Sources
 in the History of Mathematics and Physical Sciences 8

PAPPUS OF ALEXANDRIA BOOK 7 OF THE COLLECTION PART 1. INTRODUCTION, TEXT, AND TRANSLATION

Edited
With Translation and Commentary by

ALEXANDER JONES

Sources

in the History of Mathematics and Physical Sciences

Editor
G. J. Toomer
Advisory Board
R. P. Boas P. J. Davis T. Hawkins
M. J. Klein A. E. Shapiro D. Whiteside

Vat. gr. 218, f. 118°
Photo: Biblioteca Vaticana

Pappus of Alexandria

Book 7 of the Collection

Part 1. Introduction, Text, and Translation

Edited
With Translation and Commentary by Alexander Jones

In Two Parts
With 308 Figures

Alexander Jones
6425 Adera Street
Vancouver, British Columbia V6M 3J7
Canada

AMS Classification: 01A20

Library of Congress Cataloging in Publication Data
Pappus, of Alexandria.
Book 7 of the Collection.
(Sources in the history of mathematics and physical sciences; 8)
English and Greek.
Revision of thesis (Ph. D.)-Brown University, 1985.
Bibliography: p .
Includes indexes.
Contents: pt. 1. Introduction, text, and translationpt. 2. Commentary, index, and figures.

1. Mathematics, Greek. I. Jones, Alexander.
II. Title. III. Title: Book seven of the Collection.
IV. Series.
$\begin{array}{llll}\text { QA22.P3713 } & 1986 & 516.2 & 85-27788\end{array}$
© 1986 by Springer Science+Business Media New York
Originally published by Springer-Verlag New York Inc. in 1986
Softcover reprint of the hardcover 1st edition 1986
All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer Science+Business Media, LLC.

TO MY PARENTS

Preface

The seventh book of Pappus's Collection, his commentary on the Domain (or Treasury) of Analysis, figures prominently in the history of both ancient and modern mathematics: as our chief source of information concerning several lost works of the Greek geometers Euclid and Apollonius, and as a book that inspired later mathematicians, among them Viete, Newton, and Chasles, to original discoveries in their pursuit of the lost science of antiquity. This presentation of it is concerned solely with recovering what can be learned from Pappus about Greek mathematics. The main part of it comprises a new edition of Book 7; a literal translation; and a commentary on textual, historical, and mathematical aspects of the book. It proved to be convenient to divide the commentary into two parts, the notes to the text and translation, and essays about the lost works that Pappus discusses.

The first function of an edition of this kind is, not to expose new discoveries, but to present a reliable text and organize the accumulated knowledge about it for the reader's convenience. Nevertheless there are novelties here. The text is based on a fresh transcription of Vat. gr. 218, the archetype of all extant manuscripts, and in it I have adopted numerous readings, on manuscript authority or by emendation, that differ from those of the old edition of Hultsch. Moreover, many difficult parts of the work have received little or no commentary hitherto. In particular I believe that more sense can be recovered from several problematic passages in the important first part of the book than has been recognized. The account of the evolution and vicissitudes of the text, from its composition to the Renaissance, is largely new. In treating the lost works of Apollonius and Euclid, where so much has been done between the times of Maurolico and Zeuthen, my main work was to select what seemed to be valid scholarship; the remainder, if mentioned at all, had to be ruthlessly relegated to footnotes, without regard for intrinsic merit.

This edition is a revision of my doctoral dissertation in the Department of History of Mathematics at Brown University, which was submitted in April 1985. It was stored on and printed by Brown University's computer facilities, using experimental laser-printer typesetting software. Some minor typographical infelicities, for example the lack of an iota subscript, are I hope outweighed by the reduced cost of production. I am entirely responsible for typographical and other errors.

I have to thank the Biblioteca Apostolica Vaticana for access to its facilities and collections, and providing, through my teacher Gerald Toomer, a microfilm of the archetype. I have also profited from research in the Biblioteca Ambrosiana, Milan; the Newberry Library, Chicago; the libraries of the University of British Columbia and Simon Fraser University; and above all the libraries of Brown University. During the writing of the
dissertation I held a doctoral fellowship from the Social Sciences and Humanities Research Council of Canada. The History of Mathematics Department provided a truly congenial home for four years; I mention with special gratitude the often manifested hospitality of the late Professor A. J. Sachs and Mrs J. Sachs, and many kindnesses of Professor O. Neugebauer. A summer stipend from the History of Mathematics Department enabled me to spend two months during the Summer of 1984 in Italy palpating the past. For various suggestions, information, and corrections I am indebted to Professors J. L. Berggren, A. L. Boegehold, David Pingree (who also proof-read the Greek text expertly), D. T. Whiteside, and Mr N. G. Wilson. Dr Jan Hogendijk, surpassing his function as reader of the dissertation, rescued me from numerous mathematical and logical morasses. Many of my notes on Pappus's mathematics are the better for his suggestions, and the essays (especially those on the Porisms and the loci) were enormously improved, in form and content, under his guidance. He also generously allowed me to read the results of his researches into the traces of lost works of Apollonius in Arabic sources; since these are, at the time of writing, not published, I have limited myself to mentioning the existence of relevant fragments at appropriate points in the essay on Apollonius. My debt to Gerald Toomer extends throughout the book, every page of which (in its earlier version) he read with the greatest care. He suggested the edition in the first place, and I can only hope that a little of his learning is reflected in it.

Providence, September 1985.

Contents

Part 1

INTRODUCTIONPappus and the Collection
§1. Biographical Data 1
§2. Works 3
§3. Integrity and Composition of the Collection 15
§4. Interpolations 18
§5. The Marginalia 20
§6. Early references 21
§7. Foul Papers 24
§8. The Proarchetypes 26
§9. Description of the Vaticanus 30
§10. Disturbances in the Vaticanus 33
§11. Byzantine Notices 36
§12. Witelo 42
§13. The Papal Inventories 45
§14. False Leads 48
§15. The Vaticanus in Florence and Rome 52
§16. The Recentiores 56
§17. Printed Editions 62
Introduction to Book 7
§18. The Domain of Analysis 66
§19. The Purpose and Plan of Book 7 70
§20. Mathematics in Book 7 71
Editorial Principles 75
Abbreviations Used in the Apparatus 79
TEXT AND TRANSLATION 82
Part 2
NOTES 377
ESSAYS ON THE LOST WORKS
A. The Minor Works of Apollonius
§1. Introduction 510
§2. The Cutting off of a Ratio 510
§3. The Cutting off of an Area 513
§4. The Determinate Section 514
§5. General Remarks on the 'Triple Section' 522
§6. The Neuses 527
§7. The Tangencies 534
§8. The Plane Loci 539
B. Euclid's Porisms
§1. Documents 547
§2. The Definitions 549
§3. The First Porism 554
§4. The 'Hyptios' Porisms 556
§5. Rectilinear Configurations 560
§6. Areas and Ranges 563
§7. Porisms on Circles 564
§8. Applications and Purpose 567
§9. Historical Note 569
C. The Loci of Aristaeus, Euclid, and Eratosthenes
§1. Introduction. 573
§2. Documents on Aristaeus 577
§3. Fragments from Pappus 582
§4. Book 3 of Apollonius's Conics 585
§5. The Four Line Locus 587
§6. Euclid's Loci on Surfaces 591
§7. The Derivation of Curvilinear Loci 595
§8. Eratosthenes's Loci with Respect to Means 599
APPENDICES

1. The Scholia to Book 7 600
2. The Book of Lemmas by "Aqātun" 603
3. Selections from the Cutting off of a Ratio 606
APPARATUS TO THE FIGURES 620
BIBLIOGRAPHIC ABBREVIATIONS 628
INDEX 647
GREEK INDEX 657
FIGURES 667

PART 1

General Introduction (Pappus and the Collection)

§1. Biographical Data. In the later Hellenistic period, after several hundred years of progress, the main stream of Greek mathematics, synthetic geometry, experienced a deep and permanent decline. The subject did not stop being studied and taught, but original discoveries became less and less frequent and important. The causes and even the date of this decadence are obscured by the fewness of our sources for the period between Apollonius, about 200 B.C, and the fourth century A.D. But although the conditions under which ancient books were transmitted to us naturally favored (if we except a few 'classics' by the great Hellenistic geometers) later texts over earlier ones, we learn from reports at second hand that authors such as Geminus, Menelaus, and Heron in the first century A.D. were already excerpting, reediting, and commenting on older works.

Pappus of Alexandria is the first author in this degenerate tradition of whom we have substantial writings on higher geometry, and - for the modern historian - he is also the most important. The period around the fourth century A.D. has often been described as a 'Silver Age' of mathematics, an illusion for which the bulk of Pappus's extant work, and the abundance of information uniquely preserved in it, are largely responsible. In fact the few occasions on which Pappus claims something as his original discovery give little evidence of a fertile mind. Nevertheless his reputation, as shown by the later allusions of Proclus, Marinus, and Eutocius, was high - deservedly so, according to the debased standard of his time.

The only document concerning Pappus that can be called biographical is the short article on him in the Souda, a tenth-century Byzantine encyclopedia: ${ }^{1}$

Pappus of Alexandria, philosopher, lived in the reign of the emperor Theodosius the elder, when Theon the philosopher who wrote on Ptolemy's Table [i.e. the Handy Tables] also flourished. His books are Chorography of the Inhabited World, Commentary on the four books of Ptolemy's Great Syntaxis, The Rivers in Libya, and Interpretations of Dreams.

Souda, ed. Adler, vol. 4 p. 26. The article on Theon of Alexandria (vol. 2 p. 702) repeats the claim that he and Pappus were contemporaries.

Aside from the listed writings, which we will return to later on, the article makes two assertions. The first, that Pappus was a 'philosopher', could mean that Pappus held some kind of official post as a teacher of philosophy, presumably at Alexandria, or perhaps no more than that he was interested in scientific matters. None of Pappus's known works was truly philosophical, although his extant commentary on Book 10 of Euclid's Elements is admittedly devoted as much to metaphysical as to purely mathematical considerations. Many later writers on mathematical subjects are known otherwise, even primarily, as philosophers: Theon of Alexandria, his daughter Hypatia, Ammonius, Heliodorus, John Philoponus, and Eutocius, all associated with the philosophical school at Alexandria, and Proclus and Marinus at Athens. One of the few contemporaries that Pappus names in his works as an acquaintance is a certain Hierius the philosopher, who may be the same as a Hierius known from other sources (see below, note 9).

The Souda's other claim, that Pappus was a contemporary of Theon of Alexandria in the reign of Theodosius (379-395) is false. The correct date of Pappus's career, about the first decades of the fourth century, is delimited, at one end by a marginal note in a chronological table in the ninth-century manuscript Leiden B.P.G. 78 which places Pappus in the reign of Diocletian (284-308 according to the table), at the other end by a computed conjunction of Sun and Moon for October 18, A.D. 320 in his commentary on Book 5 of Ptolemy's Almagest. ${ }^{2}$ This computation is worked out for an observer at Alexandria: the only explicit confirmation that Pappus's career was passed in his home town. It seems probable that the Souda, or its source (conjectured to be the sixth-century biographer Hesychius of Miletus), ${ }^{3}$ was misled by the insertion of parts of Pappus's

2 B.P.G. 78, f. 55 r (noted by Van der Hagen [1735] p. 320 and Usener [1873]), probably copied from the manuscript's exemplar. Similar notes in the margins date other early astronomers, certainly on the basis of observations quoted in the Almagest, hence the scholiast may have derived his date of Pappus from a computation in one of the lost books of his commentary on Ptolemy. On the conjunction in 320 (a partial solar eclipse) and Pappus's date, see Rome, CA vol. 1 pp. x-xi. Rome ([1939] p. 212 and $C A$ vol. 2 p. 907) found another computation, of the Sun's position on January 5, 323, in Theon's commentary on Book 3 of the Almagest. This, being too early for Theon's career, may have been lifted from the corresponding (lost) part of Pappus's commentary. Astronomical writers usually illustrated their rules with examples near their own time.
commentary among the books of Theon's commentary on the Almagest (at least they are so combined in the medieval manuscript tradition), which might suggest to a casual examination that the two authors collaborated.
§2. Works. Pappus's works, extant and lost, show his varied interests in the exact sciences and other subjects. The list below includes all the writings now known, and some dubious or false attributions. ${ }^{4}$
§2.1. The Collection. The most important of the surviving works is the $\Sigma u \nu a \gamma \omega \gamma \dot{\eta}$ or Collection, preserved in a tenth-century manuscript, Vaticanus gr. 218, and its many descendants. ${ }^{5}$ Hultsch's edition of 1876-1878 (the first complete one) is the standard text. ${ }^{6}$ The Vaticanus is defective at the beginning and end: we have lost (in Greek) Book 1, the first part of Book 2, and the end of Book 8. The remnants are:
a. Book 2. The text is divided at the beginning into numbered paragraphs or propositions, of which we have 16 (2.1) through 23 (2.13), with the rest (to 2.27) unnumbered in the transmitted version. From these figures it appears that about half of Book 2 survives.

The individual letters in a line of Greek verse can be interpreted as numerals from 1 to 800 . Pappus wishes to multiply these numerals all together, and express the product in words, using as base the myriad $(10,000)$. The discussion follows a lost work of Apollonius, which the reader was expected to have at hand. Pappus provides arithmetical demonstrations of propositions that Apollonius proved by geometry. We are not told the title of Apollonius's book: it was probably a jeu d'esprit like Archimedes's Sand Reckoner, perhaps itself partly in verse. Heiberg suggested that this work of Apollonius's was the same as the strangely named Okytokion in which, according to Eutocius, Apollonius derived limits for π more refined than those of Archimedes, but this guess is

4 Good earlier surveys include K. Ziegler, "Pappos von Alexandria", in RE vol. 18 (1949) cc. 1084-1106; (for mathematical contents) Heath, HGM vol. 2, pp. 355-439; and I. Bulmer-Thomas, "Pappus of Alexandria", $D S B$ vol. 10 (1974) pp. 293-304. Ziegler's perceptive discussion of the bibliographical aspects of the Collection deserves more note than it has received.

5 In the heading of Book 3 the title is given as $\sigma v \nu a \gamma \omega \gamma a^{i}$.
6 Hultsch, PAC. I refer to passages in the Collection always by Hultsch's chapter numbers; for example, 7.26 will mean Book 7, chapter 26.
unsupported. ${ }^{7}$
b. Book 3. The heading of the book is: "Contains geometrical problems, both plane and solid." It is addressed to a woman named Pandrosion, who was a teacher of mathematics (we know nothing else about her). ${ }^{8}$ The introduction presents an unusual variant of the normal practice of addressing a published work to some primary recipient, sometimes with an extended explanation of the circumstances of the work's 'publication' and reasons for the dedication (as in the prefaces of Archimedes and Apollonius), or with only the perfunctory insertion of a vocative in the first sentence (as is the case with Pappus's other dedications in Books 5, 7, and 8). In any event the dedication was usually a compliment; here, however, we have a rebuke. Pappus writes that he has observed several of Pandrosion's pupils, and found their mathematical education deficient. Three examples of these weaknesses follow, giving Pappus the opportunity to expand on certain topics.

A first pupil repeatedly approached Pappus with an alleged construction of the two mean proportionals between given magnitudes by compass and straight-edge methods, asking whether it is correct (magnitudes Γ and Δ are two mean proportionals between magnitudes A and B if $\mathrm{A}: \Gamma=\Gamma: \Delta=\Delta: \mathrm{B}$; hence if A is taken as unit, the problem of finding Γ (and Δ) is equivalent to that of finding the cube root of B). 9

7 Heiberg in Apollonius, Opera vol. 2 p. 124.

8 The recondite name might suggest Athenian origin. Pandrosos was a legendary Athenian heroine, daughter of Cecrops; the site of the sacred olive tree of the city was called the 'Pandroseion'. Neither the name Pandrosos nor the diminutive Pandrosion seems to have been common. The only attested name that comes close, to my knowledge, is an African 'Pandroseios', Supplementum Epigraphicum Graecum vol. 9 no. 532, from Teuchiris-Arsinoe (courtesy of G. J. Toomer). Pappus's Pandrosion has suffered strange indignities from Pappus's editors: in Commandino's Latin translation her name vanishes, leaving the absurdity of the polite epithet $\kappa \rho a \tau i \sigma \tau \eta$ being treated as a name, "Cratiste"; while for no good reason Hultsch alters the text to make the name masculine.

9 Pappus mentions in passing a philosopher Hierius, friend of the geometry student and an acquaintance of Pappus, who also asked for Pappus's opinion of the construction. This Hierius may be identifiable with a student of Iamblichus and teacher of Maximus referred to by Ammonius (commentary on the Prior Analytics, CAG vol. 4.6 p. 31). He is in turn, I think, the same as a philosopher Hierius mentioned by

Pappus gives a detailed refutation of the alleged solution (which is an iterative method), showing that it gives exact results only if one assumes to be given the very mean proportionals that are sought. Then he sets out a classification of geometrical problems into 'planar', 'solid', and 'curvilinear' types, depending on the resources necessary to solve them. 1^{10} The problem of the two mean proportionals, he says, is 'solid', and so cannot be solved using only compass and straight-edge. Pappus then describes constructions of the two means by Eratosthenes, Nicomedes, Heron, and lastly one "discovered by us", all using extra resources (either a markable ruler or a special mechanically drawn curve). None of the quoted solutions uses conic sections (we know several ancient solutions that did); Pappus perhaps considered them too advanced for the intended readers of this book.

A second pupil tried to construct the three basic means between two magnitudes (the arithmetic, geometric, and harmonic means) by a minimal construction, in which as few lines and arcs are drawn as possible. Pappus finds fault with this because the harmonic mean produced is not the mean of the same quantities as the others. He therefore embarks on a lecture on the means, giving his own minimalist solution of the original problem, and definitions and constructions of seven more means.

A third problem is to construct within a triangle and on part of its base another triangle whose other two sides together are longer than the other two sides of the containing triangle. Pappus complains that the proposition is incompetently stated and proved in an "inexperienced" way. The same proposition, paraphrased only slightly and with the same figure, appears again in Proclus's commentary to Book 1 of Euclid's Elements. Since Proclus shows no sign of knowing Pappus's criticisms of it, it is possible that Pappus was criticizing on a written work that Proclus later consulted, or that Pandrosion's pupil took the construction from some book. ${ }^{11}$ In the remainder of this section Pappus quotes a series of similar problems from the "so-called paradoxes of Erycinus", of whom and which we otherwise know nothing. The last (which may be Pappus's own) constructs a triangle smaller than a given triangle, but with sides greater than or equal to given multiples of the given triangle's sides.

Libanius (Oration 14 to Julian, chapters 7, 32, 34). According to Libanius, Julian would have wanted Hierius and his brother Diogenes at his court had they still been alive (this was in 362), just as in fact he has Maximus and Priscus. The remark would have more point if there were a well known connection between the two pairs of sages.

10 For the meaning of this terminology, see the notes to 7.22 .
11 Proclus, Elements I ed. Friedlein, pp. 326-28.

The final section of Book 3 gives a series of constructions of the regular solids in a given sphere. These problems, which follow a different procedure from that of Book 13 of Euclid's Elements, are solved by analysis and synthesis. There is no connection whatever between the first parts of the book, which make up the letter to Pandrosion, and this last part.

Book 3 is followed by an appendix, "The tenth theorem in the third (book) of Pappus's Collection in another way, comprising the proof and the instrumental construction of both the doubling of the cube and the two mean proportionals." Under this title we have a long treatment of a variant of Pappus's solution of the mean proportional problem in the first part of the book.
c. Book 4. "Consists of exquisite theorems, planar, solid, and curvilinear." We have to take the title from the subscription at the end of the book, for in the Vaticanus the book begins, without a title, immediately following the appendix to Book 3. The book has no preface or dedication, and no overall governing plan.

The first section can only be characterized as miscellaneous theorems, probably jotted down in the course of reading other treatises. First we are given a interesting generalization of the 'Pythagorean' theorem for a general triangle and parallelograms erected on its sides. Then comes a pair of theorems in which certain line segments, produced in geometrical constructions with circles, are classified according to the system of irrational magnitudes that is set out in Book 10 of the Elements. There follows a series of propositions that are, at least in part, concerned with tangent circles. The theme of tangencies is developed in a series of propositions concerning packing circles in the 'arbelos', the space between two externally tangent semicircles that are also tangent internally to a third semicircle, all on a common diameter.

The remainder of Book 4 is devoted broadly to special curves: the Archimedean Spiral, the Cochloid of Nicomedes, the Quadratrix of Dinostratus and Nicomedes, and a spiral on the surface of the sphere. After that, Pappus expounds on the trisection of the angle, with an introduction that again discusses the division of problems into planar, solid, and curvilinear. He mentions in passing two alleged instances of abuse of the powerful 'solid' methods (that is, using conic sections) by Archimedes in the work On Spirals and by Apollonius in Book 5 of the Conics. According to Pappus, the problems in question can be solved by ruler and compass alone, but he does not elaborate on this topic. Instead he goes on to give a solution, which he implies is an old one, of the trisection problem, using the intersection of a circle and a hyperbola. After giving another comparable solution by "some people", Pappus turns to the general problem of dividing an angle in a given ratio. This, he says, is a curvilinear problem, and was
solved by the "moderns". He gives solutions "written by ourselves", using the Quadratrix and the Archimedean Spiral, and demonstrates a few applications of the method to problems involving ratios of angles and circumferences. The book ends with an analysis of the neusis construction assumed by Archimedes in the book On Spirals, "in order that you will not be nonplussed when you work through the book".
d. Book 5. "Contains comparisons of plane figures having equal perimeter, with respect to each other and to the circle, and comparisons of solid figures having equal perimeter, with respect to each other and to the sphere." Of all the books of the Collection, this is the most polished. Pappus begins with an elaborate introduction, addressed to one Megethion, on how the hexagonal cells of honeycombs show that bees, like men, have some divinely furnished knowledge of geometry. For the hexagon is, among the regular figures that can pack the plane, the one that has greatest area in proportion to its perimeter, and so the bee uses the least material to store the most honey. This preface introduces the problem of proving that the circle has the greatest area of figures of equal perimeter, and that of regular isoperimetric polygons, that which has the most angles is the greatest. The sequence of theorems that purport to prove this proposition is adapted only slightly from a lost work on isoperimetric figures by the Hellenistic mathematician Zenodorus, which we know also from versions reported by Theon and Eutocius. He adds some unimportant generalizations to circular sectors.

A heading "On solids" introduces the second part of the book. Again we have a short preface: the philosophers maintain that (the Neoplatonist) God chose the sphere to shape the universe as the fairest of shapes, and assert that among the properties that make the sphere best is that of solid figures of equal surface it is the greatest. This, Pappus says, they have not been able to prove, but only to affirm. The treatment that follows will be limited to the sphere and regular solids. Among these are the five Platonic solids, but also the thirteen Archimedean semiregular solids, which Pappus enumerates, but, not surprisingly, chooses not to include in the comparison with the sphere. On the other hand, he does include a section on the solids of rotation of regular polygons, drawing on Archimedes's On the Sphere and Cylinder, and only after this digression addresses the isoperimetric regular solids and derives their relative volumes.
e. Book 6. "Contains resolutions of difficulties in the little (Domain) of Astronomy". Pappus's introduction (without dedication) complains that "many of those who teach the 'Domain of Astronomy' [á $\sigma \tau O \mathcal{L} O \mu O \dot{v} \mu \in \nu O \varsigma \tau \dot{O} \pi O \varsigma$, the division of mathematics that furnishes the equipment for astronomy], because they attend carelessly to the propositions, add some things on the grounds that they are necessary, and omit others as unnecessary." Three instances are named, in Theodosius's Spherics, Euclid's Phaenomena, and Theodosius's On Days and Nights. Pappus proposes to explain and correct these errors. The book contains other things too, however, though without much plan. These include a
synopsis of Autolycus On the Sphere in Motion, and a survey of Aristarchus On the Sizes and Distances of Sun and Moon with some comparison with the work of Ptolemy and Hipparchus and a lemma allegedly necessary to follow Aristarchus's argument. There is also an expansion of a theorem in Euclid's Optics concerning the projection of a circle through a point.
f. Book 7. "Contains lemmas of the 'Domain of Analysis' [áva入vónevos τ ónos]". Book 7 begins with a preface, addressed to a pupil Hermodorus, explaining geometrical analysis and synthesis and listing the books that make up the 'Domain of Analysis', the branch of mathematics that provides equipment for analysis of theorems and problems. There follow, first a series of synopses of most of these books, then sets of lemmas required for the reading of them. Following Book 7 is an appendix, "lemma of the 'Domain of Analysis'", the relationship of which to the preceding material is not explained.
g. Book 8. "Contains miscellaneous exquisite mechanical problems." This book too is dedicated to Hermodorus. The preface describes the scope and divisions of mechanics, how Archimedes was the first to write on the subject, and its association with geometry. Pappus promises to take up several matters, on the drawing of weights on inclined surfaces, on the finding of the two mean proportionals, and on the proportioning of gears, as well as other topics "useful for architect and mechanician". He begins, however, with a series of propositions on centers of gravity. Then follows a section on the inclined plane, and the power necessary to draw a weight up it. Within the same topic, he continues, belongs the problem of moving a given weight by a given power, and as illustration of this he presents Heron's geared instrument called the 'baroulkos'.

Pappus turns now from what he calls the "things particularly pertinent to the topic of mechanics" to the "instrumental" topic, which encompasses so-called 'mechanical' methods of solving geometrical problems. The advantage of these over conic sections, according to Pappus, is that conics are in practice difficult to draw. He produces as an example the same solution of finding the two mean proportionals as he gave in Book 3 as his own. Another type of instrumental problem arises when the resources of geometry are restricted, "such as constructions by a single (compass) interval and the (problem) proposed by architects of a cylinder broken off at both bases", where the object is to find the cylinder's diameter. Pappus shows how to solve this second problem, using a construction of an ellipse through five given points. As further examples of the same kind of problem, he performs certain tasks concerning an elevated solid sphere, where the practical motivation is not obvious. In another example Pappus appears to recommend instrumental methods for drawing figures for analyses of problems, since otherwise one must anticipate the solution to prepare a suitable figure; but the illustration, constructing seven adjacent hexagons inscribed in a given circle, does not make the point clear. The promised discussion of gears follows, and then one of how to make a
screw; these are finally combined in a simple machine taken from Heron's Mechanics. Excerpts from the same book of Heron, treating the five 'powers' or elemental machines, and various apparatus for lifting and moving weights, make up the remainder of the book, to the point where the Vaticanus abruptly ends.
§2.2. Introduction to Mechanics. In his commentary to the second book of Archimedes On the Sphere and Cylinder Eutocius quotes Pappus's method of finding the two mean proportionals as from his M $\eta \mathrm{xa} \mathrm{\nu}$ скаi Eioar $\boldsymbol{j} \mathrm{a}_{\mathrm{a}} i$, and this has long been understood as a reference to Book 8 of the Collection. Confirmation and modification of this opinion has come with the recent discovery of Book 8 in a ninth-century Arabic translation. ${ }^{2}$ The Arabic version agrees in all major respects with the Greek, except for two things. First, the Arabic version is entitled "Introduction of Pappus to the science of mechanics", with no suggestion of its being part of a larger work. Secondly, the Arabic text preserves, not only the end of the book which is lost in the Greek, but also a long and interesting passage that comes after the construction of the seven hexagons. In it Pappus presents a series of constructions by fixed compass and straight-edge, leading to the construction by these limited means of a triangle, given its three sides. The last part of the book, which continues the adaptations from Heron, was apparently lost in Greek only after the extant archetype, the Vaticanus, was copied, so its presence in the translation does not illuminate the relationship between the two texts. The other passage, however, although we can see from the reference in the Greek text to this kind of construction (quoted above) that it is an intended and integral part of the book, is so neatly absent from the Greek version that we can scarcely suppose a 'mechanical' cause for its dropping out (damage to a manuscript, the careless eye of a copyist), nor is there any motive to excise it deliberately. The remaining possibility is that both recensions go back independently to Pappus, and that the version in the Collection is an earlier one in which the author had not yet had the opportunity to insert the fixed compass propositions.
§2.3. Commentary on the Almagest. Pappus's title for this work was (with trivial variations) $\sigma \chi o ́ \lambda \iota a \quad \epsilon i s ~ \tau \grave{a} K \lambda a v \delta i o v$ Птодєнаíov $\mu a \theta \eta \mu a \tau \iota \kappa \grave{a}$ ('Notes on Claudius Ptolemy's Mathematics'). We have the commentaries to the fifth and sixth books, preserved in several manuscripts. ${ }^{13}$ Remarks in these books show that Pappus had already written commentaries to the first and fourth books,

[^0]13 Edited in Rome, $C A$ vol. 1.
while Eutocius cites the third book in the "Prolegomena" to the Almagest. ${ }^{14}$ Eutocius's version of the isoperimetric theorems too was likely adapted from Pappus's first book. It is reasonable (if not necessary) to assume that Pappus commented on the whole of Ptolemy's treatise, but no evidence for the seventh through thirteenth books is known. The Souda's mention (in the article on Pappus) of a "commentary [$\dot{v} \pi \dot{\sigma} \mu \nu \eta \mu a$] on the four books of Ptolemy's Great Syntaxis" (i.e. the Almagest) probably reflects a confusion with Ptolemy's Tetrabiblos.

Except for some information on lost writings of Hipparchus, the surviving parts are of small historical value. Pappus gives little more than a verbose explanation of numerous points in Ptolemy's text that might make trouble for an inexperienced reader, with supplementary proofs of cases that Ptolemy considered too obvious to set out.
§2.4. Commentary on Book 10 of Euclid's Elements. This opuscule in two parts survives in the Arabic translation of the scholar alDimishqi (about A.D. 1000). ${ }^{15}$ The attribution to Pappus (transliterated in accordance with normal Arabic practice for Greek names as "b.b.s" in unvocalized script - through misplaced dotting this easily became "b.y.s" or "b.t.s") was once in doubt, but there is evidence to support it. ${ }^{16}$ The commentary is listed in the article on Pappus in Ibn al-Nadim's Fihrist (a tenth-century encyclopedia of authors known to the Arabs) as a 'commentary on the tenth book of Euclid in two books". 17 Still more authoritative is a Greek scholion to Euclid's Data, which declares that "both rational $[\dot{\rho} \eta \tau \dot{o} \nu$] and irrational [á $\lambda o \gamma o \nu$] can be given, as Pappus says in the beginning of the (commentary) on the tenth (book) of Euclid". The reference is to Book 1 chapter 7 (about a quarter of the way into Book 1 in the Arabic text), where Pappus discusses the commensurability of pairs of

14 Rome, CA vol. 1 pp. xvii-xviii.
15 Edited in Thomson - Junge [1930]. An incomplete Latin translation was made from the Arabic in the twelfth century; see Junge [1936].

16 Woepcke, who discovered the text, assigned it tentatively to the second-century astrologer Vettius Valens (Woepcke [1876] p. 17), but it later turned out that his reading of the author's name (as "b.l.s") was mistaken. Suter, [1922] p. 78, was led by the philosophical content of the commentary to suspect that it was written by Proclus; but Heiberg showed convincingly that Proclus's commentary on the Elements never extended beyond Book 1 (Heiberg, LSE pp. 165-68).
given rational or irrational magnitudes. ${ }^{8}$ Several scholia to Book 10 of the Elements are derived from Pappus's commentary, but without attribution. ${ }^{19}$

The work is not a proposition-by-proposition commentary on Book 10 of Euclid, nor does it seem to have been part of a complete exegesis of the Elements. In the first part, Pappus gives a short history of the study of irrational magnitudes, an argument of why one should study it, a short synopsis of Book 10 of Euclid, discussion of the possibility of irrationals and incommensurables, a long review of the relevant passages in Plato, and again a more detailed summary of Book 10 . The second part is devoted entirely to the various classes of ordered irrationals in Euclid and how they can be produced from one another by geometrical procedures. The book seems to have been composed for readers versed in philosophy, especially Neoplatonism, but with little mathematical background. For us the book is of only modest historical value, mostly for its allusion to a work by Apollonius on 'unordered' irrationals (about which, however, Pappus tells us nothing substantial).
§2.5. Chorography of the Inhabited World. The Souda mentions
 fragments of this work can be extracted from a seventh-century Armenian geography (Ǎsxarhac'oyc) of uncertain authorship. 20 From these extracts it appears that Pappus followed the arrangement of regions of Ptolemy's Geography, providing amusing and instructive descriptions of the lands and the wonderful things to be found in them (hippocentaurs, Amazons, maneating and wine-loving beasts).

§2.6. The Rivers in Libya.

§2.7. Interpretation of Dreams. These two works are known only from the article in the Souda.
§2.8. Commentaries or notes on Euclid's Elements. Several times in his commentary on Book 1 of the Elements Proclus cites remarks of Pappus, without specifying the work in question. 21 Eutocius credits

18 Euclid, Opera vol. 6 p. 262; Thomson - Junge, p. 70. In his DSB article (p. 302 note 32) Bulmer-Thomas mistakenly writes that nothing in the opening section of the commentary corresponds to the scholion.

19 Heiberg, LSE pp. 170-171.
20 Hewsen [1971].

21 Proclus Elements I ed. Friedlein, pp. 189, 197, 249, 429. The phrase

Pappus with a commentary ($\dot{v} \pi \dot{o} \mu \nu \eta \mu a$) on the Elements, in which he demonstrated the construction of a polygon inscribed in a given circle and similar to a given polygon inscribed in another circle. 22 These references suggest a collection of notes on specific passages in the Elements, not a freely composed review like the extant treatise on Book 10.
82.9. Commentary on Ptolemy's Planispherium. We know of this only from the Fihrist of ibn al-Nadim which reports that Thäbit ibn Qurra translated it into Arabic. ${ }^{3} 3$ The Planispherium, which itself is extant only in Arabic translation, is an early treatise on stereographic projection.
§2.10. Commentary on Diodorus's Analemma. The 'analemma' was a method of solving problems in spherical geometry (arising in astronomical applications such as sundial theory) by means of geometrical constructions in the plane. 24 The treatise of Diodorus (first century B.C.) on the subject is lost, although an Arabic translation of it existed in the middle ages. Only a few second-hand 'fragments' of it have been identified so far. According to Collection 4.40, Pappus exposed Nicomedes's trisection of the angle in his commentary on Diodorus's work ($\epsilon \mathcal{\epsilon} \nu \tau \tilde{\omega} \iota \epsilon i s$ rò ává $\lambda_{\eta \mu \mu a} \Delta(o \delta \dot{\omega} \rho o v)$. Neugebauer points out that the trisection problem would be useful for constructions related to the length of a seasonal hour. We have no further information on his commentary. In the Milan palimpsest (Ambros. L 99 sup.) that contains what we have of the Greek text of Ptolemy's Analemma as well as the "Bobbio mathematical fragment", there are several pages that contain parts of a work on the analemma employing a system of coordinate angles that Ptolemy repudiates; these may belong to Diodorus's lost treatise or Pappus's commentary, but the writing has so far been deciphered only in short fragments.

> "oi $\pi \epsilon \rho i$ "H $\rho \omega \nu a$ кai Má $\pi \pi o \nu$ " used on p. 429 is merely a periphrasis for "Heron and Pappus". References to Pappus in the Arabic commentator on Euclid al-Nairizí coincide with those in Proclus (see the index s.v. Pappus in Curtze's edition, supplement to Euclid, Opera).

22 Archimedes Opera vol. 3 p. 28.
23 Fihrist (Flügel) p. 269, (Dodge) p. 642.
24 See Neugebauer, HAMA vol. 2 pp. 839-856.
§2.11. 'Н $\mu \in \rho о \delta \rho o ́ \mu \iota о \nu$ Па́ $\pi \pi o v ~ \tau \tilde{\omega} \nu \quad \delta \iota \in \pi o ́ \nu \tau \omega \nu \quad к а і$ $\pi 0 \lambda \epsilon v^{\circ} \nu \tau \omega \nu$ (a kind of astrological almanac relating each hour of each day of the week to the planets and to certain actions and consequences). This short piece is found in an eleventh-century compilation of astrological texts, Florence Laur. 28,34, f. 137r. Pappian authorship can not be proved or disproved. The attributions in astrological anthologies are notoriously untrustworthy, but this manuscript earns some credibility from the antiquity of other things in it, for example a horoscope for 497 plausibly ascribed to Eutocius. 25

A curious fragment preserved in a thirteenth-century astrological manuscript, Vind. phil. gr. 115, f. 120r, appears to confirm that Pappus wrote something on astrology. 26 Embedded in excerpts from Hephaestion of Thebes is, irrelevantly, the observation "that a certain pious Pappus says that an unfortunate person (?) obtained an oracle in the Serapeum of Alexandria who was bemoaning his poverty. The oracle given him by the god Serapis was as follows: blame not fate, not gods, not spirits; but blame the hour when your father begot you." 27 Whatever the provenance of this anecdote, it must refer to a time before the destruction of the Serapeum at the end of the fourth century, and our Pappus stands a good chance of being the one in question.
§2.12. Lastly, a Greek alchemical oath and formula appear in manuscripts under the name of "Pappus the philosopher". ${ }^{2}$ Tannery reasonably argued that an attribution to Pappus is not as likely to be fraudulent as one to an ancient or legendary authority in this kind of text. ${ }^{9}$ But it does not follow that the whole is genuine. The recipe is certainly late; it refers to Stephanus of Alexandria. By itself, the oath says

25 Neugebauer - Van Hoesen [1959] pp. 152-157, 188-89.
26 I thank Prof. David Pingree for showing me this interesting unpublished text.

 $\tau 0 \tilde{v} \theta \epsilon o \tilde{v} \delta o \theta \epsilon i \varsigma \Sigma \epsilon \rho a \pi \iota \delta o s$.

28 Berthelot - Ruelle [1888] vol. 3 pp. 27-28.
29 Tannery [1896].
nothing about alchemy: "In oath therefore I swear the great oath to you, whoever you are, God I say, the one, the (one) in form and not in number, that made [the heaven and the earth] both the 'tetractys' of the elements and the things (that originate) from them, and that furthermore fitted our reasoning and intuitive souls to body, [borne on cherubic chariots and hymned by angelic hosts]." ${ }^{30}$ The bracketed words are surely interpolations, inserted for obvious reasons, perhaps by the Byzantine adaptor who prefixed the oath to the alchemical material. The rest is pure Neoplatonism. ${ }^{1}$
§2.13. Dubious works and false attributions. Three works on music theory allegedly by Pappus can probably be rejected from the canon. An "introduction to harmony" is attributed in some manuscripts to Pappus, in others to Cleonides; the latter assignment is now generally accepted, though the evidence falls short of being conclusive. ${ }^{22}$ The claim that Pappus wrote the latter part of Porphyry's commentary on Ptolemy's Harmonics has been repeated numerous times, on no more basis, apparently, than the misreading of ПАППОТ for TATTOT in a section title in Isaac Argyrus's recension of the work. ${ }^{3} 3$ An opuscule called "Book of the elements of music" appears in the Arabic manuscript Manisa Genel 1705/9, ff. 126b-133b as the work of "Būl.s", whom Sezgin has identified tentatively as Pappus. ${ }^{4}$ The name should surely be read as "Paulus", and

 $\dot{\in} \pi 0 \chi 0 \dot{v} \mu \in \nu 0 \nu$, каi $\dot{\imath} \pi \dot{o}$ таүщáт á $\nu \cup \mu \nu o \dot{v} \mu \in \nu 0 \nu$].

31 Tannery concluded from the apparently syncretistic content of the oath that Pappus was some sort of gnostic, a theory repeated by BulmerThomas in his DSB article, p. 301. But the Biblical language is crudely integrated with the rest, and the possibility of Byzantine meddling is too great to justify such a remarkable hypothesis.

32 Musici scriptores graeci ed. K. Jan (Leipzig: 1895), pp. 169-74.
33 Düring [1932] pp. xxvi and xxxvii-xxxix.
34 Sezgin, GAS vol. 5 p. 176. As before periods represent vowels that the
in any case since the work quotes Ammonius right at the beginning, it cannot be from the fourth century. Similarly the references to "Bül.s" in works by al-Biruni are not to Pappus but to the Sanskrit Paulisasiddhänta, and its putative author Paulos. ${ }^{3}$ Chapter 5, section 7 of al-Khäzini's Balance of Wisdom describes an instrument for measuring the density of liquids by "Fūf.s the Greek", who has again been supposed to be Pappus, because of a far-fetched resemblance of name. ${ }^{36}$ The device is unquestionably of Greek origin, for Synesius gives a description of it that is perfectly compatible with the Arabic account in his letter 154 to Hypatia. Significantly, both texts say that the areometer is useful for medical applications. My guess is that al-Khäzini's source was not "Füf.s" but "Rüf.s", that is Rufus, many of whose medical writings were translated into Arabic (a misreading of the letter ' ra ' as ' $\mathrm{f} \overline{\mathrm{a}}$ ' is possible in some scripts).

It has been inferred from a remark of Marinus that Pappus wrote a commentary on Euclid's Data. We will consider whether this commentary was distinct from the relevant section of Book 7 of the Collection below (see page 21), together with the other testimonia for early knowledge of books of the Collection. Boll induced a recension by Pappus of the Handy Tables of Ptolemy on the basis only of a mistaken dating of the "Helios" diagram in the Handy Tables manuscript Vat. gr. $1291 .{ }^{37}$
§3. Integrity and Composition of the Collection. The Collection has often been regarded as a kind of encyclopedia of Greek mathematics, a compendium in which Pappus attempted to encompass all the most valuable accomplishments of the past. ${ }^{8}$ However, it exhibits anomalies that are difficult to explain if that description is correct, but that become intelligible if we suppose the Collection to have been originally, not a single work, but in fact a collection of separate shorter works, brought together with only the most superficial effort to integrate them. The title $\Sigma v \nu a \gamma \omega \gamma \dot{\eta}$ would have been exactly suited to such a volume of 'collected

Arabic script leaves ambiguous.
35 Sezgin, p. 176. See Pingree [1969] for the correct identification of the citations.

36 Khanikoff [1860] pp. 40-52.
37 Vat. gr. 1291, f. 9r. See Neugebauer, HAMA vol. 2 p. 978, especially note 3.

38 Notable exceptions are Ziegler (see note 4 above) and Jackson [1972].

works'. ${ }^{9} 9$

The individual books are dissimilar in genre. For example, Books 5 and 8 and the first part of Book 3 appear as self-standing 'publishable' pieces. 4° Of these, Book 8 is an introductory textbook, while the preface to Book 3 shows it to be an occasional, polemical composition. These books avoid requiring that the reader have access to other texts to be able to follow the mathematical reasoning. Books 2, 6, and 7, on the other hand, were intended to accompany the reading of older texts, and without them become in parts unintelligible and in general useless. The latter part of Book 4 seems also to be related to the reading of Archimedes's On Spirals, although the topics are mostly introductory or digressive. ${ }^{11}$ The first part of the book has no apparent plan.

Of the six books whose beginnings are extant, only four have dedications, to three different people. Since in antiquity the dedicatee was in fact the principal recipient of the work, it would make no sense to dedicate one part of a single composition to one person, another part to another, even if the various sections were completed over a long time, unless, say, the first dedicatee died (as was the case with Apollonius's Conics) - and in such cases an explanation would be in order. ${ }^{2} 2$

39 Among several ancient parallels is Cicero's letter to Atticus XVI, 5: "mearum epistularum nulla est $\sigma v \nu a \gamma \omega \gamma \eta^{\eta}$ " ("there is no $\sigma v \nu a \gamma \omega \gamma \dot{\eta}$ of my letters"); from what follows it is clear that Cicero meant, not a file of duplicates (which his amanuensis had), but a comprehensive transcript.

40 'Publication' should be understood as a translation of ' $\epsilon \kappa \delta O \sigma \iota \varsigma$, and may signify no more than an authorized copy that the writer or redactor permits to be reproduced. There probably would not have been a demand for large numbers of copies of advanced mathematical texts at any time in antiquity.

41 Some of Pappus's discussion may derive from an otherwise unattested Archimedean work earlier than the On Spirals; see Knorr [1978,2]. Some of the material that Knorr ascribes to this hypothetical work of Archimedes probably comes from later authors.

42 An exceptional instance of a change of dedication in a work of assured integrity where such an explanation is missing is the longer commentary of Theon on Ptolemy's Handy Tables, but that work's textual transmission is extremely problematic. See Mogenet - Tihon [1981] pp. 526-29, who believe that the tradition descends from an unauthorized copy, arguing from the state of the text. Some

The sequence of subjects in the Collection is disorganized and illogical if it is meant to be a survey of all mathematics. Book 5 is largely devoted to the geometry of regular solids; yet Book 3 ends with a section on inscribing the solids in a sphere, which is unrelated to the rest of that book. Tangency problems are discussed in Book 4, but no reference is made there to Apollonius's Tangencies, which Pappus takes up in Book 7. The typology of problems into planar, solid, and curvilinear is brought up redundantly in Books 3, 4, and 7. Moreover, the topics treated are sometimes highly specialized and of minor significance compared to subjects that are omitted (one is, of course, free to hypothesize lost books after Book 8 that contained some of these). To include Book 2's puerile number games in a work that also contains the subtle theorems on spirals in Book 4 would imply a strange sense of proportion; while the absence of discussion of the geometry of conic sections (while nevertheless expecting the reader of Books 4 and 8 to know a fair amount about them) is, to say the least, puzzling.

Considering that the books often overlap in subject matter, it is also odd that they never refer to one another (Pappus's announcement near the beginning of Book 3 of what he intends to do $\dot{\epsilon} \nu \tau \tilde{\omega} \iota \tau \rho i \tau \omega \iota \tau 0 \dot{v} \tau \omega \iota$ $\tau \tilde{\eta} \varsigma \sigma u \nu a \gamma \omega \gamma \tilde{\eta} \varsigma \beta \iota \beta \lambda i \omega \iota$, "in this third book of the Collection", is not significant: he or his redactor would automatically have changed such a phrase as "in this letter" to one more appropriate for inclusion in a volume of collected works). One instance is notable: in 8.46 Pappus invokes a lemma (that the rectangle contained by the circumference of a circle and its radius is twice the circle's area), and refers to his own proof in the commentary to Book 1 of the Almagest; yet the lemma has been given already in Book 5 of the Collection (5.6). Much of the repetitiveness of the Collection could be attributed to Pappus's style and carelessness. In some instances, though, the doublets are on too large a scale to have escaped the most inattentive author. Pappus presents (at length) Nicomedes's method of finding the two mean proportionals in 3.24 and again in 4.40-44. The central parts of the two passages are, except for a few trivialities and the exchanging of two letters on the figure, word for word identical. Again, Pappus's own solution of the problem is given in 3.27 and, identically, in 8.26; we also have a variant of it (unexplained) in the appendix to Book 3. Pappus's classifications of problems in 3.20 and 4.57 are not merely similar, but often word-for-word identical, and there are similar exact verbal parallels between 3.21 and .27 , and 8.25 . Pappus must, in these cases, have had the one version in front of him while writing the other (or, less likely, have taken them both from a third, vanished version).
interesting chronological problems were already signalled by Rome [1939], pp. 213-14. These suggest that our text somehow combines elements of two editions of the long commentary.

The first example given above has further convolutions. In 8.46, Pappus proves that circles' circumferences are proportional to their diameters. This proof depends on a lemma, that twice the area of a circle equals the product of its circumference and its radius; Pappus says that this was proved by Archimedes (in the Measurement of the Circle), and by himself, as a single theorem, in his commentary to the Almagest, Book 1. The lemma has, however, appeared in the Collection already, as 5.6 , where Pappus again writes that Archimedes had proved it; it is there because 5.5 requires it. 8.46 itself is identical to 5.21 . A subsequent proposition, 5.23 , reappears in the commentary to Book 6 of the Almagest (Rome, pp. 254-58); this theorem uses the lemma 5.6 too, and in the commentary to Book 6 Pappus again says that it is to be found in Archimedes and in his commentary to Book 1. What is important to note in this tangle of crossreferences and duplications is that each part of it is manifestly required by the context in which it appears, so that the repetitions cannot plausibly be ascribed to a later interpolator. ${ }^{43}$ But if Pappus himself knowingly included these passages in more than one book, he can hardly have intended these books primarily as components of a unified work.
§4. Interpolations. Since Pappus's autographs do not survive, the question of how the text transmitted in the Vaticanus differs from them, though it cannot be answered definitely, is important to raise. We know from secondary sources (Theon, Eutocius) that ancient editors interfered with the texts of such treatises as Euclid's Elements, Apollonius's Conics, and some works of Archimedes, most conspicuously by adding new material. To decide whether the same was true of the Collection, we have to depend on the more precarious evidence of the text itself, supported by what we know of the work's reception in the early Byzantine period.

There is no infallible test to distinguish interpolated from authentic text (even disregarding the more insidious possibility of text revised by a later hand). A common-sense principle to assist editorial judgement is that a passage should be bracketed as interpolation only if its presence in the text is distinctly more plausible as an intrusion than as the author's work.

43 Thus Ziegler (see note 4 above) rightly rejects Rome's complicated explanation of this complex of repetitions (Rome, CA vol. 1 pp . 254-55 note 1). Rome regards parenthetic references, occurring identically in both 5.23 and its parallel in the commentary to the Almagest Book 6, to the Elements and to Theodosius's Spherics, as spurious (on the basis of an unfounded assumption about Pappus's 'normal practice', as if this would be the same in all his writings for all kinds of anticipated reader), so that consequently their presence in both places would prove that one is interpolated.

Although many passages in Pappus's Collection, and particularly in Book 7, are difficult to make sense of, few of these become more explicable if a later meddler is hypothetically introduced. Hultsch was very liberal with brackets in his edition of the Collection, and still more passages, though left unmarked in the text, are noted as suspect in his apparatus. The scope of his commentary allowed too little room for him to justify his editorial decisions, and it would be futile to discuss them all here. Some of them, however, are illustrations of how interpolations should not be identified.

For example, 7.64 shows how it is possible to construct geometrically a figure that is used in Apollonius's Cutting off of a Ratio. Between the enunciation and the solution of the problem, however, is a passage that makes little sense as it stands in the manuscript: it seems to stipulate certain requirements on the given magnitudes that inspection shows are neither required for the ensuing solution nor consistent with the problem. Hultsch (following Halley here) brackets the problematic sentences, making one emendation to the supposed interpolation (oióv $\tau \epsilon$ for o'iov $\boldsymbol{o} a \iota$) that, while probably correct, does not by itself make the meaning clear. The mere fact that certain sentences do not make sense as they are transmitted does not make them more probably spurious than genuine: in either case, whoever wrote them must have meant something, and it is only after we have recovered the meaning that we can decide on authenticity. In the present instance, the mathematical sense has been obscured by two simple corruptions in the notational letters; once these have been restored, the passage turns out to give the conditions for an alternative, arithmetical solution of the problem.

There is even less justification for Hultsch's deletion of the whole of chapters 7.41-42 (except for most of the last sentence of 7.42). Chapters 7.33-42, which bring the introductory part of Book 7 to a close, make up a great blast of Pappian invective, first against Apollonius's presumption in criticizing Euclid, then against the decadence of later mathematicians up to Pappus's own time. Pappus finishes by saying that he at least tries to do better things, and gives as proof of this claim the enunciation of a theorem about the volumes of solids of revolution (see the notes to 7.42). Hultsch seems to have judged the style of the final paragraphs to be too late for Pappus;4 4 but the only real peculiarities in the transmitted text are not Byzantinisms, but probably corruptions ($\boldsymbol{\epsilon} \boldsymbol{\epsilon} \boldsymbol{\gamma} \dot{\omega}$ for ' $\bar{\epsilon} \chi \omega, \pi \rho o ̀ s ~ \tau o i s ~ f o r ~$ $\pi \rho o ̀ s ~ o \rho \theta a ̀ s ~ \tau o i s)$. And in any case it is difficult to see why a later hand should have wanted to foist this theorem on Pappus. ${ }^{5}$

44 Hultsch, PAC p. 683.
45 A curious involution of Hultsch's interpolations is Knorr's ([1982,2]) suggestion that the first part of the invective (chapters 7.32 and

In fact there is scant evidence to suggest that anyone introduced any significant interpolations in the Collection after it was assembled. 46 Nor is this conclusion inherently improbable. Ironically, a late, secondary commentator would have been a less attractive victim for interpolation than the much-studied Euclids and Archimedeses whose works were vulgarized by well-meaning pedagogues. Moreover, the accident of a unique manuscript's being in a place unfrequented by scholars could have protected Pappus's text from tampering during the comparatively short time separating him from the extant manuscript tradition.
§5. The Marginalia. The Vaticanus's margins contain annotations that have been called 'scholia', an expression that suggests prejudicially that they are all later than Pappus. These marginalia are limited to Books 5, 6, and 7.47 Those to Book 7 are few and do indeed resemble the sort of notes that a reader might make, marking interesting points such as where Pappus says that Euclid wrote on conics. They are reproduced in Appendix 1. The more extensive notes to the other books seem to be for the greater part by Pappus, and to provide afterthoughts and expansions. ${ }^{48}$ In Book 5 these include a lemma associated with Theodosius's Spherics, and additional information on the composition of the Archimedean semiregular solids, which it is not probable that a later reader would have possessed or bothered to add. In the astronomical Book 6, in addition to a number of supplements to the mathematical arguments, the marginalia include many references to propositions in Euclid's Elements that are invoked in the text.
following) is really by a hypothetical Hellenistic geometer, Aristaeus the younger (on whom see the notes to 7.1), while the closing theorem might be by Dionysodorus. It may well be that certain of Pappus's phrases would sound better from another mouth; but one has to explain how such fragments could end up in the middle of the Collection, impersonating Pappus's opinions.

46 For the possibility that the last sentence of 7.6 is spurious, see the notes to that chapter.

47 Printed in Hultsch, PAC vol. 3 pp. 1166-88. Following Hultsch, I do not include in the marginalia a few insignificant contributions by late hands, nor the original proposition numbers, nor the additions of the second hand that are merely corrections to the text. For evidence that Book 3 originally had marginal notes, see the commentary to 7.6.

48 There are exceptions: the remark "pretty drawing" on f. 111r is not likely to be Pappus's self-compliment.

Such references are rare in Pappus's writings on higher geometry, but significantly they do occur in his commentary on Ptolemy's Almagest : it appears that students studying astronomy were not expected to be always able to provide these for themselves.
§6. Early references to the Collection. If the Collection is no more than an assembly of already written works, then at least those parts that bear dedications must have been issued publicly, or have been meant for publication. In fact we have what must be the 'published' version of Book 8 as the "Introduction to Mechanics" preserved in Arabic. A medieval notice of the Collection made, apparently, before the loss of the beginning suggests that the lost Book 1 was the commentary on Book 10 of the Elements, which again we have in an Arabic translation, with no sign that it is an excerpt of a larger work. 4^{9} Furthermore, the few references that appear to pertain to the Collection in subsequent works as late as the sixth century seem to be based on the separate editions, if on Pappus at all.

Two passages in Marinus's introduction to Euclid's Data may refer to Book 7. The first and longer says: 50

Now that the (concept of) 'given' has been defined more broadly and with a view to immediate application, the next point would be to reveal how the application of it is useful. This is in fact one of the things that have their goal in something else; for the knowledge of it is absolutely necessary for what is called the 'Domain of Analysis' [ávaivóuevos tónos]. What power the 'Domain of Analysis' has in the mathematical sciences and those that are closely related to it, optics and music theory, has been precisely stated elsewhere, and that analysis is the way to discover proof, and how it helps us in finding the proof of similar things, and that it is a greater thing to acquire the power of analysis than to have proofs of many particular things.

The other passage is: ${ }^{1}$

49 See below, page 46.
50 Euclid, Opera vol. 6 pp. 252-54.
51 Euclid, vol. 6 p. 256.
(Euclid) has not followed the synthetic manner of exposition there (in the Data) but the analytic, as Pappus showed competently in the commentaries $[\dot{v} \pi 0 \mu \nu \eta \mu a \sigma \iota \nu$] to the book.

Of these references, it can only be said that they do not closely follow the text we have of Book 7, Pappus's commentary on the 'Domain of Analysis', which includes a discussion of the Data. This could mean that Marinus had other sources, including an otherwise unattested commentary on the Data different from the one in Book 7; or that he had a version of Book 7 that differed from ours in significant ways; or, in the first passage, that he had himself written an introduction to the 'Domain of Analysis'. He may also be distorting from memory.

With Eutocius we can be more sure, because his citations of other authors are usually accurate. We have already seen that he quoted Pappus's solution of the two mean proportionals problem as from the M $\eta \times a \nu \iota \kappa a i \in i \sigma a \gamma \omega \gamma a i$, which is certainly the separate edition of Book 8 , not that of the Collection which omits the authentic title. 5_{2} The quotation from Pappus is part of a series of solutions of the problem, by 'Plato', Heron, Philon, Apollonius, Diocles, Pappus, Sporus, Menaechmus, Archytas, Eratosthenes, and Nicomedes. Since this canon of authorities includes the four that Pappus drew on for the similar series in Book 3, it is tempting to see whether Eutocius shows any sign in the other solutions that he knows Pappus's Book 3. There is none. Eutocius's solution of Heron comes from the Belopoiika, while Pappus's Heronic version is adapted from the Mechanics. Eutocius quotes in extenso an alleged letter of Eratosthenes from which Pappus probably derived his information. The central theorem in Eutocius's section on Nicomedes is close to that in Pappus Book 3, almost identical to that in Book 4; but since Eutocius's material includes sections, apparently quoted from Nicomedes, that Pappus omits, the similarity of the two texts must be the consequence of accurate copying of a common source. In this same passage Pappus alludes to a solution by Apollonius using conic sections. This solution can be reconstructed from various sources (see the notes to 7.276); it turns out to be mathematically related to, but significantly distinct from, the solution attributed to Apollonius by Eutocius (which uses 'mechanical' methods, not conics).

Eutocius seems also to have known a work by Pappus that covered some of the same topics as our Book 7. In his commentary on Apollonius's Conics, Eutocius has a discussion of Apollonius's description of Book 3 of the Conics as pertinent to the syntheses of loci, and especially the "locus on

52 Commentary to Sphere and Cylinder Book 2, in Archimedes, Opera vol. 3 pp . 70-74.
three and four lines". Eutocius refers to Pappus by name: 5
He (Apollonius) then criticizes Euclid, not, as Pappus and some others suppose, because he (Euclid) had not found two mean proportionals; for Euclid found the one mean proportional, but not, as he (Apollonius) says, infelicitously, and he did not undertake to inquire at all about the two mean proportionals in the Elements, while Apollonius himself does not seem to make any inquiry about the two mean proportionals in the third book. Rather, as it appears, he is referring to another book on loci written by Euclid, which has not reached us.

This is a very curious statement. One can understand how Apollonius's expression, " $\tau \dot{o} \nu \dot{\epsilon} \pi i \quad \tau \rho \in \tilde{\imath} \varsigma \kappa a i ́ \tau \in \sigma \sigma a \rho a s ~ \gamma \rho a \mu \mu a ̀ s ~ \tau o ́ \pi o \nu, " ~$ could be misconstrued as "the topic ($\tau 0 \pi 0 \varsigma$) of three and four lines (in ratio)", and evidently some lost commentators to Apollonius made that mistake. In the version of Book 7 that we have, however, Pappus does not; quite the contrary: he follows an ill tempered paragraph comparing Apollonius's character unfavorably with Euclid's (7.35) with a detailed digression correctly explaining the three and four line locus (7.36), which wanders into an invective against the state of geometry in his time. It seems impossible, then, that Eutocius can have seen this passage, not only because he attributes a wrong explanation to Pappus, but because he has no detailed knowledge of the correct one. Yet immediately before his allusion to Pappus and the others he makes a remark that is probably adapted from another place in Book 7:5 4

Plane loci, then, are like that. But the loci that are called solid have acquired the name from the fact that the curves by which the problems in them are drawn get their origin from the section of solids, such as sections of the cone and many others. There are also other loci called on the surface $[\tau \dot{0} \pi 0 \iota \pi \rho \dot{o}$ $\dot{\epsilon} \pi \iota \phi \dot{a} \nu \in \iota a \nu \lambda \epsilon \gamma \dot{o} \mu \in \nu \circ \iota]$, which get their name from the
 ¿ $\delta \iota o ́ \tau \eta \tau \circ \varsigma$].

Why does Eutocius give such a vague explanation of the name of the surface-loci? Very likely because he knows nothing about them except that they exist, a fact he would have learned from 7.22, where Pappus discusses

53 Apollonius, Opera vol. 2 p. 186. See Essay C, section §7, on the locus.
54 Apollonius, vol. 2 p. 185.
the loci in general. But the obfuscating phrase itself may betray Eutocius's source, for in the same chapter 7.22 Pappus uses nearly the same nebulous
 naming of Eratosthenes's "loci with respect to means."

Eutocius, then, probably had a version of Pappus's Book 7, but that version cannot have included the excursus on the multi-line locus. We are not absolutely compelled to believe that the version Eutocius saw contained the erroneous reference to the problem of the mean proportionals that Eutocius refutes; that just might have been stated by the "some others" and merely conflated with Pappus's vituperation by Eutocius (but this seems improbable). If Pappus did give this misinformation, then Eutocius must have had an earlier version of some of the material in Book 7, antedating Pappus's discovery of the true meaning of the multi-line locus. 5

Book 7 seems to have been intended originally to accompany the works of Euclid and Apollonius for which it provides summaries and lemmas. It is not surprising, then, that Eutocius's reminiscences of Book 7, quoted above, immediately follow a theorem taken from "Apollonius in the 'Domain of Analysis' ", which is in fact a fragment of the lost Plane Loci. 56 Eutocius is the last Greek known to have seen this work, or the complete Conics, which is also among the books discussed in Book 7.
§7. Foul Papers. Did Pappus himself assemble the Collection? We have seen that the parts are put together so haphazardly and ineptly that it is difficult to believe that Pappus, for all his imperfections, could have done himself such an injustice. But if someone else was responsible for it, at what remove was this editor from Pappus, and what sort of 'copy' was

55 Knorr has objected that Eutocius's explanation of Apollonius's nomenclature of the conic sections is wrong, and so, since Pappus gives a substantially correct version, Eutocius cannot have known Book 7 (Knorr [1982,2] pp. 284-85). He does not explain what work of Pappus he thinks Eutocius meant in the other passage. But Eutocius had other authorities on the Conics, and we cannot presume on the wisdom of his judgement of which account to follow. The etymology of 'parabola', 'ellipse', and 'hyperbola' that Pappus gives, based on the 'application of areas' in Apollonius's standard representation of the curves as loci, is closer to the truth (it is not quite correct), but the explanations that Eutocius gives are much simpler to understand. See the commentary to 7.30 .
he working from? If all the parts could stand by themselves, the collecting of them might have occurred, in principle, at any time up to the ninth century, because the first reference unambiguously to the Collection could be that late. ${ }^{57}$

But there are outstanding reasons to believe that the editor was working, not from 'published' texts, even when, as for Book 8 and probably Books 1 and 7, they seem to have had some circulation, but from drafts and notes, in other words from Pappus's 'foul papers'. Thus the composite character of Books 3 and 4 suggests that the editor's source did not clearly mark by titles or other indications when one opuscule ended and another began. The appendices to Books 3 and 7 seem to have been stray notes that the editor inserted where they seemed appropriate. Book 4 lacks a title and preface, and the material making up the first part of the book is a random and obscure assembly, probably derived from a notebook in which Pappus recorded theorems of interest. The second part of the book, perhaps intended as an introduction to Archimedes's On Spirals, cannot be even nearly a finished work, to judge by its abrupt changes of topic, false starts, and general incoherence. Even Book 5 (the most straightforward of the books) has a frayed patch. In 5.14 Pappus invokes a lemma, that if a:b $=\mathrm{c}: \mathrm{d}$ and $\mathrm{e}: \mathrm{f}=\mathrm{g}: \mathrm{h}$, then $(\mathrm{a}+\mathrm{e}):(\mathrm{b}+\mathrm{f})=(\mathrm{c}+\mathrm{g}):(\mathrm{d}+\mathrm{h})$, and promises that this will be proved presently. In the place where we should expect it (5.17) there is merely a tag, "The other one of the things that were put off." Nor is that surprising, because the lemma is false. But something that looks like a futile effort to prove it appears among the marginalia, and this may be a trace of Pappus's revision. 58 The theorem (5.16) that comes before the tag, itself a digression from the main mathematical argument and intended only to prove an incidental point, is very sloppily executed, as if it were only a first attempt to work out the proof. We have seen already that the missing section on fixed compass constructions in Book 8, rather than having dropped out, appears not yet to have been inserted. This may be another instance of Pappus's habit of stitching his works together from other writings, by himself and earlier authors.

Book 7 in particular shows traits of a draft. For example, the section in the introductory part that discusses Apollonius's Conics makes a false start in 7.29 , then begins anew in 7.30. In 7.31 Pappus carelessly writes that the pre-Apollonian conics were generated by a plane intersecting the cone parallel to a generator, when he clearly means perpendicular. Discussing Apollonius's Tangencies (7.11), he lists the ten possible

[^1]58 Hultsch, PAC vol. 3 p. 1168.
combinations of three things to which a circle can be required tangent, but the order in which he lists them does not agree with his indication, a few lines later, of which were treated in each book of Apollonius. Section titles, identifying the books that Pappus is commenting on, are only sometimes provided, not always in the right place. Lemmas associated with identified theorems are often not in the correct order. Some proofs are garbled by systematic confusion among the points and letters. The book ends with a fragmentary and error-tainted section on Euclid's Loci on Surfaces, which was not promised in the preface. Most of these anomalies must originate with the author, and it is not probable that he would have allowed them to stand in a 'published' work.

The Collection, therefore, appears as a volume of collected works, put together by an editor whom we could describe as a 'literary executor', and who was more concerned with faithfully preserving Pappus's various papers than with creating an intelligible or useful work. Probably compiled shortly after Pappus's death, some time in the middle of the fourth century, it would not have circulated widely, much of it being not merely useless, but unintelligible except to a reader thoroughly versed in advanced mathematical texts - and such readers were not common between the fourth century and the late Renaissance.
§8. The proarchetypes. At least two copyings separate the text in the Vaticanus from Pappus's autographs: the original transcriptions by the 'editor' of the Collection, about the middle of the fourth century, and the making of the Vaticanus itself perhaps five centuries and a half later. There is, as far as I know, no certain evidence that the transmission had more stages in between; caution forbids a definite judgement, because the conservative character of the earlier Greek book hands makes it very difficult, if not impossible, to separate the strata of antecedent exemplars out of the errors of a single manuscript.

It has been said of the Vaticanus's text of Pappus that "all the errors are misreadings of uncials or uncial abbreviations."59 This is not literally true, since of course there are certain to be errors that have nothing to do with palaeography. One type of mistake in this class is the very common transposition of label letters, for example $A B \Gamma$ for $A \Gamma B$. Misreading may sometimes account for this error, but most often it must have happened in the copyist's mind. However, it is true that there do not seem to be any traces of an exemplar in minuscule.

The label letters in the geometrical arguments provide a rough indication of the ease with which copyists confused various pairs of capitals, since they can usually be restored with certainty on purely mathematical grounds. Most of the more common confusions of letters ($A / \Delta, E / \Theta, A / \Lambda$, $\mathrm{B} / \mathrm{E}, \mathrm{H} / \mathrm{N}$) are typical mistakes in copying a text in capitals. The many Γ / E errors suggest that these letters were very narrow in an ancestral manuscript, while a hand slanting to the right would explain the numerous B / Δ confusions.

Moreover, at least one ancestor of the Vaticanus used extensive abbreviation, especially of mathematical terminology. The text of Pappus in the Vaticanus is almost entirely free of compendia (however, the marginalia bristle with them, as is common in the scholia of early minuscule manuscripts). The few exceptions are likely to be deliberate retentions from the exemplar, usually because the copyist was uncertain of the correct resolution. Examples of this kind of compendium, including symbols for very common words and truncations of others to their initial letters, are common already in papyri from antiquity, though not in literary texts. ${ }^{\circ}$ It is very probable that abbreviation was actually normal in certain kinds of technical, especially mathematical, texts by the early Byzantine period. Manuscripts of geometrical texts written before the ninth century are extremely rare. Besides a handful of papyrus and other archeologically recovered scraps of slight value, we have only eight palimpsest bifolia in the manuscript Ambrosianus L 99 sup (now S.P. II 65), known as the "Bobbio mathematical fragments" (after the medieval monastery where the manuscript was long preserved before it came to Milan). 61 The Greek texts, which lie under an eighth-century copy of Isidore's Etymologiae, have been dated variously to the seventh or (more plausibly) sixth century, and contain material that falls into two classes. On one group of pages are fragments of texts on sundial theory, including what remains of the Greek text of Ptolemy's Analemma. The copyist of these leaves used abbreviation only rarely. The other pages are from some late antique writings on centers of gravity and on catoptrics, and have extensive abbreviation. Unfortunately the original attempt to clean the parchment in the eighth century and the subsequent application of staining chemicals in the nineteenth have rendered most of these latter pages illegible; three of the more legible pages have been printed in facsimile. 62

60 See for examples the index of Turner [1971] s.v. 'Abbreviation'.
61 On the manuscript, see Heiberg [1895].
62 Mai [1819] pp. 36f, reprinted in Wattenbach [1876] pl. 6 and [1883] pl. 8 (p. 124 of the manuscript). Belger [1881] plates (pp. 113-114).

Several abbreviations attested in the Bobbio fragments (not all of which remained standard in the later period) can be deduced from errors in the text of Pappus. The fragments also show the curtailing to a few initial letters of common words (the verbs $\epsilon \boldsymbol{\epsilon} \epsilon \zeta \in \dot{v} \chi \theta \omega$ 'join'; ' $\eta x \theta \omega$, 'draw'; nouns such as $\pi \lambda \in v \rho \dot{a}$, 'side', and $\sigma \eta \mu \in \tilde{\iota} \rho \nu$, 'point') that would explain the frequent errors in inflectional endings in Pappus's text.

In genre the Bobbio fragments were part of just such a work as those Pappus's Collection comprises, so that one might expect the same motives for using abbreviation to have pertained to him or his early copyists. By using compendia the writer not only saved his own effort, but actually made the mathematical argument easier to read too. In fact, while we have no more extant manuscripts of the same age that are quite like the Bobbio fragments, comparison of the transmitted texts of Archimedes and of Eutocius's commentaries reveals that some of the compendia preserved in the tradition of those authors are at least as old as the sixth century. ${ }^{3}$ Some of the compendia are known from papyri to be much older still. While the abbreviations underlying the text of the Vaticanus may have originated in an intermediate, say sixth century, copy, it is by no means impossible that they were used in the original of the Collection, or indeed in Pappus's autograph.

These abbreviations survive in Book 7:

Some scraps of other pages are legible, but do not add to the repertory of compendia.

63 Heiberg in Archimedes, Opera 3 pp. xcii-xciii. Lost ancestral manuscripts of other writers also had much abbreviation: see for example Heiberg in Ptolemy, Opera vol. 2 pp. xxxiv, lix, lxxxvi-xciii. We have less satisfactory control of the dates of these manuscripts.

More appear in the other books:

```
- \(\quad \ddot{\eta} \lambda \cos 6.68\)
\(\stackrel{\sim}{\mu} \quad \mu о \tilde{\imath} \rho a\) etc. 6.69
```



```
\(\stackrel{M}{\operatorname{Movás}}\) etc. Book 2 often, 8.47
    - symbol for zero. 6.119ff
    \(0^{\circ}\) ки́клоऽ 6.125
    \(\xlongequal{〔} \pi a \rho a ́ \lambda \lambda \eta \lambda o s 6.125\)
    \(\overline{\pi \lambda} \quad \pi \lambda \epsilon \cup \rho a ́ a 4.51\)
    ᄂ \(\quad \ddot{\mu} \mu \iota \sigma\) 3.5, 5.47f, 6.122
```

It is evident from the errors in the text that these are mere vestiges of a much more extensive practice. A conspicuous trait of this kind of compendium is the omission of inflectional endings, or their reduction to an accent-like mark that is easily missed. The same abbreviation stands for $\delta o \theta \epsilon \mathcal{i} \sigma \eta \leq$ and for $\delta o \theta^{\prime} \epsilon \nu \tau \omega \nu$, for example, and the same for $\kappa о \iota \nu \dot{\prime}{ }^{\prime}$ and $\kappa O \iota \nu O \nu$. The ends of words are in any circumstances more liable to be mistaken than the other parts, but no mere act of copying is likely to result in the chaotic confusion of cases and numbers that we find on almost any page of the mathematical text, and most often in certain very often
 more common verbs, participles, and articles. These are the very sort of words that are likely to have been abbreviated. Again, certain words seem to have dropped out of the text surprisingly often: ${ }^{\prime} \dot{\rho} \rho a, ' \epsilon \in \tau \iota \nu, \dot{\omega} \varsigma$, even $\pi a \rho a \lambda \lambda \eta \lambda o s$ are examples. The losses are easier to explain if these words were represented by compendia that took up about the space of a single letter.

The following are a few illustrations of errors in Book 7 in the Vaticanus (A) that probably resulted from abbreviation in an exemplar.
7.110: $\Gamma \mathrm{ZA}$ Commandino ΓZ á $\pi \grave{o} \mathrm{~A}$. In the Bobbio fragments $\dot{a} \pi \boldsymbol{\pi}^{\prime}$ is often written as A'. A stray mark above the A may have looked like an apostrophe to the scribe.
7.123: Γ Commandino $\gamma \dot{a} \rho$ A. The same kind of mistake: $\gamma \dot{a} \rho$ could be written as Γ or Γ (Bobbio).
7.304: $\tau \grave{o} \dot{v} \pi \grave{o}$ Commandino $\tau 0 \tilde{v}$ A (also 7.143, .144). $\dot{v} \pi \dot{o}$ could be written T' (Bobbio). The difference between TOT' and TOT is very slight.
7.49: 'é $\sigma \tau \omega$ Hultsch $\grave{\omega} \sigma \tau \epsilon$ A. 7.274: $\dot{\omega} \sigma \tau \epsilon$ Halley ' $\bar{\epsilon} \sigma \tau \omega$ A. 7.292: ' $\epsilon \sigma \tau \omega \tau \epsilon$ Commandino $\ddot{\omega} \sigma \tau \epsilon$ A. The signs for $\ddot{\omega} \sigma \tau \epsilon(\mathcal{\sigma})$ and ' $\epsilon \sigma \tau \omega$ (\boldsymbol{y}) attested in the Bobbio fragments are practically indistinguishable (see also 8.7, 8.55 for this error). ' $\epsilon \sigma \tau \omega \tau \epsilon$ may have looked to the scribe like $\Omega \mathrm{TE}$, and in haste misread as (or emended to) $\dot{\omega} \sigma \tau \epsilon$. Note that in chapter 151 the scribe has preserved the compendium for ' $\epsilon \sigma \tau \omega$, probably unsure of the interpretation.
7.274: $\gamma \omega \nu i a s$ Halley ГЕ А. The scribe missed a small ω above the Γ in the standard compendium (Bobbio). The source of the spurious epsilon is not evident.
 A. 7.280: ќ́ßos Halley каi A. 7.159: ќ́кдоv Hultsch каi A. A trivial confusion between embellishments of K.
7.265: $\tau \in \tau$ р́́к८ऽ Halley $\delta \epsilon \kappa$ а́к८ऽ A. The copyist confused Δ as a numeral with Δ as an initial letter.
 .221). Probably these ratio manipulation tags were written ANA and ANA .
7.124: $\dot{\eta} \mu i \sigma \in \iota a$ Commandino 'á ρa A (twice). 7.143: 'á ρa Commandino $\dot{\epsilon} \sigma \tau \iota \nu$ A. The signs for $\dot{\eta} \mu \boldsymbol{\iota} \boldsymbol{\sigma} \epsilon \iota a$ (L) and ápa (\downarrow : Bobbio) are not very different, and an oddity of the hand may have made the distinction still less clear. The most prominent feature of both the á ρa and ' $\epsilon \sigma \tau \iota \nu$ (\%: Bobbio) compendia is a long diagonal stroke.
7.318: τ ò Hultsch $\pi a \rho a ́ \lambda \lambda \eta \lambda o s$ A. The scribe must have seen a spurious extra horizontal line in the T .
§9. Description of the Vaticanus. About forty manuscripts in European and American libraries contain some portion of Pappus's Collection, but the primary artifact in its transmission is the manuscript Vaticanus graecus 218 , which dates probably from the early tenth century. 65 As Hultsch conjectured, and A. P. Treweek has proved, the

65 CVG I 283. The Vatican cataloguers observe that a note "sesc. XII" at the top of the title page probably led Westermann (Paradoxographoi p. xviii), Hultsch (PAC I p. vii), and Heiberg (MGM p. 77) to adopt a

Vaticanus is the sole independent witness to the text (except for the recently discovered Arabic version of Book 8). 66 At present the Vaticanus comprises 202 folia of parchment, each approximately 256 by 175 millimeters, disposed in twenty-five quires, uniformly of four sheets, preceded by a single sheet. Two folia at the beginning (title page and index) and three at the end, all paper, are modern (16th - 18th century) additions, including transcriptions of poorly legible passages in Book 7, of no independent textual value. The folia are numbered starting with the first parchment sheet.

The contents of the manuscript are distributed as follows:
1 (ff. $1 \mathrm{r}-2 \mathrm{v}$) Anthemius of Tralles $\pi \epsilon \rho i \pi a \rho a \delta o \xi \omega \nu$ $\mu \eta x a \nu \eta \mu a ́ \tau \omega \nu$, 'On paradoxical devices' (incomplete), a sixth-century A.D. quasi-geometrical discourse on trick mirrors. The text is extant without interruption from the top of 1 r , where the opuscule begins, to the bottom of 2 v , which ends in mid-sentence; the remainder presumably was once in this manuscript. Since all the other, much later, manuscripts of Anthemius in Greek share this abrupt end, their common ancestry in the Vaticanus is obvious. 67 Moreover, since there is no lacuna between the second and third pages, the surviving sheet must originally have stood in the middle of a quire, and so not at the beginning of the manuscript.

The text is written, 34 lines to a page (not counting the title at the top of 1r), in a rather ugly tenth-century minuscule; the Archimedes palimpsest of Heiberg may be the work of the same copyist (a
twelfth-century dating. Some of the data on the manuscript given below come from the Vatican catalogue description.

66 Hultsch PAC I p. vii; Treweek [1957].

67 Anthemius's first editor, Dupuy, recognized the authority of the Vaticanus in his second edition, although he reserved needless doubt whether it was the archetype (Dupuy [1786] p. 399 note). There exists no complete classification of the manuscripts of Anthemius; Treweek has incidentally identified the part of them (apparently the majority) that accompany Pappus (Treweek [1957] pp. 210-11). To his list may be added MS (formerly) Honeyman 7 (private collection; see CMRM supp. p. 20, but the manuscript has since been sold), Marc. gr. XI, 30 ($B D M$ vol. $3 \mathrm{pp} .155-56$), Vind. phil. gr. 229 ($K G H$ vol. 1 p. 340), and Copenhagen Thott MS 215 (Schartau - Smith [1974] pp. 335-36). Anthemius is edited in Heiberg, MGM.
mathematically-inclined patron?). 68 Abbreviations, particularly of prepositions, conjunctions, and word terminations, abound. Iota and upsilon often bear diaeresis. Accents are generally present. Proposition numbers are written in the left margins, and figures, crudely drawn, occupy spaces indented on the right. The two folia have suffered wear and moisture, and in places (for example the beginning) the script is faint or illegible. ${ }^{9} 9$ This and other comparable damage elsewhere in the manuscript is older than the oldest copies made from it.

2 (ff. 3r-202v) Pappus of Alexandria $\sum v \nu a \gamma \omega \gamma \dot{\gamma}$ from part way through Book 2 (beginning in mid-sentence) to near the end of Book 8 (ending at the bottom of a page with the end of a proposition). Again the text lost at the two ends of this section was once present; water damage in the early pages has left unmistakable traces of the page that originally faced 3 r .70 The extant portion is as follows:

3r: Book 2, lacking beginning. No subscription.
8r: Book 3.
32r: Appendix to Book 3. No subscription.
35r: Book 4, beginning in mid-page without title.
56r: Book 5.
87v: Book 6.
118v: Book 7.
183v: Appendix to Book 7.
184v: Book 8, lacking end.
Two hands appear on the Pappus leaves. The main body of the text is written in a calligraphic but distinctive minuscule that is very like (if not the same as) that of a vorápıos Baanes who copied two extant

68 Wilson, $S B$ p. 139. A photograph of 1 r of the Vaticanus is given by Browning [1971] p. 85; one of the Archimedes MS (formerly Metochion of the monastery $\tau 0 \tilde{v} \pi a \nu a \gamma i o v \tau \dot{a} \phi o v$, Istanbul, no. 355, but now inaccessibly in private hands, except for a stray leaf at Cambridge, University Library Add. 1879.23) is in Heiberg [1907] facing p. 235.

69 The title now visible on 1 r is a not too skilful restoration imitating the original script, traces of which are visible.
manuscripts for Arethas, one dated 913/14.7 ${ }^{1}$ The scribe, whom Hultsch named $A^{1},{ }^{72}$ wrote 33 lines to a page, except where a book ended or a large figure was needed. With extremely rare exceptions, there are no abbreviations in the text. Accents are seldom missing: when they are, the text is often difficult or corrupt. Most breathings are present, and iota adscript is applied, though neither uniformly nor always correctly. The titles, subscriptions, and scholia appear to be by the same scribe, working with a finer pen, and are sometimes in capitals or heavily abbreviated. 7^{3} Punctuation is limited to the sign : - marking the end of sections, the 'diple' (' $>$ ') in the left margin of lines in quotation (ff. 125r-125v, chapter 7.32, quoting Apollonius), and the 'coronis' (here reduced to a horizontal stroke) in the left margins to indicate the ends of logical divisions.

The other hand, Hultsch's A ${ }^{2}$, is that of the Anthemius pages: thus the two sections were together very early, probably from the first. A ${ }^{2}$ has written in the margin various bits of text that A^{1} missed. These restorations were made on the authority of a manuscript (probably the same as A ${ }^{1}$ worked from; no variants are recorded), and not by conjecture. For example in 7.116 (f. 141v), A^{2} has restored two passages of necessary mathematical argument; yet there are more than twenty errors of lettering in the text of this proposition, not to speak of the figure, which would have to be repaired before one could follow, let alone complete, the argument.

The figures belonging to the text of Pappus are mostly well executed, and occupy indentations on the right side of the page, following the illustrated text. The lettering of the figures appears to be the work of both scribes, so far as it is possible to distinguish between their capitals.
§10. Disturbances in the Vaticanus. Traces survive on some pages of three series of quire numbers, and a series of folio numbers different from the present ones. These inform us about the original state and certain subsequent disorderings of the manuscript. 7^{4} In the first place,

71 The dated MS is Paris B.N. grec 451 (Christian apologetics), the other London B.M. Harl. 5694 (Lucian). The likeness of hand to the Vaticanus is noted by R. Barbour, GLH p. 27, and E. Follieri [1977] p. 148 note 43.
$72 \mathrm{~A}^{1}, \mathrm{~A}^{2}$ have a different meaning in the apparatus of this edition: see the list of abbreviations used in the apparatus below.

73 Hultsch attributed these marginalia to a third hand, A ${ }^{3}$.
74 The chief deductions in what follows are Treweek's ([1957] pp. 206-208), but he does not mention the folio numbers.
there were the original quire numbers, in Greek numerals, at the top right corner of the front page of each quire. Almost all were casualties of binder's clipping, but there is on f. 179 r (quire 23) a kappa that was followed by a lost units digit, and on f. 11r (quire 2) traces of the bottom of either Δ or \mathbf{H}. Together these imply either two or six lost quires at the beginning. We exclude the Anthemius sheet from the count, since its original place in the manuscript was probably at the end.

Somewhat better attested are a series of roman numerals on the last page of each quire, at the bottom right. 7^{5} Still decipherable are, on f. 26v (quire 3) "V", on 55 v (middle sheet of quire 7) "XXVIII", on 90 v (11) "XIII", on 154v (19) "XXI", on 162v (20) "XXII", on 178v (22) "XXVI", on 186v (23) "XXVII", on 194v (24) "XXIIII", and on 202v (25) "XXV". From these three things are apparent. First, there were, at the time these numbers were written, two more quires at the beginning. This supports the hypothesis that the Greek quire number on f. 11 r was Δ. Secondly, the last two extant pairs of quires were exchanged. Thirdly, the middle leaf of quire 7 (ff. 54-55) became detached, and was placed immediately after the four disordered quires. The natural position for stray sheets, such as this one and probably also the Anthemius, would have been at the end of the manuscript, and so it is likely that the end of Book 8 had already been lost.

The third series, of modern numerals, was written at the bottom left of the first page of each quire. One can still read the numbers " 6 " and " 7 " for quires 5 and 6 , " 10 " through " 12 " for 9 through 11, " 13 " through " 21 " for 13 through 21 (but the number for quire 18 is not visible), " 24 " and " 25 " for quires 22 and 23 , and " 22 " and " 23 " for quires 24 and 25 . On f. 54 r is " 26 ". The change at the beginning may be accounted for by the loss of the two first quires, compensated by the moving of the Anthemius sheet to the front. Quire 12 apparently slipped out of place here and thus missed being numbered. Otherwise the disorder remains unchanged.

Later, presumably after the manuscript was rebound, the folia were numbered on the recto at the bottom right. These numbers are legible on pages of all quires but no. 23, and they confirm the sequence $1-11,13,12$, $14-21,24-25,22-23$. Folia $54-55$ were still out of place and presumably still at the end. ${ }^{76}$ The present f. 3 was number 4 in this sequence, and hence was probably preceded both by the two folia of Anthemius and a

75 The MS Florence Laur. 28,18 (commentaries on the Almagest) exhibits the same roman numeration of quires. The two manuscripts were together at two periods: in the thirteenth century in the papal collection, and in the fifteenth in the private library of the Medici. See below, pages 52-54.

76 No folio numbers of this series can be seen on this sheet.
numbered title page.
To recapitulate, the Vaticanus was copied out, somewhere in the Byzantine world, at a date that we do not know exactly, but probably within a few decades either way of 913 . It was primarily the work of a professional scribe (A^{1}), then checked by a second person, either a second scribe or the mathematically inclined patron who commissioned the manuscript (A^{2}), who in either case had access to the exemplar. This second person also contributed, most likely on unused pages at the end, a copy of the short treatise of Anthemius. There is no evidence that either text was defective at that time. Later the manuscript suffered a series of disturbances. At one stage, when it had presumably already reached the Latin world, the manuscript had lost its final quire or quires, except for a single sheet bearing the first four pages of Anthemius. The manuscript was rebound with some quires out of order, and the Anthemius fragment and another displaced sheet put at the end. Subsequently, but not before it had suffered water damage, the Vaticanus lost its first two quires (or, less likely, the fifth and sixth, with the first four having vanished earlier). In another rebinding that followed this mishap, the existing disorder was allowed to stand, aggravated now by another transposition of quires in the middle. Perhaps because it began with a prominent title, the Anthemius fragment was placed at the head of the manuscript. This was the disfigured state of the Vaticanus in the last years of the fifteenth century: about that time or shortly after the turn of the century, someone went through the manuscript, determining the correct sequence of quires, and writing, in Greek, directions at the appropriate points. On the present f.

 $\tau 0 \tilde{v} \tau 0$. "We do not know for certain if this is the end, or whether it is deficient or not. Zacharias sorted this one out too." This Zacharias can be identified from his hand as Zacharias Callierges, an expatriate Cretan printer and copyist active from the 1490's to the 1520 's. ${ }^{77}$ All the copies known to have been made from the Vaticanus must date after Zacharias's work, since they all exhibit the correct order. 7^{8} The next rebinding of the Vaticanus most likely corrected the sequence.

[^2]§11. Byzantine notices. We now turn from the evidence in the Vaticanus to the sparse other evidence of Pappus's medieval tradition. Not surprisingly, considering the nature of the book, the Collection does not seem to have been much studied in Byzantium. There are, for example, no copies, aside from the Vaticanus, of Byzantine origin. The few allusions to Pappus that we have from other sources do not evince any serious effort to understand his mathematics; and if the Vaticanus had been lost before 1450, probably no modern scholar would have deduced the Collection's existence.

The earliest medieval notice is older than the Vaticanus. A ninthcentury manuscript Vat. gr. 1594 of Ptolemy's Almagest is a copy of a lost uncial manuscript that preserved several layers of explanatory and supplementary matter from late antiquity, most prominently the "Prolegomena" to the Almagest that were compiled by Eutocius in the sixth century. ${ }^{9} 9$ Later than Eutocius, but earlier than the copying of Vat. gr. 1594 , must be a series of marginal scholia written in Vat. gr. 1594 by the original copyist, who, being surely a professional calligrapher, is much more likely to have derived them from his exemplar than from his own knowledge. These notes merit a proper study; but it is evident even from a cursory survey that their author had at his disposal both Theon's commentaries to the Almagest and, of more interest here, Pappus's Collection. Referring to the section of the "Prolegomena" that treats isoperimetric figures, the annotator remarks (f. 1v): $\boldsymbol{\epsilon} \boldsymbol{\kappa} \tau \tilde{\omega} \nu$ $\zeta \eta \nu \quad 0 \delta \dot{\omega} \rho \circ \sigma \sigma \chi o \lambda i \omega \nu \dot{\omega} \varsigma \quad i \sigma \tau 0 \rho \epsilon i \quad \dot{\imath} \theta \dot{\epsilon} \omega \nu \dot{\epsilon} \nu \tau \tilde{\omega} \iota \epsilon i \varsigma \tau \dot{\eta} \nu$
 ódov $\pi \in \rho i \quad \tau 0 \tilde{v} \pi \rho о к \in \iota \mu \epsilon \nu 0 v \pi \rho o \beta \lambda \eta \mu a \tau о \varsigma$, "From the notes of Zenodorus, as Theon records in his Hypomnemata to the Almagest. Pappus composed a whole book on the present problem." More specifically, when, on f .5 r , Eutocius, with a gesture of impotence, abandons the proof that the sphere has greatest volume of solids of equal surface area, the scholiast
 $\dot{\epsilon} \mu \mu \epsilon \lambda \tilde{\eta} \dot{\epsilon} \nu \tau \tilde{\eta} \iota \epsilon \epsilon^{\prime} \beta \iota \beta \lambda \omega \iota \tau \tilde{\omega} \nu \dot{a} \nu \theta \eta \rho \tilde{\omega} \nu \pi \rho \circ \beta \lambda \eta \mu a ́ \tau \omega \nu$. "Note that the great Pappus proved these things completely in the fifth book of the Exquisite Problems." There is no question here of an independent transmission of Pappus's opuscule on the solid figures, nor of a vague reference in an intermediate author: the schaliast clearly had access to the Collection more or less as it now stands, in which the fifth book is devoted

79 On the MS and its parentage, see Heiberg in Ptolemy, Opera II pp. xxvi-xxxvii. The 'Prolegomena' are anonymous in most manuscripts (including Vat. gr. 1594), in others attributed to Theon or Diophantus; Mogenet [1956] cogently demonstrated Eutocius's authorship.
to the isoperimetric theorems for plane and solid figures. As for the title 'Exquisite Problems' ('A $\nu \theta \eta \rho \grave{a}$ П $\rho о \beta \lambda \dot{\eta} \mu a \tau a$), we may suppose one of two things: either the original title at the beginning of the Collection was something like $\Sigma v \nu a \gamma \omega \gamma \grave{\eta} \dot{a} \nu \theta \eta \rho \tilde{\omega} \nu \pi \rho o \beta \lambda \eta \mu a \tau \omega \nu$, 'Collection of exquisite problems', or, more likely, the scholiast, turning to the beginning of Book 5, saw the subscription to Book 4, which read $\pi a \pi \pi o v$
 $\boldsymbol{\sigma} \epsilon \rho \epsilon \tilde{\omega} \nu \kappa a i \quad \gamma \rho a \mu \mu \iota \kappa \tilde{\omega} \nu$, "Of Pappus's Collection, which comprises exquisite theorems, planar, solid, and curvilinear". 80

Several centuries separate this Byzantine bibliophile from the next known reader of Pappus. Remarkably, this was a person not especially known for interest in the sciences, the prolific twelfth-century scholar John Tzetzes, and, more remarkably, he alludes several times, not only to the rare author Pappus, but also, and sometimes in the same passages, to the likewise rare Anthemius; so that there is a fair chance that he read them in the Vaticanus itself. It never required more than the most oblique provocation to incite the garrulous Tzetzes to digress. Commenting on Aristophanes's Clouds, for example, he finds in the phrase (line 1024) $\boldsymbol{\omega}$ кал入imupyov oobiav ("O fair-towering wisdom!") the excuse for an encomium on the power of mechanics, ending with a short list of authorities on the subject, including Philon of Byzantium, Archimedes, Heron, a certain Sostratus (the architect of the Pharos lighthouse?), and Pappus. ${ }^{8} 1$ Again, in his Allegories of the Iliad ${ }^{8} 2$ Book 5, Tzetzes interprets the fire Athena gives. Diomedes's helmet and spear as a mirror to reflect the Sun, continuing (lines $10-19$) with another list of mechanical writers who allegedly discuss such things. Among these are Philon, Archimedes, Heron, Dionysius (a writer on siege machines, quoted by Philon), Athenaeus (the writer on siege machines), Apollodorus (another writer on weaponry), Ctesibius, and Philetaerius (author of a lost work on harbor engineering); a few mysterious authorities including Isoes (?), Patrocles, and again Sostratus; and Pappus and Anthemius. Not all these names are really relevant to the topic, because Tzetzes tended to stretch the truth when the opportunity arose to boast of his reading.

80 The subscription in the Vaticanus has two trivial scribal errors.
81 Tzetzes, Aristophanes Scholia pp. 621-22.
82 Tzetzes, Iliad Allegory p. 105.

But the most extensive citations come from Tzetzes's Chiliades, a long poem written as a commentary to his letters. ${ }^{3}$ From Chiliades II 106-159 ("On Archimedes and some of his contraptions") come these passages (lines 121-130, 152-159), in an account of the siege of Syracuse otherwise largely dependent on (since lost) parts of Diodorus and Dio Cassius:

 $\mu \iota \kappa \rho \dot{a} \tau о \iota a \tilde{v} \tau a, \kappa a ́ \tau 0 \pi \tau \rho a, \theta \epsilon i \varsigma \tau \epsilon \tau \rho a \pi \lambda \tilde{a}, \gamma \omega \nu i a \iota \varsigma$ $\kappa \iota \nu o u ́ \mu \epsilon \nu a \lambda \in \pi i \sigma \iota \tau \epsilon \kappa a i \tau \iota \sigma \iota \gamma \iota \gamma \gamma \lambda \cup \mu \iota 0 \iota s$ $\mu \epsilon \sigma о \nu \dot{\epsilon} \kappa \epsilon \tilde{\imath} \nu 0 \tau \dot{\epsilon} \theta \in \iota \kappa \in \nu$ ákт $i \nu \omega \nu \tau \tilde{\omega} \nu \dot{\eta} \lambda i o v$, $\mu \in \sigma \eta \mu \beta \rho \iota \nu \tilde{\eta} \varsigma \kappa a i \quad \theta \in \rho \iota \nu \tilde{\eta} \varsigma \kappa a i \quad \chi \in \iota \mu \in \rho \iota \omega \tau \dot{a} \tau \eta \varsigma$. ávaк $\lambda \omega \mu \epsilon \bar{\epsilon} \nu \nu \delta \dot{\epsilon} \lambda о \iota \pi \dot{o} \nu \in i \varsigma \tau 0 \tilde{v} \tau 0 \tau \tilde{\omega} \nu \dot{a} \kappa \tau i \nu \omega \nu$

$\dot{o} \Delta i \omega \nu \kappa a i \Delta \iota o ́ \delta \omega \rho о \varsigma, \gamma \rho a ́ \phi \epsilon \iota \tau \dot{\eta} \nu i \sigma \tau о \rho i a \nu$

 $\kappa a i \pi \tilde{a} \sigma a \nu$ 'à $\lambda \lambda \eta \nu \mu \dot{a} \theta \eta \sigma \iota \nu \tau \tilde{\omega} \nu \mu \eta \chi a \nu \iota \kappa \omega \tau a \dot{a} \tau \omega \nu$,

"As Marcellus kept (his ships) an arrow's shot away, the old man fashioned a hexagonal mirror. Putting small fourfold mirrors at a commensurate distance from the mirror, these moved by plates and certain hinges, he placed this in the middle of the Sun's rays, equinoctial, summer, and winter. As the rays were reflected then on it, a fearful fiery ignition started up on the ships, and reduced them to ashes from an arrow-shot's distance....
"Dion and Diodorus record the story, and many along with them tell about Archimedes, Anthemius the paradoxographer first of all, Heron and Philon, Pappus and every writer on mechanics, in whom I have read about reflective ignitions and every other lesson of mechanics, the
baroulkos, pneumatics, water-clocks, and also (by reading) the books of this old man Archimedes."

The entire first part of this passage, attributing to Archimedes a 'burning mirror' composed of hinged hexagonal faces, is adapted from Anthemius. Tzetzes even inserts an irrelevant allusion to another device that Anthemius describes, an arrangement of mirrors that reflects the suns rays to a certain point at all seasons. 84

Chiliades XII 964-990 ("On the words and works that Archimedes performed while alive, and the writings still extant") begins as follows (lines 965-971):

 $<\ldots>\tau \dot{a} \kappa \epsilon \nu \tau \rho о \beta a \rho \iota к \dot{a}, \kappa а т \dot{o} \pi \tau \rho \omega \nu \tau \dot{a} \varsigma$ є́ $\xi \mathfrak{a} \psi \in \iota \varsigma$,

"Some say that Archimedes wrote one book; but as I have read various books of his... the studies of center of gravity, mirror burning, the Epistasidia, and other books, on the basis of which Heron, Anthemius, and every writer on mechanics wrote hydraulics, pneumatics, everything about the baroulkos, and aquatic hodometry..."

The passage is less important for the implausible list of (otherwise mostly unattested) works of Archimedes that Tzetzes claims to have read (including not one geometrical work!) than for the premise that Archimedes only wrote one book, which appears, attributed to Carpus of Antioch, only in Pappus's Collection 8.3 (Carpus was discussing only books on mechanics).

From Chiliades XI 586-641 ("On geometry and optics") comes this (lines 586-610, 616-618):

84 Dupuy ([1786] pp. 429-435) discusses this passage's relationship with Anthemius, perhaps taking Tzetzes's version a bit too seriously.

"Geometry is useful for many mechanical works, for lifting of weights, putting ships to sea, rock throwing, and other siege machines, and for setting things on fire by means of mirrors, and other contrivances for defending cities, useful for bridges and harbor-making, and machines that make a wonder in life, such as bronze and wooden and iron things and the rest, drinking, moving, crying out and the like, and measuring by machines the stades of the sea, and the earth by hodometers, and a myriad other works are born of geometry, the all-wise art.
"It has five powers by which all are accomplished: the wedge and pulleys, the lever and the screw, and with them the axle and wheel. What need for me to list the "baroulkos", "tortoises" [weight-bearing frames with rollers], mining tortoises, armed tortoises, manoeuverable mantelets, called tortoises too, and every other machine of siege, and the things that draw weights up, draggers of one member, of two members, of three members, and even of four members, and shooting devices like stone-throwers and all catapults for missiles, and stomach-bows, and rams that breach city walls, ladders and universal joints and wheeled towers, and every other machine - what need to add these to the catalogue?...
"And optics together with geometry contributes to, among many other mechanical matters, the art of life-painting and portraits, and the statuary arts...."

The passages in italics here are reminiscences of Heron's Mechanics, which by Tzetzes's time was almost certainly no longer extant in Greek, except as quoted in Pappus's Book 8 (8.52-61). The reference to painting as profiting from geometry seems to be inspired by Pappus's introduction to the book (8.1).

That John Tzetzes had direct access to both Anthemius and Pappus, then, is certain, and some passages of both authors evidently impressed him deeply. 85

The only other late Greek allusions to the Collection that I know of are two marginal scholia in a tenth- or eleventh-century manuscript of metrological writers, Istanbul Old Serai gr. $1^{8.8} 6$ One, on f. 8r,

85 The apparent absence of references to the non-mechanical parts of the Collection is in accordance with Tzetzes's complete lack of interest in pure geometry (compare his assessment of Archimedes quoted above). Even in the Renaissance Humanist readers were drawn to Book 8, leaving the rest for the mathematicians. It is not likely that the independent version of Book 8 was still available in Greek in the twelfth century.

86 Photographs in Bruins, $C C$ vol. 1. A dating to the eleventh century has been accepted in most discussions of the manuscript since Schöne (Heron Opera III p. vii); Irigoin [1971] prefers the tenth century. Irigoin is mistaken in asserting that the Istanbul MS contains any of Euclid's Elements.
87 Edited by Heiberg in Heron Opera V p. 223.

 $\kappa a i \quad \Pi^{\prime} \pi \pi \pi \varsigma \quad \dot{a} \pi \dot{\epsilon} \delta \in \iota \xi \in \nu$. "For the radius (of a circle) is twice the (line) from the center to the base of the (equilateral) triangle (inscribed in the circle), as Hypsicles derived in the first of the (books) referring back to Euclid (Elements XIV, Euclid Opera V p. 6), and Pappus proved." Collection 5.76 proves this proposition.

The other scholion (f. 98r) contains the following: 8 \& ${ }^{\circ} \pi \sigma^{\prime} \delta \dot{\epsilon} \delta \epsilon \iota \chi \epsilon$

 $\pi \epsilon \nu \tau a \pi \lambda \dot{a} \sigma \iota \circ \nu \ldots$, which is an untranslatable garbling of the enunciation of Pappus 5.81, that the perpendicular dropped from a sphere's center onto a face of an inscribed icosahedron, in square and times twelve, is greater than the side of the icosahedron, in square and times five.

Schöne dated the margin hands in the Istanbul manuscript to the early fifteenth century. ${ }^{8} 9$ Unless this dating is very wrong, the scholiast's source could not have been the Vaticanus, which was in Italy before the end of the thirteenth century. The information could have come from another manuscript of the Collection, but the low intellectual level of the marginalia in general, and the monstrous misquotation of Pappus's second proposition, would agree better with the scholiast's using an intermediary text (an elementary treatise or scholia in another manuscript) by some earlier reader of Pappus. 90
§12. Witelo. Our knowledge that the Vaticanus was in western Europe before 1300 derives first of all from the recent discovery that several propositions in Witelo's Perspectiva, written about the 1270's, are close adaptations of theorems in Book 6 of the Collection. ${ }^{1} 1$ This dependence on Pappus had already been hinted at in the 1572 edition of Witelo by Risner, who had inserted references to parallel passages in other

88 Transcription by Bruins, CC III p. 305, corrected by me from his photograph, CC I p. 191.

89 Heron Opera III p. xi.

90 Aside from these imprecise references to Pappus, the scholia exhibit knowledge only of the contents of the manuscript itself, supplemented by the fifteen books of the Elements.

91 Unguru [1974], especially pp. 310-319.
authors, although without asserting that Witelo had used these as sources. ${ }^{2} 2$ Witelo's borrowings are not strict translations of Pappus, but the variations go little beyond rephrasing, without significant changes to the mathematical argument.

All the borrowed theorems come from one section of Book 6 of the Collection (chapters 80-103). In the margin at the beginning of this passage (f. 107r) the scribe A^{1} has written EIS T(A) OMTIKA ETK theorems from Euclid's Optics (44 and 45) that determine the conditions under which two diameters of a circle appear equal from a point of observation outside the circle's plane, and then, departing from Euclid, considers two problems concerning the center of the apparent ellipse seen when the circle is viewed obliquely. The actual pertinence of these theorems to Euclid is irrelevant. ${ }^{3} 3$ What is important is that the marginal note would easily and naturally have attracted the eye of anyone looking for material on optics, and hence no extensive translation needs to be supposed as intermediary between Greekless Witelo and the Greek text of Pappus. Not all this material is subsumed into the Perspectiva, nor all in one place. The second theorem in Pappus (6.81) becomes I, 22 in Witelo, while the first and third (6.80 and $82-84$) appear later as $\mathrm{I}, 38$ and 39 ; these were identified by Risner and Unguru. But there are more: Pappus 6.85 and 86 as Witelo I, 49 and 50; Pappus 6.87 and 88 as Witelo I, 47 and 48; Pappus 6.89 as Witelo I, 51; Pappus 6.99 becomes Witelo I, 125. But Witelo does not seem to have employed the theorems of Pappus ($6.90-98,100-103$) to which the foregoing are all lemmas; and when in book IV he comes to treat the projected circle, he adapts the demonstrations

92 But see Risner's preface to Witelo, f. *3r, where he writes: "Sed ex Apollonio, Theodosio, Menelao, Theone, Pappo, Proclo \& aliis firmamenta permultarum demonstrationum singulari iudicio repetiuit..." Risner's knowledge of Pappus, several years before Commandino's translation was printed, probably came through his patron and colleague Ramus, who owned a manuscript of the Greek text; see Lindberg's introduction to the 1972 reprint of Risner, p. xxviii, and below, page 59.

93 Neugebauer, HAMA p. 768, writes: "It has often been said that these sections are a commentary to Euclid's 'Optics' because of a reference to Euclid in a scholion, the contents, however, do not justify such an attribution." This seems unnecessarily skeptical; the 'scholion' (quoted above), which refers explicitly to the Optics, is probably an original heading, and is not unsuitable for an excursus only tangential to Euclid's work.

from Euclid's Optics.

Witelo also knew the work of Anthemius, and cites him in VI, 65 by name: 94
iam autem dixit Anthemius nescio qua ductus experientia, quod solum uiginti quatuor reflexi radii concurrentes in uno puncto materiae inflammabilis, ignem in illa accendant: \& coniunxit septem specula plana hexagona colligatione stabili fixa, scilicet sex extrema circa unum, quod statuit in medio illorum, \& uniebantur illa specula in quibuslibet angulis hexagoni: ideo quia figurae hexagonae replent locum superficialem: ualent enim tres anguli hexagoni quatuor rectos. et dixit Anthemius quod ad quamcunque distantiam sic ignis potuit accendi...
"Now Anthemius was led by some experimentation to say that only when twenty-four rays are reflected and meet at one point of inflammable substance, will they ignite fire in it; and he joined seven hexagonal plane mirrors held by a stable binding, that is six on the outside around one, which he placed in the middle of them, and those mirrors were joined at each angle of the hexagon, because hexagonal shapes fill the planar area, since three angles of a hexagon equal four right angles. And Anthemius said that fire can be set in this way at any distance..."

94 Risner's edition, p. 223. Discussed by Dupuy [1786] pp. 436-48, and Huxley [1959] pp. 39-43. Huxley's treatment is vitiated by his conviction that the continuation of the Anthemius fragment is to be found in the Bobbio fragments, a theory originally suggested by Heiberg [1883, 2], which examination of the substantially complete Arabic translation of Anthemius renders untenable (Toomer Diocles p. 20). The putative reminiscences of the alleged continuation of Anthemius that Huxley sees in Witelo IX, 44 are adapted in fact from Ibn al-Haytham's Optics. The spelling "Anthemius" guarantees that Witelo had a Greek source, since although Anthemius was mentioned in Ibn al-Haytham's treatise on burning mirrors, coming to Latin through Arabic the name became "Anthimus" or worse; see Heiberg Wiedemann [1910] p. 219.

Again the conjunction of Anthemius and Pappus makes one suspect a connection with the Vaticanus. ${ }^{9} 5$ Now, it is not likely that Witelo could read Greek; still less that Latin versions of the whole of Pappus and Anthemius were in circulation. But it is very easy to believe that the great translator of Greek philosophic and scientific texts William of Moerbeke, who was Witelo's friend and the dedicatee of the Perspectiva, and who furthermore had translated from Greek a number of works of Archimedes, Eutocius, and pseudo-Ptolemy that Witelo used, might also have extracted for his friend any passages in the Vaticanus that obviously pertained to optics, if he had access to the manuscript. 96
§13. The papal inventories. Now we turn to another document relating to Pappus in the West, the 1311 inventory of the papal library. This is the later of two inventories (the other dates from 1295) that reveal an impressive collection of Greek manuscripts, mostly philosophical and scientific, that belonged to the Popes. William of Moerbeke made translations of many of the works that were in these manuscripts, and in several cases the translations bear colophons that date them during his years at the papal court at Viterbo. These include Proclus's commentary on Plato's Parmenides and Timaeus, Simplicius on Aristotle's De caelo, Themistius and John Philoponus on the De anima, and perhaps other philosophical works; and as well the mathematical works that Witelo used, translated in 1269 from two manuscripts in the papal collection. ${ }^{7} 7$ The 1311 inventory also includes the following entry: 98

95 This inference was drawn by Clagett, AIMA III p. 406 note 56.
96 Unguru [1974] pp. 322-23. An excellent brief summary of William's life and work is L. Minio-Paluello's article in $\operatorname{DSB} 9$ (New York: 1974), pp. 434-440. The biography is based mostly on William's own subscriptions to his translations. In 1260, he was at Nicaea and Thebes. By 1267 he was at the papal court at Viterbo, and at least as early as 1272 he was papal chaplain and penitentiary. In 1278 he relinquished this office to become archbishop of Corinth. Recently published documents show that he had returned to Italy by 1284, since in January of that year he participated in the lifting of a papal interdict at Perugia (Bagliani [1972]). He died before the end of 1286.

97 See Jones, William of Moerbeke (forthcoming) for a more detailed account of this papal Greek library. Of the scattered literature on the subject, Heiberg [1891] is the most illuminating, although by now out of date.
98 The text of the 1311 inventory is in Ehrle, Historia pp. 95-99 (Pappus

Abstract

item unum librum, qui dicitur Commentum Papie super difficilibus Euclidis et super residuo geometrie, et librum de ingeniis, scriptum de lictera greca in cartis pecudinis, et est in dicto libro unus quaternus maioris forme scriptus de lictera greca, et habet ex una parte unam tabulam.

This "Commentary of Pappus on difficult things of Euclid and on the rest of geometry" can hardly be anything but the Collection, unless we are to imagine that there were copies not only of Pappus and Anthemius somewhere in western Europe, but also an otherwise unknown major treatise by him. ${ }^{9}$ Furthermore, the title "liber de ingeniis" is surely a translation of $\Pi \epsilon \rho i \pi a \rho a \delta \dot{\sigma} \xi \omega \nu \quad \mu \eta \chi a \nu \eta \mu a \tau \omega \nu$, so that Anthemius too was probably in this papal manuscript. 100 The coincidence of Pappus and Anthemius in Witelo's work and (probably) also in this catalogue entry, and the scarcity of knowledge of Pappus in the East after Tzetzes, are strong circumstantial evidence that the papal manuscript was the Vaticanus itself. 101

The inventory's title for the Collection implies that, when complete, it contained a prominent enough discussion of something in Euclid to merit special mention. This could most easily be accounted for if Book 1 was Pappus's commentary on Book 10 of the Elements. 102 A crude check of
is item 604 on p. 96), that of the 1295 inventory in Pelzer, Addenda pp. 23-24.

99 The conjecture that this was the Collection was first made by Heiberg [1891] p. 314; Ehrle (p. 96) had already correctly identified Pappus's name.

100 This is my identification. Previous conjectures have included Philon's Pneumatics (Heiberg p. 314), Heron's Pneumatics (Birkenmajer, VU p. 22), and Book 8 of the Collection itself (Grant [1971] pp. 667-68, Clagett, AIMA III p. 406 note 56). The first two are not supported by evidence that these works were known in the West, while the third is implausible.

101 This has been suggested by Grant (p. 668), Clagett (p. 406 note 56), and Derenzini [1976] p. 101.

102 Rose, IRM p. 37, has remarked that the commentary on Book 10 seems to fit the description in item 604; but by itself this work would have been too short to fill a manuscript, nor would it explain the continuation "super residuo geometrie". Considering the blunders that the cataloguers make in copying the titles, one would not be
this theory is possible. Comparing Greek mathematical texts with Arabic translations, one finds that the numbers of words in each are, very roughly, equal. From this ratio one can compute that, written in the hand and format of the Vaticanus, the Euclid commentary would take up about ten folia. We also know, from the proposition numbers, that about half of Book 2, which would be five folia or so, is lost. 1^{03} The sum is sufficiently close to the two lost quires (sixteen folia) that were deduced from the quire numbers. By a similar argument, using the Arabic version of Book 8, we find that between two and three more folia were needed at the end. If there was no Book 9, but Anthemius's work followed immediately, it would have fallen on the middle sheet of a quire, as we know it did. An extant Arabic recension of Anthemius shows that less than a page more of Greek text followed the surviving fragment. Perhaps, then, the losses in the Collection amount only to the first part of Book 2 (since we have adequate Arabic translations of the commentary on Euclid and the 'Introduction to Mechanics'), and this misfortune is not very serious. We have no way to know what the "larger quire" that was with the manuscript might have been.

Unlike most of the entries in the 1311 inventory, this one does not add to the title the abbreviation "And", which, according to one explanation, identified manuscripts that had formerly belonged to the Sicilian Angevin court and had passed, perhaps after the battle of Benevento in 1266, to the Popes. 104 Hence we can only speculate on how the Vaticanus reached Italy. One possibility is that William himself acquired it while he was in the East.

The 1311 inventory is the last to contain individual descriptions of the Greek manuscripts. They are listed as a block in inventories dating from 1327 and 1339 of papal possessions deposited at Assisi. 105 What became of the Greek manuscripts after that is not clear. According to one report, about 1368 Pope Urban V had various treasures, including books, brought to Rome from Assisi, and distributed most of them among the various churches of the city. ${ }^{106}$ Such a dispensation would easily explain
surprised if "difficilibus" were a mistake for "decimum librum".

103 See above, page 3.
104 See Pelzer, Addenda pp. 92-94; Jones, William of Moerbeke. Bagliani [1983] presents a contrary view.

105 Pelzer, pp. 34-35.
106 Ehrle [1913] pp. 344-46, from Albanès - Chevalier [1897] p. 398: "Item, dum esset apud Urbem et audiuisset quod a tempore domini
the calamitous number of these manuscripts that vanished at that time, and the way that the few that did survive reappeared independently in the fifteenth century, in the possession of the great humanist collectors of Greek manuscripts: Cardinal Bessarion somehow obtained the present Marc. gr. 313 of the Almagest, and Marc. gr. 258 containing minor works of Alexander of Aphrodisias, which likely were in the papal library (the first almost certainly so);107 Valla acquired one of the Archimedes manuscripts; ${ }^{108}$ Poliziano, Laur. 28,18, the first half of Theon's Almagest commentaries, identifiable with certainty from an inscription in the manuscript that matches the inventory entries.109 A manuscript of Dionysius the Areopagite, Vat. gr. 370, that is thought to be one of the items appears in Vatican catalogues definitely first about 1510, but possibly as early as about 1450.110 On the other hand, at least eight manuscripts in the inventories are demonstrably lost, while many more, too imprecisely described to compare with modern collections, probably no longer exist.
814. False leads. We must now consider two cases of alleged knowledge of Pappus's Collection in the fifteenth century. The first is Heiberg's suggestion that Giovanni Aurispa owned the Vaticanus as early as the 1420's. This theory has been repeated as established fact many times, 111 but it has only a slender foundation. In 1422 and the next year

Bonifacii pape octavi, certi thesauri papales fuissent in ciuitate Assisii reseruati et adhuc reseruarentur, in quindecim uel uiginti saumatis, fecit coram se aportari, et reperiit quod ibi erant multe sanctorum reliquie, multi libri et alia ecclesiastica ornamenta. Tunc illa refutauit penes se retinere, sed ecclesiis Urbis omnia predicta distribuit, donauit et realiter traddidit, excepto capite beati Blasii, martiris, et quibusdam aliis reliquiis..."

107 Labowsky [1979] p. 8.
108 But, significantly, it can be traced back to Rome in about 1450, during the pontificate of Nicholas V; see Clagett, AIMA III part 3, p. 333.

109 Rome [1938], Pelzer [1938].
110 Devreesse, FG pp. 178, 24.
111 For example, R. Sabbadini, Carteggio, p. 13; Rose, IRM p. 28 and [1977] p. 131; Garin [1969] p. 495; Francheschini [1976] p. 48. Garin asserts that Aurispa traded the Vaticanus to Filelfo in 1431.
the humanist Ambroglio Traversari made several inquiries after a rumored manuscript of Archimedes alleged to have been brought to Italy from the East by Rinuccio da Castiglione. 1^{12} Traversari wrote to, among others, Aurispa, who had been in Greece collecting manuscripts and returned at the same time as Rinuccio. In August 1423 Aurispa replied: 1^{13}

> That Rinuccio has found Archimedes, is possible indeed, but in my view not plausible. I have never spoken to anybody who said he had seen this author. But you of course have had experience of how very adroit a hunter of these matters I once was. I have one big old book of the 'mathematician' [mathematicus] Athenaeus of Athens with illustrations of machines. This book is old, and the illustrations are not very good, but they can be understood easily. I have also another 'mathematical' book [mathematicus], incomplete, also old, whose author I do not know; in fact it lacks the beginning. I cannot say whether maybe Rinuccio attributes the name of Archimedes to that age. It may be true that he has found [? text uncertain] it, and neither I nor the people I have spoken to have seen it.

Heiberg guessed first that Aurispa's defective mathematical manuscript was the Archimedes that Valla later owned. 114 Returning to the question later, he decided that Aurispa could not have mistaken that manuscript if he had it, and so suggested that Aurispa's manuscript was the Vaticanus, because that was defective at the beginning. ${ }^{115}$ The argument is very weak. We do not know, for example, how old "uetustus" means for Aurispa. Moreover, the authorship of the Collection would be obvious to anyone who had inspected the manuscript even superficially. But it is not even certain that Aurispa is referring to a book separate from the old

This fatidic mistake is the harder to trace because Garin provides no reference; it originates in a misunderstanding of Sabaddini, p. 13 note 7, where the subject is in fact Diogenes Laertius, not Pappus.

112 See Heiberg [1883,1], from which the quotation translated below is taken.

113 Letter XXIV, 53, in Traversari, Epistolae ed. Mehus.
114 Heiberg [1883,1] p. 427.
115 In Archimedes, Opera III, p. lxxxii.

Athenaeus that he says he has; in a later letter Aurispa asks Traversari asks for the return of "Athenaeum 'ópravo $\pi 0 \lambda \in \mu \iota \kappa \circ$ aliud in mathematicis", presumably only one manuscript. ${ }^{11^{6}}$ As Heiberg observed, nothing resembling the Vaticanus appears in the catalogue of Aurispa's books made after his death in 1459, but of course he could have sold it before then.

Less has to be said of Clagett's theory that the painter Piero della Francesca was acquainted with Pappus. 117 Piero's work De quinque corporibus regularibus, which dates from the 1480's, ends, after three books treating the regular solids, with a fourth part, De corporibus irregularibus, and in this section he describes the construction of five Archimedean solids. 1^{18} The only ancient source for these solids is Pappus Book 5, chapters $34-37$, together with a marginal note describing the construction of some of them. 1^{19} But Piero produces only some of the thirteen Archimedean solids, strictly those that can be generated by truncation, and includes with them numerous other, quite irregular, solids. Since he gives no suggestion of depending on an ancient authority, we have to grant that an independent rediscovery is very probable. Nor does Pappus seem to have influenced subsequent investigations of semiregular solids until Kepler's work on the subject.

A third supposed use of Pappus may as well be disposed of here, because although it belongs to a later time, it reflects on the library of Valla. A very obscure doctor from Piacenza, Giuseppe Ceredi, in a rare book called Tre discorsi sopra il modo d' alzar acque da' luoghi bassi... (Parma, 1567), made the following claim (p.6):

> Avenga che quasi a sorte mi fur venduti da chi lor non conosceva, certi scritti di Herone, di Pappo, \& di Dionisidoro [sic] tolti dalla libraria, che fu gia del dotissimo Giorgio Valla nostro Piacentino... Ne' quali scritti non mai stampati, o tradotti, che si sappia; confesso di havere ritrovato molte cose di quelle, ch'io sono per dire piu di sotto, \& che dopo molte

[^3]positioni d'Euclide, d'Archimede, d'Appollonio Pergeo, \& di molti altri piu nuovi, che gia conosciute da chi ha voluto, è necessario, che s'habbiano alla mano in queste operationi; m'hanno fatto non poco lume nel camino, ch'io penso haver finito dello stabilimento di questa macchina.

More or less by chance I was sold, by someone with whom I otherwise am not acquainted, certain writings of Heron, Pappus, and Dionysodorus, removed from the library that formerly belonged to our countryman of Piacenza, the learned Giorgio Valla.... In these writings, which so far as is known have never been printed, I admit I have rediscovered many things of theirs, which I will say more about later, and which, following many statements of Euclid, Archimedes, Apollonius of Perge, and numerous others of more recent times, which anyone who wanted to already knew, it is necessary for them to have to hand in this business. They have illuminated not a little the road that I believe I have finished in the establishment of this machine.

Surprisingly, Heiberg believed this tale, and Ceredi thus slips into the roll of collectors of mathematical texts. 120 One need only remark that no writing by the Hellenistic mathematician Dionysodorus is known to have survived antiquity, while this trio of authorities appears in a famous passage of Valla's encyclopedia De expetendis et fugiendis rebus (Venice, 1501), which Valla adapted from Eutocius without noting his source. 121 Any doubt that Ceredi's scholarship is fictitious vanishes when, on p. 34, he ludicrously foists on Pappus a kind of Archimedean screw, and, violating chronology, has Dionysodorus add to the description. ${ }^{122}$ Of course one can

120 Heiberg [1896] pp. 107-108. Rose, IRM p. 47, accepts the story.
121 Liber. XIII cap. ii, "de duobus cubis ad unum redactis". Valla also published extracts in this work from Archimedes and Apollonius, though of course not concerning machines to raise water.

122 "Pappo, \& Dionisodoro; quello nel trattato de gli istromenti mecanici, \& questi in certi pezzami d'un' opera di simile materia, di cui non si legge il titolo, essendovi restato solamente il nome dell' autore [!], con facilissima brevità mostrano la vera, \& piu utile via di fabricare la Chiocciola. Piglia (dice Pappo) un sostegno, che non si pieghi, tornito a sesta; lungho \& alto quanto basterà a tirare duoi canali di spire
not use Ceredi as evidence that Valla owned a manuscript of Pappus, or that his library was at all dispersed before passing into the hands of Alberto Pio di Carpi.
§15. The Vaticanus in Florence and Rome. ${ }^{23}$ In the last decades of the fifteenth century Pappus finally comes out of hiding, in Florence. An incidental clue is given in a partly preserved late fifteenthcentury marginal note on f. 13v of the Theon manuscript, Laur. 28,18, that had formerly been in the papal library with Pappus, but by this time had come into Poliziano's possession:

 $\delta \epsilon i \kappa \nu v \sigma \iota \nu \dot{o} \pi a ́ \pi \pi o s \dot{\epsilon} \nu \tau \tilde{\omega} \iota \epsilon^{\prime} \tau \tilde{\omega} \nu \quad \sigma \nu \nu a \gamma \omega \gamma \tilde{\omega} \nu$ $\dot{\epsilon} \nu \dot{\omega} \iota \pi a \rho[a \lambda a] \mu \beta \dot{a} \nu \in \iota \quad \gamma \epsilon \omega \mu \epsilon \tau \rho \iota \kappa \tilde{\omega} \nu \quad \theta \epsilon \omega \rho \eta \mu a \tau \omega \nu$.
"... similar triangles, and on the same (bases) furthermore triangles not similar to each other or to the similar ones, Pappus proves in the fifth (book) of the Collections in which he takes up geometrical theorems."

The annotator notes the parallel between Theon's (or Zenodorus's) exposition of the isoperimetric theorems, and Pappus's in Book 5, particularly chapter 13.

The identity of this marginal hand is not clear. Poliziano himself, however, certainly read parts of Pappus, as we know from his paraphrase of the generalities on mechanics at the beginning of Book 8. These are to be found in a short work of 1490/91, the Panepistemon. 1^{24} In the translation below, original phrases in Pappus's chapters 8.1 and .2 that Poliziano adapts are given in brackets.
equidistanti, capaci di tanta quantità d' acqua quanta potrà essere mossa dal motore, che hai ordinato, all' altezza, che ti fa bisogno. Vi aggiunge Dionisodoro, che l' elevatione si farà secondo la ragione del pendio de' vermi a rispetto di lei. Dio buono con quanta brevità, \& chiarezza, hanno questi duoi valenti Greci compreso tutto il magistero di si utile istromento?"

123 On this section see also Jones, William of Moerbeke.
124 Noted by Rose, IRM p. 35. Basle edition of Poliziano's works (1553), pp. 466 and 467-68.

Geodesia uero, quae etiam a Pappo geomoria uocatur, et ipsa in sensilibus uertitur... [cf. Pappus 8.3]

Mechanica sequitur, cuius (ut Heron, Pappusque declarant) altera pars rationalis est, quae numerorum, mensurarum, siderum, naturaeque rationibus perficitur: altera chirurgice, cui uel maxime artes aeraria, aedificatoria, materiaria, picturaque adminiculantur. Huius autem partes manganaria, per quam pondera immania minima ui tolluntur in altum: mechanopoetice, quae facile aquas antliis extrahit: organopoetice, quae bellis accomoda instrumenta fabricatur, arietes, testudines, turres ambulatorias, helepolis, sambucas, exostras, tollenones, et quaecunque graeco uocabulo poliorcetica uocantur, tormentorumque uaria genera, quae libris Athenaei, Bitonis, Heronis, Pappi, Philonis, Apollodorique continentur, ut Latinos omiserim....

Geodesy, which is also called by Pappus 'geomoria' $[\gamma \epsilon \omega \mu о \rho i a]$ itself is directed at sensible things...

Mechanics comes next. As Heron and Pappus say, one part of it is rational $\lambda^{\prime} 0 \gamma\left(K_{0}^{\prime} \nu\right.$], which is accomplished by considerations of numbers, measures, stars, and nature [' $\epsilon \mathrm{c} \kappa$ $\tau \epsilon \quad \gamma \epsilon \omega \mu \epsilon \tau \rho i a s \quad \kappa a i \quad$ á $\rho \iota \theta \mu \eta \tau \iota \kappa \tilde{\eta} \varsigma \quad к а і$ $\dot{a} \sigma \tau \rho o \nu o \mu i a s ~ к а \dot{i} \tau \tilde{\omega} \nu \quad \phi \cup \sigma \kappa \tilde{\omega} \nu \quad \lambda \dot{o} \gamma \omega \nu$]. The other part is craftsmanship $[\chi \in \iota \rho \circ \cup \rho \gamma \iota \kappa o \rho d$, which bronze-
 working $[\tau \epsilon \kappa \tau O \nu \iota \kappa \dot{\eta}]$, and painting [$\zeta \omega \boldsymbol{\omega} \rho a \phi \subset \kappa \bar{\eta}]$ serve. Its parts are 'manganaria' by which great weights are raised up; machine-making, which easily draws water by pumps; (war-)machine-making, which makes instruments fit for wars: ...whatever are called by the Greek word 'poliorcetica', and various kinds of weapons, which are contained in the books of Athenaeus, Biton, Heron, Pappus, Philon, and Apollodorus, to pass over the Latins....

The exact location of the manuscript that Poliziano used can be identified. One of the most important collections of manuscripts at that time in Florence was the private library of the Medici family, the Biblioteca Medicea privata, of which there exists an inventory from 1495, prepared in conjunction with the transfer of the collection of Lorenzo il Magnifico to the
monastery of San Marco. ${ }^{125}$ In the second part of this inventory the very first entry is: "Arthemius [sic] Grecus de paradoxis machinationibus." ${ }^{26}$ The manuscript also is listed, less ambiguously, as "' $\mathrm{A} \nu \theta \in \hat{\epsilon} \mu$ ८оऽ каі Пá $\pi \pi o s \gamma \epsilon \omega \mu \dot{\epsilon} \tau \rho a \iota \pi(\epsilon \rho \gamma a \mu \eta \nu o ́ \nu)$ " ("Anthemius and Pappus, geometers, in parchment") in Janus Lascaris's inventory of 1472.1^{27}

A record of a loan of Anthemius in October 1486 in a register of loans from the Privata specifies the manuscript as having formerly belonged to the humanist Filelfo. 128 The manuscript cannot have been a Renaissance copy, for Francesco Filelfo died in 1481, while the earliest Renaissance copies of Pappus cannot precede Zacharias Callierges's discovery of the correct order of quires in the Vaticanus (Zacharias's earliest known work dates from the late 1490 's). Also, the 1472 listing states that the manuscript was parchment, unlike all but one of the extant recentiores of Pappus, or for that matter most Renaissance manuscripts. Hence Filelfo evidently found the Vaticanus, and it passed with the rest of his collection into Lorenzo's library.

The circumstances under which Filelfo obtained the Vaticanus can only be guessed; it could have come into his hands as early as the late 1420 's or 1430's. Pappus and Anthemius are not mentioned in his correspondence, or, apparently, in his published writings. ${ }^{129}$ From several letters of 1440 and 1450 we learn that Filelfo had lent Vittorino da Feltre and Jacobus Cremonensis, the translator of Archimedes, a manuscript that he calls merely "mathematici" or "mathematicorum libri", and which could be the Vaticanus. ${ }^{130}$

The later history of the Vaticanus can now be reconstructed in part. In 1508 Giovanni Cardinal de' Medici regained much of the Biblioteca Privata, which had been confiscated a dozen years earlier by the city, and

125 Printed in Piccolomini [1875].
126 Piccolomini, p. 97.
127 Müller [1884] p. 376.
128 Piccolomini, p. 127.
129 See Calderini [1913], who was not aware, however, of the evidence for Filefo's library in the borrowers' registers.
${ }^{130}$ In the 1502 Venice edition of Filelfo's letters, ff. 26v, 27r, 29r, 48v. See Rose, IRM pp. 28 and 59 note 24. But Filelfo also owned a manuscript of Apollonius's Conics; and the term "mathematicus" could mean also a writer on mechanics.
the same year he had it brought with him to Rome. ${ }^{131}$ A catalogue (Vatican Barb. lat. 3185, f. 308v) of the Cardinal's library about this time, made by Fabio Vigili, lists the Vaticanus. Zacharias Callierges, who moved to Rome from Venice at some point between 1511 and 1515 , likely unravelled the manuscript after it had come to Rome, as he is not known to have worked in Florence. In addition to determining the manuscript's proper order, he attempted to restore some of the washed out writing on ff . 54 and 55. It is conceivable that he made one of the two lost direct copies of the Vaticanus. ${ }^{132}$ In 1513 Cardinal de Medici was elected Pope as Leo X , but he kept his private library distinct from the papal collection. Shortly after Pope Leo's death in 1521, his heir, Giulio Cardinal de' Medici, instructed that the Medici library should be taken back to Florence (mostly to become part of the Biblioteca Laurenziana), but this move took place only at the end of May, 1527, after he had become Pope Clement VII. ${ }^{3} 3$

However, the manuscript went, not to Florence, but to the Vatican Library. It must have entered the Vatican before 1533, since an inventory of that year lists "Anthemii Mechanica". It had not been in the Vatican inventory of about 1511, nor was it in either of two inventories of 1518 (one of these is incomplete). The manuscript must have been transferred, then, between 1518 and 1533. During these years the most important event to effect the Vatican library was the sack of Rome on May 6, 1527. If the library did not suffer quite the enormous losses that were sometimes claimed afterward, certainly the damage was serious enough that Pope Clement authorized a vigorous effort to recover dispersed books, both in Rome and abroad. ${ }^{134}$ The papal decree further authorized the agents in

131 Bandini, CC I pp. xii-xiii.
132 Either the destroyed Strasbourg MS (R) or the ancestor of the family CVkD (see below, page 57). The first copy of the Vaticanus must have been made before 1527, when Andreas Coner died, leaving a library including a manuscript "Mechanica Pappi Alexandrini greca scripta in papiro." See Mercati [1952] p. 143. The title "mechanica" does not prove that he had only Book 8; for example Vat. gr. 1725, with Books 3 to 7 (incomplete), bears this title (it cannot be Coner's MS however).

133 Bandini, p. xiii note 4. It should be observed, though, that many manuscripts belonging to the Medicea Privata passed to Leo X's nephew, Niccolò Cardinal Ridolfi, and these are now mostly in the Bibliothèque Nationale. There were clearly many opportunities for a manuscript to become detached from Pope Leo's library.

Rome to select desirable books from the libraries of deceased collectors; but this was not applicable to the Vaticanus, which belonged to the Pope himself, and would by that time have gone to Florence if it was still among the Medici manuscripts.

From 1533 on, the Vaticanus remained almost continuously in the Vatican Library. The only recorded exception was the loan of it briefly to the copyist Valeriano da Forli in 1547; it was returned the following year.
§16. The recentiores. Thanks to Treweek's paper on the European manuscript tradition of Pappus, we can trace the sometimes quite complicated relations between the Vaticanus's descendants.135 The following list of manuscripts includes all those that Treweek identified and classified, with a few additions. The sigla are Treweek's, which incorporate those of Hultsch ($\mathbf{A}, \mathbf{B}, \mathbf{V}$, and \mathbf{S}). Column three indicates the books of the Collection represented partly or completely ('A' for Anthemius), column four the date of the manuscript (except for A, always sixteenth-century or later), column five the exemplars. This information is derived, except for the additional manuscripts at the end of the list, from Treweek's article, to which the reader is directed for details. I have added notes on the identified copyists and early owners of some of the manuscripts. References to Treweek will be given as [T page].
$\begin{array}{lllll}\text { A } & \text { Vat. gr. } 218 & \text { A2345678 } & \text { 10th c. } \\ \\ \mathbf{U} & \text { Urb. gr. } 72 & 7 & \text { ca. } 1588 & \text { A }\end{array}$
U was commissioned by Duke Francesco Maria II of Urbino on behalf of the editor of Commandino's translation, Guido Ubaldi (or Guidobaldo). Commandino had left some gaps in his translation, and the manuscript from which he worked for Book 7 (k) apparently was not available to Ubaldi. ${ }^{136}$ In August, 1587, Ubaldi was awaiting a manuscript from Rome before submitting Book 7 to the press, 137 but since the printed text still shows some gaps, it seems that the new copy arrived too late. In fact

264-66 (Sack of Rome). Devreesse computes from the 1533 and 1518 inventories that the number of Greek manuscripts declined by about thirty. This figure does not attempt to account for new manuscripts that entered during the interval; and we do not know how successful the effort to recover the scattered books was.
a letter of U's copyist, Pietro Devaris, to the Duke of Urbino announcing the completion of the manuscript cannot be earlier than 1588, since it alludes also to a publication by Devaris's uncle Matteo of that year. 138
L Neap. III c 16
345678
<1588
A
Q Par. gr. 2369
3
late 16 th c .
L A

Omont identified the hand as that of the mathematician G. Auria [T 202]. Auria is known to have consulted manuscripts at the Vatican. ${ }^{13} 9$
F Laur. 28,9
34567
<1588
L

F originally had the continuation to the 'end' of Book 8. The final pages, separated from the rest, were the exemplar for parts of \mathbf{M} and \mathbf{Z}, before being lost [T 215].
[R] Strasbourg (lost) A2345678 < 1554 A
The manuscript entered the possession of the Strasbourg mathematician Dasypodius, apparently before 1582, when he was contemplating making a translation of it. 140 Most of Dasypodius's mathematical manuscripts are alleged to have passed through the hands of Andreas Darmarius. ${ }^{141} \mathbf{R}$ was destroyed in the bombardment of Strasbourg in 1870 [T 205].

\mathbf{H}	Ambr. D 336 inf.	A8	16th c.	\mathbf{R}
\mathbf{P}	Oxon. Savile 9	2345678	16 th c.	\mathbf{R}

The later of Savile's two copies of Pappus, obtained from Dasypodius in Strasbourg [T 203].
$138 C U G$ p. xxx.
139 Mogenet, Autolycus pp. 43-49.
140 C. Wescher, in CRAI N.S. 7 (1871) p. 182. Letter of Savile to Pinelli, June 12, 1582, in Ambr. D 243 inf.

141 Wescher, p. 182.

E Escorial Ti11, yi $7 \quad$ A2345678 $1547 / 48 \quad$ A

Copied for Don Diego Hurtado de Mendoza by Valeriano da Forlì [T 200]. Manuscripts dependent on \mathbf{E} have to date before 1554, when Don Diego returned to Spain [T 231]
B Par. gr. 2440
A2345678 < 1554
RE

The earliest of the known copies of \mathbf{R} [T 217-18]. It was in the collections of Cardinal Cervini (briefly Pope Marcellus II) and Cardinal Sirleto, where it still was in 1574.1^{142} B may have been Andreas Coner's manuscript (see page 55 above), since another mathematical manuscript, Ottob. lat. 1850 (William of Moerbeke's autograph of the translations of Archimedes) is known to have passed from Coner's collection to Cardinal Cervini. How it strayed later to France is not known.

$$
\mathbf{Y} \text { Vind. sup. gr. } 40 \quad \text { A2345678 }>1574 \quad \text { B }
$$

Copied in Paris [T 218].
\mathbf{J} Angelica gr. $111 \quad 34568 \quad<1572 \quad$ A B

Copied partly by Manuel Provataris (active from the 1540's to the early 1570's at the Vatican Library). ${ }^{143}$

G Edinb. Adv. 18.1.3 $34568 \quad<1572 \quad$ J B

Apparently made at the same time as \mathbf{J} [T 219-20]; \mathbf{G} is partly the work of Camillus Zanettus or Venetus, apparently early in his career. 144 These manuscripts, which omit Book 7, must have been commissioned to complete manuscripts that had only Book 7. G was the manuscript on which Commandino based his translations of Books 3 to 6 and Book 8 [T 228-29]. It later belonged to Bullialdus, and still later to Simson [T 204].
[x] (lost) 2345678A <1554 A

142 Inventories in Devreesse [1968], especially p. 261, where the specification of 197 folia permits the identification.

143 RGK I A, p. 139.
$144 \quad R G K \mathrm{pp} .119-121$.
D Par. gr. $583 \quad 8 \quad<1569 \quad$ x

Copied by Angelus Vergetius [T 202] ('Ayre入os Bepyikıos), who was active in Venice and Rome in the 1530's, and in Paris from 1539 to his death in 1569.145

d	Par. gr. 2871	8 A	<1569	D
	Copied by Angelus Vergetius [T 202].			
V	Leiden Voss. F. 18	2345678	16 th c.	x
C	Par. gr. 2368	2345678	1562	x

Copied by Nicolaus Nancellius for Ramus [T 225]. It is likely that Witelo's editor Risner obtained his information about Pappus from Ramus. Ramus himself used Pappus as a historical source in two works published in $1569 .{ }^{146}$

S	Leiden Scal. 3	2345678	>1562	C
k	Chicago Newberry 115	7	<1554	x

The earliest copy of \mathbf{x} [T 226]. This was Commandino's manuscript for Book 7 [T 229].
\mathbf{K} Neap. III c 14 A2345678 16th c. E k
Treweek reports that the leaf edges have the inscription "FRANCIS MAYRON SUMMA" [199]. Could this be Francisco Maurolico? Until 1570 there seems to be no sign of knowledge of Pappus in his work, although certain projects, such as the reconstruction of Books 5 and 6 of Apollonius, would have given the opportunity to mention him. The 1570 edition of Maurolico's "Index Lucubrationum", a kind of survey and program for publication of ancient mathematics, names "Pappi... mechanica et

145 RGK pp. 25-26.

146 Ramus [1569,1], pp. 25-26 on isoperimetry, from Book 5; [1569,2] pp. 28-30, 33 (on Apollonius, from Book 7), 35 (duplication of cube), 58 (mechanical 'powers' from Book 8), 106-107 (reports that Commandino has corresponded with Ramus about Pappus).
machinae", which had not appeared in the earlier versions of this opuscule. ${ }^{147}$

\mathbf{N}	Neap. III c 15	345678	16 th c.	B J k
\mathbf{X}	Vind. supl gr. 12	34567	16 th c.	\mathbf{N}

May have belonged to Giovanni Carlo Grimani [T 205].
W Wolfenbüttel Gud. gr. $7 \quad 34567$ 16th c. X
Belonged to Matteo Macigni (active in the 1540's and 1550's), later to Nicolaus Trevisianus of Padua and Marquard Gude [T 201].

M Ambr. C 266 inf. A2345678 16th c. W R F
J. V. Pinelli's manuscript [T 198]. Originally there must have been two incomplete manuscripts, a copy by Pinelli's regular copyist Camillus Venetus of \mathbf{W} with Books 3 to 6 and the beginning of 7 , and a copy of the lost end of \mathbf{F}. The rest was apparently filled in later from \mathbf{R} [T 222-24].

Z B.M. Burney $105 \quad 2345678 \quad<1588 \quad$ M F
Another composite manuscript. Its two original parts were a copy of that part of \mathbf{M} that was a copy of \mathbf{W}, and another copy of the lost end of \mathbf{F}. It was completed from \mathbf{M} after that manuscript had been completed [T 222-23]. In 1588 it was used and emended by Barozzi during his preparation of a revision of Commandino's translation; at this time it was owned by Contarini. 148
0 Oxon. Savile 3
345678
16 th c.
M

Savile had this copy made by Camillus Venetus [T 203] in 1581-82, during his travels on the continent in search of mathematical manuscripts. 149
\mathbf{T} Vat. gr. $1725 \quad 34567 \quad$ 16th $\mathbf{c} . \quad$ M

147 Clagett [1974] p. 190.
148 Rose [1977].
149 Letters of Savile to Pinelli, 27 December 1581 and 24 May 1582, in Ambr. D 243 inf.

Copied from the part of \mathbf{M} that was copied from \mathbf{W}. Belonged to Alvise Lollino [T 198].
I Laur. Plut. 28,17
2
16th c.
M

A copy by Camillus Venetus of the added part of \mathbf{M} that he had copied from \mathbf{R} [T 222].

- Oxon. Christ Church $86 \quad 2345678 \quad 1688$-1710 P O
- Neap. III c 16 bis 345678 19th c. N
- Oxon. Savile 60A $23 \quad 1772$ C

Wa Oxon. Savile 60B 1680's 23 P O
Used by Wallis for his editio princeps of Book 2.

- B.M. Egerton $850 \quad 7 \quad>1748 \quad$ C
- Par. gr. 2370 8A 1646 d
- Par. gr. 2535 D
$\begin{array}{cccc}\text { Par. gr. sup. } 15 & 8 & >1574 & \text { B }\end{array}$
- Florence Bibl. naz. II iii 37 Figures 16th c.
- Ambr. P 144 sup. Figures 16th c.

Treweek [T 228] briefly discusses these diagram books. The Milan manuscript may have been intended for \mathbf{M}.

The remaining manuscripts are not listed in Treweek's article.

- Vind. phil. gr. 229

A2 late 16th c.
Copied by Claudius Acantherus. 150 Readings reported by Dupuy in his edition of Anthemius show that the text ultimately descends from R. ${ }^{15}$

- Copenhagen Thott 215 A ca. 1560

The manuscript is partly by Manuel Provataris, and allegedly is a direct copy of A. ${ }^{5}{ }^{2}$

- Marc. gr. XI, 30

A collection of booklets, once belonging to Pinelli, later to Contarini. Partly copied by Camillus Venetus (including Anthemius). ${ }^{153}$ Hence probably descends from \mathbf{R}.

- Saragossa 1143	A	1585
- Honeyman 7	A	1585

Both manuscripts (if they are not one and the same!) are subscribed as having been copied by Andreas Darmarius, Venice, 24 August 1585.154 Likely descendants of \mathbf{R}.
§17. Printed editions. Even from the little that we now know about the dispersal of the Collection during the sixteenth century, we can see that by the 1580's copies of the Greek text were reaching not only humanist bibliophiles, but also some mathematicians: Savile, Dasypodius, Auria, possibly Maurolico. But during that time not much was done with the book. At Urbino Bernardino Baldi and Guido Ubaldi studied the mechanics in Book 8,155 but the great exploitation of the other books became possible only with the posthumous printing of Commandino's Latin translation of the Collection. Commandino's achievement as a translator was admirable, making accessible to European mathematicians the works of Euclid, Archimedes, Apollonius, and other lesser texts, in versions that were intelligible and free from most of the mistakes that had made

[^4]nonsense of the mathematics. The history of the publication of his Pappus is unusual. 156 Commandino had left the translation at his death in 1575 in a nearly finished state, but for many years its publication was delayed because of a family dispute. Duke Francesco Maria II of Urbino eventually obtained the manuscript and sent it to Francesco Barozzi in Venice to assess. Barozzi was dissatisfied with the translation, and asked permission to revise it extensively. This request was refused. The manuscript was then passed on to Guido Ubaldi, who saw the text, more or less as Commandino left it, through the press. There were four editions of the translation: Pesaro, 1588; Venice, 1589; Pesaro, 1602; and, reset (generally to the text's detriment) by Carolus Manolessius, Bologna, 1660.

The text of Pappus was already quite corrupt in the Vaticanus, and in Commandino's manuscripts \mathbf{G} and \mathbf{k}, apographs at second or third remove from the archetype, it had only become worse. He had no copy of Book 2 (it would be printed only in 1688 by Wallis). For the books he had, Commandino's service was not of uniform quality. In the mathematical parts, he was able to restore the correct sense very successfully. Immense numbers of errors of lettering, omissions, erroneous repetitions, and other similar corruptions are corrected, either in the textual notes that follow the propositions, or tacitly in the translation. Where the mathematics gives way to prose, however, Commandino was much more diffident, adopting the text before him and interpreting it as best he could. The difference is very apparent in Book 7. Scarcely a page of text in Hultsch's or this edition, from chapter 43 to the end, does not preserve several emendations, correct or substantially so, by Commandino. In the first forty-two chapters, however, he made only a handful of unremarkable changes. Some of the defects of the translation can be ascribed to its being printed without Commandino's final revisions.

After Commandino several projects were begun to publish editions or translations of the Collection, of which the only one that calls for mention here is Barozzi's revision of Commandino, which exists in manuscript but has not been studied. 157 More important are several publications of small parts of the Greek text, especially from Book 7. None of these could be called a critical edition, but some introduced emendations of the received text, or offered original interpretations of them. Halley deserves special mention for his edition of the whole introductory part of the book and a

[^5]157 Par. lat. 7222. See Treweek [1957] pp. 230-31; Rose, IRM pp. 211-13, and [1977]; M. Boyer in CTC vol. 2 pp. 205-213 and vol. 3 pp. 426-431.
large fraction of the lemmas. The list of publications below draws on Hultsch's survey. ${ }^{15} 8$

Snel [1608]: Book 7, 9-10.
Wallis [1699]: Book 2.

Halley [1706] pp. i-xxvii: Book 7, 1-67. [1710]: 233-311. Used \mathbf{O} and \mathbf{P}.

Simson [1749]: 21-26. Used Halley [1706], B, and C.
Torelli [1769]: Book 4, 45-52.
Horsley [1770]: Book 7, 27-28, 126.
Camerer [1795] pp. 158-84: 11-12. [1796] pp. 185-92: 21-26. Used B, C, and R. The Greek text of the 1795 publication was reprinted in Haumann [1817].

Eisenmann [1824]: Book 5, chapters 33-105 (the only part printed of a planned edition).

Breton de Champ [1855] pp. 209-304: Book 7, chapters 13-20. Used B and C.

In 1871 C. J. Gerhardt produced an edition and German translation of Books 7 and 8 , as the second volume of a projected complete edition. There is no apparatus or introduction, but he apparently used at least B, C, and M, which are mentioned in his notes on pages 216 and 300. Gerhardt's text improves that of the manuscripts to the extent of incorporating Commandino's improvements and other obvious corrections, but his more elaborate conjectures are few and unimpressive. Gerhardt elsewhere proposed a bizarre interpretation of the Collection, admitting only Books 3, 4, 7, and 8 as authentic; perhaps it is just as well that his work did not preempt a better edition. 159

[^6]159 Gerhardt [1875], cited by K. Ziegler in RE vol. 18 (1949) col. 1095.

This was Friedrich Hultsch's Pappus, one of the first modern critical editions of a Greek mathematical work. 160 Hultsch gave scholars a generally reliable text, a new Latin translation with critical and historical notes, and an annotated index that remains invaluable as a lexicographical aid for the study of Greek geometry. After more than a century this work remains the standard reference for the Collection. Nevertheless it is unsatisfactory in some important respects. The foundation of Hultsch's text is not the primary source of trouble. It is true that Hultsch learned of the existence and guessed the importance of the Vaticanus only after having gone far in establishing his text from other manuscripts, and that in adjusting his text to stand on a new basis he introduced many errors in the reporting the archetype's readings. These mistakes, while annoying, did not lead to any significant misrepresentation of Pappus's text: for the greater part they merely caused simple and obvious emendations in the mathematical reasoning or the grammar to be credited to the Vaticanus. Much more regrettable was Hultsch's readiness to attribute almost any oddity in the received text to the intervention of interpolators; this has already been discussed above (section §4). In many cases it is difficult to see why Hultsch judged passages as inauthentic; often scribal and authorial carelessness and the derivation of our text from draft copies are the likely explanations of what Hultsch saw as intrusions. The Arabic version of Book 8 confirms that many of Hultsch's bracketings are incorrect. This translation, based on a text that probably descends from Pappus's autographs by a line independent of the Greek tradition of the Collection, shares with it all the many larger passages that Hultsch excised. The effect of the bracketings is not trivial; often it distorts the sense of Pappus's statements. These are the serious general faults of Hultsch's edition; however, it is no criticism of his work to add that Pappus's text remains susceptible of improvement in numerous places.

After Hultsch no edition or translation based on a new examination of the text has been printed (A. P. Treweek's edition of Books 2 to 5 [thesis, University of London, 1950] remains unpublished). The only complete translation into a modern language is the French version by Ver Eecke. ${ }^{161}$ Like his many other translations, this is useful and competent, but it is also too faithful to Hultsch's text. Ver Eecke's commentary is sparse, though generally accurate, and the lack of page and chapter references to the Greek text makes comparison with the original inconvenient.

[^7]
Introduction to Book 7

§18. The Domain of Analysis. Book 7 of the Collection is a companion to several geometrical treatises, which by Pappus's time were
 or 'Domain of Analysis'. 162 These books were supposed to equip the geometer with a "special resource" enabling him to solve geometrical problems. More precisely, they were to help him in a particular kind of mathematical argument called 'analysis'. The nature of Greek geometrical analysis has been the subject of an enormous philosophical and metamathematical literature, to which I am reluctant to add. 163 The following remarks are meant only as a description of analysis as it actually occurs in Pappus and other ancient texts, and to show the application of the "Domain of Analysis" to it.

In ancient geometry 'analysis' had none of its modern connotations, but referred to a kind of reversal of the normal 'synthetic' method of proof or construction. Synthesis began with assumed abstract objects and statements about them, and, by a series of steps conventionally admitted to be valid, eventually arrived at a desired conclusion: the validity of an assertion in a 'theorem', the construction of a specified object in a 'problem'. A synthetic proof of any but the simplest propositions might be difficult to discover directly, so that as a preliminary approach it would be advantageous to work backwards from the goal, on the supposition that the order of the steps could be reversed to produce a valid synthesis of the proposition.

162 See the notes to 7.1.

163 One recent paper, Mahoney [1968], is notable, in spite of several misconceptions, for its refreshing emphasis on analysis as a mathematicians' tool rather than philosophical method, and for its bibliographical references. A more promising line of investigation than the meticulous hermeneusis of the same few passages in Greek authors (Pappus, Marinus, the scholiast to Elements XIII) might be the reception and development of Greek analysis by Arabic mathematicians, of which there survive copious theoretical discussions and examples in practice that have yet to be studied.

Pappus draws (in 7.2) an important distinction between the analysis of theorems (propositions in which the validity of an assertion is to be determined) and the analysis of problems (propositions requiring the construction of a described object from various data). Actual examples of 'theorematical' analysis in ancient texts are not numerous: they include a well known series of analyses of the first five propositions in Book 13 of the Elements inserted into the transmitted text at some time after Euclid, 164 and some instances in Pappus, for example 7.225, .226, .231, and .321 in Book 7. As these show, analysis as applied to theorems was a comparatively naive technique using the same kinds of logical steps as synthetic proof, but beginning with the assumption of that which is to be proved, and advancing until a conclusion is reached that is known to be true (or false) independently of the assumption. Consequently the technique guarantees neither the correctness of the proposition nor the possibility of obtaining a valid proof by inverting the steps of the argument. For example, in 7.321 the proposition is indeed correct, but the analysis that apparently verifies it is not reversible, a circumstance that explains Pappus's difficulties in attempting a synthesis of the proposition in 7.319. However, if the analysis arrives at a conclusion independently known to be false, or inconsistent with the assumption, then it is a valid disproof by reductio ad absurdum, and requires no inversion; such proofs are, of course, well attested.

In contrast to their counterpart for theorems, analyses of problems are very common in Greek treatises. There seem to have been two reasons for this fact: first, there existed an expandable repertory of operations that were reversible as steps in geometrical construction (so that the analysis of a problem had a degree of cogency lacking in theorematic analysis); and secondly, an analysis could yield information about the conditions of possibility and number of solutions of a problem, the determination of which, or 'diorism', was an essential part of a complete solution of a problem. Essential to the analysis of problems was the concept of being 'given', which was applied both to those objects that are assumed at the beginning of a problem, and to any other objects that are determined by the assumptions. The word 'given' had a wide range of mathematical connotations in antiquity, 165 but the most common meanings were 'assumed', 'determined', and 'determined and constructible'. The distinction between the second and third arises only in problems, such as the trisection

164 Euclid, Opera vol. 4 pp. 364-76.

165 They are discussed, rather confusingly, by Marinus (fifth century A.D.) in his introduction to Euclid's Data (Euclid, Opera vol. 6 pp. 234-57).
of the angle, where the postulates admitted by the geometer may not enable the actual construction of the object, although it is considered to exist.

Euclid's Data codifies the basic definitions and fundamental theorems required for analysis of problems. Line segments, areas, circles, circular segments, and angles are 'given in magnitude' when their equals can be constructed ($\pi \rho \rho i \sigma a \sigma \theta a \iota$). Similarly a ratio whose equal can be constructed is 'given'. Rectilineal figures, when figures similar to them can be constructed, are 'given in shape' (or 'in species'). 'Given in position', applied to points, lines, and other drawn objects, is defined as "always occupying the same place" (a not entirely satisfactory description). The propositions that follow each assert that, if various objects are assumed given, then a certain consequent object is given (that is, determined). For example, proposition 25: "If two (straight) lines given in position intersect, the point at which they intersect is given in position." Or proposition 90: "If from a given point a straight line is drawn tangent to a circle given in position (and magnitude), the (line) drawn is given in position and magnitude." This example shows that being 'given' does not always entail being unique (but there must be only a finite number of solutions). The proofs use the established arguments of synthetic geometry (as in the Elements), together with the foregoing propositions within the Data. Necessarily there are some steps that are not well defined, as in proposition 25 , where the argument is that if the intersection is not given, it can be 'shifted', and therefore one of the two straight lines will 'shift', in contradiction with the assumptions. But essentially the Data establishes a large number of theorems about the constructibility of objects, which are extremely valuable in the analysis of a problem.

An illustration of the complete solution of a problem, with analysis and synthesis, is the first proposition (1.1.1) of Apollonius's Cutting off of a Ratio, translated in Appendix 3. The analysis begins by assuming the existence of the sought object, and by various constructions and arguments of the kind proved in the Data arrives at the conclusion that the sought object is given. Furthermore, Apollonius derives from the analysis a 'diorism' for the problem, namely a condition that one of the given objects (in this instance a ratio) must satisfy for the problem to have its unique solution.

Not surprisingly, the Data turns out to be the very first treatise in Pappus's list of works in the 'Domain of Analysis'. The remainder apparently were to provide help at a more advanced level. One of them, Euclid's Porisms, seems to have been in character rather like the Data, but with much more complex hypotheses. ${ }^{166}$ With the exception of

Apollonius's Conics, the remainder of the books in Pappus's list were collections of either problems or locus theorems. The five problem books were all by Apollonius: the Cutting off of a Ratio, the Cutting off of an Area, the Determinate Section, the Neuses, and the Tangencies. Only the first of these works survives intact (in Arabic), but their general character appears to have been uniform. ${ }^{167}$ Apollonius chose for each a single problem or group of related problems, and gave an analysis, synthesis, and (where necessary) diorism of every conceivable case as determined by the various possible mutual relationships of the objects assumed given. This thoroughness inevitably made the books very long and monotonous, while the problems chosen for solution were sometimes not very interesting in themselves. On the other hand, they are the kind of problems to which more complicated problems might often be reducible by analysis. It appears, therefore, that Apollonius himself must have had a programmatic purpose in writing these works, and that the idea of a 'Domain of Analysis' may have originated with him. The books of loci also have a manifest utility in analysing problems. Each locus theorem proved that some object (usually a point) that satisfied certain conditions with respect to given objects lies on a given object (usually a straight or curved line, or a surface). Hence if the same point simultaneously exhibits two independent locus properties, it will be at the intersection of two given lines, and so will itself be given. The locus books in the 'Domain of Analysis' were Apollonius's Plane Loci (loci that are straight lines and circles), Aristaeus's Solid Loci (conic sections), Euclid's Loci on Surfaces (probably surfaces of spheres, cylinders, and cones), and Eratosthenes's 'loci with respect to means' (in his book On Means), of which we know nothing. 168 Apollonius's Conics seems oddly out of place in the 'Domain of Analysis'. While it is true that parts of its eight books are devoted to problems related to conics, much of the work is devoted to proofs of properties of the conic sections that would be of little immediate use in applications to general problems. Pappus hints in 7.29 that the Conics was in the 'Domain' primarily as a preparation for Aristaeus's earlier collection of loci, since that work did not prove all the basic theorems concerning conic sections that it depended on.

Pappus is our only substantial source of knowledge of the 'Domain of Analysis'. It was known later, for about A.D. 500 Marinus mentions it, and in the next century Eutocius quotes a theorem in Apollonius's Plane

167 See Essay A.

168 For Apollonius's book, see Essay A section §8; for the others, Essay C.

Loci as coming from it. 1^{69} Of the works that it comprised, all those by Apollonius (except Book 8 of the Conics), as well as the Data, apparently were translated into Arabic around the ninth century. ${ }^{170}$ However, Euclid's Porisms and Loci on Surfaces, and the treatises of Aristaeus and Eratosthenes probably were not known to Arabic mathematicians, and there is no evidence that the other works had a common mode of transmission. Perhaps the manuscript or manuscripts of the six minor works of Apollonius that gave the Arabic translators their Greek text were the last in the world, for after Eutocius no Byzantine ever alludes to them.
§19. The purpose and plan of Book 7. Book 7 is not a commentary to the works of the 'Domain of Analysis', at least in the conventional sense. It comprises three parts: a general introduction to the 'Domain', a series of introductions or 'epitomes' ($\pi \in \rho \iota \circ \times a i$) of nine of the treatises (omitting Aristaeus's Solid Loci, Euclid's Loci on Surfaces, and Eratosthenes's On Means), and a corpus of lemmas to these treatises (omitting the Data, but including a fragmentary section for the Loci on Surfaces). Where possible Pappus follows a constant formula for the epitomes: he states the problem or problems solved in the work in as general a form as he can, and then recites various statistics about the numbers of problems, cases, propositions, diorisms, and lemmas belonging to it. For the Porisms and Conics, which were to long and varied in content for such a summarization, Pappus abbreviated the account, in the one case by classifying the propositions according to a rather arbitrary scheme, in the other by quoting Apollonius's own introduction. Occasional digressions sometimes contain interesting matter; the most remarkable is in 7.33-42, in which we are given Pappian portraits of Euclid and Apollonius, the enunciation of an important locus theorem (the 'locus on three and four lines') and its unsolved generalization, a tirade against the incompetence of Pappus's contemporaries, and an unproved proposition concerning the volumes of solids of revolution. These epitomes must have been meant to be read before the treatises, and as a guide to their contents.

The lemmas, on the other hand, were to accompany the actual working through of each treatise. Pappus claims (7.3) to have identified every passage that required a lemma, that is, every passage in the geometrical reasoning that assumed steps that a reader would not be able to justify immediately from what had preceded and his elementary knowledge. Unfortunately, when Pappus included a lemma in Book 7, he

[^8]170 See the references in Essay A, and the notes to 7.4.
did not invariably indicate the place in the treatise to which it referred. Moreover, he often included additional theorems and problems that were not true lemmas, but rather supplements and alternative proofs. Consequently it is often difficult for us to correlate the lemmas with the treatises, even in the case of the extant parts of Apollonius's Conics.
§20. Mathematics in Book 7. The lemmas for the most part make dreary reading. As one might expect, the steps that Apollonius chose not to fill out in his minor works and the Conics are not the most advanced and interesting innovations, but usually certain frequently encountered theorems of an easily recognizable kind that the author preferred to leave to his reader to confirm. The lemmas (7.132-156) to the Neuses are typical: except for 7.142 and .146 they are all variations of the same moderately easy proposition, adapted to different relative dispositions of the given objects. This class of lemmas, though tedious to work through, are historically valuable as clues to confirming the identification of the actual solutions used in the lost works, either reconstructed by conjecture or recovered from second-hand sources. Moreover, the pattern of variations in a series of similar lemmas is an indication of the plan of the original work that assumed them.

A few of Pappus's lemmas surpass this level of interest. In particular, those to Euclid's Porisms and Loci on Surfaces are our best evidence for the content of those works. Many of the lemmas to the Porisms are either demonstrably or probably syntheses of theorems that Euclid proved by analysis; they are themselves much more sophisticated than Pappus's usual fare.171 In the fragmentary section on the Loci on Surfaces Pappus presents a proof of the focus-directrix property for the general conic (the earliest preserved), which seems to have had a threedimensional analogue in Euclid's work. 172

Among the more humble lemmas to Apollonius's treatises, a large and homogeneous group are related to what is conventionally called 'geometrical algebra'. These propositions (which include many of the lemmas to the Cutting off of a Ratio, the Determinate Section, and the Conics) prove various identities concerning sums of products of (or in Greek terms, rectangles contained by) line segments along a single straight line. For example, 7.117 to the Determinate Section demonstrates that, if points $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ are distributed in that order along a line, and segment $\mathbf{A B}$ equals segment CD, then

171 See Essay B.

172 See Essay C, section §6.

$\mathrm{BE} \cdot \mathbf{E C}-\mathrm{AE} \cdot \mathbf{E D}=\mathrm{BD} \cdot \mathrm{DC}$

(the purist will read $\mathbf{a} \cdot \mathbf{b}$ as "the rectangle contained by a and b"). Pappus generally proves this kind of lemma by reference to the theorems at the beginning of Book 2 of the Elements, where Euclid establishes several fundamental theorems in 'geometrical algebra'. The propositions most often used are summarized in the following table.

A	B	Γ	Δ	E

Let $\mathrm{AB}=\mathrm{B} \Delta$.

II, 4:	$\mathrm{A} \Gamma^{2}=\mathrm{AB}{ }^{2}+\mathrm{B} \Gamma^{2}+2 \mathrm{AB} \cdot \mathrm{B} \mathrm{\Gamma}$
II,5:	$\mathrm{A} \Gamma \cdot \Gamma \Delta+\mathrm{B} \Gamma^{2}=\mathrm{B} \Delta^{2}$ (Used very often)
II,6:	$\mathrm{AE} \cdot \mathrm{E} \Delta+\mathrm{B} \Delta^{2}=\mathrm{BE}^{2}$ (Used very often)
II, 7:	$A \Gamma^{2}+\Gamma B^{2}=2 A \Gamma \cdot \Gamma B+A B^{2}$
II, 8:	$4 \mathrm{~A} \cdot \Gamma \cdot \mathrm{~B}+\mathrm{AB}^{2}=(A \Gamma+\Gamma B)^{2}$
II, 9:	$\mathrm{A} \Gamma^{2}+\Gamma \Delta^{2}=2\left(\mathrm{AB}^{2}+\mathrm{B} \Gamma^{2}\right)$
II, 10:	$\mathrm{AE}^{2}+\mathrm{E} \Delta^{2}=2\left(\mathrm{AB}^{2}+\mathrm{BE}^{2}\right)$
II, 11:	Problem, given $\mathrm{A} \Delta$, to find Γ such that $\mathrm{A} \Delta \cdot \Delta \Gamma=\mathrm{A} \Gamma^{2}$

Probably when Apollonius assumed identities in 'geometrical algebra', he did not expect the reader to work out Pappian proofs based on the Elements, but rather to justify them directly by the same kind of proofs as Euclid uses for his fundamental theorems. ${ }^{173}$ The technique is to erect on the line segments rectangles with heights equal to some of the segments, so that the products in the inequality are readily visible. For example, in place of 7.117 one could construct the figure below, from which the

173 This is Zeuthen's hypothesis (Zeuthen [1886] pp. 36-38). It is independent of the much discussed question of whether such theorems should be 'interpreted' as geometry or algebra, or the separate, purely historical question of their origins.
proposition is immediately apparent because the areas labelled \mathbf{x} and \mathbf{y} are equal.

Manipulations of ratios also are extremely important in the lemmas of Book 7. The fundamental theorems are in Book 5 of the Elements, and are tabulated below.

Ratio manipulation and equalities.

Let $\mathbf{a}: \mathbf{b}=\mathbf{c}: \mathbf{d}, \mathbf{b}: \mathbf{e}=\mathbf{d}: f, \mathrm{~b}: \mathrm{g}=\mathrm{h}: \mathbf{c}$.
$\mathrm{V}, 12$: taking all to all $(\mathbf{a}+\mathbf{c}):(\mathrm{b}+\mathbf{d})=\mathbf{a}: \mathbf{b}$
$\mathrm{V}, 16:$ alternando $\mathbf{a}: \mathbf{c}=\mathbf{b}: \mathbf{d}$
$\mathrm{V}, 18$: componendo $(\mathbf{a}+\mathrm{b}): \mathbf{b}=(\mathbf{c}+\mathrm{d}): \mathbf{d}$

V,17: separando $(\mathbf{a}-\mathbf{b}): \mathbf{b}=(\mathbf{c}-\mathrm{d}): \mathbf{d}$
$\mathrm{V}, 19$: convertendo $\mathbf{a}:(\mathrm{a}-\mathrm{b})=\mathbf{c}:(\mathbf{c}-\mathrm{d})$
$\mathrm{V}, 22:$ ex aequali a:e $=\mathbf{c}: \mathbf{f}$
V,23: ex aequali in disturbed ratio a:g $=\mathbf{h}: \mathbf{d}$

Moreover, Pappus makes considerable use of compound ratios (that is, products of ratios), which are not treated in the Elements. There are a large number of instances where Pappus proves the same lemma twice, once using compound ratios, once without them.

For almost all the lemmas, the first few books of the Elements are a sufficient basis. The exceptions, which may be result from Pappus's carelessness in adapting proofs from earlier, more complete sources, are indicated in the commentary. Although the longest series of lemmas pertains to Apollonius's Conics, conic sections appear in only a few propositions: 7.274-279, related to Book 5 of the Conics, and 7.312-318, the lemmas to Euclid's Loci on Surfaces. These use no advanced results of the study of conic sections, and their dependence on Apollonius's treatise and earlier sources can be deferred to the commentary.

The reader should be aware of one convention that differs from modern practice in mathematical writing. Generally, the figures that accompany the text are illustrative, and it would be extremely bad form to argue 'from the figure'. However, the order of points on a line, and the definition of points that are the intersections of lines described in the text is often left to the reader's consulting of the drawing. For example, Pappus might write, "Join $A \Gamma$ ", and subsequently discuss points H, Θ that have not been defined in the text, but that the reader sees from the drawing are the intersections of $A \Gamma$ with, say, a circle that has been defined earlier. Also, Pappus will often write that "line $A \Gamma$ is given" when the points A, Γ on it are not given, or when only one of them is given, at the time that he first mentions the line. This practice, a consequence of the fact that only points are named in most rectilinear figures, should not cause confusion so long as the reader is alerted to it.

Editorial Principles

The Greek text. The text is based on a transcription made from photographs of the Vaticanus, subsequently collated with Hultsch's text, Commandino's translation, and the partial editions. Some passages, where moisture had long ago made the manuscript difficult to read, were collated again with the Vaticanus itself; personal inspection revealed that much of the text in these places could be read from the impression of the scribe's pen. In a small number of passages the original text is practically illegible; these have been enclosed in half-brackets (" Γ ", " ") in this edition.

The apparatus was constituted as follows. Where the adopted text diverges from the Vaticanus, the Vaticanus's reading is reported. Errors of accent and breathing, omissions of iota adscript (but not superfluous iotas), and division or joining of geometrical letters were excluded from the reporting; they almost certainly do not reflect phenomena in Pappus's own copy. Emendations adopted in the text from earlier authorities are credited in the apparatus, which also includes many, but not all, innovations of the earlier printed texts which were rejected or modified. A just treatment of the recentiores would have required not only collation of all the manuscripts, but also a determination of the hands and identification of those correctors who used Commandino's translation. But to omit their contribution entirely would have led to the attribution of numerous readings to Commandino, Gerhardt, and Hultsch that they merely inherited. As a compromise, the following rules were adopted. 174 Where Commandino adopts a text of his manuscript \mathbf{k} that is an improvement on that of \mathbf{A}, it is reported as "Co (\mathbf{k}) ". The readings of \mathbf{k} come from my collation of the manuscript. 175 Where Hultsch credits an improvement to one of the manuscripts \mathbf{B}, \mathbf{V}, or \mathbf{S}, it is reported as, for example, "Hu (S)" (or "Ge (S)" if Gerhardt adopted it). I have not collated these manuscripts, and so Hultsch's readings have to be taken on trust. When he specifies a correcting hand, in particular the hand that he believed, mistakenly, to be Scaliger's in S, 176 these have

174 I have not had the opportunity to collate the Savile manuscripts, so that probably some minor corrections already in them are attributed to Halley in my apparatus.

175 The numerous corrections in \mathbf{k} are probably Commandino's own (if not, then they are derived from his translation). These are not reported.
been reported only when they do not coincide, exactly or substantially, with Commandino. When they do, the credit is given to him. Sometimes an incorrect reading in \mathbf{A} is corrected tacitly in Hultsch's text. If the correct reading is in \mathbf{k}, I report "Co (\mathbf{k})"; if it is in Commandino but not \mathbf{k}, I report "Co". If it is in neither, I report "Hu (recc?)" or, if appropriate, "Ge (recc?)". Where an adopted innovation receives no credit, it is my own.

The text retains the orthography of the Vaticanus, and normalizations of previous editors are not reported. For typographical reasons, iota adscript instead of subscript is used.

The text figures. The figures for the geometrical propositions in Book 7, which generally occupy indented spaces at the end of the relevant theorem in the Vaticanus, are collected at the end of this edition. The reproductions are not exact facsimiles, but attempt to reconstruct Pappus's originals to the extent that that goal is possible. This object dictates, in the first place, the correction of gross errors in the relative positions of lines and the labelling of points, such as are to be expected in careless copying; in the second place, the preservation where possible of such conventions in the drawings as appear to be authentic. The most apparent, and paradoxical, convention is a pronounced preference for symmetry and regularization in figures, introducing equalities where quantities are not required to be equal in the proposition, parallel lines that are not required, right angles for arbitrary angles, and so forth. Modern practice discourages the introduction of this kind of atypicality in geometrical figures. In a translation or commentary by itself of an ancient text, it is desirable to make the figures completely general, and even in an edition it would be defensible. Since this edition is conservative in this respect, the reader of the mathematical parts must take care not to assume relations from the figure that are not explicitly stated in the proposition (a few conspicuous instances are signalled in the notes).

The apparatus for the figures is unconventional, no convention having yet been established for the reporting of variants. Describing the differences between my figures and those in \mathbf{A} has not been a problem. Reproduction of all the manuscript figures is obviously impractical; but in most cases where my drawings differ significantly from the originals, the alterations can be described clearly enough. A Latin apparatus would be as inconvenient to read as laborious to write lucidly, so I have adopted a few standard and easily intelligible abbreviations ("om", "corr", "transp") from standard critical usage and for the rest used English. Reluctantly, I have decided not to compare my figures with those of Commandino and Hultsch. To report their variants would have encumbered the apparatus beyond the limits of clarity. It would also have been deceptive, since the previous
editions (this is true of most other mathematical texts too) have looked upon the figures, not as part of the text, but as adjuncts to be remade at will. It goes without saying that Commandino and Hultsch identified and corrected many of the errors in the transmitted figures. I acknowledge my great debt to them here once for all.

Reference numbers. Chapter numbers are given in the Greek text and translation, as '(39)', and in the running heads on the text pages. The margins of the text give, in large type, the folio number in the Vaticanus, and, in small type, the page number in Hultsch's edition. The proposition numbers of Commandino and Hultsch are indicated in the translation, and are used to number the text figures. Their use as a method of reference should however be discouraged in favor of the chapter numbers, which have the great advantage of extending over the entire text, not merely the mathematical parts.

The translation. The translation attempts to be literal, though not lexical. It is desirable that translations of technical words should be consistent, but no useful purpose would be served by, for example, rendering each of the several Greek words meaning 'therefore' by its own special English particle. I have inserted in parentheses, which are reserved for that purpose, phrases understood in the Greek but not implicit in English. In certain frequent and conventional cases the glosses are not bracketed in order not needlessly to annoy the reader: thus $\dot{\eta} \dot{v} \pi \dot{o} \mathrm{AB} \mathrm{\Gamma}$ is translated as "angle ABG ", and $\tau \grave{o} \dot{\nu} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AB} \mathrm{\Gamma}$ as "the rectangle contained by AB, BG ". Major restorations of the text are marked in the translation by angular brackets ("<", ">"). Passages that are probably authentic, but contain essential mistakes that require comment are placed between asterisks.

Mathematical symbols are excluded from the translation, not as inconsistent with literality or faithfulness to Greek mathematical thought (a sufficiently flexible notation, carefully used, can avoid such faults), but because a translation accompanying an edition and notes that sometimes discuss small textual points ought to represent even verbal details that are inessential to the mathematics. As an assistance to the reading of the mathematical arguments, I have provided a compressed mathematical summary in the commentary. This is meant to be read along with the translation, and omits some things that the text states; on the other hand it gives explicit statements of some steps that are only implied by Pappus. The notation, which is not a formal translation of the Greek mathematical methods, is mostly self-explanatory, but the following interpretations of symbols may be helpful:

$=$	equality of lengths, areas, ratios, angles
\sim	similarity of figures (triangles, etc.)
\cong	congruence of figures

$A-B$	the excess of A over B
$A \cdot B$	the rectangle contained by A and B
$A: B$	the ratio of A to B
$(A: B) \cdot(\Gamma: \Delta)$	the ratio compounded of $A: B$ and $\Gamma: \Delta$
$\operatorname{tr} \cdot \mathrm{AB} \Gamma$	triangle $A B \Gamma$
$A B / / \Gamma \Delta$	line $A B$ is parallel to line $\Gamma \Delta$
$A B \perp \Gamma \Delta$	angle $A B \Gamma$
$\angle A B \Gamma$	right angle $A B \Gamma$
$\perp A B \Gamma$	angle $A B \Gamma$ is right
$\angle A B \Gamma \perp$	precedes an assertion that is derived from the
\therefore	immediately preceding one.
$?$	precedes an assertion to be proved

A few references to propositions of the Elements tacitly invoked by Pappus are inserted in the translation, as "(IV 3)" for Book 4, proposition 3. These references are kept to a minimum, and not always repeated when analogous situations recur. References in parentheses to other chapters in Book 7, such as " 7.191)", to subsidiary lemmas in the commentary, such as "(222.1)", and to Apollonius's Conics, as "(Conics II 1)", are also editorial supplements.

Abbreviations Used in the Apparatus

Manuscripts	
A	Vaticanus graecus 218 (10th c.)
$\mathrm{A}^{1}, \mathrm{~A}^{2}$	These refer only to the putative order of writing of the manuscript within a single apparatus note, not to hands.
A alia manu	The second, corrector's hand (Hultsch's A ${ }^{2}$).
B	Parisinus graecus 2440 (16th c.). Collated by Hultsch.
C	Parisinus graecus 2368 (16th c.). Collated by Hultsch.
\mathbf{k}	Chicago Newberry 11 (16th c.)
\mathbf{S}	Leiden Scaligeranus 3 fol. (16th c.). Collated by Hultsch. $\mathbf{S}_{\mathbf{2}}$ is a Renaissance corrector's hand.
V	Leiden Vossianus 18 fol. (16th c.). Collated by Hultsch. $\mathbf{V}_{\mathbf{2}}$ is a Renaissance corrector's hand.
recc	Readings of $\mathbf{B}, \mathbf{C}, \mathbf{S}$, or \mathbf{V}.
Editors, Translators, Commentators	
Breton	Breton [1855]. Contains ch. 13-20.
Camer ${ }_{1}$	Camerer [1795]. Contains ch. 11-12, 158-184.
Camer ${ }_{2}$	Camerer [1796]. Contains ch. 21-26, 185-192.
Co	Commandino [1588]. Latin translation.
Friedlein	Friedlein [1871].
Ge	Gerhardt [1871]. Edition and German translation.
Greg	Gregory [1703]. Contains ch. 1-4.

Ha	Halley [1706]. Contains ch. 1-67, 233-311.
Ha $_{2}$	Halley [1710]. Contains ch. 233-311.
Haumann	Haumann [1817]. Contains ch. 11-12, 158-184.
Heiberg $_{1}$	Heiberg, LSE.
Heiberg $_{2}$	Apollonius, Opera vol. 2. Text of passages relative to Apollonius, derived from Hu.
Heiberg $_{3}$	Euclid, Opera vol. 8. Text of passages relative to Euclid, derived from Hu.
Horsley	Horsley [1770]. Contains ch. 27-28, 126.
Hu	Hultsch, PAC. Critical edition and Latin translation.
Hu app	Conjectures in the apparatus of Hu.
Hu	Hultsch [1873].
Simson	Simson [1776].
Simson	Simson [1749]. Contains ch. 21-26.
Snel	Snel [1608]. Contains ch. 9-10.
Tannery	Tannery [1882].
Vincent	Vincent [1859].

TEXT AND TRANSLATION

Pappus of Alexandria The Collection

Book 7
Which contains lemmas of the Domain of Analysis
(1) That which is called the Domain of Analysis, my son Hermodorus, is, taken as a whole, a special resource that was prepared, after the composition of the Common Elements, for those who want to acquire a power in geometry that is capable of solving problems set to them; and it is useful for this alone. It was written by three men: Euclid the Elementarist, Apollonius of Perge, and Aristaeus the elder, and its approach is by analysis and synthesis.

Now, analysis is the path from what one is seeking, as if it were established, by way of its consequences, to something that is established by synthesis. That is to say, in analysis we assume what is sought as if it has been achieved, and look for the thing from which it follows, and again what comes before that, until by regressing in this way we come upon some one of the things that are already known, or that occupy the rank of a first principle. We call this kind of method 'analysis', as if to say anapalin lysis (reduction backward). In synthesis, by reversal, we assume what was obtained last in the analysis to have been achieved already, and, setting now in natural order, as precedents, what before were following, and fitting them to each other, we attain the end of the construction of what was sought. This is what we call 'synthesis'.
(2) There are two kinds of analysis: one of them seeks after truth, and is called 'theorematic'; while the other tries to find what was demanded, and is called 'problematic'. In the case of the theorematic kind, we assume what is sought as a fact and true, then, advancing through its consequences, as if they are true facts according to the hypothesis, to something established, if this thing that has been established is a truth, then that which was sought will also be true, and its proof the reverse of

ПAППOT A $\triangle E=A N \triangle P E \Omega \Sigma ~ \Sigma T N A \Gamma \Omega \Gamma H \Sigma Z^{\prime}$.
 IIEPIEXEI $\triangle E$ AHMMATA TOT ANAATOMENOT.

 ото८хєє $\omega \tau$ о

5

|| 13 ante $\sigma v \nu \theta^{\prime} \epsilon \sigma \epsilon \iota$ add $\dot{\epsilon} \nu$ Greg| γ à ρ om Greg || $14 \tau 0 \tilde{v}$ (in fine versus A) del Greg \| $18 \tau \tilde{\eta} \iota$ om $\mathrm{Ge} \| 20 \dot{\epsilon} \pi \sigma^{\prime} \mu \in \nu a \tau \grave{a}$ transp $\mathrm{Hu} \|$

 app
the analysis; but if we should meet with something established to be false, then the thing that was sought too will be false. In the case of the problematic kind, we assume the proposition as something we know, then, proceeding through its consequences, as if true, to something established, if the established thing is possible and obtainable, which is what mathematicians call 'given', the required thing will also be possible, and again the proof will be the reverse of the analysis; but should we meet with something established to be impossible, then the problem too will be impossible. Diorism is the preliminary distinction of when, how, and in how many ways the problem will be possible. So much, then, concerning analysis and synthesis.
(3) The order of the books of the Domain of Analysis alluded to above is this: Euclid, Data, one book; Apollonius, Cutting off of a Ratio, two; Cutting off of an Area, two; < Determinate Section>, two; Tangencies, two; Euclid, Porisms, three; Apollonius, Neuses, two; by the same, Plane Loci, two; Conics, eight; Aristaeus, Solid Loci, five; Euclid, Loci on Surfaces, two; Eratosthenes, On Means [two]. These make up 32 books. I have set out epitomes of them, as far as the Conics of Apollonius, for you to study, with the number of the dispositions and diorisms and cases in each book, as well as the lemmas that are wanted in them, and there is nothing wanting for the working through of the books, I believe, that have I left out.

(4) (The Data.)

The first book, which is the Data, contains ninety theorems in all. The first twenty-three diagrams are all about magnitudes. The twenty-fourth is on proportional lines that are not given in position. The fourteen next to these are on lines given in position. The next <ten> are on triangles given in shape without position. The next seven are on arbitrary rectilineal areas given in shape without position. The next six are on parallelograms and

 oṽ $\nu \pi \epsilon \rho i \dot{a} \dot{a} \nu a \lambda \dot{v} \sigma \epsilon \omega \varsigma \kappa a i \quad \sigma v \nu \theta ' \epsilon \sigma \epsilon \omega \varsigma$.

(4) $\pi \epsilon \rho \iota \epsilon \in \chi \in \iota \quad \delta \grave{\epsilon} \quad \tau \grave{o} \pi \rho \tilde{\omega} \tau o \nu \quad \beta \iota \beta \lambda i o \nu$, \quad ó $\pi \epsilon \rho \quad \dot{\epsilon} \sigma \tau i \nu \quad \tau \tilde{\omega} \nu$

[^9]applications of area given in shape. Of the ensuing five, the first is on figures erected upon lines, the other four on triangular areas, that the differences of the squares of the sides are in given ratio to those triangular areas. The next seven, up to the seventy-third, are on two parallelograms, that by the stipulations concerning their angles they are in given ratios to one another. Some of these have similar postscripts on two triangles. Among the next six diagrams, up to the seventy-ninth, two are on triangles, four on more (than two) lines in proportion. The next three are on two lines [that are in ratio that is, and] enclose a given area. The final eight up to the ninetieth are proved on circles, some given only in magnitude, others also in position, that when lines are drawn through a given point, the results are given.

(5) (The Cutting off of a Ratio.)

The proposition of the two books of the Cutting off of a Ratio is a single one, albeit subdivided; and therefore I can write one proposition, as follows: through a given point to draw a straight line cutting off from two lines given in position (abscissas extending) to points given upon them, that have a ratio equal to a given one. In fact the figures are varied and numerous, when the subdivision is made, because of the dispositions with respect to each other of the given lines and the various cases of the way that the given point falls, and because of the analyses and syntheses of them and their diorisms. (6) Thus the first book of the Cutting off of a Ratio contains seven dispositions, twenty-four cases, and five diorisms, three of which are maxima, two minima. There is a maximum in the third case of the fifth disposition, a minimum in the second of the sixth disposition, in the same (number) of the seventh disposition; those in the fourth of the sixth and seventh dispositions are maxima. The second book of the Cutting off of a Ratio contains fourteen dispositions, sixty-three cases, and for diorisms those of the first, because it reduces entirely to the first.

 $\tau \rho \iota \gamma \omega \nu \omega \nu, \mid \delta \delta \dot{\epsilon} \dot{\epsilon} \pi i \quad \pi \lambda \epsilon \iota o \nu \nu \omega \nu \in \dot{v} \theta \epsilon i \tilde{\omega} \nu \dot{a} \nu a ́ \lambda o \gamma o \nu \quad 0 \dot{v} \sigma \tilde{\omega} \nu$. $\tau \grave{a} \delta \dot{\epsilon}$

I

 ' $\boldsymbol{\epsilon} \pi$ ' Ha á π ' A \| 23 , $\delta \epsilon \delta o \mu \epsilon ́ \nu \omega \nu$ Ha $\delta \iota \delta o \mu \epsilon ́ \nu \omega \nu$ A \| 24
 $\tau \tilde{\eta} \varsigma a \dot{u} \tau \tilde{\eta} \varsigma \mathrm{~A} \| 32 \iota \delta$ На $\kappa \delta$ А

The Cutting off of a Ratio has twenty lemmas, and the two books of the Cutting off of a Ratio comprise 181 theorems. But according to Pericles, more than that many.

(7) (The Cutting off of an Area.)

There are two books of the Cutting off of an Area, and again one problem in them, though subdivided. Hence they also have one proposition, in all other respects similar to the one above, and differing in this respect alone, that one must make the two (abscissas) that are cut off, in the former case, have a given ratio, but in the latter case, enclose a given area. This is how it will be expressed: to draw through a given point a straight line cutting off from two lines given in position (abscissas extending) to points given on them that enclose an area equal to a given one. This (proposition), for the same reasons, has obtained a large number of figures.
(8) The first book of the Cutting off of an Area has seven dispositions, twenty-four cases, and seven diorisms, four of which are maxima, three minima. There is a maximum in the second case of the first disposition, as is that in the first case of the second disposition and in the second of the fourth and in the third of the sixth disposition. That in the third case of the third disposition is a minimum, as is that in the fourth of the fourth disposition, and in the first in the sixth disposition. The second book of the Cutting off of an Area contains thirteen dispositions, sixty cases, and for diorisms those of the first, because it reduces to it. The first book contains forty-eight theorems, the second seventy-six.

(9) (The Determinate Section.)

Next after these the two books of the Determinate Section have been passed down, for which, as for those above, it is possible to state a single proposition, although one admitting choices, and it is this: to divide a given unbounded line by one point so that of the abscissas extending (from the point) to points given on (the line), either the square of one or the rectangle enclosed by two abscissas have a given ratio either to the <square of> one, <or to the (rectangle enclosed) by one> abscissa and another (line) given besides, or to the rectangle enclosed by two abscissas extending to

[^10]

 र $\rho а ф о \mu \epsilon \epsilon \nu \omega \nu$.

 $\beta \iota \beta \lambda i o \nu \mu \eta, \tau \grave{o} \delta \grave{\epsilon} \delta \in \dot{v} \tau \epsilon \rho O \nu$ os.

5

[^11]whichever two that you use of the given points.
And since this (proposition) admits choices twice, and has intricate diorisms, necessarily its demonstration is long. Apollonius proves it backwards on pure straight lines, trying the more beaten path - as in the second book of the First Elements of Euclid, who proved these things in a still more introductory way using erections of figures on lines - and (then) ingeniously by means of semicircles.
(10) The first book contains six problems, sixteen assignments, and five diorisms: four maxima, one minimum. Maxima are in the second assignment of the second problem, and in the third of the fourth problem, and in the third of the fifth, and in the third <of the sixth; and a minimum in the third $>$ assignment of the third problem. The second (book) of the Determinate Section contains three problems, nine assignments, three diorisms, of which that in the third of the first and that in the third of the second are minima, and that in the third of the third problem is a maximum. The first book contains 27 lemmas, the second 24 . The two books of the Determinate Section are in 83 theorems.

(11) (The Tangencies.)

Following these are the two books of Tangencies. There appear to be several propositions in them, but even for these we set down one, which is as follows: given in position any three points, straight lines, or circles, to draw a circle through each of the given points, if there be given any, and tangent to each of the given (straight or circular) lines. Because of the number of like and unlike givens in the hypotheses, necessarily there are ten propositions differing in part, since out of the three unlike kinds, ten

 $\psi \iota \lambda \tilde{\omega} \nu \tau \tilde{\omega} \nu \epsilon \dot{\nu} \theta \epsilon \iota \tilde{\omega} \nu \quad \tau \rho \iota \beta a \kappa \dot{\omega} \tau \epsilon \rho о \nu, \pi \epsilon \iota \rho \dot{\omega} \mu \epsilon \nu о \varsigma$, каӨáa $\pi \rho, \kappa а і$

 $\kappa a i$ є $\dot{\psi} \phi \cup \tilde{\omega} \varsigma \delta i \grave{a} \tau \tilde{\omega} \nu \dot{\eta} \mu \iota \kappa v \kappa \lambda i \omega \nu$.

644

5

 $\dot{\epsilon} \kappa \mathfrak{a} \sigma \tau \eta \varsigma \tau \tilde{\omega} \nu \delta o \theta \epsilon \iota \sigma \tilde{\omega} \nu, \gamma \rho a \mu \mu \tilde{\omega} \nu$. $\tau a \dot{v} \tau \eta \varsigma \delta \iota \grave{a} \pi \lambda \eta \theta \eta \pi \tilde{\omega} \nu, \dot{\epsilon} \nu$

 $\delta \epsilon i \kappa \nu v \sigma \iota-\dot{\eta} \mu \iota \kappa v \kappa \lambda i \omega \nu$ secl $\mathrm{Hu} \mid \dot{a} \nu a ́ \pi a \lambda \iota \nu] \mu \grave{\epsilon} \nu \pi a ́ \lambda \iota \nu \mathrm{~A}$, om Ha\|, $7 \tau a \tilde{v} \tau a$ Snel $\tau a u ́ \tau \eta \nu$ A, del Heiberg ${ }_{2} \mid \dot{\epsilon} \pi a \nu a \gamma \rho a ́ \phi \omega \nu$ A

different unordered groups of three result: for the givens are either (1) three points, or (2) three lines, or (3) two points and a line, or (4) two lines and a point, or (5) two points and a circle, or (6) two circles and a point, or (7) two lines and a circle, or (8) two circles and a line, or (9) a point and a line and a circle, or (10) three circles. The first two of these were proved in Book 4 of the First Elements, and these (Apollonius) omitted to write. Thus the "given three points not on a line" is the same as the "to circumscribe a circle about a given triangle" (IV, 5), while the "given three lines, not parallel but all three meeting one another" is the same as the "to inscribe a circle inside a given triangle" (IV, 4). For the "having two parallel lines and one meeting them", as a part of the subdivision of the next (problem), is written in these (books) before all, and the next six in the first book; the remaining two, the "given two lines and a circle" or "given three circles" only in the second book, because of the numerous placements with respect to each other of the circles and lines, and because these also require many diorisms.
(12) There is a group of problems similar to the Tangencies mentioned above, that has been omitted by the people who have passed them down, and one might have given them too, before the two books mentioned, - for it would be easily comprehended and more introductory, but also a whole and something to fill out the class of tangencies - again encompassing everything in one proposition, which, though shorter than the one stated above in its hypothesis, is more abundant in (the number of) assignments (that it has); and it is thus: given any two points, lines, or circles, to draw a circle given in magnitude passing through the given point or given points, if

 $\boldsymbol{\gamma} \rho a \phi \omega \nu \mathrm{~A}$ А
 $\pi a \rho i \epsilon!\mu \grave{\eta} \gamma \rho a ́ \phi \omega \nu$ Heiberg $_{2} \| 10 \epsilon \dot{v} \theta \epsilon i a \nu \mathrm{Ha} \epsilon \dot{v} \theta \epsilon i a s$ A $\|_{14}$

 $\pi \rho o \sigma a \nu \epsilon \delta \omega \kappa \epsilon \nu$ ằ $\nu \iota \varsigma \tau \tilde{\omega} \iota \pi \rho о \tau \epsilon \rho \omega \iota$ Friedlein $\mid \tau \epsilon$ om Ha $24 \tau \epsilon$ om Ha| post $\mu \tilde{a} \lambda \lambda o \nu$ add $\mathfrak{a} \nu$ Friedlein $\| 25 \hat{\epsilon} \nu \tau \epsilon \lambda \epsilon \in \tau \epsilon \mathrm{Ha}$

any be given, and tangent to each of the given (straight or circular) lines. Already this contains six problems, since from three classes one obtains six different unordered pairs. For with either (1) two points being given, or (2) two lines given, or (3) two circles given, or (4) a point and a line, or (5) a point and a circle, or (6) a line and a circle, one has to draw, as was said, a circle given in magnitude. To give an analysis and synthesis and diorism case by case.

The first (book) of the Tangencies contains seven problems, the second four problems. The two books have twenty-one lemmas, and comprise sixty theorems.

(13) (The Porisms)

After the Tangencies are Euclid's Porisms in three books, which are for many people a very clever collection for the analysis of more weighty problems; and although nature furnishes a boundless multitude of kinds of them, (the moderns) have added none to what Euclid originally wrote, except that some tasteless predecessors of ours have inserted second constructions to a few of them, whereas each of them, as I have shown, has a fixed number of proofs, and Euclid put the proof of each that is most suggestive. They have a delicate and natural aspect, cogent and quite universal, and pleasant for people who know how to see, and how to find. All of them are in form neither theorems nor problems, but of a type occupying a sort of mean between them, so that their propositions can assume the form of theorems or problems, and it is for this reason that among the many geometers some have assumed them to be of the class of theorems, others, of problems, looking only at the form of the proposition.

 aútà $\delta \dot{\epsilon} \theta \epsilon \omega \rho \eta \mu a ́ \tau \omega \nu$ є́ $\sigma \tau i \nu \bar{\xi}$.

[^12](14) That the ancients best knew the distinction between these three things, is clear from their definitions. For they said that a theorem is what is offered for proof of what is offered, a problem what is proposed for construction of what is offered, a porism what is offered for the finding of what is offered. This definition of porism has been altered by the moderns because they could not find everything, but applying these elements and proving only this, that what is sought exists, without finding it, they were refuted by the definition and by what they were teaching. Hence on the basis of an accidental trait they wrote as follows: a porism is what is short by a hypothesis of (being) a theorem of a locus. The form of this class of porisms is the loci, and these abound in the Domain of Analysis. This kind, separated from the porisms, has been accumulated and named and handed down because of its being more diffusible than the other forms. There are, in fact, ten <books> of loci, some of planar, some of solid, some of curvilinear in (the loci) with respect to means.
(15) Another accidental trait of the porisms is that they have terse propositions because of their complexity, and many things are customarily left to be understood, with the result that many of the geometers comprehend them in part, but are ignorant of the more essential of the things signified. To encompass many things by one proposition is scarcely possible in the case of (the porisms); Euclid himself, after all, did not set down many things from each form, but one or a few out of the abundance for illustration. But at the beginning of the first book he placed some of similar form, all belonging to that more abundant kind of the loci, to the number of ten.

 $\dot{\epsilon} \pi i \quad \tau \omega \nu \pi \rho o \varsigma \quad \mu \in \sigma o ́ \tau \eta \tau a \varsigma$.

 3 ウ́c $\delta \epsilon \iota \sigma a \nu \mathrm{Ha\mid} 8 \mu \epsilon \tau \epsilon \gamma \rho a ́ \phi \eta$ - $\pi \rho o ̀ s ~ \mu \epsilon \sigma o ́ \tau \eta \tau a \varsigma$ secl Hu

 $\pi \lambda \tilde{\eta} \theta$ os secl $\mathrm{Hu}|\quad \ddot{\eta} \kappa \iota \sigma \tau a \mathrm{Ha} \eta \delta \iota \sigma \tau a \mathrm{~A} \| 27 \delta \epsilon i \gamma \mu a \tau a \mathrm{Ge}|$

 $\pi \dot{a} \nu \tau$ ' $\mathrm{Hu} \pi a \nu \mathrm{~A} \tau \iota \nu a \mathrm{Heiberg}_{1}$
(16) And hence, finding it to be possible to encompass these in one proposition, we have written: "If in a 'hyptios' or 'paryptios' three points on one (line), or both (the points) on a parallel (line) are given, while (each of) the rest except one touches a line given in position, then that one too will touch a line given in position." This is enunciated only for four lines, of which no more than two are through the same point. It is not recognized that it is true for every number put forward, if one states it thus: "If any number of lines should intersect each other, with no more than two through the same point, and all (points) on one (line) are given, and each of those on another touch a line given in position..." or more generally thus: "If any number of lines should intersect each other, not more than two through the same point, and all points on one line be given, the rest being in quantity a triangular number, the side of this having each point touching a line given in position, and no three being at the angles of a triangular area, each remaining point will touch a line given in position." (17) It is not likely that the Elementarist was unaware of this, but he put down only the beginning. In all the porisms he evidently sowed only the starts and seeds of many great multitudes. Their classes should be defined, not by the various hypotheses, but by the various things that result in them and are sought in them. All the hypotheses differ from each other, being very individual, but each of the results and things sought turns up exactly the same in many different hypotheses. (unintelligible text)
$\tau \tilde{\omega} \nu \tau \dot{o} \pi \omega \nu, \dot{\omega} \varsigma \quad i \tau \grave{o} \pi \lambda \tilde{\eta} \theta o s$.

 $\dot{v} \pi 0 \theta \dot{\epsilon} \sigma \epsilon \omega \nu$ ठ८aфо
 $\delta \iota a \phi \epsilon \rho 0 v \sigma \iota \nu \quad a \lambda \lambda \eta \lambda \tilde{\omega} \nu \quad \epsilon i \delta \iota \kappa \omega \tau a \tau a \iota \quad o \tilde{v} \sigma a \iota, \tau \tilde{\omega} \nu \quad \delta \dot{\epsilon}$

[^13](18) Thus the following kinds of things sought in the propositions are to be accomplished in the first book:
(1) In the beginning of the book is this diagram: If lines from two given points inflect on a line given in position, and one (line) cuts off (an abscissa) from a line given in position up to a point given on it, the other (line) too will cut off from another (line given in position) an (abscissa) having a given ratio (to the first).

Among those that follow:
(2) That this point touches a line given in position.
(3) That the ratio of this (line) to this (line) is given.
(4) That the ratio of this (line) to an abscissa (is given).
(5) That this (line) is given in position.
(6) That this (line) makes a neusis on a (point) given in position.
(7) That the ratio of this (line) to some one from this (point) to a given (point is given).
(8) That the ratio of this (line) to one drawn down from this (point is given).
(9) That the ratio of this area to the (rectangle contained) by a given line and this (line is given).
(10) That one part of this area is given, the other has a (given) ratio to an abscissa.
(11) That this area or this plus some area is given, and that (area) has a (given) ratio to an abscissa.
(12) That this (line) plus that to which this (line) has a given ratio, has a (given) ratio to some (line) from this (point) to a given (point).
(13) That the (rectangle contained) by a given and this. (line) plus the (rectangle contained) by a given and this (line) equals the (rectangle contained) by a given and the (line) from this (point) to a given (point).
 $\boldsymbol{\gamma} \epsilon \nu \eta \tau \tilde{\omega} \nu \dot{\epsilon} \nu \tau a \check{\iota} \varsigma \pi \rho о \tau \dot{a} \sigma \epsilon \sigma \iota \zeta \eta \tau о \cup \mu \epsilon \in \nu \omega \nu$.

 $\delta o \theta^{\prime} \boldsymbol{\epsilon} \boldsymbol{\nu} \boldsymbol{\sigma}$.
$\dot{\epsilon} \nu \delta \grave{\epsilon} \tau 0 \tilde{\imath} \varsigma \dot{\epsilon} \xi \tilde{\eta} \varsigma$.

(3) ö́ ι 入óros $\tau \tilde{\eta} \sigma \delta \in \pi \rho o s ~ \tau \dot{\eta} \nu \delta \in \delta o \theta \epsilon i \varsigma$.

 $\tau \tilde{\eta} \sigma \delta \epsilon$.

[^14](14) That the ratio of this (line) and this (line) to some (line) from this (point) to a given (point is given).
(15) That this (line) cuts off from (lines) given in position (abscissas) containing a given.
(19) In the second book, the hypotheses are different, but of the things sought, the majority are the same as those in the first book, but there are these in addition:
(1) That this area either has a (given) ratio to an abscissa or plus a given has a (given) ratio to an abscissa.
(2) That the ratio of the (rectangle contained) by these (lines) to an abscissa (is given).
(3) That the ratio of the (rectangle contained) by these (lines) taken together plus these (lines) taken together to an abscissa (is given).
(4) That the (rectangle contained) by this (line) and the sum of this (line) and that to which this (line) has a given ratio, plus the (rectangle contained) by this (line) and that to which this line has a given ratio have a (given) ratio to an abscissa.
(5) That the ratio of a sum to a (line) from this (point) to a given (point is given).
(6) That the (rectangle contained) by these is given.
(20) In the third book most of the hypotheses are on semicircles, and a few on the circle and sectors. Of the things sought, many are analogous to those above, but there are these in addition:
 Є̈んs $\delta 0 \theta \epsilon \in \nu \tau O S$.
 $\delta o \theta^{\prime} \dot{\epsilon} \tau 0 s$.
 $\pi \in \rho \iota \in \chi$ оvoas.

 $\pi \rho \dot{\omega} \tau \omega \iota \beta \iota \beta \lambda i \omega \iota, \pi \epsilon \rho \iota \sigma \sigma \grave{a} \delta \grave{\epsilon} \tau a \tilde{v} \tau a$.

 $\tau \tilde{\omega} \nu \delta \epsilon \pi \rho o s$ á $\pi о \tau о \mu \dot{\eta} \nu$.

 $\delta 0 \theta^{\prime} \boldsymbol{\epsilon} \nu \tau 0 s$.

 $\pi \epsilon \rho \iota \sigma \sigma a ̀ \delta e ̀ t a \tilde{v} \tau a$.

 add $\mathrm{Ha} \| 11 \mu \in \tau \grave{a}-\dot{a} \pi o \tau o \mu \dot{\eta} \nu$ om A^{1} add $\mathrm{mg} \mathrm{A}^{2}$ alia manu, om Hu

 Heiberg ${ }_{1}$
(1) That the ratio of the (rectangle contained) by these to the (rectangle contained) by these (is given).
(2) That the ratio of the square of this to an abscissa (is given).
(3) That the (rectangle contained) by these equals the (rectangle contained) by a given and a (line) from this (point) to a given (point).
(4) That the square of this (line) to the (rectangle contained) by a given and what is cut off by a perpendicular as far as a given (point is given).
(5) That the sum of <this> (line) and (that) to which this line has a given ratio has a (given) ratio to an abscissa.
(6) That there is some given point from which (lines) joined to this will contain a triangle given in shape.
(7) That there is a given point from which (lines) joined to this receive equal arcs.
(8) That this (line) either is parallel to a (line given) in position, or contains a given angle with some line that makes a neusis on a given (point).

The three books of the Porisms contain thirty-eight lemmas. They comprise 171 theorems.

(21) Two (books) of Plane Loci:

Of the loci in general, some are fixed, as Apollonius also states before his own elements: the locus of a point being a point, a line the locus of a line, a surface of a surface, a solid of a solid; others are path loci: as a line of a point, a surface of a line, a solid of a surface; others are domain loci: as a surface of a point, a solid of a line.
(22) Among the (loci) in the Domain of Analysis, those of things given in position are fixed, while the so-called 'plane' and 'solid' and 'curvilinear' (loci) are path loci of points, and the loci on surfaces are domain loci of points, but path loci of lines. However, the curvilinears are demonstrated

 $\theta \epsilon \omega \rho \eta \mu a ́ \tau \omega \nu$ є́ $\sigma \tau i \nu \rho o \bar{a}$.

(21) TOП Ω N EПIПE $\Delta \Omega$ N Δ TO

 $\sigma \tau \in \rho \in о i \quad<\kappa a i \quad$ оi>, $\quad \rho a \mu \mu \iota \kappa о i \quad \delta \iota \in \xi о \delta \iota \kappa о i, ~ \in i \sigma \iota \nu \quad \sigma \eta \mu \in i \omega \nu$, оi

|| 2 入óros Ha dóyov A| rò secl Ha\| 3 rĩs add Ha\| 5

 $\pi a \rho a ́ \theta \epsilon \sigma \iota \varsigma) \eta \delta \epsilon \nu \tau 0 \iota \pi a \rho a \theta \epsilon \epsilon \sigma \epsilon \iota \mathrm{~A} ク \boldsymbol{\eta} \delta \epsilon \operatorname{\eta } \boldsymbol{\eta} \tau 0 \iota \dot{\epsilon} \nu \pi a \rho a \theta \dot{\epsilon} \sigma \in \iota$
 $\tau \grave{o} \mathrm{Ha} \mathrm{\|} 18 \dot{\omega} \mathrm{~s} \mathrm{Hu}$ oìs A \| 19 í $\delta i \omega \nu$, om Ha \| 20 ү $\rho a \mu \mu \dot{\eta}$ A
 Heiberg $_{2} \quad \gamma \rho a \mu \mu \dot{\eta} \nu \mathrm{~A} \mid$ post $\gamma \rho a \mu \mu \tilde{\eta} s$ add $^{\delta} \delta^{\prime} \mathrm{Hu} \mid, \epsilon \pi \iota \phi \bar{a} \nu \in \iota a$ Heiberg $_{2} \epsilon \pi \iota \phi \dot{a} \nu \in \iota a \nu \mathrm{~A} \| 23 \dot{\epsilon} \pi \iota \phi a \dot{\nu} \in \iota a$ Heiberg $2 \dot{\epsilon} \pi \iota \phi a \dot{a} \in \iota a \nu$ A \| 24 totum cap. 22 secl $\mathrm{Hu} \mid \tau \tilde{\omega} \nu\left(\theta^{\prime} \epsilon \sigma \epsilon \iota\right) \mathrm{Ha} \tau \tilde{\omega} \iota \mathrm{A} \| 26$ ante

on the basis of the (loci) on surfaces. The loci about which we are teaching, and generally all that are straight lines or circles, are called 'plane'; all those that are sections of cones, parabolas or ellipses or hyperbolas are called 'solid'; and all those loci are called 'curvilinear' that are neither straight lines nor circles nor any of the aforesaid conic sections. The loci that Eratosthenes named 'with respect to means' are in classification among those named above, but they have been named on the basis of the characteristic of their hypotheses.
(23) The ancients compiled their elements attending to the order of these plane loci; but the people who came after them disregarded this, and added others - as if they were not boundless in number if one wanted to add some that do not belong to that order! Hence I shall put the additional ones later, and those that belong to the order first, encompassing them by one proposition, namely: (1) If two straight lines are drawn either from one given point or from two, and either in a straight line or parallel or containing a given angle, and either holding a ratio to one another or containing a given area, and the end of one touches a plane locus given in position, the end of the other will touch a plane locus given in position, sometimes of the same kind, sometimes of the other, and sometimes similarly situated with respect to the straight line, sometimes oppositely; this follows in accordance with the various assumptions.
(24) And the additional ones. First, three by Charmandrus that are harmonious:
(2) If one end of a straight line given in magnitude be given, the other will touch a concave (circular) arc given in position.
(3) If straight lines from two given points should inflect and contain a given angle, their common point will touch a concave (circular) arc given in position.

 $\dot{v} \pi 0 \theta \epsilon \epsilon \sigma \epsilon \omega \nu \dot{\epsilon} \kappa \lambda \dot{\eta} \theta \eta \sigma a \nu$.

 $\tau \dot{a} \varsigma \delta \iota a \phi o \rho a ̀ ̣ \tau \tilde{\omega} \nu \dot{v} \pi о к \in \iota \mu \dot{\epsilon} \nu \omega \nu$.
 $\sigma \cup \mu \phi \omega \nu \epsilon \tilde{\iota}$ та $\tau \tau a$.

 $\pi \in \rho \iota \phi \in \rho \in i a s, \kappa о i \lambda \eta s$.

 $11 \epsilon i s \tau \dot{\eta} \nu$ add $\mathrm{Hu} \mid \tau 0 \dot{v} \tau \omega \nu$ secl Hu $\tau \dot{o} \pi \omega \nu, \tau 0 \dot{v} \tau \omega \nu$ transp Ha 14 oú] тà Hu \| $15 \pi \rho о \sigma \kappa \epsilon i \mu \epsilon \nu a$ Ge $\left.\pi \rho о к \epsilon i \mu \epsilon \nu a \mathrm{~A} \mid \delta^{\prime} \epsilon \boldsymbol{\epsilon} \kappa\right] \delta \epsilon$

 $\sigma \eta \mu \epsilon i \omega \nu \mathrm{~A}$
(4) If the base of a triangular area given in magnitude should be given in position and magnitude, its vertex will touch a straight line given in position.
(25) Others are like this:
(5) If one end of a straight line given in magnitude and drawn parallel to some straight line given in position, should touch a straight line given in position, the other (end) too will touch a straight line given in position.
(6) If from a point to two straight lines given in position, whether parallel or intersecting, (straight lines) are drawn at given angles, either having a given ratio to one another, or with one of them plus that to which the other has a given ratio being given, the point will touch a straight line given in position.
(7) And if there be any number whatever of straight lines given in position, and straight lines be drawn to them from some point at given angles, and the (rectangle contained) by a given and a (line) drawn upon (one of them) plus the (rectangle contained) by a given and another (line) drawn upon (one of them) equals the (rectangle contained) by a given and another (line) drawn upon (one of them), and the rest similarly, the point will touch a straight line given in position.
(8) If from some point straight lines be drawn onto parallels given in position at given angles, and either cutting off straight lines as far as points given on them that have a (given) ratio (to each other) or containing a given area, or so that the given shapes (constructed) upon the (lines) drawn upon (them) or the excess of the shapes equals a given area, the point will touch a straight line given in position.

 $\delta \epsilon \delta o \mu \epsilon \bar{\nu} \eta s \in \dot{u} \theta \epsilon i a s$.
(25) $\check{\epsilon} \tau \epsilon \rho a$ б̀̀ $\tau 0 \iota a \tilde{v} \tau a$.

 $\delta \epsilon \delta o \mu \epsilon \boldsymbol{\epsilon} \eta \mathrm{~s}$.

 є $\dot{v} \theta \in i a s$.

 $\delta \in \delta o \mu \dot{\epsilon} \nu \eta s \in \dot{v} \theta \in i a s$.

 $\delta \epsilon \delta о \mu \epsilon \mathcal{L}$

[^15](26) The second book contains these:
(1) If straight lines from two given points inflect and their squares differ by a given area, the point will touch a straight line given in area.
(2) But if they be in a given ratio, (the point will touch) either a straight line or an arc.
(3) If a straight line be given in position, and a point be given on it, and from this some bounded (line) be drawn, and from the end a (straight line) be drawn at right angles to the (line) <given> in position, and the square of the (first line) drawn equals the (rectangle contained) by a given and what (the perpendicular) cuts off either as far as the given point or as far as another given point on the (line) given in position, the end of this (line) will touch an arc given in position.
(4) If straight lines from two given points inflect and the square of the one is greater than the square of the other by a given amount than in ratio, the point will touch an arc given in position.
(5) If straight lines from any number of points whatever inflect at one point, and the shapes (constructed) on all of them equal a given area, the point will touch an arc given in position.
(6) If straight lines from two given points inflect, and a straight line is drawn from the point parallel (to a line given) in position and cuts off (an abscissa) from a straight line given in position (extending) as far as a given point, and the shapes (constructed) on the inflecting (lines) equal the (rectangle contained) by a given and the abscissa, the point at the inflection will touch an arc given in position.
(7) If in a circle given in position some point is given, and through it is drawn some straight line, and some point is taken on it outside (the line) and the square of the (segment) as far as the point given inside equals the (rectangle contained) by the whole and the segment outside, either (the square) by itself or this and the (rectangle contained) by the two segments inside, the point outside will touch a straight line given in position.
(26) $\tau \grave{o} \delta \grave{\epsilon} \delta \epsilon \dot{v} \tau \epsilon \rho о \nu \beta \iota \beta \lambda i o \nu \pi \epsilon \rho \iota \in \chi \in \iota \tau a ́ \delta \epsilon$.

 $\pi \in \rho \iota \phi \in \rho \epsilon i a s$.

 $a ̈ \psi \epsilon \tau a \iota \theta \epsilon \sigma \epsilon \iota \delta \epsilon \delta о \mu \epsilon \nu \eta S \pi \in \rho \iota \phi \in \rho \in \iota a \varsigma$.

 $\delta \epsilon \delta о \mu \epsilon \nu \eta \varsigma \in \dot{v} \theta \in i a s$.

 На $\mu \epsilon i \zeta \omega \nu \mathrm{~A} \mid \hat{\eta}$ На $\tilde{\eta} \iota \mathrm{A} \| 19$ 'íoa Ha 'íoov A || 22 post $\pi a \rho \dot{a}$
 Ha 'íoov A \| $25 \sigma \eta \mu \epsilon i \neq \nu$. Ha $\sigma \eta \mu \epsilon i \omega \iota$ A 27 é ν -
 $\sigma \eta \mu \epsilon \tilde{\iota} o \nu \mathrm{Ha} \delta o \theta \dot{\epsilon} \nu \tau \iota \quad \sigma \eta \mu \epsilon i \omega \iota \mathrm{~A}\|30 \dot{\nu} \pi \dot{o} \mathrm{Ha} a \pi \dot{o} \mathrm{~A}\| 31$

(8) And if this point touches a straight line given in position, and the circle is not assumed, the points on either side of the given (point) will touch the same arc given in position.

The two books of the Plane Loci contain 147 theorems or diagrams, and eight lemmas.

(27) Two (Books) of Neuses:

A line is said to make a neusis on a point if it passes through it when produced. Generally it is the same thing when (the line) is said to make a neusis on a given point, or when some (point) is (said) to be given on it, or when it is (said) to be through a given point. They named these Neuses on the basis of one of these expressions, the problem being generally this: given two lines in position, to place between them a straight line given in magnitude, making a neusis on a given point. Among those that have varying assumptions in the details according to this definition, some were plane, some solid, some curvilinear. Choosing from among the plane ones those that are more useful for many things, they demonstrated the following problems: given in position a semicircle and a straight line at right angles to the base, or two semicircles having their bases in a straight line, to place a straight line given in magnitude between the two curves, making a neusis on the angle of the semicircle; and given a rhombus with one side extended, to fit into the outside angle a straight line given in magnitude making a neusis on the opposite angle; and given in position a circle, to fit (in the circle) a straight line given in magnitude making a neusis on a given (point).
(28) Of these, the one for one semicircle and a straight line is proved in the first volume, with four cases, and the one for the circle, with two cases, and the one for the rhombus, with two cases. In the second volume the one for the two semicircles is proved; its hypothesis has ten cases, and in these there are numerous subdivisions with diorisms as a consequence of

 $\tau \tilde{\eta} \varsigma$ aútĩs.
 $\delta \iota a \gamma \rho a ́ \mu \mu a \tau a \rho \mu \bar{\zeta}, \lambda \eta \mu \mu a \tau a$ $\delta \grave{\epsilon} \bar{\eta}$.

(27) NETEESN \triangle TO

[^16]the given magnitude of the straight line.
(29) These are the plane things in the Domain of Analysis, which are the earlier ones to be proved, excepting the means of Eratosthenes; these come last. The order calls for the examination of the solid ones next after the plane (problems). One calls problems solid, not that pertain to solid figures, but that cannot be demonstrated by means of the plane (figures), but are demonstrated through the three conic curves, so that it is necessary to write first about these. Five volumes of conic elements by Aristaeus the elder were passed down earlier, written rather concisely for their recipients as if they were already competent.

The two books of Neuses contain 125 theorems or diagrams, and 38 lemmas.

(30) Eight (Books) of Conics:

Apollonius, filled out Euclid's four books of Conics and added on another four, handing down eight volumes of Conics. Aristaeus, who wrote the five volumes of Solid Loci, which have been transmitted until the present immediately following the Conics, and Apollonius's (other) predecessors, named the first of the three conic curves 'section of an acuteangled cone', the second 'of a right-angled', the third 'of an obtuse-angled'. But since the three curves occur in each of these three cones, when cut variously, Apollonius was apparently at a loss to know why on earth his predecessors selectively named the one 'section of an acute-angled cone' when it can also be (a section) of a right-angled and obtuse-angled one, the second (cone), and the third 'of an obtuse-angled' when it can be of an

$\mu \epsilon \boldsymbol{\gamma} \epsilon \theta$ ous $\tau \tilde{\eta} \varsigma \in \dot{v} \theta \in i a s$.

 $\gamma \epsilon \gamma \rho a \mu \mu \epsilon \nu a$.
 $\delta \iota а \gamma \rho а \mu \mu а т а ~ \rho к \bar{\epsilon}, \lambda \bar{\eta} \mu \mu а т а ~ \delta \grave{\epsilon} \lambda \bar{\eta}$.
(30) K Ω NIK Ω N H

 $\pi a \rho a \lambda a \mu \beta \dot{a} \nu \in \iota \nu$ Hu app || 14 反́vo $\beta \iota \beta \lambda i a$ transp Hu app | $\mu \grave{\epsilon} \nu$

 $\kappa \dot{\omega} \nu \omega \nu$ На $\kappa \omega \nu \iota \kappa \tilde{\omega} \nu$ А \| 24 тє $\mu \nu 0 \cup \mu \epsilon \nu \omega \nu$ На || 25 áтокл $\quad \rho \dot{\omega} \sigma a \nu \tau o \mathrm{Ha}$
acute-angled and a right-angled (cone), so, replacing the names, he called the (section) of an acute-angled (cone) 'ellipse', that of a right-angled 'parabola', and that of an obtuse-angled 'hyperbola', each from a certain property of its own. For a certain area applied to a certain line, in the section of an acute-angled cone, falls short by a square, in that of an obtuse-angled (cone) exceeds by a square, but in that of a right-angled (cone) neither falls short nor exceeds.
(31) This was his notion because he did not perceive that by a certain single way of having the plane cut the cone in generating the curves, a different one of the curves is produced in each of the cones, and they named it from the property of the cone. For if the cutting plane is drawn parallel to one side of the cone, one only of the three curves is formed, always the same one, which Aristaeus named a section of the (kind of) cone that was cut.
(32) In any event, Apollonius says what the eight books of Conics that he wrote contain, placing a summary prospectus in the preface to the first, as follows: "The first contains the generation of the three sections and the opposite branches, and their fundamental symptomata, more fully and more thoroughly examined than in the writings of others. The second (has) the properties of the diameters and axes of the sections and opposite branches, the asymptotes, and other things that have pregnant and cogent application in diorisms. From this book you will learn what it is that I call diameters, and what axes. The third (has) many and various useful things,

 $\kappa \dot{\omega} \nu 0 v \tau 0 \mu \tilde{\eta} \iota \dot{\epsilon} \lambda \lambda \epsilon \tilde{\iota} \pi o \nu \quad \gamma i \nu \in \tau a \iota \quad \tau \in \tau \rho a \gamma \dot{\omega} \nu \omega \iota, \dot{\epsilon} \nu \delta \epsilon \tau \tilde{\eta} \iota$

 $\dot{\epsilon} \pi \iota \pi \dot{\epsilon} \delta$ ov $\tau \dot{\epsilon} \mu \nu 0 \nu \tau 0 \varsigma$ transp Ha| кai - $\kappa \dot{\omega} \nu \omega \nu$ om Ha| post $\gamma \in \nu \nu \tilde{\omega} \nu \tau 0 \varsigma$ add ràs, Heiberg $\| 13$ 'á $\lambda \lambda \eta$, кai 'áa $\lambda \eta \eta$ Ha áa $\lambda \lambda \eta \nu$

 $\dot{a} \nu \tau \iota \kappa \epsilon \iota \mu \epsilon \bar{\nu} \omega \nu$ Ha ex Apollonio | 23 кai add Ha ex Apoll |

which are both for syntheses of solid loci, and for (their) diorisms; and having found most of them both elegant and novel, we found that the synthesis of the locus on three and four lines was not made by Euclid, but (merely) a fragment of it, nor this felicitously. For one cannot complete the synthesis without the things mentioned above. The fourth (has) the number of times that conic sections intersect each other and an arc of a circle, and in addition in how many points a section of a cone or an arc of a circle meets (opposite branches), and in how many points opposite branches meet opposite branches, neither of these having been put in writing by our predecessors. The remaining four are more in the manner of supplements. Thus the first is on minima and maxima at length, the next on equal and similar sections, the next on theorems pertaining to diorisms, the next on conic problems subjected to diorism."
(33) Thus Apollonius. The locus on three and four lines that he says, in (his account of) the third (book), was not completed by Euclid, neither he nor anyone else would have been capable of; no, he could not have added the slightest thing to what was written by Euclid, using only the conics that had been proved up to Euclid's time, as he himself confesses when he says that it is impossible to complete it without what he was forced to write first. (34) But either Euclid, out of respect for Aristaeus as meritorious for the conics he had published already, did not anticipate him, or, because he did not desire to commit to writing the same matter as he (Aristaeus), - for he was the fairest of men, and kindly to everyone who was the slightest bit able to augment knowledge, as one should be, and he was not at all belligerent, and though exacting, not boastful, the way this man

 $\dot{\epsilon} \lambda a x i \sigma \tau \omega \nu \kappa a i \quad \mu \epsilon \gamma i \sigma \tau \omega \nu[\tau \tilde{\omega} \nu] \epsilon \in i \quad \pi \lambda \epsilon i o \nu, \tau \grave{o} \delta \grave{\epsilon} \pi \epsilon \rho i \quad i \quad i \sigma \omega \nu$
 $\kappa \omega \nu \iota \kappa \tilde{\omega} \nu, \pi \rho о \beta \lambda \eta \mu a ́ \tau \omega \nu \delta \iota \omega \rho \iota \sigma \mu \epsilon \bar{\epsilon} \omega \nu$."

|

 $\sigma u \nu \epsilon i \delta o \mu \epsilon \nu$ Apoll $\| 3 \kappa a i$ (post $\pi \lambda \epsilon i o \nu a$) del Ha ex Apoll| post
 $\pi \rho 0 \epsilon!\rho \eta \mu \dot{\epsilon} \nu \omega \nu] \quad \tau \tilde{\omega} \nu \quad \pi \rho o \sigma \epsilon v \rho \eta \mu \epsilon \bar{\epsilon} \nu \nu \quad \dot{\eta} \mu \tilde{i} \nu$ Apoll 8 ovußáa ${ }^{\prime}$
 add Ha ex Apoll \| $10 \pi \epsilon \rho \iota \phi \epsilon \rho \in \iota a] \pi \epsilon \rho \iota \phi \epsilon \rho \epsilon i a \iota$ Ge| катà
 $12 \pi \epsilon \rho \iota o v \sigma \iota a \sigma \tau \iota \kappa \omega \tau \epsilon \rho a$ Ha ex Apoll $\pi \epsilon \rho \iota o v s a \sigma \tau \iota \kappa \omega \tau \epsilon \rho a{ }_{\sim}$ A
 Apoll || $15 \pi \rho o \beta \lambda \eta \mu a ́ \tau \omega \nu \kappa \omega \nu \iota \kappa \tilde{\omega} \nu$. Apoll \|, $17 \tau \epsilon \lambda \epsilon \iota \omega \theta \tilde{\eta} \nu a \iota \mathrm{Ha}$

 тóvič Hu app $\tau 0 \dot{v} \tau \omega \nu \mathrm{~A}$
(Apollonius) was, - he wrote (only) as far as it was possible to demonstrate the locus by means of the other's Conics, without saying that the demonstration was complete. For had he done so, one would have had to convict him, but as things stand, not at all. And in any case, (Apollonius) himself is not castigated for leaving most things incomplete in his Conics. (35) He was able to add the missing part to the locus because he had Euclid's writings on the locus already before him in his mind, and had studied for a long time in Alexandria under the people who had been taught by Euclid, where he also acquired this so great condition (of mind), which was not without defect.

This locus on three and four lines that he boasts of having augmented instead of acknowledging his indebtedness to the first to have written on it, is like this:
(36) If three straight lines are given in position, and from some single point straight lines are drawn onto the three at given angles, and the ratio of the rectangle contained by two of the (lines) drawn onto (them) to the square of the remaining one is given, the point will touch a solid locus given in position, that is, one of the three conir curves. And if (straight lines) are drawn at given angles onto four straight lines given in positions, and the ratio of the (rectangle contained) by two of the (lines) that were drawn to the (rectangle contained) by the other two that were drawn is given, likewise the point will touch a section of a cone given in position.
(37) Now if (they are drawn) onto only two (lines), the locus has been proved to be plane, but if onto more than four, the point will touch loci that are as yet unknown, but just called 'curves', and whose origins and properties are not yet (known). They have given a synthesis of not one, not even the first and seemingly the most obvious of them, or shown it to be useful. (38) The propositions of these (loci) are: If straight lines are drawn from some point at given angles onto five straight lines given in position, and the ratio is given of the rectangular parallelepiped solid contained by three of the (lines) that were drawn to the rectangular parallelepiped solid contained by the remaining two (lines) that were drawn and some given,

 $\pi \lambda \epsilon і ̈ \sigma \tau a \kappa а т a \lambda \iota \pi \bar{\omega} \nu \quad$ ои́к $\epsilon \dot{v} \theta \dot{v} \nu \in \tau a \iota$.

 $\epsilon i \kappa a \iota o \pi a \theta \tilde{\eta} \mathrm{Hu}_{1} \| 11$ ó $\phi \epsilon i \lambda \epsilon \iota \nu \mathrm{Hu} \| 13 \tau 0 \tilde{v}$ á̃ $\boldsymbol{\tau} 0 \tilde{v} \mathrm{secl} \mathrm{Hu} \|$ 17 ä $\psi \in \tau a \iota$ Ha $\ddot{a} \pi \tau \in \tau a \iota \mathrm{~A} \| 19$ post $\kappa a \tau a x \theta \tilde{\omega} \sigma \iota \nu$, add $\epsilon \dot{v} \theta \epsilon \tau a \iota$
 Hu $26 \pi o \delta a \pi \tilde{\omega} \nu-o \dot{v} \kappa \dot{\epsilon} \tau \iota$ secl $\mathrm{Hu} \mid$ ovi $\delta \epsilon \mu i a \nu] \mu i a \nu \mathrm{~A} \mid$ oúdé $\tau \dot{\eta} \nu \pi \rho \dot{\omega} \tau \eta \nu \kappa a i]$ oú $\delta \dot{\epsilon} \tau \iota \nu a \mathrm{Hu}$
the point will touch a curve given in position. And if onto six, and the ratio of the aforesaid solid contained by the three to that by the remaining three is given, again the point will touch a (curve) given in position. If onto more than six, one can no longer say "the ratio is given of the something contained by four to that by the rest", since there is nothing contained by more than three dimensions.
(39) Our immediate predecessors have allowed themselves to admit meaning to such things, though they express nothing at all coherent when they say "the (thing contained) by these", referring to the square of this (line) or the (rectangle contained) by these. But it was possible to enunciate and generally to prove these things by means of compound ratios, both for the propositions given above, and for the present ones, in this way:
(40) If straight lines are drawn from some point at given angles onto straight lines given in position, and there is given the ratio compounded of that which one drawn line has to one, and another to another, and a different one to a different one, and the remaining one to a given, if there are seven, but if eight, the remaining to the remaining one, the point will touch a curve given in position. And similarly for however many, even or odd in number. As I said, of not one of these that come after the locus on four lines have they made a synthesis so that they know the curve.
(41) They who look at these things are hardly exalted, as were the ancients and all who wrote the finer things. When I see everyone occupied with the rudiments of mathematics and of the material for inquiries that nature sets before us, I am ashamed; I for one have proved things that are much more valuable and offer much application. In order not to end my discourse declaiming this with empty hands, I will give this for the benefit of the readers:
(42) The ratio of solids of complete revolution is compounded of (that) of the revolved figures and (that) of the straight lines similarly drawn to the axes from the centers of gravity in them; that of (solids of) incomplete

 т $\rho \circ \pi 0 \nu$ т $0 \tilde{v} \tau 0 \nu$:

 ávarvoṽolv.

 Huapp\| $10 \tau \tilde{\omega} \nu \delta$ Ha\| $11 \tau \tilde{\omega} \nu \delta$ Ha \| 15 civecias om Ha\| 16
 кат $\eta \gamma \mu \epsilon \in \nu \eta$ На кат $\eta \gamma \mu \epsilon ́ \nu \eta \nu$ A! post $\mu i a \nu$ add кат $\eta \gamma \mu \epsilon ́ \nu \eta \nu$ Ha

 $\sigma \tau 0 \iota \chi \epsilon i \omega \nu \operatorname{secl} \mathrm{Hu} \mid \tau \tau \tilde{v} \theta$ ' $\mathrm{Ha}|\pi \epsilon \iota \rho \bar{\omega} \nu \tau a \iota \mathrm{Hu} \mathrm{app}| \mid 25 \pi a ̈ \lambda a \iota$

 A^{2} alia manu \| 28 ' $\bar{\epsilon} \chi \omega$] $\bar{\epsilon} \gamma \bar{\omega} \mathrm{A} \mid \pi o \lambda \lambda \tilde{\omega} \mathrm{c}$ На $\pi 0 \lambda \lambda \tilde{\omega} \nu \mathrm{~A} \| 29$
 $\dot{\omega} \phi \epsilon ́ \lambda \epsilon \iota a \nu$ indicavit $\mathrm{Ha} \| 31$ áy $\nu 00 \tilde{v} \sigma \iota \nu \mathrm{Ha}$ \| 32 á $\mu \phi 0 \iota \sigma \tau \iota \kappa \tilde{\omega} \nu$ Ha á $\mu \phi 0 \iota \nu \sigma \tau i x \omega \nu \mathrm{~A}$
(revolution) from (that) of the revolved figures and (that) of the arcs that the centers of gravity in them describe, where the (ratio) of these arcs is, of course, (compounded) of (that) of the (lines) drawn and (that) of the angles of revolution that their extremities contain, if these (lines) are also at <right angles> to the axes. These propositions, which are practically a single one, contain many theorems of all kinds, for curves and surfaces and solids, all at once and by one proof, things not yet and things already demonstrated, such as those in the twelfth book of the First Elements.

The eight books of Apollonius' Conics contain 487 theorems or diagrams, and there are 70 lemmas, or things assumed in it.

 $\kappa a i \underset{\sim}{\mu} \iota \tilde{a} \iota \delta \epsilon i \xi \epsilon \iota \kappa a i$ $\dot{\epsilon} \nu \tau \tilde{\omega} \iota \delta \omega \delta \epsilon \kappa а \tau \omega \iota \tau \tilde{\omega} \nu \Pi \rho \omega \tau \omega \nu \sum \tau 0 \iota \chi \epsilon i \omega \nu$.

 єis aúvào.
 post $\pi \in \rho \iota \phi \in \rho \epsilon \iota \tilde{\omega} \nu$ add λ óyos $\sigma v \nu \tilde{\eta} \pi \tau a \iota \mathrm{Hu} \mid$ 'éкк, На ϵ 'ís A\|s

 $\tau \tilde{\omega} \nu \delta \epsilon \tau \tilde{\omega} \nu \mathrm{A} \tau \tilde{\omega} \nu \delta \epsilon$ om На $\mathbb{1} 10 \bar{\eta}$ На $\bar{\epsilon} \mathrm{A} \mid$ á $\pi o \lambda \lambda \omega \nu i o u$ На $\dot{a} \pi o \lambda \lambda \omega \nu i \omega \iota \mathrm{~A} \| 11 \dot{\eta} \tau 0 \iota-a \dot{v} \tau \mathfrak{a} \mathrm{sec} \mathrm{Hu}$

(43) (Cutting off of a Ratio, Cutting off of an Area)

1. (Prop. 1) To divide a given straight line in a given ratio. Let the given straight line be $A B$, the given ratio Γ to Δ, and let it be required to cut $A B$ into the ratio Γ to Δ. I inclined $A E$ to line $A B$ at an arbitrary angle, and removed $A Z$ equal to Γ, and $Z H$ equal to Δ. Joining $B H$, I drew $Z \Theta$ parallel to it.

Then since as is $A \Theta$ to ΘB, so is $A Z$ to $Z H$ (VI 2), ${ }^{1}$ while $A Z$ equals $\Gamma,{ }^{2}$ and ZH equals $\Delta,{ }^{3}$ therefore as is $\mathrm{A} \Theta$ to $\Theta \mathrm{B}$, so is Γ to $\Delta .{ }^{4}$ Hence it is divided at point Θ. Q.E.D.
(44) 2. (Prop. 2) Given three straight lines $\mathrm{AB}, \mathrm{B} \Gamma, \Delta$, to find, as is $A B$ to $B \Gamma$, so some other (straight line) to Δ. I again inclined a straight line $\Gamma \Theta$ at an arbitrary angle, and set off ΓZ equal to Δ. I joined $B Z$ and again drew HA parallel to it.

Then once more, as is AB to $\Gamma \mathrm{B}$, so is HZ to $\Gamma \mathrm{CZ}$ (VI 2), 1 that is, (HZ) to $\Delta .{ }^{2}$ Hence $Z H$ has been found. Similarly too if the third (line) is given, we will find the fourth.
(45) 3. (Prop. 3) Let AB have to $\mathrm{B} \Gamma$ a greater ratio than has $\Delta \mathrm{E}$ to EZ. 1 That also componendo $A \Gamma$ has to $\Gamma \mathrm{B}$ a greater ratio than has $\Delta \mathrm{Z}$ to ZE.

For as is $A B$ to $B \Gamma$, so let some other thing H be made to EZ. ${ }^{2}$ Then H has to $E Z$ a greater ratio than has $\triangle E$ to $E Z .{ }^{3}$ Hence H is greater than $\Delta E .{ }^{4}$ Let ΘE be made equal to it. ${ }^{5}$ Then since as is $A B$ to $B \Gamma$, so is ΘE to $\mathrm{EZ},{ }^{6}$ therefore componendo as is $\mathrm{A} \Gamma$ to $\mathrm{B} \mathrm{\Gamma}$, so is $\mathrm{Z} \Theta$ to $\mathrm{ZE} .{ }^{7}$ But $\Theta \mathrm{Z}$ has to ZE , and hence also $\mathrm{A} \Gamma$ has to $\Gamma \mathrm{B}$, a greater ratio than has $\Delta \mathrm{Z}$ to $\mathrm{ZE} .{ }^{8} 9$
(46) 4. (Prop. 4) Now let $A B$ have a lesser ratio to $B \Gamma$ than ΔE has to $E Z$. That $A \Gamma$ too has to ΓB a ratio less than ΔZ has to $E Z$.

For again, since $A B$ has to $B \Gamma$ a ratio less than has ΔE to $E Z,{ }^{1}$ if I make, as $A B$ to $B \Gamma$, so something else to $E Z$, it will be less than $\Delta E .{ }^{3}$ Let

 $\sigma \eta \mu \epsilon i o \nu, o ̈ \pi \epsilon \rho:-$

 $\tau \grave{\eta} \nu$ ГВ, oü $\tau \omega \varsigma$
 $\epsilon \dot{\cup} \rho \eta \sigma \quad 0 \mu \in \nu$.

[^17]it be EQ. ${ }^{2}$ Then as is $\mathrm{A} \Gamma$ to $\Gamma \mathrm{B}$, so too is $\Theta \mathrm{Z}$ to $\mathrm{ZE} .{ }^{4}$ But $\Theta \mathrm{Z}$ has to ZE a lesser ratio than has ΔZ to $Z E .5$ Hence $A \Gamma$ has to Γ B a ratio less than ΔZ has to ZE. ${ }^{6}$
(47) 5. (Prop. 5) Now let AB have to $\mathrm{B} \Gamma$ a greater ratio than has $\Delta \mathrm{E}$ to EZ. 1 That also alternando AB has a greater ratio to $\Delta \mathrm{E}$ than has $\mathrm{B} \Gamma$ to EZ.

For, as is AB to $\mathrm{B} \mathrm{\Gamma}$, so let something else be made to EZ. It will obviously be greater than $\Delta \mathrm{E} .{ }^{3}$ Let it be HE. ${ }^{2}$ Then alternando as is AB to EH , so is $\mathrm{B} \Gamma$ to $\mathrm{EZ}.{ }^{4}$ But AB has to $\Delta \mathrm{E}$ a greater ratio than AB has to $E H,{ }^{5}$ that is than $B \Gamma$ has to $E Z$. Hence $A B$ has to ΔE a greater ratio than $\mathrm{B} \Gamma$ has to EZ. ${ }^{6}$ Likewise if a lesser ratio is given, that also alternando (the inequality is valid). For as AB is to $\mathrm{B} \Gamma$, so too will be something else to EZ . (To show) that it is to something less than $\Delta \mathrm{E}$. The rest is the same.
(48) 6. (Prop. 6) Let $\mathrm{A} \Gamma$ have a greater ratio to ΓB than has $\Delta \mathrm{Z}$ to ZE. 1 That convertendo $\Gamma \mathrm{A}$ has to AB a ratio less than has $\mathrm{Z} \Delta$ to $\Delta \mathrm{E}$.

For, as is $A \Gamma$ to ΓB, let ΔZ be made to something else. It will be to something less than ZE. ${ }^{3}$ Let it be to ZH. ${ }^{2}$ Then convertendo as $\Gamma \mathrm{A}$ is to AB , so is $\mathrm{Z} \Delta$ to $\Delta \mathrm{H} .{ }^{4}$ But $\mathrm{Z} \Delta$ has to $\Delta \mathrm{H}$ a lesser ratio than has $\mathrm{Z} \Delta$ to $\Delta \mathrm{E} .{ }^{5}$ Similarly, let $\mathrm{A} \Gamma$ have to $\Gamma \mathrm{B}$ a ratio less than has $\Delta \mathrm{Z}$ to ZE. ${ }^{6}$ Convertendo $\Gamma \mathrm{A}$ has to AB a greater ratio than has $\Delta \mathrm{Z}$ to $\Delta \mathrm{E} .{ }^{7}$ For as is AB to $\Gamma \mathrm{B}$, so will be $\Delta \mathbf{Z}$ to some magnitude greater than ZE . The rest is obvious.
(49) 7. (Prop. 7) Now let AB have to $\mathrm{B} \Gamma$ a greater ratio than has $\Delta \mathrm{E}$ to EZ. 1 That inversely ΓB has to BA a lesser ratio than has ZE to $E \Delta$.

For, as is $A B$ to $\mathrm{B} \mathrm{\Gamma}$, let $\Delta \mathrm{E}$ be made to something. It will be to something less than EZ. ${ }^{3}$ Let it be to EH. ${ }^{2}$ Then inversely as is Γ B to BA, so is EH to $\mathrm{E} \Delta .{ }^{4}$ But HE has to $\mathrm{E} \Delta$ a lesser ratio than has ZE to $\mathrm{E} \Delta .{ }^{5}$

 aữá.

5

Similarly too if AB has a lesser ratio <to $\mathrm{B} \mathrm{\Gamma}>$ than has $\Delta \mathrm{E}$ to $\mathrm{EZ},{ }^{6}$ inversely $\Gamma \mathrm{B}$ has to BA a ratio greater than has ZE to $\mathrm{E} \Delta .{ }^{7}$ For, as is AB to $B \Gamma$, so will be ΔE to something greater than $E Z$. The rest is obvious. And from this it is obvious that if AB has to $\mathrm{B} \mathrm{\Gamma}$ a greater ratio than has $\Delta \mathrm{E}$ to EZ , then ZE has to $\mathrm{E} \Delta$ a greater ratio than has $\Gamma \mathrm{B}$ to BA . But if $\mathrm{A} \Gamma$ has to $\mathrm{B} \Gamma$ a lesser ratio than has $\Delta \mathrm{E}$ to EZ , then also ZE has to $\mathrm{E} \Delta$ a lesser ratio than has $Г В$ to BA .
(50) 8. (Prop. 8) Let AB have to $\Delta \mathrm{E}$ a greater ratio than has $\mathrm{B} \Gamma$ to EZ. 1 That also $A B$ has to ΔE a greater ratio than has $A \Gamma$ to ΔZ.

For, as is $A B$ to ΔE, let $B \Gamma$ be made to something. It will be to something less than EZ. ${ }^{3}$ Let it be to HE. ${ }^{2}$ Then also all $\mathrm{A} \Gamma$ is to all $\Delta \mathrm{H}$ as is AB to $\Delta \mathrm{E} . .^{4}$ But $\mathrm{A} \Gamma$ has to $\Delta \mathrm{H}$ a greater ratio than to $\Delta \mathrm{Z} .{ }^{5}$ Hence AB has to $\Delta \mathrm{E}$ a greater ratio than has $\mathrm{A} \Gamma$ to $\Delta Z .{ }^{6}$ Obviously all $A \Gamma$ has to all $\Delta \mathrm{Z}$ a ratio less than has AB to $\Delta \mathrm{E}$. And if the part (has) a lesser (ratio to the part than the remainder has to the remainder), the whole (will have) a greater (ratio to the whole than the part has to the part).
(51) 9. (Prop. 9). Now let all $\mathrm{A} \Gamma$ have to all $\Delta \mathrm{Z}$ a greater ratio than AB has to $\Delta \mathrm{E} .1$ That also remainder $\mathrm{B} \Gamma$ has to remainder EZ a greater ratio than has $\mathrm{A} \Gamma$ to $\Delta \mathrm{Z}$.
$<$ For, as is $\mathrm{A} \Gamma$ to $\Delta \mathrm{Z},>$ so <let> AB <be made> to $\Delta H .{ }^{2}$ Then remainder $\mathrm{B} \Gamma$ is to remainder HZ as is $\mathrm{A} \Gamma$ to $\Delta \mathrm{Z} \cdot{ }^{3}$ But $\mathrm{B} \Gamma<$ has a greater ratio to EZ than $>$ to $\mathrm{ZH}, 4$ and therefore $\mathrm{B} \Gamma$ has to EZ a greater ratio than has $\mathrm{A} \Gamma$ to $\Delta \mathrm{Z} .{ }^{5}$ But if whole to whole (has a) lesser (ratio than the part has to the part), then the remainder (will have) a lesser (ratio to the remainder than the whole has to the whole).
(52) 10. (Prop. 10) Let AB be greater than Γ, and Δ equal to E .1 That AB has to Γ a greater ratio than has Δ to E .

For let BZ be made equal to $\Gamma .{ }^{2}$ Then as is BZ to Γ, so is Δ to $\mathrm{E} .{ }^{3}$ But AB has to Γ a greater ratio than has BZ to $\Gamma .{ }^{4}$ And so AB has to Γ a

入o८лі̀ є́ $\lambda a ́ \sigma \sigma o \nu a$.
 30

 $\mathrm{B} \Gamma$ add Co\| $\|$ ante E Δ add $\tau \dot{o}$ Ge (S) \mid oü $\tau \omega \varsigma \mathrm{Hu}$ (oü $\tau \omega \mathrm{Ha}$) ov $\tau 0$ S
 $15 \dot{\epsilon} \sigma \tau \iota \nu \mathrm{~A}^{2}$ supr. || $17 \Delta \mathrm{Z}$ Co $\Delta \mathrm{HA} \mid$ ante AB add $a \mathrm{~A}^{1}$ del A^{2}

 $\mu \epsilon i \zeta o \nu a$ ö̀ ov Hu app || $21 \theta^{\prime}$ add Ha \| $24 \pi \epsilon \pi o \iota \eta \sigma \theta \omega-\Delta Z$

 ö̀ $\eta \nu$ ' $\epsilon \lambda a \sigma \sigma \omega \nu, \dot{\eta} \lambda o \iota \pi \dot{\eta} \mu \epsilon i \xi \omega \nu \mathrm{Co} \| 30 \iota$ add Ha
greater ratio than has Δ to E .5 And obviously, if AB is less than Γ, AB has to Γ a lesser ratio than has Δ to E, by inversion.
(53) 11. (Prop. 11) But let AB be greater than Γ, and Δ less than E. 1 That AB has to Γ a greater ratio than has Δ to E . This is obvious; and by proof. For if with $\Delta \mathrm{E}$ equal to Z, AB has to Γ a greater ratio than has ΔE to Z, then with (ΔE) being less, $(A B)$ will have a much greater ratio (to Γ). And by proof, thus.

For since $A B$ is greater than Γ, if I make, as $A B$ to Γ, so something else to Z , it will be greater than $\mathrm{Z},{ }^{3}$ and therefore also than $\Delta \mathrm{E} . .^{4}$ So let HE be equal to it. ${ }^{2}$ Then HE has to Z a greater ratio than has $\Delta \mathrm{E}$ to $\mathrm{Z} .{ }^{5}$ But as is HE to Z , so is AB to $\Gamma .6$ Hence AB has a greater ratio to Γ than has $\Delta \mathrm{E}$ to $\mathrm{Z}.{ }^{7}$ And obviously where (AB is) less (than Γ), (the ratio is) always less. And that the rectangle contained by AB, Z is greater than the rectangle contained by $\Gamma, \Delta \mathrm{E}$ (is obvious). For the rectangle contained by Γ, EH is equal to it; and this is greater than the rectangle contained by Γ, $\Delta \mathrm{E}$.
(54) 12. (Prop. 12) AB is a straight line; and let it be cut at Γ. That all points between points A, Γ divide AB into ratios less than $\mathrm{A} \Gamma$ to $\Gamma \mathrm{B}$, but all between Γ, B (divide it) into a greater (ratio).

For let points Δ, E be taken on each side of Γ. Then since ΔA is less than $A \Gamma,{ }^{1}$ and ΔB greater than $B \Gamma,{ }^{2}$ and (hence) ΔA has to $A \Gamma$ a ratio less than has $\Delta \mathrm{B}$ to $\mathrm{B} \Gamma,{ }^{3}$ alternando $\mathrm{A} \Delta$ has to $\Delta \mathrm{B}$ a lesser ratio than has $\mathrm{A} \Gamma$ to ГВ. ${ }^{4}$ Similarly we will prove that (this is true) for all points between points A, Γ. Again, since EA is greater than $\mathrm{A} \Gamma,{ }^{5}$ and EB less than $\mathrm{B},{ }^{6}$ therefore EA has to $\mathrm{A} \Gamma$ a greater ratio than has EB to $\mathrm{B} \Gamma .{ }^{7}$ Alternando, therefore, AE has to EB a ratio greater than has $A \Gamma$ to $Г B$. Similarly for all the remaining points taken between points Γ, B.

 $\pi \rho o ̀ s ~ t o ̀ ~ E ~ \delta i a ̀ ~ t o ̀ ~ a ̀ v a ́ \pi a \lambda \iota \nu . ~$

692

5
|128v

 $\Delta \mathrm{E}$.

 $\dot{\epsilon} \pi i \quad \tau \tilde{\omega} \nu \lambda o \iota \pi \tilde{\omega} \nu \mu \epsilon \tau a \xi \tilde{v}[\kappa a i] \tau \tilde{\omega} \nu \Gamma$, В $\lambda a \mu \beta a \nu о \mu \epsilon \in \nu \omega \nu \sigma \eta \mu \epsilon i \omega \nu$.

 'ápa Co \| 26 ante, $\epsilon \nu a \lambda \lambda \grave{a} \xi$ add $\kappa a i ́ \mathrm{Ha} \mid$ post $\epsilon \nu a \lambda \lambda a ̀ \xi$ add ${ }^{\prime} \rho a$

(55) 13. (Prop. 13) If AB is a straight line, and it is bisected at Γ, then of all points taken (on the line), point Γ cuts making the rectangle contained by $А Г, \Gamma$, maximum.

For if a point Δ is taken, the rectangle contained by $A \Delta, \Delta B$ plus the square of $\Gamma \Delta$ equals the square of $\mathrm{A} \Gamma$ (II 5), 1 that is the rectangle contained by АГ, ГВ. 2 Hence the rectangle contained by АГ, ГВ is greater (than the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}$). ${ }^{3}$ The same (is true) for the other side too.
(56) (Prop. 14) I also say that the nearer (point) cuts off always a greater area than the further (point). For let yet another point \mathbf{E} be taken between A, Δ. One must show that the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}$ is greater than the rectangle contained by AE, EB.

For since the rectangle contained by $A \Delta, \Delta B$ plus the square of $\Delta \Gamma$ equals the square of $\mathrm{A} \Gamma, 1$ and the rectangle contained by AE, EB plus the square of $\Gamma \mathrm{E}$ equals the square of $\mathrm{A} \Gamma,{ }^{2}$ therefore the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}$ plus the square of $\Delta \Gamma$ equals the rectangle contained by AE, EB plus the square of $\Gamma E .^{3}$ Of these, the square of $\Delta \Gamma$ is less than the square of $\Gamma E .4$ Therefore the remaining rectangle contained by $A \Delta, \Delta B$ is greater than the rectangle contained by AE, EB. ${ }^{5}$
(57) 14. (Prop. 15) For if A plus B equalled Γ plus $\Delta \mathrm{E},{ }^{1}$ and B were less than $\Delta \mathrm{E},{ }^{2} \mathrm{~A}$ would be greater than Γ.

For let ΔZ be made equal to $B \cdot{ }^{3} A$ plus ΔZ, therefore, equals ΔE plus $\Gamma .4$ Let the common ΔZ be subtracted. Then remainder A equals Γ plus ZE. 5 Hence A is greater than $\Gamma .{ }^{6}$
(58) 15. (Prop. 16) Let A have a greater ratio to B than has Γ to $\Delta .{ }^{1}$ That the rectangle contained by A, Δ is greater than the rectangle contained by B, Γ.

For, as is A to B , let Γ be made to $\mathrm{E} .{ }^{2}$ Then Γ has to E a greater ratio than to $\Delta .^{3}$ Therefore E is less than $\Delta .{ }^{4} \quad$ (Make) A a common height. Hence the rectangle contained by E, A is less than the rectangle contained by $\mathrm{A}, \Delta .{ }^{5}$ But the rectangle contained by A, E equals the rectangle contained by $B, \Gamma .{ }^{6}$ Hence the rectangle contained by B, Γ is less than the rectangle contained by $\mathrm{A}, \Delta .{ }^{7}$ Thus the rectangle contained by A, Δ is greater than the rectangle contained by B, Γ. Similarly, if (the ratio is) less, the area will be less than the area.

 Γ.

 каi tò xんpiov toú xepiov.

[^18](59) But let the rectangle contained by A, Δ be greater than the rectangle contained by $B, \Gamma .{ }^{1}$ That A has a greater ratio to B than has Γ to Δ.

For let the rectangle contained by B, E be made equal the rectangle contained by A, $\Delta .^{2}$ Then the rectangle contained by B, E is greater than the rectangle contained by B, $\Gamma .{ }^{3}$ Hence also E is greater than $\Gamma .{ }^{4}{ }^{*}$ But as is A to Δ, so is B to E. ${ }^{5}$ And B has a greater ratio to E than to Γ. ${ }^{*}$ And thus too Δ has to Γ. And similarly in the converse.
(60) 16. (Prop. 17) $\mathrm{AB}, \mathrm{B} \Gamma$ are two straight lines, and let $\mathrm{B} \Delta$ be a mean in ratio between $A B, B \Gamma .{ }^{1}$ Let ΔE be made equal $A \Delta .{ }^{2}$ That ΓE is the excess by which $\mathrm{AB} \mathrm{\Gamma}$ together exceeds the line equal in square to four times the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$.

For since $A B \Gamma$ together exceeds $A B E$ together by $\Gamma E,{ }^{3} \Gamma E$ is therefore the excess by which $\mathrm{AB} \Gamma$ together exceeds ABE together. But ABE is two of B $\Delta .4$ And two of $B \Delta$ equal in square four times the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma .5$ ${ }^{5} \mathrm{E}$ is thus the excess by which $\mathrm{AB} \Gamma$ together exceeds the line equal in square to four times the rectangle contained by AB, B. ${ }^{6}$
(61) 17. (Prop. 18) Again let $\mathrm{B} \Delta$ be mean in ratio between $\mathrm{AB}, \mathrm{B} \Gamma .{ }^{1}$ Let ΔE be made equal $A \Delta .^{2}$ That ΓE comprises $A B, B \Gamma$ together and the line that is equal in square to four times the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$.

For since $\Gamma \mathrm{E}$ comprises $\Gamma \Delta, \Delta \mathrm{E},{ }^{3}$ while $A \Delta$ equals $\Delta \mathrm{E}, \Gamma \mathrm{E}$ therefore comprises $\mathrm{A} \Delta, \Delta \Gamma,{ }^{4}$ that is $\mathrm{AB}, \mathrm{B} \Gamma$ together and two of $\mathrm{B} \Delta$. But two of $\mathrm{B} \Delta$ equal in square four times the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma .{ }^{5}$ Hence $\Gamma \mathrm{E}$ comprises $\mathrm{AB}, \mathrm{B} \Gamma$ together and the line equal in square to four times the rectangle contained by $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma} .{ }^{6}$
(62) 18. (Prop. 19) Again let $\mathrm{B} \Delta$ be mean in ratio between $\mathrm{AB}, \mathrm{B} \Gamma, 1$ and let ΔE be made equal $\Gamma \Delta .{ }^{2}$ That $A E$ is the excess by which $A B \Gamma$ together exceeds the line that is equal in square to four times the rectangle contained by AB, BF.

For since $\mathrm{AB} \Gamma$ together exceeds $\mathrm{EB} \Gamma$ together by $\mathrm{AE},{ }^{3}$ while $\mathrm{EB} \Gamma$ together is two of $B \Delta,,^{4}$ that is the line equal in square to four times the rectangle contained by $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma},{ }^{5}$ therefore AE is the excess by which $\mathrm{AB} \mathrm{\Gamma}$ together exceeds the line equal in square to four times the rectangle contained by $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma} .{ }^{6}$

 $\dot{\nu} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{AB}$.
(61) <८̧.'> ' $\bar{\epsilon} \sigma \tau \omega \delta \dot{\eta} \pi \dot{a} \lambda \iota \nu \dot{\eta} \tau \tilde{\omega} \nu \mathrm{AB}, \mathrm{B} \Gamma \mu \dot{\epsilon} \sigma \boldsymbol{\eta} \dot{\eta} \mathrm{B} \Delta,<\kappa a i>$
 ov va

 $\dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{AB}$.

1

 $\iota \zeta^{\circ}$ add $\mathrm{Hu}(\mathrm{BS}) \mid \kappa a i$ add $\mathrm{Ha}\|23 \tau \tilde{\eta} \varsigma \mathrm{Hu} \tau \tilde{\omega} \nu \mathrm{A}\| 27 \iota \eta^{\prime}$ add Hu (BS)
(63) 19. (Prop. 20) Again let $\mathrm{B} \Delta$ be mean in ratio between $\mathrm{AB}, \mathrm{B} \Gamma,{ }^{1}$ and let $\Delta \mathrm{E}$ be made equal $\Gamma \Delta .{ }^{2}$ That $A E$ comprises $A B \Gamma$ together and the line that is equal in square to four times the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$.

For since AE comprises $\mathrm{A} \Delta, \Delta \mathrm{E},{ }^{1}$ while $\Delta \mathrm{E}$ equals $\Delta \Gamma, \mathrm{AE}$ therefore comprises $A \Delta, \Delta \Gamma$, that is $A B \Gamma$ together and two of $B \Delta .{ }^{4}$ But two of $B \Delta$ equal in square four times $\mathrm{AB} \Gamma .5$ Hence AE comprises $\mathrm{AB} \Gamma$ together and the line equal in square to four times the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma .{ }^{6}$

These things are assumed in the Cutting off of a Ratio. They are also assumed in the Cutting off of an Area, only differently.
(64) (Prop. 21) Problem for the second (book) of the Cutting off of a Ratio, useful for the summation of the fourteenth disposition.

Given two straight lines $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$, and producing line $\mathrm{A} \Delta$, to find a point Δ that makes the ratio $\mathrm{B} \Delta$ to $\Delta \mathrm{A}$ the same as that of $\Gamma \Delta$ to the excess by which $A B \Gamma$ together exceeds the line that is equal in square to four times the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$.

The combination cannot be made in any other way, unless $\Delta \mathrm{E}, \mathrm{A} \Gamma$ together are equal to the excess EA , and all $\Delta \mathrm{A}$ to all AB , and furthermore (it is not possible otherwise?) that EA, AB, ГВ have the ratio to one another of a square number to a square number, and that ΓB is twice $\Delta \mathrm{E}$.

Let it be accomplished, and let the excess be AE; ${ }^{1}$ for we have found this in the foregoing (lemma 7.62). Then as is $\mathrm{B} \Delta$ to $\Delta \mathrm{A}$, so is $\Gamma \Delta$ to $\mathrm{AE} .^{2}$ And alternand 0^{3} and separand 0^{4} and area to area, it follows that the rectangle contained by $\mathrm{B} \Gamma$, EA equals the rectangle contained by $\Gamma \Delta, \Delta \mathrm{E} .{ }^{5}$ But the rectangle contained by $\mathrm{B} \Gamma$, EA is given; ${ }^{6}$ hence the rectangle contained by $\Gamma \Delta, \Delta \mathrm{E}$ too is given. ${ }^{7}$ And it lies along $\Gamma \mathrm{E}$, given, ${ }^{8}$ exceeding by a square. Hence Δ is given (Data 59). ${ }^{9}$

The synthesis will be made thus. Let the excess be EA, and along ΓE let there be applied the rectangle contained by $\Gamma \Delta, \Delta \mathrm{E}$, exceeding by a square, and equal to the rectangle contained by $\mathrm{B} \Gamma, \mathrm{EA}$. I say that Δ is the point sought. For since the rectangle contained by $\mathrm{B} \mathrm{\Gamma}$, EA equals the rectangle contained by $\Gamma \Delta, \Delta \mathrm{E}, 1^{\circ}$ therefore putting in ratio ${ }^{11}$ and componendo 0^{2} and alternando as is $\mathrm{B} \Delta$ to $\Delta \mathrm{A}$, so is $\Gamma \Delta$ to $\mathrm{EA},{ }^{13}$ which is the excess. The same also if we try to take a point making, as $B \Delta$ to ΔA, so $\Gamma \Delta$ to the line comprising $\mathrm{AB} \Gamma$ together and the line equal in square to four times the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$. Q.E.D.

700

5 móvov.

$\delta \dot{v} 0 \delta o \theta \epsilon \iota \sigma \tilde{\omega} \nu \epsilon \dot{U} \theta \epsilon \iota \tilde{\omega} \nu \tau \tilde{\omega} \nu \mathrm{AB}, \mathrm{B}, \lambda a \beta \epsilon \tilde{i} \nu, \dot{\epsilon} \pi \epsilon \kappa \beta a \lambda o ́ \nu \tau a \tau \grave{\eta} \nu \mathrm{~A} \Delta$

 $\dot{v} \pi \epsilon \rho \beta a ̆ \lambda \lambda о \nu \quad \tau \epsilon \tau \rho a \gamma \dot{\omega} \nu \omega \iota$. ठоө̀̀ ν 'ápa $\epsilon \sigma \tau i \nu \tau \dot{o} \Delta$.
 ВГ, ЕА 'í $\sigma o \nu \pi a \rho a ̀ ~ \tau \grave{\eta} \nu$ ГЕ $\pi a \rho a \beta \epsilon \beta \lambda \dot{\eta} \sigma \theta \omega \dot{v} \pi \epsilon \rho \beta a ́ \lambda \lambda о \nu, \tau \epsilon \tau \rho a \gamma \dot{\omega} \nu \omega \iota$

$\| 1 _\theta^{\circ}$ add $\mathrm{Hu}(\mathrm{BS}) \| 8 \tau \tilde{\eta} \varsigma(\mathrm{AB} \mathrm{\Gamma})$ Hu $\tau \tilde{\omega} \nu \mathrm{A} \| 9$ $\tau a \tilde{v} \tau a$

 ocovial A \| $18 \Delta \mathrm{E}] \Delta \mathrm{B} A\|19 \mathrm{AB} \mathrm{A} \mid \mathrm{A}\| 20$ á $\lambda \lambda \dot{\eta} \lambda a s]$ á $\lambda \lambda \eta \lambda a \mathrm{~A} \| 24$ ante $\chi \omega \rho$ iov add $\kappa a i$ Ha $\| 27 \tau \in \tau \rho a \dot{\omega} \omega \nu \omega \iota$ Ha $\tau \in \tau \rho \dot{a} \gamma \omega \nu 0 \nu \mathrm{~A} \mid$ ante Δ add $\tau \dot{o} \mathrm{Ha} \| 29 \pi a \rho \dot{a} \tau \dot{\eta} \nu \mathrm{~V} \pi a ̀ \lambda \iota \nu \tau \dot{\eta} \nu$ $\mathrm{A} \pi \dot{a} \lambda \iota \nu \tau \tilde{\eta} \iota \mathrm{Ha}$
(65) The first (book) of the Cutting off of a Ratio contains 7 dispositions, 24 cases, and 5 diorisms, of which three are maxima, two minima. That in the third case of the fifth disposition is maximum, that in the second of the sixth disposition minimum, and that in the same one of the seventh; maxima, those in the fourth of the sixth and seventh. The second (book) of the Cutting off of a Ratio <contains 14 dispositions, 63 cases, and for diorisms those from the first, because it refers entirely to the first.>
(66) <The first (book) of the Cutting off of an Area> contains 7 dispositions, 24 cases, 7 diorisms, of which 4 are maxima, 3 minima. That in the second of the first disposition is maximum, as is that in the first of <the second disposition, and that in the second> of the fourth, and that in the third of the third, and that in the fourth of the fourth, and that in the first of the sixth. The second (book) of the Cutting off of an Area contains 13 dispositions, 60 cases, and the diorisms from the first (book). For it refers to it.
(67) One would like to know why the second (book) of the Cutting off of a Ratio contains 14 dispositions, while that of the Area only 13. It does so for this reason, that the seventh disposition in the Cutting off of an Area is omitted as obvious. For if both parallels fall on the limits, any line drawn through (the point) will cut off a given area. For it is equal to the rectangle contained by the (lines) between the limits and the intersection of both the lines originally given in position. In the Cutting off of a Ratio it is not likewise. For this reason, then, it has one disposition in excess of the second (work) in the second (book), the rest being the same.

 á $\pi \dot{a} \gamma \epsilon \tau a \iota$ रà ρ ódov ϵ is $\tau \dot{o} \pi \rho \tilde{\omega} \tau 0 \nu .>$

 $\pi \epsilon \rho \dot{a} \tau \omega \nu \kappa a \dot{i} \tau \tilde{\eta} \varsigma \dot{a} \mu \phi о \tau \epsilon \in \omega \nu \tau \tilde{\omega} \nu, \dot{\epsilon} \xi \dot{a} \rho \times \tilde{\eta} \varsigma \tau \tilde{\eta} \iota \quad \theta \dot{\epsilon} \sigma \epsilon \iota \delta 0 \theta \in \iota \sigma \tilde{\omega} \nu$

[^19](68) Determinate Section, (Book) 1.

1. (Prop. 22) Lemma useful for the first assignment of the fifth problem.

Let there be line $A B$, and on it three points Γ, Δ, E, and let the rectangle contained by $A \Delta, \Delta \Gamma$ be equal to the rectangle contained by $B \Delta$, ΔE. That as is $B \Delta$ to ΔE, so is the rectangle contained by $A B, B \Gamma$ to the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$.

For since the rectangle contained by $A \Delta, \Delta \Gamma$ equals the rectangle contained by $B \Delta, \Delta E,{ }^{1}$ therefore in ratio as is $A \Delta$ to ΔB, so is $E \Delta$ to $\Delta \Gamma .{ }^{2}$ Hence all AE to all $\mathrm{B} \Gamma$ is as $\mathrm{E} \Delta$ to $\Delta \Gamma .{ }^{3}$ And also inverting. ${ }^{4}$ Again, since the rectangle contained by $A \Delta, \Delta \Gamma$ equals the rectangle contained by $B \Delta$, $\Delta E, 5$ therefore in ratio as is $A \Delta$ to ΔE, so is $B \Delta$ to $\Delta \Gamma .6$ Hence all $A B$ is to all ΓE as $B \Delta$ to $\Delta \Gamma .{ }^{7}$ But as is $B \Gamma$ to $E A$, so was $\Gamma \Delta$ to $\Delta E .{ }^{8}$ Thus the ratio compounded out of $A B$ to ΓE and $B \Gamma$ to $A E$ is the same as that compounded out of $B \Delta$ to $\Delta \Gamma$ and $\Gamma \Delta$ to $E \Delta .{ }^{9}$ But the (ratio) compounded out of AB to $\Gamma \mathrm{E}$ and $\mathrm{B} \Gamma$ to AE is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ to (the ratio of) the rectangle contained by $A E, E \Gamma,{ }^{10}$ while the (ratio) compounded out of $B \Delta$ to $\Delta \Gamma$ and $\Gamma \Delta$ to ΔE is $B \Delta$ to $\Delta E .1^{1}$ And so as is $B \Delta$ to ΔE, so is the rectangle contained by $A B, B \Gamma$ to the rectangle contained by AE, EГ. ${ }^{12}$ Q.E.D.
(69) 2. (Prop. 22) The same thing another way.

Since the rectangle contained by $A \Delta, \Delta \Gamma$ equals the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E},{ }^{1}$ in ratio ${ }^{2}$ and taking whole to whole, therefore, as is AE to $\mathrm{B} \Gamma$, so is $\mathrm{A} \Delta$ to $\Delta \mathrm{B} \cdot{ }^{3}$ Componendo, as AE plus $\Gamma \mathrm{B}$ is to $\Gamma \mathrm{B}$, so is AB to $\mathrm{B} \Delta .{ }^{4}$ Hence the rectangle contained by AE plus $\Gamma \mathrm{B}$ and $\mathrm{B} \Delta$ equals the rectangle contained by $A B, B \Gamma .5$ Again, since as is $A \Delta$ to ΔB, so is $E \Delta$ to $\Delta \Gamma, 6$ and hence all $A E$ to all ΓB is as $E \Delta$ to $\Delta \Gamma, 7$ therefore inverting ${ }^{8}$ and componendo ${ }^{9}$ (and area to area) the rectangle contained by AE plus Γ B and $\mathrm{E} \Delta$ equals the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma .{ }^{10}$ But it has been proved that the rectangle contained by AE plus $\Gamma \mathrm{B}$ and $\mathrm{B} \Delta$ also equals the rectangle contained by $A B, B \Gamma$. Hence inverting, as is the rectangle contained by $A E$ plus ΓB and $B \Delta$ to the rectangle contained by $A E$ plus ΓB and ΔE, that is, $B \Delta$ to ΔE, so is the rectangle contained by $A B, B \Gamma$ to the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma .{ }^{11}$

(68) Δ I Ω PI I MENH Σ TOMH $\Sigma ~ П P \Omega T O N$

 $\pi \rho о \beta \lambda_{\eta \mu} \mu \tau о$.

 $\tau 0 \tilde{v} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AB} \mathrm{\Gamma} \pi \rho \dot{o} \varsigma \tau \grave{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AE} \mathrm{\Gamma} \dot{\epsilon} \sigma \tau i \nu, \dot{o} \delta \grave{\epsilon} \sigma v \nu \eta \mu \mu \bar{\epsilon} \nu o s$

 $\mathrm{AB} \mathrm{\Gamma} \pi \rho$ òs $\tau \grave{o}$ ú $\pi \grave{o}$ $\tau \tilde{\omega} \nu \mathrm{AE} \mathrm{\Gamma}$. 'ö $\pi \epsilon \rho:-$
(69) β.' á $\lambda \lambda \omega \varsigma$ тò aúvóo.
$\dot{\epsilon} \pi \epsilon i \tau \grave{o} \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{~A} \Delta \Gamma$ 'íoov $\epsilon \sigma \tau i \nu \tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{~B} \Delta \mathrm{E}$, ávánorov

 á $\rho a \dot{v} \pi \grave{o}$ ov $\nu a \mu \phi о \tau \dot{\epsilon} \rho o v \tau \tilde{\eta} \varsigma \mathrm{AE}, ~ Г В к а і ~ \tau \tilde{\eta} \varsigma \mathrm{E} \Delta$ 'íoov $\bar{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota$

 $\tau \grave{\eta} \nu \Delta \mathrm{E}, ~ o \ddot{u} \tau \omega \varsigma \tau \grave{o} \dot{u} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AB} \mathrm{\Gamma} \pi \rho \grave{o} \varsigma \tau \grave{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AE}$.

5
$\left\|2 a^{\circ} \mathrm{mg} \mathrm{A}\right\| 19 \pi \rho \dot{o} \varsigma \Delta \Gamma$ om $\mathrm{A}^{1} \pi \rho \grave{o} \varsigma \Delta \mathrm{E} \Gamma$ add A^{2} supr, corr Co\| $22 \beta^{\prime} \mathrm{mg} \mathrm{A} \| 29 \tau \dot{\eta} \nu(\Gamma \mathrm{~B})$ add Ge (S) \| $33 \tau \dot{0} \mathrm{Co}$ restituens lacunam in $\mathrm{k} \tau 0 \tilde{v} \mathrm{~A}$
(70) 3. (Prop. 23) Another for the first assignment of the fifth problem, after the following two (theorems) have been proved.

Let $A B$ equal $\Gamma \Delta$, and an arbitrary (point) E on $\Gamma \Delta$. That the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$ equals the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ plus the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$.

Let $\mathrm{B} \Gamma$ be bisected at point Z .1 Then the rectangle contained by $\mathrm{A} \Gamma$, $\Gamma \Delta$ plus the square of ΓZ equals the square of $Z \Delta .^{2}$ For the same reason, the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ plus the square of ZE equals the square of $Z \Delta$ (II 5). ${ }^{3}$ Hence the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$ plus the square of ΓZ equals the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ plus the square of $\mathrm{EZ},{ }^{4}$ that is (plus) the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ plus the square of $\Gamma \mathrm{Z}$ (II 6). 5 Let the common square of ΓZ be subtracted. Therefore the remaining rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$ equals the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ plus the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma .{ }^{6}$
(71) 4. (Prop. 24) *With the same things assumed, let point E be outside $\mathrm{A} \Delta$. That again the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ equals the rectangle contained by $A \Delta, \Delta E$ plus the rectangle contained by $B \Delta, \Delta \Gamma$.

Again let $\mathrm{B} \Gamma$ be bisected at Z .1 Then the rectangle contained by BE, $\mathrm{E} \Gamma$ plus the square of $\Gamma \mathrm{Z}$ equals the square of ZE (II 6), ${ }^{2}$ so that the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ plus the square of $\Gamma \mathrm{Z}$ equals the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{E}$ plus the square of $\Delta \mathbf{Z},{ }^{3}$ that is, (plus) the rectangle contained by $B \Delta, \Delta \Gamma$ plus the square of ΓZ (II 6). 4 Let the common square of $\Gamma \mathrm{Z}$ be subtracted. Then the remaining rectangle contained by BE, E Γ equals the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{E}$ plus the rectangle contained by $B \Delta, \Delta \Gamma .{ }^{*}$
(72) 5. (Prop. 25) Now that these have been proved, to demonstrate that, if the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ equals the rectangle contained by $\Delta \mathrm{B}, \mathrm{BE}$, then as is $\Delta \mathrm{B}$ to BE , so is the rectangle contained by $\mathrm{A} \Delta, \Delta \Gamma$ to the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$.

For let ZA equal $\Gamma \mathrm{E} .{ }^{1}$ Then since the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ equals the rectangle contained by $\Delta \mathrm{B}, \mathrm{BE},{ }^{2}$ add in common the rectangle contained by ZB, BE. Therefore all the rectangle contained by $\triangle \mathrm{Z}, \mathrm{BE}$ equals the rectangle contained by ZB, BE plus the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma .{ }^{3}$ But by the (lemma 7.70) that was written above, this is equal to the rectangle contained by $\mathrm{Z} \Gamma, \Gamma \mathrm{E}, 4$ that is to the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma .{ }^{5}$ Hence the rectangle contained by $\mathrm{Z} \Delta, \mathrm{BE}$ equals the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$. Introduce the rectangle contained by $\mathrm{Z} \Delta, \Delta \mathrm{E}$. Then, as is the rectangle contained by $\mathrm{Z} \Delta, \Delta \mathrm{E}$ to the rectangle contained by $\mathrm{Z} \Delta$, $B E$, that is, as is $\mathrm{E} \Delta$ to EB , so is the rectangle contained by $\mathrm{Z} \Delta, \Delta \mathrm{E}$ to the

 $\tau \epsilon \tau \rho a \gamma \omega \nu \omega \iota, \tau 0 \cup \tau \epsilon \sigma \tau \iota \nu \tau \tilde{\omega} \iota \tau \epsilon \dot{\cup} \pi \grave{o} \tau \tilde{\omega} \nu$ ВЕГ каi $\tau \tilde{\omega} \iota$ á $\pi \grave{o}$, $\tau \tilde{\eta} \varsigma \Gamma Z$

 $\tau \tilde{\omega} \iota \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu$ ВЕГ.

 $\dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{~A} \Delta \mathrm{E} \kappa a \dot{\imath} \tau \tilde{\omega} \iota \dot{v} \pi \dot{o} \mathrm{~B} \Delta \Gamma$.

 oü $\tau \omega \varsigma \tau \dot{o} \dot{u} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{~A} \Delta \Gamma \pi \rho \dot{o} \varsigma \tau \grave{o}<\dot{v} \pi \dot{o}>\mathrm{AE}$.
 $\left.\tau \epsilon \tau \rho a \dot{a} \omega \nu 0 \nu \mathrm{~A}\|13 \tau \tilde{\omega} \iota \mathrm{Ge}(\mathrm{BS}) \tau \grave{\mathrm{o}} \mathrm{A}\| 14 \delta^{\circ} \mathrm{mg} \mathrm{A} \| 15 \mathrm{~A} \Delta \mathrm{E}\right]$ $\mathrm{AE} \Delta$ Co $\| 18 \mathrm{~A} \Delta \mathrm{E}] \mathrm{AE} \Delta$ Co $\|19 \tau 0 \tilde{v} \mathrm{Co} \tau 0 \mathrm{~A}\| 21 \mathrm{~A} \Delta \mathrm{E}] \mathrm{AE} \Delta \mathrm{Co} \|$ $22 \epsilon^{\prime} \mathrm{mg} \mathrm{A} \| 23 \mathrm{BE}$ Co BГ $\mathrm{A} \| 26 \Delta \mathrm{Z}$, BE Co $\Delta \mathrm{ZB} \mathrm{A} \| 30$ ante $\mathrm{Z} \Delta \mathrm{E}$ add $\Delta \mathrm{A}^{1}$ del $\mathrm{A}^{2}| | 32 \mathrm{AE}$ Co restituens lacunam in $\mathrm{k} \Delta \mathrm{E} \Gamma$ A || $33 \mathrm{Z} \Delta \mathrm{E}$ - $\tau \grave{o} \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu$ add Co\| $35 \tau \tilde{\omega} \iota$ Ge (BS) $\tau \tilde{\omega} \nu \mathrm{A} \| 36 \dot{v} \pi \grave{o}$ (AEГ) add Hu
rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma .{ }^{6}$ Componendo, as is $\triangle \mathrm{B}$ to BE , so is the rectangle contained by $\angle \mathrm{Z} \Delta, \Delta \mathrm{E}$ plus the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$ to the rectangle contained by> $\mathrm{AE}, \mathrm{E} \Gamma .7$ But by the (lemma 7.71) that was written above, the rectangle contained by $\mathrm{Z} \Delta, \Delta \mathrm{E}$ plus the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$ equals the rectangle contained by $\mathrm{A} \Delta, \Delta \Gamma \cdot{ }^{8}$ Therefore as is $\Delta \mathrm{B}$ to BE , so is the rectangle contained by $\mathrm{A} \Delta, \Delta \Gamma$ to the <rectangle contained by> $\mathrm{AE}, \mathrm{E} \Gamma .{ }^{9}$
(73) 6. (Prop. 26) If $\mathrm{AB} \mathrm{\Gamma}$ is a triangle, and two (lines) $\mathrm{A} \Delta, \mathrm{AE}$ are drawn so that the angles $B A \Gamma, \triangle A E$ equal two right angles, then as is the rectangle contained by $\mathrm{B} \Gamma, \Gamma \Delta$ to the rectangle contained by $\mathrm{BE}, \mathrm{E} \Delta$, so is the square of $\Gamma \mathrm{A}$ to the square of AE .

For if I circumscribe a circle around triangle ABA, and EA and ГA are produced to Z and H , then the rectangle contained by $\mathrm{B} \Gamma, \Gamma \Delta$ turns into the rectangle contained by $\mathrm{H} \Gamma, \Gamma \mathrm{A},{ }^{1}$ while the rectangle contained by BE , $\mathrm{E} \Delta$ (turns) into the rectangle contained by ZE, EA ${ }^{2}$ (III 36), and it will be necessary, alternando, to find out whether, as is the rectangle contained by H , ГА to the square of $\Gamma \mathrm{A}$, so is the rectangle contained by ZE, EA to the square of EA. ${ }^{11}$ This is the same as finding out whether, as is $\mathrm{H} \Gamma$ to $Г А$, so is ZE to EA. ${ }^{10}$ Hence if it is, then HZ is parallel to $\mathrm{B} \Gamma$ (VI 2); and in fact it is. 9 For since angles $\mathrm{BA} \Gamma, \triangle \mathrm{AE}$ equal two right angles, ${ }^{3}$ angle $\triangle \mathrm{AE}$ is therefore equal to angle BAH. ${ }^{4}$ But angle $\triangle A E$, outside the quadrilateral, equals angle $\mathrm{ZB} \Delta,^{5}$ while angle BAH equals angle BZH. ${ }^{6}$ Thus angle ZBA equals angle BZH. ${ }^{7}$ And they are alternate angles. Hence HZ is (parallel) to BГ. ${ }^{8}$ This is what was sought. Hence (the theorem) is valid.
(74) 7. (Prop. 27) The same thing another way.

In triangle $A B \Gamma$, let angles $B A \Gamma, \triangle A E$ equal two right angles. That as is the rectangle contained by $\mathrm{B} \Gamma, \Gamma \Delta$ to the rectangle contained by BE , $\mathrm{E} \Delta$, so is the square of $\Gamma \mathrm{A}$ to the square of AE .

Let $E Z$ be drawn through $E, 1$ parallel to $A \Gamma$. Then angle $\triangle A E$ equals angle AZE. ${ }^{2}$ Therefore the rectangle contained by ZE, EH equals the square of $\mathrm{AE} .{ }^{3}$ Then since, as is $\mathrm{A} \Gamma$ to ZE , so is $\Gamma \mathrm{B}$ to $\mathrm{BE},{ }^{4}$ while, as is $\Gamma \mathrm{A}$ to HE , so is $\Gamma \Delta$ to $\Delta \mathrm{E}, 5$ therefore the (ratio) compounded out of $\Gamma \mathrm{A}$ to ZE and $\Gamma \mathrm{A}$ to HE is the same as the (ratio) compounded out of $\Gamma \mathrm{B}$ to BE and $\Gamma \Delta$ to $\Delta E .6$ But the (ratio) compounded out of ΓA to ZE and ΓA to HE is that of the square of $\Gamma \mathrm{A}$ to the rectangle contained by $\mathrm{ZE}, \mathrm{HE},{ }^{7}$ that is to the square of $\mathrm{AE},{ }^{8}{ }^{*}$ while the (ratio) compounded out of $\Gamma \mathrm{B}$ to BE and $\Gamma \Delta$ to $\Delta \mathrm{E}$ is the same as that of the rectangle contained by $\mathrm{B} \Gamma, \mathrm{BE}$ to the rectangle contained by $\Gamma \Delta, \Delta E .^{9}$ Hence as is the rectangle contained by $\Gamma B, \mathrm{BE}$ to the rectangle contained by $\Gamma \Delta, \Delta \mathrm{E}$, so is the square of $\Gamma \mathrm{A}$ to the square of AE. $1^{\text {* }}$

 BAH $\gamma \omega \nu i a \iota$. à $\lambda \lambda \dot{a} \dot{\eta} \mu \grave{\epsilon} \nu \dot{v} \pi \dot{o} \Delta \mathrm{AE}$ 'íon $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\eta} \iota \dot{\nu} \pi \grave{o} \mathrm{ZB} \Delta \dot{\epsilon} \kappa \tau \dot{o} \mathrm{~S}$ $\tau \epsilon \tau \rho a \pi \lambda \epsilon \dot{v} \rho o v . \dot{\eta} \delta \dot{\epsilon} \dot{v} \pi \dot{o} \mathrm{BAH} \gamma \omega \nu i a \operatorname{ion} \dot{\epsilon} \sigma \tau i \nu \tau \tilde{\eta} \iota \dot{v} \pi \dot{o} \mathrm{BZH}$.

(74) < $\zeta^{\prime}>$ 'á $\lambda \lambda \omega \varsigma ~ \tau o ̀ ~ a u ́ \tau o . ~ . ~$

[^20](75) 8. (Prop. 28) Again, let both angles BAE, ГAD be right. That as is the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{E}$ to the rectangle contained by $\mathrm{B} \Delta$, $\Delta \mathrm{E}$, so is the square of $\Gamma \mathrm{A}$ to the square of $\mathrm{A} \Delta$.

Let ZH be drawn through Δ, parallel to $\mathrm{A} \Gamma,{ }^{1}$ and where it meets AE , let point H be. Hence angle $A \Delta Z$ is right. ${ }^{2}$ But angle ZAH too is right. ${ }^{3}$ Hence the rectangle contained by $\mathrm{Z} \Delta, \Delta \mathrm{H}$ equals the square of $\Delta \mathrm{A} . \mathrm{A}^{4}$ Therefore as is the square of ΓA to the square of $A \Delta$, so is the square of $\Gamma А$ to the rectangle contained by $\mathrm{Z} \Delta, \Delta \mathrm{H} .5$ But the ratio of the square of $\mathrm{A} \Gamma$ to the rectangle contained by $\mathrm{Z} \Delta, \Delta \mathrm{H}$ is compounded out of $\Gamma \mathrm{A}$ to $\Delta \mathrm{H}$, that is $\Gamma \mathrm{E}$ to $\mathrm{E} \Delta$, and $\Gamma \mathrm{A}$ to $\mathrm{Z} \Delta$, that is $\Gamma \mathrm{B}$ to $\mathrm{B} \Delta .{ }^{6}$ But the ratio compounded out of ΓE to $E \Delta$ and ΓB to $B \Delta$ is the same as that of the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{E}$ to the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E} .7$ Thus as is the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{E}$ to the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$, so is the square of ΓA to the square of $A \Delta .^{8}$
(76) 9. (Prop. 29) This being so, the lemma written above in another way, namely that as is $\mathrm{B} \Delta$ to $\Delta \mathrm{E}$, so is the rectangle contained by $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ to the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$. From Δ let an arbitrary line be drawn, $\Delta \mathbf{Z}$, and make the square of $\Delta \mathrm{Z}$ equal the rectangle contained by $A \Delta, \Delta \Gamma$, and join $A Z, \Gamma Z, E Z$, and $B Z$.

Then since the rectangle contained by $A \Delta, \Delta \Gamma$ equals the square of $\Delta \mathbf{Z},{ }^{1}$ therefore angle $\Gamma Z \Delta$ equals angle $\mathbf{A} .^{2}$ Again, since the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$ equals the square of $\Delta \mathrm{Z},{ }^{3}$ therefore angle $\Delta \mathrm{ZE}$ equals angle B. ${ }^{4}$ But angle $\Gamma Z \Delta$ equals angle A too. Therefore all angle Γ ZE equals angles A and B. ${ }^{5}$ But angles A, B plus angle AZB equal two right angles. 6 Hence angles AZB and Γ ZE equal two right angles. ${ }^{7}$ But by the lemma (7.74) written above, as is the square of BZ to the square of ZE , so is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ to the rectangle contained by AE , $E \Gamma .{ }^{8}$ But as is the square of BZ to the square of ZE , so is $\mathrm{B} \Delta$ to $\Delta \mathrm{E}, \mathrm{r}^{\circ}$ since the rectangle contained by $B \Delta, \Delta E$ equals the square of $\Delta Z .{ }^{9}$ Therefore as is $\mathrm{B} \Delta$ to $\Delta \mathrm{E}$, so is the rectangle contained by $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ to the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma .{ }^{11}$

 $\tau \epsilon \tau \rho a ́ \gamma \omega \nu o \nu \pi \rho o ̀ s ~ \tau o ̀ ~ a ́ \pi o ̀ ~ A \Delta ~ \tau \epsilon \tau \rho a ́ \gamma \omega \nu o \nu . ~$

|132v тo $\dot{\boldsymbol{u}} \boldsymbol{0} \boldsymbol{\tau} \tau \tilde{\omega} \nu \mathrm{AE} \mathrm{\Gamma}$.
$\| 1 \eta^{\prime}$ add $\mathrm{Hu}(\mathrm{V}) \mid$ BAE $\operatorname{Co} \mathrm{B} \Delta \mathrm{E}\|\|2 \mathrm{~B} \Delta \mathrm{E} \operatorname{Co} \triangle \mathrm{BE} \mathrm{A}\| 7$ oü $\tau \omega \varsigma$ add Hu oür $\boldsymbol{\sigma}$ Ge\| 8 á $\lambda \lambda \grave{a}$ - $\dot{v} \pi \grave{o}$ bis A^{1} uncis secl. $\mathrm{A}^{2} \| 10$ ГА Co $\Gamma \Delta \mathrm{A}\|12 \mathrm{~B} \Delta \mathrm{Co} \mathrm{BA} \mathrm{A}\| 15 \theta^{\circ}$ add $\mathrm{Hu}(\mathrm{V})\|19 \mathrm{AZ} \mathrm{Co} \mathrm{\Delta Z} \mathrm{~A}\| 27$
 $-\Delta Z$ del Co \mid rá ρ Simson $_{1}$ ápa A
(77) 10. (Prop. 30) Lemma useful for the second assignment of the same problem.

Again, having the rectangle contained by $A \Delta, \Delta E$ equal to the rectangle contained by $B \Delta, \Delta \Gamma$, to show that, as is $B \Delta$ to $\Delta \Gamma$, so is the rectangle contained by AB, BE to the rectangle contained by $\mathrm{E}, \Gamma \mathrm{A}$.

For since, as is $B \Delta$ to ΔE, so is $A \Delta$ to $\Delta \Gamma,{ }^{1}$ therefore also $B A$ to ΓE is as $B \Delta$ to $\Delta E .{ }^{2}$ Again, since, as is $B \Delta$ to ΔA, so is $E \Delta$ to $\Delta \Gamma,{ }^{3}$ therefore the remainder BE to the remainder $\mathrm{A} \Gamma$ is as $\mathrm{E} \Delta$ to $\Delta \Gamma$. ${ }^{4}$ But also, as $\mathrm{B} \Delta$ to ΔE, so was $A B$ to ΓE. Hence the ratio composed out of $B \Delta$ to ΔE and $E \Delta$ to $\Delta \Gamma$, which is $B \Delta$ to $\Delta \Gamma,{ }^{6}$ is the same as the (ratio) compounded out of $A B$ to $\Gamma \mathrm{E}$ and EB to $\mathrm{A} \Gamma, 5$ which is the same as the (ratio) of the rectangle contained by AB, BE to the rectangle contained by $\mathrm{E}, Г$, ${ }^{7}$ Therefore, as is $\mathrm{B} \Delta$ to $\Delta \Gamma$, so is the rectangle contained by AB, BE to the rectangle contained by E, Г $^{\circ}{ }^{8}$ Q.E.D.
(78) 11. (Prop. 30) The same thing another way.

Since, as is $A \Delta$ to $\Delta \mathrm{B}$, so is $\Gamma \Delta$ to $\Delta \mathrm{E},{ }^{1}$ therefore the remainder $\mathrm{A} \Gamma$ to the remainder EB is as $\mathrm{A} \Delta$ to $\Delta \mathrm{B} .{ }^{2}$ Componendo, as $\mathrm{A} \Gamma$ plus EB is to EB , so is AB to $\mathrm{B} \Delta .{ }^{3}$ Hence the rectangle contained by $\mathrm{A} \Gamma$ plus EB and $\mathrm{B} \Delta$ equals the rectangle contained by $A B, B E .4$ Again, since as is $B \Delta$ to ΔA, so is $E \Delta$ to $\Delta \Gamma,{ }^{5}$ therefore the remainder $B E$ to the remainder $\Gamma \mathrm{A}$ is as one of the ratios, namely as $\mathrm{E} \Delta$ to $\Delta \Gamma .{ }^{6}$ Componendo, as EB plus $\mathrm{A} \Gamma$ is to $\mathrm{A} \Gamma$, so is $\mathrm{E} \Gamma$ to $\Gamma \Delta .{ }^{7}$ Therefore the rectangle contained by EB plus $\mathrm{A} \Gamma$ and $\Gamma \Delta$ equals the rectangle contained by $\mathrm{E}, \Gamma \mathrm{\Gamma A} .^{8}$ But it has been shown that the rectangle contained by $\mathrm{A} \Gamma$ plus EB and $\mathrm{B} \Delta$ <equals the rectangle contained by AB, BE. Thus as the rectangle contained by $\mathrm{A} \Gamma$ plus EB and $\mathrm{B} \Delta>$ is to the rectangle contained by $A \Gamma$ plus $E B$ and $\Gamma \Delta$, that is as is $B \Delta$ to $\Delta \Gamma$, so is the rectangle contained by AB, BE to the rectangle contained by E, Γ, ${ }^{9}{ }^{9}$ Q.E.D.
 $\pi \rho о \beta \lambda \eta \mu a \tau о \varsigma$.

 $\mathrm{E} \Delta \pi \rho \grave{\varrho} \varsigma \tau \dot{\eta} \nu \Delta \Gamma$, $\lambda o \iota \pi \dot{\eta}$ á $\rho a \dot{\eta} \mathrm{BE} \pi \rho \grave{o} \varsigma \lambda o \iota \pi \dot{\eta} \nu \quad \tau \dot{\eta} \nu \mathrm{~A} \Gamma \dot{\epsilon} \sigma \tau i \nu \dot{\omega} \varsigma \dot{\eta}$

 $\tau \epsilon \tau 0 \tilde{v} \tau \tilde{\eta} \varsigma \mathrm{AB} \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu$ ГЕ каi $\tau 0 \tilde{v} \tau \tilde{\eta} \varsigma \mathrm{~EB} \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \mathrm{~A}$, ö́

 $\tau \grave{o}$ ù $\pi \grave{o} \tau \tilde{\omega} \nu$ ЕГА. ö $(\pi \in \rho)$: -

 $\tau \tilde{\omega} \iota \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{ABE} . \pi a ́ \lambda \iota \nu \dot{\epsilon} \pi \epsilon i \quad \dot{\epsilon} \sigma \tau \iota \nu \dot{\omega} \varsigma \dot{\eta} \mathrm{~B} \Delta \pi \rho \grave{\rho} \varsigma \tau \dot{\eta} \nu \Delta \mathrm{~A}$,

(79) 12. (Prop. 31) The same thing another way, after the following has first been proved.

With $A B$ equal to $\Gamma \Delta$, if some point E is taken, to prove that the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ equals the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$ plus the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$.

Let $\mathrm{B} \Gamma$ be bisected at point Z . Then the rectangle contained by AE , $\mathrm{E} \Delta$ plus the square of EZ equals the square of $\Delta \mathrm{Z} \cdot{ }^{2}$ But the rectangle contained by $A \Gamma, \Gamma \Delta$ plus the square of ΓZ equals the square of $\Delta Z .{ }^{3}$ Hence the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ plus the square of EZ equals the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$ plus the square of $\Gamma \mathrm{Z},{ }^{4}$ that is, (plus) the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ plus the square of EZ .5 Let the common square of EZbe subtracted. Then the remaining rectangle contained by AE , $\mathrm{E} \Delta$ equals the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$ plus the rectangle contained by BE, E. ${ }^{6}$
(80) 13. (Prop. 32) Now that this has been demonstrated beforehand, let the rectangle contained by $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ be equal to the rectangle contained by $\triangle \mathrm{B}, \mathrm{BE}$. That, as is $\triangle \mathrm{B}$ to BE, so is the rectangle contained by $<\mathrm{A} \Delta, \Delta \Gamma$ to the rectangle contained by $>\mathrm{AE}, \mathrm{E}$.

Let AZ be made equal to $\Gamma \Delta .{ }^{1}$ But according to the (lemma 7.79) that was written above, the rectangle contained by ZB, B Δ equals the rectangle contained by $\mathrm{Z} \Gamma, \Gamma \Delta$ plus the rectangle contained by $\mathrm{AB}, \mathrm{B} .^{2}$ But since the rectangle contained by $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ equals the rectangle contained by $\triangle \mathrm{B}, \mathrm{BE},{ }^{3}$ let each be subtracted from the rectangle contained by ZB, $\mathrm{B} \Delta$. Then the remaining rectangle contained by $\mathrm{Z} \Gamma, \Gamma \Delta$, which is the rectangle contained by $A \Delta, \Delta \Gamma, 5$ equals the rectangle contained by $\Delta \mathrm{B}$, ZE. 4 Again, since the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ equals the rectangle contained by $\Delta \mathrm{B}, \mathrm{BE}, 6$ in ratio ${ }^{7}$ and separando, as is AE to EB , so is $\Delta \Gamma$ to $\Gamma \mathrm{B},{ }^{8}$ that is ZA to $\mathrm{B} \Gamma \cdot{ }^{9}$ Hence all ZE is to all $\mathrm{E} \Gamma$ as is AE to EB .10 Thus the rectangle contained by ZE , EB equals the rectangle contained by $\Gamma \mathrm{E}$, EA. ${ }^{1}$ But it was shown that the rectangle contained by $\mathrm{ZE}, \mathrm{B} \Delta$ is equal to the rectangle contained by $A \Delta, \Delta \Gamma .{ }^{2}$ Therefore alternando, as is the rectangle contained by $\mathrm{ZE}, \mathrm{B} \Delta$ to the rectangle contained by ZE, EB, that is, as $\Delta \mathrm{B}$ to BE , so is the rectangle contained by $\mathrm{A} \Delta, \Delta \Gamma$ to the rectangle contained by AE, $\mathrm{E} \Gamma .{ }^{13}$
(81) 14. (Prop. 33) After the following has first been proved, the same thing will be proved in another way.

Let $A B \Gamma$ be a triangle, and let there be drawn inside it $A \Delta, A E$ making both angles BAE, ГA Δ right angles. That, as is the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{E}$ to the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$, so is the square of ΓA to the square of $A \Delta$.

ớons 'íons $\tau \tilde{\eta} \varsigma \mathrm{AB} \tau \tilde{\eta} \iota \Gamma \Delta, \dot{\epsilon} \dot{a} \nu \lambda \eta \phi \theta \tilde{\eta} \iota \tau \iota \sigma \eta \mu \epsilon \tilde{\imath} o \nu \tau \dot{o} \mathrm{E}$,

 $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota \dot{\nu} \pi \grave{o} \tau \tilde{\omega} \nu \Delta \mathrm{~B}, \mathrm{ZE} . \pi a ̃ \iota \nu \quad \dot{\epsilon} \pi \epsilon \dot{i} \tau \grave{o} \dot{\nu} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AB} \mathrm{\Gamma}$ 'íoov
 $\tau \grave{\eta} \nu \mathrm{EB}, o \ddot{u} \tau \omega \varsigma \dot{\eta} \Delta \Gamma \pi \rho \dot{o} \varsigma \Gamma \mathrm{~B} \dot{\epsilon} \sigma \tau i \nu, \tau 0 u \tau \bar{\epsilon} \sigma \tau \iota \nu \dot{\eta} \mathrm{ZA} \pi \rho \grave{o} \varsigma \tau \dot{\eta} \nu \mathrm{~B} \Gamma$.

 $\dot{\epsilon} \sigma \tau i \nu \dot{\omega} s \tau \dot{o} \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{ZE}, \mathrm{B} \Delta \pi \rho \grave{o} \varsigma \tau \grave{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{ZEB}, \tau 0 v \tau \epsilon \sigma \tau \iota \nu \dot{\omega} s$

 $\mathrm{A}^{2}\|3 \tau \dot{o} \mathrm{Ge}(\mathrm{BS}) \tau \tilde{\omega} \iota \mathrm{A}\| 11 \not \boldsymbol{\tau}^{\circ}$ add $\mathrm{Hu}(\mathrm{BS}) \| 12 \tau \tilde{\omega} \iota \dot{\nu} \pi \dot{o} \tau \tilde{\omega} \nu$ $\Delta \mathrm{BE} \mathrm{Ge}(\mathrm{Co}) \tau \tilde{\omega} \nu \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \Delta \mathrm{~B} \mathrm{~A} \| 13 \tau \tilde{\omega} \nu \mathrm{~A} \Delta \Gamma \pi \rho \dot{\rho} \tau \tau \dot{o} \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu$
 $\mathrm{A} \Delta \Gamma \mathrm{Co} \overline{\mathrm{A}} \bar{\Lambda} \bar{\Gamma}^{\circ} \mathrm{A} \| 26$ ८ δ° add $\left.\mathrm{Hu}(\mathrm{BS}) \mid \pi \rho \circ \theta \in \omega \rho \eta \theta^{\prime} \epsilon \nu \tau 0 \varsigma\right]-\rho \eta-\mathrm{A}^{2}$
 om $\mathrm{Ge}(\mathrm{BS}) \| 28 \gamma \omega \nu \iota \tilde{\omega} \nu] \gamma \omega \nu i a \nu \mathrm{~A} \| 31 \pi \epsilon \rho \iota \boldsymbol{\gamma} \epsilon \gamma \rho a \phi \theta \omega \mathrm{Ge}$ (BS) $\pi \in \rho \gamma \in \gamma \rho a ́ \phi \theta \omega \mathrm{~A} \| 33 \boldsymbol{\gamma} \omega \nu \iota \omega \nu] \gamma \omega \nu$ ia A

Let there be circumscribed around triangle ABE a circle ABZH, and let ZH be joined. Then since each of angles BAE, ГAD is right, ${ }^{1}$ therefore BE and ZH are both diameters of the circle. ${ }^{2}$ Hence Θ is the center. ${ }^{3}$ Then since $\mathrm{Z} \Theta$ equals $\Theta H, 4$ therefore as is $\mathrm{A} \Gamma$ to $\Gamma \mathrm{H}$, so is $\mathrm{A} \Delta$ to $\Delta \mathrm{Z}$ (lemma 81.1); ${ }^{5}$ and by inversion ($\mathrm{Z} \Delta$ to $\Delta \mathrm{A}$ is as $\mathrm{H} \Gamma$ to $\Gamma \mathrm{A}$). ${ }^{6}$ But as is $\Gamma \mathrm{H}$ to $\Gamma \mathrm{A}$, so is the rectangle contained by $\mathrm{A}, \Gamma \mathrm{H}$ to the square of $\Gamma \mathrm{A}$, that is the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{E}$ to the square of $\Gamma \mathrm{A} ;{ }^{7}$ while as is $\mathrm{Z} \Delta$ to ΔA, so is the rectangle contained by $\mathrm{Z} \Delta, \Delta \mathrm{A}$ to the square of $\Delta \mathrm{A}$, that is, the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$ to the square of $\Delta \mathrm{A} .{ }^{8}$ Hence alternando, as is the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{E}$ to the rectangle contained by $\mathrm{B} \Delta$, $\Delta \mathrm{E}$, so is the square of $\Gamma \mathrm{A}$ to the square of $A \Delta .{ }^{9}$ Q.E.D.
(82) 15. (Prop. 34) This being true, the (lemma) that was written above, in another way, namely that, as is $B \Delta$ to $\Delta \Gamma$, so is the rectangle contained by AB, BE to the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{E}$.

Let $\Delta \mathrm{Z}$ be erected from Δ, at right angles to AB , and let the square of $\Delta \mathrm{Z}$ be made equal to either of the rectangles contained by $\mathrm{A} \Delta, \Delta \mathrm{E}$, or by $B \Delta, \Delta \Gamma, 1$ and let $A Z, Z \Gamma, Z E, Z B$ be joined. Then angles AZE, Γ ZB are both right. ${ }^{2}$ But according to the (lemma 7.81) that was written above, as is the rectangle contained by AB, BE to the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{E}$, that is to the rectangle contained by $\mathrm{E}, \Gamma \mathrm{F}$, so is the square of BZ to the square of Z . ${ }^{3}$ But as is the square of BZ to the square of Z , so is $\mathrm{B} \Delta$ to $\Delta \Gamma .{ }^{4}$ Hence as is $\mathrm{B} \Delta$ to $\Delta \Gamma$, so is the rectangle contained by AB, BE to the rectangle contained by A, Γ, ${ }^{5} .{ }^{5}$
(83) 16. (Prop. 35a) For the first assignment of the sixth problem. (Let) AB be a straight line, and on it (let there be) three points Γ, Δ, E , and let the rectangle contained by AB, BE equal the rectangle contained by $\Gamma \mathrm{B}$, $B \Delta$. That, as is $A B$ to $B E$, so is the rectangle contained by $\Delta A, A \Gamma$ to the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$.

For since the rectangle contained by AB, BE equals the rectangle contained by ГВ, $\mathrm{B} \Delta,{ }^{1}$ therefore in ratio ${ }^{2}$ and remainder to remainder ${ }^{3}$ and convertendo (and inverting) as is the excess of $\mathrm{A} \Gamma$ over $\mathrm{E} \Delta$ to $\mathrm{A} \Gamma$, so is $B A$ to $A \Delta .{ }^{5}$ Hence the rectangle contained by the excess of $A \Gamma$ over $E \Delta$ and AB equals the rectangle contained by $\Delta \mathrm{A}, \mathrm{A} \Gamma .{ }^{6}$ Again, since as is AE to $\mathrm{E} \Delta$, so is $\Gamma \mathrm{B}: \mathrm{BE},{ }^{7}$ therefore remainder $\mathrm{A} \Gamma$ to remainder $\Delta \mathrm{E}$ is as $\Gamma \mathrm{B}$ to BE. ${ }^{8}$ Separando, as is the excess of $\mathrm{A} \Gamma$ over $\mathrm{E} \Delta$ to $\Delta \mathrm{E}$, so is $\Gamma \mathrm{E}$ to EB. ${ }^{9}$ Thus the rectangle contained by the excess of $A \Gamma$ over ΔE and $E B$ equals the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta . .^{\circ}$ But it was shown also that the (rectangle contained by) the (excess) of $\mathrm{A} \Gamma$ over $\mathrm{E} \Delta$ and AB equals the rectangle contained by $\Delta \mathrm{A}, \mathrm{A} \Gamma \cdot{ }^{11}$ Hence alternando, as is the rectangle contained by the excess of $A \Gamma$ over $\Delta \mathrm{E}$ and AB to the rectangle contained by the excess of $A \Gamma$ over ΔE and $B E$, that is, as is $A B$ to $B E$, so is the rectangle contained by ΔA to $A \Gamma$ to the rectangle contained by ΓE to $E \Delta .^{12}$

 $\dot{v} \pi \grave{o} \mathrm{~A} \Delta \mathrm{E}, \mathrm{B} \Delta \Gamma$ 'íoov $\kappa \epsilon i \sigma \theta \omega \quad \tau \grave{o}, \dot{a} \pi \grave{o}, \Delta \mathrm{Z}, \tau \in \tau \rho a ́ \gamma \omega \nu o \nu, \kappa а i$

 $<\tau \tilde{\eta} \varsigma>\tau \tilde{\omega} \nu \mathrm{A}, \mathrm{E} \Delta \dot{v} \pi \epsilon \rho o \chi \tilde{\eta} \varsigma \kappa a i \quad \tau \tilde{\eta} \varsigma \mathrm{AB}$ 'íoov $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota \dot{v} \pi \dot{o}$

 $\kappa a i<\tau \dot{o} \dot{v} \pi \dot{o}>\tau \tilde{\eta} \varsigma \tau \tilde{\omega} \nu \mathrm{A} \Gamma, \mathrm{E} \Delta<\dot{v} \pi \epsilon \rho о \times \tilde{\eta} \varsigma>\kappa a i \tau \tilde{\eta} \varsigma \mathrm{AB}$ 'íoov $\tau \tilde{\omega} \iota$

 тї $\dot{0} \pi \dot{o}$ ГЕ Δ.

[^21](84) 17. (Prop. 35a) The same thing another way, by means of compounded ratio.

For since, as is AB to $\mathrm{B} \Gamma$, so is $\Delta \mathrm{B}$ to $\mathrm{BE}, 1$ therefore remainder $\mathrm{A} \Delta$ to remainder ΓE is as $A B$ to $B \Gamma .{ }^{2}$ Again, since, as is $A B$ to $B \Delta$, so is ΓB to $B E,{ }^{3}$ therefore remainder $A \Gamma$ to remainder $\triangle E$ is as ΓB to BE. ${ }^{4}$ Hence the (ratio) compounded out of $A B$ to $B \Gamma$ and ΓB to $B E$, which is $A B$ to $B E,{ }^{6}$ is the same as the (ratio) compounded out of $A \Delta$ to $\Gamma \mathrm{E}$ and $\mathrm{A} \Gamma$ to $\Delta \mathrm{E}, \mathrm{s}^{5}$ which is the same as the (ratio) of the rectangle contained by $\Delta \mathrm{A}, \mathrm{A} \Gamma$ to the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta .{ }^{7}$
(85) 18. (Prop. 35b) Another way. Let there be described on AE a semicircle AZE, and let BZ be drawn tangent, and let AZ, $\langle\Gamma Z\rangle, \Delta Z, E Z$ be joined.

Then since BZ is tangent, and $\mathrm{B} \Delta$ cuts (the circle), the rectangle contained by AB, BE equals the square of BZ (III 36). 1 But the rectangle contained by AB, BE is assumed to be equal to the rectangle contained by $\Gamma \mathrm{B}, \mathrm{B} \Delta .{ }^{2}$ Hence the rectangle contained by $\Gamma \mathrm{B}, \mathrm{B} \Delta$ equals the square of $\mathrm{BZ} .{ }^{3}$ Thus angle BZA equals angle BГZ. ${ }^{4}$ But out of these, angle BZE equals angle ZAГ. ${ }^{5}$ Therefore remaining angle \triangle ZE equals remaining angle $A Z \Gamma .{ }^{6}$ Thus, as is the rectangle contained by $\Delta A, A \Gamma$ to the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$, so is the square of AZ to the square of ZE (lemma 85.1). ${ }^{7}$ But as is the square of $A Z$ to the square of $Z E$, so is $A B$ to $\mathrm{BE} .{ }^{8}$ Hence, as is AB to BE , so is the rectangle contained by $\triangle \mathrm{A}, \mathrm{A} \Gamma$ to the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta .{ }^{9}$
(86) 19. (Prop. 36a) Lemma for the third assignment of the sixth problem. Again, with the rectangle contained by AB, BE equal to the rectangle contained by $\Gamma B, B \Delta$, to prove that, as is ΓB to $B \Delta$, so is the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{E}$ to the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{E}$.

For since, as is $A B$ to $B \Delta$, so is ΓB to $B E,{ }^{1}$ therefore remainder $A \Gamma$ to remainder $\Delta \mathrm{E}$ is as one of the other (ratios), as $\Gamma \mathrm{B}$ to BE. ${ }^{2}$ For the same reasons, also remainder $A \Delta$ to remainder ΓE is as ΔB to $B E ;{ }^{3}$ and also by inversion (as is $B E$ to $B \Delta$, so is ΓE to ΔA). ${ }^{4}$ Hence the ratio compounded out of ΓB to $B E$ and $E B$ to $B \Delta$, which is the same as ΓB to $B \Delta$, is the same as the (ratio) compounded out of $A \Gamma$ to ΔE and $E \Gamma$ to $\Delta A,{ }^{5}$ which is the (ratio) of the rectangle contained by $\mathrm{A},, \Gamma \mathrm{E}$ to the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{E}$. Thus, as is $\Gamma \mathrm{B}$ to $\mathrm{B} \Delta$, so is the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{E}$ to the rectangle contained by $A \Delta, \Delta E \cdot{ }^{6}$

(85) < $\iota \eta$. $>$ ’à $\lambda \lambda \omega s$.

5

 $\pi \rho о \beta \lambda \eta \mu a \tau о \varsigma$.

 $\dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{~A} \Delta \mathrm{E}$. $\dot{\epsilon} \pi \epsilon i$ | $\gamma \dot{a} \rho \dot{\epsilon} \sigma \tau \iota \nu \dot{\omega} \varsigma \dot{\eta} \mathrm{AB} \pi \rho \dot{\rho} \varsigma \tau \dot{\eta} \nu \mathrm{B} \Delta$, oúv $\tau \omega \varsigma \dot{\eta} \Gamma \mathrm{B}$

 $\tau \tilde{\omega} \nu \mathrm{A} \Gamma \mathrm{E} \pi \rho \dot{o} \varsigma \tau \dot{o} \dot{v} \pi \dot{o} \mathrm{~A} \Delta \mathrm{E}$. 'é $\sigma \tau \iota \nu$ á $\rho a \dot{\omega} \dot{\omega} \dot{\eta}$ ГВ $\pi \rho o ̀ s \tau \dot{\eta} \nu \mathrm{~B} \Delta$,

[^22](87) 20. (Prop. 36a) The same thing another way.

Since, as is $A B$ to $B \Delta$, so is ΓB to $B E,{ }^{1}$ remainder $A \Gamma$ to remainder $\Delta \mathrm{E}$ is as $\Gamma \mathrm{B}$ to $\mathrm{BE} .{ }^{2}$ Convertendo, as is $\mathrm{A} \Gamma$ to the excess of $\mathrm{A} \Gamma$ over $\Delta \mathrm{E}$, so is ΓB to $\Gamma E .^{3}$ Therefore the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{E}$ equals the rectangle contained by the excess of $A \Gamma$ over $\Delta \mathrm{E}$ and $\mathrm{B} \Gamma .{ }^{4}$ Again, since remainder $A \Gamma$ to remainder $\Delta \mathrm{E}$ is as AB to $\mathrm{B} \Delta, 5$ separando, as is the excess of $A \Gamma$ over ΔE to ΔE, so is ΔA to $\Delta B \cdot{ }^{6}$ Hence the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{E}$ equals the rectangle contained by the excess of $\mathrm{A} \Gamma$ over $\Delta \mathrm{E}$ and $\Delta \mathrm{B} .{ }^{7}$ Thus, as is the rectangle contained by the excess of $A \Gamma$ over $\Delta \mathrm{E}$ and $\angle \mathrm{B} \Gamma$ to the rectangle contained by the excess of $\mathrm{A} \Gamma$ over $\Delta \mathrm{E}$ and $>\Delta \mathrm{B}$, that is, as is $\Gamma \mathrm{B}$ to $\mathrm{B} \Delta$, so is the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{E}$ to the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{E} .^{8}$ Q.E.D.
(88) 21. (Prop. 36b) The same thing another way. Let there be described on Γ a semicircle $\Gamma Z \Delta$, let $B Z$ be drawn tangent, and let $A Z$, $<\Gamma Z>, \Delta Z,<E Z>$ be joined.

Then since the rectangle contained by AB, BE equals the rectangle contained by $\Gamma \mathrm{B}, \mathrm{B} \Delta,{ }^{1}$ but the rectangle contained by $\Gamma \mathrm{B}, \mathrm{B} \Delta$ equals the square of the tangent $\mathrm{BZ},{ }^{2}$ therefore the rectangle contained by AB, BE to equals the square of BZ. ${ }^{3}$ Thus angle BZE equals angle A. ${ }^{4}$ But also all angle BZD equals angle ZГB. 5 Therefore remaining angle EZD equals remaining angle $\mathrm{AZ} \mathrm{\Gamma} .^{6}$ Hence, as is the square of $\Gamma \mathrm{Z}$ to the square of $\mathrm{Z} \Delta$, so is the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{E}$ to the rectangle contained by $\mathrm{A} \Delta$, ΔE (lemma 85.1). ${ }^{7}$ But as is the square of ΓZ to the square of $Z \Delta$, so is Γ, to $\mathrm{B} \Delta .^{8}$ And therefore, as is $\Gamma \mathrm{B}$ to $\mathrm{B} \Delta$, so is the rectangle contained by $\mathrm{A} \Gamma$, $\Gamma \mathrm{E}$ to the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{E} .{ }^{9}$
(89) 22. (Prop. 37) (Let) AB be a straight line, and on it (let there be) two points Γ, Δ, and, as is AB to $\mathrm{B} \mathrm{\Gamma}$, so let the square of $\mathrm{A} \Delta$ be to the square of $\Delta \Gamma$. That the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ equals the square of $B \Delta$.

Let $\Delta \mathrm{E}$ be made equal to $\Gamma \Delta .{ }^{1}$ Then separando, as is $\mathrm{A} \Gamma$ to $\Gamma \mathrm{B}$, so is the rectangle contained by $\Gamma \mathrm{A}, \mathrm{AE}$ to the square of $\Gamma \Delta,{ }^{2}$ that is to the rectangle contained by $\mathrm{E} \Delta, \Delta \Gamma \cdot{ }^{3}$ But as is $\mathrm{A} \Gamma$ to $\Gamma \mathrm{B}$, so, when AE is taken as a common height, is the rectangle contained by $\Gamma \mathrm{A}, \mathrm{AE}$ to the rectangle contained by AE, ГВ. ${ }^{4}$ Hence, as is the rectangle contained by ГА, AE to the rectangle contained by $\mathrm{E} \Delta, \Delta \Gamma,<$ so is the rectangle contained by $\Gamma \mathrm{A}$, AE to the rectangle contained by $\mathrm{AE}, \Gamma \mathrm{B} .>5$ Thus the rectangle contained by $\mathrm{AE}, \Gamma \mathrm{B}$ equals the rectangle contained by $\mathrm{E} \Delta, \Delta \Gamma .6$ In ratio ${ }^{7}$ and
(87) <к.'> ${ }^{\prime}$ à $\lambda \omega \omega$ т \dot{o} áv $\tau 0$.
$\dot{\epsilon} \pi \epsilon i \dot{\epsilon} \sigma \tau \tau \nu \dot{\omega} \varsigma \dot{\eta} \mathrm{AB} \pi \rho \dot{o} s \tau \dot{\eta} \nu \mathrm{~B} \Delta$, $0 \dot{u} \tau \omega \varsigma \dot{\eta} \Gamma \mathrm{CB} \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \mathrm{BE}$,

 $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota \dot{\cup} \pi \dot{o} \tau \tilde{\eta} \varsigma \quad \tau \tilde{\omega} \nu \mathrm{~A} \Gamma, \Delta \mathrm{E} \dot{v} \pi \epsilon \rho o x \tilde{\eta} \varsigma \kappa a i \quad \tau \tilde{\eta} \varsigma \mathrm{~B} \Gamma$. $\pi a ́ \lambda \iota \nu$
 $\mathrm{B} \Delta, \delta \iota \in \lambda \dot{o} \nu \tau \iota \dot{\omega} \varsigma \dot{\eta} \tau \tilde{\omega} \nu \mathrm{~A} \mathrm{\Gamma}, \Delta \mathrm{E} \dot{v} \pi \epsilon \rho 0 \times \dot{\eta} \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \Delta \mathrm{E}$, oü $\tau \omega \varsigma \dot{\eta} \Delta \mathrm{A}$

 АГЕ $\pi \rho \dot{O} \varsigma ~ \tau \grave{o} \dot{u} \pi \dot{o} \mathrm{~A} \Delta \mathrm{E}$.

$\| 1 \kappa^{\prime}$ add $\mathrm{Hu}(\mathrm{BS}) \| 4 \tau \tilde{\omega} \nu$ add $\mathrm{Ge}(\mathrm{V}) \mid \mathrm{A}, \Delta \mathrm{E}$ Co $\mathrm{A} \Delta$, ГЕ $\mathrm{A} \| 5$

 (BS) \| $16 \kappa a i$ om A^{1} signum supr $\mathrm{A}^{2} \mid \Gamma Z$ et EZ add Co \| $26 \kappa \beta^{\circ}$ add Hu (BS) || 27 B С $\mathrm{Co} \mathrm{B} \Delta \mathrm{A} \| 30$ ГАЕ Со Г $\Delta \mathrm{A} \| 31$ кос $\boldsymbol{\nu}$ о
 $\dot{v} \pi \grave{o} \tau \tilde{\omega} \nu$, $\mathrm{AE} \pi \rho \grave{o} \varsigma \tau \dot{o} \dot{\nu} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{AE}, \Gamma \mathrm{B}$ add Co . ante $\mathrm{E} \Delta \Gamma$ add oü $\tau \omega \varsigma ~ \tau \grave{o}$ ن́ $\pi \grave{o} \tau \tilde{\omega} \nu$ ГAE $\pi \rho \grave{o} \varsigma \tau \grave{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{~V}^{2}$ (Co)
componendo, as is $A \Delta$ to ΔE, that is to $\Delta \Gamma$, so is ΔB to $B \Gamma .{ }^{8}{ }^{9}$ Therefore all AB to all $\mathrm{B} \Delta$ is as $\Delta \mathrm{B}$ to $\mathrm{B} \Gamma .{ }^{10}$ Thus the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ equals the <square of $>B \Delta .{ }^{1}$ Q.E.D.
(90) 23. (Prop. 38) Again, as is AB to $\mathrm{B} \Gamma$, so let the square of $\mathrm{A} \Delta$ be to the square of $\Delta \Gamma$. That the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ equals the square of $B \Delta$.

Let $\Delta \mathrm{E}$ be made equal to $\Gamma \Delta .^{1}$ Then separando, as $\mathrm{A} \Gamma$ is to $\Gamma \mathrm{B}$, that is, as the rectangle contained by EA, $A \Gamma$ is to the rectangle contained by $\mathrm{EA}, \mathrm{B} \Gamma$, so is the rectangle contained by $\mathrm{EA}, \mathrm{A} \Gamma$ to the rectangle contained by $\Gamma \Delta, \Delta \mathrm{E} .{ }^{2}{ }^{3}$ Hence the rectangle contained by $\mathrm{AE}, \mathrm{B} \Gamma$ equals the rectangle contained by $\Gamma \Delta, \Delta \mathrm{E} .4$ In ratio ${ }^{5}$ and separando, ${ }^{*}$ as $A \Delta$ is to $\Delta \mathrm{E}$, that is to $\Delta \Gamma$, so is $\mathrm{A} \Gamma$ to $\Gamma \mathrm{B} .{ }^{6}$ And thus remainder $\Gamma \mathrm{B}$ is to remainder $\Delta \mathrm{B}$ as $\mathrm{A} \Gamma$ to $\Gamma \mathrm{B}$. .* * Therefore the rectangle contained by $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ equals the square of $B \Delta .{ }^{8}$
(91) 24. (Prop. 39a) (Let) AB be a straight line, and on it (let there be) three points $\Gamma, \Delta, \mathrm{E}$, and, as is the rectangle contained by BA, AE to the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$, so let the square of $\mathrm{A} \Gamma$ be to the square of $\Gamma \Delta$. That, as is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta$ to the rectangle contained by $A E, E \Delta$, so is the square of $B \Gamma$ to the square of ΓE.

Let the point of equation \mathbf{Z} be taken, so that the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Delta$ equals the rectangle contained by $\mathrm{BZ}, \mathrm{ZE} .{ }^{1}$ Then, as is AZ to ΔZ, so is the rectangle contained by BA, AE to the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E} ;^{2}$ for this is a lemma in the Determinate (Section, cf. 7.68). But as is the rectangle contained by BA, AE to the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$, so is the square of $A \Gamma$ to the square of $\Gamma \Delta .^{3}$ Therefore, as is $A Z$ to $Z \Delta$, so is the square of $\mathrm{A} \Gamma$ to the square of $\Gamma \Delta .{ }^{4}$ Hence the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Delta$, that is the rectangle contained by BZ, ZE, equals the square of $\mathrm{Z} \Gamma .{ }^{5} 6$ Thus, as is BZ to ZE , so is the square of $\mathrm{B} \Gamma$ to the square of $\Gamma \mathrm{E} .{ }^{7}$ But as is BZ to ZE , so is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta$ to the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta .^{8}$ And thus, as is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta$ to the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$, so is the square of $\mathrm{B} \Gamma$ to the square of $\Gamma \mathrm{E} .{ }^{9}$

 rívetal $\dot{\omega} \varsigma \dot{\eta}$ АГ $\pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu$ ГВ, $\tau 0 \cup \tau \epsilon \sigma \tau \iota \nu \dot{\omega} \varsigma \tau \dot{0} \dot{\nu} \pi \dot{o} \tau \tilde{\omega} \nu$ ЕАГ
 $\Gamma \Delta \mathrm{E}$. 'ioov ápa $\epsilon \sigma \tau i \nu \tau \grave{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AE}, \mathrm{B} \Gamma \tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu, \Gamma \Delta \mathrm{E}$.

 'íoov $\epsilon \sigma \tau i \nu \tau \tilde{\omega} \iota$ à $\pi \dot{o}$ B $\Delta \tau \epsilon \tau \rho a \gamma \omega \nu \omega \iota$.

 $\sigma \eta \mu \epsilon \tilde{i} O \nu \tau \grave{o} \mathrm{Z}$, $\ddot{\omega} \sigma \tau \epsilon$ 'íoov $\epsilon \tau \nu a \iota \tau \grave{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AZ} \mathrm{\Delta} \tau \tilde{\omega} \iota \dot{v} \pi \dot{o} \mathrm{BZE}$.

 $\kappa \delta^{\prime}$ add $\mathrm{Hu}(\mathrm{BS}) \| 22 \mathrm{~B} \Delta \mathrm{E}$ CobaE A
(92) 25. (Prop. 39b) The same thing another way.

On straight lines AE, $\Delta \mathrm{B}$, let semicircles AZE, Δ ZB be described, and let $\mathrm{AZ}, \mathrm{Z} \Gamma, \mathrm{Z} \Delta, \mathrm{ZE}, \mathrm{ZB}$ be joined. Then, since angles $\mathrm{AZB}, \Delta \mathrm{ZE}$ equal two right angles, 1 therefore as is the rectangle contained by BA, AE to the rectangle contained by $B \Delta, \Delta E$, so is the square of $A Z$ to the square of $\mathrm{Z} \Delta .{ }^{2}$ But as is the rectangle contained by BA, AE to the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$, so was the square of $\mathrm{A} \Gamma$ to the square of $\Gamma \Delta .^{3}$ Hence, as is the square of $A \Gamma$ to the square of $\Gamma \Delta$, so is the square of $A Z$ to the square of $\mathrm{Z} \Delta .{ }^{4}$ Thus too, as is $\mathrm{A} \Gamma$ to $\Gamma \Delta$, so is AZ to $\mathrm{Z} \Delta .{ }^{5}$ Hence angle $\mathrm{AZ} \Delta$ is bisected by straight line $\mathrm{Z} \cdot .^{6}$ But also if BZ is produced to H , angle \triangle ZE equals angle HZA. ${ }^{7}$ Hence all angle EZ Γ equals all angle $\Gamma \mathrm{ZH} .{ }^{8}$ Therefore, as is $\mathrm{B} \Gamma$ to $\Gamma \mathrm{E}$, so is BZ to $\mathrm{ZE} ;{ }^{9}$ and as the (square of $B \Gamma$) is to the (square of $\Gamma \mathrm{E}$, so is the square of BZ to the square of ZE). 1° But, as is the square of BZ to the square of ZE , so is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta$ to the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta .{ }^{1}$ And thus, as is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta$ to the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$, so is the square of $\mathrm{B} \Gamma$ to the square of $\Gamma \mathrm{E} .1^{2}$ Q.E.D.
(93) 26. (Prop. 40a) Again, as is the rectangle contained by $\mathrm{A}, ~ Г В$ to the rectangle contained by AE, EB, so let the square of $\Gamma \Delta$ be to the square of $\Delta \mathrm{E}$. That, as is the rectangle contained by $\mathrm{EA}, \mathrm{A} \Gamma$ to the rectangle contained by $\Gamma \mathrm{B}, \mathrm{BE}$, so is the square of $\mathrm{A} \Delta$ to the square of $\Delta \mathrm{B}$.

Again, let the point of equation Z be taken, so that the rectangle contained by AZ, ZB <equals> the rectangle contained by $\mathrm{CZ}, \mathrm{ZE} .{ }^{1}$ Then, as is ΓZ to ZE, so is the rectangle contained by $\mathrm{A}, \Gamma \mathrm{B}$ to the rectangle contained by AE, EB. ${ }^{2}$ But, as is the rectangle contained by $\mathrm{A} \Gamma$, ΓB to the rectangle contained by AE, EB, so is the square of $\Gamma \Delta$ to the square of $\Delta \mathrm{E} .{ }^{3}$ And so, as is $\Gamma \mathrm{Z}$ to ZE , so is the square of $\Gamma \Delta$ to the square of $\Delta \mathrm{E} .{ }^{4}$ Hence the rectangle contained by $\Gamma \mathrm{Z}, \mathrm{ZE}$, that is the rectangle contained by AZ, ZB, equals the square of $\mathrm{Z} \Delta .^{5} 6$ Therefore, as is $A Z$ to $Z B$, so is the square of ΔA to the square of $\Delta B .^{7}$ But as is $A Z$ to ZB , so is the rectangle contained by EA, $\mathrm{A} \Gamma$ to the rectangle contained by $\Gamma \mathrm{B}, \mathrm{BE} .^{8}$ Therefore, as is the rectangle contained by EA, $\mathrm{A} \Gamma$ to the rectangle contained by $\Gamma \mathrm{B}, \mathrm{BE}$, so is the square of $\mathrm{A} \Delta$ to the square of Δ B. ${ }^{9}$ Q.E.D.

$\gamma \epsilon \gamma \rho \dot{a} \phi \theta \omega \dot{\epsilon} \pi \dot{i} \tau \tilde{\omega} \nu \mathrm{AE}, \Delta \mathrm{B} \epsilon \dot{v} \theta \epsilon \iota \tilde{\omega} \nu \dot{\eta} \mu \iota \kappa \dot{v} \kappa \lambda \iota a \quad \tau \grave{a} \mathrm{AZE} \triangle \mathrm{ZB}$,

 á $\pi \grave{o}$ ГЕ. $\ddot{o}(\pi \epsilon \rho):-$

[^23](94) 27. (Prop. 40b) The same thing another way.

About AE, ГB let semicircles AZE, ГZB be described, and let AZ, ГZ, $\Delta Z, E Z, B Z$ be joined. Then angle AZ Γ equals angle EZB. ${ }^{1}$ Hence as is the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{B}$ to the rectangle contained by AE, EB, so is the square of $\Gamma \mathrm{Z}$ to the square of $\mathrm{ZE} .^{2}$ But, as is the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{B}$ to the rectangle contained by AE, EB, so was the square of $\Gamma \Delta$ to the square of $\Delta E \cdot{ }^{3}$ And therefore, as is the square of $\Gamma \Delta$ to the square of $\Delta \mathrm{E}$, so is the square of $\Gamma \mathrm{Z}$ to the square of ZE. ${ }^{4}$ And hence, as is $\Gamma \Delta$ to $\Delta \mathrm{E}$, so is $\Gamma \mathrm{Z}$ to $\mathrm{ZE} .{ }^{5}$ Thus angle $\Gamma \mathrm{Z} \Delta$ equals angle Δ ZE. 6 But angle AZГ equals angle BZE. ${ }^{7}$ Therefore all angle AZD equals all angle BZA. ${ }^{8}$ Hence as is the square of $A Z$ to the square of ZB , so is the square of $A \Delta$ to the square of $\Delta \mathrm{B} \cdot{ }^{9}$ But, as is the square of AZ to the square of ZB , so is the rectangle contained by $\mathrm{EA}, \mathrm{A} \Gamma$ to the rectangle contained by $\Gamma \mathrm{B}, \mathrm{BE} .1^{\circ}$ <Thus, as is the rectangle contained by EA, $\mathrm{A} \Gamma$ to the rectangle contained by $\Gamma \mathrm{B}, \mathrm{BE},>$ so is the square of $\mathrm{A} \Delta$ to the square of $\Delta B .1^{1}$ Q.E.D.

 à $\pi \grave{o} \Delta \mathrm{~B}$. $\ddot{o} \pi \epsilon \rho$: -

(95) Lemmas useful for the Determinate Section, (Book) 2.

1. (Prop. 41) Let AB be a straight line, and (on it) three points Γ, Δ, E so that the rectangle contained by $\mathrm{A} \Delta, \Delta \Gamma$ equals the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$, and let (line) Z be made equal to AE plus $\Gamma \mathrm{B}$. That the rectangle contained by $\mathrm{Z}, \mathrm{A} \Delta$ equals the rectangle contained by BA, AE, and the rectangle contained by $\mathrm{Z}, \Gamma \Delta$ equals the rectangle contained by $\mathrm{B} \Gamma$, $\Gamma \mathrm{E}$, and the rectangle contained by $\mathrm{Z}, \mathrm{B} \Delta$ equals the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$, and the rectangle contained by $\mathrm{Z}, \Delta \mathrm{E}$ equals the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$.

For since the rectangle contained by $A \Delta, \Delta \Gamma$ equals the rectangle contained by $B \Delta, \Delta E, 1$ in ratio ${ }^{2}$ and inverting ${ }^{3}$ and sum to sum ${ }^{4}$ and componendo, as is $\mathrm{B} \Gamma$ plus AE , that is Z , to AE , so is BA to $\mathrm{A} \Delta .{ }^{5}$ Hence the rectangle contained by $\mathrm{Z}, \mathrm{A} \Delta$ equals the rectangle contained by BA, AE. ${ }^{6}$ Again, since all AE is to all $\Gamma \mathrm{B}$ as is $\mathrm{E} \Delta$ to $\Delta \Gamma,{ }^{7}$ componendo, as is AE plus ΓB to ΓB, that is, as is Z to ΓB, so is $\Gamma \mathrm{E}$ to $\Gamma \Delta .^{8}{ }^{9}$ Hence the rectangle contained by $\mathrm{Z}, \Gamma \Delta$ equals the rectangle contained by B, Γ Г. 10 The same (will be proved) also for the remaining (ratios). Hence the four result.
(96) 2. (Prop. 42) Again, let the rectangle contained by $A \Delta, \Delta \Gamma$ equal the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$, and let Z be made equal to AE plus $\Gamma \mathrm{B}$. That again four things result, namely that the rectangle contained by \mathbf{Z}, $\mathrm{A} \Delta$ equals the rectangle contained by $<\mathrm{BA}, \mathrm{AE}$, and the rectangle contained by $\mathrm{Z}, \Gamma \Delta$ equals the rectangle contained by $>\mathrm{B} \Gamma, \Gamma \mathrm{E}$, and the rectangle contained by $\mathrm{Z}, \mathrm{B} \Delta$ equals the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$, and the rectangle contained by $\mathrm{Z}, \Delta \mathrm{E}$ equals the rectangle contained by AE , Er.

For since the rectangle contained by $A \Delta, \Delta \Gamma$ equals the rectangle contained by $B \Delta, \Delta E,{ }^{1}$ in ratio ${ }^{2}$ and inverting ${ }^{3}$ and remainder to remainder ${ }^{4}$ and componendo, then, as is AE plus $\Gamma \mathrm{B}$ to AE , so is BA to $\mathrm{A} \Delta .{ }^{5}$ But AE plus $\Gamma \mathrm{B}$ equals $\mathrm{Z} .{ }^{6}$ Hence, as is Z to AE , so is BA to $\mathrm{A} \Delta .{ }^{7}$ Therefore the rectangle contained by $\mathbf{Z}, \mathrm{A} \Delta$ equals the rectangle contained by BA, AE. ${ }^{8}$ Again, since, as is $A \Delta$ to $\Delta \mathrm{B}$, so is $\mathrm{E} \Delta$ to $\Delta \Gamma,{ }^{9}$ therefore remainder AE to remainder $\Gamma \mathrm{B}$ is as $\mathrm{E} \Delta$ to $\Delta \Gamma .1^{10}$ Componendo, as is AE plus ΓB, that is, as is Z, to ΓB, so is $E \Gamma$ to $\Gamma \Delta .1112$ Therefore the rectangle contained by $Z, \Gamma \Delta$ equals the rectangle contained by $B \Gamma, \Gamma E .^{3}$ We shall prove the same also for the remaining two. Hence the four result.

(95) $\Lambda H M M A T A ~ X P H \Sigma I M A ~ E I \Sigma ~ T O ~ \triangle E T T E P O N ~ \triangle I \Omega P I \Sigma M E N H \Sigma ~ T O M H \Sigma ~$

'íoov $\tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{BAE}, \tau \grave{o} \delta \dot{\epsilon} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{Z}, \Gamma \Delta$ 'íoov $\tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu$ $\mathrm{B} \Gamma \mathrm{E}, \tau \grave{o} \delta \grave{\epsilon} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{Z}, \mathrm{B} \Delta \mathfrak{i} \sigma o \nu \tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AB} \mathrm{\Gamma}$, $\tau \grave{o}$ $\delta \grave{\epsilon} \dot{v} \pi \grave{o} \mathrm{Z}, \Delta \mathrm{E}$ $\tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \mathrm{AE}$. $\epsilon \pi \epsilon i \quad \gamma \mathfrak{a} \rho \tau \grave{o} \dot{u} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{~A} \Delta \Gamma$ 'ioov $\tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{~B} \Delta \mathrm{E}$,

 $\tau \tilde{\omega} \nu \lambda o \iota \pi \tilde{\omega} \nu$. $\gamma \dot{\imath} \nu \in \tau a \iota$ 'á $\rho a \tau \dot{\epsilon} \sigma \sigma a \rho a$.

5

 $\gamma \dot{\imath} \nu \in \tau a \iota \tau \dot{\epsilon} \sigma \sigma a \rho a, \tau \dot{o} \mu \grave{\epsilon} \nu \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{Z}, \mathrm{A} \Delta$ ' $\hat{\sigma} \sigma \nu \nu \tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu$ <BAE, $\tau \grave{o} \delta \grave{\epsilon} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{Z}, \Gamma \Delta$ 'íoov $\tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu>$ ВГЕ, $\tau \grave{o} \delta \grave{\epsilon} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{Z}$, $\mathrm{B} \Delta$ 'íoov $\tau \tilde{\omega} \iota \dot{\nu} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{AB} \mathrm{\Gamma}, \tau \grave{o} \delta \dot{\epsilon} \dot{\nu} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{Z}, \Delta \mathrm{E} \tau \tilde{\omega} \iota \dot{\nu} \pi \dot{o} \mathrm{AE}$.

 $\pi \rho o s ~ \tau \grave{\eta} \nu \mathrm{~A} \Delta$. $\sigma v \nu a \mu \phi o ́ \tau \epsilon \rho o s ~ \delta \grave{\epsilon} \dot{\eta} \mathrm{AE}, ~ Г В$ 'íon $\bar{\epsilon} \sigma \tau i \nu \tau \tilde{\eta} \iota \mathrm{Z}$.
 $\dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{Z}, \mathrm{A} \Delta$ 'íoov $\tau \tilde{\omega} \iota \dot{\nu} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{BAE}$. $\pi \dot{a} \lambda \iota \nu \dot{\epsilon} \pi \epsilon i ́ \epsilon \sigma \tau \iota \nu \dot{\omega} \varsigma \dot{\eta} \mathrm{~A} \Delta$

 $\sigma v \nu a \mu \phi o \tau \epsilon \rho \circ \varsigma \dot{\eta} \mathrm{AE}, ~ Г В, \tau 0 \cup \tau \epsilon \sigma \tau \iota \nu \dot{\omega} \varsigma \dot{\eta} \mathrm{Z}, \pi \rho \dot{o} \varsigma \tau \grave{\eta} \nu \Gamma \mathrm{CB}$, oü $\tau \omega \varsigma \dot{\eta}$ Е $\pi \rho \dot{o} \varsigma \tau \grave{\eta} \nu \Gamma \Delta$. $\tau \grave{o}$ á $\rho a \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{Z}, \Gamma \Delta$ 'ioov $\tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu$ ВГЕ.
 $\tau \dot{\epsilon} \sigma \sigma a \rho a$.
$\| 2 a^{\circ}$, add $\mathrm{Hu}(\mathrm{BS}) \| 6$ ВГЕ Со АГВ A \| 7 ante АЕГ add $\tau \tilde{\omega} \nu$ Ge \| 8 ка́ \mathfrak{c} á ν á $\pi a \lambda \iota \nu$ del Simson $_{1}$ á $\rho a \operatorname{Hu}$ app \| 11 BAE Co B ΔE A $\| 12$ $\Delta \Gamma$ Co $\mathrm{A} \Gamma \mathrm{A} \mid \pi \rho \grave{s}$ iǹ om A^{1} add $\mathrm{mg} \mathrm{A}^{2}$ alia manu $\| 16 \beta^{\prime}$ add Hu (BS) \| 17 б $\boldsymbol{v} \nu \mathfrak{\nu} \mu \phi о \tau \epsilon \rho \omega \iota \mathrm{Ge}(\mathrm{BS}) \sigma v \nu a \mu \phi o ́ \tau \epsilon \rho a \mathrm{~A} \| 18 \mathrm{BAE}$ - 'íoov $\tau \tilde{\omega} \iota \quad \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu$ add $\mathrm{Co} \| 20 \mathrm{~B} \Delta$ in ras. A \| 22 каi

(97) 3. (Prop. 43) Let the point (Δ) be outside the whole (line), and let the rectangle contained by $A \Delta, \Delta \Gamma$ equal the rectangle contained by $B \Delta$, ΔE. That, again, if Z is made equal to the excess of $A E$ over ΓB, then four things result, namely that the rectangle contained by $Z, A \Delta$ equals the rectangle contained by BA, AE, and the rectangle <contained by $\mathrm{Z}, \Gamma \Delta$ equals the rectangle $>$ contained by $B \Gamma, \Gamma E$, and the rectangle contained by $Z, B \Delta$ equals the rectangle contained by $A B, B \Gamma$, and the rectangle contained by $\mathrm{Z}, \Delta \mathrm{E}$ equals the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$.

For since the rectangle contained by $A \Delta, \Delta \Gamma$ equals the rectangle contained by $B \Delta, \Delta E, 1$ in ratio ${ }^{2}$ and remainder to remainder ${ }^{3}$ and convertendo, then, as is $A E$ to the excess of $A E$ over ΓB, so is $\triangle A$ to $A B .4$ But the excess of $A E$ over ΓB is $Z .5$ Hence the rectangle contained by Z, $\mathrm{A} \Delta$ equals the rectangle contained by BA, AE. ${ }^{6}$ Again, since remainder AE is to remainder $B \Gamma$ as is $E \Delta$ to $\Delta \Gamma,{ }^{7}$ separando, as is the excess of $A E$ over $B \Gamma$ to $B \Gamma$, so is $E \Gamma$ to $\Gamma \Delta .{ }^{8}$ Hence the rectangle contained by the excess of AE over $\mathrm{B} \Gamma$, that is Z , and $\Gamma \Delta$ equals the rectangle contained by $\mathrm{B} \Gamma$, $\Gamma E .910$ We shall prove the same also for the remaining two. Thus the four result.
(98) 4. (Prop. 44) Now that this has been proved, the (lemmas) for the Determinate (Section), Book 1, can easily be found, namely that, under the same assumptions, as is $B \Delta$ to ΔE, so is the rectangle contained by $A B$, $\mathrm{B} \Gamma$ to the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$.

For since it has been proved that the rectangle contained by $\mathrm{Z}, \mathrm{B} \Delta$ equals the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma, 1$ while the rectangle contained by $\mathrm{Z}, \Delta \mathrm{E}$ equals the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma,{ }^{2}$ therefore as is the rectangle contained by $Z, \Delta B$ to the rectangle contained by $Z, \Delta E$, that is, as is $B \Delta$ to ΔE, so is the rectangle contained by $A B, B \Gamma$ to the rectangle contained by AE, EГ. ${ }^{3} 4$

 $\mathrm{A} \Delta$ 'íoov $\tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{BAE}, \tau \grave{o} \delta \grave{\epsilon}<\dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{Z}, \Gamma \Delta \tau \tilde{\omega} \iota>\dot{\nu} \pi \dot{o} \mathrm{~B} Г \mathrm{E}$,

 $\pi a ́ \lambda \iota \nu \dot{\epsilon} \pi \epsilon \dot{i} \lambda 0 \iota \pi \dot{\eta} \dot{\eta} \mathrm{AE} \pi \rho \dot{o} \varsigma \lambda o \iota \pi \dot{\eta} \nu \tau \dot{\eta} \nu \mathrm{~B} \Gamma \dot{\epsilon} \sigma \tau i \nu \dot{\omega} \varsigma \dot{\eta} \mathrm{E} \Delta \pi \rho \dot{o} \mathrm{~s}$ $\tau \dot{\eta} \nu \Delta \Gamma, \delta \iota \epsilon \lambda \dot{o} \nu \tau \iota \dot{\epsilon} \sigma \tau i \nu \dot{\omega} \varsigma \dot{\eta} \tau \tilde{\omega} \nu \mathrm{AE}, \mathrm{B} \Gamma \dot{v} \pi \epsilon \rho o x \dot{\eta} \pi \rho \dot{\rho} \varsigma \tau \dot{\eta} \nu \mathrm{~B} \Gamma$,

 $\Delta A \Gamma \mathrm{~A} \mid$ post $A \Delta \Gamma$ add ' $i \sigma o \nu$ Co \mid (B) ΔE in ras. $A \mid A E C o \Lambda E A \| 4$ $\tau \tilde{\omega} \iota \mathrm{Ge} \tau \grave{o} \mathrm{~A} \mid \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{Z}, \Gamma \Delta \tau \tilde{\omega} \iota$ add $\mathrm{Co} \|$, 7 入o $\iota \pi \bar{\eta} \pi \rho \dot{\rho} \mathrm{s}$
 $\dot{\epsilon} \pi \iota \lambda 0 \iota \pi \dot{\eta} \nu \mathrm{~A} \| 11 \mathrm{~B} \mathrm{\Gamma}($ post AE$) \mathrm{Co} \Delta \Gamma \mathrm{A} \| 15 \delta^{\circ}$ add $\mathrm{Hu}(\mathrm{BS}) \| 16$ öt兀 Co oütus A
(99) 5. (Prop. 45) For the first assignment of the first problem.

Now let the rectangle contained by $<A \Delta, \Delta \Gamma$ equal the rectangle contained by $>\mathrm{B} \Delta, \Delta \mathrm{E}$, and let Z be an arbitrary point. That, if H is made equal to $A E$ plus ΓB, the rectangle contained by $A Z, Z \Gamma$ exceeds the rectangle contained by BZ, ZE by the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z}$.

For since it has already been proved that the rectangle contained by $\mathrm{H}, \Delta \mathrm{E}$ equals the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma,{ }^{1}$ let the rectangle contained by H, ZE be subtracted in common. Then the remaining rectangle contained by $\mathrm{H}, \Delta \mathrm{Z}$ is the excess by which the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$ exceeds the rectangle contained by $\mathrm{H}, \mathrm{EZ} .2$ But the amount by which the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$ exceeds the rectangle contained by H, EZ, when the rectangle contained by AE, EZ has been subtracted in common, is the amount by which the rectangle contained by $\mathrm{AE}, \Gamma \mathrm{Z}$ exceeds the rectangle contained by $\mathrm{B} \Gamma, \mathrm{ZE} ;{ }^{3}$ and the amount by which the rectangle contained by $A E, \Gamma Z$ exceeds the rectangle contained by $\Gamma B, Z E$, when the rectangle contained by $\Gamma Z, Z E$ has been subtracted in common, is the amount by which the rectangle contained by $A Z, Z \Gamma$ exceeds the rectangle contained by BZ, ZE. 4 Thus the rectangle contained by AZ, Z Γ exceeds the rectangle contained by BZ, ZE by the rectangle contained by H , Δ Z. ${ }^{5}$ Q.E.D.
(100) 6. (Prop. 46) Another (lemma) for the third (assignment) of the second (problem).

Let (point) Z be between points E, B. That the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ plus the rectangle contained by EZ, ZB equals the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z}$.

For since it has already been proved that the rectangle contained by $\mathrm{H}, \Delta \mathrm{E}$ equals the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma, 1$ let the rectangle contained by H, EZ be added in common. Then all the rectangle contained by $H, \Delta Z$ equals the rectangle contained by $A E, E \Gamma$ plus the rectangle contained by AE, EZ plus the rectangle contained by $\mathrm{B} \mathrm{\Gamma}, \mathrm{EZ} .{ }^{2}$ But in addition the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$ plus the rectangle contained by AE, EZ is the whole rectangle contained by $\mathrm{AE}, \Gamma \mathrm{Z} .{ }^{3}$ Thus it has resulted that the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z}$ equals the rectangle contained by $\mathrm{AE}, \Gamma \mathrm{Z}$ plus the rectangle contained by $\Gamma \mathrm{B}, \mathrm{EZ} .4$ But again, the rectangle contained by Γ, EZ equals the rectangle contained by $\Gamma Z, Z E$ plus the rectangle contained by $\mathrm{EZ}, \mathrm{ZB} ;{ }^{5}$ while the rectangle contained by $\mathrm{AE}, \Gamma \mathrm{Z}$ plus the rectangle contained by $\Gamma \mathrm{Z}, \mathrm{ZE}$ is the whole rectangle contained by $\mathrm{AZ}, \mathrm{Z} \mathrm{\Gamma} .{ }^{6}$ And we also had the rectangle contained by EZ, ZB. Thus the rectangle contained by $H, \Delta Z$ equals the rectangle contained by $A Z, Z \Gamma$ plus the rectangle contained by EZ, ZB. ${ }^{7}$
 $\pi \rho о \beta \lambda_{\eta} \mu a \tau о \varsigma$.
' $\epsilon \sigma \tau \omega \pi a ́ \lambda \iota \nu$ 'ígov $\tau \grave{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu<\mathrm{A} \Delta \Gamma \tau \tilde{\omega} \iota \dot{\nu} \pi \grave{o} \tau \tilde{\omega} \nu>\mathrm{B} \Delta \mathrm{E}, \kappa a \dot{i}$
 ' $\iota \sigma \eta \tau \epsilon \theta \tilde{\eta} \iota \dot{\eta} \mathrm{H}, \tau \grave{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AZ} \mathrm{\Gamma} \tau 0 \tilde{v} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{D}$ BZE $\dot{v} \pi \epsilon \rho \bar{\epsilon} \chi \epsilon \iota \tau \tilde{\omega} \iota$

 $\dot{v} \pi \epsilon \rho \in \chi \in \iota \tau \dot{o} \dot{\nu} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{AE}, \Gamma Z \tau 0 \tilde{v} \dot{\nu} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{~B} \mathrm{\Gamma}, \mathrm{ZE}$. $\dot{\omega} \iota \delta \grave{\epsilon}$

 $\mathrm{AZ} \mathrm{\Gamma} \tau 0 \tilde{v} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu$ BZE. $\tau \grave{o}$ á $\rho a \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AZ} \mathrm{\Gamma} \tau 0 \tilde{v} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu$ BZE $\dot{v} \pi \epsilon \rho \epsilon \bar{\epsilon} \in \iota<\tau \tilde{\omega} \iota>\dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{H}, \Delta \mathrm{Z}$. ö $\pi \epsilon \rho:-$

' $\epsilon \sigma \tau \omega \mu \epsilon \tau a \xi \bar{v} \tau \tilde{\omega} \nu \quad \sigma \eta \mu \epsilon i \omega \nu \tau \tilde{\omega} \nu \mathrm{E}, \mathrm{B} \tau \grave{o} \mathrm{Z}$. $\ddot{o} \tau \iota \tau \grave{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu$ $\mathrm{AZ} \mathrm{\Gamma} \mu \in \tau \dot{a} \tau 0 \tilde{v} \dot{v} \pi \grave{o}$ EZB 'íoov $\tau \tilde{\omega} \iota \quad \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{H}, \Delta \mathrm{Z}$. $\dot{\epsilon} \pi \epsilon \dot{i}$ rà ρ $\pi \rho o a \pi o \delta \dot{\epsilon} \delta \epsilon \iota \kappa \tau a \iota \tau \dot{o}$ ن́ $\pi \grave{o} \tau \tilde{\omega} \nu \mathrm{H}, \Delta \mathrm{E}$ 'íoov $\tau \tilde{\omega} \iota \dot{\nu} \pi \dot{o} \tau \tilde{\omega} \nu$ АЕГ,

 $\dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{H}, \Delta \mathrm{Z}$ 'íoov $\tau \tilde{\omega} \iota \tau \epsilon \dot{\nu} \pi \dot{o} \mathrm{AZ} \mathrm{\Gamma} \kappa а \dot{\imath} \tau \tilde{\omega} \iota \dot{\nu} \pi \dot{o} \mathrm{EZB}$.

[^24](101) 7. (Prop. 47) For the first assignment of the third problem.

Now let the point \mathbf{Z} be outside (line) AB. To prove that the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ exceeds the rectangle contained by EZ, ZB by the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z}$.

For since the rectangle contained by $\mathrm{H}, \Delta \mathrm{B}$ equals the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma,{ }^{1}$ let the rectangle contained by H, BZ be added in common. Then the whole rectangle contained by $\mathrm{H}, \Delta \mathrm{Z}$ equals the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ plus the rectangle contained by $\mathrm{H}, \mathrm{BZ},{ }^{2}$ that is (plus) the rectangle contained by AE, BZ plus the rectangle contained by $\Gamma \mathrm{B}, \Gamma \mathrm{Z} .{ }^{3}$ But the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ plus the rectangle contained by ГВ, BZ is the whole rectangle contained by $\mathrm{AZ}, ~ Г В . ~ 4 ~ H e n c e ~$ the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z}$ equals the rectangle contained by $\mathrm{AZ}, \Gamma \mathrm{\Gamma}$ plus the rectangle contained by AE, BZ. 5 But the rectangle contained by $\mathrm{AZ}, \Gamma \mathrm{B}$ plus the rectangle contained by AE, BZ is the excess by which the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ exceeds the rectangle contained by EZ , ZB. ${ }^{6}$ Thus the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z}$ too is the excess by which the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ exceeds the rectangle contained by EZ, ZB. ${ }^{7}$
(102) 8. (Prop. 48) For the second assignment of the first problem.

Let the rectangle contained by $A \Delta, \Delta \Gamma$ equal the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{B}$, and let point Z be between Δ, Γ, and let (line) H be made equal to AE plus $\Gamma \mathrm{B}$. That the rectangle contained by EZ, ZB exceeds the rectangle contained by AZ, Z 的 by the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z}$.

For since the rectangle contained by $\mathbf{H}, \Delta \Gamma$ equals the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{E},{ }^{1}$ let the rectangle contained by $\mathrm{H}, \mathrm{Z} \Gamma$ be subtracted in common. Then the remaining rectangle contained by $\mathrm{H}, \Delta \mathrm{Z}$ is the excess by which the rectangle contained by $\mathrm{E} Г, \Gamma В$ exceeds the rectangle contained by $\mathrm{H}, \Gamma \mathrm{Z} .{ }^{2}$ But the amount by which the rectangle contained by $\mathrm{E} \Gamma, \Gamma \mathrm{B}$ exceeds the rectangle contained by $\mathrm{H}, \mathrm{Z} \Gamma$, when the rectangle contained by $\mathrm{B}, \Gamma \mathrm{\Gamma}$ has been subtracted in common, is the amount by which the rectangle contained by EZ, ГВ exceeds the rectangle contained by $\mathrm{AE}, \mathrm{Z} \Gamma{ }^{3}$ while the amount by which the rectangle contained by $\mathrm{EZ}, ~ Г В$ exceeds the rectangle contained by $\mathrm{AE}, \mathrm{Z} \Gamma$, when the rectangle contained by $\mathrm{EZ}, \mathrm{Z} \Gamma$ has been *subtracted* in common, is the amount by which the rectangle contained by EZ, ZB exceeds the rectangle contained by AZ, ZГ. ${ }^{4}$ Thus the rectangle contained by EZ, ZB exceeds the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ by the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z} .{ }^{5}$
 $\pi \rho о \beta \lambda_{\eta} \mu a \tau о s$.

 $\tau \tilde{\omega} \nu \mathrm{H}, \Delta \mathrm{B}$ 'ígov $\tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \mathrm{AB} \mathrm{\Gamma}$, ко८ $\nu \dot{\partial} \nu \pi \rho о \sigma \kappa \epsilon i \sigma \theta \omega \tau \dot{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{H}$, BZ . 'ö $\lambda \frac{\nu}{}$ ápa $\tau \dot{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{H}, \Delta \mathrm{Z}$ 'ígov $\tau \tilde{\omega} \iota \tau \epsilon \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AB} \mathrm{\Gamma} \kappa а \dot{\imath}$

 AE, BZ. $\tau \dot{o} \delta \dot{\epsilon} \dot{v} \pi \dot{o} \mathrm{AZ}, \Gamma \mathrm{B} \mu \epsilon \tau \dot{a} \tau 0 \tilde{v} \dot{v} \pi \dot{o} \mathrm{AE}, \mathrm{BZ} \dot{v} \pi \epsilon \rho \circ \times \dot{\eta} \dot{\epsilon} \sigma \tau \iota \nu \tilde{\eta}^{\prime} \iota$ $\dot{v} \pi \epsilon \rho \bar{\epsilon} \chi \epsilon \iota \tau \dot{o} \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{AZ} \mathrm{\Gamma} \tau 0 \tilde{v} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu$ EZB. каi $\tau \dot{o} \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{H}$, $\Delta \mathrm{Z}$ á $\rho a \dot{\eta} \dot{v} \pi \epsilon \rho 0 \chi \dot{\eta}$ 市 $\iota \dot{v} \pi \epsilon \rho \dot{\epsilon} \chi \epsilon \iota \tau \dot{o} \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{AZ} \mathrm{\Gamma} \tau 0 \tilde{v} \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu$ EZB.
 $\pi \rho o \beta \lambda \eta \mu a \tau o s$.

 $\tau 0 \tilde{v} \dot{\nu} \pi \dot{o} \mathrm{AE}, \mathrm{Z} \Gamma$. $\dot{\omega} \iota \delta \dot{\epsilon} \dot{v} \pi \epsilon \rho \bar{\epsilon} \chi \epsilon \iota \tau \grave{o} \dot{v} \pi \grave{o} \mathrm{EZ}, \Gamma \mathrm{B} \tau 0 \tilde{v} \dot{v} \pi \grave{o} \mathrm{AE}, \mathrm{Z} \Gamma$,

 $\tau \tilde{\omega} \iota \dot{v} \pi \dot{o} \mathrm{H}, \Delta \mathrm{Z}$.
$\| 1 \zeta^{\circ}$ add $\mathrm{Hu}(\mathrm{BS}) \| 3 \dot{\epsilon} \kappa \tau \cos \mathrm{Co} \dot{\epsilon} \pi i \mathrm{~A} \mid \boldsymbol{\tau} \dot{\mathrm{o}} \mathrm{Z}$ secl $\mathrm{Hu} \operatorname{app} \| 7 \mathrm{H}$ om A1 add supr $\mathrm{A}^{2} \mid \Gamma \mathrm{CBZ}$ Co BZ A || 8 'ápa secl Hu || 11 AZГ Co $\Delta \mathrm{Z} \Gamma$ A | EZB Co EBZ A \| $12 \Delta \mathrm{Z}$ Co BZ A \| $14 \eta^{\prime}$, add $\mathrm{Hu}(\mathrm{BS}) \mid$
 ouvau申ó $\epsilon \rho o s \mathrm{~A} \| 18$ (E)ZB in ras. $\mathrm{A} \| 24 \mathrm{AE}$ Co AB A \| 25
 (ínóo AZT) Co $\tau \dot{o} \mathrm{~A}$
(103) 9. (Prop. 49) For the second assignment of the second problem.

But let the point \mathbf{Z} be between Γ, B. That the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ plus the rectangle contained by BZ, ZE equals the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z}$.

For since the rectangle contained by $\mathrm{H}, \Delta \Gamma$ equals the rectangle contained by $\mathrm{B}, \Gamma, \Gamma \mathrm{E},{ }^{1}$ let the rectangle contained by $\mathrm{H}, \Gamma \mathrm{Z}$ be added in common. Then the whole rectangle contained by $H, \Delta Z$ equals the rectangle contained by $B \Gamma, \Gamma E$ plus the rectangle contained by $H, \Gamma Z,{ }^{2}$ that is (plus) the rectangle contained by $\mathrm{AE}, \Gamma \mathrm{Z}$ plus the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{Z} .{ }^{3}$ But the rectangle contained by $\mathrm{E} \Gamma, \Gamma \mathrm{B}$ plus the rectangle contained by $\mathrm{B} \mathrm{\Gamma}, \Gamma$ I is the whole rectangle contained by EZ, ГВ. ${ }^{4}$ Hence it has resulted that the rectangle contained by EZ, ГВ plus the rectangle contained by $\mathrm{AE}, \Gamma \mathrm{Z}$ equals the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z} .{ }^{5}$ But the rectangle contained by EZ, Γ B equals the rectangle contained by EZ, $\mathrm{Z} \Gamma$ plus the rectangle contained by BZ, $\mathrm{ZE} ; 6$ while the rectangle contained by $\mathrm{EZ}, \mathrm{Z} \Gamma$ plus the rectangle contained by $\mathrm{AE}, \Gamma \mathrm{Z}$ is the whole rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma .7$ Thus the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ plus the rectangle contained by BZ, ZE equals the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z} .{ }^{8}$
(104) 10. (Prop. 50) For the second assignment of the third problem.

But let the point \mathbf{Z} be outside (line) AB. That the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ exceeds the rectangle contained by EZ, ZB by the rectangle contained by $\mathrm{H}, \mathrm{Z} \mathrm{\Delta}$.

For since the rectangle contained by $\mathrm{H}, \Delta \mathrm{B}$ equals the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma, 1$ let the rectangle contained by $\langle\mathrm{H}, \mathrm{BZ}\rangle$ be added in common. <Then the whole rectangle contained by> $\mathbf{H}, \Delta \mathbf{Z}$ equals the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ plus the rectangle contained by $\mathrm{H}, \mathrm{BZ},{ }^{2}$ that is (plus) the rectangle contained by AE, ZB plus the rectangle contained by ГВ, $\mathrm{BZ} .^{3}$ But the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ plus the rectangle contained by $Г \mathrm{~B}, \mathrm{BZ}$ is the whole rectangle contained by $\mathrm{AZ}, ~ Г В . ~ 4 ~ H e n c e ~$ the rectangle contained by AZ, ГB plus the rectangle contained by AE, ZB equals the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z} .{ }^{5}$ But the rectangle contained by $\mathrm{AZ}, \mathrm{B} \Gamma$ plus the rectangle contained by AE, ZB is the excess by which the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ exceeds the rectangle contained by EZ, ZB. ${ }^{6}$ Hence the rectangle contained by AZ, $\mathrm{Z} \Gamma$ exceeds the rectangle contained by EZ, ZB by the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z} .{ }^{7}$ Q.E.D.
 $\pi \rho о \beta \lambda \dot{\eta} \mu a \tau о \varsigma$.

 $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota \tau \epsilon \dot{v} \pi \grave{o}$ ВГЕ каi $\tau \tilde{\omega} \iota \dot{v} \pi \dot{o} \mathrm{H}, \Gamma \mathrm{CZ}$, ó $\epsilon \sigma \tau \iota \nu \tau \tilde{\omega} \iota \tau \epsilon \dot{v} \pi \grave{o}$

 BZE 'íoov $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota \dot{v} \pi \dot{o} \mathrm{H}, \Delta \mathrm{Z}$.
 $\pi \rho о \beta \lambda \eta \mu a \tau о \varsigma$.

 $\dot{v} \pi \grave{o}<\mathrm{H}, \mathrm{BZ}$. ób $\lambda o \nu$ 'ápa $\tau \grave{o} \dot{v} \pi \grave{o}>\tau \tilde{\omega} \nu \mathrm{H}, \Delta \mathrm{Z}$ 'íoov $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota \tau \epsilon$

 $\tau 0 \tilde{v} \dot{v} \pi \dot{o} \mathrm{EZB} \dot{v} \pi \epsilon \rho \bar{\epsilon} \chi \epsilon \iota \tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \mathrm{H}, \Delta \mathrm{Z}$. \quad ö $(\pi \epsilon \rho)$:15
$\| \boldsymbol{I}^{\prime} \theta^{\prime}$ add $\mathrm{Hu}(\mathrm{BS}) \| 3 \tau \grave{o} \mathrm{Z}$ secl Hu app \| 4 BZE, Co AZE A \| 7 $\tau \tilde{\omega} \iota(\tau \epsilon) \mathrm{Ge}$ (recc?) $\tau 0 \mathrm{~A}\|10 \mathrm{AE} \mathrm{CoABA}\| 14 \iota^{\circ}$ add Hu (BS) $19 \mathrm{H}, \mathrm{BZ}$. öd $\lambda o \nu$ á $\rho a \tau \grave{o} v \pi \grave{o}$ add $\mathrm{Co} \| 20 \tau \tilde{\omega} \iota(\tau \epsilon) \mathrm{Ge}(\mathrm{BS}) \tau \grave{o} \mathrm{~A}$ $21 \tau \tilde{\omega} \iota(\dot{v} \pi \grave{o} \Gamma \mathrm{CBZ}) \mathrm{Ge}(\mathrm{S}) \tau \grave{o} \mathrm{~A} \| 22 \mathrm{AZ}$ Co $\mathrm{AH} \mathrm{A} \| 23 \Delta \mathrm{Z}$ CoAZ A $\mathrm{B} \Gamma$] $\Gamma \mathrm{B} \operatorname{Co} \Delta \Gamma \mathrm{A} \| 24$ 方 ι add $\mathrm{Ge}(\mathrm{BS}) \mid$ postAZГ add á $\rho a \mathrm{Hu}$
(105) 11. (Prop. 51) For the third assignment of the first problem.

Let the rectangle contained by $A \Delta, \Delta \Gamma$ equal the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$, and let H be made equal to the excess of AE over $\mathrm{B} \Gamma$, and let some point Z be taken between E, B. That the rectangle contained by $A Z$, $\mathrm{Z} \Gamma$ exceeds the rectangle contained by EZ, ZB by the rectangle contained by H, Z Δ.

For since the rectangle contained by $\mathrm{H}, \mathrm{B} \Delta$ equals the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma,{ }^{1}$ let the rectangle contained by H, BZ be added in common. Then the whole rectangle contained by $\mathrm{H}, \mathrm{Z} \Delta$ equals the rectangle contained by $\mathrm{AB} \cdot \mathrm{B} \mathrm{\Gamma}$ plus the rectangle contained by $\mathrm{H}, \mathrm{BZ},{ }^{2}$ that is (plus) the rectangle contained by the excess of AE over $\mathrm{B} \mathrm{\Gamma}$ and $\mathrm{BZ} .^{3}$ But the rectangle contained by $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ is the rectangle contained by AZ , $\mathrm{B} \Gamma$ plus the rectangle contained by $\mathrm{ZB}, \mathrm{B} \mathrm{\Gamma} .4$ Hence it has resulted that the rectangle contained by $\mathrm{H}, \mathrm{Z} \Delta$ equals the rectangle contained by $\mathrm{AZ}, \mathrm{B} \Gamma$ plus the rectangle contained by $\Gamma \mathrm{B}, \mathrm{BZ}$ plus the rectangle contained by the excess of AE over $\Gamma \mathrm{B}$ and $\mathrm{BZ} .{ }^{5}$ But the rectangle contained by $\Gamma \mathrm{B}, \mathrm{BZ}$ plus the rectangle contained by the excess of $A E$ over ΓB and $B Z$ is the whole rectangle contained by AE, ZB. ${ }^{6}$ Hence the rectangle contained by H , $\mathrm{Z} \Delta$ equals the rectangle contained by $\mathrm{AZ}, \Gamma \mathrm{B}$ plus the rectangle contained by AE, ZB. 7 But the rectangle contained by $\mathrm{AZ}, \mathrm{B} \Gamma$ plus the rectangle contained by AE, ZB is the excess by which the rectangle contained by AZ , Z Γ exceeds the rectangle contained by EZ, ZB. ${ }^{8}$ Hence the rectangle contained by $A Z, Z \Gamma$ exceeds the rectangle contained by EZ, ZB by the rectangle contained by $\mathrm{H}, \mathrm{Z} \mathrm{\Delta} .{ }^{9}$ Q.E.D.
(106) 12. (Prop. 52) For the first assignment of the second problem.

Under the same assumptions, let point Z be between B, Γ. That the rectangle contained by $A Z, Z \Gamma$ plus the rectangle contained by EZ, ZB equals the rectangle contained by $\mathrm{H}, \mathrm{Z} \Delta$.

For since the rectangle contained by $\mathrm{H}, \Gamma \Delta$ equals the rectangle contained by $\mathrm{E} \Gamma, \Gamma \mathrm{B}, 1$ let the rectangle contained by $\mathrm{H}, \mathrm{Z} \Gamma$ be added in common. Then the whole rectangle contained by $\mathrm{H}, \mathrm{Z} \Delta$ equals the rectangle contained by $\mathrm{E} \Gamma, \Gamma \mathrm{B}$ plus the rectangle contained by $\mathrm{H}, \mathrm{Z} \Gamma .{ }^{2}$ But the rectangle contained by $\mathrm{H}, \mathrm{Z} \Gamma$ is the rectangle contained by the excess of $A E$ over $B \Gamma$ and $Z \Gamma,{ }^{3}$ while the rectangle contained by $E \Gamma, \Gamma B$ is the rectangle contained by $B \Gamma, \Gamma Z$ plus the rectangle contained by $E Z$, $\mathrm{B} \Gamma .4$ Hence it has resulted that the rectangle contained by $\mathrm{H}, \mathrm{Z} \Delta$ equals the rectangle contained by $\mathrm{EZ}, \mathrm{B} \Gamma$ plus the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{Z}$ plus the rectangle contained by the excess of AE over $\mathrm{B} \mathrm{\Gamma}$ and $\mathrm{Z} \mathrm{\Gamma} .{ }^{5}<\mathrm{But}$ the rectangle contained by the excess of $A E$ over $B \Gamma$ and ΓZ plus the rectangle contained by $\mathrm{B} \Gamma, \Gamma Z$ is the whole rectangle contained by $A E$, $\Gamma Z .{ }^{6}$ Hence the rectangle contained by $H, Z \Delta$ equals the rectangle contained by $\mathrm{AE}, \Gamma \mathrm{Z}$ plus the rectangle contained by $\mathrm{EZ}, \mathrm{B} \mathrm{\Gamma} .{ }^{7}$ But the rectangle contained by $\mathrm{EZ}, \mathrm{B} \Gamma$ is the rectangle contained by $\mathrm{EZ}, \mathrm{Z} \Gamma$ plus the rectangle contained by $\mathrm{EZ}, \mathrm{ZB}, 8$ while the rectangle contained by EZ , $\mathrm{Z} \Gamma$ plus the rectangle contained by $\mathrm{AE}, \mathrm{Z} \Gamma$ is the whole rectangle contained
 $\pi \rho о \beta \lambda \dot{\eta} \mu \mathrm{a} \mathrm{\tau os}$ ．
 $\tau \tilde{\omega} \nu \mathrm{AE}, \mathrm{B} \Gamma \dot{\cup} \pi \epsilon \rho о \times \tilde{\eta} \iota \quad i \sigma \eta \kappa \epsilon i \sigma \theta \omega \dot{\eta} \mathrm{H}$ ，каі $\epsilon \mathfrak{i} \lambda \dot{\eta} \phi \theta \omega \tau \iota \sigma \eta \mu \epsilon \tilde{\iota} о \nu$

 $\tau \grave{o} \dot{v} \pi \grave{o} \mathrm{H}, \mathrm{Z} \Delta$＇íoov $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota \tau \epsilon \dot{v} \pi \grave{o} \mathrm{AB} \mathrm{\Gamma} \kappa$ каi $\tau \tilde{\omega} \iota \dot{\nu} \pi \grave{o} \mathrm{H}, \mathrm{BZ}$ ，ö $\dot{\epsilon} \sigma \tau \iota \nu \tau \tilde{\omega} \iota \dot{\nu} \pi \dot{o} \tau \tilde{\eta} \varsigma \tau \tilde{\omega} \nu \mathrm{AE}, \mathrm{B} \mathrm{\Gamma} \dot{v} \pi \epsilon \rho o x \tilde{\eta} \varsigma \kappa a i \quad \tau \tilde{\eta} \varsigma \mathrm{BZ}$ ．｜á入入à $\tau \dot{o}$

 $\dot{v} \pi \grave{o} \mathrm{AZ} \mathrm{\Gamma} \tau 0 \tilde{v} \dot{v} \pi \grave{o} \mathrm{EZB} \dot{v} \pi \epsilon \rho \epsilon \bar{\epsilon} \chi \in \iota \tau \tilde{\omega} \iota$ ن́ $\pi \grave{o} \mathrm{H}, \mathrm{Z} \Delta$ ．ö $(\pi \epsilon \rho)$ ：

 ＇íoov $\tau \tilde{\omega} \iota \dot{\nu} \pi \grave{o} \mathrm{EZ}, \mathrm{B} \Gamma \kappa а \dot{\imath} \tau \tilde{\omega} \iota \dot{\nu} \pi \grave{o} \mathrm{~B} \mathrm{BZ} \kappa а і \tau \tilde{\omega} \iota \dot{\nu} \pi \grave{o} \tau \tilde{\eta} \varsigma \tau \tilde{\omega} \nu \mathrm{AE}$ ，

 ＇íoov $\epsilon \sigma \tau i \nu \tau \tilde{\omega} \iota \dot{\cup} \pi \grave{o} \mathrm{H}, \mathrm{Z} \Delta$ ．＇ö $\pi \epsilon \rho:-$
$\| 1 \iota a^{\prime}$ add $\mathrm{Hu}(\mathrm{BS}) \| 3 \tau \tilde{\eta} \iota \ldots \dot{v} \pi \epsilon \rho o x \tilde{\eta} \iota \mathrm{Ge}$（BS）$\tau \dot{\eta} \nu \ldots \dot{v} \pi \epsilon \rho \circ \times \dot{\eta}$ A｜ 7 ABГ CoАГВ A \｜ $11 \mathrm{H}, \mathrm{Z} \Delta$ Co HZ Z $\Delta \mathrm{A} \mid 13 \mathrm{AE}$ Co AГ A $14 \mathrm{AE}, \mathrm{ZB}$ Co AEZ A $\|^{15}(\mathrm{~B}) \Gamma$ om A^{1} add A^{2} viò AE，ZB Co AEZ
入órov A\｜ $27 \mathrm{EZ}, \mathrm{B} \mathrm{\Gamma}$ CoEZB A\｜ 28 тò $\delta \grave{\epsilon} \dot{u} \pi \grave{o} \tau \tilde{\eta} \mathrm{~s} \tau \tilde{\omega} \nu \mathrm{AE}, \mathrm{B} \mathrm{\Gamma}$ $\dot{v} \pi \epsilon \rho o x \tilde{\eta} s \kappa a i \quad \tau \tilde{\eta} s \Gamma Z$ add Co $31 \mathrm{EZ}, \mathrm{ZB}$ Со ВГ，ГZ А ВГ，BZ Ge\｜ 32 EZГ Co BZГ A｜AZГ Co AГZ A
by $\mathrm{AZ}, \mathrm{Z} \Gamma .{ }^{9}$ And we also had the rectangle contained by EZ, ZB. Thus the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ plus the rectangle contained by EZ, ZB equals the rectangle contained by $\mathrm{H}, \mathrm{Z} \mathrm{\Delta} .{ }^{\circ}{ }^{\circ}$ Q.E.D.
(107) 13. (Prop. 53) For the third assignment of the third problem.

Now let the point be between Γ, Δ. That the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ falls short of the rectangle contained by EZ, ZB by the rectangle contained by $\mathrm{H}, \mathrm{Z} \Delta$.

For since the rectangle contained by $\mathrm{H}, \Gamma \Delta$ equals the rectangle contained by $\mathrm{E} \cdot \Gamma \cdot \mathrm{B},{ }^{1}$ let the rectangle contained by $\mathrm{H}, \Gamma \mathrm{Z}$ be subtracted in common. Then the remaining rectangle contained by $\mathrm{H}, \mathrm{Z} \mathrm{\Delta}$ is the excess by which the rectangle contained by $\mathrm{E} \Gamma, \Gamma \mathrm{B}$ exceeds the rectangle contained by $\mathrm{H}, \Gamma \mathrm{Z},{ }^{2}$ that is the rectangle contained by the excess of AE over ΓB and $\Gamma Z .{ }^{3}$ But the amount by which the rectangle contained by $\mathrm{E} \Gamma, \Gamma \mathrm{B}$ exceeds the rectangle contained by the excess of AE over $\Gamma \mathrm{B}$ and $\Gamma \mathrm{Z}$, when the rectangle contained by $\mathrm{Z} \Gamma, \Gamma \mathrm{B}$ has been added in common, is the amount by which the rectangle contained by $\mathrm{EZ}, \mathrm{B} \Gamma$ exceeds the rectangle contained by $\mathrm{AE}, \Gamma \mathrm{CZ},{ }^{4}$ <while the amount by which the rectangle contained by EZ, BZ exceeds the rectangle contained by AE , $\Gamma Z,>$ when the rectangle contained by EZ, $\mathrm{Z} \Gamma$ has been added in common, is the amount by which the rectangle contained by EZ, ZB exceeds the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma .{ }^{5}$ And so the rectangle contained by AZ , $\mathrm{Z} \Gamma$ falls short of the rectangle contained by EZ, ZB by the rectangle contained by $\mathrm{H}, \mathrm{Z} \Delta .{ }^{6}$
(108) 14. (Prop. 54) For the third assignment of the third problem.

But let point Z be outside $(\Gamma \Delta)$. That now the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ exceeds the rectangle contained by EZ, ZB by the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z}$.

For since the rectangle contained by $\mathrm{H}, \Gamma \Delta$ equals the rectangle contained by ЕГ, ГВ, ${ }^{1}$ let both be subtracted from the rectangle contained by $\mathrm{H}, \Gamma \mathrm{Z}$. Then the remaining rectangle contained by $\mathrm{H}, \Delta \mathrm{Z}$ is the excess by which the rectangle contained by $\mathrm{H}, \Gamma \mathrm{Z}$ exceeds the rectangle contained by ЕГ, ГВ. ${ }^{2}$ <But the amount by which the rectangle contained by $\mathrm{H}, \Gamma \mathrm{Z}$ exceeds the rectangle contained by $\mathrm{E},, \Gamma \mathrm{B},>$ when the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{Z}$ has been added in common, is the amount by which the rectangle contained by $\mathrm{AE}, \Gamma \mathrm{F}$ exceeds the rectangle contained by EZ, $\mathrm{B},{ }^{3}$ since the excess of AE over $\mathrm{B} \mathrm{\Gamma}$ plus $\mathrm{B} \mathrm{\Gamma}$ is AE . Again, the amount by which the rectangle contained by $\mathrm{AE}, \Gamma \mathrm{Z}$ exceeds the rectangle contained by $\mathrm{EZ}, \mathrm{B} \Gamma$, when the rectangle contained by $\mathrm{EZ}, \mathrm{Z} \Gamma$ has been added in common, is the amount by which the rectangle contained by AZ, Z Γ exceeds the rectangle contained by EZ, ZB. ${ }^{4}$ Thus the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ exceeds the rectangle contained by EZ, ZB by the rectangle contained by $\mathrm{H}, \Delta \mathrm{Z} .{ }^{5}$
 $\pi \rho o \beta \lambda \dot{\eta} \mu a \tau \circ \varsigma$.

 $\tau 0 \tilde{v} \dot{v} \pi \dot{o} \mathrm{EZ}, \tau 0 \dot{v} \tau \omega \iota \dot{v} \pi \epsilon \rho \bar{\epsilon} \chi \epsilon \iota \tau \grave{o} \dot{v} \pi \grave{o} \mathrm{EZB} \tau 0 \tilde{v} \dot{v} \pi \grave{o} \mathrm{AZ}$. $\dot{\omega} \sigma \tau \epsilon$

 $\pi \rho о \beta \lambda_{\eta \mu} \mu \tau$ о.

 $\tau \tilde{\omega} \iota \dot{v} \pi \dot{o} \mathrm{H}, \Delta \mathrm{Z}$.
$\| 1 \iota \boldsymbol{\gamma}^{\circ}$ add $\mathrm{Hu}(\mathrm{BS})\|7 \tau \tilde{\eta} \varsigma \mathrm{Co} \kappa а \dot{\imath} \mathrm{~A}\| 8 \dot{\omega} \iota \mathrm{Ge}(\mathrm{BS}) \dot{\omega} \varsigma \mathrm{A} \mid$ post $v \pi \in \rho \epsilon \chi \in \iota$ litterae fere quattuor in ras. ($\dot{u} \pi \grave{o} \mathrm{AE}, \Gamma \mathrm{Z}) \mathrm{Ge}(\mathrm{V}) \tau \grave{o} \mathrm{~A} \mid \dot{\omega} \iota \delta \bar{\epsilon}-\mathrm{AE}, \Gamma \mathrm{Z}$ add $\mathrm{Hu} \| 14$ i δ° add

 A
(109) 15. (Prop. 55) For the first assignment of the second problem.

Now let point \mathbf{Z} be between A, E. That the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ plus the rectangle contained by EZ, ZB equals the rectangle contained by $\mathrm{H}, \mathrm{Z} \Delta$.

For since the rectangle contained by $\mathrm{H}, \mathrm{B} \Delta$ equals the rectangle contained by $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma},{ }^{1}$ let the rectangle contained by H, BZ be added in common. Then the whole rectangle contained by $\mathrm{H}, \mathrm{Z} \mathrm{\Delta}$ equals the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ plus the rectangle contained by $\mathrm{H}, \mathrm{ZB} .{ }^{2}$ But the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ equals the rectangle contained by AZ , $\mathrm{B} \Gamma$ plus the rectangle contained by $\mathrm{ZB}, \mathrm{B},{ }^{3}{ }^{3}$ while the rectangle contained by the excess of AE over $\mathrm{B} \Gamma$ and ZB plus the rectangle contained by $\Gamma \mathrm{B}$, BZ equals the rectangle contained by $\mathrm{AE}, \mathrm{BZ},{ }^{4}$ that is the rectangle contained by BZ, ZE plus the rectangle contained by AZ, ZB, ${ }^{5}$ which (the rectangle contained by AZ, ZB) plus the rectangle contained by $\mathrm{AZ}, \mathrm{B} \Gamma$ is the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \mathrm{\Gamma} \cdot{ }^{6}$. Therefore the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ plus the rectangle contained by BZ, ZE equals the rectangle contained by $\mathrm{H}, \mathrm{Z} \mathrm{\Delta} .{ }^{7}$ Q.E.D.
(110) 16. (Prop. 56) For the third assignment of the third problem.

But now let point \mathbf{Z} be outside (EA produced past A). That the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ falls short of the rectangle contained by EZ, ZB by the rectangle contained by $\mathrm{H}, \mathrm{Z} \mathrm{\Delta}$.

For since the rectangle contained by $\mathrm{H}, \mathrm{A} \Delta$ equals the rectangle contained by BA, AE, ${ }^{1}$ let the rectangle contained by H, AZ be added in common. Then the whole rectangle contained by $\mathbf{H}, \Delta \mathbf{Z}$ equals the rectangle contained by BA, AE plus the rectangle contained by the excess of AE over $\Gamma \mathrm{B}$ and $\mathrm{AZ} .{ }^{2}$ <But the rectangle contained by BA, AE plus the rectangle contained by the excess of $A E$ over ΓB and $A Z$ is $>$ the rectangle contained by ZB, AE diminished by the rectangle contained by ZA, ВГ. ${ }^{3}$ Hence too the rectangle contained by $\mathrm{H}, \mathrm{Z} \Delta$ is the excess by which the rectangle contained by BZ, AE exceeds the rectangle contained by ZA , $\mathrm{B} \mathrm{\Gamma} .{ }^{4}$ But the rectangle contained by ZB, AE exceeds the rectangle contained by $\mathrm{ZA}, \mathrm{B} \Gamma$, when the rectangle contained by BZ, ZA has been added, by the same amount as the rectangle contained by BZ, ZE exceeds the rectangle contained by $\Gamma \mathrm{Z}, \mathrm{ZA} .{ }^{5}$ Hence the rectangle contained by BZ, ZE exceeds the rectangle contained by Γ Z, ZA by the rectangle contained by H, Z $\Delta .6$ Therefore the rectangle contained by $\Gamma \mathrm{Z}, \mathrm{ZA}$ falls short of the rectangle contained by BZ, ZE by the rectangle contained by $\mathrm{H}, \mathrm{Z} \mathrm{\Delta}$. Q.E.D.
 $\pi \rho о \beta \lambda_{\eta} \mu a \tau о s$.

 $\mathrm{Z} \Delta$. $\ddot{o}(\pi \in \rho)$: -
 $\pi \rho о \beta \lambda \dot{\eta} \mu a \tau \circ s$.

 $\lambda \epsilon \iota \pi \dot{o} \nu \tau \tilde{\omega} \iota \dot{v} \pi \dot{o} \mathrm{ZA}, \mathrm{B} \Gamma$. $\ddot{\omega} \sigma \tau \epsilon \kappa a i \quad \tau \dot{o} \dot{v} \pi \grave{o} \mathrm{H}, \mathrm{Z} \Delta \dot{\eta} \dot{v} \pi \epsilon \rho o \mid x \dot{\eta} \dot{\epsilon} \sigma \tau \iota \nu$

 BZE $\tau \circ \tilde{v} \dot{v} \pi \dot{o} \Gamma \mathrm{ZZA} \dot{v} \pi \epsilon \rho \dot{\epsilon} \chi \in \iota \tau \tilde{\omega} \iota \dot{v} \pi \dot{o} \mathrm{H}, \mathrm{Z} \Delta$. $\dot{\omega} \sigma \tau \epsilon \tau \dot{o} \dot{v} \pi \dot{o} \Gamma \mathrm{KA} \tau 0 \tilde{v}$

[^25](111) 17. (Prop. 57) For the third assignment of the first problem.

Let $A B$ be equal to $\Gamma \Delta$, and let E be an arbitrary point between points B, Γ. That the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ exceeds the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ by the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$.

For since the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ equals the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$ - that is the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ plus the rectangle contained by $\mathrm{AB}, \mathrm{E} \Gamma$ - and in addition the rectangle contained by $\mathrm{AE}, \Gamma \Delta, 1^{2}$ therefore the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ exceeds the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ by the rectangle contained by $\mathrm{E} \Gamma, \mathrm{AB}$, that is the rectangle contained by $\mathrm{E} \Gamma, \Gamma \Delta$ - for AB and $\Gamma \Delta$ are equal, - plus the rectangle contained by $\mathrm{AE}, \Gamma \Delta$. These make up the whole rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$. Thus the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ exceeds the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ by the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta .^{3}$
(112) 18. (Prop. 58) For the first assignment of the second problem.

Let AB be equal to $\Gamma \Delta$, and let some point E be taken between Γ, Δ. That the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ plus the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ equals the <rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$.

For since the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ equals the $>$ rectangle contained by $\mathrm{A} \Gamma, \mathrm{E} \Delta$ plus the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta, 1$ let the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ be added in common. Then the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ plus the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ equals the rectangle contained by $\mathrm{A} \Gamma, \mathrm{E} \Delta$ plus the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ and in addition the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma .{ }^{2}$ But the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ plus the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ is the whole rectangle contained by $\mathrm{B} \Delta, \Gamma \mathrm{E},{ }^{3}$ that is the rectangle contained by $\mathrm{A} \Gamma$, $\Gamma \mathrm{E}^{4}$ - for all $\mathrm{A} \Gamma$ and all $\mathrm{B} \Delta$ are equal, - while the rectangle contained by $\mathrm{A} \Gamma, \mathrm{E} \Delta$ plus the rectangle contained by $\mathrm{A}, \mathrm{\Gamma E}$ is the whole rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta .{ }^{5}$ Thus the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ plus the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ equals the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta .{ }^{6}$
 $\pi \rho \circ \beta \lambda \dot{\eta} \mu a \tau \circ \varsigma$.

 $\mathrm{AE}, \mathrm{E} \Gamma, \tau 0 \cup \tau \dot{\epsilon} \sigma \tau \iota \nu \tau \tilde{\omega} \iota \tau \epsilon \dot{\nu} \pi \grave{o} \mathrm{BE}, \mathrm{E} \Gamma \kappa а \dot{\imath} \tau \tilde{\omega} \iota \dot{\nu} \pi \grave{o} \mathrm{AB}, \mathrm{E} \Gamma \kappa а \dot{\imath}$

 $\tau o ̀ ~ a ́ \rho a ~ \dot{v} \pi \grave{o} \mathrm{AE}, \mathrm{E} \Delta \tau o \tilde{v} \dot{v} \pi \grave{o} \mathrm{BE}, \mathrm{E} \Gamma \dot{v} \pi \epsilon \rho \bar{\epsilon} \chi \epsilon \iota \tau \tilde{\omega} \iota \dot{v} \pi \dot{o} \mathrm{~A} \Gamma, \Gamma \Delta$.
 $\pi \rho o \beta \lambda \eta \mu a \tau o s$.

 ЕГ 'ícov $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota \dot{v} \pi \grave{o}$ АГ Δ.
$\| 1 \iota \xi^{\prime}$ add $\mathrm{Hu}(\mathrm{BS}) \| 3$ ' $i \sigma \eta$ add Co\| $\left.7 \mathrm{AE} \Delta\right] \mathrm{AE}, \mathrm{E} \Delta$ Co AГ $\Delta \mathrm{A} \|$
 $\kappa а i ́ \tau \grave{o} \dot{v} \pi \grave{o} \mathrm{AE}, \Gamma \Delta \mathrm{Co} \mathrm{\|} 11 \mathrm{c} \mathrm{\eta}^{\prime}$ add $\mathrm{Hu}(\mathrm{BS}) \mid \delta \epsilon v \tau \epsilon \rho o v$ Simson $_{1} \pi \rho \dot{\omega} \tau o v$ A \| 13 'ío η add Co \| $15 \tau \tilde{\omega} \iota$ Ge (BS) $\tau \tilde{\omega} \nu \mathrm{A}$ |
 $19 \mathrm{E} \Delta \mathrm{CoEB} A$
(113) 19. (Prop. 59) Lemma useful for the singularities <of the third assignment> of the first, second, and third problems.

With AEB being a semicircle on (line) BA, and (lines) ΓE and ΔZ at right angles, and straight line EZH drawn, and a perpendicular BH (drawn) to it, three things result, namely that the rectangle contained by $Г \mathrm{~B}, \mathrm{~B} \Delta$ (equals) the square of BH , and the rectangle contained by $\mathrm{A} \Gamma, \Delta \mathrm{B}$ (equals) the square of ZH , and the rectangle contained by $\mathrm{A} \Delta, \Gamma \mathrm{B}$ (equals) the square EH.

For let $\mathrm{H} \Gamma, \mathrm{H} \Delta, \mathrm{AZ}, \mathrm{E} \Delta, \mathrm{AH}, \mathrm{ZB}$ be joined. Then since angle Z is right and $\mathrm{Z} \Delta$ is a perpendicular, ${ }^{1}$ angle $\Delta \mathrm{ZB}$ equals angle BAZ (VI 8). ${ }^{2}$ But angle $\triangle Z B$ equals angle $\triangle H B$ (III $22 \& 21$) ${ }^{3}$ while angle BAZ , if EB is joined, equals angle BEZ, ${ }^{4}$ that is angle ВГН. ${ }^{5}$ Hence angle $\triangle \mathrm{HB}$ equals angle $\mathrm{B} \Gamma \mathrm{H} .{ }^{6}$ Therefore the rectangle contained by $Г \mathrm{~B}, \mathrm{~B} \Delta$ equals the square of BH. ${ }^{7}$ But also the whole rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta$ equals the square of $\mathrm{BZ} .{ }^{8}$ Therefore the remaining rectangle contained by $\mathrm{A} \Gamma, \Delta \mathrm{B}$ equals the square of ZH .9 Again, since the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ equals the square of $\mathrm{BE},{ }^{10}$ and out of these the rectangle contained by $\Gamma \mathrm{B}$, $\mathrm{B} \Delta$ equals the square of $\mathrm{BH},{ }^{11}$ therefore the remaining rectangle contained by $A \Delta, \Gamma B$ equals the square of $\mathrm{EH} .{ }^{12}$ Thus the three things result.
(114) 20. (Prop. 60) For the singularity of the third <assignment of the second> problem.
(Let) $\mathrm{AB} \Gamma$ be a triangle, and let $\mathrm{A} \Delta, \mathrm{BE}, \Gamma Z$ be joined; and let $\mathrm{A} \Delta$ be a perpendicular to $\mathrm{B} \Gamma$, and let points $\mathrm{A}, \mathrm{Z}, \mathrm{E}, \mathrm{H}$ be on a circle. That angles Z, E are right.

Let $\mathrm{A} \Delta$ be produced, and let $\Delta \Theta$ be made equal to $\mathrm{H} \Delta, 1$ and let $\mathrm{B} \Theta$, $\Theta \Gamma$ be joined. Then angle Θ equals angle BHГ, ${ }^{2}$ that is angle ZHE. ${ }^{3}$ But angle ZHE plus angle A equalled two right angles. ${ }^{4}$ Hence angle $B \Theta \Gamma$ plus angle A too equals two right angles. 5 Therefore points A, B, Θ, Γ are on a circle. ${ }^{6}$ Hence angle BAH equals angle $\mathrm{B} \Gamma \Theta,{ }^{7}$ that is angle $Н \Gamma \Delta .{ }^{8}$ But the vertical angles at H too are equal to one another. ${ }^{9}$ Therefore the remaining angle Δ equals the remaining angle $\mathbf{Z} \cdot{ }^{\circ}{ }^{\circ}$ But Δ is right, and so the angle at point Z too is right. ${ }^{11}$ For the same reasons angle E is also right. Thus the angles at points Z, E are right. Q.E.D.

 трітои тровл \quad матоя.

 'íoov é $\sigma \tau i \nu \tau \tilde{\omega} \iota$ àmo $\mathrm{EH} \tau \epsilon \tau \rho a \gamma \dot{\omega} \nu \omega \iota$. $\gamma \boldsymbol{i} \nu \in \tau a \iota$ á $\rho a \tau \rho i a$.

 $\mu \grave{\epsilon} \nu \mathrm{A} \Delta \dot{\epsilon} \pi \pi_{i} \tau \tilde{\eta} \varsigma \mathrm{~B} \Gamma \kappa \dot{a} \theta \epsilon \tau о \varsigma, \stackrel{\epsilon}{\epsilon} \nu \kappa \dot{v} \kappa \lambda \omega \iota \delta \grave{\epsilon} \tau \grave{a} \mathrm{~A}, \mathrm{Z}, \mathrm{E}, \mathrm{H} \sigma \eta \mu \epsilon \tilde{\imath} a$.

 ápa $\bar{\epsilon} \sigma \tau i \nu \dot{\eta} \Theta \gamma \omega \nu i a \tau \tilde{\eta} \iota \dot{v} \pi \dot{o}$ ВНГ, $\tau 0 \cup \tau \bar{\epsilon} \sigma \tau \iota \nu \tau \tilde{\eta} \iota \dot{v} \pi \dot{o}$ ZHE. á $\lambda \lambda$,

$!$

 $\Gamma \mathrm{B}, \mathrm{B} \Delta$ add ' i oov, $\mathrm{Hu} \| 8 \mathrm{E} \Delta, \Delta \mathrm{H}, \mathrm{AH}$ del $\mathrm{Hu} \| 18 \kappa$, add $\mathrm{Hu}(\mathrm{BS}) \mid$

 $\dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{v} \chi \theta \omega \sigma a \nu$ ai $\mathrm{Hu} \dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{v} \chi \theta \omega \dot{\eta} \mathrm{~A} \| 24$ ВНГ Ge (S) ВННГ $\mathrm{A} \mid$
 $\left.\mathrm{A} \mid \underset{\sim}{\mathrm{Z}}] \mathrm{E} \mathrm{Ge}\left(\mathrm{V}^{2}\right) \| 30 \mathrm{Z}\right] \mathrm{E} \mathrm{Ge}\left(\mathrm{V}^{2}\right)$ om $\mathrm{Co} \mid \sigma \eta \mu \epsilon i \omega \iota \mathrm{Ge}(\mathrm{BS})$ $\sigma \eta \mu \epsilon \tilde{\iota} \sigma \nu \mathrm{A} \| 31 \dot{\eta} \mathrm{Ge}(\mathrm{BS}) \mu \dot{\eta} \mathrm{A} \mid \mathrm{E}] \mathrm{Z} \mathrm{Ge}\left(\mathrm{V}^{2}\right)$
(115) 21. (Prop. 61) The singularity of the first problem of the third assignment.

Given three straight lines $\mathrm{AB}, \mathrm{B} \Gamma, \Gamma \Delta$, if, as is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta$ to the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$, so is the square of BE to the square of $\mathrm{E} \Gamma$, then the singular and least ratio is that of the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ to the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$. I say that it is the same as that of the square of $A \Delta$ to the square of the excess by which the (line) equal in square to the rectangle contained by $\mathrm{A} \Gamma, \mathrm{B} \Delta$ exceeds the (line) equal in square to the rectangle contained by $\mathrm{AB}, \Gamma \Delta$.

Let a circle be described around A Δ, and let BZ, $\Gamma \mathrm{H}$ be drawn at right angles (to $\mathrm{A} \Delta$). Then since, as is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta$ to the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$, that is as is the square of BZ to the square of $\Gamma \mathrm{H}$, so is the square of BE to the square of $\mathrm{E} \Gamma,{ }_{1}{ }^{2}$ therefore in breadth (alone) as is BZ to $\Gamma \mathrm{H}$, so is BE to $\mathrm{E} \Gamma .{ }^{3}$ Hence the line through \mathbf{Z}, E, H is straight. ${ }^{4}$ Let it be ZEH, and let $\mathrm{H} \Gamma$ be produced to Θ, and let $\mathrm{Z} \Theta$ be joined and produced to K , and let $\Delta \mathrm{K}$ be drawn as a perpendicular to it. According to the lemma (7.113) written above, the rectangle contained by $\mathrm{A} \Gamma, \mathrm{B} \Delta$ equals the square of $\mathbf{Z K},{ }^{5}$ and the rectangle contained by $\mathrm{AB}, \Gamma \Delta$ equals the square of $\Theta K .{ }^{6}$ Therefore the remainder $Z \Theta$ is the excess by which the (line) equal in square to the rectangle contained by $\mathrm{A} \Gamma, \mathrm{B} \Delta$ exceeds the (line) equal in square to the rectangle contained by $\mathrm{AB}, \Gamma \Delta .^{7}$ Let $\mathrm{Z} \Lambda$ therefore be drawn through the center, and let $\Theta \Lambda$ be joined. Then since right angle $Z \Theta \Lambda$ equals right angle $E \Gamma H,{ }^{8}$ and angle Λ equals angle $\mathrm{H},{ }^{9}$ therefore the triangles ($\Theta \mathrm{Z} \Lambda, \Gamma \mathrm{FH}$) are equiangular. ${ }^{\circ}{ }^{\circ}$ Hence as is $\Lambda \mathrm{Z}$ to $\boldsymbol{\Theta Z}$, that is as is $\mathrm{A} \Delta$ to ZO , so is EH to EГ. ${ }^{11}{ }^{12}$ Therefore as is the square of $\mathrm{A} \Delta$ to the square $<\mathrm{of} \mathrm{\Theta Z}$, so is the square $>$ of EH to the square of $\mathrm{E} \Gamma$, and so also is the rectangle contained by HE, EZ, that is the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$, to the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma .1^{3}$ And the ratio of the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ to the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ is singular and least, while $\mathrm{Z} \Theta$ is the excess by which the (line) equal in square to the rectangle contained by $\mathrm{A} \Gamma, \mathrm{B} \Delta$ exceeds the (line) equal in square to the rectangle contained by $\mathrm{AB}, \Gamma \Delta$, that is (that by which) the square of ZK (exceeds) the square of $\Theta \mathrm{K}$. Thus the singular and lesser ratio is the same as that of the square of $\mathrm{A} \Delta$ to the square of the excess by which the (line) equal in square to the rectangle contained by $\mathrm{A} \Gamma$, $\mathrm{B} \Delta$ exceeds the (line) equal in square to the rectangle contained by $\mathrm{AB}, \Gamma \Delta$. Q.E.D.
(115),<ка.:> ó movaxòs < $<\boldsymbol{o}$ трітои є́ $\pi \iota$ та́үнатоs.

 $\tau \tilde{\eta} \varsigma \delta v \nu a \mu \epsilon \nu \eta \varsigma \tau \grave{o} \dot{u} \pi \grave{o} \mathrm{AB}, \Gamma \Delta . \quad \gamma \epsilon \gamma \rho a \phi \theta \omega \pi \epsilon \rho i \quad \tau \grave{\eta} \nu \mathrm{~A} \Delta \kappa \dot{v} \kappa \lambda о \varsigma$,

141 758 5

[^26](116) 22. (Prop. 62) The singularity of the third assignment of the second problem.

Again given three straight lines $\mathrm{AB}, \mathrm{B} \Gamma, \Gamma \Delta$, if, as is the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}$ to the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{B}$, so is the square of $\Delta \mathrm{E}$ to the square of $\mathrm{E} \Gamma$, then the singular and lesser ratio is the same as that of the square of the (line) composed of the (line) equal in square to the rectangle contained by $\mathrm{A} \Gamma, \mathrm{B} \Delta$ and of the (line) equal in square to the rectangle contained by $\mathrm{A} \Delta, \mathrm{B} \Gamma$ to the square of $\Delta \Gamma$.

From E let EZ be drawn at right angles to $A \Delta$, and let it be produced, and (let) the square of $\mathbf{Z} \Delta$ be equal to the rectangle contained by $A \Delta, \Delta B$, and let $\mathrm{H} \Gamma$ be drawn parallel to line $\mathrm{Z} \Delta$. Then since, as is the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}$ to the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{B}$, so is the square of ΔE to the square of $E \Gamma,{ }^{1}$ that is the square of ΔZ to the square of $\Gamma H,{ }^{2}$ and the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}$ equals the square of $\mathrm{Z} \Delta,^{3}$ therefore the rectangle contained by $\mathrm{A}, ~ \Gamma \mathrm{~B}$ equals the square of $\Gamma \mathrm{H} .{ }^{4}$ Now let AZ , ZB, AH, HB be joined. Then since the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}$ equals the square of $\Delta Z,{ }^{5}$ angle $\mathrm{BZ} \Delta$ equals angle ZAB. ${ }^{6}$ And angle $\mathrm{BH} \Gamma$ also equals angle BAH. ${ }^{7}$ But also angle $\mathrm{BZ} \Delta$ equals angle $\mathrm{B} \Theta \mathrm{H} .{ }^{8}$ Hence angle $\mathrm{B} \Theta \mathrm{H}$ plus angle $\mathrm{BH} \Theta$, that is, if BK is produced, angle KBZ , equals angle $\Lambda A K .{ }^{9} 10$ Hence points A, Λ, B, K are on a circle. ${ }^{11}$ Therefore by the lemma (7.114) written above, the angles at points K, Λ are right. ${ }^{2}{ }^{2}$ Now let $B M$ be drawn as a perpendicular to $Z \Delta, 1^{3}$ and let ΔN be joined, and let it be produced to Ξ. Then this is a perpendicular to $\mathbf{Z} \Lambda$, and parallel to $\mathrm{H} \Lambda .^{14}$ Again, let $\mathrm{H} \Gamma$ be joined and produced to 0 . Then this is a perpendicular to $\mathrm{BN} ;{ }^{16}$ for $\mathbf{Z} \Delta$ too is (perpendicular) to MB. 1^{5} Then since the rectangle contained by $\mathrm{A}, \Gamma \mathrm{\Gamma}$ equals the square of $\Gamma \mathrm{H},{ }^{17}$ therefore angle $B H \Gamma$ equals angle $Н А \Gamma .{ }^{18}$ But angle $B H \Gamma$ equals angle $\Gamma \mathrm{NB}$ in the circle (see commentary); ${ }^{19}$ and angle HAB equals angle $B \Delta N$ in parallels. 20 Therefore angle BNГ equals angle B Δ N. 21 Thus the rectangle contained by $\Delta \mathrm{B}, \mathrm{B} \Gamma$ equals the square of BN .22 And since in triangle $\mathrm{B} \Delta \mathrm{Z}$ a perpendicular $\Delta \mathrm{NE}$ has been drawn, and ZN and NB have made an inflection on ($\Delta \mathrm{N} \Xi$), therefore the excess of the square of $\mathbf{Z} \Delta$ over the square of $\Delta \mathrm{B}$ equals the (excess) of the square of ZN over the square of NB. ${ }^{3}$ But the excess of the square of $Z \Delta$ over the square of ΔB is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta .^{24}$ Hence the excess of the square of ZN over the square of NB is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta$ too. ${ }^{25}$ And the rectangle contained by $\Delta \mathrm{B}, \mathrm{B} \Gamma$ equals the square of $\mathrm{BN} .{ }^{26}$ Therefore NZ is the (line) equal in square to the rectangle contained by $\mathrm{A} \Gamma, \mathrm{B} \Delta .27$ Again, since the excess of the square of HN over the square of NB equals the excess of the square of $\mathrm{H} \Gamma$ over the square of $\Gamma \mathrm{B},{ }^{28}$ whereas the excess of
 $\delta \in \cup \tau \epsilon \rho O \cup \pi \rho о \beta \lambda \dot{\eta} \mu a \tau о \varsigma$.
$\pi \dot{a} \lambda \iota \nu, \tau \rho \iota \tilde{\omega} \nu \delta 0 \theta \epsilon \iota \sigma \tilde{\omega} \nu \in \dot{v} \theta \epsilon \iota \tilde{\omega} \nu \tau \tilde{\omega} \nu \mathrm{AB}, \mathrm{B} \Gamma, \Gamma \Delta, \notin \dot{a} \nu \gamma \dot{\gamma} \nu \eta \tau a!$

 $\kappa \dot{v} \kappa \lambda \omega \iota . \dot{\eta} \delta \grave{\epsilon} \dot{\nu} \pi \grave{o} \mathrm{HAB}$ 'ío $\eta \dot{\epsilon} \sigma \tau i \nu \tau \tilde{\eta} \iota \dot{\cup} \pi \dot{o} \mathrm{~B} \Delta \mathrm{~N} \dot{\epsilon} \nu \pi a \rho a \lambda \lambda \bar{\eta} \lambda \omega \iota$.

 AEГ All 5 post $\lambda \dot{o} \gamma o s$ add $\dot{\epsilon} \sigma \tau i \nu \dot{o} \tau 0 \tilde{v} \dot{v} \pi \dot{o}$ AEB $\pi \rho \grave{o} s ~ \tau \dot{o} \dot{v} \pi \dot{o}$

 to 0 om A^{1} add $\mathrm{mg} \mathrm{A}^{2}$ alia manu \| $24 \mathrm{BN} \mathrm{CoBHA}|\mathrm{ZD} \mathrm{Co} \mathrm{H} \Theta \mathrm{A}|$ MB Co NB A\| 26 ГNB Co ГНB A\| $\| 2 \Delta \mathrm{~B} \Gamma$ Co B $\Delta \Gamma \mathrm{A} \| 29^{\prime} i ́ \sigma o \nu \mathrm{Ge}$ (recc?) $\hat{i} \sigma \omega \mathrm{~A} \mid \dot{\epsilon} \pi \epsilon \boldsymbol{\epsilon} \mathrm{Ge}(\mathrm{BS}) \dot{\epsilon} \pi \dot{\iota} \mathrm{A}\|31 \mathrm{ZN} \mathrm{Co} \mathrm{ZM} \mathrm{A}\| 33 \kappa a \iota \dot{\eta}$ $\tau \tilde{\omega} \nu-\tau \grave{o} \mathrm{AB} \Delta$ om A^{1} add $\mathrm{mg} \mathrm{A}^{2}$ alia manu| ZN, NB Co ZH, HB A $35 \tau \grave{o} \mathrm{Hu}(\mathrm{S}) \tau 0 \tilde{v} \mathrm{~A} \mid \mathrm{HN}, \mathrm{NB}$ Simson $_{1}$ NH HB A
the square of $\mathrm{H} \Gamma$ over the square of $\Gamma \mathrm{B}$ is the rectangle contained by AB , $\mathrm{B} \mathrm{\Gamma},{ }^{29}$ therefore the excess of the square of HN over the square of NB is the rectangle contained by $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma} \cdot{ }^{30}$ And the rectangle contained by B , $\mathrm{B} \Gamma$ equals the square of $\mathrm{BN} .{ }^{3}{ }^{1}$ Therefore NH is the (line) equal in square to the whole rectangle contained by $\mathrm{A} \Delta, \mathrm{B} \mathrm{\Gamma} .{ }^{32}$ But also ZN is the (line) equal in square to the rectangle contained by $\mathrm{A}, \mathrm{B} \Delta .^{33}<$ Hence all ZH equals the (line) equal in square to the rectangle contained by $\mathrm{A} \Delta, \mathrm{B} \Gamma>$ plus the (line) equal in square to the rectangle contained by $\mathrm{A} \Gamma, \mathrm{B} \Delta .{ }^{34}$ Since angle ZKH is right, and AE is a perpendicular (to ZH), ${ }^{3} 5$ therefore the rectangle contained by AE, EB equals the rectangle contained by ZE, EH. ${ }^{36}$ Therefore, as is the rectangle contained by AE, EB to the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$, so is the rectangle contained by ZE, EH to the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta .^{37}$ But as is the rectangle contained by ZE, EH to the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$, so is the square <of ZH to the square $>$ of $\Gamma \Delta .^{38}$ And therefore as is the rectangle contained by AE, EB to the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$, so is the square of ZH to the square of $\Gamma \Delta .^{39}$ And the ratio of the rectangle contained by AE, EB to the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ is the singular and lesser ratio, while ZH is the (line) composed of the (line) equal in square to the rectangle contained by $\mathrm{A} \Gamma, \mathrm{B} \Delta$ <and the (line) equal in square to the rectangle contained by $\mathrm{A} \Delta, \mathrm{B} \Gamma .>$ Thus the singular and lesser ratio is the same as that of the square of the (line) composed of the (line) equal in square to the rectangle contained by $\mathrm{A} \Gamma, \mathrm{B} \Delta$ and the (line) equal in square to the rectangle contained by $A \Delta, \Gamma B$ to the square of $\Gamma \Delta$.

НГ, ГВ $\dot{v} \pi \epsilon \rho о \chi \dot{\eta}, \dot{\epsilon} \sigma \tau \iota \nu \tau \grave{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AB}, \mathrm{B} \mathrm{\Gamma}, \kappa а \dot{i} \dot{\eta} \tau \tilde{\omega} \nu$ á $\pi \grave{o} \tau \tilde{\omega} \nu \mathrm{HN}$

 $\mathrm{A} \Delta, \mathrm{B} \mathrm{\Gamma} . \quad a \lambda \lambda \grave{a} \kappa a i \dot{\eta} \mathrm{ZN} \dot{\epsilon} \sigma \tau i \nu \dot{\eta} \delta v \nu a \mu \epsilon \bar{\epsilon} \nu \tau \dot{o} \dot{\nu} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{~A}, \mathrm{~B} \Delta$.
 $\tau \tilde{\eta} \iota \delta v \nu a \mu \epsilon \nu \eta \iota \tau \dot{o} \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{~A} \Gamma, \mathrm{~B} \Delta \mid \dot{\epsilon} \pi \epsilon \iota \delta \dot{\eta} \dot{o} \rho \theta \dot{\eta} \dot{\epsilon} \sigma \tau \tau \nu \dot{\eta} \dot{v} \pi \grave{o}$ ZKH

[^27](117) 23. (Prop. 63) For the third assignment of the third problem.

Let AB be equal to $\Gamma \Delta$, and the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ be greater than the rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta$. That the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ exceeds the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ by the rectangle contained by $\mathrm{B} \Delta, \Delta \Gamma$.

For since the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ equals the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{E}$ plus the square of $\mathrm{E} \Gamma, 1$ that is plus the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ plus the rectangle contained by $\mathrm{E} \Gamma, \Gamma \Delta,{ }^{2}$ but the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{E}$ plus the rectangle contained by $\mathrm{E} \Gamma, \Gamma \triangle$ is the whole rectangle contained by $\mathrm{B} \Delta, \Gamma \mathrm{E},{ }^{3}$ that is the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{E},{ }^{4}$ therefore the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ equals the rectangle contained by A, , $Г \mathrm{E}$ plus the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta .^{5}$ But the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{E}$ equals the rectangle contained by $\mathrm{A} \Gamma, \mathrm{E} \Delta$ plus the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta,{ }^{6}$ while the rectangle contained by $\mathrm{A} \Gamma, \mathrm{E} \Delta$ plus the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ is the whole rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta .{ }^{7}$ Hence it follows that the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ equals the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ plus the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta,{ }^{8}$ which is the rectangle contained by $\mathrm{B} \Delta$, $\Delta \Gamma .{ }^{9}$ Thus the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ exceeds the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ by the rectangle contained by $\mathrm{B} \Delta, \Delta \Gamma .1^{\circ}$ Q.E.D.
(118) 24. (Prop. 64) Singularity of the third <assignment of the third> problem.

Given three straight lines $\mathrm{AB},<\mathrm{B} \Gamma>, \Gamma \Delta$, and some (line $\Delta \mathrm{E}$) added on, if, as is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta$ to the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$, so is the square of BE to the square of $\mathrm{E} \Gamma$, then the ratio of the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ to the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ is the singular and greatest ratio. I say that it is the same as that of the square of $\mathrm{A} \Delta$ to the square of the (line) composed of the (line) equal in square to the rectangle contained by $\mathrm{A} \Gamma, \mathrm{B} \Delta$ and the (line) equal in square to the rectangle contained by $\mathrm{AB}, \Gamma \Delta$.

Let there be described around A Δ a semicircle $\mathrm{AZH} \Delta$, and $\operatorname{let} \mathrm{BZ}$, ГН be drawn at right angles to $A \Delta$. Then since, as is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta$ to the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$, so is the square of $<\mathrm{BE}>$ to the square of $\mathrm{E} \Gamma, 1$ whereas the rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta$ equals the square of BZ^{2} in the semicircle, and the square $\Gamma \mathrm{H}$ equals the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta,{ }^{3}$ therefore as is the square of BZ to the square of $\Gamma \mathrm{H}$, so is the square of BE to the square of $\mathrm{E} \cdot{ }^{4}{ }^{4}$ And also in breadth (alone as is BZ to $\Gamma \mathrm{H}$, so is BE to E). ${ }^{5}$ And BZ and $\Gamma \mathrm{H}$ are parallel. 6 Therefore the line through Z, H, $\langle\mathrm{E}\rangle$ is straight. ${ }^{7}$ Let it be ZHE, and let it be produced, and let $\mathrm{A} \Theta$ and $\Delta \mathrm{K}$ be drawn as perpendiculars to it. 8 Then since the ratio of the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ to the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma$ is singular and greatest, ${ }^{9}$ whereas the rectangle contained by ZE, EH <equals the rectangle contained by AE, E $\Delta,>1^{\circ}$ therefore the singular and greatest ratio is the same as that of the rectangle contained by ZE, EH to the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma .{ }^{11}$
 $\pi \rho о \beta \lambda \dot{\eta} \mu a \tau о \varsigma$.
 $\mathrm{AB} \Delta$. $\ddot{o} \tau \iota \tau \grave{o} \dot{v} \pi \dot{o} \mathrm{BE} \Gamma \tau 0 \tilde{v} \dot{v} \pi \dot{o} \mathrm{AE} \Delta \dot{v} \pi \in \rho \bar{\epsilon} \chi \in \iota \tau \tilde{\omega} \iota \dot{v} \pi \dot{o} \mathrm{~B} \Delta \Gamma ., \dot{\epsilon} \pi \epsilon \dot{i}$

 АГ, ГЕ, $\tau \grave{o}$ áapa $\dot{v} \pi \grave{o}$ ВЕГ 'íoov $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota \tau \epsilon \dot{v} \pi \grave{o}$ АГЕ каi $\tau \tilde{\omega} \iota \dot{v} \pi \grave{o}$

 $\mathrm{AE} \Delta \dot{v} \pi \epsilon \rho \dot{\epsilon} \dot{\chi} \in \iota \tau \tilde{\omega} \iota \dot{\nu} \pi \grave{o} \mathrm{~B} \Delta \Gamma$. ö $\pi \epsilon \rho$: -
 $\tau \rho i \tau 0 \cup>\pi \rho о \beta \lambda \eta \mu a \tau о \varsigma$.
$\tau \rho \iota \tilde{\omega} \nu \quad \delta o \theta \epsilon \iota \sigma \tilde{\omega} \nu \quad \epsilon \dot{v} \theta \epsilon \iota \tilde{\omega} \nu \quad \tau \tilde{\omega} \nu \quad \mathrm{AB},<\mathrm{B} \Gamma>, ~ Г \Delta,<\kappa а і\rangle$

5

$\| 1 \kappa \gamma^{\circ}$ add $\mathrm{Hu}(\mathrm{BS})\|3 \mu \epsilon i \xi 0 \nu \mathrm{Ge}(\mathrm{recc} ?) \mu \epsilon i \zeta \omega \nu \mathrm{~A}\| 4 \mathrm{AB} \Delta \mathrm{Ge}$
 ВГЕ A \| 10 Г \triangle Co ГЕ A \| $12 \mathrm{~B} \Delta \mathrm{Co}^{\mathrm{BA} A \mid} \mathrm{AE}$ Co BE A || 14
 B Γ add Simson $_{1} \mid$ post $\Gamma \Delta$ add EZ A del Simson ${ }_{2} \mid \kappa a i$ add Hu 17 post $\tau \iota \nu$ ós add $\triangle \mathrm{E} \mathrm{Hu}\left(\right.$ Simson $\left._{1}\right)\|18 \mathrm{E} \Gamma \mathrm{Co} \mathrm{E} \Delta \mathrm{A} \mathrm{A}\| 19 \dot{v} \pi \dot{o}$ (BEГ) add Hu (recc?) || $21 \mathrm{~A} \mathrm{\Gamma}$, Co AE A \| $22 \dot{\eta} \mu \iota \kappa \dot{v} \kappa \lambda \iota o \nu$ Ge (S) $\dot{\eta} \mu \iota \kappa \dot{v} \kappa \lambda \iota a \mathrm{~A} \mid \tau \tilde{\eta} \iota \mathrm{A} \Delta \dot{o} \rho \theta a \dot{i} \mathrm{Ge}(\mathrm{S}) \tau \tilde{\eta} \varsigma \mathrm{A} \Delta \dot{o} \rho \theta \tilde{\eta} \varsigma \mathrm{~A} \| 24 \mathrm{BE}$ add Co , spatium litterarum fere quinque $\mathrm{A} \| 28 \mathrm{E}$ add Co \| 30 post
 'íoov - AEs add Co\| $33 \dot{\omega} \varsigma \boldsymbol{\delta} \dot{\epsilon}-\mathrm{BE} \Gamma$ add Co
<But as is the rectangle contained by ZE, EH to the rectangle contained by $\mathrm{BE}, \mathrm{E} \Gamma,>$ so is the square of HE to the square of $\mathrm{E} \Gamma^{12}$ in parallels, that is the square of AE to the square of $\mathrm{E} \Theta ;{ }^{15}$ for points $\Theta, \mathrm{A}, \Gamma, \mathrm{H}$ are on a circle, ${ }^{14}$ since the angles at points Θ, Γ are right. ${ }^{33}$ But as is the square of EA to the square of $\mathrm{E} \Theta$, so is the square of $\mathrm{A} \Delta$ to the square of $\Theta \mathrm{K}$ in parallels. ${ }^{6}$ Therefore the singular and greatest ratio is that of the square of $\Delta \mathrm{A}$ to the square of $\Theta \mathrm{K} .{ }^{17}$ But $\Theta \mathrm{K}$ is the (line) equal in square to the rectangle contained by $\mathrm{A} \Gamma, \mathrm{B} \Delta$ plus the (line equal in square to) the rectangle contained by $\mathrm{AB}, \Gamma \Delta .^{18}$ Thus the singular and greatest ratio is the same as that of the square of $\mathrm{A} \Delta$ to the (line) composed of the (line) equal in square to the rectangle contained by $\mathrm{A}, \mathrm{B} \Delta$ and the (line) equal in square to the rectangle contained by $\mathrm{AB}, \Gamma \Delta .{ }^{19}$
(119) The first (book) of the Determinate Section contains six problems, sixteen assignments, and five diorisms, of which four are maxima, one minimum. The maxima are the one in the second assignment of the second problem, and that in the third of the fourth problem, and that in the third of the fifth, and that in the third of the sixth; the one in the third assignment of the third problem is a minimum. The second (book) of the Determinate (Section) contains three problems, nine assignments, and three diorisms, of which two are minima, one maximum. The minima are the ones in the third (assignment) of the first (problem) and in the third of the second; the one in the third of the third problem is a maximum.

[^28](120) Neuses, (Book) 1.

1. (Prop. 65) Lemma useful for the first problem.

Let AB be greater than $\Gamma \Delta$, and let the rectangle contained by AE , EB be equal to the rectangle contained by $\Gamma \mathrm{Z}, \mathrm{Z} \Delta$. That AE is greater than ГZ.

Also bisect both $A B$ and $\Gamma \Delta$ at points $<H,>\Theta$. Evidently $H B$ is greater than $\Theta \Delta .{ }^{1}$ Then since the rectangle contained by AE, EB equals the rectangle contained by $\Gamma \mathbf{Z}, \mathbf{Z \Delta},{ }^{2}$ while the square of HB is greater than the square of $\Theta \Delta,{ }^{3}$ therefore the rectangle contained by AE, EB plus the square $<$ of HB is (greater than) the rectangle contained by $\Gamma \mathrm{Z}, \mathrm{Z} \Delta$ plus the square $>$ of $\Theta \Delta .4$ But the rectangle contained by AE , EB plus the square of HB equals the square of $\mathrm{HE},{ }^{5}$ while the rectangle contained by $\Gamma \mathrm{Z}, \mathrm{Z} \Delta$ plus the square of $\Theta \Delta$ equals the square of $\mathrm{ZQ} .{ }^{6}$ Hence the square of HE is greater than the square of $\Theta \mathrm{Z} .{ }^{7}$ Therefore HE is greater than $\Theta \mathrm{Z} .{ }^{8}$ But also AH is greater than $\Gamma \Theta .9^{9}$ Therefore all AE is greater than all $\Gamma \mathrm{Z} . \mathrm{I}^{\circ}$ Similarly, if AB is less than $\Gamma \Delta$, and the rectangle contained by AE, EB is equal to the rectangle contained by $\Gamma \mathrm{Z}, \mathrm{Z} \Delta$, all AE will be less than all $\Gamma \mathrm{Z}$.
(121) 2. (Prop. 66) Let AB be greater than $\Gamma \Delta$, and let $\Gamma \Delta$ be bisected at E . Then it is obviously possible to apply to AB a (rectangle) equal to the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$, (and deficient by a square). For the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ equals the square of $\Gamma \mathrm{E}$, while the square of ΓE is less than the square of half $A B$.

Let it be applied, and let it be the rectangle contained by AZ, ZB, and let AZ be greater than ZB. Again it is evident that AZ is greater than $\Gamma \mathrm{E}$, while $B Z$ is less than $E \Delta$. For $A Z$ is <greater than> half the greater, while ΓE is half the lesser. But as is $A Z$ to ΓE, so is $E \Delta$ to $Z B$. Q.E.D.
(122) 3. (Prop. 67) Again let the rectangle contained by AZ, ZB be equal to the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$, and let AB be less than $\Gamma \Delta$, and furthermore let $\Delta \mathrm{E}$ be less than $\mathrm{E} \Gamma$, and BZ than ZA . That also AZ is less than $\Gamma \mathrm{E}$.

Let $\Gamma \Delta, A B$ be bisected at points H, Θ. Then $A \Theta$ is less than $\Gamma H,{ }^{1}$ so that also the square of $A \Theta$ is less than the square of $\Gamma H .{ }^{2}$ But the square

' $\epsilon \sigma \tau \omega \mu \epsilon i \zeta \omega \nu \dot{\eta} \mathrm{AB} \tau \tilde{\eta} \varsigma \Gamma \Delta, \kappa a i \quad i \sigma o \nu \tau \grave{o} \dot{\nu} \pi \dot{o} \mathrm{AEB} \tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \Gamma \mathrm{Z} \Delta$. öтє $\mu \epsilon i \zeta \omega \nu \dot{\epsilon} \sigma \tau i \nu \dot{\eta} \mathrm{AE} \tau \tilde{\eta} \varsigma \Gamma Z$. каi $\tau \epsilon \tau \mu \eta \sigma \theta \omega \dot{\epsilon} \kappa а \tau \epsilon \in \rho a \tau \tilde{\omega} \nu \mathrm{AB}$,

 $\pi \rho \grave{o} \varsigma \tau \eta \nu$ ZB. ö $(\pi \epsilon \rho)$: -

5
 quattuor litt.) $\tau \iota \mathrm{A} \| 8 \mathrm{HB}-\dot{a} \pi \grave{o}$ add Co \| $10 \Gamma \mathrm{FZ} \mathrm{Co} \mathrm{Z} \Delta \mathrm{A} \| 11$

 $\mu \epsilon i \xi \omega \nu \ldots \grave{\eta}$ add Co \| $24 \dot{\eta} \mu i \sigma \epsilon \iota a$ Co $\dot{\eta} \mu \iota \sigma \epsilon i a s$ A| $\dot{\omega} \varsigma$ - ZB secl $\mathrm{Hu} \| 25$ post ZB add $\mu \epsilon i \zeta \omega \nu$ áa $\rho a \dot{\epsilon} \sigma \tau i \nu \dot{\eta} \mathrm{AZ} \tau \tilde{\eta} \varsigma \Gamma \mathrm{Hu}$ (Co)

 post $\dot{\epsilon} \sigma \tau i \nu$ add $\dot{\eta} \delta \grave{\epsilon}$ ZB $\tau \tilde{\eta} \varsigma \mathrm{E} \Delta \mu \epsilon i \xi \omega \nu$ Co \| 29 白 $\lambda a ́ \sigma \sigma \omega \nu$ Ge (BS) ${ }^{\epsilon} \boldsymbol{\lambda} \boldsymbol{\lambda} a \sigma \sigma o \nu \mathrm{~A} \| 30 \dot{\omega} \sigma \tau \epsilon \mathrm{Hu} \bar{\epsilon} \boldsymbol{\epsilon} \sigma \tau \omega \mathrm{A}$
of $\mathrm{A} \Theta$ is equal to the rectangle contained by AZ, ZB plus the square of $\mathrm{Z} \Theta,{ }^{3}$ while the square of $\Gamma \mathrm{H}$ equals the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ plus the square of HE. ${ }^{4}$ Therefore the rectangle contained by AZ, ZB plus the square of ZO is less than the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ plus the square of HE. ${ }^{5}$ Out of these the rectangle contained by AZ, ZB is assumed to be (equal) to ГE, E $\Delta .{ }^{6}$ Therefore the remaining square of $\Theta \mathrm{Z}$ is less than the square of HE. ${ }^{7}$ Hence $\Theta \mathrm{Z}$ is less than HE. ${ }^{8}$ But also $\mathrm{A} \Theta$ was less than $\Gamma \mathrm{H} .{ }^{9}$ Therefore all AZ is less than all $\Gamma \mathrm{E},{ }^{10}$ and the remainder (ZB) is greater than the remainder $(\mathrm{E} \Delta) .{ }^{11}$
(123) 4. (Prop. 68) Again let AB be greater than $\Gamma \Delta$, and let $\Gamma \Delta$ be divided at E so that $\Delta \mathrm{E}$ is not less than $\mathrm{E} \Gamma$. Now it is obviously possible to apply to AB a (rectangle) equal to the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ and deficient by a square. For since $\Delta \mathrm{E}$ is not less than $\mathrm{E} \Gamma$, it is either equal to it or greater (than it). And if it is <equal>, then the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ equals the square of half $\Gamma \Delta$, so that it is less than the square of half AB ; while if it is greater, the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ is much less than the square of half AB , since it is less than the square of half $\Gamma \Delta$. Hence it is possible to apply to AB a (rectangle) equal to the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$, and deficient by a square. Let it be applied, and let it be the rectangle contained by AZ, ZB, and let the greater part be AZ. That ZB is less than ΓE.

For since $\Delta \mathrm{E}$ is not less than $\mathrm{E} \Gamma, 1$ it is therefore either equal or greater. First let ΔE equal $E \Gamma$. Then since $A B$ is greater than $\Gamma \Delta,{ }^{2}$ and $A Z$ is greater than half $A B,{ }^{3}$ but ΔE is half $\Gamma \Delta,{ }^{4}$ therefore $A Z$ is greater than $\Delta \mathrm{E} .{ }^{5}$ And as is AZ to $\Gamma \mathrm{E}$, so is $\Delta \mathrm{E}$ to ZB. ${ }^{6}$ Hence $\Gamma \mathrm{E}$ too is greater than ZB. ${ }^{7}$ Thus ZB is less than $\Gamma \mathrm{E}$.

Abstract

 $\dot{\epsilon} \sigma \tau i \nu \dot{\eta} \mathrm{AZ} \tau \tilde{\eta} \varsigma \Delta \mathrm{E}$; каi,$\frac{\epsilon}{\epsilon} \sigma \tau \iota \nu \dot{\omega} \varsigma \dot{\eta} \mathrm{AZ} \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \Gamma \mathrm{E}$, ой $\tau \omega \varsigma$, $\dot{\eta} \Delta \mathrm{E}$ $\dot{\epsilon} \sigma \tau i \nu \dot{\eta} \mathrm{ZB} \tau \tilde{\eta} \varsigma$ ГЕ.

 AZB add 'íoov Hu\| 6 '́ λ á $\sigma \sigma \omega \nu \mathrm{Ge}(\mathrm{S}) \dot{\epsilon} \hat{\lambda} \hat{a} \sigma \sigma 0 \nu 0$ S $\mathrm{A} \| 9 \delta^{\circ}$ add

 $\epsilon \sigma \tau i$ Co| $\tau \grave{o}$ Co $\tau o \tilde{v}$ A $\|$ 15 $\bar{\epsilon} \lambda a \sigma \sigma o \nu$ Co restituens lacunam in k

 'íoov, Co $\mathfrak{i} \sigma \eta$ A | $\tau \dot{\eta} \nu \mathrm{C}$ Co $\tau \tilde{\eta} \mathrm{S}$ A \| $19 \tau \in \tau \rho a \gamma \dot{\omega} \nu \omega \iota$ Co $\tau \epsilon \tau \rho a ́ \gamma \omega \nu o \nu \mathrm{~A} \| 20 \delta \dot{\eta}$ Co $\delta \grave{\epsilon}$ A $\| 21$ iñ Γ ГЕ bis A corr Co

(124) But let ΔE be greater than $E \Gamma$, and let $\Gamma \Delta$ be bisected at point H, and $A B$ at point Θ. Then since $A B$ is greater than $\Gamma \Delta, 8$ and ΘB is half $A B, 9$ and ΓH half of $\Gamma \Delta,{ }^{10}$ therefore ΘB is greater than $\Gamma H .{ }^{11}$ Hence also the square of ΘB is greater than the square of $\Gamma H .^{12}$ But the square of ΘB equals the rectangle contained by $A Z, Z B$ plus the square of $Z \Theta,{ }^{13}$ while the rectangle contained by $\Gamma \mathrm{H}$ equals the <rectangle contained by> $\Gamma E, E \Delta$ plus the square of EH. ${ }^{14}$ Therefore the rectangle contained by AZ, ZB plus the square of $Z \Theta$ is (greater) than the rectangle contained by ΓE, $\mathrm{E} \Delta$ plus the square of $\mathrm{EH} .{ }^{15}$ Out of these, the rectangle contained by AZ , ZB equals the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta .^{16}$ Therefore the remaining square of ΘZ is greater than the square of $E H .^{17}$ Hence ΘZ is greater than EH. ${ }^{18}$ But also $A \Theta$ is greater than $\Delta H .^{19}$ Therefore all $A Z$ is greater than all $\Delta E .{ }^{20}$ And as is $A Z$ to ΓE, so is ΔE to ZB. ${ }^{2} 1$ Therefore ΓE too is greater than ZB. ${ }^{2}$ Thus ZB is less than ГE. Q.E.D.
(125) 5. (Prop. 69) For the sixth problem.

Let $A B$ be less than $\Gamma \Delta$, and the rectangle contained by $A E, E B$ equal to the rectangle contained by $\Gamma Z, Z \Delta$. That $A E$ is less than ΓZ.

Let $A B, \Gamma \Delta$ be bisected at points Θ, H. Then ΘB is less than $H \Delta .{ }^{1}$ So since the rectangle contained by $\Gamma Z, \mathrm{Z} \Delta$ equals the rectangle contained by $\mathrm{AE}, \mathrm{EB},{ }^{2}$ while the square of $\Theta \mathrm{B}$ is less than the square of $\mathrm{H} \Delta,{ }^{3}$ therefore the rectangle contained by AE, EB plus the square of $\Theta \mathrm{B}$, that is the square of $\Theta E, 5$ is less than the rectangle contained by $\Gamma Z, Z \Delta$ plus the square of $H \Delta, 4$ that is the square of HZ .6 Hence $\mathrm{E} \Theta$ is less than HZ. ${ }^{7}$ But also $A \Theta$ is less than $\Gamma H .{ }^{8}$ Therefore all $A E$ is less than all $\Gamma Z .{ }^{9}$ Similarly, if (AB) is greater (than $\Gamma \Delta$), all (AE will be greater) than all (Γ Z) .

 $\dot{\epsilon} \sigma \tau i \nu \dot{\eta}$ ZB $\tau \tilde{\eta} \varsigma$ ГЕ. ö $\boldsymbol{\pi} \epsilon \rho:-$

' $\epsilon \sigma \tau \omega \dot{\epsilon} \lambda \dot{a} \sigma \sigma \omega \nu \nu \grave{\epsilon} \nu \dot{\eta} \mathrm{AB} \tau \tilde{\eta} \mathrm{S} \Gamma \Delta$, 'íoov $\delta \grave{\epsilon} \tau \grave{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AEB} \tau \tilde{\omega} \iota$

[^29](126) 6. (Prop. 70) Overlooked in the eighth problem.
$\mathrm{A} \Delta$ being a rhombus whose diameter (produced) is $\mathrm{B} \Gamma \mathrm{E}$, if EZ is taken as mean proportional between BE and $\mathrm{E} \Gamma$, and with center E and radius $E Z$ a circle $Z H \Theta$ is described, and $\Lambda \Gamma H$ is produced, then the line through $\mathrm{H}, \mathrm{K}, \mathrm{B}$ will be straight.

For let $\Lambda \mathrm{E}, \mathrm{EK}, \mathrm{BK}, \mathrm{KH},<\mathrm{EH}>$ be joined. Then since angle $\Lambda \Gamma \mathrm{Z}$ equals angle $Z \Gamma K,{ }^{1}$ and they are on either side of the circle's diameter, $\Lambda \Gamma$ and ΓK are equal; ${ }^{2}$ for this is a lemma. But also ΛE equals EK. ${ }^{3}$ Therefore angle $\Gamma \Lambda E$ equals angle $\Gamma K E .4$ But angle $\Gamma \Lambda E$ equals angle ГHE. ${ }^{5}$ Therefore angle ГHE equals angle ГKE. ${ }^{6}$ But also angle ГKE (equals) angle Γ BK. ${ }^{7}$ Therefore also angle Γ BK equals angle Γ HE. ${ }^{8}$ But also angle $Н Г E$ equals angle $B \Gamma K .{ }^{9}$ Therefore the remaining angle $\Gamma E H$ (in triangle $\Gamma \mathrm{EH}$) equals the remaining angle $\Gamma \mathrm{KB}$ (in triangle $\Gamma \mathrm{KB}$). ${ }^{10}$ But angle $\Gamma \mathrm{EH}$ plus angle $\Gamma \mathrm{KH}$ equals two right angles. ${ }^{11}$ Therefore also angle $\Gamma K B$ plus angle $\Gamma K H$ equals two right angles. ${ }^{12}$ Thus the line through points B, K, H is straight. ${ }^{13}$
(127) 7. (Prop. 71) Lemma useful for the problem on a square, that does the same thing as for the rhombus.

Let $A \Delta$ be a square, and let BHE be drawn, and let EZ be drawn at right angles to it. That the squares of $\Gamma \Delta$ and $H E$ equal the square of ΔZ.

Through E draw E Θ parallel to $\Gamma \Delta .{ }^{1}$ Then angle $\Gamma E \Theta$ is right. ${ }^{2}$ But also angle ZEH is right. ${ }^{3}$ Therefore angle $\Gamma E H$, that is angle $\triangle \mathrm{BH}$, equals angle ZE Θ as well. ${ }^{4}$ But also angle Z \mathcal{Z} equals right angle $\mathrm{B} \Delta \mathrm{H} .{ }^{5}$ And $\mathrm{E} \Theta$ equals B $\Delta .{ }^{6}$ Therefore also EZ equals HB. ${ }^{7}$ And since the square of BZ equals the squares of $B E$ and $E Z, 8$ and out of these the rectangle contained by $\mathrm{ZB}, \mathrm{B} \Delta$ equals the rectangle contained by $\mathrm{EB}, \mathrm{BH}{ }^{10}$ - for points Δ, Z, E, H are on a circle ${ }^{9}$ - therefore the remaining rectangle contained by BZ , $\mathrm{Z} \Delta$ equals the rectangle contained by BE, EH plus the square of $\mathrm{EZ},{ }^{11}$ that is plus the square of $\mathrm{BH} .{ }^{2} 2$ But the rectangle contained by BE, EH plus the square of BH is the rectangle contained by EB, BH plus the square of EH. ${ }^{13}$ Therefore the rectangle contained by $\mathrm{BZ}, \mathrm{Z} \Delta$ equals the rectangle contained by EB, BH, that is (the rectangle contained by) $\mathrm{ZB}, \mathrm{B} \Delta$, plus the square of HE. 1415 Let the rectangle contained by $B \Delta, \Delta Z$ be subtracted in common. Then the remaining square of $\mathrm{Z} \Delta$ equals the squares of $B \Delta$ and HE, that is the squares of $\Gamma \Delta$ and HE. ${ }^{16}$
(128) 8. (Prop. 72) Problem, as Heraclitus.
$\mathrm{A} \Delta$ being a square (given) in position, to place a given (line) EZ, making a neusis on B. Let it be accomplished, and from point E let EH be drawn at right angles to BE ; for (BZE) is a straight line.

Then since the squares of $\Gamma \Delta$ and $Z E$ equal the square of ΔH (lemma 7.127), 1 while the squares of $\Gamma \Delta$ and ZE are given, ${ }^{3}$ because both $\Gamma \Delta$, ZE) are given in magnitude, ${ }^{2}$ therefore also the square of ΔH is given. ${ }^{4}$ Therefore ΔH is given in magnitude. ${ }^{5}$ And therefore all BH is given in magnitude. ${ }^{6}$ But it is also (given) in position. ${ }^{7}$ Therefore the semicircle on

 'ioal $\epsilon i \sigma i \nu$. каi $\dot{\eta}$ víno ГКВ ápa $\mu \epsilon \tau \grave{a}$ rìs $\dot{v} \pi \grave{o}$ ГКН $\gamma \omega \nu i a s$ $\delta v \sigma i \nu \dot{o} \rho \theta a i \varsigma$ 'íalı $\epsilon \dot{i} \sigma i \nu$. $\dot{\omega} \sigma \tau \epsilon \epsilon \dot{v} \theta \epsilon \tilde{\imath} \dot{a} \dot{\epsilon} \sigma \tau \iota \nu \dot{\eta} \delta i \grave{a} \tau \tilde{\omega} \nu \mathrm{~B}, \mathrm{~K}, \mathrm{H}$ $\sigma \eta \mu \epsilon i \omega \nu$.

5

$!$
$1 \varsigma^{\circ}$ add $\mathrm{Hu}(\mathrm{BS}) \| 3 \mathrm{EZ} \mathrm{CobZA} \mathrm{\|} \boldsymbol{5} \boldsymbol{\epsilon} \pi \epsilon \zeta^{\prime} \epsilon \dot{v} \chi \theta \omega \sigma a \nu$ Ge (BS) $\epsilon \pi \epsilon \zeta \epsilon \dot{v} x \theta \omega \mathrm{~A} \mid \Lambda \mathrm{E}$, $\mathrm{EK}, \mathrm{BK}, \mathrm{KH}, \mathrm{EH}$ Horsley $\Lambda \mathrm{E}, \mathrm{EK}, \mathrm{BK}, \mathrm{KH}$ A EH , $\mathrm{BK}, \mathrm{KH} \mathrm{Co}\|7 \delta \iota a \mu \dot{\epsilon} \tau \rho o v \mathrm{Ge}(\mathrm{S}) \delta \iota a ́ \mu \in \tau \rho 0 \iota \mathrm{~A}\| 8 \tau \tilde{\eta} \iota] \tau \tilde{\eta} \varsigma \mathrm{A}{ }^{1}$ s del A ${ }^{2} \|{ }^{2}$ ГKE Ge (S) ГK A \| 10 ГHE (каi) Co ГНӨ A\| 11 (Г)BK in ras. A\| 15 y $\omega \nu$ ias Ge $\gamma \omega \nu i a \operatorname{A} \| 18 \xi^{\circ}$ add Hu (BS) | $\pi \rho o ́ \beta \lambda \eta \mu a$ om A^{1}, add subt. alia manu $\mathrm{A}^{2} \|$ \| $19 \tau \epsilon \tau \rho a \neq \dot{\omega} \nu o v$
 $\mathrm{Hu} \mid \pi o<o \tilde{v} \nu] \pi o \iota o u \nu \tau \omega \nu \mathrm{Hu}\|20 \dot{\rho} \rho \theta \dot{\eta} \mathrm{Ge}(\mathrm{BS}) \dot{o} \rho \theta \tilde{\eta} \iota \mathrm{~A}\| 29 \mathrm{E}$ Co Θ A $\| 32$ post $\epsilon \in \sigma \tau i \nu$ add $a ́ p a A^{1}$ expunctum $A^{2} \| 35 \mathrm{~B} \Delta \mathrm{Z}$ Co BZ \triangle A

BH is given in position. ${ }^{8}$ And it passes through $E, 9$ and hence E is on a (circular) arc (given) in position. But (it is) also (on) AE (which is given) in position. ${ }^{10}$ Hence it is given. ${ }^{11}$ But B too is given. ${ }^{12}$ Therefore BE is (given) in position. ${ }^{13}$
(129) The synthesis of the problem will be made thus. Let the square be $A \Delta$, the given straight line Θ, and let the square of ΔH be equal to the squares of $\Gamma \Delta$ and Θ.

Then $\mathrm{H} \Delta$ is greater than $\Delta \Gamma .{ }^{1}$ Hence the rectangle contained by $\mathrm{H} \Delta$, ΔB is greater than the square of $\Delta \Gamma .{ }^{2}$ Therefore the semicircle on BH when drawn will fall beyond point $\Gamma .{ }^{3}$ Let it be drawn, and let it be BKEH, and let $A \Gamma$ be produced to E, and let $B E, E H$ be joined. Then the squares of $\Gamma \Delta$ and $E Z$ equal the square of $H \Delta$ (lemma 7.127). ${ }^{4}$ But the squares of $\Gamma \Delta$ and Θ were set equal to the square of $\Delta H .5$ Therefore the squares of $\Gamma \Delta$ and Θ equal the squares of $\Gamma \Delta$ and EZ. ${ }^{6}$ Hence the square of Θ equals the square of EZ. ${ }^{7}$ Therefore Θ equals EZ. ${ }^{8}$ And EZ is given. Thus EZ solves the problem.

I say that it alone (solves the problem). For let some other (line) B Λ be drawn.

Now if $\mathrm{B} \Lambda$ too solves the problem, then $\mathrm{N} \Lambda$ will equal $\mathrm{EZ},{ }^{1}$ but ZB will be greater than NB. ${ }^{2}$ Therefore all B Λ is less then $B E ;{ }^{3}$ which is absurd, since it is also greater. Hence $\mathrm{B} \Lambda$ does not solve the problem. Thus BE alone (solves it).

In order to find out which of them is greater, we will make the demonstration as follows.

Since ΛB is greater than $B E,{ }^{1}$ and $B Z$ than $B N,{ }^{2}$ therefore remainder $\mathrm{N} \Lambda$ is greater than ZE. ${ }^{3}$ And it is evident that the (line) nearest point Γ is always less than the farther one.

 ZE $\tau \in \tau \rho a \gamma \omega \nu a ́ \epsilon \sigma \tau i \nu \tau \tilde{\omega} \iota a \pi o \quad \Delta H \quad \tau \epsilon \tau \rho a \gamma \omega \nu \omega \iota, \delta o \theta \epsilon \nu \tau a \delta \dot{\epsilon} \tau \grave{a}$

 $\delta o \theta^{\prime} \boldsymbol{\epsilon} \nu$. $\theta^{\prime} \epsilon \sigma \epsilon \iota$ ápa $\bar{\epsilon} \sigma \tau i \nu \dot{\eta} \mathrm{BE}$.

 'є́ $\sigma \tau \iota \nu \quad \delta o \theta \epsilon \tilde{\imath} \sigma a \dot{\eta} \mathrm{EZ}$. $\grave{\eta} \mathrm{EZ}$ á $\rho a, \pi o \iota \epsilon \tilde{\imath}, \tau \grave{o} \pi \rho \bar{\beta} \beta \lambda \eta \mu a$.

5

 $\mathrm{Hu} \mathrm{app} \delta \delta^{\prime} \theta^{\prime} \nu \tau a$ jà $\rho \dot{\epsilon} \kappa a ́ \tau \epsilon \rho a \mathrm{~A} \mid$ post $\dot{\epsilon} \kappa a \tau \epsilon \in \rho a$ add $\tau \tilde{\omega} \nu \Gamma \Delta$, ZE Hu app \| $10 \pi \epsilon \rho \iota \phi \epsilon \rho \epsilon i a s$ Co $\pi \epsilon \rho \iota \phi \epsilon \rho \epsilon \iota a \mathrm{~A} \| 11$ є $\dot{v} \theta \epsilon i a s$
 (BS) $\dot{\epsilon} \pi \epsilon \xi \epsilon \dot{v} \times \theta \omega \mathrm{A} \| 20 \tau \epsilon \tau \rho a ́ \gamma \omega \nu a$ 'íoa Co $\tau \epsilon \tau \rho a ́ \gamma \omega \nu o \nu$ 'íoov
 Hu \| 28 каi del Ge (recc?) \| 31Λ B Co AB A || 32 ZE Co ZH A
(130) 9. (Prop. 73) Lemma useful for the diorism of the ninth theorem, as among the ancients.

Let $B A$ be equal to $A \Gamma$, and let $B \Gamma$ be bisected at point Δ. That $B \Gamma$ is the least of all the lines drawn through point Δ. For let some other (line) EZ be drawn, and let AB be produced to \mathbf{Z}. That EZ is greater than ГB.

Since angle $\mathrm{AB} \Gamma$, that is angle Γ, is greater than angle BZE, ${ }^{1}$ it is possible to take away from angle Γ an (angle) equal to angle BZE. Let angle $\Delta \Gamma \mathrm{H}$ be equal to it. ${ }^{2}$ Then as is $\mathrm{Z} \Delta$ to $\Delta \mathrm{B}$, so is $\Gamma \Delta$ to $\Delta \mathrm{H},{ }^{3}$ while $\mathrm{Z} \Delta$ is greater than $\Delta \mathrm{B} .{ }^{4}$ Therefore $\Gamma \Delta$ too is greater than $\Delta \mathrm{H} .{ }^{5}$ Then since $Z \Delta$ is greater than ΔB, that is than $\Delta \Gamma, 6$ but $\Delta \Gamma$ is greater than $\Delta \mathrm{H},{ }^{7}$ <therefore $\mathrm{Z} \Delta$ is greatest, $\Delta \mathrm{H}$ least.>8 So since there are four straight lines $\mathrm{Z} \Delta, \Delta \mathrm{B}, \Delta \Gamma, \Delta \mathrm{H}$ that are in ratio, ${ }^{9}$ and $\mathrm{Z} \Delta$ is greatest, $\Delta \mathrm{H}$ least, therefore ZH is greater than $\mathrm{B} \Gamma(\mathrm{V}, 25) .1^{\circ}$ Thus $\mathrm{B} \Gamma$ is less than ZH. Hence it is much less than EZ. ${ }^{1}$ Similarly we shall prove that $\mathrm{B} \Gamma$ is less than all the straight lines drawn through Δ.

Thus $\mathrm{B} \Gamma$ is less than all the straight lines drawn through Δ. I also say that the nearest (line) to it is less than the farther (line). For let some other (line) $\Theta \mathrm{K}$ be drawn, and let angle $\Delta \mathrm{E} \Lambda$ be made equal to angle $\mathrm{K} ;^{12}$ for this is possible. Again, $K \Delta$ is greater than $Z \Delta, 1^{3}$ and $E \Delta$ than $\Delta \Lambda .1^{14}$ Therefore all $\mathrm{K} \Lambda$ is greater than EZ. ${ }^{15}$ Therefore $\Theta \mathrm{K}$ is much greater than EZ. ${ }^{6}$ Hence EZ is less than ΘK. Thus $В \Gamma$ is less than all the straight lines drawn through Δ, and the nearest to it is always less than the farther one.
(131) 10. (Prop. 74) This being so, the diorism is obvious. For if we set out the rhombus $\mathrm{AB} \Gamma \Delta$, and if I join $\mathrm{A} \Delta$ and draw EZ at right angles to it and intersecting $\mathrm{A} \Gamma$ and AB at $\mathrm{E}, \mathrm{Z}, \mathrm{I}$ have to make the distinction of whether it is greatest or least of all the straight lines drawn through Δ.

And since $\mathrm{A} \Delta$ is a diagonal, ${ }^{1}$ and EZ is at right angles to $\mathrm{A} \Delta,{ }^{2}$ I have obtained an isosceles triangle EAZ, ${ }^{3}$ having EA equal to AZ. But by the foregoing lemma (7.130), EZ is less than all the straight lines drawn through Δ, and the nearer to it is always less than the farther (line). ${ }^{4}$

 $\dot{\epsilon} \pi \epsilon i \mu \epsilon i \zeta \omega \nu \dot{\epsilon} \sigma \tau i \nu \dot{\eta} \dot{\nu} \pi \dot{o} \mathrm{AB} \mathrm{\Gamma} \gamma \omega \nu i a, \tau 0 v \tau \dot{\epsilon} \sigma \tau \iota \nu \dot{\eta} \Gamma, \tau \tilde{\eta} \varsigma \dot{v} \pi \dot{o}$

 $\lambda \epsilon \epsilon \gamma \omega$ ठो
 ovve

 $\dot{\epsilon} \lambda a \sigma \sigma \omega \nu$.

 $\dot{a} \pi \dot{\omega} \tau \epsilon \rho \circ \nu \dot{\epsilon} \lambda \dot{a} \sigma \sigma \omega \nu$.

[^30](132) Neuses, (Book) 2.

1. (Prop. 75) (Given) the semicircle on AB , let an arbitrary (line) $\Delta \mathrm{E}$ be drawn through it, and perpendiculars to it $A \Delta, B E$. That ΔZ equals $H E$.

Let the <center of the semicircle Θ be taken, and from $>\Theta$ let a perpendicular ΘK be drawn to ΔE. Hence it is parallel to $A \Delta$ and $B E,{ }^{1}$ and ZK equals KH (III, 3). ${ }^{2}$ Since $A \Delta, \Theta K, B E$ are three parallels, ${ }^{3}$ and $A \Theta$ equals $\Theta B,{ }^{4}$ therefore ΔK equals $K E .5$ But out of these ZK equals $\mathrm{KH} .{ }^{6}$ Therefore remainder $\Delta \mathrm{Z}$ equals remainder HE. ${ }^{7}$ And clearly ΔH too equals EZ. ${ }^{8}$
(133) 2. (Prop. 76) Again, let there be the semicircle on $A B$, and let $\Gamma \Delta$ be drawn tangent, and let it be produced and let $A E$ and $B Z$ be perpendiculars to it. That again $E \Delta$ equals ΔZ.

Let the center be H, and let ΔH be joined. Then it is parallel to $A E$, $B Z ;{ }^{2}$ for the angles at Δ are right. ${ }^{1}$ Hence since $A E, H \Delta, B Z$ are three parallels, and AH equals $\mathrm{HB},{ }^{3}$ therefore $\mathrm{E} \Delta$ equals $\Delta Z .{ }^{4}$ Q.E.D.
(134) 3. (Prop. 77) For the fifth problem.

Let $A B \Gamma, \triangle E Z$ be two semicircles on $A \Gamma$, and let $A \Delta$ equal ΓZ, and from Γ let ΓB be drawn through (the semicircles). That as well $B E$ equals НГ.

For since $A \Delta$ equals $\Gamma Z,{ }^{1}$ the semicircles are around the same center. ${ }^{2}$ Then let the center Θ of the semicircles be taken, and from Θ let perpendicular ΘK be drawn to EH. ${ }^{3}$ Then EK equals KH. ${ }^{4}$ So let AB be joined. And since $A B, \Theta K$ are parallel, 5 and $A \Theta$ equals $\Theta \Gamma, 6$ therefore $B K$ equals $\mathrm{K} \Gamma$ as well. ${ }^{7}$ Out of these EK equals KH. ${ }^{8}$ Therefore remainder BE equals remainder $\mathrm{H} \Gamma .{ }^{9}$ And it is obvious that also BH equals $\mathrm{E} \Gamma .{ }^{10}$ Q.E.D.
(135) 4. (Prop. 78) Again, let $\mathrm{AB} \mathrm{\Gamma}, \triangle \mathrm{EZ}$ be semicircles, and from Γ let ΓE be drawn tangent to (semicircle) $\triangle E Z$, and let it be produced to B. That $B E$ equals $E \Gamma$, given that $A \Delta$ equals $Z \Gamma$.

Obviously the semicircles are around the same center. Again let the center of the semicircles H be taken, and let HE, AB be joined. Then angle

(132) NETLE $2 \mathrm{~N} ~ \triangle E T T E P O N$

 'íon $\epsilon \sigma \tau i \nu \dot{\eta}$ ZK rínı KH. $\epsilon \pi \epsilon i \quad \delta \dot{\epsilon} \tau \rho \epsilon i s ~ \epsilon i \sigma \iota \nu \pi a \rho a ́ \lambda \lambda \eta \lambda o \iota a i$

 $\pi a \rho a ́ \lambda \lambda \eta \lambda o \iota a i$ AE, $\mathrm{H} \Delta, \mathrm{BZ}, \kappa a i$ 'ío $\bar{\epsilon} \sigma \tau i \nu \dot{\eta} \mathrm{AH} \tau \tilde{\eta} \iota \mathrm{HB}$, 'ion ápa

 $\tau \tilde{\eta} \iota$ ЕГ $\epsilon \sigma \tau i \nu$ 'íon. ö́ $\pi \epsilon \rho$: -

 $\kappa а i \operatorname{Ge}(\mathrm{Co})\|8 \mathrm{HE} \mathrm{Co} \mathrm{H} \Theta \mathrm{A}\| 10 \beta^{\circ}$ add $\mathrm{Hu}(\mathrm{BS}) \| 13 \mathrm{AE}, \mathrm{BZ} \mathrm{Co}$ $\Delta \mathrm{E}, \mathrm{EZ} \mathrm{A} \| 17 \gamma^{\prime}$ add $\mathrm{Hu}(\mathrm{BS}) \| 21$ á $\left.\rho a\right] \gamma \grave{a} \rho \mathrm{~A} \| 22 \tau \dot{\eta} \nu \mathrm{Ge} \tau \tilde{\omega} \nu$ A \| 27 ö $\pi \epsilon \rho$ ante $\phi a \nu \in \rho \grave{o} \nu$ transp $\mathrm{Hu} \| 28 \delta^{\circ}$ add $\mathrm{Hu}(\mathrm{BS})$

E is right. ${ }^{1}$ But angle B too (is right). ${ }^{2}$ Therefore AB is parallel to EH. ${ }^{3}$ And AH equals $\Gamma \mathrm{H} .{ }^{4}$ Thus also BE equals $\mathrm{E} \Gamma .{ }^{5}$ Q.E.D.
(136) 5. (Prop. 79) For the seventh.

Again let $\mathrm{AB} \mathrm{\Gamma}, \triangle \mathrm{EZ}$ be semicircles, and let $\mathrm{A} \Delta$ equal $\mathrm{Z} \Gamma$, and let the greater circle be filled out, and through let some (line) BH be drawn through Z. That BE equals ZH .

Let the center be Θ, and from Θ let $\Theta \mathrm{K}$ be drawn perpendicular to BH. ${ }^{1}$ Then BK equals KH. ${ }^{2}$ Now let $\mathrm{E} \Delta$ be joined. Then since $\Delta \mathrm{E}, \Theta \mathrm{K}$ are parallel, ${ }^{3}$ and $\Delta \Theta$ equals $\Theta Z,{ }^{5}$ because all $<A \Theta$ (equals) all $\Theta \Gamma,{ }^{4}$ therefore> EK <equals> KZ. ${ }^{6}$ But also all BK equals all KH. ${ }^{7}$ Thus remainder BE equals remainder $\mathrm{ZH} .{ }^{8}$ Q.E.D.

Obviously also BZ equals EH. ${ }^{9}$ Q.E.D.
(137) 6. (Prop. 80) For the ninth.

Let $\mathrm{AB} \mathrm{\Gamma}, \Delta \mathrm{EZ}$ be two semicircles, and let ZH be made equal to $\mathrm{A} \Delta$, and with $\mathrm{B} \Gamma$ drawn through, from H let $\mathrm{H} \Theta$ be drawn perpendicular to it. That BE equals $\mathrm{K} \Theta$.

Let the center Λ of semicircle $\Delta E Z$ be taken, and from Λ let ΛM be drawn perpendicular to KE. ${ }^{1}$ Then EM equals MK. ${ }^{2}$ But since A Δ equals $Z H,{ }^{3}$ and $\Delta \Lambda$ equals $\Lambda Z,{ }^{4}$ therefore all $A \Lambda$ equals all $\Lambda H .{ }^{5}$ And $A B, M \Lambda$, $\Theta \mathrm{H}$ are three parallels. ${ }^{6}$ Therefore BM too equals M $\Theta .{ }^{7}$ Out of these EM equals MK. ${ }^{8}$ Therefore remainder BE equals remainder $K \Theta .{ }^{9}$ And obviously also BK equals E $\Theta .{ }^{10}$
(138) 7. (Prop. 81) With the same things assumed, let $\mathrm{B} \Gamma$ be tangent to semicircle $\triangle \mathrm{EZ}$. That again BE equals $\mathrm{E} \Theta$.

Again let the center Λ of semicircle $\Delta E Z$ be taken, and let ΛE be joined. Then it is a perpendicular to $\mathrm{B} \Gamma .{ }^{1}$ And there have resulted three parallels, $\mathrm{AB}, \mathrm{E} \Lambda, \mathrm{H} \Theta .^{2}$ But $\mathrm{A} \Lambda$ equals $\mathbf{\Lambda H} .^{3}$ Therefore BE too equals Ee. 4 Q.E.D.

 ö $\pi \in \rho$: -

 $\epsilon \sigma \tau i \nu \dot{\eta} \mathrm{BK} \tau \tilde{\eta} \iota \mathrm{KH} . \epsilon \pi \epsilon \zeta \epsilon \dot{u} \chi \theta \omega \delta \dot{\eta} \dot{\eta} \mathrm{E} \Delta$. $\epsilon \pi \epsilon \bar{i}$ où $\nu, \pi a \rho a ́ \lambda \lambda \eta \lambda o i$

 'íך $\bar{\epsilon} \sigma \tau i \nu$. \quad ó $\pi \epsilon \rho:-$
$\phi a \nu \in \rho \dot{o} \nu$ ö́ $\iota к а \grave{i} \dot{\eta} \mathrm{BZ}[\tau \tilde{\eta} \iota \mathrm{EZ} \dot{\epsilon} \sigma \tau i \nu] \tau \tilde{\eta} \iota \mathrm{EH}$ 'íon $\bar{\epsilon} \sigma \tau i \nu$.
ӧ́ $\pi \in \rho$: -
(137) s.́ ci is tò θ.

 M Θ. $\dot{\omega} \nu \dot{\eta} \mathrm{EM} \tau \tilde{\eta} \iota \mathrm{MK}$ 'ion $\dot{\epsilon} \sigma \tau i \nu$. $\lambda o \iota \pi \dot{\eta} \dot{a} \rho a \dot{\eta} \mathrm{BE} \lambda o \iota \pi \tilde{\eta} \iota \tau \tilde{\eta} \iota \mathrm{~K} \Theta$

5
 $\kappa a i \not{\eta} \mathrm{BE} \tau \tilde{\eta} \iota \mathrm{E} \Theta$. 'ö $(\pi \epsilon \rho)$: -

(139) 8. (Prop. 82) For the eighth.

Let $\mathrm{AB} \mathrm{\Gamma}, \triangle \mathrm{EZ}$ be two semicircles, and let $\mathrm{A} \Delta$ be less than $\mathrm{Z} \Gamma$, and let $\Gamma \mathrm{H}$ be made equal to $A \Delta$. and let the circle BAK ${ }^{\text {b }}$ be filled out, and let an arbitrary (line) BK be drawn through (the semicircles), and from H let $\mathrm{H} \Theta$ be drawn perpendicular to it. That BE equals $\Theta \mathrm{K}$ as well.

Let the center Λ be taken of circle $A B \Gamma$, and from Λ let ΛM be drawn perpendicular to EZ. ${ }^{1}$ Then BM equals MK. ${ }^{2}$ But since A Λ equals $\Lambda \Gamma,{ }^{3}$ and $A \Delta$ equals $\mathrm{H} \Gamma, 4$ therefore remainder $\Delta \Lambda$ equals remainder $\Lambda \mathrm{H} .{ }^{5}$ And $\Delta \mathrm{E}, \mathrm{\Lambda M}, \mathrm{H} \Theta$ are three parallels. 6 Therefore also EM equals M $\mathrm{M}^{7}{ }^{7}$ But also all BM equals all MK. ${ }^{8}$ Therefore remainder BE equals remainder $\Theta K .{ }^{9}$ And obviously also Θ B equals EK. ${ }^{\circ}$
(140) 9. (Prop. 83) For the seventeenth.

With the same things assumed, let $\mathrm{A} \Delta$ be greater than $\mathrm{Z} \Gamma$, and let ZH be made equal to ($\mathrm{A} \Delta$), and, with $\mathrm{B} \Gamma \Theta$ drawn through, let $\mathrm{H} \Theta$ be drawn perpendicular to it. That BE equals $\mathrm{K} \Theta$.

Let the center Λ of semicircle $\triangle E Z$ be taken, and from it let ΛM be drawn perpendicular to EK. ${ }^{1}$ Then EM equals MK. ${ }^{2}$ But since A Δ equals $\mathbf{Z H},{ }^{3}$ and $\Delta \Lambda$ equals $\Lambda Z,{ }^{4}$ therefore all $\mathrm{A} \Lambda$ equals all $\Lambda \mathrm{H} .{ }^{5}$ And again BA, $\mathrm{M} \Lambda, \mathrm{H} \Theta$ are three parallels. 6 Therefore also BM equals M $\Theta .{ }^{7}$ Out of these, EM equals MK. ${ }^{8}$ Therefore remainder BE equals remainder K Θ. ${ }^{9}$ And obviously also BK equals E $\Theta .1^{\circ}$ Q.E.D.
(141) 10. (Prop. 84) With the same things assumed, let $\mathrm{B} \Gamma$ be tangent to semicircle $\triangle E Z$. That BE equals $\mathrm{E} \Theta$.

Again let the center Λ be taken of semicircle $\triangle \mathrm{EZ}$, and let $\Lambda \mathrm{E}$ be joined. Then it is a perpendicular to $\mathrm{B} \Theta .1$ Thus $\mathrm{AB}, \mathrm{LE}, \mathrm{H} \Theta$ are three parallels. ${ }^{2}$ And $A \Lambda$ equals $\Lambda H .{ }^{3}$ Therefore $B E$ equals $E \Theta$ as well. ${ }^{4}$
(142) 11. (Prop. 85 a) Problem useful for the synthesis of the seventeenth.

With $A B \Gamma$ being a semicircle (given) in position, and Δ given, to draw through Δ a semicircle, such as $\Delta E Z$, so that if $B \Gamma$ is drawn tangent, $A \Delta$ will be equal to BE .
(139) < $\eta^{\prime}>{ }^{>}$єis тò η.
 $\tau \tilde{\eta} \varsigma \mathrm{Z}$, каі $\tau \tilde{\eta} \iota \mathrm{A} \Delta$ ' $\iota \sigma \eta \kappa \epsilon i \sigma \theta \omega \dot{\eta}$ ГН, каi $\pi \rho о \sigma a \nu a \pi \epsilon \pi \lambda \eta \rho \omega \sigma \theta \omega \dot{o}$

(140) < $\theta^{\prime}>$ єís Tò ८s़."

 $\dot{\eta} \mathrm{BE} \tau \tilde{\eta} \iota \mathrm{E} \Theta$.
 30

$\| 1 \eta^{\prime}(\epsilon \quad i \varsigma)$ add $\mathrm{Hu}(\mathrm{V}) \| 3 \tau \tilde{\eta} \mathrm{~S}_{\mathrm{Ge}} \mathrm{Ge}(\mathrm{recc}$) $\tau \tilde{\eta} \iota \mathrm{A} \| 4 \dot{\eta}$ secl $\mathrm{Hu} \| 5$ $\kappa a i$ del $\mathrm{Ge}(\mathrm{S})\|8 \Delta \Lambda \mathrm{CoA} \mathrm{\Lambda A}\| 12$ OB Co EB A \| $13 \theta^{\prime}$ add Hu

Let it be accomplished. Then as is $\mathrm{A} \Delta$ to $\mathrm{E} \Gamma$, so is EB to $\mathrm{E} \Gamma .{ }^{1}$ And so as is the square of $E B$ to the square of $E \Gamma$, so is the square of $A \Delta$ to the square of $\mathrm{E} \Gamma .{ }^{2}$ But as is the square of BE to the square of $\mathrm{E} \Gamma$, so, if center H of semicircle $\triangle \mathrm{EZ}$ is taken and HE is joined, is the square of AH to the square of $\mathrm{H} \Gamma .{ }^{3}$ But the square of $\mathrm{E} \Gamma$ is the excess of the squares of $\mathrm{EH}, \mathrm{H} .{ }^{4}$ Therefore as is the square of $\mathrm{A} \Delta$ to the excess of the squares of $\Delta H, H \Gamma$, so is the square of $A H$ to the square of $\mathrm{H} \Gamma .5$ Let $A \Theta$ be made equal to $\Delta \mathrm{A},{ }^{6}$ and let $\Delta \Gamma$ be bisected at point $\mathrm{K} .{ }^{7}$ Then since as is the square of AH to the square of $\mathrm{H} \Gamma$, so is the square of $\mathrm{A} \Delta$ to the excess of the squares of $\Delta \mathrm{H}, \mathrm{H} \Gamma,{ }^{8}$ therefore the remaining rectangle contained by $\Delta H, H \Theta$ to the remaining square of $\mathrm{H} \Delta$, that is $\Theta \mathrm{H}$ to $\mathrm{H} \Delta,{ }^{10}$ is as one of the ratios, as the square of $A \Delta$ to the excess of the squares of $\Delta \mathrm{H}, \mathrm{H} \Gamma,{ }^{9}$ that is to twice the rectangle contained by $\Delta \Gamma$, HK. 1112 Then let twice the rectangle contained by $\Delta \Gamma, \Lambda$ be made equal to the square of $A \Delta .1^{13}$ But the square of $\mathrm{A} \Delta$ is given. ${ }^{4}$ Therefore also twice the rectangle contained by $\Delta \Gamma, \Lambda$ is given; ${ }^{15}$ and hence also once (the rectangle contained by $\Delta \Gamma$, Λ). ${ }^{16}$ And $\Delta \Gamma$ is given. ${ }^{17}$ Therefore Λ too is given. ${ }^{18}$ But since as is $\mathrm{H} \Theta$ to $\mathrm{H} \Delta$, so is the square of $A \Delta$, that is twice the rectangle contained by Λ, $\Delta \Gamma$, to twice the rectangle contained by $\Delta \Gamma, \mathrm{HK}$, that is Λ to $\mathrm{HK}, 19{ }^{20}$ therefore the rectangle contained by OH, HK equals the rectangle contained by $\Lambda, \mathrm{H} \Delta .21$ And the three $\Theta \Delta, \Delta \mathrm{K}, \Lambda$ are given. 22 It has been reduced to, in the Determinate (Section), the "given three straight lines $\Theta \Delta, \Delta \mathrm{K}, \Lambda$, to divide $\Delta \mathrm{K}$ at H , making the ratio of the rectangle contained by $\Theta \mathrm{H}, \mathrm{HK}$ to the rectangle contained by $\Lambda, \mathrm{H} \Delta$, that of equal to equal." But this is obvious, and it is without diorism. Therefore H is given, $\boldsymbol{2}^{23}$ and it is the center of semicircle $\Delta \mathrm{EZ}$. Therefore the semicircle is (given) in position. 24 And from a given (point) $\Gamma, \mathrm{B} \Gamma$ has been drawn tangent. 25 Thus $\mathrm{B} \Gamma$ is (given) in position. ${ }^{26}$ The same (argument) will be applicable if the point $<$ is given $>$ at $<Z>$. Q.E.D.
(143) 12. (Prop. 85 a) The synthesis of the problem will be made as follows. Let the semicircle be $\mathrm{AB} \mathrm{\Gamma}$, the given (point) Δ, and let it be required to solve the problem.

Let twice the rectangle contained by $\Delta \Gamma, \Lambda$ be made equal to the square of $A \Delta,{ }^{1}$ and let $A \Theta$ be made equal to $\Delta A .^{2}$ Let $\Delta \Gamma$ be bisected at point K. ${ }^{3}$ And given three straight lines $\Theta \Delta, \Delta K, \Lambda$, let ΔK be divided at H to make the ratio of the rectangle contained by $\Lambda, \mathrm{H} \Delta$ to the rectangle contained by $\Theta \mathrm{H}, \mathrm{HK}$ that of equal to equal. And around center H let semicircle $\Delta E Z$ be described. I say that $\Delta E Z$ solves the problem.

 'íoov $\tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \Lambda, \mathrm{H} \Delta$. каi $\epsilon i \sigma i \nu a i \quad \tau \rho \epsilon i \varsigma a i \quad \Theta \Delta, \Delta K, \Lambda \delta o \theta \epsilon i \sigma a \iota$.

 τ о

 $\pi \rho \iota \epsilon \tilde{\imath} \nu \tau \dot{o} \pi \rho o ́ \beta \lambda \eta \mu a$. кєє $\quad \sigma \theta \omega \tau \tilde{\omega} \iota$ á $\pi \grave{o}$, $A \Delta \tau \in \tau \rho a \gamma \dot{\omega} \nu \omega \iota$ 'íoov $\tau \grave{o}$

$\dot{v} \pi \dot{o} \Delta \Gamma, \Lambda \mathrm{Co} \mid \Delta \Gamma, \mathrm{HK} \mathrm{Co} \Delta \Gamma \mathrm{H} \mathrm{A}\left\|18 \dot{\eta} \Lambda \mathrm{Ge}\left(\mathrm{Co}_{0}\right) \mathrm{H} \Lambda \mathrm{A}\right\| 20$ post
$\Delta \iota \omega \rho \iota \sigma \mu \epsilon \nu \eta$ a $\mathrm{Hu} \| 23$ ádiopıotod Hu (Co) á δ ıópıotos A
$\mathrm{Hu}(\mathrm{BS}) \| 32 \Delta \mathrm{~K}$ Co $\Delta \mathrm{H} \mathrm{A} \| 33 \boldsymbol{\tau} \dot{o} \dot{\nu} \pi \grave{o} \mathrm{Ge}(\mathrm{S}) \tau 0 \tilde{u} \mathrm{~A}$

For let $B \Gamma$ be drawn tangent to the semicircle. That $A \Delta$ equals $B E$. For since the rectangle contained by $\Theta \mathrm{H}, \mathrm{HK}$ equals the rectangle contained by $\Lambda, \mathrm{H} \Delta,{ }^{4}$ in ratio, as is $\Theta \mathrm{H}$ to $\mathrm{H} \Delta$, so is $<\Lambda$ to $>\mathrm{HK} .{ }^{5}$ But as is $\Theta \mathrm{H}$ to $\mathrm{H} \Delta$, so is the rectangle contained by $\Theta \mathrm{H}, \mathrm{H} \Delta$ to the square of $\mathrm{H} \Delta$, that is the excess of the squares of $\mathrm{HA}, \mathrm{A} \Delta$ to the square of $\mathrm{H} \Delta, 6$ while as is Λ to HK , so is twice the rectangle contained by $\Lambda, \Delta \Gamma$ to twice the rectangle contained by $\Delta \Gamma, H K$, that is the square of $A \Delta$ to the excess of the squares of $\Delta \mathrm{H}, \mathrm{H} \Gamma .{ }^{7}$ And so as is the excess of the squares of $\mathrm{HA}, \mathrm{A} \Delta$ to the square of $\mathrm{H} \Delta$, so is the square of $\mathrm{A} \Delta$ to the excess of the squares of $\Gamma \mathrm{H}, \mathrm{H} \Delta .^{8}$ Thus as is the square of AH to the square of $\mathrm{H} \Gamma$, so is the square of $\mathrm{A} \Delta$ to the excess of the squares of $\Delta \mathrm{H}, \mathrm{H} \Gamma$, that is to the excess of the squares of $\Gamma \mathrm{H}, \mathrm{HE}$, that is to the square of $\mathrm{E} \Gamma .{ }^{9}$ And so as is the square of AH to the square of $\mathrm{H} \Gamma$, so is the square of $\mathrm{A} \Delta$ to the square of $\Gamma \mathrm{E}$. But as is the square of AH to the square of $\mathrm{H} \Gamma$, so is the square of BE to the square of $\mathrm{E} \Gamma .{ }^{10}$ Therefore as is the square of BE to the square of $\mathrm{E} \Gamma$, so is the square of $A \Delta$ to the square of $E \Gamma .{ }^{11}$ Therefore the square of $A \Delta$ equals the square of $B E, 1^{2}$ so that $A \Delta$ equals BE. ${ }^{13}$ And it is apparent that $B E$ is greater than $\mathrm{E} \Gamma$. For we had, as ΘH to $\mathrm{H} \Delta$, so the square of $\mathrm{A} \Delta$ to the square of $E \Gamma ;{ }^{13}$ it goes back to things that have been observed. ΘH is greater than $\mathrm{H} \Delta, 14$ hence the square of $\mathrm{A} \Delta$ is greater than the square of $E \Gamma,{ }^{15}$ and so $A \Delta$ is greater than $E \Gamma .{ }^{16}$ Therefore it is much greater than ZГ. ${ }^{17}$ Thus semicircle $\Delta E Z$ solves the problem.
(Prop. 85 b) Now I say also that it alone (solves the problem). For let some other (semicircle) $\triangle \mathrm{MN}$ be described, and let $\Gamma \mathrm{M} \Xi$ be drawn tangent. Now if $\Delta \mathrm{MN}$ too solves the problem, then $A \Delta$ will equal $M \Xi$. And let the center O of semicircle $\Delta \mathrm{MN}$ be taken, and let OM be joined. Then in accordance with the analysis, the rectangle contained by $\Theta O, \mathrm{OK}$ will equal the rectangle contained by $\Lambda, \Delta \mathrm{O}$. But this is absurd, for in the Determinate (Section) it was proved to be greater. Therefore semicircle $\Delta \mathrm{MN}$ does not solve the problem. Similarly we shall prove that no other but $\triangle E Z$ (solves it). Thus $\Delta \mathbf{Z E}$ alone solves the problem.
(144) (Prop. 85 b) But to find out which of them cuts off a greater (line), we shall make the demonstration as follows.

Since in the Determinate (Section) it was proved that the rectangle contained by $\Lambda, \Delta 0$ is less than the rectangle contained by $\Theta O, O K, 1$ in ratio Λ has to OK a lesser ratio than has ΘO to $\mathrm{O} \mathrm{\Delta} .{ }^{2}$ But as is Λ to KO , so

 $\pi \rho \grave{s} \tau \grave{\eta} \nu \tau \tilde{\omega} \nu$ á $\pi \dot{o} \Delta \mathrm{H}, \mathrm{H} \Gamma \dot{v} \pi \epsilon \rho o \chi^{\eta} \nu$. каi $\dot{\omega} \varsigma$ á $\rho a \dot{\eta} \tau \tilde{\omega} \nu$ á $\pi \dot{o} \mathrm{HA}$,

 $\pi \rho o ́ \beta \lambda \eta \mu a$.

[^31]is the square of $A \Delta$ to the excess of the squares of $\Delta O, O \Gamma ;{ }^{3}$ for this has been proved. But as is ΘO to $O \Delta$, so is the excess of the squares of $O A, A \Delta$ to the square of $O \Delta .4$ And the square of $A \Delta$ therefore has to the excess of the squares of $\Delta O, O \Gamma$ a ratio less than has the excess of the squares of $\mathrm{OA}, \mathrm{A} \Delta$ to the square of $0 \Delta .{ }^{5}$ And all to all, 6 [as the square of $\mathrm{A} \Delta$ is to the excess of the squares of $\Gamma O, O \Delta$, that is to the square of ΓM], therefore, the square of $\mathrm{A} \Delta$ has to the square of $\Gamma \mathrm{M}$ a lesser ratio than has the square of $A O$ to the square of $O \Gamma,{ }^{7}$ that is the square of ΞM to the square of $M \Gamma .{ }^{8}$ Thus ΞM is greater than $A \Delta .{ }^{9}$

Similarly we shall prove that all the straight lines that are between points A, B are greater than $A \Delta$, but those between B, Γ are less. For if we again describe semicircle $\Delta \Pi P$, and $\Sigma \Pi \Gamma$ is drawn tangent, and the same construction is made as before, then the center T of semicircle $\Delta \Pi P$ will be on the other side of H (from O). But in the Determinate (Section) the rectangle contained by Λ, AT will be greater than the rectangle contained by ΘT, TK. By the same argument again $\mathrm{A} \Delta$ will be greater than $\Sigma \Pi$. Thus the (points) nearest A make the tangents greater than $A \Delta$, while the farther ones (make them) less. Hence it is possible to describe through Δ semicircles so that the tangent to each of them, produced to the <arc> of the greater semicircle, makes the (line) between the point of tangency and the <arc> of the greater semicircle equal to $A \Delta$, and, in turn, greater and less.

 $\tau \tilde{\eta} S \mathrm{~A} \Delta$.

[^32](145) 13. (Prop. 86) For the nineteenth.

Again let there be the semicircles, and $A \Delta$ greater than ΓZ, and let $\Gamma \mathrm{H}$ be made equal to $\mathrm{A} \Delta$, and, with BK drawn through, from H let $\mathrm{H} \Theta$ be drawn perpendicular to it, and let semicircle AB Г be filled out, and let BZ be produced to K. That $\mathrm{B} \Theta$ equals $E K$.

Let the center Λ of circle $A B \Gamma$ be taken, and from Λ let ΛM be drawn perpendicular to BK. ${ }^{1}$ Then MB equals MK. ${ }^{2}$ So since $A \Lambda$ equals $\Lambda \Gamma,{ }^{3}$ and $\mathrm{A} \Delta$ equals $\mathrm{H} \Gamma,{ }^{4}$ therefore remainder $\Delta \Lambda$ equals remainder $\Lambda \mathrm{H} .{ }^{5}$ And $\Delta \mathrm{E}$, $\Lambda M, H \Theta$ are three parallels. ${ }^{6}$ Therefore EM too equals M $\Theta .{ }^{7}$ But also all BM equals all MK. 8 Therefore remainder BE equals remainder $\Theta K .{ }^{9}$ So it is obvious that also $\mathrm{B} \Theta$ equals EK. ${ }^{\circ}$ Q.E.D.
(146) 14. (Prop. 87) Problem for the same (problem).

With $A B \Gamma$ being a semicircle, and Δ a point, to describe on $A \Gamma$ and through Δ a semicircle so that, if ZB is drawn tangent, $\mathrm{A} \Delta$ equals ZB .

Let it be accomplished. Then since $A \Delta$ equals $\mathrm{ZB},{ }^{1}$ also the square of $A \Delta$ equals the square of $Z B,^{2}$ that is the rectangle contained by $A Z$, ZГ. ${ }^{3}$

So if we apply to $\mathrm{A} \Gamma$ a (rectangle) equal to the square of $\mathrm{A} \Delta$, and deficient by a square, as $A Z \Gamma,{ }^{4}$ and if I draw $Z B$ at right angles, ${ }^{5}$ and describe on ΔZ a semicircle $\Delta E Z, B Z$ will be tangent to the semicircle, and will be equal to $\mathrm{A} \Delta .{ }^{6}$

This occurs whenever $A \Delta$ is less than half $A \Gamma$. With this found, if I draw through Δ other semicircles, such as $\Delta H \Theta, \Delta K \Lambda$, and ΘM and ΛN are drawn tangent, $\Theta \mathrm{M}$ will be greater than $\mathrm{A} \Delta$, and $\Lambda \mathrm{N}$ less. *For since $\mathrm{A} \Delta$ $(\Delta \Theta!$) is less than $\Delta \Gamma$, therefore $\Theta \mathrm{M}$ will be between Δ, Γ. Now it will not fall on Z, since (in that case) it will result that $A \Delta(\Delta \Theta$!) equals $Z \Gamma$ ($Z \Delta$!), which is absurd; much more is it impossible (for it to be) between Γ, \mathbf{Z}, since again it results that $\mathrm{A} \Delta(\Delta \Theta$!) is less than $\mathrm{Z} \Gamma$ ($\mathrm{Z} \Delta$!), which is absurd. For it is also greater, as was assumed in the original problem.* Hence Θ will be between Z, Δ. But the rectangle contained by $A \Theta, \Theta \Gamma$, that is the square of $M \Theta$, is greater than the rectangle contained by $A Z, Z \Gamma$, that is the square of ZB . Hence it is also greater than the square of $\mathrm{A} \Delta$, and so $\Theta \mathrm{M}$ is greater than $A \Delta$. But $<\Lambda N>$ is between Γ, Z. Since the rectangle
(145) < $\iota \boldsymbol{\gamma} .^{\prime}>$ єís $\tau \grave{o} \iota \theta$.

806

 (S) \| 3 BZ] BHK A BEZ Co \| 4 т̀̀ АВГ $\dot{\eta} \mu \iota \kappa$ úк $\lambda \iota o \nu]$ тà $\mathrm{B} \mathrm{\Gamma}$
 Λ CoA A| $\tau \dot{\eta} \nu \mathrm{Ge}(\mathrm{S}) \tau \tilde{\omega} \nu \mathrm{A} \mid \Lambda \mathrm{M}$ CoAM A\| $9 \Delta \Lambda$ Co A $\Lambda \mathrm{A} \| 12$ post EK add 'ío $\boldsymbol{\eta} \dot{\epsilon} \sigma \tau i \nu$ Ge\| $13 \iota \delta^{\circ}$ add $\mathrm{Hu}(\mathrm{V}) \| 15$ ' $\boldsymbol{i} \sigma \eta\langle\dot{\eta} \iota\rangle \dot{\eta}$ A Δ post $\dot{\eta}$ ZB transp Hu $\|$, $20 \dot{\eta} \mu \iota \kappa \dot{v} \kappa \lambda \iota о \nu \mathrm{Ge}$ (recc?) $\dot{\boldsymbol{\eta}} \boldsymbol{\mu} \iota \kappa \dot{v} \kappa \lambda \iota a \mathrm{~A}$

contained by $A \Lambda, \Lambda \Gamma$ is less than the square of $A \Delta$, because (it is less) also than the rectangle contained by $A Z, Z \Gamma$, therefore also the square of ΛN is less than the square of $A \Delta$. Hence ΛN is less than $A \Delta$. Similarly, all the straight lines in the direction of Γ (are less then $A \Delta$). And generally, as the semicircles approach Γ, the tangent is less than $A \Delta$, but as they move away, it is always greater. Thus it is possible to describe on $A \Gamma$ and through Δ semicircles so that sometimes the tangents to them equal $\mathrm{A} \Delta$, sometimes they are greater, sometimes less.
(147) 15. (Prop. 88) For the twenty-first.

Let $A B \Gamma, \Delta E Z$ be semicircles, and let $A H$ be made equal to $\Gamma \Delta$, and, with ZB drawn through, let $\mathrm{H} \Theta$ be drawn perpendicular to it. That ΘB equals $K E$.

Let the center Λ of semicircle $A B \Gamma$ be taken, and from Λ let ΛM be drawn perpendicular to BZ. ${ }^{1}$ Then BM equals MK. ${ }^{2}$ But since HA equals $\Gamma \Delta,{ }^{3}$ and $A \Lambda$ equals $\Lambda \Gamma,{ }^{4}$ therefore all $H \Lambda$ equals all $\Lambda \Delta .{ }^{5}$ And $H \Theta, \Lambda M$, ΔE are three parallels. ${ }^{6}$ Therefore ΘM too equals ME. 7 Out of these BM equals MK. ${ }^{8}$ Therefore remainder Θ B equals KE. 9 And it is obvious that also ΘK equals BE. 1° Q.E.D.
(148) 16. (Prop. 89) With the same things (assumed), let BZ be tangent at B . That again $\Theta \mathrm{B}$ equals BE .

For again let the center K of semicircle $A B \Gamma$ be taken, and from K to B let KB be joined. Then it is a perpendicular to BZ. ${ }^{1}$ Then since HK equals $\mathrm{K} \Delta^{3}$ in three parallels $\mathrm{H} \Theta, \mathrm{BK}, \Delta \mathrm{E},{ }^{2}$ therefore $\Theta \mathrm{B}$ too equals $\mathrm{BE} .{ }^{4}$ Q.E.D.
(149) 17. (Prop. 90) For the twenty-third.

Let there be the semicircles $A B \Gamma, \triangle E Z$, and let $A H$ be made equal to ΓZ, and, with $\mathrm{E} \Theta$ drawn through, let $\mathrm{H} \Theta$ be drawn perpendicular to it. That ΘB equals $K E$.

Let the center Λ of semicircle $A B \Gamma$ be taken, and let ΛM be a perpendicular. ${ }^{1}$ Then BM equals MK. ${ }^{2}$ Since HA equals $\Gamma Z,{ }^{3}$ and $A \Lambda$ equals $\Lambda \Gamma, 4$ therefore all $\mathrm{H} \Lambda$ equals all $\Lambda \mathrm{Z} .{ }^{5}$ And $\mathrm{H} \Theta, \Lambda \mathrm{M}, \mathrm{EZ}$ are three parallels. ${ }^{6}$ Therefore also ΘM equals ME. ${ }^{7}$ Out of these, BM equals MK. ${ }^{8}$ Therefore remainder ΘB equals remainder KE. ${ }^{9}$ And if it is tangent, (the

 $\pi \rho o \sigma \iota \dot{\prime} \nu \tau \omega \nu \mu \grave{\epsilon} \nu \tau \tilde{\omega} \nu \dot{\eta} \mu \iota \kappa v \kappa \lambda i \omega \nu \tau \tilde{\omega} \iota \Gamma \sigma \eta \mu \in i \omega \iota, \dot{\eta} \dot{\epsilon} \phi a \pi \tau о \mu \bar{\epsilon} \nu \eta$

 $\mu \in i \zeta O \nu \in \varsigma$, öt $\epsilon \delta \dot{\epsilon} \dot{\epsilon} \lambda a ́ \sigma \sigma o \nu \in S$.

> (147)<七є. > єiऽ то ка.

[^33]proposition) is obvious; for the (line) drawn from the center to the point of tangency (is perpendicular to ΘE, hence in three parallels ΘB equals $K E$). Q.E.D.
(150) 18. (Prop. 91) For the twenty-fourth.

Let there be two semicircles, as $A B \Gamma, \Delta E Z$, and let $A \Delta$ equal $\Delta \Gamma$, and let ZB be drawn through. That also $\mathbf{B E}$ equals EH. But it is obvious. For if $\Delta \mathrm{E}$ is joined, then angle $\Delta \mathrm{EZ}$ is right because it is in a semicircle. And $\Delta \mathrm{E}$ is from the center in semicircle $\mathrm{AB} \mathrm{\Gamma}$. Thus BE equals EH . Q.E.D.
(151) 19. (Prop. 92)

For the twenty-fifth.
With the same things (assumed), let $\mathbf{A} \Delta$ be greater than $\Delta \Gamma$, and let $A H$ be made equal to $\Delta \Gamma$, and let $H \Theta$ be perpendicular to $B Z$. That $B \Theta$ equals EK.

Since $A \Delta$ is greater than $\Delta \Gamma,{ }^{1}$ therefore the center of semicircle $A B \Gamma$ is between A, Δ. Let it be $\Lambda,{ }^{2}$ and again let ΛM be a perpendicular. ${ }^{3}$ Therefore MB equals MK. ${ }^{4}$ But since $A H$ equals $\Delta \Gamma, 5$ and $A \Lambda$ equals $\Lambda \Gamma, 6$ therefore remainder $\mathrm{H} \Lambda$ equals $\Lambda \Delta .{ }^{7}$ And $\mathrm{H} \Theta, \Lambda \mathrm{M}, \Delta \mathrm{E}$ are three parallels. ${ }^{8}$ Therefore $\Theta \mathrm{M}$ too equals ME. ${ }^{9}$ But also all BM equalled all MK. ${ }^{10}$ Therefore remainder BE equals remainder EK. ${ }^{1}$ Q.E.D.

 ӧ $\pi \in \rho$: -
(150) < ८ η. $>$ > єis ті̀ к δ.

 EH. $\ddot{0} \pi \epsilon \rho:-$

 $\dot{\eta} \mu \grave{\epsilon} \nu \mathrm{AH} \tau \tilde{\eta} \iota \Delta \Gamma, \dot{\eta} \delta \dot{\epsilon} \mathrm{A} \Lambda \tau \tilde{\eta} \iota, \Lambda \Gamma, \lambda o \iota \pi \dot{\eta}$ а́ $\rho a \dot{\eta} \mathrm{H} \Lambda \tau \tilde{\eta} \iota \Lambda \Delta$ 位

 $\kappa \varsigma$.

 $\mathrm{A} \Delta<\tau \tilde{\eta} \iota \Gamma \mathrm{H}, \dot{\eta} \delta \grave{\epsilon} \mathrm{A} \Lambda \tau \tilde{\eta} \iota \Delta \Gamma$, 'íoov ápa $\bar{\epsilon} \sigma \tau i \nu \dot{\eta} \Delta \Lambda>\tau \tilde{\eta} \iota \Lambda Н$. каi

 $\lambda 0 \iota \pi \tilde{\eta} \iota \tau \tilde{\eta} \iota K \Theta$ ' $\epsilon \sigma \tau i \nu$ ' $\iota \sigma \eta$. 'ö $\pi \epsilon \rho:-$
 add supr $\mathrm{A}^{2} \mathrm{~K} \Delta \mathrm{Co}|\kappa \mathfrak{a} \nu-\dot{a} \phi \dot{\eta} \nu \operatorname{secl} \mathrm{Co}| \dot{e} \phi \dot{a} \pi \tau \eta \tau a \iota \mathrm{Ge}$ (recc?) $\dot{\epsilon} \phi \dot{a} \pi \tau \epsilon \tau a \iota \mathrm{~A} \| 4$ ८ η^{\prime} add $\mathrm{Hu}(\mathrm{V})\|7 \Delta \mathrm{EZ} \mathrm{Co} \Delta \mathrm{E} \Gamma \mathrm{A}\| 8$ év add $\mathrm{Ge}\left(\mathrm{recc}\right.$?) \| $9 \dot{\eta} \Delta \mathrm{E} \mathrm{Ge}(\mathrm{S}) \dot{\eta}$ in ras., sequitur $\mathrm{H} \Delta \mathrm{E} A \| 11 \iota \theta^{\circ}$ add Hu (V) \| 15 ée $\sigma \tau \omega$] compendium $\mathrm{A} \| 17$ post $\mathrm{H} \Lambda$ add $\lambda o \iota \pi \tilde{\eta} \iota \mathrm{Ge}(\mathrm{V}) \mid \Lambda \Delta$ Co A $\Delta \mathrm{A} \| 20 \kappa$ add $\mathrm{Hu}(\mathrm{V}) \mid 27 \tau \tilde{\eta} \iota \Gamma \mathrm{H}-\tau \tilde{\eta} \iota \Lambda \mathrm{H}] \tau \tilde{\eta} \iota \Gamma \mathrm{H}, \dot{\eta}$
 post кai add $\epsilon i \sigma i \nu$ Hu \| 29 BM Co EM A
(152) 20. (Prop. 93) For the twenty-sixth.

Let $A \Delta$ be less than $\Delta \Gamma$, and let ΓH be made equal to $A \Delta$, and $H \Theta$ a perpendicular. That $B E$ equals $K \Theta$.

For since $A \Delta$ is less than $\Gamma \Delta, 1$ the center of semicircle $A B \Gamma$ is between Δ, H. Let it be $\Lambda,{ }^{2}$ and from Λ let ΛM be drawn perpendicular to ZB. ${ }^{3}$ Then BM equals MK. ${ }^{4}$ But since $\mathrm{A} \Delta$ equals $<\Gamma \mathrm{H},{ }^{5}$ and $\mathrm{A} \Lambda$ equals $\Lambda \Gamma, 6$ therefore $\Delta \Lambda>$ equals $\Lambda H .{ }^{7}$ And $\Delta E, \Lambda M, H \Theta$ are three parallels. ${ }^{8}$ Therefore EM too equals M $\Theta .{ }^{9}$ But also all BM equals all MK. ${ }^{10}$ Therefore remainder BE equals remainder K $\Theta .11$ Q.E.D.
(153) 21. (Prop. 93bis) For the twenty-ninth.

With two semicircles $A B \Gamma, \Delta E Z$, and $A \Delta$ being greater than $\Delta \Gamma$, if AH is made equal to $\Delta \Gamma$, and ZB drawn through, and $H \Theta$ is drawn perpendicular to it, that ΘB equals $K E$.

Let the center Λ of semicircle $A B \Gamma$ be taken, and from Λ let ΛM be drawn perpendicular to $\mathrm{BZ} .{ }^{1}$ Then BM is equal to MK. ${ }^{2}$ But since $\mathrm{A} \Lambda$ equals $\Lambda \Gamma,{ }^{3}$ and AH equals $\Delta \Gamma, 4$ therefore remainder $\mathrm{H} \Lambda$ equals remainder $\Lambda \Delta .5$ And $\mathrm{H} \Theta, \Lambda M, \Delta E$ are three parallels. 6 Therefore ΘM equals ME. ${ }^{7}$ Out of these $B M$ equals MK. ${ }^{8}$ Therefore remainder ΘB equals remainder KE. ${ }^{9}$ Obviously also $\Theta \mathrm{K}$ equals BE. ${ }^{\circ}$ Q Q.E.D.
(154) 22. (Prop. 93tris) For the thirty-first.

Let there be semicircles $A B \Gamma, \Delta E Z$, and again let $A \Delta$ be less than $\Delta \Gamma$, and let ZEB be drawn through, and let ΓH be made equal to $A \Delta$, and let $\mathrm{H} \Theta$ be drawn perpendicular to ZB ; for it is apparent that it falls neither on K nor between \mathbf{Z}, K.

For if the center Λ is taken, and from $\Lambda \Lambda M$ is drawn perpendicular to $B Z, 1$ then BM will be equal to MK. ${ }^{2}$ But also, because $\Delta \mathrm{E}, \Lambda \mathrm{M}, \mathrm{H} \Theta$ are three parallels, ${ }^{3}$ EM is equal to MK,5 because $\Delta \Lambda$ equals $\Lambda H .4$ And BM would equal ME, ${ }^{6}$ the greater to the less; which is impossible. Hence it does not fall on K. Much less does it fall between Z, K. Hence (it falls) outside. $\mathrm{A} \Lambda$ (equals) $\Lambda \Gamma,{ }^{7}$ and $\mathrm{A} \Delta$ (equals) $\mathrm{H} \Gamma .{ }^{8}$ Therefore remainder $\Delta \Lambda$ equals remainder $\Lambda H .{ }^{9}$ And $\Delta E, \Lambda M, H \Theta$ are three parallels. ${ }^{10}$ Therefore also EM equals M@. ${ }^{11}$ Out of these BM equals MK. ${ }^{2}$ 2 Thus remainder EB equals remainder $K \Theta .1^{3}$ And obviously EK equals BO. ${ }^{4}$ Q.E.D.
(155) 23. (Prop. 94) For the thirty-fourth.

Let there be semicircles $A B \Gamma, \Delta E Z$, let $\Delta \Gamma$ be greater than ΓZ, let $Z H$ be made equal to $A \Delta$, and let the circle ($\Delta \mathrm{EZ}$) be filled out. Let $\mathrm{B} \Gamma \Theta$ be drawn through, and from H let $(\mathrm{H} \Theta)$ be drawn perpendicular to $\mathrm{B} \mathrm{\Gamma}$. Obviously it falls outside the circle; for it is parallel to $A B$, and $A B$ falls away, so $\mathrm{H} \Theta$ too falls away. Let it be $\mathrm{H} \Theta$. That BE equals $\Theta \mathrm{K}$.
(153) <ка.'> єís то̀ кө.'
 $\tau \tilde{\eta} \varsigma \mathrm{A} \Delta \tau \tilde{\eta} \varsigma \Delta \Gamma, \epsilon \operatorname{a} \nu \tau \tilde{\eta} \iota \Delta \Gamma$ 'íon $\tau \epsilon \theta \tilde{\eta} \iota \dot{\eta} \mathrm{AH}, \kappa а i \delta \iota a x \theta \epsilon i \sigma \eta \varsigma \tau \tilde{\eta} \varsigma$

(154) $<\kappa \beta .^{\prime}>\epsilon$ is $<\tau \grave{o}>\lambda a$.

(155) <кк. ${ }^{\prime}>$ єis $\tau \grave{o} \lambda \delta$.

 add supr A2 ${ }^{2} 4 \kappa a i$ secl $\mathrm{Ge} \mid \dot{\eta}$ add Ge (recc?) \| 6 BZ Ge EZ A\| 7 $\mathrm{AH} \mathrm{Co} \mathrm{AN} \mathrm{A} \mathrm{\|} 8 \Lambda \Delta \mathrm{Ge} \mathrm{A} \Delta \mathrm{A} \| 11 \ddot{\circ} \pi \epsilon \rho$ ante $\phi a \nu \in \rho \dot{o} \nu$ transp $\mathrm{Hu} \|$ $12 \kappa \beta^{\circ}$ add $\mathrm{Hu}(\mathrm{BS}) \mid \tau \grave{o}$ add $\mathrm{Ge}(\mathrm{BS})\|14, \tau \tilde{\eta} s \mathrm{Ge}(\mathrm{BS}) \tau \tilde{\eta} \iota \mathrm{A}\| 15$

 $19 \Delta \Lambda \mathrm{Ge} \mathrm{A} \Lambda \mathrm{A} \| 21$ ápa Ge (S) 'é $\sigma \tau \iota \nu \mathrm{A} \| 22 \tau \tilde{\omega} \nu \operatorname{secl} \mathrm{Hu} \pi i \pi \tau \in \iota$ $\mathrm{Hu} \mathrm{app} \mid$ ante $\bar{\epsilon} \sigma \tau \iota \nu$ add $\epsilon \pi \epsilon i \quad \delta \grave{\epsilon}$ Ge\| 26 ö́ $\pi \epsilon \rho$ ante $\phi a \nu \in \rho \dot{o} \nu$ transp $\mathrm{Hu} \| 27 \kappa \gamma^{\prime}$ add $\mathrm{Hu}(\mathrm{BS}) \| 29$ post \dot{o} add $\triangle \mathrm{EZK}$ Co \| $\left.30 \mathrm{~B} \mathrm{\Gamma}\right]$
 $\pi i \pi \tau \epsilon \iota$ Co $\mid \dot{v} \pi o \pi i \pi \tau \epsilon \iota] \dot{\epsilon} \kappa \tau \dot{o} \varsigma \pi i \pi \tau \epsilon \iota$ Co $\| 33$ 关 $\sigma \tau \omega \dot{\eta} \mathrm{H} \Theta \mathrm{del}$

Since $\Delta \Gamma$ is greater then $\Gamma Z,{ }^{1}$ the center of semicircle $\Delta \mathrm{EZ}$ is between Δ, Γ. Let it be $\Lambda,{ }^{2}$ and $\Lambda \mathrm{M}$ a perpendicular. ${ }^{3}$ Then since $A \Delta$ equals $\mathbf{Z H},{ }^{4}$ and $\Delta \Lambda$ equals $\Lambda Z,{ }^{5}$ therefore all $A \Lambda$ equals all $\Lambda H .{ }^{6}$ And $A B$, $\Lambda M, H \Theta$ are three parallels. ${ }^{7}$ Therefore also BM equals $M \Theta .^{8}$ Out of these EM equals MK. ${ }^{9}$ Therefore remainder BE equals remainder $\mathrm{K} \Theta .{ }^{10}$ Obviously also BK equals EE. ${ }^{11}$ Q.E.D.
(156) 24. (Prop. 95) Again let the semicircles be $\mathrm{AB} \mathrm{\Gamma}, \Delta \mathrm{EZ}$, and $\Delta \Gamma$ greater than Γ, and let $Z H$ be made equal to $A \Delta$, and let circle $\triangle E Z K$ be filled out, and let EBK be drawn through, and from H let H Θ be drawn perpendicular to it. Clearly it falls inside the circle, since $A B$ which is parallel to it is inside. To prove that EB equals ΘK.

Let the center be Λ, and again ΛM a perpendicular. ${ }^{1}$ Then EM equals MK. ${ }^{2}$ But since $A \Lambda$ equals $\Lambda^{4}{ }^{4}$ in three parallels, $A B, \Lambda M, H \Theta,{ }^{3}$ therefore also BM equals M $\Theta .{ }^{5}$ But also all EM equals all MK. ${ }^{6}$ Thus remainder EB equals remainder $\mathrm{K} \Theta .^{7}$ Q.E.D.
(157) The first (book) of the Neuses contains nine problems, and three diorisms. The three are minima, that in the fifth and that in the seventh, and that in the ninth. The second (book) of Neuses contains forty-five problems, and three diorisms, that in the seventeenth problem, and that in the nineteenth, and that in the twenty-third; and the three are minima.

 $\mu \in i \zeta \omega \nu \dot{\eta} \Delta \Gamma$ т $\tilde{\eta} s \quad \Gamma Z$, каi $\tau \tilde{\eta} \iota \mathrm{A} \Delta$ 'ín $\kappa \in i \sigma \theta \omega \dot{\eta} \mathrm{ZH}$: каi

[^34](158) Tangencies, (Book) 1.

1. (Prop. 96) For the fifth problem.
(Let) $\mathrm{AB}, \Gamma \Delta$ be two parallel lines, and let circle EZ be tangent (to them) at points \mathbf{E}, \mathbf{Z}, and let EZ be joined. That ($\mathbf{E Z}$) is a diameter of circle EZ.

Let points H, Θ be taken on the circumference of the circle, and let $\mathrm{EH}, \mathrm{HZ}, \mathrm{E} \Theta, \Theta \mathrm{Z}$ be joined. Then since AE is tangent to, and EZ cuts (the circle), ${ }^{1}$ therefore angle AEZ equals the angle in the alternate segment, EOZ (III 32). ${ }^{2}$ For the same reasons, also angle \triangle ZE equals angle <ZHE. ${ }^{3}$ But angle> \triangle ZE <is equal to angle AEZ > as alternate angles. ${ }^{4}$ Hence too angle EOZ equals angle EHZ. ${ }^{5}$ And they equal two right angles (III 22). ${ }^{6}$ Hence each of them is right, ${ }^{7}$ so that each of E E , EHZ is a semicircle. ${ }^{8}$ Thus EZ is a diameter of circle EZ. ${ }^{9}$ Q.E.D.
(159) 2. (Prop. 97) Let there be circle $А В \Delta$, and let $В Г, \Gamma А$ be tangent to it, and let angle Γ be bisected by straight line $\Gamma \Delta$. That the center of circle $\mathrm{AB} \Gamma$ is on $\Gamma \Delta$.

Let $\Delta \mathrm{A}, \mathrm{AE}, \Delta \mathrm{B}, \mathrm{BE}$ be joined. Then since $\mathrm{A} \Gamma$ is tangent to, and $\Gamma \Delta$ cuts (the circle), 1 the rectangle contained by $\Delta \Gamma, \Gamma E$ equals the square of $\Gamma \mathrm{A}$ (III 36). ${ }^{2}$ Hence angle $\Delta \mathrm{A} \Gamma$ equals angle $А E \Gamma .{ }^{3}$ For the same reasons too angle $\Delta \mathrm{B} \Gamma$ equals angle $В Е \Gamma .4$ But angle $В \Gamma \Delta$ is equal to angle $А \Gamma \Delta .{ }^{5}$ Hence angle $\triangle A E$ equals angle $\Delta B E,{ }^{6}$ so that each of them is right. ${ }^{7}$ Hence $\Delta \mathrm{E}$ is a diameter of circle $\mathrm{AB} \Delta .{ }^{8}$ Thus the center of circle $\mathrm{AB} \Delta$ is on $\Gamma \Delta$.
(160) 3. (Prop. 98) Let there be two circles, $\mathrm{AB}, \mathrm{B} \Gamma$, tangent to each other at point B, and let $A B \Gamma$ be drawn through, and let the center of circle $A B$ be on it. That also the center of circle $B \Gamma$ is on $A B \Gamma$.

For let $\triangle B E$ be drawn tangent to both circles. ${ }^{1}$ Then angle $A B \Delta$ is right, ${ }^{2}$ and so the complementary angle $\Delta B \Gamma$ is also right. ${ }^{3}$ And ΔE is tangent to circle $B \Gamma .4$ Thus the center of circle $B \Gamma$ is on $B \Gamma, 5$ as is also that of (circle) AB.

EПIA $\Omega \Omega \mathrm{N}$ IIPSTON

(158) <a. $.^{\prime}>$ єis $\tau \grave{o} \epsilon^{\prime} \pi \rho_{0} \beta \boldsymbol{\beta} \eta \mu a$.

 $\kappa \dot{\kappa} \kappa \lambda о v$. '̈т $\pi \rho$: -

 $\Delta \mathrm{A}, \mathrm{AE}, \Delta \mathrm{B}, \mathrm{BE} . \dot{\epsilon} \pi \epsilon i \quad o \tilde{v} \nu \dot{\epsilon} \phi \dot{a} \pi \tau \epsilon \tau a \iota \mu \grave{\epsilon} \nu \dot{\eta} \mathrm{~A} \Gamma, \tau \dot{\epsilon} \mu \nu \epsilon \iota \delta \dot{\epsilon} \dot{\eta} \Gamma \Delta$,

 $\kappa \epsilon \in \tau \rho o \nu \dot{\epsilon} \sigma \tau i \nu \tau o \tilde{v} \mathrm{AB} \Delta \kappa \tilde{v} \kappa \lambda o v$.

(161) 4. (Prop. 99) Another way. Again let $\mathrm{AB}, \mathrm{B} \Gamma$ be <diameters> of circles. That circles $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ are tangent to each other.

Again let ΔE be drawn tangent to circle $A B .{ }^{1}$ Then angle $A B \Delta$ is right, ${ }^{2}$ and complementary angle $\Delta \mathrm{B} \Gamma$ is right. ${ }^{3}$ And $\mathrm{B} \Gamma$ is from the other center. ${ }^{4}$ Hence $\Delta \mathrm{E}$ is tangent to circle $\mathrm{B} \Gamma .{ }^{5}$ But it is also to (circle) AB at (point) B itself. 6 Thus (circle) AB is tangent also to circle $\mathrm{B} \Gamma$ at point B. ${ }^{7}$ On the same figure.
(162) 5. (Prop. 100) (Let there be) two circles, $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$, tangent to each other (internally) at point B, and let АГВ be drawn through, and let the center of circle AB be on it. That the center of (circle) $\mathrm{B} \mathrm{\Gamma}$ too is on $В \Gamma$.

Let $\Delta \mathrm{E}$ be drawn tangent to the circles. Then since $\Delta \mathrm{E}$ is tangent to circle $A B^{1}$ and $A B$ is through the center (of circle $A B$), ${ }^{2}$ angle $\Delta B \Gamma$ is right. ${ }^{3}$ And it was drawn from the point of tangency B. Thus the center of circle $\mathrm{B} \Gamma$ is on $\mathrm{B} \mathrm{\Gamma}$. ${ }^{4}$

It is also apparent in the following way. For if BZH were drawn through, and $\Gamma Z, A H$ joined, then angle $A B \Delta$ would be equal to each of angles BZГ, AHB. ${ }^{5}$ And angle AHB is right. 6 Therefore angle BZГ too is right. ${ }^{7}$ Therefore the center of (circle) $\mathrm{B} \Gamma$ is on $\mathrm{B} \Gamma .{ }^{8}$ And similarly if (the center) of (circle) AB is given on AB , we shall prove that (the center) of (circle) $A B$ too is (on it).
(163) 6. (Prop. 100) But again let there be diameters $\mathrm{AB}, \mathrm{B} \Gamma$. That the circles are tangent to each other.

Let straight line $\triangle \mathrm{BE}$ be drawn tangent to circle AB. ${ }^{1}$ Then angle $A B E$ is right. ${ }^{2}$ And $B \Gamma$ is diameter. 3 Therefore ΔE is tangent to circle $B \Gamma$ at point $B ;{ }^{4}$ for if $\Gamma \mathrm{Z}$ were produced to Δ, then the rectangle contained by $\Gamma \Delta, \Delta Z$ would equal the square of $\Delta B,{ }^{5}$ because angle Z is right while angle B is right. ${ }^{6}$ But ($\Delta \mathrm{E}$) is also tangent to circle AB at B. ${ }^{7}$ Thus circle AB too is tangent to circle $\mathrm{B} \Gamma$ at $\mathrm{B} .{ }^{8}$ On the same figure.

 катаүрафйऽ.)

 $\tau о \tilde{v} \mathrm{AB} \kappa \dot{v} \kappa \lambda о \cup$ є́ $\phi \dot{a} \pi \tau \tau \operatorname{c}$

 $\kappa \dot{v} \kappa \lambda \omega \nu, \delta \iota a ́ \mu \epsilon \tau \rho o \iota \mathrm{Co} \mathrm{\|} \| \dot{\eta}(\tau 0 \tilde{v} \mathrm{AB})$ secl $\mathrm{Hu} \mid$ á ρa add $\mathrm{Hu} \| 5$

 $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ Haumann || $7 \dot{\epsilon} \pi i$ - катaү $\rho a \phi \tilde{\eta} \varsigma$ secl $\mathrm{Hu} \| 9 \epsilon^{\prime}$ add
 (S) $14 \Delta \mathrm{~B} \Gamma] \Delta \mathrm{BA} \mathrm{Hu} \mid \tau \tilde{\eta} \varsigma \mathrm{B}] \tau \tilde{\eta} \varsigma \mathrm{BE} \mathrm{A} \dot{\eta} \mathrm{B} \Gamma \mathrm{Co} \tau \tilde{\eta} \varsigma \mathrm{B} \dot{\eta} \mathrm{B} \Gamma$
 $\delta \iota a x \theta \epsilon \iota \eta$ Hu $\delta \iota a x \theta \tilde{\eta} \mathrm{~A}|\mathrm{BZH} \mathrm{Co} \mathrm{BZ} \mathrm{A}| 17 \dot{\epsilon} \pi \epsilon \zeta \epsilon v \times \theta \epsilon i \eta \sigma a \nu$ $\mathrm{Hu} \epsilon \pi \epsilon \zeta \epsilon \dot{v} \chi \theta \omega \sigma a \nu \mathrm{~A} \mid \mathrm{AB} \Delta] \Delta \mathrm{BZ} \mathrm{A}$ EBC $\mathrm{Camer}_{1}, 18 \mathrm{BZ} \Gamma$

 Camer $_{1} \mathrm{ABA} \mathrm{\|} 30 \dot{\epsilon} \pi i$ - катаураф $\boldsymbol{\eta} \varsigma \sec \mathrm{Hu}$
(164) 7. (Prop. 102) For the sixteenth.

Let there be two circles $\mathrm{AB} \mathrm{\Gamma}, \triangle \mathrm{~EB}$, tangent to each other at point B , and let $\Gamma \mathrm{B} \Delta, \mathrm{ABE}$ be drawn through B , and let $\mathrm{A} \Gamma, \Delta \mathrm{E}$ be joined. That $\mathrm{A} \Gamma$ and $\Delta \mathrm{E}$ are parallel.

For let straight line ZH be drawn tangent to the circles at point B. ${ }^{1}$ Then since $B Z$ is tangent to, and $B A$ cuts (circle $A B$), ${ }^{2}$ angle $A B Z$ equals angle $А Г В{ }^{3}{ }^{3}$ For the same reasons also angle HBE equals angle B \triangle E. ${ }^{4}$ But angle ABZ equals angle EBH. ${ }^{5}$ Hence angle AГB too equals angle $\mathrm{E} \Delta \mathrm{B} .{ }^{6}$ And they are alternate angles. ${ }^{7}$ Therefore $\mathrm{A} \Gamma$ is parallel to $\Delta \mathrm{E} .{ }^{8}$ Q.E.D.
(165) 8. (Prop. 103) (Let there be) circle AB , and let $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$, $<\mathrm{A} \Gamma>$ be joined, and let some line $\Delta \mathrm{E}$ be drawn through A so that angle B equals angle $E A \Gamma$. That ΔE is tangent to circle $A B$ at point A.

Now if $A \Gamma$ is through the center, then it is obvious. For angle EAГ turns out to be right, ${ }^{1}$ since also angle B is right. ${ }^{2}$ This was proved before. But if not, then let the center be $\mathbf{Z},{ }^{3}$ and let $A Z$ be joined, and let it be produced to H , and let BH be joined. Then angle ABH is right. ${ }^{4}$ So since angle $E A \Gamma$ equals angle $A B \Gamma,{ }^{5}$ while angle $H A \Gamma$ equals $H B \Gamma$ in the same segment, ${ }^{6}$ therefore all angle EAH equals angle ABH. ${ }^{7}$ But angle ABH is right. 8 Therefore angle EAH too is right. ${ }^{9}$ And AZ is from the center. ${ }^{10}$ Therefore ΔE is tangent to circle $A B \Gamma ;{ }^{11}$ for this was proved before.
(166) 9. (Prop. 104) This being so, the converse of the foregoing (lemma), namely, with $\mathrm{A} \Gamma$ being parallel to $\Delta \mathrm{E}$, to prove that $\mathrm{AB} \mathrm{\Gamma}, \Delta \mathrm{~EB}$ are tangent to each other at point B.

Again let straight line ZH be drawn tangent to circle ABГ. ${ }^{1}$ Then angle ABZ equals angle $\Gamma .{ }^{2}$ But angle ABZ equals angle $E B H,{ }^{3}$ while angle Γ equals alternate angle $\Delta,{ }^{4}$ so that also angle HBE equals angle $\Delta .{ }^{5}$ But according to the (lemma) written above, ZH is tangent to circle $\triangle \mathrm{BE} .{ }^{6}$ But it is also (tangent) to (circle) ABГ at B. ${ }^{7}$ Thus circle $A B \Gamma$ is tangent to circle $\mathrm{B} \Delta \mathrm{E}$ at point $\mathrm{B} .{ }^{8}$

 $\mathrm{A} \Gamma \tau \tilde{\eta} \iota \Delta \mathrm{E}$. ӧ $\pi \epsilon \rho:-$
(165) < \quad.'> $\mid \kappa \dot{v} \kappa \lambda о \varsigma ~ \dot{o} \mathrm{AB} \mathrm{\Gamma}, \kappa а i \quad \dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{v} \chi \theta \omega \sigma a \nu$ ai $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$,
 $\tau \dot{\eta} \nu \mathrm{B} \gamma \omega \nu i a \nu \tau \tilde{\eta} \iota \dot{v} \pi \grave{o} \mathrm{EA} \mathrm{\Gamma} \gamma \omega \nu i a \iota$. ö $\tau \iota \dot{\epsilon} \phi \dot{a} \pi \tau \epsilon \tau a \iota \dot{\eta} \Delta \mathrm{E} \tau 0 \tilde{\mathrm{u}} \mathrm{AB}$ ки́кл

 $\pi \rho о \gamma \epsilon \gamma \rho a \pi \tau a \iota$.

 (BS) $\mid \dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{v} \times \theta \omega \sigma a \nu a!$ Camer $_{1} \dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{v} x \theta \omega \dot{\eta} \mathrm{~A} \| 13 \mathrm{~A} \mathrm{\Gamma}$ add

 $\dot{\eta} \dot{v} \pi \dot{o}] \dot{\eta} \pi \dot{o} \mathrm{~A}^{1}$ corr $\mathrm{A}^{2} \| 31 \dot{\omega} \boldsymbol{\sigma} \tau \boldsymbol{\tau} \boldsymbol{a d d} \mathrm{Hu} \mid \mathrm{HBE}$ Co ABE A ${ }^{2}$ $\triangle \mathrm{BE}$ Co ABE A
(167) 10. (Prop. 105) Problem for the same (problem).

Given circle $A B \Gamma$ in position, and two points \triangle, E given, to inflect a straight line $\triangle \mathrm{BE}$ and, with it produced, to make $\mathrm{A} \Gamma$ parallel to $\triangle \mathrm{E}$.

Let it be accomplished, and let ZA be drawn tangent. 1 Then since $A \Gamma$ is parallel to $\Delta \mathrm{E},{ }^{2}$ angle Γ equals angle $\Gamma \Delta \mathrm{E} .{ }^{3}$ But angle Γ equals angle ZAE, ${ }^{5}$ because (ZA) is tangent to, and (AГ) cuts (the circle). 4 And hence angle ZAE equals angle $\Gamma \Delta E .{ }^{6}$ Thus points A, B, Δ, Z are on a circle. ${ }^{7}$ Hence the rectangle contained by $A E, E B$ equals the rectangle contained by $\mathrm{ZE}, \mathrm{E} \Delta .{ }^{8}$ But the rectangle contained by AE, EB is given, ${ }^{9}$ because it equals the square of the tangent (from E to circle $A B \Gamma$). Therefore also the rectangle contained by $\Delta \mathrm{E}, \mathrm{EZ}$ is given. ${ }^{10}$ And $\Delta \mathrm{E}$ is given. ${ }^{1} 1$ Hence EZ too is given. ${ }^{12}$ But it is also (given) in position; ${ }^{13}$ and E is given. ${ }^{14}$ Hence Z too is given. ${ }^{55}$ But from a given point Z a straight line $Z A$ has been drawn tangent to a circle $A B \Gamma$ given in position. ${ }^{16}$ Hence $Z A$ is given in position and magnitude. ${ }^{17}$ And Z is given. ${ }^{18}$ Therefore A too (is given). ${ }^{19}$ But E too is given. ${ }^{20}$ Therefore AE is (given) in position. ${ }^{11}$ But the circle too is (given) in position. ${ }^{2} 2$ Therefore point \mathbf{B} is given. ${ }^{23}$ But each of Δ, E is given. 24 Hence each of $\Delta B, B E$ is given in position. 25
(168) (Prop. 105) The synthesis of the problem will be made as follows. Let the circle be $A B \Gamma$, and the given two points \triangle, E, and let the rectangle contained by $\Delta \mathrm{E}$ and some other (line) EZ be made equal to the square of the tangent (from E), and from Z let a straight line $Z A$ be drawn tangent to circle $A B \Gamma$, and let $A E$ be joined, and let ΔB be joined and produced to Γ, and let $A \Gamma$ be joined. I say that $A \Gamma$ is parallel to ΔE.

For since the rectangle contained by $\mathrm{ZE}, \mathrm{E} \Delta$ equals the square of the tangent (from E), 1 while the rectangle contained by AE, EB too equals the square of the tangent, ${ }^{2}$ therefore the rectangle contained by $A E, E B$ equals the rectangle contained by ZE, E $\Delta .{ }^{3}$ Hence <points A, B, $\Delta, \mathrm{Z}>$ are on a circle. 4 <Therefore> angle ZAE <equals> angle B $\Delta E .{ }^{5}$ But angle ZAE also equals angle $A \Gamma B$ in the alternate segment. ${ }^{6}$ Hence angle $A \Gamma B$ equals angle $\mathrm{B} \Delta \mathrm{E} .{ }^{7}$ And they are alternate angles. ${ }^{8}$ Thus $\mathrm{A} \Gamma$ is parallel to $\Delta \mathrm{E} .{ }^{9}$

 ZA. $\dot{\epsilon} \pi \in \epsilon$ o

 BE $\tau \tilde{\eta} \iota \theta^{\prime} \epsilon \boldsymbol{\epsilon} \boldsymbol{\sigma} \iota$.

 $\Delta \mathrm{E}$.
$\| 1 \iota^{\prime}$ add Camer $_{1}$ (BS) \| $\left.3 \kappa \lambda \tilde{a} \nu, \epsilon \dot{v} \theta \epsilon \tilde{\iota} a \nu \tau \dot{\eta} \nu\right]$ à $\nu \delta o \theta \tilde{\eta} \iota \dot{\eta}$ A
à $\nu \kappa \lambda a \sigma \theta \tilde{\eta} \iota \dot{\eta} \mathrm{Co} \mid, \epsilon \kappa \beta \lambda \eta \theta \epsilon i \sigma \eta \varsigma] \epsilon \in \kappa \beta \eta \theta \tilde{\eta} \iota \mathrm{A} \| 4, \tau \dot{\eta} \nu$
Camer $_{1}$ (recc?) $\tau \eta \mathrm{H} \mid \dot{\eta} \mathrm{ZA} \mathrm{Co} \mathrm{ZH}$ A $\|11 \mathrm{EZ} \mathrm{CoBZA}\| 13 \delta \dot{\eta}$ add
$\pi \rho o ̀ s ~ \epsilon \dot{u} \theta \epsilon i a \nu \mathrm{~A} \mid \mathrm{ZA}$ Co ZAN A\| $\| 21$ кai add Ge\| 22 rì
$29 \tau \grave{a}-\dot{\epsilon} \sigma \tau i \nu$ add Co\| $34 \Delta \mathrm{E}$ Co $\Delta \mathrm{Z} \mathrm{A}$
(169) 11. (Prop. 106) For the seventeenth.

Let there be two circles $\mathrm{AB}, \mathrm{AE} \Delta$, tangent to each other (internally) at point A , and let straight lines $\mathrm{A} \triangle \mathrm{B}, \mathrm{AE} \Gamma$ be drawn through (the circles) from A, and let $\Delta E, B \Gamma$ be joined. That ΔE and $B \Gamma$ are parallel.

Through A let ZH be drawn tangent. 1 Then angle ZAB equals each
 is parallel to $B \Gamma \cdot{ }^{3}$
$<$ But let $\Delta \mathrm{E}$ be parallel to $\mathrm{B} \Gamma .>$ That circles $\mathrm{AB} \mathrm{\Gamma}, \mathrm{~A} \Delta \mathrm{E}$ are tangent to each other.

For let ZH be drawn tangent to circle $\mathrm{AB} \mathrm{\Gamma} .{ }^{1}$ Then angle ZAD is equal to angle $\Gamma .{ }^{2}$ But angle Γ equals angle E. ${ }^{3}$ Therefore angle ZA Δ too equals angle E. ${ }^{4}$ Thus ZH is tangent to circle $\mathrm{A} \Delta \mathrm{E} ;{ }^{5}$ for this was proved before.
(170) 12. (Prop. 107) Problem for the same (problem).

With circle $\mathrm{AB} \mathrm{\Gamma}$ (given) in position, and two (points) Δ, E given, to inflect a straight line $\triangle \mathrm{AE}$, making $\mathrm{B} \mathrm{\Gamma}$ parallel to $\triangle \mathrm{E}$.

Let it be accomplished, and from B let BZ be drawn tangent. Then since BZ is tangent to, and $\mathrm{B} \Gamma$ cuts (the circle), ${ }^{1}$
angle ZBГ, that is angle $\triangle \mathrm{ZB}$, equals angle $\mathrm{A} .{ }^{2}$ Hence points $\mathrm{A}, \mathrm{B}, \mathrm{E}, \mathbf{Z}$ are on a circle. ${ }^{3}$ Therefore the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}$ equals the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z} .{ }^{4}$ But the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}$ is given, ${ }^{5}$ because the rectangle contained by $B \Delta, \Delta A$ equals a given. Hence also the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$ is given. ${ }^{6}$ And $\Delta \mathrm{E}$ is given. ${ }^{7}$ Therefore also ΔZ is given. ${ }^{8}$ But it is also (given) in position; 9 and Δ is given. ${ }^{10}$ Hence \mathbf{Z} too is given. 1^{1} But from a given point $\mathbf{Z}, \mathbf{Z B}$ has been drawn tangent to a circle given in position. ${ }^{2}$ Therefore ZB is given in position. 1^{3} But also circle $A B \Gamma$ is (given) in position. ${ }^{4}$ Therefore point B is given. ${ }^{15}$ But Δ too is given. ${ }^{6}$ Hence $A \Delta$ is (given) in position. ${ }^{17}$ But the circle too is (given) in position. 1^{18} Therefore A is given. 1^{9} But E too is given. ${ }^{20}$ Thus each of $\triangle \mathrm{A}, \mathrm{AE}$ is given in position. ${ }^{21}$
(171) (Prop. 107) The synthesis of the problem will be made as follows. Let the circle be $\mathrm{AB} \Gamma$, and the given points Δ, E, and let the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$ be made equal to the square of the tangent (from Δ), and from \mathbf{Z} let straight line $\mathbf{Z B}$ be drawn <tangent> to circle $\mathrm{AB} \Gamma$, and let $\Delta \mathrm{B}$ be joined and produced to A , and let $\mathrm{AE}, \mathrm{B} \Gamma$ be joined. I
(169) <८a.’> єís тò ८ ऊ́
'é $\sigma \tau \omega \sigma a \nu$ ठ́vo кúk

 $\mathrm{ZAB} \gamma \omega \nu \iota a \dot{\epsilon} \kappa a \tau \epsilon \rho a \iota \tau \tilde{\omega} \nu \dot{\nu} \pi \dot{o}$ АГВ, АЕД. $\dot{\omega} \sigma \tau \epsilon \kappa а i \quad \dot{\eta} \dot{\nu} \pi \dot{o}$ АГВ
 ВГ.

 $\gamma \omega \nu \dot{\iota} a$ 'í $\sigma \eta \dot{\epsilon} \sigma \tau i \nu \tau \tilde{\eta} \iota \mathrm{E} \gamma \omega \nu i a \iota . \dot{\omega} \sigma \tau \epsilon \dot{\epsilon} \phi \dot{a} \pi \tau \epsilon \tau a \iota \dot{\eta} \mathrm{ZH} \tau 0 \tilde{v} \mathrm{~A} \Delta \mathrm{E}$

 $\kappa \dot{v} \kappa \lambda о v \quad<\dot{\epsilon} \phi а \pi \tau о \mu \epsilon \epsilon \nu \eta>\epsilon \dot{v} \theta \epsilon i a \quad \gamma \rho а \mu \mu \dot{\eta} \quad \dot{\eta} \chi \theta \omega \quad \dot{\eta}$ ZB, каі

[^35]say that $B \Gamma$ is parallel to ΔE.
For since the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$ equals the square of the tangent (from Δ), ${ }^{1}$ <but the rectangle contained by $A \Delta, \Delta B$ too equals the square of the tangent, >2 therefore angle A , that is angle $\Gamma \mathrm{BZ},-$ for BZ is tangent to, and $\mathrm{B} \Gamma$ cuts (the circle) ${ }^{3}$ - equals angle $\mathrm{BZ} \mathrm{\Delta}.{ }^{4}$ And they are alternate angles. ${ }^{5}$ Hence $B \Gamma$ is <parallel> to $\Delta E .{ }^{6}$
(172) 13. (Prop. 108) Problem for the eighteenth.

Given circle $A B \Gamma$ in position, and given two points Δ, E, to inflect a straight line $A \Delta E$ from Δ, making ΔE parallel to $B \Gamma$.

Let it be accomplished, and let straight line BZ be drawn from B, tangent to circle $\mathrm{AB} \Gamma .{ }^{1}$ Then angle ZBA equals angle Γ, that is, angle $\mathrm{E} .{ }^{2}$ Hence points B, Z, A, E are on a circle. ${ }^{3}$ Therefore the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{A}$ equals the rectangle contained by $\mathrm{Z} \Delta, \Delta \mathrm{E} .4$ But the rectangle contained by $B \Delta, \Delta A$ is given, ${ }^{5}$ since $A \Delta B$ has been drawn from a given point Δ through to a circle given in position. Hence also the rectangle contained by $\mathrm{Z} \Delta, \Delta \mathrm{E}$ is given. ${ }^{6}$ And $\Delta \mathrm{E}$ is given. ${ }^{7}$ Therefore $\mathrm{Z} \Delta$ too is given. ${ }^{8}$ And Δ is given. ${ }^{9}<$ Therefore \mathbf{Z} too is given. ${ }^{10}$ But from a given point Z,> ZB has been drawn tangent to a circle <given in position.>11 Hence ZB is (given) in position. ${ }^{2}$. But the circle too is (given) in position. ${ }^{13}$ Therefore point B is given. 1^{4} But also Δ is given. ${ }^{15}$ Hence $\mathrm{B} \Delta$ is (given) in position. ${ }^{16}$ But the circle too is (given) in position. ${ }^{17}$ Therefore point A is given. 1^{8} But also each of Δ, E is given. 1^{9} Thus each of $\triangle \mathrm{A}, \mathrm{AE}$ is given in position. ${ }^{20}$
(173) (Prop. 108) The synthesis of the problem will be made as follows. Let the circle given in position be $\mathrm{AB} \mathrm{\Gamma}$, the given two points Δ, E, and let an arbitrary (line) $\mathrm{A} \Delta \mathrm{B}$ be drawn through, and let the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$ be made equal to the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}$, <and from> Z let BZ be drawn tangent to circle $\mathrm{AB} \mathrm{\Gamma}$, and let ГEA be joined.

Then since angle ZBA equals angle $\mathrm{E},{ }^{2}$ because points $\mathrm{A}, \mathrm{B}, \mathrm{E}, \mathrm{Z}$ are on a circle, ${ }^{1}$ but also angle ZBA equals angle $\Gamma, 4$ because (ZB) is tangent to, and (BA) cuts (the circle), ${ }^{3}$ therefore angle Γ too equals angle E. ${ }^{5}$ Thus $B \Gamma$ is parallel to $\Delta E .^{6}$ Q.E.D.

 $<\pi a \rho a ́ \lambda \lambda \eta \lambda o s>$ á $\rho a \dot{\epsilon} \sigma \tau i \nu \dot{\eta} \mathrm{~B} \Gamma \tau \tilde{\eta} \iota \Delta \mathrm{E}$.

$$
(172)<\iota \gamma .^{\prime}>\mid \pi \rho o ́ \beta \lambda \eta \mu a \in i s \text { то̀ } \iota \eta .^{\prime}
$$

 $\mathrm{AE} \boldsymbol{\tau} \tilde{\eta} \iota \theta^{\prime} \epsilon \boldsymbol{\epsilon} \boldsymbol{\epsilon} \iota$.

 'á $\rho a \operatorname{\epsilon } \epsilon \tau i \nu \dot{\eta} \mathrm{~B} \Gamma \tau \tilde{\eta} \iota \Delta \mathrm{E}$. ö $(\pi \in \rho)$: -

 $\kappa \dot{\delta} \kappa \lambda \omega \iota$ á $\rho a \dot{\epsilon} \sigma \tau i \nu$ тà A, B, Z, E $\sigma \eta \mu \epsilon i a$ Co. pro haec add

 8 , $\boldsymbol{\gamma}^{\prime}$ add Camer_{2} (BS) \| $10 \kappa \lambda \tilde{a} \nu$ Camer $_{2} \overline{\mathrm{~K}} \bar{\Lambda}$ à̀ $\nu \mathrm{A} \kappa \lambda \dot{\lambda} \sigma a \iota \mathrm{Co}$
 $\tau \tilde{\eta} \iota \Delta \mathrm{E} \ldots \tau \dot{\eta} \nu \mathrm{B} \Gamma$ Ни $\tau \dot{\eta} \nu \Delta \mathrm{E} \ldots \tau \tilde{\eta} \iota \mathrm{B} \Gamma \mathrm{A} \tau \dot{\eta} \nu \mathrm{B} \Gamma \ldots, \tau \tilde{\eta} \iota \Delta \mathrm{E} \mathrm{C}_{0}$

(174) 14. (Prop. 109) Problem for the nineteenth.

With circle $A B \Gamma$ (given) in position, and two (points) Δ, E given, to inflect a straight line $\triangle A E$ so that $B \Gamma$ is parallel to $\triangle E$.

Let it be accomplished, and let BZ be drawn tangent. 1 Then again points A, Z, B, E are on a circle, ${ }^{2}$ and the rectangle contained by $A \Delta, \Delta B$ equals the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z} .{ }^{3}$ But the rectangle contained by $A \Delta, \Delta B$ is given. ${ }^{4}$ Therefore the rectangle contained by $E \Delta, \Delta Z$ is also given. ${ }^{5}$ And $\Delta \mathrm{E}$ is given. ${ }^{6}$ Therefore $\Delta \mathrm{Z}$ too is given. ${ }^{7}$ But it is also (given) in position. ${ }^{8}$ And Δ is given. ${ }^{9}$ Therefore Z is also given, ${ }^{10}$ and hence $B Z$ is (given) in position. ${ }^{11}$ But the circle too (is given in position). ${ }^{12}$ Hence B is given. ${ }^{13}$ But also Δ, E (are given). ${ }^{14}$ Therefore each of $\triangle \mathrm{A}, \mathrm{AE}$ (is given). ${ }^{15}$ For we shall prove it just as for the foregoing (lemmas); and the synthesis similarly to the one before.
(175) 15. (Prop. 110) For the twenty-fourth.

Let two circles $\mathrm{AB}, \mathrm{B} \Gamma$ be tangent to each other at point B , and let their centers Δ, E be taken, and let $A \Delta, \Delta B, \Gamma E, E B$ be joined. Let $A \Delta$ be parallel to ΓE. That the lines through Δ, B, E and through A, B, Γ are straight.

For let straight line $\mathbf{Z H}$ be drawn tangent to circles $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma} .1$ Then since ZH is tangent, and $\Delta \mathrm{B}$ from the center, therefore angle $\triangle \mathrm{BZ}$ is right. ${ }^{2}$ For the same reasons angle ZBE too is right. ${ }^{2}$ Hence the line through Δ, \dot{B}, E is straight. ${ }^{3}$ But since $\mathrm{A} \Delta$ equals $\Delta \mathrm{B}, 4$ and $\mathrm{E} \Gamma$ equals $\mathrm{EB},{ }^{5}$ as is $\mathrm{A} \Delta$ to $\Delta \mathrm{B}$, so is $\mathrm{E} \Gamma$ to $\mathrm{EB} .{ }^{6}$ And the sides around equal angles Δ, E are in ratio, ${ }^{7}$ and so angle $\triangle B A$ equals angle $\Gamma B E .8$ And $\triangle B E$ is a straight line. ${ }^{9}$ Thus the line through A, B, Γ is straight. ${ }^{\circ}$ Q.E.D.
(176) 16. (Prop. 111) With AB being equal to $\mathrm{B} \Gamma$, and $\mathrm{A} \Delta$ to $\Delta \mathrm{E}$, and ΔE being parallel to $B \Gamma$, to prove that the line through points A, E, Γ is straight.

Let $\mathrm{AE}, \mathrm{E} \Gamma$ be joined, and let BZ be drawn parallel to $\mathrm{AE}, 1$ and let $\mathrm{E} \Delta$ be produced to Z . Then $\Delta \mathrm{Z}$ equals $\Delta \mathrm{B} \cdot{ }^{2}$ But also $\mathrm{A} \Delta$ equals $\Delta \mathrm{E} \cdot{ }^{3}$ Hence all $A B$ equals all ZE. ${ }^{4}$ But $A B$ equals $B \Gamma .5$ Therefore $B \Gamma$ equals ZE. 6 But it is also parallel (to it). ${ }^{7}$ Hence ГE is (parallel) to BZ. ${ }^{8}$ But also AE is parallel to BZ. ${ }^{9}$ Therefore the <line through> A, E, Γ is straight; ${ }^{10}$ for this is obvious.

840
$\theta^{\prime} \epsilon \sigma \epsilon \iota$ öv $\nu 0 \varsigma \tau 0 \tilde{v} \mathrm{AB} \mathrm{\Gamma} \kappa \dot{v} \kappa \lambda o v,<\kappa a i>\delta \dot{v} o \delta o \theta^{\prime} \dot{\epsilon} \nu \tau \omega \tau \tilde{\omega} \nu \Delta, \mathrm{E}$, $\kappa \lambda \tilde{a} \nu \epsilon \dot{u} \theta \epsilon \tilde{\imath} a \nu \tau \grave{\eta} \nu \Delta \mathrm{AE} \dot{\omega} \sigma \tau \epsilon \pi a \rho a ́ \lambda \lambda \eta \lambda o \nu \epsilon \operatorname{lva} \tau \dot{\eta} \nu \mathrm{~B} \mathrm{\Gamma} \tau \tilde{\eta} \iota \Delta \mathrm{E}$.

(175) < ८є .'> єís тò к δ.

 $\dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{v} \chi \theta \omega \sigma a \nu$ ai $\mathrm{A} \Delta, \Delta \mathrm{B}, \Gamma \mathrm{E}, \mathrm{EB}$. 'е́ $\sigma \tau \omega \delta \grave{\epsilon} \pi a \rho a ́ \lambda \lambda \eta \lambda o s \dot{\eta} \mathrm{~A} \Delta \tau \tilde{\eta} \iota$

 $\mathrm{A} \Delta \tau \tilde{\eta}!\Delta \mathrm{B}, \dot{\eta} \delta \grave{\epsilon} \mathrm{E} \Gamma \tau \tilde{\eta} \iota \mathrm{EB}, \bar{\epsilon} \sigma \tau \iota \nu \dot{\omega} \varsigma \dot{\eta} \mathrm{A} \Delta \pi \rho \grave{o} \varsigma \tau \dot{\eta} \nu \Delta \mathrm{~B}$, oü $\tau \omega \varsigma \dot{\eta}$

 $\tau \tilde{\omega} \nu \mathrm{A}, \mathrm{B}, \Gamma$. ӧ $\pi \epsilon \rho:-$
(176) <七ऽ.'> єís тòкє.

 $\delta \iota \dot{a}, \tau \tilde{\omega} \nu \mathrm{~A}, \mathrm{E}, \Gamma \sigma \eta \mu \epsilon i \omega \nu ., \epsilon \pi \epsilon \zeta \epsilon \dot{v} \mathrm{x} \theta \omega \sigma a \nu$ ai $\mathrm{AE}, \mathrm{E} \Gamma, \kappa a i, \tau \tilde{\eta} \iota \mathrm{AE}$

 $\kappa a i$, add Camer ${ }_{1} \|^{3} \kappa \lambda \tilde{a} \nu$ Camer $_{1} \mathrm{~K} \bar{\Lambda}$ à $\left.\nu \mathrm{A} \mid \epsilon \dot{v} \theta \epsilon \tilde{\imath} a \nu\right]$
 $\delta o \theta^{\prime} \boldsymbol{\nu} \tau \omega \nu$ Camer ${ }_{2} \| 12 \iota \epsilon{ }^{\prime}$ add Camer $_{1}$ (BS) \| 15 EB Co EBA A \|
 A om Camer ${ }_{1}\left|\begin{array}{ll}\text { ZBH } \\ \text { ZHN A ZH Camer } \\ 1\end{array}\right| 18 \Delta B$ Co AB A $\quad 22$ $\boldsymbol{\gamma} \omega \nu^{\prime} \iota a \varsigma$ bis A corr $\mathrm{Co} \mathrm{\|} 26 \mathrm{c}^{\prime}$ add Camer ${ }_{1}(\mathrm{~V}) \| 28 \Delta \mathrm{E}$ Co ZE A\| 31 ö $\lambda \eta$] 'ion A 'ion 'ö $\lambda \eta$ Camer $_{1}$ (S) \| $\left.35 \dot{\eta} \delta \iota \dot{a} \tau \tilde{\omega} \nu\right] \dot{\eta}$ add Camer $_{1}$ (BS), reliqua supplevi
(177) 17. (Prop. 112) For the twenty-first.

If there is a circle $A B \Gamma$, and two equal (lines) $B \Delta, \Delta \Gamma$ are drawn to it, and $B \Delta$ is tangent, that also $\Delta \Gamma$ is tangent.

This is obvious. For if ΔA is drawn through, the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{E}$ equals the square of $\Delta \mathrm{B} \cdot{ }^{1}$ But the square of $\Delta \mathrm{B}$ equals the square of $\Delta \Gamma .{ }^{2}$ Hence the rectangle contained by $A \Delta, \Delta E$ equals the square of $\Delta \Gamma .{ }^{3}$ Thus $\Delta \Gamma$ is tangent to circle $A B \Gamma .{ }^{4}$
(178) 18. (Prop. 113) (Let there be) two circles $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$, and through B let some (straight line) $\mathrm{AB} \mathrm{\Gamma}$ be drawn, and two parallel (lines) $\mathrm{A} \Delta, \mathrm{E} \Gamma$, pointing toward the centers of the circles. That circles $\mathrm{AB}, \mathrm{B} \Gamma$ are tangent to each other at point B.

Let the centers of the circles Δ, E be taken, and let $\triangle \mathrm{B}, \mathrm{BE}$ be joined. Then the line through Δ, B, E is straight. For $A \Delta$ is parallel to $\Gamma E,{ }^{1}$ and as is $A \Delta$ to ΔB, so is ΓE to $E B ;{ }^{2}$ and there result two triangles that have one angle equal to one angle, A to Γ, and having the sides around other angles Δ, E in ratio. Hence the triangles are equiangular, ${ }^{3}$ and so angle $A B \Delta$ equals $\Gamma B E .4$ And line $A B \Gamma$ is straight; ${ }^{4}$ therefore line $\triangle B E$ too is straight. 6 But since the line through the centers and the point of tangency is straight, therefore circles $\mathrm{AB}, \mathrm{B} \Gamma$ are tangent to each other at point B. ${ }^{7}$
(179) 19. (Prop. 114) For the fifty-second.

Let $A B$ be parallel to $\Gamma \Delta$, and $A \Gamma$ equal to $B \Delta$, with angle $A \Gamma \Delta$ obtuse, angle $B \Delta \Gamma$ acute. That $A \Delta$ is a parallelogram.

For since angle $A \Gamma \Delta$ is obtuse, while angle $B \Delta \Gamma$ is acute, the perpendiculars drawn from A, B to $\Gamma \Delta<$ fall $>$, that from A outside Γ, that from B inside Δ. Let them be dropped, and let them be AE, BZ. ${ }^{1}$ Then AE is parallel to $\mathrm{BZ} .{ }^{2}$ But AB is also parallel to $\Gamma \Delta .^{3}$ And the angles at points E, Z are right. 4 Therefore $<Z \Delta>$ equals $\langle E \Gamma, 6$ because also $\rangle B \Delta$ <equals $>\mathrm{A} \Gamma .5$ Hence also all EZ equals $\Gamma \Delta .{ }^{7}$ And thus $A B$ equals $\Gamma \Delta .{ }^{8}$
(177) <८ : $^{\circ}>$ єis тò λa.

 ки́клои.

(179) $<\iota \theta$! $>$ єis $\begin{gathered}\text { ò } \nu \beta .\end{gathered}$

 $\kappa a i \dot{\eta} \mathrm{AB}$ á $\rho a \tau \tilde{\eta} \iota \Gamma \Delta \dot{\epsilon} \sigma \tau i \nu \quad i ́ \sigma \eta$.
 $\pi \rho o \sigma \beta \lambda \eta \theta \tilde{\omega} \sigma \iota \nu \mathrm{Hu}$ (index, s.v. $\pi \rho \sigma \sigma \beta \dot{a} \lambda \lambda \omega$) $\pi \rho o \beta \lambda \eta \theta \tilde{\omega} \sigma \iota \nu$ A 8 $\iota \eta^{\prime}$, add Camer $_{1}$ (BS) 13 ráp Co á $\rho a \operatorname{A} \| 14 \Delta \mathrm{~B}$ Co AB A || 21 $\iota \theta^{\circ}$ add Camer $_{1}$ (BS) $22 \dot{\eta}$ add $\mathrm{Hu}(\mathrm{S}) \| 27 \pi i \pi \tau 0 v \sigma \iota \nu \mathrm{Hu}$ (Co),

(180) 20. (Prop. 115) (Let there be) two equal circles $A B, \Gamma \Delta$, and through the centers (let there be) $A \Delta$, and $E Z$ parallel to $\Gamma \Delta$. I say that if produced, it cuts circle AB too.

Let the centers H, Θ of the circles be taken, and from points H, Θ let $\mathrm{HK},<\Theta \Lambda>$ be drawn at right angles to $\mathrm{A} \Delta .{ }^{1}$ <And let $\mathrm{K} \Lambda$ be joined. Then HK equals $>\Theta \Lambda .{ }^{2}$ But it is also parallel. ${ }^{3}$ Hence $K \Lambda$ too is equal and parallel to $\mathrm{H} \Theta .4$ Therefore angles $\mathrm{K} . \Lambda$ are right. ${ }^{4}$ And $\mathrm{HK}, \Theta \Lambda$ are from the centers. ${ }^{6}$ Hence $\mathrm{K} \Lambda$ is tangent to the circles. ${ }^{7}$ Accordingly it is obvious that the (line) tangent to $\Gamma \Delta$ is tangent also to AB. 8 Therefore the (line) cutting $\Gamma \Delta$, namely $E Z$, also cuts $A B$ when produced, 9 and will be between B, Λ, as EZ is between Γ, K. [EZ greater]
(181) 21. (Prop. 116) Let $\Delta \mathrm{A}$ be equal to AE , and $\mathrm{B} \Delta$ greater than ΓE, and let $\Delta \mathrm{E}$ be joined. That $\Delta \mathrm{E}$ produced intersects $\mathrm{B} \Gamma$.

Let $\Delta \mathrm{Z}$ be made equal to $\Gamma E,{ }^{1}$ and let $\Gamma \mathrm{Z}$ be joined. Then it is parallel to $\Delta \mathrm{E} ;^{2}$ and it intersects $\mathrm{B} \mathrm{\Gamma} \cdot{ }^{3}$ Therefore $\Delta \mathrm{E}$ too intersects $\mathrm{B} \mathrm{\Gamma} .{ }^{4}$
(182) 22. (Prop. 117) Problem for the same.

With circle $A B \Gamma$ (given) in position, and three given points Δ, E, Z on a straight line, to inflect a straight line $\triangle A E$, making $B \Gamma$ in a straight line with Γ Z.

Let it be accomplished, and through B let BH be drawn parallel to $\Delta Z,{ }^{1}$ and let $H \Gamma$ be joined and produced to Θ. Then angle $B H \Gamma$, that is angle A, equals angle $\Gamma \Theta Z .{ }^{2}$ Hence the rectangle contained by $A E, E \Gamma$ equals the rectangle contained by $\triangle \mathrm{E}, \mathrm{E} \Theta .^{3}$ But the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$ is given, ${ }^{4}$ since it equals the square of the tangent from E . Therefore also the rectangle contained by $\triangle \mathrm{E}, \mathrm{E} \Theta$ is given. ${ }^{5}$ And $\Delta \mathrm{E}$ is given. 6 Hence $E \Theta$ too is given. ${ }^{7}$ But it is also (given) in position; ${ }^{8}$ and E is
 become to make an inflection from two given points Θ, Z, making BH parallel to $\Theta E Z$; but this was written above (lemmas 7.167, .170, .172). Hence Γ is given. ${ }^{12}$ But E too is given. ${ }^{13}$ Therefore ΓE is (given) in position. ${ }^{14}$ But the circle too is given. ${ }^{15}$ Hence A is given. ${ }^{16}$ But Δ is also given. ${ }^{17}$ Thus $\Delta \mathrm{A}$ too is (given) in position. ${ }^{18}$ Q.E.D.
(180) <к.' >

 $\epsilon i \sigma i \nu \epsilon \kappa \tau \tilde{\omega} \nu \kappa \epsilon \in \nu \tau \rho \omega \nu$ ai HK , Ө Λ. ì $\mathrm{K} \Lambda$ á $\rho a \dot{\epsilon} \dot{\epsilon} \phi a \pi \tau \epsilon \tau a \iota \tau \tilde{\omega} \nu$

 $\dot{\epsilon} \sigma \tau i \nu \mu \epsilon \tau a \xi \dot{v}$. [' $\bar{\eta} \mathrm{EZ} \mu \epsilon i \xi \omega \nu$.]
 ГЕ, каі,$\dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{v} \chi \theta \omega \dot{\eta} \Delta \mathrm{E}$. ӧ́ $\tau \iota \dot{\epsilon} \kappa \beta \lambda \eta \theta \epsilon i \sigma a \dot{\eta} \Delta \mathrm{E} \sigma v \mu \pi i \pi \tau \epsilon \iota \tau \tilde{\eta} \iota$
 á $\rho a \dot{\epsilon} \sigma \tau i \nu \tau \tilde{\eta} \iota \Delta \mathrm{E}, \kappa а i \quad \sigma v \mu \pi i \pi \tau \epsilon \iota \tau \tilde{\eta} \iota \mathrm{~B} \mathrm{\Gamma}$. каi $\dot{\eta} \quad \Delta \mathrm{E}$ ápa 84 s $\sigma \nu \mu \pi i \pi \tau \epsilon \iota \tau \tilde{\eta} \iota \mathrm{~B} \mathrm{\Gamma}$.

 $\tau \tilde{\eta} \iota \Delta \mathrm{Z} \pi a \rho a ́ \lambda \lambda \eta \lambda o s \quad \eta x \theta \omega \quad \dot{\eta}, \mathrm{BH}, \kappa a i \quad \dot{\epsilon} \pi \epsilon \zeta \epsilon v \chi \theta \epsilon \tilde{\imath} \sigma a \quad \dot{\eta}$ НГ

I
 $\epsilon \pi \epsilon \zeta \epsilon \dot{v} \chi \theta \omega \dot{\eta} \mathrm{~K} \Lambda$ add Camer ${ }_{1}, i \neq \eta$ - HK add $\mathrm{Co} \| 6$ 'á ρa add $\mathrm{Co} \|$
 AB bis A corr $\mathrm{Co} \| 11 \delta \dot{\epsilon}] \dot{\epsilon} \pi \epsilon \dot{i}$ Hu $\| 12 \dot{\eta} \mathrm{EZ} \mu \epsilon i \xi \omega \nu$ del $\mathrm{Co} \| 13$ κa^{\prime} add Camer ${ }_{1}$ (BS) | $18 \kappa \beta^{\prime}$ add Camer $_{1}$ (BS) \| 19 ó $\left.\nu \tau 0 \varsigma\right]$

 $\dot{\eta} \mathrm{H} \Gamma \mathrm{Hu}$ app $\dot{\epsilon} \pi \epsilon \boldsymbol{\zeta} \epsilon \dot{v} \mathrm{X} \theta \omega \dot{\eta} \mathrm{H} \Gamma$ A post quae add $\kappa a i \mathrm{Ge} \| 24$ post

 $\pi 0 \iota \epsilon \tilde{\iota} \nu$ add $\tau \eta \nu$ ӨГZ Co| $\Theta E Z$ Co $\Theta K Z A \Theta Z$ Camer $_{1}$
(183) (Prop. 117) The synthesis of the problem will be made as follows. Let the circle $A B \Gamma$ be given, and the three points given on a straight line $\Delta, \mathrm{E}, \mathrm{Z}$, and let the rectangle contained by $\Delta \mathrm{E}, \mathrm{E} \Theta$ be made equal to the square of the tangent (from E). And from two given points Θ, Z , let a straight line make an inflection on the circle so that BH is parallel to ΘZ. I say that the line through $\mathrm{A}, \mathrm{B}, \Delta$ is straight.

For since each of the rectangles contained by $A E, E \Gamma$ and by $\Delta E, E \Theta$ equals the square of the tangent from E , the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$ equals the rectangle contained by $\Delta E, E \Theta .1$ Hence points $\Delta, \Theta, \Gamma, A$ are on a circle. ${ }^{2}$ And since angle $\mathrm{BH} \Gamma$ equals $\Gamma \Theta Z,{ }^{3}$ but angle $\mathrm{BH} \Gamma$ equals angle $\mathrm{BA} \mathrm{\Gamma}$ in the circle, ${ }^{4}$ therefore angle $\mathrm{BA} \Gamma$ equals angle $\Gamma \Theta \mathrm{E} .{ }^{5}$ And points A , Γ, Δ, Θ are on a circle. ${ }^{6}$ Hence AB is in a straight line with $\mathrm{B} \Delta .{ }^{7}$ Q.E.D.

The circumstances of the cases remain the same; for they refer to the circumstances of the cases for the (problem) to which this (problem) refers.
(184) 23. (Prop. 118) Let there be two circles $A B, \Gamma \Delta$, and let $A \Delta$ be produced, and let the radius of circle $A B$ be made to the radius of circle $\Gamma \Delta$ as is EH to HZ . That the (line) drawn through from H and cutting circle $\Gamma \Delta$, when produced, also cuts (circle) AB.

For let the centers of the circles, points E, Z, be taken, and from H let $\mathrm{H} \Theta$ be drawn tangent to circle $\Gamma \Delta,{ }^{1}$ and let $\langle\mathrm{Z} \Theta\rangle$ be joined. And let EK be drawn parallel to $Z \Theta .{ }^{2}$ Then since as is EH to HZ , so is EK to $\mathrm{ZQ},{ }^{3}$ therefore the line through $\mathrm{H}, \Theta, \mathrm{K}$ is straight. ${ }^{4}$ And angle Θ is right. ${ }^{5}$ Hence angle K too is right. ${ }^{6}$ Hence if the (line) from H is tangent to (circle) $\Gamma \Delta$, produced it will also be tangent to (circle) AB. ${ }^{7}$ But the (lines) that cut (circle) $\Gamma \Delta$ are between $\Delta, \Theta .{ }^{8}$ Hence produced they will be between K, B. ${ }^{9}$ And HK is tangent. ${ }^{10}$ Therefore the (line) between B, K and Δ, Θ will cut (circle $\Gamma \Delta$). ${ }^{11}$ But the same (line) also cuts (circle) AB. ${ }^{2}{ }^{2}$ Hence the (line) drawn from point H that cuts (circle) $\Gamma \Delta$, also cuts (circle) AB. ${ }^{13}$

The first (book) of Tangencies <has> seven problems; the second, four problems.
(183) $\sigma v \nu \tau \epsilon \theta \dot{\eta} \sigma \epsilon \tau a \iota$ ঠウ̀ $\tau \grave{o} \pi \rho \dot{o} \beta \lambda \eta \mu a$, $0 \ddot{v} \tau \omega \varsigma$. ' $\epsilon \sigma \tau \omega$ ó $\mu \grave{\epsilon} \nu$

 'ápa $\epsilon \sigma \tau i \nu \dot{\eta} \mathrm{AB} \tau \tilde{\eta} \iota \mathrm{B} \Delta$. ö $\pi \in \rho$: -

 $\tau \dot{\epsilon} \mu \nu \in \iota$ ároúc $\nu \eta$ á ${ }^{2} \grave{o} \tau 0 \tilde{v} \mathrm{H}$ $\sigma \eta \mu \epsilon i o v$.
 $\delta \epsilon \dot{v} \tau \epsilon \rho о \nu \pi \rho о \beta \lambda \dot{\eta} \mu a \tau a \delta$.

 $\| 8 \tau \grave{o} \mathrm{~A}^{2}$ ex $\tau \tilde{\omega} \iota \| 11$ á λ in fine vers. A del Camer ${ }_{z} \tau \mu \eta \mu a \tau \iota \mathrm{Hu}$

 $22 \mathrm{HO} \mathrm{HZ} \mathrm{A}^{1} \Theta$ add supr $\mathrm{A}^{2} \mid \mathrm{ZQ} \kappa a i \quad \tau \tilde{\eta} \mathrm{c}$ add $\mathrm{Hu} \| 25 \dot{\eta} \Theta$ Camer $_{1}$ (Co) $\mathrm{H} \Theta \mathrm{A} \| 27$ ai Никаі A\| $\left.29 \Delta \mathrm{CoZA} \mathrm{\|} 30 \mathrm{AB}\right] \Gamma \Delta$ $\mathrm{Hu} \| \mathbf{~}^{\prime}$ ' $\boldsymbol{\epsilon} \chi \in \iota$ add Hu
(185) Plane Loci, (Books) 1, 2.

1. (Prop. 119) For the first locus of the second (book).
(Let there be) triangle $A B \Gamma$, and let straight line $A \Delta$ be drawn, and, as is $\mathrm{B} \Delta$ to $\Delta \Gamma$, so let the square of BA be to the square of $A \Gamma$. That the rectangle contained by $B \Delta, \Delta \Gamma$ equals the square of $A \Delta$.

Through Γ draw ΓE parallel to $A B .{ }^{1}$ Then as is $B \Delta$ to $\Delta \Gamma$, so is $A B$ to ΓE, and the square of $A B$ to the rectangle contained by $A B, \Gamma E .{ }^{2}$ But as is $B \Delta$ to $\Delta \Gamma$, so was the square of $B A$ to the square of $A \Gamma .{ }^{3}$ Hence the rectangle contained by $B A, \Gamma E$ equals the square of $\Gamma A .4$ Therefore the (sides) around equal alternate angles are in ratio. Hence angle $\Gamma A \Delta$ equals angle B. ${ }^{5}$ Thus the rectangle contained by $B \Delta, \Delta \Gamma$ equals the square of $\Delta \mathrm{A} .{ }^{6}$ The converse is obvious.
(186) 2. (Prop. 120) For the second locus.
(Let there be) triangle $A B \Gamma$, and ΔA a perpendicular. That the excess of the squares of $B A, A \Gamma$ equals the excess of the squares of $B \Delta, \Delta \Gamma$, and if $B \Gamma$ is bisected at E, the <excess> of the squares of $B \Delta,<\Delta \Gamma>$ is twice the rectangle contained by $\mathrm{B} \Gamma, \mathrm{E} \Delta$.

Now it is obvious that the excess of the squares of $B A, A \Gamma$ is equal to the excess of the squares of $\Delta \Gamma, \Delta \Gamma$. For the square of $A B$ equals the squares of $B \Delta,<A \Delta>, 1$ while the square of $A \Gamma$ equals the squares of $A \Delta$, $\Delta \Gamma .{ }^{2}$ Hence the amount by which the square of $A B$ exceeds the square of $A \Gamma$ is the amount by which the squares of $A \Delta, \Delta B$ exceed the squares of $A \Delta, \Delta \Gamma \cdot{ }^{3}$ And let the square of $A \Delta$ be subtracted. Then the remainder, that by which the square of $B \Delta$ exceeds the square of $\Delta \Gamma$, is the amount by which the square of $A B$ exceeds the square of $A \Gamma .4$ But (the excess) of the squares of $B \Delta, \Delta \Gamma$ is twice the rectangle contained by $B \Gamma, E \Delta .5$ Thus also (the excess) of the squares of $A B, A \Gamma .{ }^{6}$

But that also the excess of the squares of $B \Delta, \Delta \Gamma$ is twice the rectangle contained by $B \Gamma, \Delta E$ (is proved) as follows. For since $B E$ equals $\mathrm{E} \Gamma, 7$ therefore $\mathrm{B} \Delta$ equals $\Gamma \mathrm{E}$ plus $\mathrm{E} \Delta .8$ And the square of $\mathrm{B} \Delta$ therefore equals the square of ΓE plus $E \Delta .9$ But the square of ΓE plus $E \Delta$ exceeds the square of $\Gamma \Delta$ by four times the rectangle contained by $\Gamma E, E \Delta$, that is twice the rectangle contained by $B \Gamma, \Delta E .^{10}$ Thus the excess of the squares of $B \Delta, \Delta \Gamma$ is twice the rectangle contained by $B \Gamma, \Delta E .{ }^{1}$

(185) EПI $\Pi E \Delta \Omega N$ TOח $\Omega N A^{\prime} B^{\prime}$

 'íoov $\tau \dot{o} \dot{u} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{~B} \Delta \Gamma \tau \tilde{\omega} \iota$ áno $\mathrm{A} \Delta$. $\dot{\eta} \chi \theta \omega \delta i \grave{a} \tau 0 \tilde{v} \Gamma \tau \tilde{\eta} \iota \mathrm{AB}$ $\pi a \rho a ́ \lambda \lambda \eta \lambda o s \dot{\eta} \Gamma \mathrm{E}$. $\epsilon \in \sigma \tau \iota \nu$ ápa $\dot{\omega} \varsigma \dot{\eta} \mathrm{B} \Delta \pi \rho o \stackrel{\varsigma}{\tau} \dot{\eta} \nu \Delta \Gamma$, oü $\tau \omega \varsigma \dot{\eta} \mathrm{AB}$

 $\phi a \nu \in \rho o \nu$.

 $\dot{\epsilon} \sigma \tau i \nu \quad \sigma \nu \nu a \mu \phi о \tau \epsilon \rho \omega \iota \tau \tilde{\eta} \iota \Gamma \mathrm{E} \Delta$. каi $\tau \grave{o}$ áào $\mathrm{B} \Delta$ á ρa 'íoov $\dot{\epsilon} \sigma \tau i \nu$

(187) 3. (Prop. 121) For the same (locus), if the ratio is not that of equal to equal.
(Let there be) triangle $\mathrm{AB} \mathrm{\Gamma}$, and let the square of BA be greater than the square of $\mathrm{A} \Gamma$ by a given than in ratio, namely given E, ratio $B \Delta$ to $\Delta \Gamma .{ }^{1}$ That the rectangle contained by $\Delta B, B \Gamma$ is greater than area E.

For let the given area, (\mathbf{E}, namely) ABH , be subtracted. Then the ratio of the remaining rectangle contained by BA, AH to the square of $\mathrm{A} \Gamma$ is the given ratio, the same as that of $B \Delta$ to $\Delta \Gamma \cdot{ }^{2}$ Let the rectangle contained by $\mathrm{ZA}, \mathrm{A} \Gamma$ be made equal to the rectangle contained by $\mathrm{BA}, \mathrm{AH}{ }^{3}$ Then the ratio of the rectangle contained by $\mathrm{ZA}, \mathrm{A} \Gamma$ to the square of $\mathrm{A} \Gamma$, that is of ZA to $A \Gamma$, is the same as that of $B \Delta$ to $\Delta \Gamma .4$ Hence $A \Delta$ is parallel to ZB. ${ }^{5}$ Therefore angle Z equals angle $\Gamma A \Delta .^{6}$ But angle Z equals angle $А Н \Gamma,{ }^{7}$ and so angle $А Н \Gamma$ equals angle $\Gamma A \Delta .{ }^{8}$ But angle $A \Delta \Theta$ is greater than angle $\Gamma А \Delta .{ }^{9}$ And so angle ГHA too is greater than angle $\mathrm{A} \Delta \Theta .{ }^{10}$ Thus the rectangle contained by $\Delta \mathrm{B}, \mathrm{B} \Gamma$ is greater than the rectangle contained by AB, BH, that is than E , the given area. 1^{1}
(188) 4. (Prop. 122) For the third locus. If $\mathrm{AB} \mathrm{\Gamma}$ is a triangle, and some (line) $\mathrm{A} \Delta$ is drawn through, cutting $\mathrm{B} \mathrm{\Gamma}$, that the squares of $\mathrm{BA}, \mathrm{A} \Gamma$ are twice the squares of $A \Delta, \Delta \Gamma$.

Let perpendicular $A E$ be drawn. ${ }^{1}$ The squares of $\mathrm{BE}, \mathrm{E} \Gamma$ are twice the squares of $\mathrm{B} \Delta, \Delta \mathrm{E} .{ }^{2}$ But also twice the square of AE plus twice the square of ΔE is twice the square of $A \Delta ;{ }^{3}$ and the squares of $B E, E \Gamma$ plus twice the square of AE is equal to the squares of $\mathrm{BA}, \mathrm{A} \mathrm{\Gamma} .{ }^{4}$ Hence the squares of $B A, A \Gamma$ are twice the squares of $A \Delta, \Delta B, 5$ that is (twice) the squares of $\Gamma \Delta, \Delta A .{ }^{6}$
(189) 5. (Prop. 123) (Given) ratio AB to $\mathrm{B} \Gamma$, and area the rectangle contained by $\Gamma \mathrm{A}, \mathrm{A} \Delta$, if the mean proportional BE is taken of $\Delta \mathrm{B}, \mathrm{B} \mathrm{\Gamma}$, to prove that the square of AE is greater than the square of $\mathrm{E} \Gamma$ by the rectangle contained by $\Gamma A, A \Delta$ than in the ratio of $A B$ to $B \Gamma$.

For, as is $A B$ to $B \Gamma$, so let some other (line) $Z E$ be made to $E \Gamma .{ }^{1}$ Then in ratio and separando as is $A \Gamma$ to ΓB, so is $Z \Gamma$ to $\Gamma E .^{2}$ And hence all AZ is to all BE as is $\mathrm{A} \Gamma$ to $\mathrm{B} \mathrm{\Gamma} .^{3}$ Thus alternando as is ZA to $\mathrm{A} \Gamma$, so is $E B$ to $B \Gamma .4$ But as is $E B$ to $B \Gamma$, so is $\triangle E$ to $E \Gamma, 5$ because it is mean proportional. Hence as is ZA to $\mathrm{A} \Gamma$, so is $\mathrm{E} \Delta$ to $\Gamma \mathrm{E} .{ }^{6}$ Area to area, therefore, the rectangle contained by $\mathrm{AZ}, \mathrm{E} \Gamma$ is equal to the rectangle contained by $\mathrm{A}, \Delta \mathrm{E} .7$ But [four times] the rectangle contained by $\mathrm{AZ}, \Gamma \mathrm{E}$ exceeds the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$ by the rectangle contained by $\mathrm{ZE}, \mathrm{E} \Gamma .{ }^{8}$ And the amount by which the rectangle contained <by $\mathrm{A} \Gamma, \Delta \mathrm{E}$ exceeds the rectangle contained by $A E, E \Gamma$ is the amount by which also the rectangle contained by $A Z, \Gamma E$ exceeds the rectangle contained by $A E$, $E \Gamma .9$ Hence the $>$ rectangle contained by $A \Gamma, \Delta E$ is greater than the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$ by the rectangle contained by $\mathrm{ZE}, \mathrm{E} \Gamma .{ }^{10}$ But the amount by which the rectangle contained by $\mathrm{A} \Gamma, \Delta \mathrm{E}$ exceeds the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$ is the amount by which also the square of

 $\tau \tilde{\eta} \varsigma, \dot{v} \pi \dot{o}$ ГА

(188) < .' > єís tò ν tpitov tó π ov.

 $\dot{\epsilon} \sigma \tau \iota \nu, \tau \tilde{\omega} \nu \dot{a} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{~A} \Delta, \Delta \Gamma \tau \epsilon \tau \rho a \gamma \dot{\omega} \nu \omega \nu, \quad, \quad \eta, x \theta \omega \kappa \dot{a} \theta \epsilon \tau 0, \varsigma \dot{\eta} \mathrm{AE}$. $\tau \dot{a}$

 $\delta \iota \pi \lambda a ́ \sigma \iota a ́ \epsilon \dot{\epsilon} \sigma \tau \iota \nu \tau \tilde{\omega} \nu$ á $\pi \grave{o} \mathrm{~A} \Delta, \Delta \mathrm{~B} \tau \epsilon \tau \rho a \gamma \dot{\omega} \nu \omega \nu, \tau o v \tau \dot{\epsilon} \sigma \tau \iota \nu \tau \tilde{\omega} \nu$ á $\pi \grave{o}$ $\Gamma \Delta, \Delta \mathrm{A} \tau \epsilon \tau \rho a \gamma \omega \nu \omega \nu$.

[^36]$A E$ exceeds the rectangle contained by $\Delta A, A \Gamma .11$ Hence the square of $A E$ is greater than the rectangle contained by $\Gamma \mathrm{A}, \mathrm{A} \Delta$ by the rectangle contained by ZE, $\mathrm{E} \Gamma . .^{2}$ <But the rectangle contained by $\mathrm{ZE}, \mathrm{E} \Gamma>$ has to the square of $\mathrm{E} \Gamma$ the same ratio as that of AB to $\mathrm{B} \Gamma .{ }^{13}$ Thus the square of AE is greater than the square of $\mathrm{E} \Gamma$ by the rectangle contained by $\Gamma \mathrm{A}$, $\mathrm{A} \Delta$ than in the ratio of AB to $\mathrm{B} \Gamma .{ }^{14}$
(190) 6. (Prop. 124) (Given) ratio AB to $\mathrm{B} \Gamma$, and area the rectangle contained by $\Gamma \mathrm{A}, \mathrm{A} \Delta$. If the mean proportional BE is taken of $\Delta \mathrm{B}, \mathrm{B} \Gamma$, that the square of AE is greater than the square of $\mathrm{E} \Gamma$ by the rectangle contained by $\Gamma \mathrm{A}, \mathrm{A} \Delta$ than in the ratio of AB to $\mathrm{B} \Gamma$.

For, as is AB to $\mathrm{B} \mathrm{\Gamma}$, so let some other (line) EZ be to $\Gamma \mathrm{E} .1$ Then separando and remainder to remainder, as is ZA to BE , so is $\mathrm{A} \Gamma$ to $\mathrm{B} \Gamma .{ }^{2}$ Alternando, as is ZA to $\mathrm{A} \Gamma$, so is EB to $\mathrm{B} \mathrm{\Gamma} .^{3}$ But as is EB to $\mathrm{B} \mathrm{\Gamma}$, so is $\Delta \mathrm{E}$ to $\mathrm{E} \Gamma .{ }^{4}$ And so as is ZA to $\mathrm{A} \Gamma$, so is $\Delta \mathrm{E}$ to $\Gamma \mathrm{E} . .^{5}$ Area to area, therefore, the rectangle contained by $\mathrm{ZA}, \Gamma \mathrm{E}$ equals the rectangle contained by $\mathrm{E} \Delta$, $\mathrm{A} \cdot{ }^{6}$ Let the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$ plus the rectangle contained by $\Gamma \mathrm{A}, \mathrm{A} \Delta$ be added in common. Then the whole square of AE equals the whole of the rectangle contained by $\mathrm{ZE}, \mathrm{E} \Gamma$ and as well the rectangle contained by $\Gamma \mathrm{A}, \mathrm{A} \Delta .{ }^{7}$ Hence the square of AE is greater than the square of $\mathrm{E} \Gamma$ by the rectangle contained by $\Gamma \mathrm{A}, \mathrm{A} \Delta$ than in the ratio of AB to $\mathrm{B} \Gamma .{ }^{8}$ For the rectangle contained by $\mathrm{ZE}, \mathrm{E} \Gamma$ has this ratio to the square of $\mathrm{E} \Gamma .{ }^{9}$

 خórov.

 (recc?) $\mu \in \iota \xi \omega \nu \mathrm{A} \| 13 \varsigma^{\prime}$ add Camer_{2} (BS) $\| 14 \Delta \mathrm{~B}, \mathrm{~B} \Gamma$ Co $\Delta \mathrm{A}, \mathrm{AB}$
 Co || 18 ZA Co $\mathrm{Z} \Gamma \mathrm{A} \mid \mathrm{BE}$ Co ГE A | $20 \Delta \mathrm{E}$ Co E $\Delta \mathrm{EA} \| 21 \Delta \mathrm{E}$ Co $\Delta \Gamma \mathrm{A}\|22 \mathrm{E} \Delta, \mathrm{A} \Gamma \mathrm{Co} \mathrm{E} \Delta \Gamma \mathrm{A}\| 23 \mathrm{AE} \Gamma \mathrm{Co} \Delta \mathrm{E} \Gamma \mathrm{A} \mid \mathrm{AE}$ Co $\Delta \mathrm{E}$ A \| $25 \mathrm{AECo} \mathrm{\Delta EA} \mid \tau o \tilde{v} \mathrm{Camer}_{2}{ }^{\text {(BS) }} \boldsymbol{\tau}$ oúvou A
(191) 7. (Prop. 125) (Given) straight line $A B$, and two points Γ, Δ. That <if> the square of $A \Delta$ is put together with that which has the same ratio to the square of ΔB as that of $A \Gamma$ to ΓB, then there results the square of $A \Gamma$ plus that which has the same ratio to the square of ΓB as that of $A \Gamma$ to ΓB and as well that which has the same ratio to the square of $\Gamma \Delta$ as that of $A B$ to $B \Gamma$.

For let the (ratio) of $Z \Delta$ to ΔB be the same as that of $A \Gamma$ to $\Gamma B .1$ And so componendo (and remainder to remainder) also remainder $A Z$ is to remainder $\Gamma \Delta$, that is the rectangle contained by $A Z, \Gamma \Delta$, is to the square of $\Gamma \Delta$, as is $A B$ to $B \Gamma .2$ Hence that which has the same ratio to the square of ΔB as that of $A \Gamma$ to ΓB is the rectangle contained by $Z \Delta, \Delta B,{ }^{3}$ and that which has <the same ratio> to the square of $\Gamma B<a s$ that of $A \Gamma$ to $\Gamma B>$ is the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{B}, 4$ and that which has the same ratio to the square of $\Gamma \Delta$ as that of $A B$ to $B \Gamma$ is the rectangle contained by $A Z$, $\Delta \Gamma .5$ Hence (to prove) that the square of $\mathrm{A} \Delta$ plus the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{Z}$ equals the rectangle contained by $\mathrm{BA}, \mathrm{A} \Gamma$ plus the rectangle contained by $A Z, \Gamma \Delta .{ }^{6}$ And let the rectangle contained by $\Delta A, A \Gamma$ be subtracted in common. That the remaining rectangle contained by $A \Delta, \Delta \Gamma$ plus the rectangle contained by $\mathrm{Z} \Delta, \Delta \mathrm{B}$ equals the rectangle contained by $\mathrm{A} \Gamma, \Delta \mathrm{B}$ plus the rectangle contained by $\mathrm{AZ}, \Gamma \Delta .{ }^{7}$ Let the rectangle contained by $A Z, \Gamma \Delta$ be subtracted in common. Then (to prove) that the rectangle contained by $\mathrm{Z} \Delta, \Delta \Gamma$ plus the rectangle contained by $\mathrm{Z} \Delta, \Delta \mathrm{B}-$ this turns out to be the whole rectangle contained by $\mathrm{Z} \Delta, \Gamma B$ - equals the rectangle contained by $\mathrm{A} \Gamma, \Delta \mathrm{B} .{ }^{8}$ But it is; for straight lines $\mathrm{A}, \Gamma \mathrm{B}, \mathrm{Z} \Delta$, ΔB are in ratio. ${ }^{9}$
(192) 8. (Prop. 126) (Given) straight line $A B$ in position, and Γ arbitrary. That there is a given (point) on $A B$, so that the square of $A \Gamma$ plus that which has a given ratio to the square of ΓB equals a given plus that which has a given ratio to the square of the (line) between the given (point) and Γ.

For let $A \Delta$ be made to ΔB as the (first) given ratio. ${ }^{1}$ Then the ratio of $A \Delta$ to ΔB is given; and so point Δ is given. ${ }^{2}$ But since $A B$ is a straight line, and Δ, Γ are two points (on it), therefore the square of $A \Gamma$ plus that which has the same ratio to the square of ΓB as that of $A \Delta$ to ΔB equals the square of $A \Delta$ plus that which has the same ratio to the square of ΔB as that of $A \Delta$ of ΔB plus as well that which has the same ratio to the square of $\Delta \Gamma$ as that of $A B$ to $B \Delta$ (lemma 7.191). 4 And that which has the same ratio to the square of ΔB as that of $A \Delta$ to $B \Delta$ is the rectangle contained by

|| $1 \zeta^{\circ}$ add Camer $_{2}$ (BS) \| 2 éà̀ ν add Co \| 3 ГВ Со $Г \Delta$ A |
 A 6 , $\tau \tilde{\omega} \iota \ldots \lambda \dot{o} \gamma \omega \iota$ Camer $_{z} \tau \tilde{\omega} \iota \ldots \lambda o ́ \gamma o \nu, \epsilon \in \chi o \nu A \tau \tilde{\omega} \iota \gamma \dot{a} \rho$

 (Co) \| $14 \mathrm{~B} \Delta \mathrm{Z}$ Hu $\Delta \Gamma \mathrm{Z}$ A $\mathrm{Z} \Delta \mathrm{B}$ Co $\| 18 \mathrm{Z} \Delta \Gamma$ Co $\mathrm{ZA} \mathrm{A} \mid \mathrm{Z} \Delta \mathrm{B}$ Co $\mathrm{Z} \Delta$

$A \Delta, \Delta B .5$ Therefore the square of $A \Gamma$ plus that which has the same ratio to the square of ΓB as that of $A \Delta$ to ΔB, that is <a given (ratio), equals $>$ the rectangle contained by $B A, A \Delta$, that is a given, plus that which has the same ratio to the square of $\Delta \Gamma$ as that of $A B$ to $B \Delta$, that is a given (ratio). 6 Similarly, if the given (point) Γ is outside straight line $A B$, we shall prove by the same course.

 áколоvөial $\delta \in i \xi \neq \mu \epsilon \nu$.
(193) Porisms, (Books) 1, 2, 3.

From Book 1:

1. (Prop. $127 a-e$) For the first porism.

Let there be figure $A B \Gamma \Delta E Z H$, and, as is $A Z$ to $Z H$, so let $A \Delta$ be to $\Delta \Gamma$, and let $\Theta \mathrm{K}$ be joined. That $\Theta \mathrm{K}$ is parallel to $A \Gamma$.

Let $\mathrm{Z} \Lambda$ be drawn through Z parallel to $\mathrm{B} \Delta .{ }^{1}$ Then since, as is AZ to ZH , so is $\mathrm{A} \Delta$ to $\Delta \Gamma,{ }^{2}$ by inversion and componendo and alternando as is $\Delta \mathrm{A}$ to $A Z$, that is, in parallels, as is BA to $A \Lambda,{ }^{4}$ so is ΓA to $A H .{ }^{3}$ Hence ΛH is parallel to $B \Gamma .{ }^{5}$ Therefore as is EB to $\mathrm{B} \Lambda$, so is $\angle E \Theta$ to $\Theta H .{ }^{6}$ But also as is EB to $B \Lambda$, so>, in parallels, is EK to KZ. ${ }^{7}$ Thus as is EK to KZ, so is $\mathrm{E} \Theta$ to $\Theta \mathrm{H} .{ }^{8} \Theta \mathrm{~K}$ is therefore parallel to $\mathrm{A} \mathrm{\Gamma} .{ }^{9}$
(194) (Prop. $127 a-e$) By compound ratios, as follows:

Since, as is $A Z$ to $Z H$, so is $A \Delta$ to $\Delta \Gamma, 1$ by inversion, as is $H Z$ to $Z A$, so is $\Gamma \Delta$ to $\Delta \mathrm{A} .{ }^{2}$ Componendo and alternando and convertendo, as is $\mathrm{A} \Delta$ to ΔZ, so is $A \Gamma$ to $\Gamma \mathrm{H}^{3}$ But the (ratio) of $A \Delta$ to ΔZ is compounded out of that of $\angle A B$ to $B E$ and that of EK to $K^{4}{ }^{4}$ (see commentary), while that of $A \Gamma$ to ΓH (is compounded) out of that of $>\mathrm{AB}$ to BE and that of $\mathrm{E} \Theta$ to ΘH^{5} (see commentary). Therefore the ratio compounded out of that which $A B$ has to $B E$ and $E K$ has to $K Z$ is the same as the (ratio) compounded out of that which $A B$ has to $B E$ and $E \Theta$ has to $\Theta H .6$ And let the ratio of $A B$ to $B E$ be removed in common. Then there remains the ratio of $E K$ to $K Z$ equal to the ratio of $\mathrm{E} \Theta$ to $\Theta \mathrm{H} .{ }^{7}$ Thus $\Theta \mathrm{K}$ is parallel to $\mathrm{A} \mathrm{\Gamma} .{ }^{8}$
(195) (Prop. 128) For the second porism.

Figure $A B \Gamma \triangle E Z H$. Let $A Z$ be parallel to $\triangle B$, and as is $A E$ to $E Z$, so let ΓH be to HZ . That the (line) through $\Theta, \mathrm{K}, \mathrm{Z}$ is straight.

Let $\mathrm{H} \Lambda$ be drawn through H parallel to $\Delta \mathrm{E},{ }^{1}$ and let $\Theta \mathrm{K}$ be joined and produced to Λ. Then since, as is AE to EZ , so is $\Gamma \mathrm{H}$ to $\mathrm{HZ},{ }^{2}$ alternando as

тoṽ π рผ́тou.

5

 $\dot{\epsilon} \pi \epsilon i$ oùv $\dot{\epsilon} \sigma \tau \iota \nu \dot{\omega} \dot{\varsigma} \dot{\eta} \mathrm{AZ} \pi \rho \grave{o} \varsigma \tau \dot{\eta} \nu \mathrm{ZH}$, oü $\tau \omega \varsigma \dot{\eta} \mathrm{A} \Delta \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \Delta \Gamma$,

 $\dot{\omega} \varsigma \dot{\eta} \mathrm{EB} \pi \rho \dot{\rho} \varsigma \tau \dot{\eta} \nu \mathrm{B} \Lambda$, oü $\tau \omega \varsigma>\bar{\epsilon} \nu \pi a \rho a \lambda \lambda \dot{\eta} \lambda \omega \iota \dot{\eta} \mathrm{EK} \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \mathrm{KZ}$.
 $\pi a \rho a ́ \lambda \lambda \eta \lambda o s$ á $\rho a \dot{\epsilon} \sigma \tau i \nu \dot{\eta}$ ӨК т $\eta \iota А Г$.

 $<\mathrm{AB} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{BE} \kappa a i \quad \tau 0 \tilde{v} \tau \tilde{\eta} \varsigma \mathrm{EK} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{KZ}$, ó $\delta \grave{\epsilon} \tau \tilde{\eta} \varsigma \mathrm{A} \Gamma \pi \rho \dot{o} \mathrm{~s}$ $\tau \dot{\eta} \nu$ ГН

 $\pi \rho o s ~ \tau \dot{\eta} \nu$ ӨН $\lambda o ́ \gamma \omega \iota .<\pi a \rho a ́ \lambda \lambda \eta \lambda o s>$ á $\rho a \dot{\epsilon} \sigma \tau i \nu \dot{\eta}$ ӨК $\tau \tilde{\eta} \iota \mathrm{A} \mathrm{\Gamma}$.
(195) єís тò $\delta \in \dot{v} \tau \epsilon \rho о \nu \pi \pi^{\circ} \rho \iota \sigma \mu a$.

[^37]is AE to $\Gamma \mathrm{H}$, so is EZ to $\mathrm{ZH} .{ }^{3}$ But as is AE to $\Gamma \mathrm{H}$, so is $\mathrm{E} \Theta$ to $\mathrm{H} \Lambda$, ${ }^{4}$ and alternando, because there are two by two (parallel lines). Therefore as is EZ to ZH , so is $\mathrm{E} \Theta$ to $\mathrm{H} \Lambda .^{5}$ And $\mathrm{E} \Theta$ is parallel to $\mathrm{H} \Lambda .{ }^{6}$ Thus (VI, 32) the (line) through $\Theta, \Lambda, \mathbf{Z}$ is straight. ${ }^{7}$ Q.E.D.
(196) (Prop. $129 a-h$) Let two straight lines $\Theta \mathrm{E}, \Theta \Delta$ be drawn onto three straight lines $\mathrm{AB}, \Gamma \mathrm{A}, \Delta \mathrm{A}$. That, as is the rectangle contained by $\Theta \mathrm{E}$, HZ to the rectangle contained by OH, ZE, so is the rectangle contained by $\Theta \mathrm{B}, \Delta \Gamma$ to the rectangle contained by $\Theta \Delta, \mathrm{B} \Gamma$.

Let $K \Lambda$ be drawn through Θ parallel to $Z \Gamma A, 1$ and let ΔA and $A B$ intersect it at points K and Λ; and (let there be drawn) ΛM through Λ parallel to $\Delta \mathrm{A},{ }^{2}$ and let it intersect E E at M . Then since, as is EZ to ZA , so is $E \Theta$ to $\Theta \Lambda,{ }^{3}$ while as is $A Z$ to $Z H$, so is $\Theta \Lambda$ to $\Theta M,{ }^{5}$ because ΘK is to ΘH also (as is $\Theta \Lambda$ to $\Theta \mathrm{M}$) in parallels, ${ }^{4}$ therefore ex aequali as is EZ to ZH , so is $\mathrm{E} \Theta$ to Θ M. ${ }^{6}$ Therefore the rectangle contained by $\Theta \mathrm{E}, \mathrm{HZ}$ equals the rectangle contained by EZ, $\Theta \mathrm{M} .{ }^{7}$ But (let) the rectangle contained by EZ, $\Theta \mathrm{H}$ (be) another arbitrary quantity. Then as is the rectangle contained by $\mathrm{E} \Theta, \mathrm{HZ}$ to the rectangle contained by EZ, $\mathrm{H} \Theta$, so is the rectangle contained by $\mathrm{EZ}, \mathrm{\Theta M}$ to the rectangle contained by $\mathrm{EZ}, \mathrm{H} \Theta,{ }^{8}$ that is $\Theta \mathrm{M}$ to $\Theta \mathrm{H},{ }^{9}$ that is $\Lambda \Theta$ to $\Theta K .1^{\circ}$ By the same argument also as is $K \Theta$ to $\Theta \Lambda$, so is the rectangle contained by $\Theta \Delta, \mathrm{B} \Gamma$ to the rectangle contained by $\Theta \mathrm{B}, \Gamma \Delta .{ }^{1}$ 1 By inversion, therefore, as is $\Lambda \Theta$ to $\Theta \mathrm{K}$, so is the rectangle contained by $\Theta \mathrm{B}$, $\Gamma \Delta$ to the rectangle contained by $\Theta \Delta, B \Gamma \cdot{ }^{12}$ But as is $\Lambda \Theta$ to $\Theta \mathrm{K}$, so the rectangle contained by $\mathrm{E} \Theta, \mathrm{HZ}$ was shown to be to the rectangle contained by EZ, $\mathrm{H} \Theta$. And thus as is the rectangle contained by E Θ, HZ to the rectangle contained by EZ, $\mathrm{H} \Theta$, so is the rectangle contained by $\Theta \mathrm{B}, \Gamma \Delta$ to the rectangle contained by $\Theta \Delta, \mathrm{B} \cdot .^{13}$
(197) (Prop. $129 a-h$) By means of compounded ratios, as follows:

Since the ratio of the rectangle contained by $\Theta \mathrm{E}, \mathrm{HZ}$ to the rectangle contained by $\Theta H, Z E$ is compounded out of that which ΘE has to EZ and that which ZH has to $\mathrm{H} \Theta,{ }^{1}$ and as is $\Theta \mathrm{E}$ to EZ , so is $\Theta \Lambda$ to $\mathrm{ZA},{ }^{2}$ while as is ZH to $\mathrm{H} \Theta$, so is ZA to $\Theta \mathrm{K},{ }^{3}$ therefore the (ratio of the) rectangle contained by $\Theta \mathrm{E}, \mathrm{HZ}$ to the rectangle contained by $\Theta \mathrm{H}, \mathrm{EZ}$ is compounded out of that which $\Theta \Lambda$ has to ZA and that which ZA has to $\Theta K .{ }^{4}$ But the (ratio) compounded out of that which $\Theta \Lambda$ has to ZA and that which ZA has to $\Theta \mathrm{K}$ is the same as that of $\Theta \Lambda$ to $\Theta \mathrm{K} .{ }^{5}$ Hence as is the rectangle contained by $\Theta \mathrm{E}, \mathrm{HZ}$ to the rectangle contained by $\Theta \mathrm{H}, \mathrm{ZE}$, so is $\Theta \Lambda$ to $\Theta \mathrm{K} .{ }^{6}$ For the same reasons also as is the rectangle contained by $\Theta \Delta, \mathrm{B} \Gamma$ to

 $\dot{\epsilon} \sigma \tau \mathfrak{i} \nu \dot{\eta} \delta \iota \grave{a} \tau \tilde{\omega} \nu \theta, \Lambda, Z$. $\ddot{\partial}(\pi \epsilon \rho):-$

 $\Theta, \tau \tilde{\eta} \iota$ ZГA $\pi a \rho a ́ \lambda \lambda \eta \lambda o s ~ \tilde{\eta} \mathrm{~K} \Lambda, \kappa a i a_{i} \Delta \mathrm{~A}, \mathrm{AB} \sigma v \mu \pi \iota \pi \tau \epsilon \tau \omega \sigma a \nu$

 transp. Hu, quae omnia del Heiberg ${ }_{3} \| 6$ post Θ add K Ge (S) \mid post Z add $\tau 0 \cup \tau \dot{\epsilon} \sigma \tau \iota \nu \dot{\eta} \delta \iota \dot{a} \tau \tilde{\omega} \nu \Theta, \mathrm{~K}, \mathrm{Z} H u \| 11 \Delta(\mathrm{~A})$ in ras. $\mathrm{A} \mid$ pro $\dot{\eta}$ $\Lambda \mathrm{M} \kappa а і$ coni. $\delta \iota a \chi \theta \epsilon i \sigma a \dot{\eta} \Lambda \mathrm{M} \mathrm{Hu}$ app \| 17 pro $\tau v \chi o ̀ \nu$ coni.
 add Ge (S) || $26 \dot{o}$ add Heiberg ${ }_{3} \| 28 \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu E Z-Z H$ bis A corr Co
the rectangle contained by $\Theta \mathrm{B}, \Gamma \Delta$, so is $\Theta \mathrm{K}$ to $\Theta \Lambda .{ }^{7}$ And by inversion, as is the rectangle contained by $\Theta \mathrm{B}, \Gamma \Delta$ to the rectangle contained by $\Theta \Delta, \mathrm{B} \Gamma$, so is $\Lambda \Theta$ to $\Theta K .{ }^{8}$ But as is the rectangle contained by $\Theta E, Z \mathrm{ZH}$ to the rectangle contained by $\Theta \mathrm{H}, \mathrm{ZE}$, <so was $\Theta \Lambda$ to $\Theta \mathrm{K}$. Thus, as is the rectangle contained by $\Theta \mathrm{E}, \mathrm{ZH}$ to the rectangle contained by $\Theta \mathrm{H}, \mathrm{ZE},>$ so is the rectangle contained by $\Theta \mathrm{B}, \Gamma \Delta$ to the rectangle contained by $\Theta \Delta$, ВГ. ${ }^{9}$
(198) (Prop. $130 a-h$) Figure ABГДEZHӨKム. As is the rectangle contained by $\mathrm{AZ}, \mathrm{B} \Gamma$ to the rectangle contained by $\mathrm{AB}, \Gamma \mathrm{Z}$, so let the rectangle contained by $A Z, \Delta E$ be to the rectangle contained by $A \Delta$, $E Z$. That the (line) through points $\Theta, \mathrm{H}, \mathrm{Z}$ is straight.

Since, as is the rectangle contained by $\mathrm{AZ}, \mathrm{B} \Gamma$ to the rectangle contained by $\mathrm{AB}, \Gamma \mathrm{Z}$, so is the rectangle contained by $\mathrm{AZ}, \Delta \mathrm{E}$ to the rectangle contained by A $\Delta, \mathrm{EZ},{ }^{1}$ alternando as is the rectangle contained by $\mathrm{AZ}, \mathrm{B} \Gamma$ to the rectangle contained by $\mathrm{AZ}, \Delta \mathrm{E}$, that is as is $\mathrm{B} \Gamma$ to $\Delta \mathrm{E},{ }^{3}$ so is the rectangle contained by $\mathrm{AB}, \Gamma \mathrm{Z}$ to the rectangle contained by $\mathrm{A} \Delta, \mathrm{EZ} .{ }^{2}$ But the ratio of $\mathrm{B} \Gamma$ to $\Delta \mathrm{E}$ is compounded, if KM is drawn through K parallel to $\mathrm{AZ},{ }^{4}$ out of that which $\mathrm{B} \mathrm{\Gamma}$ has to KN and that which KN has to KM , and as well that which $K M$ has to $\Delta E \cdot{ }^{5}$ But the (ratio) of the rectangle contained by $\mathrm{AB}, \Gamma \mathrm{Z}$ to the rectangle contained by $\mathrm{A} \Delta, \mathrm{EZ}$ is compounded out of that of BA to A Δ and that of ΓZ to ZE. 6 Let the (ratio) of BA to A Δ be removed in common, this being the same as that of NK to KM. ${ }^{7}$ Then the remaining (ratio) of $\Gamma \mathrm{Z}$ to ZE is compounded out of that of $\mathrm{B} \Gamma$ to KN , that is that of $\Theta \Gamma$ to $K \Theta,{ }^{9}$ and that of $K M$ to ΔE, that is that of KH to HE. 108 Thus the (line) through $\Theta, \mathrm{H}, \mathrm{Z}$ is straight.

For if I draw $\mathrm{E} E$ through E parallel to $\Theta \Gamma,{ }^{11}$ and ΘH is joined and produced to Ξ, the ratio of $K H$ to HE is the same as that of $K \Theta$ to $E \Xi, 12$ while the (ratio) compounded out of that of $\Gamma \Theta$ to $\Theta \mathrm{K}$ and that of $\Theta \mathrm{K}$ to $\mathrm{E} \Xi$ is converted into the ratio of $\Theta \Gamma$ to $E E, 1^{3}$ and the ratio of ΓZ to $Z E$ is the same as that of $\Gamma \Theta$ to $\mathrm{E} \Xi .{ }^{14}$ Because $\Gamma \Theta$ is (therefore) parallel to $\mathrm{E} \Xi, 15$ the (line) through Θ, Ξ, \mathbf{Z} is straight; ${ }^{16}$ for that is obvious. Therefore the (line) through $\Theta, \mathbf{H}, \mathrm{Z}$ is also straight. ${ }^{17}$
(199) (Prop. 131) If there is figure $A B \Gamma \triangle E Z H \Theta$, then as $A \Delta$ is to $\Delta \Gamma$, so is $A B$ to $B \Gamma$. So let $A B$ be to $B \Gamma$ as is $A \Delta$ to $\Delta \Gamma$. That the (line) through $\mathrm{A}, \mathrm{H}, \boldsymbol{\Theta}$ is straight.

 öт $\epsilon \dot{v} \theta \epsilon \tau \mathfrak{i} a \dot{\epsilon} \sigma \tau \iota \nu \dot{\eta} \delta \iota \dot{a} \tau \tilde{\omega} \nu \Theta, \mathrm{H}, \mathrm{Z} \sigma \eta \mu \epsilon i \omega \nu . \dot{\epsilon} \pi \epsilon i \dot{\epsilon} \epsilon \sigma \tau \iota \nu \dot{\omega} \varsigma \tau \dot{o}$

 $\mathrm{KM} \pi \rho o \mathrm{~s} \tau \eta \nu \Delta \mathrm{E}, \tau \operatorname{dov} \tau \sigma \tau \iota \nu<\tau o \tilde{v}>\tau \tilde{\eta} \varsigma \mathrm{KH} \pi \rho o s \tau \eta \nu \mathrm{HE}, \epsilon \dot{v} \theta \epsilon i a$

 $\epsilon \sigma \tau \iota \nu$.

[^38]Let $K \Lambda$ be drawn through H parallel to $A \Delta .{ }^{1}$ Then since as is $A \Delta$ to $\Delta \Gamma$, so is $A B$ to $B \Gamma,{ }^{2}$ while as is $A \Delta$ to $\Delta \Gamma$, so is $K \Lambda$ to $\Lambda H,{ }^{3}$ and as is $A B$ to $B \Gamma$, so is $K H$ to $H M,{ }^{4}$ therefore as is $K \Lambda$ to ΛH, so is $K H$ to $H M .5$ And remainder $\mathrm{H} \Lambda$ is to remainder $\Lambda \mathrm{M}$ as is $\mathrm{K} \Lambda$ to $\Lambda \mathrm{H},{ }^{6}$ that is as $A \Delta$ is to $\Delta \Gamma .{ }^{7}$ Alternando as is $\mathrm{A} \Delta$ to $\mathrm{H} \Lambda$, so is $\Gamma \Delta$ to $\Lambda \mathrm{M},{ }^{8}$ that is $\Delta \Theta$ to $\Theta \Lambda .{ }^{9}$ And $\mathrm{H} \Lambda$ is parallel to AB. ${ }^{10}$ Hence the (line) through points A, $\mathrm{H}, \boldsymbol{\theta}$ is straight; ${ }^{11}$ for this is obvious.
(200) (Prop. 132) Again if there is a figure ($\mathrm{AB} \mathrm{\Gamma} \triangle \mathrm{EZH}$), and $\Delta \mathrm{Z}$ is parallel to $B \Gamma$, then $A B$ equals $B \Gamma$. So let it be equal. That (ΔZ) is parallel (to $\mathrm{B} \mathrm{\Gamma}$).

But it is. For if, with EB drawn through, I make $\mathrm{B} \Theta$ equal to $\mathrm{HB},{ }^{1}$ and I join $A \Theta$ and $\Theta \Gamma$, then there results a parallelogram $A \Theta \Gamma H,{ }^{2}$ and because of this, as is A Δ to ΔE, so is ΓZ to ZE. ${ }^{4}$ For each of the foregoing (ratios) is the same as the ratio of $\Theta \mathrm{H}$ to HE. ${ }^{3}$ Thus (VI, 2) $\Delta \mathrm{Z}$ is parallel to $\mathrm{A} \Gamma .{ }^{5}$
(201) (Prop. 133) Let there be a figure (АВГДEZHӨ), and let BA be a mean proportional between $\Delta \mathrm{B}$ and $\mathrm{B} \Gamma$. That ZH is parallel to $\mathrm{A} \Gamma$.

Let EB be produced, and let AK be drawn through A parallel to straight line $\Delta Z,{ }^{1}$ and let ΓK be joined. Then since as is ΓB to $B A$, so is $A B$ to $B \Delta,{ }^{2}$ while as is $A B$ to $B \Delta$, so is $K B$ to $B \Theta,{ }^{3}$ therefore as is ΓB to BA , so is KB to $\mathrm{B} \mathrm{\Theta} .{ }^{4}$ Hence $\mathrm{A} \Theta$ is parallel to $\mathrm{K} \Gamma .{ }^{5}$ Therefore again, as is AZ to ZE , so is $\Gamma \mathrm{H}$ to $\mathrm{HE} ;{ }^{7}$ for either of the foregoing ratios is the same as that of $K \Theta$ to $\mathrm{E} \Theta .{ }^{6}$ Thus ZH is parallel to $\mathrm{A} \Delta .{ }^{8}$
(202) (Prop. 134) Let there be an "altar" $А В Г \triangle \mathrm{EZH}$, and let $\Delta \mathrm{E}$ be parallel to Br , and EH to BZ . That $\Delta \mathrm{Z}$ too is parallel to $\Gamma \mathrm{H}$.

Let $\mathrm{BE}, \Delta \Gamma$, and ZH be joined. Then triangle $\Delta \mathrm{BE}$ equals triangle $\Delta \Gamma E .1$ Let triangle $\triangle \mathrm{AE}$ be added in common. Then all triangle ABE equals all triangle $\Gamma \Delta \mathrm{A} .{ }^{2}$ Again, since BZ is parallel to $\mathrm{EH},{ }^{3}$ triangle BZE equals triangle BZH. ${ }^{4}$ Let triangle ABZ be subtracted in common. Then the remaining triangle ABE equals the remaining triangle AHZ. ${ }^{5}$ But
$\mathrm{A} \Delta \pi \rho \grave{o} \varsigma \tau \dot{\eta} \nu \Delta \Gamma$, oü $\tau \omega \varsigma \dot{\eta} \mathrm{AB} \pi \rho \dot{o} \varsigma ~ \tau \dot{\eta} \nu \mathrm{~B} \Gamma, \dot{a} \lambda \lambda$ ' $\dot{\omega} \varsigma \mu \dot{\epsilon} \nu \dot{\eta} \mathrm{A} \Delta \pi \rho \dot{o} \varsigma$ $\tau \dot{\eta} \nu \Delta \Gamma$, oúr $\omega \varsigma \dot{\eta} \mathrm{K} \Lambda \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \Lambda H, \dot{\omega} \varsigma \delta \dot{\epsilon} \dot{\eta} \mathrm{AB} \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \mathrm{~B} \Gamma$, oúr $\omega \varsigma$
 $\pi \rho o s ~ \tau \eta \nu \mathrm{HM}$. каi $\lambda о \iota \pi \dot{\eta} \dot{\eta} \mathrm{H} \Lambda \pi \rho o s ~ \lambda o \iota \pi \eta \nu \tau \eta \nu \Lambda M \in \sigma \tau i \nu \omega s \dot{\eta}$

 $\delta i \dot{a} \tau о \tilde{v} \mathrm{~A} \tau \tilde{\eta} \iota, \Delta \mathrm{Z}$, $\dot{v} \theta \in i a \iota \quad \pi a \rho a ́ \lambda \lambda \eta \lambda o s, \dot{\eta} \chi \theta \omega \quad \dot{\eta} \mathrm{AK}, \kappa a i$

 $\pi a \rho a ́ \lambda \lambda \eta \lambda o ́ s ~ ' ́ \sigma \tau \iota \nu \dot{\eta} \mathrm{ZH} \tau \tilde{\eta} \iota \mathrm{A} \Delta$.

876

5

 'íoov $\epsilon \sigma \tau i \nu . \pi a ́ \lambda \iota \nu$ є $\pi \epsilon i \quad \pi a \rho a ́ \lambda \lambda \eta \lambda o s ~ \epsilon \sigma \tau \iota \nu \dot{\eta} \mathrm{BZ} \tau \tilde{\eta} \iota \mathrm{EH}, \mathfrak{i} \sigma 0 \nu$
 $\tau \grave{o} \mathrm{ABZ} \tau \rho i \gamma \omega \nu o \nu$. 入o $\tau \pi \grave{o} \nu$ á $\rho a \tau \grave{o} \mathrm{ABE} \tau \rho i \gamma \omega \nu 0 \nu \lambda o \iota \pi \tilde{\omega} \iota \tau \tilde{\omega} \iota \mathrm{AHZ}$

 A $\in \pi i \pi \tau \tilde{\eta} \varsigma$ EB $\theta \tilde{\omega}$ Hu $\tau \tilde{\eta} \subset$ EB $\pi \rho o \sigma \theta \tilde{\omega}$ Heiberg $_{3}$, del Co】 14

 $\mu ́ \epsilon \sigma \eta \mathrm{Hu} \mathrm{AB}, \mathrm{B} \Gamma \mu \dot{\epsilon} \sigma \eta \mathrm{A} \mathrm{AB}, \mathrm{B} \Gamma \tau \rho i \tau \eta \mathrm{Co} \Gamma \mathrm{B}, \mathrm{AB} \tau \rho i \tau \eta$ Breton $\| 17 \mathrm{BA} \mathrm{Hu} \mathrm{B} \Delta \mathrm{A}|\epsilon \in \beta \in \beta \lambda \eta \sigma \theta \omega \mathrm{Co} \dot{\epsilon} \kappa \beta \lambda \eta \theta \in \tilde{\imath} \sigma a \mathrm{~A}| \mathrm{EB}$ Co AB A | $21 \mathrm{BA} \mathrm{Co} \mathrm{B} \Lambda \mathrm{A}\|22 \mathrm{~A} \Theta \mathrm{Co} \Lambda \Theta \mathrm{A}\| 23 \mathrm{ZE} \mathrm{Co} \mathrm{Z} \Gamma \mathrm{A} \mid$
 $\mathrm{Co} \| 25 \mathrm{~A} \Delta] \mathrm{A} \Gamma$ Breton \| $26 \dot{\circ} \mathrm{j}] \dot{\eta} \mathrm{Ge} \| 31 \dot{\eta} \ldots \tau \tilde{\eta} \imath] \tau \tilde{\eta} \iota \ldots \dot{\eta}$ coni Hu app \| $32 \dot{a} \phi \eta \iota \rho \dot{\eta} \sigma \theta \omega \mathrm{Ge}(\mathrm{BS}) \dot{a} \phi a \iota \rho \eta \sigma \theta \omega \mathrm{~A}$
triangle ABE equals triangle $\mathrm{A} \Gamma$. Therefore triangle $\mathrm{A} \Gamma \Delta$ too equals triangle AZH. ${ }^{6}$ Let triangle AГH be added in common. Then all triangle $\Gamma \Delta H$ equals all triangle Γ ZH. ${ }^{7}$ And they are on the same base, $\Gamma \mathrm{H}$. Hence $(\mathrm{I}, 39) \Gamma \mathrm{H}$ is parallel to $\Delta \mathrm{Z} \cdot{ }^{8}$
(203) (Prop. 135) Let there be triangle $\mathrm{AB} \mathrm{\Gamma}$, and let $\mathrm{A} \Delta$ and AE be drawn through it, and let ZH be drawn parallel to $\mathrm{B} \Gamma$, and let $\mathrm{Z} \Theta \mathrm{H}$ be inflected. Let $\Delta \Theta$ be to $\Theta \mathrm{E}$ as is $\mathrm{B} \Theta$ to $\Theta \Gamma$. That $K \Lambda$ is parallel to $\mathrm{B} \Gamma$.

For since $\Delta \Theta$ is to ΘE as is $B \Theta$ to $\Theta \Gamma,{ }^{1}$ therefore remainder $B \Delta$ is to remainder $\Gamma \mathrm{E}$ as is $\Delta \Theta$ to $\Theta \mathrm{E} .{ }^{2}$ But as is $\mathrm{B} \Delta$ to $\mathrm{E} \Gamma$, so is ZM to $\mathrm{NH} .{ }^{3}$ $<$ Hence as is ZM to $\mathrm{NH},>$ so is $\Delta \Theta$ to $\Theta \mathrm{E} .4$ Alternando as is ZM to $\Delta \Theta$, so is $N H$ to $\Theta E .5$ But as is $Z M$ to $\Delta \Theta$, so is $Z K$ to $K \Theta$ in parallels; 6 while as HN is to $\Theta \mathrm{E}$, so is $\mathrm{H} \Lambda$ to $\Lambda \Theta$. ${ }^{7}$ Therefore as is ZK to $\mathrm{K} \Theta$, so is $\mathrm{H} \Lambda$ to $\Lambda \Theta .^{8}$ Thus $\mathrm{K} \Lambda$ is parallel to $\mathrm{HZ},{ }^{9}$ and therefore also to $\Gamma \mathrm{B} .{ }^{10}$
(204) (Prop. 136) Let two straight lines $\Delta \Theta, \Theta \mathrm{E}$ be drawn onto two straight lines BAE, $\triangle \mathrm{AH}$ from point Θ. Let the rectangle contained by ΘH, ZE be to the rectangle contained by $\Theta \mathrm{E}, \mathrm{ZH}$ as is the rectangle contained by $\Delta \Theta, B \Gamma$ to the rectangle contained by $\Delta \Gamma, B \Theta$. That the (line) through Γ, A, Z is straight.

Let $\mathrm{K} \Lambda$ be drawn through Θ parallel to $\Gamma \mathrm{A},{ }^{1}$ and let it intersect AB and $A \Delta$ at points K and Λ. And let ΛM be drawn through Λ parallel to $A \Delta,{ }^{2}$ and let $E \Theta$ be produced to M . And let KN be drawn through K parallel to $A B,{ }^{3}$ and let $\Delta \Theta$ be produced to N.

Then since because of the parallels $\Delta \Gamma$ is to ΓB as is $\Delta \Theta$ to $\Theta \mathrm{N},{ }^{4}$ therefore the rectangle contained by $\Delta \Theta, \Gamma В$ equals the rectangle contained by $\Delta \Gamma, \Theta N .{ }^{5}$ (Let) the rectangle contained by $\Delta \Gamma, \mathrm{B} \Theta$ (be) some other arbitrary quantity. Then as is the rectangle contained by $\Delta \Theta, B \Gamma$ to the rectangle contained by $\Delta \Gamma, \mathrm{B} \Theta$, so is the rectangle contained by $\Gamma \Delta, \Theta \mathrm{N}$ to the rectangle contained by $\Delta \Gamma, \mathrm{B} \Theta, 6$ that is $\Theta \mathrm{N}$ to $\Theta \mathrm{B} .{ }^{7}$ But as is the rectangle contained by $\Theta \Delta, B \Gamma$ to the rectangle contained by $\Delta \Gamma, B \Theta$, so was the rectangle contained by $\Theta \mathrm{H}, \mathrm{ZE}$ assumed to be to the rectangle contained by $\Theta \mathrm{E}, \mathrm{ZH},{ }^{8}$ while as is $\Theta \mathrm{N}$ to $\Theta \mathrm{B}$, so is $\mathrm{K} \Theta$ to $\Theta \Lambda,{ }^{9}$ that is in parallels $\mathrm{H} \Theta$ to $\Theta \mathrm{M},{ }^{10}$ that is the rectangle contained by $\Theta \mathrm{H}, \mathrm{ZE}$ to the rectangle contained by $\Theta \mathrm{M}, \mathrm{ZE} .11$ Hence as is the rectangle contained by $\Theta \mathrm{H}, \mathrm{ZE}$ to the rectangle contained by $\Theta \mathrm{E}, \mathrm{ZH}$, so is the rectangle contained by $\Theta H, Z E$ to the rectangle contained by ΘM, ZE. ${ }^{2}$ Therefore <the rectangle contained by $\mathrm{\Theta E}, \mathrm{ZH}>$ equals <the rectangle contained by $\Theta \mathrm{M}$, ZE. ${ }^{13}$ In ratio, therefore, $>$ as is $M \Theta$ to ΘE, so is HZ to ZE. 1^{4} Componendo ${ }^{15}$ and alternando as is ME to EH , so is $\Theta \mathrm{E}$ to $\mathrm{EZ} .{ }^{16}$ But $\Lambda \mathrm{E}$ is to EA as is ME to EH. ${ }^{17}$ Therefore as is $\Lambda \mathrm{E}$ to EA, so is $\Theta \mathrm{E}$ to EZ. 1^{8} Hence $A Z$ is parallel to $K \Lambda .^{19}$ But ΓA is also (parallel) to (KA). ${ }^{20}$ Thus $\Gamma \mathrm{AZ}$ is straight. ${ }^{1}$ Q.E.D.

 $\dot{\epsilon} \sigma \tau i \nu \dot{\eta}$ ГН $\tau \tilde{\eta} \iota \Delta \mathrm{Z}$.
(203) ' $\epsilon \sigma \tau \omega \tau \rho i \gamma \omega \nu o \nu \tau \grave{o} \mathrm{AB} \mathrm{\Gamma}, \kappa a i$ é ν áu $\tau \tilde{\omega} \iota \delta \iota \dot{\eta} \times \theta \omega \sigma a \nu$ ai $\mathrm{A} \Delta$,

 $\tau \dot{\eta} \nu$ ГЕ $\dot{\epsilon} \sigma \tau i \nu \dot{\omega} \varsigma \dot{\eta} \Delta \Theta \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \Theta E$. $\dot{\omega} \varsigma \quad \delta \dot{\epsilon} \dot{\eta} \mathrm{B} \Delta \pi \rho \dot{o} s \tau \dot{\eta} \nu \mathrm{E} \Gamma$,

 $\dot{\eta} \mathrm{K} \Lambda \tau \tilde{\eta} \iota \mathrm{HZ}$. $\ddot{\omega} \sigma \tau \epsilon \kappa а \grave{\imath} \tau \tilde{\eta} \iota$ ГВ.

[^39]The characteristics of the cases of this (proposition are) as the foregoing ones, of which it is the converse.
(205) (Prop. 137) Triangle $\mathrm{AB} \mathrm{\Gamma}$, and $\mathrm{A} \Delta$ parallel to $\mathrm{B} \Gamma$, and let $\Delta \mathrm{E}$ be drawn through and intersect $\mathrm{B} \Gamma$ at point E . That $\Gamma \mathrm{B}$ is to BE as is the rectangle contained by $\Delta \mathrm{E}, \mathrm{ZH}$ to the rectangle contained by $\mathrm{EZ}, \mathrm{H} \Delta$.

Let $\Gamma \Theta$ be drawn through Γ parallel to $\Delta \mathrm{E}, 1$ and let AB be produced to Θ. Then since $\Gamma \Theta$ is to ZH as is $\Gamma \mathrm{A}$ to $\mathrm{AH},{ }^{2}$ while $E \Delta$ is to ΔH as is ΓA to $\mathrm{AH},{ }^{3}$ therefore $\Theta \Gamma$ is to ZH as is $\mathrm{E} \Delta$ to $\Delta \mathrm{H} \cdot{ }^{4}$ Hence the rectangle contained by $\Gamma \Theta, \Delta \mathrm{H}$ equals the rectangle contained by $\mathrm{E} \Delta, \mathrm{ZH} .{ }^{5}$ (Let) the rectangle contained by EZ, $\mathrm{H} \Delta$ (be) some other arbitrary quantity. Then as is the rectangle contained by $\Delta \mathrm{E}, \mathrm{ZH}$ to the rectangle contained by $\Delta \mathrm{H}, \mathrm{EZ}$, so is the rectangle contained by $\Gamma \Theta, \Delta \mathrm{H}$ to the rectangle contained by $\Delta \mathrm{H}$, $\mathrm{EZ},{ }^{6}$ that is $\Gamma \Theta$ to $\mathrm{EZ},{ }^{7}$ that is $\Gamma \mathrm{B}$ to $\mathrm{BE} .^{8}$ Thus as is the rectangle contained by $\Delta \mathrm{E}, \mathrm{ZH}$ to the rectangle contained by $\mathrm{EZ}, \mathrm{H} \Delta$, so is $\Gamma \mathrm{B}$ to BE . The same if parallel $A \Delta$ is drawn on the other side, and the straight line $(\Delta \mathrm{E})$ is drawn through from Δ outside (the triangle) in the direction of Γ.
(206) (Prop. 138) Now that these things have been proved, let it be required to prove that, if AB and $\Gamma \Delta$ are parallel, and some straight lines $\mathrm{A} \Delta, \mathrm{AZ}, \mathrm{B} \Gamma, \mathrm{BZ}$ intersect them, and $\mathrm{E} \Delta$ and $\mathrm{E} \Gamma$ are joined, it results that the (line) through H, M, and K is straight.

For since $\Delta A Z$ is a triangle, and $A E$ is parallel to $\Delta Z,{ }^{1}$ and $E \Gamma$ has been drawn through intersecting $\Delta \mathrm{Z}$ at Γ, by the foregoing (lemma) it turns out that as ΔZ is to $Z \Gamma$, so is the rectangle contained by $\Gamma E, H \Theta$ to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E} .{ }^{2}$ Again, since $\Gamma \mathrm{BZ}$ is a triangle, and BE

 ávaनт 0 ó申しоข.
(205) $\tau \rho i \gamma \omega \nu 0 \nu \quad \tau \grave{0} \mathrm{AB} \mathrm{\Gamma}$, каi т $\tilde{\eta} \iota \mathrm{B} \mathrm{\Gamma} \pi a \rho a ́ \lambda \lambda \eta \lambda о \varsigma \dot{\eta} \mathrm{~A} \Delta$, каi

 $\epsilon \dot{u} \theta \epsilon i a$.

 ӨM, ӨE. каi $\dot{\omega} \varsigma$ 'á ρa add Co\| 9 ГА Со $\Gamma \Delta \mathrm{A} \mid \Gamma A Z \dot{o}(\pi \epsilon \rho) \mathrm{Ge}(\mathrm{V})$

has been drawn parallel to $\Gamma \Delta,{ }^{3}$ and ΔE has been drawn through intersecting $\Gamma Z \Delta$ at Δ, it turns out that as ΓZ is to $Z \Delta$, so is the rectangle contained by $\Delta \mathrm{E}, \Lambda \mathrm{K}$ to the rectangle contained by $\Delta \mathrm{K}, \Lambda \mathrm{E} .4$ By inversion, therefore, as $\Delta \mathrm{Z}$ is to $\mathrm{Z} \Gamma$, so is the rectangle contained by $\Delta K, \Delta E$ to the rectangle contained by $\Delta E, \Lambda K .5$ But also as ΔZ is to $Z \Gamma$, so was the rectangle contained by $\Gamma \mathrm{E}, \mathrm{H} \Theta$ to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E}$. Therefore as the rectangle contained by $\Gamma \mathrm{E}, \mathrm{H} \Theta$ to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E}$, so is the rectangle contained by $\Delta \mathrm{K}, \Lambda \mathrm{E}$ to the rectangle contained by $\Delta E, K \Lambda .6$ This has been reduced to the (lemma) before last. Then since two straight lines $E \Gamma, E \Delta$ have been drawn onto two straight lines $\Gamma M \Lambda, \triangle M \Theta$, and as the rectangle contained by $\Gamma E, H \Theta$ is to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E}$, so is the rectangle contained by $\Delta \mathrm{K}, \mathrm{E} \Lambda$ to the rectangle contained by $\Delta \mathrm{E}, \Lambda \mathrm{K}$, therefore the (line) through $\mathrm{H}, \mathrm{M}, \mathrm{K}$ is straight; ${ }^{7}$ for this was proved before (lemma 7.204).
(207) (Prop. 139) But now let AB and $\Gamma \Delta$ not be parallel, but let them intersect at N . That again the (line) through H, M, and K is straight.

Since two (straight lines) ΓE and $\Gamma \Delta$ have been drawn through from the same point Γ onto three straight lines $A N, A Z, A \Delta$, it turns out that as is the rectangle contained by $\Gamma \mathrm{E}, \mathrm{H} \Theta$ to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E}$, so is the rectangle contained by $\Gamma \mathrm{N}, \mathrm{Z} \Delta$ to the rectangle contained by $\mathrm{N} \Delta$, ΓZ (lemma 7.196). 1 Again, since two (straight lines) $\Delta E, \Delta N$ have been drawn through from the same point Δ onto three straight lines $B N, B \Gamma, \Gamma Z$, as is the rectangle contained by $\mathrm{N} \Gamma, \mathrm{Z} \Delta$ to the rectangle contained by $\mathrm{N} \Delta$, $\mathrm{Z} \Gamma$, so is the rectangle contained by $\Delta \mathrm{K}, \mathrm{E} \Lambda$ to the rectangle contained by $\Delta \mathrm{E}, \mathrm{K} \Lambda .2$ But as is the rectangle contained by $\mathrm{N} \Gamma, \mathrm{Z} \Delta$ to the rectangle contained by $N \Delta, \Gamma Z$, so the rectangle contained by $\Gamma E, H \Theta$ was proved to be to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E}$. Therefore as is the rectangle contained by $\Gamma \mathrm{E}, \Theta \mathrm{H}$ to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E}$, so is the rectangle contained by $\Delta \mathrm{K}, \mathrm{E} \Lambda$ to the rectangle contained by $\Delta \mathrm{E}, \mathrm{K} \Lambda .{ }^{3}$ It has been reduced to the (lemma) which (it was reduced to) also in the case of the parallels. Because of the foregoing (lemma 7.204) the (line) through $\mathrm{H}, \mathrm{M}, \mathrm{K}$ is straight. ${ }^{4}$
(208) (Prop. 140) Let AB be parallel to $\Gamma \Delta$, and let AE and $\Gamma \mathrm{B}$ be drawn through, and (let) Z (be) a point on $B H$, so that as is ΔE to $E \Gamma$, so will the rectangle contained by $\Gamma \mathrm{B}, \mathrm{HZ}$ be to the rectangle contained by ZB , $\Gamma \mathrm{H}$. That the (line) through $\mathrm{A}, \mathbf{Z}, \Delta$ is straight.

Let $\Delta \Theta$ be drawn through Δ parallel to $B \Gamma,{ }^{1}$ and let $A E$ be produced to Θ; and let ΘK be drawn through Θ parallel to $\Gamma \Delta,{ }^{2}$ and let $B \Gamma$ be produced to K. Then since as is ΔE to $E \Gamma$, so is the rectangle contained by $\Gamma \mathrm{B}, \mathrm{ZH}$ to the rectangle contained by $\mathrm{BZ}, \Gamma \mathrm{H}$ (lemma 7.205), ${ }^{4}$ while as is $\Delta \mathrm{E}$ to $\mathrm{E} \Gamma$, so are $\Delta \Theta$ to $\Gamma \mathrm{H}$ and (consequently) the rectangle contained by $\Delta \Theta, \mathrm{BZ}$ to the rectangle contained by $\Gamma \mathrm{H}, \mathrm{BZ},{ }^{3}$ therefore the rectangle contained by $\mathrm{B} \Gamma, \mathrm{ZH}$ equals the rectangle contained by $\Delta \Theta, \mathrm{BZ} .5$ Hence in
 $\mathrm{BE}, \kappa а i \delta \iota \tilde{\eta} \kappa \tau a \iota \dot{\eta} \Delta \mathrm{E}$ оv $\mu \pi i \pi \tau 0 v \sigma a \tau \tilde{\eta} \iota \Gamma Z \Delta \kappa a \tau \dot{a} \tau \dot{o} \Delta, \gamma i \nu \in \tau a \iota$

 $\pi \rho о \delta \epsilon \delta \epsilon \iota \kappa \tau a \iota$.

(208) ' $\epsilon \sigma \tau \omega \pi a \rho a ́ \lambda \lambda \eta \lambda o s \dot{\eta} \mathrm{AB} \tau \tilde{\eta} \iota \Gamma \Delta$, каi $\delta \iota \tilde{\eta} \times \theta \omega \sigma a \nu$ ai AE,

 Co ГН A \| 24 á $\pi \tilde{\eta} \kappa \tau a \iota]$ à $\nu \tilde{\eta} \kappa \tau a \iota \mathrm{Ge} \mid \dot{a} \pi \tilde{\eta} \kappa \tau a \iota$ -
 $\mathrm{Ge}(\mathrm{BS}) \dot{\epsilon} \pi \epsilon \bar{i} \mathrm{~A} \mid \mathrm{BH} \mathrm{Co} \mathrm{ZH} \mathrm{A} \| 30 \dot{\epsilon} \kappa \beta \epsilon \beta \lambda \tilde{\eta} \sigma \theta \omega \mathrm{Ge} \dot{\epsilon} \kappa \beta \lambda \eta \theta \tilde{\eta} \iota \mathrm{A}$ | 33 BZ, ГН Heiberg ${ }_{3}$ ВГ, ZH А ZB, ГН Co \mid $\epsilon \sigma \tau i \nu$ del coni. Hu app
ratio as ΓB is to $B Z$, so is $\Delta \theta$, that is $\Gamma K,{ }^{7}$ to $\mathrm{HZ} .{ }^{6}$ Hence the sum $K B$ is to the sum BH as $\mathrm{K} \Gamma$ is to $\mathrm{ZH},{ }^{8}$ that is as $\Delta \theta$ is to $\mathbf{Z H} \cdot{ }^{9}$ But as is KB to BH , so in parallels are $\Theta \mathrm{A}$ to AH , and $\Delta \Theta$ to $\mathrm{ZH} .{ }^{10}$ And $\Delta \Theta$ and ZH are parallel. 11 Thus the (line) through points $\mathrm{A}, \mathrm{Z}, \Delta$ is straight. 12
(209) (Prop. 141) Now that this has been proved, let AB be parallel to $\Gamma \Delta$, and let straight lines $\mathrm{AZ}, \mathrm{ZB}, \Gamma \mathrm{E}, \mathrm{E} \Delta$ intersect them, and let $\mathrm{B} \Gamma$ and HK be joined. That the (line) through A, M, Δ is straight.

Let $\Delta \mathrm{M}$ be joined and produced to θ. Then since, having a triangle $\mathrm{B} \Gamma \mathrm{Z}, \mathrm{BE}$ has been drawn parallel to $\Gamma \Delta$ from the apex point B (and falling) outside (the triangle), and $\Delta \mathrm{E}$ has been drawn through, it turns out (lemma 7.205) that as ΓZ is to $Z \Delta$, so is the rectangle contained by $\Delta \mathrm{E}, \mathrm{K} \Lambda$ to the rectangle contained by $\mathrm{E} \Lambda, \mathrm{K} \Delta .1$ Thus as the rectangle contained by $\Delta \mathrm{E}$, $\mathrm{K} \Lambda$ is to the rectangle contained by $\Delta \mathrm{K}, \Lambda \mathrm{E}$, so is the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E}$ to the rectangle contained by $\mathrm{\Gamma E}, \mathrm{H} \Theta$ (lemma 7.196); ${ }^{2}$ for two (straight lines) $\mathrm{E} \Gamma, \mathrm{E} \Delta$ have been drawn through from the same point E onto three straight lines $\Gamma \Lambda, \Delta \Theta, H K$. And so as is ΔZ to $Z \Gamma$, so is the rectangle contained by $\Gamma \mathrm{E}, \mathrm{H} \Theta$ to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E} .{ }^{3}$ And the (line) through $\mathbf{H}, \mathrm{M}, \mathrm{K}$ is straight. ${ }^{4}$ Hence by the foregoing (lemma 7.208) the (line) through $\mathrm{A}, \mathrm{M}, \Delta$ is also straight. 5
(210) (Prop. $142 a-b$) Let two (straight lines) $\Delta \mathrm{B}, \Delta \mathrm{E}$ be drawn across two straight lines $A B, A \Gamma$ from the same point Δ, and let points H, Θ be chosen on them. And as is the rectangle contained by EH, $\mathrm{Z} \Delta$ to the rectangle contained by $\Delta \mathrm{E}, \mathrm{HZ}$, so let the rectangle contained by $\mathrm{B} \Theta, \Gamma \Delta$ be to the rectangle contained by $\mathbf{B} \Delta, \Gamma \Theta$. That the (line) through $\mathbf{A}, \mathrm{H}, \Theta$ is straight.

Let $\mathrm{K} \Lambda$ be drawn through H parallel to $\mathrm{B} \Delta .1$ Then since as the rectangle contained by $\mathrm{EH}, \mathrm{Z} \mathrm{\Delta}$ is to the rectangle contained by $\Delta \mathrm{E}, \mathrm{ZH}$, so is the rectangle contained by $\mathrm{B} \Theta, \Gamma \Delta$ to the rectangle contained by $\mathrm{B} \Delta$, $\Gamma \Theta,{ }^{2}$ while the ratio of the rectangle contained by $\mathrm{EH}, \mathrm{Z} \Delta$ to the rectangle contained by $\Delta \mathrm{E}, \mathrm{HZ}$ is compounded out of that which HE has to $\mathrm{E} \Delta$, that is KH to $\mathrm{B} \Delta,{ }^{4}$ and that which $\Delta \mathrm{Z}$ has to ZH , that is $\Delta \Gamma$ to $\mathrm{H} \Lambda ;{ }^{5}{ }^{3}$ and the ratio of the rectangle contained by $B \Theta, \Gamma \Delta$ to the rectangle contained by $\mathrm{B} \Delta, \Gamma \Theta$ is compounded out of that which $\Theta \mathrm{B}$ has to $\mathrm{B} \Delta$ and that which $\Delta \Gamma$ has to $\Gamma \Theta, 6$ therefore the (ratio compounded) out of that of $K H$ to $B \Delta$ and that of $\Delta \Gamma$ to $H \Lambda$ is the same as that compounded out of that of $B \Theta$ to $B \Delta$ and that of $\Delta \Gamma$ to $\Gamma \Theta .{ }^{7}$ But the (ratio) of KH to $\mathrm{B} \Delta$ is compounded out of that of KH to $\mathrm{B} \Theta$ and that of $\mathrm{B} \Theta$ to $\mathrm{B} \Delta .^{8}$ Therefore the (ratio) compounded

 HZ . каi ö̀ η á $\rho a \dot{\eta} \mathrm{~KB} \pi \rho \dot{\rho} \varsigma$ ö $\lambda \eta \nu \tau \dot{\eta} \nu \mathrm{BH} \dot{\epsilon} \sigma \tau i \nu \dot{\omega} \varsigma \dot{\eta} \mathrm{~K} \Gamma \pi \rho o ̀ s \mathrm{ZH}$,

 $\epsilon i \sigma i \nu \pi a \rho a ́ \lambda \lambda \eta \lambda o \iota a i \Delta \Theta, \mathrm{ZH} . \epsilon \dot{v} \theta \epsilon i a$ ápa $\epsilon \sigma \tau i \nu \dot{\eta} \delta i \grave{a} \tau \tilde{\omega} \nu \mathrm{~A}, \mathrm{Z}$, $\Delta \sigma \eta \mu \epsilon i \omega \nu$.

888

5

 $\epsilon \dot{v} \theta \epsilon \tilde{\iota} a$ Ge (S) $\epsilon \dot{v} \theta \in \iota a \iota \mathrm{~A} \| 10 \dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{v} \times \theta \omega \sigma a \nu \mathrm{Ge}$ (BS) $\dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{v} x \theta \omega \mathrm{~A} \mid \mathrm{A}, \mathrm{M}, \Delta \mathrm{CoHMKA} \mathrm{\|} 11 \dot{\epsilon} \pi \iota \zeta \epsilon v x \theta \epsilon \tilde{\imath} \sigma a \dot{\eta} \quad \Delta \mathrm{M}]$
 secl Hu (Simson $)^{2}$ \| $13 \Delta \mathrm{E}$ Co $\Delta \mathrm{B} \mathrm{A} \| 14 \mathrm{Z} \Delta \mathrm{Co} \mathrm{Z} \Gamma \mathrm{A} \mid$ ápa] $\delta \grave{\epsilon} \mathrm{A} \|$ $15 \Lambda \mathrm{E}$ Co $\Lambda \mathrm{B}$ A | 16 ү $\mathfrak{a} \rho$ add $\mathrm{Hu} \| 19 \kappa а i-\mathrm{H}, \mathrm{M}, \mathrm{K}$ del Heiberg ${ }_{3}$ | $\mathrm{H}, \mathrm{M}, \mathrm{K}] \Delta, \mathrm{M}, \Theta$ Co $\Theta, \mathrm{M}, \Delta \mathrm{Hu} \| 20 \kappa а i$ del Heiberg ${ }_{3} 22$

 $\mathrm{B} \Delta \mathrm{Co} \Theta \Delta \mathrm{A} \mid \Delta \Gamma \mathrm{CoA} \boldsymbol{A}$
out of that of KH to $\mathrm{B} \Theta$ and that of $\mathrm{B} \Theta$ to $\mathrm{B} \Delta$ and furthermore of that of $\Delta \Gamma$ to $\mathrm{H} \Lambda$ is the same as the (ratio) compounded out of that of $\mathrm{B} \Theta$ to $\mathrm{B} \Delta$ and that of $\Delta \Gamma$ to $\Gamma \Theta .9$ Let the ratio of ΘB to $B \Delta$ be removed in common. Then the remaining (ratio) compounded out of that of KH to $\mathrm{B} \Theta$ and that of $\Delta \Gamma$ to $\mathrm{H} \Lambda$ is the same as that of $\Delta \Gamma$ to $\Gamma \Theta, 10$ that is the (ratio) compounded out of that of $\Delta \Gamma$ to $\mathrm{H} \Lambda$ and that of $\mathrm{H} \Lambda$ to $\Theta \Gamma .{ }^{11}$ And again, let the ratio of $\Delta \Gamma$ to $\mathrm{H} \Lambda$ be removed in common. Then the remaining ratio of KH to $\mathrm{B} \Theta$ is the same as that of $\mathrm{H} \Lambda$ to $\Theta \Gamma .12$ And alternando, as is KH to $\mathrm{H} \Lambda$, so is $\mathrm{B} \Theta$ to $\Theta \Gamma .{ }^{13}$ And $\mathrm{K} \Lambda$ and $\mathrm{B} \Gamma$ are parallel. ${ }^{14}$ Therefore the (line) through points $\mathrm{A}, \mathrm{H}, \Theta$ is straight. ${ }^{5}$
(211) 18. (Prop. 143) But now let AB not be parallel to $\Gamma \Delta$, but let it intersect it at N .

Then since two straight lines $\Delta \mathrm{E}, \Delta \mathrm{N}$ have been drawn from the same point Δ across three straight lines $\mathrm{BN}, \mathrm{B}, \mathrm{BZ}$, as the rectangle contained by $\mathrm{N} \Delta, \Gamma \mathrm{Z}$ is to the rectangle contained by $\mathrm{N} \Gamma, \Delta \mathrm{Z}$, so is the rectangle contained by $\Delta \mathrm{E}, \mathrm{K} \Lambda$ to the rectangle contained by $\mathrm{E} \Lambda, \mathrm{K} \Delta$ (lemma 7.196). 1 But as is the rectangle contained by $\mathrm{E} \Delta, \mathrm{K} \Lambda$ to the rectangle contained by $\mathrm{E} \Lambda, \mathrm{K} \Delta$, so is the rectangle contained by $\mathrm{E} \Theta, \Gamma \mathrm{H}$ to the rectangle contained by $\mathrm{E} \Gamma, \Theta \mathrm{H} ;{ }^{2}$ for again two (straight lines) $\mathrm{E} \Gamma, \mathrm{E} \Delta$ have been drawn from the same point E across three (straight lines) $\Gamma \Lambda$, $\Delta \Theta, \mathrm{HK}$. Therefore as is the rectangle contained by $\mathrm{E} \Theta$, ГH to the rectangle contained by $\mathrm{E} \Gamma, \Theta \mathrm{H}$, so is the rectangle contained by $\mathrm{N} \Delta, \Gamma \mathrm{Z}$ to the rectangle contained by $\mathrm{N} \Gamma, \mathrm{Z} \Delta .^{3}$ By the foregoing (lemma) the (line) through A, Θ, Δ is straight. 4 Thus the (line) through A, M, Δ too is straight. ${ }^{5}$
(212) (Prop. 144) (Let there be) triangle $\mathrm{AB} \mathrm{\Gamma}$, and let $\mathrm{A} \Delta$ be drawn parallel to $\mathrm{B} \mathrm{\Gamma}$, and let $\Delta \mathrm{E}, \mathrm{ZH}$ be drawn across. And as the square of EB is to the rectangle contained by $\mathrm{E}, \Gamma \mathrm{\Gamma}$, so let BH be to $\mathrm{H} \Gamma$. That, if $\mathrm{B} \Delta$ is joined, the (line) through Θ, K, Γ is straight.

Since, as is the square of EB to the rectangle contained by E ,,Γ, so is BH to $\mathrm{H} \Gamma,{ }^{1}$ let the ratio of $\Gamma \mathrm{E}$ to EB be applied in common, this being the same as that of the rectangle contained by $\mathrm{E}, Г Г В$ to the rectangle contained by $\mathrm{EB}, \mathrm{B} \Gamma .{ }^{2}$ Then ex aequali the ratio of the square of EB to the rectangle contained by $\mathrm{EB}, \mathrm{B} \Gamma$, that is the (ratio) of EB to $\mathrm{B} \Gamma$, is the same as the (ratio) compounded out of that of BH to $\mathrm{H} \Gamma$ and that of the rectangle contained by $\mathrm{E} \Gamma, \Gamma \mathrm{B}$ to the rectangle contained by $\mathrm{EB}, \mathrm{B} \Gamma,{ }^{3}$ which is the same as that of $\mathrm{E} \Gamma$ to EB. ${ }^{4}$ Therefore the (ratio) of the square of EB to the

 $\epsilon \dot{v} \theta \epsilon \tilde{\iota} a \mathfrak{a} \rho a \dot{\epsilon} \sigma \tau i \nu \dot{\eta} \delta i a \tau \tilde{\omega} \nu \mathrm{~A}, \mathrm{H}, \Theta \sigma \eta \mu \epsilon i \omega \nu$.

 $\delta \iota a ̀ \tau \tilde{\omega} \nu \mathrm{~A}, \mathrm{M}, \Delta$ ápa $\epsilon \dot{v} \theta \in \tilde{i} \dot{a} \dot{\epsilon} \sigma \tau \iota \nu$.
(212) $\tau \rho i \gamma \omega \nu 0 \nu$ тò $\mathrm{AB} \mathrm{\Gamma}$, каi $\tau \tilde{\eta} \iota \mathrm{B} \Gamma \pi a \rho a ́ \lambda \lambda \eta \lambda o s \quad \eta \quad \chi \theta \omega \dot{\eta} \mathrm{~A} \Delta$,

 corr $\mathrm{Co} \| 23$ post $\delta \iota \grave{a}$ add $\delta \grave{\eta} \mathrm{Ge} \| 26 \tau \grave{o}($ ánò EB$) \mathrm{Ge}(\mathrm{S}) \tau \grave{a} \mathrm{~A} \| 29$

rectangle contained by $\mathrm{EB}, \mathrm{B} \Gamma$ is compounded out of that which BH has to $\mathrm{H} \Gamma$ and that which $\mathrm{E} \Gamma$ has to $\mathrm{EB},{ }^{5}$ which is the same as that of the rectangle contained by $\mathrm{E} \Gamma, \mathrm{BH}$ to the rectangle contained by $\mathrm{EB}, \Gamma \mathrm{H} .{ }^{6}$ But as is EB to $\mathrm{B} \Gamma$, so, by the foregoing lemma (7.205), is *the rectangle contained by $\Delta \mathrm{E}, \mathrm{Z} \Theta$ to the rectangle contained by $\Delta \mathrm{Z}, \Theta \mathrm{E} . \mathrm{r}^{7}$ And therefore as is the rectangle contained by $\Gamma \mathrm{E}, \mathrm{BH}$ to the rectangle contained by $\Gamma \mathrm{H}$, EB , so is the rectangle contained by $\Delta \mathrm{E}, \mathrm{Z} \mathrm{\Theta}$ to the rectangle contained by $\Delta \mathrm{Z}, \Theta \mathrm{E} . \mathrm{s}^{*}$ Therefore the (line) through $\Theta, \mathrm{K}, \Gamma$ is straight; ${ }^{9}$ for that is in the case-variants of the converses.
(213) (Prop. 145) Let two (straight lines) EZ, EB be drawn from some point E across three straight lines $\mathrm{AB}, \mathrm{A} \Gamma, \mathrm{A} \Delta$, and, as EZ is to ZH , so let $\Theta \mathrm{E}$ be to ΘH. That also as BE is to $\mathrm{B} \mathrm{\Gamma}$, so is $\mathrm{E} \Delta$ to $\Delta \Gamma$.

Let ΛK be drawn through H parallel to BE. ${ }^{1}$ Then since as is EZ to ZH , so is EO to $\Theta \mathrm{H},{ }^{2}$ but as is EZ to ZH , so is EB to $\mathrm{HK},{ }^{3}$ while as is E , to ΘH, so is $\Delta \mathrm{E}$ to $\mathrm{H} \Lambda,{ }^{4}$ therefore as is BE to HK , so is $\Delta \mathrm{E}$ to $\mathrm{H} \Lambda .{ }^{5}$ Alternando, as is EB to $\mathrm{E} \Delta$, so is KH to $\mathrm{H} \Lambda .^{6}$ But as is KH to $\mathrm{H} \Lambda$, so is $\mathrm{B} \Gamma$ to $\Gamma \Delta .{ }^{7}$ Therefore as is BE to $\mathrm{E} \Delta$, so is $\mathrm{B} \Gamma$ to $\Gamma \Delta .^{8}$ Alternando, as is EB to $\mathrm{B} \Gamma$, so is $\mathrm{E} \Delta$ to $\Delta \Gamma .{ }^{9}$ The case-variants likewise.
(214) (Prop. 146) Let there be two triangles $\mathrm{AB} \mathrm{\Gamma}, \triangle \mathrm{EZ}$ that have angles A, Δ equal. That, as is the rectangle contained by $\mathrm{BA}, \mathrm{A} \Gamma$ to the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$, so is triangle $\mathrm{AB} \mathrm{\Gamma}$ to triangle $\mathrm{E} \Delta \mathrm{Z}$.

Let perpendiculars $\mathrm{BH}, \mathrm{E} \Theta$ be drawn. 1 Then since angle A equals Δ, and H (equals) $\Theta,{ }^{2}$ therefore as is AB to BH , so is $\Delta \mathrm{E}$ to $\mathrm{E} \Theta .^{3}$ But as AB is to BH , so is the rectangle contained by $\mathrm{BA}, \mathrm{A} \Gamma$ to the rectangle contained by $\mathrm{BH}, \mathrm{A} \Gamma,{ }^{4}$ while as is $\Delta \mathrm{E}$ to $\mathrm{E} \Theta$, so is the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$ to the rectangle contained by $\mathrm{E} \Theta, \Delta \mathrm{Z} .{ }^{5}$ Therefore as is the rectangle contained by BA, $\mathrm{A} \Gamma$ to the rectangle contained by $\mathrm{BH}, \mathrm{A} \Gamma$, so is the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$ to the rectangle contained by $\mathrm{E} \Theta, \Delta \mathrm{Z} ;{ }^{6}$ and alternando. ${ }^{7}$ But as is the rectangle contained by $\mathrm{BH}, \mathrm{A} \Gamma$ to the rectangle contained by $\mathrm{E} \Theta, \Delta \mathrm{Z}$, so is triangle $\mathrm{AB} \Gamma$ to triangle $\Delta \mathrm{EZ} ;{ }^{8}$ for each of BH and $\mathrm{E} \Theta$ is a perpendicular of each of the triangles named. Therefore as is the rectangle contained by $\mathrm{BA}, \mathrm{A} \Gamma$ to the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$, so is triangle $A B \Gamma$ to triangle $\triangle E Z .{ }^{9}$

 à $\operatorname{a} a \sigma \rho o \phi i \omega \nu$.

 $\dot{o} \mu \mathrm{o} i \omega \mathrm{~s}$.

 ' $\sigma \sigma \tau \iota \nu$ á $\rho a \dot{\omega} \varsigma \dot{\eta} \mathrm{AB} \pi \rho \grave{o} \varsigma \tau \dot{\eta} \nu \mathrm{BH}$, oü $\tau \omega \varsigma \dot{\eta} \Delta \mathrm{E} \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \mathrm{E} \Theta$. á $\lambda \lambda$,

$\tau \rho i \gamma \omega \nu 0 \nu$.
$\| 1 \tau o \tilde{v} \dot{a} \pi \grave{o} \mathrm{Hu} a \dot{\pi} \grave{o} \tau o \tilde{v} \mathrm{~A}|\sigma v \nu \tilde{\eta} \pi \tau a \iota \mathrm{Ge}(\mathrm{BS}) \sigma v \nu \tilde{\eta} \kappa \tau a \iota \mathrm{~A}|$ BH Co BN A\| $4 \Delta \mathrm{E}, \mathrm{Z} \Theta \ldots \Delta \mathrm{Z}, \mathrm{\theta E}] \Delta \mathrm{Z}, \Theta \mathrm{E} \ldots \Delta \mathrm{E}, \mathrm{Z} \Theta$ Simson $_{1} \| 5 \mathrm{~EB}$ Co Θ B A \| $6 \Delta \mathrm{E}, \mathrm{Z} \Theta \ldots \Delta \mathrm{Z}, \Theta \mathrm{E}] \Delta \mathrm{Z}, \Theta \mathrm{E} \ldots \Delta \mathrm{E}, \mathrm{Z} \Theta$ Simson $_{1} \| 12 \dot{\eta} \mathrm{x} \boldsymbol{x} \theta \omega$
 A
(215) (Prop. 147) Now let (angles) A, Δ equal two right angles. That again, as is the rectangle contained by $B A, A \Gamma$ to the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$, so is triangle $\mathrm{AB} \mathrm{\Gamma}$ to triangle $\triangle \mathrm{EZ}$.

Let BA be produced, and let AH be made equal to $\mathrm{BA}, 1$ and let $\Gamma \mathrm{H}$ be joined. Then since angles A, Δ equal two right angles, ${ }^{2}$ but also angles $\mathrm{BA} \mathrm{\Gamma}, ~ Г А Н ~(e q u a l) ~ t w o ~ r i g h t ~ a n g l e s, ~ ' ~ ' ~ t h e r e f o r e ~ a n g l e ~ Г А Н ~ e q u a l s ~(a n g l e) ~$ $\Delta .{ }^{4}$ Thus as is the rectangle contained by $\mathrm{HA}, \mathrm{A} \Gamma$ to the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$, so is triangle $\mathrm{AH} \Gamma$ to triangle $\Delta \mathrm{EZ} .{ }^{5}$ But HA equals $\mathrm{AB},{ }^{6}$ and triangle $\mathrm{HA} \mathrm{\Gamma}$ (equals) triangle $\mathrm{AB} \mathrm{\Gamma} .^{7}$ Therefore as is the rectangle contained by $B A, A \Gamma$ to the rectangle contained by $E \Delta, \Delta Z$, so is triangle $\mathrm{AB} \Gamma$ to triangle $\triangle \mathrm{EZ} .{ }^{8}$
(216) (Prop. 148) (Let there be) straight line $A B$, and on it two points Γ, Δ, and let twice the rectangle contained by $A B, \Gamma \Delta$ equal the square of ΓB. That as well the square of $A \Delta$ equals the squares of $A \Gamma$ and ΔB.

For since twice the rectangle contained by $A B, \Gamma \Delta$ equals the square of $\Gamma B, 1$ let twice the rectangle contained by $B \Delta, \Delta \Gamma$ be subtracted in common. Then the remaining twice the rectangle contained by $A \Delta, \Delta \Gamma$ equals the squares of $\Gamma \Delta$ and $\Delta B:^{2}$ Let the square of $\Gamma \Delta$ be subtracted in common. Then the remaining twice the rectangle contained by $A \Gamma, \Gamma \Delta$ plus the square of $\Gamma \Delta$ equals the square of $\Delta B .^{3}$ Let the square of $A \Gamma$ be added in common. Then the sum, the square of $A \Delta$, equals the squares of $A \Gamma$ and Δ B. ${ }^{4}$
(217) (Prop. 149) Let the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ equal the square of $B \Delta$. That three things result: that the rectangle contained by $A \Delta$ and $\Delta \Gamma$ taken together and $B \Delta$ (that is, $(A \Delta+\Delta \Gamma) \cdot B \Delta$) equals the rectangle contained by $A \Delta, \Delta \Gamma$; that the rectangle contained by $A \Delta, \Delta \Gamma$ taken together and $B \Gamma$ equals the square of $\Delta \Gamma$; and that the rectangle contained by $A \Delta, \Delta \Gamma$ taken together and $B A$ equals the square of $A \Delta$.

For since the rectangle contained by $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ equals the square of $B \Delta, 1$ in ratio ${ }^{2}$ and whole to whole ${ }^{3}$ and inverting ${ }^{4}$ and componendo, as is $\Gamma \Delta, \Delta \mathrm{A}$ taken together to $\Delta \mathrm{A}$, so is $\Gamma \Delta$ to $\Delta \mathrm{B} .{ }^{5}$ Therefore the rectangle contained by $\mathrm{A} \Delta, \Delta \Gamma$ taken together and $\mathrm{B} \Delta$ equals the rectangle contained by $A \Delta, \Delta \Gamma .{ }^{6}$ Again, since all $A \Delta$ is to all $\Delta \Gamma$ as ΔB is to $B \Gamma,{ }^{7}$ componendo, as is $A \Delta, \Delta \Gamma$ taken together to $\Delta \Gamma$, so is $\Delta \Gamma$ to $\Gamma B .{ }^{8}$ Therefore the rectangle contained by $A \Delta, \Delta \Gamma$ taken together and ΓB equals the square of $\Delta \Gamma .9$ Again, since all $A \Delta$ is to all $\Delta \Gamma$ as $A B$ is to $B \Delta,{ }^{10}$ by inversion ${ }^{11}$

 $\delta v \sigma i \nu$ óp日aís 'íalı єioiv, à $\lambda \grave{a} \kappa a i \quad<a i>\dot{v} \pi \grave{o}$ ВАГ, ГАН $\gamma \omega \nu i a \iota$

 $\pi \rho o ̀ s ~ \tau \grave{o} \quad \Delta \mathrm{EZ} \tau \rho i \gamma \omega \nu 0 \nu$. 'íon $\delta \dot{\epsilon} \dot{\epsilon} \sigma \tau \iota \nu \dot{\eta} \mu \bar{\epsilon} \nu \mathrm{HA} \tau \tilde{\eta} \iota \mathrm{AB}, \tau \grave{o} \delta \grave{\epsilon}$

 $\Delta \mathrm{B} \tau \in \tau \rho a \gamma \dot{\omega} \boldsymbol{\nu} \circ$ ıs.

 $\mathrm{A} \Theta \Gamma \mathrm{A}\|15 \tau \tilde{\omega} \iota \mathrm{Ge}(\mathrm{BS}) \tau 0 \check{\iota} \mathrm{~s} \mathrm{~A}\| 20$ ödo $\boldsymbol{\nu}-\tau \epsilon \tau \rho a \gamma \omega \nu 0 \nu$ bis (sed A Λ habet pro altero $A \Delta$) A corr Co \| $23 \mathrm{~A} \Delta, \Delta \Gamma \operatorname{CoA} A, E \Gamma \mathrm{~A} \mathrm{~A} \Delta \Gamma$ $\mathrm{Hu} \| 24 \Delta \Gamma \mathrm{Co} \Delta \mathrm{T} \mathrm{A} \mid \mathrm{A} \Delta \Gamma] \mathrm{A} \Delta, \Delta \Gamma \mathrm{Co} \| 26 \mathrm{~A} \Delta \Gamma] \mathrm{A} \Delta, \Delta \Gamma \mathrm{Co} \| 27$
 (S) $\tau \dot{o}$ A $\| 31$ ö $\lambda \eta$ Ge (BS) ö̀ $\eta \iota \mathrm{A}\|32 \mathrm{~A} \Delta \Gamma \mathrm{~A} \Delta, \Delta \Gamma \mathrm{Co}\| 33 \mathrm{~A} \Delta \Gamma]$ $A \Delta, \Delta \Gamma$ Co
and componendo, as is $\Gamma \Delta, \Delta \mathrm{A}$ taken together to $\Delta \mathrm{A}$, so is $\Delta \mathrm{A}$ to $\mathrm{AB} .{ }^{12}$ Therefore the rectangle contained by $A \Delta, \Delta \Gamma$ taken together and $A B$ equals the square of $A \Delta .^{13}$
(218) (Prop. 150) (Let there be) straight line $A B$, and on it two points Γ, Δ, and let the square of $\Gamma \Delta$ equal twice the rectangle contained by $A \Gamma$, $B \Delta$. That as well the square of $A B$ equals the squares of $A \Delta$ and ΓB.

For since the square of $\Gamma \Delta$ equals twice the rectangle contained by $\mathrm{A} \Gamma, \Delta \mathrm{B}, 1$ <let twice the rectangle contained by $\mathrm{A} \Gamma \Delta$ be added in common. Then the sum, twice the rectangle contained by $A \Gamma, \Gamma B>$, equals the square of $\Gamma \Delta$ and twice the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta .{ }^{2}$ Let the square of $A \Gamma$ be added in common. Then twice the rectangle contained by $A \Gamma, \Gamma B$ plus the square of $A \Gamma$ equals the square of $A \Delta .^{3}$ Let the square of $B \Gamma$ be added in common. Then the sum, the square of $A B$, equals the squares of $\mathrm{A} \Delta$ and $\Gamma \mathrm{B} .{ }^{4}$
(219) (Prop. 151) Let the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ equal the square of $B \Delta$. That three things result: that the rectangle contained by the difference of $\mathrm{A} \Delta$ and $\Delta \Gamma$, and $\mathrm{B} \Delta$ equals the rectangle contained by $A \Delta, \Delta \Gamma$; that the rectangle contained by the difference of $A \Delta$ and $\Delta \Gamma$, and $B \Gamma$ equals the square of $\Delta \Gamma$; and that the rectangle contained by the difference of $A \Delta$ and $\Delta \Gamma$, and $B A$ equals the square of $A \Delta$.

For since as is $A B$ to $B \Delta$, so is $B \Delta$ to $B \Gamma,{ }^{1}$ remainder to remainder ${ }^{2}$ and separando, then, as is the difference of $A \Delta$ and $\Delta \Gamma$ to $\Delta \Gamma$, so is $A \Delta$ to $\Delta B .^{3}$ Therefore the rectangle contained by the difference of $A \Delta$ and $\Delta \Gamma$, and $B \Delta$ equals the rectangle contained by $A \Delta, \Delta \Gamma .{ }^{4}$ Again, since remainder $A \Delta$ is to remainder $\Delta \Gamma$ as ΔB is to $B \Gamma, 5$ separando, as is the difference of $A \Delta$ and $\Delta \Gamma$ to $\Delta \Gamma$, so is $\Delta \Gamma$ to Γ..6 Therefore the rectangle contained by the difference of $A \Delta$ and $\Delta \Gamma$, and $B \Gamma$ equals the square of $\Delta \Gamma .{ }^{7}$ Again, since $A \Delta$ is to $\Delta \Gamma$ as $A B$ is to $B \Delta, 8$ by inversion ${ }^{9}$ and separando, as is the difference of $A \Delta$ and $\Delta \Gamma$ to ΔA, so is ΔA to $A B .{ }^{10}$ Therefore the rectangle contained by the difference of $A \Delta$ and $\Delta \Gamma$, and $A B$ equals the square of $A \Delta .{ }^{11}$
 $\sigma \cup \nu \theta \dot{\epsilon} \nu \tau \iota \dot{\epsilon} \sigma \tau i \nu \dot{\omega} \varsigma \sigma u \nu a \mu \phi o \tau \epsilon \rho o s \dot{\eta} \Gamma \Delta, \Delta A \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \Delta A$, oü $\tau \omega \varsigma$
 AB 'íoov $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota$ àmò $\mathrm{A} \Delta \tau \in \tau \rho a \gamma \dot{\omega} \nu \omega \iota$.

 $\tau \in \tau \rho a \gamma \omega ้$ ८८s.

5
900
|164v

$2 \Gamma \Delta, \Delta \mathrm{~A}$ Co Г $\Delta, \Lambda \mathrm{A}$ А $\Gamma \Delta \mathrm{A} \mathrm{Hu} \| 3 \dot{v} \pi \grave{o}$ Geà àò $\mathrm{A} \mid \mathrm{A} \Delta \Gamma] \mathrm{A} \Delta, \Delta \Gamma$
 Co AB A| кoıvò $\nu-\mathrm{A} \Gamma \mathrm{B}] \tau \grave{o}$ ápa $\delta i \varsigma \dot{j} \pi \grave{o} \mathrm{~A} \mathrm{~A} \mathrm{~B}$ add $\mathrm{Co} \| 17$ $(\tau \tilde{\omega} \nu) \mathrm{A} \Delta \Gamma] \mathrm{A} \Delta, \Delta \Gamma$ Co $\mid \mathrm{B} \Gamma \mathrm{Co} \mathrm{B} \Delta \mathrm{A} \| 18 \Delta \Gamma(\tau \in \tau \rho a \gamma \dot{\omega} \nu \omega \iota) \mathrm{Co} \mathrm{A} \Gamma$ $\mathrm{A} \mid \Delta \Gamma$ ($\left.\dot{v} \pi \epsilon \rho \circ \times \tilde{\eta} \varsigma_{)}\right) \mathrm{Co} \mathrm{A} \Gamma \mathrm{A} \| 20 \mathrm{~B} \Gamma$ Co $\Delta \Gamma \mathrm{A} \mid \lambda o \iota \pi \dot{\eta} \mathrm{Ge}$ (BS) $\lambda 0 \iota \pi \eta \iota \mathrm{~A} \| 21$ oũ ν] ápa $\mathrm{Hu} \| 24 \lambda o \iota \pi \dot{\eta} \mathrm{Ge}(\mathrm{BS}) \lambda o \iota \pi \eta \iota \mathrm{~A} \mid$ $\tau \dot{\eta} \nu$ add $\mathrm{Ge}(\mathrm{BS}) \| 25 \mathrm{~A} \Delta \Gamma] \mathrm{A} \Delta, \Delta \Gamma \mathrm{Co}$
(220) (Prop. 152) Let the square of $A \Delta$ be to the square of $\Delta \Gamma$ as $A B$ is to $B \Gamma$. That the rectangle contained by $A B, B \Gamma$ equals the square of $B \Delta$.

Let ΔE be made equal to $\Gamma \Delta .1$ Then the rectangle contained by $E A$, $A \Gamma$ plus the square of $\Gamma \Delta$, that is the rectangle contained by $\Gamma \Delta, \Delta \mathrm{E},{ }^{3}$ equals the square of $A \Delta .{ }^{2}$ Then since, as is $A B$ to $B \Gamma$, so is the square of $A \Delta$ to the square of $\Delta \Gamma, 4$ separando, as is $A \Gamma$ to ΓB, that is as is the rectangle contained by $\mathrm{EA}, \mathrm{A} \Gamma$ to the rectangle contained by $\mathrm{EA}, \mathrm{B} \Gamma, 6$ so is the rectangle contained by $\mathrm{EA}, \mathrm{A} \Gamma$ to the rectangle contained by $\Gamma \Delta, \Delta \mathrm{E} .{ }^{5}$ Therefore the rectangle contained by $\mathrm{AE}, \mathrm{B} \Gamma$ equals the rectangle contained by $\Gamma \Delta, \Delta \mathrm{E} .{ }^{7}$ In ratio ${ }^{8}$ and separando, as is $\mathrm{A} \Delta$ to $\Delta \mathrm{E}$, that is to $\Delta \Gamma,{ }^{10}$ so is ΔB to $B \Gamma .9$ Therefore remainder $A B$ is to remainder $B \Delta$ as $B \Delta$ is to $B \Gamma .{ }^{11}$ Thus the rectangle contained by $A B, B \Gamma$ equals the square of B $\Delta .{ }^{12}$
(221) (Prop. 153) Again, let the square of $A \Delta$ be to the square of $\Delta \Gamma$ as $A B$ is to $B \Gamma$. That the rectangle contained by $A B, B \Gamma$ equals the square of $B \Delta$.

For in the same way (as in 7.220) let $\Delta \mathrm{E}$ be made equal to $\Gamma \Delta .{ }^{1}$ Then the rectangle contained by $\Gamma \mathrm{A}, \mathrm{AE}$ plus the square of $\Gamma \Delta$, that is the rectangle contained by $\mathrm{E} \Delta, \Delta \Gamma,{ }^{3}$ equals the square of $\mathrm{A} \Delta .^{2}$ It results that separando, as is $\mathrm{A} \Gamma$ to $\Gamma \mathrm{B}$, that is as is <the rectangle contained by EA, $\mathrm{A} \Gamma$ to the rectangle contained by $\mathrm{EA}, \Gamma \mathrm{B},{ }^{5}$ so $>$ is the rectangle contained by $\Gamma \mathrm{A}, \mathrm{AE}$ to the rectangle contained by $\mathrm{E} \Delta, \Delta \Gamma .{ }^{4}$ Therefore the rectangle contained by $\mathrm{AE}, \Gamma \mathrm{B}$ equals the rectangle contained by $\mathrm{E} \Delta, \Delta \Gamma .6$ In ratio ${ }^{7}$ and componendo, as is $A \Delta$ to $\Delta \mathrm{E}$, that is to $\Delta \Gamma,{ }^{9}$ so is $\Delta \mathrm{B}$ to $\mathrm{B} \mathrm{\Gamma} .^{8}$ Therefore the sum $A B$ is to the sum $B \Delta$ as $B \Delta$ is to $B \Gamma .{ }^{10}$ Thus the rectangle contained by $A B, B \Gamma$ equals the square of $B \Delta .11$
(222) (Prop. 154) Let $A \Delta, \Delta \Gamma$ be tangent to circle $A B \Gamma$, and let $A \Gamma$ be joined, and let an arbitrary (line) ΔB be drawn across. That, as $B \Delta$ is to $\Delta \mathrm{E}$, so is BZ to ZE .

For since $A \Delta$ equals $\Delta \Gamma,{ }^{1}$ therefore the rectangle contained by $A Z$, $\mathrm{Z} \Gamma$ plus the square of $\mathrm{Z} \Delta$ equals the square of $\Delta \mathrm{A}$ (lemma 222.1). ${ }^{2}$ But the rectangle contained by $\mathrm{AZ}, \mathrm{Z} \Gamma$ equals the rectangle contained by BZ, ZE (III 35), ${ }^{3}$ while the square of $\Delta \mathrm{A}$ equals the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$ (III 36). 4 Therefore the rectangle contained by BZ, ZE plus the square of ΔZ equals the rectangle contained by $B \Delta, \Delta E .5$ But if this is so, then $B Z$ is to ZE as $\mathrm{B} \Delta$ is to $\Delta \mathrm{E}$ (lemma 222.2). ${ }^{6}$

 $\tau \in \tau \rho a \gamma \omega \nu \omega \iota$. $\kappa \in i ́ \sigma \theta \omega \tau \tilde{\eta} \iota \Gamma \Delta$ 'íoŋ $\dot{\eta} \Delta \mathrm{E}$. $\tau \grave{o}$ áá $\rho a \dot{v} \pi \dot{o}$ ЕАГ $\mu \in \tau \grave{a}$

 $\delta \iota \epsilon \lambda \dot{o} \nu \tau \iota \dot{\epsilon} \sigma \tau \dot{\iota} \nu \dot{\omega} \varsigma \dot{\eta} \mathrm{~A} \mathrm{\Gamma} \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \Gamma \mathrm{CB}, \tau 0 \cup \tau \dot{\epsilon} \sigma \tau \iota \nu \dot{\omega} \varsigma \tau \dot{o} \dot{\cup} \pi \dot{o} \mathrm{EA} \mathrm{\Gamma}$

 $\dot{\epsilon} \sigma \tau i \nu \dot{\omega} \varsigma \dot{\eta} \mathrm{~A} \Delta \pi \rho \dot{\varrho} \varsigma \tau \dot{\eta} \nu \Delta \mathrm{E}, \tau 0 \cup \tau \operatorname{\epsilon } \sigma \tau \iota \nu \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \Delta \Gamma$, oй $\tau \omega \varsigma, \dot{\eta} \Delta \mathrm{B}$

 $\mathrm{B} \Delta \tau \in \tau \rho a \gamma \dot{\omega} \nu \omega \iota$.

 $\tau \grave{o}$ ápa $\dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{AB} \Gamma$ 'íoov $\boldsymbol{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota$ áno $\tau \tilde{\eta} \varsigma \mathrm{B} \Delta \tau \in \tau \rho a \gamma \dot{\omega} \nu \omega \iota$.

[^40](223) (Prop. 155) Given a segment (of a circle) on AB , to inflect a straight line $A \Gamma B$ in a given ratio.

Let it have been done, 1 and let $\Gamma \Delta$ be drawn tangent from $\Gamma .2$ Then as is the square of $A \Gamma$ to the square of $B \Gamma$, so is $A \Delta$ to ΔB (lemma 223.1). ${ }^{3}$ But the ratio of the square of $A \Gamma$ to <the square of ΓB is given, 4 so that also the (ratio) of $A \Delta$ to $>B \Delta$ is given. ${ }^{5}$ And $<A$ and $B>$ are given. ${ }^{6}$ Therefore Δ is given ${ }^{7}$, and thus Γ too is given. ${ }^{8}$

The synthesis of the problem will be made thus. Let the segment be $A B \Gamma$, and the ratio that of E to Z, and, as is the square of E to the square of Z, so let $A \Delta$ be made to $\Delta B, 9$ and let $\Delta \Gamma$ be drawn tangent, ${ }^{10}$ and let $A \Gamma, \Gamma B$ be joined. I say that $A \Gamma, \Gamma B$ solve the problem.

For since as is the square of E to the square of Z, so is $A \Delta$ to ΔB, while as is $A \Delta$ to ΔB, so is the square of $A \Gamma$ to the square of $\Gamma B,{ }^{11}$ because $\Gamma \Delta$ is tangent, therefore as is the square of E to the square of Z, so is the square of $A \Gamma$ to the square of $\Gamma \mathrm{B} .{ }^{12}$ Therefore also as is E to Z , so is $A \Gamma$ to Γ..3 Thus $А Г В$ solves the problem.
(224) (Prop. 156) (Let there be) a circle whose diameter is $A B$, and from an arbitrary (point) a perpendicular $\Delta \mathrm{E}$ onto (AB). Let $\Delta \mathrm{Z}$ be drawn across. Let EZ be joined and produced, and where it intersects the diameter, let (the point) be H. That, as is $A H$ to $H B$, so is $A \Theta$ to ΘB.

Let $\triangle \mathrm{A}, \mathrm{AE}, \mathrm{AZ}$ be joined. Then since $\triangle \mathrm{E}$ is a perpendicular to the diameter, ${ }^{1}$ angle $\triangle \mathrm{AB}$ equals <angle BAE (III 3, I 4). ${ }^{2}$ But angle $\triangle \mathrm{AB}$ equals $>$ the (angle) in the same segment, angle OZB. ${ }^{3}$ Angle BAE equals angle BZH outside the quadrilateral (III 22) ${ }^{4}$. Therefore angle BZH equals angle ©ZB. 5 And angle AZB is right. 6 Because of the lemma (224.1), as is $A H$ to $H B$, so is $A \Theta$ to $B \Theta .{ }^{7}$
(225) (Prop. 157) (Let there be) a semicircle on AB , and from points A, B let straight lines $B \Delta, A E$ be drawn at right angles to $A B$, and let an arbitrary (line) ΔE be drawn, and let a straight line $Z H$ from Z and at right angles to $\Delta \mathrm{E}$ intersect AB at H . That the rectangle contained by $\mathrm{AE}, \mathrm{B} \Delta$ equals the rectangle contained by AH, HB. 1

Hence that as is EA to $A H$, so is HB to $B \Delta .2$ The sides around equal angles are in ratio. Hence that angle AHE equals angle $B \Delta H \cdot{ }^{3}$ But angle

 ápa $\pi о \iota \epsilon \tau$ то $\pi \rho o ́ \beta \lambda \eta \mu a$.

 $\dot{\eta} \mathrm{AH} \pi \rho \dot{o} s \tau \dot{\eta} \nu \mathrm{HB}$, oü $\tau \omega \mathrm{S} \dot{\eta} \mathrm{A} \Theta \pi \rho \dot{o} s \tau \dot{\eta} \nu \quad \Theta \mathrm{~B}$. $\epsilon \pi \epsilon \xi \in \dot{v} \chi \theta \omega \sigma a \nu$ ai
 $\dot{v} \pi \dot{o} \quad \triangle \mathrm{AB}, \tau \tilde{\eta} \iota,<\dot{v} \pi \dot{o}$ BAE, $\mathfrak{a} \lambda \lambda, \dot{\eta} \dot{v} \pi \grave{o} \Delta \mathrm{AB} \tau \tilde{\eta} \iota\rangle, \dot{\epsilon} \nu \tau \tilde{\omega} \iota$ aúvĩ ι

 $\mathrm{B} 日$.

$\sigma a \nu$ supr $\mathrm{A}^{2} \| .14 \dot{a} \pi \mathrm{o}$ (ante $\mathrm{A} \Gamma$) om A^{1} add supr $\mathrm{A}^{2} \| 18$ ante
$\delta \iota \eta \times \theta \omega$ add $\kappa a i$ Ge $\| 21 \delta \iota a ́ \mu \epsilon \tau \rho o \nu$ Heiberg ${ }_{3} \delta \iota a \mu \dot{\epsilon} \tau \rho o v$ A
$22 \dot{v} \pi \dot{o} \mathrm{BAE}-\Delta \mathrm{AB} \tau \tilde{\eta} \iota$ add $\mathrm{Co} \| 23$ ' $i \sigma \eta \mathrm{Ge}$ (BS) 'íanc A\| 25η
$\left.(\dot{v} \pi \dot{o} \mathrm{BZH}) \mathrm{Hu}\left(\mathrm{S}^{2}\right) \tau \tilde{\omega} \iota \mathrm{A} \mid \delta \dot{\eta} \tau 0\right] \delta \dot{\eta} \tau \iota$ coni. Hu app $\| 29 \mathrm{AB} \mathrm{Hu}$
АГВ $\mathrm{A} \| 31 \sigma v \mu \pi \iota \pi \tau \epsilon \in \tau \omega \mathrm{Hu} \sigma v \mu \pi i \pi \tau \epsilon \iota \mathrm{~A}$

AHE equals angle AZE in the same segment, ${ }^{4}$ while again angle $\mathrm{B} \Delta \mathrm{H}$ equals angle BZH in the same segment. ${ }^{5}$ Hence that angle AZE equals angle BZH. ${ }^{6}$ But it does. ${ }^{8}$ For both angles AZB, EZH are right. ${ }^{7}$
(226) (Prop. 158) (Let there be) a triangle $\mathrm{AB} \Gamma$ that has (side) AB equal to $A \Gamma$, and let $A B$ be produced to Δ, and from Δ let ΔE be drawn across making triangle $\mathrm{B} \Delta \mathrm{E}$ equal to triangle $\mathrm{AB} \Gamma$. That if one of the equal sides, the one near the equal triangle, is bisected by BZ, then as is ZBH taken together to ZH , so is the square of AZ to the square of $\mathrm{ZO} .{ }^{1}$

Let BK be drawn through B parallel to $\Delta \mathrm{E},{ }^{2}$ and let $\mathrm{A} \Gamma$ be produced to K . Hence that as is $\mathrm{ZK}, \mathrm{K} \Theta$ taken together to $\mathrm{Z} \mathrm{\Theta}$, that is (as is) the rectangle contained by $Z \mathrm{~K}, \mathrm{~K} \Theta$ taken together and $\mathrm{Z} \Theta$ to the square of $\mathrm{ZO},{ }^{4}$ so is the <square of AZ to the> square of $\mathrm{ZQ} .{ }^{3}{ }^{*}$ But the rectangle contained by ZK Θ taken together and ZӨ, that is the difference of the squares of $\mathbf{Z K}, K \Theta,{ }^{6}$ equals the square of $\mathrm{AZ} .{ }^{5}$ Hence the difference of the squares of KZ, ZA is the square of $\mathrm{K} \Theta$. . * But the difference of the squares of KZ, ZA is the rectangle contained by $Г К, \mathrm{KA} .^{8}$ Hence that the rectangle contained by $\Gamma \mathrm{K}, \mathrm{KA}$ equals the square of $\Theta \mathrm{K} .{ }^{9}$ Hence that as is $\Gamma \mathrm{K}$ to $\mathrm{K} \Theta$, that is as is $\Gamma \mathrm{B}$ to $\mathrm{BE},{ }^{11}$ so is $K \Theta$ to $K A$, that is $\triangle \mathrm{B}$ to $\mathrm{BA} . .^{1210}$ But it is. ${ }^{16}$ For $A E$ is parallel to $\Delta \Gamma, 15$ since triangle $\Delta B E$ equals triangle $\mathrm{AB} \mathrm{\Gamma} .1^{13}$ and (therefore), when (triangle) ABE has been subtracted in common, remainder (triangle) \triangle AE equals remainder (triangle) AГE. 14 And they are on the same base.
(227) (Prop. 159) (Let there be) a circle about diameter AB, and let AB be produced, and let it be a perpendicular to an arbitrary (line) $\Delta \mathrm{E}$, and let the square of ZH be made equal to the rectangle contained by AZ, ZB. That, if some point such as E were chosen, and the (line) from it to H were joined and produced to Θ, then also the rectangle contained by $\Theta \mathrm{E}, \mathrm{EK}$ equals the square of EH .

Let $A E, B \Lambda$ be joined. Then angle Λ is right. ${ }^{1}$ But (angle) \mathbf{Z} is right too. ${ }^{2}$ Therefore the rectangle contained by AE, E Λ equals the rectangle contained by AZ, ZB plus the square of ZE (lemma 227.1). ${ }^{3}$ But the rectangle contained by $\mathrm{AE}, \mathrm{E} \Lambda$ equals the rectangle contained by $\Theta \mathrm{E}, \mathrm{EK}, 4$ while the rectangle contained by AZ, ZB equals the square of ZH. ${ }^{5}$ Therefore the rectangle contained by $\Theta \mathrm{E}$, EK equals the squares of EZ ,

$\dot{\epsilon} \sigma \tau \iota \nu \dot{\epsilon} \kappa a \tau \dot{\epsilon} \rho a \tau \tilde{\omega} \nu \dot{\nu} \pi \grave{o}$ AZB, EZH $\gamma \omega \nu \iota \tilde{\omega} \nu$.

 $\tau \tilde{\eta} \iota \Delta \mathrm{E} \pi a \rho a ́ \lambda \lambda \eta \lambda o s \dot{\eta} \mathrm{BK}, \kappa а i, \dot{\epsilon} \kappa \beta \epsilon \beta \lambda \eta \sigma \theta \omega \dot{\eta} \mathrm{~A} \Gamma \dot{\epsilon} \pi i \quad \tau \dot{o} \mathrm{~K}$, öт ι

 $\tau \dot{\eta} \nu \mathrm{BE}, ~ o \ddot{u} \tau \omega \varsigma \dot{\eta} \mathrm{~K} \Theta \pi \rho \dot{o} \varsigma, \tau \dot{\eta} \nu \mathrm{KA}, \tau 0 \cup \tau \epsilon \in \tau \iota \nu \dot{\eta} \Delta \mathrm{~B} \pi \rho \dot{\epsilon} \varsigma \tau \dot{\eta} \nu \mathrm{BA}$.

5

910

$\mathrm{ZH},{ }^{6}$ that is the square of $\mathrm{EH} .{ }^{7}$
(228) (Prop. 160) As is AB to $\mathrm{B} \Gamma$, let $\mathrm{A} \Delta$ be to $\Delta \Gamma$, and let $\mathrm{A} \Gamma$ be bisected at point E. That three things result: the rectangle contained by $\mathrm{BE}, \mathrm{E} \Delta$ equals the square of $\mathrm{E} \Gamma$, the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$ equals the rectangle contained by $\mathrm{A} \Delta, \Delta \Gamma$, and the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ equals the rectangle contained by $\mathrm{EB}, \mathrm{B} \Delta$.

For since as is $A B$ to $B \Gamma$, so is $A \Delta$ to $\Delta \Gamma,{ }^{1}$ componendo ${ }^{2}$ and (taking) halves of the leading (members) ${ }^{3}$ and convertendo therefore, as is BE to $\mathrm{E} \Gamma$, so is $\mathrm{E} \Gamma$ to $\mathrm{E} \Delta .4$ Therefore the rectangle contained by $\mathrm{BE}, \mathrm{E} \Delta$ equals the square of $E \Gamma .{ }^{5}$ Let the square of ΔE be subtracted in common. Then the remaining rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$ equals the rectangle contained by $A \Delta, \Delta \Gamma .{ }^{6}$ Again, the rectangle contained by $\mathrm{BE}, \mathrm{E} \Delta$ equals the square of $E \Gamma .{ }^{7}$ Let both be subtracted from the square of BE. ${ }^{8}$ Then the remaining rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ equals the rectangle contained by EB, B Δ.

But now let the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$ be equal to the rectangle contained by $A \Delta, \Delta \Gamma$, and let ΓA be bisected at E. That, as is $A B$ to $B \Gamma$, so is $A \Delta$ to $\Delta \Gamma$.

For since the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$ equals the rectangle contained by $\mathrm{A} \Delta, \Delta \Gamma, 1$ let the square of $\Delta \mathrm{E}$ be added in common. Then the sum, the rectangle contained by $\mathrm{BE}, \mathrm{E} \Delta$, equals the square of $\Gamma \mathrm{E} .{ }^{2}$ In ratio 3 <and convertendo>4 and (taking) twice the leading (members) ${ }^{5}$ and separando, therefore, as is $A B$ to $B \Gamma$, so is $A \Delta$ to $\Delta \Gamma .{ }^{6}$
(229) (Prop. 161) These things being so, let there be the circle about diameter AB , and let AB be produced. Let it be a perpendicular to an arbitrary (line) $\Delta \mathrm{E}$, and as AZ is to ZB , so let AH be made to HB . That again (as in 7.227) if some point such as E should be chosen on $E \Delta$, and $E H$ joined and produced to Θ, then as ΘE is to EK , so is ΘH to HK .

Let the center Λ of the circle be taken, and from Λ let ΛM be drawn as a perpendicular to EO. 1 Then KM equals MO. ${ }^{2}$ Since both angles M, Z are right, ${ }^{3}$ points E, Z, Λ, M are on a circle. ${ }^{4}$ Therefore the rectangle contained by $\mathrm{ZH}, \mathrm{H} \Lambda$ equals the rectangle contained by EH, HM. ${ }^{5}$ But the rectangle contained by $\mathrm{ZH}, \mathrm{H} \Lambda$ equals the rectangle contained by $\mathrm{AH}, \mathrm{HB}^{8}$, because as is $A Z$ to $Z B$, so is $A H$ to $H B,{ }^{6}$ and $A B$ has been bisected at Λ (7.228). ${ }^{7}$ And therefore the rectangle contained by EH, HM equals the rectangle contained by $\mathrm{AH}, \mathrm{HB},{ }^{9}$ that is, since they are in a circle, the

(228) ' $\epsilon \sigma \tau \omega \dot{\omega} \varsigma \dot{\eta} \mathrm{AB} \pi \rho \grave{o} \varsigma \tau \grave{\eta} \nu \mathrm{~B} \Gamma$, oü $\tau \omega \varsigma \dot{\eta} \mathrm{n} \mathrm{A} \Delta \pi \rho \grave{o} \varsigma \tau \grave{\eta} \nu \Delta \Gamma, \kappa a i$

 $\tau \dot{\eta} \nu \mathrm{B} \Gamma$, oü $\tau \omega \varsigma \dot{\eta} \mathrm{A} \Delta \pi \rho \grave{o} \varsigma \tau \dot{\eta} \nu \Delta \Gamma$, $\sigma u \nu \theta^{\prime} \dot{\epsilon} \nu \tau \iota$ каi $\tau \dot{a} \dot{\eta} \mu i \sigma \eta \tau \tilde{\omega} \nu$

 BE $\tau \epsilon \tau \rho a \gamma \dot{\omega} \nu o v . \lambda o \iota \pi \grave{o} \nu$ á $\rho a \tau \grave{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{AB} \mathrm{\Gamma}$ 'ioov $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota$ $\dot{\nu} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{~EB} \Delta$.
á $\lambda \lambda \grave{a}$ ' $\epsilon \sigma \tau \omega \nu \tilde{v} \nu \tau \grave{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{~B} \Delta \mathrm{E}$ ' $\quad \sigma o \nu \tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{~A} \Delta \Gamma$, каi

 $\dot{\eta} \mathrm{A} \Delta \pi \rho \dot{o} \mathrm{~s} \tau \dot{\eta} \nu \Delta \Gamma$.
(229) $\tau 0 \dot{v} \tau \omega \nu$ 'ó $\nu \tau \omega \nu$, ' $\epsilon \sigma \tau \omega \kappa \dot{v} \kappa \lambda o s \dot{o} \pi \epsilon \rho i \quad \delta \iota a ́ \mu \epsilon \tau \rho o \nu \tau \grave{\eta} \nu \mathrm{AB}$,

$\| 1 \mathrm{EZH}] \mathrm{EZ}, \mathrm{ZH}$ Co\| 8 BE Co AE A\| 9 ante $\dot{\eta}$ add oü $\tau \omega \varsigma \mathrm{Ge}$ $\mathrm{BE} \Delta \mathrm{Co} \mathrm{AE} \Delta \mathrm{A} \mid 10 \Delta \mathrm{E}$ Co ГE A \| $11 \mathrm{BE} \Delta$ Co AE $\Delta \mathrm{A} \mid 12 \mathrm{E} \Gamma \mathrm{Co}$ $\mathrm{A} \Gamma \mathrm{A}\|.14 \mathrm{~EB} \Delta \mathrm{Co} \mathrm{EB} \mathrm{\Gamma} \mathrm{~A}\| 16 \dot{\omega} \mathrm{~S}$ add $\mathrm{Ge}(\mathrm{S})|\mid 20$ каi

 $\tau \epsilon \tau \mu \tilde{\eta} \sigma \theta \iota \tau \dot{\eta} \nu$ coni. Hu app
rectangle contained by $\Theta \mathrm{H}, \mathrm{HK} .{ }^{10}$ And $\Theta \mathrm{K}$ has been bisected at M. ${ }^{11}$ Because of the foregoing (lemma 7.228), as is $\Theta \mathrm{E}$ to EK , so is $\Theta \mathrm{H}$ to HK. ${ }^{2}$
(230) (Prop. 162) (Let there be) the semicircle on AB , and AB parallel to $\Gamma \Delta$, and let perpendiculars $\Gamma \mathrm{E}, \Delta \mathrm{H}$ be drawn. That AE equals HB .

Let the center \mathbf{Z} of the circle be taken, and let $\Gamma \mathbf{Z}$ and $\mathbf{Z} \Delta$ be joined. Then ΓZ equals $Z \Delta .1$ Hence too the square of ΓZ equals the square of $\mathrm{Z} \Delta .^{2}$ But the squares of $\Gamma \mathrm{E}, \mathrm{EZ}$ equal the square of $\Gamma \mathrm{Z},{ }^{3}$ while the squares of $\Delta \mathrm{H}, \mathrm{HZ}$ equal the square of $\Delta \mathrm{Z} .{ }^{4}$ Therefore the squares of $\Gamma \mathrm{E}$, EZ equal the squares of $\mathrm{ZH}, \mathrm{H} \Delta .{ }^{5}$ Of these the square of $\Gamma \mathrm{E}$ equals the square of $\Delta H \cdot{ }^{6}$ Therefore the remaining square of EZ equals the remaining square of ZH. ${ }^{7}$ Thus EZ equals ZH. ${ }^{8}$ But also all AZ equals all ZB. ${ }^{\text {a }}$ Therefore remainder AE equals remainder HB. ${ }^{10}$ Q.E.D.
(231) (Prop. 163) (Let there be) the semicircle on AB, and from an arbitrary (point) Γ let $\Gamma \Delta$ be drawn across, and let perpendicular ΔE be drawn. That the square of $A \Gamma$ exceeds the square of $\Gamma \Delta$ by the rectangle contained by $\mathrm{A} \Gamma, \Gamma$ B taken together and AE .1

Hence that the square of $A \Gamma$ equals the square of $\Delta \Gamma$, that is the squares of $\Delta \mathrm{E}$ and $\mathrm{E},,^{3}$ and the rectangle contained by $A \Gamma B$ taken together and AE. ${ }^{2}$ Hence that, with the rectangle contained by $Г \mathrm{~A}, \mathrm{AE}$ subtracted in common, the remaining rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{E}$ equals the square of $\Delta \mathrm{E}$, that is the rectangle contained by $\mathrm{AE}, \mathrm{EB},{ }^{5}$ plus the square of $\Gamma \mathrm{E}$ plus the rectangle contained by $\mathrm{AE}, \Gamma \mathrm{B} .{ }^{4}$ With the square of $\Gamma \mathrm{E}$ subtracted in common, that the remaining rectangle contained by AE , $\mathrm{E} \Gamma$ equals the rectangle contained by AE, EB plus the rectangle contained by АЕ, ВГ. 6 But it does. ${ }^{7}$
(232) For the <...> porism of the first (book).
(Prop. 164) A Δ being a parallelogram (given) in position, to draw EZ across from a given (point) E , making triangle \mathbf{Z} ГH equal to parallelogram A Δ.

 oüt $\omega \bar{\eta} \dot{\eta}$ Н $\pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \mathrm{HK}$.
(230) $\dot{\eta} \mu \iota \kappa \dot{v} \kappa \lambda \iota о \nu \tau \grave{o} \dot{\epsilon} \pi i \quad \tau \tilde{\eta} \varsigma \mathrm{AB}$, каi $\pi а \rho a ́ \lambda \lambda \eta \lambda о \varsigma ~ \tau \tilde{\eta} \iota \mathrm{AB} \dot{\eta}$

 $\dot{\eta} \mathrm{AE} \lambda о \iota \pi \tilde{\eta} \iota \tau \tilde{\eta} \iota \mathrm{HB} \dot{\epsilon} \sigma \tau i \nu$ ' $\boldsymbol{\sigma} \sigma \eta$. 'ö $(\pi \epsilon \rho)$:-

 $\lambda o \iota \pi \grave{o} \nu \tau \grave{o} \dot{v} \pi \grave{o} \mathrm{AE}$ 'ígov $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota \tau \epsilon \dot{v} \pi \grave{o} \mathrm{AEB} \kappa a \dot{\imath} \tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \mathrm{AE}$, ВГ. ' $\epsilon \sigma \tau \iota \nu \delta \dot{\delta} \dot{\epsilon}$.
(232) EIE TO <...> ПOPILMA A' BIBAIOT

 $\tau \rho i \gamma \omega \nu 0 \nu \quad \tau \tilde{\omega} \iota \quad \mathrm{~A} \Delta \quad \pi a \rho a \lambda \lambda \eta \lambda o \gamma \rho a ́ \mu \mu \omega \iota$, $\tau \grave{o} \quad \delta \grave{\epsilon} \mathrm{~A} \Delta$
$\| 1$ '́ $\nu \kappa \dot{v} \kappa \lambda \omega \iota$ fà ρ post $\Theta H K$ transp. Ge \| 3 $\delta \grave{\eta}$ add $\mathrm{Ge} \| 18 \mathrm{AB} \mathrm{Co}$
 каі A\| $24 \Delta \mathrm{E}$ CoAE A \| $28 \mathrm{EI} \mathrm{\Sigma}$] EI $\mathrm{A}^{1} \Sigma$ add $\mathrm{A}^{2} \mid$ ante A° add TOT Hu

Let it have been done. Then since triangle $\mathbf{Z} \Gamma \mathbf{H}$ equals parallelogram $A \Delta, 1$ while parallelogram $A \Delta$ is twice triangle $A \Gamma \Delta,{ }^{2}$ therefore triangle $\mathrm{Z} \Gamma \mathrm{H}$ is twice triangle $\mathrm{A} \Gamma .^{3}$ But as is the triangle to the triangle, because they are about the same angle Γ, so is the rectangle contained by $\mathrm{Z} \Gamma, \Gamma \mathrm{H}$ to the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta^{4}$ (Lemma 7.214). But the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$ is given. ${ }^{5}$ Therefore also the rectangle contained by $\mathrm{Z} \Gamma, \Gamma \mathrm{H}$ is given. 6 And with (point) E given, <line EZ> has been drawn across (lines) $\mathrm{A}, \Gamma \mathrm{\Gamma}$ (given) in position, <and cutting off an area, the rectangle contained by $\mathrm{Z} \Gamma, \Gamma \mathrm{H}$, equal to a given (area). It has been brought to a reference> to the Cutting off of an Area. Hence EZ is (given) in position. ${ }^{7}$

The synthesis will be made thus. Let the parallelogram (given) in position be $\mathbf{A} \Delta$, the given (point) E . Let straight line EZ be drawn from E across (straight lines) $\mathrm{Z} \Gamma, \Gamma \mathrm{H}$ (given) in position, cutting off an area, the rectangle contained by $\mathrm{Z} \Gamma, \Gamma \mathrm{H}$, equal to a given area, twice the rectangle contained by $\mathrm{A}, \Gamma, \Gamma$. And following the analysis, we shall prove that triangle $\mathrm{Z} \Gamma \mathrm{H}$ equals parallelogram $\mathrm{A} \Delta$. Thus EZ solves the problem. Hence it is clearly unique (in solving it), since that (line, the one found in the Cutting off of an Area), is unique.

 $\epsilon \tau \nu a \iota$ add $\mathrm{Hu} \| 5$ post $\mathrm{Z} \Gamma \mathrm{H} \kappa a \grave{i}$ add $\mathfrak{a} \pi \grave{o} \mathrm{Hu}(\mathrm{Co}) \| 6 \dot{\eta} \mathrm{EZ}$ add Hu (Co)| $\dot{a} \pi о \boldsymbol{\tau} \dot{\epsilon} \mu \nu 0 v \sigma a-a \dot{\pi} \tilde{\eta} \kappa \tau a \iota$ addidi (idem fere coni. Hu app) \| 11 ZГ, ГН Co ZГH A | $\dot{v} \pi \grave{o}$ del Heiberg ${ }_{3} \| 12 \delta_{0} \theta^{\prime} \boldsymbol{\epsilon} \nu \tau \iota$ Co $\delta o \theta \epsilon \nu \tau \iota \nu \iota \mathrm{~A}|\delta \iota \pi \lambda a \sigma i o \nu \iota \mathrm{Co} \delta \iota \pi \lambda a ́ \sigma \iota o \nu \mathrm{~A}| \dot{v} \pi \grave{o}$ del
 compendium A

(233) (Conics, Book 1)

(Prop. 165) Let there be a cone, the base of which is circle $A B$, and whose apex is point Γ. Now if the cone is isosceles, clearly all the straight lines falling from Γ onto circle $A \Gamma$ are equal to each other. But if it is scalene, let it be (required) to find which (line) is greatest, and which least.

For let a perpendicular be drawn from point Γ onto the plane of circle $A B$, and first let it fall inside circle $A B$, and let it be $\Gamma \Delta$; and let the center of the circle, E, be taken, and let $\Delta \mathrm{E}$ be joined and produced in both directions to points A, B, and let $A \Gamma, \Gamma B$ be joined. I say that $B \Gamma$ is the greatest, $A \Gamma$ the least of all the (lines) falling from Γ onto (circle) $A B$.

For let some other (line) ΓZ be dropped, and let ΔZ be joined. Then $B \Delta$ is greater than $\Delta Z .{ }^{1}$ But $\Gamma \Delta$ is common; and the angles at Δ are right. ${ }^{2}$ Therefore $B \Gamma$ is greater than $\Gamma Z .{ }^{3}$ By the same argument too ΓZ is greater than $\Gamma А .{ }^{4}$ Thus $\Gamma В$ is the greatest, $\Gamma А$ the least.
(234) (Prop. 166) But now let the perpendicular drawn from Γ fall on the circumference of circle $A B$, and let it be ΓA, and again let $A \Delta$ be joined to the center Δ of the circle, and let it be produced to B, and let $B \Gamma$ be joined. I say that $\mathrm{B} \Gamma$ is the greatest, $\mathrm{A} \Gamma$ the least.

That ΓB is greater than ΓA is obvious. Let some other (line) ΓE be drawn, and let $A E$ be joined. Since $A B$ is a diameter, it is greater than $A E .1$ And $A \Gamma$ is at right angles to them. ${ }^{2}$ Therefore $B \Gamma$ is greater than ГE. ${ }^{3}$ Similarly (it is greater) than all. And by the same argument, it will be proved that $\mathrm{E} \Gamma$ is greater than Γ. ${ }^{4}$ Thus $\mathrm{B} \Gamma$ is greatest, $\Gamma \mathrm{A}$ least of the straight lines that fall from point Γ onto circle $A B$.
(235) (Prop. 167) With the same things assumed, let the perpendicular fall outside the circle, and let it be $\Gamma \Delta$, and let ΔE be joined to the center E of the circle and produced, and let $\mathrm{A} \Gamma$ and $\mathrm{B} \Gamma$ be joined. I say that $\mathrm{B} \Gamma$ is the greatest, $\mathrm{A} \Gamma$ the least of all the straight lines that fall from Γ onto circle AB .

That $B \Gamma$ is greater than ΓA is obvious. I say that (it is greater) also than all the (lines) that fall from Γ onto the circumference of circle $A B$. For

 $\kappa а \tau \grave{a}, \tau \grave{a}$ aúvà каi $\dot{\eta}, \Gamma Z \tau \tilde{\eta} S \Gamma А \mu \epsilon i \zeta \omega \nu \dot{\epsilon} \sigma \tau i \nu$. $\ddot{\omega} \sigma \tau \epsilon \mu \epsilon \gamma i \sigma \tau \eta$ $\mu \dot{\epsilon} \nu \dot{\epsilon} \sigma \tau \iota \nu \dot{\eta} \Gamma В, \dot{\epsilon} \lambda a \chi \iota \sigma \tau \eta \delta \dot{\epsilon} \dot{\eta}$ ГА

 $\tau \tilde{\eta} \varsigma \Gamma \mathrm{A}$. $\dot{\omega} \sigma \tau \epsilon \mu \epsilon \gamma i \sigma \tau \eta \mu \grave{\epsilon} \nu \dot{\eta} \mathrm{~B} \Gamma, \dot{\epsilon} \lambda a \chi i \sigma \tau \eta \delta \grave{\epsilon} \dot{\eta} \Gamma \mathrm{~A} \tau \tilde{\omega} \nu$ à $\pi \grave{o} \tau 0 \tilde{v}$

 $\dot{\epsilon} \pi \iota \zeta \epsilon v \chi \theta \epsilon \tau \sigma a \dot{\eta} \Delta \mathrm{E} \dot{\epsilon} \kappa \beta \epsilon \beta \lambda \dot{\eta} \sigma \theta \omega$, каi $\dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{v} \chi \theta \omega \sigma a \nu$ ai $\mathrm{A}, \mathrm{B} \mathrm{\Gamma}$.

[^41]let some other (line) ΓZ be dropped, and let ΔZ be joined. Then since $B \Delta$ is through the center, ΔB is greater than ΔZ (III 8). ${ }^{1}$ And $\Delta \Gamma$ is at right angles to them, ${ }^{2}$ since also to the plane. Therefore $B \Gamma$ is greater than $\Gamma Z .{ }^{3}$ Similarly (it is greater) than all. Thus ΓB is greatest.
(To prove) that $A \Gamma$ is least. For since $A \Delta$ is less than $\Delta Z, 4$ and $\Delta \Gamma$ is at right angles to them, 5 therefore $A \Gamma$ is less than $\Gamma Z .6$ Similarly (it is less) than all. Thus $A \Gamma$ is least, $B \Gamma$ greatest of all the straight lines that fall from Γ onto the circumference of circle $A B$.

(236) For the Conic Definitions.

"If (a line) from some point onto the circumference of a circle..." (Conics 1 def. 1) Apollonius reasonably adds also "is produced in both directions", inasmuch as he is setting out the generation of the general cone. For if the cone were isosceles, it would be superfluous to produce (the line) because the moving straight line always touches the circle's circumference, since the point would always be an equal distance from the circle's circumference. But since the cone can also be scalene, and there is, as was written above, in a scalene cone some greatest and least edge, necessarily he adds the "let it be produced" so that the least (line) by being produced always increases [with the greatest always being produced] until it becomes equal to the greatest, and touches the circle's circumference at that point.
(237) (Prop. 168) Let there be a curve $\mathrm{AB} \mathrm{\Gamma}$, and $\mathrm{A} \Gamma$ (given) in position, and let all the perpendiculars drawn from the curve to $A \Gamma$ be drawn in such a way that the square of each of them equals the rectangle contained by the sections of the base cut off by each of them. I say that $\mathrm{AB} \mathrm{\Gamma}$ is a circle's circumference, and $\mathrm{A} \Gamma$ its diameter.

For let perpendiculars $\Delta \mathrm{Z}, \mathrm{BH}, \mathrm{E} \Theta$ be drawn from points $\Delta, \mathrm{B}, \mathrm{E} .1$ Then the square of ΔZ equals the rectangle contained by $A Z, Z \Gamma,{ }^{2}$ and the square of BH (equals) the rectangle contained by $\mathrm{AH}, \mathrm{H} \Gamma,{ }^{2}$ and the square of $\mathrm{E} \Theta$ (equals) the rectangle contained by $A \Theta, \Theta \Gamma .{ }^{4}$ Now let $A \Gamma$ be bisected at $K,{ }^{5}$ and let $\triangle K, K B, K E$ be joined. Then since the rectangle contained by

 $\pi a \sigma \tilde{\omega} \nu$ ．$\dot{\epsilon} \lambda a x i \sigma \tau \eta$ ápa $\bar{\epsilon} \sigma \tau i \nu \dot{\eta} \mathrm{~A} \Gamma, \mu \epsilon \gamma i \sigma \tau \eta \delta \dot{\epsilon} \dot{\eta} \mathrm{~B} \Gamma \pi a \sigma \tilde{\omega} \nu \tau \tilde{\omega} \nu$
 $\epsilon \dot{U} \theta \in \iota \tilde{\omega} \nu$ ．

（236）EIL TOTE KתNIKOTE OPOT乏
 （236）EIL TOT乏 K 2 NIKOT乏 OPOT

[^42]$\mathrm{AZ}, \mathrm{Z} \Gamma$ plus the square of $\mathbf{Z K}$ equals the square of $\mathrm{AK},{ }^{6}$ but the square of ΔZ equals the rectangle contained by $A Z, Z \Gamma$, therefore the square of $\Delta \mathbf{Z}$ plus the square of $\mathbf{Z K}$, that is the square of $\Delta K,{ }^{8}$ equals the square of AK. ${ }^{7}$ Therefore AK equals K $\Delta .{ }^{9}$ Similarly we shall prove that each of BK, EK equals AK , or $\mathrm{K} \Gamma$. Thus $\mathrm{AB} \mathrm{\Gamma}$ is the circumference of the circle about center K, that is about diameter $A \Gamma$.
(238) (Prop. $169 a-b$) (Let there be) three parallels $\mathrm{AB}, \Gamma \Delta$, EZ , and let two straight lines AHZГ, BHE Δ be drawn across them. That as is the rectangle contained by AB, EZ to the square of $\Gamma \Delta$, so is the rectangle contained by AH, HZ to the square of $\mathrm{H} \Gamma$.

For since as AB is to ZE , that is as is the rectangle contained by AB , ZE to the square of $\mathrm{ZE},{ }^{2}$ so is AH to $\mathrm{HZ},{ }^{1}$ that is the rectangle contained by AH, HZ to the square of $\mathrm{HZ},{ }^{3}$ therefore as is the rectangle contained by AB, ZE to the square of ZE , so is the rectangle contained by AH, HZ to the square of $\mathrm{HZ} .{ }^{4}$ But also as is the square of ZE to the square of $\Gamma \Delta$, so is the square of ZH to the square of $\mathrm{H} .{ }^{5}$ Ex aequali therefore as is the rectangle contained by AB, ZE to the square of $\Gamma \Delta$, so is the rectangle contained by AH, HZ to the square of $\mathrm{H} \Gamma .{ }^{6}$
(239) (Prop. 170) As is AB to $\mathrm{B} \Gamma$, so let $\mathrm{A} \Delta$ be to $\Delta \Gamma$, and let $\mathrm{A} \Gamma$ be bisected at point E . That the rectangle contained by $\mathrm{BE}, \mathrm{E} \Delta$ equals the square of $\mathrm{E} \Gamma$, and that the rectangle contained by $A \Delta, \Delta \Gamma$ (equals) the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E}$, and that the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ (equals) the rectangle contained by EB, $B \Delta$.

For since as AB is to $\mathrm{B} \mathrm{\Gamma}$, so is $\mathrm{A} \Delta$ to $\Delta \Gamma,{ }^{1}$ componendo ${ }^{2}$ and (taking) the halves of the leading (members) ${ }^{3}$ and convertendo, as is BE to $\mathrm{E} \Gamma$, so is $\Gamma \mathrm{E}$ to $\mathrm{E} \Delta .{ }^{4}$ Therefore the rectangle contained by $\mathrm{BE}, \mathrm{E} \Delta$ equals the square of $E \Gamma .{ }^{5}$ Let the square of $E \Delta$ be subtracted in common. Then the remaining rectangle contained by $A \Delta, \Delta \Gamma$ equals the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{E} .{ }^{6}$ But since the rectangle contained by $\mathrm{BE}, \mathrm{E} \Delta$ equals the square of $\mathrm{E} \Gamma$, let each be subtracted from the square of $\mathrm{BE} .{ }^{7}$ Then the remaining rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ equals the rectangle contained by $\mathrm{EB}, \mathrm{B} \Delta .^{8}$ Thus the three things result.
(240) (Prop. 171) Let A have to B the ratio compounded out of that which Γ has to Δ, and that which E has to Z. That also Γ has to Δ the ratio compounded out of that which \mathbf{A} has to \mathbf{B}, and that which \mathbf{Z} has to \mathbf{E}.

 riveraı ápa rà rpia.

[^43]For let the (ratio) of Δ to H be made equal to that of E to $Z .{ }^{1}$ Then since the (ratio) of A to B is compounded out of that of Γ to Δ, and that of E to $Z,{ }^{2}$ that is of Δ to $H,{ }^{3}$ whereas the (ratio) compounded out of that which Γ has to Δ, and that which Δ has to H is the (ratio) of Γ to $\mathrm{H},{ }^{4}$ therefore as is A to B , so is Γ to $\mathrm{H} .{ }^{5}$ But since Γ has to Δ the ratio compounded out of that which Γ has to H , and that which H has to $\Delta,{ }^{6}$ while that of Γ to H was proved to be the same as that of A to B , and the (ratio) of H to Δ by inversion is the same as that of Z to $E, 7$ therefore Γ has to Δ the ratio compounded out of that which A has to B, and that which Z has to E. ${ }^{8}$
(241) (Prop. $172 a-b$) Let there be two equiangular parallelograms $A \Gamma, \Delta Z$, that have angle B equal to angle E. That as is the rectangle contained by $A B, B \Gamma$ to the rectangle contained by $\triangle E, E Z$, so is parallelogram $A \Gamma$ to parallelogram ΔZ.

Now if angles B, E are right, it is obvious. If not, let perpendiculars $\mathrm{AH}, \Delta \Theta$ be drawn. ${ }^{1}$ Then since angle B equals angle $\mathrm{E},{ }^{2}$ and right (angle) H is (equal) to (angle) Θ, therefore triangle ABH is equiangular to triangle $\Delta E \Theta .{ }^{3}$ Hence as is BA to AH , so is $\mathrm{E} \Delta$ to $\Delta \Theta .{ }^{4}$ But as BA is to AH , so is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ to the rectangle contained by $\mathrm{AH}, \mathrm{B} \Gamma,{ }^{5}$ while as is $\mathrm{E} \Delta$ to $\Delta \Theta$, so is the rectangle contained by $\Delta \mathrm{E}, \mathrm{EZ}$ to the rectangle contained by $\Delta \Theta, \mathrm{EZ} .{ }^{6}$ Therefore alternando as is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ to the rectangle contained by $\triangle \mathrm{E}, \mathrm{EZ}$, so is the rectangle contained by $\mathrm{AH}, \mathrm{B} \Gamma$, that is parallelogram $\mathrm{A} \Gamma$, to the rectangle contained by $\Delta \Theta, E Z,{ }^{7}$ that is parallelogram $\Delta Z .{ }^{8}$
(242) (Prop. 173) Let there be triangle $\mathrm{AB} \Gamma$, and let $\mathrm{B} \Gamma$ be parallel to ΔE, and let the rectangle contained by ZA, AE be made equal to the square of $\Gamma \mathrm{A}$. That, if $\Delta \Gamma, \mathrm{BZ}$ are joined, BZ is parallel to $\Delta \Gamma$.

But this is obvious. For since as is ZA to $\mathrm{A} \Gamma$, so is $\Gamma \mathrm{A}$ to $\mathrm{AE}, 1$ <while as is ΓA to $\mathrm{AE},>$ so is BA to $\mathrm{A} \triangle$ in parallels, ${ }^{2}$ therefore as is ZA to $\mathrm{A} \Gamma$, so is BA to $\mathrm{A} \Delta .{ }^{3}$ Thus $\Delta \Gamma, \mathrm{BZ}$ are parallel.

 $\Delta Z \pi a \rho a \lambda \lambda \eta \lambda \dot{o} \gamma \rho a \mu \mu o \nu$. єi $\mu \epsilon \in \nu$ oû̀ ó $\rho \theta a i ́ \epsilon i \sigma \iota \nu$ aỉB, E $\gamma \omega \nu i a \iota$,

 $\dot{\epsilon} \sigma \tau i \nu \tau \dot{o} \mathrm{ABH} \tau \rho i \gamma \omega \nu o \nu \tau \tilde{\omega} \iota \Delta \mathrm{E} \Theta \tau \rho \iota \gamma \omega \nu \omega \iota$. 'Є́ $\sigma \tau \iota \nu$,ápa $\dot{\omega} \varsigma \dot{\eta} \mathrm{BA}$

5

|| 2 ó $\tau 0 \tilde{v} \mathrm{Ha} \tau \grave{o} \mathrm{~A} \mid$ ante $\sigma u \nu \tilde{\eta} \pi \tau a \iota$ add λ óyos $\mathrm{Ha} \mid \tau o \tilde{v}(\Gamma) \mathrm{Ha}$ $\tau \tilde{\eta} \varsigma \mathrm{A} \mid$ ante Δ add $\tau \grave{o} \mathrm{Hu} \| 3 \tau 0 \tilde{v}$ (E) Ha $\tau \tilde{\eta} \varsigma \mathrm{A} \mid$ ante Z add $\tau \grave{o}$ $\mathrm{Ha} \mathrm{\|} 5 \dot{\epsilon} \sigma \tau \iota \nu$ ante $\dot{o} \tau 0 \tilde{v} \Gamma$ transp $\mathrm{Ha}(\mathrm{Hu} \mathrm{app}$ ad locum vix sanus) | $\dot{\omega} \varsigma$ add $\mathrm{Ha} \| 26 \dot{\eta} \ldots \tau \tilde{\eta} \iota\rceil \tau \tilde{\eta} \iota \ldots \dot{\eta}$ coni Hu app \| $28 \dot{\epsilon} \boldsymbol{\epsilon} \sigma \iota \nu$ del $\mathrm{Ha} \|$ 30 ГА Со Г $\Delta \mathrm{A} \mid \dot{\omega} \varsigma-\mathrm{AE}$ add $\mathrm{Hu}(\mathrm{Co})$
(243) (Prop. 174) Let there be triangle $\mathrm{AB} \mathrm{\Gamma}$, and trapezium $\triangle E Z H$, so that angle $A B \Gamma$ equals angle $\triangle E Z$. That as is the rectangle contained by $A B, B \Gamma$ to the rectangle contained by $\Delta H, E Z$ taken together and ΔE, so is (triangle) $\mathrm{AB} \mathrm{\Gamma}$ to (trapezium) $\triangle \mathrm{EZH}$.

Let perpendiculars $A \Theta, \Delta K$ be drawn. 1 Since angle $A B \Gamma$ equals angle $\Delta \mathrm{EZ},{ }^{2}$ while right (angle) Θ equals right (angle) $\mathrm{K},{ }^{3}$ therefore as is $B A$ to $A \Theta$, so is $E \Delta$ to $\Delta K .{ }^{4}$ But as is $B A$ to $A \Theta$, so is the rectangle contained by $\mathrm{AB}, \mathrm{B} \Gamma$ to the rectangle contained by $\mathrm{A} \Theta, \mathrm{B} \Gamma, 5$ while as is $\mathrm{E} \Delta$ to ΔK, so is the rectangle contained by ΔH, EZ taken together and ΔE to the rectangle contained by $\Delta \mathrm{H}, \mathrm{EZ}$ taken together and $\Delta \mathrm{K} .{ }^{6}$ And half the rectangle contained by $A \Theta, B \Gamma$ is triangle $A B \Gamma, 7$ while half the rectangle contained by $\Delta H, E Z$ taken together and ΔK is trapezium $\Delta E Z H .{ }^{8}$ Therefore as is the rectangle contained by $A B, B \Gamma$ to the rectangle contained by $\Delta H, E Z$ taken together and $\triangle E$, so is triangle $A B \Gamma$ to trapezium $\triangle E Z H .{ }^{9}$
(244) And if there is triangle $A B \Gamma$, and parallelogram ΔZ, then as is triangle $A B \Gamma$ to parallelogram $\triangle \mathrm{EZH}$, so is the rectangle contained by AB , $B \Gamma$ to twice the rectangle contained by $\triangle E, E Z$, by the same argument. And it is obvious from these things that the rectangle contained by $A B, B \Gamma$, if parallelogram ΔZ <equals triangle $A B \Gamma>$, equals twice the rectangle contained by $\triangle E, E Z$. In the case of the trapezium it equals *twice* the rectangle contained by $\Delta H, E Z$ taken together and ΔE. Q.E.D.
(245) (Prop. 175) Let there be triangle $\mathrm{AB} \mathrm{\Gamma}$, and with $\Gamma А$ produced let some arbitrary (line) $\Delta \mathrm{E}$ be drawn across, and let AH be drawn parallel to it, and $A Z$ (parallel) to $B \Gamma$. That as is the square of $A H$ to the rectangle contained by $\mathrm{BH}, \mathrm{H} \Gamma$, so is the rectangle contained by $\Delta \mathrm{Z}, \mathrm{Z} \Theta$ to the square of ZA.

Let the rectangle contained by $<\mathrm{AH}, \mathrm{HK}>$ be made equal to the rectangle contained by $\mathrm{BH}, \mathrm{H} \Gamma,{ }^{1}$ <and the rectangle contained by> AZ , $\mathrm{Z} \Lambda$ (equal) <to the rectangle contained by $\Delta \mathrm{Z}, \mathrm{Z} \Theta>,{ }^{3}$ and let $\mathrm{BK}, \Theta \Lambda$ be joined. Then since angle Γ equals angle $B K H,{ }^{2}$ and angle $\Delta A \Lambda$ equals angle $Z \Theta \Lambda$ in a circle, ${ }^{4}$ therefore angle HKB equals angle $Z \Theta \Lambda .{ }^{5}$ But as well angle H equals angle $\mathbf{Z .}{ }^{6}$ Therefore as is BH to HK , so is $\Lambda \mathrm{Z}$ to $\mathrm{Z} \mathrm{\Theta} .{ }^{7}$ But since as is AH to HB , so is ΘE to $\mathrm{EB},{ }^{8}$ while as is $\Theta \mathrm{E}$ to EB , so is $\mathrm{Z} \Theta$ to ZA

 трат́є弓しо⿱．

 ö $(\pi \in \rho)$ ：－

 $\gamma \omega \nu i a \tau \tilde{\eta} \iota \dot{v} \pi \bar{o} \mathrm{BKH}, \dot{\eta} \delta \grave{\epsilon} \dot{u} \pi \grave{o} \Delta \mathrm{~A} \Lambda \dot{\epsilon} \nu \kappa \dot{v} \kappa \lambda \omega \iota$＇ion $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\eta} \iota v \pi \dot{o}$

 （Ha post $\left.\rho \rho \theta \dot{\eta})\left\|8 \mathrm{E} \Delta \mathrm{Co}_{\mathrm{A}} \Delta \mathrm{A}\right\| 11 \tau 0 \tilde{v}\right] \tau \grave{o} \mathrm{Ha} \| 12 \Delta \mathrm{~K}$ Co AK A $\| 13 \mathrm{kai}(\tau \tilde{\eta} \varsigma \Delta H, E Z)$ del Ha \｜ 16 $\delta \grave{\epsilon} \operatorname{secl} \mathrm{Hu} \| 18 \mathrm{AB}, \mathrm{B} \mathrm{\Gamma} \mathrm{Ha}$ АӨВГ А АВГ Со \｜ $19 \mathrm{AB}, \mathrm{B} Г$ На АӨВГ А АВГ Со $\| ~ 20$＇íoo $\nu \tau \tilde{\omega} \iota$

 Z HaK A
in parallels, ${ }^{9}$ therefore as is AH to HB , so is $\Theta \mathrm{Z}$ to $\mathrm{ZA} .{ }^{10}$ Hence since as AH is to HB , so is $\Theta \mathrm{Z}$ to ZA , while as BH is to HK , so is some other (line) $\Lambda \mathrm{Z}$ to the leading (member) $\mathrm{Z} \Theta,{ }^{11}$ ex aequali therefore in disturbed proportion as is AH to HK , so is $\Lambda \mathrm{Z}$ to ZA. ${ }^{2}{ }^{2}$ But as is AH to HK, so is the square of AH to the rectangle contained by $\mathrm{AH}, \mathrm{HK},{ }^{13}$ that is to the rectangle contained by $\mathrm{BH}, \mathrm{H} \Gamma ;{ }^{14}$ while as is $\Lambda \mathrm{Z}$ to ZA , so is the rectangle contained by $\Lambda \mathbf{Z}, \mathrm{ZA}$, that is the rectangle contained by $\Delta \mathrm{Z}, \mathrm{Z},,^{16}$ to the square of AZ. ${ }^{5}$ Thus as is the square of AH to the rectangle contained by $\mathrm{BH}, \mathrm{H} \Gamma$, so is the rectangle contained by $\Delta \mathrm{Z}, \mathrm{Z} \Theta$ to the square of $\mathrm{ZA} .{ }^{17}$
(246) (Prop. 175) By means of compounded (ratio).

Since the ratio of $A H$ to $H B$ is that of ΘE to $E B, 1$ that is that of ΘZ to $\mathrm{ZA},{ }^{2}$ while the ratio of AH to $\mathrm{H} \Gamma$ is the same as that of $\Delta \mathrm{E}$ to $\mathrm{E} \Gamma,{ }^{3}$ that is that of $\Delta \mathrm{Z}$ to $\mathrm{ZA}, 4$ therefore the ratio compounded out of that which AH has to HB , and that which AH has to $\mathrm{H} \Gamma$, which is that of the square of AH to the rectangle contained by $\mathrm{BH}, \mathrm{H} \Gamma$, is the same as the (ratio) compounded out of that of ΘZ to $Z A$ and that of ΔZ to $Z A, 5$ which is that of the rectangle contained by $\Delta \mathrm{Z}, \mathrm{Z} \Theta$ to the square of $\mathrm{ZA} .{ }^{6}$

 ajòs tò ánò ZA.

 $\dot{\epsilon} \sigma \tau \iota \nu \dot{o}$ тo
 ös $\bar{\epsilon} \sigma \tau \iota \nu \dot{o} \tau 0 \tilde{v}$ úno $\Delta Z \Theta \pi \rho o ̀ s ~ \tau o ̀ ~ a ́ \pi o ̀ ~ Z A ~ \tau \epsilon \tau ~ م a ́ \gamma \omega \nu o \nu . ~$
(247) (Lemmas) of (Book) 2.
(Prop. 176) Given two (straight lines) $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$, and straight line $\Delta \mathrm{E}$, to fit a straight line equal to $\Delta \mathrm{E}$ and parallel to it into AB and $\mathrm{B} \Gamma$. But this is obvious. For if we draw $\mathrm{E} \Gamma$ through E and parallel to AB , and $\Gamma \mathrm{A}$ is drawn through Γ parallel to $\Delta \mathrm{E}$, then, because $\mathrm{A} \boldsymbol{\Gamma} \mathrm{E}$ is a parallelogram, $\mathrm{A} \Gamma$ will be equal to $\Delta \mathrm{E}$, and parallel, and it has been fitted into the given straight lines AB, B.
(248) (Prop. 177) Let there be two triangles $\mathrm{AB} \mathrm{\Gamma}, \Delta \mathrm{EZ}$, and as AB is to $B \Gamma$, so let ΔE be to $E Z$, and (let) $A B$ (be) parallel to ΔE, and $B \Gamma$ to $E Z$. That also $\mathrm{A} \Gamma$ is parallel to ΔZ.

Let $\mathrm{B} \Gamma$ be produced, and let it intersect $\Delta \mathrm{E}$ and $\Delta \mathrm{Z}$ at H and θ. Then since as $A B$ is to $B \Gamma$, so is ΔE to $E Z,{ }^{1}$ and angles B and E are equal, ${ }^{2}$ because there are two (parallels) to two (lines), therefore also (angle) Γ is equal to (angle) $\mathbf{Z},{ }^{3}$ that is to (angle) $\boldsymbol{\Theta},{ }^{6}$ because EZ and $\mathrm{H} \Theta$ are parallel. ${ }^{5}$ For angle $<\mathrm{E}>$ equals (angle) $\mathrm{H},{ }^{4}$ since (it) also (equals angle) B. Thus $A \Gamma$ is parallel to $\Delta \Theta .^{7}$
(249) (Prop. 178) (Let) AB (be) a straight line, and $\operatorname{let} \mathrm{A} \Gamma$ and $\Delta \mathrm{B}$ be equal, and let an arbitrary point E be taken between Γ and Δ. That the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}$ plus the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ equals the rectangle contained by AE, EB.

Let $\Gamma \Delta$ be bisected at \mathbf{Z}, no matter where (\mathbf{Z}) is with respect to point E. 1 And since the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}$ plus the square of $\mathrm{Z} \Delta$ equals the square of $\mathrm{ZB},{ }^{2}$ but the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ plus the square of ZE equals the square of $\mathrm{Z} \Delta^{3}$ and the rectangle contained by AE , EB plus the square of ZE equals the square of ZB, 4 therefore the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}$ plus the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ and the square of ZE equals the rectangle contained by AE, EB and the square of ZE. ${ }^{5}$ Let the square of $\mathbf{Z E}$ be subtracted in common. Then the remaining rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}$ plus the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ equals the rectangle contained by AE, EB. ${ }^{6}$
(250) (Prop. 179) (Let) AB (be) a straight line, and let $\mathrm{A} \Gamma$ and $\Delta \mathrm{B}$ be equal, and let an arbitrary point E be taken between Γ and Δ. That the rectangle contained by AE, EB equals the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ and the rectangle contained by $\Delta A, A \Gamma$.

For let $\Gamma \Delta$ be bisected at \mathbf{Z}, no matter where (\mathbf{Z}) is with respect to point E. ${ }^{1}$ And so all AZ equals all ZB. ${ }^{2}$ Hence the rectangle contained by

(247) TOT B ${ }^{\text {- }}$

 túv ϵ ias ràs $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$.

 $\dot{\epsilon} \kappa \beta \epsilon \beta \lambda \eta \sigma \theta \omega \dot{\eta} \mathrm{B} \Gamma$, каі $\sigma v \mu \pi \iota \pi \tau \dot{\epsilon} \tau \omega \tau a \tilde{\imath} \varsigma \Delta \mathrm{E}, \Delta \mathrm{Z}$ катà тà $\mathrm{H}, \boldsymbol{\theta}$.

 $\tau \tilde{\eta} \iota \mathrm{B} . \pi a \rho a ́ \lambda \lambda \eta \lambda o s$ á $\rho a \operatorname{ćc\sigma \tau i\nu } \dot{\eta} \mathrm{~A} \Gamma \tau \tilde{\eta} \iota \Delta \Theta$.

 $\mathrm{A} \Delta \mathrm{B} \mu \epsilon \tau \dot{a} \tau 0 \tilde{v} \dot{v} \pi \grave{o} \Gamma \mathrm{E} \Delta$ 'íoov $\boldsymbol{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \mathrm{AEB}$.

AE, EB plus the square of $E Z$ equals the square of $A Z,{ }^{3}$ while the rectangle contained by $\Delta A, A \Gamma$ plus the square of ΓZ equals the square of AZ. ${ }^{4}$ Thus the rectangle contained by AE, EB plus the square of EZ equals the rectangle contained by $\Delta \mathrm{A}, \mathrm{A} \Gamma$ plus the square of $\Gamma \mathrm{Z} .{ }^{5}$ But the square of ΓZ equals the rectangle contained by $\Gamma E, E \Delta$ and the square of $E Z .{ }^{6}$ And let the square of EZ be subtracted in common. Then the remaining rectangle contained by AE, EB equals the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ and the rectangle contained by $\Delta \mathrm{A}, \mathrm{A} \Gamma .{ }^{7}$
(251) (Prop. 180) Let there be tyo triangles $\mathrm{AB} \Gamma, \triangle \mathrm{EZ}$, and let (angle) Γ equal (angle) Z, and (let) (angle) B (be) greater than (angle) E. That $B \Gamma$ has to ΓA a lesser ratio than has $E Z$ to $Z \Delta$.

Let angle $\Gamma \mathrm{BH}$ be erected equal to angle $\mathrm{E} .{ }^{1}$ But (angle) Γ also equals (angle) $\mathrm{Z} .{ }^{2}$ Hence as $B \Gamma$ is to $\Gamma \mathrm{H}$, so is EZ to $\mathrm{Z} \Delta .{ }^{3}$ But $\mathrm{B} \mathrm{\Gamma}$ has to ΓA a lesser ratio than $B \Gamma$ has to $\Gamma Н .{ }^{4}$ Therefore $B \Gamma$ has to ΓA a lesser ratio than has EZ to $\mathrm{Z} \Delta .{ }^{5}$
(252) (Prop. 181) Again, let $B \Gamma$ have to ΓA a greater ratio than has $E Z$ to $Z \Delta$, and let angle Γ be equal to (angle) Z. That again angle B is less than angle E.

For since $B \Gamma$ has to ΓA a greater ratio than has $E Z$ to $Z \Delta, 1$ therefore if I make EZ to something as $B \Gamma$ is to ΓA, it will be to something less than $\mathrm{Z} \Delta .^{3}$ Let it be to $\mathrm{ZH},{ }^{2}$ and let EH be joined. And the sides around equal angles are in ratio. ${ }^{4}$ Therefore angle B equals angle ZEH,5 which is less than (angle) E. ${ }^{6}$
(253) (Prop. 182) Let there be similar triangles $\mathrm{AB} \Gamma, \triangle \mathrm{EZ}$, and let AH and $\Delta \Theta$ be drawn across so that as the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{H}$ is to the square of ΓA, so is the rectangle contained by $E Z, Z \Theta$ to the square of $\mathrm{Z} \Delta$. That triangle $\mathrm{AH} \mathrm{\Gamma}$ too is similar to triangle $\Delta \Theta Z$.

For since as the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{H}$ is to the square of $\Gamma \mathrm{A}$, so is the rectangle contained by $\mathrm{EZ}, \mathrm{Z} \Theta$ to the square of $\mathrm{Z} \Delta,{ }^{1}$ but the ratio of the rectangle contained by $B \Gamma, \Gamma H$ to the square of ΓA is compounded out of that which $B \Gamma$ has to ΓA, and that which $H \Gamma$ has to $\Gamma A,{ }^{2}$ while the (ratio) of the rectangle contained by $E Z, Z \Theta$ to the square of $\mathrm{Z} \Delta$ is compounded out of that of EZ to $\mathrm{Z} \Delta$ and that of $\Theta \mathrm{Z}$ to $\mathrm{Z} \Delta,{ }^{3}$ and of these the ratio of $B \Gamma$ to ΓA is the same as that of $E Z$ to $Z \Delta, 4$ because of the similarity of the triangles, therefore the remaining ratio of $\mathrm{H} \Gamma$ to ΓA is the same as that of $\Theta \mathrm{Z}$ to $\mathrm{Z} \mathrm{\Delta} .{ }^{5}$ And (they are) about equal angles. 6 Thus triangle $\mathrm{A} \Gamma \mathrm{H}$ is similar to triangle $\Delta \mathbf{Z Q} .{ }^{7}$

 $\dot{\epsilon} \lambda a ́ \sigma \sigma \omega \nu \dot{\eta}$ В $\gamma \omega \nu i a \quad \tau \tilde{\eta} s$ E $\gamma \omega \nu i a s . \dot{\epsilon} \pi \epsilon i \quad \gamma \grave{a} \rho \dot{\eta}$ ВГ $\pi \rho \dot{o} \varsigma$ ГА

 $\pi \rho o ̄ s ~ \tau \grave{o}$ á $\pi \grave{o}$ ГА，oüt

 $\tau \rho \iota \gamma \omega \nu \omega \iota$ ．

[^44](254) (Prop. 183) Now (it is proved) by means of compound ratio as written above. Let it now be (required) to prove it not using compounded ratio.

Let the rectangle contained by $\mathrm{A} \Gamma, \Gamma \mathrm{K}$ be made equal to the rectangle contained by $B \Gamma, \Gamma H .{ }^{1}$ Then as $B \Gamma$ is to ΓK, so is $A \Gamma$ to $\Gamma H .{ }^{2}$ Let the rectangle contained by $\Delta \mathrm{Z}, \mathrm{Z} \Lambda$ be made equal to the rectangle contained by $\mathrm{EZ}, \mathrm{ZQ} .{ }^{3}$ Then as EZ is to $\mathrm{Z} \Lambda$, so is $\Delta \mathrm{Z}$ to $\mathrm{Z} \mathrm{\Theta} .{ }^{4}$ But it was stipulated that as the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{H}$, that is the rectangle contained by $A \Gamma, \Gamma K$, is to the square of $A \Gamma$, ${ }^{*}$ that is as $A \Gamma$ is to $\Gamma K^{*}, 7$ so is the rectangle contained by EZ, ZQ, that is the rectangle contained by $\Delta \mathrm{Z}, \mathrm{Z} \Lambda,{ }^{6}$ to the square of $\Delta \mathrm{Z},{ }^{5}{ }^{*}$ that is $\Delta \mathrm{Z}$ to $\mathrm{Z} \Lambda^{*} .7^{7}$ But also as is $B \Gamma$ to $\Gamma \mathrm{A}$, so is EZ to $\mathrm{Z} \Delta,{ }^{8}$ because of the similarity (of the triangles). And so as is $\mathrm{B} \Gamma$ to ΓK, so is $E Z$ to $\mathrm{Z} \Lambda .{ }^{9}$ But as is $B \Gamma$ to $\Gamma \mathrm{K}$, so $A \Gamma$ was proved to be to $\Gamma \mathrm{H}$, while as $E Z$ is to $Z \Lambda$, so ΔZ (was proved to be) to $Z \Theta$. Therefore as $A \Gamma$ is to $\Gamma \mathrm{H}$, so is $\Delta \mathrm{Z}$ to $\mathrm{Z} \Theta .1^{10}$ And (they are) about equal angles. ${ }^{11}$ Thus triangle $A \Gamma H$ is similar to triangle $\Delta \mathrm{ZQ} .1^{2}$

Likewise also (to prove, if triangle) AHB (is similar) to (triangle) $\Delta \Theta E$ (and the rectangle contained by $B \Gamma, \Gamma H$ is to the square of ΓA as the rectangle contained by $\mathrm{EZ}, \mathrm{Z} \mathrm{\Theta}$ is to the square of $\mathrm{Z} \Delta$), that also (triangle) $\mathrm{AB} \Gamma$ (is similar) to (triangle) $\triangle \mathrm{EZ}$.
(255) (Prop. 184) Let triangle $\mathrm{AB} \mathrm{\Gamma}$ be similar to triangle $\triangle \mathrm{EZ}$, and (triangle) AHB to (triangle) $\Delta \Theta E$. That as the rectangle contained by $B \Gamma$, ΓH is to the square of ΓA, so is the rectangle contained by $E Z, Z \Theta$ to the square of ΔZ.

For since because of the similarity (of the triangles) all (angle) A equals all (angle) $\Delta,{ }^{1}$ and angle BAH (equals) angle $\mathrm{E} \Delta \Theta,{ }^{2}$ therefore remainder angle $H A \Gamma$ equals remainder angle $\Theta \Delta Z .{ }^{3}$ But also (angle) Γ (equals angle) Z. ${ }^{4}$ Therefore as $H \Gamma$ is to ΓA, so is ΘZ to $Z \Delta .{ }^{5}$ But also as $\mathrm{B} \Gamma$ is to $\Gamma \mathrm{A}$, so was EZ to $\mathrm{Z} \Delta .{ }^{6}$ And so the compounded (ratio) is the same as the compounded (ratio). ${ }^{7}$ Thus as the rectangle contained by $\mathrm{B} \mathrm{\Gamma}, \Gamma \mathrm{H}$ is to the square of $\Gamma \mathrm{A}$, so is the rectangle contained by $\mathrm{EZ}, \mathrm{Z} \mathrm{\Theta}$ to the square of $Z \Delta .{ }^{8}$
(256) (Prop. 185) Another way, not by means of compounded (ratio).

Let the rectangle contained by $A \Gamma, \Gamma K$ be made equal to the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{H},{ }^{1}$ and the rectangle contained by $\Delta \mathrm{Z}, \mathrm{Z} \Lambda$ to the rectangle contained by EZ, ZO. ${ }^{3}$ Again as $B \Gamma$ is to ΓK, so will $A \Gamma$ be to $\Gamma \mathrm{H},{ }^{2}$ while as EZ is to $\mathrm{Z} \Lambda$, so (will) $\Delta \mathrm{Z}$ (be) to $\mathrm{ZO} .{ }^{4}$ And by the same argument as above we shall prove that as $A \Gamma$ is to $\Gamma \mathrm{H}$, so is $\Delta \mathrm{Z}$ to $\mathrm{ZQ} .{ }^{5}$ And so as $\mathrm{B} \mathrm{\Gamma}$ is to $\Gamma \mathrm{K}$, so is EZ to $\mathrm{Z} \Lambda .{ }^{6}$ But also as $\mathrm{B} \Gamma$ is to $\Gamma \mathrm{A}$, so is EZ to $\mathrm{Z} \Delta$ because of the similarity (of the triangles). ${ }^{7}$ Ex aequali therefore as $\mathrm{K} \Gamma$ is to $\Gamma \mathrm{A}$, that is as the rectangle contained by $\mathrm{K} \Gamma, \Gamma А$, which is the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{H}$, to the square of $A \Gamma$, so is $\Lambda \mathbf{Z}$ to $\mathbf{Z \Delta},{ }^{8}$ that is the rectangle contained by $\Lambda \mathbf{Z}, \mathrm{Z} \Delta$, which is the rectangle contained by $E Z, Z \Theta$, to the square of $Z \Delta .910$ Q.E.D.

 $\Delta \Theta \mathrm{E}$, ٌ̈т $\iota к а \iota$ то̀ $\mathrm{AB} \mathrm{\Gamma} \mathrm{\tau} \mathrm{\tilde{} \mathrm{\omega} \iota ~} \Delta \mathrm{EZ}$.

 $\pi \rho o ̀ s ~ t o ̀ ~ a ́ \pi o ̀ ~ Z \Delta . ~$

 $\pi a ́ \lambda \iota \nu \dot{\omega} \varsigma \mu \dot{\epsilon} \nu \dot{\eta}$ ВГ $\pi \rho \grave{o} \varsigma$. ГК, oü $\tau \omega \varsigma \dot{\eta}$ АГ $\pi \rho \dot{o} \varsigma ~ \Gamma H, \dot{\omega} \varsigma ~ \delta \grave{\epsilon}, \dot{\eta}, \mathrm{EZ}$

| 5 то̀ На $\tau \tilde{\omega} \iota А \| 7$ АГ... ГК] КГ... ГА На \| $8 \Delta \mathbf{Z} \ldots \mathrm{Z} \Lambda$] $\Lambda \mathbf{Z} \ldots \mathrm{Z} \Delta$ $\mathrm{Ha} \| 10$ post $\dot{\boldsymbol{\rho}} \boldsymbol{\mu o c o \tau \eta \tau a}$ add $\tau \tilde{\omega} \nu \tau \rho \iota \gamma \dot{\omega} \nu \omega \nu \mathrm{Ha}\left(\mathrm{Co}_{0}\right) \mid \mathrm{Z} \mathrm{\Lambda} \mathrm{Co} \mathrm{Z} \Delta$
 $\mathrm{Ha} \mid \boldsymbol{\eta} \nu$ del Co \| 23 Z Δ Co ZA A || 24 EZE Co EeZ A || $29 \tau \tilde{\omega} \iota$ (é $\pi a \nu \omega)] \tau o i ́ s$ coni $\mathrm{Hu} \mathrm{app} \mid$ é $\pi a ́ \nu \omega \mathrm{Ha}$ é $\pi a ́ v \omega \iota \mathrm{~A} \| 30 \Delta \mathrm{Z}$ Co EZ
 $34 \Lambda Z \operatorname{CoAZA}$

Likewise we shall prove, if, as is the rectangle contained by $В \Gamma, \Gamma Н$ to the square of $\mathrm{A} \Gamma$, so is the rectangle contained by $\mathrm{EZ}, \mathrm{Z} \Theta$ to the square of $\mathrm{Z} \Delta$, and triangle $A B \Gamma$ is similar to triangle $\triangle E Z$, that also triangle $A B H$ is similar to triangle $\Delta E \Theta$.
(257) (Prop. 186) Let there be two similar triangles $\mathrm{AB} \Gamma, \triangle \mathrm{EZ}$, and let perpendiculars $\mathrm{AH}, \Delta \Theta$ be drawn. That as is the rectangle contained by $\mathrm{BH}, \mathrm{H} \Gamma$ to the square of AH , so is the rectangle contained by $\mathrm{E} \Theta, \Theta \mathrm{Z}$ to the square of $\Theta \Delta$. But this is obvious, because it is like the preceding ones.
(258) (Prop. 187) Let angle B be equal to angle E, and (angle) A less than (angle) Δ. That ΓB has to BA a lesser ratio than has ZE to $\mathrm{E} \Delta$.

For since angle A is less than (angle) Δ, let angle $E \Delta H$ be erected equal to (angle A). ${ }^{1}$ Then as Γ is to BA , so is EH to $\mathrm{E} \Delta .^{2}$ But also EH has to $\mathrm{E} \Delta$ a lesser ratio than has ZE to $\mathrm{E} \Delta .{ }^{3}$ And so $\Gamma \mathrm{B}$ has to BA a lesser ratio than has ZE to $\mathrm{E} \Delta .{ }^{4}$

And we shall prove all the things like that by the same procedure.
(259) (Prop. 188) As the rectangle contained by $\mathrm{BH}, \mathrm{H} \Gamma$ is to the square of AH , so let the rectangle contained by $\mathrm{E} \Theta, \Theta \mathrm{Z}$ be to the square of $\Delta \Theta$; and let BH be equal to $\mathrm{H} \Gamma$, and let $\Gamma \mathrm{H}$ have a lesser ratio to HA than has $Z \Theta$ to $\Theta \Delta$. That $Z \Theta$ is greater than ΘE.

For since the square of $\Gamma \mathrm{H}$ has a lesser ratio to the square of HA than has the square of $Z \Theta$ to the square of $\Theta \Delta,{ }^{1}$ but the <square of $>\Gamma H$ is equal to the rectangle contained by $\mathrm{BH}, \mathrm{H} \Gamma,{ }^{2}$ therefore the rectangle contained by $\mathrm{BH}, \mathrm{H} \Gamma$ has to the square of AH a lesser ratio than has the square of $\mathrm{Z} \Theta$ to the square of $\Theta \Delta .{ }^{3}$ But as the rectangle contained by BH , $\mathrm{H} \Gamma$ is to the square of AH , so was the rectangle contained by $\mathrm{E} \Theta, \Theta \mathrm{Z}$ stipulated to be to the square of $\Theta \Delta .{ }^{4}$ Therefore the rectangle contained by $\mathrm{E} \Theta, \Theta \mathrm{Z}$ has to the square of $\Theta \Delta$ a lesser ratio than has the square of $\mathbf{Z \Theta}$ to the square of $\Theta \Delta .{ }^{5}$ Hence the square of $Z \Theta$ is greater than the rectangle contained by $\mathrm{E} \Theta, \Theta \mathrm{Z} .{ }^{6}$ Thus $\mathrm{Z} \Theta$ is greater than $\Theta \mathrm{E} .{ }^{7}$

 $\tau \rho i \gamma \omega \nu 0 \nu \tau \tilde{\omega} \iota \Delta \mathrm{EZ} \tau \rho \iota \gamma \omega \nu \omega \iota$, öт ι каi $\tau \grave{o} \mathrm{ABH} \tau \rho i ́ \gamma \omega \nu 0 \nu \tau \tilde{\omega} \iota \Delta \mathrm{E} \Theta$ т $\rho \iota \gamma \dot{\omega} \nu \omega \iota$ öцо $о \nu$.

 $\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota \dot{v} \pi \grave{o}$ ВНГ, $\tau \grave{o}$ ápa $\dot{v} \pi \grave{o}$ ВНГ $\pi \rho o ̀ s ~ \tau o ̀ ~ a ́ \pi \grave{o}$ АН $\bar{\epsilon} \lambda a ́ \sigma \sigma o \nu a$

 $\dot{v} \pi \grave{o} \mathrm{E} \Theta \mathrm{Z}$. $\dot{\omega} \sigma \tau \epsilon \mu \epsilon i \zeta \omega \nu \dot{\epsilon} \sigma \tau i \nu \dot{\eta} \mathrm{Z} \Theta \tau \tilde{\eta} \varsigma \Theta \mathrm{E}$.
(260) (Lemmas) of (Book) 3.
(Prop. 189) (Let there be) figure $\mathrm{AB} \Gamma \triangle \mathrm{EZH}$. Let BH equal $\mathrm{H} \Gamma$. That EZ is parallel to $\mathrm{B} \mathrm{\Gamma}$.

Let ΘK be drawn through A parallel to $B \Gamma,{ }^{1}$ and let $B Z$ and ΓE be produced to points K and Θ. Then since BH equals $\mathrm{H} \Gamma,{ }^{2}$ therefore also $\Theta \mathrm{A}$ equals $A K .{ }^{3}$ Hence as is $B \Gamma$ to ΘA, that is, as $B E$ is to $E A,{ }^{5}$ so is $B \Gamma$ to KA, ${ }^{4}$ that is ΓZ to ZA. ${ }^{6}$ Thus EZ is parallel to $\mathrm{B} \mathrm{\Gamma} .{ }^{7}$
(261) (Prop. 190) Let there be two triangles $\mathrm{AB} \Gamma, \triangle \mathrm{EZ}$, that have angles A and Δ equal. Let the rectangle contained by $\mathrm{BA}, \mathrm{A} \Gamma$ equal the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$. That also triangle equals triangle.

Let perpendiculars $\mathrm{BH}, \mathrm{E} \Theta$ be drawn. 1 Then as HB is to BA , so is $\mathrm{E} \Theta$ to $\mathrm{E} \Delta .{ }^{2}$ And so as is the rectangle contained by $\mathrm{BH}, \mathrm{A} \Gamma$ to the rectangle contained by $B A, A \Gamma$, so is the rectangle contained by $E \Theta, \Delta Z$ to the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z},{ }^{3}$ Alternando, as the rectangle contained by $\mathrm{BH}, \mathrm{A} \Gamma$ is to the rectangle contained by $\mathrm{E} \Theta, \Delta \mathrm{Z}$, so is the rectangle contained by $\mathrm{BA}, \mathrm{A} \Gamma$ to the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z} .{ }^{4}$ But the rectangle contained by $\mathrm{BA}, \mathrm{A} \Gamma$ equals the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z} .{ }^{5}$ Therefore the rectangle contained by $\mathrm{BH}, \mathrm{A} \Gamma$ equals the rectangle contained by $\mathrm{E} \Theta, \Delta \mathrm{Z} .{ }^{6}$ But half the rectangle contained by $\mathrm{BH}, \mathrm{A} \Gamma$ is triangle $\mathrm{AB} \mathrm{\Gamma}{ }^{7}{ }^{7}$ and half the rectangle contained by $\mathrm{E} \Theta, \Delta Z$ is triangle $\Delta \mathrm{EZ} .{ }^{8}$ Thus triangle $\mathrm{AB} \mathrm{\Gamma}$ equals triangle $\triangle \mathrm{EZ} .{ }^{9}$

Obviously also the parallelograms that are twice them are equal.
(262) (Prop. 191) (Let there be) triangle $\mathrm{AB} \mathrm{\Gamma}$, and $\triangle \mathrm{E}$ parallel to $\mathrm{B} \Gamma$. That as the square of $B A$ is to the square of $A \Delta$, so is triangle $A B \Gamma$ to triangle $\mathrm{A} \Delta \mathrm{E}$.

For since triangle $\mathrm{AB} \Gamma$ is similar to triangle $\mathrm{A} \triangle \mathrm{E}, 1$ therefore triangle $\mathrm{AB} \Gamma$ has to triangle $\mathrm{A} \Delta \mathrm{E}$ twofold the ratio that BA has to $\mathrm{A} \Delta .{ }^{2}$ But also the square of BA has to the square of $\mathrm{A} \Delta$ twofold the ratio that BA has to $A \Delta .{ }^{3}$ Thus as the square of $B A$ is to the square of $A \Delta$, so is triangle $A B \Gamma$ to triangle $\mathrm{A} \Delta \mathrm{E} .{ }^{4}$
(263) (Prop. 192) (Let) AB and $\Gamma \Delta$ (be) equal, and E an arbitrary point. That the rectangle contained by $\Gamma E, E B$ exceeds the rectangle contained by $\Gamma A, A B$ by the rectangle contained by $\triangle E, E A$.

Let $B \Gamma$ be bisected by $Z .{ }^{1}$ Then Z is also the bisection of $A \Delta .{ }^{3}$ And since the rectangle contained by $\Gamma \mathrm{E}, \mathrm{EB}$ plus the square of BZ equals the square of $E Z,{ }^{2}$ but also the rectangle contained by $\triangle E$, EA plus the square

(260) TOT Γ°

 $\pi a \rho a ́ \lambda \lambda \eta \lambda o s \dot{\eta}$ ӨК, каi $\dot{\epsilon} \kappa \beta \epsilon \beta \lambda \dot{\eta} \sigma \theta \omega \sigma a \nu$ ai BZ, ГЕ $\dot{\epsilon} \pi i$ i $\tau \dot{a} \mathrm{~K}, \Theta$
 $\Theta \mathrm{A} \tau \tilde{\eta} \iota \mathrm{AK}$. ' $\epsilon \sigma \tau \iota \nu$ ápa $\dot{\omega} \varsigma \dot{\eta} \mathrm{B} \mathrm{\Gamma} \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \Theta \mathrm{~A}, \tau 0 \cup \tau \dot{\epsilon} \sigma \tau \iota \nu \dot{\omega} \varsigma \dot{\eta} \mathrm{BE}$
 $\pi a \rho a ́ \lambda \lambda \eta \lambda o s ~ a ́ \rho a ~ \epsilon ́ \sigma \tau i \nu \dot{\eta} \mathrm{EZ} \tau \tilde{\eta} \iota \mathrm{B} \mathrm{\Gamma}$.

 $\mathrm{E} \Theta, \Delta \mathrm{Z}$. à $\lambda \lambda \grave{a} \tau 0 \tilde{v} \mu \grave{\epsilon} \nu \dot{v} \pi \grave{o} \mathrm{BH}, \mathrm{A} \Gamma \not \check{\eta} \mu \iota \sigma \dot{v}$ є́ $\sigma \tau \iota \nu \tau \grave{o} \mathrm{AB} \mathrm{\Gamma} \tau \rho i \gamma \omega \nu 0 \nu$,

 $\kappa а і$ тà $\delta \iota \pi \lambda \tilde{a}$ aú $\tau \tilde{\omega} \nu \pi a \rho a \lambda \lambda \eta \lambda o ́ \gamma \rho a \mu \mu a$ 'íба $\epsilon \sigma \tau i \nu$.

 $\tau \rho i ́ \gamma \omega \nu 0 \nu \tau \tilde{\omega} \iota \mathrm{~A} \Delta \mathrm{E} \tau \rho \iota \gamma \dot{\omega} \nu \omega \iota$, $\tau \grave{o}$ áa $\rho a \mathrm{AB} \mathrm{\Gamma} \tau \rho i \gamma \omega \nu 0 \nu \pi \rho \grave{\varsigma} \varsigma \tau \grave{o} \mathrm{~A} \Delta \mathrm{E}$

 На \| $19 \delta \dot{\eta}] \delta \grave{\epsilon}$ Ha\| $21 \tau \tilde{\eta} \iota$ Ha $\tau \tilde{\eta} \varsigma$ A $\| 22 \mathrm{BA}]$ *BA A| A \triangle Co AB A\| 25 (ADE) $\tau \rho \iota \gamma \omega \nu o \nu$ del Ha \| $26 \delta \iota \pi \lambda a \sigma i o \nu a \lambda o ́ \gamma o \nu H a$ $\delta \iota \pi \lambda a ́ \sigma \iota o \nu \mathrm{~A} \| 28$ ámò ($\mathrm{AB} \mathrm{\Gamma}$) del $\mathrm{Ha}(\mathrm{Co}) \mid(\mathrm{AB} \mathrm{\Gamma}) \tau \rho i \gamma \omega \nu o \nu$ add Ha (Co)
of $A Z$ equals the square of $E Z,{ }^{4}$ and the square of $A Z$ equals the rectangle contained by $\Gamma \mathrm{A}, \mathrm{AB}$ plus the square of $\mathrm{BZ},{ }^{5}$ let the square of BZ be removed in common. Then the remaining rectangle contained by $\Gamma E, E B$ equals the rectangle contained by $\Gamma \mathrm{A}, \mathrm{AB}$ plus the rectangle contained by $\Delta E, E A .{ }^{6}$ Thus the rectangle contained by $\Gamma E, E B$ exceeds the rectangle contained by $\mathrm{BA}, \mathrm{A} \Gamma$ by the rectangle contained by $\Delta \mathrm{E}, \mathrm{EA} .{ }^{7}$ Q.E.D.
(264) (Prop. 193) But if the point (\mathbb{E}) is between points A and B, the rectangle contained by $\Gamma \mathrm{E}, \mathrm{EB}$ will be less than the rectangle contained by $\Gamma A, A B$ by the same area. The proof of this is by the same argument. (Prop. 194) But if the point is between B and Γ, the rectangle contained by ΓE, EB will be less than the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ by the rectangle contained by $\mathrm{AB}, \mathrm{B} \Delta$, by the same procedure.
(265) (Prop. 195) (Let) AB equal $\mathrm{B} \Gamma$, and (let there be) two points Δ, E. That four times the square of AB equals twice the rectangle contained by $\mathrm{A} \Delta, \Delta \Gamma$ plus twice the rectangle contained by $\mathrm{AE}, \mathrm{E} \Gamma$ and twice the squares of $B \Delta$ and $B E$.

But this is obvious. For twice the square of $A B$, because of the bisections, equals twice the rectangle contained by $A \Delta, \Delta \Gamma$ plus twice the square of $\Delta \mathrm{B}$, while twice the square of AB equals twice the rectangle contained by $A E, E \Gamma$ plus twice the square of $E B$.
(266) (Prop. $196 a-d$) (Let) AB equal $\Gamma \Delta$, and (let there be) point E. That the squares of AE and $\mathrm{E} \Delta$ equal the squares of BE and $\mathrm{E} \Gamma$ plus twice the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$.

Let $B \Gamma$ be bisected at $Z .{ }^{1}$ Then since twice the square of $\langle\Delta Z\rangle$ equals twice the rectangle contained by $\mathrm{A} \Gamma, \Gamma \Delta$ plus twice the square of $\Gamma Z,{ }^{2}$ with twice the square of $E Z$ added in common, twice the rectangle contained by $A \Gamma, \Gamma \Delta$ plus twice the squares of $E Z$ and $Z \Gamma$ equals twice the squares of ΔZ and $Z E .{ }^{3}$ But the squares of $A E$ and $E \Delta$ equal <twice $>$ the squares of ΔZ and $Z E, 4$ while the squares of $B E$ and $E \Gamma$ equal <twice> the squares of ΓZ and $Z E .5$ Thus the squares of $A E$ and $E \Delta$ equal the squares of $B E$ and $E \Gamma$ plus twice the rectangle contained by $A \Gamma, \Gamma \Delta .{ }^{6}$

 $\tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \triangle \mathrm{EA}$. $\ddot{\omega} \sigma \tau \epsilon \tau \dot{o} \dot{v} \pi \grave{o}$ ГЕВ $\tau 0 \tilde{v} \dot{v} \pi \dot{o}$ В ВАГ $\dot{v} \pi \epsilon \rho \bar{\epsilon} \chi \in \iota \tau \tilde{\omega} \iota \dot{v} \pi \dot{o}$

 'є́бтa८ $\tau \tilde{\omega} \iota \dot{v} \pi \grave{o} \mathrm{AB} \Delta, \tau \tilde{\eta} \iota$ aú $\tau \tilde{\eta} \iota \dot{a} \gamma \omega \gamma \tilde{\eta} \iota$.
(265) 'íoŋ, $\dot{\eta}$ АВ $\tau \tilde{\eta} \iota \mathrm{B} \mathrm{\Gamma}$, каi $\delta \dot{v} о \quad \sigma \eta \mu \epsilon i a \operatorname{\tau à} \Delta$, E . ö $\quad \tau \iota \tau \grave{o}$
 $\mu \in \tau \dot{a} \tau 0 \tilde{v} \delta i \varsigma\ulcorner\dot{v} \pi \grave{o}$ АЕГ кai $\delta i \varsigma$ á $\pi \grave{o} \tau \tilde{\omega} \nu \mathrm{~B} \Delta, \mathrm{BE} \tau \in \tau \rho a \gamma \dot{\omega} \nu \omega \nu$.

 $\tau \tilde{\omega} \iota 「 \delta i \varsigma ~ a ̀ \pi o ̀ ~ E B 7 ~ \tau \epsilon \tau \rho a \gamma \dot{\omega} \nu \omega \iota$.

 3 'ioo - ГEB bis A corr Co \| 5 ante, $\sigma \eta \mu \in \tilde{\iota} \circ \nu$ add E Co \| 6 тou

 $12 \dot{v} \pi \grave{o}$ AE - $\boldsymbol{\tau} 0 \tilde{v} \tau 0$ rescripta manu recentiore A| AEГ Co KAГ A (manu rec.) | $\mathrm{BE} \operatorname{Co} \Delta \mathrm{E}, \mathrm{A} \| 13 \delta i s-\tau \tilde{\omega} \nu$ rescripta manu rec. $\mathrm{A} \mid$
 $\delta i \varsigma$ ánò $\mathrm{AB} \tau \tilde{\omega} \iota$ rescripta manu rec. $\mathrm{A}(\Delta \mathrm{B} \mathrm{Co}, \tau \grave{o} \mathrm{Ha}$, fortasse olim A) \| $15 \delta \grave{\epsilon}$ add $H a$ fortasse evanidum in $A \| 16 \delta i$ is á $\pi \grave{o}$ EB rescripta manu rec. A\| $19 \delta i \times a$ add $\mathrm{Ha}(\mathrm{Co}) \mid \mathrm{B} \mathrm{\Gamma} \mathrm{Co} \mathrm{BE} \mathrm{A} \| 20 \Delta \mathrm{Z}$ add $\mathrm{Co} \|$ 21 à $\lambda \lambda \grave{a}$ del Ha | post ко८ $\nu o \tilde{v}$ add 'á $\rho a \mathrm{Hu}$ app \| $22 \mathrm{EZ}, \mathrm{Z} \Gamma$] EZГ A ГZ, ZE Ha || $23 \delta i s$ add $\mathrm{Ha}(\mathrm{Co})|\mid 24(\mathbb{E}) \Delta-\tau o i s$ rescripta manu rec. $\mathrm{A} \mid \delta \grave{\epsilon} \mathrm{Ha} \Delta \overline{\mathrm{E}} \mathrm{A} \| 25 \delta i \varsigma$ add $\mathrm{Ha}(\mathrm{Co})$
(267) (Prop. 197) Let the rectangle contained by $\mathrm{BA}, \mathrm{A} \Gamma$ plus the square of $\Gamma \Delta$ equal the square of $\Delta A .{ }^{1}$ That $\Gamma \Delta$ equals ΔB.

For let the square of $\Gamma \Delta$ be subtracted in common. <Then the remaining rectangle contained by $\mathrm{BA}, \mathrm{A} \Gamma$ equals the difference of the squares of $A \Delta$ and $\Delta \Gamma,{ }^{2}$ that is the rectangles contained by $\Delta A, A \Gamma$ and $\mathrm{A} \Gamma, \Gamma \Delta .{ }^{3}$ But since the rectangle contained by $\mathrm{BA}, \mathrm{A} \Gamma$ equals the rectangle contained by $\Delta \mathrm{A}, \mathrm{A} \Gamma$ plus the rectangle contained by $\mathrm{B} \Delta, \mathrm{A}, 4$ let the rectangle contained by $\Delta \mathrm{A}, \mathrm{A} \Gamma$ be subtracted in common. $>$ Then the remaining rectangle contained by $A \Gamma, \Delta B$ equals the rectangle contained by $\Delta \Gamma, \Gamma A .{ }^{5}$ Thus $\Delta \Gamma$ equals $\Delta B .{ }^{6}$ Q.E.D.
(268) (Prop. 198) Let the rectangle contained by $А Г, \Gamma$, plus the square of $\Gamma \Delta$ equal the square of $\Delta \mathrm{B}$. That $\mathrm{A} \Delta$ equals $\Delta \mathrm{B}$.

Let ΔE be made equal to $\Gamma \Delta .1$ Then the rectangle contained by ΓB, BE plus the square of $\Delta \mathrm{E}$, that is the square of $\Gamma \Delta,{ }^{3}$ equals the square of $\Delta B,{ }^{2}$ that is the rectangle contained by $B \Gamma, \Gamma A$ plus the square of $\Gamma \Delta .{ }^{4}$ Hence the rectangle contained by $\Gamma \mathrm{B}, \mathrm{BE}$ equals the rectangle contained by $\mathrm{B} \mathrm{\Gamma}, \Gamma \mathrm{~A} .{ }^{5}$ Therefore $\mathrm{A} \Gamma$ equals EB. ${ }^{6}$ But also $\Gamma \Delta$ equals $\Gamma E .{ }^{7}$ Thus all $\mathrm{A} \Delta$ equals all $\Delta \mathrm{B} \cdot{ }^{8}$
(269) (Prop. 199) Again, let the rectangle contained by BA, AГ plus the square of ΔB equal the square of $A \Delta$. That $\Gamma \Delta$ equals ΔB.

Let AE be made equal to $\Delta \mathrm{B} .1$ Then since the rectangle contained by $B A, A \Gamma$ plus the square of ΔB, that is the square of $E A,{ }^{3}$ equals the square of $A \Delta,{ }^{2}$ let the rectangle contained by $\Delta A, A \Gamma$ be subtracted in common. Then the remaining rectangle contained by $B \Delta, A \Gamma$, that is the rectangle contained by $E A, A \Gamma, 5$ plus the square of $E A$, which is the rectangle contained by $\Gamma \mathrm{E}, \mathrm{EA},{ }^{6}$ equals the rectangle contained by $A \Delta, \Delta \Gamma .{ }^{4}$ Thus $E A$, that is $B \Delta$, equals $\Delta \Gamma$ (see commentary). 78
(270) (Prop. 200) (Let there be) a line AB, on which are three points $\Gamma, \Delta, \mathrm{E}$, so that BE equals $\mathrm{E} \Gamma$, and the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ (equals) the square of $E \Gamma$. That as $B A$ is to $A \Gamma$, so is $B \Delta$ to $\Delta \Gamma$.

For since the rectangle contained by $\mathrm{AE}, \mathrm{E} \Delta$ equais the square of $\mathrm{E} \Gamma,{ }^{1}$ in ratio ${ }^{2}$ and convertendo ${ }^{3}$ and (taking) twice the leading (members) ${ }^{4}$ and separando, therefore, as is BA to $\mathrm{A} \Gamma$, so is $\mathrm{B} \Delta$ to $\Delta \Gamma .{ }^{5}$
(271) (Prop. 201) Again, let the rectangle contained by $B \Gamma, \Gamma \Delta$ equal the square of $\Gamma \mathrm{E}$, and (let) $\mathrm{A} \Gamma$ equal $\Gamma \mathrm{E}$. That the rectangle contained by $<\mathrm{AB}, \mathrm{BE}$ equals the rectangle contained by $>\Gamma \mathrm{\Gamma}, \mathrm{~B} \Delta$.

For since the rectangle contained by $B \Gamma, \Gamma \Delta$ equals the square of $\Gamma E,{ }^{1}$ in ratio $B \Gamma$ is to ΓE, that is to $\Gamma A,{ }^{3}$ as ΓE, that is $A \Gamma$, is to $\Gamma \Delta .{ }^{2}$ And sum to sum, ${ }^{4}$ and convertendo ${ }^{5}$ and area to area, therefore, the

 $\tau \tilde{\eta} \iota \Delta \mathrm{B} \boldsymbol{i} \sigma \boldsymbol{\eta} \boldsymbol{\epsilon} \boldsymbol{\sigma} \boldsymbol{\tau} i \boldsymbol{\imath}$.

 'íoŋ $\mathfrak{a} \rho a \dot{\epsilon} \sigma \tau i \nu \dot{\eta} \mathrm{EA}, \tau o u \tau \epsilon \sigma \tau \iota \nu \dot{\eta} \mathrm{~B} \Delta, \tau \tilde{\eta} \iota \Delta \Gamma$.

 $\dot{\omega} \varsigma \dot{\eta} \mathrm{BA} \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \mathrm{~A} \Gamma$, oü $\tau \omega \varsigma \dot{\eta} \mathrm{B} \Delta \pi \rho \dot{o} \varsigma \Delta \Gamma$.

[^45]rectangle contained by AB, BE equals the rectangle contained by $\Gamma \mathrm{B}, \mathrm{B} \Delta .{ }^{6}$
And it is obvious that the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{E}$ equals the rectangle contained by $B \Delta, \Delta \Gamma$ too. For if the square of $\Gamma \Delta$ is subtracted in common from the equation of the square of $\Gamma \mathrm{E}$ to the rectangle contained by $\mathrm{B} \Gamma, \Gamma \Delta$, (the equation of the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{E}$ to the rectangle contained by $B \Delta, \Delta \Gamma$) results.
(272) (Prop. 202) Let three (straight lines) AE Δ, BEГ, ZEH be drawn across two parallels $\mathrm{AB}, \Gamma \Delta$, and through the same point E . That as the rectangle contained by AE, EB is to the rectangle contained by AZ, ZB, so is the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ to the rectangle contained by $\Gamma \mathrm{H}, \mathrm{H} \Delta$.

It is obvious by means of compound (ratio). For as AE is to $\mathrm{E} \Delta$, so is AZ to $\mathrm{H} \Delta$, while as BE is to $\mathrm{E} \Gamma$, so is ZB to $\mathrm{H} \Gamma$, and the areas are composed out of these. Thus (the theorem) holds true.

It is also possible (to prove it) as follows, not using compound (ratio). For since as AE is to EB , so is $\mathrm{E} \Delta$ to $\mathrm{E} \Gamma,{ }^{1}$ therefore as the rectangle contained by AE, EB is to the square of EB, so is the rectangle contained by $\Delta \mathrm{E}, \mathrm{E} \Gamma$ to the square of $\mathrm{E} \Gamma .{ }^{2}$ But also as the square of BE is to the square of BZ , so is the square of $\mathrm{E} \Gamma$ to the square of $\Gamma \mathrm{H} .{ }^{3}$ Ex aequali therefore as the rectangle contained by AE, EB is to the square of ZB , so is the rectangle contained by $\mathrm{\Gamma E}, \mathrm{E} \Delta$ to the square of $\Gamma \mathrm{H} .{ }^{4}$ But also as is the square of ZB to the rectangle contained by BZ, ZA, so is the square of $\Gamma \mathrm{H}$ to the rectangle contained by $\Gamma \mathrm{H}, \mathrm{H} \Delta .{ }^{5}$ Ex aequali, therefore, as the rectangle contained by AE, EB is to the rectangle contained by AZ, ZB, so is the rectangle contained by $\Gamma \mathrm{E}, \mathrm{E} \Delta$ to the rectangle contained by $\Gamma \mathrm{H}$, $\mathrm{H} \Delta .{ }^{6}$

[^46](273) (Lemmas) of (Book) 5.
(Prop. 203) (Let there be) triangle $\mathrm{AB} \mathrm{\Gamma}$, and let perpendicular $\mathrm{A} \Delta$ be drawn. I say that if the rectangle contained by $B \Delta, \Delta \Gamma$ equals the square of $A \Delta$, then angle A is right; if greater, obtuse; if less, acute.

First let it be equal. 1 Then ($B \Delta, A \Delta, \Delta \Gamma$ are) in ratio and about equal angles. Thus angle A equals the angle at $\Delta .{ }^{2}$ Hence the angle at A is right. ${ }^{3}$

But let it be greater, ${ }^{4}$ and let the square of ΔE be made equal to it, ${ }^{5}$ and let $B E$ and $E \Gamma$ be joined. Then angle $B E \Gamma$ will be right. ${ }^{6}$ And angle A is greater than it. ${ }^{7}$ Thus angle A is obtuse. ${ }^{8}$

But again let it be less, ${ }^{9}$ and let the square of ΔZ be made equal to it, ${ }^{10}$ and let BZ and Z Γ be joined. Then angle BZ BZ will be right, ${ }^{11}$ and the angle at A less than it. ${ }^{2}$ Thus angle A is acute. ${ }^{13}$
(274) (Prop. 204) Two straight lines $\mathrm{AB}, \mathrm{B} \Gamma$ being (given) in position, and point Δ given, to draw through Δ a hyperbola about asymptotes $A B$, ВГ.

Let it be accomplished. Then its center is B. Let ΔB be joined and produced. Then it is (the hyperbola's) diameter. Let BE be made equal to ΔB. Then it is given. Hence E is given, and it is an end of the diameter. Let perpendicular ΔZ be drawn onto $B \Gamma$ from Δ. Then Z is given. And let $\mathrm{Z} \Gamma$ be made equal to BZ . Then Γ too is given. And let $\Gamma \Delta$ be joined and produced to A. Then $(\Gamma \Delta)$ is (given) in position. But AB too (is given) in position. Thus A is given. But also Γ is given. Therefore $A \Gamma$ is given in magnitude. And $A \Delta$ will be equal to $\Delta \Gamma$, because $B Z$ equals $Z \Gamma$. Let ΔH be the latus rectum of the 'figure' on $E \Delta$. Then each of $A \Delta, \Delta \Gamma$ is in square one quarter the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{H}$ (Conics II, 3). But (they are also one quarter in square) of the square of $\mathrm{A} \Gamma$. Hence the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{H}$ equals the square of $\mathrm{A} \Gamma$. But the square of $\mathrm{A} \Gamma$ is given. Hence also the rectangle contained by $E \Delta, \Delta H$ is given. And $E \Delta$ is given. Therefore $\mathrm{H} \Delta$ too is given. And thus H is given. Then since with two straight lines $\mathrm{E} \Delta, \Delta \mathrm{H}$ given in position in a plane and situated at right angles to each other, and with angle $A \Delta B$ given, there is a hyperbola whose diameter is $\mathrm{E} \Delta$, vertex Δ, and the ordinates drawn at the given angle $\mathrm{A} \Delta \mathrm{B}$

(273) TOT E

 'íoov $\epsilon \sigma \tau i \nu \tau \grave{o} \dot{\nu} \pi \grave{o} \mathrm{~B} \Delta \Gamma \tau \tilde{\omega} \iota a \dot{a} \grave{o} \mathrm{~A} \Delta \tau \epsilon \tau \rho a \gamma \omega \nu \omega \iota, \gamma \iota \nu \epsilon \tau a \iota$ ó $\rho \theta \dot{\eta} \dot{\eta}$

 $\gamma \omega \nu i a$.

 $\dot{a} \lambda \lambda \grave{a}-\mathrm{E} \Delta \mathrm{H}$ om A^{1} add $\mathrm{mg} \mathrm{A}{ }^{2}$ alia manu\| $30 \hat{\omega} \sigma \tau \epsilon \mathrm{Ha}$ ' $\epsilon \sigma \tau \omega \mathrm{A}$

 катárovтaı del Huapp
are equal in square to the (rectangles) applied to ΔH that have the breadth that they cut off of the continuation of the diameter on the side of Δ, and that exceed it by a figure similar to the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{H}$, therefore the section is (given) in position (cf. Conics I, 53).
(275) (Prop. 204) The synthesis of the problem will be made as follows. Let the two straight lines (given) in position be $A B, B \Gamma$, and the given (point) Δ, and let ΔB be joined and produced to E, and let $B E$ be made equal to it, and let perpendicular ΔZ be drawn, and let $Z \Gamma$ be made equal to $B Z$, and let $\Gamma \Delta$ be joined and produced to A, and let ΔH be erected on ΔE, and let the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{H}$ be made equal to the square of $\mathrm{A} \Gamma$, and let there be drawn, as we said in the analysis, a hyperbola about diameter $\Delta \mathrm{E}$. I say that it solves the problem.

For since $B Z$ equals $Z \Gamma,{ }^{1}$ therefore $A \Delta$ too equals $\Delta \Gamma .{ }^{2}$ Hence each of $A \Delta, \Delta \Gamma$ in square is one quarter the square of $A \Gamma,{ }^{3}$ that is the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{H}, 4$ that is the 'figure' on diameter $\mathrm{E} \Delta$. But if this is so, then it has been proved in the second (book) that $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ are the hyperbola's asymptotes (Conics II 1).
(276) (Prop. 205) (Let) straight line AB (be given) in position. Let Γ (be) given. Let $\mathrm{B} \Gamma$ be drawn across. Let $\mathrm{B} \Delta$ be made given. Let $\Delta \mathrm{E}$ be erected at right angles. That E touches a section of a cone (given) in position, a hyperbola, passing through Γ.

Let perpendicular ΓZ be drawn. Then Z is given. $<Z A$ equals $B \Delta$. Then A is given. $>$ Let $A H$ be erected at right angles. Then AH is (given) in position. Let it intersect $\mathrm{B} \Gamma$ produced at H . And with BA, AH given in position and point Γ given, <let> a hyperbola <be drawn> about asymptotes HA, AB. Then it will pass through E too, because Br equals EH , since also <all> (BE equals) all ($\Gamma \mathrm{H}$). And it is possible (to draw) according to the foregoing (lemma).

 'ápa $\boldsymbol{\epsilon} \sigma \tau і \nu \dot{\eta} \tau о \mu \dot{\eta}$.

 $\dot{\epsilon} \pi!\zeta \epsilon v \chi \theta \epsilon \tilde{\iota} \sigma a \quad \dot{\eta} \quad \Delta \mathrm{~B} \quad \dot{\epsilon} \kappa \beta \epsilon \beta \lambda \dot{\eta} \sigma \theta \omega \quad \epsilon \pi i \quad \tau \dot{0} \mathrm{E}, \kappa а i \quad a \dot{u} \tau \tilde{\eta}, \iota \quad i \quad i \sigma$
 $\mathrm{Z} \Gamma, \kappa a i, \epsilon \pi \iota \zeta \epsilon v \chi \theta \epsilon \tilde{\imath} \sigma a \dot{\eta} \Gamma \Delta \dot{\epsilon} \kappa \beta \epsilon \beta \lambda \eta \sigma \theta \omega \dot{\epsilon} \pi i \quad \tau \dot{o} \mathrm{~A}, \kappa a i \quad \tau \tilde{\eta} \iota \Delta \mathrm{E}$

 $\tau \epsilon \tau \rho a \gamma \omega \nu 0 \cup, \tau o v \tau \dot{\epsilon} \sigma \tau \iota \nu \tau 0 \tilde{v} \dot{v} \pi \grave{o} \mathrm{E} \Delta \mathrm{H}, \tau 0 \cup \tau \dot{\epsilon} \sigma \tau \iota \nu \tau 0 \tilde{v} \pi \rho \dot{o} \varsigma \tau \tilde{\eta} \iota$

 $\mathrm{Ha}(\mathrm{Co}) \mid \tau \tilde{\eta} \iota \delta \iota a \mu \epsilon ́ \tau \rho \omega \iota \mathrm{Hu} \tau \tilde{\eta} \varsigma \delta \iota a \mu \epsilon \in \tau \rho o v \mathrm{~A} \| 5 \delta \tilde{\eta}] \delta \grave{\epsilon} \mathrm{A} \|$ $6 a i(\mathrm{AB})$ add $\mathrm{Ha}\|7 \dot{\epsilon} \pi \iota \zeta \epsilon v \chi \theta \epsilon \tilde{\imath} \sigma a \mathrm{Hu}(\mathrm{Co}) \dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{v} X \theta \omega \mathrm{~A}\| 9$

 A \| 18 ante $\delta 0 \theta \dot{\epsilon} \nu$ add $\kappa a i$ Ha| $\delta o \theta \dot{\epsilon} \nu$ Ha $\delta o \theta \epsilon \tilde{i} \sigma a \mathrm{~A} \mid$, ante
 τ о $\mu \tilde{\eta} \mathrm{s} \operatorname{secl} \mathrm{Hu}(\mathrm{Ha}) \| 21$ post $\Gamma \mathrm{Z}$ add $\kappa a i, \tau \tilde{\eta} \iota \mathrm{~B} \Delta$ ' $i \sigma \eta \kappa \in i \sigma \theta \omega \dot{\eta}$
 $\sigma v \mu \pi \iota \pi \tau \dot{\epsilon} \tau \omega-\mathrm{H}$ secl $\mathrm{Hu} \mid \dot{\epsilon} \kappa \beta \lambda \eta \theta \epsilon \dot{\iota} \sigma \eta \iota \mathrm{Hu} \dot{\epsilon} \kappa \beta \in \beta \lambda \dot{\eta} \sigma \theta \omega \mathrm{A}$
 ö̀ $\eta \dot{\eta} \mathrm{BE} \tau \tilde{\eta} \iota \mathrm{H} \Gamma \mathrm{Ha}(\mathrm{Co})$

The synthesis of it will be made as follows. Let the straight line given in position be $A B$, the given (point) Γ, the (line) drawn across $B \Gamma$, the given (line) Θ, and, with perpendicular ΓZ drawn, let $Z A$ be made equal to (Θ), and let $A H$ be erected at right angles and let it intersect $B \Gamma$ at H, and about asymptotes HA, AB and through given Γ let a hyperbola be drawn. I say that it solves the problem, that is that, if perpendicular $\mathrm{E} \Delta$ is drawn, $B \Delta$ is equal to Θ.

But this is obvious because of the asymptotes. <For> EH equals Γ. (Conics II 8), so that $\mathrm{A} \Delta$ too equals ZB . Hence all AZ , that is Θ, equals $\mathrm{B} \Delta$.
(277) (Prop. 206) As BA is to $\mathrm{A} \Gamma$, so let the square of $\mathrm{B} \Delta$ be to the square of $\Delta \Gamma .{ }^{1}$ That the mean proportional of $B A$ and $A \Gamma$ is $A \Delta$.

Let ΔE be made equal to $\Gamma \Delta .^{2}$ Separando, then, as $B \Gamma$ is to ΓA, that is as the rectangle contained by $\Gamma \mathrm{B}, \mathrm{BE}$ is to the rectangle contained by $\mathrm{A} \Gamma$, $\mathrm{EB},{ }^{4}$ so is the rectangle contained by $\Gamma \mathrm{B}, \mathrm{BE}$ to the square of $\mathrm{E} \Delta .{ }^{3}$ Therefore the rectangle contained by $A \Gamma, E B$ equals the square of $\Delta E,{ }^{5}$ that is the rectangle contained by $\Gamma \Delta, \Delta \mathrm{E} .6$ In ratio ${ }^{7}$ and componendo, as $B \Delta$ is to ΔE, that is to $\Delta \Gamma,{ }^{9}$ so is ΔA to $A \Gamma .{ }^{8}$ Therefore sum to sum, as $B A$ is to $A \Delta$, so is $A \Delta$ to $A \Gamma .{ }^{\circ}$ Thus $A \Delta$ is mean proportional of $B A$ and $A \Gamma$.
(278) (Prop. 207) Let the rectangle contained by $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ equal twice the square of $A \Gamma .1$ That $A \Gamma$ equals Γ.

Let $A \Delta$ be made equal to $A \Gamma .{ }^{2}$ Then the rectangle contained by $\Gamma \Delta$, $\Delta \mathrm{A}$ will be equal to the rectangle contained by $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma},{ }^{3}$ and (they are applied) to the same (line $A \Gamma$). Thus ΔA, that is $A \Gamma$, equals $\Gamma B .{ }^{4}$
(279) (Prop. 208 a) About the same asymptotes AB , $\mathrm{B} \Gamma$ let hyperbolas HE, $\Delta \mathrm{Z}$ be drawn. I say that they do not meet each other.

For if possible, let them intersect at Δ, and from Δ let straight line $\mathrm{A} \Delta \mathrm{ZE} \Gamma$ be drawn across the sections. Because of section $\Delta \mathrm{Z}, \mathrm{A} \Delta$ will equal $\mathrm{Z} \Gamma$, and because of section $\Delta \mathrm{E}, \mathrm{A} \Delta$ (will) equal) $E \Gamma$ (Conics II 8), so that ΓZ equals ΓE, which is impossible. Thus the sections do not meet each other.

 $\tau \tilde{\eta} \subset \mathrm{B} \Delta$.

 $\mathrm{A} \Gamma . \ddot{\omega} \sigma \tau \epsilon \tau \tilde{\omega} \nu \mathrm{BA}, \mathrm{A} \Gamma \mu \dot{\epsilon} \sigma \eta$ ávádoróv $\dot{\epsilon} \sigma \tau \iota \nu \dot{\eta} \mathrm{A} \Delta$.

 $\Delta \mathrm{A}, \tau \operatorname{\tau ov} \boldsymbol{\tau} \boldsymbol{\epsilon} \boldsymbol{\tau} \iota \nu\urcorner \dot{\eta} \mathrm{A} \Gamma, \tau \tilde{\eta} \iota$ ГВ.

$\| 1 \delta \grave{\eta}], \delta \grave{\epsilon} \mathrm{Ge}(\mathrm{S}) \| 2 \dot{\eta} \delta \grave{\epsilon} \delta \iota \eta \gamma \mu \bar{\epsilon} \nu \eta$ Ha $\dot{\eta} \delta \grave{\epsilon} \delta \iota a ́ \mu \epsilon \tau \rho o s, ~ A$ $\kappa a i \quad \delta \iota \dot{\eta} \times \theta \omega$ Co $\| 4 \dot{a} \nu a x \theta \epsilon i \varsigma] \dot{a} \nu \dot{\eta} \chi \theta \omega \mathrm{~A}$ ante $\sigma v \mu \pi \iota \pi \tau \epsilon \tau \omega$ add $\kappa a i$ Hu| $\mathrm{B} \Gamma$ Ha $\mathrm{BH} \mathrm{A} \mid$ post $\mathrm{B} \mathrm{\Gamma}$ add $\epsilon \kappa \beta \lambda \eta \theta \epsilon i \sigma \eta \iota$ Ha $\| 5$
 ola (scil. oía) Ha\| 8 rà ρ add Ha\| 14 ГА Со Г $\Delta \mathrm{A} \mid \mathrm{A} \mathrm{\Gamma}$,
 $25 \mathrm{HE}, \Delta \mathrm{Z}] \Delta \mathrm{E}, \Delta \mathrm{Z}$ A $\Delta \mathrm{Z}, \mathrm{HE} \mathrm{Hu} \mathrm{\|} 26$ post $\sigma v \mu \pi \iota \pi \tau \dot{\epsilon} \tau \omega \sigma a \nu$ add $\dot{a} \lambda \lambda \dot{\eta} \lambda a \iota \varsigma \mathrm{Ha} 27 \delta \iota \dot{\eta} \times \theta \omega \ldots \epsilon \dot{v} \theta \epsilon \tilde{\iota} a \dot{\eta} \mathrm{~A} \Delta \mathrm{ZE}$ Co $\delta \iota \dot{\eta} \times \theta \omega \sigma a \nu \ldots$

(Prop. 208 b) *I say that as they grow indefinitely they draw closer to each other and approach to a lesser distance. For let some other (line) $\Theta \mathrm{K}$ be drawn, and let there be the diameter, and let its end be M . Then as is the rectangle contained by $M \Lambda, \Lambda N$ to the square of $\Lambda \Xi$, so will the latus transversum be to the latus rectum (Conics I, 12). But as the rectangle contained by MO, O is to the square of OP , so is the latus transversum to the latus rectum (Conics I, 12). Hence as the rectangle contained by M Λ, ΛN is to the square of $\Lambda \Xi$, so is the rectangle contained by MO, On to the square of OP . Alternando, <as the rectangle contained by $\mathrm{M} \Lambda, \Lambda \mathrm{N}$ is to the rectangle contained by $M O$, OП, so is the square of $\Lambda \Xi$ to the square of OP. $>$ But the rectangle contained by $\mathrm{M} \Lambda, \Lambda \mathrm{N}$ is greater than the rectangle contained by MO, OI. Therefore ΞZ is greater than PE. And because of the sections the rectangle contained by $\mathrm{Z} \Delta, \Delta \Xi$ equals the rectangle contained by $\Sigma \mathrm{P}, \mathrm{P} \Theta$. Hence $\Xi \Delta$ is less than $\Theta \mathrm{P}$. Thus they always approach to a lesser distance.*

But (the theorem) is also to hand. For if each of them draws closer to the asymptotes (Conics II 14), obviously (they approach) each other too.
(280) (Prop. 209) As AB is to $\mathrm{B} \mathrm{\Gamma}$, so let $\Delta \mathrm{E}$ be to EZ , and as BA is to AH , so let $\mathrm{E} \Delta$ be to $\Delta \Theta$. That as the solid that has as base the square of $\mathrm{A} \Gamma$, as height AB , is to the solid that has as base the square of $\Delta \mathrm{Z}$, as height $\Delta \mathrm{E}$, so is the cube of AH plus that which has the ratio to the cube of HB that the square of $\mathrm{A} \Gamma$ has to the square of $\Gamma \mathrm{B}$, to the cube of $\Delta \Theta$ plus that which has the ratio to the cube of ΘE that the square of ΔZ has to the square of ZE.

For since as $\Gamma \mathrm{A}$ is to AB , so is $\mathrm{Z} \Delta$ to $\Delta \mathrm{E},{ }^{1}$ therefore as the square of $\Gamma \mathrm{A}$ is to the square of AB , so is the square of $\mathrm{Z} \Delta$ to the square of $\Delta \mathrm{E} .{ }^{2}$ But as the square of ΓA is to the square of $A B$, with common height $A B$, so is the solid with the square of $\mathrm{A} \Gamma$ as base, height AB , to the cube of $\mathrm{AB} ;^{3}$ and as the square of $Z \Delta$ is to the square of $\Delta \mathrm{E}$, with common height $\Delta \mathrm{E}$, so is the solid with the square of $\Delta \mathrm{Z}$ as base, $\Delta \mathrm{E}$ as height, to the cube of $\Delta \mathrm{E} .4$ Hence these things also by inversion and alternando. ${ }^{5}$ But also as the cube of $A B$ is to the cube of ΔE, so is the cube of $A H$ to the cube of $\Delta \theta, 6$ and the cube of HB to the cube of $\Theta \mathrm{E} . .^{7}$ <But as the cube of HB is to the cube of $\Theta \mathrm{E},>$ so is that which has the ratio to the cube of HB that the square of $\mathrm{A} \Gamma$ has to the square of $\Gamma \mathrm{B}$, to that which has the ratio to the

 $\mu \epsilon \tau \dot{a}$ тou

 post $\delta \iota a \mu \epsilon \tau \rho o \varsigma$ add MN Ha, lacunam indicavit Hu\| 4 ' $\bar{\epsilon} \sigma \tau \omega$ del Ha| post M add $\bar{\epsilon} \sigma \tau \omega \dot{\eta} \tau \tilde{\eta} \varsigma \Delta \Pi Z, \delta \iota a ́ \mu \epsilon \tau \rho O \varsigma, \dot{\eta} \Pi \mathrm{H} \mathrm{Ha}$, lacunam indicavit

 $\mu \epsilon i \zeta o \nu$ Ha $\mu \epsilon i \zeta \omega \nu$ A| M

 16 ante AH add $\tau \dot{\eta} \nu \mathrm{Ge}$ (recc?) \| $19 \tau \epsilon$ del $\mathrm{Ha} \| 20$ ö $\nu \mathrm{Ha}(\mathrm{Co})$ ö $\tau \iota$ A\| 24 AB Co ГВ A| $\mathrm{Z} \Delta \mathrm{Co} \mathrm{Z} \Delta \Theta \mathrm{A} \| 25 \Delta \mathrm{ECo} \Delta \Theta \mathrm{A} \mid$ кос $\nu \grave{\nu} \nu \mathrm{Ha}$

 $\mathrm{Ha} \tau \dot{o} \nu \mathrm{~A} \mid$ ö ν add $\mathrm{Ha}(\mathrm{Co})$
cube of ΘE that the square of $\Delta \mathrm{Z}$ has to the square of ZE .8 Therefore as one of the leading (members) is to one of the following (members), so are all to all. Thus as is the solid that has the square of $A \Gamma$ as base, $A B$ as height, to the solid that has the square of ΔZ as base, ΔE as height, so is the cube of $A H$ plus that which has the ratio to the cube of $H B$ that the square of $A \Gamma$ has to the square of ΓB, to the cube of $\Delta \Theta$ plus that which has the ratio to the cube of ΘE that the square of $\Delta \mathrm{Z}$ has to the square of $\mathrm{ZE} .{ }^{9}$
(281) (Prop. 210) Let A plus B equal Γ plus Δ. That the amount by which A exceeds Γ is the amount by which Δ exceeds B .

For let the amount by which A exceeds Γ be E. ${ }^{1}$ Then A equals Γ and E. ${ }^{2}$ Let B be added in common. Then A and B equal Γ and E and B. ${ }^{3}$ But A and B are stipulated to be equal to Γ and $\Delta .4$ Therefore Γ and Δ equal Γ and E and B. ${ }^{5}$ Let Γ be subtracted in common. Then the remainder, Δ, equals B and $E,{ }^{6}$ so that Δ exceeds B by E. ${ }^{7}$ Thus the amount by which A exceeds $\langle\Gamma\rangle$ is the amount by which Δ exceeds B. ${ }^{8}$

Similarly we shall prove that if the amount by which A exceeds Γ is the amount by which Δ exceeds B, then A and B equal Γ and Δ.
(282) (Prop. 211) Let there be two magnitudes $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$. That if BA exceeds $A \Gamma$ by ΓB, then that which has a ratio to $A B$ exceeds that which has the same ratio to $A \Gamma$ by that which has the same ratio to ΓB.

For let that which has a certain ratio to $A B$ be $\Delta E, 1$ and ΔZ that which has the same ratio to $A \Gamma .{ }^{2}$ Then the remainder, EZ , has to $\mathrm{B} \Gamma$ the same ratio. ${ }^{3}$ And $E Z$ is the difference by which ΔE exceeds $\Delta Z, 4$ that is (by which) that which has a ratio to AB (exceeds) that which has the same ratio to $\mathrm{A} \Gamma$.
(283) (Prop. 212) Let A exceed Γ by a lesser amount than Δ (exceeds) B. That A and B are less than Γ and Δ.

For let E be the amount by which A exceeds $\Gamma .{ }^{1}$ Then A and B equal Γ and E and B. ${ }^{2}$ But since A exceeds Γ by a lesser amount than Δ (exceeds) $B,{ }^{3}$ and A exceeds Γ by E, therefore E is less than the difference

 aútóv.

 $\dot{a} \phi a \iota \rho \epsilon \dot{\imath} \sigma \theta \omega \mathrm{~A} \| 17(\mathrm{~B}) \mathrm{E}] \Gamma \mathrm{A}^{1}$ corr $\mathrm{A}^{2} \mid \hat{\omega} \iota \mathrm{Ha}(\mathrm{Co}) \dot{\omega} \varsigma \mathrm{s}$ A $\| 18$ $\tau 0 \tilde{v} \Gamma$ add $\mathrm{Ha}(\mathrm{Co}) \| 19$ ö́ ι del $\mathrm{Hu} \mid \dot{v} \pi \epsilon \rho \bar{\epsilon} \chi \eta \iota \mathrm{Hu} \dot{v} \pi \epsilon \rho \dot{\epsilon} \chi \in \iota \mathrm{~A}$

of Δ and B. 4 Hence E and B are less than $\Delta .5$ Let Γ be added in common. Then Γ and E and B are less than Γ and $\Delta .{ }^{6} \quad B u t \Gamma$ and E and B were proved to equal A and B. Thus A and B are less than Γ and $\Delta .{ }^{7}$

The converse similarly, and the (lemmas) for the ellipse similarly.

 $\epsilon \bar{\epsilon} \lambda \epsilon i \psi \epsilon \omega \varsigma$ ó $\mu \mathrm{o} i \omega s$.

[^47](284) (Lemmas) of (Book) 6.

1. (Prop. 213) Let there be two obtuse-angled triangles $\mathrm{AB} \mathrm{\Gamma}, \triangle \mathrm{EZ}$, that have angles Γ, Z obtuse, and angles A and Δ acute and equal. Let $\Gamma \mathrm{H}$ and $\mathrm{Z} \Theta$ be drawn at right angles to $\mathrm{B} \Gamma$ and EZ . As the rectangle contained by BA, AH is to the square of $\mathrm{A} \Gamma$, so let the rectangle contained by $\mathrm{E} \Delta, \Delta \Theta$ be to the square of ΔZ. That triangle $A B \Gamma$ is similar to triangle $\triangle E Z$.

For let semicircles be drawn on HB and E Θ. They will pass through Γ and Z. Let them pass, and let them be HГB and EZQ. Now either $A \Gamma$ and ΔZ are (both) tangent to the semicircles or (both are) not. Then if they are (both) tangent (Prop. 213 a), obviously triangles $\mathrm{AB} \mathrm{\Gamma}$ and $\triangle \mathrm{EZ}$ are similar. For if I take the centers M and N, and join $M \Gamma$ and $N Z$, then angles MГA and NZ Δ will be right. ${ }^{1}$ And angles A and Δ are equal. ${ }^{2}$ Therefore angle $A M \Gamma$ (equals) angle $\triangle \mathrm{NZ}.{ }^{3}$ And the halves too (are equal). Therefore angle B equals angle E (III 20). 4 But also (angle) A (equals angle) Δ. Therefore the triangles are similar. ${ }^{5}$

Now, however (Prop. $213 \mathrm{~b}-\mathrm{c}$), let them not be tangent, but let them cut the semicircles at some points K, Λ, and let perpendiculars $M \Xi$, NO be drawn. Then $K \Xi$ equals $\Xi \Gamma, 6$ and $\Lambda 0$ (equals) $O Z .{ }^{7}$ But (triangle) $A M \Xi$ is similar to triangle $\triangle N O .{ }^{8}$ Therefore as ΞA is to $A M$, so is $O \Delta$ to $\Delta \mathrm{N} .9$ But since as the rectangle contained by BA, AH is to the square of $A \Gamma$, so is the rectangle contained by $E \Delta, \Delta \Theta$ to the square of $\Delta Z, 10$ therefore as the rectangle contained by $\mathrm{KA}, \mathrm{A} \Gamma$ is to the square of $\mathrm{A} \Gamma$, that is as $K A$ is to $A \Gamma$, so is the rectangle contained by $\Lambda \Delta, \Delta Z$ to the square of $\Delta \mathrm{Z},{ }^{11}$ that is $\Lambda \Delta$ to $\Delta \mathrm{Z} .{ }^{12}$ Hence also $\Xi \mathrm{A}$ is to $\mathrm{A} \Gamma$ as $\mathrm{O} \Delta$ is to $\Delta \mathrm{Z} .{ }^{13}$ But also as $\Xi \mathrm{A}$ is to AM , so is $\mathrm{O} \Delta$ to $\Delta \mathrm{N},{ }^{14}$ because of the similarity of the triangles. Ex aequali therefore as ΓA is to $A M$, so is $Z \Delta$ to $\Delta N .{ }^{15}$ And (the sides) about equal angles A, Δ are in ratio. ${ }^{16}$ Therefore angle AMP equals angle $\Delta \mathrm{NZ} .{ }^{17}$ And the halves (are equal). Therefore angle B too equals angle E. ${ }^{18}$ But also by hypothesis (angle) A (equals angle) Δ. Thus triangle $A B \Gamma$ is similar to triangle $\triangle E Z .{ }^{19}$
(285) (Prop. 213) The converse of it is apparent, namely with (triangle) $\mathrm{AB} \Gamma$ similar to (triangle) $\triangle \mathrm{EZ}$, and angles $\mathrm{B} \Gamma \mathrm{H}$ and EZO right, to prove that as the rectangle contained by BA, AH is to the square of $\mathrm{A} \Gamma$, so is the rectangle contained by $E \Delta, \Delta \Theta$ to the square of ΔZ. For because of the similarity of the triangles, as $B A$ is to $A \Gamma$, so is $E \Delta$ to ΔZ, while as HA is to $A \Gamma$, so is $\Theta \Delta$ to ΔZ. And the compounded (ratio is therefore equal to the compounded ratio).

(284) TOT \mathbf{S}^{\prime}

 $\dot{\epsilon} \sigma \tau i \nu \tau \dot{o} \mathrm{AB} \tau \rho \dot{\imath} \gamma \omega \nu 0 \nu \tau \tilde{\omega} \iota \Delta \mathrm{EZ} \tau \rho \iota \gamma \dot{\omega} \nu \omega \iota$.

 $\Theta \Delta \pi \rho o ̀ s ~ \Delta Z . ~ к а і ~ і ̀ ~ o v \nu \eta \mu \mu \epsilon ́ v o s . ~$

[^48](286) 2. (Prop. 214) Let there be two similar segments greater than a semicircle, namely the (segments) on $\mathrm{AB}, \Gamma \Delta$, and let perpendiculars $\mathrm{EZH}, \Theta \mathrm{K} \Lambda$ be drawn. And as EH is to HZ , so let $\Theta \Lambda$ be to ΛK. It is required to prove that $\operatorname{arc} \mathrm{BZ}$ is similar to $\operatorname{arc} \Delta \mathrm{K}$.

Let the centers M, N be taken, and let perpendiculars $\mathrm{ME}, \mathrm{MO}, \mathrm{N} \Pi$, NP be drawn, ${ }^{1}$ and let MB, $\mathrm{N} \Delta$ be joined. Then angle OMB equals angle $\mathrm{PN} \Delta ;^{2}$ for the (angles) in the segments are equal, and the halves. And (angles) 0 and P are right. ${ }^{3}$ Therefore also angle MBO equals angle $N \Delta P .{ }^{4}$ Let $Z \Sigma$, KT be drawn parallel to $\mathrm{AB}, \Gamma \Delta, 5$ and let MZ , NK be joined. Then also angle $M \Sigma Z$ equals angle NTK. ${ }^{6}$ But since as EH is to $H Z$, so is $\Theta \Lambda$ to $\Lambda K,{ }^{7}$ and therefore as ΞH is to $H Z$, so is $\Pi \Lambda$ to $\Lambda K,{ }^{8}$ and so also as $H \Xi$ is to ΞZ, that is MB to M $\Sigma,{ }^{10}$, that is $Z M$ to $M \Sigma,{ }^{11}$ so is $\Lambda \Pi$ to $K \Pi, 9$ that is ΔN to NT, 1^{2} <that is KN to NT>, 13 while angles MEZ and NTK are equal, and angles MZE and NKT acute, ${ }^{14}$ therefore angle IMZ equals angle TNK. ${ }^{15}$ Thus arc BZ is similar to arc $\Delta K .{ }^{16}$
(287) (Prop. 215) Let there be two right-angled (triangles) $\mathrm{AB} \mathrm{\Gamma}, \triangle \mathrm{EZ}$, that have angles Γ and Z right, and let $A H$ and $\Delta \Theta$ be drawn across at equal angles BAH and $\mathrm{E} \Delta \Theta$. And as is the rectangle contained by $\mathrm{B} \mathrm{\Gamma}, \Gamma \mathrm{H}$ to the square of $\mathrm{A} \Gamma$, so let the rectangle contained by $\mathrm{EZ}, \mathrm{Z} \mathrm{\Theta}$ be to the square of $\mathrm{Z} \Delta$. That triangle $\mathrm{AB} \Gamma$ is similar <to triangle $\Delta \mathrm{EZ}>$.

For let segments of circles BHA, $\mathrm{E} \Theta \Delta$ be drawn about triangles ABH and $\Delta \mathrm{E} \Theta$. Hence they are similar. 1 Now either $A \Gamma$ and $\Delta \mathrm{Z}$ are tangent to the segments, or not. First let them be tangent (Prop. 215 a). Then the rectangle contained by $\mathrm{B} \mathrm{\Gamma}, \mathrm{\Gamma H}$ equals the square of $\mathrm{A},{ }^{2}$ that is, if I draw AK at right angles to $\mathrm{AH},{ }^{3}$ (the rectangle contained by $\mathrm{B}, \Gamma \mathrm{\Gamma}$ equals) the rectangle contained by $\mathrm{H} \Gamma, \Gamma \mathrm{K},{ }^{4}$ while the rectangle contained by $\mathrm{EZ}, \mathrm{Z} \mathrm{\Theta}$ (equals) the square of $\Delta Z, 5$ that is, if I draw $\Delta \Lambda$ at right angles to $\Delta \Theta, 6$ (the rectangle contained by EZ, ZQ equals) the rectangle contained by $\Theta \mathbf{Z}$, $\mathrm{Z} \Lambda .^{7}$ Hence $\mathrm{B} \Gamma$ equals $\Gamma \mathrm{K}$, and EZ equals $\mathrm{Z} \mathrm{\Lambda} .^{8}$ And $\mathrm{A} \Gamma$ and $\Delta \mathrm{Z}$ are at right angles (to $\mathrm{B} \Gamma$ and EZ). ${ }^{9}$ Therefore angle BAK is twice angle $\mathrm{BA} \Gamma$, and angle $E \Delta \Lambda$ (twice) angle $E \Delta Z .1^{\circ}$ And angles $B A K$ and $E \Delta \Lambda$ are equal; ${ }^{3}$ for angle $B A H$ equals angle $E \Delta \Theta, 1^{1}$ and right angle HAK (equals) right angle $\Theta \Delta \Lambda .{ }^{12}$ Therefore angles $B A \Gamma$ and $E \Delta Z$ are equal. ${ }^{14}$ But also

 $\epsilon \pi \epsilon \zeta \epsilon v x \theta \omega \sigma a \nu a i, M Z$, NK. 'ía \quad ápa $\epsilon \sigma \tau i \nu, \kappa a i \quad \dot{\eta} \dot{v} \pi \dot{o} \mathrm{M} \Sigma Z \gamma \omega \nu i a$

 $\Delta K \pi \in \rho \iota \phi \in \rho \epsilon \iota a \iota$.

 $\mathrm{AB} \mathrm{\Gamma} \tau \rho i \gamma \omega \nu 0 \nu<\tau \tilde{\omega} \iota \Delta \mathrm{EZ} \tau \rho \iota \gamma \dot{\omega} \nu \omega \iota>$. $\gamma \epsilon \gamma \rho a ́ \phi \theta \omega$ $\gamma \dot{a} \rho \pi \epsilon \rho i, \tau \grave{a}$

 $\mu \grave{\epsilon} \nu \mathrm{B} \Gamma \tau \tilde{\eta} \iota, \Gamma \mathrm{K}, \dot{\eta}$, $\delta \dot{\epsilon} \mathrm{EZ} \tau \tilde{\eta} \iota \mathrm{Z} \Lambda$. каi $\dot{\rho} \rho \theta a i$ ai $\mathrm{A} \Gamma, \Delta \mathrm{Z}$. $\delta \iota \pi \lambda \tilde{\eta}$

5
|176v

[^49]right (angles) Γ, Z (are equal). 15 Thus triangle $\mathrm{AB} \Gamma$ is similar to triangle $\Delta E Z .{ }^{6}$ Q.E.D.

Now, however (Prop. $215 \mathrm{~b}-\mathrm{c}$), let $\mathrm{A} \Gamma$ and $\Delta \mathrm{Z}$ not be tangent, but let them cut (the segments) at points K and Λ. <Then as is the rectangle contained by $\mathrm{K} \Gamma, \Gamma \mathrm{A}$ to the square of $\Gamma \mathrm{A}$, that is $>$ as $\mathrm{K} \Gamma$ is to $\Gamma \mathrm{A}$, so is the rectangle contained by $\Delta \mathrm{Z}, \mathrm{Z} \Lambda$ to the square of $\Delta \mathrm{Z},{ }^{17}$ that is $\Lambda \mathrm{Z}$ to $\mathrm{Z} \Delta .^{18}$ And segments BAH and $\mathrm{E} \Delta \Theta$ are similar and greater (than a semicircle). ${ }^{9}$ Therefore arc AH is similar to arc $\Delta \Theta$ (lemma 7.221). 20 Hence angle B is equal to angle E. ${ }^{21}$ Therefore triangle $\mathrm{AB} \Gamma$ is similar to triangle $\Delta \mathrm{EZ} .{ }^{2}{ }^{2}$
(288) (Prop. 215 d) The same thing in another way. Let there be two triangles that have angles Γ, Z right, and let AH and $\Delta \Theta$ be drawn across at equal angles BAH and $\mathrm{E} \Delta \Theta$. And as the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{H}$ is to the square of $\mathrm{A} \Gamma$, so let the rectangle contained by $\mathrm{EZ}, \mathrm{Z} \Theta$ be to the square of ΔZ. That triangle $\mathrm{AB} \mathrm{\Gamma}$ is similar to triangle $\Delta \mathrm{EZ}$.

Let $A K$ and $\Delta \Lambda$ be drawn at right angles to $A H$ and $\Delta \Theta .{ }^{1}$ Then the square of $\mathrm{A} \Gamma$ equals the rectangle contained by $\mathrm{H} \Gamma, \Gamma \mathrm{K}$, while the square of $\Delta \mathrm{Z}$ (equals) the rectangle contained by $\mathbf{O Z}, \mathrm{Z} \mathrm{\Lambda} .^{2}$ Thus as the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{H}$ is to the rectangle contained by $\mathrm{H} \Gamma, \Gamma \mathrm{K}$, that is as $\mathrm{B} \Gamma$ is to $\Gamma \mathrm{K}$, so is the rectangle contained by EZ, $\mathrm{Z} \mathrm{\Theta}$ to the rectangle contained by $\Theta \mathrm{Z}, \mathrm{Z} \Lambda,^{3}$ that is EZ to $\mathrm{Z} \Lambda .^{4}$ Let $\Gamma \mathrm{M}$ and ZN be drawn parallel to AK and $\Delta \Lambda .{ }^{5}$ Hence as $B M$ is to MA, so is EN to N $\Delta .{ }^{6}$ And (the angles) at points Γ, Z are right, ${ }^{7}$ and the (angles) at points M, N equal; ${ }^{9}$ for so are angles BAK and $\mathrm{E} \Delta \Lambda$. By the foregoing (lemma) triangle $\mathrm{AB} \Gamma$ is similar to triangle $\Delta E Z .{ }^{\circ}$
(289) (Prop. 216) Let there be two triangles that have the angles at points B and E right, and let BH and E Θ be drawn across at equal angles AHB and $\Delta \Theta \mathrm{E}$. And as the rectangle contained by $\mathrm{AH}, \mathrm{H} \Gamma$ is to the square of HB , so let the rectangle contained by $\Delta \Theta, \Theta \mathrm{Z}$ be to the square of $\Theta \mathrm{E}$. It is required to prove that triangle $\mathrm{AB} \mathrm{\Gamma}$ is similar to triangle $\triangle \mathrm{EZ}$.

Let circles be circumscribed, and let their centers K, Λ be taken. Now it is obvious that they are on the same side of H, Θ (as each other). For if possible, let K be between points Γ, H, and Λ between $\Delta, \Theta, 1$ and let $B H, E \Theta$ be produced to points M, N. And from K let perpendicular $K E$ be drawn upon MB. ${ }^{2}$ Then it will fall between \mathbf{H} and $\mathbf{B},{ }^{3}$ and angle AHB is obtuse. ${ }^{4}$ And it equals angle $\Delta \Theta \mathrm{E} .{ }^{5}$ Hence angle $\Delta \Theta \mathrm{E}$ too is obtuse. ${ }^{6}$

 ö $\pi \in \rho$: -
$\dot{a} \lambda \lambda \grave{a} \delta \grave{\eta} \mu \grave{\eta} \dot{\epsilon} \phi a \pi \tau \dot{\epsilon} \sigma \theta \omega \sigma a \nu$ ai $\mathrm{A},, \Delta \mathrm{Z}, \dot{a} \lambda \lambda \grave{a} \tau \epsilon \mu \nu \dot{\epsilon} \tau \omega \sigma a \nu \kappa a \tau \grave{a}$

 $\dot{\epsilon} \sigma \tau i \nu \tau \dot{O} \mathrm{AB} \Gamma \tau \rho i \gamma \omega \nu 0 \nu \tau \tilde{\omega} \iota \Delta \mathrm{EZ} \tau \rho \iota \gamma \dot{\omega} \omega \omega \iota$.

 $\tau \rho i \gamma \omega \nu 0 \nu \tau \tilde{\omega} \iota \Delta \mathrm{EZ} \tau \rho \iota \gamma \dot{\omega} \nu \omega \iota$.
 $\sigma \eta \mu \epsilon i o \iota s \gamma \omega \nu i a s, \kappa a i \delta^{\prime} \eta x \theta \omega \sigma a \nu a i$ BH, $\mathrm{E} \Theta \dot{\epsilon} \nu$ 'íoaıs $\gamma \omega \nu i a \iota s$

 $\epsilon \in \sigma \iota \nu \tau \dot{o} \mathrm{AB}, \tau \rho i \gamma \omega \nu 0 \nu \tau \tilde{\omega} \iota \Delta \mathrm{EZ} \tau \rho \iota \gamma \omega \nu \omega \iota . \pi \epsilon \rho \iota \gamma \epsilon \gamma \rho a \phi \theta \omega \sigma a \nu$

 $\mu \grave{\epsilon} \nu \mathrm{K} \mu \epsilon \tau a \xi \grave{v} \tau \tilde{\omega} \nu \Gamma, \mathrm{H} \sigma \eta \mu \epsilon i \omega \nu$, $\tau \grave{o} \delta \bar{\epsilon} \Lambda \mu \epsilon \tau a \xi \grave{v} \tau \tilde{\omega} \nu \Delta, \Theta, \kappa a i$ $\dot{\epsilon} \kappa \beta \epsilon \beta \lambda \dot{\eta} \sigma \theta \omega \sigma a \nu \quad a i \mathrm{BH}, \mathrm{E} \Theta \dot{\epsilon} \pi i \quad \tau \grave{a} \mathrm{M}, \mathrm{N} \sigma \eta \mu \epsilon i a . \kappa a i \quad a \pi \dot{o} \tau о \tilde{u} \mathrm{~K}$ $\dot{\epsilon} \pi i \quad \tau \dot{\eta} \nu \mathrm{MB} \kappa \bar{a} \theta \epsilon \tau о \varsigma \dot{\eta} \times \theta \omega \dot{\eta} \mathrm{K} \Xi . \pi \epsilon \sigma \epsilon \tilde{\iota} \tau a \iota \mathfrak{a} \rho a \mu \epsilon \tau a \xi \dot{v} \tau \tilde{\omega} \nu \mathrm{H}, \mathrm{B}$,

[^50]Therefore angle $\Delta \Theta \mathrm{N}$ is acute. ${ }^{7}$ Hence the perpendicular drawn from Λ upon EN falls between Θ, N. ${ }^{9}$ Let it fall, and let it be $\Lambda 0 .{ }^{8}$ Then NO equals OE. 10 Thus NO is greater than $\Theta E .{ }^{11}$ Hence $N \Theta$ is much greater than $\Theta E .12$ And the rectangle contained by $N \Theta, \Theta E$, that is the rectangle contained by $\Delta \Theta, \Theta Z, 1^{14}$ is greater than the square of $\mathrm{E} \Theta .1^{13}$ And as the rectangle contained by $\Delta \Theta, \Theta Z$ is to the square of ΘE, so is the rectangle contained by $\mathrm{AH}, \mathrm{H} \Gamma$ to the square of $\mathrm{HB} ;{ }^{15}$ which is absurd. For it is also less, since $M H$ is less than HB , and the rectangle contained by MH, HB than the square of HB. Thus if center K is between H and Γ, Λ will not be between Δ, Θ.
(290) (Prop. 216) So let (Λ) be between Θ, Z, and in the same way let perpendicular $\Lambda 0$ be drawn. ${ }^{5}$

Then since as the rectangle contained by $\mathrm{AH}, \mathrm{H} \Gamma$, that is the rectangle contained by $\mathrm{MH}, \mathrm{HB}, 17$ is to the square of HB , that is as MH is to HB , so is the rectangle contained by $\Delta \Theta, \Theta \mathrm{Z}$, that is the rectangle contained by $\mathrm{N} \Theta, \Theta \mathrm{E},{ }^{18}$ to the square of $\Theta \mathrm{E},{ }^{16}<$ that is $\mathrm{N} \Theta$ to $\Theta \mathrm{E}>. \mathrm{I}^{9}$ And BM and NE have been bisected by $\Xi, 0.20$ Therefore as $B \Xi$ is to ΞH, so is EO to OӨ. ${ }^{1}$ But also as HE is to $\Xi \mathrm{K}$, so is ΘO to $\mathrm{O} \wedge^{24}$ for (angles) Ξ, O are right, ${ }^{2}{ }^{2}$ and the angles at points H, Θ are equal. 2^{3} Ex aequali, therefore, as $B \Xi$ is to $\Xi \mathrm{K}$, so is EO to $\mathrm{O} \Lambda .{ }^{25}$ And they are about equal angles. 26 Therefore angle BK三 equals angle E $\Lambda \mathrm{O}^{2}{ }^{27}$ But also angle $\Xi \mathrm{KH}$ equals angle $O \Lambda \Theta .^{28}$ Hence all angle BKH equals all angle E $\Lambda \Theta .^{29}$ And the halves (are equal). Hence angle $A \Gamma B$ equals angle $\triangle Z E .3^{\circ}$ And angles B, E are right. ${ }^{1}{ }^{1}$ Thus triangle $A B \Gamma$ is similar to triangle $\Delta E Z .{ }^{3}{ }^{2}$
(291) (Prop. 216) The converse of this too is obvious, namely if triangle $\mathrm{AB} \Gamma$ is similar to triangle $\triangle \mathrm{EZ}$, and (triangle) $\mathrm{HB} \Gamma$ to (triangle) $\Theta E Z$, that as the rectangle contained by $\mathrm{AH}, \mathrm{H} \Gamma$ is to the square of HB , so is the rectangle contained by $\Delta \Theta, \Theta Z$ to the square of ΘE, because of the similarity of the triangles.

 ápa $\dot{\epsilon} \sigma \tau i \nu \dot{\eta}$ NO $\tau \tilde{\eta} \iota \mathrm{OE}$. $\dot{\omega} \sigma \tau \epsilon \mu \epsilon i \xi \omega \nu \epsilon \epsilon \sigma i \nu \dot{\eta}$ NO $\tau \tilde{\eta} \varsigma$ ӨE.

 $\mu \in \tau a \xi \dot{v} \tau \tilde{\omega} \nu \Delta, \Theta$.

 $\pi \rho o ̀ s ~ \Theta E .>~ к а i ~ \tau ́ \epsilon \tau \mu \eta \nu \tau a \iota ~ a i ~ B M, N E ~ \delta i x a ~ \tau o i s ~ \Xi, ~ O . ~ ' \epsilon ́ \sigma \tau \iota \nu ~ a ́ p a ~$

 $\tau \rho \iota \gamma \omega \nu \omega \iota$.

|177v

5
 $\Theta \mathrm{E}) \mathrm{Co} N \Theta \mathrm{~A} \| 5 \pi 0 \lambda \lambda \tilde{\omega} \iota-\Theta \mathrm{E}$ bis A corr $\mathrm{Co} \| 6 \boldsymbol{\tau} \dot{o} \dot{v} \pi \dot{o}(\Delta \Theta Z) \mathrm{Hu}$ $\tau о \tilde{v}$ A | $\Delta \Theta Z$ Co $\Delta \mathrm{EZ}$ A \| 8 каi del Ha| 11Θ Co E A || 15 $\tau 0 \cup \tau \dot{\epsilon} \sigma \tau \iota \nu-\pi \rho o ̀ s ~ \Theta E ~ a d d ~ C o \| ~ 16 \tau \epsilon ́ \epsilon \mu \eta \nu \tau a \iota \tau \epsilon \in \mu \nu 0 \nu \tau a \iota \mathrm{Ha}$ $\|23 \mathrm{E} \Lambda \Theta \mathrm{Co} \mathrm{E} \Lambda \mathrm{O} \mathrm{A} \mid \dot{\eta} \mu i \sigma \eta \mathrm{Ge}(\mathrm{S}) \dot{\eta} \mu i \sigma \in \iota a \mathrm{~A}\|, 25 \tau \rho i \quad \gamma \omega \nu 0 \nu$

(292) (Prop. $217 a-b$) Let there be two triangles $\mathrm{AB} \mathrm{\Gamma}, \triangle \mathrm{EZ}$, that have angles A, Δ equal, but not right, and let perpendiculars $A H, \Delta \Theta$ be drawn, and as the rectangle contained by $\mathrm{BH}, \mathrm{H} \Gamma$ is to the square of AH , so let the rectangle contained by $\mathrm{E} \Theta, \Theta \mathrm{Z}$ be to the square of $\Delta \Theta$, and let BH , $\mathrm{E} \Theta$ be greater parts of straight lines $\mathrm{B} \Gamma$, EZ . I say that triangle ABH is similar to (triangle) $\Delta \mathrm{E} \Theta$, and the rest (triangle $\mathrm{HA} \Gamma$) to the rest (triangle $\Theta \Delta \mathbf{Z}$).

Let circles be circumscribed, and let $A H, \Delta \Theta$ be produced to points K, Λ, and let the centers M, N of the circles be taken, and from them let perpendiculars ME, MO, NI, NP be drawn upon $\mathrm{AK}, \mathrm{B} \mathrm{\Gamma}, \Delta \Lambda, E Z .{ }^{1}$ Now by the same argument as in the foregoing (lemmas), as KH is to HA , so is $\Lambda \Theta$ to $\Theta \Delta .{ }^{2}$ Hence also as $A \Xi$ is to ΞH, so is $\Delta \Pi$ to $\Pi \Theta .{ }^{3}$ Let $A M, \Delta N$ be joined. But as $A \Xi$ is to ΞH, so is $A M$ to $M \Sigma,{ }^{4}$ while as $\Delta \Pi$ is to $\Pi \Theta$, so is ΔN to NT. 5 And so as AM is to M Σ, so is ΔN to NT. ${ }^{6}$ Let BM, EN be joined. Then since segment $B A \Gamma$ is similar to segment $E \Delta Z,{ }^{7}$ therefore the remaining segment $B K \Gamma$ is similar to the remaining segment $E \Lambda Z .8$ Hence the angles in them are equal, and also their halves are equal. Thus angles BMO, ENP are equal, 9 in the first pair of cases (Prop. 217 a). In the second (Prop. 217 b) it is manifest from what is already there that angle BMO equals angle ENP; for the angles in segments BAF, E $\triangle \mathbf{Z}$ too (are equal). Thus as BM is to MO, that is as AM is to MO, so is EN to NP, 10 that is $\Delta \mathrm{N}$ to $\mathrm{NP} .1^{1}$ But also as AM is to M Σ, so is $\Delta \mathrm{N}$ to NT. 1^{2} Ex aequali, therefore, as MO is to M Σ, so is PN to NT. ${ }^{13}$ And angles O, P are right, 14 and each of (angles) Σ, T acute. 1^{5} Therefore angle $O M \Sigma$ equals angle PNT. ${ }^{6}$ But angle BMO too equals angle ENP. ${ }^{17}$ Thus angle BME too equals angle ENT, ${ }^{18}$ and so also angle Γ equals angle Z. ${ }^{19}$ Thus all (the triangles) are similar to all. 20
(293) (Prop. 217 c) It is also possible, having the proof of one case, either that of the obtuse or of the acute, already written, to supply the remaining one, as follows. For let it be supposed that (the case) of the angles being equal and obtuse has been proved first, in the way written above. And let it be required to prove, having two equal acute angles $В А \Gamma$,

 $<\dot{\omega} \varsigma>\tau \grave{o} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu$ ВНГ $\pi \rho \grave{o} \varsigma \tau \grave{o}$ áǹ $\tau \tilde{\eta} \varsigma \mathrm{AH}$, oü $\tau \omega \varsigma ~ \tau \grave{o} \dot{\nu} \pi \grave{o} \tau \tilde{\omega} \nu$

 OME $\gamma \omega \nu i a \tau \tilde{\eta} \iota \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu$ PNT $\gamma \omega \nu i a \iota$. á $\lambda \lambda \dot{a} \kappa a i \dot{\eta} \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu$ BMO

 'ápa є́ $\sigma \tau i \nu \pi a ́ \nu \tau a \pi \tilde{a} \sigma \iota \nu$.

[^51]$\mathrm{E} \Delta \mathrm{Z}$, that the triangles are similar.
And again let the circles be circumscribed, and with $\mathrm{AH}, \Delta \Theta$ produced to K, Λ, let $B K, K \Gamma, E \Lambda, \Lambda Z$ be joined. Then obtuse angles $B K \Gamma, E \Lambda Z$ too are equal. ${ }^{1}$ And since as is the rectangle contained by $\mathrm{BH}, \mathrm{H} \Gamma$, that is the rectangle contained by $\mathrm{AH}, \mathrm{HK},{ }^{3}$ to the square of AH , that is KH to HA , so is the rectangle contained by $\mathrm{E} \Theta, \Theta \mathrm{Z}$, that is the rectangle contained by $\Delta \Theta$, $\Theta \Lambda, 4$ to the square of $\Delta \Theta,{ }^{2}$ that is $\Lambda \Theta$ to $\Theta \Delta .{ }^{5}$ And so as is the square of AH to the square of HK , so is the square of $\Delta \Theta$ to the square of $\Theta \Lambda .{ }^{6}$ But also as is the rectangle contained by $\mathrm{BH}, \mathrm{H} \Gamma$ to the square of AH , so is the rectangle contained by $\mathrm{E} \Theta, \Theta \mathrm{Z}$ to the square of $\Delta \Theta .7^{7}$ Ex aequali therefore, as is the rectangle contained by $\mathrm{BH}, \mathrm{H} \Gamma$ to the square of HK , so is the rectangle contained by $\mathrm{E} \Theta, \Theta \mathrm{Z}$ to the square of $\Theta \Lambda .{ }^{8}$ And angles $B K \Gamma$, $\mathrm{E} \Lambda \mathrm{Z}$ are equal and obtuse; and $\mathrm{KH}, \Lambda \Theta$ are perpendiculars. ${ }^{9}$ Because of the foregoing (lemma), triangle BKH is similar to triangle E $\wedge \Theta$, and (triangle) $\Gamma K H$ to (triangle) $\mathrm{Z} \Lambda \Theta .{ }^{10}$ Thus also triangle ABH is similar to triangle $\Delta \mathrm{E} \Theta$, and (triangle) $\mathrm{A} H \Gamma$ to (triangle) $\Delta \Theta \mathrm{Z}$ (see commentary). ${ }^{1}$ Hence also all triangle $\mathrm{AB} \mathrm{\Gamma}$ is similar to all triangle $\triangle \mathrm{EZ} . \mathbf{1}^{2}$
(294) (Prop. 218) With $\mathrm{AB}, \mathrm{A} \Gamma$ given in position, to draw $\Delta \mathrm{E}$ parallel to a (line given) in position, making $\Delta \mathrm{E}$ given (in magnitude).

Let it have been accomplished, and let AZ be drawn through A and parallel to $\Delta \mathrm{E}$. Then it is parallel to a (line given) in position. And A is given. Therefore AZ is (given) in position. Let EZ be drawn through E parallel to $A B$. Then $A Z$ is equal to ΔE. But ΔE is given. Therefore $A Z$ too is given. But (it is given) also in position. And A is given. Therefore Z too is given. Now ZE has been drawn through a given point Z parallel to a (line given) in position. Therefore ΔE is (given) in position.

The synthesis of the problem will be made as follows. Let the two straight lines given in position be $\mathrm{AB}, \mathrm{A} \Gamma$, and let the (line) given in magnitude be H , and let (the line) parallel to which (lines) are drawn be AZ , and let $A Z$ be made equal to H. ${ }^{1}$ And let ZE be drawn through Z <parallel> to $A B,^{2}$ and $\mathrm{E} \Delta$ through E parallel to $\mathrm{AZ} .^{3}$ I say that $\Delta \mathrm{E}$ solves the problem.

For since ΔE equals $A Z,{ }^{4}$ but $A Z$ equals H, that is the given (line), therefore ΔE too equals the given, H. 5 Hence ΔE solves the problem. And obviously it alone (solves the problem); for the (line) nearer A is always less than the farther (line).
 $\kappa a i \dot{\epsilon} \kappa \beta \epsilon \beta \lambda \eta \mu \epsilon \nu \omega \nu \tau \tilde{\omega} \nu \mathrm{AH}, \Delta \Theta \dot{\epsilon} \pi i \quad \tau \grave{a} \mathrm{~K}, \Lambda, \dot{\epsilon} \pi \epsilon \xi \epsilon \dot{v} \chi \theta \omega \sigma a \nu$ ai BK ,

 $\Delta \mathrm{EZ}$ є́ттір ö́иосор.

 Ha (Co) кá $\theta \epsilon \tau$ os $\mathrm{A} \|{ }_{\sim} 13 \mu \grave{\epsilon} \nu$ add $\mathrm{Hu}\|15 \Delta \Theta Z \mathrm{Ha} \Delta \mathrm{Z} \mathrm{\Theta} \mathrm{~A}\| 21 \mathrm{AZ}$ Co AH A | ante $\delta o \theta \epsilon i \sigma \sigma a$ add каi Ha \| $22 \delta \dot{\epsilon}$ Co ápa A del Ha | AZ ex A* A \| 25 A Co HAГ A \| 29 áyovial] áretac Hu ár $\epsilon \sigma \theta a \iota \delta \epsilon i ́ \mathrm{Ha} \| 30 \pi a \rho a ́ \lambda \lambda \eta \lambda o s$ add $\mathrm{Ha}(\mathrm{Co}) \| 31 \Delta \mathrm{E}$ Co AE A

(295) (Prop. 219) Let there be two planes $\mathrm{B} \Delta, \mathrm{BZ}$ standing on the same straight line $\mathrm{B} \mathrm{\Gamma}$, at right angles to the same plane, namely the plane of reference. I say that straight lines $\mathrm{AB}, \mathrm{BE}, \mathrm{B} \Gamma$ are in one plane.

For let HB be drawn from B and at right angles to $B \Gamma$ in the plane of reference. Then $H B$ will be at right angles also to plane $E \Gamma$. Hence it is also at right angles to BE . By the same argument (it is at right angles) to $A B$ as well. But it is also (at right angles) to $B \Gamma$. Now straight line $B H$ has been set up at right angles to three straight lines $A B, B E, B \Gamma$, from the point of contact B. Hence by the Element, straight lines $A B, B E, B \Gamma$ are in one plane (XI 5).
(296) (Prop. 220 a) Let there be two triangles $\mathrm{AB}, \Delta \mathrm{E} Z$, that have angles A, Δ right, and let $\mathrm{AH}, \Delta \Theta$ be drawn across at equal angles AHB , $\Delta \Theta E$. And as BH is to $\mathrm{H} \Gamma$, so let $\mathrm{E} \Theta$ be to ΘZ. That triangle $A B \Gamma$ is similar to triangle $\triangle \mathrm{EZ}$, and (triangle) $\mathrm{AH} \Gamma$ to (triangle) $\Delta \Theta Z$, and furthermore triangle ABH to triangle $\triangle \mathrm{E} \Theta$.

Let AH be produced, and let $\Gamma \mathrm{H}$ be made to HK as $\Delta \Theta$ is to $\Theta \mathrm{E},{ }^{1}$ and let $\mathrm{BK}, \mathrm{K} \Gamma$ be joined. Then angle $\Delta \mathrm{E} \Theta$ equals angle $\Gamma \mathrm{KH} .{ }^{2}$ But since as BH is to $\mathrm{H} \Gamma$, so is $\mathrm{E} \Theta$ to $\Theta \mathrm{Z},{ }^{3}$ while as $\Gamma \mathrm{H}$ is to HK , so is $\Delta \Theta$ to $\Theta \mathrm{E}$, ex aequali therefore in disturbed proportion, so BH is to HK , so is $\Delta \Theta$ to $\Theta Z .{ }^{4}$ And (they are) about equal angles. ${ }^{5}$ Therefore angle BKH equals angle Z. ${ }^{6}$ But it was proved that angle $\Gamma \mathrm{KH}$ equals (angle) $\mathrm{E} ;{ }^{7}$ and (angles) E, Z equal a right (angle). 8 Therefore angle BKГ is right. 9 But by hypothesis also angle $В А \Gamma$ is right. ${ }^{10}$ Therefore points A, B, Γ, K are on a circle. ${ }^{11}$ Hence angle $A K \Gamma$, that is angle $\triangle \mathrm{E} \Theta, 1^{3}$ equals angle $A B \Gamma .1^{2}$ But also angle AHB by hypothesis equals angle $\Delta \Theta E .14$ Therefore triangle $A B H$ is similar to triangle $\Delta \mathrm{E} \Theta . .^{15}$ By the same argument also triangle $A H \Gamma$ is similar to (triangle) $\Delta \Theta Z$.
 $\tau \tilde{\eta} \varsigma \mathrm{B} \Gamma \dot{\epsilon} \phi \epsilon \sigma \tau \tilde{\omega} \tau a, \tau \tilde{\omega} \iota a \dot{u} \tau \tilde{\omega} \iota \dot{\epsilon} \pi \iota \pi \bar{\epsilon} \delta \omega \iota \tau \tilde{\omega} \iota \dot{\nu} \pi о \kappa \epsilon \iota \mu \epsilon \nu \omega \iota \quad \dot{\rho} \rho \theta \dot{a}$.

 $\epsilon \dot{v} \theta \epsilon \tilde{i} a \delta \dot{\eta} \dot{\eta} \mathrm{BH} \tau \rho \iota \sigma i \nu \epsilon \dot{u} \theta \epsilon i a \iota s$ тaĭ $\mathrm{AB}, \mathrm{BE}, \mathrm{B} \mathrm{\Gamma} \dot{o} \rho \theta \dot{\eta} \dot{\epsilon} \pi i, \tau \tilde{\eta} \mathrm{~s}$
 $\dot{\epsilon} \pi \iota \pi \dot{\epsilon} \delta \omega \iota a \dot{\imath} \mathrm{AB}, \mathrm{BE}, \mathrm{B} \Gamma \epsilon \dot{v} \theta \epsilon \tilde{\iota} a \iota$.

 $\pi \rho o ̀ ~ H K, ~ o u ̈ \tau \omega \varsigma ~ \dot{\eta} \Delta \Theta \pi \rho o s ~ \Theta Z$. кai $\pi \epsilon \rho i$ ' $i \sigma a s, \gamma \omega \nu i a s$. 'íon áa ρa

 $\dot{v} \pi \grave{o}$ ВКГ $\gamma \omega \nu i a \operatorname{\epsilon } \epsilon \sigma \tau i \nu \dot{o} \rho \theta \dot{\eta}$. à $\lambda \lambda \dot{a} \kappa \alpha \theta^{\prime} \dot{v} \pi \dot{o} \theta \epsilon \sigma \iota \nu \kappa а \dot{i} \dot{\eta} \dot{v} \pi \grave{o}$ ВАГ

988
 $\Delta \Theta \mathrm{E} \gamma \omega \nu i a \iota$ ợ $\mu o \imath 0 \nu$,ápa $\dot{\epsilon} \sigma \tau i \nu \tau \grave{o} \mathrm{ABH} \tau \rho i \gamma \omega \nu 0 \nu \tau \tilde{\omega} \iota, \Delta \mathrm{E} \Theta$ $\tau \rho \iota \gamma \dot{\omega} \nu \omega \iota$. катà $\tau \grave{a}$ aúvà каí $\tau \grave{o}$ АНГ $\tau \rho i \gamma \omega \nu о \nu \tau \tilde{\omega} \iota \Delta \Theta Z ~ \dot{\epsilon} \sigma \tau i \nu$

[^52](297) (Prop. 220 b) In another, better way.

Let $B \Gamma, E Z$ be bisected by points $K, \Lambda, 1$ and let $A K, \Delta \Lambda$ be joined. Then since as BH is to $\mathrm{H} \Gamma$, so is $\mathrm{E} \Theta$ to $\Theta \mathrm{Z},{ }^{2}$ componendo ${ }^{3}$ and (taking) the halves of the leading (members), ${ }^{4}$ and convertendo, as $\Gamma \mathrm{K}$, that is as $A K$, is to KH , so is $\Lambda \mathrm{Z}$, that is $\Delta \Lambda,{ }^{6}$ to $\Lambda \Theta .{ }^{5}$ And the angles at points H, Θ are equal, ${ }^{7}$ and angles $\mathrm{KAH}, \Delta \Delta \Theta$ both at once acute. ${ }^{8}$ Therefore angle AKH equals angle $\Delta \Lambda \Theta ;{ }^{9}$ and the halves too (are equal). Therefore angle B too equals (angle) E. ${ }^{\circ}$ But also angle H equals (angle) ©. 11 Therefore triangle ABH is similar to triangle $\Delta \mathrm{E} \Theta .12$ By the same argument also triangle $A H \Gamma$ is similar to triangle $\Delta \Theta Z$.

[^53](298) (Lemmas) of (Books) 7, 8.

1. (Prop. 221) *(Let) $\mathrm{A} \Gamma$ (be) a right-angled parallelogram, and let EZA be drawn across. That the rectangle contained by EA, AZ equals the rectangle contained by $\mathrm{ZB}, \mathrm{B} \Gamma$ plus the rectangle contained by $\mathrm{E} \Delta, \Delta \Gamma$.

For since the square of $E Z$ equals the squares of $E \Gamma, \Gamma Z,{ }^{1}$ and out of these the squares of $E A, A Z$ equal the squares of $E \Delta, \Delta A$, that is the squares of $\mathrm{E} \Delta, \Gamma \mathrm{B}$, plus the squares of $\mathrm{AB}, \mathrm{BZ},{ }^{2}$ that is the squares of $\Gamma \Delta$, $\mathrm{BZ},{ }^{3}$ therefore the remaining twice the rectangle contained by EA, AZ equals twice the rectangle contained by $\mathrm{E} \Delta, \Delta \Gamma$ plus twice the rectangle contained by $\mathrm{ZB}, \mathrm{B} \mathrm{\Gamma} .{ }^{4}$ Hence once the rectangle contained by EA, AZ equals the rectangle contained by $\mathrm{E} \Delta, \Delta \Gamma$ plus the rectangle contained by ZB, ВГ. 5^{*}
(299) 2. (Prop. 222) (Let) $\mathrm{A} \Gamma$ be a right-angled parallelogram, and let EAZ be drawn across. That the rectangle contained by $E \Delta, \Delta \Gamma$ plus the rectangle contained by $\Gamma \mathrm{B}, \mathrm{BZ}$ equals the rectangle contained by EA, AZ.

For since the square of $E Z$ equals the squares of $E \Gamma, \Gamma Z,{ }^{1}$ and the squares of EA, AZ equal the squares of $\mathrm{E} \Delta, \Delta \Gamma, \Gamma \mathrm{B}, \mathrm{BZ},{ }^{2}$ therefore twice the rectangle contained by EA, AZ equals twice the rectangle contained by $\mathrm{E} \Delta, \Delta \Gamma$ plus twice the rectangle contained by $\mathrm{ZB}, \mathrm{B} \Gamma^{3}$ Thus also once (the rectangle contained by EA, AZ) equal once (the rectangles contained by $\mathrm{E} \Delta, \Delta \Gamma$ and $\mathrm{ZB}, \mathrm{B} \Gamma) .4$
(300) 3. (Prop. 223) Let AB be greater than $\Gamma \Delta$, and the rectangle contained by $A E, E B$ equal to the rectangle contained by $\Gamma Z, Z \Delta$. And let $A E, \Gamma Z$ be the greater parts. That $A E$ is greater than ΓZ.

Let the wholes $A B, \Gamma \Delta$ be bisected by points $H, \Theta .1$ Then HB is greater than $\Delta \Theta .{ }^{2}$ Hence also the square of $H B$ is greater than the square of $\Delta \Theta .{ }^{3}$ But also the rectangle contained by AE, EB equals the rectangle contained by $\Gamma \mathrm{Z}, \mathrm{Z} \mathrm{\Delta} .{ }^{4}$ Therefore the square of HE is greater than the square of $\Theta \mathrm{Z} .{ }^{5}$ Hence HE is greater than $\Theta \mathrm{Z} .{ }^{6}$ But also AH is greater than $\Gamma \Theta .{ }^{7}$ Thus the whole AE is greater than the whole $\Gamma \mathrm{Z} .{ }^{8}$
(298) TOT $\mathrm{Z}^{\prime}, \mathrm{H}^{\prime}$
$\delta i \varsigma \dot{\nu} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{EAZ}$ 'íoov $\bar{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota \tau \epsilon \delta i \varsigma \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{E} \Delta, \Delta \Gamma \kappa a i \tau \tilde{\omega} \iota$

$$
\begin{aligned}
& \text { (299) < } \beta^{\circ} \text {.> } \pi a \rho a \lambda \lambda \eta \lambda_{o ́ \gamma \rho a \mu \mu о \nu ~ o ́ \rho \theta o \gamma \dot{\omega} \nu \iota о \nu ~ \tau \grave{o}} \text { АГ, каi }
\end{aligned}
$$

$\dot{\epsilon} \sigma \tau i \nu \tau \tilde{\omega} \iota \delta i \varsigma \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{E} \Delta \Gamma \mu \epsilon \tau \grave{a} \tau 0 \tilde{v} \delta i \varsigma \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{ZB} \Gamma$. $\dot{\omega} \sigma \tau \epsilon$
(300) $\left\langle\gamma^{\prime} .>\right.$ ' $\epsilon \sigma \tau \omega \mu \epsilon i \leqslant \omega \nu \dot{\eta} \mathrm{AB} \tau \tilde{\eta} \varsigma \Gamma \Delta$, кai 'íoov $\tau \grave{o} \dot{\nu} \pi \grave{o}$ AEB

 $\mu \epsilon i \xi \omega \nu \tau \tilde{\eta} \varsigma \Gamma \Theta$. ób $\lambda \eta$ áapa $\dot{\eta}$ AE ö̀ $\eta \varsigma \tau \tilde{\eta} \varsigma \Gamma Z \mu \epsilon i \zeta \omega \nu \dot{\epsilon} \sigma \tau i \nu$.
(301) 4. (Prop. 224) (Let) the rectangle contained by AE, EB equal the rectangle contained by $\Gamma Z, \mathrm{Z} \Delta$, with $\mathrm{AB}, \Gamma \Delta$ equal. That the greater parts $A E, \Gamma Z$ are <equal>. What comes after: For let $A B, \Gamma \Delta$ be bisected by $\mathrm{H}, \Theta \ldots$
(302) 5. (Prop. 225) Let AB be greater than $\Gamma \Delta$, and BE less than ΔZ, with $A B$ being greater than $B E$, and $\Gamma \Delta$ than ΔZ. That the difference of $A B, B E$ is greater than the difference of $\Gamma \Delta, \Delta Z$.

For since $<\mathrm{AB}>$ is greater <than $\Gamma \Delta, 1$ therefore the difference of AB, BE is greater $>$ than the difference of $\Gamma \Delta, \mathrm{EB} .{ }^{2}$ But the (difference) of $\Gamma \Delta, E B$ is greater than the difference of $\Gamma \Delta, \Delta Z ;{ }^{4}$ for $E B$ is less than $\Delta Z .{ }^{3}$ Therefore the difference of AB, BE is much greater than the difference of $\Gamma \Delta, \Delta Z .{ }^{5}$
(303) 6. (Prop. 226) Let AB equal $\mathrm{B} \Gamma$, and $\triangle \mathrm{E}$ (equal) EZ . That the rectangle contained by $A \Gamma, \Delta Z$ is four times the rectangle contained by $A B$, $\Delta \mathrm{E}$.

For since ΓA is twice $A B,{ }^{1}$ with common height $\triangle E$, therefore the rectangle contained by $\Gamma A, \Delta E$ is twice the rectangle contained by $A B$, $\Delta E .{ }^{2}$ Again, since ΔZ is twice $\Delta E,{ }^{3}$ with common height $A \Gamma$, therefore the rectangle contained by $\mathrm{A} \Gamma, \Delta \mathrm{Z}$ is twice the rectangle contained by $\mathrm{A} \Gamma$, $\Delta E .4$ But the rectangle contained by $\mathrm{A} \Gamma, \Delta \mathrm{E}$ <is twice the rectangle contained by $A B, \Delta E$. Thus the rectangle contained by $A \Gamma, \Delta Z$ is four times $>$ the rectangle contained by $\mathrm{AB}, \Delta \mathrm{E} .{ }^{5}$
(304) 7. (Prop. 227) As AB is to $\mathrm{B} \mathrm{\Gamma}$, so let $\triangle \mathrm{E}$ be to EZ , and as AB is to BH , so let $\Delta \mathrm{E}$ be to $\mathrm{E} \Theta$. That as the rectangle contained by AB, BH is to the rectangle contained by $\mathrm{AH}, \mathrm{H} \Gamma$, so is the rectangle contained by $\Delta \mathrm{E}$, $\mathrm{E} \Theta$ to the rectangle contained by $\Delta \Theta, \Theta \mathrm{Z}$.

For since as AB is to BH , so is $\Delta \mathrm{E}$ to $\mathrm{E} \Theta,{ }^{1}$ convertendo, as BA is to $A H$, so is $E \Delta$ to $\Delta \Theta .{ }^{2}$ Hence also as the square of $B A$ is to the square of AH , so is the square of $\Delta \mathrm{E}$ to the square of $\Delta \Theta .^{3}$ But also as the square of $A B$ is to the rectangle contained by $A B, B H$, so is the square of ΔE to the rectangle contained by $\Delta \mathrm{E}, \mathrm{E} \Theta .{ }^{4}$ Therefore as the square of AH is to the rectangle contained by AB, BH, so is the square of $\Delta \Theta$ to the rectangle contained by $\Delta \mathrm{E}, \mathrm{E} \Theta .5$ But since it was stipulated that as $A B$ is to $\mathrm{B} \mathrm{\Gamma}$, so is $\Delta \mathrm{E}$ to $\mathrm{EZ},{ }^{6}$ by inversion ${ }^{7}$ and componendo, therefore, as ΓA is to $A B$, so is $\mathrm{Z} \Delta$ to $\Delta \mathrm{E} \cdot{ }^{8}$ But also as BA is to AH , so is $\mathrm{E} \Delta$ to $\Delta \Theta .{ }^{9}$ Ex aequali

(302) < $\epsilon^{\prime} .>$ ' $\bar{\epsilon} \sigma \tau \omega \mu \grave{\epsilon} \nu \quad \mu \epsilon ' i \xi \omega \nu \dot{\eta} \mathrm{AB} \tau \tilde{\eta} \varsigma \Gamma \Delta, \dot{\epsilon} \lambda a ́ a \sigma \sigma \omega \nu$ $\delta \grave{\epsilon} \dot{\eta} \mathrm{BE}$
 ö $\tau \iota \dot{\eta} \tau \tilde{\omega} \nu, \mathrm{AB}, \mathrm{BE} \dot{v} \pi \epsilon \rho \circ \times \grave{\eta}, \mu \epsilon i \zeta \omega \nu, \epsilon \sigma \tau i \nu \tau \tilde{\eta} s \tau \tilde{\omega} \nu \Gamma \Delta, \Delta \mathrm{Z}$ $\dot{v} \pi \epsilon \rho \circ \times \tilde{\eta} s . \quad \dot{\epsilon} \pi \epsilon \dot{i}$ үà $\rho \mu \epsilon i, \xi \omega \nu, \epsilon \sigma \tau i \nu<\dot{\eta} \mathrm{AB} \tau \tilde{\eta} \varsigma \Gamma \Delta, \kappa a i \dot{\eta} \tau \tilde{\omega} \nu \mathrm{AB}$,

 $\gamma \dot{a} \rho \dot{\epsilon} \sigma \tau, \iota \nu \dot{\eta} \mathrm{~EB} \tau \tilde{\eta} \underset{\sim}{s} \Delta \mathrm{Z}$. $\dot{\omega} \sigma \tau \epsilon \dot{\eta} \tau \tilde{\omega} \nu \mathrm{AB}, \mathrm{BE} \dot{\cup} \pi \epsilon \rho o x \grave{\eta} \pi o \lambda \lambda \tilde{\omega} \iota$ $\mu \epsilon i \zeta \omega \nu \epsilon \sigma \tau i \nu \tau \tilde{\eta} \varsigma \tau \tilde{\omega} \nu \Gamma \Delta, \Delta \mathrm{Z} \dot{v} \pi \epsilon \rho \circ \chi \tilde{\eta} \varsigma$.

 $\dot{v} \pi \dot{o} \mathrm{AB}, \Delta \mathrm{E}$.

 add $\kappa a i \tau \dot{a} \epsilon \phi \epsilon \xi \tilde{\eta} \varsigma \mathrm{Ha} \mathrm{\|} 4 \epsilon^{\boldsymbol{e}}$ add $\mathrm{Hu}(\mathrm{BS}) \| 7 \dot{\eta} \mathrm{AB}-\dot{\epsilon} \sigma \tau i \nu$ add $\mathrm{Hu} \dot{\eta} \mathrm{AB} \tau \tilde{\eta} \varsigma \Gamma \Delta, \mu \epsilon i \xi \omega \nu$ á $\rho a \dot{\eta} \tau \tilde{\omega} \nu \mathrm{AB}, \mathrm{BE} \dot{v} \pi \epsilon \rho o x \dot{\eta} \mathrm{Co} \| 12$ (303-307) passim his propositionibus K pro E posuit $\mathrm{Ha} \mid \varsigma^{\circ}$ add Hu (BS) $\mid \delta \dot{\epsilon}$ add $\mathrm{Ha} \| 16$ ($\tau \tilde{\eta} \varsigma) \Delta \mathrm{E}$ Co ZE A $\| 17 \Delta \mathrm{E}(\tau o \tilde{v}) \mathrm{Co} \Delta \mathrm{Z} \mathrm{A} \mid \tau o \tilde{v}$ - $\tau \epsilon \tau \rho a \pi \lambda a ́ \sigma \iota o ́ \nu \dot{\epsilon} \epsilon \sigma \tau \iota \nu$ add $\mathrm{Hu}(\mathrm{Co})\|19 \mathrm{AB} \mathrm{Co} \mathrm{A} \Gamma \mathrm{A}\| 20 \zeta^{\prime}$ add Hu (BS) \| 22 ABH Co AHB A| AHГ Co AГH A \| $23 \Delta \Theta \mathrm{Z}$ Co $\triangle \mathrm{EZ}$ $\mathrm{A}\|26 \Delta \Theta \mathrm{CoE} \Theta \mathrm{A}\| 28 \Delta \Theta \mathrm{Co} \Lambda \Theta \mathrm{A}\|29 \Delta \mathrm{E} \Theta \mathrm{Co} \Delta \mathrm{EZ} \mathrm{A}\| 30 \kappa a i$ $\sigma v \nu \theta^{\prime} \nu \tau \tau \iota \sigma v \nu \theta^{\prime} \bar{\nu} \tau \iota \kappa а$ i A transp На
therefore, as ΓA is to $A H$, so is $Z \Delta$ to $\Delta \Theta .1^{\circ}$ And so as ΓH is to HA, so is $\mathrm{Z} \Theta$ to $\Theta \Delta .{ }^{1} 1$ And as the rectangle contained by $(\Gamma \mathrm{H}, \mathrm{HA})$ is to the square of (AH), so is the rectangle contained by $(\mathrm{Z} \Theta, \Theta \Delta)$ to the square of $(\Theta \Delta) .12$ But also as is the square of AH to the rectangle contained by AB, BH, so is the square of $\Delta \Theta$ to the rectangle contained by $\Delta \mathrm{E}, \mathrm{E} \Theta .1^{3}$ Thus as the rectangle contained by AB, BH is to the rectangle contained by $\mathrm{AH}, \mathrm{H} \Gamma$, so is the rectangle contained by $\Delta \mathrm{E}, \mathrm{E} \Theta$ to the rectangle contained by $\Delta \Theta$, ©Z. ${ }^{14}$
(305) 8. (Prop. 228) Let the squares of $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}<$ taken together> be given, and the difference of the squares of $A B, B \Gamma$ be given. That each of $A B, B \Gamma$ is given. For let $B \Delta$ be made equal to $\Gamma B .1$ Then the squares of $\Gamma \mathrm{A}, \mathrm{A} \Delta$ (taken together) is given. ${ }^{2}$ But also twice the rectangle contained by $\Gamma А, A \Delta$ is given, ${ }^{5}$ since also the rectangle contained by $\Gamma А, A \Delta$ is given, ${ }^{4}$ for it is the difference of the squares of $A B, B \Gamma .{ }^{3}$ Hence also the square of $\Gamma A, A \Delta$ taken together is given. 6 And so $\Gamma \mathrm{A}, \mathrm{A} \Delta$ taken together are given. ${ }^{7}$ And half of this is BA; ${ }^{8}$ so that BA is given. ${ }^{9}$ Thus $\mathrm{B} \mathrm{\Gamma}$ too is given. ${ }^{10}$
(306) 9. (Prop. 229) Let $A B$ be <equal> to $B \Gamma$, and ΔE to $E Z$, and furthermore as $\Gamma \mathrm{B}$ is to BH , so let ZE be to EO . That as the rectangle contained by AH, HB is to the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{H}$, so is the rectangle contained by $\Delta \Theta, \Theta E$ to the rectangle contained by $E Z, Z \Theta$.

For since as ΓB is to $B A$, so is $Z E$ to $E \Delta,{ }^{1}$ but also as ΓB is to $B H$, so is ZE to $\mathrm{E} \Theta,{ }^{2}$ therefore also as the square of AH is to the rectangle contained by AH, HB, so will the square of $\Delta \Theta$ be to the rectangle contained by $\Delta \Theta, \Theta E .{ }^{3}$ But also as the square of AH is to the square of $\mathrm{B} \Gamma$, so is the square of $\Delta \Theta$ to the square of $E Z, 4$ while as the square of $B \Gamma$ is to the rectangle contained by $\mathrm{B} \mathrm{\Gamma}, \Gamma \mathrm{H}$, so is the square of EZ to the rectangle contained by EZ, ZO. 5 Therefore ex aequali as is the rectangle contained by AH, HB to the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{H}$, so is the rectangle contained by $\Delta \Theta, \Theta E$ to the rectangle contained by $\mathrm{EZ}, \mathrm{Z} \Theta .{ }^{6}$
(307) 10. (Prop. 230) Let AB be equal to $\mathrm{B} \Gamma$, and $\mathrm{B} \Delta$ less than $<B E$. That the rectangle contained by $\mathrm{A} \Delta, \Delta \mathrm{B}>$ has <to the rectangle contained by> $\mathrm{B} \Gamma, \Gamma \Delta$ a lesser ratio than has the rectangle contained by $\Gamma E, \mathrm{~EB}$ to the rectangle contained by BA, AE.

For since $A B$ equals $B \Gamma,{ }^{1}$ while $B \Delta$ is less than $B E,{ }^{2}$ therefore $\Gamma \Delta$ is greater than $A E .{ }^{3}$ Hence also ΓE is greater than $A \Delta .{ }^{4}$ Therefore the

 $\dot{u} \pi \dot{o} \Delta \Theta Z$.

 EZQ: $\dot{\epsilon} \pi \epsilon \mathfrak{i} \gamma \dot{a} \rho \dot{\epsilon} \sigma \tau \iota \nu \dot{\omega} \varsigma \dot{\eta}$ ГВ $\pi \rho o ̀ s ~ B A, ~ o u ̈ \tau \omega \varsigma ~ \dot{\eta}$ ZE $\pi \rho o ̀ s ~ E \Delta$,

 $\gamma \grave{a} \rho$ 'íon $\mu \dot{\epsilon} \nu \dot{\epsilon} \sigma \tau \iota \nu \dot{\eta} \mathrm{AB} \tau \tilde{\eta} \iota \mathrm{B} \mathrm{\Gamma}, \dot{\epsilon} \lambda \dot{\epsilon} \sigma \sigma \omega \nu \delta \grave{\epsilon} \dot{\eta} \mathrm{~B} \Delta \tau \tilde{\eta} \varsigma \mathrm{BE}, \dot{\eta} \Gamma \Delta$

 $\mathrm{A} \mid \Delta \Theta \mathrm{Z} \mathrm{Co} \Delta \mathrm{EZ} \mathrm{A} \| 8 \boldsymbol{\eta}^{\prime}$ add $\mathrm{Hu}(\mathrm{BS}) \mid \quad \sigma v \nu a \mu \phi \dot{o} \tau \epsilon \rho a$ add $\mathrm{Ha}(\mathrm{Co})$

 $\delta o \theta \dot{\epsilon} \nu \quad \dot{\epsilon} \sigma \tau \iota \nu$ post $\tau \in \tau \rho a \gamma \dot{\omega} \nu \omega \nu$ transp. Ha || 14 á $\pi \dot{o}$

 $17 \theta^{\prime} \mathrm{mg} \mathrm{A} \mid \quad i \sigma \eta$ add $\mathrm{Co}(\mathrm{k}) \mid \mathrm{B} \Gamma$] $\Gamma \Delta \mathrm{A}, \dot{\epsilon} \sigma \tau \iota \nu \tau \tilde{\eta} \mathrm{B} \Gamma \mathrm{mg} \mathrm{A}$ ('́ $\sigma \tau \iota \nu$: compendium) \| 18 ZE... E Θ Co $\Theta E \ldots$ EZ A $\| 19$ AHB ex AH Θ A\| $22 \dot{v} \pi \grave{o}(\Delta \Theta \mathrm{E}) \mathrm{Ha}(\mathrm{Co})$ á $\pi \grave{o} \mathrm{~A}\left\|27 \iota^{\circ} \mathrm{mg} \mathrm{A}\right\| 28 \mathrm{BE}-\pi \rho \grave{o} \mathrm{~s}$ iò ú $\pi \grave{o}$ add Co
rectangle contained by $A \Delta, \Delta B$ is less than the rectangle contained by ΓE, $\mathrm{EB} ;{ }^{5}$ while the rectangle contained by $\mathrm{B} \Gamma, \Gamma \Delta$ is greater than the rectangle contained by BA, AE. 6 Thus the rectangle contained by A $\Delta, \Delta B$ has to the rectangle contained by $B \Gamma, \Gamma \Delta$ a ratio less than has the rectangle contained by $\Gamma \mathrm{E}, \mathrm{EB}$ to the rectangle contained by BA, AE. ${ }^{7}$
(308) 11. (Prop. 231) But now let it be required to prove the converse of the foregoing (lemmas), namely with $A B$ equal to $B \Gamma$, and ΔE to EZ , and furthermore as the rectangle contained by AH, HB to the rectangle contained by $\mathrm{B} \Gamma, \Gamma \mathrm{H}$, so the rectangle contained by $\Delta \Theta, \Theta \mathrm{E}$ to the rectangle contained by $\mathrm{EZ}, \mathrm{Z} \mathrm{\Theta}$, to prove that as $\Gamma \mathrm{B}$ is to BH , so is ZE to $\mathrm{E} \Theta$.

Let the rectangle contained by $\Gamma \mathrm{H}, \mathrm{AK}$ be made equal to the rectangle contained by AH, HB, and the rectangle contained by $\mathrm{ZQ}, \Delta \Lambda$ equal to the rectangle contained by $\Delta \Theta, \Theta E .{ }^{1}$ Then as is the rectangle contained by AK , ΓH to the rectangle contained by $B \Gamma, \Gamma H$, that is $A K$ to $B \Gamma$, so is the rectangle contained by $\Delta \Lambda, Z \Theta$ to the rectangle contained by $E Z, Z \Theta,{ }^{2}$ that is $\Delta \Lambda$ to $\mathrm{EZ}. .^{3}$ But also as $\Gamma \mathrm{B}$ is to BA , so is ZE to $\mathrm{E} \Delta .{ }^{4}$ Therefore AB , $B \Gamma, \Gamma K$ are in similar positions to $\triangle E, E Z, Z \Lambda$, and in the same ratio, that is, as $K \Gamma$ is to ΓB, so is ΛZ to $\mathrm{ZE} .{ }^{5}$ But since the rectangle contained by AH, HB equals the rectangle contained by $\mathrm{AK}, \Gamma \mathrm{H},{ }^{6}$ let each be subtracted from the rectangle contained by AK, HB. ${ }^{7}$ Then the remaining rectangle contained by BH, HK equals the rectangle contained by $\mathrm{AK}, \mathrm{B} \Gamma .{ }^{8}$ Hence as is the rectangle contained by $\mathrm{AK}, \mathrm{B} \mathrm{\Gamma}$ to the square of BK , so is the rectangle contained by BH, HK to the square of BK. ${ }^{9}$ For the same reasons also as the rectangle contained by $\Delta \Lambda$, $E Z$ is to the square of $E \Lambda$, so is the rectangle contained by $\mathrm{E} \Theta, \Theta \Lambda$ to the square of $\mathrm{E} \Lambda .{ }^{10}$ And as the rectangle contained by $A K, B \Gamma$ is to the square of $B K$, so is the rectangle contained by $\Delta \Lambda$, $E Z$ to the square of $E \Lambda, 1^{1}$ because the similarly positioned segments are in ratio. Hence as the rectangle contained by BH , HK is to the square of BK , so is the rectangle contained by $\mathrm{E} \Theta, \Theta \Lambda$ to the square of $\Lambda \mathrm{E} .1^{2}$ And $\mathrm{BH}, \mathrm{E} \Theta$ are the same segments. Therefore as KB is to BH , so is $\Lambda \mathrm{E}$ to $\mathrm{E} \Theta .{ }^{13}$ And thus as HB is to $\mathrm{B} \mathrm{\Gamma}$, so is ΘE to $\mathrm{EZ} .{ }^{14}$

 $\dot{\epsilon} \sigma \tau i \nu \dot{\eta}$ OE $\pi \rho o ̄ \mathrm{~s} \mathrm{EZ}$.

[^54](309) 12. (Prop. 232) Let AB be <equal> to $\mathrm{B} \mathrm{\Gamma}$, and $\Delta \mathrm{E}$ to EZ , and furthermore let $\mathrm{B} \Gamma$ have to $\Gamma \mathrm{H}$ a greater ratio than has EZ to ZO . That in the first case AH has to $\mathrm{B} \Gamma$ a greater ratio than has $\Delta \theta$ to EZ , in the second a lesser (ratio).

For since $\mathrm{B} \Gamma$ has to $\Gamma \mathrm{H}$ a greater ratio than has $<\mathrm{EZ}$ to $\mathbf{Z \Theta , 1}$ in the first case ΓB has to BH a lesser ratio than has $>$ ZE to $E \Theta$, but in the second, a greater (ratio). ${ }^{2}$ And so also AB has to BH , in the first case, a lesser ratio than has ΔE to $E \Theta$, but in the second, a greater (ratio). ${ }^{3}$ Hence HA has to $A B$, in the first case, a greater ratio than $\Theta \Delta$ to ΔE, but in the second, a lesser (ratio). ${ }^{4}$ And as AB is to $\mathrm{B} \mathrm{\Gamma}$, so is $\Delta \mathrm{E}$ to $\mathrm{EZ} .{ }^{5}$ Ex aequali therefore, in the first case AH has to $\mathrm{B} \Gamma$ a greater ratio than $\Delta \Theta$ to EZ , but in the second, a lesser (ratio). ${ }^{6}$
(310) 13. (Prop. 233) *Again let AB be equal to $\mathrm{B} \Gamma$, and $\Delta \mathrm{E}$ to EZ , and furthermore let AH have to HB a lesser ratio than has $\Delta \Theta$ to $\Theta \mathrm{E}$. That also $\mathrm{B} \Gamma$ has to $\Gamma \mathrm{H}$ a greater ratio than has EZ to $\mathrm{Z} \Theta$.

For since convertend 0^{1} and separando ${ }^{2} \mathrm{HB}$ has to BA , that is to $\mathrm{B} \Gamma$, a greater ratio than has $\Theta \mathrm{E}$ to $\mathrm{E} \Delta,{ }^{3}$ that is to $\mathrm{EZ},{ }^{4}$ convertendo ${ }^{5}$ and separando, $\mathrm{B} \Gamma$ has to $\Gamma \mathrm{H}$ a greater ratio than EZ to $\mathrm{ZQ} .6^{*}$
(311) 14. (Prop. 234) (Let) AB (be) equal to $\mathrm{B} \mathrm{\Gamma}$, and $\Delta \mathrm{E}$ to EZ , and furthermore let AH have to HB a greater ratio than has $\Delta \Theta$ to $\Theta \mathrm{E}$. That BH has to $\mathrm{H} \Gamma$ a lesser ratio than has $\mathrm{E} \Theta$ to OZ .

For since separando AB , that is $\mathrm{B} \Gamma$, has to BH a greater ratio than $\Delta \mathrm{E}$, that is $\mathrm{EZ},{ }^{2}$ has to $\mathrm{E} \Theta,{ }^{1}$ convertendo ${ }^{3}$ and separando BH has to $\mathrm{H} \Gamma$ a lesser ratio than $\mathrm{E} \Theta$ to $\mathrm{OZ} .{ }^{4}$

 $\tau \dot{\eta} \nu \mathrm{EZ}, \dot{\epsilon} \pi \dot{i} \delta \grave{\epsilon} \tau \tilde{\eta} \varsigma \delta \epsilon v \tau \dot{\epsilon} \rho a \varsigma \dot{\epsilon} \hat{\lambda} a \sigma \sigma \omega$.
(310) $\iota \gamma^{\prime}$. ' $\operatorname{\epsilon \epsilon } \sigma \tau \omega \pi \dot{a} \lambda \iota \nu$ ' $i \sigma \eta \dot{\eta} \mu \grave{\epsilon} \nu \mathrm{AB} \tau \tilde{\eta} \iota \mathrm{B} \mathrm{\Gamma}, \dot{\eta} \delta \grave{\epsilon} \Delta \mathrm{E} \tau \tilde{\eta} \iota \mathrm{EZ}$,

 rì ZO .

$\| 1 \iota \beta^{\prime} \mathrm{mg} \mathrm{A} \mid$ ' $i \sigma \eta$ add $\left.\mathrm{Co} \| 3 a^{\prime}\right]$ EA A $\pi \rho \dot{\omega} \tau \eta \varsigma \mathrm{Co}(\mathrm{k}) \mid \mathrm{B} \mathrm{\Gamma}$ Co $\mathrm{H} \Gamma \mathrm{A} \| 5 \dot{\epsilon} \boldsymbol{\lambda} \dot{a} \sigma \sigma \omega \mathrm{Ge}(\mathrm{S}) \dot{\epsilon} \lambda a \sigma \sigma \omega \nu \mathrm{~A} \mid \dot{\eta} \mathrm{EZ}-\ddot{\eta} \pi \epsilon \rho$ add $\mathrm{Co} \| 8$ $\mu \epsilon i \xi \omega \mathrm{Ge}(\mathrm{S}) \mu \epsilon i \xi \omega \nu \mathrm{~A} \|, 10 \mu \epsilon i \xi \omega \mathrm{Ge}(\mathrm{S}) \mu \epsilon i \xi \omega \nu \mathrm{~A} \mid \mathrm{HA} \mathrm{Co} \mathrm{H} \Lambda$
 $\dot{\epsilon} \lambda a \sigma \sigma \omega \mathrm{Ge}$ (S) $\dot{\epsilon} \lambda a ́ \sigma \sigma \omega \nu \mathrm{~A}\|16 \mathrm{l} \gamma \mathrm{mg} \mathrm{A}\| 17$ '́ $\lambda \dot{a} \sigma \sigma \sigma o \nu a]$

 $\mu \in i$ 乡ova A| E Θ HaEB A || 29 каi add $\mathrm{Ha}(\mathrm{Co})$

(312) For the (Loci) on Surfaces

(Prop. 235) If there is (given) a straight line $A B$, and $\Gamma \Delta$ parallel to (a line given) in position, and the ratio of the rectangle contained by $A \Delta, \Delta B$ to the square of $\Delta \Gamma$ is (given), Γ touches a conic line. Then if $A B$ is deprived of (being given) in position, and A and B are deprived of being given, but are on straight lines (given) in position AE, EB, Γ elevated is on a surface (given) in position. But this was proved.
(313) (Prop. 235 bis) If straight line AB is (given) in position, and Γ given in the same plane, and $\Delta \Gamma$ is drawn across, and ΔE drawn parallel to (a line given) in position, and the ratio of $\Gamma \Delta$ to $\Delta \mathrm{E}$ (given), Δ touches a conic section (given) in position. Now it is required to prove which curve. It will be proved as follows, after this locus (7.314-317) has first been written.
(314) Given two (points) A, B, and $\Gamma \Delta$ at right angles, let the ratio of the square of $A \Delta$ to the squares of $\Gamma \Delta, \Delta B$ (together be given). I say that Γ touches a section of a cone, whether the ratio is equal to equal or greater to less or less to greater.
(315) (Prop. 236 a) For first let the ratio be equal to equal.

And since the square of $A \Delta$ equals the squares of $\Gamma \Delta, \Delta B, 1 \operatorname{let} \Delta E$ be made equal to $\mathrm{B} \Delta .^{2}$ Then the rectangle contained by BA, AE equals the square of $\Delta \Gamma \cdot{ }^{3}$ Let $A B$ be bisected by $Z .{ }^{4}$ Then Z is given. ${ }^{5}$ And $A E$ is twice $\mathrm{Z} \Delta .6$ Hence the rectangle contained by BA, AE is twice the rectangle contained by $\mathrm{AB}, \mathrm{Z} \Delta .{ }^{7}$ And twice AB is given. ${ }^{8}$ Therefore the rectangle contained by a given (line) and ΔZ equals the square of $\Delta \Gamma .{ }^{9}$ Thus Γ touches a parabola (given) in position and passing through Z. ${ }^{\circ}$
(Prop. 236 b) The synthesis of the locus will be made as follows. Let the given (points) be A, B, and let the ratio be equal to equal, and let $A B$ be bisected by Z. Let P be twice $A B$, and with $Z B$ being a straight line (given) in position terminated at Z, and with P given in magnitude, let parabola $H Z$

 $\delta \stackrel{\epsilon}{\epsilon} \dot{\epsilon} \delta \epsilon i \chi \theta \eta$.

 $\mathrm{BAE} \tau \dot{o} \delta i \varsigma \dot{\epsilon} \sigma \tau \iota \nu \dot{v} \pi \dot{o} \tau \tilde{\omega} \nu \mathrm{AB}, \mathrm{Z} \Delta$. каi $\bar{\epsilon} \sigma \tau \iota \nu \dot{\eta} \delta \iota \pi \lambda \tilde{\eta} \tau \tilde{\eta} \varsigma \mathrm{AB}$

 Z.

 add $\mathrm{Hu} \| 4 \tau \grave{a} \mathrm{~A}, \mathrm{~B}] \dot{\epsilon} \kappa a ́ \tau \epsilon \rho o \nu \tau \tilde{\omega} \nu \mathrm{~A}, \mathrm{~B}$ coni. Hu app \| 5

 $\pi a \rho a \beta o \lambda \grave{\eta} \dot{\epsilon} \rho \chi о \mu \epsilon \in \nu \quad \mathrm{~A}$
be drawn about axis ZB so that if a point such as Γ is taken on it, and perpendicular $\Gamma \Delta$ is drawn, the rectangle contained by $\mathbf{P}, \mathbf{Z} \Delta$ equals the square of $\Delta \Gamma$. And let BH be drawn at right angles. I say that part $\Gamma \mathrm{H}$ of the parabola <solves the locus>.

For let perpendicular $\Gamma \Delta$ be drawn, ${ }^{1}$ and let $\Delta \mathrm{E}$ be made equal to $B \Delta .{ }^{2}$ Then since $A B$ is twice $B Z,{ }^{3}$ and $E B$ (twice) $B \Delta,{ }^{4}$ therefore $A E$ too is twice $\mathrm{Z} \Delta .{ }^{5}$ Hence the rectangle contained by BA, AE equals twice the rectangle contained by $\mathrm{AB}, \mathrm{Z} \Delta,{ }^{6}$ that is the square of $\Delta \Gamma .{ }^{7}$ Let the square of $\mathrm{E} \Delta$ be added in common, which equals the square of $\Delta \mathrm{B} .{ }^{8}$ Therefore the sum, the square of $\mathrm{A} \Delta$, equals the squares of $\Gamma \Delta, \Delta \mathrm{B} .{ }^{9}$ Thus curve $\mathrm{Z} \Gamma \mathrm{H}$ solves the locus.
(316) (Prop. $237 a-b$) Again let the two given points be A, B, and (let) $\Delta \Gamma$ (be) at right angles, and let *the ratio of the square of $A \Delta$ to the squares of $\mathrm{B} \Delta, \Delta \Gamma^{*}$ be, in the first case, less to greater, in the second greater to less. I say that Γ touches a section of a cone, in the first case an ellipse, in the second a hyperbola.

For since *the ratio of the square of $\mathrm{A} \Delta$ to the squares of $\mathrm{B} \Delta, \Delta \Gamma^{*}$ (is given), ${ }^{1}$ let the (ratio) of the square of $B \Delta$ to the square of $\Delta \mathrm{E}$ be the same as it. 2 Now in the first case $B \Delta$ is less than ΔE, in the second $B \Delta$ is greater than $\Delta \mathrm{E} .{ }^{3}$ Then let $\Delta \mathrm{Z}$ be made equal to $\mathrm{E} \Delta .{ }^{4}$ Since the ratio of the square of $\mathrm{A} \Delta$ to the squares of $\Gamma \Delta, \Delta \mathrm{B}$ (is given), and the (ratio) of the square of $E \Delta$ to the square of ΔB is the same as it, therefore the remainder, the ratio of the rectangle contained by ZA, AE to the square of $\Delta \Gamma$ is given. ${ }^{5}$ But since the ratio of $E \Delta$ to $\Delta B,{ }^{6}$ and of $Z \Delta$ to $\Delta B,{ }^{7}$ and (so that) of ZB to $\mathrm{B} \Delta$ (is given), 8 let the (ratio) of AB to BH be the same as it. ${ }^{9}$ Hence the sum, the ratio of $A Z$ to $\Delta \mathrm{H}$, is given. 1^{10} Again, since the ratio of $E \Delta$ to ΔB is given, 11 therefore the ratio of $E B$ to $B \Delta$ too is given. ${ }^{12}$ Let the (ratio) of $\mathrm{A} \Theta$ to $\mathrm{B} \Theta$ be the same as it. $1{ }^{3}$ Then the ratio of AB to $\mathrm{B} \Theta$ too is given. ${ }^{14}$ Hence Θ is given. 1^{5} And the remainder, the ratio of AE to $\Theta \Delta$, is given. ${ }^{16}$ Therefore also the ratio of the rectangle contained by ZA ,

[^55]AE to the rectangle contained by $\Theta \Delta, \Delta H$ is given. ${ }^{17}$ But the ratio of the rectangle contained by ZA, AE to the square of $\Gamma \Delta$ is given. 1^{18} Therefore the ratio of the rectangle contained by $\mathrm{H} \Delta, \Delta \Theta$ to the square of $\Delta \Gamma$ too is given. 1^{9} And Θ, H are two given (points). 20 Hence in the first case Γ touches an ellipse, in the second a hyperbola. *Greater to less, less to greater.*
(317) (Prop. $237 c-d$) The synthesis of the locus will be made as follows. Let the two given points be A, B, the given ratio that of <the square> of PT to <the square> of TL, in the first case *less to greater*, in the second *greater to less*. And let TT be made equal to PT, and let AB be made to BH as $\mathrm{T} \mathrm{\Sigma}$ is to ΣT. And let $A \Theta$ be made to ΘB as is PT to $\mathrm{T} \Sigma$. And let there be drawn about axis $\Theta \mathrm{H}$, in the first case an ellipse, in the second a hyperbola, so that if a point such as Γ is taken on it, and perpendicular $\Gamma \Delta$ is drawn, the ratio of the rectangle contained by $\Theta \Delta, \Delta H$ to the square of $\Delta \Gamma$ is compounded out of that which $T \Sigma$ has to ΣT and that which $T \Sigma$ has to ΣP and that which the given ratio has, which is that of the square of PT to the square of TE. Let BK be drawn at right angles. I say that $\Theta \mathrm{K}$ solves the assignment.

For let perpendicular $\Gamma \Delta$ be drawn, ${ }^{1}$ and let ZB be made to $B \Delta$ as $A B$ is to $B H,{ }^{2}$ and $E \Delta$ to ΔB as $A \Theta$ is to $\Theta B \cdot{ }^{3}$ Hence the ratio of ΔH to $A Z$ is the same as that of $H B$ to $B A,{ }^{4}$ that is that of $T \Sigma$ to $\Sigma T .5$ Whereas the ratio of $\Theta \Delta$ to $A E$ is the same as that of $T \Sigma$ to $\Sigma P, 6$ for this was proved in the analysis. Hence the ratio of the rectangle contained by $\Theta \Delta, \Delta H$ to the rectangle contained by ZA, AE is compounded out of that which $\mathrm{T} \Sigma$ has to $\Sigma \mathrm{T}$ and $\mathrm{T} \Sigma$ to $\Sigma \mathrm{P} .{ }^{7}$ But since the rectangle contained by $\Theta \Delta, \Delta \mathrm{H}$ has to the square of $\Delta \Gamma$ the ratio compounded out of that which $T \Sigma$ has to ΣT and $\mathrm{T} \Sigma$ to $\Sigma \mathrm{P}$ and the given ratio, that of the square of PT to the square of $T \Sigma^{8}$ [less to greater], <while the (ratio)> of the rectangle contained by

 $\mu \in i ́ \zeta o \nu a$.

 $\kappa a i \quad \pi \epsilon \pi o \iota \dot{\eta} \sigma \theta \omega \dot{\omega} \varsigma \mu \dot{\epsilon} \nu \dot{\eta} \mathrm{AB} \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \mathrm{BH}$, oü $\tau \omega \varsigma \dot{\eta} \mathrm{ZB} \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu$

 ov viñtal $\epsilon \in \xi$ oj

$\Theta \Delta, \Delta H$ to the square of $\Delta \Gamma$ is compounded out of that which the rectangle contained by $\Theta \Delta, \Delta H$ has to the rectangle contained by ZA, AE and the rectangle contained by ZA, AE to the square of $\Delta \Gamma,{ }^{9}$ and the ratio of the rectangle contained by $\Theta \Delta, \Delta H$ to the rectangle contained by $Z A, A E$ is the same as that compounded out of that which $T \Sigma$ has to ΣT and $T \Sigma$ to $\Sigma P,{ }^{10}$ therefore the remaining ratio of the rectangle contained by EA, AZ to the square of $\Delta \Gamma$ is the same as that of the square of PT to the square of $T \Sigma, 1^{1}$ that is that of the square of $E \Delta$ to the square of $\Delta \mathrm{B} .1^{2}$ And all to all, therefore, as is the square of $A \Delta$ to the squares of $B \Delta, \Delta \Gamma$, so is the square of PT to the square of $\mathrm{T},,^{13}$ that is the given ratio. Thus part $\Theta \mathrm{K}$ of the section solves the locus.
(318) (Prop. 238 a) These things being so, we go back to the original (problem). Let line AB be (given) in position, and Γ given in the same plane, and let $\Delta \Gamma$ be drawn across, ΔE a perpendicular, and let the ratio of $\Gamma \Delta$ to $\Delta \mathrm{E}$ (be given). I say that Δ touches a section of a cone, and if the ratio is equal to equal a parabola, if less to greater an ellipse, if greater to less a hyperbola.

For first let the ratio be equal to equal, that is first let $\Gamma \Delta$ equal $\Delta \mathrm{E}$. To prove that Δ touches a parabola.

Let perpendicular Γ Z be drawn ${ }^{1}$ - hence it is (given) in position ${ }^{2}$ and ΔH parallel to $A B .{ }^{3}$ And since the square of $E \Delta$ equals the square of $\Delta \Gamma,{ }^{4}$ and $E \Delta$ equals $Z H, 5$ and the square of $\Delta \Gamma$ equals the squares of ΔH and $\mathrm{H},{ }^{6}$ therefore the square of ZH equals the squares of $\Delta \mathrm{H}, \mathrm{H} \Gamma .{ }^{7}$ And $\mathrm{Z} \Gamma$ is (given) in position, 8 and Z, Γ are two given (points). 9 Thus Δ touches a parabola; ${ }^{10}$ for this was proved above.
(Prop. 238 b) The synthesis will be made as follows. Let the (line given) in position be $A B$, the given (point) Γ, and let perpendicular ΓZ be drawn, and with ΓZ (given) in position and two given (points) Z, Γ, let parabola $\Delta \Theta$ be found so that if a point such as Δ is taken (on it), and perpendicular $\Delta \mathrm{H}$ is drawn, the square of ZH equals the squares of $\Delta \mathrm{H}, \mathrm{H} \Gamma$. I say that curve $\Delta \Theta$ <solves> the locus, that is, whatever (line) $\Gamma \Delta$ is

 tò $\nu \tau o ́ \pi o \nu$ ．

 $\mu \epsilon i \zeta o \nu a, ~ \dot{\epsilon} \lambda \lambda \epsilon i \psi \epsilon \omega s, ~ \epsilon ́ a ̀ \nu . ~ \delta \grave{\epsilon} \mu \epsilon i \zeta o \nu o s ~ \pi \rho o ́ s ~ \epsilon ́ \lambda a ́ \sigma \sigma o \nu a, ~$

 то⿱亠乂寸то үà $\pi \rho о \delta \epsilon \delta \epsilon \iota к \tau a \iota$ ．

drawn across, and perpendicular ΔE (drawn), $\Gamma \Delta$ equals ΔE.
Let perpendicular ΔH be drawn. ${ }^{1}$ Then because of the parabola the square of ZH equals the squares of $\Delta \mathrm{H}, \mathrm{H} \Gamma .{ }^{2}$ And $\mathrm{E} \Delta$ equals $\mathrm{ZH},{ }^{3}$ and the square of $\Delta \Gamma$ equals the squares of $\Delta \mathrm{H}, \mathrm{H} \Gamma .4$ Therefore the square of $\Delta \Gamma$ equals the square of $\Delta E .5$ Thus $\Gamma \Delta$ equals $\Delta E .{ }^{6}$ Thus curve $\Delta \Theta$ solves the locus.

The Seventh (Book) of the Collection of Pappus of Alexandria, which contains the arrangement and the content and the lemmas of the Domain of Analysis.

ПAППOT ANEEAN \triangle PE $\Omega \Sigma ~ \Sigma T N A \Gamma \Omega \Gamma H \Sigma ~ Z ' ~ O ~ П E P I E X E I ~ T H N ~ T A \Xi I N ~ K A I ~$ THN ПEPIOXHN KAI TA $\Lambda H M M A T A ~ T O T ~ A N A \Lambda T O M E N O T ~ T O I O T ~$
 (á $\pi \grave{o}$) Hu π a $\rho a ́ \lambda \lambda \eta \lambda$ os $\mathrm{A} \mid \Delta \mathrm{H}, \mathrm{H} \Gamma$ Со $\Delta \mathrm{H} \Gamma \mathrm{A} \| 4 \Delta \mathrm{H}, \mathrm{H} \Gamma$ Со $\Delta \mathrm{H} \Gamma$ А \| 6 т o $\mu \boldsymbol{\eta}$ del Hu

(319) Lemma of the (Domain) of Analysis

(Prop. 239) Let there be right triangle $\mathrm{AB} \mathrm{\Gamma}$, that has angle $\mathrm{AB} \mathrm{\Gamma}$ right, and let $A Z$ be to $Z B$, and $B H$ to $H \Gamma$, as $A B$ is to $B \Gamma$; and let $A E H$, $\Gamma E Z, B E \Delta$ be joined. That $B \Delta$ is a perpendicular upon $A \Gamma$.

Since as $A B$ is to $B \Gamma$, so is $A Z$ to $Z B$, and $B H$ to $H \Gamma, 1$ therefore as AZ is to BZ , so is BH to $\mathrm{H} \Gamma .{ }^{2}$ Componendo ${ }^{3}$ and alternando, as AB is to $\mathrm{B} \mathrm{\Gamma}$, so is ZB to $\mathrm{H} \Gamma .4$ But as AB is to $\mathrm{B} \Gamma$, so is BH to $\mathrm{H} \Gamma .{ }^{5}$ Therefore as ZB is to $\mathrm{H} \Gamma$, so is BH to $\mathrm{H} \mathrm{\Gamma} .{ }^{6}$ Hence ZB equals $\mathrm{BH} .{ }^{7}$ Therefore with ZH joined, angle BZO equals angle $\mathrm{BH} \Theta .^{8}$ And straight line ZO is greater than $\Theta H .{ }^{14}$ For if we draw HIK through H parallel to $\mathrm{A} \Gamma,{ }^{9}$ angle $\mathrm{B} \Theta \mathrm{H}$, which equals the opposite angles $\Theta \mathrm{HI}$ and $\Theta \mathrm{IH},{ }^{10}$ is greater than angle $\mathrm{H} \Theta \mathrm{I},{ }^{11}$ that is acute angle ZOB. ${ }^{12}$ Hence also the remaining angle HBO is less than angle ZBE. ${ }^{13}$ (Let) ZH (be) bisected by $\Lambda .{ }^{15}$ Then the circle drawn with center Λ, radius one of $\Lambda Z, \Lambda B, \Lambda H$, will pass through Δ too, and quadrilateral $\triangle \mathrm{ZBH}$ will be in a circle; ${ }^{16}$ for this (will be proved) next. Angle $B \Delta Z$ equals angle $B \Delta H .{ }^{17}$ And each is half a right angle ${ }^{19}$ (III 21) - for each of angles $\mathrm{BHZ}, \mathrm{BZH}$ is half a right angle ${ }^{18}$ - and (so) angle $Z \Delta H$ is right. 20 Then I say that angle $A \Delta B$ is right.

For if not, then it is either greater or less than a right angle. First let it be greater than a right angle, and let angle $B \Delta M$ be right, ${ }^{2} 1$ with $\mathrm{H} \Gamma$ and $M \Delta$ produced and intersecting at N. Then since right triangle $M B \Delta$ is similar to right triangle MBN, 22 and each of angles $B \Delta Z, Z \Delta M$ is half a right angle, ${ }^{23}$ therefore as $M Z$ is to $Z B$, so is $M \Delta$ to $\Delta B .{ }^{24}$ But as $M \Delta$ is to ΔB, so is $B \Delta$ to $\Delta N,{ }^{25}$ that is BH to $\mathrm{HN} ;{ }^{27}$ for angle $\mathrm{B} \Delta \mathrm{N}$ too is bisected by $\Delta H .{ }^{26}$ Hence as MZ is to ZB, so is BH to HN. ${ }^{28}$ Again, since as AZ is to ZB , so BH was stipulated to be to $\mathrm{H} \Gamma,{ }^{29}$ therefore MZ has to ZB a lesser ratio than has BH to $\mathrm{HN} ;^{30}$ which is impossible. For it was proved that as MZ is to ZB , so is BH to HN . Thus angle $\mathrm{B} \Delta \mathrm{A}$ is not greater than a right angle. Similarly we shall prove that angle $A \Delta B$ is not less than a right angle, by drawing $\Xi \Delta O$ through Δ and at right angles to ΔB. For again as $\Xi \mathrm{Z}$ is to ZB , so will BH be to HO . And AZ will be shown to have a much

(319) AHMMA TOT ANA^TOMENOT

|183v 1016

 $\kappa \dot{v} \kappa \lambda \omega \iota \tau \dot{o} \Delta \mathrm{ZBH} \tau \in \tau \rho a ́ \pi \lambda \epsilon v \rho o \nu$. $\tau 0 \tilde{v} \tau 0$ रà $\rho \dot{\epsilon} \xi \tilde{\eta} s$. 'íon $\bar{\epsilon} \sigma \tau i \nu \dot{\eta}$

 $\mu \epsilon i \zeta \omega \nu \quad o \rho \theta \tilde{\eta} s, \kappa a i \quad$ '́ $\sigma \tau \omega$ ó $\rho \theta \dot{\eta} \dot{\eta} \dot{v} \pi \dot{o} \quad \mathrm{~B} \Delta \mathrm{M}, \tau \tilde{\omega} \nu \quad \mathrm{H} \Gamma, \mathrm{M} \Delta$ $\dot{\epsilon} \kappa \beta \lambda \eta \theta \epsilon \iota \sigma \tilde{\omega} \nu \kappa a i \quad \sigma v \mu \pi \iota \pi \tau 0 v \sigma \tilde{\omega} \nu$ катà $\tau \grave{o} \mathrm{~N}$. $\dot{\epsilon} \pi \epsilon i$ oũ $\nu \tau \grave{o} \mathrm{MB} \Delta$ $\tau \rho \iota \gamma \omega \nu o \nu \quad o \rho \theta o \gamma \omega \nu \iota o \nu$ ö́цо८ov $\epsilon \sigma \tau \iota \nu, \tau \tilde{\omega} \iota$, MBN $\tau \rho \iota \gamma \omega \nu \omega \iota$

 $\pi \dot{a} \lambda \iota \nu \dot{\epsilon} \pi \epsilon \dot{i} \dot{\omega} \varsigma \dot{\eta} \mathrm{AZ} \pi \rho \dot{o} \varsigma \mathrm{ZB}, \dot{\eta} \mathrm{BH} \pi \rho \dot{o} \varsigma \mathrm{H} \Gamma \dot{v} \pi \dot{o} \kappa \epsilon \iota \tau a \iota, \dot{\eta} \mathrm{MZ}$ á ρa

5
|| 1 (319-321) om Co \| 9 䛲 $\tau \epsilon$ - finem capitis secl Hu \| 13 ZӨB] ZBӨ
A \| $16 \dot{\epsilon} \boldsymbol{\epsilon} \nu$ add $\mathrm{Ge}(\mathrm{S}) \| 19 \dot{\eta} \mu \boldsymbol{i} \sigma \epsilon \iota \dot{a} \mathrm{Ge}(\mathrm{BS}) \dot{\eta} \mu \iota$ in fine versus A\|
$24 \tau \rho \iota \gamma \dot{\omega} \nu \omega \iota \mathrm{Ge}(\mathrm{BS}) \tau \rho \iota \gamma \dot{\omega} \nu \omega \nu \mathrm{A}\|27 \mathrm{~B} \Delta \mathrm{Hu} \mathrm{M} \Delta \mathrm{A}\| 28 \Delta \mathrm{H} \mathrm{Ge}$
(S) BH A || $34 \tau \grave{\eta} \nu(\Xi \Delta \mathrm{O}) \mathrm{Ge}(\mathrm{S}) \tau \tilde{\omega} \nu \mathrm{A} \mid \Xi \Delta \mathrm{O} \mathrm{Hu} \Delta \Xi \mathrm{O}$ A || 35 ZB

Hu ZӨ A $\mid \delta \epsilon \iota \times \theta \dot{\eta} \sigma \epsilon \tau a \iota$ add Hu $\dot{\eta}$ addidi \mid (A)Z in ras. A| ZB in
ras. A
lesser ratio to ZB than BH to $\mathrm{H} \Gamma$; which is impossible. For it was stipulated that as AZ is to ZB , so is BH to $\mathrm{H} \mathrm{\Gamma}$.
(320) (Prop. 240) As AB is to $\mathrm{B} \mathrm{\Gamma}$, so let AZ be to ZB , and BH to $\mathrm{H} \Gamma$. That ZB equals BH.

For since as $A Z$ is to $Z B$, so is $B H$ to $H \Gamma,{ }^{1}$ componendo ${ }^{2}$ and alternando, as AB is to $\mathrm{B} \Gamma$, that is as BH is to $\mathrm{H} \Gamma,{ }^{4}$ so is ZB to $\mathrm{H} \Gamma \cdot{ }^{3}$ Thus ZB equals BH.
(321) (Prop. 253) (Let there be) right triangle $\mathrm{AB} \mathrm{\Gamma}$, and (angle) B right, and let $A Z$ be to ZB and BH to $\mathrm{H} \Gamma$ as AB is to $\mathrm{B} \mathrm{\Gamma}$. And let $\Gamma E Z$, $\mathrm{AEH}, \mathrm{BE} \Delta$ be joined. That $\mathrm{B} \Delta$ is a perpendicular upon $\mathrm{A} \Gamma$.

Let it be so. 1 Then triangles $A B \Delta, B \Delta \Gamma$ are similar to the whole (triangle) $A B \Gamma$ and to each other. ${ }^{2}$ Hence as $A B$ is to $B \Gamma$, that is as $A Z$ is to $\mathrm{ZB},{ }^{4}$ so is $\mathrm{A} \Delta$ to $\Delta \mathrm{B} .{ }^{3}$ Thus angle $\mathrm{A} \Delta \mathrm{B}$ is bisected by $\mathrm{Z} \mathrm{\Delta} .5$ Therefore angle $\mathrm{Z} \Delta \mathrm{B}$ is half a right angle. ${ }^{6}$ For the same reasons also angle $B \Delta \Gamma$ is bisected by $\Delta H .{ }^{7}$ Thus angle $\mathrm{B} \Delta \mathrm{H}$ is half a right angle. ${ }^{8}$ Hence angle $\mathrm{Z} \Delta \mathrm{H}$ is right. ${ }^{9}$ But also angle ZBH is right. ${ }^{10}$ Therefore quadrilateral $\mathrm{BZ} \Delta \mathrm{H}$ is in a circle. ${ }^{11}$ And angle $\mathrm{Z} \Delta \mathrm{B}$ equals angle $\mathrm{B} \Delta \mathrm{H} .{ }^{12}$ Thus also ZB equals BH. 1^{3} But it is (equal), because of the (lemma) proved above.

(320) \mid 'є́ $\sigma \tau \omega \dot{\omega} \varsigma \dot{\eta} \mathrm{AB} \pi \rho \dot{\rho} \varsigma \mathrm{B} \mathrm{\Gamma}, \dot{\eta} \mathrm{AZ} \pi \rho \grave{o} \varsigma \mathrm{ZB}, \kappa a \dot{\imath} \dot{\eta} \mathrm{BH} \pi \rho \dot{o} \varsigma \mathrm{H} \Gamma$. |184 ӧт $\iota \quad \mathfrak{i} \sigma \eta \dot{\epsilon} \sigma \tau i \nu \dot{\eta} \mathrm{ZB} \tau \tilde{\eta} \iota \mathrm{BH} . \dot{\epsilon} \pi \epsilon i \dot{\epsilon} \sigma \tau \iota \nu \dot{\omega} \varsigma \dot{\eta} \mathrm{AZ} \pi \rho \dot{o} \varsigma \mathrm{ZB}, \dot{\eta} \mathrm{BH}$

 ápa $\tau \grave{o} \mathrm{BZ} \Delta \mathrm{H} \tau \epsilon \tau \rho a ́ \pi \lambda \epsilon \cup \rho o \nu . \kappa a i ́ \epsilon \sigma \tau \iota \nu \dot{\eta} \dot{v} \pi \grave{o} \mathrm{Z} \Delta \mathrm{B} \tau \tilde{\eta} \iota \dot{v} \pi \grave{o} \mathrm{~B} \Delta \mathrm{H}$

Sources in the History of Mathematics and Physical Sciences

Vol. 1: G.J. Toomer (Ed.), Diocles on Burning Mirrors: The Arabic Translation of the Lost Greek Original, Edited, with English Translation and Commentary by G.J. Toomer
Vol. 2: A. Hermann, K.V. Meyenn, V.F. Weisskopf (Eds.), Wolfgang Pauli: Scientific Correspondence I: 1919-1929
Vol. 3: J. Sesiano, Books IV to VII of Diophantus' Arithmetica: In the Arabic Translation of Qustã ibn Lũqã
Vol. 4: P.J. Federisco, Descartes on Polyhedra: A Study of the De Solidorum Elementis
Vol. 5: O. Neugebauer, Astronomical Cuneiform Texts
Vol. 6: K. von Meyenn, A. Hermann, V.F. Weisskopf (Eds.), Wolfgang Pauli: Scientific Correspondence II: 1930-1939
Vol. 7: J.P. Hogendijk, Ibn Al-Haytham's Completion of the Conics
Vol. 8: A. Jones, Pappus of Alexandria Book 7 of the Collection

Studies in the History of Mathematics and Physical Sciences

| Vol. 1: | O. Neugebauer, A History of
 Ancient Mathematical Astronomy |
| :--- | :--- | :--- |
| Vol. 2: | H. Goldstine, A History of
 Numerical Analysis from the 16th
 through the 19th Century |
| Vol. 3: | C.C. Heyde/E. Seneta, I.J.
 Bienaymé: Statistical Theory
 Anticipated |
| Vol. 4: | C. Truesdell, The Tragicomical
 History of Thermodynamics,
 1822-1854 |
| Vol. 5: | H.H. Goldstein, A History of the
 Calculus of Variations from the
 17th through the 19th Century |

Vol. 6: J. Cannon/S. Dostrovsky, The Evolution of Dynamics: Vibration Theory from 1687 to 1742

Vol. 7: J. Lützen, The Prehistory of the Theory of Distributions

Vol. 8: G.H. Moore, Zermelo's Axium of Choice

Vol. 9: B. Chandler/W. Magnus, The History of Combinatorial Group Theory

Vol. 10: N.M. Swerdlow/O. Neugebauer, Mathematical Astronomy in Copernicus's De Revolutionibus

Vol. 11: B.R. Goldstein, The Astronomy of Levi ben Gerson (1288-1344)

[^0]: 12 Jackson [1972], [1980]. An edition by Jackson is forthcoming.

[^1]: 57 See below, page 36.

[^2]: 77 See RGK Part 1 A, pp. 80-81. On Zacharias see Geanakoplos [1962] pp. 201-222; a little more information can be assembled from the literature listed in $R G K$.

[^3]: 116 Letter XXIV, 49. Heiberg suggests that the Athenaeus was the present Vat. gr. 1164 (described by Wescher, Poliorcétique, pp. xxivxxvi).

 117 Clagett, AIMA III part 3, pp. 405-406.
 118 Mancini [1909].
 119 Hultsch, PAC III pp. 1169-72.

[^4]: 152 Schartau-Smith [1974] pp. 335-36.
 153 BDM vol. 3 pp. 155-56.
 154 CMRM supp. p. 20; Graux-Martin [1892] pp. 223-24. The folio numbers listed in the two catalogues differ; but the identity of the dates and contents, together with known disturbances in the Saragossa collection, arouses suspicion.

[^5]: 156 See Rose, pp. 209-213.

[^6]: 158 Hultsch, PAC vol. 1 pp. xv-xxii. Later excerpts, such as Heiberg's in his editions of Apollonius and Euclid, are based on Hultsch's text.

[^7]: 160 Hultsch, PAC.

[^8]: 169 See pages 21, 24.

[^9]:

 $\mathrm{Hu} \| 31 \bar{i}$ add Greg| $\tau \rho \iota \gamma \dot{\omega} \nu \omega \nu$ Ha $\tau \rho \iota \gamma \dot{\omega} \nu 00 \mathrm{~A}$

[^10]:

[^11]:

 $\tau \in \tau \rho a ́ \gamma \omega \nu O \nu-\mu \iota a \tilde{\rho}$ add Simson ${ }_{1}$

[^12]:
 $\delta \iota a ́ \phi o \rho o \iota ~ H u ~ \delta \iota a ́ \phi o \rho a \iota ~ H a ~ \delta \iota a \phi o \rho a i ~ A ~ 5 ~ \sigma \eta \mu \epsilon є i \omega \nu ~-~$ $\delta 0 \theta \epsilon \nu \tau \omega \nu$ om A1 add mg A2 alia manu 6 $\sigma \eta \mu \epsilon i o v$ кai

 $\kappa а i \quad \tau a \tilde{v} \tau a \mathrm{Ha\mid} \delta \iota о \rho i \xi \epsilon \sigma \theta a \iota$ На | $12 \theta \epsilon \omega \rho \bar{\eta} \mu a \tau a \mathrm{Ha} \mid 14$
 $20 \tau 0 \tilde{0}$. $\mathrm{Ha} \tau \boldsymbol{\eta} \boldsymbol{\nu}$ A \| 21 є́ка́atov] є́кáotote Hu
 Heiberg $_{1} \| 25 \mu \epsilon \sigma o \nu \mathrm{Hu} \mu \epsilon \sigma \eta \nu \mathrm{A} \mid \dot{\omega} \sigma \tau \epsilon-\pi \rho o \beta \lambda \eta \mu a ́ \tau \omega \nu \mathrm{secl}$

[^13]:

 $\tau \rho i a$ Breton| \quad g $\omega \nu i a \iota s \dot{v} \pi a \rho \chi o ́ \nu \tau \omega \nu$ Hu $\gamma \omega \nu i a \nu \dot{v} \pi a \rho x o \nu A$ $\| 23 \pi \lambda \eta \theta \tilde{\omega} \nu] \pi \lambda \dot{\eta} \theta \epsilon \iota$ Heiberg ${ }_{1} \mid \pi \lambda \eta \theta \tilde{\omega} \nu-\mu \epsilon \not \subset a ́ \lambda \omega \nu$ secl Hu\|

 $\mu \grave{\epsilon} \nu$ add $\gamma \dot{a} \rho$ Heiberg $_{1} \|, 27 \delta \iota a \phi ́ \epsilon \rho o v \sigma \iota \nu$ Ha $\delta \iota a \phi o \rho o \tilde{v} \sigma \iota \nu$ A
 $\delta \iota a \iota \rho \epsilon \tilde{\iota} \sigma \theta a \iota \mathrm{Hu} \mid \tau \tilde{\omega} \iota \tau a \tilde{v} \tau a \gamma \epsilon \bar{\epsilon} \nu \eta$ om Ha

[^14]:

 $\| 6 \delta \epsilon \delta o \mu \epsilon \bar{\nu} \omega \iota \quad \sigma \eta \mu \epsilon i \omega \iota$ Ha $\delta \epsilon \delta o \mu \epsilon \nu \omega \nu \quad \sigma \eta \mu \epsilon i \omega \nu$ A
 Breton || 15 ö́ $\iota-\delta o \theta \epsilon \nu \tau 0 \varsigma$ bis A om Co|
 A \| 23 خ̈ $\delta \epsilon \mu \epsilon \theta$ ' $\bar{\eta} \varsigma] \mu \epsilon \theta$ ' $\bar{\eta} \varsigma$ Hu $\dot{\eta} \mu \epsilon \theta$ ' $\bar{\eta} \varsigma$ Heiberg $_{1} \| 24$ ' $\epsilon \omega \varsigma$ Ha $\dot{\omega} \varsigma \mathrm{A} \| 25$ post öt $\tau \tilde{\omega} \iota \dot{v} \pi \grave{o}$ add $\tau 0 \tilde{v} \mathrm{Ha\mid} \delta_{0} \boldsymbol{\theta} \dot{\epsilon} \nu \tau 0 \varsigma \ldots$
 $\delta o \theta \epsilon \operatorname{ltos~каi~\tau \tilde {\eta }\sigma \delta \epsilon ~del~Co~}$

[^15]:

 $\dot{\epsilon} \pi^{\prime} \mathrm{Ha} a \dot{\pi} \boldsymbol{\prime}^{\prime} \mathrm{A} \| 27$ 'íonv Ha'íoov A

[^16]:

 secl $\mathrm{Hu} \|{ }^{11}$ oqueiou Ha oqueion A 15 rávins] toúvou

 $\delta] \pi \epsilon \nu \tau \epsilon$ Horsley || $30 \tau \dot{o}$ add Ha

[^17]: || $1 a^{\prime}$ add $\mathrm{Ha}|\mid 2 \dot{o}(\Gamma)] \overline{\mathrm{E}}$ vel potius $\bar{\Theta} \mathrm{A}^{1}$ rasendo in O mutatum A^{2} post \dot{o} add $\tau \tilde{\eta} \varsigma \mathrm{Ha} \mathrm{\|} 4$ 白кл८va Ha $\epsilon \kappa \lambda \epsilon \iota \nu a \mathrm{~A} \| 5 \mathrm{AE} \mathrm{AH} \mathrm{Ha} \mid$ 'íonv Ha'ion A\| $11 \beta^{\prime} \mathrm{mgA} \| 13$ ' $\bar{\epsilon} \kappa \lambda \iota \nu a \mathrm{Ha} \epsilon \kappa \lambda \epsilon \iota \nu a \mathrm{~A}$! $\left.\Gamma \Theta\right]$
 Ha || $21 \mathrm{ZE} \mathrm{Co} \mathrm{(k)} \mathrm{ZI} \mathrm{A} \mathrm{\|} 25$ ante EZ add $\tau \grave{o} \mathrm{Hu}(\mathrm{S}) \| 27$ ante каi
 δ° add Ha

[^18]: $1 \boldsymbol{\gamma}^{\circ}$ add $\left.\mathrm{Ha} \mid \dot{\eta}\right] \tilde{\eta} \iota \mathrm{A} \| 5$ post $\mathrm{A} \Gamma \mathrm{B}$ add $\tau 0 \tilde{v} \dot{v} \pi \grave{o} \tau \tilde{\omega} \nu \mathrm{~A} \Delta \mathrm{~B} \mathrm{Hu}$
 $\mu \in i ́ \zeta o \nu$ Ha $\mu \epsilon$ ísova A || 9 ن́ $\pi \bar{o} \tau \tilde{\omega} \nu \mathrm{~A} \Delta \mathrm{~B} \tau 0 \tilde{v}$ bis A corr Co|| 11
 $\iota \delta^{\prime}$ add Hu (BS) \| 17 post $\gamma \dot{\epsilon} \nu 0 \iota \tau 0 \tau \grave{o}$ add $\Delta \mathrm{E} \tau 0 \tilde{v} \mathrm{~B}$, ó $\tau \iota$

[^19]:
 bis A corr Ha| $\tau 0 \tilde{v} \beta^{\prime} \tau \dot{\sigma} \pi$ ои каi \dot{o} катà $\tau \dot{\eta} \nu \beta^{\circ}$ add $\mathrm{Ha} \| 15 \xi$
 $\delta \epsilon \dot{v} \tau \epsilon \rho \circ \nu$ Ha $\delta \epsilon v \tau \epsilon \rho o u \mathrm{~A} \mid \tau 0 \bar{v}$ om Ha\| $19 \tau 0 \tilde{v}$ secl Hu app \|

 óvтa A

[^20]: $\pi \epsilon \rho \iota \gamma \rho a ́ \psi \omega \mu \epsilon \nu \mathrm{Ge}$ (recc?) \| 8 EA Co ӨEA A \| 9 тáúó $\nu \mathrm{Hu} \tau \dot{o}$

 $\epsilon \zeta \eta \tau \epsilon \tau \tau 0 \mu \epsilon \nu \epsilon i \mathrm{~A}^{\prime} \epsilon \eta \eta \tau 0 \tilde{v} \mu \epsilon \nu \epsilon i \mathrm{Ge}(\mathrm{S}) \| 18 \zeta^{\prime}$ add $\mathrm{Hu}(\mathrm{BS})$

 Г $\Delta \mathrm{E}]$ BE Δ Co \| 33 ГА Со Г Δ A

[^21]:

 EГA del $\mathrm{Hu} \| 18$ cs ${ }^{\prime}$ add $\mathrm{Hu}(\mathrm{BS}) \|{ }^{23} \mathrm{E} \Delta \mathrm{CoEBA} \mathrm{\|} 24 \mathrm{BA} \pi \rho$ òs

 $\mathrm{AB} \pi \rho o \check{\varsigma} \tau \dot{\eta} \nu \mathrm{~B} \Delta \mathrm{Hu}(\mathrm{V}) \| 31 \tau \dot{\tau} \dot{u} \pi \dot{o}$ add $\mathrm{Ge}(\mathrm{V}) \mid \dot{\nu} \pi \epsilon \rho o x \tilde{\eta} \varsigma$ add Ge

[^22]: $\| 1 \iota \zeta^{\circ}$ add $\mathrm{Hu}(\mathrm{BS}) \mid(a \dot{v}) \tau$ ò $\delta i a ̀$ add $\mathrm{Co} \| 7$ ö́s $\mathrm{Ge}(\mathrm{S}) \dot{\text { ón }} \mathrm{A} \| 9$ ös] o A1 σ add supr A^{2} alia manu $\| 10 \iota \eta$ add $\mathrm{Hu}(\mathrm{BS}) \| 12 \Gamma \mathrm{CZ}$
 $A Z \Gamma A^{1}$ ut uidetur, Co $\Delta Z \Gamma A^{2}$ ut uidetur \| 23 i θ° add Hu (BS) |

 $\Delta \mathrm{A}]$ ВГ... В Δ А ГЕ... А Δ Со

[^23]:
 'íoovelvac add Hu(Co)\| 28 ГВЕ Со ГВ А

[^24]: $1 \epsilon^{\prime}$ add $\mathrm{Hu}(\mathrm{BS}) \| 3 \mathrm{~A} \Delta \Gamma \tau \tilde{\omega} \iota \dot{\nu} \pi \grave{o} \tau \tilde{\omega} \nu$ add $\mathrm{Co} \| 4$

 14 AZГ Co AZE A \|| $15 \tau \tilde{\omega} \iota$ add Ge (S) \| $16 \mathrm{~s}^{\circ} \mathrm{Hu}$ (BS) | $\delta \epsilon v \tau \epsilon \rho o u$ Simson $\left._{1} \tau \rho i \tau o v A \| 17 \mu \epsilon \tau a \xi \dot{v} \tau \tilde{\omega} \nu \sigma \eta \mu \epsilon i \omega \nu\right] \mu \epsilon \tau a$
 $\|20 \Delta \mathrm{Z} \mathrm{CoBZA}\| 25 \dot{v} \pi \dot{o} \mathrm{AE}, \Gamma \mathrm{FZ} \mu \in \tau \grave{a} \tau 0 \tilde{v}$ bis A corr Co\| 26 ápa secl Hu || 27 AZГ Co AГZ A

[^25]:
 $\dot{\epsilon} \sigma \tau \iota \nu \mathrm{A}$ ante quae $\tau \dot{o} \dot{v} \pi \dot{o} \mathrm{AE}, \mathrm{BZ}$ add $\mathrm{Co} \| 10 \mathrm{BZE}$ Co $\mathrm{BZ} \Gamma \mathrm{A} \mid$ $\mathrm{AZ}, \mathrm{B} \Gamma \mathrm{Co} \mathrm{A} \Delta \mathrm{B} \mathrm{A}^{1}, \Delta$ in Z mut. $\mathrm{A}^{2} \| \mathrm{I}^{2} \mathrm{c}^{\circ}$ add $\mathrm{Hu}(\mathrm{BS}) \| 17 \mathrm{AZ}$

 $\mathrm{A} \mid \dot{\omega} \sigma \tau \epsilon-\mathrm{ZA}, \mathrm{B} \Gamma$ bis (om. каĭ) A del Co \| 22 post à $\lambda \lambda \grave{a}$ add $\tilde{\omega} \iota$ Co \| 24 む̃ı del Co| ГZA Co ГВА A $\| 25$ ГZA Сo ГZ à π ò A

[^26]:
 $\pi \rho o \beta \lambda \dot{\eta} \mu a \tau$ os Hu app || $4 \mathrm{BE} \pi \rho \grave{o} \varsigma \tau \grave{o}$ á $\pi \dot{o}$ bis A corr $\mathrm{Co} \mid \dot{o}$ secl $\mathrm{Hu} \| 14$ post $\mathrm{Z} \Theta$ asteriscuv in $\mathrm{A} \| 16 \tau \dot{o}$ add $\mathrm{Hu}\left(\mathrm{V}^{2}\right) \| 22 \Lambda \mathrm{Z}$ Co AZ

[^27]: || 1 НГ, ГВ $\mathrm{Hu}\left(\right.$ Simson $\left._{1}\right) \mathrm{N} \Gamma \dot{\eta} \mathrm{A} \mid \mathrm{AB}, \mathrm{B} \Gamma$] ЕГВ Co | HN , NB Simson $_{1} \mathrm{NH}, \mathrm{HB}$ A \| $3 \Delta \mathrm{~B} \Gamma$ Simson $_{1} \mathrm{AB} \mathrm{\Gamma} \mathrm{~A} \mid$ BN Simson ${ }_{2}$ BH A ${ }^{2}$ $\mathrm{B} \Gamma \mathrm{Co} \Delta \Gamma \mathrm{A} \| 5$ ód η - $\mathrm{A} \Delta, \mathrm{B} \Gamma$ add $\mathrm{Hu} \mid \kappa a i-\mathrm{A} \Gamma, \mathrm{B} \Delta$ del Co | 6 $\mathrm{A} \Gamma, \mathrm{B} \Delta \mathrm{Co} \mathrm{AB} \mathrm{\Gamma} \mathrm{AB}_{\mathrm{A}} \| 7 \mathrm{AE}$ Co KE A| AEB Co KEB A\| $10 \mathrm{ZH} \pi \rho o s$ τ ò á $\pi \grave{o}$ add Co \| 12 roviom A^{1} add supr $\mathrm{A}^{2} \mid \dot{o}$ secl $\mathrm{Hu} \| 13 \mathrm{ZH}$ Hu EZH A ZEH Co | АГ, B Δ Co АВ, Г $\Delta \mathrm{A} \| 14$ каi $\tau \tilde{\eta} \varsigma-\mathrm{A} \Delta, \mathrm{B} \Gamma$ add $\mathrm{Co} \mid \epsilon \epsilon \sigma \tau i \nu$ del $\mathrm{Hu} \| 16 \mathrm{~A} \Delta, \Gamma \mathrm{~B}] \mathrm{AB}, \Gamma \Delta \mathrm{A} A \Delta, \mathrm{~B} \Gamma$ Co $\| 17$ Г Δ Co K Δ A

[^28]: $\mathrm{Hu} \tau \dot{o} \tau \epsilon \mathrm{~A} \mid \dot{\eta}$ add $\mathrm{Hu}\left|\mathrm{AB}, \Gamma \Delta \mathrm{Co}_{0} \mathrm{AB} \mathrm{\Gamma} \mathrm{~A}\right| \mid 10 \mathrm{~A} \Gamma, \mathrm{~B} \Delta \mathrm{Co} \mathrm{AB}, \Gamma \Delta$ $\mathrm{A} \|, 11, \pi \rho o \beta \lambda \dot{\eta} \mu a \tau a \mathrm{Ge}$ (recc?) $\pi \rho o ́ \beta \lambda \eta \mu a \tau 0 \mathrm{~A} \| 13 \dot{\epsilon} \lambda \hat{a} \times \iota \sigma \tau 0 \varsigma$
 18 ($\tau \rho \iota) a$ in ras. $\mathrm{A} \| 21 \boldsymbol{\tau}_{\grave{o}} \boldsymbol{\gamma}^{-} \mathrm{Hu} \tau \grave{o} \nu \mathrm{~d}$

[^29]: a $\pi \grave{o}$ bis A corr Co\| $7 \dot{v} \pi \grave{o}$ add Ge| áa ρa ex $\delta \rho a \mathrm{~A}^{2} \| 8 \tau o \tilde{v} \dot{v} \pi \dot{o}$ $\Gamma \mathrm{C} \Delta$ Co τ ò ú π ó AE $\Delta \mathrm{A} \| 12$ ГE Hu $\Delta \mathrm{E}$ A| $\triangle \mathrm{E}$ Hu AB A ГE Co $\| 13$ ГE CoAE A\| 14 ГE CoAE A\| $15 \epsilon^{\prime}$ add Hu (BS) \| $17 \Gamma \mathrm{FZ} \mathrm{Ge}$ (S)
 $\dot{\eta}] \dot{\eta} \mathrm{C} \dot{\eta} \mathrm{Ge}$

[^30]:
 BEZE A \| $12 \mu \epsilon \gamma i \sigma \tau \eta-\Delta H$ add Co \| 14 aĩ om Ge (S) \| 15 $\mu \epsilon i \xi \omega \nu \mathrm{Ge}(\mathrm{BS}) \mu \epsilon \tilde{\iota} \zeta 0 \nu \mathrm{~A} \| 16 \epsilon \sigma \tau i \nu] o u \quad \sigma a$ Co $\| 17$ á ρa addidi ex $\mathrm{S} \mid \delta i \grave{a} \mathrm{Ge}(\mathrm{Co})$ à $\mathrm{m}_{\mathrm{o}} \mathrm{A} \| 18 \dot{\eta} \mathrm{~B} \mathrm{\Gamma}-\epsilon \dot{v} \theta \epsilon \iota \tilde{\omega} \nu$ del $\mathrm{Co} \| 23 \Delta \Lambda$
 $\mathrm{Hu}(\mathrm{BS}) \| 29 \dot{\epsilon} \kappa \in \hat{\omega} \mu \epsilon \theta a] \dot{\epsilon} \kappa \theta \tilde{\omega} \mu a \iota \mathrm{Hu} \mathrm{app} \| 31 \mu \epsilon \gamma \boldsymbol{\iota} \sigma \tau \eta$ Ge (V)

[^31]: $\left.5 \Lambda \mathrm{Co} \mathrm{H} \Lambda \mathrm{A}\|6 \Delta \Gamma(\pi \rho \grave{\varrho}) \mathrm{Ge}(\mathrm{CSV}) \mathrm{A} \Gamma \mathrm{A}\|{ }^{2} \mathrm{\Gamma H}, \mathrm{H} \Delta\right] \Gamma \mathrm{\Gamma H} \Delta \mathrm{~A} \Delta \Gamma$,

 ГME Ge (Co) H ГME A \| 27Λ CoA A \| $28 \mu \epsilon i \xi 0 \nu$ Ge (S) $\mu \in i\} \omega \nu \mathrm{A}$

[^32]: $\| 1 \Lambda \ldots$ KO Co KO... Λ A $\| 2 \Delta \mathrm{O}$ Co $\Delta \Theta \mathrm{A} \| 3 \mathrm{OA}, \mathrm{A} \Delta \mathrm{Co} \mathrm{OA} \Delta \mathrm{A} \mid$

 ex $\Theta \Gamma \| 9 \mu \epsilon i \xi \omega \nu$ Ge (BS) $\mu \epsilon \tilde{i} \zeta o \nu \mathrm{~A}\|13 \Gamma \mathrm{CoEA}\| 15 \tau 0 \tilde{v} \mathrm{Co}$
 Co | ӨTK Co OTK A| post ӨTK add кai Hu \| $19 \mu \epsilon i \xi \omega \mathrm{Hu}$ $\mu \epsilon i \zeta o \nu \mathrm{~A} \mu \epsilon i \leqslant \underline{o v a} \mathrm{BS} \mid \tau \tilde{\eta} \varsigma \mathrm{Co} \tau \dot{\eta} \nu \mathrm{A} \| 21 \dot{\eta} \mu \iota \kappa \dot{v} \kappa \lambda \iota a \mathrm{Ge}$ (recc?) $\dot{\eta} \mu \iota \kappa \cup \kappa \lambda i$ ои $\mathrm{A} \mid \pi \rho о \sigma \epsilon \kappa \beta a \lambda \lambda о \mu \epsilon \nu \eta$ Ge (recc?) - $\epsilon \nu \eta \varsigma \mathrm{A}$ $\| 22 \pi \epsilon \rho \iota \phi \epsilon \rho \in \iota a \nu$ add $\mathrm{Hu}(\mathrm{Co}) \mid \tau \dot{\eta} \nu \quad \mu \epsilon \tau a \xi \bar{v}-\mu \epsilon i \xi o \nu O s$ $\eta \mu \iota \kappa \cup \kappa \lambda i o v o m A^{1} \tau \tilde{\eta} s \mu \epsilon \tau a \xi \dot{v}-\mu \epsilon i \zeta o \nu o s$ add $\mathrm{mg} \mathrm{A}^{2}$, alia
 $\mathrm{Ge}(\mathrm{S}) \dot{\epsilon} \dot{\epsilon} \dot{\lambda} \sigma \sigma \omega \nu \mathrm{A}$

[^33]:

 ex $\epsilon i \| 10 \iota \epsilon \epsilon^{\cdot}$ add $\mathrm{Hu}(\mathrm{V})\|14 \tau \dot{\eta} \nu \mathrm{Co} \tau \tilde{\omega} \nu \mathrm{A}\| 18 \lambda o \iota \pi \dot{\eta} \mathrm{Ge}(\mathrm{Co})$ $\lambda o \iota \pi \dot{o} \nu \mathrm{~A} \| 19$ ör $\pi \in \rho$ ante $\phi a \nu \in \rho o ̀ \nu$ transp $\mathrm{Hu} \| 20 \iota 5^{\circ}$ add Hu (V) \|, $21 \Theta \mathrm{~B}$ Co EB A \| 23 á ρa add $\mathrm{Hu}(\mathrm{Co}) \| 26 ~ \iota \xi^{\prime}$ add $\mathrm{Hu}(\mathrm{V}) \|$ 28 aúrì̀ Ge ávi $\tilde{\eta} \varsigma \mathrm{A} \| 29$ ӨB... KE] ӨK... KE A ӨB... K Δ Co \| 31 $\Gamma Z] \Gamma Z H$ A $\Gamma \Delta$ Co \| $32 \Lambda Z]$ AZ A $\Lambda \Delta$ Co \| 33 ME$] \mathrm{M} \Delta \mathrm{Co}$

[^34]:

 $\delta \iota \omega \rho \iota \sigma \mu \epsilon \operatorname{lous~} \mathrm{A} \mid$ ó $\tau \epsilon \mathrm{Hu}$ ồ $\nu \in \varsigma \mathrm{A}$

[^35]: $\mathrm{A} \| 9$ ád $\lambda \grave{a}-\mathrm{B} \mathrm{\Gamma}$ add $\mathrm{Co} \| 13 \dot{\epsilon} \phi \dot{a} \pi \tau \epsilon \tau a \iota], \dot{\epsilon} \phi a \pi \tau 0 \mu \epsilon \in \nu \eta \mathrm{~A} \| 14$
 à $\lambda \lambda \dot{\eta} \lambda \omega \nu$ катà $\tau \grave{o} \mathrm{~A} \sigma \eta \mu \in \tilde{i}{ }_{\mathrm{o}} \boldsymbol{\nu} \mathrm{Hu}(\mathrm{Co}) \| 15 \iota \beta^{\prime}$ add Camer_{1} (BS) || 17 к $\lambda \tilde{a} \nu$ Camer $_{1} \bar{K} \bar{\Lambda}$ à ν Aклáoaı Co $\left.\epsilon \dot{v} \theta \epsilon i a \nu\right] \delta o \theta \epsilon \tilde{\iota} \sigma a \nu \mathrm{~A}$ del Co\| $19 \dot{\eta}$ Camer $_{1} \tau \tilde{\eta} \iota \mathrm{~A} \| 22 \mathrm{~A} \Delta \mathrm{~B} \operatorname{Co} \mathrm{AAMB} \mathrm{A} \mid \tau \grave{o} \dot{\nu} \pi \grave{o} \tau \tilde{\omega} \nu$

 $\tau 0 \tilde{v} \Delta$ Camer $_{1} \tau \grave{o}$ áno $\tau \tilde{\eta} \varsigma \mathrm{BZ} \delta o \theta \epsilon i \sigma \eta \mathrm{~S}$ Ge\| $25 \tau \tilde{\eta} \iota \ldots \delta \bar{\epsilon} \mathrm{secl}$ $\mathrm{Hu} \| 28 \mathrm{~A} \Delta] \mathrm{B} \Delta \mathrm{Co}\|29 \mathrm{~A} \mathrm{Co} \Lambda \mathrm{A}\| 30 \delta o \theta \epsilon \tilde{\iota} \sigma a \operatorname{Co} \delta o \theta \grave{\epsilon} \nu \mathrm{D} \| 34$ $\dot{\epsilon} \phi a \pi \tau о \mu \dot{\epsilon} \nu \eta$ add Camer $_{1}$

[^36]: $\| 1 \boldsymbol{\gamma}^{\prime}$ add Camer $_{2}(\mathrm{BS})\left\|2 \delta_{0} \theta^{\prime} \epsilon \nu \tau \iota \mathrm{Ge}(\mathrm{Co}) \delta o \theta^{\prime} \epsilon \nu \tau o s \mathrm{~A}\right\| 3$

 $\lambda o \iota \pi o \tilde{v}$ Co \| 10 Z Co HZ A\| $12 \delta^{\prime}$ add Hu app \| 13 ГНА Со ГН Λ A

 $\mathrm{A} \| 26 \epsilon^{\prime}$ add $\mathrm{Camer}_{2}(\mathrm{BS})\left\|27 \tau 0 \tilde{v}(\dot{v} \pi \grave{o}) \mathrm{Camer}_{2}(\mathrm{BS}) \tau \grave{o} \mathrm{~A}\right\| 31$

[^37]: $\left\|4 a^{\prime} \mathrm{mg} \mathrm{A}\right\| 5$ post $\dot{\omega} \mathrm{s}$ add $\left.\dot{\eta} \mathrm{Ge}(\mathrm{BS}) \| 11 \Lambda \mathrm{H}\right] \mathrm{AH} \mathrm{A}^{1} \Lambda$ supra A^{2} $12 \dot{\eta}(\mathrm{E} \Theta)$ del $\mathrm{Hu} \dot{\epsilon} \nu \pi a \rho a \lambda \lambda \eta \lambda \omega \iota \dot{\eta} \mathrm{Heiberg}_{3} \mid \mathrm{E} \Theta-$ oü $\tau \omega \varsigma$ add
 $\tau \grave{\eta} \nu \Theta \mathrm{H}^{\mathrm{Co}}\|17 \mathrm{HZ} \mathrm{CoNZ} \mathrm{A}\| 19$ post $\dot{\omega} \varsigma$ add $\dot{\eta} \mathrm{Ge}(\mathrm{BS}) \mid \Delta \mathrm{Z}$ CoAZ $\mathrm{A} \| 21 \mathrm{AB}-\tau \tilde{\eta} \varsigma(\mathrm{AB})$ add $\mathrm{Heiberg}_{3} \|, 26$ ко $\left.\iota \nu \grave{o} \varsigma\right]$ signum quasi κ°
 $\pi a \rho a ́ \lambda \lambda \eta \lambda o s] \lambda o ́ \gamma o s$ A $\pi a \rho a ́ \lambda \lambda \eta \lambda o s$ Co \| $32 \pi a \rho a ́ \lambda \lambda \eta \lambda o s ~ \tau \tilde{\eta} c]$ $\pi a \rho \dot{a} \tau \dot{\eta} \nu \mathrm{~A} \| 33 \dot{\epsilon} \pi \iota \zeta \epsilon v \chi \theta \epsilon \tilde{\iota} \sigma a \mathrm{Hu} \dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{v} \chi \theta \omega \mathrm{~A} \mid$ post $\boldsymbol{\tau} \dot{0} \Lambda$ spatium litterarum fere septem relictum A

[^38]: $\omega \varsigma$ á ρa - ($\tau \tilde{\omega} \nu)$ ӨH, ZE add Co ($\tau \tilde{\omega} \nu$) del Ge\| 7 ABГロEZHӨK Co

 $\mu \epsilon \tau a \beta a ́ \lambda \lambda \epsilon \tau a \iota \mathrm{Hu} \mu \epsilon \tau a \beta a \lambda \lambda o ́ \mu \epsilon \nu o s \mathrm{~A} \mid$ $\tau \grave{o} \nu \mathrm{Ge}(\mathrm{S}) \tau \grave{o} \mathrm{~A} \| 27$ $\mathrm{E} \Xi \mathrm{Co} \boldsymbol{\mathrm { Z }} \mathrm{A}$

[^39]: | $2 \dot{\epsilon} \sigma \tau i \nu-A Z H \tau \rho \iota \gamma \dot{\omega} \nu \omega \iota$ om A1 ${ }^{1}$ add $\left.\mathrm{mg} \mathrm{A}^{2} \| 6 \dot{\eta} \ldots \tau \tilde{\eta} \iota\right] \tau \tilde{\eta} \iota \ldots$

 tris A corr Co \| $21 \delta \iota \dot{\eta} \times \theta \omega \sigma a \nu$ Ge (BS) $\delta \iota \dot{\eta} \times \theta \omega$ A \| 27
 $\pi a \rho a \lambda \lambda \eta \lambda a \mathrm{~A} \| 29 \mathrm{ON} \mathrm{Co} \Theta \mathrm{H} \mathrm{A}$

[^40]: $a \nu a ́ \pi a \lambda \iota \nu \mathrm{~A}\|11 \mathrm{~B} \Gamma \mathrm{Co} \Delta \Gamma \mathrm{A}\| 12 \mathrm{~B} \Delta \mathrm{Co} \mathrm{B} \Lambda \mathrm{A} \| 14$ ícol Ge (BS) 'íon A\| $15 \tau \tilde{\eta} \iota$ Ge (S) $\tau \tilde{\eta} \varsigma, \mathrm{A}\|16 \tau 0 \tilde{v}(\dot{v} \pi \bar{o} \mathrm{o}, \mathrm{E} \Delta \Gamma) \mathrm{Hu} \tau \grave{o} \mathrm{~A}\|$

 (S)

[^41]:
 $\kappa \dot{\cup} \kappa \lambda$ ov AB transp $\mathrm{Ha} \mid \dot{\eta}$ add Ge (recc?) | 24 'á ρa add $\mathrm{Ha} \| 26$
 $\mathrm{AB} \mathrm{\Gamma} \mathrm{~A} \| 33 \delta \dot{\eta}] \delta \dot{\epsilon} \mathrm{Hu}$

[^42]:

 áróuevaı Ha áyouevoc A secl Hu \｜28，$\tau \tilde{\omega} \nu$ add $\left._{2} \mathrm{Heiberg}_{2} \mid \dot{v} \phi\right]$
 ánoт $\mu \eta \theta^{\prime} \epsilon \nu \tau \omega \nu$ Heiberg $\left._{2} \| 33 \delta \dot{\eta}\right] \delta \dot{\epsilon} \mathrm{Hu}$

[^43]:
 A \| 26 BE Δ Co BA Δ A $27 \dot{a} \phi \eta \iota \rho \dot{\eta} \sigma \theta \omega$ Ha á $\phi a \iota \rho \epsilon \mathfrak{i} \sigma \theta \omega$ A \| 31

[^44]: 6 каi $\tau \tilde{\omega} \iota] \tau \tilde{\omega} \iota \tau \epsilon \mathrm{Ha} \mathrm{\|} 8$ ГА Со $\Gamma \Delta \mathrm{A} \| 17 \mu \epsilon i \xi 0 \nu a \mathrm{Ha}$ $\dot{\epsilon} \lambda a ́ \sigma \sigma o \nu a \mathrm{~A} \mid \dot{\eta}$ Ha $\tau \grave{\eta} \nu \mathrm{A} \| \mathrm{I}^{18}$ ГА Со Г $\Delta \mathrm{A} \mid$ post $\tau \iota \nu a$ add

 $\epsilon \lambda a ́ \sigma \sigma o v \iota ~ o u ́ v \eta \iota ~ \tau \tilde{\eta} s \mathrm{ZE} \Delta \mathrm{Ha} \| 27$ ánò add $\mathrm{Ha}(\mathrm{Co}) \| 31$入o七刀os Ha入ociò A

[^45]: $v \pi \grave{o} \Delta A \Gamma$ add Hu (eadem fere Ha) | $8 \mathrm{~A} \Gamma \mathrm{~B} \mathrm{Co} \mathrm{AB} \mathrm{\Gamma} \mathrm{~A} \| 9 \Delta \mathrm{~B}$ Co AB A

 $\mathrm{A} \| 29 \mathrm{ABE}-\dot{\cup} \pi \dot{o}(\Gamma B \Delta)$ add $\mathrm{Ha}(\mathrm{Co}) \mid \Gamma \mathrm{\Gamma B} \mathrm{Co} \mathrm{EB} \Delta \mathrm{A}$

[^46]: $\| 1$ ABE Co AEB A \|, $2 \mathrm{~B} \Delta \Gamma \mathrm{Co}(\mathrm{k}) \mathrm{BA} \Gamma_{\text {. }}\|3 \Gamma \Delta \mathrm{Co} \mathrm{A} \Delta \mathrm{A}\| 6$ ai

 17 ГН \triangle Co ГНА A

[^47]: $\| 3 \tau \tilde{\omega} \nu(\Gamma, \Delta) \mathrm{Hu}(\mathrm{Co}) \tau 0$ ís $\mathrm{A}|\mid 5 \tau \tilde{\omega} \nu(\Gamma, \Delta) \mathrm{Hu}(\mathrm{Co}) \tau 0$ is A$|$ $\epsilon \pi i$ del Ha

[^48]:

 ónócov $\tau \tilde{\omega} \iota \Delta \mathrm{EZ} \mathrm{Ha}\|33 \mathrm{E} \Delta \Theta \mathrm{Co} \mathrm{E} \Lambda \Theta \mathrm{A}\| 35 \mathrm{HA} \mathrm{CoKA} \mathrm{A} \| 36$ $\Theta \Delta \operatorname{Co} \Lambda \Delta \mathrm{A}$

[^49]: $\eta \mu i \sigma \eta] \kappa a \tau a ̀ \mu i a \nu \mathrm{~A} \dot{\omega} \sigma \tau \epsilon \kappa a i \quad \dot{\eta} \mu \iota \sigma \epsilon \iota a \iota \mathrm{Hu} \| 12$ Өл Со $\mathrm{E} \Lambda \mathrm{A}$

 A^{2} | $\left.19 \dot{\circ} \rho \theta 0 \gamma \dot{\omega} \nu, \iota a\right] \tau \rho i \gamma \omega \nu a \mathrm{Ge}(\mathrm{S})\|21 \tau \epsilon \dot{\omega} \varsigma \mathrm{Ha} \tau \dot{\epsilon} \omega \varsigma \mathrm{A}\|$ $22 \tau \dot{o} \mathrm{AB} \boldsymbol{\tau} \rho \boldsymbol{\imath} \boldsymbol{\imath} \omega \nu 0 \nu \tau \tilde{\omega} \iota \Delta \mathrm{EZ} \tau \rho \iota \gamma \dot{\omega} \nu \omega \iota$ Co $\tau \tilde{\omega} \iota \mathrm{AB}$

 $\dot{\epsilon} \phi a \pi \tau \dot{\epsilon} \sigma \theta \omega \mathrm{~A}\|27 \tau \tilde{\omega} \iota \mathrm{Co} \tau \dot{\tau} \mathrm{A}\| 29 \Delta \Lambda \mathrm{Co} \Delta \mathrm{A} \mathrm{A} \mid \Theta \mathrm{Z} \Lambda \mathrm{Co} \mathrm{Z} \mathrm{\Lambda} \mathrm{~A}$
 $\mathrm{A} \Gamma, \Delta \mathrm{Z}] \Gamma, \mathrm{Z} \mathrm{Ha} \| 32 \gamma \omega \nu i a-\epsilon i \sigma i \nu$ in ras. A| BAK Co ABK A

[^50]:

 каi $\tau \tilde{\omega} \nu$ ai A $\gamma \omega \nu i a \iota \tau a i ̌$ На $\epsilon \pi \epsilon i к a i$ ai item Co \| $26 \tau \epsilon$ $\dot{\omega} \mathrm{S} \mathrm{Ha} \tau \dot{\epsilon} \omega \mathrm{\omega}$ A $28 \pi \epsilon \rho \iota \gamma \epsilon \gamma \rho \dot{a} \phi \theta \omega \sigma a \nu \kappa \dot{v} \kappa \lambda o \iota \mathrm{Ha}$ (Co)
 $\pi \epsilon \sigma \epsilon \tilde{\iota} \tau a \iota \pi \iota \pi \tau \dot{\epsilon} \tau \omega \mathrm{Ha} \mid \tau \tilde{\omega} \nu(\mathrm{H}, \mathrm{B}) \mathrm{Ha} \tau \dot{\eta} \nu \mathrm{A}$

[^51]: écou $\tau \epsilon$ Co $\dot{\omega} \sigma \tau \epsilon \mathrm{A} \dot{\omega} \mathrm{S}$ addidi $\|$. 7 émi ex é $\pi \epsilon i$ A $\| 9$ post EZ add

 é πi - $\tau \mu \dot{\eta} \mu a \sigma \iota \nu \gamma \omega \nu i a \iota$ secl $\mathrm{Hu} \| 20 \delta \tilde{\eta} \lambda o \nu] \delta \tilde{\eta} \lambda o \nu o ́ \tau \iota \mathrm{~A} \mid$

 Co Me A || 24 MO Co Me A \| 27 BMO... ENP Co BOM... EPN A\| 31

 A $\mid \dot{u} \pi \grave{o}$ del $\mathrm{Ha} \mid$ ВАГ Со АВГ A

[^52]: $1 \mathrm{~B} \Delta, \mathrm{BZ}] \mathrm{AB} \mathrm{\Gamma}, \mathrm{EBZ} \mathrm{Ha} \mathrm{AB} \mathrm{\Gamma}, \mathrm{BZ}$ coni. $\mathrm{Hu} \mathrm{app} \| 2 \dot{\epsilon} \phi \in \sigma \tau \tilde{\omega} \tau a \tau \tilde{\omega} \iota$

 post BH add $\dot{o} \rho \theta \dot{\eta}$. $\dot{\eta} \mathrm{BH}$ á $\rho a \mathrm{Ha} \| 8$ тo $\sigma \tau 0 \iota \chi \in i o \nu]$ т \dot{o}

 ó $\rho \theta \tilde{\eta} \iota$ Co ó $\rho \theta a i$ A \| $25 \Delta \mathrm{E} \Theta$ Co $\Delta \mathrm{Z} \mathrm{\Theta}$ A $\Delta \mathrm{EZ} \mathrm{Ha} \mathrm{\|} 27 \Delta \Theta \mathrm{E}$ Co $\Delta \mathrm{E} \Theta$ A

[^53]: ($\dot{\eta} \mathrm{AK}$) del Ha\| $7 \Lambda \Delta \Theta \operatorname{Co} \Delta \Lambda \Theta \mathrm{~A} \| 11 \mathrm{AH} \Gamma$ Co AK A| $\Delta \theta \mathrm{Z}$ Co $\Delta \Lambda Z$ A

[^54]:

 $\mathrm{A} \| 12 \Delta \Lambda$ (π 信s) $\mathrm{Co} \Delta \mathrm{A} \mathrm{A} \| 13 \mathrm{AB}, \mathrm{B} \mathrm{\Gamma}, \Gamma \mathrm{~K}] \mathrm{AK}, \mathrm{B} \mathrm{\Gamma}, \mathrm{BK} \mathrm{Hu} \mid \Delta \mathrm{E}$,

 BH... $\Lambda \mathrm{E} \ldots \mathrm{E}$ E] HB ... BK... ӨE... E Λ Co \| 26 BH Ha BA A| кai $\dot{\omega} \varsigma$

[^55]:
 $14 \dot{\epsilon} \lambda a ́ \sigma \sigma \omega \nu . . . \mu \epsilon i \zeta o \nu a \ldots \quad \mu \epsilon i \zeta \omega \nu \ldots$ є́ $\lambda a ́ \sigma \sigma o \nu a] \mu \epsilon i \zeta \omega \nu \ldots$
 $\mathrm{B} \Delta \ldots \Delta \mathrm{E}] \mathrm{E} \Delta \ldots \Delta \mathrm{B}$ Co \| 20 ć λ áa $\sigma \sigma \omega \nu \ldots \mathrm{B} \Delta \ldots \Delta \mathrm{E}] \mu \in i \zeta \omega \nu \ldots \mathrm{E} \Delta \ldots \Delta \mathrm{B}$ $\mathrm{Co} \mid \mathrm{B} \Delta \mathrm{Co} \mathrm{BAA} \| 21 \mu \epsilon i \xi \omega \nu \ldots \mathrm{~B} \Delta \ldots \Delta \mathrm{E}]$ é $\lambda a ́ a \sigma \sigma \omega \nu \ldots \mathrm{E} \Delta \ldots \Delta \mathrm{B}$ Co

 $\mathrm{Z} \Delta \pi \rho$ òs $\Delta \mathrm{B}$ del $\mathrm{Co} \| 27 \delta 0 \theta \epsilon \iota \mathrm{~s}$ compendium $\mathrm{A} \| 28 \Delta \mathrm{~B} \delta o \theta \in i \varsigma$ Co (restituens lacunam in k) $\Delta \Theta \delta o \theta^{\prime} \boldsymbol{\epsilon} \nu \tau a \mathrm{~A} \mid \kappa а i \quad \tau \tilde{\eta} \varsigma \mathrm{~EB}$ -

 compendium $\mathrm{A}\left|\lambda o \iota \pi o ̀ s \mathrm{Ge}(\mathrm{S}) \lambda_{0} \iota \pi \dot{\eta} \mathrm{~A}\right|$ post $\lambda_{0} \iota \pi \grave{o} \mathrm{~s}$ add ápa Hu

