map M !R from M

to a commutative A-algebra R extends uniquely to an

A-algebra homomorphism Sym.M/!R (because it ex-

tends to an A-algebra homomorphism TM !R, which

factors through Sym.M / because R is commutative).

If M is a free A-module with basis x1; : : : ;xn, then

Sym.M / is the polynomial ring over A in the (commuting) symbols xi (because this A-

algebra has the same universal property as TM ).

10 Flatness

Let M be an A-module. If the sequence of A-modules

0!N 0!N !N 00! 0 (21)

is exact, then the sequence

M ˝A N 0!M ˝A N !M ˝A N 00! 0

is exact, but M ˝A N 0!M ˝A N need not be injective. For example, when we tensor the

exact sequence of Z-modules

0! Z
m
�! Z! Z=mZ! 0

with Z=mZ, we get the sequence

Z=mZ
x 7!mxD0
�������! Z=mZ

x 7!x
���! Z=mZ! 0:

Moreover, M ˝A N may be zero even when neither M nor N is nonzero. For example,

Z=2Z˝ZZ=3ZD 0

because it is killed by both 2 and 3.12 In fact, M ˝A M may be zero without M being zero,

for example,13

Q=Z˝ZQ=ZD 0.

DEFINITION 10.1. An A-module M is flat if

N 0!N injective H) M ˝A N 0!M ˝A N injective.

It is faithfully flat if, in addition,

M ˝A N D 0 H) N D 0:

A homomorphism of rings A! B is said to be flat (resp. faithfully flat) when B is flat

(resp. faithfully flat) as an A-module.

12It was once customary in certain circles to require a ring to have an identity element 1¤ 0 (see, for example,

Northcott 1953, p.3). However, without the zero ring, tensor products don’t always exist. Bourbaki’s first

example of a ring is the zero ring.
13Let x;y 2Q=Z; then nx D 0 for some n 2 Z, and y D ny0 for some y0 2Q=Z; now

x˝y D x˝ny0 D nx˝y0 D 0˝y0 D 0:
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Thus, an A-module M is flat if and only if M ˝A� is an exact functor, i.e.,

0!M ˝A N 0!M ˝A N !M ˝A N 00! 0 (22)

is exact whenever (21) is exact. An A-algebra B is said to be flat if B is flat as an A-module.

EXAMPLE 10.2. The functor M ˝� takes direct sums to direct sums, and therefore split-

exact sequences to split-exact sequences. Therefore, all vector spaces over a field are flat,

and nonzero vector spaces are faithfully flat. In fact, every module over a product of fields

(even an infinite product) is flat.

EXAMPLE 10.3. Quotient maps A! A=a are rarely flat. If A is a product, AD A1�A2,

then the quotient map A� A1 is obviously flat. When A is noetherian, all flat quotient

maps are of this form.14

PROPOSITION 10.4. Let A! B be a faithfully flat homomorphism of rings. A sequence

of A-modules

0!N 0!N !N 00! 0 (23)

is exact if

0! B˝A N 0! B˝A N ! B˝A N 00! 0 (24)

is exact.

PROOF. Let N0 be the kernel of N 0!N . Because A!B is flat, B˝A N0 is the kernel of

B˝A N 0! B˝A N , which is zero by assumption; because A! B is faithfully flat, this

implies that N0 D 0. We have proved the exactness at N 0, and the proof of the exactness

elsewhere is similar. 2

REMARK 10.5. There is a converse to the proposition: suppose that

(23) is exact , (24) is exact;

then A! B is faithfully flat. The implication “)” shows that A! B is flat. Now let N be

an A-module, and consider the sequence

0! 0!N ! 0! 0.

If B˝A N D 0, then this sequence becomes exact when tensored with B , and so is itself

exact, which implies that N D 0. This shows that A! B is faithfully flat.

COROLLARY 10.6. Let A! B be faithfully flat. An A-module M is flat (resp. faithfully

flat) if B˝A M is flat (resp. faithfully flat) as a B-module.

14The set V.a/ is closed in spec.A/ (by definition of the topology on spec.A/). If A!A=a is flat, then V.a/ is

also open. Therefore ADA1�A2 and a is of the form b�A2 with b an ideal in A1 such that V.b/D spec.A1/.

On tensoring

0! b�A2! A1�A2! A1=b! 0

with A1=b we get an exact sequence

0! b=b2! A1=b
id
�! A1=b! 0:

Therefore b D b2, but b is contained in all prime ideals of A1, and so this implies that b D 0 (Nakayama’s

lemma, 3.9).
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PROOF. Assume that MB
def
D B˝A N is flat, and let N 0! N be an injective map of A-

modules. We have that

B˝A .M ˝A N 0!M ˝A N /'MB˝B .N 0B !NB/,

and the map at right is injective because A! B is flat and MB is flat. Now (10.4) shows

that M ˝A N 0!M ˝A N is injective. Thus M is flat.

Assume that MB is faithfully flat, and let N be an A-module. If M ˝A N D 0, then

MB˝B NB is zero because it is isomorphic to .M ˝A N /B . Now NB D 0 because MB is

faithfully flat, and so N D 0 because A! B is faithfully flat. 2

PROPOSITION 10.7. Let i WA!B be a faithfully flat homomorphism. For every A-module

M , the sequence

0!M
d0
�! B˝A M

d1
�! B˝A B˝A M (25)

with
�

d0.m/ D 1˝m;

d1.b˝m/ D 1˝b˝m�b˝1˝m

is exact.

PROOF. Assume first that there exists an A-linear section to A! B , i.e., an A-linear map

f WB! A such that f ı i D idA, and define

k0WB˝A M !M; k0.b˝m/D f .b/m

k1WB˝A B˝A M ! B˝A M; k1.b˝b0˝m/D f .b/b0˝m:

Then k0d0 D idM , which shows that d0 is injective. Moreover,

k1 ıd1Cd0 ık0 D idB˝AM

which shows that, if d1.x/D 0, then x D d0.k0.x//, as required.

We now consider the general case. Because A! B is faithfully flat, it suffices to prove

that the sequence (25) becomes exact after tensoring in B . But the sequence obtained from

(25) by tensoring with B is isomorphic to the sequence (25) for the homomorphism of rings

b 7! 1˝bWB! B˝A B and the B-module B˝A M , because, for example,

B˝A .B˝A M/' .B˝A B/˝B .B˝A M/:

Now B! B˝A B has an B-linear section, namely, f .b˝b0/D bb0, and so we can apply

the first part. 2

COROLLARY 10.8. If A! B is faithfully flat, then it is injective with image the set of

elements on which the maps

�

b 7! 1˝b

b 7! b˝1
WB! B˝A B

agree.

PROOF. This is the special case M D A of the Proposition. 2
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PROPOSITION 10.9. Let A! A0 be a homomorphism of rings. If A! B is flat (or

faithfully flat), then so also is A0! B˝A A0.

PROOF. For any A0-module M ,

.B˝A A0/˝A0 M ' B˝A .A0˝A0 M/' B˝A M;

from which the statement follows. 2

PROPOSITION 10.10. For every multiplicative subset S of a ring A and A-module M ,

S�1A˝A M ' S�1M:

The homomorphism a 7! a
1
WA! S�1A is flat.

PROOF. To give an S�1A-module is the same as giving an A-module on which the elements

of S act invertibly. Therefore S�1A˝A M and S�1M satisfy the same universal property

(see ÷9, especially (19)), which proves the first statement. As M  S�1M is exact (5.11),

so also is M  S�1A˝A M , which proves the second statement. 2

PROPOSITION 10.11. A homomorphism of rings 'WA! B is flat if A'�1.n/! Bn is flat

for all maximal ideals n in B .

PROOF. Let N 0!N be an injective homomorphism of A-modules, and let n be a maximal

ideal of B . Then pD '�1.n/ is a prime ideal in A, and Ap˝A .N 0!N / is injective (10.10).

Therefore, the map

Bn˝A .N 0!N /' Bn˝Ap
.Ap˝A .N 0!N //

is injective, and so the kernel M of B˝A .N 0! N / has the property that Mn D 0. Let

x 2M , and let aD fb 2B j bx D 0g. For each maximal ideal n of B , x maps to zero in Mn,

and so a contains an element not in n. Hence aD B , and so x D 0. 2

PROPOSITION 10.12. The following conditions on a flat homomorphism 'WA! B are

equivalent:

(a) ' is faithfully flat;

(b) for every maximal ideal m of A, the ideal '.m/B ¤ B;

(c) every maximal ideal m of A is of the form '�1.n/ for some maximal ideal n of B .

PROOF. (a)) (b): Let m be a maximal ideal of A, and let M D A=m; then

B˝A M ' B='.m/B:

As B˝A M ¤ 0, we see that '.m/B ¤ B .

(b)) (c): If '.m/B ¤ B , then '.m/ is contained in a maximal ideal n of B . Now

'�1.n/ is a proper ideal in A containing m, and hence equals m.

(c)) (a): Let M be a nonzero A-module. Let x be a nonzero element of M , and let

aD ann.x/
def
D fa 2 A j ax D 0g. Then a is an ideal in A, and M 0

def
D Ax ' A=a. Moreover,

B˝A M 0 ' B='.a/ �B and, because A! B is flat, B˝A M 0 is a submodule of B˝A M .

Because a is proper, it is contained in a maximal ideal m of A, and therefore

'.a/� '.m/� n

for some maximal ideal n of A. Hence '.a/ �B � n¤B , and so B˝A M �B˝A M 0¤ 0.2
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In more geometric terms, the proposition says that a homomorphism 'WA! B is

faithfully flat if it is flat and the map spmB! spmA is surjective.

THEOREM 10.13 (GENERIC FLATNESS). Let A an integral domain with field of fractions

F , and let B be a finitely generated A-algebra contained in F ˝A B . Then for some nonzero

elements a of A and b of B , the homomorphism Aa! Bb is faithfully flat.

PROOF. As F ˝A B is a finitely generated F -algebra, the Noether normalization theorem

(6.26) shows that there exist elements x1; : : : ;xm of F ˝A B such that F Œx1; : : : ;xm� is a

polynomial ring over F and F ˝A B is a finite F Œx1; : : : ;xm�-algebra. After multiplying

each xi by an element of A, we may suppose that it lies in B . Let b1; : : : ;bn generate B as an

A-algebra. Each bi satisfies a monic polynomial equation with coefficients in F Œx1; : : : ;xm�.

Let a 2A be a common denominator for the coefficients of these polynomials. Then each bi

is integral over Aa. As the bi generate Ba as an Aa-algebra, this shows that Ba is a finite

AaŒx1; : : : ;xm�-algebra (by 6.2). Therefore, after replacing A with Aa and B with Ba, we

may suppose that B is a finite AŒx1; : : : ;xm�-algebra.

B F ˝A B E˝AŒx1;:::;xm� B

AŒx1; : : : ;xm� F Œx1; : : : ;xm� E
def
D F.x1; : : : ;xn/

A F:

injective

finite finite finite

Let E D F.x1; : : : ;xm/ be the field of fractions of AŒx1; : : : ;xm�, and let b1; : : : ;br be

elements of B that form a basis for E˝AŒx1;:::;xm� B as an E-vector space. Each element

of B can be expressed as a linear combination of the bi with coefficients in E. Let q be

a common denominator for the coefficients arising from a set of generators for B as an

AŒx1; : : : ;xm�-module. Then b1; : : : ;br generate Bq as an AŒx1; : : : ;xm�q-module. In other

words, the map

.c1; : : : ; cr/ 7!
P

cibi WAŒx1; : : : ;xm�rq! Bq (26)

is surjective. This map becomes an isomorphism when tensored with E over AŒx1; : : : ;xm�q ,

which implies that each element of its kernel is killed by a nonzero element of AŒx1; : : : ;xm�q
and so is zero (because AŒx1; : : : ;xn�q is an integral domain). Hence the map (26) is an

isomorphism, and so Bq is free of finite rank over AŒx1; : : : ;xm�q . Let a be some nonzero

coefficient of the polynomial q, and consider the maps

Aa! AaŒx1; : : : ;xm�! AaŒx1; : : : ;xm�q! Baq:

The first and third arrows realize their targets as nonzero free modules over their sources,

and so are faithfully flat. The middle arrow is flat by (10.10). Let m be a maximal ideal in

Aa. Then mAaŒx1; : : : ;xm� does not contain the polynomial q because the coefficient a of

q is invertible in Aa. Hence mAaŒx1; : : : ;xm�q is a proper ideal of AaŒx1; : : : ;xm�q , and so

the map Aa! AaŒx1; : : : ;xm�q is faithfully flat (apply 10.12). This completes the proof. 2

REMARK 10.14. The theorem holds for every finitely generated B-algebra, i.e., without

the requirement that B � F ˝A B . To see this, note that F ˝A B is the ring of fractions
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of B with respect to the multiplicative subset AX f0g (see 10.10), and so the kernel of

B! F ˝A B is the ideal

nD fb 2 B j ab D 0 for some nonzero a 2 Ag:

This is finitely generated (Hilbert basis theorem 3.7), and so there exists a nonzero c 2 A

such that cb D 0 for all b 2 n. I claim that the homomorphism Bc! F ˝Ac
Bc is injective.

If b
cr lies in its kernel, then a

cs
b
cr D 0 in Bc for some nonzero a

cs 2 Ac , and so cN ab D 0

in B for some N ; therefore b 2 n, and so cb D 0, which implies that b
cr D 0 already in Bc .

Therefore, after replacing A, B , and M with Ac , Bc , and Mc , we may suppose that the map

B! F ˝A B is injective. On identifying B with its image, we arrive at the situation of the

theorem.

EXERCISE 10.15. Let .Ai ;˛
i
j / be a direct system of rings, and let .Mi ;ˇ

i
j / be a direct

system of abelian groups with the same indexing set. Suppose that each Mi has the structure

of an Ai -module, and that the diagrams

Ai �Mi Mi

Aj �Mj Mj

˛i
j
�ˇ i

j
ˇ i

j

commute for all i � j . Let AD lim
�!

Ai and M D lim
�!

Mi .

(a) Show that M has a unique structure of an A-module for which the diagrams

Ai �Mi Mi

A�M M

˛i �ˇ i ˇ i

commute for all i .

(b) Show that M is flat as an A-module if each Mi is flat as an Ai -module.

(Bourbaki AC, I, ÷2, Prop. 9.)

11 Finitely generated projective modules

In many situations, the correct generalization of “finite-dimensional vector space” is not

“finitely generated module” but “finitely generated projective module”. From a different

perspective, they are the algebraists analogue of the differential geometers vector bundle.

Throughout this section, A is a commutative ring.

Projective modules

DEFINITION 11.1. An A-module P is projective if, for each surjective A-linear map

f WM ! N and A-linear map gWP ! N , there exists an A-linear map hWP !M (not
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necessarily unique) such that f ıhD g:

P

M N 0:
f

g9h

In other words, P is projective if every map from P onto a quotient of a module M lifts to a

map to M . Equivalently, P is projective if the functor M  HomA-lin.P;M/ is exact.

As

Hom.
L

i Pi ;M/'
L

i Hom.Pi ;M/

we see that a direct sum of A-modules is projective if and only if each direct summand

is projective. As A itself is projective, this shows that every free A-module is projective

and every direct summand of a free module is projective. Conversely, let P be a projective

module, and write it as a quotient of a free module,

F
f
�! P �! 0I

because P is projective, there exists an A-linear map hWP ! F such that f ıhD idP ; then

F � Im.h/˚Ker.f /� P ˚Ker.f /;

and so P is a direct summand of F . We conclude: the projective A-modules are exactly the

direct summands of free A-modules.

Finitely presented modules

DEFINITION 11.2. An A-module M is finitely presented if there exists an exact sequence

Am! An!M ! 0, some m;n 2 N.

A finite family .ei /i2I of generators for an A-module M defines a homomorphism

.ai / 7!
P

i2I aiei WA
I !M . The elements of the kernel of this homomorphism are called

the relations between the generators. Thus, M is finitely presented if it admits a finite family

of generators whose module of relations is finitely generated. Obviously

finitely presented ) finitely generated,

and the converse is true when A is noetherian (by 3.4).

PROPOSITION 11.3. If M is finitely presented, then the kernel of every surjective homo-

morphism Am!M , m 2 N, is finitely generated.

In other words, if M is finitely presented, then the module of relations for every finite

generating set is finitely generated.
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PROOF. We are given that there exists a surjective homomorphism An!M with finitely

generated kernel N , and we wish to show that the kernel N 0 of Am!M is finitely generated.

Consider the diagram:

0 N An M 0

0 N 0 Am M 0

idMf g

The map g exists because An is projective, and it induces the map f . From the diagram, we

get an exact sequence

N
f
�!N 0! Am=gAn! 0,

either from the snake lemma or by a direct diagram chase. As N and Am=gAn are both

finitely generated, so also is N 0 (by 3.3(b)). 2

If M is finitely generated and projective, then the kernel of An!M is a direct summand

(hence quotient) of An, and so is finitely generated. Therefore M is finitely presented.

Finitely generated projective modules

According to the above discussion, the finitely generated projective modules are exactly the

direct summands of free A-modules of finite rank.

THEOREM 11.4. The following conditions on an A-module are equivalent:

(a) M is finitely generated and projective;

(b) M is finitely presented and Mm is a free Am-module for all maximal ideals m of A;

(c) there exists a finite family .fi /i2I of elements of A generating the ideal A and such

that, for all i 2 I , the Afi
-module Mfi

is free of finite rank;

(d) M is finitely presented and flat.

Moreover, when A is an integral domain and M is finitely presented, they are equivalent to:

(e) dimk.p/.M ˝A k.p// is the same for all prime ideals p of A (here k.p/ denotes the

field of fractions of A=p).

PROOF. (a))(d). As tensor products commute with direct sums, every free module is flat

and every direct summand of a flat module is flat. Therefore, every projective module M is

flat, and we saw above that such a module is finitely presented if it is finitely generated.

(b))(c). Let m be a maximal ideal of A, and let x1; : : : ; xr be elements of M

whose images in Mm form a basis for Mm over Am. The kernel N 0 and cokernel N of the

homomorphism

˛W Ar !M; g.a1; : : : ; ar/D
X

aixi ;

are both finitely generated, and N 0m D 0DNm. Therefore, there exists15 an f 2 AXm such

that N 0
f
D 0DNf . Now ˛ becomes an isomorphism when tensored with Af .

The set T of elements f arising in this way is contained in no maximal ideal, and so

generates the ideal A. Therefore, 1D
P

i2I aifi for certain ai 2 A and fi 2 T .

15To say that S�1N D 0 means that, for each x 2N , there exists an sx 2 S such that sxx D 0. If x1; : : : ;xn

generate N , then s
def
D sx1

� � �sxn lies in S and has the property that sN D 0. Therefore, Ns D 0.
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(c))(d). Let B D
Q

i2I Afi
. Then B is faithfully flat over A, and B˝A M D

Q

Mfi
,

which is clearly a flat B-module. It follows that M is a flat A-module (apply 10.6).

(c))(e). This is obvious.

(e))(c): Fix a prime ideal p of A. For some f … p, there exist elements x1; : : : ; xr of

Mf whose images in M ˝A k.p/ form a basis. Then the map

˛WAr
f !Mf ; ˛.a1; : : : ; ar/D

P

aixi ;

defines a surjection Ar
p !Mp (Nakayama’s lemma; note that k.p/' Ap=pAp). Because

the cokernel of ˛ is finitely generated, the map ˛ itself will be surjective once f has been

replaced by a multiple. For any prime ideal q of Af , the map k.q/r !M ˝A k.q/ defined

by ˛ is surjective, and hence is an isomorphism because dim.M ˝A k.q// D r . Thus

Ker.˛/� qAr
f

for every q, which implies that it is zero as Af is reduced. Therefore Mf is

free. As in the proof of (b), a finite set of such f ’s will generate A. 2

To prove the remaining implications, (d))(a);(b) we shall need the following lemma.

LEMMA 11.5. Let

0!N ! F !M ! 0 (27)

be an exact sequence of A-modules with N a submodule of F .

(a) lf M and F are flat over A, then N \aF D aN (inside F ) for all ideals a of A.

(b) Assume that F is free with basis .yi /i2I and that M is flat. If the element n D
P

i2I aiyi of F lies in N , then there exist ni 2N such that nD
P

i2I aini :

(c) Assume that M is flat and F is free. For every finite set fn1; : : : ; nrg of elements of

N , there exists an A-linear map f WF !N with f .nj /D nj ; j D 1; : : : , r .

PROOF. (a) Consider

a˝N a˝F a˝M

0 N \aF aF aM

' '

The first row is obtained from (27) by tensoring with a, and the second row is a subsequence

of (27). Both rows are exact. On tensoring a!A with F we get a map a˝F !F , which is

injective because F is flat. Therefore a˝F ! aF is an isomorphism. Similarly, a˝M !

aM is an isomorphism. From the diagram we get a surjective map a˝N !N \aF , and

so the image of a˝N in aF is N \aF . But this image is aN .

(b) Let a be the ideal generated by the ai . Then n 2 N \ aF D aN , and so there are

ni 2N such that nD
P

aini :

(c) We use induction on r . Assume first that r D 1, and write

n1 D
P

i2I0
aiyi

where .yi /i2I is a basis for F and I0 is a finite subset of I . Then

n1 D
P

i2I0
ain
0
i
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for some n0i 2N (by (b)), and f may be taken to be the map such that f .yi /D n0i for i 2 I0

and f .yi /D 0 otherwise. Now suppose that r > 1, and that there are maps f1; f2 : F !N

such that f1.n1/D n1 and

f2.ni �f1.ni //D ni �f1.ni /; i D 2; : : : r:

Then

f WF !N; f D f1Cf2�f2 ıf1

has the required property. 2

We now complete the proof of the theorem.

(d))(a). Because M is finitely presented, there is an exact sequence

0!N ! F !M ! 0

in which F is free and N and F are both finitely generated. Because M is flat, (c) of the

lemma shows that this sequence splits, and so M is projective.

(d))(b): We may suppose that A itself is local, with maximal ideal m. Let x1; : : : ; xr 2

M be such that their images in M=mM form a basis for this over the field A=m. Then the

xi generate M (by Nakayama’s lemma), and so there exists an exact

0!N ! F
g
�!M ! 0

in which F is free with basis fy1; : : : ; yrg and g.yi /D xi . According to (a) of the lemma,

mN DN \ .mF /, which equals N because N �mF . Therefore N is zero by Nakayama’s

lemma.

EXAMPLE 11.6. (a) When regarded as a Z-module, Q is flat but not projective (it is not

finitely generated, much less finitely presented, and so this doesn’t contradict the theorem).

(b) Let R be a product of copies of F2 indexed by N, and let a be the ideal in R consisting

of the elements .an/n2N such that an is nonzero for only finitely many values of n (so a is a

direct sum of copies of F2 indexed by N). The R-module R=I is finitely generated and flat,

but not projective (it is not finitely presented, and so this doesn’t contradict the theorem).

ASIDE 11.7. An A-module M is finitely generated and projective if and only if Hom.M; �/ com-

mutes with arbitrary set-indexed direct sums (check; cf Keller 1998, 6.3).

ASIDE 11.8. Nonfree projective finitely generated modules are common: for example, the ideals

in a Dedekind domain are projective and finitely generated, but they are free only if principal. The

situation with modules that are not finitely generated is quite different: if A is a noetherian ring with

no nontrivial idempotents, then every nonfinitely generated projective A-module is free (Bass, Hyman.

Big projective modules are free. Illinois J. Math. 7 1963, 24–31, Corollary 4.5). The condition on the

idempotents is necessary because, for a ring A�B , the module A.I /�B.J / is not free when the sets

I and J have different cardinalities.

Duals

The dual HomA-lin.M;A/ of an A-module M is denoted M_.
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PROPOSITION 11.9. For any A-modules M , S , T with M finitely generated and projective,

the canonical maps

HomA-lin.S;T ˝A M/! HomA-lin.S˝A M_;T / (28)

T ˝A M ! HomA-lin.M_;T / (29)

M_˝T _! .M ˝T /_ (30)

M !M__ (31)

are isomorphisms.

PROOF. The canonical map (28) sends f WS ! T ˝A M to the map f 0WS ˝A M_! T

such that f 0.s˝g/D .T ˝g/.f .s//. It becomes the canonical isomorphism

HomA-lin.S;T n/! HomA-lin.Sn;T /

when M D An. It follows that (28) is an isomorphism whenever M is a direct summand of

a finitely generated free module, i.e., whenever M is finitely generated and projective.

The canonical map (29) sends t˝m to the map f 7! f .m/t . It is the special case of

(28) in which S D A.

The canonical map (30) sends f ˝g 2M_˝T _ to the map m˝ t 7! f .m/˝g.t/WM˝

T ! A, and the canonical map (31) sends m to the map f 7! f .m/WM_! A. Again, it is

obviously an isomorphism if one of M or T is free of finite rank, and hence also if one is a

direct summand of such a module. 2

We let evWM_˝A M ! A denote the evaluation map f ˝m 7! f .m/.

LEMMA 11.10. Let M and N be modules over commutative ring A, and let eWN ˝A M !

A be an A-linear map. There exists at most one A-linear map ıWA!M ˝A N such that the

composites

M
ı˝M
����! M ˝N ˝M

M˝e
����! M

N
N˝ı
���! N ˝M ˝N

e˝N
���! N

(32)

are the identity maps on M and N respectively. When such a map exists,

T ˝A N ' HomA-lin.M;T / (33)

for all A-modules T . In particular,

.N;e/' .M_;ev/. (34)

PROOF. From e we get an A-linear map

T ˝ eWT ˝A N ˝A M ! T;

which allows us to define an A-linear map

x 7! fx WT ˝A N ! HomA-lin.M;T / (35)

by setting

fx.m/D .T ˝ e/.x˝m/; x 2 T ˝A N , m 2M .
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An A-linear map f WM ! T defines a map f ˝N WM ˝A N ! T ˝A N , and so a map

ıWA!M ˝A N defines an A-linear map

f 7! .f ˝N /.ı.1//WHomA-lin.M;T /! T ˝A N: (36)

When the first (resp. the second) composite in (32) is the identity, then (36) is a right

(resp. a left) inverse to (35).16 Therefore, when a map ı exists with the required properties,

the map (35) defined by e is an isomorphism. In particular, e defines an isomorphism

x 7! fx WM ˝A N ! HomA-lin.M;M/;

which sends ı.a/ to the endomorphism x 7! ax of M . This proves that ı is unique.

To get (34), take T DM in (33). 2

PROPOSITION 11.11. An A-module M is finitely generated and projective if and only if

there exists an A-linear map ıWA!M ˝M_ such that

.M ˝ ev/ı .ı˝M/D idM and

.M_˝ ı/ı .ev˝M_/D idM _ :

PROOF. H) : Suppose first that M is free with finite basis .ei /i2I , and let .e0i /i2I be the

dual basis of M_. The linear map ıWA!M ˝M_, 1 7!˙ei ˝ e0i , satisfies the conditions.

Let .fi /i2I be as in (11.4c). Then ı is defined for each module Mfi
, and the uniqueness

assertion in Lemma 11.10 implies that the ı’s for the different Mfi
’s patch together to give a

ı for M .

(H: On taking T DM in (33), we see that M_˝A M 'EndA-lin.M/. If
P

i2I fi˝mi

corresponds to idM , so that
P

i2I fi .m/mi Dm for all m 2M , then

M
m 7!.fi .m//
��������! AI .ai / 7!

P

ai mi
���������!M

is a factorization of idM . Therefore M is a direct summand of a free module of finite rank.2

ASIDE 11.12. A module M over a ring A is said to be reflexive if the canonical map M !M__ is

an isomorphism. We have seen that for finitely generated modules “projective” implies “reflexive”,

but the converse is false. In fact, for a finite generated module M over an integrally closed noetherian

integral domain A, the following are equivalent (Bourbaki AC, VII ÷4, 2):

16Assume ı satisfies the condition in the statement of the lemma.

Let x 2 T ˝A N ; by definition, .fx˝N /.ı.1//D .T ˝e˝N /.x˝ı.1//. On tensoring the second sequence

in (32) with T , we obtain maps

T ˝A N ' T ˝A N ˝A A
T˝N˝ı
������! T ˝A N ˝A M ˝A N

T˝e˝N
������! T ˝A N

whose composite is the identity map on T ˝A N . As x D x˝1 maps to x˝ ı.1/ under T ˝N ˝ ı, this shows

that .fx˝N /.ı.1//D x.

Let f 2 HomA-lin.M;T /, and consider the commutative diagram

T ˝A N ˝A M T

M M ˝A N ˝A M M:

T ˝e

ı˝M M ˝e

f ˝N ˝M f

For m 2M , the two images of ı.1/˝m in T are f .m/ and f.f˝N /.ı.1//.m/, and so f D f.f˝N /.ı.1//.
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(a) M is reflexive;

(b) M is torsion-free and equals the intersection of its localizations at the prime ideals of A of

height 1;

(c) M is the dual of a finitely generated module.

For noetherian rings of global dimension � 2, for example, for regular local rings of Krull

dimension � 2, every finitely generated reflexive module is projective: for every finitely generated

module M over a noetherian ring A, there exists an exact sequence

Am! An!M ! 0

with m;n 2 N; on taking duals and forming the cokernel, we get an exact sequence

0!M_! An! Am!N ! 0I

if A has global dimension � 2, then M_ is projective, and if M is reflexive, then M ' .M_/_.

ASIDE 11.13. For a finitely generated torsion-free module M over an integrally closed noetherian

integral domain A, there exists a free submodule L of M such that M=L is isomorphic an ideal a in

A (Bourbaki AC, VII, ÷4, Thm 6). When A is Dedekind, every ideal is projective, and so M 'L˚a.

In particular, M is projective. Therefore, the finitely generated projective modules over a Dedekind

domain are exactly the finitely generated torsion-free modules.

SUMMARY 11.14. Here is a summary of the assumptions under which the canonical mor-

phisms of A-modules below are isomorphisms. If P is finitely generated projective:

P
'
�! P__

A module P is finitely generated projective if and only if the following canonical map is an

isomorphism

P_˝P
'
�! End.P /:

If P or P 0 is finitely generated projective:

P_˝P 0
'
�! Hom.P;P 0/:

If both P and P 0 or both P and M or both P 0 and M 0 are finitely generated projective

Hom.P;M/˝Hom.P 0;M 0/
'
�! Hom.P ˝P 0;M ˝M 0/:

In particular, for P or P 0 finitely generated projective

P_˝P 0_
'
�! .P ˝P 0/_:

(Georges Elencwajg on mathoverflow.net).

12 Zariski’s lemma and the Hilbert Nullstellensatz

Zariski’s lemma

In proving Zariski’s lemma, we shall need to use that the ring kŒX� contains infinitely many

distinct monic irreducible polynomials. When k is infinite, this is obvious, because the

polynomials X�a, a 2 k, are distinct and irreducible. When k is finite, we can adapt Euclid’s

argument: if p1; : : : ;pr are monic irreducible polynomials in kŒX�, then p1 � � �pr C 1 is

divisible by a monic irreducible polynomial distinct from p1; : : : ;pr .
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THEOREM 12.1 (ZARISKI’S LEMMA). Let k �K be fields. If K is finitely generated as a

k-algebra, then it is algebraic over k (hence finite over k, and it equals k if k is algebraically

closed).

PROOF. We shall prove this by induction on r , the smallest number of elements required to

generate K as a k-algebra. The case r D 0 being trivial, we may suppose that

K D kŒx1; : : : ;xr � with r � 1:

If K is not algebraic over k, then at least one xi , say x1, is not algebraic over k. Then, kŒx1�

is a polynomial ring in one symbol over k, and its field of fractions k.x1/ is a subfield of

K. Clearly K is generated as a k.x1/-algebra by x2; : : : ;xr , and so the induction hypothesis

implies that x2; : : : ;xr are algebraic over k.x1/. According to Proposition 6.6, there exists a

c 2 kŒx1� such that cx2; : : : ; cxr are integral over kŒx1�. Let f 2K. For a sufficiently large

N , cN f 2 kŒx1; cx2; : : : ; cxr �, and so cN f is integral over kŒx1� by 6.4. When we apply this

statement to an element f of k.x1/, it shows that cN f 2 kŒx1� because kŒx1� is integrally

closed. Therefore, k.x1/D
S

N c�N kŒx1�, but this is absurd, because kŒx1� (' kŒX�) has

infinitely many distinct monic irreducible polynomials that can occur as denominators of

elements of k.x1/. 2

COROLLARY 12.2. Let A be a finitely generated k-algebra. Every maximal ideal in A is

the kernel of a homomorphism from A into a finite field extension of k.

PROOF. Indeed, A=m itself is a finite field extension of k. 2

Alternative proof of Zariski’s lemma

The following is a simplification of Swan’s simplication of a proof of Munshi — see Swan.

LEMMA 12.3. For an integral domain A, there does not exist an f 2AŒX� such that AŒX�f
is a field.

PROOF. Suppose, on the contrary, that AŒX�f is a field. Then f … A, and we can write

.f �1/�1 D g=f n with g 2 AŒX� and n� 1. Then

.f �1/g D f n D .1C .f �1//n D 1C .f �1/h

with h 2 AŒX�, and so .f �1/.g�h/D 1. Hence f �1 is a unit in AŒX�, which is absurd

(it has degree � 1). 2

LEMMA 12.4. Consider rings A � B . If B is integral over A, then A\B� D A�. In

particular, if B is a field, then so also is A.

PROOF. Let a be an element of A that becomes a unit in B , say, ab D 1 with b 2 B . There

exist a1; : : : ;an 2A such that bnCa1bn�1C�� �CanD 0. On multiplying through by an�1,

we find that b D�a1�� � ��anan�1 2 A, and so a 2 A�. 2

PROPOSITION 12.5. Let A be an integral domain, and suppose that there exists a maximal

ideal m in AŒX1; : : : ;Xn� such that A\mD .0/. Then there exists a nonzero element a in A

such that Aa is a field and AŒX1; : : : ;Xn�=m is a finite extension of Aa.
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PROOF. Note that the condition A\mD .0/ implies that A (hence also Aa) is a subring of

the field K D AŒX1; : : : ;Xn�=m, and so the statement makes sense.

We argue by induction on n. When nD 0, the hypothesis is that .0/ is a maximal ideal in

A; hence A is a field, and the statement is trivial. Therefore, suppose that n� 1, and regard

AŒX1; : : : ;Xn� as a polynomial ring in n� 1 symbols over AŒXi �. Then m\AŒXi �¤ .0/

because otherwise the induction hypothesis would contradict Lemma 12.3. Let aiX
ni

i C�� �

be a nonzero element of m\AŒXi �. The image xi of Xi in K satisfies the equation

aix
n
i C�� � D 0;

and so K is integral over its subring Aa1���an
. By Lemma 12.4, Aa1���an

is a field, and K is

finite over it because it is integral (algebraic) and finitely generated. 2

We now prove Zariski’s lemma. Write K D kŒX1; : : : ;Xn�=m. According to the proposi-

tion, K is a finite extension of ka for some nonzero a 2 k, but because k is a field ka D k.

The Nullstellensatz

Recall that kal denotes an algebraic closure of the field k.

THEOREM 12.6 (NULLSTELLENSATZ). Every proper ideal a in kŒX1; : : : ;Xn� has a zero

in .kal/n, i.e., there exists a point .a1; : : : ;an/ 2 .kal/n such that f .a1; : : : ;an/D 0 for all

f 2 a.

PROOF. We have to show that there exists a k-algebra homomorphism kŒX1; : : : ;Xn�! kal

containing a in its kernel. Let m be a maximal ideal containing a. Then kŒX1; : : : ;Xn�=m

is a field, which is finite over k by Zariski’s lemma, and so there exists a k-algebra

homomorphism kŒX1; : : : ;Xn�=m! kal. The composite of this with the quotient map

kŒX1; : : : ;Xn�! kŒX1; : : : ;Xn�=m contains a in its kernel. 2

COROLLARY 12.7. When k is algebraically closed, the maximal ideals in kŒX1; : : : ;Xn�

are exactly the ideals .X1�a1; : : : ;Xn�an/, .a1; : : : ;an/ 2 kn.

PROOF. Clearly, kŒX1; : : : ;Xn�=.X1 � a1; : : : ;Xn � an/ ' k, and so .X1 � a1; : : : ;Xn �

an/ is maximal. Conversely, because k is algebraically closed, a maximal ideal m of

kŒX1; : : : ;Xn� has a zero .a1; : : : ;an/ in kn. Let f 2 kŒX1; : : : ;Xn�; when we write f as a

polynomial in X1�a1; : : : ;Xn�an, its constant term is f .a1; : : : ;an/. Therefore

f 2m H) f 2 .X1�a1; : : : ;Xn�an/,

and so mD .X1�a1; : : : ;Xn�an/. 2

THEOREM 12.8 (STRONG NULLSTELLENSATZ). For an ideal a in kŒX1; : : : ;Xn�, let Z.a/

be the set of zeros of a in .kal/n. If a polynomial h 2 kŒX1; : : : ;Xn� is zero on Z.a/, then

some power of h lies in a.

PROOF. We may assume h ¤ 0. Let g1; : : : ;gm generate a, and consider the system of

mC1 equations in nC1 variables, X1; : : : ;Xn;Y;

�

gi .X1; : : : ;Xn/ D 0; i D 1; : : : ;m

1�Y h.X1; : : : ;Xn/ D 0:
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If .a1; : : : ;an;b/ satisfies the first m equations, then .a1; : : : ;an/ 2 Z.a/; consequently,

h.a1; : : : ;an/D 0, and .a1; : : : ;an;b/ doesn’t satisfy the last equation. Therefore, the equa-

tions are inconsistent, and so, according to the Nullstellensatz (12.6), the ideal

.g1; : : : ;gm;1�Y h/D kŒX1; : : : ;Xn;Y �;

and so there exist fi 2 kŒX1; : : : ;Xn;Y � such that

1D

m
X

iD1

fi �gi CfmC1 � .1�Y h/. (37)

On applying the homomorphism

�

Xi 7!Xi

Y 7! h�1 WkŒX1; : : : ;Xn;Y �! k.X1; : : : ;Xn/

to (37), we obtain the identity

1D
X

i
fi .X1; : : : ;Xn;h�1/ �gi .X1; : : : ;Xn/ (38)

in k.X1; : : : ;Xn/. Clearly

fi .X1; : : : ;Xn;h�1/D
polynomial in X1; : : : ;Xn

hNi

for some Ni . Let N be the largest of the Ni . On multiplying (38) by hN we obtain an

identity

hN D
X

i
(polynomial in X1; : : : ;Xn/ �gi .X1; : : : ;Xn/;

which shows that hN 2 a. 2

PROPOSITION 12.9. The radical of an ideal a in a finitely generated k-algebra A is equal

to the intersection of the maximal ideals containing it: rad.a/D
T

m�am. In particular, if A

is reduced, then
T

m maximalmD 0.

PROOF. Because of the correspondence (2), p. 4, it suffices to prove this for AD kŒX1; : : : ;Xn�.

The inclusion rad.a/�
T

m�am holds in any ring (because maximal ideals are radical

and rad.a/ is the smallest radical ideal containing a). Let a be an ideal in kŒX1; : : : ;Xn�, and

let h 2
T

m�am. For any .a1; : : : ;an/ 2Z.a/, the evaluation map

f 7! f .a1; : : : ;an/WkŒX1; : : : ;Xn�! kal

has image a subring of kal which is algebraic over k, and hence is a field (see ÷1). Therefore,

the kernel of the map is a maximal ideal, which contains a, and therefore also contains h.

This shows that h.a1; : : : ;an/ D 0, and we conclude from the strong Nullstellensatz that

h 2 rad.a/. 2
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13 The spectrum of a ring

Definition

Let A be a ring, and let V be the set of prime ideals in A. For an ideal a in A, let

V.a/D fp 2 V j p� ag:

PROPOSITION 13.1. There are the following relations:

(a) a� b H) V.a/� V.b/I

(b) V.0/D V ; V.A/D ;I

(c) V.ab/D V.a\b/D V.a/[V.b/I

(d) V.
P

i2I ai /D
T

i2I V.ai / for every family of ideals .ai /i2I .

PROOF. The first two statements are obvious. For (c), note that

ab� a\b� a;b H) V.ab/� V.a\b/� V.a/[V.b/:

For the reverse inclusions, observe that if p … V.a/[V.b/, then there exist an f 2 aXp and

a g 2 bXp; but then fg 2 abXp, and so p … V.ab/. For (d) recall that, by definition,
P

ai

consists of all finite sums of the form
P

fi , fi 2 ai . Thus (d) is obvious. 2

Statements (b), (c), and (d) show that the sets V.a/ satisfy the axioms to be the closed

subsets for a topology on V : both the whole space and the empty set are closed; a finite

union of closed sets is closed; an arbitrary intersection of closed sets is closed. This topology

is called the Zariski topology on V . We let spec.A/ denote the set of prime ideals in A

endowed with its Zariski topology.

For h 2 A, let

D.h/D fp 2 V j h … pg.

Then D.h/ is open in V , being the complement of V..h//. If S is a set of generators for an

ideal a, then

V XV.a/D
[

h2S
D.h/;

and so the sets D.h/ form a base for the topology on V . Note that

D.h1 � � �hn/DD.h1/\� � �\D.hn/:

For every element h of A, spec.Ah/'D.h/ (see 5.4), and for every ideal a in A, spec.A/=a'

V.a/ (isomorphisms of topological spaces).

The ideals in a finite product of rings AD A1� � � ��An are all of the form a1� � � ��an

with ai an ideal in Ai (cf. p.8). The prime (resp. maximal) ideals are those of the form

A1� � � ��Ai�1�ai �AiC1� � � ��An

with ai prime (resp. maximal). It follows that spec.A/D
F

i spec.Ai / (disjoint union of

open subsets).
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Idempotents and connected components

Let A be a ring. In ÷1, we saw that complete sets of orthogonal idempotents in A correspond

to decompositions of A into a finite product of rings. We now see that they also correspond

to decompositions of specA into a finite disjoint union of open subsets.

LEMMA 13.2. The space specA is disconnected if and only if A contains a nontrivial

idempotent.

PROOF. Let e be a nontrivial nilpotent, and let f D 1� e. For a prime ideal p, the map

A! A=p must send exactly one of e or f to a nonzero element. This shows that specA is a

disjoint union of the sets17 D.e/ and D.f /, each of which is open. If D.e/D specA, then

e would be a unit (2.2), and hence can be cancelled from ee D e to give e D 1. Therefore

D.e/¤ specA, and similarly, D.f /¤ specA.

Conversely, suppose that specA is disconnected, say, the disjoint union of two nonempty

closed subsets V.a/ and V.b/. Because the union is disjoint, no prime ideal contains both

a and b, and so aCbD A. Thus aC b D 1 for some a 2 a and b 2 b. As ab 2 a\b, all

prime ideals contain ab, which is therefore nilpotent (2.4), say .ab/m D 0. Any prime ideal

containing am contains a; similarly, any prime ideal containing bm contains b; thus no prime

ideal contains both am and bm, which shows that .am;bm/DA. Therefore, 1D ramC sbm

for some r;s 2 A. Now

.ram/.sbm/D rs.ab/m D 0;

.ram/2 D .ram/.1� sbm/D ram,

.sbm/2 D sbm

ramC sbm D 1;

and so fram; sbmg is a complete set of orthogonal idempotents. Clearly V.a/ � V.ram/

and V.b/� V.sbm/. As V.ram/\V.sbm/D ;, we see that V.a/D V.ram/ and V.b/D

V.sbm/, and so each of ram and sbm is a nontrivial idempotent. 2

PROPOSITION 13.3. Let fe1; : : : ; eng be a complete set of orthogonal idempotents in A.

Then

specADD.e1/t : : :tD.en/

is a decomposition of specA into a disjoint union of open subsets. Moreover, every such

decomposition arises in this way.

PROOF. Let p be a prime ideal in A. Because A=p is an integral domain, exactly one of the

ei ’s maps to 1 in A=p and the remainder map to zero. This proves that specA is the disjoint

union of the sets D.ei /.

Now consider a decomposition

specAD U1t : : :tUn

each Ui open. We use induction on n to show that it arises from a complete set of orthogonal

idempotents. When nD 1, there is nothing to prove, and when n� 2, we write

specAD U1t .U2t : : :tUn/.

17The set D.e/ consists of the prime ideals of A not containing e, and V.a/ consists of all prime ideals

containing a.



13 THE SPECTRUM OF A RING 59

The proof of the lemma shows that there exist orthogonal idempotents e1, e01 2 A such that

e1C e01 D 1 and

U1 DD.e1/

U2t : : :tUn DD.e01/D specAe01:

By induction, there exist orthogonal idempotents e2; : : : ; en in Ae01 such that e2C�� �C en D

e01 and Ui D D.ei / for i D 2; : : : ;n. Now fe1; : : : ; eng is a complete set of orthogonal

idempotents in A such that Ui DD.ei / for all i . 2

The topological space spec.A/

We study more closely the Zariski topology on spec.A/. For each subset S of A, let V.S/

denote the set of prime ideals containing S , and for each subset W of spec.A/, let I.W /

denote the intersection of the prime ideals in W :

S � A; V.S/D fp 2 spec.A/ j S � pg;

W � spec.A/; I.W /D
\

p2W
p:

Thus V.S/ is a closed subset of spec.A/ and I.W / is a radical ideal in A. If V.a/�W , then

a� I.W /, and so V.a/� VI.W /. Therefore VI.W / is the closure of W (smallest closed

subset of spec.A/ containing W ); in particular, VI.W /DW if W is closed.

PROPOSITION 13.4. Let V be a closed subset of spec.A/.

(a) There is an order-inverting one-to-one correspondence W $ I.W / between the closed

subsets of spec.A/ and the radical ideals in A.

(b) The closed points of V are exactly the maximal ideals in V .

(c) If A is noetherien, then every ascending chain of open subsets U1 � U2 � �� � of V

eventually becomes constant; equivalently, every descending chain of closed subsets

of V eventually becomes constant.

(d) If A is noetherian, every open covering of V has a finite subcovering.

PROOF. (a) and (b) are obvious.

(c) We prove the second statement. A sequence V1 � V2 � �� � of closed subsets of V

gives rise to a sequence of ideals I.V1/� I.V2/� : : :, which eventually becomes constant.

If I.Vm/D I.VmC1/, then VI.Vm/D VI.VmC1/, i.e., Vm D VmC1.

(d) Let V D
S

i2I Ui with each Ui open. Choose an i0 2 I ; if Ui0
¤ V , then there

exists an i1 2 I such that Ui0
¦ Ui0

[Ui1
. If Ui0

[Ui1
¤ V , then there exists an i2 2 I etc..

Because of (c), this process must eventually stop. 2

A topological space V having the property (b) is said to be noetherian. This condition is

equivalent to the following: every nonempty set of closed subsets of V has a minimal element.

A topological space V having property (c) is said to be quasi-compact (by Bourbaki at least;

others call it compact, but Bourbaki requires a compact space to be Hausdorff). The proof

of (d) shows that every noetherian space is quasi-compact. Since an open subspace of a

noetherian space is again noetherian, it will also be quasi-compact.18

18In fact, spec.A/ is always quasi-compact. To see this, let .Ui /i2I be an open covering of spec.A/. On

covering each Ui with basic open subsets, we get a covering .D.hj //j2J of spec.A/ by basic open subsets.

Because spec.A/D
S

j D.hj /, the ideal generated by the hj is A, and so 1D a1hj1
C�� �Camhjm

for some

a1; : : : ;am 2 A. Therefore spec.A/D
S

1�l�m D.hjl
/, and it follows that spec.A/ is covered by finitely many

of the sets Ui .
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DEFINITION 13.5. A nonempty topological space is said to be irreducible if it is not the

union of two proper closed subsets. Equivalent conditions: any two nonempty open subsets

have a nonempty intersection; every nonempty open subset is dense.

If an irreducible space W is a finite union of closed subsets, W DW1[ : : :[Wr , then

W DW1 or W2[ : : :[Wr ; if the latter, then W DW2 or W3[ : : :[Wr , etc.. Continuing in

this fashion, we find that W DWi for some i .

The notion of irreducibility is not useful for Hausdorff topological spaces, because the

only irreducible Hausdorff spaces are those consisting of a single point — two points would

have disjoint open neighbourhoods.

PROPOSITION 13.6. A closed subset W of specm.A/ is irreducible if and only if it is

irreducible. In particular, the spectrum of a ring A is irreducible if and only if the nilradical

of A is prime.

PROOF. ): Let W be an irreducible closed subset of spec.A/, and suppose that fg 2 I.W /.

Then fg lies in each m in W , and so either f 2m or g 2m; hence W � V.f /[V.g/, and

so

W D .W \V.f //[ .W \V.g//:

As W is irreducible, one of these sets, say W \V.f /, must equal W . But then f 2 I.W /.

We have shown that I.W / is prime.

(: Assume I.W / is prime, and suppose that W D V.a/[V.b/ with a and b radical

ideals — we have to show that W equals V.a/ or V.b/. Recall that V.a/[V.b/D V.a\b/

(see 13.1c) and that a\b is radical; hence I.W /D a\b (by 14.2). If W ¤ V.a/, then there

exists an f 2 aXI.W /. For all g 2 b,

fg 2 a\bD I.W /:

Because I.W / is prime, this implies that b� I.W /; therefore W � V.b/. 2

Thus, in the spectrum of a ring, there are one-to-one correspondences

radical ideals $ closed subsets

prime ideals $ irreducible closed subsets

maximal ideals $ one-point sets:

EXAMPLE 13.7. Let f 2 kŒX1; : : : ;Xn�. According to Theorem 4.9, kŒX1; : : : ;Xn� is a

unique factorization domain, and so .f / is a prime ideal if and only if f is irreducible (4.1).

Thus

V.f / is irreducible ” f is irreducible.

On the other hand, suppose that f factors as

f D
Y

f
mi

i ; fi distinct irreducible polynomials.

Then

.f /D
\

.f
mi

i /; .f
mi

i / distinct ideals,

rad..f //D
\

.fi /; .fi / distinct prime ideals,

V.f /D
[

V.fi /; V .fi / distinct irreducible algebraic sets.
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PROPOSITION 13.8. Let V be a noetherian topological space. Then V is a finite union of

irreducible closed subsets, V D V1[ : : :[Vm. If the decomposition is irredundant in the

sense that there are no inclusions among the Vi , then the Vi are uniquely determined up to

order.

PROOF. Suppose that V can not be written as a finite union of irreducible closed subsets.

Then, because V is noetherian, there will be a closed subset W of V that is minimal

among those that cannot be written in this way. But W itself cannot be irreducible, and so

W DW1[W2, with each Wi a proper closed subset of W . Because W is minimal, both W1

and W2 can be expressed as finite unions of irreducible closed subsets, but then so can W .

We have arrived at a contradiction.

Suppose that

V D V1[ : : :[Vm DW1[ : : :[Wn

are two irredundant decompositions. Then Vi D
S

j .Vi \Wj /, and so, because Vi is

irreducible, Vi D Vi \Wj for some j . Consequently, there exists a function f W f1; : : : ;mg!

f1; : : : ;ng such that Vi � Wf .i/ for each i . Similarly, there is a function gW f1; : : : ;ng !

f1; : : : ;mg such that Wj � Vg.j / for each j . Since Vi � Wf .i/ � Vgf .i/, we must have

gf .i/ D i and Vi D Wf .i/; similarly fg D id. Thus f and g are bijections, and the

decompositions differ only in the numbering of the sets. 2

The Vi given uniquely by the proposition are called the irreducible components of V .

They are the maximal closed irreducible subsets of V . In Example 13.7, the V.fi / are the

irreducible components of V.f /.

COROLLARY 13.9. A radical ideal a in a noetherian ring is a finite intersection of prime

ideals, aD p1\ : : :\pn; if there are no inclusions among the pi , then the pi are uniquely

determined up to order.

PROOF. Write V.a/ as a union of its irreducible components, V.a/D
S

Vi , and take pi D

I.Vi /. 2

In particular, a noetherian ring has only finitely many minimal prime ideals, and their

intersection is the radical of the ring.

COROLLARY 13.10. A noetherian topological space has only finitely many connected

components (each of which is open).

PROOF. Each connected component is closed, hence noetherian, and so is a finite union of

its irreducible components. Each of these is an irreducible component of the whole space,

and so there can be only finitely many. 2

REMARK 13.11. (a) An irreducible topological space is connected, but a connected topo-

logical space need not be irreducible. For example, Z.X1X2/ is the union of the coordinate

axes in k2, which is connected but not irreducible. A closed subset V of spec.A/ is not

connected if and only if there exist ideals a and b such that a\bD I.V / and aCbD A.

(b) A Hausdorff space is noetherian if and only if it is finite, in which case its irreducible

components are the one-point sets.

(c) In a noetherian ring, every proper ideal a has a decomposition into primary ideals:

aD
T

qi (see ÷17). For radical ideals, this becomes a simpler decomposition into prime

ideals, as in the corollary. For an ideal .f / in kŒX1; : : : ;Xn� with f D
Q

f
mi

i , it is the

decomposition .f /D
T

.f
mi

i / noted in Example 13.7.
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14 Jacobson rings and max spectra

DEFINITION 14.1. A ring A is Jacobson if every prime ideal in A is an intersection of

maximal ideals.

A field is Jacobson. The ring Z is Jacobson because every nonzero prime ideal is

maximal and .0/D
T

pD2;3;5;:::.p/. A principal ideal domain (more generally, a Dedekind

domain) is Jacobson if it has infinitely many maximal ideals.19 A local ring is Jacobson

if and only if its maximal ideal is its only prime ideal. Proposition 12.9 shows that every

finitely generated algebra over a field is Jacobson.

PROPOSITION 14.2. The radical of an ideal in a Jacobson ring is equal to the intersection of

the maximal ideals containing it. (Therefore, the radical ideals are precisely the intersections

of maximal ideals.)

PROOF. Proposition 2.4 says that the radical of an ideal is an intersection of prime ideals,

and so this follows from the definition of a Jacobson ring. 2

In a Jacobson ring A, there are natural one-to-one correspondences between

˘ the decompositions of spm.A/ into a finite disjoint union of open subspaces,

˘ the decompositions of A into a finite direct products of rings, and

˘ the complete sets of orthogonal idempotents in A.

ASIDE 14.3. Any ring of finite type over a Jacobson ring is a Jacobson ring (EGA IV 10.4.6).

Moreover, if B is of finite type over A and A is Jacobson, then the map A! B defines a continuous

map specm.B/! specm.A/.

ASIDE 14.4. The spectrum spec.A/ of a ring A is the set of prime ideals in A endowed with the

topology for which the closed subsets are those of the form

V.a/D fp j p� ag; a an ideal in A:

Thus specm.A/ is the subspace of spec.A/ consisting of the closed points. When A is Jacobson,

the map U 7! U \ specm.A/ is a bijection from the set of open subsets of spec.A/ onto the set of

open subsets of specm.A/; therefore specm.A/ and spec.A/ have the same topologies — only the

underlying sets differ.

ASIDE 14.5. Let k D R or C. Let X be a set and let A be a k-algebra of k-valued functions on X .

In analysis, X is called the spectrum of A if, for each k-algebra homomorphism 'WA! k, there

exists a unique x 2X such that '.f /D f .x/ for all f 2 A, and every x arises from a ' (cf. Cartier

2007, 3.3.1, footnote).

Let A be a finitely generated algebra over an arbitrary algebraically closed field k, and let

X D specm.A/. An element f of A defines a k-valued function

m 7! f modm

on X . When A is reduced, Proposition 12.9 shows that this realizes A as a ring of k-valued functions

on X . Moreover, because (40) is an isomorphism in this case, for each k-algebra homomorphism

'WA! k, there exists a unique x 2 X such that '.f /D f .x/ for all f 2 A. In particular, when

k D C and A is reduced, specm.A/ is the spectrum of A in the sense of analysis.

19In a principal ideal domain, a nonzero element a factors as aD up
r1

1 � � �p
rs
s with u a unit and the pi prime.

The only prime divisors of a are p1; : : : ;ps , and so a is contained in only finitely many prime ideals. Similarly,

in a Dedekind domain, a nonzero ideal a factors as aD p
r1

1 � � �p
rs
s with the pi prime ideals (cf. 18.7 below), and

p1; : : : ;pr are the only prime ideals containing a. On taking aD .a/, we see that again a is contained in only

finitely many prime ideals.
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The max spectrum of a finitely generated k-algebra

Let k be a field, and let A be a finitely generated k-algebra. For any maximal ideal m of A,

the field k.m/
def
DA=m is a finitely generated k-algebra, and so k.m/ is finite over k (Zariski’s

lemma, 12.1). In particular, it equals k.m/D k when k is algebraically closed.

Now fix an algebraic closure kal. The image of any k-algebra homomorphism A! kal

is a subring of kal which is an integral domain algebraic over k and therefore a field (see

÷1). Hence the kernel of the homomorphism is a maximal ideal in A. In this way, we get a

surjective map

Homk-alg.A;kal/! specm.A/: (39)

Two homomorphisms A! kal with the same kernel m factor as

A! k.m/! kal;

and so differ by an automorphism20 of kal. Therefore, the fibres of (39) are exactly the orbits

of Gal.kal=k/. When k is perfect, each extension k.m/=k is separable, and so each orbit

has Œk.m/Wk� elements, and when k is algebraically closed, the map (39) is a bijection.

Set AD kŒX1; : : : ;Xn�=a. Then to give a homomorphism A! kal is the same as giving

an n-tuple .a1; : : : ;an/ of elements of kal (the images of the Xi ) such that f .a1; : : : ;an/D 0

for all f 2 a, i.e., an element of the zero-set Z.a/ of a. The homomorphism corresponding

to .a1; : : : ;an/ maps k.m/ isomorphically onto the subfield of kal generated by the ai ’s.

Therefore, we have a canonical surjection

Z.a/! specm.A/ (40)

whose fibres are the orbits of Gal.kal=k/. When the field k is perfect, each orbit has

ŒkŒa1; : : : ;an� W k�-elements, and when k is algebraically closed, Z.a/' specm.A/.

Maps of max spectra

Let 'WA! B be a homomorphism of finitely generated k-algebras (k a field). Because B is

finitely generated over k, its quotient B=m by any maximal ideal m is a finite field extension

of k (Zariski’s lemma, 12.1). Therefore the image of A in B=m is an integral domain finite

over k, and hence is a field (see ÷1). Since this image is isomorphic to A='�1.m/, this

shows that the ideal '�1.m/ is maximal in A. Therefore ' defines a map

'�Wspecm.B/! specm.A/; m 7! '�1.m/;

which is continuous because .'�/�1.D.f // DD.'.f //. In this way, specm becomes a

functor from finitely generated k-algebras to topological spaces.

THEOREM 14.6. Let 'WA! B be a homomorphism of finitely generated k-algebras. Let

U be a nonempty open subset of specm.B/, and let '�.U /� be the closure of its image in

specm.A/. Then '�.U / contains a nonempty open subset of each irreducible component of

'�.U /�.

20Let f and g be two k-homomorphisms from a finite field extension k0 of k into kal. We consider the set

of pairs .K;˛/ in which ˛ is a k-homomorphism from a subfield K of kal containing f .k0/ into kal such that

˛ ıf D g. The set is nonempty, and Zorn’s lemma can be applied to show that it has a maximal element .K0;˛0/.

For such an element K0 will be algebraically closed, and hence equal to kal.
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PROOF. Let W D specm.B/ and V D specm.A/, so that '� is a continuous map W ! V .

We first prove the theorem in the case that ' is an injective homomorphism of integral

domains. For some b ¤ 0, D.b/ � U . According to Proposition 14.7 below, there exists

a nonzero element a 2 A such that every homomorphim ˛WA! kal such that ˛.a/ ¤ 0

extends to a homomorphism ˇWB! kal such that ˇ.b/¤ 0. Let m 2D.a/, and choose ˛ to

be a homomorphism A! kal with kernel m. The kernel of ˇ is a maximal ideal n 2D.b/

such that '�1.n/Dm, and so D.a/� '�.D.b//.

We now prove the general case. If W1; : : : ;Wr are the irreducible components of W ,

then '�.W /� is a union of the sets '�.Wi /
�, and any irreducible component C of '�.U /�

is contained in one of '�.Wi /
�, say '�.W1/�. Let qD I.W1/ and let pD '�1.q/. Because

W1 is irreducible, they are both prime ideals. The homomorphism 'WA! B induces an

injective homomorphism x'WA=p! B=q, and x'� can be identified with the restriction of '�

to W1. From the first case, we know that x'�.U \W1/ contains a nonempty open subset of

C , which implies that '�.U / does also. 2

In the next two statements, A and B are arbitrary commutative rings — they need not be

k-algebras.

PROPOSITION 14.7. Let A�B be integral domains with B finitely generated as an algebra

over A, and let b be a nonzero element of B . Then there exists an element a ¤ 0 in A

with the following property: every homomorphism ˛WA!˝ from A into an algebraically

closed field ˝ such that ˛.a/¤ 0 can be extended to a homomorphism ˇWB!˝ such that

ˇ.b/¤ 0.

We first need a lemma.

LEMMA 14.8. Let B �A be integral domains, and assume B DAŒt�DAŒT �=a. Let c�A

be the ideal of leading coefficients of the polynomials in a. Then every homomorphism

˛WA!˝ from A into an algebraically closed field ˝ such that ˛.c/¤ 0 can be extended

to a homomorphism of B into ˝.

PROOF. If aD 0, then cD 0, and every ˛ extends. Thus we may assume a¤ 0. Let ˛ be a

homomorphism A!˝ such that ˛.c/¤ 0. Then there exist polynomials amT mC�� �Ca0

in a such that ˛.am/¤ 0, and we choose one, denoted f , of minimum degree. Because

B ¤ 0, the polynomial f is nonconstant.

Extend ˛ to a homomorphism AŒT �!˝ŒT �, again denoted ˛, by sending T to T , and

consider the subset ˛.a/ of ˝ŒT �.

FIRST CASE: ˛.a/ DOES NOT CONTAIN A NONZERO CONSTANT. If the ˝-subspace

of ˝ŒT � spanned by ˛.a/ contained 1, then so also would ˛.a/,21 contrary to hypothesis.

Because

T �
P

ci˛.gi /D
P

ci˛.giT /; ci 2˝; gi 2 a;

this ˝-subspace an ideal, which we have shown to be proper, and so it has a zero c in ˝.

The composite of the homomorphisms

AŒT �
˛
�!˝ŒT � �!˝; T 7! T 7! c;

factors through AŒT �=aD B and extends ˛.

21Use that, if a system of linear equation with coefficients in a field k has a solution in some larger field, then

it has a solution in k.
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SECOND CASE: ˛.a/ CONTAINS A NONZERO CONSTANT. This means that a contains a

polynomial

g.T /D bnT nC�� �Cb0 such that ˛.b0/¤ 0; ˛.b1/D ˛.b2/D �� � D 0:

On dividing f .T / into g.T / we obtain an equation

ad
mg.T /D q.T /f .T /C r.T /; d 2 N; q;r 2 AŒT �; degr < m:

When we apply ˛, this becomes

˛.am/d ˛.b0/D ˛.q/˛.f /C˛.r/:

Because ˛.f / has degree m > 0, we must have ˛.q/D 0, and so ˛.r/ is a nonzero constant.

After replacing g.T / with r.T /, we may suppose that n < m. If mD 1, such a g.T / can’t

exist, and so we may suppose that m > 1 and (by induction) that the lemma holds for smaller

values of m.

For h.T / D crT r C cr�1T r�1C �� � C c0, let h0.T / D cr C �� � C c0T r . Then the A-

module generated by the polynomials T sh0.T /, s � 0, h2 a, is an ideal a0 in AŒT �. Moreover,

a0 contains a nonzero constant if and only if a contains a nonzero polynomial cT r , which

implies t D 0 and AD B (since B is an integral domain).

When a0 does not contain a nonzero constant, we set B 0 D AŒT �=a0 D AŒt 0�. Then a0

contains the polynomial g0 D bnC �� �C b0T n, and ˛.b0/¤ 0. Because degg0 < m, the

induction hypothesis implies that ˛ extends to a homomorphism B 0!˝. Therefore, there

exists a c 2˝ such that, for all h.T /D crT rC cr�1T r�1C�� �C c0 2 a,

h0.c/D ˛.cr/C˛.cr�1/cC�� �C c0cr D 0:

On taking h D g, we see that c D 0, and on taking h D f , we obtain the contradiction

˛.am/D 0. 2

PROOF (OF 14.7). Suppose that we know the proposition in the case that B is generated by

a single element, and write B DAŒt1; : : : ; tn�. Then there exists an element bn�1 such that any

homomorphism ˛WAŒt1; : : : ; tn�1�!˝ such that ˛.bn�1/¤ 0 extends to a homomorphism

ˇWB!˝ such that ˇ.b/¤ 0. Continuing in this fashion (with bn�1 for b), we eventually

obtain an element a 2 A with the required property.

Thus we may assume B D AŒt�. Let a be the kernel of the homomorphism T 7! t ,

AŒT �! AŒt�.

Case (i). The ideal aD .0/. Write

b D f .t/D a0tnCa1tn�1C�� �Can; ai 2 A;

and take a D a0. If ˛WA!˝ is such that ˛.a0/¤ 0, then there exists a c 2˝ such that

f .c/¤ 0, and we can take ˇ to be the homomorphism
P

di t
i 7!

P

˛.di /c
i .

Case (ii). The ideal a¤ .0/. Let f .T /D amT mC�� �Ca0, am ¤ 0, be an element of

a of minimum degree. Let h.T / 2 AŒT � represent b. Since b ¤ 0, h … a. Because f is

irreducible over the field of fractions of A, it and h are coprime over that field. In other

words, there exist u;v 2 AŒT � and a nonzero c 2 A such that

uhCvf D c:

It follows now that cam satisfies our requirements, for if ˛.cam/¤ 0, then ˛ can be extended

to ˇWB!˝ by the lemma, and ˇ.u.t/ �b/D ˇ.c/¤ 0, and so ˇ.b/¤ 0. 2
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REMARK 14.9. In case (ii) of the last proof, both b and b�1 are algebraic over A, and so

there exist equations

a0bmC�� �Cam D 0; ai 2 A; a0 ¤ 0I

a00b�nC�� �Ca0n D 0; a0i 2 A; a00 ¤ 0:

One can show that a D a0a00 has the property required by the proposition (cf. AM 5.23,

p.66).

ASIDE 14.10. In general, the map A! AŒX� does not induce a map spm.AŒX�/! spm.A/. Con-

sider for example a discrete valuation ring A with maximal ideal .�/ (e.g., Z.p/ with maximal ideal

.p/). The ideal .�X �1/ is maximal, because AŒX�=.�X �1/ is the field of fractions of A (by 5.3),

but .�X �1/\AD .0/, which is not maximal.

15 Quasi-finite algebras and Zariski’s main theorem.

In this section we prove a fundamental theorem of Zariski.22 Throughout, k is a field and A

is a commutative ring.

Quasi-finite algebras

PROPOSITION 15.1. Let B be a finite generated k-algebra. A prime ideal q of B is an

isolated point of spec.B/ if and only if Bq is finite over k.

PROOF. To say that q is an isolated point of spec.B/ means that there exists an f 2 B Xq

such that spec.Bf / D fqg. Now Bf is noetherian with only one prime ideal, namely,

m
def
D qBf , and so it is artinian (7.6). The quotient Bf =m is a field which is finitely generated

as a k-algebra, and hence is finite over k (Zariski’s lemma 12.1). Because Bf is artinian,

Bf �m�m2 � �� �

can be refined to a finite filtration whose quotients are one-dimensional vector spaces over

Bf =m. Therefore Bf is a finite k-algebra. As f … q, we have Bq D .Bf /q, which equals

Bf because Bf is local. Therefore Bq is also a finite k-algebra.

For the converse, suppose that Bq is finite over k, and consider the exact seqence

0!M ! B! Bq!N ! 0 (41)

of B-modules. When we apply the functor S�1
q to (41), it remains exact (5.11), but the

middle arrow becomes an isomorphism, and so Mq D 0D Nq. Because B is noetherian,

the B-module M is finitely generated, with generators e1; : : : ; em say. As Mq D 0, there

exists, for each i , an fi 2 B X q such that fiei D 0. Now f 0
def
D f1 : : :fm has the property

that f 0M D 0, and so Mf 0 D 0.

Because Bq is a finite k-algebra, N is finitely generated as a k-module, and therefore

also as a B-module. As for M , there exists an f 00 2 B X q such that Mf 00 D 0. Now

f
def
D f 0f 00 2 B Xq has the property that Mf D 0DNf . When we apply the functor S�1

f

to (41), we obtain an isomorphism Bf ' Bq, and so spec.Bf /D spec.Bq/D fqg, which

shows that q is an isolated point. 2

22Our exposition of the proof follows those in Raynaud 1970 and in Hochster’s course notes from Winter,

2010.
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PROPOSITION 15.2. Let B be a finitely generated k-algebra. The space spec.B/ is discrete

if and only if B is a finite k-algebra.

PROOF. If B is finite over k, then it is artinian and so (7.7)

B D
Y

fBm jm maximalg (finite product),

and

spec.B/D
G

m
spec.Bm/D

G

m
fmg (disjoint union of open subsets).

Therefore each point is isolated in spec.B/.

Conversely, if spec.B/ is discrete then it is a finite disjoint union,

spec.B/D
G

1�i�n

spec.Bfi
/; fi 2 B;

with spec.Bfi
/D fqig. Hence B D

Q

1�i�n Bfi
(by 13.3) with Bfi

D Bqi
. According to

Proposition (15.1), each k-algebra Bqi
is finite over k, and so B is finite over k. 2

DEFINITION 15.3. Let B be a finitely generated A-algebra.

(a) Let q be a prime ideal of B , and let pD qc . The ring B is said to be quasi-finite over

A at q if Bq=pBq is a finite �.p/-algebra.

(b) The ring B is said to be quasi-finite over A if it is quasi-finite over A at all the prime

ideals of B .

PROPOSITION 15.4. Let B be a finitely generated A-algebra. Let q be a prime ideal of B ,

and let pD qc . Then B is quasi-finite over A at q if and only if q is an isolated point of

spec.B˝A �.p//.

PROOF. As

Bq=pBq ' .B=pB/q=p ' .B˝A �.p//q=p ;

this is an immediate consequence of (15.1) applied to the �.p/-algebra B˝A �.p/. 2

The prime ideals of B=pB correspond to the prime ideals of B whose contraction to A

contains p, and the prime ideals of B˝A �.p/ correspond to the prime ideals of B whose

contraction to A is p. To say that B is quasi-finite over A at q means that q is both maximal

and minimal among the prime ideals lying over p (i.e., that each point of spec.B˝A �.p//

is closed).

PROPOSITION 15.5. A finitely generated A-algebra B is quasi-finite over A if and only if,

for all prime ideals p of A, B˝A �.p/ is finite over �.p/.

PROOF. Immediate consequence of (15.2). 2

EXAMPLE 15.6. Let C be a finitely generated A-algebra. If C is finite over A, then

C ˝A �.p/ is finite over �.p/ for all prime ideals p of A, and so C is quasi-finite over A. In

particular, spec.C / is discrete, and so if B is a finitely generated C -algebra such that the

map spec.B/! spec.C / is an open immersion, then B is also quasi-finite over A. Zariski’s

main theorem says that all quasi-finite A-algebras arise in this way.

The next two lemmas will be used in the proof of Zariski’s main theorem.
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LEMMA 15.7. Let A! C ! B be homomorphisms of rings such that the composite

A! B is of finite type, and let q be a prime ideal of B . If B is quasi-finite over A at q, then

it is quasi-finite over C at q.

PROOF. Let pA and pC be the inverse images of q in A and C respectively. Then spec.B˝C

�.pC // is subspace of spec.B˝A �.pA//, and so if q is an isolated point in the second space,

then it is an isolated point in the first space. 2

LEMMA 15.8. Let A� C � B be rings. Let q be a prime ideal of B , and let rD q\C and

pD q\A.

(a) If q is minimal among the primes lying over p and there exists a u 2 C Xq such that

Cu D Bu, then r is minimal among the primes lying over p.

(b) If B is integral over a finitely generated A-subalgebra B0 and q is maximal among the

prime ideals lying over p, then r is maximal among the prime ideals lying over p.

(c) Assume that B is integral over a finitely generated A-subalgebra B0, and that there

exists a u 2 C X q such that Cu D Bu. If B is quasi-finite over A at q, then C is

quasi-finite over A at r.

PROOF. (a) If r0 is a prime ideal of C lying over p and strictly contained in r, then by

extending r0 to Cu D Bu and then contracting the result to B , we obtain a prime ideal q0 of

B lying over p and strictly contained in q.

(b) We may replace A, C , and B with their localizations at p, and so assume that A is

local with maximal ideal p. Then

A=p� C=r� B=q

and we also have

A=p� B0=r0 � B=r

where r0 D q\B0: As q is maximal among the prime ideals lying over p, B=q is a field. As

B=q is integral over B0=r0, the latter is also a field (see 6.16), and it is finitely generated as

an A=p-algebra. Zariski’s lemma (12.1) now shows that B0=r0 is a finite algebraic extension

of A=p, and so B=q is an algebraic extension of A=p. It follows that C=r is a field, and so r

is maximal among the prime ideals in C over p.

(c) Combine (a) and (b) (with the remark following (15.3)). 2

ASIDE 15.9. Geometrically, to say that A!B is quasi-finite means that the map SpecB! SpecA

has finite fibres. The condition that A! B be finite is much stronger: it not only requires that

SpecB! SpecA have finite fibres but also that it be universally closed. See, for example, my notes

on algebraic geometry.

Statement of Zariski’s main theorem

THEOREM 15.10. Let B be a finitely generated A-algebra, and let A0 be the integral closure

of A in B . Then B is quasi-finite over A at a prime ideal q if and only if A0
f
' Bf for some

f 2 A0Xq.

The sufficiency is obvious; the proof of the necessity will occupy the rest of this section.

First, we list some consequences.
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COROLLARY 15.11. Let B be a finitely generated A-algebra. The set of prime ideals of B

at which B is quasi-finite over A is open in spec.B/.

PROOF. Let q be a prime ideal of B such that B is quasi-finite over A at q. The theorem

shows that there exists an f 2 A0X q such that A0
f
' Bf . Write A0 as the union of the

finitely generated A-subalgebras Ai of A0 containing f :

A0 D
[

i
Ai :

Because A0 is integral over A, each Ai is finite over A (see 6.3). We have

Bf ' A0f D
[

i
Aif :

Because Bf is a finitely generated A-algebra, Bf DAif for all sufficiently large Ai . As the

Ai are finite over A, Bf is quasi-finite over A, and spec.Bf / is an open neighbourhood of q

consisting of quasi-finite points. 2

COROLLARY 15.12. Let B be a finitely generated A-algebra, quasi-finite over A, and let

A0 be the integral closure of A in B . Then

(a) the map SpecB! SpecA0 is an open immersion, and

(b) there exists an A-subalgebra A00 of A0, finite over A, such that SpecB! SpecA00 is

an open immersion.

PROOF. (a) Because B is quasi-finite over A at every point of spec.B/, the theorem implies

that there exist fi 2 A0 such that the open sets spec.Bfi
/ cover spec.B/ and A0

fi
' Bfi

for

all i . As spec.B/ quasi-compact, finitely many sets spec.Bfi
/ suffice to cover spec.B/, and

it follows that spec.B/! spec.A0/ is an open immersion.

(b) We have seen that spec.B/D
S

1�i�n spec.Bfi
/ for certain fi 2A0 such that A0

fi
'

Bfi
. The argument in the proof of (15.11) shows that there exists an A-subalgebra A00 of A0,

finite over A, which contains f1; : : : ;fn and is such that Bfi
' A00

fi
for all i . Now the map

spec.B/! spec.A00/ is an open immersion. 2

Theorem 15.10, its corollary 15.12, and various global versions of these statements are

referred to as Zariski’s main theorem.

A variant of Zariski’s main theorem

PROPOSITION 15.13. Let A � C � B be rings such that A integrally closed in B , C is

finitely generated over A, and B is finite over C . If B is quasi-finite over A at a prime ideal

q, then Bp D Ap with pD q\A.

PROOF THAT 15.13 IMPLIES 15.10

Let A, A0, and B be as in the Theorem 15.10. We apply the proposition to A0 � B D B —

Lemma 15.7 shows that the ring B is quasi-finite over A0 at q. The proposition shows that

Bp0 D A0p0 with p0 D q\A0. Let b1; : : : ;bn generate B as an A0-algebra, and let b0i denote

the image of bi in Bp0 DA0p0 . Then b0i D ai=f for some ai 2A0 and f 2A0Xp0. The b0i are

in the image of the map A0
f
!Bf , which is therefore surjective. But A0

f
!Bf is injective

because A� B , and so the map is an isomorphism. This completes the proof of the theorem.
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Proof of Proposition 15.10

We proceed by proving four special cases of Proposition 15.10.

LEMMA 15.14. Let A� AŒx�D B be rings such that A is integrally closed in B . If B is

quasi-finite over A at a prime ideal q, then Bp D Ap with pD q\A.

PROOF. The hypotheses remain true when we invert the elements of S Xp to obtain Ap �

ApŒx�D Bp. Thus, we may suppose that A is local with maximal ideal p, and we have to

prove that B D A. As A is integrally closed in B and B D AŒx�, it suffices to show that x is

integral over A.

Let k D A=p and consider the k-algebra

kŒxx�
def
D AŒx�˝A k D B˝A �.p/:

By assumption, q is an isolated point in spec.kŒxx�/. Consequently, xx is algebraic over k,

because otherwise kŒxx� would be a polynomial ring over k, and its spectrum would have no

isolated points. Therefore there exists a polynomial F 2 AŒX� with nonconstant image in

kŒX� such that F.x/ 2 pAŒx�. Now F �F.x/ is a polynomial in AŒX� that vanishes on x

and has at least one coefficient not in p. Choose such a polynomial H of minimum degree

m, and write it

H.X/D amXmC�� �Ca0:

The equation am�1H.x/D 0 can be written

.amx/mCam�1.amx/m�1C�� �Ca0am�1
m D 0:

It shows that amx is integral over A, and so lies in A. Now the polynomial

.amxCam�1/Xm�1C�� �Ca0

lies in AŒX� and vanishes on x. As it has degree < m, all of its coefficients must lie in

p. In particular, amxCam�1 2 p. If am is a unit, then x is integral over A, as required.

Otherwise, am 2 p and am�1 is a unit (because otherwise all coefficients of H lie in p);

hence am�1 2 pB , which is contradiction because pB � q. 2

LEMMA 15.15. Let B be an integral domain containing a polynomial ring AŒX� and integral

over it. Then B is not quasi-finite over A at any prime ideal q.

PROOF. Let q be a prime ideal of B , and let pD q\A. If B is quasi-finite over A at q, then

q is both maximal and minimal among the prime ideals lying over p. We shall assume that q

is maximal and prove that it can’t then be minimal.

Suppose first that A is integrally closed, and let rD q\AŒX�. If r were not maximal

among the prime ideals of AŒX� lying over p, then the going-up theorem (6.20) would imply

that q is not either. Therefore r is maximal among the prime over p, and it follows that its

image xr in �.p/ŒX� is maximal. In particular, xr¤ 0, and so r strictly contains the prime ideal

pAŒX� in AŒX�. As A is integrally closed, AŒX� is also (6.15), and the going down theorem

(6.24) shows that q strictly contains a prime ideal lying over pAŒX�. Therefore, q is not

minimal among the prime ideals lying over p.

In the general case, we let B 0 denote the integral closure of B in its field of fractions.

Then B 0 contains the integral closure A0 of A, and is integral over A0ŒT �. Let q0 be a prime



15 QUASI-FINITE ALGEBRAS AND ZARISKI’S MAIN THEOREM. 71

ideal of B 0 lying over q (which exists by 6.19), and let p0 D q0\A0. As q is maximal among

the primes lying over p, q0 is maximal among those lying over p0 (apply 6.18 to B � B 0).

But, according to the preceding paragraph, q0 is not minimal, which implies that q is not

minimal (apply 6.18 again). 2

LEMMA 15.16. Let A � AŒx� � B be rings such that B is integral over AŒx� and A is

integrally closed in B . If there exists a monic polynomial F 2AŒX� such that F.x/B �AŒx�,

then AŒx�D B .

PROOF. Let b 2 B be arbitrary. By assumption F.x/b 2 AŒx�, and so F.x/b D G.x/ for

some polynomial G in AŒX�. As F is monic, we can divide F into G to get

G DQF CR; degR < degF; Q;R 2 AŒX�:

Now

F.x/b DG.x/DQ.x/F.x/CR.x/:

For c D b�Q.x/;

F.x/c DR.x/: (42)

To show that b 2 AŒx�, it suffices to show that c 2 A, and for this it suffices to show that c is

integral over A.

Let A0 be the image of A in Bc . As degR < degF , the equality (42) shows that x=1, as

an element of Bc , is integral over the subring A0c . As B is integral over AŒx�, this implies that

Bc is integral over A0c . In particular, c=1 is integral over A0c , and so it satisfies an equation

whose coefficients we can assume to have a common denominator cM :

.c=1/mC
a1

cM
.c=1/m�1C�� �C

am

cM
D 0; ai 2 A,

(equality in Bc). Therefore

cMCmCa1cm�1C�� �Cam

is an element of B whose image in Bc is zero, and so is killed by a power of c. This shows

that c is integral over A, as required. 2

Let B be a finite A-algebra. The conductor of B in A is

f.B=A/D fa 2 A j aB � Ag:

This is an ideal of both A and B . In fact, it is the largest ideal in A that is also an ideal

in B , because every element a of such an ideal has the property that aB � A. For any

multiplicative subset S of A,

f.S�1B=S�1A/D S�1f.B=A/: (43)

LEMMA 15.17. Let A�AŒx��B be rings such that B is finite over AŒx� and A is integrally

closed in B . If B is quasi-finite over A at a prime ideal q, then Bp D Ap with pD q\A.
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PROOF. Let fD f.B=AŒx�/, so

fD f˛ 2 AŒx� j ˛B � AŒx�g:

We first consider the case that f 6� q. Let r D q\AŒx�. For any u 2 fX q, we have

AŒx�u D Bu, and so Lemma 15.8 shows that AŒx� is quasi-finite over A at r.23 Now Lemma

15.14 shows that AŒx�p D Ap. But B is finite over AŒx�, and therefore Bp is finite over

AŒx�p D Ap. As A is integrally closed in B , Ap is integrally closed in Bp, and therefore

Ap D Bp, as required.

It remains to consider the case f � q. We choose a prime ideal n � q of B minimal

among those containing f. Let t denote the image of x in the ring B=n, and let mD n\A.

Now

A=m� .A=m/Œt �� B=n,

and B=n is integral over .A=m/Œt �. As B is quasi-finite over A at q, the quotient B=n is

quasi-finite over A=m at q=n. Now Lemma 15.15 implies that t is algebraic over A=m. We

shall complete the proof by obtaining a contradiction, which will show that this case doesn’t

occur.

After making an extension of scalars A! Am, we may assume that A is a local ring

with maximal ideal m. Let n0 D n\AŒx�. Because t is algebraic over A=m, the integral

domain AŒx�=n0 is a finite A=m-algebra, and hence a field (see ÷1). Therefore, n0 is maximal

in AŒx�, and it follows from (6.17) that n is maximal in B . Thus B=n is a field.

Because t is algebraic over A=m, there exists a monic polynomial F in AŒX� such

that F.x/ 2 n. But n is minimal among the prime ideals of B containing f, and so nBn is

minimal among the prime ideals of Bn containing fn. In fact, nBn is the only prime ideal

containing fn, and so nBn is the radical of fn. Therefore, there exists an integer r > 0 such

that .F.x//r 2 fn, and a y 2 B Xn such that yF.x/r 2 f.

We therefore have yF.x/rB � AŒx�. On applying Lemma 15.16 with A� AŒx�� B 0,

B 0 D AŒx�ŒyB�; and F 0 D F r , we deduce that B 0 D AŒx� and therefore that yB � AŒx�.

Hence y 2 f� n, which contradicts the definition of y. 2

PROOF OF PROPOSITION 15.10

We use induction on the number n of generators of the A-algebra C . If nD 0, then B is

integral over A, and so B D A. Assume that n > 0 and that the proposition has been proved

when C is generated by n�1 elements.

Write C D AŒx1; : : : ;xn�, and let A0 be the integral closure of AŒx1; : : : ;xn�1� in B .

Then

A0 � A0Œxn�� B;

and B is finite over A0Œxn�. The ring B is finite over A0Œxn� and it is quasi-finite over A at q,

and so B is quasi-finite over A0 at q (by 15.7). From Lemma 15.17 we deduce that A0p0 DBp0

with p0 D A0\q.

As A0 is integral over AŒx1; : : : ;xn�1�, it is a union of its finite subalgebras,

A0 D
[

i
A0i ; A0i finite over AŒx1; : : : ;xn�1�:

Let p0i D q\A0i D p0\A0i . As B is finitely generated over AŒx1; : : : ;xn�1�, the canonical

homomorphism

.A0i /p0

i
! Bp0

i

23Here we follow Hochster. Raynaud simply states that AŒx� is quasi-finite over A at r.
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is an isomorphism for all sufficiently large i . For such an i , we have a fortiori that

.A0i /p0

i
' Bq;

and so A0i is quasi-finite over A at p0i . On applying the induction hypothesis to A; AŒx1; : : : ;xn�1�,

and A0i , we deduce that

Ap ' .A0i /p ' .A0i /p0

i
;

and consequently that Ap ' Bp. This completes the proof of Proposition 15.13 and hence of

Theorem 15.10.

16 Dimension theory for finitely generated k-algebras

Throughout this section, A is both a finitely generated algebra over field k and an integral

domain. We define the transcendence degree of A over k, trdegkA, to be the transcendence

degree over k of the field of fractions of A (see ÷8 of my notes Fields and Galois Theory).

Thus A has transcendence degree d if it contains an algebraically independent set of d

elements, but no larger set (ibid. 8.12).

PROPOSITION 16.1. For any linear forms `1; : : : ; `m in X1; : : : ;Xn, the quotient ring

kŒX1; : : : ;Xn�=.`1; : : : ; `m/

is an integral domain of transcendence degree equal to the dimension of the subspace of kn

defined by the equations

`i D 0; i D 1; : : : ;m:

PROOF. This follows from the more precise statement:

Let c be an ideal in kŒX1; : : : ;Xn� generated by linearly independent linear

forms `1; : : : ; `r , and let Xi1
; : : : ;Xin�r

be such that

f`1; : : : ; `r ;Xi1
; : : : ;Xin�r

g

is a basis for the linear forms in X1; : : : ;Xn. Then

kŒX1; : : : ;Xn�=c' kŒXi1
; : : : ;Xin�r

�:

This is obvious if the forms `i are X1; : : : ;Xr . In the general case, because fX1; : : : ;Xng

and f`1; : : : ; `r ;Xi1
; : : : ;Xin�r

g are both bases for the linear forms, each element of one set

can be expressed as a linear combination of the elements of the other. Therefore,

kŒX1; : : : ;Xn�D kŒ`1; : : : ; `r ;Xi1
; : : : ;Xin�r

�;

and so

kŒX1; : : : ;Xn�=cD kŒ`1; : : : ; `r ;Xi1
; : : : ;Xin�r

�=c

' kŒXi1
; : : : ;Xin�r

�: 2
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PROPOSITION 16.2. For any irreducible polynomial f in kŒX1; : : : ;Xn�, the quotient ring

kŒX1; : : : ;Xn�=.f / has transcendence degree n�1.

PROOF. Let

kŒx1; : : : ;xn�D kŒX1; : : : ;Xn�=.f /; xi DXi C .f /;

and let k.x1; : : : ;xn/ be the field of fractions of kŒx1; : : : ;xn�. Since f is not zero, some Xi ,

say, Xn, occurs in it. Then Xn occurs in every nonzero multiple of f , and so no nonzero

polynomial in X1; : : : ;Xn�1 belongs to .f /. This means that x1; : : : ;xn�1 are algebraically

independent. On the other hand, xn is algebraic over k.x1; : : : ;xn�1/, and so fx1; : : : ;xn�1g

is a transcendence basis for k.x1; : : : ;xn/ over k. 2

PROPOSITION 16.3. For every nonzero prime ideal p in a k-algebra A,

trdegk.A=p/ < trdegk.A/:

PROOF. We may suppose that

AD kŒX1; : : : ;Xn�=aD kŒx1; : : : ;xn�:

For f 2 A, let xf denote the image of f in A=p, so that A=p D kŒxx1; : : : ; xxn�. Let d D

trdegkA=p, and number the Xi so that xx1; : : : ; xxd are algebraically independent (for a proof

that this is possible, see 8.9 of my notes Fields and Galois Theory). I shall show that, for

any nonzero f 2 p, the d C1 elements x1; : : : ;xd ;f are algebraically independent, which

shows that trdegkA� d C1.

Suppose otherwise. Then there is a nontrivial algebraic relation, which we can write

a0.x1; : : : ;xd /f mCa1.x1; : : : ;xd /f m�1C�� �Cam.x1; : : : ;xd /D 0;

with ai 2 kŒX1; : : : ;Xd � and a0 ¤ 0. Because A is an integral domain, we can cancel a

power of f if necessary to make am.x1; : : : ;xd / nonzero. On applying the homomorphism

A! A=p to the above equality, we find that

am.xx1; : : : ; xxd /D 0;

which contradicts the algebraic independence of xx1; : : : ; xxd . 2

PROPOSITION 16.4. Let A be a unique factorization domain. If p is a prime ideal in A such

that trdegkA=pD trdegkA�1, then pD .f / for some f 2 A.

PROOF. The ideal p is nonzero because otherwise A and A=p would have the same tran-

scendence degree. Therefore p contains a nonzero polynomial, and even an irreducible

polynomial f , because it is prime. According to (4.1), the ideal .f / is prime. If .f /¤ p,

then

trdegkA=p
16.3
> trdegkA=.f /

16.2
D trdegkA�1;

which contradicts the hypothesis. 2

THEOREM 16.5. Let f 2 A be neither zero nor a unit, and let p be a prime ideal that is

minimal among those containing .f /; then

trdegkA=pD trdegkA�1:
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We first need a lemma.

LEMMA 16.6. Let A be an integrally closed integral domain, and let L be a finite extension

of the field of fractions K of A. If ˛ 2 L is integral over A, then NmL=K˛ 2 A, and ˛

divides NmL=K ˛ in the ring AŒ˛�.

PROOF. Let Xr Car�1Xr�1C�� �Ca0 be the minimum polynomial of ˛ over K. Then

r divides the degree n of L=K, and NmL=K.˛/D˙a
n
r

0 (see 5.40 of my notes Fields and

Galois Theory). Moreover, a0 lies in A by (6.10). From the equation

0D ˛.˛r�1Car�1˛r�2C�� �Ca1/Ca0

we see that ˛ divides a0 in AŒ˛�, and therefore it also divides NmL=K ˛. 2

PROOF (OF THEOREM 16.5). Write rad.f / as an irredundant intersection of prime ideals

rad.f /D p1\ : : :\pr (see 13.9). Then V.a/D V.p1/[ � � �[V.pr/ is the decomposition

of V.a/ into its irreducible components. There exists an m0 2 V.p1/X
S

i�2 V.pi / and an

open neighbourhood D.h/ of m0 disjoint from
S

i�2 V.pi /. The ring Ah (resp. Ah=S�1p)

is an integral domain with the same transcendance degree as A (resp. A=p) — in fact, with

the same field of fractions. In Ah, rad.f
1

/D rad.f /e D pe
1. Therefore, after replacing A

with Ah, we may suppose that rad.f / is prime, say, equal to p.

According to the Noether normalization theorem (6.26), there exist algebraically inde-

pendent elements x1; : : : ;xd in A such that A is a finite kŒx1; : : : ;xd �-algebra. Note that

d D trdegkA. According to the lemma, f0
def
D Nm.f / lies in kŒx1; : : : ;xd �, and we shall

show that p\kŒx1; : : : ;xd �D rad.f0/. Therefore, the homomorphism

kŒx1; : : : ;xd �=rad.f0/! A=p

is injective. As it is also finite, this implies that

trdegkA=pD trdegkkŒx1; : : : ;xd �=rad.f0/
16.2
D d �1;

as required.

By assumption A is finite (hence integral) over its subring kŒx1; : : : ;xd �. The lemma

shows that f divides f0 in A, and so f0 2 .f /� p. Hence .f0/� p\kŒx1; : : : ;xd �, which

implies

rad.f0/� p\kŒx1; : : : ;xd �

because p is radical. For the reverse inclusion, let g 2 p\kŒx1; : : : ;xd �. Then g 2 rad.f /,

and so gm D f h for some h 2 A, m 2 N. Taking norms, we find that

gme D Nm.f h/D f0 �Nm.h/ 2 .f0/;

where e is the degree of the extension of the fields of fractions, which proves the claim. 2

COROLLARY 16.7. Let p be a minimal nonzero prime ideal in A; then trdegk .A=p/ D

trdegk .A/�1.

PROOF. Let f be a nonzero element of p. Then f is not a unit, and p is minimal among the

prime ideals containing f . 2
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THEOREM 16.8. The length d of any maximal (i.e., nonrefinable) chain of distinct prime

ideals

pd � pd�1 � �� � � p0 (44)

in A is trdegk .A/. In particular, every maximal ideal of A has height trdegk .A/, and so the

Krull dimension of A is equal to trdegk .A/.

PROOF. From (16.7), we find that

trdegk.A/D trdegk.A=p1/C1D �� � D trdegk.A=pd /Cd:

But pd is maximal, and so A=pd is a finite field extension of k. In particular, trdegk.A=pd /D

0. 2

EXAMPLE 16.9. Let f .X;Y / and g.X;Y / be nonconstant polynomials with no common

factor. Then kŒX;Y �=.f / has Krull dimension 1, and so kŒX;Y �=.f;g/ has dimension zero.

EXAMPLE 16.10. We classify the prime ideals p in AD kŒX;Y �. If A=p has dimension

2, then pD .0/. If A=p has dimension 1, then pD .f / for some irreducible polynomial

f of A (by 16.4). Finally, if A=p has dimension zero, then p is maximal. Thus, when k

is algebraically closed, the prime ideals in kŒX;Y � are exactly the ideals .0/, .f / (with f

irreducible), and .X �a;Y �b/ (with a;b 2 k).

REMARK 16.11. Let A be a finitely generated k-algebra (not necessarily an integral do-

main). Every maximal chain of prime ideals in A ending in fixed prime ideal p has length

trdegk.A=p/, and so the Krull dimension of A is max.trdegk.A=p// where p runs over the

minimal prime ideals of A. In the next section, we show that a noetherian ring has only

finitely many minimal prime ideals, and so the Krull dimension of A is finite.

If x1; : : : ;xm is an algebraically independent set of elements of A such that A is a finite

kŒx1; : : : ;xm�-algebra, then dimADm.

REMARK 16.12. Let A be a discrete valuation ring A with maximal ideal .�/. Then AŒX�

is a noetherian integral domain of Krull dimension 2, and .�X �1/ is a maximal ideal in

AŒX� of height 1 (cf. 14.10).

17 Primary decompositions

In this section, A is an arbitrary commutative ring.

DEFINITION 17.1. An ideal q in A is primary if it is proper and

ab 2 q, b … q H) an 2 q for some n� 1:

Thus, a proper ideal q in A is primary if and only if all zero-divisors in A=q are nilpotent. A

radical ideal is primary if and only if it is prime. An ideal .m/ in Z is primary if and only if

m is a power of a prime.

PROPOSITION 17.2. The radical of a primary ideal q is a prime ideal containing q, and

it is contained in every other prime ideal containing q (i.e., it is the smallest prime ideal

containing p).
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PROOF. Suppose that ab 2 rad.q/ but b … rad.q/. Then some power, say anbn, of ab lies

in q, but bn … q, and so a 2 rad.q/. This shows that rad.q/ is primary, and hence prime

(because it is radical).

Let p be a second prime ideal containing q, and let a 2 rad.q/. For some n, an 2 q� p,

which implies that a 2 p. 2

When q is a primary ideal and p is its radical, we say that q is p-primary.

PROPOSITION 17.3. Every ideal q whose radical is a maximal ideal m is primary (in fact,

m-primary); in particular, every power of a maximal ideal m is m-primary.

PROOF. Every prime ideal containing q contains its radical m, and therefore equals m. This

shows that A=a is local with maximal ideal m=a. Therefore, every element of A=a is either

a unit, and hence is not a zero-divisor, or it lies in m=a, and hence is nilpotent. 2

PROPOSITION 17.4. Let 'WA! B be a homomorphism of rings. If q is a p-primary ideal

in B , then qc def
D '�1.q/ is a pc-primary ideal in A.

PROOF. The map A=qc! B=q is injective, and so every zero-divisor in A=qc is nilpotent.

This shows that qc is primary, and therefore rad.qc/-primary. But (see 2.10), rad.qc/ D

rad.q/c D pc , as claimed. 2

LEMMA 17.5. Let q and p be a pair of ideals in A such that q� p� rad.q/ and

ab 2 q H) a 2 p or b 2 q. (45)

Then p is a prime ideal and q is p-primary.

PROOF. Clearly q is primary, hence rad.q/-primary, and rad.q/ is prime. By assumption

p � rad.q/, and it remains to show that they are equal. Let a 2 rad.q/, and let n be the

smallest positive integer such that an 2 q. If nD 1, then a 2 q � p; on the other hand, if

n > 1, then an D aan�1 2 q and an�1 … q, and so a 2 p by (45). 2

PROPOSITION 17.6. A finite intersection of p-primary ideals is p-primary.

PROOF. Let q1; : : : ;qn be p-primary, and let q D q1\ : : :\ qn. We show that the pair of

ideals q� p satisfies the conditions of (17.5).

Let a 2 p; since some power of a belongs to each qi , a sufficiently high power of it will

belong to all of them, and so p� rad.q/.

Let ab 2 q but a … p. Then ab 2 qi but a … p, and so b 2 qi . Since this is true for all i ,

we have that b 2 q. 2

The minimal prime ideals of an ideal a are the minimal elements of the set of prime

ideals containing a.

DEFINITION 17.7. A primary decomposition of an ideal a is a finite set of primary ideals

whose intersection is a. A primary decomposition S of a is minimal if

(a) the prime ideals rad.q/, q 2 S , are distinct, and

(b) no element of S can be omitted, i.e., for no q0 2 S is q0 �
T

fq j q 2 S , q¤ q0g.
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If a admits a primary decomposition, then it admits a minimal primary decomposition,

because Proposition 17.6 can be used to combine primary ideals with the same radical, and

any qi that fails (b) can simply be omitted. The prime ideals occurring as the radical of an

ideal in a minimal primary decomposition of a are said to belong to a.

PROPOSITION 17.8. Suppose that aD q1\� � �\qn where qi is pi -primary for i D 1; : : : ;n.

Then the minimal prime ideals of a are the minimal elements of the set fp1; : : : ;png.

PROOF. Let p be a prime ideal containing a, and let q0i be the image of qi in the integral

domain A=p. Then p contains q1 � � �qn, and so q01 � � �q
0
n D 0. This implies that, for some i ,

q0i D 0, and so p contains qi . Now (17.2) shows that p contains pi : 2

In particular, if a admits a primary decomposition, then it has only finitely many minimal

prime ideals, and so its radical is a finite intersection of prime ideals.

For an ideal a in A and an element x 2 A, we let

.aWx/D fa 2 A j ax 2 ag:

It is again an ideal in A, which equals A if x 2 a.

LEMMA 17.9. Let q be a p-primary ideal and let x 2 AXq. Then .qWx/ is p-primary (and

hence rad.qWx/D p).

PROOF. For any a 2 .qWx/, we know that ax 2 q and x … q, and so a 2 p. Hence .qWx/� p.

On taking radicals, we find that rad.qWx/D p. Let ab 2 .qWx/. Then xab 2 q, and so either

a 2 p or xb 2 q (because q is p-primary); in the second case, b 2 .qWx/ as required. 2

THEOREM 17.10. Let aD q1\ : : :\qn be a minimal primary decomposition of a, and let

pi D rad.qi /. Then

fp1; : : : ;png D frad.aWx/ j x 2 A; rad.aWx/ primeg.

In particular, the set fp1; : : : ;png is independent of the choice of the minimal primary

decomposition.

PROOF. For any a 2 A,

.aWa/D .
T

qi Wa/D
T

.qi Wa/;

and so

rad.aWa/D rad
T

.qi Wa/
(17.9)
D

T

a…qi
pi : (46)

If rad.aWa/ is prime, then it equals one of the pi (otherwise, for each i there exists an

ai 2 pi Xp, and a1 � � �an 2
T

a…qi
pi but not p, which is a contradiction). Hence RHS�LHS.

For each i , there exists an a 2
T

j¤i qj Xqi because the decomposition is minimal, and (46)

shows that rad.aWa/D pi . 2

THEOREM 17.11. In a noetherian ring, every ideal admits a primary decomposition.

The theorem is a consequence of the following more precise statement, but first we need

a definition: an ideal a is said to be irreducible if

aD b\ c (b, c ideals) H) aD b or aD c:



17 PRIMARY DECOMPOSITIONS 79

PROPOSITION 17.12. Let A be a noetherian ring.

(a) Every ideal in A can be expressed as a finite intersection of irreducible ideals.

(b) Every irreducible ideal in A is primary.

PROOF. (a) Suppose that (a) fails, and let a be maximal among the ideals for which it

fails. Then, in particular, a itself is not irreducible, and so aD b\ c with b and c properly

containing a. Because a is maximal, both b and c can be expressed as finite intersections of

irreducible ideals, but then so can a.

(b) Let a be irreducible in A, and consider the quotient ring A0
def
D A=a: Let a be a

zero-divisor in A0, say ab D 0 with b ¤ 0. We have to show that a is nilpotent. As A0 is

noetherian, the chain of ideals

..0/Wa/� ..0/Wa2/� �� �

becomes constant, say, ..0/Wam/D ..0/WamC1//D �� � . Let c 2 .am/\ .b/. Then c 2 .b/

implies caD 0, and c 2 .am/ implies that c D dam for some d 2 A. Now

.dam/aD 0) d 2 .0WamC1/D .0Wam/) c D 0:

Hence .am/\ .b/ D .0/. Because a is irreducible, so also is the zero ideal in A0, and it

follows that am D 0. 2

A p-primary ideal a in a noetherian ring contains a power of p by Proposition 3.16. The

next result proves a converse when p is maximal.

PROPOSITION 17.13. Let m be a maximal ideal of a noetherian ring. Any proper ideal a of

A that contains a power of a maximal ideal m is m-primary.

PROOF. Suppose that mr � a, and let p be a prime ideal belonging to a. Then mr � a� p,

so that m � p, which implies that mD p. Thus m is the only prime ideal belonging to a,

which means that a is m-primary. 2

EXAMPLE 17.14. We give an example of a power of a prime ideal p that is not p-primary.

Let

AD kŒX;Y;Z�=.Y 2�XZ/D kŒx;y;z�:

The ideal .X;Y / in kŒX;Y;Z� is prime and contains .Y 2�XZ/, and so the ideal pD .x;y/

in A is prime. Now xz D y2 2 p2, but one checks easily that x … p2 and z … p, and so p2 is

not p-primary.

REMARK 17.15. Let a be an ideal in a noetherian ring, and let b D
T

n�1 a
n. We give

another proof that abD b (see p. 13). Let

abD q1\ : : :\qs; rad.qi /D pi ;

be a minimal primary decomposition of ab. We shall show that b � ab by showing that

b� qi for each i .

If there exists a b 2 bXqi , then

ab � ab� qi ,

from which it follows that a� pi . We know that pr
i � qi for some r (see 3.16), and so

bD
\

an � ar � pr
i � qi ,

which is a contradiction. This completes the proof.
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NOTES. In a future version, I’ll explain the geometric significance of these statements. Also, I’ll

include the statements for modules, and explain how to deduce them from the statements for rings by

a trick of Nagata. (When M is an A-module, A˚M can be made into a ring by setting the product

of any two elements of M equal to zero.). See also mo3910.

18 Dedekind domains

Discrete valuation rings

It follows from the elementary theory of principal ideal domains that the following conditions

on a principal ideal domain A are equivalent:

(a) A has exactly one nonzero prime ideal;

(b) up to associates, A has exactly one prime element;

(c) A is local and is not a field.

A ring satisfying these conditions is called a discrete valuation ring.

EXAMPLE 18.1. The ring Z.p/
def
D fm

n
2Q j n not divisible by pg is a discrete valuation ring

with .p/ as its unique nonzero prime ideal. The units in Z.p/ are the nonzero elements m=n

with neither m nor n divisible by p, and the prime elements are those of the form unit�p.

In a discrete valuation ring A with prime element � , nonzero elements of A can be

expressed uniquely as u�m with u a unit and m� 0 (and m > 0 unless the element is a unit).

Every nonzero ideal in A is of the form .�m/ for a unique m 2 N. Thus, if a is an ideal in

A and p denotes the (unique) maximal ideal of A, then aD pm for a well-defined integer

m� 0.

Recall that, for an A-module M and an m 2M , the annihilator of m

ann.m/D fa 2 A j amD 0g:

It is an ideal in A, which is proper if m¤ 0. Suppose that A is a discrete valuation ring,

and let c be a nonzero element of A. Let M D A=.c/. What is the annihilator of a nonzero

element bC .c/ of M ? Fix a prime element � of A, and let c D u�m, b D v�n with u and

v units. Then n < m (else bC .c/D 0 in M ), and

ann.bC .c//D .�m�n/:

Thus, a b for which ann.bC .c// is maximal, is of the form v�m�1, and for this choice

ann.bC .c// is a prime ideal generated by c
b

. We shall exploit these observations in the

proof of the next proposition, which gives a criterion for a ring to be a discrete valuation

ring.

PROPOSITION 18.2. An integral domain A is a discrete valuation ring if and only if

(a) A is Noetherian,

(b) A is integrally closed, and

(c) A has exactly one nonzero prime ideal.

PROOF. The necessity of the three conditions is obvious, and so let A be an integral domain

satisfying (a), (b), and (c). We have to show that every ideal in A is principal. As a first step,

we prove that the nonzero prime ideal is principal. Note that (c) implies that A is a local ring.
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Choose an element c 2 A, c ¤ 0, c ¤ unit, and consider the A-module M
def
D A=.c/. For

each nonzero element m of M ,

ann.m/D fa 2 A j amD 0g

is a proper ideal in A. Because A is Noetherian, we can choose an m so that ann.m/ is

maximal among these ideals. Write mD bC .c/ and pD ann.bC .c//. Note that c 2 p, and

so p¤ 0, and that

pD fa 2 A j cjabg:

I claim that p is prime. If not there exist elements x, y 2A such that xy 2 p but neither x

nor y 2 p. Then ybC .c/ is a nonzero element of M because y … p. Consider ann.ybC .c//.

Obviously it contains p and it contains x, but this contradicts the maximality of p among

ideals of the form ann.m/. Hence p is prime.

I claim that b
c
… A. Otherwise b D c � b

c
2 .c/, and mD 0 (in M ).

I claim that c
b
2 A, and pD . c

b
/. By definition, pb � .c/, and so p � b

c
� A, and it is an

ideal in A. If p � b
c
� p, then b

c
is integral over A (by 6.1, since p is finitely generated), and

so b
c
2 A (because of condition (b)), but we know b

c
… A. Thus p � b

c
D A (by (c)), and this

implies that pD . c
b

/:

Let � D c
b

, so that pD .�/. Let a be a proper ideal of A, and consider the sequence

a� a��1 � a��2 � �� � :

If a��r D a��r�1 for some r , then ��1.a��r/D a��r , and ��1 is integral over A (by

6.1), and so lies in A — this is impossible (� is not a unit in A). Therefore the sequence

is strictly increasing, and (again because A is Noetherian) it can’t be contained in A. Let

m be the smallest integer such that a��m � A but a��m�1 ª A. Then a��m ª p, and so

a��m D A. Hence aD .�m/: 2

Dedekind domains

DEFINITION 18.3. A Dedekind domain is an integral domain A, not equal to a field, such

that

(a) A is Noetherian,

(b) A is integrally closed, and

(c) every nonzero prime ideal is maximal (i.e., A has Krull dimension 1).

Thus Proposition 18.2 says that a local integral domain is a Dedekind domain if and only

if it is a discrete valuation ring.

PROPOSITION 18.4. Let A be a Dedekind domain, and let S be a multiplicative subset of

A. Then S�1A is either a Dedekind domain or a field.

PROOF. Condition (c) says that there is no containment relation between nonzero prime

ideals of A. If this condition holds for A, then (5.4) shows that it holds for S�1A. Conditions

(a) and (b) follow from the next lemma. 2

PROPOSITION 18.5. Let A be an integral domain, and let S be a multiplicative subset of A.

(a) If A is Noetherian, then so also is S�1A:

(b) If A is integrally closed, then so also is S�1A:
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PROOF. (a) Let a be an ideal in S�1A. Then aD S�1.a\A/ (see 5.4), and so a is generated

by any (finite) set of generators for a\A:

(b) Let ˛ be an element of the field of fractions of A (D field of fractions of S�1A/ that

is integral over S�1A. Then

˛mCa1˛m�1C�� �Cam D 0, some ai 2 S�1A:

For each i , there exists an si 2 S such that siai 2 A. Set s D s1 � � �sm 2 S , and multiply

through the equation by sm W

.s˛/mC sa1.s˛/m�1C�� �C smam D 0:

This equation shows that s˛ is integral over A, and so lies in A. Hence ˛ D .s˛/=s 2 S�1A.

(See also 6.13.) 2

COROLLARY 18.6. For any nonzero prime ideal p in a Dedekind domain A, the localization

Ap is a discrete valuation ring.

PROOF. We saw in (5.7) that Ap is local, and the proposition implies that it is Dedekind. 2

The main result concerning Dedekind domains is the following.

THEOREM 18.7. Every proper nonzero ideal a in a Dedekind domain can be written in the

form

aD p
r1

1 � � �p
rs
s

with the pi distinct prime ideals and the ri > 0; the ideals pi are exactly the prime ideals

containing a, and the exponents ri are uniquely determined.

PROOF. The primary ideals in a Dedekind domain are exactly the powers of prime ideals,

and so this follows from the preceding section. (For an elementary proof, see my notes on

algebraic number theory.) 2

REMARK 18.8. Note that

ri > 0 ” aApi
¤ Api

” a� pi :

COROLLARY 18.9. Let a and b be ideals in A; then

a� b ” aAp � bAp

for all nonzero prime ideals p of A. In particular, aD b if and only if aAp D bAp for all p.

PROOF. The necessity is obvious. For the sufficiency, factor a and b

aD p
r1

1 � � �p
rm
m ; bD p

s1

1 � � �p
sm
m ; ri ; si � 0:

Then

aApi
� bApi

” ri � si ;

(recall that Api
is a discrete valuation ring) and ri � si all i implies a� b. 2
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COROLLARY 18.10. Let A be an integral domain with only finitely many prime ideals;

then A is a Dedekind domain if and only if it is a principal ideal domain.

PROOF. Assume A is a Dedekind domain. After (18.7), to show that A is principal, it

suffices to show that the prime ideals are principal. Let p1; : : : ;pm be these ideals. Choose

an element x1 2 p1Xp
2
1. According to the Chinese Remainder Theorem (2.12), there is an

element x 2 A such that

x � x1 mod p2
1; x � 1 mod pi ; i ¤ 1:

Now the ideals p1 and .x/ generate the same ideals in Api
for all i , and so they are equal in

A (by 18.9). 2

COROLLARY 18.11. Let a� b¤ 0 be two ideals in a Dedekind domain; then aD bC .a/

for some a 2 A:

PROOF. Let bD p
r1

1 � � �p
rm
m and aD p

s1

1 � � �p
sm
m with ri ; sj � 0. Because b � a, si � ri for

all i . For 1 � i � m, choose an xi 2 A such that xi 2 p
si

i , xi … p
siC1
i . By the Chinese

Remainder Theorem, there is an a 2 A such that

a� xi mod p
ri

i , for all i:

Now one sees that bC .a/D a by looking at the ideals they generate in Ap for all p: 2

COROLLARY 18.12. Let a be an ideal in a Dedekind domain, and let a be any nonzero

element of a; then there exists a b 2 a such that aD .a;b/:

PROOF. Apply (18.11) to a� .a/: 2

COROLLARY 18.13. Let a be a nonzero ideal in a Dedekind domain; then there exists a

nonzero ideal a� in A such that aa� is principal. Moreover, a� can be chosen to be relatively

prime to any particular ideal c, and it can be chosen so that aa� D .a/ with a any particular

element of a (but not both).

PROOF. Let a 2 a, a¤ 0; then a� .a/, and so we have

.a/D p
r1

1 � � �p
rm
m and aD p

s1

1 � � �p
sm
m ; si � ri :

If a� D p
r1�s1

1 � � �prm�sm
m , then aa� D .a/:

We now show that a� can be chosen to be prime to c. We have a� ac, and so (by 18.11)

there exists an a 2 a such that aD acC .a/. As a� .a/, we have .a/D a �a� for some ideal

a� (by the above argument); now, acCaa� D a, and so cCa� D A. (Otherwise cCa� � p

some prime ideal, and acCaa� D a.cCa�/� ap¤ a:/ 2

In basic graduate algebra courses, it is shown that

A a principal ideal domain) A is a unique factorization domain.

The converse is false because, for example, kŒX;Y � is a unique factorization domain in

which the ideal .X;Y / is not principal, but it is true for Dedekind domains.
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PROPOSITION 18.14. A Dedekind domain that is a unique factorization domain is a princi-

pal ideal domain.

PROOF. In a unique factorization domain, an irreducible element � can divide a product

bc only if � divides b or c (write bc D �q and express each of b, c, and q as a product of

irreducible elements). This means that .�/ is a prime ideal.

Now let A be a Dedekind domain with unique factorization. It suffices to show that each

nonzero prime ideal p of A is principal. Let a be a nonzero element of p. Then a factors into

a product of irreducible elements (see 4.3) and, because p is prime, it will contain one of

these irreducible factors � . Now p� .�/� .0/, and, because .�/ is a nonzero prime ideal,

it is maximal, and so equals p. 2

Modules over Dedekind domains (sketch).

The structure theorem for finitely generated modules over principal ideal domains has an

interesting extension to modules over Dedekind domains. Throughout this subsection, A is a

Dedekind domain.

First, note that a finitely generated torsion-free A-module M need not be free. For

example, every fractional ideal is finitely generated and torsion-free but it is free if and only

if it is principal. Thus the best we can hope for is the following.

THEOREM 18.15. Let A be a Dedekind domain.

(a) Every finitely generated torsion-free A-module M is isomorphic to a direct sum of

fractional ideals,

M � a1˚�� �˚am:

(b) Two finitely generated torsion-free A-modules M � a1˚�� �˚am and N � b1˚�� �˚

bn are isomorphic if and only if mD n and
Q

ai �
Q

bi modulo principal ideals.

Hence,

M � a1˚�� �˚am � A˚�� �˚A˚a1 � � �am:

Moreover, two fractional ideals a and b of A are isomorphic as A-modules if and only if they

define the same element of the class group of A.

The rank of a module M over an integral domain R is the dimension of K˝R M as a

K-vector space, where K is the field of fractions of R. Clearly the rank of M � a1˚�� �˚am

is m:

These remarks show that the set of isomorphism classes of finitely generated torsion-free

A-modules of rank 1 can be identified with the class group of A. Multiplication of elements

in Cl(A) corresponds to the formation of tensor product of modules. The Grothendieck

group of the category of finitely generated A-modules is Cl.A/˚Z.

THEOREM 18.16 (INVARIANT FACTOR THEOREM). Let M �N be finitely generated torsion-

free A-modules of the same rank m. Then there exist elements e1; :::; em of M , fractional

ideals a1; :::;am, and integral ideals b1 � b2 � ::. � bm such that

M D a1e1˚�� �˚amem; N D a1b1e1˚�� �˚ambmem:

The ideals b1, b2, ..., bm are uniquely determined by the pair M �N , and are called the

invariant factors of N in M:

The last theorem also yields a description of finitely generated torsion A-modules.
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NOTES. We sketch a proof of (18.15a). Let A be a Dedekind domain, and let M be finitely generated

torsion-free A-module. Then Ap˝M is free, hence projective, for every nonzero prime ideal p in A

(because Ap is principal ideal domain), and this implies that M is projective. Therefore there is a

nonzero homomorphism M ! A, whose image is an ideal a in A. As a is projective, there exists

a section to the map M � a, and so M � a˚M1 for some submodule M1 of M . Now M1 is

projective because it is a direct summand of a projective module, and so we can repeat the argument

with M1. This process ends because M is noetherian.

NOTES. The Jordan-Hölder and Krull-Schmidt theorems fail for finitely generated projective mod-

ules over non-principal Dedekind domains. For example, suppose that A has a nonprincipal ideal a

of order 2 in the class group. Then a˚a� A˚A, contradicting both theorems.

19 Dimension theory for noetherian rings

Let A be a noetherian ring and let p be a prime ideal in A. Let Ap D S�1A where S DAXp.

We begin by studying extension and contraction of ideals with respect to the homomorphism

A! Ap (cf. 2.9). Recall (5.7) that Ap is a local ring with maximal ideal pe def
D pAp. The

ideal
�

pn
�ec
D fa 2 A j sa 2 pn for some s 2 Sg

is called the nth symbolic power of p, and is denoted p.n/. If m is maximal, then m.n/ Dmn

(see 5.8).

LEMMA 19.1. The ideal p.n/ is p-primary.

PROOF. According to Proposition 17.3, the ideal .pe/n is pe-primary. Hence (see 17.4),

..pe/n/c is .pe/c-primary. But pec D p (see 5.4), and

...pe/n/c 2.10
D ..pn/e/c def

D p.n/: (47)

LEMMA 19.2. Consider ideals a� p0 � p with p0 prime. If p0 is a minimal prime ideal of a,

then p0e is a minimal prime ideal of ae (extension relative to A! Ap).

PROOF. If not, there exists a prime ideal p00 ¤ p0e such that p0e � p00 � ae. Now, by (5.4),

p0 D p0ec and p00c ¤ p0ec , and so

p0 D p0ec § p00c � aec � a

contradicts the minimality of p0. 2

THEOREM 19.3 (KRULL’S PRINCIPAL IDEAL THEOREM). Let A be a noetherian ring. For

any nonunit b 2 A, the height of a minimal prime ideal p of .b/ is at most one.

PROOF. Consider A! Ap. According to Lemma 19.2, pe is a minimal prime ideal of

.b/e D .b
1
/, and (5.4) shows that the theorem for Ap � pe � .b

1
/ implies it for A� p� .b/.

Therefore, we may replace A with Ap, and so assume that A is a noetherian local ring with

maximal ideal p.

Suppose that p properly contains a prime ideal p1: we have to show that p1 � p2 H)

p1 D p2.
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Let p
.r/
1 be the r th symbolic power of p1. The only prime ideal of the ring A=.b/ is

p=.b/, and so A=.b/ is artinian (apply 7.6). Therefore the descending chain of ideals

�

p
.1/
1 C .b/

�

=.b/�
�

p
.2/
1 C .b/

�

=.b/�
�

p
.3/
1 C .b/

�

=.b/� �� �

eventually becomes constant: there exists an s such that

p
.s/
1 C .b/D p

.sC1/
1 C .b/D p

.sC2/
1 C .b/D �� � : (48)

We claim that, for any m� s,

p
.m/
1 � .b/p

.m/
1 Cp

.mC1/
1 : (49)

Let x 2 p
.m/
1 . Then

x 2 .b/Cp
.m/
1

(48)
D .b/Cp

.mC1/
1 ;

and so x D abC x0 with a 2 A and x0 2 p
.mC1/
1 . As p

.m/
1 is p1-primary (see 19.1) and

abD x�x0 2 p
.m/
1 but b … p1, we have that a 2 p

.m/
1 . Now xD abCx0 2 .b/p

.m/
1 Cp

.mC1/
1

as claimed.

We next show that, for any m� s,

p
.m/
1 D p

.mC1/
1 .

As b 2 p, (49) shows that p
.m/
1 =p

.mC1/
1 D p �

�

p
.m/
1 =p

.mC1/
1

�

, and so p
.m/
1 =p

.mC1/
1 D 0 by

Nakayama’s lemma (3.9).

Now

ps
1 � p

.s/
1 D p

.sC1/
1 D p

.sC2/
1 D �� �

and so ps
1 �

T

m�s p
.m/
1 . Note that

\

m�s
p

.m/
1

(47)
D

\

m�s
..pe

1/m/c D .
\

m�s
.pe

1/m/c 3.15
D .0/c ;

and so for any x 2 ps
1, there exists an a 2AXp1 such that ax D 0. Let x 2 p1; then axs D 0

for some a 2 AXp1 � AXp2, and so x 2 p2 (because p2 is prime). We have shown that

p1 D p2, as required. 2

In order to extend Theorem 19.6 to non principal ideals, we shall need a lemma.

LEMMA 19.4. Let p be a prime ideal in a noetherian ring A, and let S be a finite set of

prime ideals in A, none of which contains p. If there exists a chain of distinct prime ideals

p� pd�1 � �� � � p0;

then there exists such a chain with p1 not contained in any ideal in S .

PROOF. We first prove this in the special case that the chain has length 2. Suppose that

p � p1 � p0 are distinct prime ideals and that p is not contained in any prime ideal in S .

According to Proposition 2.7, there exists an element

a 2 pX .p0[
S

fp0 2 Sg/:
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As p contains .a/Cp0, it also contains a minimal prime ideal p01 of .a/Cp0. Now p01=p0

is a minimal prime ideal of the principal ideal ..a/Cp0/=p0 in A=p0, and so has height 1,

whereas the chain p=p0 � p1=p0 � p0=p0 shows that p=p0 has height at least 2. Therefore

p� p01 � p0 are distinct primes, and p01 … S because it contains a. This completes the proof

of the special case.

Now consider the general case. On applying the special case to p� pd�1 � pd�2, we

see that there exists a chain of distinct prime ideals p� p0
d�1
� pd�2 such that p0

d�1
is not

contained in any ideal in S . Then on applying the special case to p0
d�1
� pd�2 � pd�1, we

we see that there exists a chain of distinct prime ideals p� p0
d�1
� p0

d�2
� pd�2 such that

p0
d�2

is not contained in any ideal in S . Repeat the argument until the proof is complete. 2

THEOREM 19.5. Let A be a noetherian ring. For any proper ideal a D .a1; : : : ;am/, the

height of a minimal prime ideal of a is at most m.

PROOF. For mD 1, this was just proved. Thus, we may suppose that m � 2 and that the

theorem has been proved for ideals generated by m�1 elements. Let p be a minimal prime

ideal of a, and let p01; : : : ;p0t be the minimal prime ideals of .a2; : : : ;am/. Each p0i has height

at most m�1. If p is contained in one of the p0i , it will have height �m�1, and so we may

suppose that it isn’t.

Let p have height d . We have to show that d �m. According to the lemma, there exists

a chain of distinct prime ideals

pD pd � pd�1 � �� � � p0; d � 1;

with p1 not contained in any p0i , and so Proposition 2.7 shows that there exists a

b 2 p1X
Sr

iD1 p
0
i :

We next show that p is a minimal prime ideal of .b;a2; : : : ;am/. Certainly p contains a

minimal prime ideal p0 of this ideal. As p0 � .a2; : : : ;am/, p contains one of the p0i s, but, by

construction, it cannot equal it. If p¤ p0, then

p� p0 � pi

are distinct ideals, which shows that xp
def
D p=.a2; : : : ;am/ has height at least 2 in xA

def
D

A=.a2; : : : ;am/. But xp is a minimal ideal in xA of the principal ideal .a1; : : : ;an/=.a2; : : : ;an/,

which contradicts Theorem 19.3. Hence p is minimal, as claimed.

But now p=.b/ is a minimal prime ideal of .b;a2; : : : ;am/ in R=.b/, and so the height

of p=.b/ is at most m�1 (by induction). The prime ideals

p=.b/D pd =.b/� pd�1=.b/� �� � � p1=.b/

are distinct, and so d �1�m�1. This completes the proof that d Dm. 2

The height of an ideal a in a noetherian ring is the minimum height of a prime ideal

containing it,

ht.a/D min
p�a, p prime

ht.p/:

The theorem shows that ht.a/ is finite.

The following provides a (strong) converse to Theorem 19.5.
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THEOREM 19.6. Let A be a noetherian ring, and let a be a proper ideal of A of height r .

Then there exist r elements a1; : : : ;ar of a such that, for each i � r , .a1; : : : ;ai / has height

i .

PROOF. If r D 0, then we take the empty set of ai s. Thus, suppose that r � 1. There are

only finitely many prime ideals of height 0, because such an ideal is a minimal prime ideal

of .0/, and none of these ideals can contain a because it has height � 1. Proposition 2.7

shows that there exists an

a1 2 aX
S

fprime ideals of height 0g:

By construction, .a1/ has height at least 1, and so Theorem 19.3 shows it has height exactly

1.

This completes the proof when r D 1, and so suppose that r � 2. There are only finitely

many prime ideals of height 1 containing .a1/ because such an ideal is a minimal prime

ideal of .a1/, and none of these ideals can contain a because it has height � 2. Choose

a2 2 aX
S

fprime ideals of height 1 containing .a1/g:

By construction, .a1;a2/ has height at least 2, and so Theorem 19.5 shows that it has height

exactly 2.

This completes the proof when r D 2, and when r > 2 we can continue in this fashion

until it is complete.

COROLLARY 19.7. Every prime ideal of height r in a noetherian ring arises as a minimal

prime ideal for an ideal generated by r elements.

PROOF. According to the theorem, an ideal a of height r contains an ideal .a1; : : : ;ar/ of

height r . If a is prime, then it is a minimal ideal of .a1; : : : ;ar/. 2

COROLLARY 19.8. Let A be a commutative noetherian ring, and let a be an ideal in A that

can be generated by n elements. For any prime ideal p in A containing a,

ht.p=a/� ht.p/�ht.p=a/Cn:

PROOF. The first inequality follows immediately from the correspondence between ideals

in A and in A=a.

Denote the quotient map A! A0
def
D A=a by a 7! a0. Let ht.p=a/ D d . Then there

exist elements a1; : : : ;ad in A such that p=a is a minimal prime ideal of .a01; : : : ;a0
d

/. Let

b1; : : : ;bn generate a. Then p is a minimal prime ideal of .a1; : : : ;ad ;b1; : : : ;bn/, and hence

has height � d Cn. 2

We now use dimension theory to prove a stronger version of “generic flatness” (10.13).

THEOREM 19.9 (GENERIC FREENESS). Let A be a noetherian integral domain, and let B

be a finitely generated A-algebra. For any finitely generated B-module M , there exists a

nonzero element a of A such that Ma is a free Aa-module.
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PROOF. Let F be the field of fractions of A. We prove the theorem by induction on the

Krull dimension of F ˝A B , starting with the case of Krull dimension �1. Recall that this

means that F ˝A B D 0, and so a1B D 0 for some nonzero a 2 A. Then Ma D 0, and so

the theorem is trivially true (Ma is the free Aa-module generated by the empty set).

In the general case, an argument as in (10.14) shows that, after replacing A, B , and M

with Aa, Ba, and Ma for a suitable a 2 A, we may suppose that the map B ! F ˝A B

is injective — we identify B with its image. The Noether normalization theorem (6.26)

shows that there exist algebraically independent elements x1; : : : ;xm of F ˝A B such that

F ˝A B is a finite F Œx1; : : : ;xm�-algebra. As in the proof of (10.13), there exists a nonzero

a 2 A such that Ba is a finite AaŒx1; : : : ;xm�-algebra. Hence Ma is a finitely generated

AaŒx1; : : : ;xm�-module.

As any extension of free modules is free24, Proposition 3.5 shows that it suffices to

prove the theorem for Ma D AaŒx1; : : : ;xm�=p for some prime ideal p in AaŒx1; : : : ;xm�. If

p D 0, then Ma is free over Aa (with basis the monomials in the xi ). Otherwise, F ˝A

.AaŒx1; : : : ;xm�=p/ has Krull dimension less than that of F ˝A B , and so we can apply the

induction hypothesis. 2

20 Regular local rings

Throughout this section, A is a noetherian local ring with maximal ideal m and residue field

k. The Krull dimension d of A is equal to the height of m, and

ht.m/
(19.5)

� minimum number of generators of m
(3.11)
D dimk.m=m2/:

When equality holds, the ring A is said to be regular. In other words, dimk.m=m2/ � d ,

and equality holds exactly when the ring is regular.

For example, when A has dimension zero, it is regular if and only if its maximal ideal

can be generated by the empty set, and so is zero. This means that A is a field; in particular,

it is an integral domain. The main result of this section is that all regular rings are integral

domains.

LEMMA 20.1. Let A be a noetherian local ring with maximal ideal m, and let c 2mXm2.

Denote the quotient map A! A0
def
D A=.c/ by a 7! a0. Then

dimk m=m2 D dimk m
0=m02C1

where m0
def
Dm=.c/ is the maximal ideal of A0.

PROOF. Let e1; : : : ; en be elements of m such that fe01; : : : ; e0ng is a k-linear basis for m0=m02.

We shall show that fe1; : : : ; en; cg is a basis for m=m2.

As e01; : : : ; e0n span m0=m02, they generate the ideal m0 (see 3.11), and so mD .e1; : : : ; en/C

.c/, which implies that fe1; : : : ; en; cg spans m=m2.

Suppose that a1; : : : ;anC1 are elements of A such that

a1e1C�� �CanenCanC1c � 0 mod m2. (50)

24If M 0 is a submodule of M such that M 00
def
DM=M 0 is free, then M �M 0˚M 00.
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Then

a01e01C�� �Ca0ne0n � 0 mod m02,

and so a01; : : : ;a0n 2 m
0. It follows that a1; : : : ;an 2 m. Now (50) shows that anC1c 2 m2.

If anC1 …m, then it is a unit in A, and c 2m2, which contradicts its definition. Therefore,

anC1 2m, and the relation (50) is the trivial one. 2

PROPOSITION 20.2. If A is regular, then so also is A=.a/ for any a 2 mXm2; moreover,

dimAD dimA=.a/C1.

PROOF. With the usual notations, (19.8) shows that

ht.m0/� ht.m/� ht.m0/C1:

Therefore

dimk.m0=m02/� ht.m0/� ht.m/�1D dimk.m=m2/�1D dimk.m0=m02/:

Equalities must hold throughout, which proves that A0 is regular with dimension dimA�1.2

THEOREM 20.3. Every regular noetherian local ring is an integral domain.

PROOF. Let A be a regular local ring of dimension d . We have already noted that the

statement is true when d D 0.

We next prove that A is an integral domain if it contains distinct ideals a� p with aD .a/

principal and p prime. Let b 2 p, and suppose that b 2 an D .an/ for some n � 1. Then

b D anc for some c 2 A. As a is not in the prime ideal p, we must have that c 2 p� a, and

so b 2 anC1. Continuing in this fashion, we see that b 2
T

n a
n 3.15
D f0g. Therefore pD f0g,

and so A is an integral domain.

We now assume d � 1, and proceed by induction on d . Let a 2 mXm2. As A=.a/ is

regular of dimension d � 1, it is an integral domain, and so .a/ is a prime ideal. If it has

height 1, then the last paragraph shows that A is an integral domain. Thus, we may suppose

that, for all a 2 mXm2, the prime ideal .a/ has height 0, and so is a minimal prime ideal

of A. Let S be the set of all minimal prime ideals of A — recall (÷17) that S is finite. We

have shown that mXm2 �
S

fp j p 2 Sg, and so m � m2[
S

fp j p 2 Sg. It follows from

Proposition 2.7 that either m�m2 (and hence mD 0) or m is a minimal prime ideal of A,

but both of these statements contradict the assumption that d � 1: 2

COROLLARY 20.4. A regular noetherian local ring of dimension 1 is a principal ideal

domain (with a single nonzero prime ideal).

PROOF. Let A be a regular local ring of dimension 1 with maximal ideal m, and let a be

a nonzero proper ideal in A. The conditions imply that m is principal, say mD .t/. The

radical of a is m because m is the only prime ideal containing a, and so a � mr for some

r (by 3.16). The ring A=mr is local and artinian, and so aD .ts/Cmr for some s � 1 (by

7.8). This implies that aD .ts/ by Nakayama’s lemma (3.9). 2

THEOREM 20.5. Let A be a regular noetherian local ring.

(a) For any prime ideal p in A, the ring Ap is regular.

(b) The ring A is a unique factorization domain (hence is integrally closed).

PROOF. Omitted for the moment. 2

The best proof uses homological methods. See May, RegularLocal.pdf or Matsumura

1986 19.3, 20.3.

http://www.math.uchicago.edu/~may/MISC/RegularLocal.pdf
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21 Completions

Let A be a ring and a an ideal in A. For any A-module, we get an inverse system of quotient

maps

M=aM  M=a2M  �� �  M=anM  �� �

whose limit we define to be the a-adic completion yM of M :

yM
def
D lim
 �

M=anM:

For example, the a-adic completion of A is

yA
def
D lim
 �

n

A=an.

We now explain why this is called the completion. Let M be an A-module. A filtration

on M is a sequence of submodules

M DM0 � �� � �Mn � �� � :

LEMMA 21.1. Let .Mn/n2N be a filtration on an A-module M . There is a unique topology

on M such that, for each x 2M , the set fxCMn j n 2 Ng is a fundamental system of

neighbourhoods for x. The completion yM of M relative to this topology is canonically

isomorphic to lim
 �

M=Mn.

PROOF. The first statement is obvious. For the second, recall that yM consists of the

equivalence classes of Cauchy sequences in M . Let .mn/n2N be a Cauchy sequence. For

each n, the image of mi in M=Mn becomes constant for large i — let xmn denote the constant

value. The family . xmn/n2N depends only on the equivalence class of the Cauchy sequence

.mn/n2N, and

Œ.mn/� 7! . xmn/W yM ! lim
 �

M=Mn

is an isomorphism. 2

Let A be a ring and let a be an ideal in A. A filtration .Mn/n2N on an A-module M is

an a-filtration if aMn �MnC1 for all n. An a-filtration is stable if aMn DMnC1 for all

sufficiently large n.

LEMMA 21.2. Any two stable a-filtrations on an A-module M define the same topology on

M .

PROOF. It suffices to show that a stable a-filtration .Mn/n2N defines the a-adic topology

on M . As aMn � MnC1 for all n, we have that anM � Mn for all n. For some n0,

aMn DMnC1 for all n� n0, and so MnCn0
D anMn0

� anM . 2

LEMMA 21.3 (ARTIN-REES). If A is noetherian and M is finitely generated, then, for any

A-submodule M 0 of M , the filtration .M 0\anM/n2N on M 0 is a stable a-filtration.

PROOF. Omitted for the moment. 2

PROPOSITION 21.4. For every noetherian ring A and ideal a, the functor M  yM is exact

on finitely generated A-modules.
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PROOF. Let

0!M 0!M !M 00! 0

be an exact sequence of A-modules. For each n, the sequence

0!M 0\anM ! anM ! anM 00! 0

is exact, and so

0!M 0=.M 0\anM/!M=anM !M 00=anM 00! 0

is exact. On passing to the inverse limit, we obtain an exact sequence

0! lim
 �

n

M 0=.M 0\anM/! yM ! yM 00! 0,

but the last three lemmas show that lim
 �n

M 0=.M 0\anM/ is the a-adic completion of M 0.2

PROPOSITION 21.5. For every ideal a in a noetherian ring A and finitely generated A-

module M , the homomorphism

a˝m 7! amW yA˝A M ! yM

is an isomorphism.

PROOF. In other words, when A is noetherian, the functors M  yA˝M and M  yM

agree on finitely generated A-modules M . This is obvious for M D A, and it follows for

finitely generated free A-module because both functors take finite direct sums to direct sums.

Choose a surjective homomorphism Am!M , and let N be its kernel. The exact sequence

0!N ! Am!M ! 0

gives rise to a exact commutative diagram

yA˝A N yAm yA˝A M 0

0 yN yAm yM 0

a ' b

Because the middle vertical arrow is an isomorphism, the arrow b is surjective. But M

is arbitrary, and so the arrow a is also surjective, which implies that the arrow b is an

isomorphism. 2

PROPOSITION 21.6. For every noetherian ring A and ideal a, the a-adic completion yA of A

is a flat A-algebra.

PROOF. It follows from (21.4) and (21.5) that yA˝A� is exact on finitely generated A-

modules, but this implies that it is exact on all A-modules. 2
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