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Preface

In recent years several books on mathematics have been
published, presenting intriguing pieces of the subject. This book
also presents some interesting gems, but in the service of explain-
ing one of the big quests of mathematics: the discovery and
classification of all the basic building blocks for symmetry. Some
mathematicians were sceptical of explaining it in a non-technical
way, but others were very encouraging, and I would like to thank
them. In particular I owe thanks to those mathematicians who
read all, or large parts, of the manuscript: Jon Alperin, John
Conway, Bernd Fischer, Bill Kantor, and Richard Weiss. I also
thank my son and daughter who were always positive about the
outcome, and finally my editor Latha Menon who made very
helpful criticisms.

Mark Ronan,

February 2006
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To Grace Varndell,

my headmistress from primary school,
who still remembers exactly where I sat in class.



Prologue

What we know is not much. What we do not know is immense.
Pierre-Simon Laplace (1749-1827), said to be his last words

In November 1978 an English mathematician named John McKay
was reading a research paper at his home in Montreal. He worked
in a branch of mathematics called group theory, which deals with
the study of symmetry. It was an area that had recently produced
some exceptional objects in many dimensions, but McKay was
taking a break by reading a paper in number theory, the part of
mathematics that deals with the whole numbers. There was no
connection — or so he thought.

The largest of the exceptional symmetry objects had been called
the Monster. It had not yet been constructed, but a careful exam-
ination of the data showed that the Monster — if it existed — could
probably be viewed in 196,883 dimensions. Now McKay was read-
ing about an object in number theory, and out popped the number
196,884. He was astonished. Any relationship with the Monster
seemed absurd — they came from completely different parts of
mathematics — but he felt he should tell someone, so he wrote a
letter to John Thompson, the great guru in group theory.

Another person receiving the letter might have waved aside the
coincidence as too speculative and beyond understanding, but not
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PROLOGUE

Thompson. He was a sober cerebral man, and he took it seriously.
He checked up on other numbers — far bigger than 196,883 — that
came out of the Monster and compared them to those that
emerge in number theory from the miraculous object that McKay
had been reading about. Thompson found further coincidences
and saw that a more detailed study was called for.

When he returned to Cambridge in December — he’d been
visiting the Institute for Advanced Study in Princeton when he
received McKay’s letter — he mentioned these coincidences to
John Conway, who had found some of the new symmetry objects
himself. Conway had masses of data on the Monster, and used it
to produce other sequences of numbers that might be interesting.
He then visited the library and found the same sequences appear-
ing in some nineteenth-century papers on number theory. He and
a young mathematician named Simon Norton used these facts
to make further calculations and verify that there was a definite
connection between the Monster and number theory, even though
we didn’t understand why.

Conway dubbed the whole thing Moonshine, not because he
thought it was nonsense, but because ‘The stuff we were getting
was not supported by logical argument. It had the feeling of
mysterious moonbeams lighting up dancing Irish leprechauns.
Moonshine can also refer to illicitly distilled spirits, and it seemed
almost illicit to be working on this stuff.” The term soon caught
on, and when I first heard it I took it to suggest something shining
by reflected light, like the Moon. There may be a more primary
source of illumination yet to be discovered, and this is one of
the great attractions of mathematics — the deeper we go into the
subject, the more there is to discover.

Mathematics will never be fully known. There will always be
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deeper levels to uncover and further surprises in store. Carl
Friedrich Gauss, one of the greatest mathematicians of all time,
has called mathematics ‘“The queen of sciences’, and it is a subject
that compels creativity, driving mathematicians forward on quests
that are beyond the power of any individual.

The quest in this book — leading eventually to the Monster
and Moonshine — is to discover all the basic building blocks for
symmetry. In following this quest we shall examine symmetry
and how mathematicians have used it to solve deep problems. In
the meantime, it is worth quoting that polymath Goethe, who
wrote of symmetry:

By the word symmetry . .. one thinks of an external relationship
between pleasing parts of a whole; mostly the word is used to refer
to parts arranged regularly against one another around a centre.
We have . . . observed [these parts] one after the other, not always
like following like, but rather a raising up from below, a strength
out of weakness, a beauty out of ordinariness.*

How we go from the mathematical study of symmetry to the
Monster is a long story, but I can summarize it in a few words.
Most of the basic building blocks for symmetry come in one of
several infinite sub-families. These sub-families combine together
in larger families, but then there are the exceptions: 26 of them that
don’t fit in any of these families, the largest being the Monster.

Finding these infinite sub-families and then finding the excep-
tions is a story that takes us from France in 1830 to the 30 years
following the Second World War. Showing that they form a com-
plete list takes us right up to the present day. And finding the
underlying connections between the Monster and other branches
of mathematics and physics takes us into the future.



PROLOGUE

Mathematicians are explorers in an abstract world that touches
the real world in unpredictable ways. More than 20 years ago
when the Monster was first showing its true colours, the Princeton
physicist Freeman Dyson wrote: ‘I have a sneaking hope, a hope
unsupported by any facts or any evidence, that sometime in the
twenty-first century physicists will stumble upon the Monster
group, built in some unsuspected way into the structure of the
universe.”* That is how central the Monster appears to be.

Twenty years later, Richard Borcherds of Cambridge University
(now at Berkeley in California) was awarded a Fields Medal for
his work on Moonshine. The Fields Medal is the mathematicians’
version of the Nobel Prize, though it’s a rarer honour and only
awarded to people under 40. Borcherds had shown that the
Moonshine connections Conway and Norton established all fitted
in with some new work on string theory in physics.

The fact that the Monster has connections to other parts of
mathematics shows that there is something very deep going on
here. No one fully understands it, and the links to particle physics
are tantalizing. The Moonshine connections have spawned con-
ferences where mathematicians and mathematical physicists meet
to discuss these things, but let us begin with the study of symmetry
itself, starting with the work of the ancient Greeks.



Theaetetus’s Icosahedron

In mathematics you don’t understand things. You just get
used to them.

John von Neumann (1903-57)

In 369 BCE an Athenian philosopher named Theaetetus was
wounded in a battle at Corinth, and carried home. He contracted
dysentery and died in Athens. None of his writings survive, but
we know of his work through later commentators, and know
about him personally from Plato, who records two dialogues with
Theaetetus as the main character. One of these took place in 399
BCE when Theaetetus was still a youth, though clearly an excep-
tional one. Among his mathematical achievements was the clas-
sification of the five regular Platonic solids, exhibiting symmetry
in three dimensions. Here they are.

tetrahedron cube octahedron




THEAETETUS’S ICOSAHEDRON

D &

dodecahedron icosahedron

The Pythagoreans, that community of mystics and mathemat-
icians founded by Pythagoras in around 500 BCE, knew about the
tetrahedron, cube, and dodecahedron. The octahedron and the
icosahedron are due to Theaetetus. Apart from the word ‘cube’,
the names come from Greek and refer to the number of faces:
tetra means four, octa eight, dodeca twelve, and icosa twenty.

The existence of these Platonic solids cannot be settled by
making simple models, because anything you make will be imper-
fect. The question Theaetetus tackled is whether there is a theoreti-
cal construction in which each face is a perfect triangle, square or
pentagon: all angles the same and all sides the same length. This is
a question about symmetry — is there, for example, an icosahedron
having perfect symmetry? This is not a trivial matter, and we shall
meet the same problem later when we approach other, more com-
plicated models of symmetry. Various sub-structures may be
known, and it may seem that they should fit together to form a
more complex object, but proving its existence can be very hard.
The Monster will be a case in point.

Discovering objects that have immense symmetry is one of the later
themes in this book, and the Platonic solids are good prototypes
to keep in mind. Their symmetry can be described mathematically,
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and I want to give a rough idea of how this works. Think first in
terms of mirror symmetry, by which I mean switching everything
from one side of a mirror to the other. You treat the mirror as a
plane, dividing space into two halves that are interchanged — like
Alice interchanging with a mirror image of herself on the other
side of the mirror. This is what mathematicians usually mean
when they talk of reflections, or mirror symmetries.

Take the cube as an example. Take an imaginary plane that
goes through the centre of the cube in such a way that each corner
on one side is directly opposite a corner on the other side. Then
switch everything on one side of the plane to the other. This will
fix everything in the plane, but switch each point on one side
with an opposite point on the other. A cube has exactly two
different types of mirror symmetries. Either the plane is parallel
to, and midway between, two opposite faces, or it slices diagonally
through two opposite faces.

These are not the only symmetries of the cube. Several different
types of rotation are also possible. For example run a spindle
through the centre of two opposite faces, and turn the cube by 90°
or 180°. Or put a spindle through two opposite vertices and give it
a 120° turn, or through the centres of two opposite edges and
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make a 180° turn. You could also combine a rotation with a mir-
ror symmetry, doing first one then the other. A cube has a great
many different symmetries — how many?

The total number is 48, and they form what we call the symmetry
group of the cube. Those that can be done using rotations — there
are 24 of them'! — form a sub-group. I shall call it the rotation group
of the cube. The word ‘group’ is a technical term — it is a central
concept in this book, and I will give a more precise definition
later.

In the nineteenth century mathematicians found a way of
deconstructing a group of symmetries into simpler groups. Those
that can be deconstructed no further I shall call ‘atoms of sym-
metry’.? The discovery, classification, and construction of all atoms
of symmetry leads eventually to some very strange exceptions — the
largest being the Monster. But if we are to gain some understand-
ing of the Monster, we should first examine simpler situations, so
let us consider the Platonic solids in more detail.

Consider the cube and the octahedron. They are deeply inter-
connected. Where the cube has six faces, the octahedron has six
vertices, and where the cube has eight vertices the octahedron has
eight faces. They both have 12 edges, but the roles of vertices
and faces are switched around. This is more than just a corres-

! The reason there are 24 rotational symmetries is this: a cube has six faces any
one of which can be placed on the bottom. This face can then be rotated into four
different positions, and 6 x 4 = 24.

? Mathematicians call them ‘simple groups’, but the term ‘simple’ is misleading
because they can be very complicated — it is used to imply they cannot be decon-
structed into simpler groups.



THEAETETUS’S ICOSAHEDRON

pondence of numbers. Each one can be inscribed in the other
as shown in the picture below. Place a vertex in the middle of each
face of the cube, and join two of these new vertices if the faces are
adjacent. This gives an octahedron, and if you do the same thing
with an octahedron you get a cube. We say the cube and the
octahedron are dual to one another.

This duality between the cube and octahedron means that a
symmetry of one is also a symmetry of the other — they have the
same group of symmetries. As concrete objects they are different,
but at the abstract level of symmetry they are the same. Abstrac-
tion is a powerful tool in mathematics; by concentrating only on
certain essentials of a situation, and disregarding other aspects,
one is free to pursue new results. The other aspects may have
important applications, but they can be reintroduced later.

In a similar way the dodecahedron and the icosahedron are
dual to one another. If you place a vertex in the middle of each
face of the dodecahedron, and join two of these vertices when the
faces are adjacent, then you get an icosahedron. Doing the same
thing with an icosahedron yields a dodecahedron. Where the
dodecahedron has 12 faces and 20 vertices, the icosahedron has 12
vertices and 20 faces. This duality means that the dodecahedron
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and the icosahedron have the same group of symmetries, and the
same subgroup of rotations. This group of rotations has size 60,
and turns out to be the smallest atom of symmetry that needs
more than two dimensions. It also appears in some surprisingly
different ways, and we shall meet it again later.

The word symmetry itself comes from two roots in Greek: syn
meaning together, and metry referring to measurement. The idea
of measuring two or more things together is obviously a useful
one, and Goethe’s reflections on the topic were already mentioned
in the Prologue. His ideas of raising up from below, strength out
of weakness, and beauty out of ordinariness have their parallels
in mathematics that Goethe did not live to see. He died in 1832, as
did a young mathematician named Evariste Galois, who was
62 years younger than Goethe. Galois was the first mathematician
to use symmetry in solving a deep problem, and framing a new
branch of mathematics. We shall meet him in the next chapter.
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Galois: Death of a Genius

It is important that students bring a certain ragamuffin,
barefoot, irreverence to their studies; they are not here to
worship what is known, but to question it.

J. Bronowski, The Ascent of Man

In Paris on the evening of 29 May 1832 the young French math-
ematician Evariste Galois wrote a letter he knew would be the last
of his life. It ended as follows:

Please request publicly that Jacobi or Gauss give their opinions,
not on the truth but on the importance, of these theorems.
After all this comes to light I hope that people will profit by
deciphering these scribbles.
I embrace you with affection.
E. GALOIS, 29 May 1832

Neither Karl Gustav Jacob Jacobi (1804-1851), who was an out-
standing mathematician of the day, nor Carl Friedrich Gauss
(1777-1855), one of the greatest of all time, ever saw Galois’s
letter.

The next morning, Wednesday 30 May 1832, after the sun rose,
Galois lay by the side of the road, fatally shot in the abdomen. A
passer-by took him to hospital. A priest was called but, suspecting
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suicide, refused to speak to him. His brother Alfred rushed to his
bedside, and Evariste’s last words to Alfred were, ‘Don’t cry. I
need all my courage to die at 20.

On 31 May his death was in all the Paris newspapers. The
following extract is from Le Précurseur, a newspaper in Lyon:

A deplorable duel yesterday robbed science of a young man who
inspired the brightest hopes, but whose prodigious fame is only
of a political nature. Young Evariste Galois ... fought a duel
with an old friend, a very young man like him, and like him a
member of the Société des Amis du Peuple [Society of Friends of
the People] . . .

At point blank range, each of them was given a pistol and fired.
Only one of the pistols was loaded.*

Historians of mathematics still argue about why he fought the
duel, some seeing it as a matter of honour about a young lady,
possibly as a set-up by agents of the police, and some seeing it as a
set-up by Galois himself to go out in a blaze of glory. But though
his fame as a revolutionary was transient, his mathematics was
timeless: Galois theory and Galois groups are common currency
in mathematics today. As a young man of 20 he joined the ranks
of the immortals. How is this possible?

Evariste Galois was born on 25 October 1811 into a respectable
family living in Bourg-la-Reine, a small town on the south-western
outskirts of Paris. At that time, Napoleon was at the height of his
power and France had achieved a stability that had been sorely
lacking during the aftermath of the French Revolution. This sta-
bility was later to be lost and subsequent events had a profound
and fatal impact on Galois’s life.

His early years, however, were happy enough, and in 1823, aged
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nearly 12, he was sent to boarding school at the Lycée Louis-le-
Grand in Paris. This venerable institution, founded in 1563, and
renamed in the late seventeenth century by Louis-le-Grand him-
self (Louis XIV), still stands today in the Rue Saint Jacques — a
sombre looking edifice that was recently cleaned for the first time
ever. The school was a strict one: the boys rose at 5:30, silently
dressed in uniforms designed by Napoleon himself, went to
assembly and prayers, thence to study until 7:30, when bread and
water was served for breakfast. Galois prospered in the strict
regime, and in his third year, 1825-6, achieved distinctions in four
subjects.

In September 1826 a new headmaster was appointed, a con-
servative theology teacher with rather narrow views on edu-
cational matters. He refused to allow Galois to move up to a more
senior class despite his excellent results. Galois’s father strenu-
ously objected. Evariste was moved into the new class, but the
headmaster eventually prevailed and he was moved out again.

This conflict between father and headmaster was part of a
wider political problem. Galois’s father was a liberal, and had
been a staunch supporter of Napoleon. In 1815, when Evariste
was nearly four years old, Napoleon returned from exile for his
final ‘hundred days’ of power, and Galois’s father became mayor
of their small town. He was a popular man and retained his
position when the monarchy was re-established later that year.

The new monarch, Louis XVIII, maintained an uneasy balance
between liberals on one side and “ultra monarchists’ on the other,
but on his death in 1824 he was replaced by his brother Charles X,
whose regime was dominated by ‘ultras’ and supported by con-
servative elements in the church. The new headmaster at Louis-le-
Grand had political connections to this new regime and was
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therefore on the opposite side of the political spectrum to Galois’s
father.

When Evariste was held back by the headmaster, against his
father’s will, the effect was devastating, and he started rejecting
everything but mathematics. By the following year he had no
further interest in any other subject, and at 15 he devoted all his
energies to mathematics, determined to get out of the school and
into the most prestigious university, the Ecole Polytechnique, as
soon as possible. He took the entrance examination in June 1828,
at the age of 16, without telling his parents. This was at least a
year early, and he did not succeed. This exam could be repeated
once only, so everything depended on the next summer.

In the meantime a new mathematics teacher, Louis-Paul-Emile
Richard, started in the autumn, and he realized immediately that
he had an exceptional student on his hands. He encouraged the boy
to submit an original paper to the Annales de Mathématiques, and
it was published in April 1829. Being a man who kept abreast of
the latest research, Richard was able to lead Galois in new direc-
tions, and since the boy showed such strikingly good ideas Richard
tried to get him admitted to the Ecole Polytechnique without the
usual entrance examination. Unfortunately he couldn’t contrive
this, but he helped Galois present two written papers to the
Académie des Sciences, avoiding the usual submission procedure.
Richard took the manuscripts directly to Cauchy, who was a fel-
low of the Academy. Cauchy was an outstanding mathematician
who had almost invariably only presented his own work at the
Academy, so it was extraordinary that on 25 May and 1 June he
presented Galois’s work. In order to review these papers further
the fellows of the Academy trusted Cauchy to take the manuscripts
home, but he mislaid them.

14
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Evariste Galois at the age of fifteen, drawn by a classmate.

Galois’s main ideas concerned the solution of algebraic equations.
Here is an example:

X*-x-2=0

This is called an equation of degree 2 because the highest power
of x is x? (x squared). If the highest power of x were x° the
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equation would have degree 3; if it were x* it would have degree 4,
and so on.

The problem is to find values of x for which the equation holds
true. Rather than rely on trial and error, mathematicians have a
recipe for solving all equations of degree 2, shown at the bottom
of the page.! This is called the quadratic formula (the word ‘quad-
ratic’ refers to quadrature, or squaring). It is very ancient, and was
first discovered by the Babylonians in about 1800 BCE, nearly 4000
years ago. They wrote in words rather than symbols, but their
ancient texts, written on clay tablets, are very clear and concise.

The Babylonians even had a method for solving some special
equations of degree 3 (having an x* term), but a general method
for dealing with all equations of degree 3 had to wait nearly 3000
years until Omar Khayyam (1048-1131), the famous Persian
mathematician and astronomer, devised a geometric method.
He is better known for his poetry — The Rubdiydt — but was an

! Any equation of degree 2 can be written in the form ax? + bx + ¢ = 0, and its
two solutions are given by the formula

-b+ V/‘bz—4ac

X =
2a

The symbol + means ‘plus or minus’, and the symbol | means ‘square

root of”. For example, the equation x> — x —2 =0 in the text hasa =1, b=-1, and

¢=-2, and the formula yields

[\

This simplifies to (1 * 3)/2, giving the two solutions x =2, and x =—1.
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excellent mathematician, and constructed the solutions to cubic
equations as lengths of line segments between curves and lines.

Omar Khayyam regretted being unable to find a numerical
formula, but this was finally found 400 years later during the
Italian Renaissance. Modern printing was just being introduced,
and this helped to accelerate the dissemination of ideas. From
1472 to 1500 over 200 new titles in mathematics were published, a
huge number considering the population at the time and the small
proportion of literate people. It caused a sudden upsurge in math-
ematics, and in the early sixteenth century four people (del Ferro,
Tartaglia, Cardano, and Ferrari) moved algebra into a new era.

Scipione del Ferro (14657-1525), a mathematics professor in
Bologna, was the first to solve equations of degree 3. He never
published his method, but passed it on to one of his students
before he died in 1526. This student dined on the secret by
challenging other mathematicians to problem solving contests
where the loser paid for a series of free dinners. Since many of the
problems led to equations of degree 3, the student kept winning,
but in 1535 he made the mistake of challenging Tartaglia
(15067-1559). (Tartaglia was a nickname meaning ‘Stammerer’;
his real name was Niccolo Fontana). Tartaglia made enquiries,
heard that the ex-student of del Ferro had received the solution to
equations of degree 3, and immediately set to work to find it
himself. In two days he succeeded, won the contest, but declined
the 30 free dinners. Accepting free food from a lesser mathe-
matician was beneath his dignity, and finding a recipe for solving
equations of degree 3 was reward enough!

Solving an old problem, or discovering something new, in
mathematics is one of the great joys of the subject, but it can
make for secrecy because you don’t want anyone to know what
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you have discovered until you are good and ready to reveal it, with
appropriate details worked out. Otherwise someone else might get
the idea, work out the details themselves and claim credit. This
happened to Tartaglia, as we shall see. His solution to equations
of degree 3 reached the ears of Girolamo Cardano (1501-76), who
had published work on medicine, astrology, astronomy, and phil-
osophy, as well as mathematics. He asked Tartaglia for the formula
but Tartaglia refused. There the matter rested for four years, but
Cardano would not be denied. He cajoled Tartaglia with promises:

I swear to you by God’s holy Gospels, and as a true man of hon-
our, not only never to publish your discoveries, if you teach me
them, but I also promise you, and I pledge my faith as a true
Christian, to note them down in code, so that after my death no
one will be able to understand them.*

Subjected to a mix of persuasion and this protestation of faithful
honesty, Tartaglia caved in. He confided to Cardano his poem for
remembering the technique (this was before the days of modern
notation and formulas were often given in words and remembered
in poetry).

But while Tartaglia was busy with another project (translating
Euclid into Italian), Cardano and his student Ludovico Ferrari
(1522-65) didn’t leave the matter alone. After they found out that
del Ferro had obtained the solution first, and after Ferrari dis-
covered a formula for equations of degree 4, Cardano went for
publication. In 1545 he published his Ars Magna (The Great Art)
and included the formula for solving cubic equations. Tartaglia
was furious, and although Cardano gave credit to both Tartaglia
and del Ferro, history has, rather unfairly, named it Cardano’s
formula.

18
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His justification for breaking his oath to Tartaglia was the dis-
covery that del Ferro had found it first, and as Ferrari wrote in
April 1547 two years after Cardano’s publication of his Ars
Magna:

Four years ago when Cardano was going to Florence and I accom-
panied him, we saw at Bologna, Hannibal Della Nave, a clever and
humane man who showed us a little book in the hand of Scipione
del Ferro, his father-in-law, written a long time ago, in which that
discovery was elegantly and learnedly presented.*

Looking back at this period, however, it is fair to say that del
Ferro, Tartaglia, Cardano, and Ferrari were all four men of
genius, and as the historian of science George Sarton has written,
these four ‘constituted the most singular team in the whole history
of science’.*

After these successes with equations of degree 3 and 4, the devel-
opment stopped. It was nearly 250 years before Joseph-Louis
Lagrange (1736-1813) in Berlin wrote a very influential paper
with the title ‘Reflections on the Algebraic Resolution of Equa-
tions’, which opened a new period of algebra. However, no one
could find a recipe for solving equations of degree 5, or any higher
degree, and in 1799 Gauss wrote, ‘Since the works of many geom-
eters left very little hope of ever arriving at the resolution of the
general equation algebraically, it appears increasingly likely that
this resolution is impossible and contradictory.’* That same year,
Paolo Ruffini (1765-1822), a professor of clinical medicine and
applied mathematics at Modena, inspired by Lagrange’s work,
published a ‘proof” of the fact that there could be no recipe for
solving equations of degree 5, or any higher degree. This was
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wonderful work, but his proof was long — two volumes covering
516 pages — and very hard to follow. Some mathematicians
distrusted his methods and, although no one was able to refute
them, the work was never fully accepted. Ruffini became dis-
mayed at the lack of appreciation, and in 1810 he submitted a new
paper on the subject to the French Academy of Sciences. The
referees failed to respond in a timely manner, so Ruffini withdrew
the paper, and the secretary responded politely to him:

Your referees needed very considerable work to give their approval,
or to refute your proof. You know how precious time is to realize
how reluctant most geometers are to occupy themselves for a long
time with the works of each other, and ... they would have to
be moved by quite a powerful motive to enter the lists against a
geometer so learned and so skillful.*

Poor Ruffini. He was cracking a major problem, and was certainly
on the right lines, though it now appears that his work contained
an important gap. The matter was finally settled in 1824 when a
young Norwegian mathematician, Niels Henrik Abel (1802-29)
produced a proof independently of Ruffini’s work, and it was
published two years later.

Abel’s paper had shown that there were equations of degree 5
whose solutions could not be extracted using square roots, cube
roots, fourth and fifth roots, and so on. For some equations it is
possible — for example, the equation x° =2 can be solved by taking
the fifth root of 2 — but the problem was to decide which equations
could be solved in this way, and which couldn’t. Abel was closing
in on a method of dealing with this problem when tuberculosis
carried him off in 1829 at the age of 26, but the stage was now set
for the entrance of Evariste Galois, who died even younger than
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Abel, and younger than any great mathematician before or since.
He never reached his twenty-first birthday.

Galois measured the amount of symmetry between the various
solutions to a given equation (similar to something Ruffini had
done), and used it in an imaginative new way. Unfortunately in
summer 1829, when Galois was still seventeen, disaster struck.
Earlier in the year, a new Jesuit priest had been appointed to
Galois’s home town of Bourg-la-Reine. His prejudices put him in
alliance with the ‘ultra monarchists’, and he and a member of the
local administration decided to force out the mayor, Galois’s
father. The mayor had a penchant for writing witty rhymes that
would delight members of the town council, but the clever priest
now wrote scurrilous ones, under the mayor’s name, making fun of
some council members. The plot was successful. The elder Galois
left, took his family to Paris, and committed suicide on 2 July.
Later that same month, Evariste was due to take his entrance
exam to the Ecole Polytechnique for the second time. The exam
was an oral one in front of a panel of examiners, and it required a
cool head. Galois was 17. His father had just been destroyed by
political intrigue, and the burial service that Evariste had wit-
nessed in Bourg-la-Reine had turned into a riot. The new priest
who officiated was pelted with insults and stones and received a
gash on the head. Galois’s father had been a popular mayor, and
the entire town later contributed to a large plaque, which stands
there to this day. In the circumstances the young Galois’s exam
performance was not a success. One of his examiners had a skill-
ful technique of asking simple and provocative questions. Galois
lost his cool and it is said that he threw a board duster at the man.
He failed the exam. No one was allowed to apply more than twice,
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so his failure the previous year, when he was 16, eliminated him
from further consideration.

This was a disaster for him. Galois’s mathematics teacher did
what he could to help the boy submit a late application to a school
— now known as the Ecole Normale — that provided a two-year
course. This gave a fine background for teaching mathematics,
and although this was not Galois’s choice, he now had no option.
He started in early 1830, after making the obligatory pledge to
serve the state for the next ten years.

In the meantime, Galois was anxious to have the Academy’s
response to the two papers he had submitted. Cauchy had taken
them home, but being engrossed in his own research had failed to
deal with them in a timely manner; later that year Cauchy went
into political exile, and the papers were forgotten. All was not lost,
however. The previous summer, the Academy had announced a
prize competition, a Grand Prix de Mathématiques. Galois rewrote
his paper and submitted it just before the deadline of 1 March.
The venerable mathematician Fourier (famous for Fourier series
and other essential parts of mathematical analysis) took Galois’s
paper home. On 16 May, Fourier died. Galois’s paper was never
found, and his work was not even considered.

Galois’s ideas for using symmetry were profound and far-reaching,
but none of this was fully understood at the time, and political
events were overtaking his work. What happened was this. In
August 1829 the king had appointed a new cabinet of ‘ultra-ultra
monarchists’. He failed to call parliament into session until
March 1830, at which point the members voted to denounce the
cabinet, and he responded by dissolving parliament. New elections
were ordered for July 1830. These elections gave a large majority
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to the opposition, so the king and his ministers prepared a set of
ordinances to annul them and suspend freedom of the press.

The new ordinances were made public on 26 July, and the
following day there were riots. Gunsmiths’ shops were pillaged,
barricades were set up, but in the Rue St Jacques, Galois and his
fellow students at the Ecole Normale were reminded of their
pledge to the state. From behind barred windows they could only
watch in frustration while students of the Ecole Polytechnique
marched, adding insult to the injury Galois suffered from his
rejection the year before.

Over the next few days, the republicans — mainly workers and
students — gained control of the streets, but lacked cohesion, and
those in favour of a constitutional monarchy persuaded the Duke
of Orléans to enter Paris as an alternative king. On 31 July,
wrapped in a tricolour flag, he was acclaimed by the crowd and
accepted the regency. On 9 August he was crowned as King
Louis-Phillipe.

The republicans remained a force to be reckoned with, however,
and Galois was one of the most radical. At the Ecole Normale he
became an agitator, and soon started publishing diatribes against
the director, whom he regarded as a cynical political opportunist.
He was expelled on 9 December. By early January 1831, Galois
had lost his grant, and had to give mathematics lessons to earn a
living.

On 9 May 1831 at a banquet for 200 ardent republicans, Galois
created a scene. With a threatening gesture and a jack-knife in one
hand, he proposed a toast to King Louis-Philippe. Some guests
followed his example, but others made a quick getaway. Alexandre
Dumas, the well known writer, for example, escaped through a
window. Galois was arrested the next day, but at his trial on 15 June

23



GALOIS: DEATH OF A GENIUS

he presented a clever defence in which he claimed that his actions
were misinterpreted. His words were “To Louis-Phillipe, if he
betrays his oaths’, the last words being drowned out by the confu-
sion. Witnesses appeared to support this version of events or else
to say they had not heard clearly because of the noise. Galois was
found not guilty.

The justices did not have to wait long to catch Galois again. On
Bastille Day, 14 July 1831, he was arrested wearing an illegal uni-
form, and carrying a knife and pistols. Three months’ preventive
detention was followed by a trial on 23 October, when he was
found guilty and returned to prison to complete a nine-month
sentence.

Galois was in the prison of Sainte Pélagie, in the section for
political prisoners. He was among interesting people, one of
whom was Frangois-Vincent Raspail, a man 18 years older than
Galois. He was another scientist, specializing in chemistry, who
later popularized scientific knowledge, particularly in medicine,
founded journals, and became an important political figure who
was exiled to Belgium for ten years after the 1848 revolution.
Some of his letters from prison mention Galois:

This slender dignified child, whose brow is already creased, after
only three years’ study, with more than sixty years of the most
profound meditation; in the name of science and virtue, let him
live! In two years’ time he will be Evariste Galois, the scientist! But
the police do not want scientists of this calibre and temperament
to exist.*

Galois’s sister made frequent visits, but some of the prisoners
treated him with contempt, and Raspail refers to a suicide
attempt, foiled when other prisoners grabbed Galois and removed
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his weapon. In the spring of 1832 there was a serious cholera
epidemic in Paris. Prisoners who were young or in bad health were
transferred in order to lower the risks of infection, and on 16
March Galois found himself in a clinic. Here he met and fell in
love with Stephanie, the daughter of the doctor in charge. She
may initially have been rather attracted to him, but did not return
his ardent affections, and Galois lost all hope. Rejected by the
academic establishment, rejected by the state, and losing the
father he loved, there remained only the republican ideals to sat-
isfy his anger. He was released on 29 April 1832. A month later he
was dead.

Historians of mathematics are not in agreement about his motives
for undertaking the duel, in which he was mortally wounded, but
Galois was not the only young genius to die in this way. Mikhail
Lermontov, the famous Russian poet and author, also died young
after being provoked into a duel at age 26, and Pushkin is another
famous case, though at least he lived to the age of 37. Both these
men had acquired powerful enemies, and duels were a convenient
way of despatching them, but in Galois’s case it is not so clear.
He was so young, it is difficult to be sure what the reason
was. There are different versions of the story, but what is certain is
that early one morning he went to fight a duel, and was left on
the field to die. Rather than give a summary of differing accounts
that led up to the duel, I will follow one account, by Laura Toti-
Rigatelli.*

On 7 May, Galois attended a meeting of the Friends of the People.
The society had not met for several months, but a new event called
them to action. The ex-queen (the wife of Charles X, who was
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now living abroad) had appeared in France. Her son — now 12 —
was living in Prague and being educated by the mathematician
Cauchy, a fervent supporter of the old dynasty, whom we met
earlier in connection with Galois’s first paper. The ex-queen’s
presence in France had thrown the royalists into confusion and
presented an opportunity for action by the republicans. A pretext
for a riot was needed. Galois asked to speak and said that if a
body was needed it should be his. He would arrange a duel with
his friend L.D. Not everyone was keen on Galois’s plan, but they
agreed to meet again to plan the funeral. On 29 May, Galois
finalized plans with L.D. and set about writing his final letters.

On 1 June, the day following the newspaper reports of Galois’s
death, a meeting was held to decide tactics. At midday on 2 June,
about 3000 people showed up at the cemetery of Montparnasse
for Galois’s funeral. They came prepared, ready to attack the
police as soon as the coffin was lowered into the grave.

Police reinforcements had been placed on alert, but while the
leaders of the Friends of the People gave their funeral orations,
some important news was passed round. General Lamarque,
appointed a Marshal of France by Napoleon, had just died. His
funeral, in a few days’ time, would attract an even larger crowd,
more emotionally involved. A riot there would have a better
chance of leading to a general uprising. A decision was taken and
Galois’s funeral was concluded without incident. His death at 20
achieved nothing for the revolution. For mathematics, however,
his achievements will live forever.

In the cemetery of Bourg-la-Reine, the town of his birth and
the place where his father was once mayor, there is no mention of
Galois the revolutionary, but there is a cenotaph. It reads very
simply Evariste Galois, mathématician, 1811-1832.
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To Thales the primary question was not what do we know,
but how do we know it.
Aristotle

What makes Galois’s work extraordinary is that it involved such
bold new ideas. This was not understood at the time of his death,
but fortunately the letter he wrote the night before the duel
survived, and in 1846 the well-known French mathematician
Joseph Louiville published it, with commentary. Before explain-
ing Galois’s idea, let us look again at an equation in Chapter 2
(x*— x—2=0). It factors into (x — 2)(x + 1) = 0, and this reduces it
to two equations, x —2=0, and x + 1 =0.

Equations that cannot be reduced in this way, by splitting them
into factors, are called irreducible. One example is the equation
for the golden section. This ratio of one length to another keeps
cropping up in art and architecture, and in nature, and is aesthe-
tically pleasing to the human eye. It appears as early as 300 BCE, in
Book 6 of Euclid, and there are many ways of describing it.
Euclid used a square and a rectangle — here they are in a slightly
modified form. Take a rectangular canvas having the following
special proportions: if it is divided into a square at one end, and a
smaller rectangle at the other, then the smaller rectangle has the
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same proportions as the whole canvas. This can only happen when
the ratio of length to width is the golden section.

In the early Italian Renaissance, a mathematician named
Luca Pacioli wrote a book on this remarkable ratio called Divine
Proportion. The book influenced painters such as Leonardo da
Vinci and Albrecht Diirer, and is evident in the work of many
artists, from Renaissance painters to Neo-Impressionists like
Georges Seurat and Paul Signac. The golden section cannot be
written as a ratio of whole numbers, but it can be approximated
using a remarkable sequence discovered by the medieval mathem-
atician Leonardo of Pisa, also know as Leonardo Fibonacci. He
wrote the first original book on mathematics published in Europe,
in about 1200, well before the Renaissance. Leonardo had
been brought up in North Africa, where he had learned the
Arabic tradition of mathematics. He then visited Egypt, Syria,
Greece, Sicily, and Provence before settling in Pisa. His book
Liber abaci (book of the abacus) introduced Hindu-Arabic
numerals and the place notation (units, tens, hundreds, ...)
that we use today. It dealt with practical matters such as profit
margins, money changing, weights and measures, and so on,
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but included some pure mathematics, such as the following
problem.

[You] put a pair of rabbits in a place surrounded on all sides by
a wall. How many pairs of rabbits can be produced from that
pair in a year if it is supposed that every month each new pair
begets a new pair which from the second month on becomes
productive?

This leads to a sequence of numbers in which each term (except
the first two) is the sum of the two preceding it.

1 1 2 3 5 8 13 21 34 55 89 andsoon

This sequence — the Fibonacci sequence — appears in nature in
many ways. For example the number of petals on a flower tends to
be one of these numbers. Many flowers have five petals, some have
only three, some have eight or 13. Daisies tend to have 21 or 34
depending on the species, and sunflowers 55.

The ratios of successive terms in the Fibonacci sequence, 13/8,
21/13, 34/21, 55/44, . . ., get increasingly close to the golden sec-
tion, but never reach it. This inspired a musical creation by the
Norwegian composer Per Norgaard in his composition Voyage
into the Golden Screen. In the first part of this work he uses beat
frequencies in the Fibonacci sequence to give ratios of beats that
approach the golden section. In the second part the listener has
passed through a ‘golden screen’, and hears harmonious melodies
carried by strings and woodwind.

The precise value of the golden section can be calculated
using the following equation, where x is the golden section (see
Appendix 1):

X*-x-1=0
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This equation does not split into two factors. It is irreducible, and

has two solutions: (1 + \B)/Z and (1 - \5)/2. The golden section is

the one having a plus sign for the square root, and it works out to
be approximately 1.618. Neither solution is a ratio of two whole
numbers, so we call them irrational — this doesn’t mean unreason-
able or illogical, but simply comes from the word ratio. A number
that can be written as a ratio of two whole numbers is called
rational.

The first people to notice the existence of irrational numbers
were the Pythagoreans — the followers of Pythagoras who lived in
Croton on the southern heel of Italy. They wished to express the
universe in terms of whole numbers and ratios of whole numbers,
and it disconcerted them that the ratio between the diagonal of a
square and the length of one of its sides is irrational. It upset the
idea that nature, like musical harmony, should be based on ratios
of whole numbers. The brotherhood was troubled and one mem-
ber was expelled when he wanted to broadcast this new know-
ledge. An apocryphal story even has him being drowned at sea to
silence him. However, the existence of irrational numbers became
a well-known fact.

In the equation above, the two solutions can be interchanged by
switching the sign of the square root. Interchanging irrational
solutions is exactly what Galois was doing and by examining the
group of allowable interchanges, he could detect whether or not
the solutions to a given equation could be expressed in terms of
square roots, cube roots, and so on. We will come back to this
later.

Interchanging things is an old trick, beloved by magicians. When I
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was a child my father used to do conjuring tricks, one of which
illustrates the point rather well. There were two wooden stands,
each supporting a flat wooden rabbit, one white and one black.
He placed a green cover over each rabbit, mumbled a magical
incantation and the rabbits appeared to change places. The white
one on the left was now on the right, and the black one on the
right was now on the left. The trick was repeated several times and
the rabbits kept changing places.

After several repetitions the trick seemed to become obvious.
The rabbits were not really changing places, it was just that the
stands and their covers were being turned round. Each rabbit was
both black and white, black on one side and white on the other.
But this was a sucker trick, one that you think you understand
until suddenly at the end you find you have been fooled. Finally
both covers were removed at the same time, showing one rabbit to
be yellow and the other red!

The relevance to Galois’s work is that the black and white rab-
bits are like the solutions to an irreducible quadratic equation. If

one solution is (1 + \B)/Z the other solution must be (1 — \,/3)/2;

they are like two sides of the same thing, hidden from view by the
equation itself.

Galois, of course, was concerned with equations of a higher
degree where there are more than two solutions. So he was dealing
with rabbits that could appear not just black or white, but also
red, yellow, and other colours. The more colours, the more pos-
sible interchanges, and the complexity of the interchanges was
what Galois was studying. Eventually this complexity renders a
general formula for equations of degree 5 or more impossible.
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Galois knew that the solutions to an irreducible equation must be
irrational, and the number of solutions equals the degree of the
equation. A quadratic equation (one of degree 2) has two solu-
tions, a cubic equation (one of degree 3) has three solutions, and
so on. This follows from the ‘fundamental theorem of algebra’,
first proved in 1815 by Gauss.

Irrational solutions, like the quarks of quantum physics, only
appear in multiples — and in each multiple there is a symmetry
between them. Galois’s genius was to analyse this symmetry, rather
than the solutions themselves, which he could treat as objects, like
rabbits, that could be interchanged with one another.

Interchanging several things at once is called a permutation.
This is a mathematical term meaning a rearrangement of objects,
such as beads on a string, or people sitting round a table. Some-
times it refers to an alternative arrangement, as in ‘there are six
permutations of three beads on a string’, and sometimes it refers to
the act of rearranging, as in ‘the permutation interchanges the end
two beads, leaving the others as they are’. The act, or operation,
of rearranging is what we need.

Suppose, for example, that you have three chairs around a table
occupied by Anthony, Beatrix, and Charles, in a clockwise order.

)

Beatrix

C )

Anthony Charles
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First interchange Beatrix with Anthony, leaving Charles in
place; that’s a permutation. Then interchange Beatrix with
Charles, leaving Anthony in place; that’s a second permutation.
The first permutation followed by the second yields a third per-
mutation: it sends each person to the seat on their left.

What Galois examined was a system of permutations having
the property that one followed by another always yields a third
permutation in the same system. He called such a system a
group. Groups arise naturally when you permute similar parts of
a fixed pattern. If two permutations both preserve the pattern,
then so does the permutation obtained from one followed by the
other.

Galois’s group of permutations for a given equation allowed
him to ignore the technical details of how the solutions could be
expressed. By concentrating on the possible ways of permuting
them among themselves, he was able to take an eagle’s eye view,
and this is the magic of mathematics — allowing us to avoid tech-
nicalities and concentrate on the main game. As he wrote in an
unpublished preface to his work:

Since Euler [a mathematician who calculated things effortlessly
and could write a whole paper between the first and second calls to
dinner], calculations have become more and more necessary but
more and more difficult . . . one can therefore conclude with cer-
tainty that it has become more and more necessary to embrace
several operations at once, because the mind can no longer stop to
look at details.

Jump on calculations with both feet; group the operations, clas-
sify them according to their difficulty and not according to their
form; such according to me is the task of future geometers; such is
the path I have embarked on in this work.*
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For a given equation, Galois grouped all the allowable permuta-
tions together. This is now called the Galois group of the equa-
tion. It has become a central part of mathematics, going beyond
the solution of algebraic equations to play a vital role in modern
number theory.

In Galois’s work a vital component was the idea of deconstruct-
ing a group into simpler groups. When this process is taken to a
conclusion, one reaches groups that can be deconstructed no
further. This is rather like deconstructing more familiar objects.
For example, a car can be deconstructed into a great many com-
ponents, all carefully listed in the parts manual. Some are very
simple: nuts and bolts, for example. Others are more complicated:
pistons, engine block, and so on. With groups of permutations the
really simple components are the prime cyclic groups.

Take an operation — such as a rotation, or a permutation — and
keep doing it until everything is back where it started. The
number of times you must do the operation to achieve this is
called its order, so, for example, a mirror symmetry has order 2,
and a rotation by 90° has order 4. A group generated by a single
operation is called cyclic, and its size is the order of the operation
you started with. A cyclic group of size 2, for instance, is gener-
ated by an operation of order 2. The nature of the operation is
not important, and an operation of order 2 could take many
forms: a mirror symmetry, a rotation by 180°, a permutation
switching a pair of objects, and so on. We don’t worry about what
it could be, but simply treat it abstractly without regard to the
various ways it might be represented. This is what group theory is
all about. You take a group of operations, but tacitly ignore the
way in which they first arose, because they could have arisen in a
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different way. When the order of an operation is a prime number
it generates a prime cyclic group.

Cyclic groups are basic, but the prime cyclic ones are the most
basic of all. For each prime number p (2, 3, 5, 7, 11, and so on)
there is exactly one cyclic group of that size. Many groups can be
deconstructed into prime cyclic groups — but not all. The distinc-
tion between those that can and those that cannot is critical in
Galois’s work. He obtained a group of permutations from an equa-
tion, and the point was to deconstruct it into simpler groups, as far
as possible. As he said in the letter he wrote the night before the
fatal duel: ‘If each of these groups has a prime number of permu-
tations, then the equation will be solved using roots [meaning
square roots, cube roots, etc.]; otherwise, not.”* In other words,
when Galois’s group for a given equation could be deconstructed
into prime cyclic groups, then the solutions to that equation could
be expressed in terms of square roots, cube roots, and so on.

This led to an interesting phenomenon. According to the
fundamental theorem of algebra, every equation has solutions.
According to Ruffini and Abel there are equations of degree 5
whose solutions cannot be expressed in terms of square roots, cube
roots, and so on. So the conclusion was inescapable. For some
equations Galois’s group of permutations could not be decon-
structed into prime cyclic groups. Apparently the prime cyclic
groups were not the only atoms of symmetry, and as Galois wrote,
‘The smallest number of permutations an [atom of symmetry] can
have, when this number is not prime, is 60.”*

This group of size 60 is the group of even permutations of five
objects, and is the first in a sequence of symmetry atoms that goes
on forever. But what is an even permutation, as opposed to an
odd one?
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To illustrate this distinction, here is a puzzle, invented in the
nineteenth century by Sam Loyd (1841-1911), the USA’s greatest
puzzle master. It consists of a small frame containing 15 tiles that
can slide in a four by four array; there are 16 positions, one of
which is blank. Sometimes the tiles are labelled by numbers, some-
times by letters, and sometimes they are painted with parts of a
picture that has to be recaptured after the tiles have been scram-
bled by a series of random moves. Each move interchanges the
blank space with a neighbouring tile.

In Loyd’s original version, the tiles were numbered from 1 to 15
and were placed in an almost correct order, except that the last two
tiles, 14 and 15, were transposed. The challenge was to get them
into the correct order with the blank space back in the bottom
right hand corner. Sam Loyd shrewdly offered a reward of $1,000
(worth well over $100,000 today) for a solution to this problem.
His money was safe, however, because the problem is impossible!

13 | 15 | 14

This impossibility is due to the difference between even and
odd permutations. Here is the idea. Forget about the puzzle for a
minute, and just think about permutations. A permutation that
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transposes the position of two objects, leaving everything else
alone, is called a transposition. For example, if six people were
sitting round a table and two of them swapped places while every-
one else remained seated, that would be a transposition. Using a
suitable sequence of transpositions, any desired permutation can
be achieved.! But here is the extraordinary thing: if you can do a
permutation using an even number of transpositions, then you
cannot do it using an odd number, and vice versa. Every permuta-
tion is either even or odd in this sense, but cannot be both. For
example, if you change the order of chairs round a table by a
sequence of seven transpositions, you have done an odd permuta-
tion. If someone says they can do the same thing using exactly six,
you can bet money they are wrong. They might be able to do it in
five, but not in six. Your permutation was odd and they cannot do
it using an even number of transpositions, no matter how hard
they try.

Now back to the puzzle. The interchange of two tiles is a single
transposition, and therefore an odd permutation. But any permu-
tation that replaces the blank space at the bottom right must be
even for the following reason. Each move transposes the blank
with a neighbouring tile. If you imagine the 16 spaces being
coloured white and black like a chess board, then each move sends

" Think of rearranging a collection of people sitting round a table. Take one
person A, whom you wish to be in the seat presently occupied by B. Interchange A
with B, leaving everyone else in place. Both A and B were in the wrong seats, but A
is now in the correct seat, so the number of people in correct seats has increased:
by one if B is still in the wrong seat; or by two if B is now in the right seat.
Continue with further transpositions if necessary until eventually everyone is in
the correct seat. For example, with six people round a table, any permutation can
be achieved by at most five transpositions.
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the blank from white to black, or black to white. An odd number
of moves will change the colour of the blank space, so if it ends
up where it started the number of moves is even. No matter what
moves you do, if the blank space returns to the bottom right
corner you have done an even permutation. You cannot end up
transposing two tiles, and returning everything else to its original
position, because that is an odd permutation. Sam Loyd’s cash
offer for a solution was safe, and he knew it!

Anyone who has tried this puzzle knows it needs some thought. If
you simply make a series of random moves and hope for the best,
there is little chance of hitting on the right arrangement because
there are 10,461,394,944,000 possible patterns. This is the number
of even permutations of 16 objects (in this case 15 tiles and one
blank space).

You can calculate this by first working out the total number of
permutations of 16 objects. Think of 16 beads on a string — it
doesn’t matter what the objects are — and string them from left to
right. There are 16 choices for the first bead, 15 choices for the
second, 14 choices for the third, and so on. The total number of
arrangements is therefore 16 x 15 x 14 x ... x 2 x 1, which is
20,922,789,888,000. This is the number of permutations of 16
objects. Half these permutations are even and half are odd, so we
divide by 2 and find that the number of even permutations is
10,461,394,944,000.

The reason for dwelling on even permutations is that whenever
five or more objects are being permuted, the group of all even
permutations is ‘simple’ — it is an atom of symmetry. In Galois’s
work an equation of degree 5 has five solutions, and for many
such equations his group of permutations contains this ‘simple’
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chunk, so it cannot be deconstructed into prime cyclic groups.
This implies that the solutions cannot be reduced to a combin-
ation of square roots, cube roots, and so on, and hence there is no
formula for equations of degree 5 or more. It is an elegant way of
seeing that a formula for solving such equations is not possible,
and is a good illustration of Aristotle’s quotation at the beginning
of this chapter that it is not what we know, but how we know it.
The group of even permutations of five or more objects is an
atom of symmetry — a group that cannot be deconstructed, and is
not prime cyclic. As the number of objects increases these groups
grow exponentially. They get increasingly large and complex as
more objects are being permuted. Here are the sizes of the first few:

No. of objects 5 6 7 8 9 10
No. of even 60 360 2,520 20,160 181,440 1,814,400
permutations

In this book we are looking for the atoms of symmetry — that’s
how we shall uncover the Monster — and we now have a whole
series of them. But the groups of all even permutations get too
large too quickly. They are like a sequence of increasingly gigantic
worlds, but inside they contain some fascinating objects. As an
analogy think of the planet Earth. The Earth cannot be decon-
structed and put together again, but from close up it contains
interesting objects like trees. They too cannot be deconstructed,
and they in turn contain things such as leaves. And the leaves
contain cells, and the cells contain complex molecules, and the
molecules contain atoms.

39



IRRATIONAL SOLUTIONS

Now to the atoms of symmetry. Most live in predictable fam-
ilies, but others have astonished mathematicians. Later in the
book, for example, we shall meet two exceptional symmetry
atoms, each permuting 100 objects. One has size 604,800, the other
44,352,000. These may seem large but they are tiny compared to
the world they live in. They are both subgroups of the group of
even permutations of 100 objects, which has the following size:

46,663,107,721,972,076,340,849,619,428,133,350,245,357,984,132,190,
810,734,296,481,947,608,799,996,614,957,804,470,731,988,078,259,
143,126,848,960,413,511,879,125,592,605,458,432,000,000,000,000,
000,000,000,000

This is so gigantic that even the larger of the two symmetry atoms
above (the one of size 44,352,000) is less than one million trillion
trillion trillion trillion trillion trillion trillion trillion trillion tril-
lion trillion trillionth the size of it.? It is impossible to grasp the
immensity of this, but an analogy may help: this ratio is more
than a trillion trillion times larger than the ratio of the volume of
the whole visible universe to the volume of a single atom.

The question is how we are to find these mysterious atoms of
symmetry that exist somewhere in the universe of all permutations.
Finding them is far harder than looking for the proverbial needle in
a haystack because one is searching for things one doesn’t know
about in a universe so immense that it is beyond comprehension.

21 am using the terms trillion and billion in their American usage as
1,000,000,000,000 and 1,000,000,000. In European usage billion means million
squared, which is 1,000,000,000,000; and trillion means million cubed, which is
1,000,000,000,000,000,000.
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Bear in mind that we are looking for ‘simple’ groups — the
atoms of symmetry. Any mathematician can construct groups
that are not ‘simple’ by putting simpler groups together, like using
a construction kit to build complex objects from simple ones.
Some of these constructions are quite subtle; for example, you can
combine four groups of size 2 in fourteen different ways to obtain
a group of size 16. Evidently there are lots of different groups out
there, but the ‘simple’ ones — the atoms of symmetry — are far
rarer. Here is a list showing the size of those having fewer than
2,000 operations.

60 168 360 504 660 1092

The one of size 60, and that of size 360, are the groups of all even
permutations of five objects and of six objects respectively. The
others in the list above, like the elements of chemistry, fit into a
‘periodic table’. More on that later.
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Groups

The chief forms of beauty are order and symmetry and
definiteness, which the mathematical sciences demonstrate
in a special degree.

Aristotle

In the mid-nineteenth century the idea of a group was still quite
new, and the first methods for finding ‘simple’ ones were to look
at groups of permutations. Other methods came into play later, but
let us start with permutations. The idea is to restrict the permu-
tations in various ways to obtain sub-groups. Here is an example.
Four people sit down to play bridge. There are eight ways of
arranging the seating so that the two bridge partnerships are
undisturbed, and they are shown in the following diagram.

N W S E
w E S - WN S
S E N W
N | E b W
| - E ) - S
S N ‘ W E
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From the arrangement in the top left-hand corner, the other
arrangements are obtained by rotating (top row), or by inter-
changing positions across the dotted lines (bottom row). These
operations form a group in Galois’s sense: one operation followed
by another gives a third operation in the same group. For example,
a clockwise rotation by 90° followed by a left/right flip takes you
from the first position to the second position and then to the last
position in the bottom right. This combination yields the same
result as a diagonal flip, but if you do the left/right flip first and
the 90° clockwise rotation second, you get the other diagonal
flip. The order in which two operations are performed makes a
difference to the result.

The group of all permutations of four people has size 24, but by
restricting to permutations that preserve the bridge partnerships,
we obtain a sub-group of size 8. Notice that 8 is a divisor of 24,
and this is a general fact: if one group is a sub-group of a larger
group then the size of the smaller divides the size of the larger.
This is a theorem, proved by Lagrange, whose work on algebraic
equations was already mentioned, and had a major influence on
Galois.

Lagrange was born Guiseppe Lodovico Langrangia in 1736, and
grew up in Turin, northern Italy. This was a city of ancient pedi-
gree, which later served as the capital of Italy when it was first
united in 1861. In Lagrange’s time it was the capital of the
kingdom of Sardinia (which included the island of Sardinia along
with part of northern Italy).

Lagrange’s father worked in the treasury, but lost most of his
money in speculation, and Lagrange later said, ‘Had I been rich, I
would probably not have devoted myself to mathematics.” As it

43



GROUPS

was, he did, and by the time he was 30, Frederick the Great of
Prussia offered him a chair in Berlin. Frederick (called the philo-
sopher king by Voltaire) wrote to Lagrange saying that as ‘the
greatest king in Europe’ he wished to have ‘the greatest mathe-
matician in Europe’ at his court. The job had excellent working
conditions and salary, and Lagrange was delighted. He married
and moved to Berlin, where he produced no end of papers on
mathematical subjects from number theory to the stability of the
solar system. Berlin is where he wrote his paper on algebraic
equations, which inspired all the work that followed, culminating
in that of Galois.

After more than 20 years in Berlin, Lagrange moved. His wife
had died, his patron Frederick the Great had died, and Louis
XVI of France invited Lagrange to Paris. He moved there in
1787, took up apartments in the Louvre, and soon married
again, to a much younger woman — daughter of a well-known
astronomer.

Within two years of his arrival in Paris the French Revolution
started, but Lagrange avoided all factions and political entangle-
ments, just as he had done in Berlin. He remained safe, even dur-
ing the reign of terror, unlike some others. When the great chemist
Antoine-Laurent Lavoisier was guillotined, Lagrange commented,
‘It required only a moment to sever that head, and perhaps a
century will not be sufficient to produce another like it.” Lagrange
died in 1813, aged 77, by which time Napoleon had made him a
senator and a Count of the Empire.

Lagrange’s work on permutations is only a tiny part of his
output, but his theorem was a vital one. Theorems are the life-
blood of mathematics. A theorem is a statement that has been
proved true; without them we are lost because we cannot be

44



GROUPS

certain that we are building on a firm basis. If something looks as
if it is true, and we build it into our theory, but find later that it is
false, then part of the edifice collapses. Later results will have been
proved by assuming the truth of the false result, and they will then
have to be completely re-proved. Mathematicians are very careful
about this. An important result, one that will be used elsewhere,
has to be proved to everyone’s satisfaction.

Theorems are essential, and this is how mathematics makes
progress. It is rather different from theoretical physics in this sense.
As the famous physicist Richard Feynman said, “The whole pur-
pose in physics is to work out a number, with decimal points, etc.!
Otherwise you haven’t done anything.’* Well, in mathematics,
the whole point is to state and prove a theorem. Some theorems,
of course, are more important than others, and most are rather
specialized results that map out the mathematical landscape. If
part of that landscape ceases to be of concern to mathematicians
its theorems may simply gather dust in the bowels of university
libraries, but some results are of perennial relevance, and many
of the early Greek theorems in Euclidean geometry are fine
examples.

Lagrange’s theorem leads to an interesting question. Suppose you
have a group of size 60. It could easily have a sub-group of size 15
because 15 is a divisor of 60, but must it contain a sub-group of
this size? The answer is no in general, but is yes in an important
special case. If the divisor is a prime number then there is a sub-
group having that size. For example, a group of 60 elements must
contain sub-groups with two elements, three elements, and five
elements, because 2, 3, and 5 are prime numbers that are divisors
of 60.
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This was proved in 1845 by Augustin Cauchy. He has appeared
already in connection with Galois, and was a leading light in the
mathematical world and a mathematician of wide-ranging inter-
ests. If he was sent a paper to referee, he was quite likely to try to
improve the results and publish a new work himself. For example,
on 1 March 1847, Gabriel Lamé published a proof of Fermat’s
Last Theorem (a famous conjecture that was already 200 years
old).* Lamé’s proof rested on unproved assumptions, and for
several weeks Cauchy published notes attempting to validate these
assumptions. Then on 24 May the German mathematician Ernst
Kummer produced a counter-example, showing that Lamé’s
assumptions were wrong (and hence his proof of Fermat’s Last
Theorem was invalid). One might suppose Cauchy would remain
silent, but not at all. Two weeks later he presented results general-
izing those of Kummer.

Cauchy was an astonishingly productive mathematician and
wrote research papers at a terrific pace. French mathematics had,
and still has, a regular bulletin called the Comptes Rendus, in
which research notes are published very swiftly. In a period of less
than 20 years, Cauchy published 589 notes in this bulletin, and
submitted yet more for which there was no space. This is in
addition to the more than 800 research papers he published.

As well as being an extraordinarily active mathematician,
Cauchy was sharp-witted, opinionated, a religious conservative,
and a staunch monarchist. He was on the opposite side of the
political spectrum from Galois (who was sharp-witted, opinion-
ated, and a fervent republican). But they had rather different
upbringings. Cauchy was born in 1789, the year of the French
Revolution, and his family fled Paris for the French countryside
when the Reign of Terror started in 1793. He developed an
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abiding dislike for revolution and republicanism, and became a
supporter of religious values and the repressive monarchy of
Charles X. But behind this reactionary attitude there was a man
of principle. He disapproved of Louis-Phillipe, who became king
of France after the revolution of 1830, and he went into exile
rather than take the oath of allegiance. This was an odd thing
to do since he was under no pressure to do anything other than
take the oath, but principles were principles, and he went first to
Fribourg, thence to a position in Turin, and later to Prague. He
returned in 1838, but could not reclaim his university employment
because he had not taken the oath, so he accepted a position with
the Academy of Sciences instead. In 1848 the Second Republic
was formed, the oath of allegiance was abolished, and Cauchy
returned to his university position. Four years later in 1852 the
oath was reinstated, but two people were exempted, by the grace
of the emperor Napoleon III. One was Cauchy (the other was a
famous physicist named Arago).

Cauchy sounds like an awkward man, but in truth there was
another side to him. He was a devout Catholic and played a lead-
ing role in several charities, including one for unwed mothers and
another doing rescue work for criminals. At one point he spent
his entire salary for the poor of the small town near Paris where
he lived. When the mayor begged him to spare himself some
money he responded, ‘Don’t worry, it’s only my salary; it’s not my
money, it’s the emperor’s.’

In early May 1857, Cauchy sent yet another paper to the
Academy, promising further results in another few weeks, but
on 22 May he died.

With results like those of Lagrange and Cauchy, along with
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Galois’s deep ideas, there was clearly a need for groups of permu-
tations to receive a more sustained and systematic treatment, and
the person who rose to the occasion was Camille Jordan. He was
an engineer by profession, like his father, but became a professor
of mathematics in Paris. His work covered a wide spectrum, and
he wrote the definitive text on analysis, a branch of mathematics
dealing with quantities that can change gradually from one value
to another. Then in 1870 he published his Traité des Substitutions
(Treatise on Permutations), which became the standard reference
for group theory for the next 30 years.

Jordan was 32 when he published his Treatise, and he lived
another 52 years, surviving four of his sons who died in the
First World War (1914-18). He outlived his wife, and sadly only
three of his eight children were alive when he died in 1922, aged
84. But Jordan’s work gave group theory a foundation on which
future generations of mathematicians could build. His exposition
attracted a wide audience and his fame spread well beyond
France. Foreign students attended his lectures and two among
them, Felix Klein from Germany and Sophus Lie from Norway,
later produced ideas leading group theory in new directions. We
shall meet them both soon.

In his Treatise on Permutations, Jordan explained Galois’s work
and showed how to deconstruct any finite group into simpler
groups. This doesn’t mean finding sub-groups; it means finding
two or more groups that can be combined to form the original
group. At least one of these must be a sub-group of the original,
but a group can be built in layers, like a cake. The layer at the
bottom is a sub-group, but another group might piggy-back on
top of it, like icing on a cake.

The idea of breaking things up into simpler components is

48



GROUPS

pretty fundamental in science, and the trick is to reach a stage
where the components are as simple as possible. For example,
a physical substance can be broken into molecules, and these in
turn may be split into even simpler molecules, but the process
comes to an end when you reach the level of atoms. At that
stage it doesn’t matter how you did the decomposition, you
always get the same collection of atoms. Jordan, in collaboration
with a German mathematician, showed it was the same with
groups — no matter how you do the deconstruction you always
get the same collection of ‘simple’ groups, the same atoms of
symmetry.

Most large groups can be deconstructed into simpler com-
ponents, and the group of symmetries for the Rubik cube provides
a good example. As you rotate each face of the cube by 90°, you
permute the corner pieces, and the side pieces among themselves.
The group of permutations generated by all sequences of such
rotations has size greater than twenty million million million, but
it can be deconstructed into the following atoms of symmetry: the
group of all even permutations of the eight corners, the group of
all even permutations of the 12 edges, and prime cyclic groups of
sizes 2 and 3 that have the effect of flipping or rotating the edge
and corner pieces. The Rubik cube is a hard puzzle because its
symmetry group is so large, but the deconstruction of this group
makes it possible to come up with a reasonable technique for
solving it.

Now consider the symmetries of a solid cube, as in Chapter 1. At
that point there was no mention of permutations, but any group
of symmetries can be treated as a group of permutations, and the
cube is a good example.
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_________________

A symmetry of the cube permutes the eight corners among
themselves. But while the corners are being permuted, so are the
edges and faces of the cube, so the symmetry group of the cube
may be thought of as a group of permutations in several ways: on
its eight corners, or on its six faces, or on its 12 edges.

This makes things interesting, and more complicated, but
mathematicians have a nice way of avoiding such complications
by stepping back into a world of greater abstraction. They do this
by studying groups in the abstract. These groups can reveal them-
selves as groups of permutations, or groups of motions, or groups
of transformations of one sort or another. But they can be created
and studied in the abstract, and this is exactly how the Monster
was discovered.

The Monster did not appear as a group of permutations, though
it can certainly be represented in that way, nor did it first reveal
itself as a group of symmetries, though it can certainly be seen
in that way too. It first arose as an enormous collection of oper-
ations: something to be studied, something to be constructed
(did it really exist?), something to be understood. The fact that
mathematicians can get a vague but increasingly precise view of
something that is ‘out there’ may come as a surprise to some
people. We are not usually thought of as creative artists, yet in
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some ways what mathematicians do has a lot in common with
what artists achieve. A painter may know exactly what he or she is
trying to paint, but getting the result is not so easy. A choreo-
grapher may know exactly what effect is needed, but fitting the
steps to the music is what it is all about. In fact, let me compare an
abstract group to a dance. The group can be represented in many
ways, and the dance by many different dancers. Mathematicians
frequently omit the distinction between an abstract group and
some favourite way of representing it, but as W. B. Yeats wrote at
the end of his poem ‘Schooldays’:

O body swayed to music, O brightening glance,
How can we know the dancer from the dance?

Treating groups in an entirely abstract way is done in serious
mathematics books, but we don’t need it. We need only think of a
group of operations, such as permutations. Quite what the oper-
ations do does not matter — they can be represented in different
ways according to the object they are acting on, and different
objects can help in understanding the same group. Another good
analogy is music. A piece of music can be accompanied by words,
movement, or dance, or can simply be appreciated on its own. It is
the same with groups. They can be seen as groups of symmetries,
permutations, or motions, or can simply be studied and admired
in their own right.

Sometimes an abstract group appears in two surprisingly different
ways, and group theorists find this intriguing. We have already
met a fine example: the symmetry atom of size 60 appeared as the
group of all even permutations of five objects, but also as the
rotation group of the dodecahedron. The connection between
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these two is something of an anomaly, but such anomalies yield
larger anomalies, producing things such as the Monster that do
not fit into any expected pattern. We shall find out more about
this later.

In the meantime the study of group theory moved in an
unexpected direction that later led to a ‘periodic table’ of sym-
metry atoms. The man responsible for the new development was
a Norwegian pastor’s son named Sophus Lie (pronounced Lee).
Lie theory, like Galois theory, has since become a vital part of
modern mathematics.
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As the sun eclipses the stars by its brilliancy, so the man of
knowledge will eclipse the fame of others in assemblies of
the people if he proposes algebraic problems, and still more
if he solves them.

Brahmagupta (598-670)

The most famous scientists have bold new ideas that take their
subjects in directions hitherto undreamed of, and mathematicians
are no exception. Galois was one of these, and another was Sophus
Lie, whose work moved group theory on to radically new ground.
Aiming to develop a Galois theory for differential equations —
more on that later — he created groups in which one operation
could be gradually transformed into another. These groups are
infinite in size, but had a huge impact on the discovery of all finite
symmetry atoms.

Sophus Lie had a personality and physique to match the
strength of his work. One recent biographer has referred to him as
‘the embodiment of an archetypical character in a theatrical
drama — with his forceful beard, his sparkling green-blue eyes
magnified by the stout lenses of his spectacles . . . a primal force, a
titan replete with the lust for life, with audacious goals and an
indomitable will’.*
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Lie was born in 1842 in Oslo (known as Christiania at that
time), but his family moved to the coast when his father was
appointed pastor of a small town. His mother died a year later,
when he was ten, and at 15 Lie left home to go to school in Oslo,
and later to university there. As a student he was a great gymnast
who loved jumping the wooden horse in the gym, and would also
leap over real horses, placing his hands on the horse’s back and
springing over to the other side. Lie was also a great walker and
went on long hiking treks. Fifty miles in a day was normal
for him, and if he wanted to visit his family he simply walked the
36 miles to get there. One day he even walked the round trip just to
get a book he needed.

At school and university, Lie specialized in science, but he
found the last year of his studies rather tedious, and when his
courses were finished in December 1865 he went home with no
idea what to do. In March he wrote to a close friend, saying,
‘When I bid you farewell before Christmas I believed that it was
for now and all eternity, for my intention was to become a suicide.
But I do not have the strength for it.’* Lie suffered from bouts
of depression, but could also be extremely active and enthusiastic.
That summer he went to a town further south to stay with his
eldest sister and her husband, a doctor with a thriving medical
practice. Sophus Lie was well known in the town for his various
escapades, and that summer he decided to organize a swimming
school for the doctor’s son and the child’s friends. They rowed the
doctor’s boat out into the fjord, with Lie in the stern ready to
throw cold water on any boy who broke the unison of the stroke.
To expedite the swimming lessons, Uncle Sophus strapped a life-
belt on his nephew and tossed him overboard. There was a fresh
breeze coming down the fjord and it swept the boy off along
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the wave tops, where they lost sight of him. Fortunately the
onlookers, watchful of the unpredictable Sophus Lie, followed the
boy, jumped into another boat to pull him out, and wrapped the
shivering little fellow in a coat. When Lie’s boat pulled alongside,
he demanded the child back, but they demanded his clothes to be
handed over to their boat. As a recent biographer put it, ‘Sophus
Lie was said to have cursed them up and down, taunted them and
threatened to smash in their skulls if the boy did not come over
to his boat.”* However, the clothes were handed over and the
whole town came to meet them when they got to shore. It was said
that local mothers would later use Lie as a threat to keep naughty
children in line: ‘Now behave, or Sophus Lie will come and
get you!’

At this time Lie still had no idea what to do with his life. He loved
teaching, and had worked as a private tutor when he was a stu-
dent, but he didn’t want to become a school teacher. He worked as
a teaching assistant in astronomy, his favourite subject at the time,
but failed to get a permanent position — the astronomy professor
couldn’t stand his behaviour and was said to be outraged that on
cold days Lie leaped over the apparatus to keep warm. He was
once locked into the observatory — no one knows whether by
accident or not — and simply jumped out of an upstairs window.
Although he eventually lost the position, he continued his love for
astronomy and gave a series of popular lectures on it.

Slowly, Lie got more interested in mathematics, and in the
summer of 1868 there was a big meeting in Oslo. He attended, and
heard of recent work by French, German, English, and Italian
mathematicians. Thus far he had done no research work himself,
and wrote later that “To get involved in original scientific work
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never occurred to me. Above all, I was thinking of improving
our mathematical pedagogy. I was preoccupied considerably with
this.”*

That autumn he started his own research project in geometry,
and published a paper at his own expense. It was translated into
German and accepted by an important journal founded by
Leopold Crelle in 1826 and edited in Berlin. This won him a
grant, and the next autumn he went to Berlin. There he met a
young German mathematician named Felix Klein, who later
became one of his most influential supporters. Lie and Klein
formed a very productive relationship because Klein loved hearing
of new things to fit into his big picture of mathematics, while Lie
loved to pursue his own idiosyncratic ideas. The result was that Lie
explained his ideas to Klein, Klein reacted to them, Lie responded
to Klein’s reactions, and a very useful discussion developed.

In early 1870 Lie went to Paris, and Klein joined him later, at
the same hotel. In Paris they met, among others, Jordan, whose
magnificent treatise on groups of permutations was just rolling
off the presses. The visit was very stimulating, but ended suddenly
in mid-July when war with Prussia broke out. Lie and Klein soon
left, which was a good thing because in September Prussian forces
surrounded Paris, and kept it under siege. The minister of war left
the city by balloon to join a government in exile at Tours, but
French troops were unable to lift the siege, and the inhabitants of
Paris were in some trouble. As winter set in, animals from the zoo
were auctioned off for meat.

Klein had returned immediately to Germany, but Lie decided
to visit Italy to see a mathematician named Luigi Cremona. He
intended to hike there, but had gone no further than Foun-
tainbleau when he was arrested and imprisoned on suspicion of
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being a German spy. There are several stories about this. Appar-
ently he had a good technique for keeping his clothes dry in the
rain by removing them, putting them in his backpack and carry-
ing on. This may have attracted some attention, but so did the
fact that he sang Norwegian songs — which would have sounded
German to some people — and carried a sketch book that he used
to draw interesting features in the landscape. His mathematical
papers were taken to be coded messages, ‘lines’ and ‘spheres’
being interpreted as ‘infantry’ and ‘artillery’, and he was in prison
for a month before a mathematical friend named Gaston Darboux
came with a letter from the interior ministry to have him released.

When Lie finally got back to Norway in December, he was well
known as the scientist who hiked through France and was impris-
oned as a suspected German spy. He had fun telling the story, but
soon got down to serious work, and by next summer completed
an excellent doctoral thesis, and applied for a position that had
recently opened up in Sweden. This prompted the Norwegian
Parliament to debate establishing a new chair for him. When the
matter came up for discussion he tried to push his way forward in
the public gallery and was thrown out, but all went well. It was a
resounding vote of confidence in his abilities, and Lie quickly
became a big name in mathematics.

Lie admired Galois’s work enormously and wanted to do for dif-
ferential equations what Galois had done for algebraic equations.
Differential equations involve rates of change, and have wide uses
in economics, engineering, physics, and other areas. They are very
different from the algebraic equations that Galois studied, where
each equation has a finite number of solutions. By contrast a
differential equation has infinitely many solutions. For example,
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Sophus Lie in 1886 shortly before he left Norway to take up the chair
in Leipzig.

a single differential equation describes a vibrating string, but
its solutions depend on where the string was stopped, and this can
be continuously varied, giving infinitely many solutions. Like
Galois, Lie wanted to consider all the solutions together — and
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then see how one morphed into another as the initial parameters
changed.

This led him to groups of ‘continuous transformations’, where
one operation could gradually transform into another. Gradual
changes pass through infinitely many stages — as you accelerate
your car its speed never jumps suddenly, so it passes through
infinitely many tiny changes. This makes Lie’s groups of continu-
ous transformations infinite in size, and it is remarkable that they
are so useful in finding the finite atoms of symmetry.

Why this should be the case is an interesting question for philo-
sophers. It is similar to a question about physics. If the universe is
made of tiny quantum particles that can only jump minutely from
one state to another, why do we use continuous mathematics, such
as string theory, to describe it? In Chapter 7 we shall find a way
back to finiteness — in mathematics, though not physics.

Lie’s work on differential equations used multidimensional geo-
metry. This sounds hard, and those trained in the traditional
methods of differential equations found it difficult to follow him.
Initial incomprehension like this occurred with Galois’s work, but
unlike Galois, Lie lived to promote his methods and encourage
students.

His use of geometry came about by treating the parameters of
an equation as coordinates. The idea of doing geometry by
coordinates had now been around for over two hundred years,
after being pioneered by René Descartes, the famous French
philosopher who lived in the first half of the seventeenth century.
In 1637 Descartes produced his famous Discourses on Method,
which he wrote in French rather than Latin. He wanted people
without a scholarly training to be able to follow his arguments,
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believing that everyone could tell the true from the false by nat-
ural reasoning. His Discourses had an appendix on geometry that
could be understood independently of the rest, and introduced
coordinates (the term Cartesian coordinates is derived from the
name Descartes).

Here is how it works in two dimensions. Each point of the plane
is specified by two numbers, a and b, measuring distances along
the two axes.

/) bt ® (a,b)

0,0) a

In three dimensions each point has three coordinates (for, example
two horizontal and one vertical), so we can think of three dimen-
sional space as the set of triples (a,b,¢) where a, b, and ¢ range
over all numbers. It is a small step from here to create four dimen-
sions: simply take the points to be all quadruples (a,b,¢,d). Once
you have the hang of this you can create five, six, seven, or more
dimensions.

This sounds deceptively simple, but I assure you that mathemat-
icians do not easily see pictures in four or more dimensions. Like
sculptors, most are fairly good at three dimensions, but four
dimensions is another matter entirely. We might get quite adept at
it, with practice, but increase the number of dimensions and pic-
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tures become impossible. What we can do, however, is to work by
analogy. We know what it means to go from a two-dimensional
plane to three-dimensional space, and we can think in a rather
formalized way of adding a new dimension, and then another
dimension beyond that, and so on. For example, in a plane, two
lines that are not parallel must intersect, but in three dimensions
this is not necessarily the case. Going from two dimensions to
three opens new possibilities, and it is similar when you can go up
from three dimensions to four. In three dimensions a line and a
plane intersect unless the line is parallel to a line in the plane. But
in four dimensions a line can be parallel to nothing in a plane, yet
they may not intersect. It is as if the line can cross the plane
without touching it, but be careful of thinking in those terms. In
four dimensions a plane does not have two sides, any more than a
line has two sides in three dimensions.

Before we ask whether geometry in four or more dimensions
has anything to do with reality, it is worth asking a similar
question about our usual Euclidean geometry in two or three
dimensions. This is a geometry in which points have no size and
lines have no thickness. It is a convenient abstraction, but it is only
an abstraction and is not the real geometry of the universe,
whatever that might be. For example, in the real universe
elementary particles have a certain finite size, however small, and
lines and planes have a certain thickness. Quantum theory asserts
that we cannot go down beyond a certain finite quantum limit;
there is a graininess to the universe that we cannot seem to beat.
The abstract world of Euclid’s geometry has no graininess in this
sense, but it is extremely useful, and we don’t dismiss it just
because it isn’t physics. Nor should we dismiss space of many
dimensions just because it isn’t what we seem to perceive.
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It is very useful in practical applications of mathematics
because each variable in a problem has a certain degree of free-
dom, and each new degree of freedom adds a new dimension. If
you have two or three variables the problem can be described in
geometry of two or three dimensions, but with more variables you
need geometry in more than three dimensions. In Lie’s case an
equation could have many parameters, so he needed multidimen-
sional space. It is a vital component in modern mathematics and
we shall meet it again later.

After Lie assumed his new chair at the university, he pursued his
research programme with vigour. In 1872 he visited Klein, who
was now in Erlangen, and when he returned that Christmas he
got engaged to a young lady of 18, and they were married in 1874.
His work progressed well, and he was soon led to the concept of
“finite, continuous groups’ — now called Lie groups. The word
continuous meant that each transformation in the group could be
continuously modified, and the word finite meant there were
finitely many degrees of freedom for these modifications. To put it
another way, there were finitely many coordinates, and Lie’s
groups are finite dimensional.

Here is an example. Take a circular disc with its centre fixed.
The disc can rotate around its centre, and one rotation can be
gradually transformed into another. The rotations form a Lie
group, which we can interpret geometrically as a circle, each
point on the circle representing a rotation: one point represents
no rotation, and as you move round the circle the angle of rota-
tion increases, until you are back where you started. A circle is
a line that curves round on itself, and this is an example of a
one-dimensional Lie group.
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For a higher dimensional example, think of an object moving in
a flat plane. As we slide the object around there are two degrees of
freedom for the motion because the plane is two-dimensional, and
if we allow the object to rotate this gives a third degree of free-
dom. The group of all motions in the plane, sliding and rotating,
is three-dimensional: two flat dimensions for the plane itself, and
one curved dimension for the rotation. Geometrically one can
view this group of motions as a three-dimensional curved space,
which is impossible to imagine — unless you have had lots of prac-
tice. This is for motion in two dimensions, but if we replace the
two-dimensional plane by three-dimensional space it becomes
even more complicated. A tennis ball moving and spinning in
three dimensions has six degrees of freedom,* so describing its
motion uses six dimensions!

Now I should emphasize that while Lie and Klein were using
geometry, they did not take it as their starting point. As Klein
wrote in a letter to another mathematician in 1870, ‘we do not
think of the geometrical configuration as given, and ask about the
transformations; rather we consider the system of transformations
as given, and ask about the geometrical configurations’.*
This was analogous to Galois’s attitude; he used groups of per-
mutations, but that was not his starting point. He started with
equations. And so did Lie, differential equations in his case, but
his geometric insight then led him to groups of continuous
transformations.

In the meantime a German high school teacher, Wilhelm Killing,
who was five years younger, was pursuing similar ideas on groups
of transformations. He wrote a long essay in 1884, sent it to Felix
Klein (who now occupied the chair of geometry in Leipzig), and
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received an immediate response informing him of Lie’s work.
Killing then wrote to Lie in Norway, requesting copies of his
papers, but got no response. He had no access to papers in
Norwegian journals, so Killing wrote again to Klein, who wrote
to Lie, and the next year papers were sent, but only on loan, and
when Killing asked to keep them longer he got no response. Being
a very sincere man, he felt he had to return them before fully
digesting the results.

As for Lie, he felt a bit cut off in Norway, and in September 1884
Klein despatched a young German mathematician to Norway
to help him out. The young German from Leipzig was named
Friedrich Engel (not to be confused with Friedrich Engels, who
worked with Karl Marx). Engel returned home next summer with
a huge manuscript. The following year, 1886, Klein moved from
Leipzig to a chair in G6éttingen — where he built up a magnificent
school of mathematics — and Lie was persuaded to leave his
beloved Norway and take Klein’s old chair at Leipzig. It seemed
an excellent move for Lie, who could now work with Engel on the
massive book they were writing together. Students could easily
come from other parts of Germany to work with Lie, and since he
was well known in Paris, and was very much at home with their
mathematical attitudes, they sent some of their best students to
Leipzig. Everything seemed to be going swimmingly.

Meanwhile, Killing got into communication with Engel, who, as
soon as he read the long 1884 essay, wrote back to assure Killing
that ‘you have also discovered transformation groups in Lie’s
sense’. Killing responded two days later to urge Lie and Engel to
get on and publish their results, ‘[This] will, I hope, induce you
and Lie to publish more rapidly. Naturally I do not want to enter
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into competition over this theory, but . . . I have been led to results
that at least until now have not been published.’

Killing soon went to visit Lie in Leipzig, but it seems the two of
them did not hit it off. Lie’s reaction is recorded in a letter to
Klein: ‘Killing was just here. He has some really nice ideas. In
many other respects, however, he does not make a solid impres-
sion.” Their relationship did not improve, and animosity devel-
oped later as Lie’s mental health broke down, but let us first see
where Killing came from and what he achieved.

He began university studies in 1865 in north-western Germany
at a university (in Minster) that had no mathematicians; the sub-
ject was taught by observational astronomers. His fellow students
were also a disappointment, and Killing recalled that they ‘showed
almost no interest whatsoever in science itself; they wished (with
very few exceptions) to study only what was needed for the exam-
inations’. After four semesters he abandoned Miinster and went
to Berlin, which was the centre of mathematics in Germany at the
time. Killing appears to have been a good-hearted man because he
interrupted his studies one year to teach, sometimes as much as
36 hours a week, at a school in a small town where his father
was mayor. The school had been threatened with closure and
Killing taught all subjects. He then resumed his studies in Berlin,
got his doctorate, and went back into teaching. In 1880 he became
professor at an academic training establishment for Catholic
clergymen.

From this unpromising position, Killing wrote his 1884 essay,
and then started pursuing the idea of classifying Lie’s groups
of continuous transformations — what we now call Lie groups.
This means finding all the ‘simple’ ones and placing them in
families. In rapid succession he wrote a series of three papers
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on this classification, and sent them to Klein for publication —
Klein had become an editor of Crelle’s Journal, where Lie’s first
paper had appeared. It is a fine publication that exists to this
day. The third paper was sent in October 1888 and published the
next year.

Killing had discovered a ‘periodic table’ of Lie groups. He
placed them in seven families: 4 to G.'

Al A2 A3 A4 AS A6 AT A8 A9 ...
Bl B2 B3 B4 B5 B6 B B8 B9 ...
2 3 4 5 C6 C7 c8 a...
D4 D5 D6 D7 D8 DY...

G2 4 E6 E7 E8

The number in each case is called the rank of the group, and is
related to the number of dimensions it can operate in. The higher
the rank, the higher the number of dimensions, so as we move
from left to right in this table the number of dimensions increases.
The A family is the simplest; families B, C, and D are more com-
plicated but all relatively similar to one another. These four fam-
ilies, A, B, C, and D, taken together, are called classical. The five
exceptions of types E, F, and G terminate at rank 8. There are no
Lie groups of types E9, F5, or G3; if one tries to create such things
they become infinite-dimensional. On the other hand, decreasing

" The reason 1 have not listed C1, D1, D2, or D3 is that either they are not
‘simple’ or they are included in those already listed. For example, D3 is the same
as A3.
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the rank only yields entries already in the table — for instance, ES
is the same as DS5.

Killing had worked very swiftly and he knew only too well that
some of the theoretical analysis was inadequate. He wrote to
Klein that ‘If I said I was satisfied with the stated results I would
be lying. I have attempted on many occasions to find an error in
the proof, but so far without success. . . . I thought it best to pub-
lish the results with the proof as quickly as possible, since only
then can a serious thorough examination take place; and it is of
the greatest importance to me that complete certainty about these
questions be achieved as quickly as possible.’

The importance of Killing’s work was immediately clear to Lie,
who wrote that it ‘contains results of the greatest importance, if
only everything is correct’. Later he wrote to Klein that ‘Killing
has done beautiful research. If, as I believe, the results are correct,
he has performed an outstanding service. Generally speaking,
now the theory of transformation groups . . . will reign over vast
areas of mathematics.’

It is really unfortunate that Killing, working as he did at a school
for the training of future clerics, had no research students. He had
no junior mathematicians to clean up after him, and tie up some
of the loose ends, and he regretted it, ‘If only I had students in
mathematics, I would allow many excursions into structure. The
groups of ranks 4 to 8 provide easy material for seminar works.’

Lie, on the other hand, had plenty of students in his new posi-
tion at Leipzig, but he found the teaching to be a very different
matter from his easy experiences in Norway. As he explained to a
Norwegian friend, ‘While in Norway I hardly spent five minutes a
day on preparing the lectures; in Germany I have to spend an
average of three hours. The language is always a problem and
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above all, the competition implies that I have to give eight to ten
lectures a week.” In 1888 the first volume of his massive book with
Engel was published, and in 1889 the second volume went to
press, the same year that Killing published the third of his classifi-
cation papers. Then, in late 1889, Lie had a nervous breakdown,
and was admitted to a mental hospital, where he remained for
seven months.

In the meantime, Killing’s discomfort with his proofs was well
founded. The results were correct, but an error in the first paper
contaminated the other two papers, and a new approach was
needed. Killing left the matter to others and returned to his main
love in mathematics — the foundations of geometry. That was what
had driven him to study groups of continuous transformations in
the first place, and he was now offered the chair of mathematics in
Miinster, the university where he had first been a student.

He was now free to pursue his original research programme, but
it is an extraordinary thing in life that creative people often do
their greatest work when circumstances are at their most difficult,
and this seems to be the case with Killing. In his new comfortable
position at Miinster, he published a book on the foundations of
geometry, but as Engel wrote, ‘Killing’s latest opus on the founda-
tions of geometry contains real nonsense’. Nevertheless, Engel
strongly supported Killing for a book prize because he knew how
important this work was for its author, and how it had led him to
his really great work, the classification of Lie groups.

As Killing fades out of the picture we are left with two problems.
His results were correct, but the theoretical analysis had to be
fixed up so that their truth could be readily verified. The other
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problem was to construct all the groups in the families Killing
had classified, to verify that they all exist.

It remained to Elie Cartan (1869-1951), a young graduate
student in Paris, to put these things right. Cartan was the son of
a miner, plucked from obscurity by an inspector of schools. This
gentleman encouraged one of the teachers to give the boy spe-
cial coaching and he won a full scholarship to a fine boarding
school. From there he went from strength to strength and in
1888 entered the Ecole Normale (the same place Galois had
been a student, and now the premier establishment in France for
mathematics). In 1892 Cartan returned to Paris from a year’s
military service, and took rooms with another student who had
just returned from studying in Leipzig. This student told Cartan
about Lie’s groups and Killing’s classification. Cartan became
fascinated and decided to devote his doctoral thesis to this
topic.

As for Lie, in autumn 1892 he had fully recovered from his long
depression, and was able to take delight in the fact that his theory
was now all the rage in Paris. As one senior French mathemat-
ician, Emile Picard, wrote to him, ‘You have created a theory of
major importance that will be counted among the most remark-
able mathematical works of the second half of this century.” By
1893 Picard could write again that ‘Paris is becoming a centre for
groups; it is all fermenting in young minds, and one will have an
excellent wine after the liquors have settled a bit.’

In 1893 the final volume of his great book with Engel was
published, and Lie himself visited Paris. Cartan was thrilled to
meet the great man and wrote later, ‘I can never forget all that I
owe to the great Norwegian scientist whom I had the honour of
seeing often in Paris in 1893.” Cartan completed his doctoral
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thesis the next summer, filling the gaps in Killing’s work, and
confirming the periodic table that Killing had found.

Cartan was just the man for the job. He had a great talent
for abstract structural reasoning and this helped him to clarify
and develop Killing’s ideas. Some of the technical details were
renamed and new details were added, and the result is now known
as the Killing—Cartan classification.

Abstraction is a vital part of mathematics. It is essential for
simplifying and merging difficult technical ideas, so that new
progress can be made. Cartan’s attitude to abstraction is well
illustrated by a talk he gave much later in life (1940 in Belgrade):

More than any other science, mathematics develops through a
sequence of consecutive abstractions. A desire to avoid mistakes
forces mathematicians to find and isolate the essence of problems
and the entities considered. Carried to an extreme, this procedure
justifies the well-known joke that a mathematician is a scientist who
knows neither what he is talking about nor whether whatever he is
talking about exists or not.

In 1894, the year Cartan completed the classification, the Norwe-
gian National Assembly established a chair for Lie. This was very
welcome because he wanted to return to his homeland. But his
wife and daughters had friends in Leipzig and were reluctant to
leave, so Lie stayed on, until by 1898 it became clear that he was
now suffering from pernicious anaemia, and it was high time to
go. The family returned to Norway. Lie delivered some lectures in
the autumn of that year but soon had to give up, and was reduced
to holding seminars in his home. They too soon had to stop, and
Lie died in February 1899.
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Lie Groups and Physics

How can it be that mathematics, being after all a product of
human thought independent of experience, is so admirably
adapted to the objects of reality?

Albert Einstein

While Lie was engaged on his research, the structure of classical
physics still seemed fairly secure, but this did not last. When Lie
died, shortly before the end of the nineteenth century, the edifice
of classical physics was starting to crack. New observations at
the microscopic scale, within atoms, and at the cosmic scale even-
tually led to the development of quantum theory and general
relativity, and Lie’s work found a ready audience among some
young physicists, as we shall see.

The originality of his ideas had opened up a new field of math-
ematics, and in 1922 at a lecture to the Norwegian Mathematical
Association, his erstwhile collaborator Engel expressed himself
enthusiastically on this point:

If the power of invention is the true yardstick of mathematical
greatness, then Sophus Lie must be reckoned as the first among all
the mathematicians of the time. The new fields that he has opened
for mathematical research are so extensive, the methods he has
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created, so fruitful and far-reaching, that only extremely few can,
in this respect, stand to be measured with him.*

Since Lie was such a towering figure, his name has become associ-
ated with a broad swath of modern mathematics, all under the
heading of Lie theory. This means not just the Lie groups them-
selves, but algebraic structures called Lie algebras, along with
other material related to the classification work of Killing and
Cartan. As the twentieth century progressed, Lie theory seemed
only to increase in importance, and in 1974 the French mathemat-
ician Jean Dieudonné wrote, ‘Lie theory is in the process of
becoming the most important field in modern mathematics. It had
gradually become apparent that the most unexpected theories,
from arithmetic to quantum physics, all circle around this field, as
around a giant axis.”* Quantum physics has made extensive use
of Lie theory, and I will mention some applications in this
chapter. Later in the book it will connect up with the Monster, via
string theory, which is a way of combining quantum physics and
general relativity theory.

The theory of relativity, for which Einstein is so famous, began
to emerge in the late nineteenth century from the study of elec-
tricity and magnetism. These were seen as manifestations of
something called electromagnetism, which propagates as a wave:
radio waves, X-rays, and light being examples. Experiments had
shown that electromagnetic waves travel at a speed — the speed of
light — that appears the same to all observers no matter how fast
one is travelling relative to another. This apparent paradox led to
the special theory of relativity, where three dimensions of space
and one dimension of time were replaced by four-dimensional
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space-time. The geometry of space-time was studied mathematic-
ally by Hermann Minkowski, in a way that we shall meet again in
Chapter 17.

The idea that all motion was relative begged the question of
acceleration. Was that to be taken as relative to the observer too,
or was there a state of no acceleration that could be agreed by all
observers? As everyone knows, if you accelerate quickly in a car
or a plane, you are pulled back into your seat. The force is real, so
presumably the acceleration is real too, but what do you measure
it against? Suppose you are ensconced in a spaceship in the deep
reaches of space, and the spaceship accelerates. You will feel a
pull. Is that any different from the pull of gravity? As Einstein saw
it, there was no difference. The two were indistinguishable, and
to make sense of this he had to curve space-time. Minkowski’s
geometry, which originally had no curvature, now had to bend
under the gravitational effect of massive objects, rather as a heavy
person sags a cheap mattress.

Special relativity, along with the curvature of space-time from
massive objects, was called general relativity, and was soon used
to explain an anomaly in Mercury’s orbit round the sun. General
relativity became an accepted part of physics, but Einstein wanted
to see gravitation and electromagnetism understood on the same
basic principles, and as one recent biographer of Lie has written,
‘Elie Cartan was one of his most important partners in this dis-
cussion. In a three-month period, from December 1929 until
February 1930, they exchanged twenty-six letters. Einstein was
seeking mathematical expertise from Elie Cartan: not the least
fascinating aspects were Cartan’s theoretical interpretations of
general presentations of space based on representations of Lie
groups.’* In this context a representation of a group refers to a

73



LIE GROUPS AND PHYSICS

way it can operate in multidimensional spaces, and this became
vital in quantum theory, and for understanding the way electrons
are arranged in atoms.

Electrons, like other quantum particles, have the strange property
that they can behave as both particles and waves. First think in
terms of particles. An electron has a negative electric charge, and
in an atom the electrons orbit a very small, positively charged
nucleus. The Danish physicist Niels Bohr created this model of
the atom to fit in with the experimental evidence, and it was an
excellent model, except for one thing. Classical physics foresaw
that an electron travelling along a curved path must emit radi-
ation. This would decrease its energy and it would end up spiral-
ling in to the nucleus — according to classical physics, atoms
couldn’t exist. This problem was overcome by supposing that
energy could not gradually dissipate, but could only be emitted in
multiples of a small quantum of energy. An electron could not
gradually change its energy or its orbital pattern. There would
always be a small quantum jump. This would stop an electron
from spiralling in to the nucleus; it would reach an orbit of lowest
energy where it could go no lower.

A quantum jump breaks the idea of continuity, suggesting that
Lie’s groups would have no useful role to play, but on the con-
trary, they are very useful in quantum theory because elementary
particles also exhibit themselves as waves. An electron appears as
a wave, smeared out over space, but it is also a particle: if you
manage to grab it, you grab all of it. You can never get only part
of an electron. Quantum theory is a mysterious business, and as
Niels Bohr himself said, ‘Anyone who is not shocked by quantum
theory has not understood it.” With the passing of time one might
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expect that the subject would become easier to comprehend, but
as the late Richard Feynman said in a comment in 1967, ‘I think I
can safely say that nobody understands quantum mechanics.’*

The wave nature of an electron means that as it orbits the nucleus
of an atom, it is not at all like a planet orbiting the sun. It has to
be treated as a wave encircling the nucleus, and that brings Lie
groups into the picture. An atom exhibits spherical symmetry, and
this suggests that the Lie group of rotations in three-dimensional
space should be important in the structure of electron orbits. In
the simplest case an orbit has spherical symmetry, the electron
being smeared out around the nucleus like the surface of a balloon
around its centre.

Now a very important principle must be taken into account.
Two electrons in the universe cannot be in the same state. Within
an atom this means that no two electrons can have the same
energy and the same orbit — unless they have opposite spins. An
electron spins, either one way or the other, either spin-up, as they
say, or spin-down. When an orbit is spherically symmetric two
electrons are allowed, one spin-up and one spin-down.

The group of rotations leaves a spherically symmetric orbit
unchanged, and the operation of the group is said to be one-
dimensional. But most electron orbits in a large atom are not
spherically symmetric, and the group of rotations can change one
into another. In this case the operation of the group is more than
one-dimensional — there is more than one degree of freedom. The
number of degrees of freedom — or mathematically speaking the
number of dimensions — has to be an odd number: 1, 3, 5, 7, etc.
This is a mathematical fact about the Lie group of rotations in
three dimensions.
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For each degree of freedom there can be just two electrons, one
spin-up and one spin-down. When there are three degrees of free-
dom this means that six electrons are allowed, and these electrons
form what is called an electron orbital. Since the number of
degrees of freedom is an odd number, the size of each electron
orbital is twice an odd number: 2, 6, 10, 14, etc. This means,
for instance, that the existence of electron orbitals filled by ten
electrons occurs for a good mathematical reason — it is because
the group of rotations in three dimensions has an operation in
five-dimensional space!

These numbers for the size of electron orbitals are critical in
creating the periodic table of elements. In other words, mathemat-
ical properties of the group of rotations in three dimensions are
determining factors in the structure of atoms.

This is one use of Lie groups, but there are other Lie groups also
involved in quantum phenomena. Physicists believe there are four
fundamental forces of nature: gravitation, electromagnetism, the
weak nuclear force, and the strong nuclear force. The first one
curves space-time, as described by Einstein’s general theory of
relativity. The other three are quantum forces, and to each one
physicists associate a Lie group, which they call a gauge group in
this context.

The gauge group for electromagnetism has one degree of
freedom, and this corresponds to the fact that one quantum
particle — the photon — acts as a medium for the force.* The
weak nuclear force, which is responsible for holding a neutron
steady, has a gauge group with three degrees of freedom, corres-
ponding to the three particles that mediate the force.* The
strong nuclear force, which is responsible for holding together the
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nucleus of an atom, has a gauge group with eight degrees of
freedom, corresponding to eight different gluons that mediate
the force.*

One of the things physicists want to understand is the relation-
ship between the three quantum forces: strong nuclear, weak
nuclear, and electromagnetism. Gravity is a separate problem
because there is no theory of quantum gravity yet. By seeing all
three as manifestations of a single force that perhaps existed at the
birth of our universe, physicists hope to get a deeper understand-
ing of quantum phenomena. If they knew exactly how to fit their
Lie groups together into one larger Lie group — there are many
ways of doing this, but the right one has to hold up under experi-
mental evidence — then they might discover a deeper symmetry
between all the elementary particles.

When quantum theory first hit the research journals in 1925, the
new advances were largely taking place in Germany, which was a
powerhouse of mathematics and physics at the time, but the con-
ditions for creating advanced new ideas in science didn’t last
because in 1933 Hitler came to power. The Nazi government soon
destroyed intellectual life, and when a Nazi minister visited
Gottingen in the 1930s, and asked David Hilbert — a famous
mathematician with a chair at the university there — how math-
ematics was doing now they had rid the place of the Jewish influ-
ence, Hilbert’s response was ‘There is no longer any mathematics
in Gottingen.” Indeed, it was the end of first-rate mathematics in
Germany for a long time. The Institute for Advanced Study had
just been founded in Princeton, and several of the best minds
went there: Albert Einstein and Hermann Weyl, for example, had
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both spent time in Gottingen. Weyl was a great proponent of Lie’s
groups and their use in physics.

The centre of gravity in mathematics was shifting, but even
before this shift occurred, an important new development in our
story had occurred in America.
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Going Finite

The infinite we shall do right away. The finite may take a
little longer.
Stanislav Ulam (1909-1984)

Lie’s groups of transformations, in Chapters 5 and 6, form the
prototypes for most of the finite symmetry atoms. On a philo-
sophical level this is surprising because Lie’s groups embody a
continuity that makes them infinite in size — one transformation
can gradually morph into another, just as we can gradually morph
one number into another by increasing or decreasing it. But finite
versions were created by a young American mathematician named
Leonard Eugene Dickson.

Dickson was the first graduate student in mathematics at the
University of Chicago, which is now one of the top academic
establishments in the world. In 1896, with a fresh PhD in his
pocket, he went to Europe to learn more, visiting Paris and
Leipzig. In Paris he met the young Elie Cartan, he of the Killing—
Cartan classification for Lie groups; and in Leipzig he met
Lie and Engel, soon after their great three-volume treatise had
been published. Paris and Leipzig were the places to learn about
these things, and when Dickson returned to America, he set about
creating finite analogues for most of the Lie groups in the periodic

79



GOING FINITE

table, providing, in the event, a huge collection of symmetry
atoms.

To achieve this, Dickson replaced the usual system of numbers
by a finite system. This finite system of numbers had to be self-
contained in the sense that the sum, difference, product and quo-
tient of any two numbers must be another number in the same
system. In other words you could do all the usual operations of
arithmetic and stay within the system. Let’s see how this is
possible.

In any sort of arithmetic, finite or not, the only numbers we insist
on having are 0 and 1. If our system allows addition we need 1 + 1
and1+1+1and 1+ 1+ 1+ 1, and so on. This seems to demand
infinitely many numbers, so how can a finite system be self-
contained? It seems impossible, yet we already know one: the
twelve digits on a clock face. You add one digit to another by
moving in a clockwise direction, and you subtract one from
another by moving counter-clockwise. For example, on a clock
face 5 plus 9 is 2: if you add five hours to 9 o’clock you reach
2 o’clock. As an example of subtraction, if you move five hours
back from 9 o’clock you reach 4 o’clock, so 9 — 5 = 4. This looks
like ordinary arithmetic because in moving back five hours from
9 o’clock we didn’t go past the 12 o’clock point. When we do,
for example, by counting back nine hours from 5 o’clock and
reaching 8 o’clock, we get the equation 5 — 9 = 8. This looks
strange at first, but the point is that the twelve numbers on a clock
face form a system that is self-contained in terms of addition and
subtraction. I shall call it 12-cyclic arithmetic.

Of course there is nothing exceptional about 12; any whole
number will do. Let us try the same thing with 7, and create
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7-cyclic arithmetic. Place seven numbers — 0, 1,2, 3,4, 5 and 6 —in
a circle.

These numbers can be added to one another, or subtracted from
one another, by moving around the circle: clockwise for addition,
and counter-clockwise for subtraction. For example, in 7-cyclic
arithmetic 4 + 5=2 because if you move clockwise five steps beyond
4 (or four steps beyond 5), you reach 2. As an example of subtrac-
tion notice that 4 — 5 = 6, because if you move counter-clockwise
five steps back from 4 you reach 6.

I am using 7 as an example, rather than 12, because 7 is a prime
number. It has no divisors except 1 and itself. This makes a big
difference when it comes to multiplication. For example, on the
usual clock face 12 is identical to 0, so 3 x 4 is 0. The product of
two non-zero numbers is zero. This leads to problems, and to
avoid them mathematicians tend to do cyclic arithmetic only
with prime numbers such as 7. For instance, in 7-cyclic arithmetic
3 x4 =35, because 12 is the same as 5. This looks odd if you have
never seen it before, and it takes some getting used to.

Division looks strange too, but first we should understand what
we mean by division. As a child I was at first baffled when faced
with questions such as 6 = 3 =. . . until my teacher explained that
I simply needed to find a number that, when multiplied by 3,
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would give 6. I soon found that division problems could be solved
by using a multiplication table and working backwards, but I felt a
bit let down. Division was supposed to be difficult, and looking
up the answer seemed rather too easy.

Now try division in 7-cyclic arithmetic. What is 6 = 3? Why, it’s
2 of course. Now try 5 + 3. Is this possible? If so, it has to be a
number which, when multiplied by 3 gives 5. This may seem
impossible; but the answer is 4, because we noticed earlier that
3 x 4 =5 in 7-cyclic arithmetic. This implies that 5 + 3 =4, and
5 = 4 = 3. Of course there should be a way of doing division
without knowing the answer in advance, and there is. The method
shows, by the way, that division is always possible in p-cyclic
arithmetic whenever p is a prime number (of course you can’t
divide by zero; that is not an option in any system of numbers).

Finite arithmetic enables mathematicians to go from continu-
ous things that rely on the real numbers, to finite things. It is as
basic to mathematics as the telescope is to astronomy, and what
Dickson did was to telescope some of Lie’s groups down to finite
versions. He dealt with families 4, B, C, and D because they could
all be treated as symmetry groups in Euclidean space, and Dickson
could replicate this symmetry as he went down the telescope from
the real numbers to p-cyclic arithmetic (p being a prime number).
For example, in the Lie family of type 4 (Chapter 5) there are
symmetry groups denoted A1, A2, A3, etc. Each of these can now
appear in different finite versions, one for each prime number: 2, 3,
5,7, 11, etc. In other words, there is an A1 group for each prime
number, an 42 group for each prime number, and so on.*

Some of this work was not new. For example, Jordan, in his
treatise of 1870, had already used cyclic arithmetic with the
A-family, and Galois himself had done it with 41. He originated
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the idea of cyclic arithmetic, and it is sometimes known as Galois
arithmetic in his honour.

Dickson’s symmetry atoms in families 4, B, C, and D — the
classical ones — cover most cases, but not all. He managed later to
handle two non-classical cases, but a uniform method for all the
Lie families took over half a century from the time of Dickson’s
book. We shall see why later. In the meantime I want to explain
how geometry with a finite system of numbers plays a vital role in
our modern electronic world.

The simplest finite system of numbers is 2-cyclic arithmetic. There
are only two numbers: 0 and 1, and 1 + 1 =0. If you add 1 to itself
an even number of times you get zero; an odd number of times
and you get 1. With this system of two numbers you can do add-
ition, subtraction, multiplication, and division (of course you can
only divide by 1 — dividing by 0 is not allowed in any system).
Having just two numbers 0 and 1 may seem a bit trivial, but
2-cyclic arithmetic is extremely useful, because computers operate
using strings of zeros and ones.

Credit card numbers, bar codes at the supermarket, and many
other sequences of digits, are read and processed electronically by
first turning them into sequences of ones and zeros. When these
numbers are read there is always a chance of making errors, so a
certain amount of redundancy is built in. For example, the last
digit on a bar code is a ‘check digit’. If you alter it, or if one of the
digits in the code is misread, then the bar code will almost cer-
tainly be invalid. There won’t be any goods having that bar code.
If you make a single error in giving your credit card number you
will almost certainly have given a number that does not belong to
any credit card.
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This built-in redundancy means that we are not using all pos-
sible sequences of numbers. Those that we are using can be chosen
in such a way that simple errors and misreads can be quickly
corrected. Part of the trick in error-correction is to use geometry.
Here’s the idea. Suppose all the sequences we are using give points
on a plane in three-dimensional space. If you read or receive a
point that is slightly off the plane you know it’s an error, and you
correct it by moving to the closest point on the plane. This tech-
nique works really well with 2-cyclic arithmetic, but we need more
than three dimensions. Here is why.

In our usual geometry of three dimensions each point has three
coordinates, and each coordinate is a real number. When we
replace the real numbers by 2-cyclic arithmetic, each coordinate is
either 0 or 1. This means there are only two choices for each
coordinate, so the number of points is just 2 x 2 x 2 = 8. Eight
points are not much. They are not remotely enough for everyday
uses. My credit card, for instance, has a code number consisting
of sixteen digits (each from 0 to 9). Converted into a sequence
of ones and zeros, it needs 54 digits. A sequence like this can
represent a point having 54 coordinates, in other words a point in
54-dimensions.

Higher dimensional spaces are extremely useful for practical
applications of mathematics, and we shall meet them again on the
road to the Monster. In the meantime I want to emphasize that
group theory — the study of symmetry — was no longer confined to
France, Germany, Norway, and the USA. Britain joined in, with
enormous contributions from a man named William Burnside. He
was born in 1852 and died in 1927 at the age of seventy-five.
Burnside was just four years old when his father died, and his
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family was in straightened circumstances. Being a very bright
lad he won a scholarship to Christ’s Hospital, a school that
accepted only boys and girls from poor families. It was founded
in the sixteenth century when Grey Friar’s monastery in the City
of London was turned into an educational establishment for
London’s many street children. The school acquired a mission
to educate children from families that were poor or had fallen
on hard times, and winning a scholarship to Christ’s Hospital
became a great honour.

William Burnside studied there until 1871, when he went on to
Cambridge University. After completing his degree he spent the
next ten years coaching in mathematics and rowing, but towards
the end of this time he started publishing research papers, and at
the age of thirty-three was appointed Professor at the Royal Naval
College in Greenwich. Burnside didn’t take an immediate interest
in group theory, but when he did his contributions were wonder-
ful, and in 1897 he published a book with the title Theory of
Groups of Finite Order. It became a classic of mathematics, and in
the preface he wrote:

The subject is one which has hitherto attracted but little attention
in this country; it will afford me much satisfaction if, by means of
this book, I shall succeed in arousing interest among English
mathematicians in a branch of pure mathematics which becomes
the more fascinating the more it is studied.*

Burnside continued turning out excellent results, and in 1904 he
published an important theorem about ‘simple’ groups — the
atoms of symmetry. This theorem showed that if a ‘simple’ group
is not prime cyclic, then its size must be divisible by at least three
different prime numbers. For example, the smallest one has size
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60, which is divisible by the prime numbers 2, 3, and 5. The next
smallest has size 168, which is divisible by 2, 3, and 7. Burnside
proved that this must be the case. If a group is not prime cyclic,
and its size is divisible by only two different prime numbers, then
it cannot be ‘simple’; it must be composite.

This theorem of Burnside remains a famous result today, over a
hundred years later, showing that mathematics offers a greater
chance of immortality than almost any other subject. A theorem,
once proved, is good for all time, and Burnside’s theorem was a
culmination of lesser results, which could then be safely forgotten.
He and others had proved special cases of the result during the
late nineteenth century, but the new theorem in 1904 overwhelmed
this earlier work, and did so in a beautiful way. As one mathemat-
ician has written recently, ‘Burnside’s proof is very short and
elegant — one of the great gems of group theory. [Other] proofs
were found after a great deal of effort in the 1960s and early
1970s, but even the shortest of these cannot compare in elegance
and comprehensibility with the original.’*

Elegance and clarity are markers of excellent mathematics, and
Burnside had used a sophisticated new technique called ‘character
theory’ that we shall hear more of later. Other proofs of his the-
orem were less elegant because their authors were trying to avoid
‘character theory’. This is rather like going from Europe to China
without using the modern convenience of air travel. You can do
it, and it may be quite an interesting journey, but it will take much
longer.

Mathematics makes progress by proving theorems, but it also
advances by developing new methods to prove them. Finding
these new techniques is part of what mathematics is all about.
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They open up new territory for investigation and help us see
difficult technical results as manifestations of some deeper truth.

What some mathematicians do, rather than simply prove the-
orems, is to develop such techniques. The most famous is calculus,
developed by Newton and Leibniz in the sixteenth century. Using
calculus and his new theory of gravitation, Newton was able to
explain in a precise way the motion of the planets round the Sun;
not just the shape of the orbits, but the speed of motion. Since
then, calculus has been used on a whole range of problems, and is
a vital part of mathematics. The character theory that Burnside
used is far more specialized than calculus, but it is a very useful
technique, and will come up again later as we approach the
Monster.

Now let us turn to the table of symmetry atoms that emerged
from Dickson’s work, and find out how the missing pieces were
filled in.
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Structures are the weapons of the mathematician.
N. Bourbaki (1935-)

At the start of the twentieth century, in 1901, mathematicians had
a table of finite symmetry atoms, given in Dickson’s first book,
Linear Groups, with an Exposition of the Galois Field Theory. But
if Lie’s groups of transformations provided the prototypes, which
they did, then part of the table was missing. Dickson had tele-
scoped things down from the continuous world to the finite world
in the classical families 4, B, C, and D, but there were also the
exceptional families. Dickson later had some partial success with
these, but things were not complete.

Dickson’s work at the University of Chicago had started in
1900 and continued for thirty-nine years, but his interests grad-
ually took him in other directions. He published eighteen books
and hundreds of research articles, and supervised no fewer than
fifty-five PhD students, but it was up to someone else to pursue
the other exceptional Lie families. In 1939, the year Dickson
retired, war broke out in Europe, and pure mathematics had to
take a back seat. Governments had more urgent needs for mathe-
maticians, and by the end of the Second World War there was
still no solution.
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What was needed was a general method that would telescope
Lie’s groups down to finite versions in all cases, but part of the
problem was curvature. The geometric structure of a Lie group is
usually curved, and the way to handle curvature is to make flat
approximations, just as we do when we draw a map of the world.
Killing’s methods for classifying the different families of Lie’s
groups used exactly this method. The flat approximation comes
equipped with extra data, similar to lines of latitude and longitude,
but when finite arithmetic enters the picture, the map disintegrates
into lots of finite pieces and it was not clear what to do. Fifty
years later there was still no solution.

The method of obtaining flat approximations uses ‘calculus’, the
branch of mathematics first developed by Newton and Leibniz in
the seventeenth century. For example, if you take a curve and a
point on the curve, then the flat approximation at that point is
called a tangent line. Using calculus you can find the equations of
these tangents. The method, learned by generations of mathemat-
ics students, uses a limiting process: take a straight line that inter-
sects the curve at the point you want, and at a nearby point.
Gradually move this nearby point until the two points coincide.
The line will then be a tangent. But the method fails when we
move from the real numbers to finite arithmetic, because there is
no such thing as a gradual modification. A different approach is
needed.

Finding new approaches to such classical mathematics calls
into question the method we used to create it in the first place.
Should new methods simply develop in an ad hoc manner, or do
we need to form a coherent system of axioms and then develop
the modern branches of mathematics from there? The latter course
of action is similar to the method Euclid used in 300 BCE when he
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wrote his Elements of mathematics; he founded an axiomatic
approach to geometry that reigned supreme up to modern times.
Is this the way to do modern mathematics?

To some extent the answer is yes, and the man who rode for-
ward to take up the battle for the axiomatic approach was named
after a French general from the Franco-Prussian war (the war
that broke out in 1870 and forced Lie and Klein to abandon their
stay in Paris). The general’s name was Bourbaki, and in the
mid-twentieth century his namesake worked assiduously with his
collaborators to create a series of books called The Elements of
Mathematics.

These books developed an abstract and logical approach to
various branches of the subject. The attitude behind them is illus-
trated by an early Bourbaki paper, published in March 1949, and
addressed to mathematical logicians.

I am very grateful to the Association for Symbolic Logic for invit-
ing me to give this address — an honor which I am conscious of
having done very little to deserve. My efforts during the last fifteen
years (seconded by those of a number of younger collaborators,
whose devoted help has meant more to me than I can adequately
express) have been directed wholly towards a unified exposition
of all the basic branches of mathematics, resting on as solid a
foundation as I could hope to provide.*

This is written in beautiful English, and although Bourbaki’s
younger collaborators were all French, and their books were
written in French, many of them had worked in the USA, and
some still did. In this paper, Bourbaki gave his affiliation as the
University of Nancago, a combination of the University of Nancy
and the University of Chicago, where its authors were working.
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As you may have guessed, Bourbaki was a pseudonym being used
by a small cabal of French mathematicians who wanted to create
a new axiomatic approach to the main branches of mathematics.
Their work started in the early 1930s, and Armand Borel, a later
contributor to the Bourbaki project, describes the early years in
the following terms:

In the early thirties the situation of mathematics in France at the
university and research levels . . . was highly unsatisfactory. World
War I had essentially wiped out one generation. . . . Little informa-
tion was available about current developments abroad, in particu-
lar about the flourishing German school (Gottingen, Hamburg,
Berlin), as some young French mathematicians were discovering
during visits to those centres.*

The First World War affected France particularly badly because
so many of its young mathematicians were sent to the front lines
and died there. A wartime directory of the most prestigious estab-
lishment for mathematics in France shows that about two-thirds
of the student population was killed in the war. In Germany, by
contrast, young mathematicians were often employed on scientific
work, and their survival reinvigorated the universities when peace
returned. Henri Cartan, one of the Bourbaki founders and son of
the famous Elie Cartan, whom we met in Chapter 5, wrote:

After the First World War there were not so many scientists, |
mean good scientists, in France, because most of them had been
killed. We were the first generation after the war. Before us there
was a vacuum, and it was necessary to make everything new. Some
of my friends went abroad, notably to Germany, and observed what
was being done there. This was the beginning of a mathematical
renewal.®

91



AFTER THE WAR

The original Bourbaki group started with two young mathe-
maticians. One was Henri Cartan and the other was André
Weil, who became one of the greatest of twentieth-century mathe-
maticians. In 1934 they were both assistant professors at the
University of Strasbourg and they found the textbook for one of
the main courses inadequate in many ways. Cartan was constantly
asking Weil about the best way to present a given topic to the
class, so much so that Weil eventually nicknamed him ‘the grand
inquisitor’, and that winter he suggested they write themselves a
new text. As Borel writes, “This suggestion was spread around,
and soon a group of ten mathematicians began to meet regularly
to plan this treatise.” The loose circle of original contributors met
at the Capoulade, a café in the Latin quarter of Paris, to plan the
book. The original project was rather naive. They believed they
could draft the essentials of mathematics in a few years. In sum-
mer 1935 they met for their first congress, but it took four years to
produce the first chapter.

The Bourbaki meetings, all held in France, were exceptional.
Borel, whom I quoted earlier, recalls his astonishment at the
argumentative nature of the process: ‘I was not prepared for
what I saw and heard, “Two or three monologues shouted at top
voice, seemingly independently of one another” is how I briefly
summarized for myself my impressions of that first evening.’*
Indeed, Jean Dieudonné, who, along with Cartan and Weil,
was one of the founding fathers of Bourbaki, confirms Borel’s
impression:

Certain foreigners, invited as spectators to Bourbaki meetings,
always come out with the impression that it is a gathering of
madmen. They could not imagine how these people, shouting —
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sometimes three or four at the same time — could ever come up with
something intelligent.*

Bourbaki meetings were a kind of organized chaos, but it worked,
and books were written, one after the other. As to the name
Bourbaki, André Weil explained that he and a few other collabor-
ators were in Paris one year when there was a spoof on the annual
lecture that first year students were recommended to attend. On
this occasion an older student, disguised with a fake beard and an
unrecognizable accent, gave the talk. He delivered a clever lecture
in which all the theorems were wrong, in various non-trivial ways,
although some students claimed to follow the whole thing. His
final and most extravagant result was called Bourbaki’s theorem.
Weil and his collaborators were sufficiently amused to choose the
name, which was of Greek extraction, and Weil’s wife chose the
first name Nicolas.

Had Bourbaki been a practical scientist with a large laboratory
to fund, and massive research grants to apply for, he would
undoubtedly have done what all such people do. He would have
written research papers with his younger collaborators, giving his
name as first author. But in mathematics this is not the style. Most
mathematics papers are written by a single author. If two people
work in collaboration then they publish jointly, but their names
are always listed in alphabetical order. It makes no difference who
is senior or junior, who is the original instigator of the research, or
who produced the key idea that cracked the problem. If they work
together they are considered equal partners. Of course if someone
works alone then the paper has only one author, and this remains
true even though he or she received advice and help from
others. For example, a young person working under a senior
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mathematician, such as a thesis supervisor, merely writes a note of
thanks to the supervisor and anyone else who may have helped
with various ideas and suggestions.

The youngest of Bourbaki’s original collaborators was named
Claude Chevalley, and he certainly published plenty of research
papers on his own. In one of his most important, published in
1955, he finally cracked the problem of telescoping all Lie’s
groups down to finite versions.

Chevalley was born in South Africa when his father was French
consul in Johannesburg; he studied in France, and in 1931 went to
Germany to continue his studies. He returned to teach in France in
1936, and in 1938 went to the USA. When he wished to return
home in the mid-1950s, some mathematicians in France started a
campaign against him, since he had spent the difficult years during
and after the war in very favourable conditions. However, the cam-
paign was unsuccessful, and he returned to France and worked in
Paris until his retirement in 1978. I don’t know how Chevalley felt
about his detractors, but he was a man who delighted in abstract
principles, sometimes to the detriment of practical matters. For
example, in 1968 when the Paris students rioted, one contem-
porary recalls that ‘Chevalley took the side of the students and
advocated crazy things: every student should not have to take
exams (exams are repressive). Yet he had a high sense of quality in
mathematics and was extremely demanding for his own students
and himself.” His abstract attitudes made him perhaps the most
austere of the original Bourbaki group, but Chevalley could
produce wonderful mathematics papers and the 1955 paper was a
case in point.

Chevalley had finally broken the dam. He had telescoped all
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Lie’s groups down to finite versions, and other people then swept
downstream. One was a young Belgian mathematician named
Jacques Tits — we shall hear more of him later — and another was
Robert Steinberg in California. They both discovered new families
of symmetry atoms inside those that Chevalley had created, and
Steinberg gave his paper the title ‘Variations on a Theme of
Chevalley’.

At the same time, a Japanese mathematician named Michio
Suzuki, working at the University of Illinois at Urbana, made a
remarkable discovery. He had been working on symmetry atoms
having a certain type of cross-section (more on this technique
later), and discovered a whole new family of them. His work was
independent of Chevalley’s, and the Suzuki family at first seemed
quite different from those that Chevalley had derived from the Lie
families. But they were in fact related, and a Korean mathemat-
ician named Rimhak Ree, working at the University of British
Columbia in Canada, found the connection. He found three new
sub-families among some of the smaller Chevalley families, and
one of these turned out to be Suzuki’s. Ree’s work completed the
discovery of all but finitely many symmetry atoms, though no one
could be certain of that at the time.

These new families of symmetry atoms were just waiting to be
discovered, and when they were, they emerged together as if
springtime had just arrived. This is a strange phenomenon in
mathematics, and Gauss commented on it: ‘Mathematical dis-
coveries, like springtime violets in the woods, have their season,
which no human can hasten or retard.” After these new discov-
eries some experts guessed there were no more families of finite
symmetry atoms to be found, at least not with infinitely many
members, but it was not clear why this should be the case. If there
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were other families, mathematicians had to find them — and if
there were not then they needed a proof of that fact. Such a proof
did gradually emerge, but only in a long series of very technical
papers by many different authors. In the process it turned out
that although there were no other families, there were some
unexpected exceptions. Finding all these exceptions and showing
there were no more was the challenge, and it is from this great
work that the Monster finally emerged.

The methods that Chevalley, Steinberg, Suzuki, and Ree had used
were algebraic. But Jacques Tits in Belgium had used geometry,
and some people in other branches of mathematics wondered
whether a more geometric approach wouldn’t be preferable for all
these Lie-type families. After all, Dickson had shown that the
classical ones (families 4 to D) could all be obtained geometric-
ally, and there ought to be a uniform geometric way of getting the
others. There was, and Tits had been working on it for some time.
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The Man from Uccle

Symmetry, as wide or narrow as you may define its meaning,
is one idea by which man through the ages has tried to com-
prehend and create order, beauty, and perfection.

Hermann Weyl (1885-1955)

Each technical subject has its own specialized vocabulary. Medi-
cine uses terms derived from the classical languages Latin and
Greek. Physics invents its own words, such as protons, neutrons,
quarks, and lasers. Mathematicians need an enormous number of
technical terms; some come from ancient Greek, but others are
quite new, and are often ordinary words with technical meanings
peculiar to the subject.

I was once talking about this to a medical cousin and he
thought it was absurd. Why couldn’t mathematicians invent new
terms, like medical specialists do, using Latin or Greek termin-
ology, every time they need them? Surely common words can
be misinterpreted. But mathematicians use masses of technical
terms, far more than medical people, and when they need a word,
they give it a definition, rather like Humpty Dumpty in Through
the Looking Glass (whose author was an Oxford University
mathematician).

Some words acquire a special status and become standard
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terminology, impenetrable to anyone outside the subject. For
instance, mathematicians use the word ‘building’ in a completely
different way from its meaning as a place for living or working; it
refers to a mathematical object built up from crystal-like struc-
tures. Each finite symmetry atom in the ‘periodic table’ has its
own building, and buildings provide a geometric explanation
for all symmetry atoms in the table, in contrast to the algebraic
perspective of Chevalley and others.

Jacques Tits invented mathematical buildings, though he didn’t
call them that at first. Tits was born on 12 August 1930 in Uccle,
an ancient town that is now a suburb of Brussels. As a child of
three or four he was a mathematical prodigy, who surprised vis-
itors by being able to do all the operations of arithmetic before
practically being able to speak. He started school at the usual age
of six, but soon skipped a year, and later skipped several more.

Tits’s father was a mathematician: ‘He explained many things
to me, but after a while he refrained from explaining too much.’
This didn’t stop the young Jacques: ‘I took the books from his
bookshelves and started to read them.” But suddenly there was an
abrupt change of circumstances. ‘My father died when I was thir-
teen, and my mother then had very little to live on. The teacher at
school knew all this, and he suggested tutoring people to contri-
bute to the household expenses. I started tutoring people four years
older than me who were going to study engineering at university.’
A year later the young Tits himself went to university. The sooner
he entered, the sooner he would be able to earn a salary and help
to support his mother. He passed the entrance exam at fourteen,
started his studies at the Free University of Brussels, and con-
tinued tutoring to earn money. Brussels, as the capital of Belgium,
now has two free universities: a French one (the Univeristé Libre),
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and a Flemish one (the Vrije Universiteit), but at the time there
was only the French one, which was fine because French was his
mother tongue, though his surname was Flemish. In 1950, when
still only nineteen, he obtained his PhD.

Tits had a very geometric turn of mind, and in the early 1950s he
was working to develop a more geometric approach to Lie’s
groups of transformations. As we saw earlier, Lie’s groups came in
seven families, 4 to G, and Dickson had used the geometry under-
lying families 4, B, C, and D, along with £6 and G2, to obtain
finite versions. Tits wanted to do the same thing for all families,
and create finite versions of Lie’s groups in all cases.

Unfortunately for Tits, the more experienced mathematician
Claude Chevalley, who was over twenty years older, was already
on a similar track, using algebra rather than geometry. ‘I was
working with geometric ideas, but Chevalley had a faster method
in which he had a general construction, which I did not have at
first.” Tits and others soon produced variations on Chevalley’s
theme, but Tits was also working on a new theory that would
include all these variations. It took years to reach a fully developed
form — a new mathematical theory needs time to mature, like a
good wine — but when the theory of buildings was ready it was
welcomed by discriminating judges of good mathematics, such as
the Bourbaki group. More on that later, but what on earth is a
building?

Buildings are multi-crystals in a sense I shall explain, and I would
love to draw a picture of one, showing all its glorious symmetry.
Unfortunately this isn’t possible. A multi-crystal lives in a collec-
tion of intersecting universes, and a picture in our own universe is
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always squashed out of shape. If one part is right, another is
wrong, and most of the symmetry is lost. Pity. But let us look at
the simplest case, based on a flat two-dimensional crystal. Take a
hexagon. It has six edges, the word /exa coming from the ancient
Greek word for six.

A building, or multi-crystal, built out of hexagons is a network of
edges satisfying two conditions: there can be no circuit of fewer
than six edges; and any two edges must lie on at least one common
hexagonal circuit.

Here is a simple example. In this picture there are three paths
of length three from the top vertex to the bottom one; any two
of these paths, taken together, form a hexagonal circuit. This
gives three circuits, and each pair of edges lies on at least one
of them.
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This example is too simple to show much symmetry. If we go for
lots of symmetry then each vertex must lie on the same number of
edges, as in the next picture, where each vertex lies on exactly three
edges. This is a pleasing picture, but every single hexagon is
pushed out of shape and most of the symmetry is lost.

Here is how to read this picture. Treat it as a network of fourteen
vertices, all on the outer circuit, joined by twenty-one edges, four-
teen on the outer circuit and seven longer ones crossing it (ignore
the points where the interior edges cross one another). Although
the drawing is quite elegant, it fails to exhibit much of the sym-
metry: in a perfect geometric realization all edges would have the
same length and all hexagonal circuits would be perfect hexagons,
but it is not possible to draw it that way. There are twenty-eight
hexagonal circuits, and in this picture they come in four different
shapes, shown below. There are seven of each.
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The symmetry of this multi-crystal is not self-evident. It arises
from permuting the fourteen vertices among one another in a way
that sends edges to edges. In other words, if a pair of vertices is
joined by an edge, then after each permutation they must still
be joined by an edge. The group of these permutations is what
I am referring to when I talk about the symmetries of this
multi-crystal.

If you think this looks complicated, then you are in good
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company. Mathematicians find multi-crystals impossible to visu-
alize, so they just view parts of them. For example, they may view
a single crystal, and use their imagination and some algebra to do
the rest.

The crystals themselves follow a well-understood pattern, and in
three dimensions they are the regular polyhedra that we saw in
Chapter 1. There are just five of them: the tetrahedron, cube,
octahedron, dodecahedron, and icosahedron, shown below.
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A multi-crystal based on one of these polyhedra is far too compli-
cated to be shown in a picture. It has lots of faces, and for each
pair of faces there is a crystal containing both. No one tries to
picture the whole thing, but this doesn’t stop mathematicians
from working with them — and not only in dimension 3. In order
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to get all finite symmetry atoms in the table, Tits needed crystals
in dimension higher than 3, and then had to combine these higher
dimensional crystals into multi-crystals.

Higher dimensional multi-crystals sound pretty horrendous,
but the single crystals in higher dimensional space are not nearly
as diabolical, as you may judge for yourself.

Dimension Types of crystals

3 A3 B3 H3
4 A4 B4 F4 H4
5 A5 B5

6 A6 B6 E6

7 AT B7 E7

8 A8 B8 ES8

More than 8 Types 4 and B only

In dimension 3 there are three types of crystals: the tetrahedron
has type 43, the cube and the octahedron have type B3, and the
dodecahedron and icosahedron have type H3. The table lists
analogues in all dimensions for the tetrahedron (type A), and for
the cube and octahedron (type B). I want to convince you that
these higher dimensional analogues are relatively innocuous — not
trivial, of course, but not diabolical either.

Type A4 in two dimensions is the triangle, which has three verti-
ces. In three dimensions it is the tetrahedron: this has four vertices
and every pair of vertices forms an edge. In four dimensions there
are five vertices and each pair forms an edge. In five dimensions
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there are six vertices, and so on. In all cases each pair of vertices
forms an edge. Of course there are triangular faces, (solid) tetra-
hedral faces, and so on, but the underlying structure is quite
simple.

Type B in two dimensions is the square. In three dimensions it is
the cube (or the octahedron, but let’s concentrate on the cube). To
view its four-dimensional analogue, first view the cube in perspec-
tive, face on. In the picture the big square is the front face and the
small square is the back face. The other four faces lying in
between appear deformed out of shape by the perspective.

A cube

In the four-dimensional analogue of the cube, the square faces go
up a dimension to become cubes. Instead of seeing one square
inside another we see one cube inside another. Here is the picture.

A tesseract

Once again we are looking at things in perspective. The four-
dimensional cube (which is called a tesseract — I'll explain why
below) has been projected into three-dimensional space, and then
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of course into two dimensions to get it on to a sheet of paper. The
big cube and the small cube are the front face and the back face of
this tesseract. The in-between pieces are the other (cubical) faces.
There are six of them. In four dimensions they would be perfect
cubes too, but the perspective renders them out of shape. There
are computer simulations of four dimensions showing the tesser-
act rotating. As different faces move to the front, they become
perfect cubes.

This tesseract is a four-dimensional crystal of type B, and
its name comes from the Greek word tessera, meaning four. If
you were measuring four-dimensional volumes you would use
‘tesseractic centimetres’, as opposed to cubic centimetres in three
dimensions, or square centimetres in two dimensions.

In five dimensions the analogue of the cube and tesseract can
be pictured as one tesseract inside another. Corresponding cor-
ners have to be connected by edges. Call it a pentact, then go to
six dimensions by having one pentact inside another, and so on.
Crystals of type B exist in all dimensions.

As the table shows, there are other types of crystals in dimen-
sions 3, 4, 6, 7, and §; and the first person to discover the ones in
dimensions 6, 7 and 8 was a lawyer, not a mathematician! They
were related not to a legal case, but to the absence of a legal case.
A young lawyer named Thorold Gosset in late nineteenth-century
London had time on his hands during his early years, and amused
himself with investigating higher dimensional space. In 1900 he
published his results. We shall come back to Gosset’s exceptional
crystals later.

Multi-crystals, as I mentioned, were the invention of Jacques Tits.
His work attracted a lot of attention and he moved from Brussels
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to the University of Bonn. In 1974, the same year his book on this
subject finally came out, he then took up a position at the Collége
de France, a prestigious research establishment in Paris. In the
book, Tits proved a remarkable theorem that when the crystals
themselves are at least three-dimensional, then the whole multi-
crystal has immense symmetry. He used this theorem to help
find all these multi-crystals, giving a very pleasing geometric
explanation for the symmetry atoms in the ‘periodic table’.

This was elegant mathematics, but since these multi-crystals are
so complex, you may wonder how to construct them. Tits showed
how to get them from the symmetry atoms, which in turn can be
constructed using the algebraic methods of Chevalley. But this is
a slightly roundabout method, and it is preferable to construct
the multi-crystals first and then obtain the symmetry atoms later,
giving a more geometric approach.

As so often in mathematics the solution was found by first
dealing with a slightly different question. In 1984, Tits gave a
lecture at a conference in the mathematical research institute at
Oberwolfach, a wonderful establishment located in the Black
Forest region of Germany. It was once a hunting lodge, but its
owner, Wolfgang Siiss, donated it to mathematics before the
Second World War, and after the war he used his connections to
obtain funds for its rebuilding and expansion. It is now arguably
the finest place in the world to conduct a mathematics conference.
Tits’s lecture was on multi-crystals in which each ‘crystal” was a
plane, tiled — like a bathroom wall — by equilateral triangles (the
plane extends to infinity in all directions, so these multi-crystals
are infinite and not directly related to finite groups of sym-
metries). I had recently been thinking of such multi-crystals and
found a way of growing them, starting at one vertex and moving
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outwards. The trick was to attach a small ‘genetic code’ to each
vertex showing how it must grow around that vertex, like the
petals of a flower. This does not mean using a laboratory with
expensive equipment and a carefully controlled environment, but
just refers to a theoretical construction.

The following summer, Tits and I worked in Paris to adapt this
method to multi-crystals in which the crystals were polyhedra,
like the octahedron, rather than infinite tilings of the plane. This
was a harder problem because the faces of a polyhedron have to
join up as you go around the back of the polyhedron, unlike a
tiling of the plane that goes off to infinity. But Tits had an idea
how to tackle it, which he explained to me and another mathe-
matician named Pierre Deligne, who had taken university courses
from Tits while still a teenager at high school in Brussels.

This is how mathematics is done. People sit and talk, perhaps
with a chalkboard at hand, and as they talk they clarify their own
ideas. Deligne was a good person to talk to because he was
becoming one of the century’s greatest mathematicians, and Tits
once remarked, ‘He is amazing. You explain something to him
and within two minutes he understands everything you know
about it and much more besides.” We were sitting in a ground floor
office on a sunny day, and as Tits tentatively wrote a few symbols
on the board, Deligne interrupted with an objection. He immedi-
ately saw beyond the solution to an intriguing complication that
was important later — [ was amazed.

In the end we found that by combining the ‘genetic codes’*
for growing the three-dimensional multi-crystals, we could grow
multi-crystals in all dimensions greater than 3. Geometry, rather
than Chevalley’s algebraic methods, could now yield almost all
symmetry atoms. It is remarkable that three dimensions were
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enough, but it seems to happen frequently in mathematics that
once you figure things out at a lower level, the higher levels take
care of themselves. Our ‘genetic codes’ were elementary, yet we
were able to create complicated objects such as multi-crystals of
type E8, where even the simplest one has more faces than there are
particles in the universe.

Before we leave multi-crystals, it is worth noting that they give rise
to all sorts of fascinating patterns. Here is one that will give the
idea. In the multi-crystal pictured on page 101, seven alternate
vertices on the outside circuit are labelled with the seven letters a
to g. Each of the other seven vertices on the outside circuit is
joined to three alphabetic ones. This gives the following seven
blocks, each having three symbols.

abf
bcg
acd
bde
cef
dfg

age

These blocks can be used to label the other seven vertices of the
multi-crystal, but let us forget about multi-crystals for a while. If
you look carefully, you will notice that each pair of symbols lies
in exactly one block. And each pair of blocks has exactly one
symbol in common.

This is a remarkable pattern, and one can ask whether it is
possible to do a similar thing with four symbols per block. Each
pair of symbols is to lie in exactly one block, and any two blocks
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are to have a symbol in common.* The answer is yes. With four
symbols per block you need 13 symbols and 13 blocks.

Patterns like this have useful applications. For example, sup-
pose you wanted to conduct a series of experiments in which each
pair of subjects is included in exactly one of the experiments, and
any two experiments share one subject. Represent each subject by
a symbol, and each experiment as a block of symbols.

Can you do this with blocks of larger size? The answer is yes for
block size 5 and block size 6, but not for block size 7. It is impos-
sible for block size 7; not difficult, but impossible. This can be
proved — no ifs, ands or buts. But for block sizes 8, 9, and 10 it is
possible, so what’s going on?

Some block sizes are possible and some are impossible. For the
sake of argument let us call the block size g + 1 — you will see why
in a minute. We want a collection of blocks, each of this size,
having the property that every pair of symbols lies in a block, and
every pair of blocks has exactly one symbol in common.

This is possible if g is a prime number, or a power of a prime
number. In other words it is possible if ¢ is 2, 3, 5, 7, 11, etc. (the
prime numbers), or if ¢ is 4 = 22, 8 = 2}, 9 = 3% etc. (powers of
prime numbers). On the other hand, it is not possible when ¢ is 6,
meaning block size 7 is impossible. After 6, the next problem
number is 10. When ¢ is 10 the blocks would have size 11 and
there would be 111 symbols.

Does such a block system exist? In the late 1950s this was
already an old problem, and some began to think that computers
might be used to resolve it. This finally happened in the 1990s, by
which time computers were vastly more powerful, but computer
proofs are unsatisfactory because you can’t check them by hand.
We will have more to say about this later.
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After 6 and 10, the next problem number is 12. Someone who
is a master at creating strange objects, and will appear later in
our story, tried to construct an example when ¢ is 12. He tried
very hard, for years, using good ideas and powerful computers.
But even he gave up. It would not surprise anyone to learn that
¢ has to be a prime number or a power of a prime number. If I
were a betting man, I would bet on it. But I wouldn’t bet much
because it may be false. And that is the trouble with mathematics.
No amount of evidence will do it. You have to prove things, one
way or the other. It can be a frustrating process, to say nothing
of the technicalities and abstractions that put so many people
off the subject. The necessity to provide proofs prompted one
fellow mathematician, who moved far into the stratosphere of
university administration, to comment to me once, ‘It’s a brutal
subject.’

At the start of this chapter I referred to multi-crystals as build-
ings, but where does the term ‘building’ come from? Jacques
Tits, who invented them, used other terminology to start with. He
had been led to create buildings by first studying geometry in the
more traditional sense involving points, lines, and planes, and he
continued using the term geometries (with a suitable definition of
what exactly he meant) for his new creations. The term ‘building’
was first used by Bourbaki. Remember him, the reincarnated
French general who took up the task of laying out the basics of
higher mathematics? Of course, Bourbaki was writing in French
so he didn’t use the word building, but the French word immeuble;
building is the English translation. But why did Bourbaki choose
this word?

Tits’s multi-crystals were an amalgamation of crystals. These
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crystals arose in a natural way in the Lie theory, where their faces
were called ‘chambers’. Tits once called the crystals ‘skeletons’
because they are the bare bones of the subject, but this mixes
metaphors. With the word chamber in mind, Bourbaki renamed
the crystals ‘apartments’, and called the whole thing a building.
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The Big Theorem

Reductio ad absurdum [a method of proving theorems],
which Euclid loved so much, is one of a mathematician’s
finest weapons. It is a far finer gambit than any chess play: a
chess player may offer the sacrifice of a pawn or even a piece,
but a mathematician offers the game.

G. H. Hardy, 4 Mathematician’s Apology

In his novel Uncle Petros and Goldbach’s Conjecture, Apostolos
Doxiadis portrays a fictional mathematician who spends his
whole career trying to settle an old question. Is every even
number a sum of two prime numbers? This happens to be
true for all even numbers that anyone has ever looked at, and
with the help of computers they have checked everything up to
60,000,000,000,000,000. But how do you prove it for all even
numbers? No one knows.

Most pure mathematicians, like the fictional character in the
book, would love to prove a really hard theorem. But what makes
a theorem hard? Is it a conjecture like this that no one knows
how to solve, or is it something whose proof is necessarily very
complex, like a Mount Everest that no one can climb without
setting base camps high up on the slopes and taking suitable
equipment and warm clothing? The Goldbach conjecture — every
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even number is a sum of two prime numbers — certainly lies in
the first category, and probably in the second too. But another
statement that refers to even numbers, and certainly lies in the
second category, is a theorem in the mathematics of symmetry
(that branch of mathematics called group theory). It makes a
deceptively simple claim: apart from the prime cyclic groups, the
size of every symmetry atom must be even. A symmetry atom,
remember, is a group of symmetries that cannot be deconstructed
into anything simpler, and there is another way of stating this
theorem: if a group of symmetries has odd size, then it can be
deconstructed (and a complete deconstruction will yield a collec-
tion of prime cyclic groups). Stated in this form it is sometimes
called the ‘odd order theorem’.

This theorem is vitally important, as I will explain later, and it
set in motion a long sequence of results that led to the discovery
and classification of a// finite symmetry atoms. Its proof, by Walter
Feit and John Thompson, places it firmly in the Everest category.

Now you would think that a result of immense importance like
this, and one that could be stated so simply and directly, would be
welcomed with open arms by any and every mathematics journal
in the world. Not so. Several journals declined it on account of its
length. Weighing in at 255 pages of carefully reasoned argument,
it was too big for them. Ten pages, 20 pages, even 40 or 50 pages for
a really major result, was normal and acceptable, but 255 pages?
The paper took up one whole issue of the Pacific Journal of
Mathematics, whose editors were immensely proud to publish it.

When a mathematician submits a paper to a journal, and the
editors consider it for publication, they first send it to a referee for
comments. Some referees, before recommending acceptance, read
every last word of the paper, submitting detailed notes to the
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editors, correcting infelicitations in the prose and opacity in the
technical details, and sometimes suggesting shortcuts. In the case
of the Feit-Thompson paper, it would be quite unreasonable to
expect this, but then it is not an obligation of the referee. It would
be embarrassing if the result turned out to be wrong, but the real
embarrassment would be for the author, or authors. Who were
these authors, Feit and Thompson, and why was the theorem so
important? Let us deal with the second question first. This takes
us to the work of a German mathematician who moved to North
America in 1933.

On 30 January 1933, Hitler and the Nazi party took over the
government of Germany, and on 7 April 1933 the new Civil
Service Law expelled most Jewish academics from their jobs (to be
classed as Jewish, or more precisely non-Aryan, it was sufficient
to have one Jewish grandparent). Richard Brauer, a young man of
32, had been a mathematician at the University of Konigsberg
(now called Kaliningrad) for eight years already, but with the
Nazi party’s new edict he lost his job and had to find employment
abroad quickly. He went to the USA, while his elder brother
Alfred, who had first inspired Richard with a love of mathemat-
ics, retained his job at the University of Berlin and remained in
Germany. There was an exemption clause for those who had
fought for Germany during the First World War, but decisions
at the Nuremberg party congress in autumn 1935 enabled the
authorities to ignore the law, and Alfred too lost his job.

What happened in 1933 was quite phenomenal. A young
American mathematician named Saunders MacLane, who will
reappear in due course, decided to go to Germany to study.
He went to the mathematical powerhouse of Gottingen, after
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‘spending a vaguely disappointing year of graduate study at
Chicago’. He arrived in 1931, and found a very stimulating
atmosphere, but soon witnessed the devastation caused by the
anti-Jewish measures in 1933. On 3 May, MacLane wrote to his
mother: ‘So many professors and instructors have been fired or
have left that the mathematics department is pretty thoroughly
emasculated.”* When Issai Schur, Brauer’s thesis supervisor at
the University of Berlin, was fired in 1933, there was horror
among his colleagues, and as a contemporary wrote, “When
Schur’s lectures were cancelled there was an outcry among the
students and professors, for Schur was respected and very well
liked.” But as time went by people accustomed themselves to the
Nazi edicts. Schur could not understand the persecution and
humiliation that was heaped on him, and as one contemporary
reported later, referring to his sixtieth birthday in January 1935:

Schur told me that the only person at the mathematical Institute in
Berlin who was kind to him was Grunsky, then a young lecturer.
Long after the war, I talked to Grunsky about that remark and he
literally started to cry. “You know what I did? I sent him a postcard
to congratulate him on his sixtieth birthday. I admired him so
much and was very respectful in that card. How lonely he must
have been to remember such a small thing.”*

Yet prior to 1933 the German universities were great beacons of
light. This was where the Bourbaki mathematicians went to learn
about new developments after the First World War. The German
university system was the most stimulating place in the world at
that time, and as Richard Brauer himself wrote later in life, ‘The
intellectual atmosphere of German universities of that period is
remembered with nostalgia by all who knew it.’* There was
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always the hope that the Nazi menace would be a brief aberration
and things would settle down. They didn’t, and Richard’s sister,
who remained in Germany, was killed in an extermination camp
during the war.

In the meantime, Richard Brauer found a one-year position at the
University of Kentucky in 1933, and then went to the Institute
for Advanced Study in Princeton for a year. The Institute had
just been founded in 1930, and Brauer was assistant to the great
Hermann Weyl, also an expatriate German, and was thrilled to be
working with him: ‘I had hoped from the day of my PhD thesis to
get in touch with him some day; this dream was now fulfilled.’*
Weyl was very keen on the relation between mathematics and
physics, and one of his collaborative papers with Richard Brauer
provided a mathematical background for the concept of electron
spin in quantum mechanics.

Next year Brauer took up a position at the University of
Toronto, where he remained for the next 13 years. In 1948 he
moved to the University of Michigan, and in 1952 to Harvard.
Richard Brauer gives the lie to the notion that mathematics is
always a young person’s game. He was 51 when he was appointed
at Harvard, and as one of his biographers writes, ‘It is a striking
fact of his career that he continued to produce original and deep
research at a practically constant rate until the end of his life.”*
Nearly half of his publications were written after he was 50, and
they include one that gave a means of finding all finite symmetry
atoms, and stimulated the Feit-Thompson theorem.

The point is this. If a symmetry atom has even size, then a
theorem of Cauchy — he who mislaid some of Galois’s papers —
guarantees that it contains a symmetry of order 2. This means a
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symmetry that when done twice leaves everything as it was. For
example, a mirror symmetry has order 2: do it once and everything
is reversed across the mirror; do it twice and everything is back to
where it was. Within a symmetry atom, a mirror symmetry is a
very small thing, but it has big consequences. Most of the sym-
metries will move the mirror to another mirror, but some will
stabilize it. The sub-group of symmetries stabilizing the mirror I
shall call a cross-section, though mathematicians have a more
technical term for it.*

A symmetry atom cannot have a single cross-section, because it
can operate as a group of symmetries on itself, moving a cross-
section into many different positions. This yields lots of cross-
sections having the same shape, and from these cross-sections you
can reconstruct the symmetry atom, just as you can reconstruct a
picture of the brain using cross-sectional brain scans. Now the
vital thing that Brauer proved, along with his student K. A.
Fowler, was that there are only a limited number of ways that
cross-sections of the same shape can fit together. This means there
are only a limited number of symmetry atoms with the same
cross-section, and very often there is only one. In other words,
once you know a cross-section you have almost nailed the sym-
metry atom. Brauer went on to prove that for the symmetry atoms
in some Lie families, a cross-section uniquely determined the
whole thing. This was terrific stuff because it meant there was a
possible way of finding all symmetry atoms.

Here is the idea. Take the symmetry atoms you already know
about and look at their cross-sections. In each case show that
there are no other symmetry atoms having such cross-sections:
either you prove that, or you find new symmetry atoms. Do the
same for other possible cross-sections: either show they cannot
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occur in any symmetry atom, or find new symmetry atoms. If you
find any new ones, then you consider them as possible cross-
sections in something larger. This is precisely how the Monster
was discovered, by first discovering one of its cross-sections, but
more on that later in the book. When this process eventually
draws to a close, you have a list of al/l symmetry atoms.

This was a wonderful plan. There was just one glitch. How
did we know that all symmetry atoms had cross-sections? Or
what amounts to the same thing, how did we know that the
size of a symmetry atom had to be an even number? This is
precisely what Feit and Thompson proved. It was a huge result,
and Daniel Gorenstein, who later orchestrated the programme of
discovery and classification of all symmetry atoms — the great
‘Classification’ project — writes, ‘The single result that, more than
any other, opened up the field and foreshadowed the vastness of
the full classification [of all symmetry atoms] was the celebrated
theorem of Walter Feit and John Thompson.”* But where did
Feit and Thompson come from and how did they get to their
theorem?

When the Nazi government forced Richard Brauer out of his
job in 1933, Walter Feit was just three years old, and living
in Vienna. By 1939 his parents decided to place him on a
KinderTransport that carried Jewish children to safety. He left
Vienna on 1 September 1939. His parents had plans to follow
a fortnight after, but two days later, on 3 September 1939, the
Second World War started. He never saw them again. As young
Walter arrived in England, to stay with an aunt in London, the
British government was already evacuating children to more rural
areas from the capital city. He was relocated several times, but
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eventually won a scholarship to St Aldgate’s School in Oxford,
where he stayed until after the war.

In late 1946, Walter left school and went to the USA, where two
days after his arrival he was whisked into a family gathering of
over 400 people in New York. The next day he wrote back to his
aunt in London, reflecting optimism and happiness in his new
surroundings.

Dear Auntie Frieda,

I have hardly had a moment to spare until now . . . Yesterday night
was New Year’s Eve in the USA. This is an important holiday so I
went to the [family] banquet. There were over four hundred people
present. . .. On Monday I was outfitted for Miami; I now possess
five new pairs of trousers, two new jackets plus new shoes . . . I also
have a watch in my possession. . .. There are many things in this
country that I shall have to get used to. For instance, I am now
sitting in the kitchen of my uncle. He is not especially well off, yet I
can see a huge refrigerator, artificial daylight, an electric clock . . .
and several other things including central heating such as are never
seen in an ordinary English flat.*

Miami was his next stop, where he stayed with an aunt and uncle,
and the following September he went to study at the University of
Chicago.

Like many who escaped from the Nazis, Walter Feit suppressed
stories of his early life, and left his past behind. But in 1990, at a
conference in Oxford honouring his sixtieth birthday, he aston-
ished his audience by telling them he had been educated at a
school in Oxford, before becoming a student in Chicago.

At the University of Chicago, Feit was awarded a master’s
degree, and received his bachelor’s a week later (not the usual order
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of events!) From there he went to the University of Michigan to
work under Richard Brauer. When Brauer died, a quarter of a
century later, Feit wrote an elegant and very informative obituary
of him for the American Mathematical Society. It deals with the
German years, and the events that led to his leaving for America,
but from the way Feit writes one would never know that he him-
self made a narrow escape from the terror that followed. The
KinderTransport that took him to safety was the last one to leave
Vienna.

When Brauer moved to Harvard, Feit stayed in Michigan to
finish his PhD, then took a job at Cornell. Being only 22 at the
time, he was soon called up for service in the US Army, but on his
return to Cornell 18 months later he got in touch with the young
John Thompson.

Thompson had been an undergraduate at Yale, where he started
by studying theology. After the first year he switched to mathe-
matics and did extremely well, and MacLane invited him to
come to the University of Chicago for graduate study. Thompson
became interested in finite mathematics (finite symmetry groups),
which was not a fashionable subject in those days, and one
eminent faculty member expressed doubts about him: ‘Be careful
of this John Thompson fellow — I'm not sure he’s reliable.’
Attitudes of the professors rub off on the graduate students
and some of them pinned up a witty poem making fun of
finite mathematics. However, Saunders MacLane, who did very
fashionable mathematics, and sported tartan ties and jackets,
took on the young John Thompson as a PhD student. MacLane
realized that finite group theory was an immensely technical
subject, and said he didn’t feel capable of doing it himself, so it
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was rather brave of him to take on a student in this area. But
Thompson was a self-starter and an independent thinker, and
when MacLane went away for part of the year in 1958, he con-
fidently left him under the eye of another mathematician who had
just arrived.

This new man, Dan Hughes, recalls Thompson doing mathe-
matics at a dizzying rate, ‘I still remember these yellow sheets of
paper he kept producing. Every day he’d bring in ten or twelve of
these.” Thompson was a determined student, and finally cracked
an old conjecture that had been around for 60 years. It formed a
spectacular PhD thesis, but Thompson, like lesser mortals, still
had to take an oral exam. The senior man who had initially
expressed doubts was on the committee and said, ‘It makes me
feel very silly to be examining a guy like this.” But examine him
they did, and when it was over he left the room. They delayed long
enough for propriety and called him back. ‘Well, John, we’ve
talked it over and it’s been a hard decision, but we’ve decided,
etc. etc.” As a mere graduate student, Thompson may not have
realized they were teasing him.

Once Feit and Thompson got into correspondence, and started
collaborating, they aimed for the stars. The idea, as I mentioned
above, was to show that the size of every symmetry atom is
even. This is equivalent to proving that if a group of symmetries
has odd size, then it can’t be a symmetry atom, and this was
the approach Feit and Thompson took. Fortunately for them,
Michio Suzuki — he of the Suzuki family of symmetry atoms
— had recently dealt with a special case of this problem, and
his methods gave them a conceptual framework to work in.
Thompson recalls that ‘By 1959 we were going at it hammer and
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tongs’, and in collaboration with Marshall Hall at the California
Institute of Technology, they extended Suzuki’s result to a less
specialized case.

In the meantime, Thompson acquired his PhD, and a senior
mathematician at the University of Chicago, named Adrian
Albert, who had excellent connections to the intelligence establish-
ment, recommended he go to the Institute for Defense Analyses
(IDA). He spent the year 1959-60 there, away from the usual
academic environment, and when his PhD supervisor MacLane
returned to the department, he was furious. But Thompson con-
tinued his mathematical research at the IDA, and meanwhile at
the University of Chicago they decided to arrange a special year
on finite mathematics.

This brought Thompson back, and he and Feit intensified
their work together. They were using the well-known trick of
assuming a counter-example to their theorem, and showing that
it would lead to a contradiction. In other words, they took a
symmetry atom whose size was an odd number, and tried to
show it couldn’t exist. They made very sophisticated use of a
technique called character theory, which Burnside had used ear-
lier in the century, and Feit was an expert on this important topic,
but as Gorenstein says, ‘Unfortunately an even greater obstacle
awaited Feit and Thompson, for one of the final configurations
... completely eluded the hoped-for contradiction [and] it was a
full year before Thompson found a way of eliminating this last
configuration.”* Thompson’s method was very technical, con-
cise, and clever. Only an extraordinarily dedicated person could
produce such arguments, and as Jonathan Alperin, a colleague of
Thompson’s at the University of Chicago at the time, said
recently, “Thompson worked every single moment for years. The
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only other person like that I can think of is Bobby Fisher, the
chess player.’

Years later, in 1970, Thompson’s work, on this and other things,
was recognized by the award of a Fields Medal, the greatest
accolade in mathematics, and more enviable than a Nobel Prize.
Since it was first instituted in 1936, there have been forty-six
recipients of this medal, compared to 134 Nobel Prize winners
in physics during the same period. Fields Medals are awarded
every four years and for each one a senior mathematician speaks
about the recipient’s achievements. In Thompson’s case the senior
mathematician was Richard Brauer, and one of the things he
discussed was, of course, the Feit-Thompson theorem:

Here, the authors proved a famous conjecture, to the effect that all
finite [symmetry atoms] have even size. I am not sure who was the
first to observe this. Fifty years ago it was already referred to as a
very old conjecture . .. [but] nobody ever did anything about it,
simply because nobody had any idea how to get started.*

After proving a theorem like this, what do you do for an encore?
The whole point of the Feit-Thompson theorem was to open the
way to classifying all symmetry atoms, so one obvious thing was
to set about this task. In the early days, Thompson was overheard
saying he would knock this off in short order, but there was no
such luck. It turned out to be very complicated indeed because of
the exceptions, which eventually led to the Monster, but more on
that later.

Remember what the idea was. You take a cross-section in some-
thing you know about, and show that there is nothing else having
this cross-section. Brauer had already dealt with some families,
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but there was still plenty of work to do. After the special year at
the University of Chicago, Thompson went to Harvard to finish
writing the proof of the Feit-Thompson theorem, and work in
the presence of Brauer.

In 1962 Thompson came back to a position in Chicago, and
started work on cross-sections of type A1. One class of these
arose in a special family of symmetry atoms, but the rest were not
cross-sections in any known symmetry atom. Thompson wanted
to prove that this was the end of the story, so he took an imagin-
ary symmetry atom having a cross-section of type A1, and tried to
show that either it was in the family he wanted, or it led to a
contradiction.

Now you might suppose that cross-sections of type 41, rather
than those of higher rank like 42 or A3, ought to be relatively
easy. But this is not the case at all. Think of a monocycle, a
bicycle, and a tricycle as analogues to type A1, A2, and A3. The
monocycle is the trickiest to deal with — and you can do things
with it that are impossible with bicycles and tricycles. It is that way
in mathematics — the low rank cases are trickiest and that is pre-
cisely where unusual things can happen. Thompson worked very
hard on the problem, and eventually wrote up his results.

He hadn’t yet prepared them for publication, and was working
on other things, when in 1964 he received a letter from a mathe-
matician named Zvonimir Janko in Australia. Janko had
approached the same problem in connection with his own work,
and had found that when the cross-section was the smallest sym-
metry atom in the 41 family he couldn’t get the required contra-
diction. Alperin remembers the occasion: ‘I remember it very
clearly. Thompson told me of the letter at tea, and he was smiling
about it. The next morning he wasn’t smiling.’
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Thompson had already replied to Janko, but immediately after
posting the letter he noticed an error in his own argument. He
wrote a second letter and they got into communication, and
decided to publish a joint paper, leaving out the awkward case.
Janko was already working on it and would continue with his
efforts.
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Pandora’s Box

Look around when you have got your first mushroom or
made your first discovery: they grow in clusters.
George Polya (1887-1985)

In mathematics, as in other creative activities, you can get
completely stuck, unable to move towards a proof of your con-
jecture, and unable to disprove it by finding a counter-example. In
Chapter 10 we left Thompson and Janko preparing to publish
their results on cross-sections of type 41, while Janko continued
working on the one awkward case, where Thompson’s original
contradiction had not worked.

He took an imaginary symmetry atom having the awkward
cross-section, and threw all his efforts into obtaining a contradic-
tion to show it couldn’t exist. This involved figuring out numbers
associated with the imaginary object, and showing they led to a
contradiction. If there was no mistake in the calculation, then
there was no symmetry atom having the awkward cross-section.
After he got a contradiction, Janko would write down his calcula-
tions in great detail and check them. But every time this happened
he found an error in his work and the contradiction melted away.
Could this be because there really was something out there? Janko
thought that might be the case, but every time he tried to work out

127



PANDORA’S BOX

more details about this imaginary symmetry atom he got another
contradiction.

Was it reasonable that there might be a symmetry atom not in
the table? The short answer was yes, absolutely, because five
exceptions were discovered in the mid-nineteenth century. But
these five all had a very remarkable property, and no one seriously
supposed there was anything else quite like them. If there was it
would have been discovered already. This suggested that any fur-
ther exceptions, if they existed, were probably of quite a different
nature. Let us leave Janko worrying away at the problem, and go
back to the nineteenth century to find out about the five strange
exceptions that were already known.

In the mid-nineteenth century, when Galois’s work was published,
mathematicians became excited about groups of permutations,
and developed the concept of ‘transitivity’: a group of permuta-
tions on a set of objects was called transitive if it could send any
object to any other. This is frequently the case. For example,
the group of symmetries of a square permutes its four corners
transitively; any corner can be sent to any other. Transitivity is a
common occurrence, but there are higher levels of transitivity that
are far less common.

If a group of permutations can send any pair of objects to any
other pair, then it is called 2-fold transitive. This is not so com-
mon. With the square, for instance, a pair of vertices joined by an
edge is quite different from a pair not joined by an edge. You can’t
send one pair to the other, so although the symmetry group of the
square is transitive on its set of four vertices, it is not 2-fold transi-
tive. For example, in the picture below, a 90° turn will send the
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pair a,b to the pair b,c but there is no symmetry of the square
sending the pair @,b to the pair b,d.

a b

d c

Of course, if you take the group of all permutations, or all even
permutations, on a set of objects, then 2-fold transitivity is no
problem, but those groups are too large and inclusive. They mix
everything around too much and don’t preserve an interesting
pattern. Are there smaller groups that are 2-fold transitive? And
while we are on the topic, what about 3-fold transitivity, 4-fold
transitivity, and so on? For example, 3-fold transitivity means
being able to send any triple to any other triple.

An example of a pattern whose group of symmetries is 2-fold,
but not 3-fold, transitive appeared in Chapter 9. There were seven
symbols and seven blocks: any pair of symbols determines a
unique block, and the group of symmetries for the whole pattern
can send any pair to any other pair. Here is the pattern again:

abf
bcg
acd
bde
cef
dfg
age
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The group of permutations preserving this pattern is 2-fold transi-
tive, but not 3-fold transitive. For example, the triple a,b,f forms a
block and can only be sent to another triple that also forms a
block. You cannot, for instance, send a,b,f to b,¢,d — if a goes to b,
and b to ¢, then f must go to g.

Multiple transitivity is rare, and the higher the level of tran-
sitivity, the more likely it is that the group will include all permu-
tations, or at least all even permutations. By the time you reach
6-fold transitivity nothing else is possible. This fact has been
proved using the list of all symmetry atoms,* but as a method
of proof this is not very elegant, and it only works after verifying
that the list is complete. Getting everything on the list and proving
that it is complete was an immense collaborative effort, like the
teamwork that led to the first nuclear bomb. So here we have a
mathematical analogue of using a nuclear bomb to crack a very
hard nut. It works but one wishes there was another way. If there
is, then no one has found it yet.

If we ease up a bit and ask only for 5-fold transitivity, then two
very strange beasts arise. They were discovered in mid-nineteenth-
century France by a shy mathematical physicist named Emile
Mathieu. He was born in 1835 in Metz, a town in north-west
France near Luxembourg and the German border. He studied at
the Ecole Polytechnique (the university Galois failed to get into),
completed the course in 18 months, and went on to write a PhD
thesis about multiple transitivity. This led to his five gems, which
are famous in pure mathematics, though Mathieu’s claim to fame
during his lifetime was as a mathematical physicist. Fame is per-
haps the wrong word for this quiet man with his shy and retiring
nature, though he was well known to his colleagues in mathemati-
cal physics, and highly respected. His career took him to a chair
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at Nancy, just 30 miles south of his birthplace, and he lived there
until his death in 1890.

Mathieu published his findings in 1861. He had discovered two
groups of permutations that were 5-fold transitive, one permuting
12 symbols, the other permuting 24. They are now called M12 and
M?24. Unfortunately, Mathieu didn’t manage to convince every-
one that these groups actually existed. He certainly felt he had
demonstrated the existence of M12, and at the end of his paper he
writes that, ‘by similar methods I have found a 5-fold transitive
group permuting 24 symbols’. In 1873 he published a further
paper on M?24 in which he promised to live up to his earlier claim,
suggesting that there had been some doubting Thomases. This
still didn’t satisfy all critics, and an American, G. A. Miller, even
cast his doubts into the title of a research paper, ‘On the
purported 5-fold transitive groups of E. Mathieu’. Miller
computed numbers with increasing incredulity, until he hit a
contradiction. But arithmetical errors on his part rendered the
paper useless. Apparently he realized this later, and in his
collected works this paper appears without comment. It took a
long time before all doubts were finally overcome. Finally at
a Hamburg seminar in 1934-5, Ernst Witt gave a definitive
clarification, leading to a remarkable design on 24 symbols,
whose symmetry group was M24. That proved M?24 existed to
everyone’s satisfaction.

Witt studied in the wonderful mathematics department at
Gottingen, where the great David Hilbert had insisted on a per-
manent job for Emmy Noether, saying that a university was not
a bathing establishment. She was Witt’s thesis supervisor, and
his PhD was in 1933, the year the Nazi party came to power.
Emmy Noether lost her job, since she was Jewish, and Witt did
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the unthinkable in joining the Nazi party and the SA on 1 May.
Noether’s seminar took place in her home, and Witt turned up
one day in his SA uniform. This makes him appear beyond the
pale, but comments from those who knew him later suggest that
Witt was rather naive. He seems to have had no interest at all in
politics, nor to agree with the anti-Jewish attitudes of the Nazis,
and apparently he later wanted to get out, begging Reinhold
Baer to find him a position in Manchester. Baer had also been
a PhD student in Goéttingen at one time, and then found a posi-
tion in Jena. Being Jewish he abandoned Germany when the
Nazis took over, though he returned in 1956 — we shall hear
more of Baer later. Witt stayed in Germany, and after the war he
took a position at the University of Hamburg. This city lay in the
British sector of Germany and the British military government
dismissed him from his position. His accounts were blocked,
he was forbidden to enter the university, and his food ration
cards were withdrawn. He appealed the dismissal and several
German mathematicians came to his defence, confirming that
he not been politically active, a fact confirmed by the Nazis’
own negative assessment of his commitment after a compulsory
National Socialist course for lecturers during August 1937. He
was reinstated and served as a professor of mathematics in
Hamburg until his retirement in 1979. He remained rather honest
and naive, never quite realizing how shocked people could be by his
flirtation with the Nazi party. For example, in the academic year
19601 he went to the Institute for Advanced Study in Princeton,
and I leave it to one of his later students, Ina Kersten, to explain
what happened. ‘There, one day, during a discussion about a
member of the National Socialist Party, he felt obliged to declare
that he had also been a member of the party. To behave otherwise
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would have seemed insincere to him. He found, to his utter aston-
ishment, that his contacts with his colleagues were suddenly
severed.’*

Witt was a fine mathematician and fits the picture of an aca-
demic solely interested in his own subject. He felt mathematics
should be taught in a unified way rather than split into separate
disciplines such as algebra, geometry, and so on, and redefined the
mathematics courses in his own department.

Witt’s design for Mathieu’s largest group M24 is similar to
the one I showed earlier with seven symbols and blocks having
three symbols each. In that case each pair of symbols lay in
exactly one block, and the group of symmetries was 2-fold
transitive on the seven symbols. In Witt’s design there are 24
symbols, and the blocks have size 8: each set of five symbols lies
in exactly one block, and the group of symmetries is 5-fold trans-
itive. There are 759 blocks, a number explained in Appendix 2.
This design is very exceptional, and very important. It is the first
milestone on the road to the Monster, and we shall come back
to it later.

In total, Mathieu found five exceptional symmetry atoms: M11,
M12, M22, M23, and M24 (the number indicates the number of
symbols being permuted). When I was a graduate student I
wanted to understand these groups of permutations, and knowing
you should walk before you run, I started with M11, moved
upwards to M12, and then to the larger Mathieu groups. This was
how Mathieu originally discovered his groups, but once M24 is
known it is easier to start there and work downwards. At any
event, when I reached M22 a question occurred to me, and at
teatime I decided to ask an expert. This was in the Mathematical
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Institute at Oxford, where teatime was a well-established tradi-
tion, and you could guarantee to see people on a regular basis. As
soon as I formulated my rather technical question, and put it to
Peter Cameron, he said ‘It doesn’t exist.” I was a bit taken aback,
and must have looked puzzled. He went on to explain that M11
was not a sub-group of M22, as I had obviously assumed, and if it
were it would lead to a new symmetry atom. He had already
looked for it, and it wasn’t there.

As a mere student working in a slightly different area of mathe-
matics, I simply didn’t know enough, but expertise like this is
only attained after learning and practising on a daily basis, and it
can be lost if no young people come along to learn from the
masters. We shall come back to this point in connection with the
discovery and classification of all finite symmetry atoms, where
the techniques were so formidable it was feared future generations
might be unable to understand them. They would then be lost,
like the knowledge of Egyptian hieroglyphs,* but let us get
back to our story.

You may remember that we left Janko working away at an
imaginary symmetry atom, trying to find a contradiction. The
more he worked — finding contradictions that melted away on
further investigation — the more he began to think there was really
something there. And the longer he spent on it, the better he
understood it, so he gave up on the contradictions, assumed
the imaginary object was real, and set about working out the
details.

The way to establish the existence of a symmetry atom, known
only through its cross-sections, is first to work out its character
table. A character table is a very efficient way of writing down
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information about a group. It is a square array of numbers that
gives an immense amount of useful information. For instance, it is
very useful in finding sub-groups of the group in question, and
you figure it out in pieces, just like a jigsaw puzzle. The more
pieces you have in place, the easier it is to extend to a larger
portion of the table.

Once Janko had figured out the whole character table he was
able to establish that this strange symmetry atom, if it existed at
all, had to be able to operate in seven dimensions using 11-cyclic
arithmetic. If this sounds weird, it is. But Janko defined a couple
of symmetry operations in seven dimensions, which together
would generate the whole thing, just as we can generate all the
zillion symmetries of the Rubik cube by 90° turns on the various
faces. Using computers it was soon shown that Janko’s two sym-
metry operations did the trick, and the new symmetry atom
was born.

During this time, Janko stayed in touch with Thompson, and
when the new symmetry atom began to emerge, Thompson
wrote asking what had happened to the last contradiction.
Janko wrote back: ‘I never did find my mistake.” As Thompson
said, ‘That shows how tricky these [exceptional symmetry
atoms] are. You keep killing things off left, right and centre,
but they’re still there.’” In the paper Janko submitted in 1965
(published in 1966), he called this new symmetry atom J. It is now
known as J1, because Janko made further discoveries, as we
shall see.

At the time of its discovery, some people expected that J1 would
be better understood when we grasped the geometric pattern that
it was preserving in seven dimensions, but this hasn’t happened
because the pattern is rather unnatural. Daniel Gorenstein, who
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later coordinated the great ‘Classification’ project — the immense
work showing that apart from a limited number of exceptions we
already had a complete list of all finite symmetry atoms — wrote in
1982, ‘there is no natural geometry associated with it. . . . Thus no
pat reason for the existence of this [symmetry atom] has been
found . .. [it] could have been discovered only in the process of
treating some general classification problem.’* If Janko hadn’t
discovered it, someone else would have found it, but only by a
great deal of hard work. For example, Marshall Hall Jr at the
California Institute of Technology systematically determined all
symmetry atoms of size less than one million — in other words,
having less than one million operations — and would have hit J1 in
the process because its size is 175,560. This number, by the way, is
small for an exceptional symmetry atom. The smallest is M11 at
7,920, followed by M12 at 95,040; J1 is the third smallest.

Janko’s discovery really set the cat among the pigeons. No longer
could one assume that the periodic table, along with the multiply
transitive groups of Mathieu, was a complete list of symmetry
atoms. And if one was missing, how many more were out there?
Janko himself, once he had found J1, immediately set about
looking for others. He tried lots of cases, but if they didn’t pro-
duce anything interesting he moved on, and didn’t waste time
writing up failures. This was a treasure hunt and once he had
looked in the likely nooks and crannies of one room he moved to
the next one. If other people wanted to search in the same places
he had looked, that was their business, but he had a good nose for
locating these things and soon found where another one might be
hiding. One of the Mathieu groups had a cross-section that
intrigued him because he could extend it using the cross-section in
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J1. This bigger cross-section did not occur in any symmetry atom
known at the time, but Janko had really hit the spot. It yielded not
one new symmetry atom, but two!

At first it appeared there was just one, and Janko worked out
its size to be 50,232,960. All its cross-sections had the same
shape, but there was an outside possibility of another example
with two different cross-sections. Janko was at Monash University
(near Melbourne) at the time, and a German mathematician
named Dieter Held was there too. Held recalls that:

Janko told me there was this other case ... with precisely two
cross-sections. He offered to sell it me for ten Australian dollars,
but I declined as I — and also Janko — did not believe that it would
be fertile. But the next day Janko came up with size 604,800 for
the second case. Existence had not been proved for either of these
two possibilities as it was the case with J1, but it was pretty clear
that Janko had discovered his second and third groups.

Of course, Held didn’t really believe Janko would give up all work
on the second case for ten dollars, so he didn’t really see it as a lost
opportunity. And a couple of years later, Held had the good for-
tune to find a new symmetry atom of his own, again by using the
cross-section method.

Janko had now produced strong evidence for two new sym-
metry atoms, and they were later named J2 and J3 in his honour,
but in the opposite order — J2 being the smaller and J3 the larger
of the two. By the time his paper appeared, J2 had already been
constructed, as a group of permutations on 100 symbols — more
on that later — but J3 was not easy to construct, and needs at
least 6,156 symbols. It is therefore rather odd that in his paper
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about them in 1968, he starts with the following sentence: ‘By
studying the structure of the five [symmetry atoms] of Mathieu
one observes at once a slight gap in the list of known [symmetry
atoms].” Perhaps Janko wanted to portray his discoveries as
humble observations that anyone could make, but on the other
hand he called his first group J, after his own name, so he must
have been quite proud of his work, and rightly so.

Janko hailed originally from Zagreb in Croatia, but being politi-
cally suspect he was unable to get a university position, and
became a high school teacher in Mostar (in Bosnia). At that time
in the late 1950s, Croatia and Bosnia were part of Yugoslavia,
which was under Communist rule, and anyone who didn’t toe
the line was politically suspect. Fortunately for mathematics,
he won a fellowship to Germany in the early 1960s, and he
and Held originally met in Frankfurt. Janko didn’t return to
Yugoslavia, his passport became invalid, and he needed to find
an academic position somewhere. He thought of trying Canada,
but the Canadians required an exam in English, so he went to
Australia where there was no such requirement. After a year
in Canberra he found a permanent position in Australia, later
moved to the USA, and finally settled in Germany. His new sym-
metry atoms — and he discovered strong evidence for a fourth
some years later — demonstrated a genius for finding these things,
and won him a full professorship at the University of Heidelberg
in Germany.

The existence of Janko’s new group J2 was quickly established
after he found the evidence.* Two constructions by hand were
given independently by Jacques Tits and Marshall Hall. Both
created it as a group of permutations on 100 symbols, Tits in a
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geometric way, and Hall in a more group theoretical way. Hall
gave a talk on his construction at a conference in 1967 at Oxford.
As a group of permutations on 100 symbols J2 was as close
to being 2-fold transitive as you can get without stepping over
the line, and two members of the audience were excited about
this because it reminded them of a situation they understood
rather well. Donald Higman and Charles Sims, from the
Universities of Michigan and Rutgers respectively, wondered
whether a similar trick would work in similar circumstances that
they happened to know about. They started working out some
details, and continued puzzling over it for the next day or two.

The last day of the conference was Saturday 2 September, and it
ended with a conference dinner. Sims recalls that ‘After the main
part of the meal, we were all asked to leave the hall while the staff
cleared the tables and prepared for dessert and coffee. As Don and
I walked around the courtyard of the college, we again talked
about it.” While walking together they did a computation, and it
yielded numbers that fitted together well. ‘We were sure we were
on to something, but at this point it was time to go back in for
dessert. After the dinner we went back to Don’s room to con-
tinue.”* Working together with paper and pencil, they simply
carried on until they finally got it, and in the early hours of
Sunday 3 September 1967 they had a new symmetry atom. This
was extraordinary. Some people laboured for years to discover
these things, yet Higman and Sims found theirs in a space of less
than 48 hours.

I was a graduate student at Oxford about ten years after that
conference, and remember once walking down the street towards
the Mathematics Institute. Ahead of me was a grey-haired older
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man I had never seen before, walking slowly with a stoop. I was
about to overtake him as I reached the door of the building, and
was faced with the dilemma of either going in front of him, which
would be a bit rude, or behind him, which would be a bit slow. To
my astonishment he turned left and entered the door himself. 1
wondered whether to point out that this was the Mathematics
Institute and one couldn’t just walk in off the street without a
good reason. But that wasn’t really my business so I kept quiet,
and went to get a cup of tea and some biscuits. It was that time of
the afternoon.

He did the same. And then sat down opposite me. At this point
I felt politeness dictated we communicate, so I asked him if he was
perhaps visiting from some other university. Not exactly, he
said, because he was now retired and was visiting England from
Southern California. I felt it would be polite to ask his name, and
he said he was Marshall Hall. ‘Oh my goodness,” I said, ‘we used
your book for our undergraduate course, though we only covered
a small part of it.” And then I remembered hearing that Marshall
Hall collected coins, so I asked if that was true. Yes it was. I
explained that I too had collected coins as a teenager and had
been particularly keen on early English ones. What sort did he
collect?

In response, the old gentleman fished inside his sports jacket
and produced a polythene folder with pockets, each of which
contained a coin. They were gold, they were ancient, with Greek
letters, and in perfect condition. I'd never seen anything like them.
Here was an elderly mathematician walking the streets carrying
mint-condition gold coins from ancient Greece worth enough to
buy a smart Porsche, if not a house. And who would know? I
didn’t dare ask whether he was worried about walking along the
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street carrying such valuables, but on thinking about it after-
wards, I could see it was far preferable to leaving them in the
hotel. A dealer from London was once visiting the coin fair in
Chicago and when he was leaving the city from O’Hare Airport he
placed his bag of rare coins in the metal detector. He never saw
them again.

When Hall gave his talk at Oxford ten years earlier, and it inspired
Higman and Sims to produce another exception, these new
symmetry atoms seemed to be two a penny. First Janko had
found one, then he looked for another and found two. Then
Higman and Sims found one, and others soon followed, either
by using the cross-section method or by studying groups of per-
mutations. These things seemed to be popping up like goblins at
a fairground. Pandora’s box had been opened and soon another
surprise was in store, using multidimensional geometry. A
remarkable structure in 24 dimensions had recently been dis-
covered, though not yet fully investigated. It yielded further
exceptions, though the reason for its creation was not to find new
symmetry atoms but to solve a problem in radio broadcasting.
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The Leech Lattice

Wherever groups disclosed themselves, or could be intro-
duced, simplicity crystallized out of comparative chaos.
E. T. Bell, Mathematics, Queen and Servant of Science

In the early days of radio broadcasting, reception was often dis-
turbed by background noise and distortion. You could be sitting
listening to music, but extraneous noises would disturb the sound,
even though the highest standards of acoustic cleanliness were
being maintained in the broadcasting studio. Looking for a way
of alleviating the problem, Claude Shannon at Bell Labs pro-
posed a solution in the 1950s. His idea was to send a radio signal
as a series of very short bleeps; faulty reception in each bleep
could be automatically corrected, cutting down the distortion.
His method associated each bleep to a point in a lattice, and
transmitted the coordinates of that point. Distortion would move
the points slightly off the lattice, and could be corrected by moving
each point back to the nearest lattice point. For this to work well
he needed lattices in multidimensional space, and mathematicians
started looking for them.

Why multidimensional space? The reason is that we need to
keep the points reasonably far apart, so that a small level of dis-
tortion doesn’t shift one lattice point too close to another, but at
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the same time we are trying to pack in as many points as possible.
The more dimensions we have the more points we can pack in. To
see why this is the case, think of each point being in the middle of
a box that protects it from other points, keeping them all a suit-
able distance away. Then think of arranging a million boxes. If
you put them in a line it will be a million boxes long. If you
arrange them in a square each side will have a thousand boxes.
If you arrange them in three dimensions the sides will be only
a hundred boxes long. And if you could arrange them in six
dimensions the sides would be only ten boxes long. The more
dimensions there are, the more points you can have within a given
diameter, yet keep them reasonably far apart.

The number of dimensions is not the only issue — the arrange-
ment of the points is important too. Here are two different
arrangements of points in the plane.

The tighter arrangement is on the right. Both have the same mini-
mum distance between points, but the one on the right has more
points in a given area. To see this, think of surrounding each point
by a circle. If we want a minimum distance of one centimetre,
then we take the radius of each circle to be one-half centimetre.
When two points are exactly one centimetre apart, the circles will
touch. When they are more than one centimetre apart, the circles
will be disjoint from one another.
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Packing points in the plane so that any two of them are at least
one centimetre apart is exactly the same as packing circles of
radius one-half centimetre so that no two circles intersect. To see
the best way of doing this, think of arranging same-sized coins on
a table. The lattices of points shown above give the following two

arrangements of circles.

The arrangement on the right is tighter, a fact we can quantify
by comparing the space within the circles as a percentage of
the total space available. This is called the packing density: in
the arrangement on the left it is a little under 79 per cent, but
on the right it is about 90 per cent. Another difference is that in
the arrangement on the left each circle touches only four neigh-
bours, but on the right each circle touches six neighbours. The
more circles that touch one another, the greater the packing den-
sity, and in two dimensions one circle can touch a maximum of six
others.

Having tackled the problem in two dimensions, let’s ask about
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three dimensions. What is the best way of packing balls, all the
same size? And how many balls can touch a given ball? Math-
ematicians have calculated the answer to these questions. For the
best packing, you cannot do better than you often see in a pile of
oranges arranged at a fruit stand. First arrange one layer of
oranges, like coins on a tabletop. In the picture below, they are
shown as circles with their centres at the points marked a.

Then pack the second layer in a similar way, but avoid having one
orange immediately above another. It is better to have the oranges
in the second layer nestle into the spaces so that each one touches
three oranges in the first layer. There are two ways to do this. The
oranges in the second layer can be placed with their centres above
either the points marked b, or those marked ¢. You cannot do
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both at the same time because a point marked » and a point
marked ¢ get too close.

When we pack the third layer there are again two choices. If we
packed the second layer with their centres above the points
marked b, then we must pack the third layer with their centres
either above the points marked « (that is, directly above the first
layer), or above the points marked c¢. These two choices are differ-
ent: in the first one the third layer is directly above the first layer, in
the second one it isn’t.

In these packings, how many oranges can touch a given orange?
For an orange in the second layer, only those in the first, second or
third layer can touch it. There are six touching it in the second
layer, and in the first and third layers there are three each. That is
a total of 12. This is the maximum number of balls that can touch
a given ball (all balls having the same size, of course).

The arrangement of 12 balls touching a given ball is possible in
two different ways, because once we have settled the first two
layers, the third layer can be either directly above the first layer, or
not, as we please. By comparison there is only one way of sur-
rounding a coin by six neighbours, so three-dimensional space is
more complex than two dimensions, and this makes it difficult
to prove that the layered packing I just described is as good as
you can get. It might seem obvious to anyone but a mathemat-
ician, but in mathematics one needs watertight proofs, and this
became a famous unsolved problem called the Kepler conjecture.
Although Kepler posited the conjecture in 1611, it resisted all
attempts at proof until 1998, when Thomas Hales at the University
of Pittsburgh finally solved it. His method used computers by first
reducing what was a problem about an infinite number of things
(the Kepler conjecture considers an infinite number of spheres in
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an infinitely large space) to a very large, but finite, number of
problems. Each problem involved a finite structure that he com-
pares to a sculpture made of cables and struts. There were roughly
100,000 such structures, and by using a computer to analyse them
all he was able to complete his proof of the conjecture. Checking
the work took years, and the paper only appeared in 2005.

The Kepler conjecture made no assumption about the centres
of the spheres being the points of a lattice. If you assumed this,
there was a relatively simple proof, but the assumption was not
valid, because there are layered packings as tight as any lattice
packing but without conforming to a lattice. However, this need
not bother us because we are concerned with symmetry, and can
stick to lattices.

We arrived at the subject of lattices from Shannon’s idea for
reducing distortion in radio broadcasts, and this means finding
good lattices in more than three dimensions. How do we do this?
In dimensions 4, 5, 6, 7, and 8 the higher dimensional crystals
from Chapter 9 can be used, particularly the exceptional ones of
type E. They form the basis for some excellent lattices, but in
dimensions higher than eight the exceptional crystals disappear,
and really tight lattices get more difficult to find. However, in
dimension 24 something very extraordinary appears. It was dis-
covered by a man named John Leech, and is called the Leech
Lattice.

John Leech was a mathematician who became very interested in
computing in its early days. He worked for some years in industry,
then in the Computing Laboratory at Glasgow University, and
eventually became head of computer science at the University of
Stirling in Scotland. In the early 1960s he had the excellent idea of
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using Witt’s design. This was a design on 24 symbols that Witt
used to construct Mathieu’s groups (page 133), and Leech now
used it to construct a lattice in 24 dimensions. He published his
first paper on this in 1964, and then in 1967 added extra points to
give a yet tighter packing, now known as the Leech Lattice. It
cannot be bettered. It is the tightest possible lattice packing in
24 dimensions, though a proof of this fact was only announced in
2004.*

In the Leech Lattice, each 24-dimensional sphere touches
196,560 others. This number is explained in Appendix 3, and
will appear later in connection with the Monster, though when
Leech published his lattice the Monster was nowhere in sight.
But the strange new symmetry atoms of Chapter 11 were being
discovered, and Leech was intrigued.

His construction of the lattice showed that it admitted a lot of
mirror symmetries, along with Mathieu’s largest group of permu-
tations, and he wondered whether there wasn’t more. He had a
feeling there was, and that an enormous new symmetry atom
would emerge. Since his lattice was so exceptional, this would
surely be a symmetry atom not in the table. Leech tried getting
group theorists interested in his lattice, and as he said himself, ‘I
dangled the problem under various noses . . . but Conway was the
first to take the bait.’

John Horton Conway was born in Liverpool in 1937, and went to
Cambridge as an undergraduate when he was 18. He claims to have
been painfully shy at one time but, “‘When I was on the train from
Liverpool to Cambridge to become a student, it occurred to me
that no one at Cambridge knew I was painfully shy, so I could
become an extrovert instead of an introvert.” Conway became an
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outgoing and engaging character, but like many other creative
people, was not always a success as a student. He preferred to work
on what interested him rather than on what was in the syllabus. He
loved games and started inventing his own, but it did nothing to
help his exam performance, and it wasn’t clear he could stay on and
take a PhD. Fortunately he did, but as his graduate studies were
coming to an end, he needed to find some sort of position.

The department chairman, Professor Cassels, asked him what
he had done in applying for a job, and said “We’re advertising a
position. You should apply.” ‘How do I do that?” Conway asked,
so Cassels took out a piece of paper and, sitting on a wall outside
King’s College, wrote, Dear Professor Cassels, I would like to
apply for ...”. Conway didn’t get the job, but when a similar
position came up the next year, the head said, ‘Unless I hear from
you, I’ll take your letter as an application for next year.” This time
he was lucky, and remained at Cambridge until he was lured away
by Princeton over 20 years later in 1986.

Conway’s first big break was his work on Leech’s lattice. In
autumn 1967, John Leech went to Harwell to spend a year at the
Atlas Laboratory. This was Britain’s large computer centre,
located near Oxford. John McKay, he of the later Moonshine
speculation, was there too, and the pair of them went to mathemat-
ics seminars at Oxford University together. Graham Higman* at
Oxford had been working on Janko’s third group J3, and McKay
got involved in using Higman’s results to construct it as a group of
permutations. Leech tried to interest Higman in his lattice, and
McKay tried it out on the people at Cambridge. He went there to
talk to Thompson and others about constructing J3, and told
Thompson and Conway about the lattice, but nothing happened
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immediately. The trouble was that since the recent discoveries of
new symmetry atoms, Thompson had heard heaps of suggestions
of where new ones might be lurking, and most ideas led nowhere.

For Conway it was a different matter. He was not really a card-
carrying group theorist, and when he got his first university
appointment at Cambridge in 1962 he was working on mathemat-
ical logic and finite mathematics. Things were not going well, and
he wrote later that ‘I became very depressed. I felt that I wasn’t
doing real mathematics; I hadn’t published and I was feeling very
guilty because of that.’* Conway was intrigued by the Leech
Lattice, and took a look at the first paper by Leech. He then
phoned Leech, and Leech said look at the later paper, which
had just appeared in print. When he did, he agreed there ought to
be a large group of symmetries, and tried to persuade Thompson
to take an interest. Thompson declined, but said that if Conway
could work out the size of the group of symmetries, then he would
believe there was something in it.

This looked like very hard work. Conway had a young family
with four daughters, and was doing extra teaching to bring in the
bread. How on earth was he to find the time to work on this
interesting and difficult problem? He waited until the summer
vacation and discussed it with his wife. “This could make my
name,” he assured her, and they agreed that he would get two
uninterrupted periods a week to work on it. One was to be
Wednesdays from 6 p.m. to midnight — the other was Saturdays
from noon to midnight. Before I recount how his first day’s work
went, let me explain what the problem was.

If you fixed a point in the Leech Lattice, the neighbouring points
were obtained in three separate sets. In Leech’s original paper
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there were two sets, one giving 97,152 points, and the other giving
1,104. The second paper added a third set of 98,304 points. This
gave a grand total of 97,152 + 1,104 + 98,304 = 196,560 points
neighbouring a given point. There were plenty of symmetries that
kept these three sets of points separate, but what Conway needed
was a symmetry that mingled them, allowing a point in one set to
go to another set. Physicists have a similar problem with elem-
entary particles. They, the particles, are in different families, and
physicists would like to see particles in one family transform to
those in another. How can this be achieved, and what new sym-
metries will reveal themselves in this way? Conway’s first job was
to see how likely this was in the case of the Leech Lattice. If you
take one point and a neighbouring point, how many points are
neighbours of both? If you get the same answer for any pair of
neighbours, this is evidence that one pair of neighbours is equiva-
lent to another. You can then add a fourth point neighbouring
three mutual neighbours, and do a similar calculation. Conway
did this and things worked out well. The evidence piled up, and he
was convinced there was a large group of symmetries. Now he
really wanted to work out the size of this group.

At noon on Saturday, as agreed with his wife, he started work,
‘I had a last cup of coffee, kissed the wife and kids goodbye,
locked myself in the front room, and started to work.” With a
12-hour period ahead of him he took a long sheet of white paper
and wrote down everything he knew about the Leech Lattice. By
6 p.m. he calculated that it should yield a symmetry atom of the
following size, or possibly half this:

22 x 3 x5 x 7P x 11 x 13 x 23 = 8,315,553,613,086,720,000

He phoned Thompson.
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At this point it may seem that Conway and Thompson, being
colleagues in the same department, would be on a roughly equal
footing with one another. This is not the case at all. Conway was a
junior faculty member with little serious mathematical work to his
name, and his technical mastery of group theory was relatively
poor, while Thompson was, well, stratospheric. As Conway says
himself, ‘I was a bit in awe of him actually, because he was the best
group theorist in the world, and everybody knew that. And I
thought he was a very serious person.’

Later, when Conway had analysed the symmetry of the Leech
Lattice in great detail, he was invited to give talks all over the
place. One of the first was at Oxford, and at the end of the talk a
graduate student asked, ‘How do you know your new group is
simple?’” In other words, how do you know it cannot be decon-
structed into anything simpler — or to use the term in this book,
how do you know it is an atom of symmetry? Conway was slightly
taken aback because he didn’t really have an argument, so a fac-
ulty member at Oxford named Peter Neumann answered the
question by putting a simple argument up on the blackboard. ‘I
felt like a fraud in all these talks’, said Conway. However, Peter
Neumann was very impressed with the talk and solicited a paper
for the Bulletin of the London Mathematical Society, promising
swift publication. Conway wrote the paper that autumn, and it
appeared soon after, in 1969.

Conway may have felt a lack of technical expertise at that time,
but what makes a young mathematician look good is independ-
ence of spirit and creativity. Technical mastery will be acquired by
learning from those who already have it, but creativity doesn’t
work this way. Mathematics has its fair share of brilliant young
people who seem to be able to learn anything with great rapidity.
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Some of these people can assimilate technical material at a tremen-
dous rate, but never go anywhere because they have no creative
ideas of their own. Conway had independence and creativity in
buckets, so he really had nothing to fear.

When Conway phoned Thompson giving him the number 2% x 3°
x 5% x 7> x 11 x 13 x 23, saying either this number or half of it was
the size of an atom of symmetry, Thompson phoned back
20 minutes later, told him he needed to halve it, and that there
were two other new symmetry atoms associated with it. Conway
recalls that “We used to joke that if you wanted a new symmetry
atom all you had to do was work out its size, pick up the phone
and dial John Thompson, and dictate the number. The results
could be quite spectacular.’

But there was still a big problem. Conway had worked out the
size, Thompson had confirmed it made sense, but did the new
symmetry atom really exist? Conway was working in 24 dimen-
sions, and he needed one new symmetry that wasn’t visible using
Mathieu’s group, along with a group of mirror symmetries that he
already knew about. The mirror symmetries were generated by
16-dimensional mirrors, all being permuted by Mathieu’s group,
and one further symmetry should generate the whole of this new
group. In order to write down a symmetry in 24 dimensions you
take 24 axes, and specify where each one goes to. This involves
writing down the coordinates of 24 points. Each of these points
has 24 coordinates of its own, so you write down 24 sets of
24 numbers, in the form of a matrix. This is what Conway did,
“filling in the entries piece by piece’.

It was hard work because the matrix had 576 entries and he
couldn’t afford a single mistake. He finally completed it, and
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although he wasn’t quite sure this matrix would do the trick, he
was ready to call it a day.

Anyway I telephoned Thompson again and told him that I had this
matrix, but that I was feeling exhausted, even though it was only
ten o’clock, and was going to bed. I would talk more about it
tomorrow. Then I hung the telephone up.

Then I thought, ‘No, I won’t. I’ll just see if I can at least see, in
principle, how to do it.” . . . Anyway it suddenly dawned on me as
soon as I had finished telephoning him the second time that I was
being stupid.

Conway suddenly had an idea of how to test the matrix. It
involved doing 40 calculations. He did one in detail, and the result
was fine. If he just did 39 more calculations like this it would settle
the matter. But by this time he was very tired, and said to himself,
‘It’s all going to work and so, really now, I'm going to bed.” Going
to bed when something exciting like this is left unfinished is a bit
unsatisfactory, so Conway stayed up for a while.

I just said, “Well, how bloody stupid to give up,” and so I carried
on. At a quarter past midnight, I telephoned Thompson again,
saying it was all done. The group was there. It was absolutely
fantastic — twelve hours had changed my life. Especially since I had
envisioned it going on for months — every three days spending six
or twelve hours on the damn thing.

What Conway had shown in a remarkable 12'2-hour period was
that the symmetry group of Leech’s lattice was larger and more
complex than had hitherto been realized and, as he said later,
‘Those 12%2 hours were the most important of my life.’

The next day was Sunday, and Conway and Thompson met in the
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mathematics department. They worked all day on the new group
and their discussions continued for the whole week. ‘I got a fan-
tastic education from Thompson’, said Conway. Among the first
things to come out were two further new symmetry atoms, mak-
ing three in total, and in honour of Conway they are referred to as
Col, Co2, and Co3, though Conway himself named them eI, 2
and <3 (pronounced dot-one, dot-two and dot-three). The group
1 was obtained by fixing one point of the Leech Lattice. If you
fixed two points as close as possible to one another, you got the
group <2. If you fixed two points at the next possible distance
from one another, you got the group *3.

These groups were not all. Fixing two points at other distances
yielded two other exceptional symmetry atoms, which in Conway’s
notation were *5 and 7. The second of these was identical to the
Higman-Sims group, discovered six months earlier at a confer-
ence in Oxford, and 5 was the same as a new group of permuta-
tions only just discovered by John McLaughlin at the University
of Michigan. This was exciting stuff. McLaughlin’s group wasn’t
yet published and Conway hadn’t even heard of it. But Thompson
had, and Conway recalls that ‘This was one of the things that
really convinced him.’

Now that Thompson was sure the new groups were genuine, he
examined them in some detail, and pulled two more exceptional
symmetry atoms out — one was Janko’s second group J2, and
the other an exceptional group of permutations discovered in a
different way by Suzuki, he of the Suzuki family of groups. If
Conway had been able to investigate the Leech Lattice a year or
two earlier he would have turned up seven new symmetry atoms
instead of three!

In total Leech’s lattice yielded 12 monkeys: five Mathieu groups,
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three Conway groups, and four others. These new discoveries
changed Conway’s life. ‘T had always felt guilty, felt that I was not
good enough, but the new discovery in 1968 released me from
worry, and led me to do some really good stuff.’

Conway continued to be interested in games, both competitive
and solitary. He has written two books on the subject,* and
his ‘game of life’ — which isn’t a game in the usual sense, but a way
of producing interesting patterns, with interesting implications
philosophically — has been featured on television programmes and
can be found easily on the Internet.

Conway remains the world’s top mathematical gamesman, and
a genius at finding clever notation and methods to study compli-
cated phenomena. In his earlier years he used to look rather
eccentric, and was seen around Cambridge University in open
sandals, even in winter. At a conference at McGill University in
Canada back in the 1970s when there was 18 inches of snow
outside, his sandals were thoroughly soaked, so he took them off
when he arrived to give his lecture, and stood in bare feet. The
mathematician who was introducing him to the audience had
prepared a little rhyme.

Let’s make a toast to Conway, John
The celebrated Cambridge don

You’ll know him by his unshorn locks,
And by his frequent lack of socks.*

The remarkable Conway will appear again before the end of this
book.
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Fischer’s Monsters

In great mathematics there is a very high degree of
unexpectedness, combined with inevitability and economy.
G. H. Hardy, 4 Mathematician’s Apology

In any creative activity it can sometimes be very useful to go back
to fundamentals. The Italian Renaissance, for example, harked
back to the ideals of classical art and architecture. Mathematics is
like this too, and some wonderful advances are made by going
back to basic questions.

Bernd Fischer did what many excellent mathematicians have
done before him and will continue to do in the future. He went
back to a simple sounding problem. Suppose you have a group of
permutations. The simplest permutation is one that switches the
position of two objects, leaving everything else alone. It is called
a transposition. We met transpositions in Chapter 3 when we
considered even and odd permutations. As abstract operations
they have order 2 — if you do the same transposition twice then
everything is back to where it was — and Fischer asked a simple
question: which groups of permutations are generated by oper-
ations of order 2 that behave like transpositions? He did not need
the operations to be transpositions in the usual sense, but merely
to behave like them in a way I will make precise later, and he
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concentrated his attention on symmetry atoms, or at least groups
that are very close to being symmetry atoms. This led him to three
big surprises, and they in turn took him on a slightly different
track that led eventually to the Monster, though he certainly
didn’t realize that at the time.

Mathematics was Fischer’s abiding interest since childhood,
when he loved to do homework for older boys at school. He was
fortunate later in having a stimulating teacher:

In high school I had a very good mathematics teacher. He had been
an assistant for three years before the war in Darmstadt, where he
worked on rocket trajectories. This was sophisticated mathematics
— it used differential equations, and had to take into account the
change of air pressure with altitude. He was a fantastic mathe-
matics teacher, and when I went to Frankfurt University I had no
need to attend any of the lectures on differential equations.

Germany was a leader in rocket science, producing the V2
rocket during the later stages of the Second World War. Fischer’s
teacher was not a rocket scientist but a mathematician, and his
way of using mathematics to deal with physical problems inspired
Fischer, who went to university intending to take a master’s
degree in physics, and then do a PhD in mathematics. But at
university he encountered a professor named Reinhold Baer, who
had returned to Germany from the USA. ‘From the beginning I
was fascinated by the way he did mathematics, and the way he
spoke to students of my age. I took analysis from him and he
would make mistakes on purpose to get the students to correct
him.” Baer’s influence turned Fischer from a would-be applied
mathematician to a pure one. He admired Baer’s attitude: ‘He was
very broad, and wanted to have all parts of mathematics in his
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seminar. He was an excellent senior professor. You could work
on anything you wanted, which for German universities at that
time was very unusual.” Baer provided a wonderfully stimulating
environment for creative work. ‘He got an extraordinary group
of students and visitors together.” Some visitors came for
extended periods, others just to give a talk. ‘Almost everyone in
this area of mathematics came to Frankfurt. Tits was a frequent
visitor, Thompson came, Janko came; there were very few
exceptions.’

Before the war, in the spring of 1933, Baer took a long vacation
in Italy with his wife and son. When Hitler came to power,
Baer, being Jewish, decided not to go back home, but went to
England without touching Germany, and in autumn he lost
his position owing to the new Nazi laws. He found a job at
Manchester University, and two years later went to the USA, but
he never felt America was his home, and in 1956 returned to
Germany. Fischer recalls that ‘Baer loved the German university
system. He really liked the way a university professor in Germany
was independent, and he knew so well how the German system
had developed in the nineteenth century; it was as if he had
invented it himself.’

When Fischer was a student he looked into various parts of
mathematics and started developing ideas of his own. ‘I used
to go into the library, crack open books and start reading them.
One of the things I read about was distributive quasi-groups.’
These were not groups, but Fischer got interested because ‘it was
obvious to me that there was a group around’. He was right, and
it led him on to the track of groups generated by operations
that behaved like transpositions, and later helped in cutting a
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path to the Baby Monster. But let us first consider ordinary
transpositions.

Two transpositions, one following the other, can give two
possible results. Consider a collection of people round a table —
interchanging two of them and leaving everyone else in place
is a transposition. Let’s do two of these in turn: for example,
first interchange Anthony with Beatrix, then interchange Charles
with Diana.

Anthony Beatrix

Diana Charles

There may be many people at the table, but only four are involved
in this transaction. Two separate interchanges take place, and the
resulting permutation has order 2; if you do it twice everything is
back to its original setting — Anthony and Beatrix end up in their
original places, as do Charles and Diana. On the other hand, if
both interchanges involve a person in common, then the resulting
permutation has order 3. For example if Beatrix interchanges with
Anthony, and then with Charles, the result is that all three of them
have moved clockwise or counter-clockwise round the table, while
everyone else stays in place (with the arrangement in the picture
the movement is clockwise). This permutation has order 3 — do it
three times in succession and everyone is back where they started.
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One transposition followed by another yields either a permuta-
tion of order 2, or one of order 3. Now forget about transposi-
tions for a minute, and consider permutations of order 2 with
the extra property that one followed by another has either order 2
or order 3. This is what Fischer considered — the permutations he
started with didn’t need to be transpositions in the usual sense of
the term, but he referred to them as transpositions,* and set about
finding what groups they could generate.

To cut a long story short — and he didn’t do this overnight by
any means — Fischer proved a remarkable theorem that said
roughly the following. If a symmetry atom, or something very
close to it, is generated by Fischer’s transpositions, then there are
six different cases. It might simply be the group of all permuta-
tions on a collection of objects — these groups get big quickly as
the number of objects increases, and this is the dull case. The
other cases are more interesting: four of them are families of
classical symmetry atoms,* and if that were the end of the
story, Fischer would have produced a very fine mathematical
theorem. But it wasn’t the end — the last case was absolutely
fascinating.

From Fischer’s sixth case emerged three huge symmetry atoms,
each related to one of Mathieu’s three largest groups of permuta-
tions. Mathieu’s three largest groups were called M22, M23, and
M?24, and Fischer’s groups became known as Fi22, Fi23, and Fi24.
Compared to the size of Mathieu’s groups, they are enormous.
The first two are symmetry atoms and the third contains a
huge symmetry atom of size 1,255,205,709,190,661,721,292,800.
This means more than a million million million million symme-
tries, and outside the periodic table it was the largest discovered
so far.
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To explain how the Fischer groups are related to the Mathieu
groups, think of Fischer’s transpositions in terms of mirror sym-
metries. A transposition interchanges two objects and leaves
everything else in place. Think of those two objects as points on
opposite sides of a mirror, and the other objects as points in the
plane of the mirror. The symmetry across the mirror switches the
first two points and fixes the rest. In other words it acts as a
transposition.

When we do one mirror symmetry followed by another, the
result will depend on the angle between the mirrors. For example,
suppose two mirrors are at right angles to one another — think of
one mirror interchanging north and south, while leaving east and
west fixed, and the other mirror interchanging east and west,
while leaving north and south fixed. The combination of the two
will switch north with south, and east with west, and the resultis a
rotation by 180°. This is exactly double the angle between the
mirrors, which is 90°, and it is a similar story for any angle. The
combination of two mirror symmetries is a rotation, the angle of
rotation being twice the angle between the mirrors. If the combin-
ation of two mirror symmetries is to have order 2 or order 3, then
the angle between the mirrors must be 90° or 60°.

Treating Fischer’s transpositions as mirror symmetries is not
strictly correct, because I have said nothing about the dimension
of the mirror or the space it is in, but the analogy may be helpful.
In two dimensions the situation is relatively simple. In three
dimensions it is a little more interesting, but Fischer didn’t restrict
the number of dimensions in any way. If you wish to understand
his results from a purely geometric point of view, you may find
yourself in some difficulty, because you need lots of dimensions,
but Fischer didn’t approach it this way. So how did he do it?
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One important ingredient, which links up with Mathieu’s
groups, is the following. Among the zillions of mirrors in the
arrangement, Fischer considered a sub-set of mirrors that were all
at right angles to one another, and he made this sub-set as large as
possible. He then examined the sub-group of symmetries permut-
ing them, and proved it could send any pair to any other pair. He
then used this to show that either it would have a straightforward
and well-understood structure, or it would be one of Mathieu’s
three largest groups, M22, M23, or M24. These last possibilities
led to the extraordinary sixth case, yielding the Fischer groups,
Fi22, Fi23, and Fi24. In his original paper, published in 1971,
Fischer called them M(22), M(23), and M(24), and they were
sometimes referred to as ‘Mathieu groups writ large’. Fischer’s
use of the letter M was admirably unassuming. He could easily
have used the letter F instead.

Fischer’s groups are very large, but the way to understand them
is to look at the complex arrangement of mirrors. The number of
mirrors is far smaller than the size of its group of symmetries.
The largest group, Fi24, has more than a million million million
million symmetries, but the number of mirrors is less than a third
of a million — it is 306,936 to be precise. This still sounds large,
but we don’t need to imagine real mirrors. We can simplify things
by using vertices instead of mirrors. Each vertex represents a
different mirror, and two vertices are joined by an edge when
the two mirrors are at right angles — this creates a network of
vertices connected by edges. Dispensing with mirrors and think-
ing in terms of networks makes it easier for the human mind to
comprehend.

For Fischer’s largest group, Fi24, the network has 306,936
vertices, each one representing a different mirror. In this network,
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the number of vertices joined to a given vertex, or in other words
the number of mirrors at right angles to a given mirror, is 31,671.
These mirrors form a sub-network, whose symmetry group is
Fischer’s smaller group Fi23. In this sub-network each vertex is
joined to 3,510 others, and the symmetry group on this smaller
network of 3,510 vertices is Fischer’s group Fi22. Within this
smaller network each vertex is joined to 693 others, and in this yet
smaller network of 693 vertices each vertex is joined to 180 others.
The point is that you can build back up again, from smaller net-
works to larger ones, and you do this by using Mathieu’s groups.

This is not supposed to be easy, but it is not impossible either.
Mathematicians deal with complex things by building up from
simpler components. In some ways it is like creating a design,
duplicating it many times and using these duplicate copies as parts
of a more complicated design. This is what Fischer did, but when
he wanted to move up from Fi23 to Fi24 he found that there
seemed to be two possible extensions, of different sizes. One of
these sizes looked absurd: ‘It was divisible by a prime number
larger than 100,000, which is obviously ridiculous, but you have to
rule it out somehow.” Fischer wrote to Feit, who eliminated it
using a rather sophisticated technique that had been used earlier
by Suzuki, Feit, and Thompson, but Fischer wanted to find his
own way to get there, and he did. This was at the end of 1969, and
he was now ready to write up a summary of his results.

Fischer’s paper appeared in print in 1971; it was labelled part I,
and he refers to forthcoming parts II and III that would deal in
detail with various cases. They never appeared because Fischer
was invited to give a series of lectures at Warwick University in
England, and he wrote lecture notes analysing all cases. These
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notes were freely available, and when I needed a copy some
ten years later the mathematics department at Warwick happily
obliged. But of course the notes were not available in university
libraries, and where another mathematician might have elabor-
ated these notes and published a series of papers, Fischer was off
on another track. He communicated his results very readily and
inspired others, but wrote very little down for publication. His
aim was to do research and communicate it directly with other
mathematicians, and he stirred up enormous excitement.

Although most of his work never appeared in print, his notes
were widely read and other people published analyses and sum-
maries of his work. Fischer didn’t mind at all — he was an ener-
getic man and worked very hard, aided by coffee and a large
supply of cigarettes, producing several new symmetry atoms. We
now have three of them, with two more to come, the next being
the Baby Monster. That didn’t appear in print either.

Before we get on to the Baby, it is worth mentioning how Fischer’s
work inspired others. In his groups generated by mirror sym-
metries, the angle between the mirrors was either 90° or 60°,
which meant that the combination of two mirror symmetries had
either order 2 (a half-turn rotation) or order 3 (a one-third turn
rotation). A young mathematician in California named Michael
Aschbacher followed this up by changing one of the angles
between the mirrors. Aschbacher retained the 90° angle (giving a
combination of order 2), but changed the 60° angle so that the
combination would have order n, where 7 is an odd number. When
n is 3 the angle is 60°, which is Fischer’s case, yielding his strange
beasts. Aschbacher did the other cases, and published his work
in a series of four papers that appeared during 1972 and 1973.
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He analysed all symmetry atoms that could arise in this way. It is
an intriguing list, but it shows there were no new surprises to be
had in this direction. There was another big surprise to come —
and Fischer found it — but let us first talk about Aschbacher.

The ‘Classification project’ — the project to find a complete list
of symmetry atoms and show that the list is complete — had been
kick-started by the great theorem of Feit and Thompson, and
then moved forward by Thompson’s own work. After him, the
second most important contributor was Aschbacher, whose work
really took off in the early 1970s. He went straight for the real
problems underlying the project, churning out one result after
another, and sweeping aside some of the cross-section problems
that others had been planning to work on. Some mathematicians
who intended making a career of this stuff suddenly had the
ground cut from beneath them. As one observer put it, ‘they
were all going around looking pretty glum because Aschbacher
had shown the whole thing was within reach. He took a lot of
people who were planning to work on cross-sections, and just
zapped them.’

Aschbacher operated at a prodigious rate, but his theorems all
had to be refereed before publication. This took quite a toll on the
time of other people, and Ernie Shult at Kansas State University
recalls that in the mid-1970s he was drowning under them:

I was supposed to be a referee for a lot of them, but it got to the
point where I couldn’t be responsible for checking them all. I was
getting about six a year, so I didn’t have much time for my own
research. And some of these papers were about a hundred pages in
manuscript. One of them I remember was 120 pages.

These papers were detailed and technical, and writing such a
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paper takes a great deal of work. Even if you have the outline of
a proof in your head, committing it to paper in an organized way
is quite a process. If you simply state the main theorem and try
writing out a proof, it can be far too cumbersome. Different
points in the proof will use similar techniques, so you deal with
these techniques separately, splitting them off from the main
proof. You write a statement for each one, and then prove the
statement. These lesser results are often called lemmas; they may
not be of great interest on their own, but are very helpful in
proving something more important. All mathematicians use lem-
mas on the way to a bigger result — they are like pieces of pipe
that all have to fit together without leaks. Aschbacher used some
of his own lemmas in later papers, not always with identical
hypotheses, but although he knew exactly where he was going,
you can pity the poor referee who is trying to follow the process.

Aschbacher was writing things so quickly that he usually had
no time to rewrite them, and since his proofs were very involved
and tersely written, they became very difficult to read. He and
Shult even got into correspondence about some of the proofs,
because Shult knew that Aschbacher knew that Shult was the
referee, so they dispensed with the anonymity and communicated
directly rather than go through the editor.

Aschbacher tended to work alone, but other people who later
collaborated with him were awed by his enormous grasp of detail,
and astonished by work he had done without yet submitting it
for publication. For example, Gary Seitz went southwards from
Oregon to spend some time with Aschbacher in Pasadena, and
said, ‘I proposed a question to him and he said he’d already
solved it. He opened a desk drawer and there it was! So I tried
another question I’d been thinking of and he opened another
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desk drawer.” We shall hear more of Aschbacher’s contributions
later.

Let us now get back to Fischer’s work. He had considered all
symmetry atoms involving a collection of mirrors in which the
angle between any two was 90° or 60°. It was natural to try a
similar project by allowing 45° angles, and he proposed this prob-
lem to a very capable PhD student named Franz Timmesfeld. The
problem was diabolically hard, but Timmesfeld took it on, and
found that by making one extra assumption he might be able to
get a complete solution. In a series of three papers published
between 1970 and 1975 he did precisely this. He used geometric
methods to study the internal structure of the groups that arise, in
the same spirit as Fischer and Aschbacher, and like them he gave
a complete list of all symmetry atoms that occurred. Each one
appeared in the periodic table. There were no exceptions.

Now Fischer himself re-entered the picture, removing Tim-
mesfeld’s extra condition and searching in the depths for whatever
was there. He had a good nose for finding exceptions and guessed
where another one might be hiding, but he desperately needed
time to work on it. ‘In summer 1970 I went to Michigan State
University and had two months to think about it.” Fischer’s new
idea involved his group Fi22, which could be used to create a set
of mirrors in which the angle between any two was 90°, 60°, or
45°. This led him to a larger group in the periodic table that
seemed to contain Fi22. He lectured on this at Bowdoin College in
Maine, and Walter Feit, he of the Feit-Thompson theorem, was
in the audience. Feit objected that a result in a paper of Steinberg
ruled out this containment of Fi22 in the other group, but Fischer
knew what he was doing, and didn’t accept the objection. As he
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recalled later, ‘Feit said over a hundred people had read this paper
of Steinberg. But they communicated my results to Steinberg
himself, and two or three days later he said he’d looked over his
proof and found an error.’

This type of thing happened more than once in Fischer’s work.
He would discover evidence for some new group, and get the
objection that so-and-so had proved a result ruling out some
strange sub-group it would have to contain. But Fischer was
always pretty sure of his ground. He was pretty sure the strange
sub-group did exist, and an error was then found in the result that
eliminated it.

In fact Fischer was on to something very interesting — a sym-
metry atom that would prove to be very large indeed — but he
lacked time to pursue it. After his two months at Michigan State
University, he had to return to Bielefeld, where he was to serve as
dean, for the coming academic year. ‘It was a horrible time to be
dean. We had a lot of students coming from Berlin and they knew
very well how to disrupt universities. They had learned their tac-
tics from the student unrest in 1968.’ It is difficult now to imagine
what the problem was and why the students seemed so keen to
smash the system, but as Fischer said,

Some of these people wanted to redefine mathematics. For
example, I was asked whether a student could write a master’s
thesis on the merits of Karl Marx as a mathematician. That would
be all right, but when he showed me the papers they just involved
integration techniques, and went on for pages and pages without
any theorems. It was high school stuff, on the level of a good high
school student.

Fischer was a good person to deal with idealism and political
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shenanigans because he is the sort of person who can give a
measured response to anything. I cannot imagine him losing his
cool over things, but he certainly had a tough job as dean.
‘We had meetings starting at 10 a.m. and ending at 9 p.m. I said
that for all important things the dean had to be there. They tried
to sit me out.” Let us leave Fischer battling with student politics
and ideology, and find out what else was going on in the discovery
and classification of all finite symmetry atoms. We shall return to
him later.
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The Atlas

A marveilous newtrality have these things mathematicall,
and also a strange participation between things supernatu-
rall, immortall, intellectuall, simple and indivisible, and
things naturall, mortall, sensible, compounded and divisible.

John Dee (1527-1608), Preface to his edition of Euclid

While Fischer was detained by his administrative responsibilities,
other mathematicians were busily trying to show that apart from
one or two fissures where strange beasts might be lurking, the
symmetry atoms on the list (periodic table plus exceptions) were
all that existed. People were proving theorems saying that if a
finite symmetry atom had this, that, or the other properties, then
it was already on the known list. These results were being proved
at a terrific pace, and the whole project — compiling a list of all
finite symmetry atoms, and showing that the list was complete —
became known as ‘the Classification’.

It was a vast undertaking. So many mathematicians were work-
ing on different aspects of it that their work was bound to overlap,
and at the same time gaps were liable to open up unless all parts
were covered. There was clearly a desperate need for someone to
orchestrate things and keep track of progress, and as with other
aspects of life, someone often rises to the occasion. In this case it
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was Daniel Gorenstein — he was a larger than life mathematician,
a mover and shaker, a fixer, a person who could get things done,
encourage people, and oversee the entire enterprise.

Gorenstein dubbed this enterprise “The Thirty Years War’,
and it is quite incredible that as the field marshall in charge, he
also managed to run the mathematics department at Rutgers
University. One of his colleagues said to me a few years later that
‘He’s the most competent man I ever met. He could do a lot of
things at the same time, and do them all well.” Such energy and
competence in one person is a rare gift, but ‘having a conversation
with him was like standing in a gale, and you had to know how to
keep your balance’. Gorenstein was a phenomenon, and ‘when he
was department head and we had meetings, the ideas would tum-
ble over one another on the way out of his mouth. “Would our
distinguished department head please finish a sentence”, someone
once asked. It never happened.’

Here was a man who was firing on all cylinders all the time,
handling the vast number of mathematical ideas that went into
the Classification, and the mathematicians who were coming up
with them. He combined superb organization with tremendous
personal drive, and as one of his PhD students remembers,
‘When I read my notes of his lectures later, they would come off
the page with the sound of his voice, something I never experi-
enced before or since.” Inside the lecture hall his energy and
dynamism had 50 minutes to express themselves without serious
interruption. Outside the lecture hall it was a different matter,
and things were happening at a terrific pace. ‘I’d go into his office
to spend half an hour with him, and he’d be perpetually inter-
rupted by phone calls. I had the feeling I was at Command
Central.’
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Gorenstein created a team spirit unheard of in any pure math-
ematics project at any time, and when he died in 1992 there was a
huge outpouring of grief. ‘He was like a father to me’, said one
mathematician to me at the time. Writing later, in 1995, Ron
Solomon, a young mathematician who joined the team in the
1970s, says ‘Gorenstein . . . provided the optimism, the organiza-
tion and, in 1972, a “l16-step plan” for the completion of the
Classification proof.’

This was the high point in Gorenstein’s career, which started as
an undergraduate at Harvard during the Second World War. One
of his teachers was Saunders MacLane, who relocated to Chicago
in 1947 and was later the thesis advisor to Thompson. After the
war, Gorenstein went back to Harvard as a graduate student in
algebraic geometry — a different area of mathematics — but in 1957
he got interested in finite groups, and in 1960 MacLane welcomed
him to the University of Chicago for the big group theory
year. That was where Feit and Thompson worked on their great
theorem, and Gorenstein got intrigued at the prospect of finding
and classifying all finite simple groups — the atoms of symmetry.
He started working on the problem himself, partly in collaboration
with John Walter at the University of Illinois, and later with others.

By the beginning of the 1970s things were moving fast, and as
Ron Solomon writes in 1995, ‘The pace of the Classification in the
”70s was exhilarating. Not a single leading group theorist besides
Gorenstein believed in 1972 that the Classification would be com-
pleted this century. By 1976, almost everyone believed that the
Classification problem was “busted”.”* By the term ‘busted’,
Solomon meant that the basic problem had been cracked and
the remaining pieces could now be picked off, albeit with some
difficulty and great technical finesse.

173



THE ATLAS

While Gorenstein himself drew together the strings of this
great project, encouraging others to cooperate in the big pic-
ture, he freely admits that what made things move so fast was
Aschbacher’s work:

It was Aschbacher’s entry into the field in the early 1970s that
irrevocably altered the simple group landscape. Quickly assuming a
leading role in a single-minded pursuit of the full classification
theorem, he was able to carry the entire ‘team’ along with him over
the following decade until the proof was complete.*

Marshall Hall, who, like Aschbacher, was at the California Insti-
tute of Technology, called him ‘The Steamroller’. He was the key
player, leading the attack, while Gorenstein organized some of the
other players into a team, communicating with group theorists on
the East Coast, on the West Coast, in the Midwest, in Germany, in
Britain, in France, and wherever there was anyone at the cutting
edge in this type of mathematics. Gorenstein even tried to get the
Russians involved when two Soviet mathematicians got permission
to attend a conference in California.

But this was not a project that anyone could easily join. The
technicalities were formidable, and Gorenstein readily admitted
that this put other mathematicians off:

Finite simple group theory was establishing a well-deserved reputa-
tion for inaccessibility because of the inordinate length of the
papers pouring out. The 255-page proof of the [Feit-Thompson]
theorem, filling an entire issue of the Pacific Journal, had set the
tone, but it was by far not the longest paper. Moreover, the tech-
niques being developed, no matter how seemingly powerful for
the problems at hand, appeared to have no applications outside
finite group theory. Although there was admiration within the
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mathematical community for the achievements, there was also a
growing feeling that finite group theorists were off on the wrong
track. No mathematical theorem could require the number of
pages these fellows were taking! Surely they were missing some
geometric interpretation of the simple groups that would lead to a
substantially shorter proof.

The view from inside was quite different: all the moves we were
making seemed to be forced. It was not perversity on our part, but
the intrinsic nature of the problem that seemed to be controlling
the direction of our efforts and shaping the techniques being
developed.*

As the huge effort increased, more and more young mathe-
maticians got drawn in, and big international conferences were
arranged to bring everyone together. Before getting on to those,
let us return to Fischer and his monsters.

After Fischer had ceased being dean he found time to return to
research and reconsider a possible symmetry atom generated by
mirror symmetries in which the angle between any two mirrors
was 90°, 60°, or 45°. His efforts were not in vain and in the sum-
mer of 1973 he managed to snag a huge one, the largest so far, of
size 4,154,781,481,226,426,191,177,580,544,000,000. At this point
in the book we may have become accustomed to large numbers
because these symmetry groups can contain a vast number of
operations, while the system of objects (mirrors, vertices, or what-
ever) is of a far more modest size. But this new group needed
13,571,955,000 mirrors, which makes Fischer’s other monsters
seem small by comparison.

There are two questions here. One is how on earth Fischer
worked out these numbers, and the other is how such a vast system
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could ever be constructed. Let’s first deal with how the numbers
were worked out. Here is the calculation for the number of
mirrors:

1+3,968,055+23,113,728 +2,370,830,336 + 11,174,042, 880=13,571,955,000

Let’s look briefly at where these numbers come from. Fix one
mirror — that is the number 1 at the beginning of the addition
sum. Each of the other mirrors has an angle of 90°, 60°, or 45°
with this one mirror. Those at 90° split into two sets whose sizes
are the next two numbers in the sum. The fourth number is the
number of mirrors at 60° to the one you fixed, and the fifth is
the number at 45°. Fischer calculated each of these numbers as
the size of one symmetry group divided by the size of another, and
that yielded each number as a product of prime numbers, which
had to be multiplied together before doing the addition. This was
back in the early 1970s when there were no pocket calculators.
People who had to do lots of additions and multiplications —
people in accountancy firms, for example — would call in a
comptometer operator, someone who sat down at a rather
unwieldy machine and banged in the numbers at a great rate of
knots.

Fischer was doing the work that led to these numbers in
1973 and was frequently in England, visiting the Universities of
Warwick and Birmingham. In the autumn he visited Cambridge,
where Conway tried to use an old mechanical calculator to help
do the final calculations; but he couldn’t find the parts, so Fischer
and his wife did the calculations by hand. Doing it by hand there
was more chance of a mistake, but as Fischer says, ‘I knew the
answer had to be divisible by 31, so there was a built-in check’.
Once Fischer had the total number of mirrors he could multiply it
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by a number he already knew, which was the size of the sub-group
fixing one mirror, and that would give him the size of the group —
the whole symmetry atom.

In September there was a mathematics conference on finite
groups at Oberwolfach, that wonderful retreat in south-western
Germany, and Fischer spoke on his new group. This was an excit-
ing event. By far the largest symmetry atom ever discovered had
just been announced, but Graham Higman from Oxford was in
Australia and wasn’t there to hear it, so they sent him a card. One
of his colleagues from Oxford said, ‘If you want to make sure he
reads it, keep it short. Just write down the size of this new group.’
And they did just that. When mathematicians write numbers, par-
ticularly in a case like this, they factorize them into prime factors;
for example, 24 = 2° x 3, and 60 = 22 x 3 x 5. When they wrote to
Higman they factorized the number for him, and in that form it
was 2* X3P x 50X 7P x 11 x 13 x 17 x 19 X 23 x 31 x 47.

The following month there was a second conference, this time
at the University of Bielefeld, where Fischer was a professor.
Thompson, Conway, Aschbacher, and others were there, and since
Fischer’s new group was the hot topic, everyone pressed him to
give at least one talk. But there is a tradition in Germany that the
host never gives a talk, so Fischer could only have informal discus-
sions with the guests. This was quite a strict rule, and at a group
theory conference in Germany a few years earlier, the organizers
did not have enough willing speakers, so one of them gave a lecture
himself. One senior participant immediately walked out.

Having worked out the size of the new group, and the number of
mirrors, there was a very important question to answer. Did it
really exist? If so it would permute 13,571,955,000 mirrors among
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themselves, and the question was how to construct such a vast
system of permutations. I mentioned earlier that computer
methods were used for some of the strange symmetry atoms that
had been ‘discovered’ by the cross-section method, and it was
natural to try using them here. These computer methods con-
structed the symmetry atom as a group of permutations, but you
needed plenty of technical information, so Fischer set about
working out the character table.

At the same time, he noticed that this massive group of permu-
tations might be a cross-section in something even larger. This was
in late 1973, and Bob Griess at the University of Michigan had a
similar idea. Fischer and Griess were both convinced that
Fischer’s huge new group could appear as a cross-section in a
larger group. How large, no one quite knew — at this stage things
were still a bit hazy.

Let’s remind ourselves how we got here. A few years earlier,
Fischer had created his ‘transposition’ groups Fi22, Fi23, and
Fi24. He had called them M(22), M(23), and M(24), because they
were related to Mathieu’s groups M22, M23, and M?24, and since
he used Fi22 to create his new group of mirror symmetries, he
tentatively called it M?*. It seemed to appear as a cross-section in
something even bigger, and as this larger group was clearly associ-
ated with Fi24, he labelled it M**. Was there something in between
that could be called M*? Fischer visited Cambridge to talk on his
new work, and Conway named these three potential groups the
Baby Monster, the Middle Monster, and the Super Monster.
When it became clear that the Middle Monster didn’t exist, Con-
way settled on the names Baby Monster and Monster, and this
became the standard terminology.

Fischer had worked out the size of the Baby Monster, and
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he was very keen on working out its character table. The Monster
at this stage seemed out of reach — even its size was unknown.
This was calculated partly by Fischer and partly by people at
Cambridge, so let us turn to the work that they were doing there.

Thompson and Conway were in Cambridge, and the last we heard
they had pulled some exceptional symmetry atoms from the
Leech Lattice. Conway had discovered three new ones, and the
lattice had yielded a total of 12, nine of which had already
appeared elsewhere. These 12, along with Janko’s groups J1 and
J3, which had nothing to do with the Leech Lattice, brought the
total number of exceptions to 14. This was in 1968. By the end of
1972 there were six more: three found by Fischer; one by Dieter
Held, who was a colleague of Janko’s in Australia, and later
moved back to Germany; one by Richard Lyons, a student of
Thompson’s in the USA; and one by a man in the USA named
Arunas Rudvalis. Both Held and Lyons used the cross-section
method. Rudvalis used permutations; he found some solid evi-
dence, after which there was a race between Conway and David
Wales at Caltech on the one hand, and Griess on the other, to
construct the permutations that were needed. Conway and Wales
won the race. The total number of exceptions was now 20. With
so much activity and so much information coming in, it made
excellent sense to collect it all, correct errors, and present it in a
form that was easy to read and readily available.

A new project, initiated by Conway and named ‘the Atlas’, was
born. It came about as follows. Conway had a student named
Robert Curtis who had written a thesis on the sub-groups in
Conway’s group Col. In 1972 Curtis returned to Cambridge from
a year at the California Institute of Technology, and Conway
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recalls that ‘T applied for a grant for three years to start work on
the Atlas, with Curtis as assistant.” Curtis was delighted to accept
this position, and his office became the Atlas office. “We called it
“Atlantis” ’°, said Conway, ‘because everything disappeared with-
out trace.” They also used the word ‘Atlantic’ because the Atlantic
ocean was named after the Atlas mountains in North Africa, which
in turn were named after Atlas the Titan from Greek mythology.
In the Atlas office they used blue paper, Atlantic blue.

As the project developed, Conway and Curtis were joined by
others. Simon Norton was fascinated by the work, and kept pop-
ping in to see how things were going. Conway was initially dis-
concerted by this frequent visitor, but they soon realized how
important Norton could be, so within a few weeks of his regular
appearances they invited him to join the team. Norton had come
to Cambridge straight from one of the top boarding schools in
England, where he had been so extraordinarily good at mathe-
matics that they put himin for a University of London degree, which
he received when he left his boarding school. He then went to
Cambridge to do the equivalent of a master’s degree, followed by
a PhD. Conway recalls that Norton was amazing. ‘He seemed to
absorb anything you taught him at a fantastic rate.’

The materials for the Atlas were kept in a binder labelled
ATLAS. Tt gradually expanded, and eventually burst, so they
covered it with a fake leather covering from one of the chairs in
the mathematics common room, binding it on with a shoemaker’s
bradawl. The ATLAS binder collected technical information on
all the exceptional symmetry atoms, as well as some other sym-
metry atoms in the periodic table. In 1973 two new exceptions
were discovered, one being Fischer’s Baby Monster and the other
a new group of symmetries found by Michael O’Nan at Rutgers
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University — the place where Gorenstein worked. This brought the
total to 22, though not all these groups were yet known to exist. If
a group emerged from the cross-section method — and this is how
the Baby Monster appeared — then a great deal of information
needed to be calculated before a construction was possible. Most
of this data was encoded in the form of a square array of numbers
called a character table. Character tables cropped up earlier when
we were dealing with some of Janko’s symmetry groups, and it is
now time to explain what they are.

A character table is a square array of numbers. For example,
the group of all permutations of four beads has a character table
with five rows and five columns. This group has 24 operations in
total, but they come in five different types,* and there is one
column for each. The rows of the character table express the fun-
damentally different ways the group can operate in multidimen-
sional space — any multidimensional operation can be obtained by
combining these. The number of rows always equals the number
of columns. When a group is composite — built up from many
small cyclic groups, for example — its character table can have
thousands of rows and columns. But symmetry atoms are differ-
ent. For example, Mathieu’s largest group has size 244,823,040
but its character table has just 26 rows and 26 columns. Each type
of operation, except the one that does nothing, appears many
times, so the symmetry atom can be extremely big while the char-
acter table is relatively small. We have not yet seen the size of the
Monster, but although it has more operations than there are
atoms in your personal computer, its character table has only
194 rows and columns.

The Atlas workers were accumulating character tables, along
with other interesting facts about these symmetry atoms, but they
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didn’t just collect the information, they checked it in great detail,
and as Curtis said later, ‘So many of the character tables we
inherited had mistakes in them.” After correcting errors, and
working out new details, they finally went for publication in
1985, and were proud to claim that their character tables were the
cleanest in the world.

There are several ways to check character tables. For example,
there is a way of combining two rows to give a single number;
calculating this number can take a while if the character table is
large, but in the end it has to be zero — if it isn’t there is an error.
Calculating with the many entries in these character tables needed
some serious computing ability and they took on a new member
named Richard Parker, who was terrifically good at this.

Now they were four, but a fifth member joined, named Robert
Wilson. He made a speciality of working out the sub-groups of
each exceptional symmetry atom. Some sub-groups are contained
in others, so Wilson concentrated on those that were not con-
tained in anything larger — they are called maximal, and Conway
dubbed him Mr Maximal Subgroups. Now there is a very odd
thing about the names of the Atlas authors. Here they are:

J,. H C O N W A Y
R T C U R I S
S P. N OR T O N
R.A. P A R K E R
R A WI L S ON

Notice that each surname has exactly six letters, and its vowels are
always in second and fifth positions. The order of the names is the
order in which they each joined the Atlas project, and remarkably
enough this is the same as the alphabetical order. Rob Curtis, who
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is now at the University of Birmingham, also pointed out to me
that in the Birmingham telephone directory these names are in
decreasing order of rarity, Conway being the rarest and Wilson
the most common. The Atlas members loved this sort of word
play, and I am convinced that if someone with a name like Wolsey
had come along to do a PhD in mathematics at Cambridge, he
would have been welcomed to join the project as a sixth member,
provided he had two initials of course.

The Atlas project was one of the most unusual ever in math-
ematics. It had a long gestation period, because of the detailed
calculations involved and the fact that new symmetry atoms were
still being discovered. It was finally published in 1985, by Oxford
University Press.

In late 1973, while the Atlas work was in its early stages, the
Monster was just peeping above the horizon, and the first thing to
be calculated was how big it was. Fischer was working on this and
visited Cambridge. He knew that the Monster had two cross-
sections, and using these, along with a procedure invented by
Thompson — called the Thompson order formula — the size of the
whole thing was within reach. Thompson’s technique needed
detailed computations on how the two cross-sections could inter-
sect one another, but even without having perfect information,
Fischer used it to show that the size could not be greater than a
certain number. Further calculations showed that the size had to
lie in various arithmetic progressions, and after Fischer had gone
back to Bielefeld, Conway used a programmable HP65 calculator
to see what the smallest possibility was. He left the calculator
running all night, and in the morning it gave him a number. He
guessed this was correct, so he immediately wrote Fischer a letter
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saying, ‘Dear Bernd, the size of the Monster is . . . I suppose you
know this by know.’

Fischer didn’t know, but combined with what he did know, this
number was no longer a guess. The size of the Monster was now
known, and in the first week of January 1974, Fischer talked on
the new group at a working conference organised by Baer in
Oberwolfach. In a leather-bound tome called the Vortragsbuch
(Book of Talks) he wrote a report, the first publicly available
mention of the Monster:

There appear to be simple groups [symmetry atoms] of the following
sizes:

G,: 24-31%-5%7%11-13-17-19-23-31-47

G,: 21-3%-5%7%13-19-31

Gy 24355571119

G,: 246-3%0-5%-7511%13%17-19-23-29-31-41-47-59-71

... The sizes of G,, G;, G, were determined by Conway, Harada
and Thompson.

In this quotation G, denotes Fischer’s Baby Monster, and G, the
Monster; G, was later named after Thompson, and G, after
Harada and Norton, in honour of those who did most of the
calculations on them.

Having the size of the Monster was essential before working
out its character table. This was calculated in Birmingham, not
in Cambridge, but the Cambridge people made a vital contri-
bution. The first row of any character table is trivial and just
consists of a series of ones, but Simon Norton and others at
Cambridge managed to figure out that the second row probably
started with the number 196,883, which was the product of the
three largest prime divisors in the size of the Monster. Certainly
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the number could not be less than this, and it meant that the
smallest dimension the Monster could operate in was 196,883.
This is pretty big, even for mathematicians, and it led to all sorts
of amazing things, but first let us return to Fischer’s work on the
Baby Monster.

While the Atlas work proceeded in Cambridge, Fischer went
to visit another mathematician with a similar outlook. Fischer
betook himself to Birmingham in England to consult with Dr
Livingstone. Donald Livingstone occupied a chair in Birming-
ham, having moved there five years earlier from the University of
Michigan in Ann Arbor.

Livingstone had a rather interesting pedigree in mathematics.
He did not go to school until he was 11, owing to his parents’
severe financial problems. The family lived in South Africa, his
father having moved there from the Isle of Mull on the west coast
of Scotland after the First World War to try his luck at farm-
ing, but poor crops meant no money for schooling. Livingstone
retained a great liking for Africa, and loved the Zulu language,
which he spoke fluently.

Before settling in Birmingham he spent nine years at the
University of Michigan in Ann Arbor. At that time he worked at
home a lot, particularly in the late evening, and his youngest son
remembers that ‘Mathematics seemed to be something you did
at night fuelled by coffee and cigarettes. On summer evenings in
Ann Arbor he would sit out on the porch with paper, pencil, and
cigarettes, and you could always win brownie points by taking
him a cup of strong coffee.’

When Livingstone moved from Michigan to Birmingham
he took some students with him, and they formed a small team
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working, as it were, on a second Atlas project, studying the
exceptional symmetry atoms, finding sub-groups, and working
out character tables. Fischer made lengthy visits to Birmingham,
and he and Livingstone got on well because they had similar
tendencies in mathematics. They both loved intense work on
technical details, with an adequate supply of cigarettes and
coffee, and both were rather diffident about writing up their
results.

In 1974, when Fischer went to consult Livingstone about the
character table of the Baby Monster, Livingstone had a different
idea. The people at Cambridge had calculated that it could prob-
ably operate in 196,883 dimensions, so ‘Livingstone said that
using this we ought to be able to work out the character table of
the Monster — then we could do the Baby Monster later.” So they
started on this immense project.

Working out the character table of the Monster was hard. It
required lots of calculations, so they needed computers, and even-
tually joined forces with a man named Mike Thorne who did the
programming. ‘He was really good at writing the programs, and
was always available when we needed him.” This was back in 1974
when computers were nowhere near as powerful as they are today,
and they needed to use the big machines at the University of
Birmingham. Unfortunately some of the science departments
needed big computing power every day, so you couldn’t just log
on to the computer whenever you felt like it. They had to wait
until night-time, but Livingstone was a night owl and Fischer
happily accommodated himself to the strange hours. They worked
during the day too, and Fischer recalls that ‘I was frequently at
Birmingham in 1974. 1 would have six or eight weeks without
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administration, and I went there and worked 16 hours a day. We
used the computer all the time, except Friday evenings.’

Fischer brought an important technique to this work. The
Monster contains a cross-section involving Conway’s largest
group extended by a factor of over 32 million. It will appear later
in constructing the Monster, and Fischer had a method of finding
the character table of such a group. This one had over a thousand
rows and columns, so he calculated it on a computer, and then
they had to transfer it to the computer they were using for the
Monster’s character table. This would be a simple matter today.
One would send it electronically across the university’s network.
In 1974 this wasn’t possible — there was no university network —
and it had to be done by hand. The same thing could happen
today if the network were out of action — you would copy it to
a disk, or to a solid-state storage device, and carry it over, but
they had to copy it on to tapes. These were slow, and the whole
operation took five hours.

Working 16-hour days, at least whenever Fischer was in
Birmingham, it took them more than a year to complete the
Monster’s table. As Fischer recalls it, ‘At the first go we had
18 characters [rows of the table]. Then it went up to 44 without
my presence. Then there was a blockage.” The Birmingham people
needed Fischer’s presence, so ‘I went to Birmingham for another
short visit and gave a hint on how to get four more characters.
After that a standard computation gave still more. After 70 or 80
characters the remainder were done by Livingstone using a com-
pletely different method.” The total number of characters was 194,
and I remember Livingstone giving a talk on this character table
at a conference. He brought in a ream of computer printout, with
each of the 194 rows labelled by a Chinese character, as befits a
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mathematician who reads Chinese but runs out of alphabetic
symbols — it is more fun than simply labelling them x,, x,, x; and
SO on, up to Xx;g4.

Once these three musketeers, Fischer, Livingstone, and Thorne,
had won the battle, and nailed the Monster’s character table,
Fischer went back to the Baby Monster. This was hard — in some
ways harder than the Monster — but having the Monster’s table at
least made it reasonable. While Fischer was still working on the
Baby Monster’s character table, he was visiting various other uni-
versities, and in 1976 he spent three weeks at Rutgers. Charles Sims,
he of the Higman—Sims group, worked there, and Fischer recalls,
‘Sims told me his idea of how to construct the Baby Monster.’
The idea was to create it on a computer as a group of permuta-
tions on 13,571,955,000 mirrors. The permutations were so
enormous that Sims had to find a way of cutting them down so
that the computer could handle it. ‘Sims told me he could do it
provided he had some further technical information, so I worked
out what he needed. Then I left.” That summer, Jeffrey Leon from
the University of Illinois at Chicago went to Rutgers for a year,
and started collaborating with Sims on using a computer to
construct the Baby Monster as a group of permutations. They
succeeded and submitted their results for publication in
February 1977.

Now it was the Monster’s turn, but this was an order of magni-
tude more difficult. With the Baby Monster, Fischer recalls that
‘They needed about 80 to 100 sub-groups, but with the Monster
there would be over a 1,000. We decided not to try it if someone
had a better idea.” And the Monster needed to permute far more
mirrors than the Baby: 97,239,461,142,009,186,000 to be precise.
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Computer methods seemed inadequate to the task, but the hand
of man was sufficient. We will find out more about how it was
done later.

In the meantime let’s recall where we are. The Monster and two of
its sub-groups, which were also new symmetry atoms, brought the
total number of exceptions up to 25. But in 1975, Janko found the
evidence for another one, later constructed by Norton and others
at Cambridge. This brought the total number of exceptions to 26,
where it has remained ever since.

The main excitement now was in proving there were no further
exceptional symmetry atoms not in the periodic table. This was a
time for large conferences to bring everyone together, and in
summer 1978 a huge one took place at the University of Durham
in England. By the end of summer 1978 most experts felt the
Monster would prove to be the largest exception — that there were
no more to be found. They were right — but there was a very big
surprise to come.
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A Monstrous Mystery

Mathematical discoveries, like springtime violets in the
woods, have their season which no human can hasten or
retard.

Carl Friedrich Gauss (1777-1855)

In scientific investigations that are nearing completion, one
unexplained fact can suddenly open up a whole new area for
investigation, and the classification and discovery of all finite
symmetry atoms was a case in point. The source of exceptions
had dried up, and the experts felt that proving the list was com-
plete was just a matter of time. But the largest exception — the
Monster — had unforeseen consequences. What happened was
this. A British mathematician living in Montreal, named John
McKay, was sitting at home one November day in 1978 reading a
research paper. We met McKay earlier — he was a catalyst for
Conway’s work on the Leech Lattice when he and Leech were
spending a year at the Atlas laboratory near Oxford. That was ten
years earlier, and now he came up with something else that needed
investigating. McKay is very eclectic, drawing inspiration from
many sources, and the research paper he was reading was in num-
ber theory, the branch of mathematics that deals with the whole
numbers. It was a paper by two British mathematicians, Oliver
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Atkin at the University of Illinois at Chicago and Sir Peter
Swinnerton-Dyer at Cambridge, and it discussed something called
the j-function. McKay wanted to know more about this myster-
ious object, so he did a little reading and found there were several
ways of specifying it. One of these gives the following series:

i(q)=q" +196,884q + 21,493,7604* + 864,299,9704°
+20,245,856,2564" + . ..

McKay was astonished. The first significant number in this
increasing sequence of coefficients is 196,884, and the smallest
number of dimensions in which the Monster can act non-trivially
is 196,883.

These numbers were too close for coincidence. McKay was
excited and wrote a letter to John Thompson, the great guru of
finite group theory. Rather than send the letter by post he gave it
to Fischer, who was visiting Princeton and went to Montreal to
give a talk. Thompson was also in Princeton at that time.

Another person in Thompson’s position might have waved the
coincidence away. After all, the j-function and the Monster came
from different parts of mathematics, and any coincidence in the
numbers might be meaningless. But Thompson was sufficiently
open-minded to want to know more. Could the other coefficients
of the j-function also be related to the Monster?

The first thing was to look at the Monster’s character table,
which has 194 rows and columns. A character table, as I men-
tioned earlier, is a square array of numbers that condenses a
massive amount of information about the group in question.
Each row expresses a fundamental way the group can act in a
multidimensional space, and the first number in the row is
the number of dimensions — it is called the character degree. The
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first two character degrees for the Monster are 1 and 196,883 — the
first one represents a trivial action in one dimension, and the
second represents a non-trivial action in 196,883 dimensions.
Putting these together gives an action of the Monster in dimen-
sion 196,884. This number is the first significant coefficient of the
j-function, and Thompson wondered whether the others might
arise in a similar way. ‘I started fooling around with it, and tried
the next coefficient.’

The first few dimensions — or character degrees — of the Monster
are shown in the column on the right below. Compare these with
the coefficients occurring in the j-function on the left.

Coefficients for the j-function — Character degrees for the Monster

11
196,884 196,883
21,493,760 21,296,876
864,299,970 842,609,326
20,245,856,256  18,538,750,076

Simple addition shows the astonishing fact that by adding char-
acter degrees for the Monster you can get the first few coefficients
for the j-function:

196,884 =1+ 196,883
21,493,760 =1 + 196,883 + 21,296,876

864,299,970 =1+ 1+ 196,883 + 196,883
+ 21,296,876 + 842,609,326

192



A MONSTROUS MYSTERY

This is more than a chance coincidence of two numbers.
Thompson checked out more of them, and Fischer did likewise.
The results were striking and word soon got round, though
some people outside the field thought it was crazy — one even said
he thought Thompson had finally lost it. On the contrary,
Thompson was on to something, and this was not the first strange
phenomenon associated with the Monster.

A few years earlier, another mathematician, named Andrew Ogg,
from the University of California at Berkeley, had made an
entirely different observation. Ogg had finished off an old prob-
lem related to the j-function, dating from the nineteenth century.
It involved finding all the prime numbers that could be used
to obtain other ‘j-functions’, in a way I will explain later. These
prime numbers turned out to be the following: 2, 3, 5, 7, 11,
13, 17, 19, 23, 29, 31, 41, 47, 59, 71. In January 1975, while
spending an academic year in Paris, he attended the inaugural
lecture for Jacques Tits, the man who invented multi-crystals
(or ‘buildings’). Tits had just moved from Bonn to Paris, to take
up a chair at the Collége de France, and his inaugural lecture was
a year after the Monster had been discovered. He mentioned it in
his talk, writing its size on the board as a product of prime
numbers:

29530 % 7Ox 117x 133 x 17 x 19%x 23 x29x 31 x41 x47x 59 % 71

Ogg was astonished. These were precisely the prime numbers
playing a special role in the problem he had recently settled. He
mentioned this extraordinary fact to Tits, and to Jean-Pierre
Serre, a colleague of Tits who had written books on several areas
of mathematics, including one called 4 Course in Arithmetic,
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involving the j-function in number theory. A young mathemat-
ician I know was once reading it on the New York subway, and a
well-meaning lady came over to tell him how sensible he was as an
adult to relearn the basics.

Serre was one of the top mathematicians of the century, but
Ogg’s observation was news to him, and his response was ‘Sans
blague’ (No kidding). What the reason was, no one had the
faintest idea. Ogg wrote about this coincidence in a paper he
was working on, and offered a bottle of Jack Daniels for an
answer. When McKay made his own observation nearly four
years later, the offer was still open.

In order to grasp the way Ogg’s prime numbers arise we need a
new concept. This takes us back to the days of the ancient Greeks.

In 300 BcE, Euclid of Alexandria wrote The Elements, a
sequence of books laying out mathematics, as it was known at the
time. It was a superb piece of work, and over a thousand years
later was translated from Greek into Arabic, and three hundred
years after that from Arabic into Latin. During the European
Renaissance, Greek copies were found, and translated directly
into Latin, and later into the individual languages of Europe.
Learning geometry at school was often referred to as learning
Euclid, and his exposition was wonderful. He started by stating a
set of axioms and went on to prove theorems that are as valid
today as they were in 300 BCE.

Euclid’s axioms for geometry in a plane are usually expressed
as five statements, but the only one I want to discuss here is the
fifth axiom — the one about parallel lines. This has the effect of
saying that if you take a straight line L in the plane, and a point p
not on that line, then there is exactly one line through p that does
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not meet L however far these two lines are extended in either
direction. Two such lines are usually called parallel.

Later mathematicians, both in the Middle East and Europe,
tried to prove that Euclid’s fifth axiom was a consequence of the
other four axioms. Some of these ‘proofs’ were quite sophisti-
cated, but all of them were wrong. Eventually it was shown
that Euclid’s fifth axiom could not be proved, because there is a
‘non-Euclidean’ plane in which it fails. This was discovered
independently by a Hungarian mathematician, Janos Bolyai, in
the 1820s, and a Russian, Nicolai Lobachevski. It satisfies the
other four axioms, but is distinguished from the Euclidean plane
by the fact that the angles of a triangle add up to less than 180°.
The larger the triangle, the smaller the sum of the angles — as its
vertices head out to infinity the sum of its angles approaches
Zero.

Janos Bolyai’s father, Farkas Bolyai, had worked on the
problem of parallel lines himself, and was alarmed that his son
had decided to devote his attention to it. He wrote to him,

You must not attempt this approach to parallels. I know this way
to its very end. I have traversed this bottomless night, which
extinguished all light and joy of my life. I entreat you, leave the
science of parallels alone.*

However, Janos persisted, and in 1823 was able to tell his father
that he was succeeding. ‘Out of nothing I have created a strange
new universe.” By 1831 he had written it up as a 24-page appendix
to the two-volume treatise on geometry by the great Karl
Friedrich Gauss. His father, a friend of Gauss, proudly sent it to
him, expecting praise for his son’s great achievement. What he got
in response was:
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If I commenced by saying that I am unable to praise this work, you
would certainly be surprised for a moment. But I cannot say
otherwise. To praise it, would be to praise myself. Indeed the whole
contents of the work, the path taken by your son, the results to
which he is led, coincide almost entirely with my meditations,
which have occupied my mind for the thirty or thirty-five years . . .
my intention was not to let it be published during my lifetime.*

The young Janos Bolyai was disheartened by Gauss’s response,
but it hasn’t affected our later admiration for his achievement, nor
that of Lobachevski, which was done independently. Lobachevski
was a very active mathematician and administrator who spent his
whole career at the University of Kazan, first as a student and
later as its rector. As for Gauss himself, he was a mathematician
of such immense talent that no one doubts his claim.

The Bolyai-Lobachevski plane, usually called the hyperbolic
plane, is not as easy to envisage as the Euclidean plane. Mathe-
maticians regard it as a surface of negative curvature, as opposed
to the positive curvature of a sphere, or the absence of curvature
in the Euclidean plane, but negative curvature is hard to imagine.
The positive curvature of a sphere is easier, because when you
flatten it out, as we do when we draw a map of the world, things
that are further from the centre appear larger than they really are,
so at least we can see them clearly. For example, on most maps
of the world Greenland looks much larger than any country in
Africa, whereas in reality, Algeria, Congo, and Sudan are
all larger than Greenland. In the hyperbolic plane the opposite
happens. As you move outwards from the centre, things appear
smaller than they really are.

There are several ways of picturing the hyperbolic plane, but
the most elegant is the Poincaré model, named after a famous
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French mathematician of the late nineteenth century, Henri
Poincaré. He viewed it as a disc in which distances get increas-
ingly foreshortened as one approaches the boundary, and where
straight lines only appear straight if they go through the centre of
the disc. All others appear as arcs of circles meeting the boundary
of the disc at right angles, as in the picture below. The Poincaré
model has the advantage that although straightness of lines is not
preserved, the angles between them are unchanged.
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With the hyperbolic plane to hand we can return to Ogg’s prime
numbers. He was working in number theory with something
called the modular group, which allows one pair of integers (an
integer is a positive or negative whole number) to change into
another. The modular group operates on the hyperbolic plane,
rolling it up onto a sphere.

Ogg was looking at sub-groups of the modular group — one for
each prime number. These sub-groups roll up the hyperbolic plane
less tightly than the whole modular group, yielding larger surfaces
that are not necessarily spheres. They are two-sided surfaces that
can be deformed, without tearing or pasting, to resemble either a
sphere, or a torus, or a double torus, etc. The mathematics dealing
with such things is called topology, and these surfaces are classi-
fied by their topological genus: a surface like a sphere has genus 0,
one like a torus has genus 1, like a double torus, genus 2, and so on.

torus

double torus

Ogg had proved this surface was a sphere precisely when the
prime number is one of: 2, 3, 5,7, 11, 13, 17, 19, 23, 29, 31, 41, 47,
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59, 71. These were exactly the primes dividing the size of the
Monster, a fact having no explanation at all, and perhaps simply
an odd coincidence.

There now seemed to be two strange connections between the
Monster and number theory. One was the j-function, which
according to Thompson’s calculations seemed to be related to
the Monster’s character degrees, and the other was Ogg’s set of
prime numbers. Of course the coincidence of the primes could be
accidental; there were not many of them, they were relatively
small, and if you added one to each of the three largest, 47, 59,
and 71, you obtained multiples of 12, a number playing a special
role in the Monster. Ogg’s observation was interesting, but not
worth pursuing on its own. Fortunately Thompson’s numerology
between the Monster and the j-function involved much larger
numbers, which seemed less accidental. Moreover, it helped to
substantiate the coincidences Ogg had noticed because there was
an important connection between the modular group and the
j-function, as any number theorist worth their salt could tell you.

When you wrap the hyperbolic plane on to a surface using a
sub-group of the modular group, you get an algebraic structure
on the surface. When the surface is a sphere, this structure is
generated by a single function, and for the modular group it is the
Jj-function. In effect the modular group yields the j-function, and
in a similar way the sub-groups for Ogg’s special prime numbers
yield what I will call mini-j-functions*.

When Thompson returned to Cambridge at the beginning of 1979
he explained to John Conway that by adding character degrees in
the first column of the Monster’s character table he could get
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the first six coefficients of the j-function, and remarked, ‘If you
try other columns you might get some interesting series.” Conway
had the Monster’s character table, as worked out by Fischer,
Livingstone, and Thorne — it was part of the great Atlas
project — so he was keen to try this out. He started adding together
numbers in the second column of the character table, just as
Thompson had done with the first column. Then he tried other
columns, obtaining various series whose coefficients were increas-
ingly large numbers. One of the early numbers he pulled out was
11,202, which was easy to remember and seemingly unrelated to
anything interesting. He went to the library to consult nineteenth-
century papers on number theory, and when he found this number
appearing in a series in one of those papers he was convinced he
was finally on to something. Writing about it later he recalled that
‘One of the most exciting moments of my life was when, after
computing several of these series, I went down to our mathemati-
cal library and found some of them in Jacobi’s “Fundamenta
nova theori@” ... with the same coefficients down to the last
decimal digit!’*

Conway was good at reading these old papers, and recalls that,
as an undergraduate, ‘I turned the pages of every paper Euler
published in the new journal from St Petersburg’ — Euler, who
lived in the eighteenth century, was the most prolific mathemat-
ician of all time, and his proofs were very stimulating, with lots of
good ideas. As Conway says, ‘Euler would prove a theorem, and
later someone would modify his theorem and produce a more
complicated proof, but if you wanted to understand what was
really going on you had to go back to Euler.’

Simon Norton became very interested too, but Conway recalls
that ‘Simon was travelling around the country on trains, so I
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got a two weeks’ start on him, which was great because he was
always so fast at learning anything new.” Simon was a great train
aficionado, and regularly carried detailed timetables with him. I
remember once at Oberwolfach asking his advice on how to get
from one place to another in Germany, and he immediately pulled
out a huge book to check the information.

Conway and Norton worked fast: ‘It was such a big job, and
took so much calculation that we worked on it day and night for six
solid weeks.” Verifying that the earlier observations were no mere
coincidences was hard work, and as Conway says, ‘Observations
are easy, and the information content is interesting, but the work
involved in making them is insignificant by comparison with
what we did. We were the first people to show this wasn’t an
accident.’

After an intense six-week period, doing thousands of com-
putations, they had come up with real evidence substantiating
Thompson’s observations.

Meanwhile Thompson wanted to prove that these new series
Conway and Norton had found would agree with the mini-j-
functions at all coefficients. There were infinitely many coef-
ficients, and Thompson had the idea of using a theorem of
Brauer, in a way I explain below, but at this point he needed some
help because he wasn’t a number theorist. He wrote to Serre in
Paris, who had heard first-hand from Ogg about the strange
coincidences with prime numbers. Serre wrote back advising
him to write to Oliver Atkin at the University of Illinois at
Chicago.

Atkin was an expert on the j-function and the mini-j-functions.
He was also a computer expert who had at one time worked at

201



A MONSTROUS MYSTERY

the Atlas laboratory, the place where Leech and McKay were
working when they tried to interest people in Leech’s lattice.
Many years before that, when he was a young man, Atkin had
worked at Bletchley Park, the British decoding centre during
the Second World War. Before long letters were flying back
and forth between Cambridge and Chicago, and two of Atkin’s
group theory colleagues, Paul Fong and Stephen Smith, soon got
involved.

Paul Fong had been a student of Richard Brauer, he of the big
cross-section theorem that inspired Thompson and Feit, and
in March 1979 Thompson wrote him a letter that started as
follows:

Dear Paul,

How I wish Richard were alive! He would hugely enjoy what is
happening. Among other things, there is an opportunity to use his
characterization of characters in the novel situation of knowing
the entire character table.*

Unfortunately Richard Brauer had died within the past two years.
His ‘characterization of characters’ was a result that helped
in working out character tables, but Thompson’s idea was to
use it in a situation where the whole character table was already
known. The point was that Conway and Norton were adding
entries in each column, and treating all columns the same way.
This amounted to adding whole rows to one another. For exam-
ple, one coefficient in each series was obtained by adding the first
three entries in a column, and doing them all together meant
adding the first three rows. The rows are the characters them-
selves, hence the need for Brauer’s theorem. Thompson used
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Atkin’s knowledge of the j-functions, along with Brauer’s char-
acterization of characters, to reduce the whole problem to a finite
number of calculations that Atkin did by computer. This proved
that all the series Conway and Norton had produced, using
different columns of the character table, were combinations of
Monster characters.

Thompson wrote a couple of fairly short papers on his recent
work, and John Conway and Simon Norton wrote a more expan-
sive paper with the title ‘Monstrous Moonshine’. It dealt with
all columns in the Monster’s character table, and showed how
some could be obtained from others by the ‘replication formulas’
they invented. It was a detailed and technical piece of work,
demonstrating a clear connection between the Monster and
number theory.

The term Moonshine, like the name Monster, was suggested by
Conway, and has a variety of meanings. It can refer to foolish or
naive ideas, but also to the illicit distillation of spirits (particularly
corn whiskey, from the days of prohibition in America). It gave
an impression of dabbling in mysterious matters that might be
better left alone, but also had the useful connotation of something
shining by reflected light. The true source of light is probably
yet to be found, but there were further strange connections to
come later.

In the meantime other group theorists were hearing about all this
at second hand, and it was time for another big conference. The
previous one was in summer 1978 at Durham, and in summer
1979 the group theorists met again, this time at Santa Cruz, a
campus of the University of California. This conference was
unusual in having number theorists and group theorists together.
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The point was to discuss the strange connection between the
Monster and the j-functions, but the underlying reason for this
connection remained — and still remains — elusive. We shall come
back to this later. In the meantime, at the end of the 1970s, the
existence of the Monster was still an open question. No one had
yet constructed it, so let us turn to the problems involved.
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Construction

Everything should be made as simple as possible, but not
simpler.
Albert Einstein

In early 1977, when Sims and Leon had constructed the Baby
Monster on a computer, as a group of permutations, it was natu-
ral to ask whether the Monster could be constructed in a similar
way. Unfortunately this seemed out of sight, as I mentioned
earlier, so an alternative method was needed. Perhaps one could
use multidimensional space. Similar methods had been applied to
other exceptional groups, such as Janko’s first group J1. But
where J1 needed seven dimensions, the Monster needed nearly
200,000, which means that a single operation in the Monster
would appear as a matrix with nearly 200,000 rows and as many
columns. As with J1 it might suffice to use two such matrices, and
multiply them together in many different combinations, but when
Fischer was first working on the Monster he reckoned that the
time required for just one matrix multiplication would be
about half a year of computer time.* Parallel processing with
modern machines would be far quicker, but would still take
many days, and that is just to do a single multiplication of two
matrices. A mathematician could certainly be forgiven for
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thinking that a construction of the Monster wasn’t worth wasting
time on.

By the end of the 1970s the Monster was still not known to
exist, despite all the technical information they had calculated.
Looking back on those days, Conway said recently, ‘At the time, I
regarded its construction as a practical impossibility, or maybe an
impractical possibility.” Then, rather suddenly, on 14 January
1980, Bob Griess at the University of Michigan at Ann Arbor
announced a construction. Conway recalls that “We had no idea
how he’d constructed it when we got his card. We thought he must
have done it using some new method, because I regarded the
obvious way as too heroic.’

Bob Griess was one of the first people to come up with evidence
for the Monster, back in November 1973. He had heard of
Fischer’s Baby Monster and calculated that there must be some-
thing beyond it. Fischer knew that too, and in collaboration
with Livingstone had obtained the entire character table of the
Monster, assuming the existence of an action in 196,883 dimen-
sions. Simon Norton at Cambridge then used the character table
to figure out that the Monster must preserve an algebra structure
in 196,884 dimensions. This structure would allow any two points
to be multiplied together to give a third point.

Griess’s first task was to construct a suitable multiplication.
This means he had to give rules that would assign to any
two points, p and ¢, a third point r that would be their product,
but one serious problem was that although he would often
know that this product must be either » or —r, he wasn’t sure
which one.

Griess had occasionally thought about this problem, and in
summer 1979 he decided to have another look at it. ‘I kept

206



CONSTRUCTION

massaging it, and I found I could begin to understand the sign
problems by tracking them back into the group.” The group
Griess is referring to here is a huge sub-group of the Monster —
Conway’s largest ‘simple’ group, extended by a factor of over 32
million. This group needs 96,308 dimensions, and is one of the
two cross-sections of the Monster (the other one involves the
Baby Monster). Fischer used it earlier in helping to build the
character table of the Monster, and Griess now used it to help to
construct the Monster in 196,884 dimensions. He knew that the
action of this huge subgroup must split the space into three sub-
spaces of the following dimensions:

98,304 + 300 + 98,280 = 196,884

The first number 98,304 = 2!2 x 24. This is the space needed for the
cross-section mentioned above.

The second number 300 =24 + 23 + 22 + ... +3 +2 + 1.
This comes from a triangular arrangement of numbers with 24
in the first row, 23 in the second row, 22 in the third row, and so on
— giving a total of 300. These numbers can be varied independ-
ently of one another, so there are 300 variables, or geometrically
speaking 300 dimensions.

The third number 98,280 = 196,560 + 2. This comes from the
Leech Lattice, where there are 196,560 points closest to a given
point, and they come in 98,280 diametrically opposite pairs.
Each pair yields an axis through the given point, and in the
196,884-dimensional space these axes become independent of one
another.

In the summer of 1979, Griess became interested in trying to sort
out the sign problem for the multiplication. But even if he could
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solve it, he still had to show that the group of symmetries con-
tained the Monster, and the only visible group of symmetries he
had was one of its cross-sections. Conway had a similar problem
with the Leech Lattice, where the vertices nearest a given vertex
were split into three sets. He had a large group of symmetries
permuting the points of each set among themselves, but needed
one extra permutation to create a larger group. Bob Griess now
had a similar problem: his space was split into three sub-spaces
and he needed one extra symmetry operation that would mingle
these sub-spaces. If he could get it, he would almost certainly
have created the Monster itself, though he would still have to
prove that.

He realized that success would require a serious time com-
mitment. You don’t solve a problem like this by spending a
couple of hours a day working on it, and there were other
attractive things to work on, possibly offering a more likely
chance of success. As Griess himself says, ‘In the summer of
1979 the Moonshine stuff interested me. I had a quiet time
playing with it, but then I considered the sign problem again. Fall
came, I went to the Institute at Princeton for a term, decided to
work more on the Monster construction, and just got addicted
toit.’

Griess had married in June 1979, shortly before the big confer-
ence in Santa Cruz, and his new circumstances evidently inspired
him. ‘T was newly married, but in the spirit of being newly married
she was very understanding. In October I just started working
round the clock. I took off half a day for Thanksgiving and one
day for Christmas.’

Griess was working on two interrelated problems: the sign
problem for the algebra structure, and the creation of an extra
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symmetry operation. ‘I started by trying to solve both ... at the
same time.” The sign problem for the algebra he solved first, but
finding an extra symmetry also involved sign problems, and he
recalls that ‘it was a slippery business’. This was an exciting and
exhausting time, and by mid-December he was very close, ‘but
each complete check was so long and mentally tiresome that I was
not confident until a bit after the New Year’. By the middle of
January, ‘after a final unhurried check’, he was ready to send out
an informal announcement, on 14 January 1980. Writing up all
the details was to take a lot longer, and a paper containing these
details was only submitted for publication in June 1981. Such an
important result went through the publication system as quickly
as possible, but it needed careful checking by an external referee,
and was a very long paper. It appeared in print in 1982, as
102 printed pages of detailed argument. In this paper, Griess uses
the term Friendly Giant, rather than Monster, but his new name
never caught on.

Since the Monster had such fascinating connections with other
things, it wasn’t long before two other mathematicians got deeply
involved in looking at the Griess construction. One was Jacques
Tits, who found a way of avoiding the sign problems. The judi-
cious guesses that Griess made, which then had to fit together
nicely, could be eliminated in favour of a guaranteed method.
Tits also found a number of other improvements: ‘I simplified
Griess’s construction somewhat, but what he did was a great
piece of work. It was done without computers and this was a great
feat.’

Indeed, the fact that Griess constructed the Monster without
using a computer in any way was magnificent. After all, the
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Monster was discovered using the cross-section method, and in all
but one other case of this type, an eventual construction used com-
puters. The one exception was Janko’s group J2, which Marshall
Hall and Jacques Tits had both constructed by hand as a group of
permutations on 100 symbols.

The other person who took a detailed interest in the Griess
construction, and then gave a construction of his own, was
Conway. He calls Griess’s construction ‘monumental’, comments
on Tits’s simplifications, and compares his own approach to that
of Tits.

Tits avoids the need for explicit consideration of the sign problems
by a more abstract discussion of the underlying representations.
He also has a very elegant proof of finiteness. In a sense, Tits’s
improvements are orthogonal to ours. He wishes to avoid all calcu-
lations in the Monster, while we would like to make it easy for the
reader to perform such calculations for himself.*

Conway’s construction is similar to Griess’s in the sense that they
both use the same large cross-section of the Monster to get
started. This splits the 196,884-dimensional space into three sub-
spaces, as [ mentioned earlier. Griess had constructed a multipli-
cation among the points of this huge space, and then obtained a
symmetry that wasn’t in the cross-section, allowing points from
the three sub-spaces to interchange with one another. Conway
avoided both these problems by creating three identical spaces of
196,884 dimensions, and merging them into one in such a way
that corresponding sub-spaces took up different parts of the whole
space. This trick meant that he constructed three identical looking
cross-sections of the Monster, which between them generated the
whole thing.

210



CONSTRUCTION

Conway’s paper was published in 1985, the same year as the
Atlas, and at this point it seemed to everyone concerned that
all the finite building blocks for symmetry — the exceptional
symmetry atoms — had now been found. There was, however,
always the question of errors, and Conway reports that someone
asked him about this, and whether he was an optimist or a
pessimist.

I replied that I was a pessimist, but still hopeful, and was delighted
to find that this answer was misinterpreted in exactly the way I had
maliciously desired!

Among those who are engaged in the great cooperative attempt
to classify all the finite simple groups, ‘optimism’ usually describes
the belief that there are no more such groups to be found, since
new groups appear as obstacles in the path of progress. My own
view is that simple groups are beautiful things, and I'd like to see
more of them, but am reluctantly coming around to the view that
there are likely to be no more to be seen.*

By the time Conway wrote this, the question of proving that
there are no more exceptions had already taken a new turn.
Danny Gorenstein, in collaboration with his colleague Richard
Lyons at Rutgers, and Ron Solomon at Ohio State University,
started a project called the Revision. The idea was to put
in place a complete proof of the Classification, readily accessible
to posterity. This would make it possible for a new generation
of mathematicians, not weaned on the enormous technic-
alities, to understand it all. It was a tough call. Many of the
earlier papers were horrendously difficult to follow, and
the Revision project was a very brave one indeed. It is still in
progress.
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When they started this project, Michael Aschbacher and others
were nailing down most of the loose boards, after checking that
nothing was hidden underneath, but some mathematicians out-
side the charmed circle still had a feeling of unease. It seemed
that the group theorists had been racing along too fast, and could
well be missing things. Some were annoyed by the apparent
hubris, and I remember saying to one outsider that maybe they
would yet find another exception, to which he fervently
responded, ‘I hope they find a whole family of them! I pray
forit.

Certainly there was cause for doubt. Geoff Mason at Santa
Cruz in California had been working on the ‘quasi-thin problem’
— an essential part of the Classification programme — and seemed
to have shown there was nothing new in this direction. Those who
had seen drafts of his manuscript confirmed that the entire thing
was very long indeed — about 800 pages of typescript — but it was
not yet in a form for publication, and turned out later to have gaps
in the argument. Writing in 1995, Solomon says:

The literature on the Classification was always challenging, coming
in massive 200-page papers. Nevertheless, there were always indi-
viduals and seminar groups that made serious efforts to read and
digest most of the papers which appeared during the years 1960—
1975. At least 3000 pages of mathematically dense preprints
appeared in the years 19761980 and simply overwhelmed the diges-
tive system of the group theory community. Mason’s 800-page
quasi-thin typescript has achieved some notoriety, inasmuch as it
has never been published. *

Mason was trying to do the same as most other people, namely
to close things off, rather than find anything new, and if a particu-
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lar situation led to a contradiction, then that settled it and they
could move on to other things. However, some contradictions
were chimeras. They didn’t really exist, and as Conway wrote
in 1985:

Quite a large number of the groups ... [were] constructed after
somebody had already proved them impossible! When David
Wales and I set out to construct the Rudvalis group, for example,
we soon ran into a contradiction which refused to go away even
after we had condensed it onto one side of a sheet of paper and
scrutinised it for several days. Fortunately we were so convinced
that the group existed that eventually we just put that piece of
paper aside and constructed the group by another method that
carefully went nowhere near our contradiction! Another group
theorist later told me that he too had disproved the Rudvalis
group, although he had only used the assumption that it contains
a subgroup that it does, in fact, contain! . .. What worries me is
the nagging thought that another group like the Rudvalis group
might have been disproved somewhere in the classification
programme by someone who had no overwhelming conviction
that it existed.

The trouble is that groups behave in astonishingly subtle ways
that make them psychologically rather difficult to grasp. We might
say that they are adept at doing large numbers of things well before
breakfast.*

When Danny Gorenstein died in 1992, Lyons and Solomon con-
tinued the joint Revision project, and expect to have the whole
thing finished by 2010. As to the quasi-thin case, Gorenstein at
first hoped that some new work, being done partly in Germany
and partly in America, would settle it, but that turned out not to
be the case, and the problem was still open.
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Then at the annual American Mathematical Society meeting
in San Francisco in January 1995, Michael Aschbacher from
Caltech and Stephen Smith from the University of Illinois in
Chicago organized a special session on the Classification. An
unspoken goal was to find some enthusiastic young people to
volunteer for quasi-thin, but that didn’t happen.

They met again in May and, as Smith remembers, ‘Michael
suggested we should just bite the bullet and step up to the quasi-
thin problem ourselves. We both did some preliminary thinking,
and then started in earnest during January 1996 when I went to
Caltech on a sabbatical.” Together they planned a book dealing
with the quasi-thin stuff once and for all. Their book, The Clas-
stfication of Quasi-Thin Groups, occupying over a thousand pages
split into two volumes, came out in November 2004, and finally
settled it.

Still some people wondered whether Janko, who had produced
four exceptions, might not have a fifth one up his sleeve. Janko
himself got in touch with Thompson to tell him where he thought
another large exception might be lying, in quasi-thin territory, so
Thompson called Smith in Chicago to make enquiries. However,
it seemed they had that case well covered, and when I wrote to
Janko to enquire what he now thought, his reply was, ‘I have read
ALL CRITICAL PLACES in the Aschbacher—Smith book (on quasi-
thin simple groups), and now I am confident that the classifica-
tion is absolutely OK!!” If Janko is confident, and if Thompson,
Aschbacher, and others are confident, then that should give us all
confidence. The proof of the Classification has come a long way
from the time when a handful of experts believed in it, to the
point where it is being written for future generations of mathe-
maticians to understand. This is the role of the great Revision
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project, which will form a basis on which we can continue to strive
for a better understanding of it all.

There remains, however, the great mystery about the Monster
and Moonshine, about which I have more to say in the next
chapter.
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Moonshine

Thus the task is, not so much to see what no one has yet

seen; but to think what no one has yet thought about that
which everybody sees.

Erwin Schrodinger (1887-1961), a leading

discoverer of quantum theory

The Monster’s connections with number theory — the Moonshine
connections — had suggested it was a more beautiful and import-
ant group of symmetries than first realized, so there should be a
more elegant way of obtaining it. The Griess construction in
196,884 dimensions, marvellous though it was, might then emerge
within a broader picture, but before we look at this further, let us
recall how the Monster was originally discovered.

The first big step was Mathieu’s group of permutations M24,
discovered in the mid-nineteenth century. A hundred years later
this led to the Leech Lattice in 24 dimensions, which in turn
led to Conway’s group Col, and then finally to the Monster.
The sequence of symmetry groups is: Mathieu’s group M?24,
Conway’s group Col, and the Monster.

As groups of permutations, one quickly finds that AM?24
permutes 24 objects, but Col needs to permute at least 98,280
objects. This is a big jump from 24, though it emerges naturally in
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24 dimensions, as a set of axes through a vertex in the Leech
Lattice. Each axis has two diametrically opposite points, which
are the centres of spheres touching a given sphere. This gives
2 % 98,280 = 196,560 spheres touching a central sphere, which is
the maximum possible in 24 dimensions.

Permutations are fine for M24, but not for Col. It is the Leech
Lattice that takes us from M24 to Col, and we now need a good
way of going from Col to the Monster. The fact that the number
of dimensions climbs so sharply is analogous to the fact that the
number of points increases sharply as we move from M24 to Col.
Taking this analogy further, notice that the Leech Lattice really
moves us from 24 points to an infinite number, because a lattice
stretches out to infinity in all directions; so as we move from
Conway’s group Col to the Monster, it seems reasonable to move
from 24 dimensions to an infinite number. This is where the
Moonshine connection comes in.

Following McKay’s observation about the Monster and the
Jj-function, Conway, Norton, and Thompson had shown that each
coefficient of the j-function should be the dimension of a space
on which the Monster acts. Putting these spaces together would
give an infinite dimensional space. Conway and Norton con-
jectured that such a space should yield the mini-j-functions, along
with their replication formulas, and these became known as the
Moonshine conjectures.

The first significant coefficient of the j-function was 196,884 —
the same as the dimension of the space that Griess created in
constructing the Monster. An infinite-dimensional space for the
Monster should surely start with this piece, or something very like
it, and a few years later such a space emerged from the work of
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three collaborators: Igor Frenkel, James Lepowsky, and Arne
Meurman. It had sub-spaces of all the correct dimensions for the
Jj-function, and a group of symmetries that yielded the Monster.
This was in 1984, and four years later, in 1988, they wrote a book
on their work called Vertex Operator Algebras and the Monster.
In the preface they write:

This work grew out of our attempt to unravel the mysteries of the
Monster, the most exceptional finite symmetry group in mathemat-
ics. The Monster creates a world of its own and many of the mys-
teries reflect the unity and diversity of this mathematical world. We
began struggling with the Monster even before it was known to
exist, as it was starting to reveal its true beauty. We have been able
to solve some of the problems and to shed light on others, and we
have added a few new ones.*

The vertex operator algebras in the title of the book were some-
thing fairly new. They had appeared a couple of years earlier as
‘vertex algebras’, but most mathematicians had never heard of
them. Moreover, vertex operators originated not in mathematics,
but in physics. They come from string theory, and describe the
interaction of strings, which are models for elementary particles.
This suggested a connection between the Monster and deep ideas
from physics, and in the preface to their book, Frenkel, Lepowsky,
and Meurman write, ‘our main theorem can be interpreted as a
quantum-field-theoretic construction of the Monster and in fact
as the statement that the Monster is the symmetry group of a
special string theory’. Before we pursue this theme, let us recall
how we got here.

The Monster — the largest of the exceptional symmetry atoms —
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had been shown to have deep connections with number theory,
which Conway dubbed Moonshine. The first of these connections
was with the j-function, and Conway and Norton then used the
various types of operations in the Monster to produce a collection
of mini-j-functions. They conjectured that the j-function along
with these mini-j-functions should emerge from an infinite dimen-
sional space having the Monster as its symmetry group, and a few
years later, Frenkel, Lepowski, and Meurman created a suitable
space. They called it the Moonshine module, and although it
yielded the j-function, it was not clear that it would also yield all
the mini-j-functions. In other words, it was not yet known to sat-
isfy the Moonshine conjectures of Conway and Norton, and the
man who resolved this problem was Richard Borcherds.

When the Moonshine module was first announced in 1984,
Borcherds was a postgraduate student at Cambridge, working
under Conway, and he was hearing plenty about the Monster.
Conway was publishing his own construction, and putting the
finishing touches to the great Atlas project. The Monster was
very much in the air, and Borcherds wanted to provide a new
approach to it. He was an unusually capable student. Conway
recalls that on one occasion he himself, his second wife Larissa
(who was also a mathematician), and Richard Parker were all
working on a problem concerning the Leech Lattice. The problem
had started with some observations by Parker that Conway
explained to Borcherds, and then continued working on with his
collaborators. Six weeks later when Borcherds found they were
still at it, he showed surprise: ‘Oh, are you still working on that?
I solved it some time ago.’

Solving problems is impressive, but Borcherds also liked to
put things in a broader theoretical context, and shortly after his
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PhD he published a remarkable paper on vertex algebras and
the Monster. This linked up with the work of Frenkel, Lepowsky,
and Meurman, and two years later, in 1988, he published a paper
on an intriguing class of Lie algebras, which led him towards a
proof that the Moonshine module satisfied the Conway—Norton
conjectures.

Lie algebras go back to the work of Sophus Lie (see Chapter 5).
His groups of continuous transformations — now called Lie groups
—were classified by Killing and Cartan. Their work used algebraic
structures, called Lie algebras, that have a particularly elegant
form. They are based on crystalline structures that yield tight
sphere packings — just like the Leech Lattice, but simpler. These
crystal structures — or rather their symmetry groups — embed in
the Lie groups, and the symmetry group of the Leech Lattice
embeds in the Monster in a similar way. Perhaps by analogy the
Leech Lattice could be used to obtain a Lie algebra that would
yield the Monster.

This idea led Borcherds to a new class of Lie algebras, which
he published in 1988 — they have since been called Borcherds
algebras, or Borcherds—Kac-Moody algebras.* In a paper two
years later, he presented a special case that he called the Monster
Lie algebra. This used the Leech Lattice in an intriguing way that
is related to the mathematics behind special relativity theory, so
let us return to the physics of Chapter 6.

In the first half of the twentieth century two major advances
in physics had occurred: relativity theory and quantum theory.
Einstein published his first paper on relativity theory in 1905, and
a young German-Lithuanian mathematician named Hermann
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Minkowski then produced a geometry that provided the perfect
background for Einstein’s theory. In Minkowski’s geometry time
and space are linked in a four-dimensional space-time. Each
point in this space-time represents a possible event, and has four
coordinates, three of space and one of time. The ‘time-distance’
between two points — in other words between two events —
involves the differences in their four coordinates x, y, z, and ¢,
where ¢ is the time coordinate. In our usual space of three dimen-
sions the square of the distance would be given by the formula
x* + y* + 2%, but in Minkowski’s geometry, the square of the
‘time-distance’ is:

X+yP+-r

In this formula I am choosing units so that the speed of light is
1 unit. The important thing is the minus sign. This means that the
square of the ‘time-distance’ between two points may be positive,
negative, or zero. When it is negative — for instance, when x, y, and
z are zero — the two points can be connected by an object travelling
at less than the speed of light; when it is positive they cannot.

To illustrate a case where the square of the ‘time-distance’ is
positive, imagine someone sending an e-mail message from a
planet 100 light-years away. If this e-mail travels at the speed of
light, it will take 100 years to reach us, so if we receive it today
it was sent 100 years ago. If we send a reply it will take another
100 years to reach them. There will be a gap of 200 years between
when they send the message and receive our reply. Our position,
here and now, cannot be connected to their position during that
200-year period without travelling faster than light. The square of
the ‘time-distance’ between one and the other is positive.

When the square of the ‘time-distance’ between two points — or
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I should say two events — in space-time is zero, then the events can
be connected by a light ray, emitted from one and received by the
other. A light ray experiences no time; it is as if it were travelling
instantaneously from one point to another, though the mathemat-
ics allows us to measure a finite speed. At the speed of light time
stands still, and it makes no sense to travel faster than light, unless
you can move backwards in time.

Einstein’s special theory of relativity gave way ten years later to
his general theory of relativity, in which space-time is curved in
order to incorporate gravity. This works well at the macroscopic
level, except in a black hole, where the mass of an object is too
great for the space it occupies, and the enormous curvature leads
to a singularity in space-time.

At the microscopic level — at the level of atoms and molecules —
gravitational forces are so low as to be insignificant. Physicists
could ignore gravity as they started examining the internal struc-
ture of atoms, but they had to develop quantum theory instead. In
an atom they found that most of the mass was concentrated in a
tiny nucleus, and this was composed of particles called protons and
neutrons. Further investigation showed that protons and neutrons
also had an internal structure, involving quarks. However, the pro-
cess of finding internal structures could go on indefinitely because
if the mass became concentrated in ever smaller ‘particles’ they
would eventually turn into black holes. At very high energies quan-
tum mechanics and general relativity are inconsistent, but in the
1970s a new theory began to emerge. This was string theory, where
the particles were viewed as strings moving through space-time.

Physicists see string theory as the way to bring quantum
mechanics and general relativity into agreement. It changes

222



MOONSHINE

quantum mechanics, but general relativity has to change too. The
really big change is that there have to be further dimensions to
space-time. Four dimensions are not sufficient, and the minimum
number of dimensions is ten. The extra dimensions are tightly
curled up on themselves, like the surfaces of tiny tubes, which at
the usual macroscopic level are invisible. String theory is an
attempt to unify relativity theory and quantum theory, giving a
quantum structure to space-time.

The idea of going beyond four dimensions appeals to mathemat-
icians, and has appeared frequently in this book. We have thought
of it as expanding three-dimensional Euclidean geometry by add-
ing extra dimensions, but in this case we are expanding four-
dimensional Minkowski geometry by adding extra dimensions.
There is an important difference. The distance between two points
depends on the differences in their coordinates. In Euclidean
space the square of the distance is the sum of the squares of these
coordinates. But in Minkowski geometry the ‘sum’ involves
exactly one minus sign. When we expand to higher dimensional
space-time we want to retain this minus sign, and such a space is
called Lorentzian.* General relativity uses a curved version of
Minkowski geometry, and string theory uses a curved version of
Lorentzian geometry.

The number of dimensions for string theory seems to be 10 or
26, and 26 is particularly intriguing, for the following reason. A
light ray in Lorentzian space — meaning a path on which the ‘time-
distance’ is always zero — yields a ‘perpendicular’ Euclidean
space of two dimensions lower. Doing this with 26-dimensional
Lorentzian space yields 24-dimensional Euclidean space, which is
where the Leech Lattice lives.
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This is more than a coincidence of dimensions, because it turns
out that 26-dimensional Lorentzian space contains a remarkable
lattice that is unique in an important technical sense. Choosing a
light ray in this lattice yields a lattice in 24-dimensional Euclidean
space, and depending on the light ray you take, any one of
24 possible lattices arises. One of these is the Leech Lattice.

Before I explain how to find a light ray that will give the Leech
Lattice, here is a remarkable fact:

PP+22+ 3+ 47+, +217+222 4237+ 24° =70

The sum of the first 24 squares is a square! This is phenomenal.
Twenty-four is the only whole number larger than 1 for which it
happens. The sum of the first # squares is never a perfect square
otherwise.

Now back to 26-dimensional Lorentz space. The exceptional
lattice that I mentioned contains a point whose coordinates are:

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,70)

This point lies on a light ray through the origin — through the
point whose coordinates are all 0 — because the ‘time-distance’
from the origin to this point is:

0P+ 124224+ 32 +4%+ . +2124+222 42324242 -70*=0

This light ray yields the Leech Lattice. If the Pythagoreans were
still with us today they might see this as evidence that the universe
is indeed based on whole numbers!

In 1990, Borcherds used the crystalline structure of the 26-
dimensional Lorentzian Lattice, rather than the Leech Lattice
itself, in creating an exceptional Lie algebra that he called the
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Monster Lie algebra. He was now getting very close to a proof of
the Conway—Norton conjectures, and two years later, in 1992, he
published a paper having the title ‘Monstrous Moonshine and
Monstrous Lie Algebras’. Here he proves that the moonshine
module Frenkel, Lepowsky, and Meurman created satisfies the
Conway—Norton Moonshine conjectures.

Borcherds’s work was moving closely towards mathematical
physics, and two years later he followed up with a paper where he
creates an algebra structure by quantizing a string moving in
space-time, showing that ‘It turns out to be non-zero only if
space-time is 26-dimensional.’* If string theory needs 26
dimensions, as opposed to ten, then perhaps the 1980s quotation
by Freeman Dyson in the Prologue will turn out to be quite pres-
cient. The Monster may indeed be built into the structure of the
universe.

In 1998, Borcherds won the greatest prize in mathematics for
his work: the Fields Medal. To win a Fields Medal a mathemat-
ician has to be under 40 years old, and the award takes place at
the International Congress of Mathematicians, which is held
every four years — in 1998 it was in Berlin. The work leading to
the medal is described by an eminent and more senior mathemat-
ician, and in Borcherds’s case it was Peter Goddard, a mathemat-
ical physicist from Cambridge (now head of the Institute for
Advanced Study in Princeton). In his illuminating description of
Borcherds’s work, Goddard ends by saying:

Displaying penetrating insight, formidable technique and brilliant
originality, Richard Borcherds has used the beautiful properties of
some exceptional structures to motivate new algebraic theories of
great power with profound connections with other areas of math-
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ematics and physics. He has used them to establish outstanding
conjectures and to find new deep results in classical areas of math-
ematics. This is surely just the beginning of what we have to learn
from what he has created.*

The Fields Medal appeared earlier, when it was awarded to John
Thompson in 1970. It is a rarer honour than the Nobel Prize, but
less well known, and some mathematicians regret the lack of a
Nobel Prize in mathematics. This leads to a perennial story about
Nobel’s wife having had an affair with a mathematician, but the
story is certainly false: the mathematician lived in Norway, and
Nobel, despite his Norwegian nationality, lived in Paris; more-
over, Nobel was a confirmed bachelor. In 1985 two Norwegian
mathematicians, Lars Garding and Lars Héormander published an
article on this topic in the Mathematical Intelligencer in which
they conclude that ‘mathematics was simply not one of Nobel’s
interests’.*

In recent years, however, the Norwegian government has
moved to rectify the situation. In 2002, on the 200th anniversary of
Abel’s birth (Niels Henrik Abel appeared in Chapter 2), they
established a fund to support an Abel prize in mathematics. It is
intended to be similar to the Nobel prize, and the first award was
in 2003 to Jean-Pierre Serre, who appeared briefly in Chapter 15.

Mathematicians toil in obscurity because the subject is a difficult
one to explain and has moved an enormous way in the past four
thousand years since the Babylonians solved quadratic equations.
Barring human catastrophe it will continue for thousands of years
more, and there will still be unsolved problems, and mysteries to
inspire further work. The Moonshine mystery itself is still
unresolved, despite Borcherds’s proof!
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Borcherds used the replication formulas of Conway and Norton
to reduce more than a hundred cases down to just four, which he
then proved. This was a great piece of work, but as Conway says,
‘His real achievement was to put it all in a big theory, although it
still doesn’t give a conceptual explanation.” In mathematics we
prove theorems, but we also want to understand things, and
there are facts about the Monster and Moonshine that we don’t
understand. Here is one.

When Conway and Norton were working on Moonshine they
used the columns of the Monster’s character table to obtain
mini-j-functions, as I mentioned in Chapter 15. There are 194
columns, but for elementary reasons some give the same function.
This reduces the number of functions to 171, but Conway and
Norton wanted to know how many of these functions were
completely independent of one another in the sense that you
couldn’t get one of them by adding and subtracting others.
They started looking at dependencies between the different
functions, and found themselves gradually counting down from
171. Conway recalls that, ‘As we went down into the 160s, I
said let’s guess what number we will reach.” They guessed it would
be 163 — which has a very special property in number theory — and
it was!

There is no explanation for this. We don’t know whether it is
merely a coincidence, or something more. The special property of
163 in number theory has intriguing consequences, among which
is the fact that

™19 = 262537412640768743.99999999999925 . . .

is very close to being a whole number. Here = is the famous ratio
of the circumference of a circle to its diameter, and e is almost as
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famous, being the basis for natural logarithms and exponential
growth. The close approximation to a whole number is no mere
chance. It uses the j-function, and a special feature of the number
163*.

When McKay made his observation about 196,883 and 196,884
appearing in the Monster and the j-function, the numbers were
high enough to make a striking coincidence, but 163 is low by
comparison, and it is difficult to say whether it will lead anywhere.
McKay himself noticed a very strange correspondence between
one class of mirror symmetries in the Monster and the Lie group
of type E8 (Chapter 5), and although it involves a pattern of
much smaller numbers, from 1 to 6, some very recent work shows
that it is no chimera. Mathematicians in Japan and Taiwan show
that vertex algebras offer a foundation for this connection.*
McKay also points out that the number of dimensions for the
string theory associated with the Monster — namely 26 — is the
same as the number of fypes of operations in Mathieu’s group
M?24, which is the first step on the road to the Monster. Perhaps it
is only a coincidence that there are so many coincidences, but we
do not know.

Strange connections like these were not the reason mathemat-
icians discovered the Monster, but a consequence. The Monster
was revealed as the result of a long process, starting with Galois’s
work in about 1830. It was he who discovered that there are ‘simple’
groups of permutations — groups that cannot be deconstructed —
which I have dubbed here atoms of symmetry, and many more
were found later. By the early 1960s there was an extensive table,
along with five exceptions from the nineteenth century. The
Feit-Thompson theorem in 1963 then made it feasible to find and
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classify any others, leading to the great Classification project.
Three years later, with Janko’s sudden publication of a new excep-
tion, there was an enormous impetus to find others, and during
the next ten years another 20 were discovered, bringing the total
to 26. The second largest, called the Baby Monster, was found in
an inspired search by Fischer, and from the Baby emerged the
Monster itself, the largest of the exceptions.

The method leading to its discovery, brilliant though it was,
gave no clue to the Monster’s remarkable properties. It was only
later that the first hints arose of odd coincidences between the
Monster and number theory, and these were to lead to the connec-
tion with string theory. The Moonshine connections between the
Monster and number theory have now been placed within a larger
theory, but we have yet to grasp the significance of these deep
mathematical links with fundamental physics. We have found the
Monster, but it remains an enigma. Understanding its full nature
is likely to shed light on the very fabric of the universe. But that
story must await a future book.
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Appendix 1

The Golden Section

In this picture the small rectangle and the large rectangle have the
same proportions, meaning the same ratio of length to width.
This ratio is the golden section. In the small rectangle it is x/1, and
in the large rectangle it is (x + 1)/x. This gives the equation:

x/1=(x+1)/x
Multiplying both sides by x yields:
X*=x+1

This is a quadratic equation. When we write it in the alternative
form as

X-x-1=0
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and use the quadratic formula, we find its two solutions are:

1+ 5 1-/5
and x=

X =
2

The one with a plus sign is the golden section. It works out at
approximately 1.618 . . .
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The Witt Design

Mathieu’s group M24 permutes 24 symbols in such a way that any
sequence of five symbols can be sent to any other. No other group
— except Mathieu’s group M12, which permutes 12 symbols — can
do this unless it contains all even permutations.

In 1934-5, Ernst Witt constructed a remarkable design using
24 symbols, and having M?24 as its group of symmetries. Witt’s
design is a collection of subsets, called octads, each having eight
symbols, and with the property that each set of five symbols lies in
exactly one octad. The number of octads must be 759, as I shall
now demonstrate.

First count the number of sequences of five symbols. We are
choosing from 24 symbols, so there are 24 choices for the first
symbol, 23 for the second one, 22 for the third, 21 for the fourth,
and 20 for the fifth. The number of such quintuples is therefore:

24 x 23 x22x21 %20

Now count them in a different way. The number of quintuples in
each octad is 8 X 7 x 6 X 5 x 4 (eight choices for the first member of
the quintuple, seven for the second, etc.). Each quintuple lies in
exactly one octad, so if N denotes the number of octads, then the
number of quintuples must be N x 8 x 7 x 6 X 5 x 4. Hence:
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NX8XTXx6x5x4=24%x23%x22x21x20
This gives

_24><23><22><21><20_759
O 8xXTx6%x5%x4
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The Leech Lattice

The Leech Lattice gives the tightest lattice packing of spheres in
24 dimensions. The points of the lattice are the centres of spheres,
each of which touches 196,560 others — this is the maximum
possible in 24 dimensions. Each lattice point can be specified
using 24 coordinates labelled by the 24 symbols of Witt’s design.
Take one sphere centred at the origin, so the coordinates of that
point are all zero. The centres of the 196,560 neighbouring
spheres split naturally into three sub-sets of sizes

97,152 + 1,104 + 97,308 = 196,560.
The sub-set of size 97,152

This number is 27 x 759. There are 759 octads in Witt’s design
(see Appendix 2), and for each one there are 2’ points. The
coordinates of each point are 2 in the positions of an octad, and
zero elsewhere; the number of minus signs is even.

The sub-set of size 1,104

This number is 2> x 276. There are 276 ways of choosing two
coordinates from 24: each of these two coordinates is 4, and the
other 22 coordinates are zero.
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The sub-set of size 98,304

This number is 2% x 24. One coordinate is +3, the others are *1.
Witt’s design provides a way of making 2! sign choices.

The distance of a point from the origin, when squared, is the
sum of the squares of its coordinates — this is Pythagoras’s
theorem generalized to n dimensions. The sums of the squares of
the coordinates for the 196,560 points are all equal.

In the first sub-set: 22+ 22+22+ 22422422422 422=32
In the second sub-set: 424+4=32
In the third sub-set: P12+ 1%+. .. +12=32

This shows that all these 196,560 points are an equal distance
from the origin.
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The 26 Exceptions

Here is a list of the 26 exceptional symmetry atoms — the so-called
sporadic groups.

Name Symbol  Size
Mathieu groups M11 7920 = 2*3%5-11

MI12 95,040 = 2°3%5-11

M22 443,520 =27-3%-5-7-11

M?23 10,200,960 = 27-3%-5-7-11-23

M24 244,823,040 = 2'°-3%-5-7-11-23
Janko groups J1 175,560 = 2*3-5-7-11-19

J2 604,800 = 27-3%-527

J3 50,232,960 = 27-3°-5-17-19

J4 86,775,571,046,077,562,880 =

2%1.3%.5-7-11%-23-29-31:37:43

Higman-Sims HS 44,352,000 = 2°-3%5%7-11
McLaughlin Mc 898,128,000 = 27-3%-5%7-11
Held He 4,030,387,200 = 2'°-3%.5%73-17
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Name Symbol  Size
Suzuki Suz 448,345,497,600 =
213.37.52.7-11-13
Rudvalis Ru 145,926,144,000 =
214.33.5%.7.13-29
O’Nan ON 460,815,505,920 =
29-3%5-7°-11-19-31
Lyons Ly 51,765,179,004,000,000 =
28.37.56.7-11-31-37-67
Conway groups Col 4,157,776,806,543,360,000 =
2%1.3%.5%72.11-13-23
Co2 42,305,421,312,000 =
218.36.5%.7-11-23
Co3 495,766,656,000 =
210.37.53.7-11-23
Fischer groups Fi22 64,561,751,654,400 =
217.3%.5%.7-11-13
Fi23 4,089,470,473,293,004,800 =
218.313.52.7-11-13-17-23
Fi24 1,255,205,709,190,661,
721,292,800 =
221.316.52.73.11-13-23-29
Harada—Norton HN 273,030,912,000,000 =

2'4.36.56.7-11-19
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Thompson Th 90,745,943,887,872,000 =
215.310.53.72.13.19-31

Baby Monster B 4,154,781,481,226,426,191,
177,580,544,000,000 =
241.313.56.72.11-13-17-19-23-
3147

Monster M 808,017,424,794,512,875,
886,459,904,961,710,757,005,
754,368,000,000,000 =
246.320.59.76.112.133.17-19-23-
29-31-41-47-59-71

This table shows immediately that some groups cannot possibly
be sub-groups of others, because Lagrange’s theorem says the size
of a group must divide the size of any larger group containing it.
Writing each size as a product of prime numbers makes this easy
to check. For example, the size of M12 is a multiple of 3° but the
size of M22 is not a multiple of 3* so M12 can’t be a sub-group of
M?22. A similar argument shows that neither the Lyons group nor
the fourth Janko group J4 can be sub-groups of the Monster: the
size of each one is divisible by 37, but the size of the Monster is
not divisible by 37. More technical arguments show that J1, J3,
Ru, and ON cannot be involved in the Monster. A detailed plan of
how these 26 exceptions are involved with one another is given
on the next page.

246



APPENDIX 4. THE 26 EXCEPTIONS

Fi24
Fi23

Fi22

® @

The network above shows the involvement of one exceptional

symmetry atom in another. The circled ones are involved in
nothing larger. The Monster involves all but six of the other
exceptions, omitting only J4, Ly, ON, Ru, J1, and J3.
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Glossary

atom of symmetry a finite group that cannot be deconstructed into
simpler groups — the technical term is finite simple group.

character table a square array of numbers that gives detailed technical
information about a group.

cross-section a special sub-group associated to an operation of order 2;
the technical term is involution centralizer.

cyclic arithmetic this refers to arithmetic with the numbers 0, 1, 2, 3,

.., n, where n is the same as 0. The technical term is modular

arithmetic.

deconstruction this refers to deconstructing a group into a series of
layers, each of which is a ‘simple’ group. Technically, these layers form
a composition series, and deconstruction is called decomposition.

group a group can be seen as a system of operations, each of which is
reversible, and in which one operation followed by another is a third
operation in the same system.

group, cyclic a group generated by a single operation. For example, a
rotation by 60° generates a cyclic group of size 6 containing rotations
by angles 60°, 120°, 180°, 240°, 300°, and 0°.

group, prime cyclic a cyclic group whose size is a prime number.

group, simple a group that cannot be deconstructed; what I have called
an atom of symmetry.

group, sporadic  one of the 26 exceptional symmetry atoms.

hyperbolic plane a plane geometry in which Euclid’s parallel axiom
fails, and the angles of a triangle add up to less than 180°.
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Jj-function this assigns a number to each point of the hyperbolic plane,
and is closely associated to the modular group.

Leech Lattice a remarkable lattice giving the tightest packing of spheres
in 24 dimensions.

Lie group a group in which the operations can be continuously modified.

mini-j-function like the j-function, but associated with a sub-group of
the modular group. The technical term is Hauptmodul.

modular group a sub-group of the symmetry group for the hyperbolic
plane, obtained by restricting from the real numbers to the integers.

periodic table a table of finite symmetry atoms, in seven families A-G,
that includes all but the 26 exceptions. The technical term is the
collection of groups of Lie type.

permutation the process of rearranging a collection of objects.

Witt design a remarkable design on 24 symbols that is used in
constructing Mathieu’s group M?24, and the Leech Lattice.
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