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Foreword

Nathalie Sinclair is a gifted teacher, comfortable with learners of all ages 
and able to relate easily and well to students and teachers in the class-
room. At the same time, as someone who has studied mathematics at the 
graduate level herself, she is both able to understand the world-view of 
the research mathematician and able to fi t easily into discussions in the 
research institute’s common room. Nathalie’s book is a contribution to 
mathematics education, a fi eld long at the forefront of vigorous discus-
sions about the nature, purpose, and means of academic instruction. From 
“new” to “applied” to “problem-based” to “constructivist/standards/
fuzzy,” almost every decade of the last half-century seems to have had 
its version of ambitious curriculum reforms for school mathematics. The 
fi nal phases of these initiatives have had several constants. On the hu-
man front, these have often included: embattled proponents and angry 
opponents of the reform, confused parents, frustrated teachers, and low-
achieving learners. 

Mathematics is almost universally seen as an essential component 
in any well-balanced and comprehensive school curriculum for both el-
ementary and secondary school learners. This position is usually rational-
ized by pointing to the foundational role that the discipline plays in many 
fundamental aspects of contemporary society. While the real depth and 
sophistication of this argument is infrequently heard in curriculum dis-
cussions, it seems unlikely that this view will be seriously challenged in 
the near future as the characteristics and implications of an “information 
society” become ever more evident.

A small group (relative to the population as a whole) that has played 
a key role in many reform initiatives is that of research mathematicians. 
Sometimes initiating the reforms—as was the case in the “new math” ven-
ture of the 1960s—but more often taking the part of opponents, their in-
volvement is frequently very passionate. This refl ects and is infl uenced 
by their deep emotional feeling for their craft. They speak of the nature 
of mathematics and of the satisfaction in creating mathematics in almost 
exactly the same ways as devotees of the arts: Beauty is all. 
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viii Foreword

A second group of individuals is much larger: disenchanted and often 
unsuccessful learners of mathematics. The mathematics learning experi-
ence of many children has been, on the whole, quite negative. There are at 
least two versions of this phenomenon. One is the observable class of very 
low- to non-achievers, a distressingly large group in many jurisdictions. 
A second, less visible group—which overlaps with the former but is still 
distinct—is that of the emotionally stressed learner. 

The classroom experience of mathematics, even for those who “suc-
ceed” as judged by external paper-based criteria, can be unpleasant and 
psychologically damaging. Of all the subjects in the school curriculum, 
mathematics has the unique and dubious distinction as being the most 
closely linked in the public mind to the experience of “anxiety.” Recent 
research shows these feelings to be widespread. A British study found that 
contemporary lower-secondary students fi nd their mathematics classes to 
be “TIRED,” that is, characterized by Tedium, Isolation, Rote Learning, Elit-
ism, and Depersonalization. An international study of school children’s 
images of mathematicians generated a very large number of unattractive 
individuals and unpleasant behavior, including a surprisingly high cor-
relation with acts of violence. Finally, we have the harsh reality that the 
standards for “success” in school mathematics are in many ways set at an 
excessively low level. Many “good” mathematics students, for reasons not 
of their own making, have had only a stunted exposure to the more me-
chanical aspects of a deep, powerful, and historically rich human creation. 
All in all, this is a depressing picture. Many very bright, highly motivated 
individuals with substantial resources have labored long and hard to ad-
dress these concerns, with very little success. What else might be tried?

This is a question that Nathalie’s book addresses, and her response is 
quite simple. The prevailing view about mathematical ability in general, 
and sensitivity to mathematical beauty in particular, is an elitist one. It 
takes as a given that only a few individuals have the capacity to be moved 
by the aesthetic dimensions of the discipline. From this tiny pool of indi-
viduals come our group of passionate researchers in mathematics, and a 
few kindred spirits in fi elds such as physics and computer science. For the 
rest, it is assumed that “utility” will have to suffi ce.

In a move similar to the shifting of the Darwinian perspective on 
evolution from “survival of the fi ttest” to “survival of the fi t,” Nathalie 
decided to investigate the potential of bringing “beauty” into the matrix 
of curriculum considerations. What might classroom experience in math-
ematics look like if it was assumed that sensitivity to beauty is not the 
sole preserve of only a few (who are often portrayed in quite unattractive 
social terms), but rather was open to all?
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Foreword ix

Once this door was opened, a large and fascinating number of ques-
tions quickly emerged, many of which came out of the world of math-
ematics. Although terms like beauty, harmony, elegance, and balance can be 
frequently found in mathematics textbooks, relatively little research had 
been done to make their meaning more precise. Similarly, relatively little 
was known of children’s ideas about beauty, particularly with respect to 
school subjects. And so Nathalie’s  research began, in settings as varied as 
school classrooms and offi ces in research institutes.

In the end, this book brings together new insights and affi rmations 
of existing realities into an extensive and thought-provoking whole. To 
accomplish this, Nathalie has woven together ideas and theories from a 
wide range of academic fi elds. The work, on one level, is intimately in-
volved with students learning mathematics in school. On a second level, 
the work is also fundamentally philosophical. It deals with classic ques-
tions from aesthetics (What does it mean to be beautiful?) and from epis-
temology (What does it mean to “know” a piece of mathematics?). It gives 
rich insights into the different ways in which aesthetic factors surface in the 
disciplinary functioning of some world-class mathematicians. Its insights 
into the processes of mathematical thought, particularly around motiva-
tion, bring it close to classic questions in psychology and to more recent 
studies in cognitive science. It addresses some long-standing questions 
in the philosophy of education articulated many years ago by scholars 
like John Dewey. Its ingenious use of specially created, sophisticated, and 
fl exible computer-based activities gives interesting glimpses into the cog-
nitive and aesthetic perspectives of learners. Overall, this work contains a 
provocative set of philosophical, psychological, mathematical, technologi-
cal, and educational insights that makes a compelling case for the inclu-
sion of aesthetic considerations in the materials and approaches we bring 
to mathematics students at all levels.

The result is something that will be of interest to scholars in many fi elds. 
In addition, it has important messages for parents concerned about their 
child’s reaction to school mathematics, for teachers who may see glimpses 
of a different way of thinking about a key subject, and for curriculum writ-
ers who need to think about how these fi ndings may enter the educational 
experience of a generation of learners.

Ours is an age of hyperbole. Most often fuelled by self-interest, exag-
gerated claims fl ow easily from the word-processors and microphones of 
ideologues, scam artists, and salesmen of various sorts. One hesitates in 
this general “market” to make statements that might lead readers to con-
clude that they are being subjected to views from such perspectives. But 
sometimes risks are necessary, and having passed a moderately rigorous 
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x Foreword

examination of conscience, I make here a strongly positive statement and 
recommendation. This is an exceptionally important book. Should it be 
received in the way one might hope for—widely read and constructively 
criticized, with insights and recommendations taken to heart—it could 
be the starting point for many cognitive, social, and educational benefi ts. 
This potential exists because this work addresses a critically important 
educational area in an innovative and exciting way.

—William Higginson
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1

CHAPTER 1

Introduction

Children frequently and enthusiastically engage in the arts—they paint, 
sing, dance, and play all kinds of musical instruments. Despite these ac-
tivities, few people speak of children’s aesthetic sophistication, and even 
fewer think of these words in the context of mathematics learning. Yet 
when we listen to actual students, we fi nd signs—hints, traces, and pos-
sibilities—of the impact that beauty and pleasure can have in directing 
their actions. The two brief stories that follow locate some of these signs 
and will, I hope, temper any disbelief readers may have about combining 
the three words: children, beauty, and mathematics. The fi rst story recounts 
the mathematical experience of a young child and hints at the ways in 
which mathematical beauty and pleasure can be evoked at an early age. If 
the fi rst story makes obvious that, despite their mathematical naïveté, the 
aesthetic properly belongs to the mathematical experiences of children, 
the second story goes on to relate how attending to students’ aesthetic 
responses in mathematical situations can help us—teachers, researchers, 
learners—understand their actions and beliefs.

WHERE BEAUTIFUL MATHEMATICS COMES FROM

When I was 9, I remember riding in the pick-up truck, squeezed between 
my parents in the front seat. I asked my mother how far we were from our 
destination and she read off the distance from the map, in miles. Canada 
had recently converted from the imperial to the metric system, but our 
maps were old ones. When I asked for the kilometer equivalent, she re-
sponded with what seemed to me lightning speed. How had she done it 
so quickly? I knew the conversion involved multiplying by some compli-
cated number—not a whole one—my teachers had drilled us for years 
prior to the changeover with equivalence charts and rules and rhythms. 
So I knew this was not something one did in one’s head; shouldn’t she 
have needed at least pencil and paper? 
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2 Mathematics and Beauty: Aesthetic Approaches to Teaching Children

She soon explained. There was no need to bother with the actual con-
version factor, something like 1.609. Instead, one just rounded it to 1.6, 
which was just the same thing as 1 + 0.5 + 0.1. And that made the conver-
sion more like a walk in the park. Take the number of miles, say 40, then 
add half that number (anyone can do that) and then one tenth of it (just 
take off the last zero!) to get 40 + 20 + 4. So 40 miles was near enough to 
64 kilometers, an answer my father confi rmed with the odometer. I was so 
impressed: It was as if the numbers had magically rearranged themselves 
just to show us the answer. We tried her method with a few more imagi-
nary destinations. 

My mother’s mathematics was familiar: she used the same operations 
I was learning in school. But she used them as tools to suit her own pur-
poses. She had not only rounded the troublesome conversion factor—with 
a brash gusto I’d not encountered in school, but very much admired—but 
she also turned the 1.6 into a new number that subtly revealed its roots, 
its basic ingredients. Had I been asked, I could have done the sum 1 + 0.5 
+ 0.1, but I would never have undone it the way she had. That this clever 
trick could be explained to me—with neither equivalence charts nor nurs-
ery rhymes—without losing its magic, seemed all the better. This was, for 
me, a new way of seeing decimals, and, not long thereafter, a whole new 
way of approaching multiplication. 

Certainly not every mother has such tricks up her sleeve; and not every 
9-year-old would have the same reaction. I know I am not alone, though. 
Adults who can multiply large numbers in their heads frequently impress 
young children. Very young children are also fascinated by large numbers 
that are verbally conjured, as if the very act of stating a number’s name 
attested to one’s authority to wield a previously unfathomed immensity 
with precision. Even adults can experience feelings of wonder and awe 
when confronted with the very big or the very small.

Are these reactions those of aesthetics? As an adult, I can think of 
mathematical ideas that are similarly magical, clever, or revealing and 
call them “beautiful.” However, at the age of 9, I had not learned how to 
use the adjective “beautiful” to describe mathematics—that was a term 
reserved for sunsets and dresses. Instead, I think I was pleased by the 
idea that my mother could take both liberties with and control of math-
ematics. Perhaps arithmetic did not just order you to operate with its terse 
imperatives; perhaps it could be made to follow your command. What I 
wanted was to make things simpler, to reduce the perilous complexity of 
multiplying by 1.609 to a procedure I could not only reproduce but even, 
perhaps, recreate. This reduction of surprise and complexity to predict-
ability and simplicity was very important to me—both as a motivation 
and as a reward. According to psychologist Jerome Bruner (1969), these 
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Introduction 3

sorts of mental transformations are “the most fundamental form of plea-
sure in man’s intellectual life” (p. 618). 

Having learned much later in my mathematical career that “beauti-
ful” can indeed be an appropriate adjective to use in mathematics, I now 
call “beautiful” those mathematical ideas that successfully, for me, achieve 
Bruner’s “fundamental form of pleasure.” Over the course of this book, 
I will have much more to say about the subjective nature of the aesthetic 
implied by those italicized words. For now, I want simply to draw atten-
tion to the fact that even for a young, mathematically naïve child, aesthetic 
sensibilities and values (a penchant for simplicity, for fi nding the building 
blocks of more complex ideas, and a preference for shortcuts and “lib-
erating” tricks rather than cumbersome recipes) animates mathematical 
experience.

For many, the term aesthetics applies to specifi c products and practices: 
the products of “high art,” as defi ned by museum masterpieces, and the 
practices of art critics, who operate on the fi nished products of artists. Two 
moves are needed to begin thinking about how the term aesthetics applies 
to children doing mathematics: fi rst, the move from the arts to mathemat-
ics, and second, the move from art critics to children. Mathematics also 
has its products and practices. The museum masterpieces can be thought 
of as being the theorems, proofs, and solutions of mathematics, while its 
practitioners (or critics) are the professional mathematicians themselves, 
who decide which products deserve to belong in the museum (which theo-
rems are published in journals, studied by others, included in textbooks, 
etc.). Clearly, no children participate in this product/practice relationship, 
neither in the arts nor in mathematics. Yet consider the aesthetic domain 
of production that we fi nd in the arts, that which belongs to the artists 
who engage in their own practices of producing, doing, or creating artistic 
artifacts. This domain is akin to that of mathematical production, which 
belongs to professionals and to children, both of whom are engaged in 
producing, doing, and creating mathematics. 

The reader may object at this point, noting that children will never be 
able to appreciate the beauty or elegance of museum mathematics, nor 
able to produce those artifacts of mathematics. After all, these mathemati-
cal artifacts, according to professional mathematicians, must possess aes-
thetic qualities such as economy, inevitability, and unexpectedness. How-
ever, my mother’s conversion trick would seem to meet at least some of 
these criteria. It was certainly economic and unexpected to me, but per-
haps not so economic to my younger brother, who would not have been 
able to multiply by 0.5 or by 0.1, and probably not very unexpected for 
my math teacher. To make matters more complicated, some professional 
mathematicians might also insist that mathematical beauty depends on 
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4 Mathematics and Beauty: Aesthetic Approaches to Teaching Children

signifi cance, generality, and depth. Are children capable of judging math-
ematical signifi cance or appreciating the depth of a theorem? Are math-
ematicians themselves even able to tell us what such criteria mean?

While not all of these criteria are equally accessible to school students, 
my story illustrates how a young child can fi nd pleasure in mathematics 
and even appreciate the simplicity and transparency of a mathematical so-
lution. The particular solution lacks signifi cance and depth, at least from 
my current more knowledgeable standpoint, and certainly would not 
make it into the mathematical museum. But as a producer of mathemat-
ics, my 9-year-old child self may have found both a depth and generality 
that eclipsed the rules and rhymes of her previous experience. 

A major theme in this book relates to the contextual nature of the aes-
thetic, and to the notion that learners can engage their aesthetic sensibili-
ties in productive ways, without necessarily being able to appreciate the 
theorems, solutions, or proofs that belong to “museum” mathematics. In 
the coming chapters, I attempt to unravel exactly what these aesthetic sen-
sibilities are, how they develop, and how they interact with more cogni-
tive and affective abilities usually associated with mathematics learning.

THE AESTHETIC AS A VITAL LENS ON LEARNING

Why would educators want children to have the kind of pleasurable, 
memorable, or magical experience I recounted above? The National Coun-
cil of Teachers of Mathematics (NCTM) plays a major role in defi ning and 
shaping the goals of mathematics education in the United States (and be-
yond). The authors of their document Principles and Standards for School 
Mathematics (2000) suggest that students should develop an aesthetic ap-
preciation for mathematics, simply because “mathematics is one of the 
greatest cultural and intellectual achievements of humankind” (Ch. 1, p. 
4). This sort of a cultural argument is often paralleled in curriculum de-
bates about teaching literature: children should read the “great books” in 
order to be able to appreciate the literary achievements of humankind. 
While such arguments appeal to some, others fi nd them outdated, or at 
least insuffi cient for the more utilitarian task of preparing children for the 
current and future demands of society. By shifting points of view, how-
ever, a focus on how children learn can serve both conceptions of what 
and why society wants them to learn. Thus, the following story has to do 
more with understanding and improving how students learn than with 
making sure they appreciate past achievements (the cultural argument) 
or making sure they can meet society’s economic and technological needs 
(the utilitarian argument). 
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Introduction 5

Zoe, a grade 8 student working in math class, examines the col-
lection of colored polygons that appear on her computer screen. 
She starts moving the polygons around with the mouse, pausing 
and bending her head to the side every now and then. Slowly, she 
starts forming two different groups of polygons, one on each side 
of the screen. When she has fi nished classifying them, she types 
“Symmetry shapes” under one group and “No symmetry shapes” 
under the other. With a smile on her face, she announces, “There, 
that’s better now.” 

Her teacher approaches and points out a tilted isosceles tri-
angle Zoe has placed in the “No symmetry” group. She shows Zoe 
how to rotate the triangle into a more upright form and asks her 
whether she still thinks the triangle has no symmetry. With just 
a moment’s hesitation, another of surprise and then with convic-
tion, Zoe announces, “it’s up and down.” She ponders a bit, and 
then sums up the situation by stating that the tilted triangle “is not 
symmetric if we are looking at it, but if it’s just on its own, then 
it’s symmetric.” She moves it into the “Symmetry shapes” group. 
Then, Zoe turns around and notices that the two boys behind her 
have classifi ed the polygons according to their number of sides, 
with group names “triangle,” “quadrilateral,” “pentagon,” “hexa-
gon,” and “more than six sides.” Her teacher asks Zoe which clas-
sifi cation rule she thinks is better. With a great sense of fairness, 
Zoe tells her teacher, “You can’t really say that one is better than 
the other; they are just different.” One of the boys, Luke, adds, 
“You can only tell which is better if you are really smart.” 

The teacher pushes Zoe a little more and Zoe fi nally admits, 
“Well, mine is simpler, because everything falls into just two 
groups instead of all the ones they [the boys] have.” Alex, who is 
Luke’s partner, retorts, “But ours is simpler to see; you just have to 
count the sides.” She nods tentatively but appears unconvinced. 
Later, when the boys have gone, she secretly but proudly tells her 
teacher, “I think that the symmetry thing is more interesting than 
the number of sides because it’s more, well, not really obvious, but 
really about the shape itself.”

This episode lasted less than 10 minutes. Moreover, for a group of 
three grade 8 students, it does not overwhelm with mathematical sophis-
tication. Yet most would likely agree that important mathematical things 
happened, especially for Zoe. A researcher analyzing the episode with 
the usual cognitive lens would perhaps note that Zoe does not really un-
derstand symmetry, or that her understanding of symmetry is somewhat 
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6 Mathematics and Beauty: Aesthetic Approaches to Teaching Children

dominated by vertical refl ective symmetry. She had trouble with the skew 
refl ective symmetry and did not even mention rotational symmetry at all. 
To zoom back a bit, if the previous class has focused on the names of poly-
gons based on their number of sides (triangle, quadrilateral, pentagon, 
etc.), a researcher might also conclude that the boys were more successful 
in using mathematical vocabulary than Zoe was. A strictly cognitive lens 
tells us about the extent to which Zoe understands symmetry and how the 
boys can apply yesterday’s lesson. But it does not capture all of the math-
ematically important things that have happened to the students. 

A researcher analyzing the episode with a more affective lens might 
remark that Zoe was intensely engaged during her initial categorization, 
and that she showed feelings of pleasure and satisfaction upon complet-
ing the task. She seemed also somewhat intimidated by the boys, reserv-
ing her fi nal comment until she was alone with me. In addition, this
affect-oriented researcher might infer that Luke believes that mathemat-
ics is for smart people, and that he cannot contribute to decisions about 
which mathematical rules or solutions are better than others. Zoe, on the 
other hand, may believe she can contribute to such decisions, but hasn’t 
quite gained enough confi dence to do so in front of the boys. An affec-
tive lens tells us about the wide set of beliefs and emotions that students 
bring into the classroom. However, it cannot explain why Zoe experiences 
pleasure, what makes her want to classify the polygons, or what animates 
the students’ negotiations about the value of their respective classifi cation 
schemes.

Whether they are focused on the activities of student mathematicians 
or the activities of professional mathematicians, both the cognitive and af-
fective analyses are necessary and revealing, but not suffi cient. They miss 
the kind of interpretations that are needed to understand why humans 
do mathematics and even how humans create mathematical ideas. This 
may sound far-fetched, so let me fi rst explain what I see in Zoe’s episode 
through an aesthetic lens. 

From the beginning, Zoe’s decision to classify reveals an aesthetic sen-
sibility, an urge to create some regularity and predictability. Of course, 
Zoe may have learned that in geometry class, classifi cation is the modus 
operandi—school students spend an inordinate amount of time classify-
ing geometric objects such as angles, triangles, and quadrilaterals. She 
might therefore have decided to do what she thought was expected of 
her. Yet her concluding smile and visible sense of satisfaction suggest that 
she took pleasure in arranging the polygons, that she wanted to impose 
some “sense of fi t” on the unorganized collection. Indeed, after that epi-
sode, as her teacher, I noticed that Zoe had an uncanny knack for seeing 
symmetry everywhere, as if symmetry was her own personal perceptual 
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Introduction 7

stamp on the world. Because she could productively place this stamp on 
the collection of polygons, it became both epistemologically and person-
ally relevant to her.

The aesthetic urge to classify affected Zoe’s actions, leading her to for-
mulate the problem she set herself to solve—to decide which shapes be-
long to each group. Zoe could have noticed many mathematical features 
of the polygons, including size, color, regularity (congruent angles and 
sides), convexity, the type of angles involved (acute, obtuse, right), and the 
number of sides. She could have based her classifi cation rule on any one of 
them. Yet she chose symmetry as the determining feature because, judging 
from her last revelation to me, symmetry is intrinsically interesting to her. 
She even seems to think that symmetry is a powerful mathematical princi-
ple, since it better characterizes the polygon than its number of sides does. 
She also prefers symmetry as a classifi cation rule because it produces a 
simple binary division. The boys’ rule could have produced an infi nite 
number of categories, had there been more polygons in the collection, but 
Zoe’s rule would only ever yield two. 

While Zoe expressed a preference for either/or simplicity, the boys ex-
pressed a preference for another kind of simplicity. They liked the fact 
that their rule was simple to apply; it just involved counting and not any 
head-bending or line-of-symmetry-locating. In negotiating their prefer-
ences, the students showed they cared about the value of their mathemati-
cal work. The aesthetic judgments they make contrast to the judgments 
they may make about whether or not their work is procedurally correct or 
acceptable to the teacher. In fact, with little provocation, the students were 
willing and able to identify criteria—simplicity and depth—that could be 
used to judge the better of the two rules of classifi cation, criteria that are 
not so different from the ones used by professional mathematicians. 

In this episode, an aesthetic lens helps explain what instigated Zoe’s 
mathematical inquiry, what Zoe found mathematically appealing and 
relevant, and what Zoe valued in her mathematics. Even if hers repre-
sents a single case, it is suggestive: It reveals that it is at least possible for 
school-age students to respond aesthetically to mathematical situations 
and to use aesthetic values in appraising the signifi cance of mathematical 
ideas. Perhaps more importantly, more pragmatically, Zoe’s episode sug-
gests that aesthetic sensibilities can play an important role in motivating 
student mathematical inquiry, both in terms of stirring interest and com-
mitment and in terms of evoking productive mathematical actions and 
behaviors. 

For many educators, one of the most persistent problems in mathe-
matics education is motivating students to want to learn or do mathemat-
ics. Although this problem attracts much attention in the literature, such
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attention tends to isolate motivation from the actual doing of mathemat-
ics. To a large degree, it attempts to coax students into palatable math-
ematical contexts, rather than seeking to discover the conditions under 
which mathematical activity itself can be intrinsically motivating. Yet 
in my own experiences of teaching, on the occasions in which students 
are fully engaged in the mathematics classroom—when they are “turned 
on”—they are motivated by the actual doing of mathematics, rather than 
by preliminary enticements and subsequent verbal praise. 

Unfortunately for educators, many students of mathematics never ex-
perience, or even get a glimpse of the tension, wonder, pleasure, and re-
lease that are all part of doing mathematics. In fact, they may easily come 
to believe that mathematics lacks the very human dimensions of experi-
ence that make any endeavor or discipline relevant. Could school math-
ematics have more to offer students? Might learners come to experience 
that pleasurable “sense of fi t” in mathematics that engages their deepest 
and strongest feelings?

Consider the following quotations:

“A spin through the human condition nobody else can provide.” 
“You will fi nd here a collection of delightful stories [ . . . ] witty, 

amusing, and instructive.” 
“[ . . . ] a rich and fascinating book. It has everything and every-

thing that it has is delightful, curious, enlightening, engrossing, 
interesting, informative, funny, stirring, poignant.” 

“This book reads like a mystery; it was diffi cult to put down.” 

Most students would be hard-pressed to believe that these quota-
tions all relate to books about mathematics. In contrast to their experi-
ences of mathematics in the classroom, these quotations make mathemat-
ics sound as humanly rich and multidimensional as the best books they 
have read. The responses the quotations describe reveal that mathematics 
can ignite—equally and deeply—the cognitive, affective, and aesthetic di-
mensions of human experience and sense-making. Of course, most math-
ematicians know this. They know it would be commonplace to fi nd two 
colleagues arguing over the “elegance” or “beauty” of a certain proof or 
to fi nd themselves enthralled by a bewitching problem. They know that 
mathematics is not merely the cold, bloodless, unfeeling pursuit of truth, 
and they admit that their discoveries and inventions rely on “extralogical” 
ways of reasoning and knowing (Burton, 2004; Sinclair, 2004b). They talk 
about intuition or insight and about a special sixth sense or a gut feeling. 
Invariably, especially to nonmathematicians, such talk makes this side of 
mathematics sound inaccessible and mysterious.1 
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Indeed, many mathematically minded people doubt whether student 
learners are sophisticated enough to appreciate the aesthetic qualities of 
mathematical ideas or to have access to those aesthetic sensibilities that 
constitute the mathematical sixth sense. Instead, such people insist that 
students must fi rst learn many, many facts and methods before they can 
even catch a glimpse of the aesthetically driven world of the mathematics 
research community. After all, most students would probably fi nd words 
such as beauty and elegance oddly misplaced in a sentence about mathe-
matical ideas or results. They could perhaps imagine two mathematicians 
arguing over the truth of a proof, but would probably wonder: What could 
be “elegant” or “beautiful” about a proof and why would it matter? For 
most students, beauty involves the senses—the visual, tactile, and espe-
cially auditory—and these senses fi nd little stimulus in the typical, anaes-
thetic mathematical textbook. Moreover, mathematics, for these students, 
involves correct answers and true facts and being wrong, not the kinds of 
values and subjective responses that might be encountered in literature, 
music, or art classes. As Seymour Papert (1980) observes, “If mathemati-
cal aesthetics gets any attention in the schools, it is as an epiphenomenon, 
an icing on the mathematical cake, rather than as the driving force which 
makes mathematical thinking function” (p. 192).

Are student learners really too unsophisticated? What could happen in 
a mathematics classroom that invited aesthetic sensibilities and made the 
negotiation of aesthetic values central? Could such a classroom enrich stu-
dents’ learning experiences, improve or educate their mathematical pow-
ers, or help them gain greater access to the culture of mathematics? The 
primary goal of this book is to show that aesthetic sensibilities and values 
are, in fact, intimately connected to the way students both understand and 
do mathematics. 

PLAN FOR THE BOOK

This book is divided into four parts, each focusing on different aes-
thetic contexts. Since aesthetic discourse is usually associated with the 
arts and, in pedagogical writing, with art education, the goal of Part I is 
to establish the plausibility, and perhaps even the inescapability, of the 
aesthetic in the widest possible range of contexts, including, of course, 
mathematics and mathematics learning. Chapter 2 aims to explain how 
aesthetic sensibilities and ways of knowing belong naturally, almost nec-
essarily, to human inquiry and experience. I will be drawing on both 
philosophical and empirical research on the fundamental intertwining of 
the cognitive, affective, and aesthetic dimensions of human experience. 
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10 Mathematics and Beauty: Aesthetic Approaches to Teaching Children

Chapter 3 contends that artists are not the only ones who have access to 
aesthetic sensibilities and that humans are more or less “wired” for aes-
thetic response. These two chapters provide a background for the rest of 
the book, in terms of articulating the reasons why an aesthetic approach 
is appropriate both in mathematics itself and for describing and inter-
preting mathematics learning.

To summon the widest aesthetic discourse, I will be broadening the 
concept of the aesthetic to include its many concerns, which Pimm (2006) 
has described as “What to attend to (the problems, elements, objects), how 
to attend to them (the means, principles, techniques, methods) and why 
they are worth attending to (in pursuit of the beautiful, the good, the 
right, the useful, the ideal, the perfect or, simply, the true)” (p. 160, em-
phasis in original). This use of the concept will likely feel foreign to those 
who use the term aesthetic exclusively in nonscientifi c or noneducational 
contexts. Part I aims to make the above conception seem less foreign and 
even, hopefully, quite useful in describing a wide range of other human 
experiences. 

While the fi rst part consists of more general claims about domains of 
knowledge and their practitioners, Part II aims to establish an aesthetic 
framework conceived specifi cally for mathematics. The fi rst story of this 
introduction provides a sense of the mathematical aesthetic in its rawest 
form—through the eyes of a young child—in order to pave the way for 
a broader conceptualization of the aesthetic that includes both children 
and their nonartistic endeavors. Chapter 4 begins to refi ne a sense of the 
mathematical aesthetic by specifying the particular roles that the aesthet-
ic plays in mathematical inquiry. The distinct roles of the mathematical 
aesthetic—of which there are three, namely, the motivational, generative, 
and evaluative—will provide an initial and primary means of formulat-
ing a mathematical “aesthetic lens” that will be used in the pedagogical 
contexts of Chapters 6 through 10. The aesthetic lens is brought to life by 
means of an illustrative example of mathematical inquiry, one that will 
assist in connecting the mathematical aesthetic of the research mathemati-
cian to that of the school learner. 

Chapter 5 attempts to generalize the observations made in Chapter 4 
by taking the roles of the aesthetic vivifi ed in one example and showing 
how those roles are inherent in mathematical inquiry in general. My intent 
is to evaluate and dispel claims that the mathematical aesthetic should be 
treated as a fanciful hobby indulged in by illustrious mathematicians. In 
preparation for Part III, this chapter also considers how much the disci-
pline and practices of mathematicians can or should inform mathematics 
education, particularly from an aesthetic point of view. I argue that the 
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aesthetic lens developed in Part II, based primarily outside pedagogical 
contexts, applies productively to the activities and beliefs of learners.

The third and perhaps most ambitious part of the book takes the math-
ematics learner as its object of study. It focuses on middle school students, 
in part because of their well-known developing dislike for mathematics at 
that age, and in part because of my own extensive experience with 12- to 
15-year-old children. I analyze many examples of student mathematical 
activity using the aesthetic lens developed in Part II. The lens does not 
strictly focus on cognitive or affective aspects of their mathematical expe-
riences, but reveals instead the ways in which their aesthetic sensibilities 
can evoke, sustain, and give meaning to their mathematical activity. Of 
course, the aesthetic lens will also illustrate the extent to which the aes-
thetic manifests itself in middle school learning. Moreover, it will help me 
probe for ways in which educators might support and nurture students’ 
aesthetic sensibilities and values. 

In Chapters 6, 7, and 8, respectively, I focus independently on each of 
the three roles of the aesthetic described in Part II. Starting with the moti-
vational role, I show that some of the aesthetic qualities of a mathematical 
situation that attract mathematicians to certain problems (connectedness, 
fruitfulness, apparent simplicity, visual appeal, and surprise) can similarly 
compel students to begin and persist working on mathematical problems. 
Chapter 6 seems to me of particular importance in terms of student moti-
vation, which I see as “holding” rather than merely “catching” student at-
tention (a distinction discussed in Dewey, 1913). In addition to analyzing 
individual examples of the aesthetic’s motivational role, I apply the lens 
collectively and comparatively to a whole class of students. 

Chapter 7 explores the generative role of the aesthetic in the mathemati-
cal activity of students, analyzing three examples in learning environ-
ments where students are encouraged to use qualitative reasoning. These 
examples provide a broader sense of the kinds of aesthetic responses that 
students can have, as well as the different levels of sophistication, with 
respect to professional mathematicians, with which students are able to 
make use of these responses.

Chapter 8 focuses on the types of aesthetic criteria used by students in 
evaluating their own mathematical work and, more importantly, the pur-
poses of these criteria: When and why do students evaluate mathematical 
entities using aesthetic criteria? I draw on several examples of students 
discussing “better” solutions to show that when students can approach 
mathematics with an awareness of its values and not only its truths, they 
can have strong aesthetic preferences, some of which are perhaps surpris-
ingly contiguous with those of the professional mathematical community.
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While Part III takes individual learners as its context of focus, Part IV 
considers the broader context of the mathematics classroom and focuses 
on the aesthetic dimension of mathematical enculturation—that is, on the 
aesthetic values produced in and perpetuated by the mathematics culture. 
How does the mathematics culture contribute to the aesthetic dimension 
of school mathematics? How does a teacher shape the development of 
students’ aesthetic sensibilities? How might the aesthetic manifest itself at 
the level of whole classroom interactions? 

The mathematics educator Alan Bishop (1991) has argued that educat-
ing people mathematically involves much more than just teaching math-
ematics: It requires developing in students a fundamental awareness of 
the socially negotiated values that underlie mathematics. This book is 
primarily concerned with aesthetic values and, like mathematical values, 
aesthetic ones are only implicitly and uncritically taught in contemporary 
classrooms. Chapter 9 will investigate the aesthetic dimension of math-
ematics enculturation—that is, the aesthetic values produced in and per-
petuated by the mathematics culture. It takes as a given that enculturation 
happens over time, and depends on the particulars of different environ-
ments (whether from classroom to classroom or country to country), and 
can be infl uenced by a variety of subtle and not-so-subtle cues. Chapter 
10 aims to identify these infl uences, so that teachers may recognize them 
and develop a critical perspective on them, and proposes ways in which 
teachers might make aesthetic aspects of mathematical values more ex-
plicit and negotiable in their classrooms. It also explores issues related to 
pedagogic practices, to choices that teachers and curriculum developers 
make in structuring the scope and sequence of mathematics learning. 

A BACKGROUND NOTE

The questions and claims in this book are rooted in a philosophical com-
mitment to pragmatism, which is an approach to conceptualizing the 
world that, in turn, is unequivocally rooted in aesthetics (Cherryholmes, 
1999; Dewey, 1934; Shusterman, 1992). A pragmatist philosopher is inter-
ested in anticipating consequences, in asking what are the conceivable 
consequences of acting in certain ways and not others. But the pragmatist 
knows that these consequences must be evaluated, and this is where its 
aesthetic orientation becomes obvious, since the pragmatist necessarily 
must ask: Do they make life better or worse? More pleasurable or more 
painful? More productive or less so? These questions are evaluated in 
terms of beauty, satisfaction and fulfi lment; they involve deciding which 
consequences should be desired and valued. 
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The etymological roots of the term pragmatism relate it to the Greek 
word pragma, which means “that which has been done” and “a thing right 
or fi t to be done.” The emphasis of pragmatism, and of the inquiries in this 
book, is both on action and on rightness of action. How can we conceive 
the aesthetic so that it productively describes the mathematical action? 
C. S. Peirce’s pragmatic maxim outlines exactly how the aesthetic is to be 
conceived and why it will be taken as central to mathematics learning: 
“Consider what effects which might conceivably have practical bearings 
we conceive the object of our conception to have, then, our conception of 
these effects is the whole of our conception of the object” (1878/1992, p. 
132).

One straightforward, though perhaps oversimplifi ed approach to 
characterizing pragmatism is to contrast it with the tradition of analytic 
philosophy. Though these distinctions are more complex today, the ana-
lytic tradition distinguishes itself most emphatically by its commitment 
to foundationalist assumptions and distinctions, and ahistorical posi-
tive essences. In contrast, the pragmatist will not ask questions such as: 
What is beauty, really? Or What is truth, really? The pragmatic approach 
is committed to mutability, contextuality, and the sociohistorical, thereby 
eschewing foundationalist questions. When I use aesthetic notions such as 
elegance, harmony, and order, they can always be deconstructed; these no-
tions are not meant to adhere to a formalist aesthetic that construes them 
as ahistorical and apersonal. The pragmatic approach is more interested in 
tracing the impact and consequences of granting ideas or beliefs to be true 
or beautiful than it is in defi ning them. So, for instance, I will be asking 
what consequences follow from mathematicians’ use of aesthetic notions. 
Does it help them solve problems? Does it signal to others that they belong 
to some kind of in-group? 

Sinclair final proofs.indd   text13Sinclair final proofs.indd   text13 6/29/2006   10:54:37 AM6/29/2006   10:54:37 AM



Sinclair final proofs.indd   text14Sinclair final proofs.indd   text14 6/29/2006   10:54:37 AM6/29/2006   10:54:37 AM



15

PART I

Beauty and Pleasure
in Human Experience

In the introduction, I suggested that an aesthetic reading of events in a 
pedagogical setting could provide both an interesting and explanatory 
view of students’ mathematical experiences. However, within mathemat-
ics education, little is known about the plausibility (and consequences) of 
such aesthetic readings. Therefore, I want to zoom out from the particular 
settings of the introduction and investigate possible aesthetic interpreta-
tions of much more general human experiences. Zooming out will involve 
considering different conceptions of the aesthetic, in a wide range of con-
texts and for a wide range of purposes. I will juggle with all these concep-
tions for the time being, until I zoom back into a mathematics context in 
Part II and then begin refi ning the notion of the aesthetic in Part III, so as 
to improve its appropriateness and usefulness in the mathematics learn-
ing contexts. 

Chapter 2 begins the process by “reclaiming” the aesthetic from the 
arts, where it has evolved into a somewhat esoteric concept, and offering it 
as a feasible and meaningful concept in other domains of human inquiry, 
including mathematics. This chapter aims to illuminate the way in which 
the aesthetic intermingles with practical, theoretical, and logical forms of 
human reasoning, even in nonartistic domains. The expanded and refi ned 
conception of aesthetics that will emerge shall pave the way for the idea of 
a mathematical aesthetic and, eventually, to an aesthetic of mathematics 
learning. 

While Chapter 2 considers the possibility of extending the aesthetic 
to domains of knowledge and inquiry beyond the arts, Chapter 3 fo-
cuses on locating aesthetic sensibilities in human embodiedness. Focus-
ing on a more democratic access to aesthetics will raise the possibility of 
children possessing, evolving, and using an aesthetic sensibility in their 
mathematics learning. 
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CHAPTER 2

Reclaiming the
Aesthetic from the Arts

In both philosophical and educational discourses, the aesthetic is usually 
situated solely within artistic activities (and less often in experiences of 
nature—of sunsets, storms, and other natural phenomena). The compart-
mentalized view of human thinking and knowing—the logical for math-
ematics and the aesthetic for the arts—is partially to blame for the lack 
of attention to the aesthetic within mathematics learning (and the cor-
responding lack of attention to the logical in artistic production). In “re-
claiming” the aesthetic from the arts, my goal is to support the contention 
that mathematical inquiry, like artistic inquiry, draws on aesthetic forms 
of thinking and knowing. 

THE FLUIDITY OF HUMAN FACULTIES 

Common parlance would cast the arts as the domain of aesthetic deci-
sions, in contrast to that of moral decisions (ethics) or of objective deci-
sions (science). The philosopher Mark Johnson (1987) argues that rigid 
separation of, say, the aesthetic from the moral is rooted in an Enlight-
enment view of cognition that assumes mental acts can be broken down 
into distinct forms of judgment. This view supposes that moral reasoning 
involves moral concepts and could derive determinate rules for action, 
whereas aesthetic judgments involve no concepts at all, only feeling and 
imagination. But many scholars now break down so glibly a compartmen-
talized view of human decision-making. According to them (e.g., Dewey, 
1934; Lakoff & Johnson, 1999; Polanyi, 1958), humans do not make ex-
clusively moral or exclusively theoretical judgments. Instead, the moral 
and the theoretical, as well as the aesthetic, are seen as permeating every 
aspect of human life. 

Neuroscientifi c researchers such as Antonio Damasio (1994) also 
challenge this Enlightenment view, claiming that our rational and moral 
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decisions necessarily call upon affective and aesthetic judgments: feel-
ings resulting from a perception of the “body landscape” are an integral 
component of decision-making. Based on his research with patients who 
have certain brain lesions, Damasio has shown that without feelings hu-
mans are hindered in or incapable of making personal choices. Such re-
search stands in sharp contrast to the Cartesian view that human minds 
are and act separately from their bodies. What are these feelings and how 
are they related to aesthetic responses? 

Consider a scientifi c perspective on aesthetic response. Damasio helps 
answer the question using slightly different language. He differentiates 
between “feeling” and “emotion.” A feeling is the result of the process of 
continuous monitoring of the changes in one’s body state. An emotion is 
felt; feeling an emotion is the experience of these changes in juxtaposition 
with the emotion-inducing perception (the stimulus causing the emotion). 
As such, feelings are just as cognitive as other percepts because humans 
construct them and are aware of them. At a conscious level, feelings la-
bel outcomes of responses as either positive or negative and these judg-
ments lead to deliberate avoidance or pursuit of a given response option. 
At a subconscious level, feelings—or “somatic markers,” as Damasio calls 
them—act as internal guides. They provide criteria by which human be-
ings rank the available sense images in the process of reasoning. 

The function of Damasio’s somatic markers as internal guides reso-
nates with the mathematician Henri Poincaré’s (1908/1956) theory of 
mathematical creation, in which ideas are created in the unconscious and 
passed through some kind of “aesthetic sieve” before emerging into the 
conscious mind. In fact, Damasio agrees with Poincaré that some kind of 
preselection is carried out, whether covertly or not. But he also implies 
that all humans rely on a preselection mechanism in all their perceptual 
acts. (The mathematics educator Richard Skemp [1979] has also pointed 
to the role of feelings in problem solving in his book Intelligence, Learning 
and Action.) 

The art critic and philosopher Ernst Gombrich (1979) might argue 
that the criteria that guide preselection form a person’s “sense of order,” 
which modifi es itself constantly as that person gains more experience in 
the world. That would make Poincaré’s “special aesthetic sensitivity” a 
strongly developed sense of order with respect to mathematical objects 
and processes. As professional mathematicians gain experience in look-
ing for and fi nding different types of ordering patterns, they concurrently 
develop a uniquely individual aesthetic sense, which in turn attunes them 
to patterns that others may not be able to discern. The philosopher Harold 
Osborne (1984) points to the crucial role played by such a sense of order, 
both as a form of beauty and as an action of the human mind attempting 
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to come to terms with randomness, disarray, or chaos. Osborne suggests 
that the imposition of order—making patterns fi t together in a harmoni-
ous way—gives rise to aesthetic satisfaction. 

The supporting evidence for Damasio’s thesis focuses primarily on 
the personal and social domains of decision-making rather than on the 
abstract-symbolic decision-making operations of artistic and scientifi c 
reasoning. Operations in the personal and social domain precede, from 
an evolutionary perspective, abstract-symbolic decision-making opera-
tions. These latter operations will still depend on some kind of somatic 
markers, though they may not be perceived as “feelings” that act covertly 
to highlight certain components over others. However, Damasio main-
tains that, whatever the nature of artistic and scientifi c reasoning, it inter-
acts intimately with feeling and emotion, and is mediated by body-based 
signaling that is aesthetic in nature.

The research methods from which Damasio builds his thesis are those 
of cognitive neuroscience, and his hypotheses are each qualifi ed by em-
pirical testing. Further research in this fi eld, using such scientifi c methods, 
will certainly shed more light on the nature of mathematical reasoning—a 
domain about which Damasio at present only speculates. However, there 
are other methods available to those inquiring about the nature of human 
reasoning (in general, but also in mathematics), which can provide insight 
into the abstract-symbolic domains of reasoning, including the philosoph-
ical methods of John Dewey. 

Dewey (1934) argues that the aesthetic is a pervading quality of hu-
man reasoning and experience. He begins his argument by pointing out 
that the categories used to characterize and communicate different modes 
of reasoning and experience (i.e., emotional, intellectual, aesthetic) may 
make our descriptions and analyses of them more tractable, but that these 
categories impose artifi cial boundaries and dualisms that do not exist. As 
with Johnson, he bemoans theories that have accustomed us to drawing 
rigid separations between “logical, strictly intellectual, operations that 
dominate in science, the emotional and imaginative processes which dom-
inate poetry, music, and to a lesser degree the plastic arts, and the practical 
doings which rule our daily life” (1925/1986, p. 104). 

No matter what the domain, whether mathematics or sculpture, Dewey 
sees aesthetic ways of reasoning as working to establish a unity or form—
a basic sense of understanding or of mastery—for otherwise unknown 
or undetermined things. Aesthetic reasoning brings understanding and 
imagination—thought and emotion—into agreement, giving rise to a feel-
ing of fi ttingness of the cognitive powers. The feeling of pleasure that be-
longs to aesthetic responses arises because one has succeeded, seemingly 
against odds, in making something comprehensible, in having secured 
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some grasp of a phenomenon. In locating the aesthetic in the everyday, in 
“the events and scenes that hold the attentive eye and ear of man, arousing 
his interest and affording him enjoyment as he looks and listens” (1934, p. 
4), Dewey claims that the aesthetic is accessible to all, in the diversity of 
human activities, given the right conditions and opportunities. 

What is this pervading aesthetic quality that Dewey talks about? Sim-
ply put, it is a quality of experience, of arranging one’s world at a given 
point in time. Dewey maintains that humans have an inevitable tendency 
to arrange events and objects with reference to the demands of complete 
and unifi ed perception.1 The qualifying demand of human reasoning is a 
thoroughgoing unity of experience. Aesthetic experience would be impos-
sible in either a world of only fl ux, where no closures were possible, or a 
world in which suspense and crisis were absent, and hence, where no res-
olutions were possible. But people can fi nd closure and resolution despite 
the vicissitudes of their surroundings. They can attend to the structure, 
order, and coherence of an experience and impose on it, or fi nd within it, 
a certain integral fulfi lment. This is achieved in part by fi tting together 
the various dimensions of experience—the practical, emotional, and intel-
lectual—and by remaking past experiences so that “they can fi t integrally 
into a new pattern” (1934, p. 176). 

Damasio would support Dewey in contending that humans inevita-
bly frame their understandings of “outside” events in terms of their inner 
desires. But Dewey goes further in saying that the aesthetic is the vehicle 
through which human beings ascribe meaning to experiences. To take an 
example from the mathematical world, the experience of reading a proof 
is not purely intellectual. It only gains meaning from the aesthetic act of 
integrating an outside truth with beliefs such as attainment of certainty, 
desires such as simplicity or austerity, personal understanding, and recog-
nition of one’s own state of knowing. 

In linking the aesthetic to cognition as he does, Dewey precedes many 
others (e.g., Davis, 1996; Ernest, 1998; Lakoff & Nunez, 2000; White, 1993) 
in challenging the philosophies of the Platonists and the formalists who 
see mathematics as disembodied and immutable. Such philosophies, as 
the mathematicians Philip Davis and Ruben Hersh (1986) write, “cannot 
tell us what mathematics is, why mathematics is true, why it is beautiful, 
how it comes to be, or why anyone should care a fi g about it” (p. 201). 
By viewing humans as creatures who think and learn through qualitative 
discriminations intended to achieve states of coherence with their envi-
ronments and interactions, Dewey anticipates a much more “humanistic” 
conception of mathematics. Such a conception suggests that mathematics 
has a claim to the aesthetic that is equal to that of the arts, provided we 
agree that the aesthetic initially arises not only in art through manifestly 
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aesthetic stimuli, but in experience at its most complex and fundamental 
level. 

Dewey emphasizes the aesthetic as a theme in human experience, as 
a way that humans organize and derive meaning from everyday situa-
tions in which they fi nd themselves. He also insists that there is an aes-
thetic quality that belongs to any inquiry, be it scientifi c or artistic: “The 
most elaborate philosophical or scientifi c inquiry and the most ambitious 
industrial or political enterprise has, when its different ingredients con-
stitute an integral experience, aesthetic quality” (1934, p. 55). In the next 
section I focus on Dewey’s theory of inquiry in more detail, as it provides 
compelling insights into the aesthetic nature of mathematical inquiry. 

THE AESTHETIC NATURE OF INQUIRY

Dewey defi nes inquiry as “the controlled or directed transformation of an 
indeterminate situation into one that is so determinate in its constituents’ 
distinctions and relations as to convert the elements of the original situa-
tion into a unifi ed whole” (1938, p. 108). The process of inquiry that regu-
lates problem solving in all domains, the artistic and the scientifi c alike, 
begins in problematic and uncertain situations. 

In contrast to traditional epistemologies and theories of logic that di-
chotomize the rational and the nonrational, Dewey is careful to emphasize 
the necessary continuity of modes of thought and their dependence on 
one another, and this leads him to focus on the aesthetic nature of human 
inquiry. He argues that inquiry is emergent from, and pervaded by, back-
ground, noncognitive experience such as affect, intuition, and imagina-
tion. These elements feed the foreground of qualitative thought, which is 
concerned with “ideas,” “concepts,” “categories,” and “formal logic.”

Dewey refers to the background, noncognitive experience that emerg-
es from inquiry as qualitative reason. Qualitative reason shapes cognitive 
realms in such subtle ways that it often cannot be defi ned, if only because 
the line between the affective and the cognitive can become blurred in 
interpretation: Human cognitive capabilities engage often without regard 
for precognitive infl uence. For instance, the background experience of 
rhythm, an essential organizing tool of human experience, draws atten-
tion to certain features and relations—it selects through qualitative rea-
soning mechanisms. Often without conscious awareness, it gives what 
Dewey calls a “qualitative unity” to objects or phenomena that are ex-
ternally disparate and dissimilar. Such unity allows human beings to ab-
stract discernible patterns in conjunction with the ideas and concepts at 
hand. However, rarely in their discernment and representations of cyclic 
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patterns, for instance, do humans recall the rhythmic infl uence of their 
perception. These perceptions are not necessarily innate or immutable; 
they are guided by phenomenal and experiential factors. 

What Is Qualitative Unity?

Since qualitative unity is so central to Dewey’s theory of inquiry, as 
well as to an appreciation of the aesthetic nature of inquiry, I will illustrate 
the notion using a more concrete example. Suppose someone (with at least 
some previous exposure to fractions) is confronted for the fi rst time with 
the information in Figure 2.1, which shows the color-coded decimal ex-
pansion of the fraction 1/7 (depicted here in shades of gray, but shown in 
full-color on the cover of this book).

Various precognitive elements can infl uence that person’s qualitative 
thinking about the image, which will be aimed at making sense of this 
relation or juxtaposition of visual elements. I will consider three possible 
responses to this situation. One individual might have a predilection for, 
say, purple, which might lead her to perceive the image as equally spaced 
purple squares, including different shades of purple that appear close to-
gether: pink and blue. She might search for more purples, or see the imag-
es as purple diagonal stripes, or might label 1/7 as quite a purple number. 
Another individual might have an immediate experience of rhythm that 
leads her to perceive the image as repetitions of strings of color (that she 
sees directly or perceives, as opposed to counts). She might go back and forth 
between seeing predominantly black or white, but she senses repeated 
cycles of color. She might quantify the repetition, look for its beginning or 
end, or associate the fraction 1/7 with a repeating form. Alternatively, a 
third individual might be infl uenced by her imagination and perceive, not 
blocks of colors, but a staircase that goes up from bottom left to top right. 
Then she might look at the several different staircases and notice the fact 
that each one is a solid color. She might pay attention to how the staircases 
grow or shrink or how many there are, or she might subconsciously label 
the fraction 1/7 a “staircase number.”

Figure 2.1. One visual 
representation of the 
fraction 1/7.

1/7 =
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Each of these individuals selects different features of the image that pro-
vide them with a qualitative unity of the object under consideration. Note, 
however, that the selection of features is not haphazard; it follows from 
aesthetic choices, from sensibilities to certain forms and relationships. 

Dewey insists that qualitative unity must be felt, or “had”: It cannot be 
expressed in words. How does one come to “feel” qualitative unity? He 
stresses that such unity must be sparked by a directly experienced quality; 
a form such as rhythm can only operate as an immediate qualitative link 
for the inquirer via experience. The theories of embodied cognition—as 
put forth most recently by George Lakoff and Mark Johnson (1999) and 
which resonate strongly with both Damasio’s (1994) and Dissanayake’s 
(1992) positions on the primacy of body-based experience—propose that 
directly experienced qualities depend upon embodied knowledge. That 
is, body-based schemata structure human interactions, perceptions, and 
apprehensions. These schemata are not necessarily visual, nor are they 
exclusively propositional. Rather, they are dynamic structures for orga-
nizing ongoing experience and comprehension that emerge from bodily 
movements through space, our manipulations of objects and perceptual 
interactions. As Mark Johnson (1987) writes: 

They are gestalt structures, consisting of parts standing in relations and or-
ganized into unifi ed wholes, by means of which our experience manifests 
discernible order. When we seek to comprehend this order and to reason 
about it, such bodily based schemata play a central role. (p. xix)

Thus, subject matter is formulated primarily by embodied knowledge 
through forms and patterns such as balance, symmetry, containment, and 
rhythm.2 These are primarily qualitative formulations, and are appre-
hended as such. Of course, not all perceived qualities connect directly to 
body-based knowledge; they may connect to more abstract or sophisticat-
ed schemata that are the result of mappings, projections, or elaborations of 
body-based knowledge (see Lakoff & Nunez, 2000).

Qualitative Unity in the Process of Inquiry

Dewey’s process of inquiry has three components: (1) an indeterminate 
situation that provokes a state of disturbed equilibrium—a state of tension; 
(2) the period of exploration (including the specifi cation of the problem 
and the construction of hypotheses) and a movement toward restoration 
of equilibrium—toward release; and (3) the recovery of fulfi lment or satis-
faction (through the elaboration and testing of the hypotheses). The above 
example focused on the role of qualitative thought in an inquirer’s initial 
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encounter with a situation. But qualitative thought continues to function 
in the second and third phases of inquiry too. 

With the following example, I want to show how a perplexing situa-
tion can give rise to the single qualitativeness that underlies further ex-
plicit reasoning. Imagine that the three individuals described previously 
are next confronted with the image shown in Figure 2.2. A general tension 
may result from the implication that the same fraction can correspond to 
two different visual patterns. The three individuals might even respond 
with exclamations such as “Oh!” Dewey views such exclamations as the 
simplest examples of qualitative thought and notes how they provide the 
impetus for most every scientifi c investigation. However, I want to draw 
attention to the way in which the qualitative unity achieved by each indi-
vidual produces different tensions and, thus, different subsequent lines of 
reasoning. 

The staircase inquirer might be the most disturbed, since her organiz-
ing quality of diagonality that was established upon seeing the previous 
image and used to defi ne the fraction 1/7, has been upset. She will select 
and observe facts that will help her to reequilibrate that quality; hence, 
she might perceive the new image in terms of how far “off” the diagonal it 
is, and therefore wonder about restoring the diagonal or whether there is 
another kind of diagonal. On the other hand, the rhythmic inquirer might 
be surprised that the two images both correspond to 1/7, but her sense of 
cycling colors has not been disturbed, for the colors cycle in exactly the 
same way in this image as they did in the fi rst. Finally, the third inquirer 
will have lost the image of staircases, and might be provoked to interpret 
this image as stripes, columns, or a colorful checkerboard, and therefore 
wonder which image is more pleasing or whether there are other kinds of 
positive images, too. 

Figure 2.2. Another visual representation 
of the fraction 1/7.

1/7 =
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The qualitative unity “felt” by each individual thus gives rise to a differ-
ent set of questions and tensions. This unity organizes the inquiry because 
it shapes the conjectures, ideas, and abstractions that follow; it provides 
a heuristic function. However, the inquirer is aware of the quality not by 
itself, but as the background thread and the directive clue in which she 
acts. In his essay on qualitative thought, Dewey writes: “To say that I have 
a feeling or impression that so and so is the case is to note that the qual-
ity in question is not yet resolved into determinate terms and relations” 
(1930/1986, p. 248). However, following the initial sensing of a problem, 
during the determination of a problem situation, ideas start to appear to 
the inquirer as simply vague suggestions of relations and distinctions.3 
The staircase inquirer might bend her head to see whether the image has 
just been turned or shifted. These suggestions actually become ideas when 
they are examined with reference to their functional fi tness—their capac-
ity to provide a means of resolving the given situation. The suggestion of 
turning or shifting the image might become an idea if the inquirer sees 
how different transformations affect the image, how they might relate to 
the diagonal pattern. 

Dewey points out that when a subject matter is reasonably familiar, 
as will be the case when mathematicians engage with their problems, rel-
evant distinctions speedily offer themselves, and sheer qualitativeness 
may not remain long enough to be readily recalled. Because of this, it may 
be very diffi cult to recall the aesthetic responses that guide choices and 
actions. Nevertheless, this constitutes the aesthetic logic: the control of se-
lection of detail and of modes of relation, or integration, by a qualitative 
whole. Such logic is often recognized in artistic thought, but seldom in 
mathematical thought (Polanyi, 1958). Perhaps, as Dewey suggests, the 
mathematician is so concerned with the mastery of symbolic or proposi-
tional forms that she fails to recognize the creative operations involved in 
their construction. 

Typically found at the close of a successful investigation, declarations 
such as “How beautiful” or “How elegant” mark for Dewey the realized 
appreciation of a pervading quality that is now translated into a system 
of defi nite coherent terms. Such judgments of appreciation—where the 
evaluative role of the aesthetic operates—arise when inquiry has reached 
a close that fulfi ls the activities and conditions that led up to it. Without 
these affective responses, the inquirer would not have the experiential 
sign that the inquiry has reached a close. But aesthetic judgments can also 
occur during an inquiry, as a result of the resolution of tension for each 
subproblem. They constitute a series of landmarks in the progress of the 
undertaking. In fact, Dewey (1934) remarks that they are so important that 
“their function of being clews [sic] and giving direction that the sense of 
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harmony which attends them is too readily taken as evidence of truth of 
the subject-matter involved” (p. 249). When the staircase inquirer realizes 
and is able to describe how to transform the second image into the fi rst, 
when she is able to see what happened to the staircase and how she can 
make it appear again, she has perhaps achieved a resolved state. Not only 
has she worked through the dissonance caused by the second image; she 
has also understood the general relationship between these two images, 
and united her previously disparate perception.

CONNECTING THE AESTHETIC TO LEARNING: FIRST STEPS

In examining the aesthetic dimension of inquiry and experience, I have 
been dancing around the issue of student learning, never quite articulat-
ing how inquiry, experience, and learning might be seen as bound togeth-
er in a way that may be relevant to mathematics education. If one takes the 
view, as do the educators Marton and Booth (1997), that learning is about 
changing one’s way of experiencing a phenomenon, then the learning/ex-
perience coupling should seem natural. Moreover, if one takes the view 
that learning proceeds from an undifferentiated and poorly integrated un-
derstanding of the whole to an increased differentiation and integration of 
the whole and the parts, then the connection between Deweyian inquiry 
(and experience) and learning should start to become at least intuitively 
natural. With the following hypothetical example, I want to probe further 
that intuitively plausible connection, and hence articulate better the aes-
thetic dimension of learning. Consider the following scenario: 

A student sits in front of a piece of paper where several triangles 
have been drawn. She wants to construct the altitudes of each 
triangle. The fi rst few examples are easy; she uses the method 
her teacher has shown and constructs a perpendicular line from a 
vertex of the triangle to its opposite side. But then she comes to a 
triangle for which that method does not work. She cannot fi nd a 
line between the vertex and the opposite side that is even close to 
being perpendicular. She frowns.

The student’s usual routines have failed; she experiences the disrup-
tion of habitual action as a feeling: tension, frustration, confusion, or 
doubt. She may skip that triangle and move on to the next one. But if 
she does not, she can no longer appeal to her habits: She must engage in 
conscious thought. That is, she will have to engage in a process of inquiry 
that can mediate between the actual (I cannot construct an altitude) and 
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the possible (Is there another way of constructing an altitude? Do some 
triangles not have altitudes?). 

The teacher sees the student’s problem and tells her she must ex-
tend the opposite side in both directions and use her new line to 
construct the perpendicular through the vertex. The student fol-
lows the instructions, and moves on to the next triangle, wonder-
ing what new trick she will encounter this time. 

Has any learning taken place? Quite possibly not, if the student has 
not established any pattern or regularity that might have restored the ele-
ments of the original situation into a unifi ed whole. If she has changed her 
way of experiencing the phenomenon of a triangle’s altitudes, it is only 
by gathering facts and information, tackling altitudes in isolated pieces 
rather than maintaining an integrated whole. She has established no rela-
tions with past experiences and, moreover, has experienced no delight, no 
satisfaction of her previous doubts or confusion. Therefore, her process of 
inquiry has been stunted. This is not, however, because the teacher “told 
her” the answer.4 Consider instead this scenario:

The teacher sees the student’s problem and tells her she must 
extend the opposite side in both directions and use her new line 
to construct the perpendicular through the vertex. The student 
extends the opposite side, and uses it to construct an altitude. 
She notices that the altitude and the opposite side don’t actually 
touch—something she has never seen before—and comes to a new 
way of thinking about perpendicularity: two line segments can 
be perpendicular without even intersecting. She looks back at her 
fi rst few triangles and tries to determine how this triangle is differ-
ent. This new triangle has an obtuse angle, and that makes the ver-
tex “jut out” beyond the opposite side. But this method of extend-
ing the line could be used in every case; it is more general than her 
previous method. Now she feels that she could do any example. 

In this scenario, the teacher still “tells” the student an important fact, 
but this time the student has come armed with an expectation that there 
will be some regularity or relationships to fi nd—an expectation that may 
have been aroused through the surprising interruption encountered in 
her task. Her qualitative reasoning has been engaged. In seeking out and 
establishing patterns and regularities, and in attempting to maintain an 
integrated whole, she has taken an aesthetic orientation to inquiry. In the 
end, the new regularity satisfi es the doubt and confusion she previously 
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experienced, and provides her with a feeling of organic unity that restores 
her habitual functioning, and thus augments her confi dence to move on 
to the next triangle. 

When the student is comparing the different triangles, she is not en-
gaged in thought as a “pale, bloodless abstraction.” Rather, her thinking 
is charged with an urgent desire stemming from a single qualitative im-
pression that will take her from her current condition to one in which the 
triangles return to having a basis of commonality. The student has learned 
something; she has reorganized her experiential world in order to fi nd 
a fi tting way of thinking about the altitudes of a triangle. And it is the 
aesthetic that provides the background against which her mathematical 
acts can become meaningful, against which the selection and regulation of 
observed facts takes place. After all, I can compare an apple and an orange 
and observe that one is red while the other is orange. It is an aesthetic ori-
entation that drives me to seek unity, pattern, or regularity: to see what the 
fruit have in common, how they can be conceived of together, and to form 
an image—a schematic perception—that accepts or rejects new members 
that I might encounter. 

FITTING THE PIECES TOGETHER

Dewey construes the aesthetic as a theme in human experience, and in-
sists that there is an aesthetic quality that belongs to any kind of human 
inquiry, at all stages of that inquiry. His description of inquiry will be very 
useful in Part II, where I turn my attention to mathematical inquiry and 
try to understand the different roles that the aesthetic may play in math-
ematical problem solving. 

In contrast to Dewey, Damasio’s (1994) theory of human decision-mak-
ing  mphasizes the aesthetic as a mode of discrimination and choice. Sev-
eral scholars, as I show in the next chapter, have placed more emphasis on 
the aesthetic as an innate urge or capacity that, I would suggest, provides 
a kind of substrate to the multidimensional behavior involved in experi-
ence and decision-making. In so doing, they provide some insight into the 
particular forms and structures that tend to attract human attention.
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CHAPTER 3

“Wired” for Beauty and Pleasure

If the aesthetic plays such an important role in experience and cognition, 
educators must wonder, on the one hand, what kinds of aesthetic sensibil-
ities students have when they enter the classroom and, on the other, how 
these sensibilities develop? The question is still far from resolved. How-
ever, over the past couple of decades, scholars from different disciplines 
have been claiming that humans do possess innate aesthetic sensibilities, 
which they use as sense-making mechanisms in their everyday activities, 
including their mathematical ones. 

Naturally, an innate aesthetic sensibility does not mean that everyone 
shares the same preferences and judgments or develops equally power-
ful aesthetic responses. Even mathematicians, who are notoriously con-
forming in their aesthetic judgments (see King, 1992)—compared with 
artists—frequently diverge in their personal responses and tendencies 
(Burton, 1999a; Wells, 1990), particularly across different cultural contexts 
(D’Ambrosio, 1997; Eglash, 1999; Joseph, 1992). Consider an example that 
several mathematicians have noted: Although some mathematicians may 
pursue (and impose) symmetric structures and relationships, while oth-
ers may seek instances of asymmetry, both groups use symmetry as an 
aesthetic guide (Dyson, 1982). (This phenomenon has been described in 
the decorative arts as well where, for instance, many Eastern cultures pre-
fer designs of asymmetry while Western ones tend toward symmetry.) In-
deed, given the constraints of our human embodiedness, there are likely 
to be many such biologically based aesthetic tendencies affected by and 
developed within particular sociohistorical contexts. 

HOMO AESTHETICUS

The scholar Ellen Dissanayake (1992) provides perhaps the most compre-
hensive and concentrated account of the aesthetic as a core component of 
human behavior. In her book Homo Aestheticus she argues that sensibility 
to the aesthetic is a characteristic human trait, equal in consequence to 
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the other faculties typically associated with human beings, such as the 
cognitive or the social. She sees the human aesthetic as an innate urge to 
enhance everyday experiences and events, thus placing less emphasis on 
the aesthetic as a mode of discrimination or cognition than as a way of 
experiencing the world. Aesthetic responses, according to Dissanayake, 
derive from actions that humans take in the world in order to fulfi l a fun-
damental biological need to “make special”: 

Humans everywhere, in a manner unlike other animals, differentiate be-
tween an order, realm, mood, or state of being that is mundane, ordinary, 
or “natural,” and one that is unusual, extra-ordinary, or “supernatural.” 
(p. 49)

If the urge to “make special” drives aesthetic response, what provokes 
this urge, and how do we know it is such a panhuman, vital experience? 
Arguing from an evolutionary point of view, Dissanayake suggests that 
as early humans developed higher-level cognitive abilities (such as plan-
ning ahead or assessing causes and their consequences), they needed to 
make certain experiences special or extraordinary in an attempt to in-
fl uence the outcome of events that were potentially uncertain and trou-
bling. Thus came the beginning of ritual and its accompanying activi-
ties such as dancing and decorating. Interestingly, with respect to this 
book’s focus on mathematics, the mathematician and historian Abraham 
Seidenberg (1962) proposes that the origins of mathematics (specifi cally 
counting, but also geometry) can also be found in ritual, arguing against 
the commonly held belief that mathematics arose in response to more 
practical, economic concerns such as taxes, allocation of resources, and 
trade. Based on anthropological sources, he claims that counting was fre-
quently the central feature of a rite, and that participants in ritual were 
numbered. As the mathematics educator Dick Tahta elaborates1: “‘One, 
two, buckle my shoe/Three, four, knock on the door.’ The gods are ush-
ered into the ceremonial, the stars majestically ride across the sky, men 
create numbers ‘in rite order’” (p. 19). 

Returning to Dissanayake, these making-special activities would seem 
to contradict Darwinian assumptions that humans confi ne themselves to 
behavior that simply assures adaptation to geography and livelihood. Dis-
sanayake points to evidence showing that humans elaborate a way of life 
that is beyond evident necessity—one that is expressive, ritualistic, and 
decorative. For example, human take care to paint their faces in attrac-
tive colors and designs; they develop ritual dances that are rhythmic and 
graceful; and, more recently, they spend time and resources on activities 
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which might be regarded as wasteful in terms of survival such as mowing 
lawns, arranging fl owers, shaving body hair, and even selecting specifi c 
font styles on the computer. 

In the movement from the black and white of phenomenological im-
mediacy to the murkier search for subjective meanings, Dissanayake 
sees humans becoming adept at distinguishing perceptual and emotion-
al subtleties. This, in turn, provides humans with a cognitive capacity 
to make judgments of quality, of what is “beautiful” or “better.” As a 
result, not only do humans distinguish images, sounds, and tastes that 
appeal to their senses more than others; they also distinguish elements 
such as repetition, symmetry, and proportion that appeal to their cogni-
tive faculties. 

Why should such elements be cognitively appealing? Dissanayake ar-
gues that they are highly enabling, in that they provide shape and mean-
ing while using minimal resources. For example, symmetry is highly en-
abling in that it allows human minds to grasp the whole of a structure 
or form, as well as make predictions about it, based on information from 
only a small part of it. It allows the mind to reduce complexity to sim-
plicity through an act of perception. The Dutch-American mathematician 
Dirk Struik acknowledges the link between symmetry and understanding 
when he writes, “[i]ncidentally, the symmetry and harmony of forms that 
turn out to be most effi cient . . . also strike us as more agreeable, beautiful” 
(2003, p. ix, emphasis in original).

Another distinguishing element linked to understanding involves 
cycles of repetition, which allow the mind to structure raw experience—
changing seasons, sunrises, tides—and pattern its projections of the future. 
With respect to mathematical phenomena, humans record and impose 
rhythm on events and objects through the one, two, three, four, of count-
ing, as well as the construction of lines and angles into geometric patterns. 
These perceptual and physical acts shape human comprehension, which 
in turn (in primal contexts) translates into mastery, and then security. Dis-
sanayake asserts that early humans drew emotional satisfaction from the 
controlled behavior of structuring space and time—that is, from arrang-
ing and placing space and time into comprehensible form. Humans now-
adays also draw emotional satisfaction from aesthetic perceptual acts, as 
evidenced by Zoe’s grasp of symmetry described in the introduction and 
her subsequent show of pleasure.

The progression of effi cient, satisfying acts into value judgments 
begins when elements such as symmetry and rhythm come to be per-
ceived as “good” in and of themselves, and then iteratively continue to 
fi nd their way into “making special” activities. Thus, Dissanayake fi nds a 
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biological determinant to evolved structures—symmetry, repetition, and 
order—for expressing mathematical ideas. In this, she is supported by 
the mathematician Saunders Mac Lane’s (1986) analysis of the practical 
and conceptual origins of mathematics. He points out how mathematical 
objects such as number, size, and order have been shaped by our human 
actions of counting, comparing, and noticing patterns—actions that hu-
mans take in order to control and understand their environment. Thus, 
mathematics, seen as a synchrony of actions such as patterning, ordering, 
transforming, and balancing, consists of and gives rise to qualities that 
are cognitively pleasing.

Dissanayake also insists, now taking a developmental stance, that hu-
mans’ in-born capacities for discrimination are fi rst exercised in aesthetic 
contexts—that is, in the sensory-rich and pleasurable interactions with 
their mothers and their environments. These interactions predispose hu-
man beings to respond to, and to seek, emotionally resonant and richly 
satisfying aesthetic experiences.2 This might suggest a strong link between 
aesthetic and affective responses. The essential emotional component of 
human aesthetic responses manifests itself physically: such responses feel 
good. 

The cognitive scientist Steven Pinker (1997), another scholar interested 
in the aesthetic dimension of human behavior, explains how human emo-
tions become so deeply implicated in aesthetic responses. He focuses on 
the adaptive responses of human beings to selective pressures in an evolu-
tionary context and, in particular, on their responses to the set of “enabling 
acts” that increase their ability to survive within environmental and social 
constraints. Some subconscious part of the mind, he argues, registers those 
highly enabling acts—such as using symmetry to perceive and gather in-
formation on family members or hunted animals—through a sensation 
of pleasure. This pleasure alerts us to, or brings to our consciousness, the 
advantages of such acts. 

Enabling acts occur through obtaining information about the conse-
quential objects and forces that dominate everyday lives. Whereas these 
may have once been acts of predicting times of rain, the location of fertile 
hunting grounds, or generosity in other humans, modern humans face 
very different situations. Nevertheless, Pinker argues that the pleasure-
alerting mechanisms function in the same way. When confronted by infor-
mation-rich and potentially consequential stimuli—the ominous foreign 
subway map separating me from my hotel, for example—I derive plea-
sure from being able to discern its underlying pattern. In his study of the 
interplay between art and science, Martin Kemp (2000) reinforces Pinker’s 
position by contending that all human acts of artifi cial making (whether in 
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the arts or in science) well up from the same inner necessities to gratify our 
systems of perception, cognition, and creation. In science no less than art, 
humans artifi cially activate the system of gratifi cation and reward pro-
vided by our pleasure in “pattern, in symmetry, in order and its judicious 
breaking, in minutely discriminatory acts of recognition” (p. 2).

A “SENSE OF ORDER”

Pinker and Dissanayake are both concerned with the consequential di-
mension of human behavior—that is, the way in which “making special” 
and “registering enabling acts” form the basis for aesthetic sensibility. 
However, there are other ways of thinking about the role of the aesthetic 
in human experience and inquiry. For example, Edward Wilson (1998), a 
scientist, and Ernst Gombrich (1979), an art historian, were both interested 
in the causal dimension of human behavior—that is, the way in which 
aesthetic sensibility is used in anticipation during acts of perception and 
cognition. Wilson argues that humans have predictable, innate aesthetic 
preferences that they use in making sense of their environments. He notes 
that basic functioning in the environment depends on discerning patterns, 
such as the spatial patterns involved in perceiving surfaces and objects, 
and the rhythmic patterns involved in detecting temporal change. 

The continued and improving ability to discern such patterns gives 
rise to what Wilson calls “epigenetic rules”—that is, to inherited regulari-
ties of development in anatomy, physiology, cognition, and behavior. He 
argues that such rules account for many aesthetic predispositions and 
preferences. For instance, studies in human facial recognition show that 
humans are particularly drawn to right-left symmetry (as opposed to up-
down symmetry or no symmetry at all). Finding such symmetry provides 
the simplest (shortest) descriptions of faces and even of bodies—and thus 
makes such stimuli easier to encode and recall. It should not be surprising 
then that Zoe (the student described in Chapter 1), for example, exhibited 
an attraction to symmetry. In Part III, there will be similar examples of 
students showing sensibility to symmetry.

Wilson provides a concrete example of a universally shared aesthetic 
preference. He describes a study tracing arousal response to a variety of 
visual images in which the most arousing are those that cognitive psy-
chologists call “optimally complex.” Although researchers have a method 
for quantifying complexity, a qualitative description will suffi ce here: “op-
timally complex” designs contain enough complexity to engage the mind 
without overwhelming it with incomprehensible irregularity or diversity.
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Gombrich pursues the same idea. For instance, a simple square grid 
shown in Figure 3.1 contains little or no complexity—the pattern is too 
redundant, too repetitive. For Gombrich, the square grid “can be taken in 
so easily that it leaves our perceptive process without enough work to do. 
. . . When the expected happens in our fi eld of vision we cease to attend” 
(p. 8). However, coloring every other square in a checkerboard pattern 
adds one level of complexity. Distorting it in order to show a perspective 
view of a tiled fl oor adds yet another level of complexity. Finally, creating 
larger squares, or even rectangles with the base squares could be a further 
complicating—or “complexifying”—variation. If too many variations or 
distortions are made, such that little or no redundancy and repetition can 
be detected, the design moves from being too simple to being too complex 
to provoke arousal. However, if the stimulus is just complex enough, the 
perceiver is most aroused—more aesthetically pleased—since, as Gom-
brich explains, “delight lies somewhere between boredom and confusion” 
(p. 9). 

Gombrich’s notion of the human “sense of order” predates Wilson’s 
notion of epigenetic rules, but they seem to have much in common. This 
is the elementary expectation of regularity that humans have when they 
probe the environment; it serves as a sounding board against which 
variations are detected, as well as deviations, similarities and differences, 
and change. Gombrich’s “sense of order” acts like a searchlight. It hy-
pothesizes order and organizes its perceptions according to that order. 
Humans are thus biased in their perception toward straight lines, circles, 
symmetry, and similarly ordered confi gurations rather than with the ran-
dom shapes or patterns encountered in the chaotic world. Gombrich em-
phasizes that the order hypothesis is the condition that makes learning 
possible, since without some initial system, a fi rst guess, no “sense” could 
be made of the millions of ambiguous stimuli incoming from the environ-
ment. The mathematician Alvin White (in Bruner, 1969) corroborates and 
adds to Gombrich’s claim by noting that the seeking and noticing that 

Figure 3.1. Square grid, checkerboard, tiled fl oor, rectangles.
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ultimately leads to learning is not random: “It is directed, selective, and 
persistent and it continues because it satisfi es an intrinsic need to deal 
with the environment” (p. 89). 

The optimally complex designs in Wilson’s study turn out to be com-
parable (within the survey’s metric of complexity) to abstract designs 
used worldwide in friezes, logos, and pictographs—a fact that would not 
have surprised Gombrich. These are the designs that appeal to human be-
ings through their unexpectedness, and are therefore delightful because 
they can still be encoded and remembered. Such designs attract more at-
tention; in a sense, they invite the perceiver to spend more time trying to 
grasp them fully, or even begin to manipulate and represent them. The 
notion of unexpectedness is prevalent among mathematicians’ descrip-
tions of what they fi nd aesthetically pleasing in mathematical situations 
(see Burton, 2004; Hardy, 1940; King, 1992; Sinclair, 2006; Wells, 1990), and 
emerged frequently in the students’ mathematical activity I discuss in Part 
III. Their aesthetic response is consistent with these arguments of Wilson 
and Gombrich.

In thinking about mathematics, though, it becomes apparent quickly 
that the attractive entities are not necessarily (and perhaps even not com-
monly) visual. Do the arguments that Wilson and Gombrich make apply 
only to visual designs? Certainly not, and it is important to recognize that 
the perceptual acts involved in probing the environment are also highly 
cognitive: they presuppose a cognitive map on which meaningful objects 
can be plotted as well as a capacity to decide whether or not those objects 
fi t (Arnheim, 1969). Any perceived unexpectedness, whether in terms of 
temporal, aural, or mental designs, should attract humans according to 
the same principles as visual designs. The key is that, in order to perceive 
unexpectedness, the perceiver must have some expectation of regularity 
in the domain of perception: that is, some relevant sense of order. 

The claims presented in this chapter do not specifi cally relate to school 
learning. However, the observations made about human tendencies and 
predispositions certainly inform learning theory, since humans learn best 
when they can engage their strongest and most effective responses to the 
environment. The educator Howard Gardner’s (1983) theory of multiple 
intelligences loosely follows this line of reasoning, in encouraging educa-
tors to meet students’ preferred and multiple ways of thinking. However, 
it seems to neglect the dialogical nature of human engagement. Human 
beings do not simply apply visual intelligence, for example, to phenome-
na; rather, they respond to certain patterned visual cues according to their 
evaluation of both visual and nonvisual complexities. Additionally, they 
respond only if they care somehow about the consequences or outcomes. 
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To summarize, based on the work of several scholars representing di-
verse fi elds of research in human behavior, I have posited four related 
claims. First, humans possess an aesthetic sensibility upon which they de-
pend in their diverse modes of meaning-making. Second, there is a set of 
aesthetic tendencies that appear to be biologically based (or embodied) 
and thus universally shared. Naturally, these tendencies can be decon-
structed—they refi ne and diverge through education and enculturation. 
Third, exercising these sensibilities can bring humans pleasure and, thus, 
humans naturally seek to do so. Fourth, humans have a “sense of order” 
that directs attention to particular patterns such as balance and provides 
the means for learning, through feedback cycles of expectation, percep-
tion, and adjustment.

The group of scholars I have cited refl ect a variegated notion of the 
“aesthetic,” one that will seem broader than common parlance usually 
allows. Few of these scholars actually defi ne their use of the aesthetic. 
Dissanayake speaks of “making special,” while Gombrich refers to a 
“sense of order.” In the next part, I develop a more operative notion of 
the aesthetic—particularly as it applies to mathematical inquiry—that I 
will eventually use as a lens on mathematics learning. 
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PART II

Beauty and Pleasure
in Mathematics

Having explored the aesthetic in its widest contexts, in Part II I narrow the 
book’s investigation to the domain of mathematics; fi rst to mathematics 
researchers and then to mathematics learners. While Part I drew primarily 
on nonempirical sources and evidence, Parts II and III consider the actual 
inquiries and experiences of both mathematicians and students. 

I begin Chapter 4 by articulating a concept of the aesthetic that will be 
used in this book, and I contrast it with other conceptualizations. I then 
develop an aesthetic framework that identifi es and illustrates the different 
roles the aesthetic plays in mathematical inquiry. I draw on both the expe-
riences of research mathematicians and an analysis of a “real time” math-
ematical inquiry The distinct roles of the aesthetic—of which there are 
three, namely, the motivational, the generative, and the evaluative—will 
allow me to formulate the “mathematical aesthetic lens.” 

Chapter 5 considers the extent to which the roles of the aesthetic are 
necessary to mathematical inquiry. The intent of Chapter 5 is to evaluate 
and dispel claims that the mathematics aesthetic should be treated as an 
epiphenomenon in relation to learning and doing mathematics, or merely 
as a fanciful hobby indulged in only by illustrious mathematicians. At the 
end of Part II, I will have developed the concepts needed to locate, under-
stand, and explain the mathematical aesthetic in student learning.
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CHAPTER 4

Developing a
Mathematical Aesthetic Lens

Before delving into the mathematical aesthetic, I consider fi rst the concept 
of the aesthetic as it has been used historically and conventionally. I then 
outline how I intend to use the concept in this book, guided by my prag-
matic goal of improving understanding of mathematics and mathemat-
ics learning. I am working toward answering the question, “What might 
productively be meant by the aesthetic in the context of mathematics and 
mathematics learning?”, a question that emphasizes my desire to develop 
a conception that improves my understanding of mathematics and math-
ematics learning, and not one that attempts to defi ne it objectively once 
and for all.

THE AESTHETIC

In common parlance, the adjective aesthetic is often used interchangeably 
with words such as beautiful, good, harmonious, or—especially in math-
ematics—elegant. This use of the word sometimes implies an objective 
philosophical orientation, where aesthetic qualities are seen to reside sole-
ly within the artifact being judged, independently of the observer or the 
cultural context. This was the orientation taken by formalist art theorists, 
such as Clive Bell and Roger Fry, whose primary aesthetic criterion was 
“signifi cant form,” which consisted of the optimal unity and coherence of 
the compositional elements. From this point of view, then, the painting is 
to be judged based on its shape, its colors, its composition, and so on—and 
any observer should, with suffi cient sophistication, come to the same con-
clusion about its aesthetic merit. Similar to formalist art critics, the math-
ematician G. H. Hardy wanted to identify aesthetic criteria objectively, 
such as economy, surprise, and signifi cance, which he claimed “any real 
mathematician could see.” These criteria defi ned mathematical “beauty” 
and “elegance.” One of the theorems Hardy uses to illustrate these criteria 
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is the Euclidean proof of the infi nity of primes, a theorem he considered 
one of the most beautiful in mathematics.1

In contrast, I interpret adjectives such as beauty and elegance as epithets 
of a feeling that might be best described as fi tting. That which gives a sense 
of “fi t” ultimately depends on the perceiver, as well as the sociocultural 
matrix binding the perceiver and the perceived. In the arts, the wide di-
vergence of aesthetic tastes is quite obvious, but even in mathematics it 
is possible to fi nd some mathematicians who are indifferent to Hardy’s 
beloved theorem. For example, the writer David Wells’s (1990) survey 
of mathematicians’ aesthetic preferences shows quite convincingly that 
mathematicians can and do differ in their judgments of beauty depend-
ing on these factors: fi eld of interest; preferences for certain mathematical 
entities such as problems, proofs, or theorems; past experiences or associa-
tions with particular theorems; and even mood. Wells also points out that 
aesthetic judgments change over time; eventually, some results are consid-
ered too obvious to elicit an aesthetic response; they may well start to look 
more like the square grids I used in Chapter 3 to describe Gombrich’s links 
among complexity, comprehension, and aesthetic responses. One won-
ders whether the aesthetic only evolves in one direction, or might some 
mathematical results become more aesthetic? Whatever the case may be, 
the inferences made by Wells correspond to a contextualist view, and are 
summed up by this respondent: “beauty, even in mathematics, depends 
upon historical and cultural contexts, and therefore tends to elude nu-
merical interpretation” (p. 39). 

Thus, in recognizing the aesthetic as subjectively and socioculturally 
constructed, I am trying to discourage a common tendency—supported 
by linguistic usage—to describe aesthetic qualities as inherent to objects, 
and thus independent of perceivers. Additionally, in contrast with some 
philosophers of aesthetics who insist on emotional detachment being a 
prerequisite for aesthetic experience (see, e.g., Beardsley, 1982), my own 
concept of the aesthetic emphasizes the intimate connection between 
aesthetic responses and emotions. Aesthetic responses to artifacts, situ-
ations, and equations are always accompanied by feelings, and they are 
frequently feelings of pleasure.

In addition to seeing the aesthetic as a judgment regarding a sense of 
“fi t,” I also see it as a “way of knowing” that is based on perception, but 
not necessarily sensory perception.2 Within the arts (and, especially, arts 
education, see Eisner, 1985), the aesthetic has been conceptualized as “a 
way of knowing,” but this conceptualization is less commonly found out-
side the arts. Many might fi nd it natural that artists would need to devel-
op and use knowledge about how sounds and colors should fi t together, 

Sinclair final proofs.indd   text40Sinclair final proofs.indd   text40 6/29/2006   10:54:41 AM6/29/2006   10:54:41 AM



Developing a Mathematical Aesthetic Lens 41

but what are the analogous forms of knowledge in the mathematical sci-
ences? After all, numbers fi t together in equations following logical rules, 
while shapes can be defi ned according to formal rules. In her study of the 
aesthetic dimension of science, Judith Wechsler (1978) provides a helpful 
defi nition of aesthetic knowing in science. She sees it as a mode of cogni-
tion that focuses on forms and metaphors used in conceptualizing and 
modelling (note how she cannot help but blur the artifi cial boundaries 
among the aesthetic, cognitive, and affective categories). This defi nition 
of the aesthetic has a different emphasis than the value judgment one, in 
which the aesthetic acts as a guideline for the appropriateness of an ex-
pression (scientifi c or mathematical). Instead of focusing on fi nal product 
or fi nished artifacts, the aesthetic as a way of knowing is process-oriented. 
In other words, it is involved in the actual making of, in the sensing and 
probing for, appropriate and evocative expressions of reality. Whether 
the emphasis is the process or the product, though, the common, binding 
theme is the underlying impulse for a sense of “fi t.”

In addition to aesthetic judgments, values, ways of knowing, ability, 
and sensibility, I have also referred to aesthetic experiences, using the term 
aesthetic to denote the quality of someone’s encounter with his or her en-
vironment, one that is integrating and cumulative, and that turns dispa-
rate events and moments into memorable, satisfying, coherent experiences. 
Again, the aesthetic of an experience relates to an emotionally imbued 
sense of fi t.

Throughout this book, I will be providing many examples that illustrate 
the aesthetic—as I understand it—in action, thus offering a functional rath-
er than defi nitive account of it. However, if pushed, my working defi nition 
of the aesthetic—when it qualifi es behavior, values, objects, feelings, and 
experience—has to do with a pleasurable sense of fi t, which speaks about 
context and surroundings as well as attributes of the situation in question. 

This defi nition provides little help to those who have not experienced 
the aesthetic in mathematics, or to those who question the aesthetic soph-
istication of students learning school mathematics. While the two stories 
in the introduction were intended to evoke the pleasurable sense of fi t I 
have associated with the aesthetic, I now take a more pragmatic approach 
to understanding the mathematical aesthetic by tracing how it reveals 
itself—and what consequences it has—in the course of mathematical in-
quiry. Rather than trace these consequences in the world of the profes-
sional mathematician, where the aesthetic publicly appears in its ultimate 
and approved form, I propose instead to start with the mathematical aes-
thetic in a more accessible, “live” event that involves both the process and 
products of mathematical thinking.

Sinclair final proofs.indd   text41Sinclair final proofs.indd   text41 6/29/2006   10:54:41 AM6/29/2006   10:54:41 AM



42 Mathematics and Beauty: Aesthetic Approaches to Teaching Children

THE MATHEMATICAL AESTHETIC

Mathematicians use words such as beautiful and elegant quite frequently. 
Sometimes exclamations such as “what an elegant theorem!” seem to mean 
“I understand the theorem.” At other times, such statements are meant to 
communicate to their addressees a sense of belonging to the “in-group” 
of mathematicians: If I can call the theorem beautiful then it means I share 
a discourse with other mathematicians that sets us apart from nonmath-
ematicians (and presumably, nonmathematicians are unable to appreci-
ate the same mathematical elegance or beauty). What do mathematicians 
mean by those words, beautiful and elegant? How do these words differ 
from one another, if at all, and how are they different from other value 
judgments such as “correct” or “good” or even “true”?

In seeking to answer such questions, one can take an absolutist ap-
proach and try to determine criteria that defi ne aesthetic appeal in math-
ematics. Hardy did this with his list of aesthetic qualities, which included 
economy and unexpectedness. However, as my story in the introduction 
suggests, these criteria are diffi cult to objectify; they depend on the person 
applying the criteria, the situation in which that person fi nds herself (in a 
mathematics class or on a road trip), and on cultural norms and infl uenc-
es. This is true even in the tight, small world of research mathematicians, 
as Wells’s (1990) survey suggests. Thus, defi ning criteria may not only be 
very diffi cult, but probably quite unproductive as well. A more productive 
approach could be to fi nd out how research mathematicians (and others) 
attend to, call upon, or even rely on aesthetic sensibilities in the course of 
producing mathematics (including solving problems, formulating defi ni-
tions and proofs, or communicating results). As it turns out, in reading the 
descriptions that can be found in the literature on mathematics discovery 
and development, it is possible to locate specifi c roles of the aesthetic in 
mathematical production (see Sinclair, 2006). 

The most obvious and public of the three roles is the evaluative; it con-
cerns the aesthetic worth of mathematical products such as results or 
proofs and, more specifi cally, the judgments made about which products 
are most signifi cant. Mathematicians may evaluate both their own work, 
as they complete a proof or solution, and that of others, as they review 
potential journal articles or attend conference presentations. Within the 
evaluative role, the discourse of aesthetic judgments and responses is 
most common. 

The generative role of the aesthetic pertains to aesthetic modes of reason-
ing used in solving problems, as opposed to logical or even intuitive ones. 
I have used the term generative because it is described by mathematicians 
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as being responsible for generating new ideas and insights that could not 
be derived by logical steps alone (see, e.g., Henri Poincaré, 1908/1956). 

Lastly, the motivational role relates to the role of the aesthetic in attract-
ing mathematicians to certain fi elds and, in turn, in stimulating them to 
work on certain problems. While the evaluative role operates on math-
ematicians’ fi nished, public work, the motivational and generative roles 
of the aesthetic belong to more private, evolving facets of mathematical 
inquiry.

These are quite general descriptions that have been inferred from the 
mathematical literature and my own interactions with mathematicians 
(through interviews and discussion), and lack some of the details and 
evocation that could help connect them to actual mathematical moments. 
In the next section, I give more specifi c examples of these roles and the 
unique kinds of aesthetic sensibilities they engage. 

THE MATHEMATICAL AESTHETIC IN ACTION

Few mathematicians have attempted to provide a pragmatic account of 
how the aesthetic functions in the actual work of mathematicians. Does 
it help them solve problems? Does it affect the fi elds of mathematics they 
choose to pursue or the problems in those fi elds on which they choose to 
work? Does it play a role in their process of contributing solutions and 
results to the mathematical community? 

One way to fi nd out how aesthetic sensibility affects mathematical
inquiry—in a real-time way—is to pay attention to one’s feelings and deci-
sions while exploring a mathematical situation, or struggling with a prob-
lem. I once asked a small group of mathematics educators to do this at a 
conference. At fi rst, many were reticent, unconvinced that the aesthetic 
could have much to do with their attempts to solve a rather elementary 
number-theory problem. However, one participant returned the next day 
in disbelief, with this observation: “I had worked out an equation that 
contained an n – 1 term and I didn’t like that –1 part at all. It wasn’t nice. I 
just had to tidy it up.” He was surprised that a mere aversion to –1 could 
elicit such strong emotions and, in turn, seemingly “unmathematical”
decisions—there was no straight, logical reason to get rid of the –1. I wish 
I had asked him where his aversion came from, what he actually did next, 
and how his problem turned out. Perhaps he had had previous experi-
ences working with similar problems in which a –1 term blocked the solu-
tion path; maybe his aesthetic response had no mathematical importance 
in the end—perhaps it was just an arbitrary, inert occurrence. It is easy 
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enough to believe that certain things are pleasing and others revolting, 
but are these responses merely epiphenomena of mathematical activity? 
Or do they play a more central role? 

Unfortunately, it is diffi cult for an outside observer to capture aesthetic 
judgments and responses in action. Even if I had been watching the par-
ticipant work on his equations, I might not have been able to infer from his 
actions that he was reacting to the unwanted –1. I might have asked him 
why he was reworking his equation, but intrusive observers can some-
times ruin the fl ow of activity. 

Fortunately, a few research mathematicians have reported on the aes-
thetic dimension of their own mathematical discoveries, and some have 
even provided introspective analyses of their experiences that reveal the 
various ways in which aesthetic sensibility infl uences their actions and 
choices. Since I am primarily interested in the pragmatic role of the aes-
thetic, that is, in the causal and consequential effects of the aesthetic in 
mathematical activity, I will refi ne the aesthetic tripartite framework pro-
posed above by analyzing an actual experience of a mathematical inquiry. 
I use my own example of mathematical inquiry in order to maximize my 
access to the depth and breadth of experience. Eminent mathematicians 
make grand claims about the inextricability of mathematics and aesthetics. 
This chapter aims to construct a map between the lofty ideas summoned 
by such claims and the prosaic realities of the mathematics classroom. My 
goal is to provide a vivid description of the mathematical aesthetic, one 
that is accessible to nonmathematicians, and one that can be useful as I turn 
my attention to the mathematics learner. This description should also be 
evocative for mathematicians, professional and recreational alike. Indeed, 
for those readers, I hope it will generate that feeling of “novel recognition” 
that one can experience upon becoming aware of a tacit, perhaps subcon-
scious understanding that has suddenly been explicitly articulated. 

I recount my mathematical discovery, from start to fi nish, not as you 
might encounter it in a professional mathematics journal, but in its full 
messiness. Unlike the professional mathematician’s terse presentation of 
results, I offer the detours, false starts, frustrations, surprises, and plea-
sures that constituted my journey and provide the necessary basis for an 
aesthetic analysis. The journey unfolds in three parts, each one highlight-
ing three different ways in which the aesthetic is involved in the process 
of inquiry. Each section of the journey is followed by a brief refl ection, 
in which I identify a specifi c role of the aesthetic and further illustrate it 
using the testimonies of professional mathematicians. The mathematics 
involved in this journey requires no more than a high school level of un-
derstanding. I would therefore strongly discourage those readers who are 
tempted to skip the mathematical exposition in favor of the subsequent 
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refl ections and analyses: the aesthetic dimension of mathematical activity 
I am trying to expose cannot be separated from the mathematics that gives 
rise to particular responses and behaviors. 

Stepping in and Exploring

A colleague brought to my attention an interesting confi guration that 
he had constructed using the dynamic geometry software The Geome-
ter’s Sketchpad (Jackiw, 1991/2001). Start with any triangle ABC (shown 
shaded in Figure 4.1) and construct a square on each side of the triangle; 
fi nd the center of each of the three squares and join them with three line 
segments to create the “centers triangle” DEF. As he was describing the 
confi guration, I immediately thought of the famous Napoleon’s theorem, 
which begins with a similar drawing and states that the triangle formed by 
joining the centers of three equilateral triangles constructed on the sides 
of any triangle will also be equilateral. My colleague’s sketch was actually 
a simple variation on it, which I had never thought of, even though I had 
explored Napoleon’s theorem on my own, and even used it in workshops 
and classrooms. 

I was intrigued by the connection I made to a well-known theorem. I 
was also surprised by the seemingly arbitrary shape of the “centers tri-
angle,” which did not seem related to the initial triangle, despite being 
constructed via the ultraconstrained square: surely the random triangle 
ABC should give rise to a special derivative triangle, as is the case with 
Napoleon’s theorem? I decided to reconstruct and explore my colleague’s 
confi guration.

Well, there was not anything special about triangle DEF. But in my 
initial playing around, I noticed that I could drag the vertices of triangle 
ABC so that they traveled inside and outside of triangle DEF. Perhaps 
out of habit or maybe experience, the in-between case—the boundary 
condition—drew my attention. I began to wonder when segment DE 

Figure 4.1. The center triangle DEF constructed 
from triangle ABC.
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would connect with vertex A: when would A “kiss” the centers triangle? I 
dragged vertex A onto DE, or at least as close as the screen would allow. 

The Motivational Role of the Aesthetic

Why did I choose to work on this problem? I see many Sketchpad ac-
tivities, and have read many geometry textbooks, but this phenomenon 
seemed to invite me to explore further. I was motivated by several factors 
that have a strong aesthetic component. First, by making the connection 
to Napoleon’s theorem, I established that the phenomenon had some kind 
of signifi cance—it was related to a recognized area of geometry, one that I 
remembered Philip Davis (1997) enthusiastically describing. Second, I was 
surprised to realize that a confi guration I had looked at and played with 
many times before held even more hidden treasures. And third, I enjoyed 
the visceral feeling of fi t that I got when I pushed the vertex to the edge; 
and even my anthropomorphization of the event—seeing osculating tri-
angles—shows a high level of personal involvement and commitment.

Many mathematicians, including Roger Penrose (1974) and John von 
Neumann (1947/1956), have noted the infl uential role of the aesthetic in 
choosing problems; this is what I call the motivational role of the aesthetic. 
In each fi eld of mathematics, there are many open problems, and many 
problems waiting to be posed. How does a mathematician decide which 
problem to work on, which problem is worth the time, energy, and atten-
tion? While there are some mathematical problems that are more famous, 
and even more fashionable, it would be diffi cult to argue that there is an 
objective perspective—a mathematical reality against which the value 
of mathematical products can be measured. Contrast this with physics, 
for example, another discipline that makes strong aesthetic claims (see 
Farmelo, 2002; Fischer, 1999; McAllister, 1996), where questions and prod-
ucts can be measured up against physical reality: How well do physicists 
explain the shape of the universe or the behavior of light?

Mathematicians have been attracted to certain fi elds and certain prob-
lems as opposed to others since the dawn of mathematics. The ancient 
Greeks marvelled at the elegance and purity of deductive geometry, while 
the Chinese revelled in the balance and complementarity of magic squares 
and Vedic mathematicians wove transcendent theories of infi nity (Joseph, 
1992). Joseph shows how mathematicians’ cultural contexts—their beliefs, 
priorities, and temperaments—have played an important role in deter-
mining their intrigues and pursuits. This implies that the presence of some 
kind of attraction is an essential component of mathematical activity for 
many mathematicians; they are not willing to work in any fi eld, nor will 
they take on any problem.
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However, the motivational role can act in even more subtle ways. For 
instance, the mathematician Wolfgang Krull (1987) describes how Ernst 
Kummer’s work with algebraic numbers was motivated by his desire to 
fi nd the kind of simplicity and regularity displayed by whole numbers, as 
represented by the fundamental theorem of arithmetic (which states that 
any whole number has a unique factorization into primes). While Kum-
mer understood that this would be impossible in the domain of all infi nite 
decimals, he saw an opportunity in the subdomain of “algebraic” num-
bers. Convinced that these algebraic numbers should have a structure just 
as beautiful and simple as that of ordinary whole numbers, he did not rest 
until he found such a structure of factorization within them. He ultimately 
succeeded in doing so by introducing what he called “ideal” numbers, 
thereby achieving his motivational aesthetic ideal.

In my own investigation, I seem to have been drawn by the connected-
ness and fruitfulness of the problem: I could see how it was related to other 
relationships I had explored and I could sense that the problem had “prom-
ise.” Indeed, the mathematician Jacques Hadamard (1945) claims that one 
of the most important motivational aesthetic criteria is that of potential, 
the fruitfulness of a future result: “without knowing any further, we feel 
that such a direction of investigation is worth following; we feel that the 
question in itself deserves interest” (p. 127). Penrose, however, writes about 
being drawn to problems that have a visual appeal, such as those found in 
irregular tilings—which, interestingly, verge on the antisymmetric. Visual 
appeal seems to be a criterion that is increasingly available to mathemati-
cians; the computer-generated images that are now being produced have 
bewitched many—as David Mumford and his colleagues (2002) acknowl-
edged in their recent and colorful book Indra’s Pearls. Another frequent 
source of attraction is apparent simplicity. The mathematician Andrew 
Gleason (in Albers et al., 1990) exemplifi es this criteria well: “I am gripped 
by explicit, easily stated things . . . I’m very fond of problems in which 
somehow an at least very simple sounding hypothesis is suffi cient to re-
ally pinch something together and make something out of it” (p. 93). As it 
did for me, a sense of surprise can also aesthetically motivate a mathema-
tician. Surprise constantly arises in mathematics as mathematicians fi nd 
things they have no reason to expect: a pattern emerging in a sequence of 
numbers; a point of coincidence found in a group of lines; a large change 
resulting from a small variation. 

These criteria—connectedness, fruitfulness, visual appeal, apparent 
simplicity, and surprise—are not objective features of the mathematics in 
question. Mathematicians with different areas of expertise and different 
past experiences will gauge the fruitfulness of a mathematical situation 
in specifi c ways. Moreover, as Wells (1990) shows, something that may 
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have been surprising to a mathematician 100 years ago—such as Euler’s 
formula ei� + 1 = 0—might no longer surprise the mathematician of today, 
and therefore no longer attract her attention. 

Working with the Problem

I measured the angle of vertex A. At an accuracy of three signifi cant 
digits, Sketchpad told me that angle A measured 91.031°. Though it was 
an “ugly” number because of those decimals, I was certain that the angle, 
if I could get A to lie more precisely on DE, would measure exactly 90°. 

I needed to check out this hypothesis that, after all, was based on no 
“logical” evidence. First, I had to fi gure out how to force A to fall exactly 
on DE. However, every time I tried to drag A onto DE, everything would 
move. The vertex and the segment were chasing each other around! Then 
I decided that if I could fi x the angle A at 90°, in other words, construct it 
as such, I could perhaps see whether A would then be kissing DE. But how 
would I fi x A? Fortunately, I could use Thales’s theorem: construct a circle 
(shown in Figure 4.2) using BC as the diameter, then, each point on the 
circle must form a 90° angle with B and C. So, by putting A on the circle, I 
could force its angle measure to exactly 90°. 

Then came a moment of truth: Once I moved the vertex A onto the 
circle, it was indeed kissing DE. Moreover, even when I moved A around 
the circle, my triangles kept kissing: that was compelling enough visually 
that I did not even bother to verify whether vertex A was in fact exactly on 
segment DE or whether it just looked so on the sketch. But had I just found 
a particular relationship or was there something bigger happening? 

I decided to try a slight variation of my kissing triangles. I constructed 
the Napoleon theorem-like confi guration; it has equilateral triangles on 
each side of the shaded triangle (instead of squares), as shown in Figure 
4.3. Perhaps when I looked at a similar situation, some kind of pattern 
would emerge. 

Figure 4.2. A kissing triangle. Vertex A lies both 
on segment DE and on the circle.

m� BAC = 90.00�
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Having constructed the equilateral-triangles confi guration, I could not 
wait to see to measure the kissing angle. Once again, Sketchpad gave me 
an “ugly” angle when I tried to drag vertex A onto segment DE, but it was 
pretty close to 120° and I felt a little rush of hope. As before, I wanted to 
verify my conjecture by constructing A to measure exactly 120°. I realized 
that this time Thales’s theorem could not help. So I needed to fi gure out 
how to construct an arc of a circle that would allow me to look at all tri-
angles with ∠CAB = 120°. 

As I pondered this problem, I continued in pattern-detection mode and 
constructed another variation that I hoped would verify my emerging re-
lationship between the outer polygon and the kissing angle measurement. 
(So far I had found that equilateral triangles have a kissing angle of 120° 
and that squares have a kissing angle of 90°.) This time I constructed a reg-
ular hexagon on triangle ABC (see Figure 4.4). Since I knew that Sketchpad 
would quickly give me the kissing angle, I did not waste any of my brain 
power—committed at the time to my two problems—on trying to guess, 
though I knew the number would be smaller than 90°. I soon discovered 
that the kissing angle for the hexagon was 60°. So the rest seemed obvious; 
the kissing angle is just 360° divided by the number of sides of the regular 
polygon, or 360°/n. So, that meant that for a pentagon, my kissing angle 
would be 360°/5 = 72°. 

Figure 4.3. Napoleon’s theorem confi guration—
equilateral triangles on a general triangle.

Figure 4.4. The regular hexagon case.
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While I was attending to the 60° angle in the regular hexagon case, 
I realized I could solve my technical problem. I needed an arc through 
BC such that any point on that arc would subtend the chord BC with a 
constant angle (specifi cally, a 120° angle). Therefore, I needed the family 
of triangles BX’C constructed on BC for which the angle at X’ was 120°. 
Obviously, this arc would be part of a circle that was somehow related to 
BC. I decided to go for a more “mechanical” solution: I could construct the 
locus of points X’—which would form an arc—such that angle BX’C mea-
sured 120° (see Figure 4.5). This required that the angles at B and C add 
up to 60°. I could use a Sketchpad parameter! By moving the geometric 
parameter X along the 60° arc FE, X’ moved along an arc describing all the 
possible triangles such that ∠BX’C measured 120°. With Sketchpad’s locus 
command, I constructed the arc BX’C. 

This was not a typical Euclidean geometric method, but I did not re-
ally mind—my aesthetic sensibility did not require the kind of purity that 
has led some mathematicians (especially historically) to insist on using 
only methods appropriate to the domain of the given problem (e.g., only 
analytic methods, and not geometric methods, should be used to solve 
analytic problems). One could also argue that my aesthetic sensibility was 
pragmatic: My method gave me the arc I wanted. Moreover, I knew that 
my method would work for any angle, not just 120°. The culmination of 
this construction was to animate point A along the arc BX’C and to watch 
how point A maintained its kissing position.

The Generative Role of the Aesthetic

I have identifi ed some of the reasons for my initial attraction to this 
problem, but a different set of aesthetic factors came into play as I began 
to explore. These factors played a generative role during my process of in-
quiry. Consider, for example, my desire for exactness. Seeing the “ugly” 
initial angle measurement, which was so close to a whole number in the 
convenient degree metric that anoints right angles with integer measures, 

Figure 4.5. Each point X� on the 
arc creates a 120� angle BX�C.

m� FDE = 60.00�
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I was prompted to try to “right” it. And I wanted to accomplish that, be-
cause I would then have sure evidence of some lurking relationship—the 
meta-aesthetic principle has it that things do not turn out “nicely” without 
reason in mathematics! The aesthetic choice, one of “neatness,” was to see 
this number as 90° and to pursue the implications. This action at once sug-
gested and confi rmed my belief that a discernible relationship existed and 
provided shape to the conjectures I would make as to the nature of this 
relationship. Had I not made this turn to neatness, I might have dismissed 
the kissing state as uninteresting or concluded that the angle measurement 
would not be involved in determining a relationship; I might even have 
abandoned my pursuit had the angle 93.031° turned up. 

The polymath Douglas Hofstadter (1992/1997) provides a similar ex-
ample of the generative role of the aesthetic in action when he shows how 
his attraction to analogy changed the way he perceived a geometric confi g-
uration. According to Poincaré, who was among the fi rst mathematicians 
to write about this generative role of the aesthetic, mathematicians tend to 
focus on the ideas and relationships that are best able to “charm this special 
sensibility that all mathematicians know” (p. 2048). Since Poincaré does 
not provide any illustrative examples, some may fi nd his claim a little mys-
terious and perhaps even suspicious. But an interest in analogy, a tendency 
to value whole numbers, or, in the case of the mathematician Doris Schatt-
schneider (2006), a penchant for symmetry, can all be thought of as “special 
sensibilities” that guide certain choices and decisions during inquiry. 

The aesthetic can also play a generative role in coming to a sense of 
conviction about mathematical ideas. I experienced a strong, visual sense 
of “fi t” when I was able to construct the circle and “lock” it into the kiss-
ing position. By moving point A around the circle, I could set the relation-
ships in motion and see that for any right-angled triangle, the kiss would 
persist. My conviction grew with the visceral sense of “fi t”; I had not yet 
proved anything, nor understood exactly how the relationships I thought 
I saw worked, but I could feel that things were right and that I was onto 
something worth pursuing. Finally, after having looked at the hexagon 
case, the possibility of a framing structure was emerging, from the spe-
cifi c case of the square to the general case of regular polygons and pos-
sibly circles. This possibility of structure, in turn, contributed to a deeper 
prescient sense of fi t. I was anticipating that certain relationships would 
emerge in a whole family of shapes. As with reading a novel, I wanted to 
fi nd out what would happen next, what theme would emerge from the 
sequence of ideas. 

I would like to highlight two other important dimensions of my 
discovery process, both related to the generative role that the aesthetic 
seems to play. The fi rst involves my developing relationship with the 
mathematical entities with which I worked. Instead of seeing the objects 
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in my confi guration as isolated, abstract things, I saw them as animated 
by their relationships, particularly the kissing one. According to math-
ematician Keith Devlin (2000), mathematicians tend to see things like 
numbers, equations, and shapes as characters in the mathematical soap 
opera. That is, mathematicians seem to develop a personal, intimate re-
lationship with the objects with which they work, as can be evidenced 
by the way they anthropomorphize them, or coin special names for them 
in an attempt to hold, to own them. For example, Hofstadter (1992) bap-
tises his emerging object “my magic triangle” then “my hemiolic crys-
tal.” The mathematician Paul Lévy (1970) becomes possessive about the 
objects; he insists on referring to the focus of his investigations as “ma 
courbe,” even though it is generally known as the von Koch curve. Nam-
ing these objects makes them easier to refer to and may even foreshadow 
its properties. Equally as important, though, it gives the mathematician 
some traction on the still vague territory, some way of marking what 
she does understand. The mathematician Norbert Wiener (1956) did not 
underestimate these attempts to operate with vague ideas; he recognizes 
the mathematician’s power

to operate with temporary emotional symbols and to organise out of them 
a semi-permanent, recallable language. If one is not able to do this, one is 
likely to fi nd that his ideas evaporate from the sheer diffi culty of preserv-
ing them in an as of yet unformulated shape. (p. 86) 

The philosopher Verena Huber-Dyson (1998) also evokes this unfor-
mulated, tacit knowledge, making more explicit its aesthetic dimension, 
and the way in which it functions generatively: 

All the while you are aware of a pattern, just below the threshold of con-
sciousness, exactly as a driver is aware of the traffi c laws and of the co-ordi-
nated efforts of his body and his jeep. That is how you fi nd your way through 
the maze of mathematical possibilities to the “interesting” cases. (p. 2)

The second dimension involves my use of Sketchpad as a working tool. 
I cannot separate my mathematical interest from my enjoyment of work-
ing with Sketchpad. Through visual and kinaesthetic manipulation, I fi nd 
that Sketchpad provides me with a body-syntonic way of creating and 
discerning patterns. In addition, by offering an approximation-friendly 
way of working (allowing me to drag things “close to” without having 
to construct them explicitly to be so), I can frequently fi nd initial entry 
points that my mathematical imagination alone might not fi nd. Similarly, 
its dynamic nature often provided striking effects that my mental screen 
would not have been able to simulate. Mathematicians also have tools 
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with which they can create new mathematical objects or transform exist-
ing ones. In interviews, the mathematician Adrian Lewis has described to 
me the use of certain tools as part of the aesthetic dimension of enjoying 
his “craft,” of using “well-worn tools in often routine ways, like a well-
oiled piece of engineering” (in Sinclair, 2006, p. 112). What he fi nds beauti-
ful is “not just the startling revelation or the philosophical wonder” of a 
work of mathematics, but the craft of it, “the inexorable sequence of simple 
tools at work.” Though less dramatic than a startling revelation, there is 
something comforting in the knowledge that the careful application of a 
tool will produce a “perfect, fi ne-tuned result.” 

Schattschneider (2006) provides additional insight into this notion of 
craft when she describes the “paradigms” that mathematicians use in the 
course of solving problems and proving theorems. For example, a sym-
metry argument is used as a way to transform an unknown complex 
situation into a more familiar, simpler one. It may also provide insight 
into the structure of the unknown situation. Schattschneider views these 
paradigms as beautiful because of their powerful ability to simplify, or to 
cut across both complexity and surface differences, or to reformulate the 
situation in more familiar terms. Also, these paradigms may still carry 
vestiges of the aesthetic impact they had when the mathematician fi rst en-
countered them in a proof or solution. The mathematician’s appreciation 
for a certain tool may thus guide the way she works with or manipulates 
mathematical relationships. 

Wrapping Up and Looking for More

I felt a certain amount of satisfaction at having resolved my technical 
problem, so I returned with renewed confi dence to my fi rst problem: Why 
should this relationship between the kissing angle and the outer polygon 
hold? It was time to pull out a notepad. I needed the static confi guration to 
study what was happening and to jot things down. I also wanted to return 
to the square case, which seemed to me somewhat easier to work with. 

Once I drew the confi guration on my notepad, I noticed several new 
properties (see Figure 4.6). The fi rst was that when vertex A was on seg-
ment DE, the shaded triangle seemed to be congruent to triangle NAM. In 
fact, if I could prove that congruence, then it would follow that the kissing 
angle at A had to be 90°. After several false starts—mainly looking for sim-
ilar triangles—I noticed the quadrilateral CMNB and the fact that segment 
DE seemed to bisect both MC and NB. In fact, this was obvious (E is the 
midpoint of diagonal MC, since it is the intersection of the diagonals of the 
square on AC and similarly, D is the midpoint of diagonal NB). Therefore, 
CEDB is congruent to MEDN (since EM = EC; ND = DB; DE = DE, and 
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∠NDA = ∠BDA = ∠MEA = ∠CEA = 90°). So MN is equal in length to CB. 
And thus, by the SSS rule, �NAM is congruent to �ACB, and so ∠NAM 
= ∠CAB. Since ∠MAN + ∠CAB = 180° (because ∠MAC = ∠NAB = 90°), 
then 2∠CAB = 180° and ∠CAB = 90°. My proof was complete!

It was complete, but still particular to the squares case. I liked the se-
quence of relationships that led to the fi nal step of the proof. My proof also 
highlighted properties of the confi guration that I had not attended to in 
my explorations to that point, which in turn revealed to me how the outer 
polygon and its center point interacted with the triangle ABC and its kiss-
ing vertex. And I had a vague idea that I could explain the other confi gura-
tions in a similar way. Yet it still felt like I was missing something simple. 
And I had certainly only proved one case of the kissing angle theorem.

Another colleague, a little while later, helpfully pointed out the way in 
which AD acted as a line of symmetry in the square case. Since D was the 
center of the square, I thought the center of any other polygon would also 
create a line of symmetry with the kissing vertex. I returned to the hexa-
gon case—I thought it would be less misleading than the square and might 
provide me with a fresher outlook—and examined this hypothesis. 

Assuming that point A lies on segment DE, and that D is the center of 
the regular polygon on AB, then by defi nition, AD is a line of symmetry 
for that polygon. However, AE is also a line of symmetry for the polygon 
on AC (see Figure 4.7). And then I saw the hexagon BDNMEC, which 
had always been there, even in the square and triangle cases. (No matter 
what kind of polygon is used, there will always be a hexagon the verti-
ces of which include the two nonkissing vertices of the original triangle, 
the two endpoints of the kissing segment on the “centers” triangle, and 
the two vertices of the polygon closest the kissing point.) So, the seg-
ment DAE acts as a line of symmetry through the hexagon BDNMEC. 
The rest was easy: ∠ABC = 180° – (∠ABD + ∠CBE) = 180° – 2∠ABD =
180° – [180°(n – 2)/n] = 360°/n. 

Figure 4.6. Toward a proof of the kissing angle 
theorem.
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Now I had really nailed the proof. Not only would it work for any 
polygon, but the proof also involved a powerful tool in mathematics: a 
symmetry argument. Moreover, it seemed shorter than my previous proof, 
even though it was more general. And again, I got to discover a whole 
new shape—the hidden hexagon—that I had not seen before.

The Evaluative Role of the Aesthetic

During this phase, I felt that I was gaining some insight into the connec-
tions; I enjoyed the emerging intelligibility of the relationships I had con-
jectured, and was becoming convinced they were true. The proof brought 
into focal awareness new relationships—I had not previously noticed the 
triangle NAM, or the quadrilateral CMNB—and helped me to identify the 
central properties of the kissing triangles. It was the center of the polygon 
that mattered, not the number of sides it had. The center, at least for the 
square case, held the key to the similarity argument in the proof. I was see-
ing previously disparate ideas fi t together and catching a glimpse of how 
my particular result for the squares could belong to a more general con-
text. I was experiencing that aesthetic moment of fi t. Here I am referring to 
the experiential aspect of the aesthetic rather than the perceptual aspects 
that invited and directed my attention. As the mathematics educator John 
Mason (1992) writes, at the end of a similar mathematical experience, it 
was “like coming out on a panoramic view, producing a lightening of the 
spirits” (p. 15). 

However, I had a nagging feeling that I had not found a very elegant 
proof, evidence of a powerful evaluative aesthetic manifesting itself. Per-
haps I did not like the fact that I had to use the derivative quadrilat-
eral CMNB in my proof. Perhaps I wanted to see more clearly how the
special-case proof could extend to the general case. Perhaps the proof was 
simply not obvious enough. This kind of aesthetic unease often motivates 

Figure 4.7. Alternate proof of the kissing 
triangles theorem.
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mathematicians to search for better proofs (see, e.g., Davis, 1997). For ex-
ample, Carl Friedrich Gauss once proved the same theorem seven times, 
not because any of the proofs were wrong, or misleading, but because he 
wanted a better—more aesthetically pleasing—way of making his argu-
ment. Even theorems or results that have been proven true for millennia 
can tempt mathematicians to fi nd better, or perhaps just different, proofs, 
as with Tom Apostol’s (2000) most recent, almost wordless proof of the 
irrationality of √2. As Wolfgang Krull (1987) writes: “Mathematicians are 
not concerned merely with fi nding and proving theorems; they also want 
to arrange and assemble the theorems so that they appear not only correct 
but evident and compelling” (p. 49).

Thanks to the hint my colleague gave me, the second proof proceeded 
along smoothly. I did not experience the excitement and pride I might 
have, had I fi gured it out all on my own, but I was able to appreciate the 
improvement it made over my fi rst proof. It was shorter, more general, 
and somewhat clever in its use of the hidden hexagon. But it was the 
symmetry argument that really pleased me; that invisible line of sym-
metry nicely brought the whole diagram together, giving it an invari-
ant structure it had been lacking, making up for the odd, unpredictable 
behavior of the center triangle. Different mathematicians may privilege 
some aesthetic criteria over others. While the symmetry argument really 
pleased me, Davis (1997), who worked on the Napoleon theorem, thinks 
that the most pleasing proofs are ones that are transparent; he writes: 

I wanted to append to the fi gure a few lines, so ingeniously placed that the 
whole matter would be exposed to the naked eye. I wanted to be able to say 
not quod erat demonstrandum, as did the ancient Greek mathematicians, but 
simply, “Lo and behold! The matter is as plain as the nose on your face.” 
(p. 17)

THE AESTHETICS OF DETACHMENT

At this point, I want to take a brief detour to discuss the notion of aesthetic 
detachment, which has been very important in the discipline of aesthetics. 
Although there are several other historically important notions in aesthet-
ics, this one deserves attention here because of its relevance to learners of 
school mathematics. Many aesthetic reactions came up during my jour-
ney, but I never felt the sense of emotional detachment that aestheticians, 
and even some mathematicians, describe as being primary in aesthetic ap-
preciation. On the contrary! 
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In art criticism circles, some scholars hold that the aesthetic of detach-
ment emerges from the subtle interplay between the real and the fi ctional, 
the authentic and the artifi cial. It is seen to account for, at least in part, the 
aesthetic experiences derived from the ugly, the violent, and the tragic 
(Dewey, 1934). The philosopher Monroe Beardsley (1982) also suggests 
that an aesthetic experience characterized by “detached affect” necessarily 
has its subject matter stripped of instrumental values.3 Certainly, there is 
the sense in which my mathematical pursuits had no instrumental value: I 
was not calculating the speed of a plane or the rate of compound interest. 
I was fi xed on things purely mathematical: triangles, angles, and polygons 
and the relationships between them. But I cannot say that this was a factor 
in my experience. 

Dewey (1934) provides another perspective on the “detached affect” 
phenomenon in his discussion of aesthetic response to the purportedly 
ugly and tragic. He proposes that when a particular subject matter is re-
moved from its practical context, the subject matter enters “into a new 
whole as an integral part of it” (p. 96), so that the former ugliness is con-
trasted with a new quality. It thus acquires a new expression on account 
of its new relationships. It may not be the removal itself, of emotions or 
subject matter, that is important, but the removal of something from its 
usual setting so that it becomes part of another expressive whole. 

This process of extraction better captures my experience with the kiss-
ing triangles, and even my childhood experience with my mother’s con-
version trick. Those inert mathematical objects of triangles, angles, and 
polygons were removed from their initial setting—as disjoint, separate 
elements in a construction recipe—and confi gured into a new one which 
bound them together as a unit, and in my so doing, I bound myself to that 
unit. What is the usual setting of triangles, angles, and polygons? From 
my point of view, triangles are set by typical categorizations (equilateral, 
isosceles, and scalene) or properties (measurement formulas, special cen-
ters and lines), or relationships (congruence, similarity). The new setting 
bound triangles with other polygons, with inside- and outsideness, with a 
derived triangle, and with kissing. These features of the new setting sug-
gest the way in which I became part of this expressive whole; I became 
aware of myself as observer in the investigation. In Part III, I argue that 
the process of extraction might be crucial for the aesthetic engagement of 
students who often fi nd mathematics cold, abstract, and alienating. 
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CHAPTER 5

Aesthetics and the
Development of Mathematics 

Mathematicians talk about two stages in the mathematical process: dis-
covery and justifi cation. The discovery stage involves the acts of inves-
tigation and inference that convince the mathematician that something 
is true, while the justifi cation stage involves the careful construction of 
deductive arguments that establish the truth according to the norms of 
the community. These two stages ignore a necessary, preliminary stage in 
which the mathematician selects an area of inquiry and formulates rele-
vant premises—one where the motivational role of the aesthetic operates. 
Before moving on to my primary goal in this chapter—exploring the im-
portance of the aesthetic in mathematical inquiry—I will quickly distil the 
important aesthetic aspects of the kissing triangles investigation described 
in the previous chapter. 

DEBRIEFING THE KISSING TRIANGLES

My kissing triangles exploration could not have begun had I not been 
attracted to both the surprise and the familiarity of the geometric con-
fi guration. These aesthetic reactions motivated my work, inviting me to 
select a particular area of inquiry; they played a motivational role. As I 
explored—no problem immediately suggesting itself—these aesthetic re-
actions did not instantly fade away. They affected the direction of my 
exploration by emphasizing anomalies or facts that called for explana-
tory hypotheses. The Napoleon’s theorem connection drew my attention 
to the two interacting triangles, and from there I noticed the boundary 
condition and posed the question about the kissing angle. My aesthetic 
reactions provided an initial traction, a way in, a point of access.

When doing mathematics, one consciously chooses to ignore certain 
mathematically trivial features of a situation, such as color perhaps, but 
those choices are not exhaustive—they just produce a smaller infi nity of 
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features. I could have noticed the size of the squares, and headed off into 
Pythagorean theorem-inspired investigations. Alternately, I could have 
noticed when the squares did or did not overlap. The rules of noticing 
cannot be entirely logical—interests, preferences, and experience insinu-
ate themselves into what is perceived. Had I not felt surprise or familiari-
ty, I would probably not have embarked on the exploration. However, had 
I been forced to investigate the situation, what would have happened? 
Maybe nothing. Without noticing, I do not recognize my choices, and 
without choices, I cannot act. So perhaps I am given a problem to solve: 
When do the triangles touch? And now I can get started; I have a premise 
to investigate and a hypothesis to make. This is the point at which the 
aesthetic can play a generative role.

After I decided to investigate the kissing triangles, I dragged the con-
fi guration to the kissing point and measured the kissing angle, which had 
a value of 91.031°. Here I made an aesthetic choice, one of “neatness”: I 
decided to “read” this number as being 90° and to pursue the implica-
tions. What was aesthetic about this small yet pivotal choice? It was the 
perception of the possibility of a nicely behaved relationship existing be-
hind this unusual yet familiar confi guration. I pursued this relationship 
precisely because I believed it would be interesting, more interesting than 
had the angle 93.407° turned up. The philosopher of science Michael Po-
lanyi (1958) sees such aesthetic choices as being governed by the sense of 
beauty that forms the scientist’s “intellectual passion.” He argues that the 
sense of beauty has both the motivational function of distinguishing what 
is scientifi cally interesting from that which is not, as well as the generative 
function of guiding the scientist toward discovery. I have discussed the 
motivational role above, and it seems to me that my turn toward “neat-
ness” played a heuristic, generative role in guiding me toward a possible 
relationship. At the beginning of Part I, I hinted at another instance of the 
generative role of the aesthetic: the aversion to -1 that prompted my col-
league to rework his initial equation. 

The generative role of the aesthetic unquestionably belongs to the dis-
covery stage of the mathematical process. During the stage of justifi cation, 
however, the aesthetic seems to play yet a different role, an evaluative one. 
When I saw the CMEB quadrilateral and the congruent triangles, I knew 
I had the makings of a proof. I still had to “write it up,” though. I had to 
provide a logically fl owing sequence of steps. In a way, I did not have 
many possibilities regarding order and word choice, but I did fi nd myself 
striving to fi nd an ever more succinct fi nal statement. While the attention 
to order is logical, the desire for succinctness is aesthetic. It does not in-
crease the truth of the proof. But it pleases me, for some reason, to be able 
to say it in fewer words. I place more value on the succinct form: I will 
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remember it, I will take pride in it, and I will talk about it with (some of) 
my friends. 

The second version of my proof brought both a similar and a different 
kind of aesthetic satisfaction. I was pleased at having constructed a proof 
that was both more general and shorter than the previous one—thus, a 
similar striving for succinctness. But I was also very pleased with the sym-
metry argument I used. The poet often strives for succinctness, but also 
for some organizing structure—often through rhyme or rhythm—and the 
symmetry argument gave my proof that kind of structure. Here again, the 
aesthetic has an evaluative function. 

I have identifi ed three roles—namely, motivational, generative, and 
evaluative—that the aesthetic plays in mathematical inquiry, and I have 
even shown how each role was pivotal in determining my own choices 
and actions. But does the aesthetic always and necessarily play such a 
determining role in mathematical inquiry? 

THE IMPORTANCE OF THE MATHEMATICAL AESTHETIC

To reiterate from the above section: Are the roles of the aesthetic I have 
identifi ed in any way central or necessary to the development of math-
ematical knowledge? A weaker version of this question is: Are they fre-
quently important? Then, turning to educational concerns, do students 
show aesthetic sensibility that plays similar roles to those I have described 
above? And if so, are these roles pedagogically desirable? One could ar-
gue that if the fi rst question is answered positively, a positive answer to 
the second question follows, as has been the case in similar debates: One 
argument for increasing problem solving in school mathematics is that 
problem solving is central to mathematics. I prefer to investigate the sec-
ond question about students’ aesthetic sensibility independently though; 
there certainly are some practices of mathematical activity that are central 
to published research mathematics, which educators would not want to 
encourage in the classroom—such as systematically erasing all traces of 
one’s work when presenting results.

The Necessity of the Motivational and Evaluative Roles

I think the answer to the question of whether the aesthetic is necessary 
in mathematics depends on the meaning of the phrase “the development 
of mathematical knowledge.” I have already suggested that aesthetic deci-
sions cannot be avoided in the fi rst stage of mathematical inquiry, which 
involves the selection or formulation of a problem. Unless forced to, a 
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mathematician does not work on an arbitrary problem that has neither per-
sonal appeal nor external endorsement. John Nash frequently needed other 
mathematicians to “assign” him a problem, not being able to decide alone. 
Though his own personal aesthetic played a minimal role, if at all, the math-
ematical community’s aesthetic was necessary; they also had to decide on 
the importance or signifi cance of the problem he would propose. 

The philosopher of mathematics Thomas Tymoczko (1993) points out 
that there exists no mathematical reality against which results, problems, 
or fi elds can be judged—as might be the case in other sciences such as 
physics; mathematicians have to decide how important the Riemann hy-
pothesis is, or how important the fi eld of “semidefi nite programming” is. 
They cannot decide on logical grounds alone. One hypothesis may outdo 
another if it involves many other problems or fi elds, as is the case with the 
Riemann hypothesis—this reveals an aesthetic preference for connection 
over isolation. Some fi elds may lend themselves more to overall organiza-
tion, as is the case with geometry—this reveals an aesthetic preference for 
ordered structures over unordered collections. The complex web of sig-
nifi cance, elegance, and importance is almost impossible to disentangle. 

However, since mathematical fi elds frequently change, and gain or 
lose importance, this web is not static; it depends on the aesthetic deci-
sions of mathematicians participating in the community. A strong-minded 
mathematician may decide to pursue a problem that appeals to her alone. 
Depending on what she fi nds, and on how well she relates her fi ndings 
to the community, others may come to appreciate its qualities. Therefore, 
in addition to playing a role in the context of discovery or selection, the 
aesthetic also necessarily plays a role in the context of justifi cation. Math-
ematicians must fi nd ways to convince each other that a certain result 
is interesting. They may appeal to its number of connections or to the 
order it brings to a hitherto variegated fi eld; but they may also appeal to 
its brevity or to its use of a surprising method. The mathematics educa-
tor Robert Davis (1987a) wrote about “mathematics as a performing art” 
and although he was describing the performances of students, his phrase 
captures well this component of the evaluative role of the aesthetic: math-
ematicians will often “perform” their results or fi ndings, and some math-
ematicians are better at it than others! (see Sinclair, 2006). 

The Necessity of the Generative Role

I have argued that the mathematics community needs to appeal to the 
aesthetic to make decisions about signifi cance, much as a country needs 
laws to make decisions about what is right and wrong. But what about in-
dividual citizens? And what about everyday problems that do not involve 
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“nationwide” concerns? Let me make an analogy between moral and aes-
thetic decisions. Clearly, deciding whether to take the highway to work 
or the city streets requires little moral involvement. Similarly, calculating 
a derivative involves little aesthetic involvement. In each case, there is no 
real problem, and probably little investment in the outcome. However, de-
ciding how to deal with parents who can no longer take care of themselves 
requires signifi cant moral involvement. This is a real problem the outcome 
of which has personal importance. It requires moral imagination—explor-
ing the possibilities, playing each possibility out, assessing the relative 
merit of each—and cannot be solved by any number of logical steps. 

I could make the parallel statement about my kissing triangles: They 
presented me with a real problem the outcome of which mattered to me. 
Were aesthetic decisions necessary? I am now talking about the context of 
discovery, one that comes closer to the individual thinker, and thus to the 
student learner, than the context of justifi cation. This is a more diffi cult 
question. While my introspective analysis revealed several instances of 
aesthetic behavior, how can I decide whether any of them were in any way 
necessary? 

Several scholars have argued that solving a real problem requires some 
kind of extralogical act, be it intuitive or aesthetic. For example, Polanyi 
(1958) insists that “a real problem cannot be solved by sequential, logical 
steps”; a real problem requires an imaginative leap, one that can locate a 
potential landing spot. The literature is full of anecdotes about those elu-
sive “aha!” moments in which the scientist has an out-of-the blue insight 
that catapults her to that landing spot. Poincaré (1908/1956) strongly be-
lieves that his insights are generated by an aesthetic sensibility, though one 
that operates primarily at the subconscious level. However, the out-of-the-
blue nature of such insights, the way in which they emerge fully formed, 
makes it diffi cult—as much for the outside observer as for the mathemati-
cian—to tell what role the aesthetic plays in giving rise to them.

However, in thinking back to my kissing triangles, the aesthetic deci-
sions I made during the discovery process were not so much about the 
culminating insight—there were several signposts along the way, not just 
one leap to a landing spot. In fact, I think the signpost metaphor works 
well to describe the way in which the aesthetic guided my travels through 
the terrain. Does the mathematical terrain need such guides? Are logical 
guides not enough? I believe this is where the generative role of the aes-
thetic needs to be considered. 

In a certain sense, I solved my kissing triangles problem when I fi rst 
measured the angle of vertex A. My solution was 91.031°, or perhaps 
about 91.031°. But I did not stop. I wanted to know what exactly the mea-
sure would be—a desire that moves me from the physical constraints of 
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pixels to the ideal world of mathematical points and lines. Not only that, 
I wanted to see whether there was any regularity, an analogical relation-
ship between polygons—would the kissing angle of the square be related 
to the kissing angle of the pentagon? Both these impulses are aesthetic 
in nature; in fact, they reveal the generative role of the aesthetic in math-
ematical inquiry. I see these impulses as providing the order hypotheses 
that Gombrich (1979) saw arising in the human “sense of order,” which I 
described in Part I. According to Gombrich, such hypotheses make learn-
ing possible, and mathematical discovery must surely be driven by the 
kind of learning that ensues from an initial impression, or qualitative un-
derstanding, that can be probed and tested.

If this “sense of order” insinuates itself into every human learning 
endeavor, is there anything special about its role in doing or learning 
mathematics? At fi rst blush, it seems plausible to say that the quest for 
exactness is quintessentially mathematical, as might be the quest for foun-
dations, for fi nding the basic, underlying order. If this is true—and there 
may be other specifi cally mathematical aesthetic orientations—then per-
haps mathematicians have developed a highly sensitive sense of exact, 
basic order. Certainly this is consistent with some of the earliest accounts 
of geometry done by ancient Greeks such as Euclid. 

However, my goal is not to defi ne the mathematician’s “sense of order” 
exhaustively; I mainly want to outline what it might look like and what it 
might do. The mathematics educators Silver and Metzger (1989) recount 
an episode that might help fi ll out this picture. They observe a profes-
sional mathematician working on a number-theory problem—prove that 
there are no prime numbers in the infi nite sequence 10001, 100010001, 
1000100010001 . . . —and describe his actions in detail. At a certain point 
during his work, the mathematician hits upon a certain prime factoriza-
tion, namely 137 × 73, which he describes as “wonderful with those pat-
terns” (p. 67). He starts working with that particular factorization, using 
the pattern as a basis for further exploration. Silver and Metzger propose 
that the mathematician was responding to the near-symmetry in the num-
bers, which might have seemed promising, potentially generative. 

In fact, it turned out to be unhelpful in solving the problem, but the 
episode provides another illustration of Gombrich’s “sense of order”; the 
perceived symmetry yield a fi rst guess that made a conjecture possible. 
The mathematician’s verbal response to the perceived symmetry shows 
that his decision to follow his aesthetic impulse was at least partly con-
scious and most defi nitely emotional—he is pleased to see the pattern. (I 
mention this because emotional responses frequently make it possible for 
an outside observer to detect an aesthetic response, something on which 
I rely in Part III.) 
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Hofstadter’s (1992) own introspective analysis of a mathematical dis-
covery provides yet another illustrative example of the “sense of order.” 
While studying a geometric confi guration, Hofstadter recognizes that one 
object in a fi rst confi guration is related to an object of a second confi gura-
tion; from there he hypothesizes that a second object in the fi rst confi gura-
tion will have some similar relationship to some second object in the sec-
ond confi guration. He hypothesizes order based on a potential analogy; 
he imposes the analogy on the situation in order to make some sense of it. 
He explains that his “inner compass” tells him that such an analogy will 
be fruitful. But Hofstadter also fi nds analogies beautiful in the way they 
can reveal deep similarities between otherwise disparate objects; fi nding 
an analogy in mathematics is thus part of the aesthetic impulse that guides 
his work. Had Hofstadter ignored his aesthetic impulse, he might have 
failed to conjecture a relationship at all. He might still have solved the 
problem, of course, but using analogy is part of the appeal for him. He 
takes pleasure both in his ability to recognize analogies and in his appre-
ciation of the power or effectiveness of analogy in his own mathematical 
meaning-making. 

One of the reasons Hofstadter does mathematics—or listens to mu-
sic—is to satisfy his aesthetic impulse for analogy. The aesthetic is thus an 
animating purpose of his mathematical activity; it allows him to see the 
world as he likes to see it, and to experience the pleasure that perceiving 
analogical relationships affords him. This is a slight reversal of the “sense 
of order” principle: Mathematics now becomes a vehicle for satisfying aes-
thetic needs, for fi nding or creating a sense of order in one’s environment. 

I have been trying to determine the importance of the aesthetic in the 
actual discovery process. On the one hand, Gombrich’s notion of the sense 
of order suggests a fundamental cognitive aspect of the aesthetic; it would 
thus seem to be a necessary searchlight in the mathematical terrain when 
real inquiry is required. On the other hand, Hofstadter’s example points 
to the more psychological, motivational aspect of the aesthetic in math-
ematics, one that may vary in importance for different mathematicians. 

FITTING THE PIECES TOGETHER

Now I can return to the second question stated in the previous section: 
Do students show aesthetic behavior that fulfi ls similar functions to the 
ones I have described above? And, if so, are these functions pedagogically 
desirable? These questions will soon be tackled, but let me fi rst sketch out 
what the motivational, generative, and evaluative functions of the aes-
thetic might have to do with school mathematics. 
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In terms of the initial stage of the mathematical process where the mo-
tivational function of the aesthetic operates, students rarely choose their 
own problems and so rarely have a chance, or encounter the need, to make 
fruitful aesthetic choices, except perhaps in classrooms where problem pos-
ing is actively pursued. In terms of the fi nal stage, where the evaluative 
function of the aesthetic operates, students are rarely forced to justify the 
signifi cance or interest of their solutions, except in classrooms where the 
development of these particular normative practices is actively supported. 

As it turns out, however, posing problems and judging the signifi cance 
of results are both ways of “acting like a mathematician,” which many 
researchers see as a central goal of mathematics education. And I have 
shown that “acting like a mathematician” involves making judgments 
about the signifi cance and interest of various mathematical phenomena, 
ideas, and results. Therefore, the motivational and evaluative functions of 
the aesthetic are quite relevant to school mathematics.

The generative role carries more tentative implications. In terms of 
its cognitive aspect, students might have more success in problem solv-
ing—and here I refer to truly problematic problems—if they could engage 
their “sense of order.” And perhaps this “sense of order” is something that 
must be explicitly evoked, developed, and nurtured. The psychological 
aspect of the generative role raises the question of whether students might 
also become aware of, or further pursue, opportunities to satisfy their aes-
thetic sensibility in the course of mathematical inquiry (as they may do in 
the course of painting, writing a poem, or other similar artistic activity). 
However frivolous or unlikely the question now seems, I would say that 
the current minimal levels of student interest in mathematics are alarming 
enough to warrant further consideration of the relevance of the generative 
function of the aesthetic to school mathematics. 

It is diffi cult to make sense of the above implications, inferences, and 
even imperatives without knowing much about the kinds of aesthetic be-
havior students display in their school mathematical activities.1 Thus far, 
mathematics education researchers have tended to focus on the cognitive 
and, more recently, on the affective dimensions of student mathematical 
learning, choosing to ignore the aesthetic dimension. It would certainly 
stand to reason that professional mathematicians develop and refi ne their 
aesthetic preferences and responses as they are acculturated into the com-
munity. Does that mean that young students have no aesthetic preferences 
and tastes in the mathematical classroom? Or do they have some, which 
are somehow as unsophisticated—at least compared with those of math-
ematicians—as are their mathematical abilities? Or do they possess very 
similar aesthetic preferences and responses, which they have simply not 
learned to use in mathematics settings? These are the questions I will ad-
dress in Part III.
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PART III

Focusing the Aesthetic 
Lens on Students

Could the mathematical aesthetic play some of the same roles in the activi-
ties and investigations of student learners as they do in the work of math-
ematicians? Part I has proposed the idea that students can indeed deploy 
their aesthetic sensibilities in a wide variety of situations if, presumably, 
they are not restrained from doing so. Part II outlined and exemplifi ed the 
ways in which the aesthetic insinuates itself in mathematical thinking and, 
in particular, in motivating inquiry, in providing generative guidance dur-
ing inquiry, and in evaluating the worth of mathematical entities such as 
solutions, proofs, and problems. 

In Part III, the goal is fi rst to consider the mathematical activity of stu-
dents and examine whether these three roles of the aesthetic pertain when 
they are placed in situations that support aesthetic engagement. Then, it 
will be possible to explore how the aesthetic lens can provide insights into 
previously obscured or ignored aspects of mathematical learning. Chap-
ter 6 focuses on the motivational role of the aesthetic, examining several 
examples of student work. Chapter 7 looks at the generative role of the 
aesthetic, again examining several cases of student work, and Chapter 8 
focuses on the evaluative role.
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CHAPTER 6

The Motivational Role
of the Aesthetic

In the next three chapters, I want to probe the mathematics activities of 
students with the help of the aesthetic lens I have formulated. This prob-
ing will involve a web of questions and concerns, including: Do students 
behave aesthetically in the mathematics classroom and, if so, under what 
conditions? Should students be encouraged to behave aesthetically in the 
mathematics classroom and, if so, toward what purposes? 

Before I begin, I want to recall Dewey’s concern for false dualisms. 
Throughout his career, Dewey was rightly concerned with identifying, 
diagnosing, and exorcising philosophical dualisms—such as fact/value, 
analytic/synthetic, and cognitive/affective—from our thinking. In some 
contexts he did, however, acknowledge the usefulness of making philo-
sophical distinctions—between, say, facts and values—in our attempts 
to explain phenomena. As the philosopher Hilary Putnam (2002) makes 
clear, dualisms imply metaphysical dichotomies; they imply that, for 
example, facts and values are different categories whose members each 
possess an “essential” property in common. In contrast, philosophical 
distinctions have ranges of implication, and we are not surprised if the 
distinctions do not always apply. (Is the statement “exercising is good” a 
fact or a value?) So, when I distinguish aesthetic from cognitive or affec-
tive ways of interpreting student experiences, I am not implying that the 
aesthetic, cognitive, and affective dimensions of human experiences are 
mutually independent categories. Rather, I believe they each have more or 
less distinctive features and by focusing (here) on the aesthetic, I can show 
how our predominant attention to affect and cognition has made invisible 
the aesthetic dimension of students’ mathematical experiences. 

Each of the student examples I describe comes from an ongoing in-
school research project that has involved middle school students living 
in several North American cities. The very act of focusing on the aesthetic 
dimension of their mathematical activity involves a process of interpreta-
tion, of emphasizing certain actions and utterances over others, so I do 
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not claim that I offer objectively factual reports. Rather, I will be interpret-
ing many episodes involving students’ interactions and experiences in the 
mathematics classroom. 

Clearly, in presenting the episodes in writing, based on my observa-
tions, notes, and sometimes videotapes, I am not trying to share all that 
“really” happened. I have extracted certain comments, actions, and events, 
as other researchers do when they (perhaps subconsciously) choose to see 
through a cognitive lens. Through my aesthetic lens, I understand the ac-
count as an interpretation as well—and, in fact, as the most complex of 
the interpretations offered. The very use of an “aesthetic lens” acknow-
ledges that what I notice is framed by what I know: an event of noticing is 
always and already an event of interpretation. While I strive to be true to 
the details of the students’ experiences, I acknowledge that what I see and 
hear in the classroom depends largely on my own perceptual frame. How-
ever, I am less concerned with conventional, objectivist issues of validity, 
reliability, and rigor than with the more feasible, and perhaps desirable, 
issues of relevance, reasonableness, and viability. My goal is to push “the 
sensibilities of readers in new directions,” as Deborah Britzman (1995, p. 
236) insists. I want to present reasonable arguments that show that aes-
thetic concerns are relevant to mathematics educators, and deserving of 
continued research.

Many of the examples I draw on involve computer-based learning 
environments. My extensive use of computer-based learning environ-
ments stems from both personal and pedagogical reasons. Computers 
have played a pivotal role in my own mathematical development. It was 
only after I had completed my undergraduate degree in mathematics that 
I discovered, thanks to the Internet, the breadth and richness of math-
ematical ideas and fi elds (including knot theory, fractal geometry, and 
topology). More importantly, computer software helped me to experience 
what it means to actually do mathematics—that is, to make up or fi nd 
new problems, to conjecture and experiment, to make discoveries and 
fi nd ways and means to justify them, and to communicate my fi ndings to 
colleagues. Nonetheless, the pedagogical reasons are even more impor-
tant. First, well-designed computer-based learning environments can of-
fer an incomparable “window” on student meaning-making (a metaphor 
used by Noss & Hoyles, 1996). Students’ thought processes, decisions, 
and reactions can be observed more readily through their physically man-
ifested interactions with the keyboard, the mouse, and the screen. Second, 
the computer can provide students with visual and experimental access 
to mathematical ideas and relationships. This means that pictures and 
models that mathematicians can imagine and appreciate in their heads 
suddenly become concretely available and manipulable on the screen; 
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guesses and hunches—which may be based on intuitive or aesthetic sen-
sibilities—can be evoked and tested.

In Part II, I drew attention to some of the aesthetic qualities of a mathe-
matical situation that attract mathematicians to problems: connectedness, 
fruitfulness, apparent simplicity, visual appeal, and surprise. Here, I want 
to see whether there are similar kinds of qualities that can pull students 
into working on certain problems. Few professional mathematicians are 
“given” problems to work on; in contrast, students rarely have the oppor-
tunity to truly select their own problems (see Davis, 1987b, for an inspir-
ing exception). This would seem to make it almost impossible to fi nd evi-
dence for the role of the aesthetic in student mathematics. However, there 
are two kinds of situations in which students do have some mathematical 
agency in this sense. In one kind of situation, students can choose to work 
more aggressively or persistently on some problems than on others. In 
another, students can sometimes come across—or pose—their own prob-
lems as they work in more open-ended environments. I will begin with an 
example of the former in this section and then focus on a set of examples 
of the latter in the next. In all cases, I am interested primarily in the quali-
ties that “hold” rather than merely “catch” student attention (see Dewey, 
1913): that is, the qualities that direct student attention to noticing certain 
relationships, patterns, or structures in a situation, and thereby play a mo-
tivational role in their mathematical activities. 

THE AESTHETIC DIMENSION OF PROBLEM SELECTION

As mentioned in the introduction, I have noticed that when students are 
fully engaged in my mathematics classroom, they are often motivated by 
the ideas involved in the actual mathematics rather than by superfi cial 
motivators. Here is an example I will not forget. Tim is a student I taught 
for 2 years in a split grade 7-8 class at a small school in Western Canada. 
At the beginning of the year, I had found a stimulating Web site called 
Mega-mathematics (http://www.c3.lanl.gov/mega-math/), which of-
fers a small collection of mathematical topics of current interest designed 
for middle school students, including graph theory, infi nity, knot theory, 
cryptography, and the four color theorem. Nobody in my long school 
mathematics career, which culminated in a master’s degree in mathemat-
ics, had introduced me to such compelling ideas—I felt like I was learn-
ing about a whole new kind of mathematics. So as not to deprive my own 
students, I planned the year so that I would have time to introduce them 
to these noncurriculum-related topics. The fi rst one was the four color 
theorem. 
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I showed the class some simple maps and challenged them to color the 
maps using a minimum number of crayons. They made some of their own 
maps and we fi gured out an easy way to create two-color maps. Then we 
tried more complicated maps and developed strategies for using as few 
colors as possible. I then asked the students to create challenge maps for 
each other, maps that would require more than three colors. After a while, 
most of the students seemed convinced that no maps required more than 
four colors. Having no way to provide them with any further insights, I 
ended the class by telling the students a little about the Haken and Appel 
computer proof of the four color theorem.

Tim is not convinced. After class, he asks me more about the Haken 
and Appel proof, and though I confess to not really understanding it, I tell 
him that it involves having the computer search and test over 1000 maps 
that could represent all possible maps. He grows even more skeptical and 
literally spends the whole day showing me one new, complicated fi ve-
color candidate after another. At fi rst I am impressed with his tenacity, but 
I soon grow tired of checking his maps, and fi nally tell him he will have 
to fi nd two other witnesses before I will take my crayons out again. He 
persists. For a whole month, he persists. 

Why was Tim so driven to work on this problem? I think several fac-
tors were involved. First, the problem seemed so simple to him; Tim was 
motivated by the idea that he, a middle school student, could stick his nose 
into a mathematical problem that challenges professional mathematicians. 
Problems such as Goldbach’s conjecture can have the same effect on stu-
dents; they are misleadingly simple and accessible at fi rst, but ultimately 
intractable. As I mentioned in Chapter 4, misleadingly simple problems 
also attract many professional mathematicians. 

Second, the problem was rooted in experiences Tim could connect 
with. He had seen maps being colored, and knew why adjacent countries 
should not share the same color: The problem had an intrinsic interest to 
Tim. Third, the problem involved lots of drawing and coloring; Tim spent 
hours creating complex, attractive maps, more carefully executed than 
anything else I had seen him do—whether in the mathematics or the art 
classroom. Compared with other factors that could have motivated Tim’s 
inquiry, such as wanting to obtain a good mark or wanting to beat a friend 
to the solution, these three factors have a strong aesthetic dimension. Tim 
was attracted to the misleadingly simple nature of the problem, to the sen-
sory appeal of making and looking at the maps, and to the way in which 
this problem connected with his own experiences. 

Fourth, the problem had an epistemological interest to Tim; he could 
not accept that a computer had checked all the cases. How did the math-
ematicians know they had not missed a case? How could they even come 
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up with all the possible cases for the computer to test? The more Tim 
worked on creating the maps, the more convinced he became of the im-
possibility of exhaustively enumerating them. The mathematics educator 
Deborah Ball has depicted a similar situation, in terms of whether it is 
possible to check all cases, arising in a classroom of second grade students 
who are working on the problem of whether and why two odd numbers 
always add up to an even number. These students eventually come to re-
alize that it is not necessary to check all cases because they can assert and 
justify a certain property relating to all odd numbers (namely, that they 
are one more, or less, than an even number). Tim was unable to fi nd such 
a general property—and, for that matter, neither was his teacher! Even if 
he had been able to, many people fi nd perplexing and perhaps wondrous 
the very idea that it is possible to somehow circumscribe, hold on to, and 
work with all maps, all odd numbers, or any other infi nite set of objects, 
and then to assert something about every single one of them.

Tim’s question was not only about checking all cases, but also about 
whether the computer had made a mistake. He had been wrong many 
times himself—why should the computer be so right? To varying degrees, 
many mathematicians have the same questions about the Haken and Ap-
pel computer proof; some are concerned with the fallibility of the com-
puter, or the program, and others with the unintelligibility of the result. 
(Some may even be weary of its history: fi rst conjectured in 1852, it was in-
correctly proven true using noncomputational methods, and again incor-
rectly proven true in 1880.) For Tim, the computer proof lacked exhaustive 
certainty. Not all students would show a similar epistemological desire, 
but Tim’s curiosity about the idea of “all cases” bordered on his curiosity 
about infi nity—an idea that frequently engrosses the human mind—be-
cause he strongly believed in the existence of an infi nite number of maps. 

In tackling this problem, Tim is revealing two aesthetic inclinations. 
One is to transform the disparate, disordered maps into some organized 
state, to gain some kind of unifying grasp of those maps. The other is to 
achieve exhaustiveness, an inclination that drives mathematicians’ urge to 
generalize: to identify properties and relationships that work for all. 

The fourth factor distinguishes itself from the fi rst three: whereas the 
fi rst three are based on Tim’s perceptions of the problem, the fourth per-
tains to how Tim wants to perceive the problem, what form he wants to 
bring to it. A similar distinction applies to my kissing triangle discovery. I 
perceived the situation as surprising and connected, but what I wanted to 
determine was a well-defi ned (“exact”) general relationship. Similarly, Zoe 
perceived disorder and wanted to perceive an organized set of polygons. 
Recall also that Hofstadter wanted to fi nd analogy in his geometric explo-
rations of triangle centers. In a sense, the aesthetic urge to impose structure 
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and order, to organize and pattern, drives mathematical activity; in order 
for a student to do mathematics, she must develop that aesthetic urge. 

Though compelling, the distinction between existing and desired per-
ceptions is somewhat vague. Students perceive many things in life as 
disorderly and surprising; similarly, students want many things in life to 
be more organized (except perhaps their bedrooms) and certain. What is 
special about their mathematical perceptions? How do their mathematical 
perceptions invite aesthetic sensibility? Furthermore, while it is plausible 
that the concept of infi nity stirs surprise and wonder in many students, 
and that the four color theorem is inviting to Tim’s aesthetic impulse, 
neither infi nity nor graph theory feature widely and signifi cantly in the 
school mathematics curriculum. Is there anything about fractions that can 
be surprising? Is there anything about algebra that might invite students’ 
aesthetic sensibility? In other words, can the aesthetic dimension of Tim’s 
experience with the four color theorem motivate student inquiry in the 
more common topic areas of school mathematics? 

One might also ask whether Tim and Zoe’s experiences are misleading; 
are most students really capable of aesthetic engagement in mathematics? 
If so, the literature should be full of similar examples. Two facts challenge 
this objection. First, with few exceptions, researchers use primarily cogni-
tive or affective lenses, and thus aesthetic behavior is rarely highlighted or 
reported. Second, and more importantly perhaps, certain types of learning 
environments are more conducive to aesthetic engagement than others 
and many mathematics classrooms do little to foster aesthetic behaviors 
and dispositions. Recall in my kissing triangles how important it was for 
me to be able to extract (the special form of detachment described in Chap-
ter 4), and also to be able to experiment and visualize. Perhaps, if given the 
opportunity, more students could, in fact, engage their aesthetic sensibili-
ties. I now examine the motivational role of the aesthetic in a computer-
based problem posing context. 

THE AESTHETIC DIMENSION OF PROBLEM POSING

This example is quite a bit longer than the other student examples I have 
presented, but I would like to provide a better account of the evolution of 
the motivational role of the aesthetic in mathematical problem posing. I 
pursue a more experiential aspect of the aesthetic, turning my attention 
from the initial perceptions that invite inquiry, such as surprise, to the 
aesthetic qualities of experience that sustain inquiry.

The students in this episode were part of a mixed class of grades 7 and 
8, enrolled in a bilingual middle school in an eastern Canadian city. I met 
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with this group of 15 students once a week for approximately 3 months 
and engaged them in a number of different computer-based activities. 
This episode occurred during our second session together.

Christine: Meeting Lulu

Christine is working with the Meeting Lulu microworld.1 In this micro-
world, Lulu (the small circle labelled “L” in Figure 6.1) moves around on 
a Cartesian grid in a way that depends functionally on the movements of 
the object with the four arrows for up, down, right, and left. Students refer 
to this object in the fi rst person as they describe its movements and loca-
tions on the grid. So as Christine moves “I,” Lulu responds by moving, 
too. The implicit challenge is to fi gure out where “I” can meet Lulu, how 
the meeting place can be predicted, and under which conditions a meeting 
is possible at all. Under the default movement rule, as Christine fi nds out, 
Lulu and “I” can meet quite easily, simply by navigating “I” toward Lulu. 
Only one meeting spot seems possible, however, so the meeting can never 
occur at the park (the square near the middle, appearing blue on the com-
puter), much to Christine’s dismay. Christine does notice that Lulu always 
moves in the opposite direction to “I.” Moreover, as one of her classmates 
points out, when “I” moves over by one unit, Lulu moves by two. There-
fore, Lulu always moves twice in the opposite direction to “I.”

On the second page of the microworld, a meeting is not initially pos-
sible (since the starting positions are different)—not until the student 
changes the coordinates of the starting positions of the two players.

I ask the class to fi nd some possible starting positions for the two play-
ers in order for a meeting to be possible. Since, when both “I” and Lulu 
move, colored traces of the paths taken are left behind on the grid (“I” 

Figure 6.1. The Meeting Lulu 
microworld, opening page.
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leaves a red trace and Lulu leaves a green one), the students can easily 
read the coordinates of the successful starting positions. 

Christine fi nds one quite easily, placing Lulu at (0, 0) and “I” at (3, 0). 
As the other students propose their own starting positions, I encourage 
them to test each other’s proposals and to try to determine a rule. Even-
tually, as a whole class, we are able to conclude that in order to meet, “I” 
and Lulu have to be a multiple of three units away from each other, both 
horizontally (in terms of the x-coordinates) and vertically (in terms of the 
y-coordinates). So if “I” starts at (–1, 6) and Lulu starts at (2, 0), a meeting 
will be possible. On the other hand, if “I” starts at (-1, 6) and Lulu starts at 
(0, 0), there is no way to navigate to a meeting spot. After we express this 
condition more algebraically, I encourage the students to investigate the 
other movement rules available on the third page of the microworld. 

As I walk around the classroom, I notice that Christine is still working 
with the fi rst movement rule. Since all the other students have already 
moved on, I ask Christine whether she needs help in understanding the 
meeting conditions developed by the class. She points to the screen, to the 
two traces, and tells me, “Actually, I’m looking into those shapes.” Chris-
tine is no longer investigating the possibility and location of meeting Lulu, 
but is instead paying attention to geometrical aspects of the traces. From 
the way that she focuses on the traces and continues to create different 
shapes with the traces, it is clear that she is comparing them. Shortly after, 
she tells me that whatever shape “I” traces out, Lulu will trace out a simi-
lar shape, though one that is “two times more big” and “turned around 
halfway,” that is, oriented at a 180° degree rotation. 

Using her insight, she starts creating a few designs. I consider drawing 
her attention to the area and perimeter of the two shapes, but decide to let 
her play a bit more. And then fi nally, she switches to a different movement 
rule, focusing of course on the shapes traced by each player. When the 
players move “at right angles” to each other, she fi nds that the two shapes 
have the same size, but that they are “turned by 90°.” She seems disap-
pointed when she tries the “opposite direction” rule, probably because it 
is a mere simplifi cation of the fi rst rule, which was “twice in the opposite 
direction.”

After having explored all the given movement rules, she asks me 
whether there are any others. Christine explains that she would like to 
have a movement rule that traces the two shapes so that they are mirror 
images of each other, which she illustrates by holding her hands up, palms 
facing me, to form a vertical refl ectional symmetry. I direct her to the fi nal 
page of the Meeting Lulu microworld where it is possible to create new 
movement rules. Using the natural language interface provided on this 
page (see Figure 6.2), she is able to create a “refl ection” movement rule. 

Sinclair final proofs.indd   text76Sinclair final proofs.indd   text76 6/29/2006   10:54:50 AM6/29/2006   10:54:50 AM



The Motivational Role of the Aesthetic 77

She chooses from the menus given so that when “I” move horizontally, 
Lulu moves horizontally by the same distance but in the opposite direction 
and when “I” move vertically, Lulu moves vertically by the same distance  
and in the same direction. 

To test her rule, she places “I” at (–1, 5) and Lulu at (1, 5) and uses Lu-
lu’s arrows to trace out a staircase (see Figure 6.3). She proudly shows her 
design to her friends and shows them how to make their own movement 
rules, pointing out how they can bypass the natural language interface 
by working directly with the algebraic equations. Then she settles back in 
her chair, ready to go to work, and remarks, “Now I can make my tree.” 
She sets both Lulu and “I” at the top of the x-axis and begins tracing out 
half the tree by moving “I,” watching the other half trace itself out for free 
thanks to her “refl ection” movement rule.

Figure 6.2. The natural language interface for creating movement rules.

Figure 6.3. Christine’s refl ectional staircase (left); Christine’s tree (right).
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There is certainly an element of mystery involved in fi nding the meet-
ing spot, but Christine seems to grow into her aesthetic engagement as she 
works with the microworld. Perhaps the kinds of aesthetic qualities that 
can immediately attract the mathematician—such as surprise—require 
more time to make themselves apparent or valuable to students. Nonethe-
less, Christine does notice something interesting on the grid, something 
that is quite unrelated to the problems we are pursuing as a class. She has 
been working toward the goal of fi nding a meeting place, but now she is 
free to play, to make designs with the traces. In a sense, she is free because 
I have invited students into a more open-ended activity. Also, she may feel 
greater freedom because of the expressive possibilities of the traces on the 
screen. One might infer that her attraction to the traces is based simply on 
the visual appeal of color, but I suggest that, in addition to this sensory at-
traction, Christine’s attention has been fi xed by a more cognitive interest. 
After all, she does not just stop there, merely noticing the pretty traces. 

Christine has observed that the traces are related, both in terms of size 
and orientation. She perceives a connection between the two shapes, one 
that she wants to make sense of. Although the class had been concerned 
with the arithmetic properties of the microworld, Christine shifts her at-
tention to its geometrical properties. In the end, she actually forges a con-
nection between the two by fi nding rules for generating shapes, as if sat-
isfying an urge to unite them. The educator David Hawkins (2000) would 
not fi nd this surprising; he has argued that the school mathematics cur-
riculum of today does children a disservice by separating the world of 
geometry from the world of arithmetic, worlds that were so intertwined 
for the Pythagorean mathematicians. He sees each world as representing 
two basic and contrasting human powers for understanding.

One of these is strongly spatial and pictorial, geometrical. Its grasp is 
that of form or pattern, of many elements related synthetically. The other 
is strongly analytic; it goes step by step, in time and in logic. Its process is 
digital: It goes like the fi ngers in counting. 

Hawkins proposes that historically speaking, mathematics begin with 
the cooperation of both powers, with the union of number and form. And 
based on his experience, he points out that children are also good at as-
sociating a visual gestalt with the corresponding number sequence: easily 
learning to see, for example, three pebbles as a triangle. Since children’s 
curiosity and investigative talents are motivated when they can engage 
their native understanding and their talents for extending it, Hawkins be-
lieves mathematics curricula should strive to recapitulate the synthesis of 
the ancient Greeks’ mathematics. In contrast with many other countries, 
the high school curricula in the United States split the number/form syn-
thesis quite drastically by separating topics into algebra 1, algebra 2, and 
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geometry courses. However, the split manifests itself much earlier in the 
way that content standards are described and textbooks structured. 

While some mathematical activities explicitly seek to provide a com-
bined arithmetic and geometric representation of fractions, thus heed-
ing Hawkins’s call, Meeting Lulu does not. Instead, it is Christine who 
fi nds the geometric interpretation of the arithmetically defi ned movement 
rules, and Christine who experiences the pleasure of making the connec-
tion between her two powers for understanding. Rather than provide the 
synthesis, Meeting Lulu allows Christine’s talents to seek and establish 
cooperation. Having made the synthesis, though, it becomes available to 
Christine’s friends, and is quick to catch on in the classroom; soon others 
are investigating different geometric properties of the traced shapes, and 
using their own movement rules to create designs. 

Returning to Hawkins, his notion of explorative inquiry provides addi-
tional insight into Christine’s aesthetic motivation. For Hawkins, the mo-
tivation to explore is aesthetic in that it is done for its own sake. Christine 
enjoys making the designs; she does not stop once she has “solved” the 
problem of creating vertical symmetry. She makes the designs for the plea-
sure of making them; the making is motivating, and also sustaining of her 
continued interaction with the Meeting Lulu microworld. 

Exploratory inquiry is aesthetic because it involves the students’ de-
sire to organize their perceptions and experiences into patterns of order, 
equivalence, and symmetry. When the student is exploring, she is engag-
ing deeply in noticing; observation and experiment; pattern discernment; 
goal setting and goal seeking. Compare these behavioral modes with the 
nonaesthetic mode of taking a rule-bound or mechanical path to a goal, or 
being strictly constrained by a predetermined problem.

By emphasizing the role of exploratory inquiry in learning, Hawkins 
reveals how reform initiatives around problem posing and problem solv-
ing fail to “do justice to the humanity of essential processes of goal set-
ting” (2000, p. 111). Goal setting is not merely problem posing, it is the 
result of the ongoing activity of exploration that evolves and fabricates 
a problem—in the eye of the inquirer. While the mathematics educators 
Stephen Brown and Marion Walter (1983) rightfully argue that problem 
posing helps reestablish the humanistic bond between problems and so-
lutions—revealing where problems come from and why they are prob-
lematic—their “What-if-not?” strategy for problem posing can effectively 
neglect the crucial goal-setting phase of mathematical inquiry, particularly 
when it is used as a necessary and suffi cient heuristic. Certainly, many 
good problems grow out of “What-if-not?” type approaches, but the stu-
dent must fi rst explore in order to wonder and to locate the contingent, the 
phenomenon that can be “What-if-notted.” By creating different designs, 
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Christine notices the traces and their dependence on the movement rule, 
and only then can she wonder, “What if the movement rule was different, 
what would happen to the traces?”

In the narrative above, I left Christine as she started to work on her 
tree. In a sense, she had accomplished her mathematical mission and was 
now free to express herself perhaps more artistically. While one could 
easily dismiss her subsequent actions as trivial, I believe they reveal an 
important aspect of Christine’s mathematics. Christine is able to use her 
mathematical discoveries to her own ends; she uses her refl ectional sym-
metry rule as a tool for creating something she enjoys making and cares 
about. By making the tree, instead of sticking with the staircase, she can 
express her mathematical understanding in a more attractive way. In a 
way, she also escapes the usual constraints of the mathematics classroom, 
where students have to submit to rules and obey them; perhaps she saw 
possibilities for both freedom and transgression similar to those I saw in 
my mom’s mathematics of conversion.

Her desire to create something more pleasing resonates with the desire 
that animates the evaluative function of the mathematical aesthetic—to 
express what one knows in a better way—though the criteria are some-
what different. In my kissing triangles, I used criteria commonly found in 
mathematics, namely succinctness, generality, and perspicuity; Christine, 
on the other hand, used sensory appeal. In fact, the fi rst staircase trace she 
used as a test shows the refl ectional symmetry very well, and in a simpler 
manner. 

Perhaps Christine uses the sensory criterion because she is working 
in a mathematical domain that admits artistic expression, and surely her 
sense of artistic expression depends more on sensory appeal than on the 
simple or perspicuous. But perhaps Christine has not yet learned to iden-
tify or appreciate the criteria traditionally used in evaluating mathemati-
cal entities. If so, then learning mathematics will have to include learning 
to appreciate such criteria, and learning to achieve them in her own work. 
I will return to this suggestion in the fi nal chapter of this book. 

I do not want to imply that Christine’s tree-making activities simply 
reveal her unsophisticated mathematical aesthetic. On the contrary, mak-
ing the tree rounded out the experience for Christine, provided an intrin-
sically satisfying culminating point that she would not have experienced 
had she stopped at the testing phase, which simply ratifi ed her movement 
rule equations. This kind of experience can shape a student’s beliefs about 
and attitudes toward mathematics—as it did for me in the truck, convert-
ing miles into kilometers—and thus provide students with the kind of 
educative experiences that Dewey (1938) argues are conducive to further 
cognitive growth. 
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What can be said about Christine’s cognitive growth in this episode. 
What did she learn? What does she know? The goals of problem-posing 
and -solving activities are rarely to teach students new concepts; rather, 
we want to know whether students can use, or think with, the concepts 
they have already encountered, and perhaps use those concepts to devel-
op new ones. Christine showed profi ciency in working with coordinates, 
and in identifying geometric transformations, concepts she had previously
encountered. She also showed a good understanding of vertical refl ection 
symmetry, both by her ability to determine the movement rule and in her 
choice of test shape. Then, initially scaffolded by the natural language in-
terface, she was able to discover how the movement rules could be ex-
pressed and manipulated algebraically, which she subsequently showed 
her friends. The aesthetic may not have been directly involved in the de-
velopment of her mathematical understanding; however, it provided the 
conditions under which Christine wanted and needed to learn.

I claimed that meaningful, pleasurable experiences could shape a student’s 
beliefs about and attitudes toward mathematics. In a sense, this is diffi cult 
to argue with. However, with the following example, I want to show that 
students can decide to grapple with a mathematical problem because they 
anticipate such experiences—much as you might decide to listen to a cer-
tain piece of challenging music because of the qualities of experience you 
know it ultimately affords.

Casey, the student in this episode, is part of the same class of grade 7 
and 8 students described previously. The episode occurred near the end 
of the year. 

Casey: “I Like the Way It Feels”

The students have spent almost 3 months working with Meeting Lulu 
and fi ve other Internet-based mathematical situations. For our last class 
together, I invite them to return to the activity of their choice and pursue 
further explorations independently. 

When I ask Casey, who has decided to return to the Frogs problem, 
why she is choosing this situation over the other fi ve, she responds, “I 
like the way it feels when I get the frogs going right. I know that I can do 
it and that I’ll have a little click when I fi nally fi gure it.” I watch her for a 
while as she tackles the frog problem. (The goal of the Frogs problem is 
to exchange the positions of two teams of three frogs, initially separated 
by one empty slot. Frogs are only permitted to slide forward into empty 
slots or to “leapfrog” over a frog on the opposite team into an empty slot. 
See Figure 7.1 on p. 101.)
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In her fi rst few attempts, she makes the same mistake as she did the 
fi rst time she encountered the problem. She mutters under her breath, 
“This is how I got stuck before. . . . I know I know how to do this.” She 
tries a few more times, wishing she could “remember the trick.” And then, 
something seems to click: “Oh yeah! How could I have forgotten?” She 
fi nally remembers how the solution goes, and she seems to try to make 
sure it sinks in this time by doing it a few times over again.

At fi rst glance, it would appear that Casey opts for this particular in-
quiry because she knows she can be successful at it. She also mentions an 
aesthetic response with respect to the “way it feels” when she gets the so-
lution, probably because she remembers its rhythmic dimension. (The so-
lution alternates in a syncopated pattern between the movement of frogs 
on one team and the movement of frogs on the other; and many students 
demonstrated a visceral sense of this patterned movement as they clicked 
on the appropriate frogs, swaying or nodding their heads with the “beat.”) 
Casey remembers the satisfaction of fi nally hitting upon the solution after 
many, many tries. She wants to have that feeling again. 

Some might criticize Casey for not challenging herself with a differ-
ent problem, since she knew, at one time, the answer to this problem—
though one might argue that she only partly knows that answer now, in 
the sense that she still must reconstruct it rather than simply regurgitate 
it. Yet Casey seems to recognize that having known the answer does not 
mean she still knows, or remembers, how to get to it. I have learned this 
lesson on the occasions where I have attempted to reconstruct proofs I 
already know, such as the proof for the infi nity of primes. Moreover, I 
have seen mathematicians take delight in the opportunity to reconstruct a 
proof they have already seen, as if they are teasing themselves. Of course, 
the mathematicians depend on the affective boost of confi dence—since 
their task is obviously doable—and are mainly left with the cognitive chal-
lenge of seeing whether they can remember how the “story” fi ts together. 
Although this does not contribute to knowledge creation within the body 
of mathematics, if indeed one can think of the growth of mathematics in 
such a way, it is a common component of mathematical practice, and per-
haps a contribution—through rehearsal, through demonstration, through 
rhythm—to more personal forms of growth. 

Actually, Casey’s capacity to acknowledge the incomplete or tenuous 
state of her knowledge is commendable. Teachers who convey the attitude, 
“now, we’ve covered slopes” frequently do injustice to students with re-
spect to this capacity. Such an attitude prevents students from developing 
a sense of mathematical integrity with which they ask themselves, “What 
do I understand about slopes?” It might even prevent students from imag-
ining further learning, as the mathematics educator Anne Watson’s (1992) 
poem ironically suggests:
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We did tables with our last teacher
We’ve done computers, it’s ticked off,
miss
We did calculators with the supply
I don’t have to do estimates, I got them
all right last time
I asked “What if . . . ” in Year 4
My mum says I’m not allowed to test
my hypotheses
We’ve all done rulers before . . . (p. 11)

An alternative would be to give students the sense that they have 
learned a great deal about slope, but that they will surely encounter it 
in new situations, from new perspectives which will surprise them, and 
which will change the way they currently understand slope.

Casey was motivated by the intelligibility and satisfaction she would 
gain from solving the Frogs problem again. The fact that Casey chose a 
problem that she had already solved should not disappoint or discourage 
mathematics educators. Rather, her choice suggests a possible trajectory 
in the development of aesthetic motivation. That is, as students gain con-
fi dence in mathematics and develop beliefs about the kinds of experiences 
that mathematics can offer, they may seek out more novel problems or 
challenges using different aesthetic criteria.

COLORING WITH NUMBERS

In this section I investigate the motivational role of the aesthetic across a 
large number of students using a highly visual computer-based environ-
ment. The design of the Colour Calculator (CC) was inspired by math-
ematicians at the Centre for Experimental and Constructive Mathematics 
(CECM) at Simon Fraser University, where technologies are being devel-
oped to employ the visual capacities of human perception to search for 
relationships and patterns in numerical distributions. Mathematicians at 
CECM employ these techniques to look for underlying structures of math-
ematical objects. I decided to modify one of their tools for use with simpler 
mathematical objects—fractions and their decimal representations. 

In designing the tool, I hoped to encourage students to make sense of 
and explore these mathematical ideas using some of their aesthetic sen-
sibilities to qualities such as symmetry, repetition, rhythm, and pattern. I 
also wanted to put these ideas in a new setting, removed from the proper-
ties (such as proper/improper) and operations (such as simplifying and 
converting) that form their usual—often repelling—context, in an effort 
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to achieve the Deweyian phenomenon of extraction (see Part I). Before 
reporting on the aesthetic behaviors of the students with whom I worked, 
I describe the tool and some of its aesthetically rich design features.

The CC is a regular, Internet-based calculator that provides numerical 
results, but which also offers its results in a color-coded table. Convention-
al operations are provided; the division operation allows users to easily 
generate numbers with repeating decimals while the square root operator 
allows users to generate irrational numbers. Each digit of the result corre-
sponds to one of ten distinctly colored swatches—refl ected in a legend—in 
the table. Figure 6.4 shows the Colour Calculator interface with the legend 
appearing in shades of gray instead of in color. On the computer, the num-
bers 0 through 9 correspond to the colors magenta, purple, blue, turquoise, 
teal, green, yellow, orange, red, and brown (see this book’s cover).

The calculator operates at a maximum precision of 225 decimal digits, 
and thus each result is simultaneously represented by a (long) decimal 
string and an array or matrix of color swatches. It is possible to change the 
dimension, or the width, of color table to values between 1 and 30, as well 
as the number of decimals that appear, from 1 to 225. Thus, of particular 
interest in the CC are the pattern-rich real numbers because they can be 
seen and understood as patterns of color. 

This graphical representation of numbers calls attention to and facili-
tates the perception of important classes of real numbers—terminating, 
periodic, eventually periodic, and nonperiodic—and some of their prop-
erties. The calculator operations (addition, subtraction, multiplication, 
division, and square root), as well as the changeable width of the table, 
enable exploratory action on the color patterns themselves.

In Figure 6.5, the operation 1/7 has been typed into the calculator with 
number of decimals displayed set at 100, and table width set at 10. While 
the fi gure appears in shades of gray, the CC generates the associated col-
ored table showing the sequence of colors purple, teal, blue, red, green, 
orange repeating.

Figure 6.4. The Colour Calculator.
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Using the button that controls the width of the table of colors, the stu-
dent can select different table dimensions that result in different color pat-
terns, some of which highlight interesting aspects of the fraction’s period. 
Figure 6.6 shows 1/7 displayed using a table width of 18 and 17, respec-
tively. Even in shades of gray, the striped and diagonal patterns in the 
table can be seen.

Given this basic environment engaging the visual capacities of human 
perception, what kinds of mathematical observations emerge? The types 
of questions that seem compelling to ask in this environment relate mostly 
to patterns in the decimal expansion of real numbers: What different types 
of patterns exist? How does the pattern depend on the number? These 
questions can lead to sophisticated number theory questions, especially 
with prime numbers, that many mathematicians fi nd compelling. 

However, they are not all necessarily the type of questions or proper-
ties compelling or suitable to middle school students. However, by begin-
ning with this aesthetically rich situation and asking what is interesting 
and/or signifi cant to know about fractions and their decimal representa-
tions—note the reversal of order—a radical departure from conventional 
curricular objectives might ensue. For instance, rather than emphasizing 

Figure 6.5. The Colour Calculator showing 1/7.

Equation: 1/7
Results: .142857142857142857142857142857142857142857142857142857142857142857142857

Figure 6.6. Different representations of 1/7 in the CC.
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the importance of understanding fractions as parts of wholes or that of 
knowing how to convert fractions to decimals, the CC emphasizes the un-
derstanding of fractions as patterned objects (as representations) and the 
relationships between numerators and denominators that determine these 
patterns. 

The CC environment is structured both by its mathematical and peda-
gogical design. The mathematical design dictates the domain of investiga-
tion: the world of numerical computation. In this domain, the square root 
operator represents an intentional design decision to locate the rational 
numbers (which give rise to repeating color tables) within a larger fi eld 
in which nonrepeating patterns are equally accessible. The pedagogical 
design dictates how students are asked and encouraged to move through 
the environment. In order to help evoke aesthetic perceptions, the envi-
ronment is structured to offer only minimal instructions and a few specifi c 
questions. In particular, in order to draw students into the pattern-rich 
rational numbers, they are asked to begin by trying a few fractions and 
observing the associated table of colors. The fi rst fraction they are asked 
to try is 1/7, which gives a repeating, nonterminating result. They are also 
encouraged to change the width of the table, and then to continue experi-
menting with other fractions. 

These minimal explanations present the students with the potential for 
encountering initial complexity—they have to make sense of the colors 
associated with 1/7, to connect the fraction to the legend provided on the 
screen; and that complexity has the potential to draw them into the world 
of CC. In fact, Stephen Brown (1993) points out that the structure of tra-
ditional classroom tasks actually gives students a false sense of aesthetic 
unity. By presenting students with tasks that are always as clear, coherent, 
and effi cient as possible, they are deprived of the possibility of feelings 
of confusion, doubt, ambivalence, and dissonance, the very feelings that 
produce the tension and frustration necessary for mathematical inquiry. 
Without confusion or disharmony, students do not have the opportunity 
to bring their cognitive, aesthetic, and affective structures to “good form.” 
As I remarked already, it is the reducing of surprise and complexity to 
simplicity and predictability that evokes, in learners, fi rst refl ection, then 
pleasure. Thus, the apparent insuffi ciency of textual instructions sets up 
trajectories of sense-making ranging from complexity/confusion to sim-
plicity/pleasure from the outset.

Student Patterns

I interviewed 15 grade 8 students (eight boys and seven girls) of mixed 
ability (as rated by their regular classroom teacher). The students ranged 
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from working class to middle class and were from small towns in North 
America. Each student worked through a mathematical task using the CC 
as I observed and asked questions. The interviews began with the student 
reading these instructions:

You will be able to explore fraction and decimal number patterns 
with this color calculator. To get started, type a fraction like 1/7 
into the calculator, then press the = button. Things to think about: 

��What do you notice in the table of colors? 
��What happens when you change the width of the table? 
��Experiment with other fractions.

After reading the instructions, the students started working while I 
asked some questions about the reasons behind their actions. I occasion-
ally intervened to provide guidance, following a set sequence of prompts. 
These prompts were only given when I judged that the student could no 
longer progress either in identifying a problem or solving it. The interview 
continued until the student had concluded at least one exploration—that 
is, until the student had resolved one problem. Rather than showing a 
group trend, the interviews revealed enormous differences in the students’ 
perceptions of and approaches to the mathematics of the CC, as well as in 
the problems they ultimately formulated and solved. 

Revealing Responses

At an obvious and almost trivial level, every student expressed that 
they had never seen fractions or decimals like this—many of them real-
ized for the fi rst time that a fraction and its corresponding decimal are the 
same2—one student noting, “You never see them together like this.” Ev-
ery student commented on how different this type of mathematical activ-
ity was from their regular classroom work, one explaining, “You actually 
have to do things,” while another observed, “You have to notice things.”

Of the 15 students I interviewed, 13 of them showed obvious physical 
signs of surprise, which they expressed through one or more of the fol-
lowing actions: widening their eyes, sitting upright or moving forward, 
making a sound such as “ooh,” or saying some form of “wow.” Most were 
surprised that numbers could be displayed in this colorful way, but some 
were more surprised by the appeal of the colored pattern, much as they 
might show surprise when encountering a colorfully tiled ceiling. What-
ever the source, their initial surprise caused them to want to know where 
the colors came from and whether other fractions would produce similar 
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results, as indicated by their subsequent actions (asking me, trying an-
other fraction, studying the legend). 

One student, whom I will call Nadia, showed no physical surprise at 
all, and answered, “I don’t see anything” when I asked her what she saw 
in the table of colors. Nadia was either completely insensitive to the pat-
terns in the table or, due to her timidity and lack of confi dence, she may 
have been experiencing too great of an affective barrier to even attempt to 
engage. (She may also have been at least partially color-blind.) The other 
student who showed no physical reaction was Cameron, who remarked 
fl atly: “There are lots of colors and patterns there.” I remember feeling a 
bit disappointed at Cameron’s remark. Cameron is a good reminder that 
surprise is subjective; note that most students are utterly unsurprised that 
the three medians in a triangle always meet at a single point or that the 
exterior angles of a convex polygon always add up to 360°.

The aesthetic response of surprise may have drawn most students 
in, but I am more interested in fi nding out what their sense of surprise 
prompted them to perceive, and what kind of actions those perceptions 
entailed. This was easiest to observe with the more articulate students who 
provided a running commentary of their thought processes, like Sean: 

Okay. Ah. It looks like an abstract painting. Not exactly like a math 
problem. I’m trying to fi gure out how it calculates that. Uh. Well, it 
says that the results are 0.142857 and it repeats. So this is a repeat-
ing pattern. I can see it because the red sticks out and the purple, 
and ooh the green. They kind of go in a diagonal that shows a 
standard repeating pattern but I’m trying to fi gure out how things 
are working. So the number corresponds to the color.

Here Sean is not only noticing particular colors—he seems especially 
to like green—but is drawn in to a repeating pattern, making him want to 
understand where the pattern comes from and how things are working. 
He fi rst realizes that each color corresponds to a number, and then, hav-
ing noticed the repeating pattern, wonders whether there will always be a 
pattern. He tries several other fractions and eventually decides to investi-
gate whether he can fi nd a number that has “no pattern.” Sean is looking 
for the pathological example; he wants to fi nd the fraction that breaks the 
repeating pattern rule. 

On the other hand, Ann’s fi rst observation is that “every seventh box is 
a purple.” She also sees the repeating pattern but because she focuses on 
the last color of the repeating sequence, purple, she forms a more quantita-
tive interpretation of the situation, noting that 1/7 has six repeating digits 
(its period is six). She “verifi es” this by changing the width of the table 
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from 10 to 6. She then begins to investigate the periods of other fractions. 
Anne wants to see whether there is relationship between fractions and the 
periods of their decimal expansions. 

After seeing the result for 1/7, Kirk immediately tries 1/3, and then 
1/2. He focuses on the differences between the table of colors that each 
fraction produces, noting that some terminate while others do not. He 
begins to categorize various fractions as terminating and nonterminating 
and then tries to fi gure out how he can predict to which category a fraction 
belongs based on its denominator of a fraction. As was the case with Zoe, 
Kirk’s urge is to categorize, upon perceiving that fractions can be divided 
into two distinct groups.

Julie takes a slightly different approach; she begins by changing the 
width of the table of colors several times. When the width is set to 7, she 
remarks, “It’s like a staircase.” When the width is set to 3, “It’s doubled 
up.” Julie is interested in describing all the types of possible patterns 1/7 
could produce. She seems particularly interested in the diagonal pattern 
and experiments with other fractions, trying to fi gure out how the grid 
width should be set in each case. Julie wants to see fractions as diagonals. 
(Interestingly, most adults prefer to fi nd table widths that create stripes; 
perhaps stripes are just a bit too regular for Julie, diagonals providing 
some not-too-complex but welcome deviation for the teenager.) 

Three other students embarked on explorations similar to the three de-
scribed above. Each of these seven students in total perceived the CC’s 
output differently, some focusing on differences, others on similarities, 
and others on specifi c patterns. Their individual perceptions, rooted per-
haps in the initial surprise or appeal, gave rise to different questions, prob-
lems, and investigations. But each inquiry was motivated by an aesthetic 
urge: Sean was most “romantic”3 in his desire to fi nd the rebellious case, 
the bizarre and nonconforming fraction. Ann and Kirk were both more 
“classical” in their orientation, wanting to fi nd some structure or order. 
Julie wanted to see whether she could impose a certain, personal form on 
each fraction. 

The other 8 of the 15 students seemed more reticent to engage. They 
either paused, waiting for instructions, or asked me what I wanted them 
to do. These students might have had initial perceptions similar to the 
ones of Sean, Kirk, Julie, and Ann, but they needed me to ratify the signifi -
cance of their perceptions. After I prompted the students, by asking them 
“Tell me what you see,” and then assured them that what they saw was 
correct and interesting, each of the eight students was able to formulate a 
question, and all but one introduced a personal variation to their inquiry. 
For example, I prompted Robert to look at the kinds of fractions that were 
nonterminating. At one point he tried 7/9, which gave him a solid table of 
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blue. He then decided to focus on the smaller class of fractions that pro-
duce nonterminating single-digit decimal expansions—that is, solid tables 
of colors. 

Table 6.1 presents a list of student investigations, in their words, along 
with a corresponding version reformulated as a question in more conven-
tional mathematical discourse. Each student question reveals a distinct 
perception that ultimately shaped the actions taken by the student, and 
thus their paths of inquiry. 

From the questions listed in the table, it is obvious that the students 
investigated quite a few things about fractions and their decimal repre-
sentations, as well as number theory. I want to draw attention to the fact 
that each problem in the table grew out of an aesthetic engagement with 

Table 6.1.  Problem-posing with the CC. 

Student question Reformulation 

How can I make the diagonals go in the 

opposite direction? 

How are diagonal patterns related to the 

period? 

Maybe the period is always one less than  

the denominator. 

How is the period of the fraction related to

its denominator? 

I think that all the fractions with odd 

numbers on the bottom will repeat. 

What values of the denominator yield 

nonterminating decimals? 

The decimals stop when there is a 2, 5, or  

10 in the denominator. I wonder what 

happens with 8. 

What values yield terminating decimals? 

So with 12 on the bottom, there’s an extra 

number before the repeating. 

When is a decimal eventually periodic? 

I want to take away those colors that don’t 

fit with the rest of the pattern. 

How do you move the decimal point to th

right? 

Aren’t there some numbers that have a 

totally random pattern? 

What kinds of numbers neither terminate 

nor repeat? 

I want to get the table all red. What fractions have a repeating expansion

of one digit? 

I wonder what happens if I try 3/7 now. How are fractions that have the same 

denominator related? 

So what do I get if I add 1/2 to this 1/3? What is the effect when you add two 

fractions with different periods? 

I think that since 1/9 has a period of 1, like 

1/3 then 1/49 should have a period of 6. 

What is the effect when you square a 

fraction that has a certain period? 
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the CC, fi rst through surprise and appeal, which then led them to form 
various perceptions of and then hypotheses about the CC’s output. Based 
on these perceptions, students developed interpretations and conjectures 
on which they could act through experimentation with the various func-
tions of the CC. 

Accessible Perceptions

Students form some kind of perception of the situations they encoun-
ter in the classroom. The problem is, is it not, that they do not notice what 
the teachers would like them to notice. So why did the students using the 
CC notice so many different, mathematically pertinent things? Why did 
their perceptions lead them to inquiry? To help me answer these ques-
tions, I recount a story told by the French mathematician Le Lionnais 
(from his 1983 book on number theory) about his fi rst experience, at age 
7, of a mathematical discovery. His discovery depends not so much on 
his knowledge of mathematics; rather, it depends on his aesthetic sen-
sibilities, his perceptual interest in certain visual forms that he is able to 
bracket for attention. 

Le Lionnais is sitting alone at the kitchen table, with a pencil and some 
paper, not tired enough to join the rest of his family for the afternoon si-
esta. For some reason, he has the idea to write down integers from 1 to 9. 
But instead of multiplying one integer by the others, as he has been learn-
ing about in school, he multiplies each by itself, in the row beneath:

1 2 3   4   5   6   7   8   9
1 4 9 16 25 36 49 64 81

“Suddenly,” he writes, recounting the episode as he remembers it sev-
eral decades later, “a veil lifts, allowing me to perceive in this otherwise 
dull alignment, a classically beautiful structure.” But to see it, he contin-
ues, “one has to consent, without argument, to an amputation: striking 
out the digits in the tens decimal place, conserving only the units.” This 
produces:

1 2 3 4 5 6 7 8 9
1 4 9 6 5 6 9 4 1

Le Lionnais admits that an ordinary adult might have found the result-
ing symmetry quite banal but, having discovered it himself, he is thunder-
struck. He feels he has entered a “vast domain where a multitude of trea-
sures has been hidden.” Surely, he could continue mining his beautiful array 
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simply by multiplying the digits once again (and maybe even again . . . ),
remembering to strike out the tens decimal places each time:

1 2 3 4 5 6 7 8 9
1 4 9 6 5 6 9 4 1
1 8 7 4 5 6 3 2 9

Hélas! The symmetry had been lost. Le Lionnais is stubborn, though, 
certain that “chaos could not have taken over the society of numbers, 
which had thus far been so well organized.” And all of a sudden, he sees 
that the digits occupying the symmetric positions are complementary in 
ten: 1 + 9 = 10; 8 + 2 = 10; 7 + 3 + 10; 4 + 6 = 10. Now he can move on. What 
happens in the fourth row? Le Lionnais works on his rows of digits all af-
ternoon, until he is called for dinner, fi nding that the sixth row reproduces 
the second, while the seventh reproduces the third, and so on.

When Le Lionnais looks at that second row of numbers, the row of 
squares, he sees something; he perceives a “beautiful” pattern possibility, 
audaciously ignoring the tens decimal place. When he lifts the veil and 
sees the symmetric structure in the row of numbers, he knows there must 
be more. So onward he goes to the next row, looking for the next pattern. 
The simple row of numbers is suggestive enough for the young Le Lion-
nais, and the symmetry suggested is appealing enough to drive his curi-
osity and satisfying enough too, in and of itself. An ordinary 7-year-old 
knows about symmetry, and even about sums with results bigger than ten. 
But would most 7-year-olds have noticed the symmetry of the second row 
or the balance of the third one?

Probably not. In fact, the young Le Lionnais seems to have developed 
an unusually acute aesthetic faculty in mathematics; he appreciates the 
signifi cance of symmetry, is able to ignore things that get in the way of a 
“beautiful” pattern, and anticipates further “treasures.” 

Yet symmetry is a fundamental tool that humans constantly and suc-
cessfully use to make sense of their environment. Why then would a regu-
lar 13-year-old not have noticed the hidden symmetry of the row? Perhaps 
humans use symmetry best when it is presented visually; children imme-
diately see the symmetry of faces, logos, and shapes (recall how quickly 
Zoe saw the symmetry of the polygons). Yet numbers are not objects that 
are usually used or considered in terms of their symmetry, and it takes 
quite a perceptual leap to consider a whole row of numbers. When Le Li-
onnais noticed the complementarity of the third row, he perceived balance, 
another fundamental tool humans use to make sense of the environment. 
But again, balance is primarily used in physical contexts: balancing your 
arms as you walk across a beam, balancing your body on a teeter-totter. 
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Le Lionnais might not need visual cues but most students, who are less 
aesthetically developed, probably do. In fact, I believe it was the visual in-
terface of the CC that gave students the opportunity to perceive the struc-
turing forms—not symmetry per se, but the rhythm of the repeating pat-
tern, the diagonals, stripes, and checkerboards—which are less accessible 
in their numeric representations. These forms were compelling enough, 
perhaps revealing enough that the students even perceived them as ad-
equately signifi cant to initiate further exploration, much as the young Le 
Lionnais saw symmetry as signifi cant enough to propel his inquiry. 

In order to notice symmetry and balance, though, the young Le Lion-
nais had to focus his attention on the numbers, see them as interesting and 
potentially satisfying objects to play with. The initial surprise felt by the 
students using the CC drew their attention, made them believe, at least for 
a while, that there was something interesting to play with. Imagine what 
would have happened if the students had been asked to convert 1/7 into 
a decimal number? Unless numbers already fascinated the students, little 
would have drawn their attention, or piqued their curiosity, demanded 
interpretation—the mechanical demands of long division being so heavy. 
The scope of their perceptions would have been reduced, funnelled into a 
numerical, mechanical approach. And fi nally, their possibilities for action, 
for satisfying their aesthetic urges, would have been severely restricted: it 
would become onerous to experiment with lots of fractions, and especial-
ly complex ones; the possibility of changing the fraction’s representation 
would have been unfathomable.

Learning and Aesthetic Engagement

So far, I have emphasized the surprising, visual, and experimental 
features of the CC as being central to its power to aesthetically engage 
students. The latter features derive primarily from the computer-based 
nature of the CC: the computer is good at performing calculations with 
big numbers as well as manipulating and displaying data. The computer 
is also particularly good at providing visual representations of data. And 
although I believe that the computer is especially well-suited to evoking 
students’ aesthetic behavior, a belief I will substantiate later, there are oth-
er ways to encourage children to use and build on their aesthetic sensibili-
ties. 

For example, in their book Creative Mathematics, Upitis, Phillips, and 
Higginson (1997) show how students can be aesthetically stimulated 
when given sensorial, pattern-rich encounters with mathematics. In one 
example, grade fi ve students are presented with a bucket full of ceramic 
tiles. These students need no prompting: They immediately attempt to 
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determine how the tiles can fi t together. William Higginson notes that the 
aesthetic appeal of tessellation—like that of jigsaw puzzles—seems to be 
a “direct offshoot of a common and powerful human aesthetic urge, that 
of ‘fi tting’” (p. 49). The students’ aesthetic urge to fi t, similar to the case 
with Zoe’s aesthetic urge to classify, drew their attention to the relevant 
properties of the shapes. In fact, the students subsequently also reveal 
their own urge to classify when they try to work out which shapes will 
tessellate and which will not. 

Many mathematics educators have attempted to appeal to students’ 
artistic and creative urges by linking mathematics to the arts: the golden 
ratio through Mondrian paintings, transformations through Escher draw-
ings, ratios through music, and so forth. For example, the mathematics 
educator Robert Jamison (1997) suggests that engaging students in dis-
crete mathematics activities with an artistic connection (for example, mod-
ular arithmetic in music and regular polygons in eurythmy) will stimulate 
their aesthetic sense, pique their mathematical curiosity, and reveal the 
artistic spirit in mathematics. Although I do not wish to deny its virtues, 
such linking utilizes student interest in other domains to coax them into 
mathematics. A pernicious consequence of appealing to students’ love 
of something else (whether in the arts, sports, or money) in the hopes of 
engaging them is that it endorses the belief that mathematics itself is an 
aesthetically sterile domain, or at least one in which its potentialities are 
only realized through engagement with external domains of interest. As 
Dewey (1913) would say, they catch student attention through the external 
domain, but ultimately fail to hold it in the mathematics.

Both the CC and the tessellations, however, try to evoke the aesthetic, 
expressive, and transformative possibilities of mathematics itself. Instead 
of counting on students’ sensibility and attraction to the arts to help them 
appreciate mathematics, their aesthetic urges are directed to contexts that 
are themselves mathematical: seeking patterns in rational numbers, iden-
tifying shapes that can fi t together. The colorful patterns produced by both 
the CC and the tessellations “catch” student attention, but also manage 
to “hold” in the mathematics because the aesthetic urge becomes a math-
ematical one. 

In comparison with the examples I discussed in the previous section, 
the power of students’ initial perceptions was especially obvious with 
the CC, where slightly different ways of grasping the situation resulted 
in quite different inferences and actions. However, not all 15 students 
were equally aesthetically engaged. I am tempted to say that some of the 
less aesthetically engaged were blocked by their previous experiences in 
mathematics. I would have the evidence of the many researchers who 
have shown that students will eventually start ignoring their feelings and 
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impressions, having been taught that they do not belong in the rational, 
formal mathematics classroom (e.g., Boaler, 1997; Gordon, 1965; Turkle & 
Papert, 1992). If, by providing students with “aesthetically rich” learning 
environments, we manage to enable half of them to engage in the process 
of mathematical inquiry, we are at least progressing.

Readers might be wondering, Well yes, they inquired, but what did they 
learn? Admittedly, I was not trying to teach the students a specifi c skill 
or concept. Rather, I wanted to see whether the students could “act as 
mathematicians,” that is, formulate and solve a problem using various 
mathematical strategies. I was interested in what the mathematics educa-
tor Robert Davis (1992) has described as the residue of mathematics:

Instead of starting with mathematical ideas, and then applying 
them, we [teachers] should start with problems or tasks, and as 
a result of working on these problems the children would be left 
with a residue of mathematics . . . that mathematics is what you 
have left over after you have worked on problems. (Davis, 1992, 
p. 237)

The students each learned something new by virtue of their inquiries, 
not all of which were directly related to the middle school curriculum or 
to the concept of fractions per se. This was part of the residue but, also, the 
mathematics that is “left over” encompasses much more than concepts or 
solutions and includes ways of behaving in mathematical problem-solv-
ing contexts. Davis’s notion of residue may also encompass the contextu-
ally complex understandings that I have elsewhere referred to as “thicker” 
understanding (see Liljedahl, Sinclair, & Zazkis, 2006). I appropriate this 
use of the adjective thick from anthropology (see Geertz, 1973), where it 
applies to descriptions of events or social scenes that are layered, rich, 
and contextual. In ethnographic research, thick descriptions value modest 
observations—small, specifi c happenings, instead of ambitious theories 
addressing broad issues. Moral philosophy has also adopted the adjec-
tive; “thin” terms such as good and bad denote abstract ethical concepts, 
whereas “thick” terms such as generous and cruel have a heavy descriptive 
content—they are world-guided in that they depend on what the world 
is actually like. 

In the context of learning, I use the adjective thick to describe the cog-
nitive and emotional multidimensionality of a learner’s understanding 
of a mathematical concept. For example, a thin understanding of square 
numbers might consist of the propositional knowledge that a square 
number is of the form n × n, like 4, 25, and 100. A thicker understanding 
might include the experience of drawing square numbers geometrically, 
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as “perfect” squares instead of rectangles. It might also involve having 
noticed that square numbers have an odd number of factors, or, having 
compared areas of whole-number rectangles and whole-number squares. 
A thicker understanding of square numbers might also involve observing 
how they are distributed—that they get farther and farther apart as one 
hops down the number line from one square number to the next—differ-
ently than other kinds of numbers such as primes. The properties that I 
have mentioned as part of a thicker understanding of square numbers 
are, of course, all implied by the initial thin description. However, they 
belong to certain contexts (drawing shapes, using number lines) and ex-
periences (looking at opaque properties, solving problems) that can be 
triggered in future thinking. They are more context-dependent, more de-
scriptive, and more resonant with the world in which learners live. 

Having “thick” experiences with mathematical ideas and entities 
builds the learner’s distinctive power of imagination; it furnishes the 
“imagic store,” as the educator Harry Broudy (1977) calls it. Broudy ar-
gues that this imagic store contains the raw materials for all concepts and 
possibilities, and thus forms the basis for all cognition, judgment, and ac-
tion. When Broudy makes this argument, he is talking about reading, and 
showing how even the most basic sentence—“This is a tree”—requires 
that the reader instantiate a relevant context of meaning, which is built 
up of visual, tactile, olfactory, and auditory images. A mechanical skill 
of reading allows the reader to decipher the words, but not to access the 
meanings encased in the written language. It is with our imagination that 
we construe a sentence such as “We are working around the clock.” 

How does Broudy’s argument apply to learning mathematics, which 
is about refi ning, reducing, and abstracting the imagic store into precise 
concepts and relationships? The mathematician does not reduce and ab-
stract from nothing. Consider the notion of the derivative, which, as the 
mathematician William Thurston (1995) points out, has at least a dozen 
defi nitions, or associated contexts. A “microscopic” way of conceiving the 
derivative (the limit of what you get by looking at it under a microscope 
of higher and higher power) might ultimately become reconciled with an 
“approximation” way (the best linear approximation to the function near 
a point). There may be a single public “abstract” defi nition (see Schiralli 
& Sinclair, 2003) of the derivative, which can be seen as abstracted and re-
duced, but it is not one with which mathematicians actually think. When 
thinking about the concept of the derivative in problem solving, a vague 
image of a prototypical derivative may be “seen” in the mathematician’s 
mind. But as soon as she tries to focus on it, to attend to it carefully, she 
fi nds she is considering a specifi c kind of derivative—perhaps the tangent 
to the curve—or even a suite of images of derivatives including symboli-
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cally represented ones. Even though she may be working with a highly 
abstract concept, she must constantly draw on her rich imagic store, on the 
many trigger points she has attached to the derivative through her thick 
experiences. 

In emphasizing the development of thicker understanding (gained 
in the residue of mathematics) over the mastery of discrete, well-defi ned 
concepts (gained through explicit teaching), a major shift has taken place. 
The emphasis I argue for here focuses on meaning, on whether the learner 
can appreciate the motivations for doing something a certain way as well 
as whether the learner can associate images and experiences to concepts. 
This emphasis has an impact on the many decisions that educators must 
make about the content and context of mathematics teaching. Although I 
have only scratched the surface of investigating the relationship between 
the aesthetic and mathematics learning, and its impact on curriculum 
and teaching decisions, I want to postpone those discussions until I have 
probed the generative and evaluative roles of the aesthetic in student 
mathematics. 

FITTING THE PIECES TOGETHER

The experiences of Zoe, Tim, Christine, and Casey each suggest ways in 
which the aesthetic plays a selective and motivational role in the math-
ematical inquiry of middle school students. By engaging their aesthetic 
sensibilities and calling upon their aesthetic urges, the mathematical situ-
ations presented to the students became starting points for problem pos-
ing and problem solving. Tim’s example highlighted the way in which 
apparent simplicity, visual appeal, connectedness, and mystery can draw 
a student into a problem, much as it does for the professional mathemati-
cian. With Christine, a different kind of connectedness became apparent—
the relations between different modes of thinking, and her interest in or 
desire to connect them. The very process of goal-setting through play and 
explorative inquiry also revealed the aesthetic impulse in which Hawkins 
(2000) was interested. Dewey (1938) writes that all processes of inquiry 
begin in tension, in the perception of obstacles, uncertainty, or discord. 
While agreeing with Dewey on the important role of tension in inquiry, 
Hawkins rightly points out that Dewey fails to acknowledge the impor-
tance of exploratory activity in motivating learning. For Hawkins, explor-
atory activity is a “mode of behavior in which the distinction between 
ends and means collapses. . . . Or rather the reinforcement comes to [the 
distinction] because of what is found along the pathways of exploration” 
(2000, p. 116). 
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Finally, Casey’s example drew attention to an aspect of the motivation-
al role of the aesthetic that I had not yet discussed, but which can also be 
found among mathematicians. Indeed, Peter Hilton (1992), Roger Penrose 
(1974), and André Weil (1992) all claim that they do mathematics precisely 
for those “good feelings” they get when they solve a problem, for those 
perhaps infrequent, but sustaining experiences. Burton (1999b) sums up 
this view as follows, referring to the 70 mathematicians she interviewed: 

Mathematical activity for many of these mathematicians was driven by cu-
riosity and the resultant pleasure when something was resolved. . . . Far 
from understanding being something which is only driven by knowledge, 
there is both a need to know and an associated pleasure in knowing which 
is its own reward. (p. 29; emphasis in original)

Can these examples serve a teacher or curriculum developer in any 
way? Based on observations of individual learners, mathematics educa-
tion researchers have developed very sophisticated models of student 
learning, including some that are able to prescribe the structuring and 
ordering of materials through which students will most likely be able to 
learn concepts. As I have said before, these researchers have focused on 
the cognitive dimension of learning. However, I believe that the experi-
ences of Zoe, Tim, Christine, and Casey can similarly contribute to help-
ing researchers develop learning environments that can best evoke and 
activate a student’s aesthetic sensibility and behavior. 

Thus far, I have only considered the motivational role. It is perhaps most 
closely connected to current issues in mathematics education, as it involves 
student motivation and interest—an area that concerns many educators, par-
ticularly at the middle school level.4 However, though perhaps more subtly, 
the generative and evaluative roles of the aesthetic are both pertinent to school 
mathematics learning too. They involve ways of thinking and reasoning that 
are diffi cult to articulate, as well as values that underlie the very nature of 
mathematics, including its methods and results. In the next two chapters, I 
will explore these two roles of the aesthetic in the mathematical activities of 
students. Following that, I return to examine some of the impact that the aes-
thetic analysis of student activity has on curriculum and teaching decisions.
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CHAPTER 7

The Generative Role
of the Aesthetic

Since it occurs over such a potentially long period of time, with infrequent 
observable manifestations, the generative role of the aesthetic is the most 
diffi cult of the three to identify. A penchant for neatness, or symmetry, or 
an aversion to –1—these can greatly infl uence the decisions that are made 
during problem solving, but they are often fl eeting, and perhaps even be-
low the threshold of awareness. Indeed, Poincaré insisted that this role of 
the aesthetic functioned at a subconscious level in the work of mathemati-
cians, a claim that was later challenged by Papert (1978). 

Actually, Papert challenges Poincaré on two counts. First, he wants to 
show that the mathematical aesthetic sensibility does not belong exclu-
sively to the “very creative” mathematician, but can be found in the more 
elementary mathematical thinking of nonmathematicians. Second, he 
wants to show that we can be made consciously aware of our aesthetic re-
sponses through the feelings they engender. To do so, Papert asks a group 
of nonmathematicians to consider the theorem asserting the irrationality 
of √2. He begins by presenting only the initial statement in the proof, the 
claim to be rejected, that √2 = p/q. He then asks the subjects to generate 
transformations of this equation, giving them no indication of what direc-
tion to take or what the goal may be. After having generated a half-dozen 
equations, the subjects hit upon the equation p2 = 2q2, at which point Pap-
ert reports that they show unmistakable signs of excitement and pleasure 
at having generated this result. 

Although this is indeed the next step in the proof of the theorem, Pa-
pert assures us that the subjects are not consciously aware of where this 
equation will eventually lead. Therefore, although pleasure is often ex-
perienced when one achieves a desired solution, Papert argues that the 
pleasure in this case is of a more aesthetic, rather than functional, nature. 
Furthermore, the reaction of the subjects is more than affective since the 
subjects scarcely consider the other equations, having somehow identi-
fi ed the equation p2 = 2q2 as the interesting one. Papert conjectures that 
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eliminating the ugly square root sign from the initial equation might have 
caused their pleasurable charge, though it might just as well have come 
from eliminating the fraction—that anxiety-producing mathematical 
monster. He also conjectures that the experience of transforming the initial 
equation, whose main actor is the quantity √2, into the second equation, 
which suddenly reveals p as an actor in relationship with q, resonates with 
the “peekaboo” experience that so often pleases infants. In any case, the 
students’ aesthetic responses guide them to an equation with which they 
fi nd easier to work, perhaps a clearer one that better reveals for them the 
relationship between the terms. Papert’s goal is not to identify the certain 
cause of the pleasurable charge, but to point out that the nonmathemati-
cians in his informal study proceeded with a mode of thought that has 
at least as much claim to be called aesthetic as logical. He shows that an 
aesthetic response to a certain confi guration is generative, in that it leads 
the inquirer down a certain path of inquiry, because then she feels that the 
appealing confi guration should reveal some insight or fact.

Where Poincaré relegates the aesthetic to a mathematical unconscious, 
Papert suggests that his subjects might be consciously aware of their aes-
thetic responses, just as my colleague—in reacting to the –1 in his equa-
tion—was aware of his feeling of aversion. Without meaning to, he also 
illustrates how mathematicians must believe in, and trust, their feelings in 
order to exploit the generative role of the aesthetic. They must view math-
ematics as a domain of inquiry where phenomena such as feelings play an 
important role alongside hard work and logical reasoning.

THREE EXAMPLES OF THE GENERATIVE ROLE

In this chapter, I will analyze three examples of student mathematical ac-
tivity, using each to highlight a slightly different aesthetic response that can 
be seen as playing a generative role. These examples will support Papert’s 
claim about the level of awareness involved in an aesthetic response. They 
will also provide a broader sense of the kinds of aesthetic responses that 
students can have, and the different levels of sophistication, with respect 
to professional mathematicians, with which students are able to make use 
of these responses in their inquiries.

Casey: “I See Symmetry”

I have previously talked about Casey, the girl who chose to work on 
the Frogs problem again. Now I want to back up to the fi rst time Casey 
encountered the Frogs. I have argued that Casey’s choice to return to this 
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microworld was motivated by her desire to experience the pleasure of 
solving the problem again; she was motivated by an anticipated aesthetic 
quality of experience. But the fi rst time Casey worked on the Frogs, she 
drew on a different kind of aesthetic, one that played a generative rather 
than a motivational role. 

Casey has “solved” the Frogs problem many times, but each time the 
computer told her she could do it in fewer moves. Finally, she hits upon a 
sequence that only required 15 moves. I ask the class to think about why 
15 is the minimum number of moves that is required to switch the posi-
tions of the frogs on the left with the frogs on the right (shown, already 
switched, in Figure 7.1—on the computer the frogs on the left are blue and 
those on the right are red). This seems to be a diffi cult problem, and one 
that is less concrete than the one the students have just solved. I see that 
Casey is repeatedly doing the 15 moves somewhat mechanically. In fact, 
she seems to have reached an impasse; she tells me that she does not even 
know where to start. 

Directly beneath the frogs, a sequence of colors appears, representing 
the individual moves made by the frogs. In Figure 7.1, these colors appear 
in shades of gray representing the sequence of 15 moves R1 B3 B2 R1 R2 R3 
B3 B2 B1 R1 R2 R3 B2 B3 R3. The colored sequences are easier to interpret than 
the shades of gray shown here.

I realize that Casey has not actually noticed the sequence of colors, so I 
ask her to look at it and to complete the sentence “It seems to me that . . .” 
This draws her attention away from the number 15, and even away from 
the frogs. She tells me what she sees in the sequence of colors: “There’s a 
pattern in these colors, they go one blue then two red and then three blue 
and then three red, then. . . .” Though unable to articulate it, she seems to 
have developed a sense of the pattern. 

A few moments later, she exclaims, “Oh, it goes up one way and then 
comes back down the opposite way.” Casey now sees the symmetry in 
the color sequence and explains that it shows how “fi rst the frogs get all 
tangled up, then they get untangled again.” Then she resets the frogs to 
the starting position and watches the color swatches as they progressively 
appear for each move, this time starting with a blue frog rather than a red 
one. “I think I know why it’s fi fteen,” she tells me.

Figure 7.1. The Frogs prob-
lem, solved by moving B1B2B3
R1R2R3 to R1R2R3  B1B2B3.
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It is diffi cult to say how Casey made the leap from the symmetry to 
the solution. Her next statement includes the observation that the start-
ing team will have one more color than the other team—the last move 
merely rounding out the symmetry. Perhaps the symmetry allows her 
to think only about either the tangling or the untangling, thereby reduc-
ing the complexity of the problem. She certainly had more work to do to 
solve the problem; symmetry is not the last piece in the puzzle. Nonethe-
less, being able to discern the symmetry gives Casey a new way of tack-
ling the problem; it gives her a qualitative grasp of the whole sequence 
of moves. She knew about symmetry before, of course, but had perhaps 
never thought that looking for symmetry would be helpful. Maybe she 
had even noticed the symmetry before, but my intervention seemed to 
allow Casey to recognize, value, and trust it as a productive, relevant 
way of organizing the situation. Recall that the young Le Lionnais, upon 
noticing the symmetry of his row of numbers, was quite willing to trust 
his feelings of pleasure as indications of “right” and “generative” paths 
to follow. He had already developed confi dence—which Casey may have 
lacked—in what the mathematics educator Caleb Gattegno (1974) calls 
his “logics of feeling.” 

My prompt was an attempt to engage Casey overtly in the kind of 
“ponderings, what ifs, it seems to be thats, and it feels as thoughs” that 
Burton (1999b) recommends for inviting intuitive thinking.1 Such prompts 
explicitly invite feelings into the process of problem solving, including 
those that announce pleasure and aversion. They also release students 
from narrow foci to more global, qualitative framings where fresh ways 
of seeing are possible, as are more integral, synoptic ones. In contrast with 
the mathematician George Polyà’s (1957) problem-solving heuristics, my 
prompt specifi cally draws Casey away from the mechanics of the problem 
(the unknowns, the data, and the conditions), and toward the perceiv-
able qualitative relations. In addition to inviting intuitive thinking, it also 
gives Casey a chance to engage her aesthetic sensibilities. As soon as she 
grasped that symmetry, she did not let go; it provided her with a pleasing, 
generative way of tackling the problem. The aesthetic behavior here is not 
just perceiving the symmetry, but also experiencing pleasure in the way 
that it makes the situation a “fi tting” one. 

Several examples have featured symmetry so far: Zoe and her cat-
egorizing, the young Le Lionnais, and now Casey. Symmetry is a highly 
visual and enabling way of perceiving (though it can also be misleading, 
as the Silver and Metzger example indicated); it is even a topic that is 
explicitly taught in school geometry, though more as a property than as 
a heuristic in problem solving. However, there are several other types 
of aesthetic guides that insinuate themselves into inquiry, as Papert’s 
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example above shows. While an aversion to square roots or to fractions 
may seem somewhat mathematically unsophisticated, I think that Pap-
ert wants to underline the fact that aesthetic responses to certain forms, 
at whatever degree of sophistication, can be productive. Indeed, it is said 
that Paul Dirac’s commitment to his equation describing the behavior of 
electrons (the Dirac equation)—despite some serious experimental con-
tradictions—was supported by his aesthetic response to its simplicity. 
Dirac neatly summarizes his commitment (in retrospect, I might add) 
with a statement that “it is more important to have beauty in one’s equa-
tions than to have them fi t experiment” (1963, p. 47). 

To symmetry, then, we can add the notion of liberating form. Whether 
Papert’s students were afraid of the square root or of the fraction, they 
ultimately found p2 = 2q2 a more useful, inviting equation. A third type 
of aesthetic guide emerged in my kissing triangles discovery. Recall that 
I was directed to investigate the kissing angle because I saw the possibil-
ity for a “pretty” result; in fact, turning the “ugly” 91.031° into the “neat” 
90° turned out to be an effective problem-solving heuristic. This quest for 
exactness may in fact be the paradigmatic mathematical aesthetic, or just 
the one that mathematics lets humans experience most closely. As with 
Papert, though, I do not believe it belongs only in the world of the profes-
sional (and creative!) mathematician. The following example shows it in 
action, squarely in the world of the school student. It features four grade-
eight students with whom I worked once per week over the course of an 
entire school year. They were at a small, independent middle school in 
North America attended by students with a wide variety of mathemati-
cal competence. The students needed help and guidance since they were 
trying to complete a geometry course in an independent setting, using the 
textbook Discovering Geometry (Serra, 1994). My role was to supplement 
their textbook activity with computer-based activities. This episode oc-
curred in our third session together. 

Sara: I Want It “Exactly There”

Sara is trying to reproduce Theo van Doesburg’s painting Arithmetic 
Composition 1 (shown in Figure 7.2) using The Geometer’s Sketchpad. She 
has already constructed the framing square ABCD, and has created a cus-
tom “square” tool for any other square she might need to construct in the 
future. She is trying to fi gure out how to construct the largest of the tilted 
black squares. Using her custom tool, she decides to construct an “ap-
proximating” square with one vertex V on BC and another vertex W on 
CD (see Figure 7.2). She then slides the two vertices V and W along their 
segments until the tilted square “looks right.”
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Choosing these locations heuristically—rather than by analytic deri-
vation—allows Sara to at least get started on the problem. But Sara soon 
grows unhappy. If V and W could be dragged to the right locations, could 
they also not be dragged to terribly wrong locations? Based on the approx-
imate location of W, Sara infers that W should be two thirds of the way 
from D to C. So she asks me whether there is any way to make a W that 
will “stick exactly there,” pointing to the screen. As it happens, Sketchpad 
allows us to fi x a ratio, which I show her how to do. This allows her to 
construct point P, as well as Q, and then to construct the tilted square on 
PQ using her custom tool. 

Sara is happier with her new, fi xed tilted square, and turns her atten-
tion to the bracket (which corresponds to the next horizontal square) that 
will hold the next tilted square. By repeating her procedure, she success-
fully recreates the van Doesburg painting.

With her square on VW, Sara had a functionally useful approximation 
to the tilted square. Yet she was not satisfi ed. Her insistence on moving 
from a dragged approximation to a more stable confi guration reminds 
me of some ancient Greek geometers’ aversion to neusis, or verging con-
structions. (Such constructions involve marking a certain length on a rul-
er, which is then slid into place in a diagram; these constructions, while 
functionally useful for trisecting the square, among other problems, came 
to be seen as suspicious—perhaps too mechanical—by ancient Greek ge-
ometers.) Sara wants to fi nd the exact, stable location for the vertices of 
her square, which requires a more analytic approach. That aesthetic pre-
dilection draws her away from the contingency of the screen to the de-
terminacy of mathematics. And it allows her to satisfy the quintessential 
human desire to experience exactness, the fi tting moment when “a certain 
position of the bolt . . . positively closes the lock,” in the words of the poet 
Paul Valéry. 

Figure 7.2. Van Doesburg’s 
Arithmetic Composition 1
(left); Sara’s fi rst step (right).
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In Sara’s case, the goal was clear: She wanted to reconstruct the van 
Doesburg painting. The possibility of approximation acted as a heuris-
tic in her problem-solving process while her aesthetic urge dictated the 
means through which she would express her solution. For Casey, the aes-
thetic provided a generative way of seeing the problem with which she 
had been grappling. In both cases, then, the aesthetic functioned within 
the preestablished goals of the student inquirer. With the next example, 
I want to illustrate the way in which the aesthetic can play a generative 
function, even when no specifi c problem exists. And unlike the situation 
with Casey, the student in this next example recognizes and values his 
aesthetic perception without my intervention. The setting will be familiar: 
the Colour Calculator.

John: “Nine Is a Magic Number” 

John is using the CC to fi nd a fraction that starts orange, blue (which 
corresponds to 7, 2). He tries several fractions, many of which seem like 
wild guesses: 2/7, 5/6, and fi nally 7/10. I thought he had made a break-
through, perhaps recalling all his knowledge about the decimal system, 
but his next attempt is 72/10 . . . Seeing that 72/10 yields a number that is 
too big, he methodically increases the denominator, fi rst to 80—he knows 
he needs a “fraction” (a number less than 1)—and then increasing by 1 
until he hits upon 72/99. This fraction produces the pattern in Figure 7.3, 
which shows the pattern in two shades of gray, the lighter corresponding 
to 7 and the darker to 2.

He is surprised at this sudden emergence of pattern; 72/98 is a mess 
in comparison! But he also notices that the repeating colors in the pattern 
corresponds exactly to the numbers in the denominator and announces to 
me, “Nine is a magic number.” 

Figure 7.3. 72/99: A fraction that begins 
orange, blue.

Results: .727272727272727272727272
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In the previous class, he had seen that a denominator of seven also 
creates a repeating pattern, but since the pattern seemed in no way re-
lated to the numerator, he had moved on to other fractions. But 72/99 
is intriguing to him. He tries a few other cases, such as 34/99 and 59/99 
and then tries 123/99. The last fraction is disappointing, but he does not 
give up. He makes a reasonable conjecture and tries 123/999. He sits up 
in his chair, with a big smile, and tells me, “I can make a rainbow.” And, 
sure enough, he uses the “magical” properties of 9 to create a repeating 
sequence of colors. Figure 7.4 shows the pattern John found in shades of 
gray: Every swatch of gray shown in the legend of Figure 6.4 shows up in 
this “rainbow.”

John was initially trying to fi nd a fraction that started orange, blue. 
He found it, and could easily have stopped. He might also have tried to 
fi nd other fractions that also start orange, blue. But John saw something 
he liked, something generative. One example (72/99) was enough to con-
vince him that 9 was a magic number; he had already “deduced” that 9 
would have powers outside that single example, though he was curious 
enough to actually check with 34/99 and 59/99. Where did that convic-
tion come from? 

It came from the same place as the mathematician’s conviction (dis-
cussed in Part II), that the factorization 137 × 73 was a generative, “beauti-
ful” pattern. Both John and the mathematician were charmed, as if such 
nice patterns cannot be accidental in mathematics. And because of this, 
John set off to see what else he could fi nd, much like the young Le Li-
onnais set off to see what patterns were lurking in the third row of his 
numbers. It is here that one can detect another aesthetic urge: to see how 
a single interesting case (72/99) fi ts into a larger picture, to seek a more 
general, encompassing rule. After all, seeing one isolated case is some-
what disconcerting—one case rarely predicts or identifi es the regulating 
principle?

Figure 7.4. “I made a rainbow.”Equation: 0123456789/ 9999999999
Results: .123456789012345678901234567890
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He found a general rule about denominators with nines in them: If 
there is a fraction where the numerator has the same number of digits as 
the number of nines in the denominator, the repeating pattern of the deci-
mal expansion will consist exactly of the string of digits in the numerator. 
And with this rule, he was able to create his rainbow. I am unsure when 
John had the idea to create a rainbow. I would guess that it was not until 
he saw what happened with 123/999. If creating the rainbow was the “so-
lution,” then it grew out of John’s aesthetic response to the pattern-mak-
ing power of the number 9 (relative to base 10). But one senses that John’s 
interaction with the CC was not so teleological in spirit; rather, he was 
engaged in an exploratory inquiry that was fostered both by his aesthetic 
response and by his self-absorption in the CC world. 

Saying that John was aesthetically motivated by a pattern is mislead-
ing. Ironically, since mathematics teachers often ask students to look for 
patterns, students come to expect that they will fi nd one: Finding a pattern 
in and of itself can be quite an aesthetically sterile experience. Here is an 
example: I had asked a group of students to investigate how many right 
angles a polygon can have. They found that a triangle could only have 1 
right angle, that a quadrilateral could have 4, but that a pentagon could 
only have 3. They thought this quite strange. “There must be a pattern” 
one boy muttered as he pondered the sequence 1, 4, 3. I was pleased by 
this assertion, interpreting it as a motivating belief about the treasures that 
could be found in mathematics. But my pleasure soured when I asked 
about the source of his conviction: “Well, this is math class; you wouldn’t 
give us a problem that didn’t have a pattern.” 

The difference with John is that the pattern was not the goal; the pat-
tern was the beginning, and understanding the pattern was the means to 
his rainbow. I should not say that John understood the pattern; rather, he 
understood how it worked and how to manipulate it. And despite his in-
terest in using the pattern, he did not ask why it worked. And when I put 
that question to him, he had to take out his paper and pencil, and move 
away from the delights of the screen. 

In the three examples I have described, the students were working in 
computer-supported environments. Because of this, their process of in-
quiry was more accessible to me, as I could directly observe their actions 
and reactions. Moreover, the highly visual and experimental nature of 
the computer-supported environments may well have helped evoke aes-
thetic responses, and make qualitative ways of perceiving mathematical 
entities more accessible. In fact, as the mathematics educator Paul Gold-
enberg (1989) notes, computer-supported environments can foster the de-
velopment and use of qualitative reasoning. Such environments, in their 
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concreteness, open up the possibility for students to draw on visual, in-
formal, and experimental methods in their explorations, important meth-
ods that are not dependent on symbolic-deductive techniques. John’s case 
shows that symbolic-deductive techniques cannot—and should not—be 
entirely ignored. However, as the mathematics educator Michael de Vil-
liers (1990) has argued, students will most need to use those techniques 
when they have asked the “Why?” question, which they can only really 
do once they have satisfi ed themselves that there actually exists a repeat-
able, trustworthy phenomenon that needs explaining. 

MINDFUL MATHEMATICS

A mathematical situation, as any other, will have a multitude of qualities, 
some more overtly “mathematical” than others. Students are regularly 
told to ignore many of these qualities through statements from their teach-
ers such as: “The color doesn’t matter,” “Mathematics is about thinking 
logically,” and even “Just reason step by step: Don’t bring your emotions 
into this.” Teachers who instruct in this way may think that “extralogi-
cal” qualities have little to do with the solution of a problem. In so doing, 
however, students are encouraged solely to attend to the properties and 
relations relevant to the current, particular problem. 

Certainly, there are instances when the color really does not matter 
with respect to the correct solution of the problem. But sometimes notic-
ing the colors will provide the student with the opportunity to discern an 
organizing quality. More importantly, learning how to do mathematics is 
partly about learning how to notice and select the features of a situation 
worthwhile focusing on. When teachers overly restrict the class in terms 
of features worthy of attention, students are robbed of both an educative 
experience and of a possible route to further understanding. 

The psychologist Ellen Langer (1998) has shown how a seemingly 
trivial mode of speaking can be restrictive to the point of actually dam-
aging students’ attention (and thus, their capacity to notice and select), 
to say nothing of their potential for imaginative thinking. She shows 
how traditional ways of imparting information—that is, speaking as if 
something is absolutely true, independent of context—deprives one of 
the need or impetus to notice anything. Such a style “closes down invi-
tations to further thought,” as Brent Davis (1995) writes. On the other 
hand, imparting information in a more conditional, contextual way en-
sures an appreciation of uncertainty, which increases one’s tendency to 
notice things, see them from different perspectives, and to devote further 
consideration to them. 
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Let me demonstrate Langer’s point using a mathematics example. 
Consider the teacher who tells her students, The three medians of a triangle 
meet in one point. Each student retains this fact, but probably misses the 
surprisingness of it, as well as the reasons for and implications of it. The 
statement does not invite further noticing. Now consider the teacher who 
tells students, In an equilateral triangle, the three medians of a triangle will meet 
somewhere in the triangle. Providing this context might incite the student to 
wonder what happens in scalene triangles, or to wonder whether meeting 
happens two by two or whether there is a unique meeting spot, or wonder 
whether there is anything special about the location of the meeting spot 
as well as the perhaps more technical question of how to fi nd out where 
it is. While the fi rst piece of information is precise, true, and general, it is 
restricted to the essential property under consideration. However, the sec-
ond piece of information is less precise and general, but still true. It invites 
the student to consider the contingency of the statement.

Recognizing or grasping a qualitative unity, and therefore being sensi-
tive to aesthetic modes of thinking, depends on being able to notice things 
about a situation. Of course, language changes are not the only means 
by which to nurture aesthetic engagement in students. As Brown (1993) 
suggests, educators also need to question the false sense of aesthetic unity 
perpetuated by the values of clarity and coherence found in teaching ma-
terials, teaching practices, and even, ironically, in problem-solving activi-
ties in the mathematics classroom. Day after day, students are faced with 
and asked to solve problems that all “work out nicely.” Brown argues that 
this false sense of aesthetic unity is a major barrier to the development of 
aesthetic sensibilities, and is counterproductive to the educational goals 
of helping students learn how to cope with the doubts, ambivalences, 
and disharmonies they encounter in their fragmentary, haphazard, and 
incomplete lives. The irony, for Brown, is that where problem solving is 
supposed to be an activity involving a state of doubt, hesitation, perplex-
ity, ambiguity, and mental diffi culty, the problems that students face in 
mathematics classrooms are usually constructed and presented clearly 
and coherently, precisely in order to discourage such states. Instead of be-
ing given problems with aesthetic unity—already prepackaged—students 
need to be given opportunities to establish their own forms of certainty 
and clarity out of perplexing situations.

FITTING THE PIECES TOGETHER

In this section, I wanted to probe the various ways in which the aesthetic 
functions heuristically in the course of inquiry. The examples of Sara and 
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John revealed how very human aesthetic urges shape the goals of inquiry: 
looking for exactness or precision and trying to see how the particular fi ts 
into the general. In these cases, the aesthetic invites action. On the other 
hand, the aesthetic can also invite understanding, as it did for Casey. By 
being able to grasp the Frogs problem as a whole, through the symmetry 
of the frogs’ movements, Casey was able to grasp the inaccessible situa-
tion in a more holistic, qualitative way. 

In addition, the aesthetic also revealed itself as a characteristic quality 
in the mathematical experiences of these students. Casey explicitly sought 
this out by returning to the Frogs problem. But we see it more clearly in 
the experience of John, who engages in aesthetically driven exploratory 
activity. It is in this example, where John makes a rainbow, that the math-
ematics is most subordinated to the ultimate, expressive goal: John uses 
his mathematical insights to construct not a solution or a proof, but a fi nal 
product. Perhaps there is a utilitarian aesthetic encompassing his inquiry: 
John values knowing that denominators of nines produce repeating pat-
terns of digits because it allows him to make his rainbow. It is also in this 
example that the rigid distinctions between problem posing and problem 
solving break down, where the process of inquiry has its most cohesive 
shape—starting and ending in play.

I am unsure whether “utilitarian aesthetic” is the right construct, 
though. Certainly John uses his mathematics toward a more artistic 
end (as does Christine, when she makes her tree), but I wonder if it is 
not the expressiveness of the artistic end that is the signifi cant factor. 
Both the tree and the rainbow are personal expressions of meaning, of 
mathematical understanding, that are available as part of the computer-
supported environment. Actually, compared with computer-supported 
environments such as Boxer and The Geometer’s Sketchpad, the expres-
siveness of the CC and Meeting Lulu microworlds is quite limited. But 
they do offer specialized expressive possibilities that are unavailable in 
the equivalent pencil-and-paper environments. For example, consider 
a pencil-and-paper version of the Meeting Lulu problem. Many of the 
mathematical questions are still relevant: Where do the players meet? 
When do they meet? But without the traces, which the computer auto-
matically generates, the geometric representations remain inaccessible 
and the design possibilities unfathomable. 

In Christine’s example, I discussed the possible, implicit evalua-
tive function played by the aesthetic; I mainly highlighted how her fi nal 
product may have lacked some of the aesthetic criteria typically prized 
in mathematics. Zoe, on the other hand, in her more explicit evaluation 
of the different methods for categorizing polygons, employed familiar 
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aesthetic criteria. She articulated them because I asked her, but she had 
clearly already used them, if only on a subconscious level. What purposes 
might they have served? In Chapter 8, I will chart out the types of criteria 
used by students and, more importantly, the purposes of these criteria: 
When and why do students evaluate mathematical entities using aesthetic 
criteria?
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CHAPTER 8

The Evaluative Role
of the Aesthetic

The evaluative role of the aesthetic stands out as the most cited and explic-
it of the three functions, particularly in the world of the professional math-
ematician, where words such as “beautiful” and “elegant” are regularly 
used to distinguish good from not-so-good results and proofs. These judg-
ments can determine whether or not a result gets published or accepted 
into the mathematical canon. Its infl uence, as well as its more public na-
ture,1 may account for the reason why many of the researchers who have 
explicitly considered the aesthetic dimension of school mathematics focus 
largely on this evaluative function of the aesthetic. These researchers tend 
to adopt a mathematics-centric justifi cation argument, arguing that “one 
of the major goals of mathematics teaching is to lead students to appreci-
ate the powers and beauty of mathematical thought” (Dreyfus & Eisen-
berg, 1986, p. 2). Although Dreyfus and Eisenberg acknowledge a wider 
presence of the aesthetic in mathematics, they believe that educators need 
to concern themselves fi rst and foremost with the aesthetic dimension of 
problem solving—that is, with helping students develop an appreciation 
for the aesthetic appeal of a mathematical solution or proof. 

However, students seem to have a long way to go in terms of develop-
ing this kind of appreciation. Dreyfus and Eisenberg designed a study in 
which they investigated whether college students were able to appreci-
ate elegant solutions. They gave the students a set of problems to solve 
that were judged to have the potential to elicit elegant solutions. Their 
choice of problems was predicated upon whether problems had multiple 
solutions, nonobvious solutions, and solutions that would require only a 
high-school level of mathematics. Dreyfus and Eisenberg claim that stu-
dents fail to appreciate the elegance of solutions judged to be elegant by 
“experts” and that moreover, students do not judge the solutions which 
are later presented to them any more attractive than the ones they have 
come up with on their own. Such a fi nding would not surprise the mathe-
matics educator Ernst von Glasersfeld (1985), who stresses that we cannot 
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expect children to show an appreciation for the beauty of mathematics as 
easily as they do for natural beauty. As I have shown, though, Dreyfus 
and Eisenberg, as well as von Glasersfeld, are wrongly equating the lack 
of agreement between students’ and mathematicians’ aesthetic responses 
with students’ lack of aesthetic sense. 

Ten years later, in a 1996 paper devoted to the issue of the nature of 
mathematical thinking, Dreyfus and Eisenberg state that there are two 
schools of thought on the issue of aesthetics in mathematics education. 
The fi rst believes in the importance of developing aesthetic thought and 
attempts to introduce students to it by comparing elegant and nonelegant 
solutions in school-level problems (as per the 1986 recommendation). 
Members of the second school of thought instead fi nd that while the aes-
thetic plays an integral role in the work of mathematicians, it is impossible 
to incorporate it into school mathematics, given students’ diffi culties with 
the most basic skills. Though Dreyfus and Eisenberg should, according to 
their earlier work, belong to the fi rst school, they use the bulk of this 1996 
paper to discuss the nature of mathematical thinking without mentioning 
the aesthetic again. 

This issue of “the basics” might conceivably resonate with many 
mathematics educators who see the aesthetic dimension of mathemati-
cal activity either as too far up the hierarchy of mathematical ability or 
as an epiphenomenon—and thus dismissible, given more urgent “core” 
priorities. The former view fi nds support in the mathematics educator
V. A. Krutetskii’s (1976) work with gifted children, which claims to show 
that only mathematically capable students are sensitive to the elegance 
of mathematical solutions and capable of attending to a solution’s clar-
ity, simplicity, and economy. However, those who believe that aesthetic 
considerations should be postponed until “the basics” are covered often 
fail to defi ne what is “basic,” why and for whom. They also assume that 
the aesthetic can be separated from the cognitive and locate the develop-
ment of mathematics skills solely in cognitive activity. Their educational 
theories of mathematics assume that only already established mathemati-
cal structures—largely numerical and logical, as opposed to spatial and 
visual—dictate the basic guidelines for identifying the “math basics.”

In addition to the “basics” issue, there is a deeper, epistemological is-
sue at work here. When mathematicians evaluate entities such as proofs 
and solutions, they do so for two reasons: One, to establish personal val-
ue; and two, to establish collective value. As the mathematics educators
Alibert and Thomas (1991) note, these two purposes are often absent in 
school mathematics, where “the subject matter is presented as fi nished 
theory, where all is calm . . . and certain” (p. 215). Students approach math-
ematics as something to be accepted and learned while mathematicians 
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approach it as something to be evaluated and negotiated—two discon-
nected epistemologies at work. Alibert and Thomas are particularly con-
cerned with the problems produced by this disconnection when it comes 
to proofs in the mathematics classroom. While mathematicians use proofs 
to convince (both themselves and others), students see proofs as diffi cult, 
formal, and sometimes arbitrary things. Ironically, Alibert and Thomas 
believe that the perceived need to preserve the precision and the beauty 
of mathematics—by emphasizing the rigor of formal proofs in the class-
room—may compromise students’ concern for meaning and value, as 
well as their appreciation for the functional role of proof. In other words, 
why would students exhibit their preferences for one type of proof over 
another if they see proof as only having already-established truths? That 
would be an epistemological category mistake.

But what happens in classrooms where students do not see proofs 
strictly as formal necessities required by the teacher? In their study, Drey-
fus and Eisenberg implicitly communicate the possibility that proofs can 
have an aesthetic value. However, they take an objectivist view of aesthet-
ics—that a certain solution is elegant in and of itself—and, in considering 
students’ evaluations, look primarily for aesthetic preferences that match 
those of professional mathematicians. Since they do not fi nd these, they 
conclude that students do not show aesthetic appreciation. Yet perhaps 
these students are showing and exercising quite different aesthetic prefer-
ences, which suit their own current goals and needs.

For example, Stephen Brown (1973) describes what might be called 
a “naturalistic” conception of beauty manifest in the work of his grad-
uate students. He recounts showing them Gauss’s possibly apocryphal 
encounter with the famous arithmetic series: 1 + 2 + 3 + . . . + 99 + 100 
which the young Gauss is said to have cleverly calculated as (101 × 100)/2. 
Brown asks his students to spend some time investigating variations of 
the general scheme (that the sum of the fi rst n natural numbers can be 
expressed as [n × (n + 1)]/2. They come up with many geometric and 
algebraic approaches and formulations, each equivalent but expressed in 
various ways with equations and diagrams. Brown asks them to discuss 
their approaches in terms of aesthetic appeal. 

Surprisingly, many of his students prefer the rather messy, diffi cult-to-
remember formulations to Gauss’s neat and simple one. Theirs are origi-
nal, raw, and tangible. Brown conjectures that the messy formulations do 
a good job of encapsulating the students’ personal history with the prob-
lem, as well as its genealogy, and that the students want to remember the 
struggle more than the neat end product. This is in clear opposition to 
the way that mathematicians like to present their results: They are almost 
always devoid of any of the guesses, supporting sketches, and history of 
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the solution process. Brown’s observation highlights how the contrasting 
goals, partly culturally imposed, of the mathematician and the student 
lead to different aesthetic criteria. 

The question that must be addressed is whether or not the goal of nur-
turing such preferences is to align them with those of professional math-
ematicians. In contrast with Dreyfus and Eisenberg, who want to initiate 
students into an established system of mathematical aesthetics, I propose 
that educators nurture students’ development of aesthetic preferences ac-
cording to the animating purposes of aesthetic evaluation in school math-
ematics activity. The starting point would not be to train students to adopt 
aesthetic judgments that are in agreement with “experts” in terms of el-
egance and beauty. Rather, the impetus would come from providing stu-
dents with opportunities in which they want to—and can—engage in per-
sonal and social negotiation of the worth of a particular idea, as I did with 
Zoe, Luke, and Alex—the polygon classifi ers from the introductory chap-
ter. Most importantly, students would need to operate within the terms of 
engagement that both allow and encourage them to look for solutions that 
they like. These solutions, as well as the aesthetic choices promoting them, 
may be similar to mathematicians’ choices, but they also refl ect their own 
specifi c concerns and preferences. 

The mathematics educator Gaynor Williams (1994) has described a 
high school classroom setting that nurtures an appreciation for aestheti-
cally appealing ways of expressing ideas and solving problems. In her 
classroom, students are not taught to pursue “elegant” or concise ideas 
in any objectivist defi nition of those terms. Rather, she both models her 
own aesthetic appreciation and gives her students opportunities to de-
velop and discuss desirable values that emerge from and apply to their 
own work. By organizing her classroom around group work, students are 
able and encouraged to discuss differences among different solutions and 
to identify criteria that might make a certain solution better than another 
one. She writes:

Students have realised there are many ways to approach the same problem. 
Right from the beginning of the year, even in aspects of the course where 
I did the teaching, it has been understood that, if anyone can see a neater, 
faster way to get to the same answer, we want to know about it. . . . They 
value responses from groups who have found an original and elegant way 
to approach a solution and will question until they understand the process. 
(p. 452)

Some students may learn to appreciate the elegance and simplicity of 
certain arguments or explanations, while others might appreciate solu-
tions that correspond to their own particular thinking styles. Williams 
wants students to struggle with their problems, noting that when they 
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have struggled with something for some time, and thought about pos-
sible alternative ways of solving it, they are better able to appreciate an 
approach that takes a different perspective and results in a simpler and 
possibly easier-to-understand solution. Regardless of the specifi c aesthetic 
preferences they exhibit, they will try to defend their choice within the 
particular culture of their classroom.

Williams explicitly emphasizes the evaluative function of the aesthetic 
in her classroom by encouraging the students to appreciate the value of 
solutions that might be more original, succinct, convincing, or clever. By 
modelling her own aesthetic appreciation, she must surely infl uence the 
criteria that her students value, which perhaps helps initiate them into 
the norms of the mathematics community. But it seems to be in the class-
room negotiation that the aesthetic judgments emerge, as students are 
given the opportunity to compare their solutions—and not just on the 
basis of “truth.”

WHICH SOLUTION IS BETTER?

This kind of value-oriented negotiation need not be restricted to the high 
school classroom. Indeed, in the following example, two middle school 
students who are asked to compare their solutions also draw on aesthetic 
criteria. Instead of asking the students to explain their solutions to each 
other—a frequent request in the mathematics classroom—I ask them to 
consider which solution is better. Of course, this requires some expla-
nation, but the explanation has a persuasive function; it is not merely 
undertaken to satisfy the teacher’s request. The ensuing negotiation il-
lustrates that students take the value question seriously, and have some 
strong aesthetic preferences when it comes to their mathematical evalu-
ations, some of which are perhaps surprisingly contiguous with those of 
the mathematical community. 

John and Nora: “My Solution Is Better Than Yours”

After many tries, John fi gures out how to create a table of colors that 
starts orange, blue using the fraction 72/99. Sitting behind him, Nora 
also hits on a solution to the problem: 72/100 (See Figure 8.1—the light 
gray corresponds to orange [7] and the dark gray to blue [2]). Seeing both 
of these solutions on their screens, I draw them to the students’ atten-
tion. When John sees Nora’s screen, he hits his forehead, and says, “Oh, I 
should have thought of that . . . I forgot but it’s just going the other way, 
isn’t it?” Nora raises her eyebrows when she sees John’s screen. I ask them 
which fraction is “better.” 
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John argues that his fraction actually gives him a method to get any 
initial sequence of colors; if he wants a decimal expansion that begins with 
338, for example, he can use his “9’s method” to come up with a correct 
solution of 338/999. Nora counters that her method is just as generative; 
an initial sequence of 338 can be provided through her decimal-based 
method with the fraction 338/1000. 

Then John responds that his fraction is “nicer looking,” since it pro-
duces a whole table of repeating colors, rather than a small sequence, and 
that it is “cooler,” since it uses the properties of “my magic number.” This 
seems to convince Nora, since she turns around and starts experimenting 
with John’s method. 

With little prompting, Nora and John negotiate the value of their re-
spective solutions using several different criteria. The fi rst criterion John 
invokes is that of generativity; he has realized that his solution reveals a 
generalizable pattern and he seems to value the idea that his particular 
solution can be extended to have a more general application. The appre-
ciation of generativity, which both Nora and John show, is actually quite 
mathematically sophisticated. The mathematician G. H. Hardy (1940) 
mentions it explicitly in his discussion of the criteria for mathematical 
beauty, citing as an example the Euclidean proof that √2 is an irrational 
number (a proof that can easily be extended to other prime numbers). 

In addition to the criterion of generativity, John also invokes a more 
personal criterion—his solution uses a novel method that he himself dis-
covered—that might have better encapsulated his process, much like in 

Figure 8.1. John’s solution (on left) and Nora’s (on right).

Equation: 72/99
Results: .727272727272727272727272727272

Equation: 72/100
Results: .72
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Brown’s example of [n × (n + 1)]/2. When I saw his reaction to Nora’s so-
lution—he groaned in a way that expressed the sentiment “I should have 
known that”—I thought he would prefer hers. But John clearly treasures 
his magic number 9 and his solution exploits properties he has newly dis-
covered. In contrast, Nora had found her solution 72/100 quite easily and 
was perhaps not as invested in the properties she had exploited as John 
was in his. She might also have failed to recognize the extent to which 
her method uses the not-so-magical, yet still quite solid and easy-to-ex-
plain decimal place-value system. Neither John nor Nora placed much 
emphasis here on the criterion of transparency; they both end up prefer-
ring John’s method, even though they might not be able to explain why it 
works, whereas they both understand why Nora’s method works.

And fi nally, Nora and John both subscribed to the criterion of visual 
appeal; indeed, this seems to be the criterion that ultimately convinces 
Nora. Mathematicians rarely mention this criterion, perhaps because they 
communicate most of their work in nonvisual modes (and are often more 
than somewhat suspicious of relying on visual supports to reasoning). 
This might be changing somewhat, given the advent of powerful com-
puters, as illustrated in several new books and on many websites, which 
use carefully chosen and aesthetically pleasing images to communicate 
mathematical ideas.

In the course of their negotiation, Nora and John invoked three aes-
thetic criteria: generativity, novelty, and visual appeal. These illustrate an 
already strongly developed sensibility to the aesthetic qualities that can 
be associated with mathematical solutions—though perhaps not a con-
scious awareness of them. Through John’s persuasion, Nora became curi-
ous about the magic number 9 as well and decided to turn her attention 
to a new investigation involving nines. She did not merely accept John’s 
solution—rather, she became convinced that his solution was interesting 
enough to warrant her further investigation. That might well mirror one 
of the most important functions of the aesthetic in the day-to-day work of 
mathematicians, as one tries to convince another that some solution, re-
sult, or defi nition is interesting enough to warrant further work, for both. 

My prompt to negotiate the “better” solution invited Nora and John 
to adopt a different epistemological stance, in which mathematics is to 
be evaluated and negotiated. I propose that the microworld itself also 
contributed to affording this orientation. The computer provided Nora 
and John with the feedback they needed to establish that they had found 
correct solutions. No longer was the teacher the fi nal arbitrator of right/
wrong. Instead, I could initiate a genuine conversation about the meaning 
and value of their solutions. I say genuine, because my ulterior motive 
was not to work out issues of right and wrong, which is often the case in 
classroom discussions where students are invited to share and compare 
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their solutions. Many educators have advocated the use of problems with 
multiple solution paths as a way of encouraging—or allowing—students 
to draw on different modes of reasoning. Such problems also intend to 
communicate to students that the process of reasoning is at least as im-
portant as the solution, or rather, that there is no right and wrong when it 
comes to the way a student chooses to get the solution. 

So far I have focused on solutions and proofs as objects of aesthetic 
evaluation. But, as Le Lionnais points out, mathematicians will also judge 
the aesthetic value of many other mathematical entities, including defi ni-
tions, diagrams, theories, methods, and algorithms. In fact, the recent dis-
covery (in August 2002) of a new method for determining whether a num-
ber is prime illustrates how important the aesthetic value of an algorithm 
can be. Although existing tests for prime numbers were equally fast, this 
new method made headlines around the world. Why? Not because it was 
faster, or more accurate—these being the twin goals of most computer al-
gorithms—but because it was more “elegant.” The Agrawal-Kayal-Saxena 
algorithm was described by mathematicians as “straightforward,” “easy to 
prove,” “a novel approach,” “simple,” and “easy to improve upon.” In fact, 
the algorithm can be written in 12 lines, which is impressively short, and 
it “requires only simple tools of algebra,” as its authors write (Agrawal, 
Kayal, & Saxena, 2002, p. 2). Moreover, the algorithm does not assume the 
still unproven but widely believed Riemann Hypothesis, as other prime-
detecting algorithms do, and thus its proof is entirely self-contained. 

Obviously proofs and solutions are not the only currency in mathemat-
ics. But as is the case with proofs, students are presented with defi nitions, 
diagrams, methods, algorithms, and theories, as if, echoing Alibert and 
Thomas, they were fi nished—all being calm and certain. Students accept 
the division algorithm and the defi nition of a quadrilateral without be-
ing invited to consider, “Is it good? Is there a better one? Do I like what 
it does?” In the following example, I invite a group of four middle school 
students to consider these questions about a method for constructing a 
square. Once again, the invitation does not appear unusual to them, and 
the students hold remarkably strong opinions.

Aleah, Becca, Sara, and Zhavain: “It’s More Perfect”

The four students Aleah, Becca, Sara, and Zhavain are attempting 
to construct their fi rst square using Sketchpad. Constructing a square 
in Sketchpad is not a trivial matter; one must fi rst know what defi nes a 
square, and then know how to use the appropriate tools. Most students 
start by using the segment tool to draw four equal sides (the salient prop-
erty of the square) and then attempt, when the time comes, to put the 
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segments at right angles (the more tacit property). I let the students draw 
squares using only the segment tool, and then show them how to use the 
circle tool to construct equal segments. Since they have already learned 
to construct perpendicular and parallel lines, they are then able to con-
struct their container squares. Except Aleah. She is stuck on her horizontal 
segment, insisting on “turning it” up to a vertical position—not wanting, 
perhaps, to bother with circles and perpendicular lines. I show her how to 
turn her segment using the rotate command. Once she has completed her 
square, she proudly shows the technique to Sara. 

I ask Sara which technique she prefers—Aleah’s rotation method or 
her own “compass and straightedge” one? Sara thinks the rotation meth-
od is much easier and much quicker to perform (given the grammar of 
Sketchpad’s tools at least, where rotation is a one-step action). But she de-
scribes the compass and straightedge method as “more perfect and more 
mathematical.” I ask her what she means by “perfect,” and she tells me 
that the compass and straightedge gives a better construction, because she 
knows that the “points are at the right place.” Sara manages to convince 
Becca and Zhavain of her opinion, but not Aleah.

I then show the students how to create a custom tool that would allow 
subsequent squares to be created effortlessly. Sketchpad’s custom tools are 
accompanied by scripts, which provide a symbolic representation of the 
steps involved in the construction associated with the tool (see Figure 8.2). 
Aleah thinks that the brevity of her script—only six steps, compared with 
ten—will help convince her classmates of the rotation method’s superior-
ity, but alas, they are stubbornly committed.

Figure 8.2. Scripts for constructing a square.

Aleah’s square tool Sara’s square tool
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As with the previous episode, this one shows different aesthetic pref-
erences emerging from the students’ negotiation. Sara seems to have a 
classical orientation, preferring the Euclidean approach to constructing a 
square. But perhaps she had been enculturated into believing that things 
that are more technical, more complicated are, in turn, more mathematical. 
In fact, I was initially surprised at Sara’s answer, convinced that she would 
prefer Aleah’s method. But Sara also seems convinced that the compass 
and straightedge construction is somehow more precise. This may be due 
to the sense of determinacy that points of intersection provide; after all, 
she constructs each vertex by fi nding the point where a circle and a per-
pendicular line intersect (see Figure 8.3). 

The rotation method does not have the same sense of determinacy, but 
of course it also provides a precise location for each vertex. Since Aleah 
never actually followed Sara’s method, she may not have experienced that 
sense of determinacy that comes from fi nding a point of intersection.

Aleah’s penchant for the rotation method has several sources. First, the 
rotation method is hers; she is the one who discovered it. Second, the rota-
tion method grew out of her particular way of seeing a square. Even when 
I showed the students how to use the circle as a compass, Aleah had a spe-
cifi c idea about how the square should evolve that did not involve circles 
and perpendicular lines. She knew she wanted to rotate; all I did was to 
show her that Sketchpad could help her accomplish her goal. So not only 
was Aleah’s method her own, but it answered the particular question that 
she had about making a square. In contrast, since the other students had 
not seen the square as Aleah did, as rotated segments, Aleah’s method 
answered a question they did not ask. 

Figure 8.3. The intersection of the circle and the 
perpendicular line.
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Lastly, Aleah seems to adopt a familiar mathematical aesthetic for sim-
plicity and economy; she uses both as criteria for evaluating the two solu-
tions. Her rotation method is simpler because it does not require using the 
circle as a compass tool, and it also essentially repeats the same step over 
and over, instead of requiring several constructions that are not transpar-
ently related to the square (what does a circle have to do with a square?). 
Her solution has more economy because it literally takes fewer steps, and 
saves Aleah from having to hide extra geometric objects. (In Sara’s meth-
od, the circles and line segments used to determine the vertices need to be 
hidden and replaced with segments, as can be seen in the script shown in 
Figure 8.2.) 

I do wonder whether Aleah actually prefers her method because it is 
hers and merely appeals to the criteria of simplicity and economy as less 
subjective-sounding reasons. Professional mathematicians might be ac-
cused of doing the same thing—ultimately preferring their own discover-
ies and solutions. In fact, Wells (1988) raises this issue, suggesting that they 
might indeed be “aesthetically biased, as many artists seem to be, toward 
their own fi elds and their own works” (p. 39). As with Aleah, professional 
mathematicians might also invoke aesthetic criteria such as simplicity and 
economy when trying to convince colleagues of the signifi cance of their 
work. They may well also, as Schattschneider (2006) describes in her work 
on tessellations, admit to a lack of aesthetic appeal.

The fi rst and second sources of Aleah’s preference for the rotation 
method match Brown’s suggestion that some students prefer their own 
solutions. However, where Brown emphasizes the students’ solution pro-
cess, and the attachment they feel to their solution paths, I believe Aleah’s 
preference is not so much about the process as it is about the relationship 
between the problem and the solution. Aleah’s method fi t her problem, 
which happened to be slightly different from her classmates’ problem. 
The mathematics she was doing connected to her own values and her own 
understanding, and brought to a satisfying culmination her overall expe-
rience with the construction of a square. Here the aesthetic plays a slightly 
more experiential role, since the “sense of fi t” straddles the process of in-
quiry instead of operating only at the fi nal phase. 

Contexts of Negotiation. Unlike the previous case with John and 
Nora, the four students here do not come to a consensus, nor does their 
exchange lead to further investigation. However, each student develops 
a sense of the value of their different square-constructing methods, much 
as they might develop a sense of the value of a poem or book, thus estab-
lishing a personal connection with some of the mathematical ideas they 
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will continue using in the classroom. Both episodes show quite clearly 
that middle school students can draw on some of the important aesthetic 
criteria used by professional mathematicians, something that may seem 
surprising given Dreyfus and Eisenberg’s research cited at the beginning 
of this section. The apparently confl icting conclusions reveal different as-
sumptions and goals for aesthetic appreciation. 

In Dreyfus and Eisenberg’s study, students who had already found 
their own solutions for a problem were presented with an outside, “ex-
pert” one; this set up a very different context of negotiation than the one in 
the two episodes I reported here. The “more elegant” solutions were essen-
tially presented as the right solutions, eliciting responses from the students 
such as “Oh, that’s how you do it.” The students even became defensive: 
“My way works, too.” Furthermore, it is not clear that the students really 
understood the “aesthetically superior” solutions; in fact, Dreyfus and 
Eisenberg report that the students wanted to “pick up the pencil and start 
working—without fi rst refl ecting upon different solutions paths” (1986,
p. 7). This slight condemnation refl ects Dreyfus and Eisenberg’s belief that 
aesthetic judgments can be made based on objectively accessible features 
that determine the “aesthetic merit” of a solution, which would be agreed 
upon by the “experts.” 

However, Wells showed that some mathematicians need to “live 
through” a solution or proof again in order to describe its aesthetic appeal. 
By wanting to pick up their pencils, Dreyfus and Eisenberg’s students 
were showing that they needed to familiarize themselves better with the 
different solution path before being able to compare it with their own: 
they could not make spontaneous value judgments. 

Instead of a right versus wrong context of negotiation, the students in 
the two episodes were invited into a value-oriented context of negotiation. 
Through the process of negotiation, they were given the opportunity to 
familiarize themselves with each other’s solutions, instead of having to 
make immediate judgments. I have claimed that these students appealed 
to aesthetic criteria that are similar to ones used by mathematicians but, for 
two reasons, I have not focused on whether “experts” would have agreed 
with any of the students’ preferences. First, I follow Wells in questioning 
whether there is in fact a singly, unitary agreed-upon “expert” opinion 
and whether there is an aesthetic metric2—some hierarchical combination 
of aesthetic criteria—that could produce an “expert” opinion. After all, 
criteria such as simplicity, cleverness, perspicuity, and generativity may 
often be at odds with each other: A clever solution might be less perspicu-
ous or a little more complex. Instead of determining whether students’ 
judgments match those of mathematicians, I believe that more can be 
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learned about students’ mathematical aesthetic by investigating the vari-
ety of aesthetic criteria used by mathematicians and students, as well as 
the similarities and differences. 

Second, and more importantly, students usually work with mathemat-
ical ideas that are so familiar and evident to mathematicians that they fail 
to elicit any aesthetic response from the latter. But even if a professional 
mathematician is not surprised by or drawn to the “magical” properties 
of 9, that does not mean the idea is unworthy of aesthetic consideration. 
Surely, educators cannot hope to help students appreciate the “elegance” 
of the Pythagorean proof of the infi nity of primes without fi rst helping 
them make value judgments on their own mathematics. That said, I do 
not believe that the primary goal of inviting aesthetic evaluation into the 
mathematics classroom should be to initiate students into the aesthetic 
norms of the mathematics community. Certainly, students need to see that 
the mathematical community tends to value aesthetic ideals such as cer-
tainty, exactness, and succinctness, so that they can understand the em-
phasis on rigor, proof, and terse symbolic representation in the mathemat-
ics classroom. But there is no reason to coerce students into adopting some 
ideal mathematical aesthetic interpreted in a metric that, say, Dreyfus and 
Eisenberg might use. 

I have already mentioned a primary goal of inviting aesthetic evalua-
tion into the classroom: encouraging students to develop a value-orient-
ed sense of mathematics. In addition to presenting students with a more 
genuine image of mathematics as professional mathematicians practice it, 
a value-oriented sense of mathematics can help engage students at a more 
personal, humanistic level, thus making their experiences in the classroom 
more memorable and meaningful. After all, as Johnson (1987) argues in 
his book The Body in the Mind: The Bodily Basis of Meaning, Imagination, 
and Reason, the aesthetic provides the very “means by which we are able 
to have coherent experience that we can make some sense of” (p. xx). A 
value-oriented sense of mathematics should also provoke metacognitive 
activity since aesthetic evaluation draws on refl ections of one’s feelings 
and beliefs about mathematical ideas. 

Wells (1988) offers yet another reason for inviting aesthetic evaluation 
into the mathematics classroom. He points out that teachers might have 
much to gain in probing students’ aesthetic judgments by helping them 
adapt classroom teaching toward their students’ perceptions. For instance, 
based on the example with Zoe (from the introductory chapter), a teacher 
might adapt future teaching by looking for ideas or tasks that are based 
on symmetry. Similarly, based on Aleah’s perception of squares, a teacher 
might try to invite Aleah to construct other shapes using transformational 
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geometry tools. I suggest that in probing students’ aesthetic judgments, 
teachers might also gain insight into students’ ways of thinking and feel-
ing, which can help them adapt the conditions of classroom learning. The 
following example illustrates this by showing how middle school students’ 
aesthetic reactions to the discovery of two different mathematical ideas 
reveal preferences about the way in which those discoveries are made. It 
features three grade eight students—Emma, Justin, and Aaron (classmates 
of Aleah), with whom I did geometry once per week over the course of an 
entire school year. 

Emma, Justin, and Aaron: The Banality of Discovery Learning

The students have already “learned” about the sum of the interior an-
gles of polygons. That is, they can just about remember the formula for 
any polygon, but defi nitely know what happens for triangles and quadri-
laterals. So I introduce them to the idea of exterior angles. This requires a 
little drawing since the students do not see why exterior angles are not just 
the “opposite” of the interior ones (that is, the 360° complement). Once 
we establish that the exterior angle is what they prefer to call “the turning 
angle,” I ask the students to investigate the exterior angles of a polygon of 
their choice using Sketchpad, and also show them how to construct rays 
and measure angles. But fi rst, I ask them to predict what they will fi nd. 
Quite reasonably, they predict that the “turning angles” will have some 
similarities to the interior ones—that is, have a sum that depends on the 
number of sides. 

Before they get started, I ask the students to calculate the sum of their 
“turning angles” as they measure them so that they see the sum of the fi rst 
two “turning angles” and then the sum of the fi rst three, and so on.

The three students each pick a different polygon and proceed to con-
struct and measure the “turning angles.” This takes some time. They cal-
culate the sums progressively. Emma announces that the sum of all fi ve of 
her turning angles is 360°. Aaron says that the sum of all six of his turn-
ing angles is 429.65°; meanwhile, Emma has noticed that the sum remains 
360° only when her pentagon is convex. Finally, Justin announces that the 
sum of his six turning angles is also 360°. We all look at Aaron’s sketch and 
fi nd that he has used one wrong angle in his sketch. He recalculates and 
fi nds that the sum becomes 360°. 

I ask the students what they make of their original predictions. Aaron 
responds, “I guess we were wrong—the angles just add to 360.” Since 
we have only looked at pentagons and hexagons, I ask them why they 
think the same relationship will hold for other polygons. They shrug their 
shoulders, then all agree that it will. Emma, always the fi rst to question, 
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asks why. So I show them, by “walking around a path” that when I return 
to my starting position I have “swept out” a whole circle, no matter how 
many steps I take, which is simply 360°. “Oh yeah, that makes sense,” says 
Aaron. 

Since there seemed to be nothing more to be said, I return to the ques-
tion they had asked at the beginning of the class, how to make the Pythag-
orean tree (shown in Figure 8.4). With the 5 minutes remaining, I show 
them. First, you start with a square, and then you have to construct a right-
angled triangle whose hypotenuse is one side of the square. I then realize 
that in order to do this, I need to use the “inscribed angle theorem,” which 
states that if an inscribed angle of a circle intercepts a diameter, then the 
angle is a right angle. I apologize for having to introduce this new theorem 
so quickly and promise them that we will return to it later in the year. I 
then construct the circle centered on the midpoint of AC and use that circle 
to construct the right-angled triangle ABC (see Figure 8.4). 

Before I can move on to the next step, Aaron grabs the mouse from me, 
saying, “Wait, that can’t be true all the time.” In particular, he seems wor-
ried about the cases when the point B is close to the end points A and C of 
the diameter. He drags B around and sees that the angle measure remains 
at 90°. I hear a chorus of “cool” and “neat.” Since they seem interested, I 
tell them that this theorem can be used in designing seating for concert 
stages. If all the seats are placed on a semicircle in front of the stage (which 
acts as the diameter of the circle), every audience member will have the 
same viewing angle. More choruses of “cool” and “neat” ensue from all 
three students. I then fi nish the Pythagorean tree. The students stare at the 
screen and declare their surprise at how easily and quickly this “compli-
cated-looking thing” could be made.

Figure 8.4. Making the Pythagorean tree fractal.

Inscribed angle theorem Pythagorean tree
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The students were quite unmoved upon discovering that the sum of 
the exterior angles of a polygon remains constant (the Sum of Exterior An-
gles, or SEA, theorem). I had tried to build up their expectations—by ask-
ing them to predict—in order to set them up for a surprise, but they failed 
to show any such signs of it. I had also tried to provide them with a sense 
of fi t by having them calculate the nonconstant intermediate sums, so that 
the last angle would fi t, like a tessellating tile, into the remaining space. 
By contrast, the inscribed angle theorem, which is also about a constant 
measure, elicited both surprise and interest. This was unexpected for me, 
since I had felt uncomfortable about having to introduce the theorem in 
such an out-of-the-blue manner and had simply hoped that the students 
would nod it by, anxious as they were to see the fi nal construction. 

Why were the students aesthetically numb to the apparently person-
ally engaging and surprising discovery, yet aroused and intrigued by a 
haphazard discovery the importance of which I had even tried to down-
play? In retrospect, I wondered whether they had sensed a higher degree 
of purposiveness in the inscribed angle theorem, since it had the func-
tional value of leading us to the construction of the Pythagorean tree. If 
functionality can be seen as an aesthetic criterion—and the modernist 
movement in architecture would certainly warrant it—then perhaps the 
students valued it more than the criteria of surprise and fi t that I had tried 
to evoke. 

When I asked the students about their reactions a few days later, they 
offered other reasons. Actually, at fi rst they were reluctant to admit their 
curiosity about the inscribed angle theorem. But when I reminded them of 
their excitement over that theorem, Aaron explained why the SEA discov-
ery had not elicited any reactions for him: “When you know how it works, 
the theories behind it and why it happens, it’s not so surprising.” With 
the inscribed angle theorem, though, he explained: “But I never thought 
that would happen, I never even thought of those things, so when you 
showed us it really was surprising.” Emma added that the SEA discovery 
had been a little tedious to do and that “when it takes a long time to get it 
all together, you sort of lose the surprise.” Then she added, “Anyway, we 
know that we’ll discover something at the end because it’s math class.” 
Justin nodded his head at this comment, and added his own explanation: 
“And we know that angles do tricks because of the inner angles thing, but 
that circle thing was something that we had never seen before and it was 
all in one picture.” 

Since the students had not mentioned it, I probed my own hypothesis 
about functionality. They seem unconvinced, claiming that their interest in 
the inscribed angle theorem was completely separate from their enchant-
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ment with the Pythagorean tree. But perhaps their anticipation to see how 
the Pythagorean tree was constructed acted as an affective and aesthetic 
primer, putting the students in a state of expectancy and attentiveness that 
allowed them to appreciate the inscribed angle theorem. If so, the students 
are right in dismissing the functionality hypothesis, yet the Pythagorean 
tree does serve a purpose. It provides both the cognitive and emotional 
context for the inscribed angle theorem. 

Finally, I asked the students whether they would prefer it if I always 
just told them theorems, given their preference for out-of-the-blue surpris-
es. Aaron quickly replied, “It’s tricky, because we learn better when we 
do it ourselves, probably I’ll always remember the exterior angles thing.” 
Trying to be helpful, Emma proposed that, “You mix things so that some-
times we discover and sometimes you tell us.”

While acknowledging its pedagogical limitations, the students express 
a distinct preference for the way they learned the inscribed angle theo-
rem over the way they learned the SEA theorem. To those who lament the 
“canned” nature of many guided discovery activities, this may not be sur-
prising. Emma’s comment suggests that the guided discovery approach to 
the SEA theorem can be accused of having a “false sense of aesthetic uni-
ty.” As Aaron notes, students may remember the theorems better, perhaps 
even understand why they work; however, they are robbed of the feelings 
of doubt and messiness that characterize mathematical inquiry. 

WONDER AND THE AESTHETIC

Aaron’s comment (“When you know how it works, the theories behind it 
and why it happens, it’s not so surprising”) brings to fore once again the 
relationship between wonder and learning discussed by Aristotle, Des-
cartes and, more recently, Fisher (1998) in his book Wonder, the Rainbow and 
the Aesthetics of Rare Experiences. Aaron intimates that things he knows and 
understands, as well as things with which he has grown familiar, cannot 
evoke surprise and wonder. Fisher agrees, arguing that only that which 
we see as if for the fi rst time can evoke wonder. But Fisher also relates 
wonder to learning, claiming, along with Socrates, that all learning begins 
in wonder. Fisher’s view of learning is that it proceeds from sequences 
of small steps of wonder, sequences of surprising moments when prior 
experience is momentarily upset, but which that same prior experience 
prepares us to understand. Building on Descartes’s view, Fisher argues 
that wonder is primarily characterized by surprise, by its unexpectedness 
and suddenness. Yet surprise by itself is not enough; there also has to be 
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simultaneous certainty and a sense of realization that joins the surprise. 
The realization is the learning, and it is marked—recorded—by a feeling 
of pleasure. Without the certainty, there is no sense of wonder. He says 
“The mind says ‘aha!’ in the aesthetic moment when the spirit says ‘ah!’” 
(p. 31). 

Justin’s comment about the inscribed angle theorem being “all in one 
picture” as well as being “something we had never seen before,” certainly 
refl ects the visual nature of his experience in addition to the sense of unex-
pectedness. Justin may not have understood why the inscribed angle had 
to be 90°, yet, according to Fisher, his immediate feeling of pleasure after 
realizing “this is so” indicates that he has learned it.

Educators might well wonder how teachers are to succeed in constantly 
evoking student wonder; surely math class cannot be entirely visual and 
unexpected. But Fisher is not concerned here with formal instruction and 
offers no help in this direction. Instead he cautions, with Descartes, that 
wonder declines with familiarity and that one has to work to keep alert in 
order to notice extraordinary things, and to avoid becoming “addicted to 
even trivial differences” without refl ective pursuit of knowledge. Indeed, 
even the more complex patterns evoked by Gombrich in Figure 3.1 can 
become boring. Clearly, the three students had become too familiar both 
with the guided discovery approach and with the routine of adding up the 
angles of the polygon. Would the students have reacted differently had we 
done the SEA theorem a few weeks later? Would the students have reacted 
differently had I just told them the result? 

I fi nd it strange that Emma, who complained about the drudgery of 
the guided discovery approach, was the one who was curious enough to 
explore the concave case—without my prompting—and to propose that 
the SEA theorem only holds for convex polygons. From Fisher’s perspec-
tive, once released from the predetermined path expected in the math 
class, having discovered that the sum of the exterior angles is constant, 
Emma was fi nally free to notice the extraordinary circumstance brought 
on by dragging one vertex of her pentagon. Would she have been more 
surprised by the SEA theorem had I instructed her to start with a concave 
polygon, one that does not “work out” as she would expect?

I do not have any sure answers to the hypothetical questions posed 
above. However, the aesthetic analysis occasioned by the students’ ex-
periences with two different ways of learning at least suggests the kinds 
of alternatives that a teacher could try as she struggles to adapt teaching 
strategies toward her students’ ways of thinking and feeling. It is worth 
keeping in mind, though, that the capacity to wonder is also an attitude to-
ward experience. If novelty is a necessary ingredient of wonder, as well as 
surprise, what are its precursors? What makes us capable of wondering? 
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The educator Tom Green (1971) argues that one precursor is the sense of 
contingency, the awareness that things need not be as they are. He writes, 
“Wonder is the product, not of ignorance, but of the knowledge that facts 
are problematic” (p. 197). 

Mathematics is a world in which the struggle between the depend-
able and the contingent crystallize; in which dependable facts abound as 
a result of strict assumptions. But what if we could divide by 0, what if 
we threw away the parallel postulate, what if irrational numbers were 
our counting blocks, what if we really could have staircases like those 
drawn by M. C. Escher, what if we could redefi ne differentiability to cope 
with some kinds of discontinuity? The capacity to wonder also involves a 
confession of limitation or ignorance. To wonder is to acknowledge one’s 
ignorance—not in a state of despair or passivity, but in the pleasurable 
pursuit of further knowledge.

How would Fisher talk to those for whom explanation of the science 
of the rainbow appears to spoil their delight? He uses the emergence of 
curiosity after an experience of wonder as a bridge between wonder and 
thought: the process of wondering. Perhaps those who have had an ex-
planation of the rainbow thrust upon them, before they wondered about 
it independently, wanting an explanation, would fi nd scientifi c descrip-
tion to be anticlimactic . . . unless they fi nd scientifi c explanation wonder-
ful in its own terms. This may very well be how Aaron felt about the SEA 
theorem. In a sense, this suggests a distinction between different types of 
wonder. When I wonder why the rainbow appears, or how it appears, my 
wonder will cease when I fi nd the answer—my curiosity will be satisfi ed. 
Yet I can also continue to wonder at the rainbow. How can it be that there 
is a rainbow? This question will not be resolved through investigation; 
instead, it shows that I stand astonished before the contingency of the 
rainbow, even though I know how it works. Clearly, Aaron does not feel 
this way about the SEA theorem. In fact, he had access to neither type 
of wonder during the guided discovery activity, whereas the inscribed 
angle theorem at least provided him with the fi rst type. And since I did 
not explain how the inscribed angle theorem works, perhaps he was even 
left wondering at it. 

VALUING THE AESTHETIC

It is tempting, for one who takes pleasure in and values the beauty and el-
egance of certain mathematical entities, to view aesthetic appreciation as a 
goal in and of itself. Taken into an educational context, the temptation can 
turn into a conviction that students should be able to take pleasure in and 
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value the beauty and elegance of mathematical solutions and proofs—as 
is sometimes found in some curriculum guides (e.g., the mathematics 
framework for the Canadian Atlantic Provinces [Atlantic Provinces Edu-
cational Foundation, 1996] includes “Aesthetic Expression” as one of the 
six “essential graduation learnings”). By showing that students often fail 
to perceive supposed beauty in a fruitful solution or elegance in a succinct 
proof, Dreyfus and Eisenberg’s study suggests that students may not be 
able to engage in aesthetic evaluation for the same self-fulfi lling purposes 
that motivate many mathematicians. In contrast, however, the examples 
above have illustrated that students can and do behave aesthetically in the 
mathematics classroom, but that their aesthetic behaviors have very func-
tional, although pedagogically desirable, purposes: establishing personal 
and social value. 

In each example, aesthetic behavior was elicited by inviting students 
to consider the value of the mathematical entities with which they were 
working. In the fi rst two examples, the value-oriented approach provided 
a framework for the comparison of students’ own solutions. Note that the 
students were not simply presenting their solutions to an audience—rath-
er, they were engaged in persuading their audience that their solutions 
had value.3 This involvement appeals to qualitative and ultimately more 
subjective criteria that rarely enter into negotiations of correctness. And 
though various aesthetic criteria were called upon, personal attachments 
seemed to dominate, as might be expected given the moral and emotional 
development of middle school students. I have found that older students 
tend to reach a level of detachment that privileges a certain set of aesthetic 
criteria pervasive in the mathematics community. 

The third example involved a comparison of mathematical ideas pre-
sented to students, and thus avoided the bias engendered by a student’s 
investment in his or her own work. In a sense, this third example provid-
ed the most insight into the aesthetic dimension of student learning. We 
know that a student’s understanding of an idea will depend on the way 
in which it is presented and explained, but this example underlined how 
a student’s appreciation of an idea—and interest in an idea—can depend 
on the way she encounters it. 

We rarely ask students what they would like to learn or get better at; 
the rigidity of the curriculum makes it diffi cult for teachers to adapt con-
tent to the interests of students. In contrast, we might be able to ask how 
they would like to learn. Teaching strategies and methods, though infl u-
enced by teaching philosophies and histories, seem more fl exible and thus 
more adaptable to students’ ways of thinking and feeling. And perhaps, 
by probing their students’ perceptions, teachers might gain access to their 
students’ sense of wonder. 
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FITTING THE PIECES TOGETHER: AESTHETICS AND INQUIRY

This chapter concludes my empirical investigation into student math-
ematics. Using an aesthetic lens, I have revealed the three ways in which 
the aesthetic can and does function in the mathematical activities of mid-
dle school students. I have also discussed some of the challenges that 
educators will face in trying to evoke and nurture students’ aesthetic abil-
ities. I want to emphasize that these examples present only an “existence 
proof” of the roles of the aesthetic in student mathematics, and constitute 
but a fi rst step toward designing and studying aesthetically rich learning 
environments. 

However, the aesthetic lens has also provided a powerful tool with 
which teachers and researchers can understand what goes on in math-
ematics classrooms. It helps us see what can all too often seem like famil-
iar behavior and activity in a new and generative way. 

The various ways in which both mathematicians and student math-
ematicians become attracted to mathematical situations and problems—
where the motivational role of the aesthetic was seen to operate—do not 
only serve an affective motivational purpose. They also contribute to 
providing the learner with what Dewey calls qualitative unity, which af-
fects the choices and decisions made by the learner as a problem becomes 
determined and hypotheses are generated—where the generative role of 
the aesthetic was seen to operate. This was evident in both the kissing tri-
angles’ mathematical discovery of Chapter 4, and in, for example, Chris-
tine’s discovery with Meeting Lulu, mentioned in Chapter 6. In the latter 
case, though, it seemed that the line between the motivational and genera-
tive functions of the aesthetic was particularly blurred. Dewey’s account 
explains why this should be so: The aesthetic attraction to a problem plays 
a part in shaping the inquiry by infl uencing the discernment and selection 
of features in a situation, and thereby directing the thought patterns of the 
inquirer. Therefore, it is not necessary for students to actually select their 
own problems, as do mathematicians, in order to prompt the motivational  
role of the aesthetic, though problem selection could certainly help evoke 
students’ attentiveness to certain qualitative features. 

The generative role of the aesthetic is more diffi cult—even impos-
sible—to evoke without the learner’s initial attraction and attention to 
a qualitative unity. After all, the aesthetic choices made in the course of 
inquiry depend on the qualitative apprehensions, and operate on vague 
suggestions of relations and distinctions rather than on fi rm proposition-
al knowledge. And if one is truly solving a problem or exploring new 
territory, vague suggestions of relations and distinctions are all there is 
to go on—for mathematicians and students alike. These relations and 
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distinctions are discerned patterns—such as rhythm or symmetry—that 
can be imposed on one’s understanding of a situation. Identifying such 
patterns depends upon one’s attentiveness to the emerging sense of an 
enveloping whole, a sense of whole that guides the further selection and 
manipulation of component parts.

The various strategies involved in the generative function of the aes-
thetic (playing or “getting a feel for,” establishing intimacy, and enjoying 
the craft) may all help the mathematical inquirer work with these rela-
tions and distinctions in establishing some unifying structure. They are 
not strategies that generate propositional knowledge; rather, they allow 
an inquirer to fi nds ways of directly experiencing qualities of a situation, 
and thus reestablishing some kind of qualitative unity. In a sense, the 
strategies help the inquirer enter into the subject-matter anew, with fresh 
perspectives and newly cued prior experiences. 

Moving away from the specifi c roles to the more general fl ow of inqui-
ry helps focus the intimate connection between the motivational and the 
generative roles of the aesthetic. They are codependent and coevolving: 
Though the motivational is initiated in the fi rst stages of mathematical 
inquiry, giving rise to Dewey’s required, felt tension, it shapes the selec-
tions and actions that follow, thereby taking on a heuristic character. Now 
it is apparent why Burton’s (1999b) “ponderings, what ifs, it seems to be 
thats, and it feels as thoughs” strategy succeeded in eliciting an aesthetic 
response in Casey. It gave her the chance to reestablish a qualitative unity 
of the situation, and thus a new basis on which to make selections and 
actions. 

Both the motivational and the generative are living in and sustaining of 
inquiry, in contrast with the often more refl ective and after-the-fact evalu-
ative role of the aesthetic. The aesthetic judgments constituting the evalua-
tive character of the aesthetic seem to be made as one considers the fi tness 
of one’s ideas, whether they achieve some compelling form or whether 
they have succeeded in translating a pervasive quality into a system of 
defi nite coherent terms. The way in which Dewey characterizes the close 
of an investigation in the process of inquiry leaves open the possibility for 
two forms of aesthetic evaluations in mathematics. On the one hand, there 
is the immediate, experiential aesthetic response to the qualitative unity 
of a solution. This kind of aesthetic response includes a distinctly affec-
tive component, which helps announce the close of an inquiry: Recall, for 
example, John’s emotional reaction when he created his rainbow. On the 
other, there is the evolving, purposeful, aesthetic appraisal that shapes the 
presentation of the solution, the “write-up” of a solution. I discussed this 
kind of aesthetic appraisal earlier when I quoted Wolfgang Krull’s claim 
that mathematicians “also want to arrange and assemble the theorems 
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so that they appear not only correct but evident and compelling” (1987,
p. 49). The process of writing up a solution may yield an immediate, expe-
riential aesthetic response as well, when one, for instance, has found the 
“perfect” way—enlightening, clever, parsimonious, and so on—of com-
municating the solution. 

The roles of the aesthetic vitalize the personal creation of knowledge. 
They involve the learner’s attention to aesthetic qualities of a situation, 
and the learner’s desire to achieve a sense of “fi t.” However, I suggested in 
Part II that the evaluative aesthetic also operates—in addition to the two 
ways articulated above—in the social creation of mathematical knowl-
edge, in the negotiation of signifi cance within a mathematical community. 
This was especially apparent in the analyses of student activity, where aes-
thetic values emerged most markedly when the students attempted to ne-
gotiate the worth of their solutions or ideas among themselves. Aesthetic
values do not follow so much from individual discernment and desire. 
Instead, they are defi ned and shaped by a community, and accepted or 
adopted by members of that community. In order to become participants 
in the mathematical community, learners need to become aware of the 
prevalent aesthetic values, which means that they will have to learn to 
appreciate the importance of the aesthetic criteria professional mathema-
ticians adopt. Therefore, while experience and socioculturally mediated 
values will have some impact on the three roles of the aesthetic in inquiry, 
it is perhaps in the postinquiry evaluative role that enculturation will be 
most signifi cant—an issue I will pursue in Chapter 9.
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PART IV

Aesthetic Enculturation

Both Part II and Part III focused an aesthetic lens on the actions, decisions, 
and experiences of individuals—including mathematicians, students, and 
learners. In these instances, the roles of the mathematical aesthetic were 
played out in distinct, personal ways for each of these individuals. How-
ever, the aesthetic sensibility drawn upon by each individual was shaped 
by contextual factors, as was often intimated in this book. In particular, 
it was infl uenced by cultural values that may operate within both large 
groups such as the community of professional mathematicians and small-
er groups such as a ninth grade classroom in Kalamazoo. 

In Part IV, however, I seek to develop a social rather than individual 
lens on the mathematical aesthetic. Chapter 9 explores the aesthetic di-
mension of the values associated with the mathematics culture, and the 
impact that these values have had on the discipline itself. Chapter 10 
begins by investigating the extent to which those values manifest them-
selves in the broad context of mathematics education (specifi cally, in cur-
riculum-dictated topics and in the tasks and tools used by teachers and 
learners), then explores how mathematical values are communicated to 
students—explicitly or not—in the classroom. The ultimate goals of Part 
IV are to identify the ways in which aesthetic enculturation already occurs 
in the mathematics classroom, to determine what effect this process of en-
culturation has on the beliefs and actions of teachers and students, and to 
point to contexts and forms of communication that might productively 
support students’ appreciation of the aesthetic dimension of mathematical 
values. I draw extensively here on the work of other mathematics educa-
tion researchers, in conjunction with the aesthetic lens developed in this 
book, to refl ect upon and sometimes refi ne their insights.
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CHAPTER 9

Peering Inside
the Mathematics Culture

As I have argued throughout this book, aesthetic sensibility can help en-
gage students in mathematical exploration, guide their process of inquiry, 
and establish personal meanings about their mathematical work. The aes-
thetic operates in the personal domain of the individual learner, where 
the learner is responding to qualities of her environment. However, as 
was made clear in my discussion of the evaluative role of the aesthetic, in 
their aesthetic responses, individuals are infl uenced by the values found 
in a particular culture, such as the culture of research mathematics. As a 
culture, mathematics is driven by a distinct set of values—of which some 
specifi cally pertain to the aesthetic—that distinguish it from other human 
domains of inquiry in terms of the production, perception, and communi-
cation of knowledge, as well as its organization for posterity. These values 
are responsible for the way in which the very human practice of doing 
mathematics gives rise to abstract, dehumanized ideas.

FROM OUTSIDE TO INSIDE THE CULTURE

Even though mathematicians do not always agree on the specifi cs of their 
aesthetic responses and preferences, they have been enculturated into a 
community where values shape their mathematical investigations and 
the ways in which they communicate the results of their work. Individual 
mathematicians may engage their aesthetic sensibility to a greater or lesser 
degree, but the culture in which they work has developed a set of values 
that circumscribe them all. Those outside the mathematics culture, interest-
ed in peering in, will need to understand how these values are interwoven 
into the fabric of the discipline and how they are communicated within the 
discipline, among its practitioners and between its novices and experts. 

Many current and past students of mathematics—who live and have 
lived outside this culture—might be surprised to learn that mathematics is 
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not a value-free subject. They might assume that mathematical truths are 
objective, unchanging, and absolute in the sense that they would always 
turn out the same, no matter which particular people are creating them. 
Yet mathematical values are implicit in almost every set of curriculum 
expectation; even the seemingly innocuous teacher imperative to “check 
your work” hints at the intricate set of actions and goals that are valued 
in mathematics. 

Given the focus of this book, I want to identify some of the aesthetic as-
pects of the values inherent in the mathematics culture and to understand 
how these values shape both the discipline and its teaching. It is often 
diffi cult for those outside a particular culture to perceive and understand 
the values that shape it—many people experience this when visiting for-
eign countries.1 Most mathematics teachers, despite their fl uency with the 
subject, actually also live outside the mathematics culture, as do almost 
all of their students. This makes the task of educating students mathemat-
ically—which includes enculturating them—quite challenging. 

Fortunately, Alan Bishop (1991), who has studied the social and cul-
tural aspects of the mathematics community extensively, has been able to 
identify six principal relationships to knowledge valued by the mathemat-
ics culture, in terms of both historical and contemporary standpoints. Not 
all of these values are explicitly related to the aesthetic interests of this 
book, so I will focus more on some than on others. My goal is to determine 
the aesthetic implications of these values in order to help those outside the 
culture to appreciate them, understand them, and perhaps even develop 
a critical stance toward them. It will then be possible to consider math-
ematics enculturation from an aesthetic point of view, and propose ways 
in which teachers might attend to the creation and negotiation of aesthet-
ically relevant values in their classrooms.

WHAT DO MATHEMATICIANS VALUE?

Bishop identifi es three pairs of principal values historically associated 
with mathematics: rationalism and objectivism, control and progress, and 
openness and mystery. These six values may or may not be exhaustive, 
but they certainly provide substantial enough insight into the culture of 
mathematics for the purposes of this chapter. They also have varying de-
grees of relation to the aesthetic. Each pair of values is set in opposition, 
but is also linked, thus refl ecting well the complex emotional, social, and 
ideological composition of values and indicating strongly that values are 
not truths, nor are they necessarily good or bad.
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Rationalism and Objectivism

The rationalism value, according to Bishop, takes deductive reasoning 
as the only true way of achieving satisfactory explanations and conclu-
sions; it shuns other forms of explanation that betray their human creators, 
such as trial-and-error pragmatism, rules of practice, traditional wisdom, 
and inductive or analogic reasoning. In everyday discourse, to be rational 
is to seek logical connections between ideas, thus overcoming the incon-
sistencies, disagreements, or incongruities that may arise from personal 
interpretations of situations or ideas. Rational reasoning is often seen as 
a good thing, except in cases where people overrationalize or appeal to 
logical arguments in order to defend their desires (as in, “I rationalize 
eating more chocolate because it contains important minerals”). Bishop 
writes that people are guided by and uphold the everyday rationalism 
value “when we disprove a hypothesis, when we fi nd a counterexample, 
when we pursue a line of reasoning to a “logical conclusion” and fi nd it 
is a contradiction to something known to be true, and when we reconcile 
an argument” (1991, p. 63). But rationalism is not, in and of itself, good; 
however, in mathematics, it is valued as a form of justifi cation more than 
in any other domain. 

The objectivism value is paired with rationalism, and characterizes 
a worldview dominated by images of material objects, free from the 
interpretations and machinations of humans. In particular, the kind 
of objectivism that drives mathematics, as Bishop points out, is one in 
which ideas can be given objective meanings, thereby enabling them to 
be dealt with as if they were objects, and as if there were an objective 
mathematical reality. This focus on objects detracts from that of process: 
it constantly insists on reifying behavior (e.g., the process of adding) into 
atomistic things, or objects (the concept of sum).2 Objectivism and ratio-
nalism together seem to give mathematics its foundationalist bent—that 
is, its tendency to search for the essential building blocks of theories and 
proofs (or the axioms and postulates, in the case of Euclidean geometry).3 
Benjamin Bloom’s extensive study during the 1930s of the personal and 
family history of North American prodigies in a variety of fi elds (in-
cluding mathematics) identifi ed a number of characteristic personality 
traits. Some that were identifi ed in the mathematical subjects included a 
“penchant for solitude” and a “desire for precision” (see Gustin, 1985), 
as well as being independent-minded. The mathematicians also made 
frequent references to enjoying being able to “derive from scratch,” as 
well as what could be called a fundationalist tendency, a desire to get to 
the bottom of things.
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Control and Progress

Bishop’s next pair of values is that of control and progress. The con-
trol value is associated with the desire to predict, which in turn is as-
sociated with a quest for security and mastery. Mathematics seeks to 
control, and to make abstract objects behave predictably, according to 
the well-formulated rules dictated by mathematicians, and this provides 
more security than do authoritative examples, alternate interpretations, 
or selective evidence. 

The progress value, an attitude complementary to that of control, in-
cludes feelings of growth, development, change, and the desire to make the 
unknown known—the value is a dynamic one compared with the static,
security-seeking value of control. Progress can be valued in mathematics
because things that were unknown before are known now and will re-
main known in the future. The roots of the tree or the foundations of the 
building are secure and, therefore, the impetus can always lead toward 
new knowing, new branches, and new fl oors of the building. Compare 
this disciplinary value to that found in literary criticism, where scholars 
constantly return to old knowledge for reinterpretation or reconsidera-
tion. Given the attitude that new knowledge can be created, checked, and 
proved useful, it is rarely the case that mathematicians need to reconsider 
the truth of the Pythagorean theorem, for example. 

Openness and Mystery

The fi nal set of values proposed by Bishop is that of openness and 
mystery. Openness is concerned with the fact that “Mathematical truths, 
propositions and ideas generally, are open to examination by all” (p. 75) 
and that they are, therefore, not apparently dependent on opinion, poli-
tics, cultural differences, or beliefs. Of course, anyone who has opened a 
mathematics journal published in the past century knows that the math-
ematics there is hardly open to examination by all. As Bishop points out, 
one must fi rst know the conventions and symbols being used, and second, 
fi nd the ideas appealing enough to attempt to make sense of them. Thus, 
the openness value might better describe the desire to achieve universal 
and “pure” knowledge which, in principle, can be openly verifi able—in-
dependently of psychological or political issues.4 In order to be universal, 
such knowledge—the demonstrations and proofs—must be formalized 
into declarations that admit no subjective interpretations, and which make 
ideas explicit and open to criticism and objective analysis. 

Of course, the process of formalization also requires dehumanization; 
the facts must, so to speak, be made to “speak for themselves.” To this 
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point, the mathematician Gian-Carlo Rota has written that mathematical 
proof becomes a form of “pretending,” since the language of proof pro-
duces a striking gap between “the written version of a mathematical result 
and the discourse that is required in order to understand the same result” 
(p. 142). Thus, understanding is compromised, or rather, exchanged for 
a kind of functional language, one where “Clarity has been sacrifi ced to 
such shibboleths as consistency of notation, brevity of argument and the 
contrived linearity of inferential reasoning” (p. 142). Rota’s claim suggests 
that the openness value that shapes mathematical language has compro-
mised human understanding and perhaps, indeed, concealed it. 

Finally, the mystery value: From a historical point of view, mathema-
ticians have long been associated with astrology, alchemy, gematria, and 
magic; and, from a more contemporary point of view, questions such as 
the following continue to mystify the ordinary citizen: What is mathemat-
ics? Who does mathematics, why, and for what ends? Bishop argues that 
mathematical mystery originated partly in the ancient Greek cultivation 
of exclusiveness. Mathematicians took steps to preserve their mystery by 
making mathematics that was abstract and removed from everyday life. 
The Pythagorean pledge of secrecy can be seen as a quest for exclusivity 
in the close connection between mystery and mysticism. More contem-
porary practices in mathematics—in which one mathematician’s work is 
intelligible to and learnable by only a handful of colleagues—continue to 
uphold this tradition, whether consciously and deliberately or not.

In linking pairs of values, Bishop rightly refl ects the fact that they intermin-
gle in ways that produce certain characteristic, and sometimes contradic-
tory, traits in mathematics. I want to consider one of the most important of 
these traits, namely, the unique form and language of justifi cation—that of 
mathematical proof. I see mathematical proof as stemming from the inter-
play between several of Bishop’s values. The mathematics educator Nico-
las Balacheff (1988) provides a helpful set of characteristics of the language 
of mathematics that includes decontextualization, depersonalization, and 
detemporalization. These characteristics can be described, respectively, as 
detaching mathematical objects from their circumstances, detaching ac-
tions from the ones who acted upon them, and turning actions that occur 
over time into timeless objects. These acts are motivated quite clearly by 
the six values described above. For example, depersonalization and de-
contextualization avoid the psychological or political disagreements that 
openness seeks to avoid. The act of detemporalization satisfi es well those 
who value objectivism. And many other links can probably be made. I 
introduce Balacheff’s three “de’s” because they provide a good example 
of how the six values have contributed to shaping mathematics, but also 
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because the effect of the values on the language of mathematical proof has 
an interesting aesthetic dimension, as I will show in the next section. 

THE AESTHETIC DIMENSION OF MATHEMATICAL VALUES

There are many ways in which the values described above affect the 
teaching and learning of mathematics, and Bishop traces some of these 
in his book. Naturally, the mathematics discipline morphs somewhat un-
der pedagogical infl uences; however, it is still worth probing the extent 
to which mathematical values reveal themselves—whether explicitly, but 
more often implicitly—in contemporary teaching practices, and to con-
sider whether they should or could be more present in mathematics class-
rooms. Of course, I am particularly interested in the aesthetic dimension 
of these values, how the process of enculturation currently evolves, and 
how it might potentially evolve. I consider each of Bishop’s value in turn, 
probing fi rst its aesthetic aspect, and then look for evidence of its manifes-
tation in mathematics education. 

The aesthetic dimension of the rationalism value relates to the sense of 
completeness and wholeness that adheres to a logical argument. The op-
posite aesthetic orientation might value fuzziness, imprecision, and loose 
ends—which are often praised in artistic production, but are banished in 
public mathematics, where clarity, consistency, containment, and cohesion 
fi nd greater endorsement. The mathematician’s desire for such aesthetic 
qualities is about a discomfort with graded truths: It is claimed that logical 
conclusions, like cohesion and consistency, do not admit degrees. Argu-
ments are, on the one hand, either logical or not, and on the other, either 
consistent or not. 

The rationalism value prevails today, particularly in the public sphere, 
in the way mathematics is communicated within the culture (in journals 
and conferences) and in the way it is communicated to those outside the 
culture (in education and media). However, so are examples of math-
ematical undertakings that hint at different aesthetics, such as applied 
mathematics and fuzzy logic or the bottomless complexity of fractals 
and the limitless slipperiness of post-Gödelian logic. Therefore, while 
mathematics is dominated by rationalism, one can imagine other forms 
of mathematical inquiry, and this is the sense in which rationalism is con-
sidered a value rather than a truth or simply a fact. 

The mathematician François Le Lionnais (1948/1986) points to an 
alternative aesthetic in the mathematics culture—one absent in Bish-
op’s analysis—that seems also to confl ict with the rationalism value.
Le Lionnais’s relates more to the psychological than to the disciplinary. 
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He evokes this alternative aesthetic—a “romantic” as opposed to a 
“classical” one—by comparing two styles of human endeavor: on the 
one hand, a desire for equilibrium, harmony, and order; on the other, 
a yearning for lack of balance, form obliteration, and pathology.5 The 
mathematician Wolfgang Krull (1987) suggests a very similar line of di-
vision: the concrete (instead of the romantic) versus the abstract (instead 
of the classical). He sees mathematicians with concrete inclinations as 
being attracted to “diversity, variegation, and the like,” comparing these 
inclinations to the ones that fi nd heavily ornamented buildings attrac-
tive. In contrast, those with an abstract orientation prefer “simplicity, 
clarity, and great ‘line’” (p. 52). 

The classical or abstract style cannot be equated with the rationalism 
value, though the similarities are apparent, but the romantic or concrete 
style certainly seems to stand in opposition to rationalism, especially when 
Le Lionnais begins to describe it in relation to mathematical objects, such 
as imaginary numbers, which impress through “le culte des émotions vio-
lentes, du non-conformisme et de la bizarrerie” [the cult of violent emo-
tions, of nonconformism and of the bizarre] (p. 444). In contrast, a classi-
cal style tends to the austerity of, for example, magic squares or Pascal’s 
triangle, and to mastery over diversity. In orienting his description of the 
mathematical aesthetic, Le Lionnais is careful to emphasize values not as 
objective truths; instead, he shows how different mathematicians exercise 
their values. 

This chapter, however, is concerned with the mathematics culture as 
a whole, and not with the idiosyncrasies of individual mathematicians. 
Nonetheless, in calling attention to several examples in which mathemat-
icians articulate a romantic style, Le Lionnais’s insight into the mathemat-
ics culture provides a more complex view of the rationalism value, and 
one that might have interesting consequences in terms of school encul-
turation. I will return to these shortly, after considering the way in which 
Bishop’s rationalism value manifests itself in school mathematics. 

The aesthetic dimension of the rationalism value can be detected in 
the goals, structure, and progression of any mathematics program or cur-
riculum, in the striving for consistency, containment, and cohesion. For 
example, I know of no curriculum that is designed with the intention that 
students encounter the quadratic formula without fi rst having worked 
with square roots, and of no curriculum in which students learn how to 
multiply using base-ten system and divide using the base-two system. 
It may seem to the reader that things could be no other way, but I sug-
gest that school mathematics curricula are being guided by the values of 
the mathematics culture, and that it would be possible (though perhaps 
strange) to think of school curricula as much less cohesive or consistent.6
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In the classroom, a teacher’s imperatives to “write your solution clear-
ly” or “consider all the possible cases” can be seen as implicitly refl ecting 
an aesthetic dimension of rationalism, as can the pedagogical tendency 
discussed by Brown (1993) of giving students tasks that are always clear 
and coherent. One aspect of reform teaching that challenges the rational-
ism value involves encouraging students to use trial-and-error approaches 
in their problem solving, as well as inductive or analogic reasoning. While 
these forms of solutions are encouraged, particularly in earlier grades, I 
think that deductive reasoning is still seen as the epitome of mathemat-
ics, as something students should eventually achieve—leaving them per-
haps to wonder whether other forms of reasoning are not mathematical 
at all. Many mathematics educators have argued for the importance and 
prevalence of analogic and metaphoric reasoning (see, e.g., English, 2004). 
Their arguments have aimed to show either how supporting such forms 
of reasoning can improve student understanding or that such forms of 
reasoning are ubiquitous in mathematical thinking. Here, I am more con-
cerned with how the use, or lack thereof, of such forms of thinking in 
the classroom communicates to students the values of the mathematical 
community.

Though the aesthetic dimension of objectivism is less apparent to me 
than that of rationalism, an aesthetic desire for simplicity and purity can 
be detected in objectivism’s goals. Theories that are built on a small set 
of fundamental axioms have an attractive simplicity, while objectifying 
processes—dehumanizing and decomplexifying them—betray a quest for 
“pure” ideas that have been tamed enough to provide order, regularity, 
and predictability. The mathematician does not necessarily want to dehu-
manize mathematical ideas; rather, the desire is to bracket (separate ideas 
from their nonmathematical contexts) and purify them, and this requires 
extracting them from the complex fl ux of the human scene. 

I note two examples of the objectivism value in mathematics educa-
tion. First, the continued and irrevocable movement toward reifi cation, at 
an earlier and earlier age (e.g., mathematical functions move quickly from 
being processes in which an input is linked to an output to being static 
symbolic equations and graphical entities) implicitly echoes the objectivist 
desire for bracketing and freezing (or detemporalizing, as Balacheff might 
say). Again, what would be the implications of starting with the graphical 
object and investigating the process that gave rise to it? Second, in terms 
of teaching materials, the effect of atomism is striking: Mathematical ideas 
get sliced up, torn apart, isolated, and delivered as separate curriculum 
objectives. Here, mathematics certainly lends itself well to such parcelling 
out, but current educational policies act as effective accomplices.

Sinclair final proofs.indd   text146Sinclair final proofs.indd   text146 6/29/2006   10:55:06 AM6/29/2006   10:55:06 AM



Peering Inside the Mathematics Culture 147

Now with the control value, and its desire for security, it is hard to 
ignore the role of algorithms in mathematics, which can offer feelings of 
refuge—from uncertainty and change—by providing foolproof methods. 
In fact, as Bishop notes, the algorithm may even give rise to an aesthetic 
pleasure stemming from the satisfaction of revealing a sense of order in a 
previously disorganized or unstructured mess (my mother’s conversion 
method, described in the introduction, gave me that pleasure). Bishop also 
notes how mathematical rules and symbols can even function as secu-
rity blankets for some people, gaining such familiarity that they take on a 
certain kind of friendliness. For example, for the calculating wizard Wim 
Klein, “Numbers are friends to me” (p. 261, in Devlin, 2000). Taking the 
number 3,844 as an example, he says, “For you it’s just a 3 and an 8 and a 
4 and a 4. But I say, ‘Hi, 62 squared!’”

In valuing control, mathematics also exhibits an aesthetic preference 
for detachment, timelessness, and permanence. As the mathematician 
Brian Rotman points out, the desire embedded in the discourse of math-
ematicians involves a fantasy that things will not change and where ques-
tions can be answered once and for all:

The desire’s object is a pure, timeless unchanging discourse, where asser-
tions proved stay proved forever (and must somehow always have been 
true), where all the questions are determinate, and all the answers totally 
certain. (quoted in Walkerdine, 1988, pp. 187–188) 

It seems to me that desire and control also form part of the matrix 
of mathematical activity that professional mathematicians describe as 
craft—that is, the expert and considerate use of mathematical tools (such 
as algorithms, but also proof methods such as reductio ad absurdum or 
principles such as symmetry). For example, the physicist Freeman Dyson 
writes about the “aesthetic pleasure of the craftsmanship of performance” 
in mathematics and describes the delicate and tacit expertise involved in 
craft (in a way that resonates with more commonly known acknowledged 
craft such as woodworking and pottery): 

And if one is handling mathematical tools with some sophistication it is a 
very nonverbal and a very, very pleasurable experience just to know how 
to handle the tools well. It’s a great joy. (Dyson et al., 1982, p. 139)

In my own teaching, I have seen students treat mathematical tools with 
a similar expertise and consideration. I recall, for example, a grade 8 stu-
dent working on textbook exercises involving the multiplication of bino-
mials. Mathematics was not her favorite, nor her most successful, subject, 
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so I was surprised to see her work so intently and satisfyingly on problem 
after problem. When I asked the student why she was so engaged, she 
explained that these were problems she knew how to do, using the FOIL 
method (First, Outer, Inner, Last), and could get right every time. She could 
control her mathematics—the algorithm or rule was like a helpful friend. 
This kind of relationship to mathematical tools is interesting to consider 
in the light of debates in mathematics education about procedural versus 
conceptual understanding. I assume that Dyson, like other mathemati-
cians, understands well the workings of the tools he so delights in using, 
but it seems that his enjoyment is more related to the design of the tool, 
to its impeccable, unwavering ability to produce a result, than to his own 
conceptual understanding of it.

Teaching Mathematical Values

In the previous section, I brought up Balacheff’s three “de’s,” which are 
three forms of detachment, and connected them to the control value. The 
notion of detachment has been important in traditional philosophy, where 
emotional detachment was thought to be a prerequisite of aesthetic expe-
rience. The aesthetics of detachment that have shaped mathematics can be 
seen very clearly in many mathematics classrooms. 

For example, in an article on students’ investigations with the dragon 
curve fractal, Jackiw and Sinclair (2002) documented the process through 
which students moved from concrete, gestural, informal, and diverse 
descriptions of the fractal to descriptions that were increasingly decon-
textualized, depersonalized, and detemporalized. We started by folding 
strips of paper to create increasing iterations of the dragon curve, and 
then gave these spatial confi gurations the geographical descriptors of 
“mountains” and “valleys.” The actual strips of paper, and their evolu-
tion over time, were eventually discarded and students began creating 
and analyzing sequences of M’s and V’s so that, eventually, they could 
determine whether a given sequence, such as MVVMVVM, correspond-
ed to a “legal” dragon curve, based on both the number of terms in the 
sequence and the symmetries of letters within the sequence. In the end, 
the students had created a succinct notational system that could be used 
both to describe and predict the behavior of a previously ambiguous situ-
ation. We applauded their efforts for many reasons, not least for the way 
in which their work was mathematical: It had moved away from acts of 
folding paper (which had produced individual dragon curves, individu-
ally touched) to sequences of symbols that could exist independently of 
any physical objects. 
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However, we never explicitly brought this mathematical process to the 
students’ attention, nor did we point out the values—and the advantages 
and drawbacks—involved in this process that we had encouraged. Nor 
did we point out that the notational system they had developed, while 
still carrying vestiges of their physically bound mountains and valleys, 
would appear completely detached to others. The use of M’s and V’s had 
sprung from their geographical interpretation of the paper strips, but oth-
ers would likely fi nd those signs to be empty of meaning. 

My point here is to consider ways in which students encounter math-
ematical values in the classroom and to consider how values can be made 
more explicit. Do students appreciate what might be gained from the three 
“de” processes? Do they appreciate what might be lost? As with Bishop 
(1991) and Davis (1995), I believe that part of learning mathematics should 
involve becoming aware of and being able to develop a critical stance to-
ward its values and their effects on both personal experiences and social 
norms. In pursuing the value of openness, I have strayed somewhat from 
the aesthetic concerns of this book. However, the aesthetic assertively 
nudges itself into the complex of beliefs that constitute the urge for greater 
detachment. 

Are there any classroom practices that do not promote control in the 
classroom, or that invite students to consider these values critically? It 
seems that the reform-based practice of inviting students to develop their 
own alternate algorithms or solutions to problems may allow them to 
wrest some control away from the usual authorities, namely the teacher, 
the textbook, and the discipline itself. Whereas mathematicians value the 
sort of control that belongs to the discipline, which manifests itself in tools 
that are equally accessible and perfect, this pedagogical practice seems to 
exalt a different form of control, one that may well give rise to the more 
messy desire for appropriateness. Here, I recall the discussion in Part III 
of the evaluative role of the aesthetic, and the notion that students’ indi-
vidual solutions or idiosyncratic algorithms should go through a class-
room process of evaluation, so as to make explicit what can and should be 
valued in mathematical activity, and how student or teacher values may 
confl ict with those of the mathematical community.

Progress, Mystery, and Openness

The progress value, which is paired with that of control, can also be de-
tected in mathematics education. Bishop identifi es one form of it in the 
structure of the curriculum. Arithmetic operations, for example, or alge-
braic functions, are presented in a certain order with the assumption that 
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knowing how to multiply will evolve from knowing how to add and that 
knowing how to solve quadratic equations will evolve from knowing how 
to solve linear ones. Moreover, the set of exercises at the end of a unit are 
meant to establish that if students can solve many particular examples of 
addition or solving linear equations, they can solve all such examples. 

It seems doubtful to me that students’ perceptions of the mathemat-
ics curriculum are guided by a progress value. Students certainly devel-
op a feeling that mathematics keeps getting harder, and many struggle 
with their teachers’ exhortations to apply learned algorithms or ideas to 
help them solve new problems. Nonetheless, they do come to believe that 
mathematics is a well-organized structure in which the upper levels are 
only accessible by assiduously and sequentially climbing from the very 
bottom. When adults make statements such as, “I never really understood 
fractions” or “I got lost in the seventh grade,” they allude to the belief that 
once you have missed a level, any part of the upper reaches is forever lost 
in the clouds. Students may even be overly devoted to this structure. 

A colleague of mine who teaches undergraduate mathematics classes 
used the scientifi c metaphor of polymerization to describe his students’ 
aversion to playing with the structure of mathematics. Polymers are easy 
to grow by simply attaching one monomer to the next to form a straight-
line dendrite. However, a polymer is only useful if those dendrites are 
cross-linked—that is, if the straight-line dendrites are somehow connect-
ed. Unfortunately, cross-linking is chemically challenging. Similarly, his 
students fi nd any movement away from the upward climb anathema. He 
claims they are intellectually unwilling to do the harder work of making 
connections to other parts of the mathematical structure, but perhaps they 
have taken to heart the narrow sense of linear progress encountered in 
their school mathematics. 

Although the aesthetic dimension of the progress value seems to me 
less obvious than that of control, the particular interaction of the two 
values with social and economic concerns has some aesthetic relevance. 
Mathematics is extremely committed to abstraction, and this commitment 
gives it an ability to retain control and propel its movement toward prog-
ress. No one can deny the seductive power of isolating and abstracting. 
According to the social critic Ivan Illich (1994), this extreme abstraction 
is one of the root causes of social malaise in the modern world, which 
is moving farther and farther away from a worldview that is sensitive 
to the proportions between human beings and nature. In his lecture, Il-
lich argued that the growing mathematization of science and the desire 
to quantify—to separate, abstract, detach—has reduced our capacity to 
judge appropriateness and to attend to, as well as to return to, the particu-
larities and proportions of local meanings. The aesthetic sense of “fi t” to 
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which Illich is referring can be compromised by an untempered fi xation 
on control and progress. Turning to the classroom, I see greater potential 
for the “connections” process standard of the NCTM (National Council of 
Teachers of Mathematics). Helping students make connections between 
diverse areas of mathematics may well further their conceptual under-
standing, but engaging in the type of cross-linking described above leads 
to a form of enculturation in which connections are valued in mathemat-
ics, as are continued attempts to seek appropriate, fi tting uses for new 
mathematical ideas.

The openness value, with its psychological and political neutrality, 
leads to the aesthetic so prized by the mathematician Bertrand Russell, 
who wrote that mathematics possesses a “supreme beauty—a beauty cold 
and austere” (1917, p. 57). But Bishop’s notion of openness is evident in the 
mathematics classroom, too. Students are instructed to write proofs that a 
mathematician or a classmate could verify. They are introduced to the spe-
cial, often arcane, words used in mathematical language. This impresses 
upon them, albeit implicitly, the importance of openness in mathematical 
communication. Students are also frequently offered visualizations and 
explanations that help make formulas, concepts, and theorems more un-
derstandable. The pedagogical nature of these attempts at transparency 
may well give students the impression that they are somehow nonmath-
ematical crutches, or at least that mathematicians have some kind of de-
personalized and decontextualized way of knowing mathematical truths. 

Would celebrating the unrigorous, fractional approach of Leibniz’s cal-
culus provide students with a glimpse of the personal and intuitive way 
that mathematicians think, and also give them a more explicit encounter 
with the mathematical values that make mathematicians prize Leibniz’s 
calculus while hiding its roots? Many similar topics would be available 
in grade school mathematics, including, for example, the use of graphs 
and functions. In his book Proofs and Refutations, philosopher Imre Lakatos 
(1976) studied the mathematical process by which an intuitively concep-
tualized phenomenon—essentially, the development of Euler’s formula, 
which states the relationship between the number of vertices, faces, and 
edges of three-dimensional shapes—is then made increasingly rigorous, 
precise, and open. Euler’s formula is often introduced to students at the 
middle school level, usually framed as a pattern-searching task. To me, it 
seems that giving students the formula and asking them to consider how 
to defi ne the shapes that it applies to would provide them with a richer 
mathematical experience, one that would invite explicit discussion about 
values such as openness.

In the fi nal pair, the mystery value is linked with openness and, in 
contrasting the values, I see secretiveness and exclusiveness as being the 
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primary characteristics of the mystery value. By defi ning a community 
with access to special knowledge, mathematics simultaneously defi nes a 
community—a much larger community!—that is excluded from this knowl-
edge. While mathematicians today, unlike the mystical Pythagoreans, do 
not purposely hide knowledge, the techniques they have developed for 
sharing information inside their community (their special language, meth-
ods, and forms of communication) make them appear all the stranger to 
people outside their community. 

This duality is alive and well among school students today, judging 
from attitudes toward and beliefs about mathematics. The common per-
ception of mathematics as “a gatekeeper” (to higher education, to intel-
lectual stature) explicitly invokes this sense of exclusion (caught outside 
the gate) and inclusion (passing through it). A telling study, conducted 
by the mathematician John Berry and his colleague Susan Picker, showed 
that middle school students hold disturbing notions of mathematicians 
and their work. By asking students to draw images of mathematicians, 
Picker and Berry (2001) found that “[t]he average picture was of a scruffy 
person, probably with pens in his shirt pocket, holes in his clothes, and 
equations written on his arms.” According to these students, mathema-
ticians usually have “no friends except other mathematicians” and are 
“very unstylish.” These beliefs speak to the exclusivity of mathematics 
in both identifying a community (mathematicians consorting only with 
other mathematicians) and distancing themselves from it through expres-
sions of aesthetic repulsion.

The fl ip side of exclusivity reveals itself in classrooms when students 
temporarily gain the stature of members of the mathematical community. 
Mathematical insight confers a stature almost as palpable as a magician’s 
wand. There is something quite distinct that happens in the mathemat-
ics classroom, compared with other school subjects, when teachers “pass 
their wands” over to other students: “Okay, Nick, now you explain it to the 
class.” Nick’s understanding of a mathematical idea allows him to occupy 
an exclusive position in the classroom, as one who knows. This transfer 
anoints him with the power to explain his knowledge to those who do not 
know. Sometimes, students can also be anointed with the power to dem-
onstrate—that is, to choose how to perform their mathematical knowledge 
for others. (As I elaborate in Chapter 10, this might involve giving stu-
dents the answer to a problem and asking them to create a demonstration of 
the solution.) The pleasure that students take in such demonstrations lies 
in the magician’s power both to conceal and to reveal. 
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CHAPTER 10

Mathematical Values
in Teaching

The previous chapter examined values inherent in the mathematics culture 
and pointed to some infl uences that the aesthetic dimension of these val-
ues has had on pedagogical practices. This chapter is driven by the reali-
zation, shared by a growing number of researchers, that educating students 
mathematically means enculturating them, namely, immersing students 
in the mathematical culture and the values inherent in it (see Bauersfeld, 
1993; Bishop, 1991; Voigt, 1995). Enculturation involves, at least in part, 
the development and use of certain normative understandings of what 
counts as mathematical (Yackel & Cobb, 1996). In this view, educating stu-
dents mathematically is much more than teaching mathematical tools and 
techniques; it is about recognizing, absorbing, and critically judging math-
ematical values. If the mathematical aesthetic is an important component 
of the mathematics, educators must fi nd ways to make students aware of 
the aesthetic dimension of the values of that culture at an earlier point in 
their education.

This chapter consists of two primary sections. The fi rst considers the 
broad context of mathematics education in which curricular and peda-
gogical choices are made, and considers these choices in terms of the aes-
thetic nature of the mathematical values they reveal. The second section 
looks more closely at the context of the classroom, and at the way in which 
aesthetic aspects of mathematical values are communicated and negoti-
ated between teachers and students. In both sections, my primary intent 
is to expose the frequently tacit presence of aesthetically related values in 
mathematics education, and in so doing, I hope to assist teachers in mak-
ing choices that nurture a more explicit aesthetic enculturation. 
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REVEALING VALUES IN TOPICS, TASKS, AND TOOLS

Chapter 9 described several examples of how the aesthetic dimension of 
mathematical values is communicated to students. Those very specifi c 
examples were intended to illustrate Bishop’s six values, so as to evoke 
further more relevant or familiar examples for teachers. In this section, 
I attempt to be more systematic in refl ecting on mathematical values in 
teaching mathematics by analyzing an educational context that includes 
the topics, tasks, and tools (such as manipulatives and computer-based 
technologies) used in the classroom. The reader may have already ob-
served similarities, in terms of topics, tasks and tools, to the vignettes 
analyzed in Part III. In particular, the vignettes often featured non-stan-
dard tasks (such as coloring decimals, reproducing paintings), and preva-
lent use of computer-based environments (such as Meeting Lulu, Sketch-
pad). By drawing on a larger set of topics, tasks, and tools proposed by 
other mathematics educators who have been concerned with promoting 
aesthetic values—either directly or indirectly—my goal in this section 
is to consider the characteristics of learning situations that might help 
students to gain more familiarity with the aesthetic dimension of math-
ematical values. 

I begin at a point that may seem impossibly far from the everyday 
choices made by teachers about what to teach on Monday morning and 
how to teach it, by asking: What is worth knowing? This question—and the 
implication that currently enacted responses to it might be changed—may 
strike many as overwhelming, given the constraints already established in 
school mathematics. Moreover, few teachers have the opportunity to start 
from scratch in deciding what and how to teach: The mathematics cur-
riculum is notoriously unchanging, as well as demanding. Nonetheless, I 
begin here in part because, as pointed out in the introductory chapter, be-
liefs about what is worth knowing have shaped at least one set of recom-
mendations (the NCTM Standards 2000 document) about the importance 
of aesthetic appreciation in mathematics learning. In that document, aes-
thetic appreciation is linked to awareness of cultural achievements, and 
the implication is that those achievements constitute what is worth know-
ing. I begin here also because mathematical values, which have shaped 
the mathematics “canon”—that is, what is worth knowing to mathemat-
icians—must play into the fabric of school mathematics—and what is 
worth knowing for students.

The educator Jerome Bruner’s (1969) answer to the question of what 
is worth knowing is not so linked to cultural achievements: “Whether 
the knowledge gives a sense of delight and whether it bestows the gift 
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of intellectual travel beyond the information given, in the sense of con-
taining within it the basis of generalization” (p. 39). For the mathematics 
teacher (or the curriculum developer), Bruner’s commendation could in-
volve choosing mathematical topics that relate to intrinsically delightful 
ideas, such as infi nity, or that relate to symmetry, which contains within 
it the basis of generalization. However, Bruner’s commendation could 
also involve choosing tasks—ways of encountering or exploring topics—
that lead to a sense of delight and an intellectual journey. For example, 
few would argue that plotting points leads to an intellectual journey, but 
might the task that involves formulating a symbolic notion to describe 
locations of Lulu on a grid provide the basis for generalization? Push-
ing the boundaries a little more, Bruner’s commendation might also in-
volve simple ways of inviting students to experience certain topics. For 
example, a teacher using a reform-based curriculum might well provoke 
delight in her students should she decide, one day, to bypass her usual 
approach (through group work, or contextualization, or investigation) 
and just say, “The formula is C = 2�r. Let’s go from there.”

In refl ecting on the contexts described in Part III, such as Meeting 
Lulu, I fi nd Bruner’s answer diffi cult to apply. If Meeting Lulu is about 
plotting points, the possibilities of an intellectual journey, for example, 
seem to me to be quite limited. Yet there seems to be something worth-
while about the task. The mathematics educator Paul Goldenberg (1989) 
provides a vision of curriculum that is sympathetic to that of Bruner—
including what is worth knowing—that I fi nd helpful in characterizing 
mathematical contexts: “Doing mathematics and mathematics worth do-
ing” (p. 192, emphasis in original). He cites fractal geometry as an ex-
ample of a mathematial topic worth doing. However, he focuses more 
on what is worth doing than what is worth knowing, a focus that relates 
clearly to inquiry and to the roles of the mathematical aesthetic I have 
explored in this book. Specifi cally, Goldenberg sets out the following 
goals for mathematics education: fostering a spirit of self-propelled in-
quiry, enabling mathematical generativity, and developing a strong and 
personal interest in mathematics learning. I see components of these 
goals refl ecting the constellation of mathematics values described in 
Chapter 9. 

In examining the many contexts that mathematics educators have pro-
posed, the notions of doing mathematics and mathematics worth doing are 
pervasive, and seem to be entangled with aesthetically related values—
perhaps unsurprisingly. I will consider a few examples of such contexts 
and use them to identify common characteristics of “aesthetically rich” 
learning contexts. 
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Characteristics of Aesthetically Rich Learning Contexts

One of the precursors to aesthetically rich learning contexts can be 
seen in the work of the early 20th-century mathematics educator Edith 
Somervell, who was a proponent of children’s use of string designs. In her 
book A Rhythmic Approach to Mathematics (1906/1975), she describes tasks 
in which students create various types of curve drawings using pins and 
thread. These relatively easy-to-make drawings can generate parabolas—
not typical elementary school fare—as well as less-well-known curves in 
all of school mathematics such as spirals, nephroids, and cardioids.1

In addition to promoting the sensory aspects of her approach, in which 
the kinesthetic and visual dimensions of mathematical activity are de-
ployed, Somervell also draws attention to the pleasure that students can 
have in creating curve drawings and the intuition they can develop to 
help with more advanced mathematics. According to her, students will 
see the algebraic and graphical mathematical treatment of their curves, 
which they eventually must encounter, as an “orderly explanation of ex-
periences long familiar” (Somervell, 1906/1975, p. 17). 

In addition to the sense of pleasure associated with the creation of ar-
tistic artifacts, I am interested in the pleasure and surprise that students 
might experience in seeing how organic thought sequences (setting rules 
for moving thread from one pin to another, as shown in the fi rst three 
frames of Figure 10.1) can be connected to the evolution of harmonious 
forms (the parabola that emerges after several repetitions of the rule). The 
process of connecting the pins with thread fades into the background and 
the emergent mathematical shape, now detemporalized, takes over. 

I see two characteristic ways in which Somervell’s approach promotes 
aesthetic aspects of mathematics values: intellectual appeal and signifi cant 
expression. Before further articulating these two characteristics, or even de-
fending their relation to aesthetics or the mathematical values of Chapter 9,

Figure 10.1. Creating a parabola with pins and thread.
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I describe another aesthetically rich learning context, this time at the high 
school level. 

As mentioned before, Goldenberg (1989) advocates the inclusion of 
fractal geometry in the high school curriculum because it possesses a cer-
tain visual appeal that can attract students to “the intellectual beauty of 
the mathematics,” and opportunities for inquiry through which “it is pos-
sible to make dramatic and fundamental changes in students’ engagement 
in mathematics” (p. 169). Goldenberg emphasizes the fact that despite not 
being a part of the traditional structure of high school geometry, fractal 
geometry connects to and introduces other areas of mathematics. For in-
stance, fractal geometry can connect various parts of algebra and geom-
etry while introducing students to chaotic dynamical systems. By intellec-
tual beauty, Goldenberg seems to be referring to the mathematical ideas of 
noninteger dimensions and infi nite self-similarity, as well as to the artistic 
appeal of the actual fractal images that are created. In advocating the topic 
of fractal geometry, Goldenberg emphasizes a computer-based visual and 
experimental approach, which he sees as supporting worthwhile forms of 
reasoning not found in static, symbolic learning environments. 

From these two brief descriptions, Goldenberg’s and Somervell’s pro-
posals can be seen to overlap in terms of promoting aesthetic aspects of 
mathematics values. Both propose topics that are somewhat nonstandard 
and both invoke tools (pins and thread, and computer software) that can 
mediate the relevant mathematical ideas or forms of reasoning. I will re-
turn to these two similarities, but fi rst I will develop further the two char-
acteristics of intellectual appeal and signifi cant expression.

Intellectual Appeal 

I mentioned before the intellectual appeal in Somervell’s rhythmic ap-
proach, by which I was referring to the surprising feeling many people get 
when a step-by-step, linearly applied rule gives rise to a rounded, contin-
uous shape. Goldenberg’s example of fractal geometry involves a conso-
nant idea, namely that the repeated iteration of a rule defi ned on linear ob-
jects can give rise to an organic, supple shape (as in the Koch curve shown 
in Figure 10.2), the segments gradually turning into a fallen snowfl akes. 
Papert (1980) also describes the intellectual appeal of the dance between 
the linear, step-by-step and the continuous whole when children generate 
circles in the computer program Logo by telling their turtles to repeat the 
rule of taking a step forward and then turning a little to the right.

Obviously, not all curricular topics lend themselves well to this form of 
intellectual appeal. However, might teachers be able to choose tasks that 
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have some similar sort of intellectual appeal? And is it reasonable to ex-
pect that a whole classroom of students will respond to the same forms of 
intellectual appeal? While being sensitive to the personal, context-bound 
nature of aesthetic responses, I have elsewhere suggested (see Sinclair & 
Watson, 2001) that certain ideas, such as infi nity, seem to appeal to stu-
dents reliably. Upon refl ection, in my own experience, many of the ideas 
that have appealed to students have involved some play with infi nity. 
And Caleb Gattegno’s observation that mathematics is shot through with 
infi nity suggests that all mathematical ideas are somehow connected to 
the infi nite. For example, Tim encountered the infi nite when coloring his 
maps by trying to grasp the idea that all of them would require no more 
than four colors. John encountered the infi nite with his “magic” number 
9—dividing a numerator by 9, 99, or any sequence of 9’s could produce for 
him an infi nitely repeating sequence of decimal digits. I am exploring here 
the idea of evoking the infi nite in school mathematics as a way of courting 
the wonder and appeal of students and, in turn, helping students see how 
mathematics values attempts to tame wild ideas. 

The practice of evoking the infi nite (where can it be found in Meeting 
Lulu?) may well provide students with intellectual appeal, as may evoking 
surprise. In terms of student learning, Movshovits-Hadar (1988) provides 
many categories of situations in which mathematical ideas in the curricu-
lum can be presented through surprise. In one category, she suggests that 
students have often been surprised in instances where “small changes can 
make a big difference” (p. 35). Movshovits-Hadar illustrates this category 
with the example of how small changes to the theorem about the sum of 
the angles of a triangle’s interior may include considering a quadrilateral 
instead of a triangle or exterior angles instead of interior ones—and both 
changes make a big difference to the theorem. Her claim of potential sur-
prise rests on the fact that in many other mathematical experiences, stu-
dents expect small changes to make small differences. 

Another category she suggests involves instances where “plausible 
reasoning fails.” For example, it may be reasonable to assume that, since 
prime numbers become gradually scarcer as one moves along the number 
line, there is a place beyond which all natural numbers will be divisible by 

Figure 10.2. Steps in creating a Koch curve.
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at least one of the preceding ones. But this kind of plausible reasoning is 
false, since the number of prime numbers is not fi nite. Of course, students 
may well fi nd that their plausible reasoning often fails them in the math-
ematics classroom, so the surprise would have to be sensitively manufac-
tured by the teacher. In other words, in order to respond to surprise, one 
must have some kind of frame of reference that generates expectations 
(see also Stanley, 2002).

Looking again to mathematicians, we can fi nd another instance in 
which intellectual appeal operates—namely, that of apparent simplic-
ity; recall from Part III the mathematicians Andrew Gleason described as 
being “gripped by explicit, easily stated things” (p. 93). In Chapter 6, I 
discussed the appeal of the Four Color Theorem for Tim, and mentioned 
that other mathematical ideas with similar apparent simplicity, such as 
Goldbach’s conjecture, can often stir students to action. Of course, with 
apparent simplicity comes inherent diffi culty and in both the examples 
mentioned here, students are unlikely to “solve,” or fully understand, the 
mathematics involved. But should that matter? 

I have identifi ed the use of the infi nite, surprise, and apparent simplicity 
as ways in which to provide students with intellectual appeal. These ways 
of providing intellectual appeal overlap with the list of the “big ideas” in 
mathematics proposed by the mathematics educator Geoff Faux (1998): 
Numbers are ordered and well structured, mathematics is shot through 
with infi nity, a lot for a little (which can lead to surprise), equivalence, in-
verse, and transformation. His list may in fact suggest other forms of intel-
lectual appeal, but whatever they may be, the use of them in the classroom 
amounts to establishing a certain kind of practice rather than spelling out 
specifi c topics or tasks. In other words, when everything is surprising, 
nothing is surprising. Moreover, few things are surprising on their own, 
without the help of the teacher to manage the way the surprise unfolds for 
students. For example, there is nothing surprising about the step function, 
but if students get to see it traced out on a graph after having seen more 
continuous linear or quadratic functions, they may well fi nd the hopping 
function startling—I have often seen large groups of teachers and students 
explode in giggles in such a situation, then be surprised to fi nd themselves 
laughing at a function for the fi rst time in their lives. 

I want to probe the issue of teaching practice a little more. In Chapter 
6, I pointed to a traditional practice of introducing tasks and ideas in clear 
and isolated ways, so as not to confuse students, and to Brown’s (1993) 
argument that such practices actually give students a false sense of aes-
thetic unity. Brown identifi es another practice of traditional tasks: many 
teachers expect assigned problems to be solved within a relatively short 
amount of time, usually a classroom period. As I showed in Chapter 5, 
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a longer period of time, interrupted if necessary, is one of the enabling 
conditions of mathematical inquiry. These more fl exible time conditions 
provide an opportunity for genuine exploratory inquiry, as they give stu-
dents the time they need to develop interest in and intimacy with a math-
ematical situation (DeBellis, 1998). Recall that John had the time and fl ex-
ibility to get a feel for the effect of different denominators on the pattern 
in the color table, while Casey could get a feel for the patterns produced 
by the frogs. That students should need more fl exible thinking conditions 
with respect to time is not surprising, given that professional mathemati-
cians also need extended periods of time interrupted by periods of incu-
bation (see Hadamard, 1945). 

In using the term practice, I want to emphasize that not every math-
ematical idea has to be surprising or presented in an ambiguous manner, 
and not every assigned problem needs long periods of incubation. Part of 
practice is deciding when and how often to call upon these types of strate-
gies, and also being able to locate and even manufacture ideas such as the 
infi nite. 

Signifi cant Expression

In his Talks on Pedagogics (1894), the educator Francis Parker outlines 
a particularly aesthetic approach to the construction of understanding. 
His approach featured the key notion of expression, which he described as 
“the manifestation of thought and emotion through the body by means of 
physical agents” (p. 224). While Parker’s work has been taken up mostly 
by arts educators, several mathematics education technologists have used 
the related notion of an expressive medium to describe learning environ-
ments in which it is possible to express ideas in concrete forms that are 
visible and public. For example, in their work with Logo, Richard Noss 
and Celia Hoyles argue that making mathematical ideas visible and public 
increases the potential for a collaborative, experimental approach to math-
ematics learning, as compared with traditional pencil-and-paper modes. 
They focus on the medium in which actions are carried out by means of 
programming in a syntactically precise language and maintain that such a 
medium allows students to make the diffi cult move from the informal and 
concrete to the formal and abstract. While sharing the same constructiv-
ist orientation as Parker, in terms of supporting the active construction of 
knowledge, Noss and Hoyles seem to focus more on the “thought” than 
the “emotion” component of Parker’s conception of expression. I also see 
Parker’s notion of expression as supporting a wider range of materials 
and media for mathematics learning than solely the programming ones 
advocated by Noss and Hoyles. 
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In fact, David Shaffer (1997) argues that Sketchpad can also act as an 
expressive medium, in the Noss and Hoyles sense, even though it is not 
usually considered to be a programming language. With Sketchpad, stu-
dents carry out actions by means of a visual and geometric precise lan-
guage. Sketchpad even possesses its own syntax—differently mediated 
from those of programming languages—that regulates the way objects are 
constructed on the screen. For example, a student could create a line and a 
point and then construct the refl ection of the point in the line. Shaffer even 
evokes Parker’s notion of expression in his analysis of Escher’s World, a 
project in which students used Sketchpad to learn about the mathematical 
and artistic dimensions of transformations and tessellations. Students were 
asked to create designs that had various types of symmetries and Shaffer 
argues that a key aspect of their explorations was the degree to which the 
designs represented the public externalizing of personal thoughts, percep-
tions, and emotions. 

Shaffer notes that the students used the software to help them look 
for solutions to mathematical problems (of creating a certain design) that 
had aesthetic appeal. The students were not passive in their use of math-
ematical objects and relationship. They were required, in order to produce 
anything at all, to work simultaneously with tools expressing geometric 
relationships and their form and composition on the screen—their colors, 
labels, display, and presentation roles. Shaffer’s description of his students’ 
work, and my own experiences with students ranging from grades 2 to 16 
(some of which were described in Part III), evokes for me the craftlike ori-
entation toward doing mathematics that Freeman Dyson articulated. The 
notion of craft emerged as part of the control value in mathematics, but in 
Parker’s notion of expression I see an interesting link to the openness value 
in mathematics, which relates to the desire to make ideas (thoughts and 
emotions) observable or public, and to wrestle them from the interiority 
that is inaccessible to others. 

Paul Goldenberg’s work with fractal geometry provides yet another 
computer-based example of an aesthetically rich learning situation that 
enjoys an expressive quality. In fact, computer-based learning environ-
ments featured in most of the examples of Part III: the Colour Calculator, 
Meeting Lulu and Frogs, as well as The Geometer’s Sketchpad. I chose 
to use these environments in my research in part because they serve as 
manageable laboratory spaces for exploring how aesthetic responses mo-
tivate mathematical inquiry, generate mathematical ideas, and communi-
cate and evaluate them within mathematical communities. As Noss and 
Hoyles (1996) explain, they provide “windows on mathematical mean-
ing” through the observable actions and decisions that students make in 
interacting with these visual functionalities. 
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Although computer-based environments support students’ explora-
tion of visual mathematical ideas particularly well, and may often moti-
vate more precise forms of interaction than do traditional environments 
(through feedback and interface), Parker’s notion of expression can de-
velop through the use of many other materials and mediums. I think 
that Somervell’s rhythmic approach enabled students to express their 
thoughts and emotions through the creation of curves using pins and 
thread. William Higginson and Lynda Colgan (2001) use paper-folding 
tasks to evoke student expression. In their book Creative Mathematics, 
Rena Upitis, Eileen Phillips, and William Higginson (1997) provide mul-
tiple examples of signifi cant expression spanning a whole school year. All 
these examples have a distinct artistic, visual component to them. How-
ever, I fi nd their tessellation example especially pertinent in differenti-
ating between classroom tasks in which students create artistic artifacts 
that may be motivated by mathematical ideas but that are soon over-
whelmed with nonmathematical ones and tasks in which mathematical 
ideas are expressed and then remathematized. In their tessellation ex-
ample, the students use mathematical ideas of geometric transformations 
to create personally appealing artifacts that can in turn be represented 
in precise and generalizable language. The dragon curve fractal task de-
scribed above is similar in the sense that students create attractive shapes 
through paper-folding, but then seek to describe, manipulate, and gener-
alize them through symbolic means. 

Learning situations that feature intellectual appeal and signifi cant 
expression will be easier to design for some curriculum topics than for 
others. And while there may well be other pertinent features to be identi-
fi ed, these two seem to speak clearly to the values that drive mathemat-
icians to do mathematics and to express themselves in the particular way 
they do.

COMMUNICATING VALUES IN THE CLASSROOM

This chapter has been concerned with a phenomenon that occurs so-
cially, within group settings, zooming out from the individual learner to 
the events and activities of the whole classroom. I have already attended 
to how students’ existing aesthetic sensibilities can be evoked and nur-
tured in the classroom. Here, I want to consider how aesthetic values of 
the mathematics culture are evoked and nurtured in the social context of 
the whole classroom, where many different kinds of values—not all of 
them related to mathematics—are constantly being negotiated. I draw on 
mathematics education researchers Erna Yackel and Paul Cobb’s work on 

Sinclair final proofs.indd   text162Sinclair final proofs.indd   text162 6/29/2006   10:55:10 AM6/29/2006   10:55:10 AM



Mathematical Values in the Classroom 163

the evolution of sociomathematical norms in the classroom, which include 
“normative understandings of what counts as mathematically different, 
mathematically sophisticated, mathematically effi cient, and mathemati-
cally elegant in the classroom” (1996, p. 461).

Alan Bishop (1991) makes several recommendations about the kinds 
of tasks that can serve to make mathematical enculturation more explicit 
in the classroom. However, Bishop also stresses the importance of social 
interaction in shaping learners’ ideas and values. Indeed, it is within 
the dynamics of student-teacher interaction in the classroom that nor-
mative understandings are created. Erna Yackel and Paul Cobb (1996) 
have shown this in their study of how teachers help students understand 
what counts as mathematical. It would seem, therefore, that students 
would come to understand the values of the mathematics culture in the 
dynamics of social interaction. But how exactly might teachers manage 
classroom interactions so as to make these values available to and nego-
tiable by students? 

I recently attended a graduate-level mathematics lecture on numerical 
analysis. The professor, Jonathan Borwein, is very experienced and also 
fond of using the computer-algebra system Maple in his teaching, so the 
lecture was located in a technology room. I attended his lecture because 
I hoped to gain insight into the social interactions of the mathematics 
culture through an aesthetic lens—graduate students are well on their 
way inside the culture and a graduate seminar provides a window on 
how members (and quasimembers) of the culture (here, Borwein) com-
municate. I also hoped that the pedagogical setting might inform a vision 
of classroom practices that attend to aesthetic enculturation. This is what 
I saw.

Over the course of an hour, Borwein appealed to aesthetic values on 
six different occasions, and used the words beautiful, elegant, and pretty at 
least a dozen times. In introducing a particular formula, he called it “pret-
ty” because it “looks like a formula we already know.” He also argued 
for its “aesthetic appeal” based on the fact that it “isolates the impor-
tant variables in the equation.” He called another equation “beautiful,” 
claiming that it was better to “put two equations into one” when possi-
ble (the alternate form of the equation—also the more familiar one—has 
two parts, one for even dimensions and the other for odd ones), arguing 
in effect for an aesthetic preference for a very old, 19th-century concep-
tion of function. He drew attention to the beauty of a particular expres-
sion, explaining that it was “manipulable,” namely, that one could work 
directly with this equation in a computer algebra system (and Borwein 
proceeded to do this through both symbolic and visual manipulations). 
Finally, Borwein went through a mathematical investigation that he
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himself had begun, and commented on how “pleasing” it was for him to 
“see structures by drawing pictures” and to “use the pictures as a basis 
for further investigation.” 

By picking out all these instances in which Borwein communicated or 
appealed to aesthetic responses, I am trying to understand how aesthetic 
values are shaped in post-secondary classrooms, particularly by the in-
structor. (Later, I will focus more on the interactions between school stu-
dents and teachers.) The stark contrast with a typical middle school les-
son will be immediate to anyone who has had the opportunity to observe 
one. In fact, the National Center for Education Statistics (NCES) published 
videotapes of what were considered typical grade eight American math-
ematics lessons (Stigler et al., 1999). In viewing these videotapes, I saw not 
one single occurrence of words such as elegant and beautiful being used by 
either teachers or students. Nor did I hear teachers appeal to the aesthetics 
of a mathematical formula or algorithm being introduced. Moreover, I did 
not observe the use of any aesthetically based arguments to explain why 
one correct mathematical solution would be better than another correct 
one. And I certainly never saw a teacher comment on any personal pleas-
ures she or he had had in investigating or learning about the mathematical 
ideas in question. 

By focusing on the presence or absence of words used as aesthetic de-
scriptors, I may seem to be emphasizing only the evaluative function of 
the aesthetic, and doing so at a rather superfi cial level. Yet the simple act 
of using such words when describing or explaining mathematical ideas 
can indicate to students that aesthetic response and sensibility are appli-
cable and acceptable in the mathematics classroom. A mathematician once 
recalled to me the fi rst moment, in college, that someone used the word 
beautiful to describe a mathematical idea. Suddenly, he felt that he had ac-
cess to a whole new way of thinking about mathematics, a whole new way 
of organizing what he did and did not know. 

Of course, beautiful ideas are not the exclusive property of advanced 
mathematics, as I have claimed repeatedly in this book. Other adults have 
described the rare and fortunate instances in which a teacher went beyond 
the facts in describing or explaining the Pythagorean theorem, or Gold-
bach’s conjecture, or even the idea of mathematical infi nity. The simple 
use of words such as beautiful, sophisticated, or elegant might represent the 
very fi rst step in aesthetic enculturation: A student might need to hear the 
teacher state that a certain mathematical idea is beautiful before being able 
to connect any previous aesthetic experiences and values to mathemat-
ics. In the graduate class I observed, those words also revealed a motiva-
tional role of the aesthetic at work. Borwein was talking about the kinds of 
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things that make an equation or expression worth investigating. In draw-
ing attention to the pleasure of using pictures, he was also invoking the 
generative role of the aesthetic. 

While observing the graduate seminar, I was struck by the extent to 
which the “sage on the stage” metaphor was much more appropriate than 
the “guide on the side” one. The latter metaphor pervades, of course, in 
reform-based or progressive mathematics teaching practices. But here, the 
importance of using particular words and routines of justifying actions and 
beliefs, perhaps repeatedly (as parents do when their children are learn-
ing to talk), suggests some benefi ts in the sage on the stage model. The 
mathematics educator Anna Sfard (2001) points to the necessity of having 
a dominant discourse in the classroom so that in spoken interactions, the 
members of the classroom know with which discourse they should try 
to align. She argues that this is part of the communicational agreement that 
makes learning (or enculturation) possible. 

In the previous section, I explored some of the ways in which Bishop’s 
values manifest themselves in school mathematics classrooms. In order 
to probe what a more explicit aesthetic enculturation might look like, I 
now consider the aesthetic dimension of these same values in Borwein’s 
classroom. The desire to see the equation as a single, unifi ed entity instead 
of as a two-part one resonates strongly with the rationalism value, which 
seeks containment, cohesion, and unifi cation. Borwein was communicat-
ing this value explicitly to the audience by drawing attention to his rea-
son for preferring one form to the other. By commenting on the appeal 
of the formula that neatly isolates the variable, he seemed to be taking 
on a more objectivist stance—in terms of Bishop’s values—in wanting to 
isolate, bracket, and purify the fundamental component of the equation. 
Finally, his statement about the manipulability of a certain equation hints 
at a control value—that which can be manipulated can be made to behave 
predictably. Equations that can be manipulated visually and symbolically 
can also become “friendly” ones, upon which a certain degree of structure 
and order can be imposed. 

I suggest that Borwein was also communicating and sharing other 
kinds of values, ones that do not fi t as neatly into Bishop’s categories. Con-
sider his statement about the prettiness of the formula because it looked 
like one that is already known. Whereas rationalism urges one to seek 
logical connections between ideas, Borwein seems to be emphasizing con-
nections based on form more than logic. Perhaps such ideas are valued be-
cause they represent the possibility of establishing logical connections. Or 
perhaps they are valued because mathematicians prefer to think of math-
ematics as a coherent, connected domain rather than one that consists of 
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a collection of arbitrary facts. Seen in this way, the rationalism value may 
still be operative. 

Another value can be discerned in Borwein’s comments, and is some-
what related to control. Particularly in his evocation of the visual and the 
structural, Borwein communicates a strong desire to get at both a sense of 
and a relevance for the statement or formula. Connecting to a formula he al-
ready knows provides a kind of relevance, while the holistic understand-
ing that pictures of an equation afford him provides a kind of enlighten-
ment, or transparency, one that goes beyond merely grasping the truth 
of the equation. Students are frequently urged to “draw a picture” when 
they are working on problems, but those invitations are almost always 
seen by students as strategies aimed at helping them solve a problem. 
What is valued is whether students can solve the problem. By contrast, 
Borwein values the picture itself, for its power to provide a sense of the 
mathematical ideas involved. 

I contend that the aesthetic gap between grade school and graduate 
school is real and discernible, and that by considering the values made 
explicit in the graduate class, it is possible to begin seeing how teachers 
could help to shape the aesthetic dimension of students’ values. Again, I 
believe that many teachers already do shape them implicitly, and that they 
do so by denying the mathematical aesthetic in the classroom. I think this 
antiaesthetic can be seen in students’ repeated complaints about hating 
math or fi nding it boring. If students are fundamentally aesthetic beings, 
in all their interactions with the world (as I argued in Part I), then denying 
them aesthetic access in their own mathematical experiences is equiva-
lent to communicating to them that mathematics should leave them aes-
thetically numb. The anti-aesthetic approach characterizes well the NCES 
classroom videotapes I described above. Teachers do not say out loud, 
“There is no beauty in mathematics,” but they say it implicitly.

Of course, many teachers, particularly at the high school level, teach 
mathematics because they love it, or have had strong, positive experi-
ences with it in their own schooling. These teachers may take a cov-
ert-aesthetic approach in which the aesthetic is not completely denied, 
but neither is it made explicit in the classroom. Consider a classroom in 
which “real-world” mathematical situations are constantly sought out, 
created, and used by the teachers and students. The teacher may be mak-
ing a pedagogical decision, either that real-world applications will be 
more useful to students, or perhaps more interesting and motivating.2 
However, there exists a long tradition in mathematics that exalts “pure” 
mathematics—that is, mathematics uncontaminated by the messiness of 
the organic, physical world and the utilitarianism of solving its problems. 
The mathematician G. H. Hardy famously expressed his pride at never 
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contributing anything useful to the world through his mathematics. His 
was an aesthetic of purity and perfection. This teacher’s is not, and in 
this sense, the teacher is communicating a certain mathematical aesthetic, 
whether intentionally or not. 

I suspect that students usually know that applications or contextualiza-
tions are principally used for pedagogical purposes in school. In addition 
to making that goal more explicit—“Class, today we are going to study 
bicycle gears because they will help you learn about fi nding common mul-
tiples”—what might be gained if the teacher also told her students that 
bicycle gears, being of the physical world, might not behave as perfectly 
as the laws of multiples, and that the mathematical community actually 
prefers the ideals of the made-up world? What if the teacher asked her 
students whether they would prefer to learn about common multiples in 
the context of bicycle gears or whether they would like to learn about 
them without reference to real-world phenomena? Would students be able 
to decide in advance and, if so, on what basis? While the latter questions 
involve providing students with some aesthetic agency, the fi rst question 
merely suggests a way to make the values of the mathematical community 
more explicit. Students may agree or disagree with a Hardyesque math-
ematical aesthetic—and mathematicians themselves are certainly diverse 
in their responses—but they will have been given the opportunity to con-
sider how mathematical values shape mathematical ideas and the way 
these ideas are taught. 

Another example of the covert-aesthetic approach can be seen in 
many of the reform-based curricula that emphasize mathematical con-
nections (making connections is one of the NCTM process standards, 
and can be seen in curricula such as the middle school Connected Math-
ematics Project). For example, teachers are encouraged to use tasks that 
make connections across content strands. Again, in doing so, the teacher 
may choose to exploit mathematical connections for many reasons, but 
perhaps not very explicitly. The notion of connectedness seems to me a 
strongly aesthetic one, revealing a desire for ideas to fi t together, or to 
cohere and unify. But unless that value is more overtly communicated to 
students, they may not appreciate the fact that connections are valuable 
and prevalent in the mathematics community, and not just meant to make 
their lives more diffi cult. 

Finally, I think that in some classrooms, an overt-aesthetic approach 
is taken, where the mathematical aesthetic is explicitly acknowledged 
to students. Here, the practice of revealing the (positive and negative) 
aesthetic values of mathematical ideas is built into the teacher’s lesson. 
For example, I imagine a teacher telling her students, “We are going to 
work on the problem of adding consecutive whole numbers because it is 
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a famous problem, and its solution exemplifi es the power of mathemat-
ics.” But she might also, on another day, tell her students, “We are going 
to study how to factor a trinomial not because it is interesting in and 
of itself, but because it will help us solve problems that are interesting.” 
Compare these ways of starting a class with, “Okay, the next chapter in 
the textbook is about similarity,” or “Today we’re going to review what 
we did yesterday.” The latter statements do not help students gain access 
to the values of the mathematics culture.

Thus far, I have emphasized ways in which aesthetic enculturation 
in the classroom is affected by the language that a teacher uses to com-
municate to her students. But enculturation is everywhere, not just in the 
way a teacher introduces a new lesson or explains a mathematical idea. 
Many mathematical values are evoked in the interaction between teach-
ers and students. The research of Yackel and Cobb (1996) on classroom 
norms has shown that many mathematical values (which are part of what 
they call sociomathematical norms) can be interactively constituted in class-
rooms that feature certain forms of discussion and argumentation. They 
focus particularly on the notion of mathematically different, on the way 
in which students come to appreciate what counts as different when they 
are sharing solutions in the classroom, and on the way in which teach-
ers’ responses contribute to shaping classroom norms. Recall that soci-
omathematical norms are also involved in making decisions about what is 
mathematically sophisticated, effi cient, and elegant. Yackel and Cobb do 
not question where these values come from, or why they are given spe-
cial attention over other values (applicability, perspicuity, etc.). But they 
do demonstrate that learners can infer some sociomathematical norms by 
identifying regularities in patterns of social interaction. A point I will re-
turn to later is the extent to which educators want the shaping of students’ 
mathematical values to be a more critical undertaking: are sociomath-
ematical norms to be embraced, or challenged? 

In focusing on mathematical difference, Yackel and Cobb chose one 
of the less aesthetically oriented values, compared with sophistication, 
effi ciency, and elegance. This is not surprising, given their focus on the 
students’ sense of when and how it is appropriate to contribute to a dis-
cussion. Yackel and Cobb analyze the sociomathematical norm enacted 
by students’ responses when a teacher asks, “Are there other solutions?” 
They note that only mathematical difference becomes an explicit topic 
of conversation, but never mathematical effi ciency, sophistication, or el-
egance. The last three would only emerge when teachers (or classmates) 
explicitly engage in judging explanations, justifi cations, or solutions. 

Nonetheless, given the success Yackel and Cobb report in developing 
certain mathematical norms through classroom argumentation, it is worth 
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exploring whether similar forms of communication could also help shape 
the aesthetically oriented values with which I have been concerned in this 
chapter. To be clear: I am interested in these values because they are part 
of the mathematics culture and underlie the very way in which the disci-
pline has developed. If mathematicians, and the discipline of mathemat-
ics, valued different things, then students’ experiences in the mathematics 
classroom would be qualitatively different. To give a simple example: By 
insisting that students describe coordinates using (x, y) notation rather 
than, say, “up/down” and “right/left” or even (y, x) notation, teachers 
(perhaps implicitly) communicate the fact that conventional symbolic pre-
cision is highly valued in mathematics. If it were not so valued, students 
could still learn about coordinates, but they might be invited to use natu-
ral language to describe graphical locations or even symbolic notation of 
their own design. 

Using the aesthetic framework described in Part II, I propose three 
variations on Yackel and Cobb’s emphasis on sociomathematical norms: 
moving from evaluative to justifi ed feedback; moving from implicit to ex-
plicit comparisons of solutions; moving from uncritical to critical discus-
sion of mathematical values. These variations dovetail well with several 
of the practices put forth by the wider educational community and foster 
awareness of the mathematical aesthetic. 

From Evaluative to Justifi ed Feedback

I mentioned previously that teachers frequently provide evaluative 
feedback that only offers implicit indicators of mathematical value. A smile 
or an excited tone of the voice can indicate to the student that the teacher 
values his or her solution; similarly with statements such as “That’s good” 
or “I like that.” In addition, teachers frequently feel compelled to value 
contributions of every student, regardless of the quality of the contribu-
tion. This means that statements such as “I like that” can come to be inter-
preted by students as “I’m glad you spoke” (which, of course, may also be 
true) rather than “Your solution is a good one.” Nonetheless, there are cer-
tainly ways in which justifi ed feedback can help students fi gure out what 
kinds of things are mathematically valued and why some solutions might 
possess greater value than others, without making such judgments per-
sonal evaluations of the student’s understanding. For example, instead of 
saying “That’s good,” a teacher could say “That’s good because it helps us 
answer other questions,” or “I like that because I’ve never thought of the 
problem that way.” Such justifi ed answers more explicitly communicate 
the fact that generality and novelty, for example, are also valued qualities 
in the mathematics classroom, and not just correctness. 
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Justifi ed feedback can also provide cognitive support to learners, since 
the teacher’s aesthetic judgments of a solution or idea carry with them 
a depth of understanding as well as a critically informed discernment. 
The statement, “That’s good because it helps us answer other questions” 
reveals a disciplinary value, and more importantly, the teacher’s apprecia-
tion for deep understanding. Such a statement therefore communicates to 
the student that the goal of mathematics is to gain deep understanding, 
but it also helps develop that deep understanding since deep understand-
ing in mathematics involves knowing how some ideas are related to other 
ideas and can be applied in other contexts. The statement “I like that be-
cause I’ve never thought of the problem that way” reveals the teacher’s 
own active involvement in the mathematics—indeed, in the same math-
ematics that her students encounter—as well as the importance that the 
teacher places on comparing ideas. Such a statement therefore commun-
icates to the students that the goal of mathematics is to compare ways of 
thinking and doing actively and, equally, to imagine other ways of think-
ing and doing.

From Implicit to Explicit Comparisons of Solutions

Yackel and Cobb claim that when students are deciding whether or not 
they have a mathematically different solution to offer, they are engaged 
in a comparison of the similarities and differences their solutions have to 
those of their classmates. By engaging in this kind of comparative activity, 
students are making their solution “become an object of their own refl ec-
tion” (Yackel & Cobb, 1996, p. 464), thereby supporting higher-level cogni-
tive activity. Moreover, it is also in the explicit comparison of solutions that 
the aesthetic aspect of values can be evoked, as demonstrated by several 
examples I detailed in Chapter 8. However, if two mathematical solutions 
are correct, it is often diffi cult and sometimes uncomfortable for teachers to 
know how to compare them, even though they might well have their own 
personal preferences (one solution may be more pertinent to the lesson of 
the day than the other, or it may involve a more articulate response). 

As I have showed, students already have some ideas about that, but 
it is only by explicitly comparing solutions that the mathematical values 
involved in sophistication, effi ciency, and elegance can be evoked and 
discussed. This does not mean that only one solution should be singled 
out; there are many different kinds of value that could come into play, 
and many different styles of thinkers who would value one over another. 
A classroom of students could end up identifying a handful of different 
solutions that possess different kinds of value: One may be most enlight-
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ening or perspicacious; another may have the most clever twist; and yet 
another might be the shortest, or most effi cient. 

Of course, comparison need not always occur around students’ own 
solutions. A teacher could show solutions of a problem to her students that 
were produced by another group of students (actual or fi ctional), and ask 
them to decide how one might go about comparing the solutions, pointing 
out, when appropriate, values and criteria the mathematics community 
might appeal to. A teacher could take a more historical approach (com-
paring alternate solutions proposed by mathematicians—for example, the 
calculus of Leibniz versus that of Newton), or a pedagogical approach 
(Does this model make multiplication easier to understand, or does that 
other model?), or even a pedagogic-historical approach (I learned how to 
divide fractions by thinking of it like this . . . ). Obviously, such classroom 
activity does not have value-shaping as its unique pedagogical goal: In 
order to compare solutions, one must come to understand them, and turn 
them into objects of refl ection. 

I have seen this happen quite successfully in the context of an under-
graduate secondary mathematics methods course where I asked preser-
vice teachers to consider eight different solutions given by middle school 
students to the “orange juice problem” (in which students are asked to 
decide which of four mixtures of water and concentrate produces the most 
and least “orangey” drink). My initial goal was to broach the complexity 
involved in assessing student work, especially when that work invites a 
wider range of responses and thinking than those afforded by back-of-
the-book exercises. The preservice teachers fi rst worked independently to 
fi gure out how they would assess the diverse solutions. Then, in a group 
discussion, they compared their assessments and realized that while most 
agreed about whether or not a particular solution was correct, there was 
much disagreement about how “good” the solution was; did it deserve 
the highest mark, or just an average one? 

As it turned out, upon refl ection, the assessments were accompanied 
by a multitude of tacitly held values. Was a brief solution better, or one 
that was clearly and neatly presented? Which was better—a clever solu-
tion, or one that showed that the student had mastered the given topic? 
What the preservice teachers found surprising was how these aesthetic 
judgments started seeping into their assessments of what the students 
knew and how well they knew it. In arguing over their judgments—and 
becoming increasingly uncomfortable with the fact that it was so diffi cult 
to achieve a consensus—many of the preservice teachers were forced to 
come to a deeper understanding of the different forms of mathematical 
thinking involved in each student’s solution. While some praised highly 
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visual solutions for their clarity or creativity, others found such solutions 
to be nonmathematical, for their apparent lack of symbolic and deductive 
reasoning.

In her study on British teachers’ assessment of student written work 
for national examinations (at age 16), the mathematics educator Candia 
Morgan (1998) found a signifi cant amount of variability in the rankings 
that experienced high school teachers gave to student work. Her fi nd-
ings contrast with the claims of mathematics educators Tanner and Jones 
(1994) who write that “Mathematicians work to a set of assumptions, often 
related by generality, economy, and elegance” and that “[t]eaching stu-
dents mathematics must involve acculturation into these assumptions” 
(p. 422). This is certainly what I have been arguing, but then they claim, 
“Good solutions are ‘reliably recognizable’” (p. 422). As Morgan points 
out, teachers carry their own beliefs about mathematics, which may be 
different from the assumptions listed by Tanner and Jones, and have quite 
varying levels of distance from the mathematics culture in terms of their 
knowledge and experience. From this point of view, it seems reasonable to 
expect differences among teachers in their assessment of student work. 

Morgan discusses some of the assumptions teachers may have that 
affect their assessment, including whether or not students should be re-
warded for different, perhaps creative, solutions, and whether or not clear 
explanations are more valued than correct answers. By analyzing teach-
ers’ often impressionistic assessments (they know one solution is better 
but cannot clearly articulate their reasons why), Morgan gets at some of 
the more tacit assumptions involved in assessing student mathematical 
work. I am particularly interested in her discussion of values that are not 
invoked by the usual vocabulary of the mathematical aesthetic (beautiful, 
elegant, concise, etc.), nor by the presence of words such as nice or pretty. 
For example, in analyzing a teacher’s comparison of two student solutions 
to a problem involving counting the number of inner triangles in a geo-
metric confi guration, Morgan writes about why the teacher might have 
the impression that No. 2 is better than No. 3: 

No. 3’s introduction of the fi nal formula by You can write this as . . . presents 
the symbolic formula merely as an alternative to the verbal procedure. No. 
2’s announcement This therefore is the formula, on the other hand, displays 
the formula as a product in its own right which follows logically from the 
procedure rather than merely being equivalent to it. (Morgan, 1998, p. 
172) 

In Morgan’s analysis, the rationalism value (that things should follow 
logically, and not just pop up willy-nilly) makes itself evident, as does the 
complex of values that fuel detachment (the formula being a “product in 
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its own right”). From an aesthetic point of view, the analysis evokes a ra-
tionalism value that eschews fuzziness, imprecision, and looseness, much 
as the statement “you can” in contrast to “therefore” might imply. The 
teacher’s impression may well be correlated with his valuing of detach-
ment (a formula is brought into being and detached from the act of writing 
a relationship symbolically).

In her analysis, Morgan hints at the way in which values guide teach-
ers’ “impressions” of student work and at the possibility that teachers may 
not be aware of the effect of these values, whether in written assessments 
conducted outside the classroom or in verbal interactions with students in 
the classroom. My goal in pointing to Morgan’s work is to acknowledge 
the fact that in order to be more explicit in comparing student solutions, 
teachers have to gain more awareness of their own values, and how these 
values relate to those of the mathematics culture. 

I conclude this subsection by describing a strategy for making the 
comparison of solutions explicit, which I have explored. The strategy in-
volves giving students the “answer” to a problem (thus shifting the focus 
away from issues of correctness), and asking them to create a demonstra-
tion of the solution using Sketchpad. The task of demonstrating a solution 
is closer to that of proving, and thus closer to what many consider the 
sine qua non of mathematical activity—one where, presumably, its values 
are most evident. In demonstrating, one becomes concerned with how to 
best communicate the logic of a sequence of ideas and thus the relative 
judgment of “best” comes to the foreground. More than any other kind of 
classroom task, these demonstration tasks have helped students encounter 
and negotiate important mathematical values (Sinclair, 2004a). Perhaps 
through such tasks students can come to appreciate the fact that math-
ematical results do not emerge from mathematicians’ heads in some fi nal 
polished form; rather, students can experience the ways in which val-
ues are actively involved in the shaping and refi ning of the mathematical 
ideas themselves. It seems very probable that by having such experiences, 
students will begin to see how the aesthetic aspect of mathematical values 
can infl uence their problem-solving efforts, and thus take on a generative 
role. Silver and Metzger (1989) have proposed that this kind of awareness 
may be “the hallmark of entry into mathematical culture” (p. 72).

From Uncritical to Critical Discussion of Mathematical Values

“Because it makes a pretty picture.”
“Because I like it.”
Suppose a student provides these types of justifi cation to a teacher’s 

attempt to move from implicit to explicit comparisons of solutions. The 
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word pretty seems linguistically akin to words such as elegant used by 
mathematicians, and perhaps also akin to the words the teacher has used 
in trying to raise students’ awareness of the mathematical aesthetic. The 
second justifi cation might well be motivated by a direct sense of pleasure 
that the student has experienced from the solution, or even personal agen-
cy, authority, or control. Should the teacher be pleased? Are such judg-
ments indicative of students gaining access to the mathematical culture? 

By making the transition from uncritical to critical discussion in the 
classroom, I contend that such justifi cations are not necessarily the ones 
teachers should ultimately be promoting. I chose these two examples be-
cause they suggest different needs for critical discussion. On the one hand, 
the values of the mathematics culture are inherently mathematical. On the 
other, these values are shared and developed within a community; the 
individual must, to a certain extent, be able to work with them. 

A picture that may be deemed pretty in the discussion of the art class 
would not necessarily be pretty within the discourse of the mathematics 
class. Students might well fi nd a picture to be pretty in the mathematics 
class, but if they are to use the adjective as a justifi cation for why the pic-
ture provides a better solution, they must identify, so to speak, its math-
ematical prettiness: Does it explain better? Is it more general or predic-
tive? Is it more transparent? I am not advocating against the use of the 
word pretty itself; instead, I am arguing that in the process of aesthetic 
enculturation, words such as pretty or elegant should not be accepted as a 
replacement, or code word, for other values until those values have been 
well-developed in the classroom community. Gian-Carlo Rota has keenly 
observed the process through which certain words have come to replace 
sets of values and beliefs in the mathematics culture; he writes, “Math-
ematical beauty is the expression mathematicians have invented in order 
to obliquely admit the phenomenon of enlightenment while avoiding the 
fuzziness of this phenomenon” (1997, p. 132). Those that operate within 
the culture may use words such as beauty, elegance, and prettiness as they 
wish, but students outside the culture need critical direction. 

I think that Brown’s (1973) study, described in Chapter 8, illustrates well 
the need for critical discussion, and suggests also that developing a criti-
cal awareness of the values of the mathematics culture does not mean that 
these values cannot be challenged on pedagogical or other grounds. Recall 
that Brown had invited his students to generate solutions to the problem of 
adding the digits from 1 to 100, and then to compare their solutions with 
Gauss’s legendary one—leading the students toward explicit comparisons 
of their solutions. The students justifi ed their preferences using many differ-
ent values, and sometimes found their own solutions better, based on what 
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Brown called a “naturalistic” conception of beauty in which personal history
and genealogy are valued. Brown’s account ends at the point where I am 
advocating a critical discussion. The students’ naturalistic aesthetic needs to 
be examined both in terms of the values of the mathematics culture—which 
do not produce messy, diffi cult-to-remember formulations—and within the 
emergent values of the classroom. Why do mathematicians prefer “simple” 
and “succinct” formulations? This does not mean that the students’ “natu-
ralistic” aesthetic should be banned in the mathematics classroom; instead, 
it might be examined for its pedagogical advantages: Do their preferred so-
lutions help them better understand or remember? Do they carry vestiges 
of satisfying experiences? After all, as Rota argues, the phenomenon of en-
lightenment is precisely what keeps the mathematical enterprise alive. 

These three variations on Yackel and Cobb’s approach to shaping socio-
mathematical norms strive to emphasize the important aesthetic dimension 
of the beliefs and values that contribute to sociomathematical norms in the 
mathematics classroom. Only by developing this kind of awareness are stu-
dents likely to be able to approach, and even make their fi rst steps across, 
the borders of the mathematics culture. Again, I believe that in doing this, 
students will have a better chance of understanding why mathematics is 
the way it is, and why their mathematics teachers encourage them to reason 
and express themselves in such particular, and often strange, ways.

SOME CLOSING WORDS

Parts III and IV have developed complementary aesthetic lenses on math-
ematics learning. Part III attended to individual learners, and the sensibili-
ties and preferences they might potentially engage with during their math-
ematical activity; Part IV focused on the values these learners may encounter 
through their interactions in classrooms, with teachers, through mathemat-
ics, and even within wider communities in which they fi nd themselves. 

For many students, these wider communities tend to link mathematics 
to an aesthetic of disdain and encourage the dislike of, and lack of success 
in, mathematics. And so it is interesting to consider the recent rapproche-
ment between mathematics and aesthetics in academic literature (see Sin-
clair, Pimm, & Higginson, 2006), and to note the growing appeal and pres-
ence of mathematics in mainstream culture. Mathematics is featured in 
numerous recent fi lms and plays (Pi, A Beautiful Mind, Good Will Hunting, 
Arcadia, and Proof3) as well as popular books (The Equation That Couldn’t Be 
Solved: How Mathematical Genius Discovered the Language of Symmetry, Five 
Equations That Changed the World: The Power and Poetry of Mathematics, The 
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Colours of Infi nity: The Beauty, and Power of Fractals, and The Universe and the 
Teacup: The Mathematics of Truth and Beauty). Instead of attempting to emu-
late the formal, abstract language of mathematics that pervaded previ-
ous mathematical popularizations (such as Richard Courant and Herbert 
Robbins’s 1941 book What Is Mathematics?), these books, plays, and fi lms 
tell exciting, sometimes heart-wrenching and very human stories of math-
ematicians and their discoveries, seeking to convey the sense of beauty 
and elegance to which mathematicians are drawn. The word choice of 
these book titles alone—power, poetry, beauty, truth—demonstrates the 
degree to which authors have used the aesthetic as a passport to get across 
the strict borders of mathematics. If authors can excite the popular imagi-
nation in this way, there is great potential for teachers similarly to harness 
aesthetics and break the stranglehold of students’ mathematical disdain.

Beyond conveying to students that aesthetic sensibility is welcome 
in the mathematics classroom, and useful to them in their pursuit of un-
derstanding and achievement, the growing presence of mathematics in 
the cultural mainstream leads to a new answer to the perennial student 
question, “Why must we study math?” Students often fi nd the utilitarian 
rationales of the typical responses (e.g., “Because your jobs involve it,” 
“Because other disciplines use it,” “Because universities require it”) in-
suffi cient and misleading. Educators like Brent Davis (1995) have argued 
that better responses might invite students to see mathematical study as 
a way of becoming critically informed about the subject (what it is, what 
it is not, why it is so pervasive in society, and how it is taught). I believe 
that by nurturing and supporting the aesthetic dimension of mathematics, 
we endow these responses with greater attention to students’ self-aware-
ness and self-understanding. In so doing, teachers can help students to 
become critically aware of their own sensibilities and values, and to hone 
them, rather than rashly (if perhaps indirectly) encourage their charges to 
discard mathematics from their lives. 
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Notes

Chapter 1

1. As Bishop (1991) has pointed out, this may be at least partially intended. 
Since the earliest days of mathematics—for example, the Pythagoreans—math-
ematicians have cultivated an air of mystery. After all, with their esoteric knowl-
edge, they could predict events supposedly controlled by the hand of God, such 
as eclipses and tides. 

Chapter 2

1. Langer (1957) emphasizes this fact by describing how the merest sense-
experience is a process of formulation; human beings have a tendency to organize 
the sensory fi eld into groups and patterns of sense-data, to perceive forms rather 
than a fl ux of light-impressions. They promptly and unconsciously “abstract a 
form from each sensory experience, and use this form to conceive the experience 
as a whole, as a thing” (p. 90). For Langer, this unconscious appreciation of forms 
is the primitive root of all abstraction, which in turn is the keynote of rationality; 
so it appears that the conditions for rationality lie deep in pure animal experi-
ence—in the human power of perceiving; in the elementary functions of eyes, ears, 
and fi ngers. 

2. Johnson’s description of balance is illustrative. The experience of balance 
is part of everyday life; it is absolutely basic for one’s coherent experience of the 
world, yet one is rarely aware of it. Not only do human beings learn about balance 
from their bodily experiences, but the recurrent patterns in the experience of bal-
ance actually structure their actions and perceptions. For example, the experience 
of constantly distributing forces around one’s vertical axis while standing, sitting, 
and walking, is projected onto a tendency to look for vertical balancing in one’s 
acts of perception. The physical/gravitational domain of body balancing is pro-
jected onto the psychological/perceptual domain of visual confi guration. Johnson 
emphasizes that this is a structuring operation in experience; human beings do not 
consciously experience a metaphorical projection.

3. C. S. Peirce (1908/1960) uses the term abductive reasoning to refer to the 
mode of inference that Dewey is describing here. I believe that his notion provides 
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insight into Dewey’s idea of qualitative thought, as well as into the transition be-
tween Dewey’s fi rst and second stages of inquiry (from recognizing to formulating 
a problem). Abductive reasoning is, according to Peirce, the only method by which 
new discoveries can be made. Peirce seems to view abductive reasoning as an 
aesthetic exploration of options that can give rise to a possible explanation worthy 
of development and testing. Options are chosen based on attitudes, values, and 
beliefs. Abductive reasoning thus combines Dewey’s sensing of a qualitative unity 
with suggestions for plausible explanations.

4. Chazan and Ball (1999) complicate the exhortation (found in current math-
ematics education discourse) to avoid “telling.” They propose that many contexts 
warrant “telling,” in fact, and provide examples, such as when students reach a 
consensus that is mathematically incorrect or when a discussion focuses on mat-
ters that are of little mathematical importance. I argue that “telling” students can 
also provide the teacher with one more method to, pedagogically but perhaps also 
mathematically, surprise her students.

Chapter 3

1. Given the diffi culty of saying anything about the origins of mathematics 
with any certainty, Tahta encourages mathematics educators to work harder to 
“preserve mythopoeic elements that they fi nd powerful and helpful as well as 
discarding ones that seem constraining and elitist” (1986, p. 21). 

2. The physician Erasmus Darwin (grandson of Charles Darwin) thought 
these early experiences might explain the human predilection for spiral lines: “All 
of these various pleasures at length become associated with the form of the moth-
er’s breast, which the infant embraces with its hands, presses with its lips, and 
watches with his eyes and thus acquires more accurate ideas of the form of its 
mother’s bosom . . . And hence at our more mature years, when any object of vi-
sion if presented to us, which by its waving spiral lines bears any similitude to the 
form of the female bosom . . . we feel a general glow of delight, which seems to 
infl uence all our senses” (p. 39, quoted in Fischer, 1999).

Chapter 4

1. This proof is worth describing, especially since it is often used as a para-
digmatic example of mathematical elegance. The proof begins by setting up a 
statement contradictory to what it is trying to establish: that there are an infi nite 
number of prime numbers. It supposes an ordered, fi nite sequence of prime num-
bers, each one smaller than the next (this can be written as 2 < 3 < . . . < n). It then 
calculates a new number (called P), which is 1 plus the product of all the prime 
numbers in the sequence (so, P = 2 × 3 × . . . × n + 1). The proof next evokes a 
contradiction: It posits a new prime number p that is not in the sequence, but that 
divides P. If this new prime number p does divide P, then p cannot be one of the 
prime numbers in the sequence, otherwise p would divide the difference P – 2 × 
3 × . . . × n = 1, which is impossible. Therefore, p is another prime number and so 
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there must exist another prime number different from all the prime numbers listed 
in the original sequence. Since one could keep fi nding new prime numbers by this 
means, the statement beginning the proof is contradicted.

There are a few subtle ideas that make this proof work. However, even a sur-
face understanding may help me point to some of the reasons why the mathemati-
cian G. H. Hardy found the proof beautiful (and why other mathematicians may 
not). For example, it uses the technique of reductio ad absurdum, in which the prover 
assumes that what is to be proven is not true and then proceeds to show that such 
an assumption would lead to a contradiction. There is an aesthetic of bravado or 
rebellion at work in such proofs. In fact, Hardy wrote that reductio ad absurdum “is 
one of a mathematician’s fi nest weapons. It is a far fi ner gambit than any chess 
gambit: a chess player may offer the sacrifi ce of a pawn or even a piece, but a 
mathematician offers the game” (1940, emphasis in original, p. 34). Mathematicians 
that prefer constructionist proofs, which do not allow reductio ad absurdum, might 
well fi nd the proof not only unconvincing, but also perhaps unrefi ned.

2. This despite the word aesthetic’s etymological roots, which recall the rela-
tion of the aesthetic to the senses: the Greek word aisthesis means “sense percep-
tion,” and aisthetikos denotes a thing perceptible by the senses.

3. My colleague William Higginson has suggested that mathematicians might 
experience the sense of detached affect in their constructions of proofs which are so 
often stripped of the situations and examples to which they apply or the personal 
commitments and attractions that formed them. In Chapter 9, I discuss the notion 
of detachment in relation to the aesthetic values of the mathematics culture. 

Chapter 5

1. It is important to recognize that the imperatives are rooted in specifi c aims 
of education; it is much less clear that more utilitarian aims are well served by 
increasing the aesthetic capabilities of students.

Chapter 6

1. This microworld is available online at my homepage: http://www.math.
msu.edu/~nathsinc. Click the link to Alive Maths.

2. It is interesting to recall that a regular calculator replaces its input with its 
output so that a student calculating 1/7 on the calculator never actually sees both 
the fraction 1/7 and its decimal expansion simultaneously. Though I am sure that 
the students think that a fraction and its decimal are equal, they seemed struck 
here for the fi rst time by an ontological equivalence.

3. As I describe in more detail in Chapter 9, I take the terms “romantic” and 
“classical” from the mathematician François Le Lionnais, who uses them to refer 
to opposing human conceptions of beauty (1983, 1948/1986).

4. Indeed, I have chosen to work primarily with middle school students be-
cause the middle school grades represent a crucial stage in mathematics learn-
ing. They represent the period during which students seem to consolidate their
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motivational attitudes toward mathematics, most often toward the negative (Mid-
dleton & Spanias, 1999). Moreover, the middle school years are ones of transition 
where students are expected to move from the more concrete, hands-on, and rel-
evant mathematics of elementary school to the increasingly abstract, formal, and 
seemingly irrelevant mathematics of high school. They are required to make this 
transition without having had the chance to engage in mathematical inquiries that 
might draw on and build upon the extensive knowledge they have developed 
throughout elementary school, not to mention everyday experiences.

Chapter 7

1. Peirce (1892) describes three different modes of human inference: the de-
ductive, the inferential, and the abductive. Deductive reasoning, of course, is often 
associated with mathematics. Inferential reasoning (coming to a conclusion based 
on several examples) is frequently involved in everyday thinking, and can also be 
seen in patterning tasks found in mathematics classrooms. Abductive inference 
involves the forming and evaluating of explanatory hypotheses. Such reasoning 
is often wrong, but Peirce points out that it is often the only type of reasoning 
available in a given situation. In mathematics, students may lack the confi dence 
to make abductive inferences based on the affective consequences of being wrong. 
These types of invitations may well promote abductive reasoning by softening 
the right/wrong implication involved in asking students to “fi nd the solution” or 
“give the answer.” 

Chapter 8

1. Since they are frequently made on fi nished entities, such as proofs or solu-
tions, evaluative judgments may appear more fi nal and enduring, whereas moti-
vational and generative judgments appear transitory, involved as they are in an 
evolving process of inquiry. Final and enduring judgments are also more public as 
they become communicated and negotiated within the community. 

2. In fact, such metrics have been proposed by the mathematicians Birkhoff 
(1956) and King (1992). George Birkhoff’s is probably the most widely known one, 
but was not confi ned to mathematical entities. He uses the formula M = O/C to 
measure the aesthetic value of a product, where O is the measure of order and 
harmony and C a measure of complexity. According to the formula, increasing the 
order increases the aesthetic value, and increasing the complexity decreases the 
aesthetic value. Birkhoff’s formula never gained much currency in the world of 
art criticism, nor in the world of mathematics. After all, the terms O and C are not 
straightforward to measure either: Can the square grid, which is highly ordered 
with little complexity, be considered of great aesthetic value? What about a fractal 
image? The diffi culty in measuring O and C makes the formula almost impossible 
to use. And perhaps artists and mathematicians alike were turned off by Birkhoff’s 
formula for its presumption that aesthetic value can be measured in some absolute 
way (regardless of personal, social, or cultural styles), based on a set of precise 
rules.
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3. When presenting solutions to the class, the teacher often becomes the sole 
audience, as students have little investment in trying to follow or understand the 
particular solution paths of their peers. As Simmt, Calvert, and Towers (2002) 
point out, listening to the mathematical explanations of others is a highly ethical 
act, one that is diffi cult for teachers to elicit. 

Chapter 9

1. Papert (1980) expressed this idea when he advocated that students go to 
“Math Land” to learn mathematics in the same way they might go to France to 
learn French.

2. Several mathematics education researchers (Douady, 1986; Dubinsky, 1991; 
Gray & Tall, 1994; Sfard, 1991) have discussed the process-to-object shift in math-
ematics learning in much more detail, it being a shift in thinking and perceiving 
that students fi nd very diffi cult.

3. The mathematics educator David Wheeler (1988) discusses one of the dif-
ferences that can be found among mathematicians, in terms of their worldview, 
that I fi nd related to the rationalism and objectivism values. Wheeler contrasts two 
ideological positions—one in which “mathematics is a natural system reduced to 
its ultimate abstraction” (p. 15) and the other in which, quoting Léon Brunschwig, 
mathematics is “the fi tting prelude to, and the relevant proof of, a spiritual doc-
trine wherein the truths of science and religion will lend each other mutual sup-
port” (quoted in Wheeler, 1988, p. 15). The latter position can be found explicitly 
in the work of the Pythagoreans, and Wheeler locates it also in the work of the 
mathematicians Leibniz, Descartes, and Pascal. It seems to me that contemporary 
mathematicians follow more readily the former path, but perhaps a deeper consid-
eration of their practices would reveal otherwise. 

4. Interestingly, many mathematical artifacts, such as symbols, have origi-
nally played a more psychological role for mathematicians. For example, the 
symbol ∫ (Roman capital S), used in integration, may appear baroque to some—or 
empty of meaning—but was originally used to refl ect the idea that integration is 
a form of summation, whose symbol Σ (Greek capital S) shares a similarity in ap-
pearance. Another example can be observed in the standoff between Newton and 
Leibniz in the 17th century development of calculus. Both had developed nota-
tional systems that were consistent, brief and “open,” but the mathematical com-
munity eventually chose Leibniz’s system, which seems to have a greater degree 
of transparency. For example, the notation of dy/dx for the derivative evoked the 
way that Leibniz conceptualized deriving curves—as the ratio of infi nitesimals. 
Although calculus teachers today warn their students not to think of the deriva-
tive in this way, the customary symbols cannot help but that carry that meaning. 

5. The physicist Freeman Dyson (1982, pp. 49–55) suggests a related line of 
division in the sciences, distinguishing scientifi c “diversifi ers” (e.g., Rutherford) 
from “unifi ers” (e.g., Einstein). Unifi ers use “the enormous power of mathematical 
symmetry as a tool of discovery” (p. 50) and are “happy if they can leave the uni-
verse looking a little simpler than they found it” (p. 51). Diversifi ers are symmetry 
breakers, who are “happy if they leave the universe a little more complicated than 
they found it” (p. 51).
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6. Of course, the culture of education itself operates according to certain val-
ues that are often consonant with consistency, containment, and coherence. But a 
quick look at other subject curricula will reveal the comparatively extreme com-
mitment to the rationalism value found in mathematics.

Chapter 10

1. Somervell’s work has recently been reintroduced to the elementary school 
context by the mathematics educator Alfi nio Flores (2002), who uses Sketchpad to 
create and manipulate the curves.

2. This is apparent in the “Airplane on a String” lesson described in Stigler 
et al. (1999), where a teacher has students spin a string, which has an airplane 
attached to the end of it, above their heads. The students are described as being at-
tentive and enthusiastic, “wondering what the airplane on the string would have 
to do with mathematics” (Chapter 6). They are asked to fi gure out how fast the 
airplane is moving, which involves thinking about the circumference and radius 
of a circle, and rate.

3. One might argue that anti-mathematical stereotypes still pervade represen-
tations in these recent fi lms and plays, with mathematicians being criminal (Good 
Will Hunting), psychologically unstable (A Beautiful Mind), or just plain psychotic 
(Pi). But even if the mind of the Hollywood mathematician perpetuates these clas-
sic stereotypes, one cannot deny that the body of the Hollywood mathematician has 
evolved in the past decade from the wire-haired mad professor to that of popular 
cinema icons (Russell Crowe, Matt Damon, Gwenyth Paltrow). Progress!
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