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PREFACE

A majority of the chapters in this book first saw the light of day as talks at
a conference organised and held at Queen’s University in Kingston, Ontario,
Canada in April 2001. This small, invitational meeting, tellingly entitled Beauty
and the Mathematical Beast, brought together a range of academics inter-
ested in and committed to exploring connections between mathematics and
aesthetics. The enthusiastic response of participants at this gathering encour-
aged the presenters to expand upon their initial contributions and persuaded
the organisers to recruit further chapters in order to bring a greater balance
to the whole.

The timing of this event was not arbitrary. The preceding decade had
seen a resurgence in serious writing dealing with deeper relations between
mathematics (and science) and ‘the beautiful’. In many ways, we the editors
of this volume found these contributions to the literature were revisiting and
drawing on themes that had been prominent over two thousand five hun-
dred years ago, in certain writings of the Pythagoreans. While not intending
to offer a historical reappraisal of these ancient thinkers here, we have none the
less chosen to invoke this profound interweaving of the mathematical and
the aesthetic to which this reputedly secretive philosophical sect was exten-
sively attuned.

This book is divided into three sections comprising three chapters each,
each with its own short introduction discussing the particular chapters within.
These nine chapters in all are flanked by an introductory and a concluding
chapter, both of which written by ourselves, which we describe now.

The opening Chapter α describes the ancient affinity between the math-
ematical and the aesthetic referred to in the book’s title, an affinity we aim
to illuminate as well as cultivate and advocate by means of this collection.
Chapter α also provides a brief history of the mathematical aesthetic, begin-
ning with the Pythagoreans but flowering in the twentieth century, while
highlighting some of the themes and issues that subsequent chapters raise.
These include attention to the following familiar questions: can criteria for
mathematical beauty be discovered?, is mathematics created or discovered?
and is mathematics an art or a science?

The final chapter of this book, Chapter ω, revisits some of these ques-
tions posed in Chapter α in light of the nine chapters in between. It provides
some insights into those initial questions while raising further ones of its
own. In particular, it offers three strong themes which stretch the mathemat-
ical aesthetic beyond the boundaries set by previous inquiries, all of which
are related to potential sources of pleasure and desire for the mathematician:
desire for distance and detachment; longing for certainty and perfection;
pleasure in melancholy.



The ten authors of the various chapters in this book come from Canada,
the US and Europe. Two who were born in Britain now live and work in
Canada, while one from Latvia and one from Canada are now in the US.
Each anglophone country has its own slight variants of spoken and written
English, as well as punctuation conventions. Is the em-dash a thing of beauty
or an abhorrence three times wider than any other character in the set? Is
that extra ‘u’ in colour redundant, that repeated ‘l’ in ‘travelled’ an unneces-
sary extravagance (as a number of spell-checkers suggest)? Should the issue
of the mathematical scope of variables enter into discussions of where to
place commas and full-stops in relation to quotation marks? Is an ‘s’ or a ‘z’
to be preferred in generalisations? [1] What seem to be matters of conven-
tion (and are therefore, at root, arbitrary) none the less raised a number of
exercising aesthetic issues. As editors, we have decided on a position of plu-
rality and respect for individual heritage, rather than impose a completely
specified geographic orthography.

One of the considerable satisfactions we the editors have received in
creating this book has arisen from drawing on the diverse expertise of the
contributors to this volume, both mathematical and otherwise. Another has
been the extended opportunity for the three of us to work alongside one
another, exploring matters large and small.

We specifically want to mention here the breadth of scholarship that
Martin Schiralli (the author of Chapter 5) brought to this project. Tragically,
Martin died before this book was completed, aged only 56. His depth of
philosophical knowledge, combined with his fresh perspective on math-
ematics, added considerably to many elements of this collection.

Nathalie Sinclair
David Pimm

William Higginson

January, 2006

[1] An entertaining discussion of some related issues can be found in Eats, Shoots &
Leaves (Truss, 2004).
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CHAPTER α
A Historical Gaze at the
Mathematical Aesthetic

Nathalie Sinclair and David Pimm

No matter how correct a mathematical theorem may appear to be,

one ought never to be satisfied that there was not something imper-

fect about it until it gives the impression of also being beautiful.

(George Boole, in MacHale, 1993, p. 107)

The ancient Greeks, primarily by way of the Pythagoreans, established and
celebrated a fundamental affinity between the mathematical and the aesthetic.
This affinity was nothing about surface charm or happy coincidences. It had
deep roots, integral as it was to the world-view of the Pythagoreans, to their
beliefs about knowledge and learning. It closely connected the raw world
of sense and experience to the divine world of perfection and beauty.
Number was the principle that governed all things, rather than being simply
useful for counting or measuring – as modern minds might think, if indeed
they stop to consider this omnipresent convenience at all. Through number,
one could come to know the world, and through the harmonies found in
numerical patterns and in geometrical forms, one could gain access to the
clearest and most indubitable essence – the real.

This ancient affinity started losing sway early on, even with Plato and
Aristotle. Nevertheless, traces of this Pythagorean perception have remained,
resurfacing at various times, such as at the beginning of the twentieth century.
For instance, in the second volume of his book On Growth and Form,
D’Arcy Thompson (1917/1968) wrote:

For the harmony of the world is manifest in Form and Number,

and the heart and soul and all the poetry of Natural Philosophy are

embodied in the concept of mathematical beauty. (pp. 1096-1097)

Thompson went on to add that this is what the Pythagoreans taught us,
Philolaus in particular (a Pythagorean whose influence is also discussed in
Chapter 5 of this book), before remarking:

Moreover, the perfection of mathematical beauty is such (as Colin

Maclaurin learned of the bee), that whatsoever is most beautiful

and regular is also found to be most useful and excellent. (p. 1097)

While not all would agree with his attributing to the beautiful the most util-
itarian properties (or at least the most ‘useful’, however that may be seen at
different times), Thompson is, in this passage, apparently identifying math-



ematics as possessing the highest form of perfection – a theme we shall find
recurring repeatedly. Finally, Thompson seconded the view of a certain
Monsieur Henri Fabré, who wrote that one sees in Number “le comment et
le pourquoi des choses” [the how and the why of things] and finds in it “la
clef de voûte de l’Univers” [the keystone of the universe] (p. 1097).

If Thompson signalled rapprochement, we can also identify periods of
disjunction or even denial of this ancient affinity. For instance, T. S. Eliot
(1921/1932) wrote of his sense of a ‘dissociation of sensibility’ (the loss of the
direct fusion of thought and feeling) in much of the poetry of eighteenth- and
nineteenth-century England. (This, as well as other instances, including the
nineteenth-century English Romantics’ scorn of mathematics and science, is
touched on in Chapter 9.)

And one of the more recent accounts of this process of the scientific/
artistic affinity dissolving (at least symbolically), from the mid-twentieth cen-
tury this time, was given by scientist and novelist C. P. Snow (1959) in his
essay naming and exploring aspects of ‘the two cultures’. Since then, how-
ever, these two cultures – the arts and the sciences – have once again started
to find an intermittent, yet growing rapport, as evidenced by the number of
books, conferences and courses seeking common behaviour and beliefs.

This recent work has included many productive marriages between the
sciences (including mathematics) and the arts, such as, for example, con-
temporary sculptures of numerical patterns (Dickson, 1993) and mathemat-
ical analyses of Jackson Pollock’s paintings (Taylor et al., 1999): this is fur-
ther discussed in Chapter 6. Ethnographically-oriented scholars have taken
interest in revealing the mathematical dimension of past artistic artifacts,
such as the geometry of Pueblo pottery (Campbell, 1989) and the symmetry
of Islamic design (Chorbachi, 1989). And, of course, the plethora of books
on the Dutch artist Maurits Escher, particularly the recently published M.C.
Escher’s Legacy: a Centennial Celebration (Schattschneider and Emmer, 2003),
has shown how his prints were born out of the artist’s mathematical and
artistic interests and how his work continues to inspire both mathematical
and artistic analyses.

Scholars working in this interdisciplinary, ‘cross-cultural’ arena provide
concrete examples of the ways in which mathematics and the arts can both
inspire each other, not only in contemporary settings, but also in historical
ones. Increasingly, however, scholars have also been working to reveal the
close relationship between scientific and artistic creativity and have succeeded
in defying popular beliefs that feed the antagonistic ‘two culture’ world-
view, including that which holds that scientists operate exclusively rationally
and artists solely intuitively or emotionally.

Some aspects of this ancient affinity even seem to be seeping into other,
non-academic cultural milieux. Images of fractals, for instance, which have
become increasingly widespread (who has never found themselves staring at
a fractal screensaver?), have provided many non-mathematicians with oppor-
tunities to encounter compelling, visually beautiful mathematical artifacts.
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And though mathematics is far from being seen as playing the central epis-
temological role it did for the Pythagoreans, it has nonetheless made some
inroads into more mainstream culture. 

The proliferation of mathematical films and plays, such as A Beautiful
Mind, Pi, Arcadia, Breaking the Code and Proof, harken back to ancient
times when playwrights such as Aristophanes could refer to then-current
mathematical problems (such as the squaring of the circle) as easily as polit-
ical ones. Publishers have apparently realised that the once-sullen, esoteric
line of pure mathematics books might be gaining in appeal, as titles such as
Fermat’s Last Theorem, The Code Book and The Honor Roll: Hilbert’s Pro-
blems and their Solvers populate bookstore shelves. Instead of offering
accounts of mathematics using the formal, abstract language to be found in
research journals – and often imposed upon reluctant schoolchildren – these
books tell exciting, sometimes heart-wrenching and very human stories of
mathematicians and their discoveries, seeking to convey the sense of beauty
and elegance to which mathematicians are drawn. Once again, we are being
provided with glimpses of the way in which mathematics connects experi-
ence and abstraction, connects the senses with structures, connects the
human with the divine.

The scale of the recent rapprochement among mathematics, science and
the arts, as well as the apparently growing appeal of mathematics in more
mainstream culture, are both manifestations of a re-emergent affinity between
the mathematical and the aesthetic, one that might be coming closest to the
golden era of the Pythagoreans. In keeping with the philosophy of the
Pythagoreans, the chapters in this book focus on this affinity at a deeper
level, beyond surface applications (as might be suggested by geometricised
paintings or musical fractals), to more fundamental, epistemological connec-
tions. They attempt to articulate a common sub-stratum between the math-
ematical and the aesthetic, one that is integrally related to human sense-
making and to learning.

The goal of this opening chapter is to provide a brief historical sense of
the development of ideas around the mathematical aesthetic. Readers with
backgrounds in the aesthetics branch of classical philosophy will find the
equivalent branch of mathematics rather young and comparatively uncritical.
Nevertheless, a certain amount of grappling with difficult challenges can
be found, though not with the systematic or cumulative attention that has
built and continues to build the mathematical edifices so cherished by math-
ematicians themselves.

We begin by looking at some fragments of these challenges, as found
in the long period stretching from the ancient Greeks up to the beginning
of the twentieth century. We then turn to the twentieth century itself and
find there an explosion of interest in the mathematical aesthetic, particularly
around questions such as: is mathematics an art or a science? and can cri-
teria for mathematical beauty be identified?

3Chapter α – A Historical Gaze at the Mathematical Aesthetic



Some Pre-Twentieth-Century Fragments
Concerning the Mathematical Aesthetic

The extant writings attributed to Pythagoras and his followers reveal that the
Pythagorean school, if not Pythagoras himself, found in the beauty of math-
ematics the very highest order of aesthetic interest. In fact, the Pythagoreans
were overwhelmed by the aesthetic appeal of the theorems they discovered
and were perennially preoccupied with the interconnectedness of the math-
ematical and the aesthetic. This interconnectedness permeated their world-
view, which saw reality as ultimately revealed in mathematically harmonious
concepts.

Mathematical studies were thus seen as furnishing ladders and bridges
to the divine, because they shared a perfection and beauty that was consid-
ered true of the divine, but felt lacking in the physical world. Unlike Plato,
who separated number, an abstract entity, from the things numbered, the
Pythagoreans saw number as being tied up with the actual procedure of
counting and thus closely connected with things. Number reached out or
down into the world of sense and experience. As such, the Pythagoreans
saw the roots of Plato’s exclusively abstract entities in the ‘real’, the human,
the sensory world.

Both Plato and Aristotle, though philosophically divergent in many
ways, were much influenced by the ideas of Pythagoras, particularly with
respect to the connection between mathematics and the beautiful. Plato saw
mathematics as providing the most fundamental of all ideas and believed in
mathematical objects as perfect forms. As he wrote in Philebus:

By ‘beauty of figures’ I mean in this context not what most would
consider beautiful – not, that is, the figures of creatures in real life
or in pictures. I mean a straight line, a curve and the plane and
solid figures that lathes, rulers and squares can make from them. I
hope you understand. I mean that, unlike other things, they are not
relatively beautiful: their nature is to be beautiful in any situation,
just as they are, and to have their own special pleasantness, which
is utterly dissimilar to the pleasantness of scratching. (51d; 1982,
p. 121; italics in Waterfield)

And Aristotle, in his Metaphysics, wrote that the mathematical sciences have
much to say about the beautiful and the good, and that:

the chief forms of beauty are order and symmetry and definiteness,
which the mathematical sciences demonstrate in a special degree.
(Book M, 1078b; 1966, p. 218)

(Martin Schiralli, in Chapter 5, however, discusses important differences
among the views of Plato, Aristotle and the Pythagoreans.)

Once into the Christian era, by no means all were comfortable with link-
ing the mathematical and the divine, of humans equating investing the math-
ematical and investing the divine with the qualities of perfection, thereby
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perhaps equating the two. For instance, St Augustine, in his twelve-volume
work De Genesi ad Litteram, warned:

Hence, the good Christian should beware of mathematicians and

all those who make empty prophecies, especially when they tell

the truth, for fear of leading his soul into error by consorting with

demons. (Book II, 23, 35-36)

When reading this observation, however, it is important to realise that the
most common connotative meaning of the word ‘mathematician’ in St
Augustine’s day was not what it would be today, including as it did those
engaged in astrology, alchemy, gematria and magic. And, as Chapter 9 spec-
ulatively explores, in Byzantium and in mediaeval Europe at least, the drive
to mathematise may have been ‘side-tracked’ into theology, until Renaissance
artists found an alternative outlet in their work.

With regard to Islam, Endress (2003) informs us that the only mediaeval
mathematics-related dissertation on the aesthetically beautiful can be found
in Ibn al-Haytham’s Optics, a discipline that was seen as the converse of
geometry by mediaeval mathematicians. It may be true that such mathemati-
cians were less inclined to talk directly about the beauty of mathematics;
nonetheless, they certainly wrote about some of its other aesthetic qualities.
For example, the tenth-century mathematician Abu Salh al-Kuhi – according
to Berggren perhaps “the last mathematician to look on mathematics with the
eyes of the great Hellenistic geometry” (cited in Endress, p. 193) – extolled
the certainty of mathematics. He wrote of the rules of geometry as being
“consistent and unchanging” and eschewed the kind of ‘bad’ mathematics
that was based on numerical, imperfect approximations.

The eleventh-century Islamic theologian Al-Ghazzali warned of math-
ematics – and particularly its predilection for aesthetic qualities such as
precision and clarity – leading to harmful things other than magic. One addi-
tional drawback of mathematics, he wrote, was that:

every student of mathematics admires its precision and the clarity

of its demonstrations. This leads him to believe in the philosophers

and to think that all the sciences resemble this one in clarity and

demonstrative power. (in Hoodbhoy, 1991, p. 105)

Such caveats against misplaced or even idolatrous authority, whether to be
located in a particular author or within mathematics itself, have been echoed
time and time again down the centuries. For instance, we note in passing that
one of the more notable complaints concerning Isaac Newton’s extensive
biblical chronology (which occupied much of the latter part of his life) was
its being credited with more credence than its due, because of the reputa-
tion of its creator in quite another area of human endeavour.

So, over a millenium after St Augustine’s expression of concern, we still
find Archbishop François de Fénélon (1697/1845) in Paris expressing a not-
dissimilar unease:
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Surtout ne vous laissez point ensorceler par les attraits diaboliques
de la géométrie. [Above all, do not allow yourself to be bewitched
by the diabolical attractions of geometry.] (p. 493)

In the Christian West, right up to the time of Fibonacci (and beyond, into
the sixteenth and even seventeenth centuries), the more likely meaning for
‘mathematician’ was astrologer (and, even worse, ‘conjuror’). It is worth
recalling that such an Augustinian pejorative description of ‘mathematician’
(or its common equivalent of ‘geometer’) was almost as fitting of Isaac
Newton (see, for instance, Gleick, 2003, on the ‘alternative’ Newton) as the
Elizabethan neoplatonist mathematician and magus John Dee (1527–1608)
of an England a century earlier, whose magnificent personal academic library
was perhaps the best in England at that time (see Yates, 1969).

Dee lived in very complex political, religious and intellectual times.
Similar concerns linking mathematics with devil-worship surfaced in England,
very soon after the English Reformation started, with Henry VIII asserting
the King as head of the new Church of England (via the 1534 Act of
Supremacy denying the authority of the Pope). In 1550, three years after the
death of Henry VIII, government commissioners (‘Visitors’) went destruc-
tively through Oxford University college libraries, casting more than a sus-
picious glance at books containing mathematical diagrams, consigning many
volumes to destruction. [1]

Twenty years after this book-burning event, Dee published his exten-
sive and very influential ‘fruitfull præface’ (which ran to ninety-five printed
pages) to the first English-language version of Euclid’s Elements. Following
a highly Pythagorean discussion of the nature of mathematics in terms of
number, Dee asserted:

For, [Things Mathematicall ], being (in a manner) middle, between
things supernaturall and naturall: are not so absolute and excellent
as things supernaturall; Nor yet so base and grosse, as things nat-
urall: But are things immateriall, and neverthelesse, by material
things able somewhat to be signified. And though their perticular
Images, by Art, are aggregable and divisible: yet the generall Forms
notwithstanding, are constant, unchangeable, untransformable and
incorruptible. Neither of the sense, can they, at any time, be per-
ceived or judged. Nor yet, for all that in the royall mind of man,
first conceived. But surmounting the imperfection of conjecture,
weening and opinion: and comming short of high intellectuall con-
ception, are the Mercuriall fruit of Dianœticall discourse, in per-
fect imagination subsisting. A marvellous newtrality have these
things Mathematicall, and also a strange participation between
things supernaturall, immortall, intellectuall, simple and indivisible:
and things naturall, mortall, sensible, compounded and divisible.
Probability and sensible proof, may well serve things naturall, and
is commendable: In Mathematicall reasonings, a probable Argu-
ment is nothing regarded: nor yet the testimony of sens[e], any
whit credited: But onely a perfect demonstration, of truths certain,
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necessary, and invincible: universally and necessarily concluded: is
allowed as sufficient for an Argument exactly and purely Math-
ematicall. (1570; in Rudd, 1651, pp. 4-5)

There are a number of resonances between the above quotation of Dee’s
and themes addressed in this book. First, in placing mathematics neither of
this world nor the next, but somehow hovering between the two with con-
nections and links to both, Dee calls attention to the Janus-faced nature of
mathematics, as well as presciently identifying mathematics as a ‘mediating
third’ between the two.

To evoke in the context of this quotation the tension between ‘pure’ and
‘applied’ mathematics, to cast it in this modern frame (that is, to worry about
Eugene Wigner’s (1960) claim about ‘the unreasonable effectiveness of
mathematics’), is to assert the gap between mathematical and natural. But
some of the protestors cited above are at equally great pains to maintain the
separation between mathematical and what Dee terms ‘the supernaturall’,
identified by some (but not all) with ‘the divine’.

We would also like to draw on this quotation in order to make some
links with themes explored in this book. To a considerable extent, quite a
number of chapters in this book – in particular, Chapters 3, 4, 5, 8 and 9 –
explore different ways of disagreeing with Dee’s remark “Neither of the
sense, can they, at any time, be perceived or judged”. Additionally, in Chapter
1, Jonathan Borwein takes (indirect) exception to Dee’s assertion that “a
probable Argument is nothing regarded”. David Pimm, in Chapter 8, discusses
aspects of what Dee termed the “Art” of “perticular Images”, as well as
exploring the connection between ‘Popish’ catholicism and concern about
mathematical images in the twentieth century (prefaced, as we saw above,
in the sixteenth). Finally, in Chapter 9, Dick Tahta centrally examines the
nature of “sensible” objects in relation to mathematics.

The Mathematical Aesthetic in the Twentieth Century

Though the eighteenth and nineteenth centuries were extremely fruitful in
terms of mathematical discoveries and advances, it seems that mathemati-
cians infrequently, at least in print, reflected on issues related to the mathe-
matical aesthetic. This is not to say, however, that they did not think about
or mention aesthetic values. Gauss’s mathematical diary (see Gray, 1984), for
example, contains many references to the beauty or elegance of his own
mathematical ideas and discoveries. For instance, as a nineteen-year-old in
1796, Gauss wrote about a new proof obtained “all at once, from scratch,
different, and not a little elegant” (p. 108). In another entry, this time made
in 1800, he described his work on the arithmetic–geometric means as being
“most beautifully bound together and increased infinitely” (p. 122) to the
theory of transcendental quantities. In addition to beauty and elegance,
Gauss made reference to aesthetic qualities such as a “charming theorem”
(p. 125) and to a “most simple and expeditious method” (p. 124).
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However, for some reason, the turn of the past century brought about
a comparative flurry of interest in the nature of mathematics. In particular,
there were concerted efforts to ascertain whether mathematics belonged
more to the arts or to the sciences, from which it had not long ago been
divorced (during the latter part of the nineteenth century, not least due to
developments in connection with non-Euclidean geometry). It also marked
the beginning of sustained inquiries into the development of mathematical
knowledge and the extent to which it is fuelled by some aesthetic as well
as utilitarian or logical considerations (which, pace D’Arcy Thompson, were
usually seen as relatively distinct).

Finally, and early on in this flurry of activity, mathematicians became
interested once more in the psychology of mathematical discovery. [2] Some
twentieth-century mathematical writers on the aesthetic turned to the central
question of the extent to which affective responses and aesthetic sensibilities
were involved in the process of mathematical creation. Their attention to the
aesthetic was not as intense and all-encompassing as that of the earlier
Pythagoreans, but they each began, in their own way, to rekindle the embers
of this ancient affinity. Here, we examine each of these themes in turn,
tracing out, when possible, aspects of their historical developments.

The aesthetics of mathematical creation

In 1908, Henri Poincaré began to bring renewed attention to the aesthetic
dimension of mathematical creation, but his focus was more pragmatic and
markedly different from that of the ancient Greeks. He was most interested
in probing the aesthetic influences that affect the process of mathematical
discovery. This focus proved unlike that of many of the mathematicians who
would follow him, who attended more to the aesthetic values or principles
that exist in mathematical ideas or products (the discoveries themselves). By
analysing the process of mathematical creation, Poincaré tried to show that
mathematical invention depends upon the often sub-conscious choice and
selection of ‘beautiful’ combinations of ideas, those best able to “charm this
special sensibility that all mathematicians know” (1908/1956, p. 2048).

In his book The Psychology of Invention in the Mathematical Field,
Jacques Hadamard (1945) proposed the first expansion of Poincaré’s aesthet-
ic heuristic theory, additionally claiming that aesthetic sensibilities often guide
a mathematician’s general choices about which line of investigation to pur-
sue. He wrote specifically about the “sense of beauty” (p. 130) which can
inform the mathematician that “such a direction of investigation is worth fol-
lowing; we feel that the question in itself deserves interest” (p. 127; italics in
original). Hadamard also added to Poincaré’s ideas on the role of the math-
ematical pre-conscious in mathematical thinking, locating the period in which
it is most operative – the incubation period – within a larger theory of math-
ematical inquiry. Through both historical and empirical studies, he supported
his account from mathematicians such as Pierre de Fermat, Evariste Galois,
Bernhard Riemann, George Birkhoff, George Pólya and Norbert Wiener.
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Morris Kline (1953) subsequently pointed out that aesthetic concerns
not only guide the direction of an investigation, but motivate the search for
new proofs of theorems already correctly established but lacking in aesthetic
appeal – by means of their ability to “woo and charm the intellect” (p. 470)
of the mathematician. Kline took this aesthetic motivation as a definitive sign
of the artistic nature of mathematics. Wolfgang Krull (1930/1987) illustrated
how aesthetic preferences – such as a mathematician’s desire for simple,
symmetric structures – can seriously influence the further development of
mathematics, as well as the derivation of new properties and the creation of
new theories.

In his earlier attempt to define mathematics as the “classification and
study of all possible patterns” (p. 12), Warwick Sawyer (1955) implied that
the heuristic value of mathematical beauty stems from mathematicians’ sen-
sitivity to pattern and originates in their belief that “where there is pattern
there is significance” (p. 36; italics in original). Sawyer went on to explain
the heuristic value of this trust in pattern:

If in a mathematical work of any kind we find that a certain strik-

ing pattern recurs, it is always suggested that we should investigate

why it occurs. It is bound to have some meaning, which we can

grasp as an idea rather than as a collection of symbols. (p. 36; italics
in original)

Sawyer might well have explained Poincaré’s special aesthetic sensibility as
a sensibility toward pattern, viewed broadly as any regularity that can be
recognised by the mind. For him, the mathematician is not only able to
recognise regularities and symmetries, but is also attuned to look for and
respond to them with further investigation.

Poincaré’s writing on the mathematical aesthetic, which was definitely
excluding of most everyone (more so than Sawyer’s account) suggested that
only the very creative mathematicians had access to this aesthetic guide.
This claim may have provoked the “literary superstition” that Alfred North
Whitehead (1926) mentioned, which views the aesthetic appreciation of
mathematics as being a “monomania confined to a few eccentrics in each
generation” (in Hardy, 1940, p. 85). Hardy quoted Lancelot Hogben (1940)
“the aesthetic appeal of mathematics may be very real for a chosen few”
(p. 86) and accused him of echoing this “superstition”.

Indeed, Bertrand Russell’s (1917) famous quotation, “Mathematics, rightly
viewed, posseses not only truth, but supreme beauty – a beauty cold and
austere, like that of sculpture” (p. 57), does seem to suggest that mathematics
exercises a coldly impersonal attraction, one not meant for normal individ-
uals. As we shall see, Russell’s frigid tastes are not the only ones that
mathematics can satisfy. But this theme of the exclusiveness of mathematical
aesthetic judgements (concerning who is able to make them), to be found
in the writings of Poincaré, Russell and Hardy, persists in the mathematics
literature.
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Armand Borel (1983) was faced with overcoming a different kind of
exclusivity in his attempt to convey the nature of mathematics and the math-
ematical aesthetic to a wider audience, of both mathematicians and non-
mathematicians. He began by arguing that the development of mathematics
was “derived from, guided by, and judged according to aesthetic criteria”
(p. 11), thereby astutely acknowledging both Poincaré’s heuristic aesthetic
and Hadamard’s aesthetic of choice. However, he then attempted to show
how what may seem like the “pure and esoteric” aesthetics of mathemati-
cians are actually bound up with “more earthly yardsticks” (p. 15), such as
applicability and usefulness, values that Borel hoped non-mathematicians
would find more recognisably mathematical than beauty or elegance.

Almost eighty years after Poincaré, the philosopher Harold Osborne
(1984) wrote:

the reliance on the heuristic value of mathematical beauty in sci-
entific theory has become something of a commonplace. (p. 291)

This indicates the extent to which scientists – and especially physicists – had
placed their trust in Poincaré’s notion of the mathematical aesthetic sensibility
as a kind of muse who, if listened to carefully, would both guide and inspire
creativity. [3] Indeed, scientists have been much more prolific than math-
ematicians in cataloguing and inspecting the effect of this trust on the devel-
opment of scientific theories (see, for example, Chandrasekhar, 1987; Curtin,
1982; Farmelo, 2002; McAllister, 1996; Wechsler, 1978).

Yet few scholars have explicitly discussed the differences, in terms of
their aesthetic dimensions, between mathematics and the (other) sciences.
There is certainly a common belief among physicists that what they find
beautiful in their theories is ultimately mathematical. In fact, it would seem
that mathematics plays a key bridging role between the sciences and the
arts, at times transforming scientific ideas into forms and patterns that afford
aesthetic attention. But science and mathematics have different aims, as well
as different measures of success. This leads McAllister (1996), for instance, to
warn that the nature and role of the scientific aesthetic cannot be blindly
transferred to the domain of mathematics.

Mathematics: an art or a science?

The mathematics literature has long been replete with questions about the
nature of mathematics and its place in the plural world of the arts and sciences.
While Gauss’s claim that mathematics is the queen of the sciences has often
been repeated, so has the claim that mathematics belongs more properly to the
arts. The British scholar J. W. N. Sullivan made the latter argument in 1925,
claiming that mathematics is the product of a free creative imagination,
unconditioned by the external world. It is, he argued, just as ‘subjective’ as
the other arts, even though it can be used to illuminate natural phenomena.

Moreover, Sullivan (1925/1956, p. 2020) claimed that mathematicians
are impelled by the same incentives as artists, citing as evidence the fact that
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the “literature of mathematics is full of aesthetic terms” and that many math-
ematicians are “less interested in results than in the beauty of the methods”
(p. 2020) by which those results are found. His interest in the mathematical
aesthetic experience, which he saw giving rise to the same satisfactions as
the artistic experience, was distinct from Poincaré’s focus on the mathematical
aesthetic sensibility, which acts as a guide. Yet Sullivan saw neither mathe-
matics nor art as existing to satisfy “aesthetic emotions”: rather, he saw both
art and mathematics as means by which humans can “rise to a complete self-
consciousness” (p. 2021).

The philosopher Rom Harré (1958) was more interested in the aesthetic
differences between mathematics and the arts. He pointed out the uniqueness
of mathematical aesthetic judgements by comparing them with bona fide aes-
thetic judgements. He described mathematical appraisals of beauty and ele-
gance as quasi-aesthetic, since they use “words from our regular aesthetic
vocabulary, which fall outside the normal range of aesthetic judgements”
(p. 133). In fact, for Harré, “quasi-aesthetic appraisals are not a queer sort of

aesthetic appraisal but simply not aesthetic appraisals at all” (p. 136). Quasi-
aesthetic appraisals are “essentially second-order” because of two factors (p.
137). First, appraisals such as ‘beautiful’ and ‘elegant’ do not betoken success
in mathematics the way they do in artistic fields: “If an object doesn’t move
us it has failed altogether aesthetically, but if a proof doesn’t move us it does
not for that reason fail altogether mathematically” (p. 137). Second, quasi-
aesthetic appraisals require comparing an object with very specific other
objects of the same kind. Harré contended that, in mathematics, the ele-
gance of a proof “can only be judged by a comparison, explicit or implicit,
between alternative proofs of the same result” (p. 137): in contrast, “Ordinary
aesthetic appraisals are essentially non-comparative” (p. 137).

Harré’s formalist stance forced him to trivialise almost completely the
importance of aesthetic appraisals in mathematics. Because the aesthetic is
only secondary to achievement, it is thereby robbed of any epistemic interest.
Furthermore, contemporary philosophers and art theorists would challenge
Harré’s claim about the aesthetic bar of success inherent in the arts and the
non-comparability of aesthetic judgements. The philosopher of mathematics
Thomas Tymoczko (1993) may well have pointed out the most operative
difference between aesthetic judgements in mathematics and those at work
in the arts. This is that the mathematics community does not have many
(any?) ‘mathematics critics’ to parallel the strong role played by art critics in
appreciating, interpreting and arguing about the aesthetic merit of artistic
products.

In 1933, the American mathematician George Birkhoff approached the
connection between mathematics and beauty from the reverse direction,
proposing a theory by which mathematics could be used to describe beauty.
According to Whittaker (1945), Birkhoff wanted to create:
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a general mathematical theory of the fine arts, which would do
for aesthetics what had been achieved in another philosophical
subject, logic, by the symbolisms of Boole, Peano, and Russell.
(p. 127)

Birkhoff admitted that the aesthetic feeling was “intuitive” and “sui generis”,
but held nevertheless that the attributes upon which aesthetic values depend
are accessible to measurement. He proposed three main variables constituting
typical aesthetic experiences: the complexity of the object (C), the feeling of
value or aesthetic measure (M) and the property of harmony, symmetry or
order (O). With the following equation, M = O/C, he presented to us his
hypothesis that the aesthetic measure is determined “by the density of order
relations in the aesthetic object” (1933/1956, p. 2186). He also provided
equations that could define both the variables O and C more formally.

Birkhoff’s formula never gained much currency in the world of art crit-
icism, nor in the world of mathematics. After all, the terms O and C are not
straightforward to measure: can the square grid, which is highly ordered
with little complexity, be considered of great aesthetic value? What about a
fractal image? The difficulty in measuring O and C makes the formula almost
impossible to use. And perhaps artists and mathematicians alike were unim-
pressed by Birkhoff’s formula for its tacit presumption that aesthetic value
can be measured in some absolute way (regardless of personal, social or
cultural styles), based on a set of accurate rules. Regardless of his formulaic
approach, Birkhoff did identify qualities such as order, harmony and com-
plexity as being relevant to aesthetic value, thus echoing the ancient Greeks
while at the same time anticipating the work of several of the mathemati-
cians we have yet to discuss.

Criteria for the mathematically beautiful

In 1940, G. H. Hardy published what became arguably the most widely-read
inquiry into the mathematical aesthetic. Unlike either Poincaré or Hadamard,
Hardy was primarily interested in defining mathematical beauty as it exists
in mathematical products, particularly in proofs. He proposed a somewhat
complex scheme that distinguished ‘trivial’ beauty – which can be found in
chess – from ‘important’ beauty, which can only be found in serious math-
ematics. But, for Hardy, serious involved significant, which in turn required
generality – scope or reach – and depth. Generality and depth are both dif-
ficult to define, but can, according to Hardy, be immediately recognised by
those with a “high degree of mathematical sophistication” (p. 103). Such
mathematicians will find a mathematical idea significant when it can be “con-
nected, in a natural and illuminating way, with a large complex of other
mathematical ideas” (p. 89). Hardy illustrated his notion of mathematical
beauty with two examples: Euclid’s proof of the infinity of primes and the
Pythagorean proof of the irrationality of √2. These two proofs appear fre-
quently in the literature as particularly fine examples of beautiful proofs (for
example, see Dreyfus and Eisenberg, 1986, or King, 1992).
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Having defined mathematical beauty in terms of significance and seri-
ousness, Hardy went on to say that the triviality of ideas (such as those
found in chess problems, but not in beautiful mathematics) “disturbs any
more purely aesthetic judgement” (p. 113). Hardy proposed that purely aes-
thetic qualities are unexpectedness, inevitability and economy. Consider-
ably later, Roger Penrose (1974) would add to Hardy’s list the criterion of
“unexpected simplicity” (p. 267). Hardy advanced a formalist perspective of
mathematical beauty by only acknowledging responses to formal properties.
For Hardy, and many others, formalism represents the dominant ‘public aes-
thetic’ of mathematics; if mathematics presents any aesthetically relevant
qualities, these qualities must be formal in nature.

Shortly after Hardy’s publication, François Le Lionnais (1948/1971) pro-
posed a completely different, non-formalist way of approaching the prob-
lem of mathematical beauty – without making reference to either Hardy or
Poincaré. Le Lionnais was not interested in the process-oriented aesthetic
sensibilities that Poincaré was, but his scope was wider than Hardy’s, includ-
ing as it did various kinds of ‘facts’ and ‘methods’ as potential objects of
mathematical beauty. Le Lionnais effectively enlarged the sphere of math-
ematical entities that can have aesthetic appeal, including not only entities
such as definitions, shapes, proofs, solutions and theorems, which are
appreciated after the fact, but also the various methods and processes used
to work with mathematical entities, which can be appreciated while doing
mathematics.

In addition, Le Lionnais emphatically drew attention to the subjectivity of
aesthetic responses, by classifying mathematicians’ orientations as either
‘classical’ or ‘romantic’, thus allowing for degrees of appreciation – banned
by Hardy – according to personal preference. These categories represent two
styles of human endeavour: on the one hand, a desire for equilibrium, har-
mony and order; and, on the other, a yearning for lack of balance, form oblit-
eration and pathology. A very similar distinction was made by Freeman Dyson
(1982), who distinguished between ‘unifiers’ and ‘diversifiers’, the former find-
ing and cherishing symmetries, the latter enjoying the breaking of them.

In addition, Harold Osborne (1984), in tracing aspects of the aesthetic in
the sciences, also recognised the human dimension of mathematical aesthetic
response, arguing that aesthetic satisfaction derives from the common human
desire to impose order on chaos. Citing Davis and Hersh’s (1980) observa-
tion, “to some extent, the whole object of mathematics is to create order
where previously chaos seemed to reign, to extract structure and invariance
from the midst of disarray and turmoil” (p. 172), Osborne implied that math-
ematics provides an optimal context in which to gain aesthetic satisfaction.

Le Lionnais’s stance on the subjectivity of aesthetic responses did not do
much to quell the belief, common among mathematicians especially, that
most mathematicians will agree on their aesthetic judgements. This common
belief was fuelled in part by the exclusivity of Poincaré and Hardy, which
seemed to imply that if your aesthetic judgement did not agree with that of
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a great mathematician, then you were simply not a great mathematician. It
was also fuelled by the enormous discrepancies of taste and judgement
found in the arts which, by any mathematician’s definition of subjectivity,
dwarfed the differences identified in the mathematical world.

Jerry King (1992), like Hardy, presumed the supposed homogeneity of
mathematicians’ aesthetic response and further concluded that mathemati-
cians work from some set of commonly-accepted aesthetic principles.
Moreover, he assumed that mathematicians’ judgements are not subjective,
but instead depend solely upon the mathematics itself, making it possible
to formulate decisive criteria. In his book The Art of Mathematics, King
drew on aesthetic theories of philosophy and art criticism in order to articulate
“a complete aesthetic theory of mathematics” (p. 157).

Rather than expanding Hardy’s or Osborne’s list of factors that con-
tribute to aesthetic appeal, King’s primary goal was to identify general-level
aesthetic criteria that would help distinguish ‘good’ mathematics from ‘bad’
(thereby conflating Hardy’s distinction between the beautiful and the aes-
thetic). He thus proposed two definitive criteria: the principle of minimal
completeness and the principle of maximal applicability. King illustrated
both principles using the Pythagorean proof of the irrationality of √2. The
principle of minimal completeness, in effect, functions as a super-class to
Hardy’s aesthetic qualities. However, King’s principle of maximal applicability
resonates more with Hardy’s notions of significance, depth and generality.

Finally, David Wells’s (1990) survey of contemporary mathematicians has
most convincingly illuminated the subjectivity question. He asked the read-
ers of The Mathematical Intelligencer to rate, on a scale of one to ten, twenty-
four theorems according to their mathematical beauty. From the seventy-six
responses, many from top mathematicians mostly from North America, he
drew a number of inferences. First, mathematicians do not always agree on
their aesthetic judgements – at least not in terms of evaluating the beauty of
theorems.

Wells identified many factors that contribute to the differences in judge-
ment: field of interest; preferences for certain mathematical entities such as
problems, proofs or theorems; past experiences or associations with partic-
ular theorems; even mood. He also pointed out that aesthetic judgements
change over time: this was particularly evident in the rating of Euler’s for-
mula, which was historically considered “the most beautiful formula of
mathematics” (p. 38), but is now, according to Wells’s respondents at least,
considered too obvious even to elicit an aesthetic response.

The inferences made by Wells correspond to a contextualist view of aes-
thetic appreciation and are summed up by this respondent: “beauty, even in
mathematics, depends upon historical and cultural contexts, and therefore
tends to elude numerical interpretation” (p. 39). Indeed, John von Neumann
had already spoken of the phenomenon of mathematical ‘styles’ back in 1947,
arguing that, it is “hardly possible to believe in the existence of an absolute,
immutable concept of mathematical rigor, dissociated from all human experi-
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ence” (p. 190). He used as evidence the changes in styles of mathematical
proofs and fashionable areas of interest over the past two millennia.

One might wonder why these changes in style appear so much less dra-
matic than the ones found in the arts. Are the styles necessarily more con-
fined in mathematics, owing to the handful of aesthetic commitments that
ultimately define the discipline? Or does the study of mathematics attract a
small enough number of like-minded people that aesthetic revolutionaries
such as Picasso, Pollock or Cage do not have mathematical equivalents?

Some Final Comments

It is certainly tempting to wonder why the twentieth century witnessed such
an explosion in thinking about the mathematical aesthetic, if only to help
predict what might be in store for the twenty-first. Will this book be unawarely
documenting the close of an active period of investigation or will it serve as
a springboard for further, fruitful inquiry?

It would be hard to overlook the fact that at turn of the twentieth cen-
tury, not long after the discovery of non-Euclidean geometries and just as
Cantor’s work on trigonometric series and the continuum was emerging,
foundational concerns were mounting and questions about axiomatisation
were beginning to press. These concerns would incite mathematicians to
begin seriously inspecting the nature of mathematics and for some, such as
David Hilbert, Herman Weyl and L. E. J. Brouwer, to turn their attention to
‘meta-mathematical’ questions, albeit with markedly different responses.

Few mathematicians since the ancient Greeks have stepped back from
the exhilarating momentum of creating mathematics to consider larger epis-
temological questions. Hilbert’s famous list of unsolved problems, which
essentially came to define much of what would be considered ‘interesting’
to work on, also came at the turn of the twentieth century. His lengthy list
either prompted or nourished a broader consideration of the whole field of
mathematics – its goals, methods, and successes – yielding yet more ‘meta’-
mathematical thinking, which could hardly ignore the important aesthetic
dimension of mathematics.

It is striking to us that mathematicians often mention ‘beauty’, yet there
seems to be a relative dearth of further amplification. One might have
expected those past mathematicians who thought in these terms to have
been capable of developing ideas of, say harmony, proportion, fit, rhythm,
etc, more precisely. To some extent, this is what Hardy (1940) tried to do,
though only by connecting ‘beauty’ to other barely less opaque terms such
as ‘elegance’, ‘depth’, ‘seriousness’ and ‘significance’. We do see instances
here and there, for instance with Alfred North Whitehead (on rhythm), with
Warwick Sawyer (on pattern) and in an overly-mathematised attempt by
George Birkhoff.

But it may well be that many mathematicians simply do not consider
this to be a serious enterprise, one worthy of their time and attention. Even
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Hardy (1940) expressed a sense that such reflection ‘about’ mathematics
(offering a different sense of ‘meta’-mathematical activity) is not really the
preferred activity or even the very business of mathematicians.

It is a melancholy experience for a professional mathematician to

find himself writing about mathematics. The function of a math-

ematician is to do something, to prove new theorems, to add to

mathematics, and not to talk about what he or other mathemati-

cians have done. (p. 61)

There seem to be some ‘inevitable’ combinations of aesthetic words that are
mathematically invoked as if conjoined: for instance, beauty and elegance,
perfection and beauty. ‘Elegance’, in particular, seems to have been co-
opted by mathematicians in their rather restricted aesthetic language, as con-
veying a sense of both succinctness and sophistication. In ordinary parlance,
‘elegance’ might be seen as a classical, class-ridden term – not so much
socio-economic ‘class’ perhaps as intellectual ‘class’ (though Bertrand
Russell, for example, certainly partook of both). Of course, there must be a
sociological proviso here – it was only very few (privileged) Greeks, and
then for a long time a very few (privileged) other individuals, who could sit
and think as opposed to practice or teach.

There might also be more subtle reasons for this explosion of aesthetic
consideration and writing. It was also around the turn of the last century that
the field of mathematics made its final separation from the sciences, its
increasing abstractions having less and less to do with the kind of questions
that drove the development of calculus, for example. Mathematics was carv-
ing itself out as a distinct, self-sufficient field with famously little to do with
the ‘real’ world. But how, then, could it justify its existence? This was a ques-
tion that those both inside and outside the tall, opaque walls guarding the
mathematical terrain asked.

Perhaps this question prompted some mathematicians to search for some
varied connections – ones that many ancient Greek mathematicians would
have assumed – between mathematics and the arts, another field which
offers few practical applications, though is admired on the whole for its dis-
play of creativity and its production of aesthetically pleasing artifacts. Like
the modernist art movement, which was burgeoning with a sense of art for
art’s sake (l’art pour l’art) during this time in the early twentieth century,
mathematics was now being done for mathematics’ sake.

One instance of this modernist mathematical ethos is apparent in van der
Waerden’s (1930/1991) Modern Algebra, in which any questions of algebra’s
utility had completely vanished (see Chapter 8). John Dee’s (1570) survey of
various branches of ‘the tree of mathematics’ in his Mathematicall præface
referred positively to his identification of which parts of mathematics were,
to use his term, ‘commodious’: van der Waerden felt no such compunction.

This twentieth-century expansion of interest in the aesthetic did not
only occur in mathematics, of course. As Denis Donoghue (2003) observes:

16 Mathematics and the Aesthetic



Interest in beauty and aesthetics was greatly stimulated in the first
years of the twentieth century — as C. K. Ogden, I. A. Richards,
and James Wood noted in The Foundations of Aesthetics (1922) —
by a wider knowledge of non-European art, especially of Eastern
and primitive art, and by the rapid development of psychology as
an accredited practice. (p. 36)

Additionally, in the latter part of the twentieth century, developments mostly
outside mathematics itself may have further contributed to this most recent
explosion within mathematics. For example, scholars in a number of differ-
ent fields have become increasingly attracted to sociobiologist E. O. Wilson’s
(1998) notion of ‘consilience’. In his view, unification or connection is
sought among the increasingly-fractured disciplines and ways of knowing.
He is also concerned, more generally, with the breaking down of long-
standing dichotomies between mind and body, between rational and emo-
tional, between logical and intuitive. Although few scholars have con-
tributed to the search for affinities in the still often-isolated and inhospitable
world of mathematics, these intellectual changes are at least supportive of
such endeavours, as we hope this book will show.

Notes

[1] Writing about eighty years after this event, Oxford University historian
Anthony à Wood observed:

Many MSS, guilty of no other superstition than red letters in their
fronts or title, were either condemned to the fire or jakes. [...] sure
I am that such books wherein appeared Angles, or Mathematical
Diagrams, were thought sufficient to be destroyed, because
accounted Popish, or diabolical, or both.

What was done to the public Library I shall elsewhere shew: as
for those belonging to Colleges, they suffered the same fate almost
as the public, though not in so gross a manner. From Merton Coll.
Library a cart load of MSS and above were taken away, such that
contained the Lucubrations (chiefly of controversial Divinity,
Astronomy and Mathematicks) of divers of the learned Fellows
thereof, in which Studies they in the two last centuries obtained
great renown. (in Gutch, 1796, pp. 106-107)

[2] This twentieth-century return to the question of the psychology of the math-
ematician connects for us with thirteenth-century Henry of Ghent’s potent phrase
‘the melancholy disposition of the mathematical mind’. It was coined in the light of
much Aristotelean writing and the then-dominant Galenic theory of ‘humours’, a
means of linking human psychology with the cosmos. It also relates closely to
Albrecht Dürer’s famous engraving Melencolia I – see Yates (1979). This is a topic
we explore further in the closing chapter of this book.

[3] The Pythagoreans, who celebrated the Muses as “the keepers of the knowledge
of harmony and the principles of the universe which allowed access to the ever-
lasting gods” (see Comte, 1994, p. 135), would have been delighted by the trust that
scientists, and mathematicians, have come to place on this aesthetic muse.
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Section A

The Mathematician’s Art



Introduction to Section A

The three chapters of Section A, The Mathematician’s Art, all written by research
mathematicians, provide satisfying glimpses into present-day aesthetic dimen-
sions in mathematical work. By focusing on the methods, processes, expe-
riences and goals of their own mathematical endeavours, in fields such as
geometry, number theory, real and complex analysis, combinatorics and
topology, these mathematicians offer a broad view of modern manifesta-
tions of the ancient affinity of our book title. In particular, they ground the
general theory-driven accounts of Poincaré and Hadamard (discussed in
Chapter α) in their varied, day-to-day practices of working in mathematics.

Jonathan Borwein, in Chapter 1, draws on his own research in number
theory and analysis to show how aesthetic notions permeate both pure and
applied mathematics. His examples illustrate aesthetic imperatives interacting
with utility, with intuition and with the way they shape his own mathemati-
cal experiences. His examples, drawing as they do on diverse, contemporary
topics as well as ‘hot’ methods (i.e. involving computer technology), provide
a welcome and up-to-date perspective on a topic where the same ‘classical’
examples are frequently cited. Borwein is also interested in tracing out how
aesthetic criteria change over time and how these changes manifest them-
selves in the concerns and discoveries of mathematicians.

In Chapter 2, Doris Schattschneider provides a discussion of her cand-
idates for elegant statements, beautiful proofs and some important para-
digms of mathematical technique, such as Fubini’s principle or Dirichlet’s
principle. These paradigms serve as attractors, condensed and powerful modes
of arguing which signal their generative potential for the future, as well as
attest to their value in the past. Using examples taken primarily from plane
geometry and combinatorics, Schattschneider identifies various characteris-
tics of mathematical proofs that can provoke aesthetic pleasure. She devotes
the last section of her chapter to the aesthetic of doing mathematics, exam-
ining the motivational dimension of that aesthetic in mathematical activity.

David Henderson and Daina Taimina, in Chapter 3, take up Schatt-
schneider’s focus on the doing of mathematics, with a particular emphasis on
the aesthetics of generating and experiencing mathematical understanding.
Using examples from hyperbolic geometry, topology and also nineteenth-
century mechanical devices with sophisticated mathematical features, Hender-
son and Taimina illustrate the way in which their own understanding of
meaning in mathematics emerges from attempts to connect fundamental intu-
itions to subtle mathematical ideas and claims. The aesthetic experiences
they describe all involve sense-based encounters with mathematical ideas
and, in sharing them, offer compelling and sophisticated images, objects and
models that they have either created or derived.



CHAPTER 1
Aesthetics for the Working Mathematician

Jonathan M. Borwein

If my teachers had begun by telling me that mathematics was pure
play with presuppositions, and wholly in the air, I might have become
a good mathematician, because I am happy enough in the realm of
essence. But they were over-worked drudges, and I was largely inat-
tentive, and inclined lazily to attribute to incapacity in myself or to a
literary temperament that dullness which perhaps was due simply to
lack of initiation. (Santayana, 1944, p. 238)

Most research mathematicians neither think deeply about nor are terribly con-
cerned with either pedagogy or the philosophy of mathematics. Nonetheless,
as I hope to indicate, aesthetic notions have always permeated (pure and
applied) mathematics. And the top researchers have always been driven by an
aesthetic imperative. Many mathematicians over time have talked about the
‘elegance’ of certain proofs or the ‘beauty’ of certain theorems, but my analysis
goes deeper: I aim to show how the aesthetic imperative interacts with utility
and intuition, as well as indicate how it serves to shape my own mathemat-
ical experiences. These analyses, rather than being retrospective and passive, will
provide a living account of the aesthetic dimension of mathematical work.

We all believe that mathematics is an art. The author of a book, the
lecturer in a classroom tries to convey the structural beauty of
mathematics to his readers, to his listeners. In this attempt, he must
always fail. Mathematics is logical to be sure, each conclusion is
drawn from previously derived statements. Yet the whole of it, the
real piece of art, is not linear; worse than that, its perception
should be instantaneous. We all have experienced on some rare
occasions the feeling of elation in realizing that we have enabled
our listeners to see at a moment’s glance the whole architecture
and all its ramifications. (Emil Artin, in Murty, 1988, p. 60)

I shall similarly argue for aesthetics before utility. Through a suite of exam-
ples drawn from my own research and interests, I aim to illustrate how and
what this means on the front lines of research. I also will argue that the
opportunities to evoke the mathematical aesthetic in research and teaching
are almost boundless – at all levels of the curriculum. (An excellent middle-
school illustration, for instance, is described in Sinclair, 2001.)

In part, this is due to the increasing power and sophistication of visual-
isation, geometry, algebra and other mathematical software. Indeed, by
drawing on ‘hot topics’ as well as ‘hot methods’ (i.e. computer technology),
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I also provide a contemporary perspective which I hope will complement
the more classical contributions to our understanding of the mathematical
aesthetic offered by writers such as G. H. Hardy and Henri Poincaré (as dis-
cussed in Chapter α).

Webster’s dictionary (1993, p. 19) first provides six different meanings
of the word ‘aesthetic’, used as an adjective. However, I want to react to
these two definitions of ‘aesthetics’, used as a noun:

1. The branch of philosophy dealing with such notions as the beautiful,
the ugly, the sublime, the comic, etc., as applicable to the fine arts,
with a view to establishing the meaning and validity of critical judg-
ments concerning works of art, and the principles underlying or justi-
fying such judgments.

2. The study of the mind and emotions in relation to the sense of beauty.

Personally, for my own definition of the aesthetic, I would require (unex-
pected) simplicity or organisation in apparent complexity or chaos – consis-
tent with views of Dewey (1934), Santayana (1944) and others. I believe we
need to integrate this aesthetic into mathematics education at every level, so
as to capture minds for other than utilitarian reasons. I also believe detach-
ment to be an important component of the aesthetic experience: thus, it is
important to provide some curtains, stages, scaffolding and picture frames –
or at least their mathematical equivalents. Fear of mathematics certainly does
not hasten an aesthetic response.

Gauss, Hadamard and Hardy

Three of my personal mathematical heroes, very different individuals from
different times, all testify interestingly on the aesthetic and the nature of
mathematics.

Gauss

Carl Friedrich Gauss is claimed to have once confessed, “I have had my
results for a long time, but I do not yet know how I am to arrive at them” (in
Arber, 1954, p. 47). [1] One of Gauss’s greatest discoveries, in 1799, was the
relationship between the lemniscate sine function and the arithmetic–geomet-
ric mean iteration. This was based on a purely computational observation.
The young Gauss wrote in his diary that “a whole new field of  analysis will
certainly be opened up” (Werke, X, p. 542; in Gray, 1984, p. 121).

He was right, as it pried open the whole vista of nineteenth-century
elliptic and modular function theory. Gauss’s specific discovery, based on
tables of integrals provided by Scotsman James Stirling, was that the recip-
rocal of the integral
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agreed numerically with the limit of the rapidly convergent iteration given
by setting a0 := 1, b0 := √2 and then computing:

It transpires that the two sequences {an}, {bn} have a common limit of
1.1981402347355922074…

Which object, the integral or the iteration, is the more familiar and
which is the more elegant – then and now? Aesthetic criteria change with
time (and within different cultures) and these changes manifest themselves
in the concerns and discoveries of mathematicians. Gauss’s discovery of the
relationship between the lemniscate function and the arithmetic–geometric
mean iteration illustrates how the traditionally preferred ‘closed form’ (here,
the integral form) of equations have yielded centre stage, in terms both of
elegance and utility, to recursion. This parallels the way in which biological
and computational metaphors (even ‘biology envy’) have now replaced
Newtonian mental images, as described and discussed by Richard Dawkins
(1986) in his book The Blind Watchmaker.

In fact, I believe that mathematical thought patterns also change with
time and that these in turn affect aesthetic criteria – not only in terms of
what counts as an interesting problem, but also what methods the math-
ematician can use to approach these problems, as well as how a mathema-
tician judges their solutions. As mathematics becomes more ‘biological’, and
more computational, aesthetic criteria will continue to change.

Hadamard

A constructivist, experimental and aesthetically-driven rationale for math-
ematics could hardly do better than to start with Hadamard’s claim that:

The object of mathematical rigor is to sanction and legitimize the
conquests of intuition, and there was never any other object for it.
(in Pólya, 1981, p. 127)

Jacques Hadamard was perhaps the greatest mathematician other than
Poincaré to think deeply and seriously about cognition in mathematics. He is
quoted as saying, “in arithmetic, until the seventh grade, I was last or nearly
last” (in MacHale, 1993, p. 142). Hadamard was co-prover (independently
with Charles de la Vallée Poussin, in 1896) of the Prime Number theorem
(the number of primes not exceeding n is asymptotic to n/log n), one of
the culminating results of nineteenth-century mathematics and one that
relied on much preliminary computation and experimentation. He was also
the author of The Psychology of Invention in the Mathematical Field (1945),
a book that still rewards close inspection.



Hardy’s Apology

Correspondingly, G. H. Hardy, the leading British analyst of the first half of
the twentieth century, was also a stylish author who wrote compellingly in
defence of pure mathematics. He observed that:

All physicists and a good many quite respectable mathematicians
are contemptuous about proof. (1945/1999, pp. 15-16)

His memoir, entitled A Mathematician’s Apology, provided a spirited defence
of beauty over utility:

Beauty is the first test. There is no permanent place in the world
for ugly mathematics. (1940, p. 84)

That said, although the sentiment behind it being perfectly understandable
from an anti-war mathematician in war-threatened Britain, Hardy’s claim that
real mathematics is almost wholly useless has been over-played and, to my
mind, is now very dated, given the importance of cryptography and other
pieces of algebra and number theory devolving from very pure study.

In his tribute to Srinivasa Ramanujan entitled Ramanujan: Twelve Lectures
on Subjects Suggested by His Life and Work, Hardy (1945/1999) offered the so-
called ‘Skewes number’ as a “striking example of a false conjecture” (p. 15).
The logarithmic integral function, written Li(x), is specified by:

Li(x) provides a very good approximation to the number of primes that do
not exceed x. For example, Li(108) = 5,762,209.375…, while the number of
primes not exceeding 108 is 5,761,455. It was conjectured that the inequality

Li(x) > the number of primes not exceeding x

holds for all x and, indeed, it does so for many x. In 1933, Skewes showed
the first explicit crossing occurs before 10101034

. This has been reduced to a
relatively tiny number, a mere 101167 (and, most recently, even lower), though
one still vastly beyond direct computational reach.

Such examples show forcibly the limits on numerical experimentation,
at least of a naïve variety. Many readers will be familiar with the ‘law of large
numbers’ in statistics. Here, we see an instance of what some number the-
orists (e.g. Guy, 1988) call the ‘strong law of small numbers’: all small num-
bers are special, many are primes and direct experience is a poor guide. And
sadly (or happily, depending on one’s attitude), even 101167 may be a small
number.

Research Motivations and Goals

As a computational and experimental pure mathematician, my main goal is
insight. Insight demands speed and, increasingly, parallelism (see Borwein
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and Borwein, 2001, on the challenges for mathematical computing). The
mathematician’s ‘aesthetic buzz’ comes not only from simply contemplating
a beautiful piece of mathematics, but, additionally, from achieving insight.
The computer, with its capacities for visualisation and computation, can
encourage the aesthetic buzz of insight, by offering the mathematician the
possibility of visual contact with mathematics and by allowing the mathemati-
cian to experiment with, and thus to become intimate with, mathematical
ideas, equations and objects.

What is ‘easy’ is changing and I see an exciting merging of disciplines,
levels and collaborators. Mathematicians are more and more able to:

• marry theory and practice, history and philosophy, proofs and
experiments;

• match elegance and balance with utility and economy;
• inform all mathematical modalities computationally – analytic,

algebraic, geometric and topological.

This is leading us towards what I term an experimental mathodology as a
philosophy and a practice (Borwein and Corless, 1999). This methodology
is based on the following three approaches:

• meshing computation and mathematics, so that intuition is acquired;
• visualisation – three is a lot of dimensions and, nowadays, we can

exploit pictures, sounds and haptic stimuli to get a ‘feel’ for relation-
ships and structures (see also Chapter 7);

• ‘exception barring’ and ‘monster barring’ (using the terms of Lakatos,
1976).

Two particularly useful components of this third approach include graphical
and randomised checks. For example, comparing 2√y – y and –√y ln(y) (for
0 < y < 1) pictorially is a much more rapid way to divine which is larger
than by using traditional analytic methods. Similarly, randomised checks of
equations, inequalities, factorisations or primality can provide enormously
secure knowledge or counter-examples when deterministic methods are
doomed. As with traditional mathematical methodologies, insight and cer-
tainty are still highly valued, yet achieved in different ways.

Pictures and symbols

If I can give an abstract proof of something, I’m reasonably happy.
But if I can get a concrete, computational proof and actually pro-
duce numbers I’m much happier. I’m rather an addict of doing
things on the computer, because that gives you an explicit criterion
of what’s going on. I have a visual way of thinking, and I’m happy if
I can see a picture of what I’m working with. (John Milnor, in Regis,
1986, p. 78)

I have personally had this experience, in the context of studying the distri-
bution of zeroes of the Riemann zeta function. Consider more explicitly the
following image (see Figure 1), which shows the densities of zeroes for
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polynomials in powers of x with –1 and 1 as coefficients (they are manipula-
ble at: www.cecm.sfu.ca/interfaces/). All roots of polynomials, up to a given
degree, with coefficients of either –1 or 1 have been calculated by permuting
through all possible combinations of polynomials, then solving for the roots of
each. These roots are then plotted on the complex plane (around the origin).

In this case, graphical output from a computer allows a level of insight no
amount of numbers could.

Some colleagues and I have been building educational software with
these precepts embedded, such as LetsDoMath (see: www.mathresources.
com). The intent is to challenge students honestly (e.g. through allowing
subtle explorations within John Conway’s ‘Game of Life’), while making things
tangible (e.g. ‘Platonic solids’ offers virtual manipulables that are more
robust and expressive than the standard classroom solids).

Evidently, though, symbols are often more reliable than pictures. The
picture opposite purports to give evidence that a solid can fail to be poly-
hedral at only one point. It shows the steps up to pixel level of inscribing a
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Figure 1: Density of zeroes for polynomials with coefficients of –1 and 1
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regular 2n+1-gon at height 21–n. However, ultimately, such a construction fails

and produces a right circular cone. The false evidence in this picture held

back a research project for several days – and might have derailed it.

Two Things about √2 and One Thing about π

Remarkably, one can still find new insights in the oldest areas. I discuss

three examples of this. The first involves a new proof of the irrationality of

√2 and the way in which it provides insight into a previously known result.

The second invokes the strange interplay between rational and irrational

numbers. Finally, the third instance reveals how the computer can make

opaque some properties that were previously transparent, and vice versa.

Irrationality

Below is a graphical representation of Tom Apostol’s (2000) lovely new

geometric proof of the irrationality of √2. This example may seem routine

at first, with respect to the literature on the mathematical aesthetic. Writers

such as Hardy (1940), King (1992) and Wells (1990) have also talked about

the beauty of quadratics such as √2. These writers have emphasised aes-

thetic criteria (such as economy and unexpectedness) that contribute to that

judgement of beauty. On the other hand, Apostol’s new proof, prefigured

in others, shows how aesthetics can also serve to motivate mathematical

inquiry.

Figure 2: A misleading picture



PROOF Consider the smallest right-angled isosceles triangle with
integer sides. Circumscribe a circle of length equal to the vertical
side and construct the tangent to the circle where the hypotenuse
cuts it (see Figure 3). The smaller isosceles triangle once again has
integer sides.

The proof is lovely because it offers new insight into a result that was first
proven over two thousand years ago. It also verges on being a ‘proof with-
out words’ (Nelsen, 1993), proofs which are much admired – yet infrequently
encountered and not always trusted – by mathematicians (see Brown, 1999).
Apostol’s work demonstrates how mathematicians are not only motivated to
find ground-breaking results, but that they also strive for better ways to say
things or to show things, as Gauss was surely doing when he worked out
his fourth, fifth and sixth proof of the law of quadratic reciprocity.

Rationality

By a variety of means, including the one above, we know that the square
root of two is irrational. But mathematics is always full of surprises: √2 can
also make things rational (a case of two wrongs making a right?).

Hence, by the principle of the excluded middle:

In either case, we can deduce that there are irrational numbers a and b
with ab rational. But how do we know which ones? One may build a whole
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mathematical philosophy project around this. Yet, as Maple (the computer
algebra system) confirms:

setting α := √2 and β := 2ln23 yields αβ = 3.

This illustrates nicely that verification is often easier than discovery. (Simi-
larly, the fact that multiplication is easier than factorisation is at the base of
secure encryption schemes for e-commerce.)

π and two integrals

Even Maple knows π ≠ 22/7, since:

Nevertheless, it would be prudent to ask ‘why’ Maple is able to perform the
evaluation and whether to trust it. In contrast, Maple struggles with the fol-
lowing sophomore’s dream:

Students asked to confirm this typically mistake numerical validation for
symbolic proof.

Again, we see that computing adds reality, making the abstract concrete,
and makes some hard things simple. This is strikingly the case with Pascal’s
Triangle. Figure 4 (from: www.cecm.sfu.ca/interfaces/) affords an emphatic
example where deep fractal structure is exhibited in the elementary binomial
coefficients.

Figure 4: Thirty rows of Pascal’s triangle (modulo five)



Berlinski (1997) comments on some of the effects of such visual–experimental
possibilities in mathematics:

The computer has in turn changed the very nature of mathematical
experience, suggesting for the first time that mathematics, like physics,
may yet become an empirical discipline, a place where things are
discovered because they are seen. (p. 39)

Berlinski (1995) had earlier suggested, in his book A Tour of the Calculus,
that there will be long-term effects:

The body of mathematics to which the calculus gives rise embod-
ies a certain swashbuckling style of thinking, at once bold and dra-
matic, given over to large intellectual gestures and indifferent, in
large measure, to any very detailed description of the world. It is
a style that has shaped the physical but not the biological sciences,
and its success in Newtonian mechanics, general relativity, and
quantum mechanics is among the miracles of mankind. But the era
in thought that the calculus made possible is coming to an end.
Everyone feels this is so, and everyone is right. (p. xiii)

π and Its Friends

My research on π with my brother, Peter Borwein, also offers aesthetic and
empirical opportunities. In this example, my personal fascinations provide
compelling illustrations of an aesthetic imperative in my own work. I first
discuss the algorithms I have co-developed to compute the digits of π.
These algorithms, which consist of simple algebraic equations, have made
it possible for researchers to compute its first 3 × 236 digits. I also discuss
some of the methods and algorithms I have used to gain insight into rela-
tionships involving π.

A quartic algorithm (Borwein and Borwein, 1984)

The next algorithm I present grew out of work of Ramanujan. Set a0 = 6 – 4√2
and y 0 = √2 – 1. Iterate:

Then the sequence {ak} converges quartically to 1/π.
There are nineteen pairs of simple algebraic equations (1, 2) as k ranges

from 0 to 18. After seventeen years, this still gives me an aesthetic buzz.
Why? With less than one page of equations, I have a tool for computing a
number that differs from π (the most celebrated transcendental number)

30 Mathematics and the Aesthetic



only after seven hundred billion digits. It is not only the economy of the tool
that delights me, but also the stirring idea of ‘almost-ness’ – that even after
seven hundred billion digits we still cannot nail π. The difference might
seem trivial, but mathematicians know that it is not and they continue to
improve their algorithms and computational tools.

This iteration has been used since 1986, with the Salamin–Brent scheme,
by David Bailey (at the Lawrence Berkeley Labs) and by Yasumasa Kanada
(in Tokyo). In 1997, Kanada computed over 51 billion digits on a Hitachi
supercomputer (18 iterations, 25 hrs on 210 cpus). His penultimate world
record was 236 digits in April, 1999. A billion (230) digit computation has been
performed on a single Pentium II PC in less than nine days. The present
record is 1.24 trillion digits, computed by Kanada in December 2002 using
quite different methods, and is described in my new book, co-authored with
David Bailey (2003).

The fifty-billionth decimal digit of π or of 1/π is 042! And after eighteen
billion digits, the string 0123456789 has finally appeared and so Brouwer’s
famous intuitionist example now converges. [2] (Details such as this about π
can be found at: www.cecm.sfu.ca/personal/jborwein/pi_cover.html.) From
a probability perspective, such questions may seem uninteresting, but they
continue to motivate and amaze mathematicians.

A further taste of Ramanujan

G. N. Watson, in discussing his response to similar formulae of the wonderful
Indian mathematical genius Srinivasa Ramanujan, describes:

a thrill which is indistinguishable from the thrill which I feel when
I enter the Sagrestia Nuova of the Capelle Medicee and see before
me the austere beauty of [the four statues representing] ‘Day,’
‘Night,’ ‘Evening,’ and ‘Dawn’ which Michelangelo has set over
the tombs of Giuliano de’ Medici and Lorenzo de’ Medici.
(in Chandrasekhar, 1987, p. 61)

One of these is Ramanujan’s remarkable formula, based on the elliptic and
modular function theory initiated by Gauss.

Each term of this series produces an additional eight correct digits in the
result – and only the ultimate multiplication by √2 is not a rational opera-
tion. Bill Gosper used this formula to compute seventeen million terms of
the continued fraction for π in 1985. This is of interest, because we still
cannot prove that the continued fraction for π is unbounded. Again, every-
one knows that this is true.

That said, Ramanujan preferred related explicit forms for approximating
π, such as the following:
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This equation is correct until the underlined places. Inter alia, the number
eπ is the easiest transcendental to fast compute (by elliptic methods). One
‘differentiates’ e-πt to obtain algorithms such as the one above for π, via the
arithmetic–geometric mean.

Integer relation detection

I make a brief digression to describe what integer relation detection methods
do. (These may be tried at: www.cecm.sfu.ca/projects/IntegerRelations/.) I
then apply them to π (see Borwein and Lisonek, 2000).

DEFINITION A vector (x1, x2, …, xn) of real numbers possesses an
integer relation, if there exist integers ai (not all zero) with:

a1x1 + a2x2 + … + anxn = 0

PROBLEM Find ai if such integers exist. If not, obtain lower ‘exclu-

sion’ bounds on the size of possible ai.

SOLUTION For n = 2, Euclid’s algorithm gives a solution. For n ≥ 3,

Euler, Jacobi, Poincaré, Minkowski, Perron and many others sought

methods. The first general algorithm was found (in 1977) by Fer-

guson and Forcade. Since 1977, one has many variants: I will mainly

be talking about two algorithms, LLL (‘Lenstra, Lenstra and Lovász’;

also available in Maple and Mathematica) and PSLQ (‘Partial sums

using matrix LQ decomposition’, 1991; parallelised, 1999).

Integer relation detection was recently ranked among:

the 10 algorithms with the greatest influence on the development

and practice of science and engineering in the 20th century.

(Dongarra and Sullivan, 2000, p. 22)

It could be interesting for the reader to compare these algorithms with the
theorems on the list of the most ‘beautiful’ theorems picked out by Wells
(1990) in his survey, in terms of criteria such as applicability, unexpected-
ness and fruitfulness.

Determining whether or not a number is algebraic is one problem that
can be attacked using integer relation detection. Asking about algebraicity
is handled by computing α to sufficiently high precision (O(n = N2)) and
applying LLL or PSLQ to the vector (1, α, α2, ..., αN-1). Solution integers ai are
coefficients of a polynomial likely satisfied by α. If one has computed α to
n + m digits and run LLL using n of them, one has m digits to confirm the
result heuristically. I have never seen this method return an honest ‘false
positive’ for m > 20, say. If no relation is found, exclusion bounds are
obtained, saying, for example, that any polynomial of degree less than N
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must have the Euclidean norm of its coefficients in excess of L (often astro-
nomical). If we know or suspect an identity exists, then integer relations
methods are very powerful. Let me illustrate this in the context of approxi-
mating π.

Machin’s formula

We use Maple to look for the linear dependence of the following quantities:

[arctan(1), arctan(1/5), arctan(1/239)]

and ‘recover’ [1, –4, 1]. In other words, we can establish the following
equation:

π/4 = 4arctan(1/5) – arctan(1/239).

Machin’s formula was used on all serious computations of π from 1706 (a
hundred digits) to 1973 (a million digits), as well as more abstruse but similar
formulae used in creating Kanada’s present record. After 1980, the methods
described above started to be used instead.

Dase’s formula

Again, we use Maple to look for the linear dependence of the following
quantities:

[π/4, arctan(1/2), arctan(1/5), arctan(1/8)].

and recover [–1, 1, 1, 1]. In other words, we can establish the following
equation:

π/4 = arctan(1/2) + arctan(1/5) + arctan(1/8).

This equation was used by Dase to compute two hundred digits of π in his
head in perhaps the greatest feat of mental arithmetic ever – 1/8 is appar-
ently better than 1/239 (as in Machin’s formula) for this purpose.

Who was Dase? Another burgeoning component of modern research
and teaching life is having access to excellent data bases, such as the MacTutor
History Archive maintained at: www-history.mcs.st-andrews.ac.uk (alas, not
all sites are anywhere near so accurate and informative as this one). One may
find details there on almost all of the mathematicians appearing in this chap-
ter. I briefly illustrate its value by showing verbatim what it says about Dase.

Zacharias Dase (1824–1861) had incredible calculating skills but
little mathematical ability. He gave exhibitions of his calculating
powers in Germany, Austria and England. While in Vienna in 1840
he was urged to use his powers for scientific purposes and he dis-
cussed projects with Gauss and others.

Dase used his calculating ability to calculate π to 200 places in
1844. This was published in Crelle’s Journal for 1844. Dase also
constructed 7 figure log tables and produced a table of factors of
all numbers between 7 000 000 and 10 000 000.
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Gauss requested that the Hamburg Academy of Sciences allow
Dase to devote himself full-time to his mathematical work but,
although they agreed to this, Dase died before he was able to do
much more work.

Pentium farming

I finish this sub-section with another result obtained through integer rela-
tions methods or, as I like to call it, ‘Pentium farming’. Bailey, Borwein and
Plouffe (1997) discovered a series for π (and corresponding ones for some
other polylogarithmic constants), which somewhat disconcertingly allows
one to compute hexadecimal digits of π without computing prior digits.
(This feels like magic, being able to tell the seventeen-millionth digit of π,
say, without having to calculate the ones before it; it is like seeing God
reach her hand deep into π.)

The algorithm needs very little memory and no multiple precision. The
running time grows only slightly faster than linearly in the order of the digit
being computed. The key, found by PSLQ as described above, is:

Knowing an algorithm would follow, Bailey, Borwein and Plouffe spent sev-
eral months hunting by computer for such a formula. Once found, it is easy
to prove in Mathematica, in Maple or by hand – and provides a very nice
calculus exercise.

This was a most successful case of reverse mathematical engineering
and is entirely practicable. In September 1997, Fabrice Bellard (at INRIA)
used a variant of this formula to compute one hundred and fifty-two binary
digits of π, starting at the trillionth (1012) place. This took twelve days on
twenty work-stations working in parallel over the internet. In August 1998,
Colin Percival (Simon Fraser University, age 17) finished a ‘massively parallel’
computation of the five-trillionth bit (using twenty-five machines at roughly
ten times the speed of Bellard). In hexadecimal notation, he obtained:

07E45 733CC790B5B5979. 

The corresponding binary digits of π starting at the forty-trillionth bit
are:

0 0000 1111 1001 1111.

By September 2000, the quadrillionth bit had been found to be the digit 0
(using 250 cpu years on a total of one thousand, seven hundred and thirty-
four machines from fifty-six countries). Starting at the 999,999,999,999,997th
bit of π, we find:

11100 0110 0010 0001 0110 1011 0000 0110.



Solid and Discrete Geometry – and Number Theory

Although my own primary research interests are in numerical, classical and
functional analysis, I find that the fields of solid and discrete geometry, as
well as number theory, offer many examples of the kinds of concrete,
insightful ideas I value. In the first example, I argue for the computational
affordances available to study of solid geometry. I then discuss the genesis
of an elegant proof in discrete geometry. Finally, I illustrate a couple of deep
results in partition theory.

de Morgan

Augustus de Morgan, one of the most influential educators of his period and
first president of the London Mathematical Society, wrote:

Considerable obstacles generally present themselves to the begin-
ner, in studying the elements of Solid Geometry, from the practice
which has hitherto uniformly prevailed in this country, of never
submitting to the eye of the student, the figures on whose proper-
ties he is reasoning, but of drawing perspective representations of
them upon a plane. [...] I hope that I shall never be obliged to have
recourse to a perspective drawing of any figure whose parts are
not in the same plane. (in Rice, 1999, p. 540)

His comment illustrates the importance of concrete experiences with math-
ematical objects, even when the ultimate purpose is to abstract. There is a
sense in which insight lies in physical manipulation. I imagine that de
Morgan would have been happier using JavaViewLib (see: www.cecm.sfu.
ca/interfaces/). This is Konrad Polthier’s modern version of Felix Klein’s
famous set of geometric models. Correspondingly, a modern interactive ver-
sion of Euclid is provided by Cinderella (a software tool which is largely
comparable with The Geometer’s Sketchpad; the latter is discussed in detail
in Chapter 7 of this volume). Klein, like de Morgan, was equally influential
as an educator and as a researcher.

Sylvester’s theorem

Sylvester’s theorem is worth mentioning because of its elegant visual proof,
but also because of Sylvester’s complex relationship to geometry: “The early
study of Euclid made me a hater of geometry” (quoted in MacHale, 1993, p.
135). James Joseph Sylvester, who was the second president of the London
Mathematical Society, may have hated Euclidean geometry, but discrete
geometry (now much in fashion under the name ‘computational geometry’,
offering another example of very useful pure mathematics) was different.
His strong, emotional preference nicely illustrates how the aesthetic is
involved in a mathematician’s choice of fields.

Sylvester (1893) came up with the following conjecture, which he posed
in The Educational Times:
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THEOREM Given n non-collinear points in the plane, then there is
always at least one (elementary or proper) line going through
exactly two points of the set.

Sylvester’s conjecture was, so it seems, forgotten for fifty years. It was first
established – ‘badly’, in the sense that the proof is much more complicated
– by T. Grünwald (Gallai) in 1933 (see editorial comment in Steinberg, 1944)
and also by Paul Erdös. Erdös, an atheist, named ‘the Book’ the place where
God keeps aesthetically perfect proofs. L. Kelly’s proof (given below),
which Erdös accepted into ‘the Book’, was actually published by Donald
Coxeter (1948) in the American Mathematical Monthly. This is a fine exam-
ple of how the archival record may rapidly get obscured.

PROOF Consider the point closest to a line it is not on and then
suppose that line has three points on it (the horizontal line). The
middle of those three points is clearly closer to the other line.

As with Apostol’s proof of the irrationality of √2, we can see the power of
the right minimal configuration. Aesthetic appeal often comes from having
this characteristic: that is, its appeal stems from being able to reason about
an unknown number of objects by identifying a restricted view that captures
all the possibilities. This is a process that is not so very different from that
powerful method of proof known as mathematical induction.

Another example worth mentioning in this context (one that belongs in
‘the Book’) is Niven’s (1947) marvellous (simple and short), half-page proof
that π is irrational (see: www.cecm.sfu.ca/personal/jborwein/pi.pdf).

Partitions and patterns

Another subject that can be made highly accessible through experimental
methods is additive number theory, especially partition theory. The number
of additive partitions of n, p(n), is generated by the following equation:
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Thus, p(5) = 7, since:

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1

= 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1

QUESTION How hard is p(n) to compute? Consider this question
as it might apply in 1900 (for Major MacMahon, the father of our
modern combinatorial analysis) and in 2000 (for Maple).

ANSWER Seconds for Maple, months for MacMahon. It is interest-
ing to ask if development of the beautiful asymptotic analysis of
partitions by Hardy, Ramanujan and others would have been
helped or impeded by such facile computation.

Ex-post-facto algorithmic analysis can be used to facilitate independent student
discovery of Euler’s pentagonal number theorem.

Ramanujan used MacMahon’s table of p(n) to intuit remarkable and deep
congruences, such as:

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

and

p(11n + 6) ≡ 0 (mod 11)

from data such as:

Nowadays, if introspection fails, we can recognise the pentagonal numbers
occurring above in Sloane and Plouffe’s on-line Encyclopaedia of Integer
Sequences (see: www.research.att.com/personal/njas/sequences/eisonline.
html). Here, we see a very fine example of Mathematics: the Science of
Patterns, which is the title of Keith Devlin’s (1994) book. And much more
may similarly be done.
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Some Concluding Discussion

In recent years, there have been revolutionary advances in cognitive science
– advances that have a profound bearing on our understanding of math-
ematics. (More serious curricular insights should come from neuro-biology
– see Dehaene et al., 1999.) Perhaps the most profound of these new
insights are the following, presented in Lakoff and Nuñez (2000).

1. The embodiment of mind. The detailed nature of our bodies, our

brains and our everyday functioning in the world structures human

concepts and human reason. This includes mathematical concepts

and mathematical reason. (See also Chapter 6.)

2. The cognitive unconscious. Most thought is unconscious – not

repressed in the Freudian sense, but simply inaccessible to direct

conscious introspection. We cannot look directly at our conceptual

systems and at our low-level thought processes. This includes most

mathematical thought.

3. Metaphorical thought. For the most part, human beings conceptualise

abstract concepts in concrete terms, using ideas and modes of

reasoning grounded in sensori-motor systems. The mechanism by

which the abstract is comprehended in terms of the concept is called

conceptual metaphor. Mathematical thought also makes use of

conceptual metaphor: for instance, when we conceptualise numbers

as points on a line.

Lakoff and Nuñez subsequently observe:

What is particularly ironic about this is it follows from the empirical

study of numbers as a product of mind that it is natural for people

to believe that numbers are not a product of mind! (p. 81)

I find their general mathematical schema pretty persuasive but their specific
accounting of mathematics forced and unconvincing (see also Schiralli and
Sinclair, 2003). Compare this with a more traditional view, one that I most
certainly espouse:

The price of metaphor is eternal vigilance. (Arturo Rosenblueth

and Norbert Wiener, in Lewontin, 2001, p. 1264)

Form follows function

The waves of the sea, the little ripples on the shore, the sweeping

curve of the sandy bay between the headlands, the outline of the

hills, the shape of the clouds, all these are so many riddles of form,

so many problems of morphology, and all of them the physicist

can more or less easily read and adequately solve [...] (Thompson,

1917/1968, p. 10)

A century after biology started to think physically, how will mathematical
thought patterns change?
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The idea that we could make biology mathematical, I think, per-
haps is not working, but what is happening, strangely enough, is
that maybe mathematics will become biological! (Chaitin, 2002)

To appreciate Greg Chaitin’s comment, one has only to consider the meta-
phorical or actual origin of current ‘hot topics’ in mathematics research:
simulated annealing (‘protein folding’); genetic algorithms (‘scheduling
problems’); neural networks (‘training computers’); DNA computation (‘trav-
elling salesman problems’); quantum computing (‘sorting algorithms’).

Humanistic philosophy of mathematics

However extreme the current paradigm shifts are and whatever the outcome
of these discourses, mathematics is and will remain a uniquely human
undertaking. Indeed, Reuben Hersh’s (1995) full argument for a humanist
philosophy of mathematics, as paraphrased below, becomes all the more con-
vincing in this setting.

1. Mathematics is human. It is part of and fits into human culture. It does
not match Frege’s concept of an abstract, timeless, tenseless and objec-
tive reality (see Resnik, 1980, and Chapter 8). It shares important fea-
tures with the other humanities, including an appreciation for the role
of intuition and an understanding of the value judgements that help
determine what is investigated, how it is investigated and why.

2. Mathematical knowledge is fallible. As in science, mathematics can
advance by making mistakes and then correcting or even re-correcting
them. The ‘fallibilism’ of mathematics is brilliantly argued in Imre
Lakatos’s (1976) Proofs and Refutations.

3. There are different versions of proof or rigour. Standards of rigour can
vary depending on time, place and other things. Using computers in
formal proofs, exemplified by the computer-assisted proof of the four-
colour theorem in 1977, is just one example of an emerging, non-
traditional standard of rigour.

4. Aristotelian logic is not always necessarily the best way of deciding.
Empirical evidence, numerical experimentation and probabilistic
proof can all help us decide what to believe in mathematics.

5. Mathematical objects are a special variety of a social–cultural–historical
object. Contrary to the assertions of certain post-modern detractors,
mathematics cannot be dismissed as merely a new form of literature or
religion. Nevertheless, many mathematical objects can be seen as
shared ideas, like Moby Dick in literature or the Immaculate Conception
in religion.

The recognition that ‘quasi-intuitive’ methods may be used to gain good
mathematical insight can dramatically assist in the learning and discovery of
mathematics. Aesthetic and intuitive impulses are shot through our subject
and honest mathematicians will acknowledge their role.
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Some Final Observations

When we have before us, for instance, a fine map, in which the line
of coast, now rocky, now sandy, is clearly indicated, together with
the windings of the rivers, the elevations of the land, and the distri-
bution of the population, we have the simultaneous suggestion of so
many facts, the sense of mastery over so much reality, that we gaze
at it with delight, and need no practical motive to keep us studying
it, perhaps for hours together. A map is not naturally thought of as
an æsthetic object; it is too exclusively expressive. (Santayana, 1896/
1910, p. 209)

This Santayana quotation was my earliest, and still favourite, encounter with
aesthetic philosophy. It may be old fashioned and un-deconstructed in tone,
but to me it rings true. He went on:

And yet, let the tints of it be a little subtle, let the lines be a little del-
icate, and the masses of land and sea somewhat balanced, and we
really have a beautiful thing; a thing the charm of which consists
almost entirely in its meaning, but which nevertheless pleases us in
the same way as a picture or a graphic symbol might please. Give
the symbol a little intrinsic worth of form, line, and color, and it
attracts like a magnet all the values of the things it is known to sym-
bolize. It becomes beautiful in its expressiveness. (p. 210)

However, in conclusion, and to avoid possible accusations of mawkishness
at the close, I also quote Jerry Fodor (1985):

It is, no doubt, important to attend to the eternally beautiful and to
believe the eternally true. But it is more important not to be eaten.
(p. 4)

Notes

[1] This quotation is commonly attributed to Gauss, but it has proven remarkably
resistant to being tracked down. Arber, the citation I give here, a philosopher of
biology, acknowledges in a footnote (p. 47) that, “the present writer has been unable
to trace this dictum to its original source”. Interestingly, even the St. Andrews his-
tory of mathematics site cites Arber. See also Dunnington (1955/2004).

[2] In Brouwer’s Cambridge Lectures on Intuitionism, the editor van Dalen (1981,
p. 95) comments in a footnote:

3. The first use of undecidable properties of effectively presented
objects (such as the decimal expansion of π) occurs in Brouwer
(1908 [/1975]).



CHAPTER 2
Beauty and Truth in Mathematics

Doris Schattschneider

“That’s beautiful!” is the unsolicited exclamation. The response is not to a
painting, a breathtaking view or a flawless musical performance, but rather
to a mathematical statement or a mathematical proof. What brings such aes-
thetic pleasure to a mathematician or to those who wish to appreciate math-
ematics and engage in it?

Beautiful Statements

A simple, yet profound statement can evoke awe. Perhaps one of the most
surprising of all mathematical truths is:

eiπ + 1 = 0.

Here, in one incredibly spare equation, five of the most important numbers
are related. That’s beautiful!

Another mathematical truth, discovered by Archimedes (c. 240BCE), is a
geometric rival to the numerical epigram above. Figure 1 shows a 1 by 2
rectangle and, on its base, a semi-circle and an isosceles triangle are inscribed.

From elementary calculations, it can be seen that the three areas are in the
following ratios to one another:

area of triangle  :  area of semi-circle  :  area of rectangle
1 :        π/2 :         2

If these three figures are rotated about the dashed vertical axis in the figure,
then a cone, a hemisphere and a cylinder are swept out simultaneously, all
having the same radius and height. Archimedes discovered this beautiful
relationship among their volumes:

Figure 1: Archimedes’s discovery



volume of cone  :  volume of hemisphere  :  volume of cylinder
1 :                2 :              3

Archimedes proved this relationship in his treatise On the Sphere and the
Cylinder. It is claimed he held this relationship to be so beautiful that he
asked that the diagram of a sphere inscribed in a cylinder be carved on his
gravestone. Howard Eves (1980) presents Archimedes’s proof of the rela-
tionship, and recounts as well the often-told tale of how Archimedes died
at the hands of a Roman soldier who did not share his passion for math-
ematics.

Perhaps one of the (if not the) most well-known (also well-historied and
well-proved) mathematical statements is what the Western world calls:

The Pythagorean theorem The sum of the (areas of the) squares
on the legs of a right triangle equals the (area of the) square on
the hypotenuse.

Surely, the first time this relationship was discovered (and the many times it
has been rediscovered), the discoverer must have been awe-struck. Today,
it is just one of many geometric ‘facts’, rarely discovered, but rather memo-
rized as an algebraic equation, often without hypotheses:

a2 + b2 = c2

In his book, Geometry Civilized, J. L. Heilbron (1998) discusses some of this
theorem’s history and notes that knowledge of this beautiful theorem has
been considered, by many, to be the mark of a civilized person. Some have
even proposed having what Heilbron and others have called Euclid’s ‘wind-
mill’ diagram (Figure 2) engraved in huge proportions on the landscape to
be seen from outer space. Perhaps it is not only the theorem’s beauty, but
its incredible usefulness that has made it the object of enduring admiration
(see also Valens, 1964).
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Beautiful Proofs

A mathematical proof, more so than a mathematical statement or fact, is likely
to be labeled ‘beautiful’ by a mathematician. What makes a proof beautiful?
Here are some of the characteristics that most mathematicians would agree on:

• elegance – it is spare, cutting right to the essential idea;
• ingenuity – it has an unexpected idea, a surprising twist;
• insight – it offers a revelation as to why the statement is true,

it provides an Aha! ;
• connections – it enlightens a larger picture or encompasses many

areas;
• paradigm – it provides a fruitful heuristic with wide application.

To me, a proof is beautiful if it really catches my attention and, most of all,
if it is one whose essence I will never forget. I have collected several proofs
in this chapter that I feel embody one or more of the characteristics in the
above list. Many can be shared with high-school students—it is not neces-
sary to have research-level mathematics to encounter beautiful proofs.

I begin with one of the oldest recorded proofs of the hsuan-thu (the
Pythagorean theorem) that appears in an ancient Chinese mathematical text
entitled Chou pei suan ching (The Arithmetical Classic of the Gnomon and
the Circular Paths of Heaven, possibly pre-third century BCE)—see Swetz
and Kao (1980). Although adapted to today’s use of letter symbols, it per-
fectly illustrates two paradigms of proof: visualization, with its use of dia-
gram and color, and finite dissection and reassembly, preserving areas. The
Chinese diagram shown in Figure 3 is the same as one given by the twelfth-
century Indian scholar Bhaskara, whose one-word injunction Behold! recor-
ded his sense of awe.

In the Chinese proof, regions are colored red and yellow. Figure 3 uses
shades of gray to represent those colors. There are eight right triangles in
the diagram, all congruent to triangle DEF. Figure 3 displays the proof that
the square (ADFK) on the hypotenuse of right triangle DEF has the same
area as the sum of squares that can be built on its legs (ABCH + CEFG).

Euclid’s proof of the Pythagorean theorem (Book I, Prop. 47) is, by
comparison, more complicated. He used the ‘windmill’ diagram and had the
ingenious idea of adding strategically chosen auxiliary lines to dissect the
square on the hypotenuse into two rectangles whose respective areas are
equal to the areas of the squares on the adjacent legs. Figure 4 shows
Euclid’s famous diagram for his proof.

Euclid’s proof is not only ingenious, but is beautiful for another reason
—the argument extends, almost without change, to proving Pappus’s Theo-
rem, from Book IV of his Collection (fourth century CE), which has the
Pythagorean theorem as a mere special case. The diagram for the theorem
of Pappus is shown in Figure 5: my statement of the theorem refers to the
labeling in that diagram.
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Figure 4: Euclid’s proof of the Pythagorean theorem, c. 300BCE

Figure 3: An ancient Chinese proof of the Pythagorean theorem
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Pappus’s theorem Let ABC be any triangle with parallelograms
ACDE and ABFG constructed externally on the sides AC and AB.
Let the rays DE and FG meet in point H, and construct BJ and CK
equal and parallel to HA. Then the sum of the areas of the parallelo-
grams ACDE and ABFG equals the area of the parallelogram BCKJ.

Pappus had the vision to see beyond a right triangle and the insight to find
the right generalization of the Pythagorean theorem. Perhaps his theorem
and its proof can serve as an example of a proof that makes connections
and illuminates a larger picture. In her poem ‘Poet as mathematician’, Lillian
Morrison (1979, p. 45) captures the essence of this mathematical beauty:

Having perceived the connexions, he seeks
the proof, the clean revelation in its

simplest form, never doubting that somewhere
waiting in the chaos, is the unique

elegance, the precise, airy structure,
defined, swift-lined, and indestructible.

Another of Euclid’s proofs, this time from number theory, is a master-
piece of elegance. Euclid proved that the primes never run out—that is,
given any finite collection of primes, there is always one more. His brilliant
idea, which reduces the proof to a few lines, is to take the product of the
given collection of primes and add 1. That new number (which may be very
large) is not divisible by any of the primes in the collection. But every num-
ber greater than 1 can be factored into a product of primes, so there must
be a prime not in the original collection. For example, if we begin with the
six primes 2, 3, 5, 7, 11, 13, then the new number that is produced by this
construction is:

Figure 5: Pappus’s theorem, Book IV, The Collection, fourth century CE
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2 x 3 x 5 x 7 x 11 x 13 + 1 = 30,031

which is not divisible by any of 2, 3, 5, 7, 11 or 13. In this case, the number
obtained is not itself prime (as many students tend to think it always must
be): in fact, 59 is the smallest prime that divides 30,031 (= 59 x 509).

Interestingly, Euclid’s reductio ad absurdum proof that the set of primes
cannot be finite is actually a generic one. It only shows the result for a col-
lection of three primes, using the above construction in this particular case
to argue for the necessary existence of a fourth not included in the list.
There is not even a generalizing remark to the effect that ‘for any other num-
ber of primes the argument runs likewise’.

My favorite visual proofs are ones that capture the whole idea of an asser-
tion—they are like a haiku, a poem that is so spare yet searing that it can leave
you breathless. For me, the best example is George Pólya’s proof of:

The arithmetic–geometric mean inequality For any two positive
numbers, a and b,

The diagram, which unequivocally demonstrates the inequality, is given
below in Figure 6. (The circle, with just three lines, appears like a Japanese
crest.) A circle is constructed on a diameter of length a + b. A segment per-
pendicular to the diameter is constructed from the point that separates
length a from length b on the diameter, and joins that point to the circle. A
simple calculation shows that this segment has length √ab, while the radius
of the circle has length     . If more explanation is needed, the inscribed
(necessarily right) triangle at the right in Figure 6 can be drawn and a sim-
ple argument using similar triangles will show that the segment’s length is
√ab. (In fact, this was the Greek construction method for the length √ab.)
Not only does this diagram make clear why the inequality is true, but it also
demonstrates that equality between the two means occurs only when a = b.
The diagram captures the essence of the inequality in a minimal and graceful
manner; it is a picture I shall never forget.

Figure 6: Pólya’s proof of the arithmetic–geometric mean inequality



A haiku is not only spare, but must have exact structure: five syllables,
seven syllables, five syllables. I was amazed to find that when I read the
inequality in this theorem, either with the symbols in the algebraic form
above or using descriptive words, it fitted the form of a haiku.

Two mean haikus

Square root of a, b Geometric mean

is less than or equal to is less than or equal to

av’rage of a, b. arithmetic mean.

A real haiku is one that not only fits the beat pattern, but conveys its mes-
sage without ever saying it explicitly. Pólya’s diagram (minus the letters) is
in the spirit of a true haiku.

Paradigms of Technique

Proofs that are paradigms of technique, that show an unconventional method
that can be tried in another (perhaps similar) situation, evoke admiration. On
encountering one of these, the reaction is often something like, “I’d never
have thought of that”. The fact that the technique is fruitful, and not just an
isolated idiosyncrasy, is what makes it even more memorable. (Unfortunately,
many of these paradigms are presented in texts without any fanfare, as if they
were standard methods of argument. Yet they do not arise out of the body of
mathematical logic—they are the fruit of inspired flashes of insight that have
been absorbed into the larger body of mathematical argument.)

I have already presented examples of two paradigms of technique: finite
dissection and reassembly (the Chinese proof of the Pythagorean theorem)
and visualization or ‘geometrization’ (Pólya’s proof of the arithmetic–geo-
metric mean inequality). Some other paradigms are:

• complementarity (duality);

• the Fubini principle (counting twice);

• the pigeon-hole principle (the Dirichlet principle);

• parity;

• transformation;

• symmetry;

• patterns.

The examples I have chosen to illustrate these may seem well-worn to some,
but for someone who has never seen such arguments, they can evoke
enthusiasm and admiration.

Complementarity (duality)

This principle is encapsulated in many combinatorial proofs. For example,
if you have a set of n elements, and you choose r of them, you have auto-
matically designated n – r elements as “not chosen”. Each choice of r defines
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a complementary choice of n – r; this establishes a one-to-one correspon-
dence between complementary subsets of the given set. This observation
actually constitutes a proof of the following theorem:

There are exactly as many r-element subsets of a set of n elements
as there are (n – r)-element subsets.

Using C(n, r) to denote the number of subsets of r elements chosen from
an n-element set, the theorem says C(n, r) = C(n, n – r). Although algebraic
expressions for C(n, r) and C(n, n – r) can also be manipulated to verify the
truth of this theorem, the obvious truth of the complementarity argument is
more convincing (and surprising, since it involves no computation at all).

Using the same notation, another theorem states:

If n > 1, then C(n, r) = C(n – 1, r) + C(n – 1, r – 1).

A complementarity argument also makes this clear: choose one element, x0,
from the given set of n elements. Count all the subsets of r elements that
do not contain x0; there are C(n – 1, r) of these (since, by withholding x0,
there are only n – 1 elements from which to choose r). Then count all the
subsets of r elements that do contain x0; there are C(n – 1, r – 1) of these
(since, as one choice, x0, is prescribed, there are only r – 1 choices left to
make from n – 1 elements). As there is no overlap of the subsets counted,
the identity is proved.

The Fubini principle (counting twice)

Sherman Stein (1979), noting the Fubini theorem from calculus allowing
interchanging the order of integration of double integrals, gives this name
to the more general principle that it does not matter in which order you
sum. This means that when you add up a collection of numbers in two dif-
ferent ways, and then equate the results, you often discover unexpected
relationships and formulas. Stein gives several examples of this paradigm;
more can be found in Schattschneider (1991).

A related technique is to add numbers in such a way as to get twice the
desired sum and then divide by 2. The most well-known example of a proof
using this principle is the often-told tale of how the young Gauss found the
sum of the first 100 consecutive integers. His solution works for any posi-
tive integer n, not just 100, and goes like this. Write the sum from 1 to n
horizontally, then write the same sum backwards from n to 1 and arrange
the two sums vertically. All the (vertical) pairs add to n + 1, and there are
n of these pairs, so twice the sum from 1 to n equals n(n + 1). Divide by 2
and you have the sum from 1 to n. What ingenuity!

1
n

(n + 1)

1

+
+
+

+

2
(n – 1)
(n + 1)

2

+
+
+

+

3
(n – 2)
(n + 1)

3

+
+
+

+

...

...

...

...

+
+
+

n  =

n
1

(n + 1)

n(n + 1)
2

Therefore,
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A totally visual, generic proof of this sum formula, using the same technique
of combining two equal sums and then taking half, is shown in Figure 7.
Here, the unit is represented by a square of area 1 and the area of the dark
stair-steps represents the sum from 1 to n. Two of these stair-steps combine
to form an n × (n + 1) rectangle; so half of that area is .

Surprisingly, Gauss’s technique extends to summing any arithmetic sequence.
Here the sequence’s first term is a, the difference between consecutive
terms is d and there are k + 1 terms in the sequence (d is added to succes-
sive terms k times to get from the first to the last term). As was done with
the sum from 1 to n (in which a = 1, d = 1, and n = k + 1), you can line
up the two sums, add vertically and divide by 2 to obtain the following
result:

The sum of any arithmetic sequence is:

(first term + last term) × (number of terms).
2

A visual proof of this result can be seen in Figure 8; it, too, is a direct gener-
alization of the generic image for the simpler case.

The pigeon-hole principle (the Dirichlet principle)

The pigeon-hole principle states the obvious: if there are more pigeons than
pigeon-holes, then (provided all the pigeons are in holes) at least one hole
contains at least two pigeons. There are, of course, generalizations of this
innocuous observation. Who would think that this could be the basis for a
mathematical proof? One of the most elegant applications of this principle

n(n + 1)
2

Figure 7: A visual proof of the formula for the sum from 1 to n

Figure 8: A visual proof of the formula for the sum of any arithmetic sequence



was made by Louis Pósa, when he was only eleven years old. Even math-
ematician Paul Erdös was impressed. Honsberger (1973) recounts the story
as told by Erdös:

I met him [Pósa] before he was 12 years old. When I returned from

the United States in the summer of 1959 I was told about a little

boy whose mother was a mathematician and who knew quite a bit

about high school mathematics. I was very interested and the next

day I had lunch with him. While Pósa was eating his soup I asked

him the following question: Prove that if you have n + 1 positive

integers less than or equal to 2n, some pair of them are relatively

prime. It is quite easy to see that the claim is not true of just n such

numbers because no two of the n even numbers up to 2n are rel-

atively prime. Actually I discovered this simple result some years

ago but it took me about ten minutes to find the really simple

proof. Pósa sat there eating his soup, and then after a half a minute

or so he said “If you have n + 1 positive integers less than or equal

to 2n, some two of them will have to be consecutive and thus rel-

atively prime.” Needless to say, I was very much impressed, and I

venture to class this on the same level as Gauss’ summation of the

positive integers up to 100 when he was just 7 years old. (pp. 10-11)

What Erdös leaves out (because it is obvious to him) is the reason there
must be two consecutive integers among the n + 1. This is because there
are a maximum of n non-consecutive ‘pigeon-holes’ among 2n of them in
a line and so, by the pigeon-hole principle, placing n + 1 numbers in the
2n slots would force (at least) two of them to be in consecutive holes. Pósa’s
one-line proof is indeed impressive! Some other delightful applications of
the pigeon-hole principle can be found in Rebman (1979) and Stein (1979).

Parity

Simply noting whether a number is even or odd would not seem to be
particularly useful as a mathematical tool for proof. Yet, in the right circum-
stance, it is all that is needed for a convincing argument. Honsberger (1973,
pp. 64-65) reports a particularly nice application in proving the following
theorem:

The number of divisors of a positive integer is odd if and only if n
is a perfect square.

To see this, simply note that unequal divisors come in pairs: n = ab where
a < √n and b > √n, so these pairs account for all divisors of n unless n = a2

for some integer a, in which case (and only in this case) there is an odd
number of divisors.

Although number theory is a natural area in which you would expect
parity arguments to arise, parity is also a powerful tool in various problems
that can be translated into tiling or coloring problems (especially tiling or
covering an m × n chessboard).
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Transformation

Often a problem will fail to yield to direct attack or, if it does, the work is
lengthy and clumsy, yielding no insight. To transform the problem to another
setting is often the means required for illuminating the picture, as well as
for producing a simple solution. Of course, how and when to transform are
never obvious and it sometimes takes a stroke of brilliance to effect this
technique. It can be as simple as transforming an algebraic problem into a
geometric one (as seen in earlier examples), altering a symbolic expression
to a story interpretation (counting problems) or applying a formal transfor-
mation to a given circumstance.

Here, an invertible function transfers the given problem into another
space, but in such a manner that the characteristics essential to the problem
are preserved (remain invariant). In the new setting, the problem is solved
and then the inverse transformation carries the solution back to the original
setting. Eves (1972) calls this technique ‘transform—solve—invert’. It can be
especially fruitful in proofs of geometric statements, but is also effective in
algebraic or other settings. For example, geometric transformations can take
a configuration to an ideal special case or to a setting in which deriving a
proof is far simpler. Group representations can transform elements of groups
into matrices or into other forms that are more amenable to computation or
argument.

Theorems in geometry on concurrence, collinearity, parallelism and also
tangency are all candidates for this technique: for example, concurrence of
medians is easily proved in an equilateral triangle. To prove this concur-
rence in any triangle, you need only apply a transformation that sends the
given triangle onto an equilateral one, while preserving lines (and hence
concurrence) and mid-points—an affine transformation will do.

An elegant solution to a more complicated problem of Jakob Steiner
also yields to this approach.

Steiner’s circle problem Given a circle, with a second circle in its
interior, is it (or when is it) possible to construct a chain of circles
between the two given ones, so that each circle in the chain is
tangent both to the given circles and to the two adjacent circles in
the chain?

When the two given circles are concentric, the problem is easy to solve—
with some elementary calculations, you can give precise necessary and
sufficient conditions on the radii of the two given circles to make the con-
struction described. But the question of how to tackle the general problem
seems hopeless.

The surprising solution is to use the fact that the two given circles can
be transformed into two concentric ones by an inversion in a (third) circle
and this inversion sends every circle to another one and preserves tangency.
If the inverted versions of the given circles (now concentric) fit the require-
ments that the desired chain of tangent circles can be constructed, then a
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chain can be constructed in the given circles—just construct the chain in the
concentric circles and then invert it (back) to produce a chain in the given
circles. And, of course, if the concentric circles do not fit the requirements
to allow a chain of tangent circles, then neither do the given circles. Figure 9
gives an illustration—here, the original circles (with their chains of tangent
circles) are on the right, and their concentric images under inversion in a
dashed circle are the ones on the left.

Symmetry

A well-known and often-used paradigm not only for mathematics, but for
all science, is symmetry (for example, see Weyl, 1952; Curtin, 1982). When
expressions, statements or configurations possess symmetry (such as sym-
metric polynomials, cyclic permutations or geometric figures invariant under
reflection or rotation, for example), this symmetry can often be utilized to
produce a streamlined proof. Indeed, symmetry may be the root cause of a
particular relationship. The Platonic solids, or regular polyhedra, are a per-
sonification of symmetry: each has congruent regular polygonal faces whose
vertices meet to form congruent solid corners—turning the solid makes no
difference, it looks the same no matter from which face you view it. (This
can be described more precisely in terms of symmetry groups: each corner
can be mapped onto any other corner by a rotation or reflection that leaves
the solid invariant.) This high symmetry accounts for the fact that there are
only five regular polyhedra. Since every corner must be the same, Euclid, in
his proof of this result, only needed to consider how many congruent regular
polygons could come together to make a solid corner. For triangles, only
three, four or five (tetrahedron, octahedron, icosahedron respectively); for
squares, only three (cube); for pentagons, only three (dodecahedron): there
are no others. The Platonic Solids video (Schattschneider and Fetter, 1991)
provides a delightful animation of this argument.

The high symmetry of each Platonic solid can also be effectively utilized
to find relationships among the numbers of its edges (e), faces (f), and ver-
tices (v). For example, on the dodecahedron, we can use the fact that every
face has five edges and each edge is common to exactly two faces. Counting
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all the edges around all the faces (note each edge is counted by two faces),
we obtain 5f = 2e.

Also, three faces meet at each vertex of the dodecahedron and each face
is surrounded by five vertices. Counting all the vertices around all the faces,
we obtain 5f = 3v. Although we could, at this point, deduce that 2e = 3v,
this can also be obtained by another count. Each vertex has three edges that
meet there and each edge has exactly two vertices as endpoints. Counting
all the edges that meet at all the vertices, we obtain 3v = 2e. This kind of
counting can be adapted to any polyhedron having high symmetry (such as
a semi-regular polyhedron). More applications of symmetry can be found in
Schattschneider and Fetter (1991).

For centuries, symmetry (and, in the last century, symmetry groups and
their actions) has provided useful techniques in mathematics and science,
both in proving results and in modeling structure (such as that of molecules
and crystals). Symmetry is beautiful and it is effective, but this beauty is
seductive. Here is where I wish to address the two key words in my title,
inspired by Keats’s (1819) famous line ‘Beauty is truth, truth beauty’, from
his poem Ode on a Grecian Urn.

‘Beauty is truth’ is the seductive claim—more than one mathematician
or scientist has fallen prey to this seduction. Johannes Kepler’s polyhedral
model of the universe is a case in point. He was so convinced that the per-
fection of geometric symmetry was the key to understanding the orbits of
the planets that he constructed a model in which each planet (that was
known at the time) traveled its path in a spherical shell, its place in the
model dictated by the strategic nesting of the five Platonic solids.

Cromwell (1997) notes that:

[Kepler] was motivated by the desire to expose [the universe’s]
mathematical design, to reveal the plan which the Creator had
used in its construction. He followed in the Pythagorean tradition
and believed that such a plan would be expressible in harmonious
geometrical relationships reflecting the decision of the Architect.
He did not believe that the polyhedra and crystal spheres actually
existed in space; he thought of them more as an invisible skeleton,
as part of the perfect design by which each planet was allotted its
own region of space. The illusory and fallacious nature of the plan-
etary model was shown up by the discovery of new planets after
Kepler’s death. […] Just as Kepler admired the regularity of the
Platonic solids and was attracted by the idea that nature must be
constructed around such elegant forms, so the modern physicist
idolises symmetry. (p. 148)

In fact, symmetry can be tyranny. By assuming that nature is defined by
symmetry, scientists have restricted their methods of analysis of structure by
looking for symmetry and applying symmetry groups. They have believed
their models to be the truth and have not been open to looking for other
ways to understand structure. Only in the last twenty years has this tyranny

53Chapter 2 – Beauty and Truth in Mathematics



of symmetry been questioned, as the discovery of quasicrystals in 1984
destroyed the traditional definition of crystal and new paradigms such as
self-similarity and repetitiveness of patterns have gained interest. In math-
ematics and science, beauty may not be truth.

Patterns

Another fruitful paradigm in solving mathematical problems is searching for
(and recognizing) patterns. (This theme is also the cental focus of Chapter 5.)
By looking at many specific cases of a general statement, by producing com-
puter calculations or pictures of randomized examples of a general conjec-
ture, or by carrying out a search for patterns among a vast array of data, a
mathematician can often glean not only a pattern, but also insight into why
a conjecture may be or could not be true. Often it is the evidence of pat-
tern that convinces the mathematician of a truth. Only after this conviction
is established does the search for a proof become serious. Michael de Villiers
(1999) comments on this aspect of exploration and observation of (geometric)
patterns as a precursor to proof.

Pattern alone is never a proof, although the exercise in finding patterns
(especially numerical ones) is gaining such popularity in teaching math-
ematics that students seem to believe all the more that a pattern holding true
for ten cases or so constitutes a proof that the pattern always holds (see
Hewitt, 1992). Richard Guy (1988) once coined the phrase ‘The strong law
of small numbers’ and that is what seems to be prevalent in the pointless
search for patterns. Pattern, too, can be tyranny—for the familiar patterns
we look for may not be the ones that lead to truth. The dark movie Pi pro-
vided a sad caricature of a man so obsessed with finding a pattern (in the
digits of π) that it indeed destroyed him.

The Aesthetic of Doing Mathematics

For most of us, mathematics means fairly routine calculations and straight-
forward deductions from given premises, using various bits of mathematical
knowledge to solve problems. But what grabs a mathematician? What makes
a problem ‘interesting’? Why is a mathematician willing to spend hours,
days, months or even years trying to solve a mystery? Each one may have
his or her own answer, but all wish to be able to make connections, to find
an epiphany of understanding, to feel the intellectual and emotional high of
accomplishment or the smaller satisfaction of making some inroads into an
apparently intractable problem.

Artist Sarah Stengle, as the daughter of a mathematician, grew up knowing
first-hand what mathematicians do. She writes:

Mathematical imagery is seen through a veil of cultural assump-

tions that mathematics is unemotional and pure, and that its texts

are stylistically neutral. (2000, p. 161)
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Stengle questions these assumptions, arguing:

Both the research mathematician and the artist proceed by intu-
ition, often aesthetically motivated, and both share a sense of dis-
covery and achievement if and when the desired outcome is
attained. […] Intuition and a desire for comprehension and beauty
can motivate a mathematician or an artist. A mathematical proof
which is entirely correct but boring is second rate, just as a portrait
can be an excellent likeness but artistically dull. [Both are lacking
‘essence’ or ‘soul’.] Mathematicians and artists often use a similar
vocabulary of a search led by intuition to describe their working
process. Often the outcome is described in terms of discovery,
meaning the outcome was not known beforehand but seemed to
exist a priori. Both often have only a sense of the outcome rather
than a knowledge of it, and follow their intuition to their goals,
which they recognize only when they get there. “There” is where
things “feel” resolved and complete. The mathematical discovery
has to withstand the rigid demands of the discipline, while the
artistic discovery is subject to constant reinterpretation and debate.
[Mathematical arguments are also subject to constant reinterpreta-
tion and debate.] (pp. 161, 165)

Although mathematicians all hope to experience searing insight, yearn to
produce a flawless gem of a proof (exhibiting many of those characteristics
I have listed earlier) or dream of cracking a problem that has baffled the
best minds, most of us experience much lesser satisfactions. Yet that is often
enough. If this were not so, very little mathematics would ever get done.

A recent, best-selling book, Uncle Petros and Goldbach’s Conjecture
(Doxiadis, 2000), paints a picture of a mathematician, a failure in both his
family’s eyes and his own, but admired by his persistent nephew who strives
to find out what drove his uncle to this present situation. He learns of the
lure of an intractable unsolved problem, the dedication to solving it in total
isolation (to the exclusion of other mathematical research, even refusing to
publish partial results) and the self-branding of failure when the task was not
accomplished. It is a caricature in some ways, but also a sad commentary on
the harshness with which the mathematical world judges mathematical
prowess and results. At the same time, it celebrates the tenacity shown by
mathematicians who are drawn to a problem and, despite many setbacks, are
sufficiently encouraged by small successes to continue their search for a proof.

I recently had a personal experience in proving a theorem and, when
done, I knew that the proof failed all the tests of being beautiful. The theo-
rem is one about tiling the plane with congruent polygons. It says, in
essence, that if, in the tiling, every tile is surrounded in exactly the same way,
then any isometry that maps one particular tile onto another chosen tile will
map the whole tiling onto itself (every tile will land exactly on another tile).
The mathematician who conjectured the theorem, Nikolai Dolbilin, had
proved (in an elegant way) a powerful theorem (called the Local Theorem
for tilings) that took care of this assertion for all polygons that had no
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mirror or rotation symmetry. So the case of when the polygonal tile was sym-
metric remained to be proved. A known theorem (about the topological
network of edges of a tiling, called Laves nets) implied that polygons satis-
fying the hypothesis of the assertion could have no more than six sides. The
only way to prove the symmetric case seemed to be to look at all possible
cases—symmetric triangles, quadrilaterals, pentagons and hexagons that filled
the plane in a manner satisfying the hypothesis of the assertion.

And so I carried out (during a concentrated six-month period) a case-
by-case verification of the theorem. It turned out that there were forty cases
and, although along the way I could sometimes see I was repeating argu-
ments (and so could consolidate some arguments into lemmas to be used
more than once), an all-encompassing argument or seminal idea never
emerged.

The final result was a proof of the theorem (see Schattschneider and
Dolbilin, 1998), but there was no elegance or ingenuity, nor was there any
insight. In fact, the result, proved for tilings of the Euclidean plane, is known
to be false both for the hyperbolic plane and also for Euclidean three-space.
But the proof does not illuminate what is the essential difference, what is
special about two-dimensional Euclidean space that makes the result true.
And, moreover, Dolbilin and I were interested in proving the result for tiles
of any shape—even those of Escher: we both believe the result to be true
for this most general case in the plane. But the arguments in my plodding
proof rely on the properties of polygons—in particular, that the sum of the
interior angles of any n-gon is (n – 2) × 180˚—and I feel the general proof
would require far more complicated arguments than I had employed.

Yet, I received a measure of satisfaction in proving this result. I had
believed it was true and now it was proven to be true. And, along the way,
I saw some connections that I could not have seen without actually going
through the process. Begin with a tile type (for example, a hexagon mirror-
symmetric about a side bisector) and surround it completely with copies of
itself to form its ‘first corona’ (and sometimes even surround that corona
with such tiles as necessary to form a ‘second corona’). Then employ the
Local Theorem to obtain the verification of the conjecture for that case.

I used The Geometer’s Sketchpad to construct each tile and build up
these tilings: in so doing, I could deform tiles and tilings that were flexible.
This process did bring insight and connections to other cases. Figure 10
shows one unexpected connection that the dynamic geometry software
revealed. (The Geometer’s Sketchpad is the focus of Chapter 7.) This partic-
ular hexagon had five equal sides and one free edge (the bottom). When I
reduced that free edge to a point, turning it into an equilateral pentagon, I
could see that this particular pentagonal case was merely a special case of
the hexagonal tiling. I had proved the pentagonal case first and had no
inkling at the time that it was related to a more general hexagonal tiling.

Another satisfaction was that, when done, I realized that the case-by-case
attack had produced a complete catalog of isohedral tilings by symmetric
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polygons—something that had not been done before. Moreover, the Geo-
meter’s Sketchpad constructions of these cases demonstrated, in a visceral
way, the broad range of shapes of these tiles (convex and non-convex) and
their tilings. (To view and manipulate them, see: mathforum.org/dynamic/
one-corona/.)

Proofs of many theorems far more (mathematically) earth-shaking than
this one have also been the result of long, arduous work (measured in
years) with many false trails, some mistakes, many flashes of insight and
connections and many small satisfactions along the way. They have often
been guided by a program that outlined a framework of attack, so that pieces
could be worked on (often by different mathematicians) and the proof chis-
eled out a bit at a time, until all the completed pieces fitted together. Just a
few of these instances are: the classification of finite groups, the four-color
theorem, Fermat’s last theorem and Kepler’s sphere-packing theorem. Those
who completed these proofs are celebrated not for proofs that are concise
or elegant, but for having the vision, the persistence and the stamina to com-
plete the task and reach the goal. Truth can be beautiful in different ways.

And how are mathematicians rewarded for their sometimes pleasurable,
often frustrating toil? Sherman Stein (1979) catches the wonder that keeps
us at it:

Frequently the reward for the answer to a question is the challenge
of new questions. The mathematical unknown expands far more
rapidly than it can be explored; it is full of galaxies of riddles as
perplexing as the most peculiar star seen in a telescope. And the
borders of this universe are restricted only by the extent of our
curiosity and imagination. (p. 84)

I end with my own haiku, which perhaps sums up the emotions that we
frequently encounter.

A mathematical haiku (after Dante)

Lightning strikes my mind
I see all, I have the proof!

And then I awake

Figure 10: A flexible tiling by symmetric hexagons having five equal sides and angle
relation α + 2β = 2π produces a related tiling by equilateral pentagons



CHAPTER 3
Experiencing Meanings in Geometry

David W. Henderson and Daina Taimina

What geometrician or arithmetician could fail to take pleasure in the

symmetries, correspondences, and principles of order observed in

visible things? Consider, even, the case of pictures: those seeing by

the bodily sense the products of the art of painting do not see the

one thing in the one only way; they are deeply stirred by recog-

nizing in the objects depicted to the eyes the presentation of what

lies in the idea, and so are called to recollection of the truth – the

very experience out of which Love rises. (Plotinus, The Enneads,
II.9.16; 1991, p. 129)

In mathematics, as in any scientific research, we find two tenden-

cies present. On the one hand, the tendency toward abstraction
seeks to crystallize the logical relations inherent in the maze of

material that is being studied, and to correlate the material in a

systematic and orderly manner. On the other hand, the tendency

toward intuitive understanding fosters a more immediate grasp of

the objects one studies, a live rapport with them, so to speak,

which stresses the concrete meaning of their relations.

As to geometry, in particular, the abstract tendency has here led

to the magnificent systematic theories of Algebraic Geometry, of

Riemannian Geometry, and of Topology; these theories make

extensive use of abstract reasoning and symbolic calculation in the

sense of algebra. Notwithstanding this, it is still as true today as it

ever was that intuitive understanding plays a major role in geom-

etry. And such concrete intuition is of great value not only for the

research worker, but also for anyone who wishes to study and

appreciate the results of research in geometry. (David Hilbert, in

Hilbert and Cohn-Vossen, 1932/1983, p. iii; italics in original)

It’s a thing that non-mathematicians don’t realize. Mathematics is

actually an aesthetic subject almost entirely. (John Conway, in

Spencer, 2001, p. 165)

The artist and scientist both live within and play active roles in

constructing human mental and physical landscapes. That they

should share structural intuitions is less surprising than inevitable.

What is surprising and wonderful is how these intuitions have

manifested themselves in the works of innovative artists and scien-

tists in culturally apposite ways. (Kemp, 2000, p. 7)



The authors quoted above all stress the importance of the deep experience
of meanings. It is these experiences in geometry (and indeed in all of math-
ematics, as well as in art and engineering) that we believe deserve to be
called aesthetic experiences. Mathematics is a natural and deep part of
human experience and experiences of meaning in mathematics should be
accessible to everyone. Much of mathematics is not accessible through formal
approaches except to those with specialized learning. However, through the use
of non-formal experience and geometric imagery, many levels of meaning in
mathematics can be opened up in a way that most people can experience and
find intellectually challenging and stimulating.

A formal proof, as we normally conceive of it, is not the goal of math-
ematics—it is a tool, a means to an end. The goal is to understand meanings.
Without understanding, we will never be satisfied—with understanding, we
want to expand the meanings and to communicate them to others (see also
Thurston, 1994). Many formal aspects of mathematics have now been mecha-
nized and this mechanization is widely available on personal computers or
even on hand-held calculators, but the experience of meaning in mathematics
is still a human enterprise. Experiencing meanings is vital for anyone who
wishes to understand mathematics or anyone wanting to understand some-
thing in their experience by means of the vehicle of mathematics. We observe
in ourselves and in our students that such experiencing of meaning is, at its
core, an aesthetic experience.

In this chapter, we recount some stories of our experience of meanings
in geometry and art. David’s story starts with art and ends with geometry,
while Daina’s story starts with geometry and ends with art. However, the
bulk of what follows we both share.

David’s Story: from Art to Mathematics

I have always loved geometry and have been thinking about geometric
kinds of things ever since I was very young, as evidenced by a drawing I
made when I was six years old (see Figure 1 overleaf).

The drawing is of a cat drawing a picture of a cat (who is presumably
drawing a picture of a cat …). Notice the perspective from the point of view
of the cat—for example, the drawing shows the underside of the table. I was
already experiencing geometric meanings.

But I did not realize then that the geometry that I experienced was
mathematics or even that it was called ‘geometry’. I did not call it ‘geometry’
—I called it ‘drawing’ or ‘design’ or perhaps failed to call it anything at all
and just did it. I did not like mathematics in school, because it seemed very
dead to me—just memorizing techniques for computing things and I was not
very good at memorizing. I especially did not like my high-school geometry
course, with its formal, two-column proofs.

However, I kept on doing geometry in various forms: in art classes, in
carpentry, by woodcarving, when out exploring nature or by becoming
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Figure 1: David’s drawing (crayon on paper, 9” x 6”)

involved in photography. This continued on into university where I became
a joint physics and philosophy major, taking only those mathematics courses
that were required for physics majors. I became absorbed by the geometry-
based aspects of physics: mechanics, optics, electricity and magnetism, and
relativity. On the other hand, my first mathematics research paper (on the
geometry of Venn diagrams with more than four classes) evolved from a uni-
versity course on the philosophy of logic. There were no geometry courses



except for analytic geometry and linear algebra, which only lightly touched
on anything geometric. So, it was not until my fourth and final year at the
university that I switched into mathematics and I only did so then because
I was finally convinced that the geometry that I loved really was a part of
mathematics.

Since high school, I have never taken a course in geometry, because
there were no geometry courses offered at the two universities I attended.
Now I am a professional geometer and I started teaching an undergraduate
Euclidean geometry course in the mid-1970s. My concern that both my
students and I should experience meaning in the geometry quickly led me
into conflict with traditional, formal approaches.

Daina’s Story: from Mathematics to Art

I took a lot of geometry, both in grade school and at the university. But I
only had a very few art lessons in school. From them, I developed the
impression that I could not draw and that I had little artistic talent. But I
liked geometry precisely for its aesthetic values. My mathematics teachers
always paid a lot of attention to how we drew geometric diagrams; they
encouraged Euclidean constructions with compass and straight-edge, but
also supported the free-hand drawing of geometric figures, while insisting
on accurate shapes and proportions. At university, besides other traditional
geometry courses, I also took a course in descriptive geometry, as well as a
short course on how to draw three-dimensional geometric diagrams—both
of these latter courses contained a lot about perspective. I always enjoyed
and excelled at the drawing aspects of geometry, but I did not think it had
anything to do with art or aesthetic sensibilities.

When teaching the history of mathematics, I was particularly interested
in the history of geometry and, because of my interest in art appreciation
and art history, was happy to find so many connections between geometry
and art. I was fascinated with the golden ratio, with the story of projective
geometry arising from painters’ perspective prior to it becoming a pure
mathematical subject and with the considerable impact of mathematics on
art in the twentieth century (for example, in cubism and, later, in the work of
M. C. Escher). I was also teaching a university course on ‘the psychology of
mathematical thinking’, which led me to wonder about all creative thinking.

I have had many students in my mathematics classes tell me that they
were taking my class just to fulfill a distribution requirement. But they would
also assert that they were no good at mathematics, because they are artists
(poets, musicians, actors, painters) and their thinking is different. This made
me wonder: is creative thinking really different in its very essence? So I
decided as an experiment to take a watercolor class, knowing that I had
never been any good at art. I wanted to get a glimpse of the emotions one
goes through as a student in a subject for which one has no talent. I started
the watercolor class not really understanding what techniques I should use
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for my brush, how to mix colors and other such technical details. But then
I realized it was only the techniques I did not know.

I found that my aesthetic experiences with drawing in geometry gave
me a feel for how to use my skill at geometric drawing in painting. Ideas of
composition and perspective in painting are all so geometrical. I enjoyed
reading books about composition and perspective, as well as finding out
how much I already knew from my earlier geometry studies. Proportions
(the golden ratio, particularly) and shapes are directly related to composi-
tion, but I had to learn about the use of colors. For perspective drawings, I
already knew from three-dimensional geometric drawing how to draw in
linear perspective, but I had to learn how to create an atmospheric perspec-
tive. It was crucial for me to find out that I had had similar experiences
already—albeit ones obtained in different ways and for different purposes.

Below in Figure 2 is the painting I did after attending only eight water-
color classes. I started it in class and later the same day finished it at home
because I could not stop. When it was dry, I looked at it and could not
believe I had painted it.

Experiencing ‘Undefined’ Terms

In geometry, ‘point’ and ‘straight line’ are usually referred to as “undefined
terms”. In a formal sense, something has to be undefined, because it is
impossible to define everything without being circular. However, if we want
to pay attention to meanings in geometry, then we must still ask what is the

Figure 2: Daina’s watercolor painting (“Sunset on Oregon Coast”, 27.5” x 17.5”,
photograph by Daina Taimina)



meaning of ‘point’ and what is the meaning of ‘straight’? The standard formal
approach of saying these are undefined terms pushes these questions away
under the carpet.

What is the meaning of ‘point’?

Euclid has one answer—according to Heath’s (1926/1956) translation of The
Elements, “A point is that which has no parts” (p. 153). This is one meaning
of ‘point’. ‘Point’ has another meaning in geometry and mathematics that can
be experienced by imagining zooming in on the point. A Tibetan monk/
artist/geometer explained this to one of us by saying:

Imagine a poppy seed. Now imagine in this poppy seed a temple
and in the middle of the temple a Buddha and in the navel of the
Buddha another poppy seed. Now in that poppy seed imagine a
temple and in the temple a Buddha and in the navel of the Buddha
another poppy seed. Now in that poppy seed imagine … (and
keep going). Where is the point?

As we write this, we notice some similarity between this zooming and ideas
in David’s picture of a cat drawing a picture of a cat … .

These meanings of ‘point’ are not the same and, thus, bring about the
following question: why and how are these meanings related? This is a
why-question that often confronts calculus students when looking at the
meanings of ‘tangent’, ‘limit’ and the ‘definite integral’.

What is the meaning of ‘straight’?

This is the question that starts both of the geometry books that we have written
(see Henderson and Taimina, 1998, 2001a). Of course, whether a text or
teacher allows this discussion or not, students (in fact, it appears, most
human beings) have an experience of meanings of ‘straight’. The meanings
of ‘straight’ are part of the core foundation for meaning in geometry.

One common meaning for ‘straight’ is “shortest distance”. This meaning
can be used in practice to produce a straight line by stretching a string (or
rubber band). There is another meaning in the realization that a straight line
is very symmetric—for instance, “it does not turn or wiggle” or “in the plane,
both sides are the same”. Straight lines have at every point the following
symmetries: reflection through the line, reflection perpendicular to the line,
a half-turn about any point on the line, translation along the line, and so
forth (see Figure 3).
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This symmetry meaning is in line with Heath’s (1926/1956) translation of
Euclid’s definition of straight line as “a line that lies evenly with the points
on itself” (p. 153), which Heath then attempts to clarify in a footnote:

we can safely say that the sort of idea which Euclid wished to express
was that of a line […] without any irregular or unsymmetrical feature
distinguishing one part or side of it from another. (p. 167)

Using these experientially-based meanings of straightness, we can ask what
are straight lines on the surface of a sphere. If we look at this question from
a point of view outside of the sphere, then clearly the answer is that there
are no straight lines on a sphere. This is the extrinsic point of view.

On the other hand, there is an intrinsic point of view. Imagine yourself
to be a bug crawling on a sphere. The bug’s universe is just the spherical
surface. What paths on the sphere would the bug experience as straight?
After some exploration, we can convince ourselves that the great circles on
the sphere are the curves that have the same symmetries (with respect to
the sphere) that ordinary straight lines have with respect to the plane. We
thus say that the great circles are intrinsically straight. A much more usual
approach in texts is simply to define straight lines on the sphere to be the
great circles—but, again, this blocks contact with the meaning (and, thus,
the potential for aesthetic experience).

So, again, why and in what way are these two meanings (“shortest” and
“symmetric”) related? On the sphere, we can see that (Figure 4), for two
nearby points of the equator (a particular great circle), the shortest distance
is along the equator. However, there is another straight path (in the sense
of “symmetric”) between the same two points that traverses the equator in
the opposite direction (going the long way round). Thus, the “symmetric”
meaning is not always the “shortest” meaning. In addition, there are surfaces
with corners (see Figure 5) for which the shortest path is not symmetric.

Figure 4: ‘Intrinsically straight’ on a sphere



A simple question that may seem intuitively straightforward at first glance,
namely “what is the meaning of ‘straight’?”, reveals some deeper intuitions
about symmetry and shortest distance, which may only become meaningful
when explored in different geometrical contexts.

Proofs as Convincing Communications
that Answer the Question Why?

Much of our own view of the nature of mathematics is intertwined with our
notion of what a proof is. This is particularly true with geometry, which has
traditionally been taught in high school in the context of ‘two-column’
proofs (see Herbst, 2002). Instead, we propose a different view of proof as
“a convincing communication that answers a why-question”.

The book entitled Proofs Without Words (Nelsen, 1993) contains numerous
examples of visual proofs that provide an experience of why something is
true—an experience that is, in most cases, difficult to obtain from the usual
formal proofs. For example, Nelsen writes about the following result, which
is usually attributed to Galileo (1615) – see Drake (1970, p. 218).

We can easily check that this is true by simply adding the numbers:

these are the cases n = 2 and n = 3 of the more general equality.
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1 + 3
5 + 7

= 1
3

1 + 3 + ... + (2n – 1)
(2n + 1) + (2n + 3) + ... + (4n – 1)

=  
1
3

1 + 3 + 5
7 + 9 + 11

= 1
3
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So the question is whether the general equation holds and, if so, why
it holds? One way to answer the first question is to apply an argument by
mathematical induction, though such an argument is unlikely to satisfy the
why-question. Instead, look at Figure 6.

Through this picture, one can directly experience the meaning of Galileo’s
result and see both that is true and why it is true. The proof by induction
would answer the question: how does Galileo’s result follow from Peano’s
axioms? Most people (other than logicians) have little interest in that question.

Conclusion In order for a proof to be an aesthetic experience for us,
the proof must answer our why-question and relate our meanings of
the concepts involved.

As further evidence toward this conclusion, many report the experience of
reading a proof and following each step logically, but still not being satisfied
because the proof did not lead them to experience the answers to their why-
questions. In fact, most proofs in the literature are not written out in such a
way that it is possible to follow each step in a logical, formal way. Even if
they were so written, most proofs would be too long and too complicated
for a person to check each step.

Furthermore, even among mathematics researchers, a formal logical
proof that they can follow step-by-step is often not satisfying. For example,
David’s (1973) research paper (‘A simplicial complex whose product with
any ANR is a simplicial complex’) has a very concise, simple (half-page)
proof. This proof has provoked more questions from other mathematicians
than any of his other research papers and most of the questions were of the
sort: “Why is it true?”, “Where did it come from?”, “How did you see it?” They
accepted the proof logically, yet were not satisfied.

Figure 6: A proof without words (based on Nelsen, 1993, p. 115)
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Sometimes we have legitimate why-questions even with respect to state-
ments traditionally accepted as axioms. One is Side-Angle-Side (or SAS):

If two triangles have two sides and the included angle of one of
them that are congruent to two sides and the included angle of the
other, then the triangles themselves are congruent.

SAS is listed in some geometry textbooks as an axiom to be assumed; in others,
it is listed as a theorem to be proved and in others still as a definition of the
congruence of two triangles. But clearly one can ask: why is SAS true on the
plane? This is especially true because SAS is false for (geodesic) triangles on
the sphere. So naturally one can then ask: why is SAS true on the plane, but
not on the sphere?

Here is another example – the vertical-angle theorem:

If l and l′ are straight lines, then angle α is congruent to angle β.

The traditional proof of this in high-school geometry is to label the upper
angle between α and β as γ, and then assert α + γ = 180˚ and γ + β = 180˚.
The usual proof then concludes that α is congruent to β because they are
both equal to 180˚ – γ. This proof seems fine until one worries about
whether the rules of arithmetic apply in this way to angles and their meas-
ures. The traditional solution in high school is to use several ‘ruler and pro-
tractor’ axioms to assert the properties needed. We do not know of anyone
for whom this proof with the attendant axioms has aesthetic qualities
(though it may be convincing). We do not usually perceive a proof as aes-
thetically pleasing when it is mostly repeating a list of axioms in a way that
the meaning does not come through clearly. This proof seems to be an
unnecessarily complicated answer to the question: why are vertical angles
congruent to one another?

For about ten years of teaching this theorem in his geometry course,
David was satisfied with the idea of this proof, though he managed to
simplify and make more geometric the necessary assumptions contained in
the ‘ruler and protractor’ axioms. But then one student suggested that the
vertical angles were congruent because both lines had half-turn symmetry
about their point of intersection, P. David’s first reaction was that her argu-
ment could not possibly be a proof—it was too simple and did not involve

Figure 7: The vertical-angle theorem
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everything in the standard proof. But she persisted patiently for several days
and David’s meanings deepened. Now her proof is much more convincing
to him than the standard one, because it directly clarifies why the theorem
is true.

Even more importantly, the meaning of the student’s ‘half-turn’ proof is
closer to the meaning in the statement of the theorem. To see this, look at
the situation depicted in Figure 8.

Here, there is no symmetry: yet, the standard proof seems to apply and
gives a misleading result. By means of either zooming in on the point of
intersection until the curves are indistinguishable from straight-line segments
(or by means of defining this angle to be the angle between the lines tan-
gent to the curves at the intersection), symmetry arguments can be shown
to apply and, hence, it is possible to argue that the angles α and β are con-
gruent. However, the standard proof does not provide a way to discuss this,
except by means of a discussion of when the ‘ruler and protractor’ axioms
are valid.

One could ask:

But, at least in plane geometry, isn’t an angle an angle? Don’t we
all agree on what an angle is?

To which a reply could be:

Well, yes and no.

Consider the acute angle depicted in Figure 9.

The angle is somehow at the corner, yet it is difficult to express this formally
(note that the zooming meaning of ‘point’ seems to be involved here). As
evidence of this difficulty, we have looked in all the plane geometry books
in Cornell University’s mathematics library for their definitions for ‘angle’.
We found nine different definitions. Each expressed a different meaning or
aspect of ‘angle’ and, thus, each could potentially lead to a different proof
for any theorem that crucially involves the meaning of ‘angle’.

Figure 9: Where is the angle?

Figure 8: Are the opposite angles α and β the same?



Experiencing the Hyperbolic Plane

Starting soon after Euclid’s Elements were compiled (and continuing for the
next 2000 years), mathematicians attempted either to prove Euclid’s fifth pos-
tulate as a theorem (based on the other postulates) or to modify it in various
ways. These attempts culminated around 1825 with Nicolai Lobachevsky and
János Bolyai independently discovering a geometry that satisfies all of Euclid’s
postulates and common notions except that the fifth (parallel) postulate does
not hold. It is this geometry that is called ‘hyperbolic’. The first description
of hyperbolic geometry was given in the context of Euclid’s postulates and it
was proved that all hyperbolic geometries are the same except for scale (in
the same sense that all spheres are the same except for scale).

In the nineteenth century, mathematicians developed three so-called
‘models’ of hyperbolic geometry. During 1869-1871, Eugenio Beltrami and
Felix Klein developed the first complete model of hyperbolic geometry (and
were the first to call the specific geometry ‘hyperbolic’). In the Beltrami–
Klein model, the hyperbolic plane is represented by the interior of a circle,
straight lines are (straight) chords of that circle and the circle’s ‘reflection’
about a chord is a projective transformation that takes the circle to itself
while still leaving the chord point-wise fixed.

Around 1880, Henri Poincaré developed two related models. In the
Poincaré disc model, the hyperbolic plane is represented by the interior of
a circle, with straight lines being circular arcs perpendicular to this circle. In
the Poincaré upper-half-plane model, the hyperbolic plane is represented by
half a plane on one side of a line, with straight lines being semi-circles that
are perpendicular to this line. All three hyperbolic geometry models distort
distances (in ways that are analytically describable), but the Beltrami–Klein
model represents hyperbolic straight lines as Euclidean straight-line seg-
ments, while both of Poincaré’s models represent angles accurately. For
more details on these hyperbolic models, see Chapter 17 of Henderson and
Taimina (2005a).

These models of hyperbolic geometry have a definite aesthetic appeal,
especially through the great variety of repeating patterns that are possible in
the hyperbolic plane. The Dutch artist M. C. Escher used patterns based on
these hyperbolic models in several well-known prints (see, for example, the
one in Figure 10). Repeating patterns on the sphere have an aesthetic appeal
through their simplicity and finiteness. However, in these various hyperbolic
models, the patterns have an aesthetic appeal for us because of their con-
nections with infinity—there are infinitely many such patterns and each also
draws us to the infinity at the edge of the disc, leaving sufficient space for
our imagination.

For more than a hundred and twenty-five years, these models have
been very useful for studying hyperbolic geometry mathematically. How-
ever, many students and mathematicians (including the two of us) have
desired a more direct experience of hyperbolic geometry—wishing for an
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experience similar to that of experiencing spherical geometry by means of
handling a physical sphere. In other words, the experience of hyperbolic
geometry available through the models did not directly include an experience
of the intrinsic nature of hyperbolic geometry.

Mathematicians looked for surfaces that would posess the complete
hyperbolic geometry, in the same sense that a sphere has the complete
spherical geometry. A little earlier, in 1868, Beltrami had described a surface
(called the ‘pseudosphere’, see Figure 11), which has hyperbolic geometry
locally.

The pseudosphere also has a certain aesthetic appeal for us in the way
(as with the Poincaré models) it points the imagination towards infinity.
However, the pseudosphere allows only a very limited experience of hyper-
bolic geometry, because any patch on the surface that wraps around the
surface or extends to the circular boundary does not have the geometry of
any piece of the hyperbolic plane.

Figure 10: M.C. Escher’s Circle Limit III (based on the Poincaré disc model)

© 2004 The M.C. Escher Company

Figure 11: The pseudosphere
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At the very beginning of the last century, David Hilbert (1901) proved that
it is impossible to use real analytic equations to define a complete surface
whose intrinsic geometry is the hyperbolic plane. In those days, ‘surface’ nor-
mally meant something defined by real analytic equations and so the search
for a complete hyperbolic surface was abandoned. And N. V. Efimov (1964)
extended Hilbert’s result, by proving that there is no isometric embedding of
the full hyperbolic plane into three-space, defined by functions whose first
and second derivatives are continuous. Still, even today, many texts state
incorrectly that a complete hyperbolic surface is impossible.

However, Nicolaas Kuiper (1955) proved the existence of complete hyper-
bolic surfaces defined by continuously differentiable functions, although
without giving an explicit construction. Then, in the 1970s, William Thurston
described the construction of a surface (one that can be made out of identical
paper annuli) that closely approximates a complete hyperbolic surface. (See
Figure 12 and Thurston, 1997, pp. 49-50.) The actual hyperbolic plane is
obtained by letting the width of the annular strips go to zero. In 1997, Daina
worked out how to crochet the hyperbolic plane, following Thurston’s
annular construction idea. (See Figure 13.) Directions for constructing

Thurston’s surface out of paper or by crocheting can be found in Henderson
and Taimina (2005a) or in Henderson and Taimina (2001b). In these refer-

Figure 12: Construction of the annular hyperbolic plane
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ences, there is also a description of an easily constructible polyhedral hyper-
bolic surface, called the ‘hyperbolic soccer ball’, comprising regular hep-
tagons each surrounded by seven hexagons (the usual spherical soccer ball
consists of regular pentagons each surrounded by five hexagons). This poly-
hedral surface was discovered by Keith Henderson (David’s son) and pro-
vides a very accurate polyhedral approximation to the hyperbolic plane (see
Figure 14).

Figure 13: A crocheted hyperbolic plane (crocheted by Daina Taimina, photograph by

David W. Henderson)

Figure 14: A hyperbolic soccer ball (made and photographed by Keith Henderson)



The geodesics (‘intrinsic straight lines’) on a hyperbolic surface can be
found using the “symmetry” meaning of straightness discussed above: for
example, the geodesics can be found by folding the surface (in the same
way that folding a sheet of paper will produce a straight line on the paper).
This folding also determines a reflection about that geodesic.

Now, by interacting with these surfaces, we can have a more direct
experience of meanings in hyperbolic geometry. And, very importantly, we
can experience the connections between these meanings and the three nine-
teenth-century models discussed above. These models can now be interpre-
ted as projections (or maps) of the hyperbolic surface onto a region in the
plane that distort the surface in a similar manner to the way projections
(maps) of a sphere (such as the Earth) onto a region of the plane distort dis-
tances, areas and/or angles. This is important, because these models are used
to study hyperbolic geometry in detail, while the surface itself allows us
direct experience with the intrinsic geometry.

Before we had experience of these physical surfaces, our only experi-
ences of hyperbolic geometry were through formal study with axiom systems
and analytic study of the nineteenth-century models. The models provided
aesthetic experiences that led our imagination to infinity, but this was not
directly connected with geometric meanings. For example, the question that
we (as well as most students) had was: why are geodesics in both Poincaré
models represented by semi-circles or circular arcs?

To us, the nineteenth-century models were more like artistic abstractions.
But, after constructing the surfaces, we could see how and why the geodesics
are represented in the way they are. (See Henderson and Taimina, 2005a, or
Henderson and Taimina, 2001a, for more details of these connections, includ-
ing proofs that the intrinsic geometry of each of the surfaces is the same
geometry as that represented by all of the models.)

Radius and curvature of the hyperbolic plane

Since all hyperbolic planes are the same up to scale, most treatments of the
hyperbolic plane consider the curvature to be –1. It is very difficult to give
meaning to the effects of the change of curvature without looking at actual
physical hyperbolic surfaces with different curvatures. Each sphere has a
radius r (which is extrinsic to the sphere) and its (Gaussian) curvature (as
defined in differential geometry) is 1/r 2. In a similar way, each hyperbolic
plane has a radius r, which turns out to be the (extrinsic) radius of the
annuli that go into Thurston’s construction and the (Gaussian) curvature of
the hyperbolic plane is –1/r 2. We were not aware of any meaning for the
radius of a hyperbolic plane before experiencing these surfaces.

From a theoretical perspective, changing the radius or curvature is
merely a change of scale and spheres, for example, of radii 4cm, 8cm and
16 cm look very much alike. However, we were shocked when we looked
at the hyperbolic planes with these same radii (see Figures 15a, 15b and 15c,
drawn with radii of 4 cm, 8 cm and 16 cm respectively).
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Figure 15a-c: Hyperbolic planes with different radii (crocheted by Daina Taimina,

photographed by David W. Henderson)
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There is a felt difference that is not present in the spheres of the same
radii (the main reason for this difference seems to come from the fact of expo-
nential growth in the hyperbolic plane). This experience of the meaning of
the radius of a hyperbolic plane was a profoundly aesthetic experience for us,
because we were forced to look deeper mathematically into the meanings
of both radius and curvature, as well as explore the local and global natures
of the hyperbolic plane.

Ideal triangles

By exploring the possible shapes of large triangles on the hyperbolic surface
(see Figure 16), we can see that they seem to become more and more the same
shape as they become large. This leads on to the theorem (proved by using
the models) that all ideal triangles (namely those with vertices at infinity) are
congruent and have area equal to πr2. (This is the same as the extrinsic area
of the identical circles determined by the annuli in the construction.)

Horocycles or horocircles

By experiencing the annular construction (see Figure 12 once more), it is
easy to see that curves perpendicular to the annuli (that is, curves that run in
the radial direction) possess reflection symmetry and, thus, are geodesics. In
addition, they are asymptotic to each other at infinity. Most treatments of
hyperbolic geometry define horocycles as those curves that are orthogonal
to a collection of asymptotic geodesics. Thus, the annuli (in the limit, as their
width goes to zero) are horocycles. Both of us had studied hyperbolic
geometry and its models; but exploring the hyperbolic surface was the first
time we had experienced horocycles in a way that made clear their close
connection with curvature and how, as many books simply assert, they can
be described as circles with infinite (intrinsic) radii.

Figure 16: An ideal triangle on the hyperbolic plane (crocheted by Daina Taimina,

photographed by David W. Henderson)



In the next section, we turn to look at the design of machines in the nine-
teenth century—at first sight, perhaps, a surprising leap. But in a curious way,
these machines embody striking geometric principles and experiences in their
design and the same questions we have been addressing (such as what is
‘straight’?) reappear in exciting ways and, perhaps unexpectedly, horocycles
reoccur once more.

Experiencing Geometry in Machines

Recently, we have been working on an NSF-funded project to examine the
mathematics inherent in a collection of nineteenth-century mechanisms, as
well as to see to the inclusion of these mechanisms (along with commen-
taries and learning modules) as part of the new National Science Digital
Library (NSDL—see www.nsdl.org). Our experiences with these all of vari-
ous mechanisms are offering us different perspectives on geometry, per-
spectives that arise from motion. For example, this work has brought us
back to the question: what is ‘straight’?

When using a compass to draw a circle, we are not starting with a figure
we accept as circular: instead, we are using a fundamental property of circles,
namely that the points on a circle are at a fixed distance from the center, as
the basis for the tool. In other words, we are drawing on a mathematical
definition of a circle. Is there a comparable tool (serving the equivalent role
to a compass) that will draw a straight line? If, in this case, we want to use
Euclid’s definition (“a straight line is a line that lies evenly with the points
on itself”), this will not be of much help.

One could say:

We use a straight-edge for constructing a straight line.

To which a response might be:

Well, how do you know that your straight-edge is straight? How do

you know that anything is straight? How can you check that some-

thing is straight?

This question was important for James Watt. When he was thinking about
improving steam engines, he needed a mechanism in order to convert cir-
cular motion into straight-line motion and vice versa. In 1784, Watt found a
practical solution (which he called “parallel motion”) that consisted of a link-
age with six links. He described his parallel motion mechanism as being free
of “untowardly frictions and other pieces of clumsiness”, claiming it to be
“one of the most ingenious simple pieces of mechanisms that I have con-
trived” (in Ferguson, 1962, p. 195). These expressions of smoothness and
efficiency seem to be very close to what we are calling ‘aesthetic’. However,
Watt’s mechanism produced only approximate straight-line motion: in fact,
it actually produces a stretched-out figure of eight. Mathematicians were not
satisfied with this approximate solution and worked for almost a hundred
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years to find exact solutions to the problem. A linkage that draws an exact
straight line (see Figure 17a) was first reported by Peaucellier, in 1864. (See
Henderson and Taimina, 2005a, 2005b, for a discussion of relevant history.)

Why does the Peaucellier linkage draw a straight line? We suggest the
reader connect to a web site where this linkage is depicted in motion (for
example, see: KMODDL.library.cornell.edu). As an exercise in analytic geom-
etry, one can verify that the point Q will always lie along a straight line—but
this still does not answer the why-question. Especially difficult is being able
to see any relationship with either the “shortest” or the “symmetric” meaning
of straightness: is there perhaps a different meaning of straightness that is
operative here?

In the ‘inversor’ (that is, the links joining C, R, Q, S, and P in Figure 17b),
the points P and Q are inverse pairs with respect to a circle with center C
and radius r = √s2 – d2. Analytically, this means that:

distance (C to P) × distance (C to Q) = r 2.

Here, the crucial property of circle inversion is that it takes circles to circles.
(For details on circle inversion, see Chapter 16 of Henderson and Taimina,
2005a.) After experiencing the motion of the linkage, we now see that P is
constrained (by means of its link to the stationary point B) to travel in a circle
around B. Thus, Q must be traveling along the arc of a circle. The radius

Figure 17a: The Peaucellier linkage (photographed by Francis C. Moon)
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and center of this circle can be varied by changing the position of the fixed
point B and the length of the link BP.

Thus, the Peaucellier linkage draws (at Q) the arc of a circle without ref-
erence to the center of that circle. If the lengths of CB and BP are equal,
then the circle on which P moves goes through the center C. Since points
near C are inverted to points near infinity, the circle that Q lies on must go
through infinity. How can a circle go through infinity? Answer: only if the
circle has infinite radius. A circle with infinite radius (and thus zero curva-
ture) is a straight line. We now have a third meaning for straight line—and
the Peaucellier linkage is a tool for drawing a straight line that draws on this
meaning.

In the previous section on hyperbolic geometry, we pointed out that the
horocycles in the hyperbolic plane can be seen as circles of infinite radius.
Thus, circles with infinite radius are not straight in the hyperbolic plane,
even though they are straight in the Euclidean plane. This proves that seeing
‘straight’ as “circle of infinite radius” is a different meaning from either
‘straight’ as meaning “symmetric” or ‘straight’ as meaning “shortest”.

Behind this discussion lies the theory of circle inversions, one of the most
aesthetic geometric transformations that have also been used in modern art.
The special aesthetic appeal here is that inversions (as seen in Figure 18) can
draw out the imagination to infinity and can also bring out important geo-
metric meanings. For example, the experience of the linkage as a mecha-
nism that draws a circle without using its center allows one to understand
how the linkage can draw a circle of infinite radius and, thus, a straight line.

Peaucellier’s linkage is one of thirty-nine straight-line mechanisms in
Cornell University’s collection, which also has more then two hundred and
twenty kinematic models designed by Franz Reuleaux. These models are a
rediscovery of a lost, nineteenth-century machine design knowledge. Franz
Reuleaux is often referred to as a ‘father of modern machine design’ (see,
for example, Moon, 2003, p. 261). Reuleaux’s two most important books

Figure 17b: The Peaucellier linkage diagram
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contain hundreds of drawings of machines and mechanisms. To comple-
ment his books, Reuleaux designed and built over eight hundred kinematic
models to illustrate his theory of machines. The models in the Cornell col-
lection clearly show the aesthetic style of Reuleaux. (To read more about
Reuleaux, his mechanisms and his theory of machines, see Moon, 2003,
which also contains many further references.)

As we have been exploring the mathematics behind the Reuleaux models
for the NSDL project, we are repeatedly surprised how much aesthetic
appeal we find there—not only in machine design itself, but also in the
mathematics. These experiences caused us to ask about the relationships
among mathematics, engineering and art. Leonardo da Vinci is a well-
known embodiment of this interrelationship, but we have found that there
seems to be a broader connection. For example, Reuleaux, in his book The
Kinematics of Machinery (1876/1963), refers specifically to the artist and to
experiences of deeper meanings in a manner similar to our discussion at the
beginning of this chapter.

He who best understands the machine, who is best acquainted

with its essential nature, will be able to accomplish the most by its

means. (p. 2)

In each new region of intellectual creation the inventor works as

does the artist. His genius steps lightly over the airy masonry of

reasoning which it has thrown across to the new standpoint. It is

useless to demand from either artist or inventor an account of his

steps. (p. 6)

Figure 18: An example of inversion-based art (M.C. Escher’s Development II, 1939

© 2004 The M.C. Escher Company)
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The real cause of the insufficiency of [previous classification sys-
tems] is not, however, the classification itself; it must be looked for
deeper. It lies […] in the circumstance that the investigations have
never been carried back far enough, – back to the rise of the ideas;
that classification has been attempted without any real comprehen-
sion being obtained of the subjects to be classified. (p. 18)

In addition, in his article on the history of engineering, Eugene Ferguson
(1992) wrote:

Both the engineer and the artist start with a blank page. Each will
transfer to it the vision in his mind’s eye. The choice made by
artists as they construct their pictures may appear to be quite arbi-
trary, but those choices are guided by the goal of transmitting their
visions, complete with insights and meaning, to other minds. […]
The engineers’ goal of producing a drawing of a device—a
machine or structure or system—may seem to rule out most if not
all arbitrary choices. Yet engineering design is surprisingly open-
ended. A goal may be reached by many, many different paths,
some of which are better than others but none of which is in all
respects the one best way. (p. 23)

Ferguson also notes that Robert Fulton (of steamboat fame) and Samuel
Morse (the inventor of the electrical telegraph) were both professional artists
before they turned to careers in technology.

We have already mentioned the Peaucellier linkage. Another example is
Reuleaux triangles, which are the most well-known of curves with constant
width. If a closed convex curve is placed between two parallel lines and the
lines are moved together until they touch the curve, the distance between
the parallel lines is the curve’s ‘width’ in one direction. Because a circle has
the same width in all directions, it can be rotated between two parallel lines
without altering the distance between the lines.

The simplest, non-circular, constant-width curve is known as the
Reuleaux triangle. Mathematicians knew it earlier, but Reuleaux (1876/
1963, pp. 131-146) was the first to study various motions determined by con-
stant-width figures. A Reuleaux triangle can be constructed starting with an
equilateral triangle of side s and then replacing each side by a circular arc
using the other two sides as radii, as shown in Figure 19. The resulting fig-
ure bounded by these three arcs is the Reuleaux triangle. Its constant width
is equal to s, the side length of the original equilateral triangle.

Figure 19: A Reuleaux triangle
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In Reuleaux’s collection, we find several applications of this triangle and
other constant-width curves: see, for example, Figure 20.

The Reuleaux triangle fits inside a square of side s and can be rotated
a full 360˚ within the square—this is the idea behind drill bits that can drill
(almost) a square hole: conversely, the square can rotate around the station-
ary Reuleaux triangle. Reuleaux did not give analytical descriptions of these
motions. Instead, he produced many drawings that, in an aesthetically visual
way, show the different paths of points during the motions.

Reuleaux was the first to describe properties of these motions accurately
and, in his model collection, we find several applications, such as those
illustrated above. For instance, he proved the following theorem geometri-
cally: any relative motion between two shapes, S and R, in the plane can be
realized as the motion of two other shapes, cS and cR, rolling on each other,
with cS fixed to S and cR attached to R. He called the rolling shapes ‘cen-
troids’ (the locus of instantaneous centers), but, in order to avoid confusion
with the centroid of a triangle, the word ‘centrode’ was subsequently used.

Figures 21 and 22 (overleaf) show the centrodes (namely O1O2O3O4

and m1m2m3) for the relative motions of the square and the Reuleaux trian-
gle respectively. Since the relative motions are the same in the two figures,
the centrodes are necessarily the same. But the real meaning of this rolling
motion can be experienced only by actually looking at the models in motion.

Figure 20: A Reuleaux mechanism using a constant-width triangle

(photographed by Francis C. Moon)
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Figure 21: A Reuleaux triangle moving in a square (from Reuleaux, 1876/1963, p. 136)

Figure 22: A square moving around a Reuleaux triangle (from Reuleaux, 1876/1963,

p. 137)
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Conclusion

Aesthetics has always been a driving force in our experiences of mathematics.
We do not—as some mathematicians have claimed to do—carry with us a list
of criteria by which we judge the aesthetic value of a proof. In fact, rarely
do we find proofs, in and of themselves, to be aesthetic objects. Instead, we
locate the aesthetic value of mathematics in the coming-to-understanding,
in the integration of experience and meaning. We believe that the under-
standing of meanings in mathematics (often through aesthetic experiences)
comes before an understanding of the analytic formalisms. We hope that the
reader has gained, through our stories and our examples, a sense of the
aesthetic component of our perception of mathematical meanings.
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Section B

A Sense for Mathematics



Introduction to Section B

The three chapters in Section B, A Sense for Mathematics, offer perspectives
from authors with backgrounds in mathematics and philosophy who strive
to elucidate and explain the aesthetic dimension of mathematics. The focus
of these chapters is pan-mathematical, crossing specific fields and historical
periods. The authors explore aesthetic issues related to mathematical under-
standing, the development of mathematical knowledge and public percep-
tions of mathematics and mathematicians.

In Chapter 4, Nathalie Sinclair proposes a model of the aesthetic nature
of mathematical inquiry. Although mathematicians tend to privilege the beauty
and elegance of their proofs, theorems and other mathematical entities –
their works of art – a closer examination of their processes of inquiry reveals
important, perhaps necessary, roles played by the aesthetic in the discovery
and development of mathematical knowledge. Based on her interviews with
professional mathematicians, as well as reports found in the literature,
Sinclair identifies and illustrates three distinct roles of the aesthetic. These
mathematicians’ aesthetic claims relating to these roles are then analysed
and explained in terms of contemporary theories of inquiry and experience.

Martin Schiralli, in Chapter 5, attempts an analysis of the key concept of
‘pattern’ and examines the way ‘pattern’ functions in the thinking of math-
ematicians about mathematics through the ages. He is especially interested
in the way the aesthetic insinuates itself – seemingly ineluctably – into that
thinking. By focusing on certain notions of arithmos (number) most prevalent
and powerful in Pythagorean thinking, Schiralli links some of the earliest
aspects of mathematical–aesthetic thinking with influential contemporary
views on mathematics as the ‘science’ of patterns. More broadly, the perva-
sive use of the idea of pattern in Gregory Bateson’s work in biology and ‘the
ecology of mind’, as well as in the work of art historian Ernst Gombrich on
‘the sense of order’, inform this chapter. Both Bateson (on science and epis-
temology) and Gombrich (on abstract and decorative art) offer perspectives
on the correspondence between the aesthetic and the mathematical that
may profitably be linked back to these early Greek views.

In Chapter 6, William Higginson situates the book’s investigation on the
connection between mathematics and the aesthetic in a much broader intel-
lectual terrain, namely around the age-old question of ‘What does it mean
to be human?’ He both enriches and complicates the connection on the one
hand, by probing perspectives on mathematics and mathematicians in the
broader culture, including social scientists, schoolchildren, playwrights,
moviemakers and novelists, and on the other, by drawing on researchers’
insights in cognitive science, philosophy and anthropology regarding the
aesthetic nature of human activity. He argues that the roots of mathematical
activity are located perhaps surprisingly close to this human aesthetic pre-
disposition.



CHAPTER 4
The Aesthetic Sensibilities

of Mathematicians

Nathalie Sinclair

I begin with a story told by the French mathematician François Le Lionnais
(1983) about his first experience, at age seven, of a mathematical discovery.
It illustrates, perhaps more immediately than a trip to the Great Museum of
‘elegant’ mathematical proofs, how aesthetic responses, values and experi-
ences can snugly insinuate themselves alongside logical steps and decisions
throughout mathematical activity.

The young Le Lionnais is sitting alone at the family kitchen table, with
a pencil and some paper, not tired enough to join the rest of his family for
the afternoon siesta. Seated at the table, he writes the numbers from 1 to 9.
But instead of multiplying one number by the others, as he has been learn-
ing to do in school, he multiplies each by itself, before writing the result in
the row beneath.

1 2 3 4 5 6 7 8 9

1 4 9 16 25 36 49 64 81

“Suddenly”, he writes, describing his memory of the experience, “a veil lifts,
allowing me to perceive in this otherwise dull alignment a beautiful structure”
(p. 12; my translation, as are all quotations from his account). But to see it,
he continues, one has to consent to “an amputation” (p. 12), striking out the
digits in the tens decimal place, conserving only the units. This produces:

1 2 3 4 5 6 7 8 9

1 4 9 6 5 6 9 4 1

Le Lionnais admits that an ordinary adult might have found the resulting sym-
metry (with respect to the middle number) quite banal, but, having discov-
ered it himself, he is thunderstruck. He feels he has entered a “vast domain
where a multitude of treasures has been hidden” (p. 13). Surely, he could con-
tinue mining his beautiful array simply by multiplying the digits once again
(and maybe even again), remembering to strike out the tens decimal place.

1 2 3 4 5 6 7 8 9

1 4 9 6 5 6 9 4 1

1 8 7 4 5 6 3 2 9



Hélas! The symmetry has been lost. Le Lionnais is stubborn, though, certain
that “chaos could not have taken over the society of numbers, which had
thus far been so well organised” (p. 13). And all of a sudden, he sees it: the
digits occupying the symmetric positions are complements of each other in
ten: 1 + 9 = 10; 8 + 2 = 10; 7 + 3 = 10; 4 + 6 = 10. Now he can move on:
what happens in the fourth row? Le Lionnais works on his rows of digits all
afternoon until he is called for dinner, finding that the sixth row reproduces
the second, while the seventh reproduces the third, and so on.

Le Lionnais recounts this story in a prelude to his quixotic book of num-
bers, as a way of describing how he, himself, became bewitched by that
queenly domain of mathematics, the theory of numbers. Remarkably, instead
of extolling the great beauty of Euclid’s proof of the infinity of primes or the
Pythagorean proof of the irrationality of √2 – as so many other mathemati-
cians have done – Le Lionnais describes the beauty he sees in the process of
playing with, manipulating and transforming simple whole numbers.

He has not produced a proof, or even a theorem – the traditional prod-
ucts with aesthetic currency in mathematics. Rather, he has sought out (and
found) pleasing and generative instances of symmetry, balance and pattern
in the magical, self-sufficient world of numbers. When he lifts the veil and
notes the symmetry in his row of numbers, he perceives the rich potential of
his simple rule (multiply each number by itself) that motivates him to explore
further; after all, as he remarks, symmetry does not happen by accident.

The evaluative role of the aesthetic – in which properties such as ‘beauty’
and ‘elegance’ are used to distinguish good from not-so-good mathematical
products – has been quite well documented by mathematicians. As was
mentioned in Chapter α, a number of mathematicians, such as Hardy (1940),
have even offered lists of aesthetic criteria that can be applied to determine
a product’s aesthetic value, perhaps because they felt that a proof’s ‘beauty’
and ‘elegance’ should be as timeless and objective as its truth. However, Le
Lionnais’s story evokes two additional roles for the aesthetic over and above
the purely evaluative. On the one hand, he is guided by his response to
qualities such as symmetry and balance; on the other, he is motivated by the
unexpected treasures he finds as he plays with numbers. The aesthetic both
organises and motivates his mathematical activity.

In the following sections, I flesh out and broaden these three roles of
the aesthetic – what I call the evaluative, the generative and the motivational
– each of which turns out to be far more pervasive in and fundamental to the
development of mathematics than might be suggested by a single story of a
precocious boy playing with numbers. There are several thorny issues to con-
tend with, including the very definitions of the words ‘aesthetic’, ‘beauty’ and
‘elegance’. While different mathematicians may retain personal, idiosyn-
cratic meanings for ‘beauty’ and ‘elegance’, I will be using the word ‘aesthetic’
in a quite specific sense, namely that of the American philosopher John Dewey
(1934). Dewey claimed experiences, responses and objects have an aesthetic
quality when they provoke a pleasurable ‘sense of fit’ for the individual.
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Thus, the aesthetic, for Dewey, pertains to decisions about pleasure as
well as meaning, thereby operating on both affective and cognitive levels.
Objects do not, in and of themselves, possess aesthetic qualities [1]; they
require a perceiver as well as a socio-historical context. Cultural differences
influence aesthetic responses: yet, given the large degree of communication
now possible, the differences in responses between contemporary Greek and
ancient Greek mathematicians are certainly greater than those between, say,
twenty-first-century North American and Japanese mathematicians. However,
since I am presently concerned with the way the aesthetic deploys itself
across the spectrum of the contemporary mathematics milieu, I forego a
socio-historical analysis.

In the rest of this chapter, I propose a tripartite categorisation for struc-
turing the diversity of aesthetic responses found in the mathematics literature.

(a) The most obvious and public of the three characteristics is the eval-
uative; it concerns the aesthetic value of mathematical products such
as results or proofs and, more specifically, the judgements made
about which products are most significant. Mathematicians may eval-
uate both their own work, as they complete a proof or solution, as
well as the work of others, as they review potential journal articles or
attend colloquia.

(b) The generative characteristic of the aesthetic pertains to those aesthetic
modes of reasoning used in solving problems, as opposed to logical
or even intuitive ones. I have used the term ‘generative’, because it is
described by mathematicians as being responsible for generating new
ideas and insights that could not be derived by logical steps alone
(see, for example, Poincaré, 1908/1956).

(c) Lastly, the motivational characteristic relates to the role of the aesthetic
in attracting mathematicians to certain fields and, in turn, in stimulating
them to work on certain problems. While the evaluative characteristic
of aesthetics operates on mathematicians’ finished, public work, the
motivational and generative characteristics belong to more private,
evolving facets of mathematical inquiry.

The Evaluative Characteristic of the Aesthetic

Of the hundreds of thousands of theorems that are now proved each year,
how do mathematicians select which theorems become a part of the body
of mathematical knowledge? Which are to be those that get printed in jour-
nals or presented at conferences, which are deemed worthy of being further
developed, as well as worth being taught to students or placed in textbooks?

Tymoczko (1993) argues that aesthetic criteria are necessary in order to
ground value judgements in mathematics (judgements such as importance
and relevance) for two reasons. First, selection is essential in a world where
infinitely many correct theorems could be produced. Second, mathematical
reality cannot provide its own criteria: that is, a mathematical result can 
not be judged important because it matches some supposed mathematical
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reality – mathematics is not self-organised. In fact, it is only in relation to
actual mathematicians with actual interests and values that mathematical
reality is divided up between the trivial and the important.

Steiner (1998) goes even further in claiming that there is no objective
criterion for a certain structure to qualify as mathematics – and not every
structure counts as a mathematical structure (chess, for example). Instead,
he claims mathematicians decide what structures are ‘mathematical’ based
on the aesthetic criteria of beauty and convenience. Both beauty and con-
venience are anthropocentric (or ‘species-specific’) notions, because they
are based on the needs and limitations of human beings. If human brains
were a thousand times more powerful, they might have no need for a con-
venient concept such as the logarithm.

Hardy (1940) privileged supposedly objective criteria such as depth and
generality, but his more ‘purely aesthetic’ criteria such as unexpectedness,
inevitability and economy certainly play a role in determining the value of
mathematical products. For example, most mathematicians agree that the
Riemann hypothesis is a significant problem – perhaps because it is so inter-
twined with other results or perhaps because it is somewhat surprising – but
its solution (if and when it comes) will not necessarily itself be considered
‘beautiful’. That judgement will depend on many things, including the
knowledge and experience of the mathematician in question and whether
it illuminates any of the many connections mathematicians have identified
or whether it renders them too obvious. [2]

Buckminster Fuller (quoted in Fadiman, 1985) said that, when working
on a problem, he “never thinks about beauty” (p. 85). It is only if he finds
that “the solution is not beautiful” (p. 85) that he knows it is wrong. His
statement, echoed by many others, is misleading: do mathematicians only
think about the beauty of solutions after the event? The work of Le Lionnais
(1948/1986) illustrates many other mathematical entities, other than proofs
and solutions, which are amenable to aesthetic consideration, including
images, definitions, methods of proving and concepts themselves. He also
treated the mathematical aesthetic in terms of a matrix of two principles: the
structure of mathematicians’ works and a human’s conception of beauty.
Following Nietzsche, Le Lionnais saw an individual’s conception of beauty
as falling into two categories – classicism and romanticism – which parallel
the Apollonian and Dionysian ones. These categories represent two styles
of human endeavour: on the one hand, a desire for equilibrium, harmony
and order; on the other, a yearning for lack of balance, form obliteration and
pathology. [3]

For Le Lionnais, classically beautiful ‘facts’ are ones whose beauty im-
presses through austerity or mastery over diversity, such as magic squares and
Pascal’s triangle. [4] Romantically beautiful ‘facts’, such as the imaginary
numbers, impress through “le culte des émotions violentes, du non-con-
formisme et de la bizarrerie” (p. 444). These engaged, even ecstatic, descrip-
tions of romantically appealing mathematical facts imply the existence of
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intemperate aesthetic responses antithetical to ones such as detachment
which are usually articulated with such equanimity – they speak of a radi-
cal, emotional, individualised component to aesthetic response. Classically
beautiful ‘methods’ permit the attainment of powerful effects through mod-
eration, such as proof by recurrence or the notion of the locus. On the other
hand, romantically beautiful ‘methods’, such as reductio ad absurdum or
non-constructive existence proofs, are characterised by indirectness: failing
to shed light on the mathematical structure, they leave one in a state of con-
flict or even that of dissatisfaction.

That mathematicians can respond aesthetically to the wide range of their
tools and materials, and not only to their solutions and proofs which involve
a truth component, makes it much easier to see how different mathematicians
come to choose their specific research domains. In addition, the mathemati-
cian’s constant interaction with mathematical tools and materials, in the
course of inquiry, explains how aesthetic judgements can easily affect the
process of inquiry and not just its final product. For example, in an interview
with me [5], Jonathan Borwein observed, “I would emphasise how many
mathematicians will abandon a proof technique they are ‘sure’ will work,
because it would be dull, ugly, inelegant”. However, before pursuing this
idea, I want to continue focusing on mathematicians’ aesthetic evaluation of
mathematical products. But this time, however, I want to attend more closely
to the way they are shared within the mathematical community.

The aesthetic dimension of mathematical expression and
communication

The evaluative characteristic of the aesthetic is not only involved in judging
the great theorems of the past or existing mathematical entities, but it is also
actively involved in mathematicians’ decisions about expressing and com-
municating their own work. As Wolfgang Krull (1930/1987) wrote:

Mathematicians are not concerned merely with finding and proving
theorems, they also want to arrange and assemble the theorems so
that they appear not only correct but evident and compelling. (p. 49)

In the same interview with me as mentioned above, Borwein noted that some
mathematicians derive “the most pleasure in refining, polishing and harvest-
ing their conquests at this stage”. This would certainly seem to be the case
for Gauss, who presented no less than six different proofs of the law of
quadratic reciprocity in his Disquisitiones Arithmeticae (1801/1966). In an
article published in 1817, discussing his various proofs of this result, Gauss
wrote about his own quest for beauty and simplicity, defending it from
charges of redundancy.

As soon as a new result is discovered by induction, one must con-
sider as the first requirement the finding of a proof by any possible
means. But after such good fortune, one must not in higher arith-
metic consider the investigation closed or view the search for other
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proofs as a superfluous luxury. For sometimes one does not at first

come upon the most beautiful and simplest proof, and then it is

just the insight into the wonderful concatenation of truth in higher

arithmetic that is the chief attraction for study and often leads to the

discovery of new truths. For these reasons the finding of new proofs

for known truths is often at least as important as the discovery itself.

(Gauss, 1863, pp. 159-160; in May, 1972, p. 299)

Several aesthetic qualities I identified in the previous sub-section are oper-
ative at this stage of the mathematician’s inquiry as well. For instance, while
some mathematicians may provide the genesis of a result, as well as logical
and intuitive substantiation, others prefer a ‘clean’, ‘pure’ or ‘minimal’ pres-
entation of only the logically formed results, of only the elements needed to
reveal the structure. On the other hand, Philip Davis (1997) wants his proofs
to be transparent:

I wanted to append to the figure a few lines, so ingeniously placed

that the whole matter would be exposed to the naked eye. I wanted

to be able to say not οπερ εδει δειξαι (quod erat demonstrandum),
as did the ancient Greek mathematicians, but simply, “Lo and

behold! The matter is as plain as the nose on your face.” (p. 17)

Thus, the mathematician’s aesthetic judgements also affect the way she
organises her exposition, whether opting for an intuitive, perhaps visually-
oriented proof, a detailed proof with examples or a short, abstract proof. In
these cases, as well as those in between, the mathematician is expressing an
understanding according to a personal aesthetic. Of course, there is a strong
enculturation that takes place. In interview, Robert Osserman claimed that
younger mathematicians will use this last method of presentation as a
default. They may even accept this method as the way things are or even
should be (see Chapter 8 for more on this). In his conversation with me, Joe
Buhler noted, “It took me a long time to realise that some of my most
admired role models were crummy expositors!”

However, Osserman went on to point out that it is not uncommon to
find more seasoned and established mathematicians communicating in nar-
ratives, by including in their expositions arguments of relevance, connection
and personal interest. Some mathematicians bemoan the dry, terse form of
most proofs that can often obscure the motivations and paths that led to
them (see Burton, 2004). These mathematicians are interested in the moti-
vations behind results, the false starts and lucky guesses that led to the
results and the possibility of ‘seeing’ what is beautiful and interesting about
the result. In fact, behind the terse face of journal articles and textbooks,
there is a world of aesthetic persuasion. Buhler talked about having to ‘mar-
ket’ ideas, adding “you have to take whatever turned you on about it and
try to communicate that to someone”. This is not about convincing col-
leagues or readers of truth or correctness; it is about convincing them about
interest and attractiveness, about how it ‘connects’ to them.
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These judgements of beauty, elegance and worth are not frivolous ones:
rather, they contribute to the on-going negotiation concerning which are the
problems worth attending to, worth solving, which solutions are acceptable
and what contributes to greater mathematical understanding. When Tymoczko
(1993) advocates greater explicit aesthetic criticism in mathematics, he is not
implying that aesthetic judgements are non-existent in the mathematics com-
munity. On the contrary, they are pervasive and operative, as suggested in
the above descriptions, yet are often implicit and rarely made public.

In addition, the mathematicians quoted above highlight the role of the
evaluative characteristic of the aesthetic in their own formulation and pres-
entation of results, thus revealing a very personal side to aesthetic judgement
of mathematical products. They describe the aesthetic decisions involved in
expressing their results in the most satisfying ways, in much the same way
as poets describe the aesthetics of expressing their various thoughts in cer-
tain forms. [6] Thus, the evaluative characteristic of the aesthetic is opera-
tional not only in the community’s decisions about the significance of
results, but also in the mathematician’s individual decisions about the per-
sonal value of those results.

The Generative Characteristic of the Aesthetic

The generative characteristic of the aesthetic may be the most difficult of the
three to discuss explicitly, operating as it most often does at a tacit or even
sub-conscious level and intertwined as it frequently is with intuitive modes
of thinking. The generative characteristic of the aesthetic is involved in the
actual process of inquiry, in the discovery and the invention of solutions or
ideas. It guides the actions and choices that mathematicians make as they
try to make sense of objects and relations.

Some background

Henri Poincaré (1908/1956) was one of the first modern mathematicians to
draw attention to the aesthetic dimension of mathematical invention and cre-
ation. According to his account, two operations take place in mathematical
invention: first the construction of possible combinations of ideas and then
the selection of the fruitful ones. Thus, to invent is to choose useful combi-
nations from the numerous ones available, the useful ones being those that
are the most beautiful, those best able to “charm this special sensibility that
all mathematicians know” (p. 2048).

Poincaré explained that such combinations of ideas are quite harmo-
niously disposed, so the mind can effortlessly embrace their totality without
realising their details. It is this harmony that at once satisfies the mind’s aes-
thetic sensibilities and acts as an aid to the mind, sustaining and guiding it.
He claimed that the sorting of combinations of ideas must happen in the
unconscious, since mathematicians only become aware of the ones that
already have the stamp of beauty.
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This may sound a bit far-fetched, but there seems to be some scientific
basis for it. The contemporary neuroscientist Antonio Damasio (1994) points
out that because humans are not parallel processors, they must somehow
filter the multitude of stimuli coming in from the environment. Some kind
of pre-selection is carried out, whether covertly or not.

A concrete example might help to illustrate Poincaré’s claims. Silver and
Metzger (1989) report on a mathematician’s attempts to solve a number-
theory problem. (Prove that there are no prime numbers in the infinite
sequence of integers 10001, 100010001, 1000100010001, … .) In working
through the problem, the subject hits upon a certain prime factorisation,
namely 137 x 73, that he describes as being “wonderful with those patterns”
(p. 67). Something about the surface symmetry of these factors appeals to
the mathematician, leading him to believe that they might go down a gen-
erative path. (The young Le Lionnais had a very similar generative experi-
ence when he perceived the symmetry in his second row of numbers and
yet another when he discerned the complementary balance inherent in the
third row of numbers.)

Based on their observations, Silver and Metzger also argue that aesthetic
monitoring is not strictly cognitive, but appears to have a strong affective
component:

decisions or evaluations based on aesthetic considerations are
often made because the problem solver ‘feels’ he or she should do
so because he or she is satisfied or dissatisfied with a method or
result. (p. 70)

The above example illustrates how an aesthetic response to a certain con-
figuration is generative, in that it serves to lead the mathematician down a
certain path of inquiry. This path is not chosen for logical reasons but,
rather, because the mathematician feels that the appealing configuration
should reveal some insight or fact.

There is a range of stimuli that can trigger aesthetic responses: a quality
such as symmetry might do so, but more subtle qualities such as the ‘pret-
tiness’ of an equation or the sudden emergence of a new quantity can also
act as triggers. This example also illustrates how mathematicians must
believe in, and trust, their feelings in order to exploit the generative charac-
teristic of the aesthetic. They must view mathematics as a domain of inquiry
where phenomena such as feeling and intuition play an important role
alongside hard work and logical reasoning.

Evoking the generative characteristic of the aesthetic

There are also some special strategies that mathematicians use during the
course of inquiry which seem to be oriented toward triggering the genera-
tive characteristic of the aesthetic. I will discuss four such strategies:

• playing with or ‘getting a feel for’ a situation;
• establishing intimacy;

94 Mathematics and the Aesthetic



• enjoying the craft;

• capitalising on intuition.

The phase of playing around or ‘getting a feel for’ is aesthetic in so far as
the mathematician is framing an area of exploration, qualitatively trying to
fit things together and seeking patterns that connect or integrate. Helen
Featherstone (2000) terms this ‘mathematical play’, drawing on Johan Huizinga’s
(1950) theory of play. Huizinga saw play as the free, orderly and aesthetic
exploration of a situation. The exploration is aesthetic in that the one play-
ing is seeking to identify organising themes and structures and to arrange
the objects being played with in a meaningful, expressive way.

Play is neither random, nor does it have the ultimate goal that solving
problems has: rather, its goal is the exploration itself. In seeing play in this
way, Huizinga called attention to the possibility that, in ‘mathematical play’,
the mathematician is aesthetically exploring a certain terrain, trying to
impose structures and generate patterns. And, in the course of such play,
structures and patterns are indeed revealed.

Secondly, mathematicians seem to develop a personal, intimate relation-
ship with the objects they work with, as can be evidenced by the way they
anthropomorphise them or coin special names in an attempt to hold them,
to own them. For example, Douglas Hofstadter (1992) first baptises his
emerging object “my Magic Triangle” and then “my hemiolic crystal” (pp. 9-11).
Paul Lévy (1970) becomes equally possessive about the objects; he insists
on referring to the focus of his investigations as “ma courbe” (p. 20), even
though it is generally known as the von Koch curve. Possessively naming
these objects makes them easier to refer to and may even foreshadow iden-
tifying their properties. Equally as important, though, it gives the mathemati-
cian some traction on the still-vague territory, some way of marking what
she does understand.

Norbert Wiener (1956) did not underestimate these attempts to operate
with vague ideas. He recognised the mathematician’s:

power to operate with temporary emotional symbols and to organ-

ize out of them a semi-permanent, recallable language. If one is not

able to do this, one is likely to find that his ideas evaporate from

the sheer difficulty of preserving them in an as-yet unformulated

shape. (p. 86)

Verena Huber-Dyson (1998) also evokes this unformulated, tacit knowledge:

All the while you are aware of the pattern […], just below the

threshold of consciousness, exactly as a driver is aware of the traf-

fic laws and of the coordinated efforts of his body and his jeep.

That is how you find your way through the maze of mathematical

possibilities to the ‘interesting’ [cases]. (p. 2)

Thirdly, there is a certain amount of craft in the mathematician’s work that
is also aesthetic in nature. Mathematicians have tools that can be used to
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create new mathematical objects or transform existing ones. Le Lionnais’s
(1948/1986) various kinds of ‘methods’ used to work with mathematical
entities can also be thought of as tools.

Adrian Lewis (in his interview with me) described the use of certain
tools as part of the aesthetic dimension of enjoying his craft, of using “well-
worn tools in often routine ways, like a well-oiled piece of engineering”.
What he finds beautiful is “not just the startling revelation or the philosoph-
ical wonder” of a work of mathematics, but the craft of it, “the inexorable
sequence of simple tools at work”. Although less dramatic than a startling
revelation, for him there is something comforting in the knowledge that the
careful application of a tool will produce a “perfect, fine-tuned result”.

In comparing science and art, Freeman Dyson also commented on:

[the] aesthetic pleasure of the craftsmanship of performance [par-

ticularly in mathematics]. And if one is handling mathematical tools

with some sophistication it is a very nonverbal and a very, very

pleasurable experience just to know how to handle the tools well.

It’s a great joy. (Dyson et al., 1982, p. 139)

Doris Schattschneider (in Chapter 2) provides additional insight into this
notion of craft, when she describes some of the ‘paradigms’ that mathemati-
cians use in the course of solving problems and proving theorems. For exam-
ple, a symmetry argument (or the pigeon-hole principle) is used as a way to
transform an unknown complex situation into a simpler, more familiar one.
It may also provide insight into the structure of the unknown situation.
Schattschneider views these paradigms as beautiful, because of their pow-
erful ability to simplify, to cut across complexity and surface differences or
to reformulate a problem in more familiar terms. Also, these paradigms may
still carry vestiges of the aesthetic impact they had when mathematicians first
encountered them in a proof or solution, as her description of them reveals.

My fourth, final category of the generative characteristic of the aesthetic
relates to drawing on and working with intuition. In their interviews with
me, Buhler and Borwein both described the way in which they could get,
often quite suddenly, an ‘out-of-the-blue’ insight. They recognised it as an
insight because of the strong feeling that accompanied it, almost alerting
them to pay attention. [7] It may have some compelling order, simplicity or
structure; it may resonate with something else they know; it may provide them
with a new perspective. These are qualitative judgements they make. Buhler
explained, “I have the idea but not the words”. This convinces him – whether
rightly or not – that it will lead to a solution. As Borwein said, a mathemati-
cian gets the “remarkable sense that the rest is do-able: this will work”.

What are the types of things that make mathematicians feel that ‘this will
work out’? Very generally, they are things that have some aesthetic import.
Hofstadter (1992, p. 5) senses the rightness of a particular relationship when
he notices that it produces parallel lines – had the lines been oblique, he
would have skipped right over them. He also feels that a simple analogy in

96 Mathematics and the Aesthetic



symbolic form, though meaningless to him geometrically, must be right –
such a thing cannot just be an accident. This ‘looking right’ is an elusive
notion, one that stumps mathematicians who try to describe or explain it. Is
there a perceptible harmony in terms of proportion or symmetry? Is there a
resonance with a previously successful strategy? Are there simply some inex-
pressible or tacit conceptions that have finally found a formulation?

The third question here emphasises the aesthetic sensitivities that con-
tribute to mathematicians’ sense-making. In contemplating, experimenting
with, playing with the elements of a situation, the mathematician is gaining
a feel for patterns and potential patterns (see Martin Schiralli’s discussion of
pattern in Chapter 5 of this book). Hofstadter describes the sudden insight,
the aesthetic moment, as being when inner images and external impressions
converge; it is “the concrete realisation of the abstract analogy – a lovely
idea, irresistible to me” (p. 7).

The mathematician may feel that she is bringing something beautiful but
unfinished to its inevitable completion, to closure. In retrospect, she might
appreciate the growth of her own grappling: she might be surprised (and
thankful) that she pursued a certain path; she might realise how she wrongly
dismissed something as irrelevant or meaningless along the way. This appre-
ciation alerts her to the mysteries of her own mathematical thinking process,
mysteries that in many ways parallel in their depth the mysteries she
encounters in mathematics.

This generative characteristic of the aesthetic operates not only at a pas-
sive, sub-conscious level, as Poincaré would have it, but also actively, as the
mathematician deliberately searches for order and structure. During this
process, the mathematician becomes more intimate with objects and rela-
tions through various transformations and reformulations. As will become
clear in the next section of this chapter, the generative characteristic of the
aesthetic distinguishes itself in many different ways from the motivational
one. While the latter pertains to what mathematicians perceive, the generative
characteristic seems to relate to what they do: for example, playing around
with or getting a feel for; gaining intimacy; using certain tools; calling on
intuition. The act of doing in itself seems to carry a positive affective com-
ponent with it, in the course of stimulating and supporting aesthetic modes
of reasoning.

The Motivational Characteristic of the Aesthetic

Jacques Hadamard (1945), John von Neumann (1947) and Roger Penrose
(1974) have all argued that that the motivations for doing mathematics, as
Penrose states, “turn out to be ultimately aesthetic ones” (p. 266). Tymoczko
(1993) claims that there is a logical imperative for the motivational charac-
teristic of the aesthetic. A mathematician has a great variety of fields to
choose from, widely differing from one another in character, style, aims and
influence; within each field there is a variety of problems and phenomena.
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Thus, mathematicians must select in terms of the research they pursue, the
classes they teach and the ‘canon’ they help to pass on.

While there are some mathematical problems that are more famous and
even more fashionable than others, it would be difficult to argue that there
is an objective perspective – a mathematical reality against which the value
of mathematical products can be measured. Contrast this with physics, for
example, another discipline that makes strong aesthetic claims (see Curtin,
1982, or Farmelo, 2002). There, questions and products can be measured up
against physical reality: for instance, how well they seem to explain the
shape of the universe or the behaviour of light.

Hadamard (1945) firmly claimed that one of the most important motiva-
tional aesthetic criteria is that of potential, the fruitfulness of a future result:

Without knowing anything further, we feel that such a direction of

investigation is worth following; we feel that the question in itself
deserves interest [...] (p. 127; italics in original)

When the young Le Lionnais perceived that initial symmetry, he could predict
– or ‘feel’ – that the investigation would yield many treasures. An attraction to
the potential of a result or to the harmony of a mathematical structure seems
to appeal more to the intellect than to the senses. Penrose, however, describes
another criterion, that of visual appeal, in explaining his attraction to the
strange symmetries in his irregular tilings. Visual appeal seems to be an
increasingly available criterion; the computer-generated images that are now
being widely produced have bewitched many – as David Mumford et al.
(2002) acknowledge in their recent and colourful book Indra’s Pearls.

In analysing scientific inquiry in general, including mathematics, philo-
sopher of science Michael Polanyi (1958) argued that the scientist’s sense of
intellectual beauty serves a crucial selective function:

intellectual passions have an affirmative content; in science they

affirm the scientific interest and value of certain facts, as against

any lack of interest and value in others. (p. 159)

Moreover, Polanyi had already asserted in his book that the motivational
characteristic of the aesthetic plays the specific psychological role that Penrose
mentions above:

Intellectual passions do not merely affirm the existence of har-

monies which foreshadow an indeterminate range of future discov-

eries, but can evoke intimations of specific discoveries and sustain

their persistent pursuit through years of labour. (p. 143)

Although the authors above argue that aesthetic motivation is necessary
for mathematical inquiry, they provide very few examples of the types of
aesthetic response that might be motivational. In the following sub-section,
I provide categories of responses that are frequently mentioned in interview
by mathematicians.
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Categories of aesthetic motivation

There are several ways in which the aesthetic motivates mathematical activity:
appeal, at both a sensory and cognitive level; surprise and paradox; orien-
tation to the social; identification; desire for ‘the feeling’.

Mathematicians can be attracted by the visual appeal of certain math-
ematical entities, by perceived aesthetic attributes such as simplicity and
order or by some sense of ‘fit’ that applies to a whole structure. As I men-
tioned, Penrose (1974) is aesthetically motivated by the visual complexity of
non-periodic tilings, but since so much of mathematics seems inaccessible
to the senses, visual appeal is necessarily limited. Lewis points to another
source of appeal in mathematics: “the unexpected order that so often
emerges for no apparent reason” from complex situations. Davis (1997) pro-
vides a specific example, describing being caught by the unexpected order
emerging from an irregular triangle in Napoleon’s theorem and spending
years of his life trying to figure out why it occurs.

Apparent simplicity is another frequently-occurring appeal and is exem-
plified by these words from Andrew Gleason (quoted in Albers et al., 1990):

I am gripped by explicit, easily stated things […] I’m very fond of
problems in which somehow an at least very simple sounding
hypothesis is sufficient to really pinch something together and
make something out of it. (p. 93)

Katherine Heinrich, one of my interviewees, concurred: “I like simply stated
and clearly understood questions that with just a little background the ‘man
on the street’ could understand”, though she acknowledged that such prob-
lems are often “deceptively simple”. Number theory [8] seems to attract many
mathematicians, including Le Lionnais, as it swarms with problems and
claims that are deceptively simple to state, such as Goldbach’s conjecture or
Fermat’s Last Theorem.

In my interview with Hendrik Lenstra, he emphasised that his sense of
attraction involved a sense of network, of connection and relationship: “It’s
the whole texture, the whole logical network that creates beauty”. He com-
pared his attraction to a mathematical situation with seeing “the insides of a
watch, the beauty of the copper as well as of the rhythmic synchronisation
of the motion of the gears”. He explained that, “Something draws you in to
look deeper, to see which movements are linked to which others or why a
certain gear is there”. Lenstra claimed that he will select questions based on
his network view of mathematics; he will be attracted to a question if it “is
not a dead end but is somehow connected to other things”.

The mathematician’s aesthetic response is necessarily personal, emerg-
ing from a certain set of preferences and interests. Osserman’s source of
attraction is partly the mystery of his own mind. He finds it remarkable that
something he knows is true does not have a more transparent proof, that
there is not a more “enlightening” explanation: if it is true, then he should
be able to “see” it. The desire to ‘see’ it, to have an immediate gestalt of
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understanding is primarily an aesthetic one. It is not enough to know that
something is true; one wants to be able to apprehend it in a holistic way.
Similarly, Heinrich claimed that some problems generate on-going interest,
because “no one has seen the ‘right’ way to do them”. Such problems awaken
a sense of desire to solve them in a more aesthetically pleasing way. (Wit-
ness the continuing attempts to find additional proofs of the irrationality of
√2 – most recently in Apostol, 2000 – as described in Chapter 1.)

Secondly, a sense of surprise and paradox can also be aesthetically
motivating. For example, the paradox of the ‘hat problem’ recently intrigued
and attracted many mathematicians across North America (Robinson, 2001).
Surprise constantly arises in mathematics, as mathematicians find things they
have no reason to expect: a pattern emerging in a sequence of numbers; a
common point of intersection found in a group of lines; a large change
resulting from a small variation; a finite real thing proved by means of appeal
to an infinite, possibly unreal, object. Movshovits-Hadar (1988) reveals the
motivational power of surprise in mathematics, by showing how this feeling
of surprise stimulates curiosity which can, in small steps, lead towards intel-
ligibility.

Surprise makes one struggle with one’s expectations, with the limita-
tions of knowledge and, thus, with intuitive understanding, both informal
and formal. Bill Gosper (quoted in Albers et al., 1990) expressed surprise at
the way continued fractions allow you to ‘see’ what a real number is: “it’s
completely astounding […] it looks like you are cheating God somehow”
(p. 112). He claimed this sense of surprise had motivated him to do extensive
work with continued fractions. Of course, in order to respond to surprise, one
must have some kind of frame of reference that generates expectations, so
that something that surprises one person may not surprise another (see also
Stanley, 2002).

The work on foundations of mathematics provides a good example of
non-surprising problems, almost by definition. In fact, Krull (1930/1987) sug-
gested that those attracted to the study of foundations (investigating, for
example, the extent to which the set of all infinite decimals can be consid-
ered a logically faultless concept) are the least aesthetically oriented mathe-
maticians. He argued this is so since they are “concerned above all with the
irrefutable certainty” (p. 50) of their results. He additionally claimed that:

the more aesthetically oriented mathematicians will have less interest
in the study of foundations, with its painstaking and often necessarily
complicated and unattractive investigations. (p. 50)

Krull quite clearly situated himself in the latter camp, but was perhaps too
quick to judge ‘foundations’ mathematicians as a whole as non-aesthetically
oriented. The inclination toward finding basic, underlying order is certainly
an aesthetic one – though different in kind from the inclination to surprise.
This differentiation in motivation evokes Le Lionnais’s distinction between
‘classical’ and ‘romantic’ impulses.
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The response of surprise can sometimes be oriented toward the math-
ematician’s own way of thinking, rather than toward the mathematics itself.
For example, Lenstra recalled his amazement at the fact that he can much
more readily understand and “control” infinity than the enormous numbers
– known as Ramsey numbers – required in a combinatorial proof that he
worked on. “Isn’t that beautiful”, he exclaimed, at the apparent paradox of
being able to understand the “biggest but not the very big”. Similarly, Buhler
found pleasure in seeing a new feature of a phenomenon he thought he
knew so well. It surprised him. “I couldn’t believe that I hadn’t seen it
before. It was so basic.” This was the hook that initiated his mathematical
inquiry. He had to work out why this feature – so obvious as it seemed now
– had previously eluded him: “How ever could I have missed it?”

Thirdly, there is also a social dimension to aesthetic motivation. William
Thurston (1994) agrees with Penrose, Hadamard and von Neumann on the
necessary aesthetic dimension to a mathematician’s choice of field and prob-
lems, but he adds another, one that is rarely discussed:

social setting is also important. We are inspired by other people,
we seek appreciation by other people and we like to help other
people solve their mathematical problems. (p. 171)

In my interview with him, Lenstra concurred:

There is not much fun in deciding for yourself that a particular area of
mathematics is beautiful and spend your life on it if you are the only
person who finds it beautiful. If someone else is interested in some-
thing that you are doing, that’s an enormous boost. It’s a real stimulus.

For Buhler, a judgement of significance can be affected by social influences –
colleagues can convey the promise of pleasure through “infectious excitement”.

These observations provide some indication of how mathematicians’
aesthetic choices might (partially, at least) be learned from their community
as they interact with other mathematicians and also seek their approval. Of
course, not all social interactions among mathematicians have an aesthetic
dimension. The case of John Nash exemplifies a non-aesthetic social moti-
vation. His biographer Sylvia Nasar (1998) describes how he would only
work on a problem once he had ascertained that great mathematicians
thought it highly important – pestering them for affirmation. The promise of
recognition, rather than the intrinsic appeal of the problem or situation,
seemed to be the motivating factor.

A fourth source of motivation might come from a sense of identifica-
tion, when a mathematician perceives a rapport – a connection between the
situation and her own interests and aptitudes. As Osserman explained in his
interview with me, he is drawn to a problem when he realises that it is like,
or connects to, something that he already knows. And this is so, regardless of
whether it is a concept or method of mathematics and whether or not it is
an approach or style of his own. Buhler claimed he is attracted to a prob-
lem if “it relates to something that I’ve done”.
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Lenstra was even more candid, explaining that he would only attack a
problem “if it is the type of problem I am good at solving”. Gleason (in
Albers et al., 1990) explained that he is specifically attracted to problems that
“go from what might be called a qualitative way of looking at things to the
quantitative way of looking at things” (p. 91), for instance problems that com-
bine classical and analytic geometry. A mathematician’s judgement of rapport
can provides a sense of confidence and the pleasure of knowing that she is
particularly well-suited to solving a problem, that there is something about
the way she thinks that fits with the mathematics, that the problem is – in a
way – amenable to becoming hers.

My fifth and final motivating factor is different in kind from the others.
In all the cases described above, the aesthetic basis for motivation depended
upon perceiving the qualities of the problem or situation itself. However, the
motivating factor of longing for ‘the feeling’ depends more on the math-
ematician’s prior, positive experiences of mathematical inquiry. Thus, a
mathematician might embark on a particular exploration or problem-solving
process because she remembers the feelings of tension, of puzzlement, of
frustration and of final satisfaction that make up her successful mathematical
experience. She explicitly seeks out this experience when selecting certain
problems to work on.

There are many periods of drudgery in mathematical work: as Lewis
remarked, “You often have to do relatively grungy mathematics, which isn’t
terribly appealing, but it is part of what you are doing”. However, a mathe-
matician keeps returning for those special moments when, as Heinrich
explained, “I see something of elegance and almost magic – when you think
that’s how a proof is meant to be, or you are just amazed that a particular
thing could be true”. Lenstra claimed that such feelings are what keep him
doing mathematics: “It is a very good feeling, I wouldn’t do mathematics if
it weren’t for that”. Mathematicians can also have this feeling as ‘spectators’
rather than creators. Heinrich recalled the moving experience she had when
a colleague presented a new proof of an old result at a conference: “It was
so beautiful and elegant everyone spontaneously applauded when they saw
how it was working – somehow everyone knew they had just seen some-
thing significant”.

Polanyi (1958) insisted that the various ways in which mathematicians
become attracted to mathematical situations and problems do not solely
serve an affective motivational purpose. Rather, the attraction also has a
heuristic function, by influencing the ability to discern features in a situation
and thereby directing the thought patterns of the inquirer. He suggested that
the motivational characteristic of the aesthetic does not operate merely as an
‘eye-catching’ device, nor does it provide merely the psychological support
needed to struggle through a problem. It is also central to the very process
that enables the mathematician to produce qualitatively derived hypotheses
deliberately: it initiates an action-guiding hypothesis.
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Some Concluding Remarks

Most surface definitions of mathematics describe the materials mathematicians
work with: ‘mathematics is the study of shapes and numbers’, ‘mathematics is
a description of nature’ or ‘mathematics is a theory of formal patterns’. An
analogous definition for the visual arts – so obviously inadequate – might
read: ‘visual art is the manipulation of form, colour and texture’.

Some less objective definitions of mathematics remind that mathematics
is a tool we use to interpret the world: ‘mathematics is a language’. But few
purported definitions capture the animating purposes of mathematicians:
why do mathematicians do mathematics? What impulses, what inclinations
are responsible for producing the body of knowledge that is mathematics?

This chapter has at least begun to answer these questions, identifying
the aesthetic basis for many of the choices that mathematicians make when
posing, solving and sharing problems. I close with the following definition
of mathematics, offered by James Shaw:

Mathematics is, on the artistic side, a creation of new rhythms,
orders, designs and harmonies, and on the knowledge side, is a
systematic study of the various rhythms, orders, designs and har-
monies. Mathematics is, on the one side, the qualitative study of
the structure of beauty, and on the other side is the creator of new
artistic forms of beauty. (in Schaaf, 1948, p. 50)

For me, this attempt at a definition subtly suggests the ways in which math-
ematics satisfies the basic human impulse to find and describe pattern.

Notes

[1] This assertion stands in contrast to what Hardy (1940) implied in his discussion
of mathematical beauty, as well as in contrast to the traditional conception of
aesthetics found in philosophy and art criticism (see, for example, Bell, 1914/1992,
pp. 113-116). However, the survey conducted by Wells (1990) provides substantial
evidence that not all mathematicians share the same aesthetic values; that their
experiences and preferences, as well as their states of mind, may greatly affect their
aesthetic judgements.

[2] In the past, some mathematicians have referred to Euler’s equation (eiπ + 1 = 0)
as one of the most beautiful in mathematics, but others nowadays think it is too
obvious to be called beautiful (Wells, 1990). Schattschneider (see Chapter 2) still
finds this formula beautiful. When assessing a mathematical idea’s aesthetic value,
she might agree with the mathematician in Wells’s survey who wrote, “I tried to
remember the feelings I had when I first heard of it” (p. 39).

[3] Wolfgang Krull (1930/1987) suggests a very similar line of division: the concrete
(instead of the romantic) versus the abstract (instead of the classical). He sees math-
ematicians with concrete inclinations as being attracted to “diversity, variegation
and the like”, comparing them with those who prefer heavily ornamented buildings.
On the other hand, those with an abstract orientation prefer “simplicity, clarity, and
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great ‘line’” (p. 52). And Freeman Dyson (1982, pp. 49-55) has suggested a related
line of division in the sciences, distinguishing scientific ‘diversifiers’ (e.g. Ruther-
ford) from ‘unifiers’ (e.g. Einstein). Unifiers use “the enormous power of mathemati-
cal symmetry as a tool of discovery” (p. 50) and they are “happy if they can leave the
universe looking a little simpler than they found it” (p. 51). Diversifiers are symmetry-
breakers who are “happy if they leave the universe a little more complicated than they
found it” (p. 51). Moreover, Dyson claimed these two types are complementary in the
quantum-theoretical sense. He went on, “It is easy to understand why we have two
kinds of scientists, the unifiers looking inward and backward, the diversifiers looking
outward and forward into the future” (p. 51). Dyson concluded: “every science needs
for its healthy growth a creative balance between unifiers and diversifiers” (p. 54).

[4] It may seem odd to classify magic squares and Pascal’s triangle as mathematical
‘facts’. In choosing this term, Le Lionnais may have been attempting to distinguish
static mathematical ideas, which are the result of mathematical inquiry, from the
processes (or ‘methods’) that generate those ideas.

[5] I interviewed Jonathan Borwein, who until 2004 led the Centre for Experimental
and Constructive Mathematics at Simon Fraser University, Canada, as part of a larger
study into the roles of the aesthetic in the activities of contemporary mathematicians
(Sinclair, 2002). I also interviewed the following mathematicians: Joe Buhler (Reed
College), Katherine Heinrich (University of Regina), Hendrik Lenstra (University of
California, Berkeley), Adrian Lewis (University of Waterloo) and Robert Osserman
(MSRI). In order to increase this chapter’s readability, as well as to distinguish quo-
tations by these mathematicians arising from my interviews from others found in
the literature, excerpts from my interviews will be used throughout this chapter
without further reference being given. The first occasion I quote from these inter-
viewees, I use their full name; subsequent to that, I just refer to them as, for exam-
ple, Borwein or Heinrich.

[6] This comparison between poetry and mathematics has in fact been noted by sev-
eral scholars – e.g. Gösta Mittag-Leffler compared the works of the mathematician
Niels Henrik Abel with “truly lyrical poems possessing a supreme beauty, in which
the perfection of form reveals the depth of thought” (quoted in Le Lionnais,
1948/1986, p. 456; my translation). Also, most recently, see Mazur (2003).

[7] See Richard Skemp’s (1979) Intelligence, Learning and Action for a more in-
depth discussion of the role of emotions in problem solving.

[8] André Weil (1984) suggests that number theory may, in fact, surpass all other
fields in its quantity of deceptively simple problems. The simplicity may arise, at
least in part, from the fact that its primary objects – whole numbers – are among
the most basic and familiar ones in mathematics.



CHAPTER 5
The Meaning of Pattern

Martin Schiralli

In the late 1970s, when the eminent anthropologist and biologist Gregory
Bateson sought to codify his influential views on the ecology of mind, he
chose the idea of pattern as his central heuristic device. The choice was not
surprising, for Bateson, in a remarkably productive career as both scientist
and educator, had by that time been using this concept to explore, identify
and represent the essential features of biology and anthropology for more
than a quarter of a century. In his summative Mind and Nature, published
in 1979, Bateson related one early experience in his career that illustrates
particularly well the power that the notion of pattern can have in helping to
organise one’s thinking in fundamental ways.

In the 1950s, Bateson was teaching a course aimed at introducing the
essential purposes of biological science to a group of art students at the
California School of Fine Arts in San Francisco. Astutely realising that the group
of about a dozen students would be particularly responsive to the visual and
the tactile, Bateson came to the initial class with a paper bag containing the
remains of a recently-cooked crab. Putting the crab on the table in front of
the students, he asked them to produce arguments in support of the con-
tention that the thing before them was indeed the remains of a living thing.
As Bateson had correctly anticipated, the students’ attention was drawn to
the perceptual qualities of the crab. An animated discussion ensued during
which the idea of symmetry was offered by some students and rejected by
others as suitable proof of the claim.

The point at issue was that while there was admittedly an ordered cor-
respondence between the claws, one claw was significantly larger than the
other, which thereby made talk of symmetry problematic. Finally, one stu-
dent said, “Yes, one claw is bigger than the other, but both claws are made
of the same parts” (p. 9). In recalling the moment, Bateson was delighted
with this observation:

Ah! What a beautiful and noble statement that is, how the speaker
politely flung into the trash can the idea that size could be of pri-
mary or profound importance and went after the pattern which
connects. He discarded an asymmetry in size in favor of a deeper
symmetry in formal relations. (p. 9; italics in original)  

In Bateson’s demonstration, patterns within a specific, individual crab (first-
order connections) would soon give rise to second-order patterns, those phylo-
genetic homologies that connect crabs to, say, lobsters. Finally, connections



that link crabs and lobsters also suggest third-order patterns between other
homologies like that between horses and men. In this way, Bateson and his
students constructed “a ladder of how to think about […] the pattern which
connects” (p. 11).

Reflecting on his success with the art students, Bateson identified one
significant element in their own backgrounds and aptitudes:

I faced them with what was (though I knew it not) an aesthetic
question: How are you related to this creature? What pattern con-
nects you to it? […] I […] forced the diagnosis of life back into iden-
tification with living self: “You carry the bench marks, the criteria,
with which you could look at the crab to find that it, too, carries
the same marks.” My question was much more sophisticated than
I knew. (p. 9; italics in original)

The identification of a pattern is, therefore, a fundamentally aesthetic appre-
hension that in systematic inquiry soon moves beyond the immediately
perceptible towards the more formal conceptual connections with which
scientific and mathematical theory is ultimately concerned. Thus, in Bateson’s
mature thought, the ‘pattern which connects’ became the meta-pattern, the
dynamic sub-stratum of purposeful structures and functions – those inter-
connecting, evolving lines of functional symmetries and correspondences
that link all living things, including human minds.

For my present purpose, that of gaining some points of purchase on the
concept of ‘pattern’ itself, Bateson’s account provides a vivid illustration of
the way in which this concept may function comfortably at or among the
levels of aesthetic perception, empirical investigation and formal relation.
One further element in this account is of particular significance. Bateson
cautioned his readers against having too rigid a conception of ‘pattern’:

We have been trained to think of patterns […] as fixed affairs. It is
easier and lazier that way but, of course, all nonsense. In truth, the
right way to begin to think about the pattern which connects is to
think of it as primarily […] a dance of interacting parts and only
secondarily pegged down by various sorts of physical limits and by
those limits which organisms characteristically impose. (p. 13; italics
in original)

One might observe that it is not only by training that we have come to think
of pattern in this way, for ‘pattern’ in one of its senses, namely the fixed and
easily replicable pattern of the cookie-cutter or, perhaps, the arithmetic progres-
sion, is quite determinate. The conceptual difficulty of moving from this sense
to the related, more indeterminate “dance of interacting parts” that Bateson
rightly saw as a more powerful sense of the term will be recognised immedi-
ately upon filling in the ellipsis immediately following the word ‘primarily’ in
the above quotation. For Bateson wrote “primarily (whatever that means) a
dance of interacting parts”. This chapter will later attempt to provide a way of
making sense of Bateson’s use of the word ‘primarily’ in this connection.
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At about the same time that Gregory Bateson’s Mind and Nature
appeared, the art historian Ernst Gombrich was preparing for publication his
own study of pattern in visual art. Having earlier presented the results of his
inquiries into the psychology of perception in representational art, in the
definitive Art and Illusion (1960), Gombrich was now poised to explore
the still more subtle problems of the psychology of abstract design and
the art of decoration. Substantially reworking and expanding the drafts of
the 1970 Wrightsman lectures, which he had originally given in New York,
Gombrich’s The Sense of Order was, like Bateson’s Mind and Nature, pub-
lished in 1979.

In this comprehensive study, Gombrich located the animating principle
for abstract and decorative art in a human need to find and to consolidate
patterns in experience. Influenced by broad intellectual currents as diverse
as Immanuel Kant, Karl Popper and Konrad Lorenz, Gombrich provided an
account of pattern grounded in epistemology and ethology, as well as in
psychology. For Gombrich, the sense of order was closely connected to
Popper’s notion of the need for regularity. In Objective Knowledge, Popper
(1972) had written:

It was first in animals and children, but later also in adults, that I
observed the immensely powerful need for regularity – the need
which makes them seek for regularities [...] (p. 23; italics in original)

Gombrich (1979) maintained that this need for regularity is the product of
part of the instinctual scaffolding that all organisms possess, a “built-in
hypothesis” (p. 3) respecting the possibility of locating and exploiting envi-
ronmental regularities in the on-going business of living. The mode of
hypothesis confirmation, or better, refutation – for Gombrich was a genuine
Popperian – is perception itself, now functioning metaphorically as a search-
light. In a particularly telling passage, Gombrich wrote:

the ‘searchlight’ metaphor comes in useful, for it reminds us of the
activity that is inseparable from the most primitive model of per-
ception. The organism must probe the environment and must, as
it were, plot the message it receives against that elementary expec-
tation of regularity which underlies what I call the sense of order.
(p. 3)

For Gombrich, this sense of order is at work when we discern patterns, as
well as when we make them. The human propensity to make decorative
patterns, the special relationship of patterning to mathematics in general
(and to geometry in particular) and the intentions and tools of the pattern-
makers are surveyed in Gombrich’s generative study. The effects of such
deliberately contrived instances of “ordered profusion” (p. 16) on the human
mind, their relationship to the more representational figures of traditional
iconography (see also Chapter 9 in our book) and even an extrapolation
into the realm of auditory phenomena and music were likewise explored in
the remainder of this important work.
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Like Bateson, Gombrich acknowledged a proclivity in thinking about
patterning towards the fixed, readily progressive patterns we all acknow-
ledge as central cases of the concept. But, also like Bateson, Gombrich saw
the importance of relating the concept to the more open and less easily
specified ordered arrangements that may, in Bateson’s image, ‘dance’ for us
in more complex contexts:

Here the sense of order is given free rein in generating patterns of
any degree of clarity or complication. We cannot prescribe to the
designer whether he should aim at restlessness or repose. The
West generally preferred symmetry, the Far East more subtle forms
of balance. (p. 146)

Still other patterns, Gombrich continued, “explore the instability derived
from the wealth of different interpretations the design offers to the search-
ing eye” (p. 160). It may be noted that this brings us very close, of course,
to the world of the abstract fine artist whose works may often display such
an ordered instability. This is a kind of patterning whose inner logic resists
description in terms of readily identifiable symmetries and regularities, but
which nonetheless achieves an aesthetic stasis of unity and purposeful
integrity.

Although approaching the idea of pattern from the ostensibly dissimilar
subject matters of visual art and biology, both Gombrich and Bateson may
be seen to have opened the concept of ‘pattern’ for use as an intellectual
tool for discerning and representing less than fully determinate regularities.
The abstract design of rectilinear planes in a painting by Piet Mondrian or
Theo van Doesburg and the apparently haphazard splashes of paint on a
Jackson Pollock canvas may, likewise, both be perceptually interrogated in
terms of pattern (see Walter, 2001; Pimm, 2001; Taylor, Micolich and Jones,
1999) – just as Bateson’s homological correspondences may be conceptu-
alised within the same connecting pattern as the human mind itself.

Beauty Bared

A mathematician, like a painter or a poet, is a maker of patterns.
If his patterns are more permanent than theirs, it is because they
are made with ideas. A painter makes patterns with shapes and
colours, a poet with words. [...] A mathematician, on the other
hand, has no material to work with but ideas, and so his patterns
are likely to last longer since ideas wear less with time than words.
(Hardy, 1940, pp. 84-85; italics in original)

In asserting that poets, painters and mathematicians are all makers of pat-
terns, Cambridge analyst and number theorist Godfrey Harold Hardy iden-
tified a common element between mathematics and the arts. If the beauty
arising from the patterns of verbal and visual materials in art is more palpa-
ble, Hardy further proposed, the intellectual beauty of mathematics is of a
far more durable kind. In choosing to focus on the relative longevity of the
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two types of beauty, rather than their respective and comparative values,
Hardy here resisted the temptation at least as old as Pythagoras to find in the
beauty of mathematics the very highest order of aesthetic interest possible.

Bertrand Russell, however, had no difficulty in considering the beauty
of mathematics to be “supreme”. Considered correctly, Russell (1917) main-
tained, mathematics may be seen to possess “a beauty cold and austere, like
that of sculpture”. But this “sublimely pure”, “stern perfection” has no “appeal
to any part of our weaker nature”. It is “without the gorgeous trappings of
painting or music” (one is almost tempted to read “uncontaminated by” for
“without”) and routinely produces a beauty that “only the greatest art can
show” (p. 57).

Perhaps the finest expression of this strong view of mathematical beauty
occurs, somewhat ironically, in that more fragile medium, poetry. Edna St.
Vincent Millay’s (1956, p. 605) sonnet, Euclid alone has looked on beauty
bare – from which the heading of this section is derived – is well-known
and much admired by mathematicians. This admiration is not too difficult to
understand, for it is indeed a fine poem; nor does the poet’s presentation of
the mathematician in passionate, grandly heroic terms create too many tex-
tual problems for this group of readers. Indeed, the poem is almost math-
ematical itself in the elegance, lucidity and economy of means by which the
special beauty of mathematics is demonstrated. Let those who merely “prate
of Beauty hold their peace”, Millay urged, for theirs is the mundane percep-
tual sphere of “dusty bondage” where “geese gabble and hiss” in muddled
confusion about the true nature of aesthetic value.

Happily, those distorted views of beauty, dependent as they are on the
frailties of light reflecting on mutable things, have been transcended by
Euclid in whose Elements light itself is “anatomized”. This human glimpse
of “light anatomized” or beauty liberated from the constraints of perceptual
distortion is indeed a glimpse of Aphrodite, the goddess of Beauty herself,
whose “massive sandal set on stone” was felt only at the moment of Euclid’s
inspiration. Empowered by this powerful vision, succeeding generations of
mathematicians may as “heroes seek release […] into the luminous air”.

As the substance of poetic value here is verbal expression, one may find
an additional irony. This poem provides a vivid mythopoeic description of
the unique beauty possessed by mathematics, one that would be impossible
to provide, Bertrand Russell notwithstanding, in the admittedly more pris-
tine terms of mathematical expression itself.

‘Pattern’ in Art and Mathematics

Among mathematicians, therefore, the notion of pattern is frequently used
in describing the essential core of their activity. To Hardy’s and Russell’s
may be added the voice of Warwick Sawyer (1943, 1955, 1970) who wrote
extensively on this theme. The interpenetration of aesthetic and formal
considerations in these descriptions, an approach I have already shown to
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characterise Gombrich’s view of art and Bateson’s view of nature, has also
played an important part in the long history of mathematicians’ thinking
about mathematics. 

Also among mathematicians there is a growing interest in the less-fixed
possibilities of pattern that Gombrich and Bateson alerted us to. Although
one might be tempted to see less scope for the notion of indeterminate pat-
tern in a field in which inexorable proofs are pursued so relentlessly, and
on occasion with so much drama, contemporary mathematicians would be
quick to agree that indeterminate or ‘fuzzy’ patterns are now a vital part of
mathematical inquiry. The mathematical fact that the number π is not alge-
braic but transcendental, for example, does not preclude the search for
‘themes’ within and among the myriad digits stretching out seemingly inde-
terminately beyond the decimal point (see Chapter 1 for more detail).

The contemporary mathematician Keith Devlin (1994) has traced the
roots of the mathematician’s proclivity to talk of pattern to the ancient
Greeks, for whom mathematics had not only intense intellectual interest but
aesthetic value and spiritual significance as well. By focusing on the activi-
ties of mathematicians, including historical examples of the doing of math-
ematics, his book Mathematics: the Science of Patterns is more than an intro-
duction to the subject matter of mathematics as formally represented. It is
an attempt to capture the very essence of mathematical inquiry in terms of
the concept of pattern itself.

Devlin characterises each branch of mathematics as the exploration of
pattern: the patterns of number and counting as the subject matter of number
theory, while geometry studies patterns of shapes. Devlin also identifies those
patterns of reasoning that underlie mathematical logic, while those of motion
form the subject matter of calculus. Patterns of position and closeness comprise
the study of topology and probability theory attends to patterns of chance.

If by ‘science’ of patterns, however, Devlin means the systematic explo-
ration and representation of pattern possibilities, it can easily be shown that
art likewise explores pattern possibilities. These explorations are often quite
systematic (as, for instance, in the case of Monet’s studies of Rouen Cathedral
under a range of daylight conditions, the mosaics of the Alhambra mosque
in Granada or Bach’s Art of the Fugue) and these possibilities are likewise
represented in publicly accessible forms.

One might counter that the artist is more concerned with the ‘creative’
exploration of pattern possibilities than the mathematician, but few math-
ematicians would fail to acknowledge the central role that creativity plays in
genuine mathematical activity. Providing a more detailed characterisation of
the various activities routinely undertaken by mathematicians when doing
or studying mathematics may help to clarify the issue, particularly if these
activities are compared with those routinely practised by people making or
studying art.

Devlin is certainly right in claiming that mathematicians are intrigued by
patterns. Mathematicians often:
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• wonder at the patterns discerned in experience;
• analyse patterns – noticing, noting, associating patterns and

elements of patterns;
• represent patterns, i.e. describe them in formal terms;
• manipulate patterns;
• create novel or original symbolic patterns;
• imagine the possibilities of patterns;
• connect pattern possibilities, i.e. analyse, classify and theorise

patterns, thereby creating larger, more comprehensive patterns.

Mathematicians also:
• demonstrate, i.e. prove (or describe) the necessity (or nature) of

patterned relationships using other patterns, viz. the patterns of
logical operations.

In so doing, mathematicians:
• compute, i.e. perform operations on patterned relationships using

other patterns, viz. arithmetical, algebraic, and so forth.

Finally, mathematicians:

• appreciate the historical and contemporary achievements of other
mathematicians; 

• evaluate the achievements of other mathematicians.

While there is no gainsaying that mathematicians study patterns, many of
the activities specified above may also be noted in the arts. Although their
interest also embraces other aspects of perceptually interesting phenomena,
artists or scholars in the arts are likewise intrigued by patterns. They:

• wonder at the patterns, sights, textures, sounds and apparent
emotional vitality of perceptual phenomena;

• analyse patterns: noticing, noting, associating patterns and
elements of patterns;

• represent patterns, i.e. embody them in sensory terms;
• manipulate patterns using different media and materials;
• create novel or original expressive patterns;
• imagine the possibilities of patterns;
• connect pattern possibilities, i.e. conceptualise and theorise

patterns creating larger, more comprehensive patterns.

Artists or arts scholars also:
• attempt to understand the nature and possibilities of patterned

relationships using other patterns, viz. those of logical operations.

In so doing, artists or arts scholars also:
• develop stylistic ‘vocabularies’ of patterns, using ideas, media,

techniques and materials, as well as other aspects of aesthetic
interest such as sensory and expressive qualities;

• appreciate the historical and contemporary achievements of
other artists and arts scholars;

• evaluate the achievements of other artists and arts scholars.
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At one level, therefore, it would seem that certain root activities that are
common to both domains may be detected in the spheres of both practic-
ing mathematicians and practicing artists or arts scholars. Although the ends
or purposes of these common activities are obviously distinct when under-
taken in either a mathematical or an artistic context, they nonetheless share
some very significant core components.

In doing calculus, for instance, it may be said that the mathematician is
exploring patterns in motion and time. But composers, choreographers,
film-makers, poets and other artists likewise explore patterns in motion and
time. Of course, in doing calculus, the mathematician does many other
things the artist does not do and the artist likewise does things in the arts
that the mathematician does not do: but at one level they do nevertheless
both explore patterns in motion and time. Similarly, in making a photograph
or an oil painting, the artist explores patterns of shapes and surfaces, of
edges and proximities – activities not so unlike those of the geometer and
the topologist.

Although the ends or purposes of mathematical and artistic activities
are distinct – with the mathematical centrally concerned with manipulable
symbolic representations and the artistic centrally concerned with represen-
tations in sensory terms – underlying those differences some significant
commonalities may be detected. In so far as actively engaging the subject
matter of patterns is concerned, the arts would appear to have as strong a
proprietorial claim on the concept as mathematics.

In defining mathematics in terms of the subject matter of patterns, there-
fore, it would seem that Devlin’s specification raises some important ques-
tions. At the actual level in which the commonalities discussed above occur,
it would appear that the mathematical and the aesthetic are both embedded
in a very special relationship outside Devlin’s definition (or better, perhaps,
underneath it), one that warrants further analysis. Happily, in reminding us
very early in the book of the proclivity of mathematicians to define them-
selves and their inquiries by means of the language of patterns, pattern-
making and beauty, through the words of Hardy and Russell already quoted
above, Devlin has oriented his discussion within a tradition that reaches
back to the very origins of systematic mathematical demonstration among
the ancient Greeks.

In so doing, and especially in view of his reliance on ‘pattern’ as the
essential component of mathematical study, Devlin invites a reconsideration
of those ancient issues surrounding the nature of the mathematical that may
help in answering the questions provoked by the ease with which art and the
aesthetic insinuate themselves into his definitional stance on mathematics. I
will, therefore, pursue further the principal sources of the Greek, especially
the Pythagorean, preoccupation with the interconnectedness of the math-
ematical and the aesthetic – through the mediating force of patterns.
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Pythagorean Pattern

Little is known about the historical Pythagoras, apart from the fact that he
was born towards the middle of the sixth century BC on the island of Samos.
An Ionian Greek, he emigrated to southern Italy where he founded a society
with religious, philosophical and possibly political interests. That society, the
Order of the Pythagoreans, was secret and it is probably for that reason that
little was actually written down by the Pythagoreans themselves. By the
middle of the fifth century BC, the members of the society had dispersed
throughout the Greek-speaking world and their founder had become the
object of considerable legend and lore (see, for example, von Fritz, 1975).

With one significant exception – the fragments of Philolaus of Croton –
whatever accounts we do have of Pythagoras and the Pythagoreans, espe-
cially with regard to mathematics, are often tendentious. These descriptions
were written by later philosophers unsympathetic to (their versions of)
Pythagorean doctrines (Aristotle and the Aristotelians) or by others (Plato
and the Platonists) whose elaboration of these doctrines moved them into
philosophical systems with significantly different underlying presumptions
from those the Pythagoreans may actually have held themselves.

It has generally been considered reasonable, however, to ascribe to
Pythagoras and the earliest Pythagoreans at least the following:

• the mathematical theorem bearing Pythagoras’s name, equating the

sum of the squares on the two shorter sides of a right triangle and

the square on its hypotenuse;

• the discovery that √2 (the ratio of the side and diagonal of a square)

is ‘irrational’ (alogos, i.e. indeterminate);

• the introduction of the doctrine of metempsychosis (the transmigration

of souls) into Greek thinking, a view respecting immortality that

originated prehistorically in Indian thought and culture;

• a mystical apprehension of the pervasiveness of number and harmony

in the substance and structure of the universe (including what we would

now separately identify as mathematics, music theory and astronomy).

The first two items have more directly mathematical import. With regard to an
apparently passing detail in the first item in this list, the difference between
the preposition ‘on’ (as used here) and the now more common preposition
‘of’ reflects a world of mathematical difference. 

Squares ‘on’ sides of triangles signal a perspective whereby the figures
that are provably ‘equal’ are geometric squares (and such proofs often
employ finite dissection methods, discussed briefly in Chapter 2). The prepo-
sition ‘of’ reflects a twenty-four-hundred-year later sensibility, whereby
lengths are taken to be real numbers and the theorem involves the arithmetic
operation of numerical squaring being applied to them (see Fowler, 1985a,
1985b). Richard Dedekind (1872/1963) himself wrote about his sense of
the significant challenge of establishing secure proofs for results involving
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arithmetic operations with irrational numbers:

Just as addition is defined, so can the other operations of the so-

called elementary arithmetic be defined, viz., the formation of dif-

ferences, products, quotients, powers, roots, logarithms, and in this

way we arrive at real proofs of theorems (as, e.g., √2 . √3 = √6),

which to the best of my knowledge have never been established

before. (p. 22)

Likewise, in relation to the second item in the earlier list, many refer (as I
deliberately did here) to the Pythagorean result as ‘proving that √2 is irra-
tional’. However, to do so implies a dramatically different conception of
number, immeasurably far from that which the best sources available
(admittedly few and far between) could remotely justify.

With regard to the latter two items listed earlier, whether viewing the
spiritual sphere as an ordered arrangement of appropriately recycled souls
passing successively, and fittingly, through various forms of life or viewing
reality as ultimately to be revealed in mathematically harmonious concepts,
the notion of pattern permeated Pythagorean thinking.

Number as pattern

A key to understanding the significance of pattern among the Pythagoreans
is to be found in the actual numerals used by the early Greeks, for in con-
sidering the notational system used by these ancient mathematicians, the
distinctiveness of the early Greek conception of number may be inferred.
There were in fact two very different systems of numerical notation at work
among the ancient Greeks. Karl Menninger’s (1958/1969) Number Words
and Number Symbols informs us that the earlier of the two, “arranged the
numbers in order and grouped them like the Roman numerals” (p. 268).

[These so-called] row numerals [...] are patterned on a decimal 10-

grouping interrupted by a quinary 5-grouping. The units are rep-

resented by vertical strokes. (p. 268)

In the fifth century BC, there appeared a new, more “erudite system of
alphabetical numerals” (p. 268). But this system “was not adopted as the
official system of numerals in Athens until the 1st century B.C.” (p. 268). The
Greek alphabetical numerals made use of the twenty-four letters of the
Greek alphabet augmented by three more. The first nine stood for 1 to 9,
the next nine for 10 to 90 and the final nine for 100 to 900. A comma was
used to mark the ‘thousands’ place. (In passing, note how such double duty
for letters as components of words and as ‘digits’ of numbers certainly
makes for a greater plausibility for numerology.) One disadvantage of this
non-place value system compared with our current place-value system is that
there is no symbolic link among, say, the symbols for 3, 30 and 300 to exploit
algorithmically. However, perhaps a more pertinent question is to ask in
what ways were the new numerals to be preferred over the older ones?
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Their advantage over the old row numerals can hardly be missed;

they represent an enormous simplification, since they use only one

sign for each unit (rank) [...] another advantage of these alphabet-

ical numerals, in fact their most important advantage: With these

numerals it was possible at long last to make computations in writ-

ing, without having to use an abacus. (Menninger, pp. 271-272)

While the advantage of written computation with numerals alone, as
opposed to manipulative work with physical representations of numbers,
has frequently been overestimated (see Rotman, 1987, or Tahta, 1991), it cer-
tainly altered the relationship of the user to the trace of ‘ordered plurality’
(see below) that resided in the older numerals. While the alphabetical
numerals permitted more robust written calculations, they also obliterated
the underlying iconic pattern that in the older system linked numerals with
palpably isomorphic configurations of discretely ordered units and groups
of units. What the older numerals also provided by means of their config-
ured patterning of quantities was something quite important to the early
Greek and Pythagorean conception of number.

Arithmos

In his landmark work, Lore and Science in Ancient Pythagoreanism, Walter
Burkert (1972) cautioned that arithmos (pl. arithmoi), the early Greek term
widely used for number, should not be confused with more modern con-
ceptions of number:

Αριθμος [Arithmos] is always a whole number, and tied up with the

actual procedure of counting. Thus it is closely connected with

things, and in fact is itself a thing, or at least an ordering of things.

Αριθμος means a numerically arranged system, or its parts. (p. 265)

This distinction has been well acknowledged in the traditions of classical
scholarship and Burkert noted a somewhat earlier and quite vivid account by
Oskar Becker (1957), who rendered arithmos into the German term geord-
nete Mannigfaltigkeit (‘ordered plurality’) (pp. 21-22). He compared this con-
ception with related contemporary notions like ‘couple’, ‘dozen’ and ‘score’. 

Subsequently, the historian of mathematics David Fowler (1999) claimed:

a much more faithful impression [than cardinal numbers] of the very

concrete sense of the Greek arithmoi is given by the sequence:

duet, trio, quartet, quintet, … […] These numbers are ordered by

size (‘a quartet is bigger than a trio’), and can be added by concate-

nation (‘a trio plus a quartet makes a septet’) and subtracted ‘the less

from the greater’. The arithmoi also appear in other forms, such as

the adverbial sequence: once, twice, three-times, four-times, … […]

I shall refer to them as ‘repetition numbers’. (pp. 13-14)

Viewing number, as the Pythagoreans must surely have done, as ordered
plurality shows how central the notion of ordered arrangement or pattern
was to their conception of number. It also helps explain a number of
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Pythgorean positions, such as their view that the universe is revealed in
numbers (discernible patterns or ordered arrangements), the intense inter-
est in the collateral geometric and arithmetic branches of mathematics (as
evidenced, for instance, by the fascination with the properties of ‘polygonal’
numbers, as well as the phenomenon of incommensurability) and, indeed,
their apprehension of the mystical properties of numbers-in-things.

This serious mathematical and spiritual interest in number as pattern is
indicated by the fact that the Pythagoreans “devoted great efforts to the
study of figurate numbers: triangular, square, pentagonal, and so on” (Gazalé,
1999, p. 11). Indeed, such figurate numbers were “represented geometrically
by triangles of stones laid on the ground” (Grattan-Guinness, 1997, p. 46).
The tetraktys, the pattern representing the fourth of the triangular numbers,
10, was “deemed so mystical by Pythagoras’s followers that they adopted it
as the emblem of their secret brotherhood” (Gazalé, 1999, p. 12).

However, there was plausibly also a far more subtle numerical pattern-
ing through arithmoi at work, arising in the context of incommensurability.
Historian Ivor Grattan-Guinness (1997) has provided an account of the pur-
ported Pythagorean discovery with regard to incommensurability that will
further help in understanding these fascinations:

Another famous finding attributed to the Pythagoreans is usually
formulated thus: The number √2 is irrational; but this formulation
is anachronistic in various ways. Firstly, “(ir)rational” have become
normal adjectives in European languages, due to Latin translations;
but they give a wrong impression, and the Greek words “(a)logos”
are better rendered as “word(less)”, and “ar(rhetos)” as “(in)expres-
sible”. Secondly, the theorem concerns numbers, whereas when
the Greeks referred to it (which was not often) they used geomet-
rical phrases such as “the incomensurability of the side and the
diagonal” of a square. (p. 48)

In light of Fowler’s (1999) reconstruction of a pre-Euclidean mathematics
based centrally on a notion of ratio (another meaning for the Greek word
logos), as mentioned earlier alogos could simply mean “without ratio”. Yet,
Fowler went on to argue that if ratio did indeed refer to the sequence of
arithmoi (his ‘repetition numbers’) generated by the process of anthy-
phairesis (continued subtraction in turn, ‘the lesser from the greater’ – what
we think of as the Euclidean algorithm), then there is a ratio between the
side and diameter of a square. Admittedly, it is an infinite sequence of arith-
moi, but it is entirely predictable and provably regular.

Earlier mention was made of the tetraktys as an emblematic configuration
for the Pythagoreans. However, other accounts suggest a different symbol
playing a similar role for them, namely the pentagram (a regular pentagon
with all diagonals drawn in). The side and diagonal of a regular pentagon are
also incommensurable (indeed, they are always in the golden ratio)                .
With regard to the process of anthyphairesis applied to the side and diagonal
of the pentagon, we obtain the simplest infinite repeating pattern of arithmoi
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‘once, once, once, once, …’ – simpler even than that between the side and
diagonal of a square, which produces the sequence ‘once, twice, twice, twice,
twice, …’.  (For more detail, see Fowler, 1999.)

Incommensurability does not entail indeterminacy. To say that the side
and the diagonal of a square are incommensurable is, in part, to claim that
neither may be expressed fully in units or perfectly equivalent parts of the
other. But much can be ascertained about the relationship between the two.
Notwithstanding Aristotle’s complaint that the Pythagoreans failed to sepa-
rate number from the things numbered, it seems wholly plausible to suggest
that the Pythagoreans were not confused at all. Even the much-repeated tale
of the expulsion and murder of the Pythagorean Hippasus for revealing this
secret to the outside world and the concomitant Pythagorean ‘crisis’ of
incommensurability could be a complete fabrication. [1]

The Meaning of Pattern

Within the context of profound possibilities that the Pythagoreans explored
in patterns, it must count as one of the great ironies that the concept of ‘pat-
tern’ itself is often viewed apologetically as a weak, catch-all notion unsuited
for serious theoretical investigation. Even Gombrich, whose use of the con-
cept has been shown in fact to be so skilled, felt compelled to acknowledge
(in The Sense of Order) that he used it only by default, unsuccessful as he
was in locating a more precise term with which to articulate his subtle
points:

There remains that jack-of-all-trades, the term ‘pattern’, which I
shall use quite frequently though not with a very good conscience.
For the word is derived from Latin pater (via patron), and was orig-
inally used for any example or model and then also for a matrix,
mould or stencil. It has also become a jargon term for a type of
precedent and has therefore lost any precise connotation it may
have once had. (1979, p. x)

But is the absence of precise connotation a weakness or may it actually be
a sign of strength? Gombrich quickly consoled himself with the following
admission:

Luckily it is a mistake to think that what cannot be defined cannot
be discussed. If that were so we could talk neither about life nor
about art. (p. x)

Of course, there are many other examples of such powerful words that defy
precise definition – or better, that defy, or at least resist, what could be
called determinate definition. To call words like ‘art’, ‘life’ or ‘beauty’ vague
is not to demean, but rather to acknowledge that the concepts they mark
out resist formulation in propositionally definitive lexical terms. Such deter-
minate definitions, as a form, aspire to identify sets of necessary and suffi-
cient conditions for any legitimate use of a term. 
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Often, however, especially in a living language, concepts not only con-
nect in linear, logical ways but also enter into complex relationships with
other, related notions, and metaphorically with yet others still. This is the
case with many of the most important concepts, until they become quite
thoroughly enmeshed in complex and interconnected patterns of human
meaning and purpose.

Philosophers, following Ludwig Wittgenstein (1953/1963), sometimes
refer to such concepts as ‘open’ and point to the notion of ‘family resem-
blances’ (developed by Wittgenstein in his Philosophical Investigations) as a
way of showing how words may still have quite sound meanings, even if
their meanings cannot be represented definitionally in neat, propositional
terms. Wittgenstein illustrated this possibility with the notion of ‘game’. One
may discern a regularity in its uses, even though there is no common set of
necessary and sufficient conditions to be discerned in its various applica-
tions. The concept underlying such words may in fact be a very complex
one in respect of:

[its] complicated network of similarities overlapping and criss-
crossing: sometimes overall similarities, sometimes similarities of
detail. (p. 32)

But this concept may also be quite potent with respect to the thematic
threads that may be inferred from examples of its use:

And the strength of the thread does not reside in the fact that some
one fibre runs through its whole length, but in the overlapping of
many fibres. (p. 32)

Just as a given pattern may be discerned as a pattern minus a determinate
set of properties common to all its related examples, it is likewise the case
that the concept of ‘pattern’ itself may be quite meaningful while missing a
single set of necessary and sufficient defining conditions that capture all its
legitimate uses. It is for this absence of a clear set of defining conditions that
Gombrich worried about relying upon the concept of ‘pattern’ in his theo-
retical discussion. With the help of Wittgenstein, we can see why it is for
precisely the same reason that Gombrich need not have be so concerned.

However difficult or impossible it might be to provide a determinate
definition for ‘pattern’, it is still possible, again following Wittgenstein, to
attempt to identify one or two of the more important themes or ‘threads of
similarity’ that run through ranges of its use. Such an attempt is made in the
next paragraph. It is important to note that no claim is made that in this
characterisation the theme identified is at work in all legitimate uses of the
term, nor that one may not use the concept of ‘pattern’ legitimately if it is
absent. Notwithstanding these caveats, I do hold that the theme identified is
consistent with all the uses of ‘pattern’ that this chapter has considered.

At least in so far as a provisional account of pattern is concerned, there-
fore, to discern a pattern is to see or consider something as part of an
ordered arrangement such that it is possible to identify at least one of the
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principles constituting that order. To say an arrangement is ordered is to
claim that the relationships among the arranged phenomena are not arbi-
trary, that the arrangement may be at least partially described in terms of
one or more relational principles or themes.

In this respect, patterns need not be fully describable, their ordered
arrangements need not be completely determinate. A pattern may be dis-
cerned across a number of phenomena (like a pattern in historical events)
or within a given phenomenon (like the pattern in a specific work of art).
Moreover, the determinate patterns pursued in most of the branches of
mathematics in Devlin’s account are reflected in this theme, as are the more
open-textured applications of the concept in the work of Bateson and
Gombrich. Bateson presented a challenge by characterising the pattern
which connects as an unfixed pattern, “primarily (whatever that means) a
dance of interacting parts”. In an important sense, the theme identified
above, in providing an accompaniment to this dance, can help complete
Bateson’s thought.

Finally, and most interestingly, this theme assists in locating a fresh epis-
temological perspective on the Pythagorean preoccupation with number as
ordered plurality, one that may ultimately – as will be suggested in the
remainder of this chapter – have enormous contemporary significance.

Pattern for Philolaus

Unlike ‘order’, which may often be considered in almost exclusively abstract
and formal terms, there is something palpable about ‘pattern’ that reaches
directly into the world of the senses and experience. The fact that the
Pythagoreans most likely saw one of our more abstract contemporary con-
cepts (number) in the positive terms of patterned entities tells us much
about their view of mathematics and the world. It helps explain, for
instance, their serious, even mystical, preoccupation with number – as
ordered plurality – in the very fabric of the knowable world and their efforts
to find the principles unifying that fabric in the mathematical–aesthetic ratios
of harmonic intervals.

One of the most impressive views commonly attributed to these early
philosophers, therefore, is the belief that the universe reveals itself to us in
terms of number and principles of harmonious arrangement that are them-
selves expressible mathematically. Put that way, the Pythagorean position
would appear a paradigmatically modern view, although it is customary to
trace back the provenance of the modern view respecting the efficacy of
mathematics in describing physical reality to Galileo’s imagistic claim that
the universe is a book written in the language of mathematics. 

Galileo’s observation does indeed mark a turning point in the develop-
ment of a genuinely scientific method, but perhaps more credit should be
given to the Pythagoreans in this regard. Certainly their work proceeded
within a framework of metaphysical presumptions respecting the ultimate
nature of reality, one that we now may view as quasi-religious or mystical.
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Nevertheless, many contemporary philosophical investigations into the
foundations of scientific method have shown that all science proceeds on
certain metaphysical presumptions that lie outside the empirical reassur-
ances of either verifiability or falsifiability.

What can be said, what can be shown

Moreover, it is likely that the ultimate reality of the Pythagoreans was viewed
by them as unknowable in principle by human beings. A very modern view
itself, this perspective is much in the spirit of Wittgenstein’s (1922/1958)
proclamation at the very end of the Tractatus Logico-Philosophicus: “Whereof
one cannot speak, thereof one must be silent” (p. 189). Wittgenstein held his
own metaphysical achievement in that work to be a heuristic trope, a figu-
rative ‘ladder’ that could be discarded once it had done its work:

My propositions are elucidatory in this way: he who understands

me finally recognizes them as senseless, when he has climbed out

through them, on them, over them. (He must so to speak throw

away the ladder, after he has climbed up on it.) He must surmount

these propositions; then he sees the world rightly. (p. 189)

In Wittgenstein’s logically austere foundations of science, therefore:

There is indeed the inexpressible. This shows itself; it is the mystical.

(p. 187; italics in original)

There is indeed the supra-empiricist and supra-conceptual metaphysical
framework that shows itself figuratively, indeed poetically, through sets of
admittedly ‘senseless’ propositions. In the Tractatus, as in that other master-
piece of modernist philosophy of science by A. J. Ayer (1952), Language,
Truth and Logic, the inexpressible insights enabling scientific inquiry and
other non-empirical or non-tautological insights could be shown figuratively
and apprehended viscerally, even though they could not be articulated in
propositional form.

As a final, modern touch, we shall soon see that the claims made by the
Pythagoreans for the pervasiveness of ‘number’ in the universe – as know-
able by human beings – may plausibly be taken to relate to the positive,
human reality of experience and perception. They may, in fact, be intended
to relate to discoverable, empirical patterns.

The Pythagoreans and Philolaus

Within a largely a-textual tradition, there is one piece that has come down to
us in fragments – the first written by a genuine Pythagorean, one Philolaus
of Croton. It provides tantalising and vivid glimpses into the nature of these
Pythagorean views and the crucial role the concept of pattern plays therein.
In light of the suggestion just offered that Philolaus and the Pythagoreans
anticipated the modern view of Galileo on the role of mathematics in under-
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standing the universe and other modern perspectives, it is more than inter-
esting to note that Copernicus himself noted that the “stimulus for his revo-
lutionary cosmological system” came from ancient sources and that “in this
connection he twice names Philolaus” (Burkert, 1972, p. 337). Indeed, at the
time of Copernicus, and for a good time thereafter, the Copernican system
itself was referred to as astronomia Philolaica or astronomia Pythagorica.

It is not with these most prescient cosmological views, however, that
this chapter is concerned, but rather with two short fragments (numbers 4
and 6) that turn on the nature and possibility of human knowledge. In con-
sidering these Pythagorean fragments, some interpretations of Philolaus and
the Pythagorean Order will be offered.

Philolaus of Croton

Of Philolaus, Walter Burkert wrote:

Practically nothing is known of his life. His home was Croton, or
maybe Tarentum, and he spent some time in Thebes – all the rest,
what little there is of it, is demonstrable embellishment or simple
misunderstanding. (1972, p. 228)

To this dearth of factual knowledge surrounding the historical Philolaus may
be added the traditional problems associated with early Greek thinking.
Such fragmentary textual evidence as we do have often comes down to us
tendentiously, cited by other writers with their own powerful philosophical
presumptions to propound or defend. In addition to this textual morass,
there also are long, minutely detailed and intellectually impressive debates
among scholars concerning the authenticity as well as the interpretation of
each part of the fragmentary record. Such debates are well beside the point
of this exploratory effort, except to assist in noting that in a textual environ-
ment that admits of so many possible interpretations, any plausible interpre-
tation may usefully find a place.

Carl Huffman (1993) places Philolaus solidly within the context of pre-
Socratic philosophy. The Ionian philosophers Thales, Anaximander and
Araximenes, those famed sixth-century originators of systematic, speculative
inquiry into the nature and origins of the physical world, sought to identify
the basic principles at work in the world in a properly philosophical way.
They pursued their inquiries independently of any religious or mythopoeic
explanations and developed their positions according to defensible rational
standards. 

Each of these three posited an underlying ‘stuff’ out of which all worlds
must arise. For Thales, this primary material was held to be water; for Araxi-
menes, it was air; for Anaximander, it was boundless, indeterminate apeiron
from which the elements are formed, but different from any of them.
Opposition, change and transformation become the sustaining principles
within worlds as systems, with things as they appear to us in this world
being simply mutable expressions of more primary materials. To the mutable
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physical reality of their cosmology, the Ionians also challenged the religious
and cultural ethnocentrism of the Greeks. Xenophanes noted sharply the
ways in which different races pictured gods in their own distinctive images
and, even more tellingly, the manner in which projected an anthropomor-
phic structure onto their identity.

Philolaus was, however, agnostic regarding these sorts of philosophical
conclusions. While his cosmology included a central fire around which the
earth orbits, Philolaus made no claims for fire as the universal Urstoff. What
Philolaus offered epistemologically was, in a remarkably modern vein, a view
on the limitations of human knowledge. The core of fragment number 6, in
Huffman’s definitive 1993 translation, presumes that:

Concerning nature and harmony the situation is this: the being of
things, which is eternal, and nature in itself admit of divine and not
human knowledge. (p. 123)

More anticipations of the modern?

Nature in itself – the face of reality as it would be configured in the mind
of God – is unknowable to human beings. What Kant, more than two thou-
sand years later, would call the noumenal world, the world of things-in-
themselves, was, for Philolaus, as it would be for Kant, not susceptible to
human representation. What humans do know, what it is possible for us to
know – for Kant – are the phenomena as structured by the cognitive ‘scaf-
folding’ comprising the bounds of human sense, structures of reason involv-
ing those a priori concepts immanent in the human mind itself. Given the
ways in which modern ideas seem to be prefigured in the thinking of
Philolaus and the Pythagoreans, one might well wonder if some early com-
parable version of the Kantian scaffolding was at work among them as well.
The speculation that this chapter is exploring is affirmative in that regard and
offers – as a plausible, provisional hypothesis only – that the pseudo-Kantian
scaffolding in Philolaus involves the concept of number or ordered plurality.

The importance of any cognitive scaffolding theory in our time of rap-
idly expanding interest in embodied cognition is manifest (see, for example,
Lakoff and Nuñez, 2000). In these contemporary terms, in which the locus
of mind increasingly is to be discerned in the viscera and physiology of
human beings, we should have no difficulty in understanding a pseudo-
Kantian position on intellectual scaffolding. Unlike Kant, who viewed it as
a disembodied feature of pure reason, we might more comfortably express
it scientifically in terms of genetically achieved physiological and especially
neuro-physiological predispositions that undergird our capacity for percep-
tion and language.

In an embodied cognitive model, this scaffolding would be seen to sup-
port our ability to discern and represent phenomena in ways our specific evo-
lutionary history has found advantageous. Two key ingredients in any such
embodied predisposition must surely be captured in Kant’s synthetic a priori
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position on causality. Human knowledge and action proceed on the principle
that every event has a cause, a form of efficacious connective tissue. However,
those causal links cannot, as Hume, Kant and many other philosophers have
maintained, be empirically discovered, observed or conceptually deduced,
apart from a theoretical framework whose explanatory concepts provide
whatever causal efficacy may be held to do the linking.

As the eminent philosopher of science Norwood Hanson wrote in 1958:

Causes certainly are connected with effects; but this is because our
theories connect them, not because the world is held together by
cosmic glue. (p. 64)

In the properly agnostic vein of Kant and Philolaus, Hanson went on to
observe:

the world may be glued together by imponderables, but that is
irrelevant for understanding causal explanation. (p. 64; italics in
original)

An embodied presumption of caused events is likewise not so difficult to
understand in biological terms. It is difficult to imagine the human species
or its many predecessor species having much viability without a biological
predisposition to discriminate among events as possible effects and to dis-
criminate among specifiable phenomena as potential causes. Hence, the
propensity to represent the world in terms of discrete entities linked cogni-
tively and meaningfully by organising concepts would likewise appear to
be an important part of our evolutionary strategy. In these terms, therefore,
one might well be tempted to see enormous contemporary significance in
Philolaus’s fourth fragment:

And indeed all the things that are known have number. For it is
not possible that anything whatsoever be understood or known
without this. (in Huffman, 1993, p. 172)

Number as Cognitive Scaffolding

For Philolaus, therefore, everything that is knowable has number. Recalling
that by number Philolaus meant ordered plurality, this means in one impor-
tant sense that everything knowable is patterned. In order to be able to
know, we need to be able to identify a range of phenomena as discrete (i.e.
denumerable) phenomena of a certain kind. Regardless of whether or not
reality is ultimately one integral ‘stuff’ in the mind of God, in order for
human beings to achieve any efficacy in our environments, we need to be
able to distinguish individual phenomena of one or another kind.

These phenomena, better, these sets of phenomena, therefore have
number. To know them is to discern the pattern at work among them, that
is to understand the principle(s) by which they are ordered. Similarly, to
have a concept is to have discerned a pattern in the uses of an expression.
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Hence, everything known or knowable must have number, must exhibit an
ordered plurality. And so for Philolaus, the mathematical – in that special early
Greek sense in which the mathematical and the aesthetic seem to commingle
so productively – is at work in all human knowledge. As a final speculation,
is it plausible to suggest that in the Pythagoreans’ views on number and
knowledge, we may discern a fundamental commonality between the math-
ematical and the aesthetic of enormous potency? Might this commonality have
been for them the cognitive infrastructure or ‘scaffolding’ for knowing?

Surely, there is a special sub-pattern to be discerned synoptically in
mathematics and art. If mathematics may productively be viewed as the cre-
ative exploration and formal representation of pattern possibilities, art may
equally and symmetrically be viewed as the creative exploration and sensory
representation of pattern possibilities. Are we dealing with two ‘subjects’ or
‘disciplines’ here, like history and geography, or with distinctive expressions
of a common patterning proclivity, scaffolding or cognitive infrastructure? Is
it this common patterning proclivity that enables us to discern and to make
patterns, either physically or symbolically?

To view knowledge as pattern on this kind of account is to view history,
geography, science, etc. as the pursuit of discoverable patterns in physical,
social and symbolic environments and their representation, with number as
ordered plurality as its epistemological engine. Without the enabling infra-
structure of number in the profound sense of Philolaus and the Pytha-
goreans, would we be able to have a history or a geography or a science?
Remove our ability to discern pattern and would we be able to know
anything?

Note

[1] The claim ‘The number √2 is irrational’ would seem to imply that the notion,
indeed the phenomenon, of irrationality (or the linked geometric notion of incom-
mensurability) was pre-existent and that this result were simply a matter of show-
ing this fact for the particular instance of √2. However, after providing a proof of
this result in terms of the side-to-diagonal incommensurability of the square (involv-
ing reductio ad absurdum arguments about particular numbers of units necessarily
being both odd and even) – and bearing in mind that, according to Aristotle, inves-
tigation of ‘the odd and the even was of particularly fundamental significance to the
Pythagoreans’ – the historian of mathematics John Fauvel (1987) argued:

It is not known whether this was the original proof of the result
that the side and the diagonal of the square are incommensurable.
Nor is it known whether the case of the square was the first in
which the phenomenon of incommensurability was recognised.
(Some historians have argued that this recognition took place in
connection with investigations of the regular pentagon, whose side
and diagonal are also incommensurable.) It is not important to
resolve this for the purposes of our story. But notice one signifi-
cant aspect of the result you have just seen proved: assuming you
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found it convincing, and now believe the result, you do so only
because of the proof. The result has very little plausibility without
proof accompanying it. This is an entirely new situation. Other
results earlier in the [undergraduate mathematics student] unit –
Hippocrates’ quadrature of lunes, say, or the unlimited number of
primes – had proofs which acted more so as to corroborate what
might have seemed quite likely beforehand. But the discovery that
two lines were incommensurable, and the proof, must have been
more-or-less simultaneous. Indeed we might go further and say that
its first proof must have constituted its discovery, though the details
of this event are no longer known. (p. 18; italics in original)

Admittedly, the examples Fauvel gives of Hippocrates and certainly Euclid date
from at least a century later than the first Pythagoreans. But his final observation
seems most telling: in an important sense, the very phenomenon, the very concept
of incommensurability must (to use Lakatos’s term) have been a proof-generated
one. (See also Fowler, 1993.)
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CHAPTER 6
Mathematics, Aesthetics and Being Human

William Higginson

The problem is more aesthetic than ethical, philosophical, sexual,

psychological, or political, though it goes without saying that such

divisions are unacceptable to me because everything that matters

is, in the long run, aesthetic. (Mario Vargas Llosa, 1999, p. 194)

The general intellectual terrain in which this chapter is situated is large,
heavily trafficked and contentious. The underlying scholarly question that
circumscribes it – ‘What does it mean to be human?’ – has been actively pur-
sued since classical times by both humanists and scientists. In addressing
this issue, philosophers have often connected it to questions of cognition.
For instance, in the opening paragraphs of his book On Human Nature,
Harvard biologist E. O. Wilson (1978) wrote:

These are the central questions that the great philosopher David

Hume said are of unspeakable importance: How does the mind

work, and beyond that why does it work in such a way and not

another, and from these two considerations together, what is man’s

ultimate nature. (p. 1)

A great deal of the extensive discourse around this question in the past three
decades has been driven by scientific and technological advances in the bio-
logical sciences. Wilson has been just one of many scientists to make the case
for socio-biological underpinnings of much human behavior. Social scientists
have not been slow to pursue the implications of some level of genetic pre-
disposition. Consider, for example, Charles Murray (2003), in the introduction
to his book Human Accomplishment, who draws attention to two core human
impulses:

The first is the abiding impulse of human beings to understand, to

seek out the inner truth of things. […] The other impulse is Homo
sapiens’ abiding attraction to beauty. […] Many of the most endur-

ing human accomplishments have been, simply, things of beauty.

(pp. xix-xx)

Murray’s choice of what he considers to be the two most prominent ‘embed-
ded’ characteristics of human beings fits the theme of this chapter particu-
larly well. This is because I am especially interested in the ways in which
mathematics – seen conjointly as an artifact and an activity – both forms,
and is formed by, human abilities and cultures. [1] 



Other contributions to this book have included many compelling demon-
strations of the role of the beautiful in mathematical functioning and varied
and articulate views of mathematicians themselves about this issue. Some-
what by contrast, in this chapter I want to move outside of this particular
‘insider’ arena in two different directions. 

For my first shift, I look in more detail at what the world at large (at least
the world as portrayed in more popular and populist culture, as well as the
images of schoolchildren) believes to be the case about mathematics and
mathematicians. There is, of course, something uncomfortably familiar about
the baleful looks perennially cast at the subject, its institutional purveyors and,
most certainly, its perpetrators. However, I wish to look at how this public
image might plausibly be argued to be undergoing something of a sea change. 

Then, in a second move, I begin to explore what certain humanist fig-
ures in the arts and social sciences have had to say about the centrality and
importance of mathematics to human concerns, creativity and awareness.
Finally, at the end of my chapter, I return to examine in more depth my pro-
posal of the possibly essential mathematical character of human beings.

But first, I foreshadow this later discussion by a brief excerpt from a set
of lectures by the eminent literary critic George Steiner, who, in 1990, deliv-
ered the Gifford lectures at the University of Edinburgh on the idea of cre-
ation in Western thought, literature, religion and history. When published in
significantly elaborated form more than a decade later (Steiner, 2001), even
readers familiar with Steiner’s eclecticism and penchant for academic pere-
grination were startled, and in the case of some reviewers befuddled and
annoyed, by the central role given to mathematics in his consideration of
the wellsprings of human creativity. 

To Plato, the point would have been self-evident. It is inconceiv-
able that one should question a life of the mind without address-
ing mathematics and the sciences which, in the main, derive from
the sovereignty of mathematics. Since Galileo and Descartes, this
injunction has become theoretically and pragmatically inescapable.
It is in mathematics and the sciences that the concepts of creation
and of invention, of intuition and of discovery, exhibit their most
immediate, visible force. […] 

The difficulty, however, is twofold. Mathematicians and scientists
“get on with the job”. […] they avoid too close a scrutiny of the
epistemological foundations of their disciplines. […]  The second
difficulty is one of access. […] One needs considerable familiarity
with mathematical symbolism in order to follow the controversies
on whether or not there are in pure mathematics “discoveries” or,
instead, an autonomous unfolding of a priori, as it were tautological,
systems generated from within the human intellect and its deep-
seated instinct for speculative, other-worldly play. Homo ludens. If,
as Galileo ruled, nature speaks mathematics, far too many of us
remain deaf. […] 
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It is at this subliminal level that decisive choices are arrived at as
between a congeries of possible, though rule-bound, combina-
tions. […] But how does the sub-conscious choose? […] What is
arresting is the move towards the aesthetic. […]  The “useful com-
binations,” where “useful” signifies the generative strength which
will lead to further propositions, to related theorems and general
laws, “are precisely the most beautiful”. (pp. 176-178)

In drawing these initial remarks to a close, and in the spirit of the opening
quotation from Vargas Llosa, I choose to interpret Murray’s two selected
‘aspects of human nature’ as two variations on an aesthetic theme. The drive
to understand and the attraction to beauty can both be seen as manifesta-
tions of a universal human ability to sense what ‘fits’ in a given situation and
what does not. 

I wish to take this assertion two steps further and then add a necessary
caveat. First, I want to contend that the roots of all mathematical activity are
located close to this aesthetic predisposition. Second, I claim that this argu-
ment parallels in many important ways the sustained argument made by Ellen
Dissanayake (1995) that humans are inherently aesthetic in their approach to
the world. I wish to acknowledge here the influence of her speculations about
Homo Aestheticus (the title of her book) on my vision of humans as inherently
mathematical beings. 

However, I also need to acknowledge that much in the world, especially
the pervasive and resilient public image of mathematics and, alas, mathe-
maticians, seems set in quite the opposite direction. So it is in this latter con-
text that I start my explorations here, with a formative recollection that
served to trigger my own interest in this area.

Atlantic Primes

Scholarly interest in particular topics can sometimes be connected to partic-
ular events. The roots of this chapter go back to an experience I had more
than twenty years ago, while looking after two five-year-olds; my daughter,
Kate, and Aaron (not his real name), the son of friends. As perhaps befitted
healthy children of this age, with educated and supportive parents, the two
youngsters were energetic, intellectually curious and articulate. In addition
to these general characteristics, Aaron had exceptionally advanced capabil-
ities in both mathematics and language. Numbers fascinated him and he was
already – as a pre-schooler – an avid reader. Knowing this, I decided to
make him aware of something I had just read.

The piece in question had a rather complex history. Appearing in the
April 1980 issue of the venerable American periodical The Atlantic Monthly, it
had been written by Horace Judson, a science writer whose book on the evo-
lution of the field of molecular biology, The Eighth Day of Creation (1979),
had received exceptionally positive reviews. As part of his research for The
Eighth Day, Judson had interviewed a large number of leading scientists
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about what motivated them and the satisfactions they received from their
work. Intrigued by what they had said, he wrote, as something of an off-
shoot of his main work, an introductory book on the philosophy of science,
called The Search for Solutions (1980a). In an attempt to capture, early in his
publication, something of the passion that appears to be a universal moti-
vator of scientists, Judson began Chapter One, entitled Investigation: the
Rage to Know, with a story about one of his friends.

Certain moments of the mind have a special quality of well-being.
A mathematician friend of mine remarked the other day that his
daughter, aged eight, had just stumbled without his teaching onto
the fact that some numbers are prime numbers [...] “She called
them ‘unfair’ numbers,” he said. “And when I asked her why they
were unfair, she told me, ‘Because there’s no way to share them
out evenly’.” What delighted him most was not her charming turn
of phrase nor her equitable turn of mind […] but – as a mathemati-
cian – the knowledge that the child had experienced a moment of
pure scientific perception. She had discovered for herself some-
thing of the way things are. (p. 2)

It was this first chapter of The Search for Solutions that was published as an
article in The Atlantic under the title ‘The rage to know’ (1980b). Given that
he was writing for lay people, Judson had felt compelled to explain just
what prime numbers are. Hence, part-way through the passage noted
above, we read, “prime numbers – those like 11 or 19 or 83 or 1,023, that
cannot be divided by any other integer [except, trivially, by 1]”. Judson was
a highly intelligent, well-educated individual. Despite this, in his attempts to
clarify, he made an error in one part of his statement. This was the obser-
vation I decided to share with Aaron.

“I read something interesting in The Atlantic today, Aaron”, I said. “A man
wrote that 1,023 was a prime number.” Aaron’s response was immediate and
definite. With eyes wide and his face somehow managing to express both
delight and dismay, he responded, “Oh, no! 1,023 is 3 times 11 times 31.”
Shortly thereafter I heard him say excitedly to Kate, “Some man said in the
ocean that 1,023 was prime!”

I never did pursue just what my daughter made of that particular obser-
vation. I was conscious, however, that this incident had planted a seed for
me. How could it come to be that a species might exhibit this exceptional
range of behavior with many highly educated adults failing to match the
insights of a very young, formally untutored, child? Just what was this domain
where such things happened? What were some implications of this? Under
what circumstances might they be altered? 

There are, of course, orthodox answers to these questions, most of them
pointing, lazily, in the direction of inexplicable genius and an extreme form
of élitism. According to this view, mathematics, as has been mentioned in
earlier chapters, is seen as the prerogative of a special few – a few who
often pay a high human price for their powers of abstraction. [2] Lurking not
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very far beneath the surface are parallels with the magical and wizardly. The
subject is useful, but potentially dangerous. Societies very much need math-
ematical insights, but as individuals we might perhaps be relieved to be
unburdened by the gift of mathematical precocity.

Some Possibly Less-Familiar Examples 
of a Familiar Stereotype

I attempt here to illustrate ways in which some of the different elements of
the orthodox stereotype of mathematicians (and, indirectly, of mathematics)
have been reflected and perpetuated in the writings and actions of a num-
ber of influential thinkers over the past two centuries. Stereotypes are, by
their nature, not concepts that invite critical analysis and this one is no
exception. 

In cases where some of these issues have been the focus of reflection,
there has been a tendency to recycle a small number of archetypical exam-
ples (much as some of the mathematical examples of the aesethetic have
been). Hence, as the example of mathematical precocity we have frequent
repetition of the story of the schoolboy Gauss shocking his teacher with his
rapid calculation of the sum of the first one hundred natural numbers. The
equivalent story at the level of the mathematical researcher and the ques-
tion of mathematical creativity most likely is the account by Poincaré of his
work on Fuchsian functions. 

To omit these examples is not to deny their validity, although my sense
is that the Gauss example is not as strong as it is often assumed to be. I have
attempted to dig a little deeper and to find some lesser-known examples
that come from a more extended range of individuals. In the views I shall
provide, articulated by Charles Darwin, Alfred North Whitehead and C. P.
Snow, there are intimations of power, pervasiveness, precocity and a whiff
of both the divine and the delicious, and the not completely rational. There
is a distinct sense of a pecking order, of the learning experience as being
crucial to later attitudes and a strong stereotype of the mathematician as
social (at times awkwardly so) eccentric. 

Darwin, Whitehead and Snow

The first set of images comes from Charles Darwin, who, when in his mid-
sixties, wrote, with his children as his intended audience, an informal biog-
raphy (1887/1958). In the section where he recalls his undergraduate years,
Darwin noted:

During the three years which I spent at Cambridge my time was

wasted, as far as the academical studies were concerned, as com-

pletely as at Edinburgh and at school. I attempted mathematics, and

even went during the summer of 1828 with a private tutor to

Barmouth, but I got on very slowly. The work was repugnant to
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me, chiefly from my not being able to see any meaning in the early
steps in algebra. This impatience was very foolish, and in after years
I have deeply regretted that I did not proceed far enough at least
to understand something of the great leading principles of mathe-
matics, for men thus endowed seem to have an extra sense. (p. 18)

This passage seems to invoke a very similar idea to that expressed by George
Steiner a hundred and fifty years later. In a subsequent passage, Darwin’s son
Francis, who served as editor for his father’s autobiography, noted:

My father’s letters to Fox show how sorely oppressed he felt by the
reading for an examination. His despair over mathematics must
have been profound, when he expresses a hope that Fox’s silence
is due to “your being ten fathoms deep in the Mathematics; and if
you are, God help you, for so am I, only with this difference, I
stick fast in the mud at the bottom, and there I shall remain”. Mr.
Herbert says: “He had, I imagine, no natural turn for mathematics,
and he gave up his mathematical reading before he had mastered
the first part of algebra, having had a special quarrel with Surds
and the Binomial Theorem.” (p. 114)

Some five decades after Darwin’s reflections, the Anglo-American math-
ematician and philosopher Alfred North Whitehead delivered the Lowell lec-
tures at Harvard University. These lectures which the author saw as “a study
of some aspects of Western culture during the past three centuries in so far
as it has been influenced by the development of science” (p. ix) constituted
the core of his Science and the Modern World (1926). The second chapter
of this book is called ‘Mathematics as an element in the history of thought’
and in it we find the following observation: 

The science of Pure Mathematics, in its modern developments,
may claim to be the most original creation of the human spirit. […]
There is an erroneous literary tradition which represents the love
of mathematics as a monomania confined to a few eccentrics in
each generation […] Even now there is a very wavering grasp of
the true position of mathematics as an element in the history of
thought. I will not go so far as to say that to construct a history of
thought without profound study of the mathematical ideas of suc-
cessive epochs is like omitting Hamlet from the play which is
named after him. That would be claiming too much. But it is cer-
tainly analogous to cutting out the part of Ophelia. This simile is
singularly exact. For Ophelia is quite essential to the play, she is
very charming – and a little mad. Let us grant that the pursuit of
mathematics is a divine madness of the human spirit, a refuge from
the goading urgency of contingent happenings. (pp. 29-31)

Once again, George Steiner, seventy years on, would seem to suggest that
omitting mathematics now would be more like losing Hamlet himself.

For the third of these vignettes, I turn C. P. Snow’s 1959 Rede Lecture,
entitled The Two Cultures and the Scientific Revolution. The theme of the
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lecture was that a deep and widening gulf existed between the worlds of
scientists and humanists. As part of his argument, early in is lecture, Snow
recounted a ‘high table’ story:

By this I intend something serious. I am not thinking of the pleas-
ant story of how one of the more convivial Oxford greats dons –
I have heard the story attributed to A. L. Smith – came over to
Cambridge to dine. The date is perhaps the 1890’s. I think it must
have been at St. John’s, or possibly Trinity. Anyway, Smith was sit-
ting at the right hand of the President – or Vice-Master – and he
was a man who liked to include all round him in the conversation,
although he was not immediately encouraged by the expressions
of his neighbours. He addressed some cheerful Oxonian chit-chat
at the one opposite him, and got a grunt. He then tried the man
on his own right hand and got another grunt. Then, rather to his
surprise, one looked at the other and said, ‘Do you know what
he’s talking about?’ ‘I haven’t the least idea.’ At this, even Smith
was getting out of his depth. But the President, acting as a social
emollient, put him at his ease, by saying, ‘Oh, those are mathemati-
cians! We never talk to them. (p. 3; italics in original)

Just why Snow should think that this is a “pleasant story” is not entirely clear.
For my purposes, interested in the way mathematics and mathematicians are
perceived in society, it is significant to note that this is one of the few places
in the lecture, or in the substantial related material that Snow wrote in subse-
quent years, where he uses examples from other than the physical sciences. 

Peirce père et fils

The figure of Benjamin Peirce cuts a wide swath in the history of American
mathematics. Frequently identified as the first major mathematical thinker to
reside in North America, he was the author, in 1870, of Linear Associative
Algebra, a text where he presented mathematics as “the science which
draws necessary conclusions”. Born in 1809, he joined the Harvard faculty
in the early 1830s and remained there for almost five decades. He is best
known in some intellectual circles as the father of the brilliant but erratic
philosopher and mathematician, Charles Sanders Peirce. 

The Peirces, father and son, came to the attention of a wider than usual
audience in 2001 when Louis Menand included Charles as one of the four
key thinkers (along with Oliver Wendell Holmes, William James and John
Dewey) in his Pulitzer Prize winning book, The Metaphysical Club. Menand’s
portrait of Benjamin Peirce begins:

Peirce was probably the first world-class – in the sense of interna-
tionally recognized – mathematician the United States produced.
He cultivated a certain wizardliness of manner. His hair was iron-
gray, and he wore it long, with, in later years, a thick beard. And
his obscurity was legendary. It was said at Harvard that you never
realized how truly incapable you were of understanding a scientific
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matter until Professor Peirce had elucidated it for you. […] Peirce
enjoyed the reputation and even played up to it, because he was a
confirmed intellectual elitist, a pure meritocrat with no democracy
about him. “Do you follow me?” he is supposed to have asked one
of his advanced classes during a lecture. No one did. “I’m not sur-
prised,” he said. “I know of only three persons who could.” […]  It
was Peirce’s view that mathematics was the supreme science, but
a science accessible only to a few. (p. 153)

Menand’s image of Peirce senior is supported by several passages in Joseph
Brent’s (1998) biography of Charles Sanders Peirce. There we find:

Charles’s father was also by all accounts, a most unusual and
unconventional man. Students remembered him with great respect
and affection and thought of him as a genius who, as often as not,
they were unable to understand. This description of a typical class
was written by one of his students.

I have hinted that his lectures were not easy to follow. They
were never carefully prepared. The work with which he rap-
idly covered the blackboard was very illegible, marred with
frequent erasures, and not infrequent mistakes (he worked
too fast for accuracy). He was always ready to digress from
the straight path and explore some sidetrack that had sudden-
ly attracted his attention, but which was likely to have led
nowhere when the college bell announced the close of the
hour and we filed out, leaving him abstractedly staring at his
work, still with chalk and eraser in his hands, entirely oblivious
of his departing class. (p. 32)

Shortly thereafter Brent notes that, “Benjamin Peirce taught mathematics as
a kind of Pythagorean prayer” (p. 33). Many of his students saw him as “a
real live genius, who had a touch of the prophet in his make-up” (p. 32). [3]

I have quoted Menand and Brent at length because the picture they
paint of Benjamin Peirce resonates in many ways with descriptions of math-
ematical researchers and teachers found in other books and papers. Take,
for instance, the well-known image of the “traditional mathematics profes-
sor” (Pólya, 1957, p. 208) who “writes a, he [sic] says b, he means c, but it
should be d”. Or, the less amusing but real description of a young math-
ematics professor whose:

lectures were useless and right from the book […] He showed no
concern for the students […] He absolutely refuses to answer ques-
tions by completely ignoring the students. (Gibbs et al., 1996, p. 41)

The instructional context for this comment was another leading mathemati-
cal research center, in this case the Berkeley campus of the University of
California. The teacher was Ted Kaczynski, at that time a highly regarded
early-career researcher, who was, quite a number of years later, to achieve
great notoriety as the Unabomber. 
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The particular role played by Peirce in the establishment and perpetu-
ation of the image of the mathematician as a brilliant but distanced and
‘other worldly’ individual is certainly debatable. But there is certainly no
doubt that he fitted it. What seems much more certain is the robustness of
the image of the mathematician in society.

Schoolchildren’s images of mathematics and mathemat-
icians

In the late 1960s, Cambridge psychologist Liam Hudson (1970) carried out
a widely reported piece of research (published under the title Frames of
Mind) where he examined the attitudes and perceptions of selected groups
of male secondary school students to different professions. Using question-
naires and a ‘semantic differential’ technique, subjects rated a number of
“typical figures (in this case, ‘Novelist’, ‘Historian’, ‘Mathematician’, ‘Phy-
sicist’, etc.) against pairs of adjectives (‘warm/cold’, ‘intelligent/stupid’, ‘hard/
soft’, ‘valuable/worthless’, and so on)” (p. 46). 

Hudson found a high degree of consensus in the responses. He reported: 

one is struck by the tendency for certain typical figures to cluster
together: Mathematician, Physicist, and Engineer clearly resemble
each other closely in schoolboys’ minds; and so too do Poet, Artist,
and Novelist. Examined in detail, this ‘scientific’ cluster can be bro-
ken down a little. The Engineer is seen as less intelligent, cold and
dull than the other two, but as more manly, and dependable and
imaginative. The Mathematician is seen as even colder, duller and
less imaginative than the Physicist. At the other extreme, the Poet is
seen as more intelligent than the Artist, but less warm and exciting;
the Novelist is more imaginative than the Artist, but less soft and
feminine. […] If these two clusters – the scientific and the artistic –
are set up as polar opposites, the other professions represented form
a spectrum between them. (pp. 48-49) 

Thirty years after Frames of Mind was published, an American and a British
researcher (Picker and Berry, 2000) carried out an international study that
replicated several aspects of the mathematical component of Hudson’s
research. Most of the negative elements of the stereotypical mathematician
found in Hudson’s work remained firmly in place in the minds of some five
hundred lower secondary school students in the United States, the United
Kingdom, Finland, Sweden and Romania. Part of their data comprised
sketches the students made. The most common figure sketched by the stu-
dents was an unkempt, glasses-wearing, balding, middle-aged white male. 

The researchers went on to note that a “completely unexpected theme that
emerged from the drawings” was that of “mathematics as coercion” (p. 74). In
a significant percentage of the drawings pupils drew mathematicians as
teachers who used intimidation, violence or threats of violence to ‘make’
their charges learn. The connection between mathematics and violence is
returned to in the final chapter.
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In the next section, I turn to examine more recent examples of portray-
als of the nature of mathematics and its human connections and manifesta-
tions. Many of these examples are generated, at least indirectly, by variations
on the theme of embodiment emerging from the biological and cognitive
sciences. Others are to be found in a new location, the arts. The last decade
has seen a rash of books, movies and plays with broad and non-trivial math-
ematical content (Emmer and Manaresi, 2003). On the surface, many of these
seem only to perpetuate the standard view of the creative mathematician as
the eccentric genius. But by looking more broadly and deeply, I suggest one
can perceive a shift in the direction of seeing mathematics as a natural human
ability. This is not to deny the existence of a broad range of that ability, but
it does challenge the ‘zero/one’ model of the nature of mathematical ability,
which sees it as the exclusive preserve of a small, predominantly male, élite.

Mathematics and the Human, Revisited

In very broad terms, there has been the empirical ‘rejuvenation’ of math-
ematics from two different but related directions. More in keeping with the
field’s traditional alliances with the ‘hard’ sciences, there have been influ-
ences emerging from the rapid and highly mathematised development of the
various instruments of new information technology. Co-ordinated by ever
more powerful computational tools, several fields, including mathematics,
have entered into a period of considerable transformation. As one case in
point, the development of ‘experimental’ and ‘constructive’ approaches to
the discipline have appeared that would have been inconceivable to most
scholars in the field even twenty years ago (Borwein and Bailey, 2003).

Technology has also been a factor in the links being forged from another
direction, namely the biological and human sciences. The development of
tools and techniques to probe ‘life’ at the molecular level have prompted yet
another round of debates on human nature. In discussions that have per-
haps capitulated far too much to the polarised, Aristotelian, either–ors of
‘nature’ and ‘nurture’, there has been a vigorous counter-attack on the part
of scholars leaning toward the deterministic. Building in many cases on the
broad groundwork laid by E. O. Wilson, and stated most aggressively by
Stephen Pinker (2002) in The Blank Slate: the Modern Denial of Human
Nature, there has been a reconsideration from many perspectives of the
possibility that humans are ‘hard-wired’ to behave in certain ways. 

These reconsiderations manifest themselves in many areas. The field of
cognitive science, for instance, owes its relatively recent existence to the co-
ordinated study of issues which in more classical times would have been
relegated to specialised and isolated investigation by psychologists, philoso-
phers, physiologists, logicians, anthropologists and even computer scientists
(Gardner, 1987). The talented neurologist and gifted writer Oliver Sacks has
been particularly successful in making interested readers more aware of the
subtleties and power of the relationship between mind and body.
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Approaches to intellectual questions that give primacy to the role of the
physical are sometimes considered collectively under the term ‘embodiment’
(Weiss and Haber, 1999). One of the most active and influential thinkers in
this area is the Berkeley linguist and philosopher, George Lakoff. His earlier
work focused on linguistic aspects of embodiment, before moving, with one
colleague in Philosophy in the Flesh (1999), to consider some philosophical
connections of this theme. Shortly thereafter, with the assistance of another
colleague, he carried his theories into the field of mathematics with Where
Mathematics Comes from: How the Embodied Mind Brings Mathematics into
Being (2000). 

This text could be seen, from some perspectives, as the fourth venture
into the terrain of ‘embodied mathematics’, being preceded by the publica-
tions of Dehaene (1997), Butterworth (1999) and Devlin (2000). These texts
differ among and between each other and, while all have merit, it seems
unlikely that they will, in the longer term, be seen to have resolved any
major issues. What they did do, however, was to cause at least some mem-
bers of the mathematical community to think differently about their own
discipline.

Popularising mathematics and mathematicians

Over the same time period, and for some of the same reasons, the intellec-
tual world has witnessed a dramatic shift in the availability of ‘popular’ treat-
ments of two areas traditionally seen as being abstruse and difficult, namely
aesthetics and mathematics. 

In the traditional division of philosophy into its sub-disciplines such as
ethics, epistemology, metaphysics and logic, aesthetics has been something
of a ‘Cinderella’ case. Partly this has been a function of the ‘bloodless’
approach taken to issues in the area by many classical scholars. The ‘new
aestheticians’ come, increasingly, from outside philosophy, narrowly defined.
One direction of approach is from literature (Donoghue, 2003; Fisher, 1998;
Scarry, 1999), another is from science (Fischer, 1999; McAllister, 1996;
Wechsler, 1978), while a third arrives from environmental and architectural
studies (Carlson, 2000; Hildebrand, 1999) and a fourth from the world of
commerce (Postrel, 2003). 

‘Popular’ treatments of mathematical ideas are not new. Authors like W.
W. Sawyer, Lancelot Hogben, W. W. Rouse-Ball and Martin Gardner, for
instance, wrote prolifically for large and appreciative audiences throughout
the previous century. Nor is it unusual to have first-class researchers address-
ing the relationship between aesthetics and mathematics. George Birkhoff’s
(1933) Aesthetic Measure and Herman Weyl’s (1952) Symmetry are particu-
larly interesting exemplars in this area. That having been said, the prolifer-
ation of mathematically related books, plays, novels and movies in the past
decade and a half, is, in its scale alone, without precedent. 

It seems clear that the success of James Gleick’s (1987) Chaos and
Simon Singh’s (1998) book Fermat’s Last Theorem (and the related video)
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have been highly influential. But, for whatever reasons, the former trickle of
publications has become a torrent. In the period of a few months in late
2000 and early 2001 there were two books published on the topic of zero
(Kaplan, 2001; Seife, 2000). More recently, an even shorter time-frame saw
the publication of three substantial books on the Riemann conjecture
(Derbyshire, 2003; du Sautoy, 2003; Sabbagh, 2002). Some other recent texts
have focused on a particular branch of mathematics: for instance, Barabasi
(2002), Beltrami (1999) and Havil (2003). (I have more than thirty other titles
in this category on my shelves alone.)

Other books again look at the discipline more generally – see, for
instance, Gowers (2002), Higgins (1998) or Stein (2001). (Again, I could offer
more than fifteen others from this same short time period.) A surprisingly
large number of authors choose to emphasise the artistic, aesthetic and spir-
itual connections of their publications in the titles they give their books. See,
for instance, The Artful Universe (Barrow, 1995), The Universe and the
Teacup: the Mathematics of Truth and Beauty (Cole, 1998) or It Must be
Beautiful: Great Equations of Modern Science (Farmelo, 2002) – again, there
are over thirty more I could mention, all with this characteristic.

Two further categories with a strongly human flavour are individual
biographies or autobiographies of mathematicians such as Flannery (2001),
Nasar (1998), Hoffman (1999), Schechter (2000) and Rota (1997), as well as
institutional histories such as Masters of Theory: Cambridge and the Rise of
Mathematical Physics (Warwick, 2003). The strongly human flavour of these
biographies is sometimes nothing more than glimpses into the everyday
lives of mathematicians, which include – as ours do – families, sickness,
vacations and heartaches. These are aspects of a mathematician’s life that
might have astounded Picker and Berry’s schoolchildren.

A relatively new phenomenon is the thematic role played by mathematics
in drama, cinema and fiction. Novels with a significant mathematical dimen-
sion include Doxiadis (2000), Petsinis (2000), Papadimitriou (2003), Schogt
(2000) and Woolfe (1997). Several recent plays and movies have been
exceptional for their quality and for their substantial mathematical content.
Tom Stoppard and Michael Frayn are among the world’s leading playwrights
and their respective works, Arcadia and Copenhagen, have been theatrical
standouts. A much younger playwright, David Auburn, won the Pulitzer
Prize for Drama in 2001 for his play Proof, which grappled with themes of
mental illness, mathematical creativity and also generational conflict. Ron
Howard’s cinematic version of Sylvia Nasar’s biography of the Nobel prize-
winner John Nash was awarded an Oscar for Best Picture of the Year in
2002. Two earlier productions, Good Will Hunting and Pi, were also distin-
guished by the inclusion of significant elements of mathematics and strong
and positive audience reactions. [4]

Of course, some of the portrayals of mathematicians and mathematics
in the recent flood of literary, dramatic and cinematic productions have been
‘classical’ in nature. They have, as in the biographies of Erdös or in Russell
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Crowe’s portrayal of John Nash in the film version of A Beautiful Mind,
extended and reinforced the stereotype of the mathematician as the ‘ultra-
geek’, a (male) person apart. Of more interest, perhaps, are the female
mathematical characters created by David Auburn and Tom Stoppard in
their plays Proof and Arcadia. Part of the message in these latter two cases
seems to be that one should not assume that mathematical ability comes
only in certain preconceived personifications. Much the same message, with
more of a class basis rather than gender, underlies the character of the lead
role in the film Good Will Hunting.

In a slightly different category is the sensitive depiction of the leading
character in Mark Haddon’s (2003) highly praised The Curious Incident of
the Dog in the Night-Time. Christopher John Francis Boone is a teenaged
boy who is autistic. Mathematics plays an important part in his life: doubling
twos helps him fall asleep, numbers act as human markers much as hair
colour and height do for most. Indeed, numbers structure his entire life – as
the prime-numbered chapters of his ‘autobiography’ quickly reveal. In this
regard, Haddon seems to be unawarely portraying with considerable suc-
cess some of the findings emerging from the research of psychologist Simon
Baron-Cohen (2003) at Cambridge University (see also Chapter ω).

Long as these lists are, they represent only a partial accounting of a
much more extensive collection of materials. I have, for example, only
touched the surface of an exceptionally large body of knowledge that exam-
ines the intersection of mathematics and art. Indeed, a non-trivial number of
artist/mathematicians have written about the mutual inspiration the one dis-
cipline has provided in their pursuit of the other. This mutual inspiration is
one that the Pythagoreans would have taken for granted. 

What sort of explanation can be offered for this undoubtedly burgeon-
ing phenomenon? One that seems feasible is that artists are doing what
artists are supposed to do, namely identifying key contemporary issues and
exploring new ways of seeing the world. So we have playwrights, movie
directors and novelists, as well as sculptors, architects, designers and com-
puter programmers, playing with the central construct of human sensitivity
to pattern and form and their abstract extensions, which could serve as a
passable specification of a prime motivation for mathematics.

Where Mathematics Might Come from

Perhaps the mathematical perspective most supportive of an embodied gen-
esis for the discipline can be found in the book Mathematics: Form and
Function by Saunders Mac Lane (1986). In the initial pages of that text, Mac
Lane outlined his views on the origins of mathematics. He identifies various
fundamental “formal notions”, such as cardinal number, continuity, group
and topology. He then argued that, “These formal notions arise largely from
premathematical concerns which can best be described as ‘human cultural
activities’” (p. 34).

138 Mathematics and the Aesthetic



Mac Lane saw a progression from various types of human activity
through the stages of informal “ideas” generated by the activity and then
more abstract “formulations”. The activity of “collecting”, for example, leads
to the informal idea of “collection” and is formalized as “set”. Similarly, we
have “Building, shaping” leading to “Figure symmetry”, to “Collection of
points” and “Choosing”, “Chance” and “Probability” (p. 35). 

Mac Lane’s emphasis on fundamental human actions and their elabora-
tions, from a mathematical perspective, resonates strongly with an excep-
tional corpus of work by another scholar in a different field. For some three
decades now, Ellen Dissanayake has pursued the study of art in human soci-
eties in settings that are geographically and culturally diverse. Then, in three
remarkable books she has, almost single-handedly, challenged many of the
most longstanding views about human nature. In 1988, at the beginning of
What Is Art for?, she noted the almost complete lack of serious attention, in
most anthropological texts, to the role of art in human cultures. Then, in a
series of tightly argued, beautifully illustrated and well-written chapters, she
remedied this omission. 

In 2000, in her Art and Intimacy: How the Arts Began, she traced back
the roots of much civilized human behavior to the interactions between par-
ent (in particular, mother) and child. It is, however, in her middle book from
1995, Homo Aestheticus: Where Art Comes from and Why, that she revealed
perspectives on human predispositions from an aesthetic orientation which
overlaps greatly with Mac Lane’s list of premathematical human activities.

Dissanayake’s perspective is, in many ways, a constructive and opti-
mistic one. She writes with eloquence and conviction about the satisfactions
that come from the successful manifestation of the basic aesthetic motiva-
tion of “making special”. There is, perhaps, merit in acknowledging both the
power of Dissanayake’s insight and the potential for extensions of her ideas
into areas of mathematics. 

The role that aesthetics may play in cognition and human action was
not a prominent theme in twentieth-century scholarly work, although back
in 1968, for example, Gregory Bateson wrote a paper entitled ‘The moral
and aesthetic structure of human adaptation’. In it, he remarked: 

It is possible that aesthetic perception may be characteristic of

human beings, so that action plans which ignore this characteristic

of human perception are unlikely to be adopted, and even unlikely

to be practicable. (1991, p. 257)

Undeveloped glimpses [5] like this, perhaps unsurprisingly, were also to be
found in a number of places in the publications of Alfred North Whitehead.

One of the last public lectures he delivered at Harvard (in his mid-sev-
enties) was entitled ‘Mathematics and the good’, echoing the title of a famous
lecture of Plato’s (‘On the good’) that seems to have dismayed its original
listeners by being all about mathematics. In Whitehead’s talk, also foreshad-
owing some of George Steiner’s observations fifty years later, we find:
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The notion of the importance of pattern is as old as civilization.

Every art is founded on the study of pattern. […] Mathematics is

the most powerful technique for the understanding of pattern, and

for the analysis of the relationships of patterns. […] Having regard

to the immensity of its subject-matter mathematics, even modern

mathematics, is a science in its babyhood. If civilization continues

to advance, in the next two thousand years the overwhelming nov-

elty in human thought will be the dominance of mathematical

understanding. (1948, p. 117)

A few years earlier, echoing the opening quotation by Vargas Llosa, he had
remarked in his book Modes of Thought:

By reason of the greater concreteness of the aesthetic experience,

it is a wider topic than that of the logical experience. Indeed, when

the topic of aesthetics has been sufficiently explored, it is doubtful

whether there will be anything left over for discussion. (1938, p. 86)

Some fifteen years after Whitehead’s death, one philosopher (Norman, 1963)
tried to capture an element of Whitehead’s philosophical perspective:

There runs through Whitehead’s writing an arresting ambivalence

toward one such model [expressing a fundamental decision and

orientation with respect to experience], the mathematical. To

explore his reflections upon mathematical method in philosophy is

perhaps to win the most fascinating lesson in the Whiteheadian

legacy. A close reading of his remarks upon the subject suggests

that he found two uses of mathematics—the one abortive and bar-

ren, the other rich and indispensable. We shall call these the skep-
tical and the aesthetic use, respectively. (p. 33; italics in original)

The contrast between these brief and sporadic comments on the aesthetic
and its connections for most of the last century and the concentrated atten-
tion it has begun to receive in the last decade is striking. 

In addition to the works cited previously, there have been significant
publications in physiology (Wilson, F., 1998), in technology (Gelernter,
1998), in philosophy (Levinson, 1998) and in evolutionary psychology
(Voland and Grammer, 2003). In Britain, the B.B.C.’s Reith Lecturer for 2003
was the neuro-physiologist C. V. Ramachandran, who gave five lectures on
the theme of The Emerging Brain.

The third of these was entitled, The Artful Brain and in it Ramachan-
dran listed what he called “the ten universal laws of art”. Three of his ten
‘laws’ have immediate and strong connections to mathematics. These are
‘symmetry’, ‘repetition, rhythm and orderliness’ and ‘balance’. In fact, how-
ever, when one reads the elaborations that Ramachandran provides for the
remaining seven (peak shift; grouping; contrast; isolation; perception prob-
lem solving; abhorrence of coincidence/generic viewpoint; metaphor), it
appears that a strong case can be made for the mathematical–aesthetic
character of all of his proposed ‘laws’.
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Homo Mathematico–Aestheticus?

In 1998, the distinguished Dutch-American mathematician and historian,
Dirk Struik wrote a foreword for the English edition of Paulus Gerdes’s
(2003) ethnomathematical treatise, Awakening of Geometrical Thought in
Early Culture. In this intriguing introduction to a stimulating work, Struik
identified three “attitudes”, quintessentially human, namely, homo obser-
vans, homo ludens and homo laborans. Consistent with his life-long politi-
cal convictions, Struik gave pre-eminence in this categorisation to what he
termed the “dynamic” approach of homo laborans which, as he noted, “is
implicit in the Marxian point of view” (p. ix). 

At the very end of this section of his foreword, Struik obliquely com-
mented:

Incidentally, the symmetry and harmony of forms that turn out to
be most efficient (many examples appear in this book) also strike
us as more agreeable, beautiful. A source of the birth of aesthetics?
(p. ix; italics in original)

In making this brief and speculative comment about aesthetics at the end of
his foreword, Struik was behaving in the manner of Bateson and Whitehead.
It is, I think, a relatively minor modification of Struik’s views, to see all three
of his ‘attitudes’ as close cousins of the (perhaps more fundamental?) homo
mathematico-aestheticus. We might, for example, ask just which forms and
shapes catch the attention of homo observans, and why. 

Unfortunately, Dirk Struik will not be a participant in any subsequent
discussions of these issues. (He was 104 years old when he wrote the pref-
ace to Gerdes’s book and he died two years later. [6]) His mathematical
power and his human wisdom would have made him an especially valuable
contributor to a discussion of the numerous and complex, but important and
fascinating, connections between the human species and the equally human
discipline of mathematics. 

Notes

[1] The fundamental nature of the human drive for understanding is perhaps most
directly and famously articulated in the opening lines of Aristotle’s Metaphysics,
where he categorically stated, “All humans by nature desire to know”. The special
place of the subject of mathematics in the history of human efforts to seek out the
“inner truth of things” is well documented.

[2] Although originally written about ‘the poet’ (another outsider group often con-
sidered ‘odd’), Charles Baudelaire’s (1861/1995, p. 16) closing line from his poem
‘The Albatross’ – Ses ailes de géant l’empêchent de marcher (“His giant’s wings pre-
vent him from walking”) – fits the public image of an awkward, regretfully earth-
bound (male) mathematician.

[3] The argument for Benjamin Peirce as some sort of archetype does not rest only
on the fact that he was a forceful and long-lived individual working in a particularly
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influential institution at a crucial period for the formation of attitudes and patterns
of behavior. It is a remarkable fact that every President of Harvard University from
1862 to 1933 had studied with Peirce (Menand, 2001, p. 154).

[4] A less well-known phenomenon is that of mathematicians who have written sig-
nificant works of drama and literature. This number includes John Mighton of the
Fields Institute at the University of Toronto, whose play Possible Worlds won a
Governor General’s Award for Drama in 1992, and the University of Maryland’s
Manil Suri whose The Death of Vishnu (2002) is highly reminiscent of the works of
prize-winning Canadian novelist Rohinton Mistry (A Fine Balance, Family Matters),
whose first academic degree was in mathematics. In this category, ring theorist
Vladimir Tasic occupies a particularly interesting position, being both a published
author of fiction (Herbarium of Souls, 1998) but also one of philosophy/cultural
studies (Mathematics and the Roots of Postmodern Thought, 2001).

[5] Another can be found in Jane Jacobs’s book, Cities and the Wealth of Nations
(1984). She cited the Japanese anthropologist Tadao Umesao’s theory that “an
esthetics of drift” (as opposed to “resolute purpose” and “determined will”) is an
effective economic strategy (p. 221). Shortly thereafter she quoted the M.I.T. metal-
lurgist, C. S. Smith’s observation that necessity is not the mother of invention. This
role, according to Smith, belongs to what he calls “esthetic curiosity” (p. 222).

[6] For more on Struik’s mathematical and political life, see Powell and Frankenstein
(2001).

´



Section C

Mathematical Agency



Introduction to Section C

The three chapters of Section C, Mathematical Agency, each adopt a more
interdisciplinary approach to central aspects of the mathematical enterprise
as a human endeavour. Drawing in particular on parallels in the disciplines of
history of science and technology, the visual arts, theology and iconographic
history, these chapters propose ways in which aspects of the mathematical
aesthetic can be understood in terms of broader themes, wider intellectual
movements and the nature of human experience.

Nicholas Jackiw, in Chapter 7, deals with the dynamic geometry soft-
ware environment The Geometer’s Sketchpad, in which the user creates and
manipulates mathematical constructions. When compared with other forms
of mathematical representation, Sketchpad constructions partake of disembodied
geometric abstraction and yet show a responsiveness to our human pres-
ence. Many find it compelling to interact with mathematics incarnate. Why
this engagement should be found so engrossing is less well understood. In
an attempt to locate the historical antecedents and contributory factors to the
experience – and pleasure – of creating and manipulating Sketchpad con-
structions, Jackiw positions dynamic geometry within a broader and very
old tradition of mechanical devices. This allows him to reveal the unusual
combination of aesthetic motivations to dynamic geometry activity which
stem, in part, from a Sketchpad user’s dual capacity to wield magical as well
as explanatory mathematical power.

In Chapter 8, David Pimm aligns the term ‘aesthetic’ with its original
Greek meaning of “pertaining to the senses” and that of ‘theorem’ with “that
which is seen”. He contrasts the mathematical use of text and image (the
written with the drawn) and examines the role images have played in math-
ematical argument. This discussion is enhanced by drawing on the writing
of early twentieth-century European visual artists (such as Kandinsky and
Malevich) about ‘abstraction’. Basing part of his chapter in an account of the
Bourbaki group’s attitudes to the mathematical image, Pimm takes serious-
ly member Pierre Cartier’s observation that ‘The Bourbaki were Puritans’ and
traces links of both attitude and argument to the Reformation sixteenth- and
seventeenth-century banishment and even destruction of icons.

Dick Tahta, in Chapter 9, offers a sequence of broadly connected
thoughts about ‘sensible objects’. Here, the adjective ‘sensible’ may suggest
what can be perceived by the senses or what can be understood in the
mind. Objects may acquire special significance for specific groups. But this
making special inevitably involves controversy: examples include disagree-
ments about the purpose of neolithic stone balls (and later art objects),
eighth-century Byzantine iconoclasm and different twentieth-century views
about psychoanalysis. Specifically, mathematics and mathematicians exhibit
some particular attitudes to the ‘objects’ they consider. These may become
iconic in the original Byzantine sense: there are some fruitful psychoanalytic
accounts of how this might happen. But, in the end, the nature of the math-
ematician’s objects – like those of many others – remains a mystery.



CHAPTER 7
Mechanism and Magic in 

the Psychology of Dynamic Geometry

R. Nicholas Jackiw

The dilemma posed all scientific explanation is this: magic or

geometry? (Thom, 1975, p. 5)

Draw an arbitrary quadrilateral—or better, build a picture of one in your
imagination—and connect its sides’ mid-points to form a second, inscribed
quadrilateral. If your hand is steady, or your mind’s eye clear, this inner shape
appears not only quadrilateral, but its opposing sides may appear parallel as
well. Are they really? Now, reach with imaginary fingers into the figure itself
and grasp one of the quadrilateral’s outer vertices. Push it slowly inwards,
flattening the original shape like a cardboard box collapsing. The two edges
adjacent to your vertex grow straighter and straighter, until eventually they
form a smooth, unbroken line and your original quadrilateral has degener-
ated into a triangle. (Your dragged vertex and its neighbors are collinear.)
Across this transition, what became of that inner shape? In its present,
extreme configuration, are any secrets revealed? Can you find evidence for
why it must also form a parallelogram in your original—and in every possi-
ble other—starting configuration?

Now switch to the complex plane and consider there both a circle T and
its image T ′ under some cubic mapping f (z) = (z – a)(z – b)(z – c). If T
encircles a, then T ′ must loop around the origin, since the origin is the
image of each root under f. Now imagine expanding circle T so that it grows
toward b, while continuing to encircle a. By the time T consumes b, T ′ will
have had to wind twice around the origin (or even three times, if T encir-
cles a, b and c simultaneously). Moreover, since f is analytic, T ′ will have to
evolve continuously from one loop, to two, to three as your circle T encom-
passes more and more roots. In other words, even before you capture a new
root on the plane with T, T ′ will have spawned a twist in its contour that
can self-intersect and wind about the origin an additional time as soon as
you arrive at the root. But, in this scenario, how has T ′possibly anticipated
your intentions for T’s future deformation?

The Dynamic Geometry Experience

Users of software such as The Geometer’s Sketchpad will already be familiar
with the type of conjectured activity described here and regard its natural



habitat as the computer screen rather than the screen of one’s imagination.
The ingredients of a typical interaction with such software are those of the
above thought experiments: a motivating mathematical curiosity about shape
or spatial relationship; a quick diagrammatic construction of that configura-
tion’s basic skeleton; a more probing exploration of that shape’s kinematic
behavior when manipulated dynamically.

The mechanical heart of such a ‘dynamic geometry’ experience lies in
its idealized and friction-free mathematical physics, that permits you to vary
a constructed figure along every possible degree of freedom left by the rigid
mathematical definitions that you yourself have asserted as essential to your
figure. In dynamic geometry, mathematical figures are completely unlike
conventional static images that act as simple illustrations or representative
diagrams. They are new mathematical objects that map a temporal past of
specification and definition onto a present graphical configuration and also
onto a future potential for manipulation and possible constrained response.
Shape becomes infinitely plastic within the software: your arbitrary quadri-
lateral permutes into any possible quadrilateral, into all possible quadrilater-
als. In the close mathematical feedback loop of haptic cause and visual
effect, between dragging a vertex and the diagram transforming, attention
naturally shifts from specific shapes and configurations to the relationships,
harmonies and proportions that hold among shapes and across their endless
configurations. In dynamic geometry, these invariant properties appear as the
landmarks and sign-posts that orient the map connecting the specific to the
general, the concrete to the abstract.

This is a powerful mathematical experience and a vivid one. In the field
of geometry, the compass and straight-edge have long demonstrated the
close link between physical tools and epistemological ones (see, for exam-
ple, Scher, 2002, or Bartolini Bussi and Boni, 2003). Within that tradition,
dynamic geometry tools seem startlingly new to the many different commu-
nities that involve themselves in geometric thinking and practice. Though
the idea—dynamic to its core—of infinitely malleable shape is far more eas-
ily communicated and understood through demonstration and experience of
the software than through reading words in static print, a broad literature
has grown up around the software over the past dozen years. Surveying this
writing, Schattschneider and King (1997) conclude:

[Not only has] dynamic geometry software […] had a profound

effect on classroom teaching wherever it has been introduced [but

it] has also become an indispensable research tool for mathemati-

cians and scientists. (p. ix)

The breadth of this accord—which is echoed across and throughout the lit-
erature—is rather curious, situated as it is straddling a diversity of commu-
nities. Both professional mathematicians and middle-school mathematics
students have previously relied on software tools in pursuing their respec-
tive vocations, but rarely, if ever, on the same ones.
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If the appeal of dynamic geometry routinely spans such divides, is it by
tickling some superficial sweet tooth or by plucking some deeper experien-
tial chord? I am intrigued by how often, in first-person accounts of their
encounters with Sketchpad, writers invoke gripping suspense and delighted
surprise as essential characteristics of their experience. While a single com-
munity might foster a shared, critical perspective on the software’s potential
for impact, the common voice sounding from Sketchpad’s broader user com-
munities is less intellectual than emotional. It suggests an almost organic
allure to dynamic geometry activity—to interacting with mathematics at a
level that is simultaneously palpably virtual and virtually palpable. Writing
as a mathematician self-critically enumerating various factors and conditions
contributing to specific engagements with the process of mathematical dis-
covery, Douglas Hofstadter (1997) invokes this more psychological dimen-
sion of the software’s role:

One further key factor that mustn’t be overlooked is the fortuitous
existence and tremendous power of Geometer’s Sketchpad. Some-
how, this program precisely filled an inner need, a craving, that I
had, to be able to see my beloved special points doing their intri-
cate, complex dances inside and outside the triangle as it changed.
(p. 13)

This aesthetic satisfaction is not simply an effect of novelty and first impres-
sions—the sudden pleasure of encountering an unanticipated, bold idea.
Dynamic geometry ‘experts’ of long familiarity with Sketchpad describe sim-
ilar deep, affective responses. Reflecting upon his years not only pursuing
mathematics with the software, but also researching educational issues and
designing curriculum surrounding its use, Daniel Scher (2003) writes:

The Geometer’s Sketchpad software […] has cast aside any nostalgia
I might feel for my long-departed compass. I suspect [this] is a
familiar story to many readers. On an instinctive level, building
interactive geometric figures feels […] sound. It is also plain fun.
(p. 36)

As the designer of The Geometer’s Sketchpad, and as co-coiner of the term
‘dynamic geometry’ to describe it, I am fascinated by dynamic geometry, by
the nature of its appeal, by the diversity of actors for whom it is tangible
and by the range of contexts in which it finds voice. As a student of the his-
tory of software-specific ideas, I am intrigued by the way in which variations
of Sketchpad ’s core dynamic geometry idea arose semi-independently in the
space of a few years and quickly colonized the globe. [1]

This curiosity distinguishes between the idea of dynamic geometry
and the code in which it finds form. While as a paradigm for exploring
mathematics, dynamic geometry seems vital and durable, actual computer
programs pass brief and brittle lives before hurtling toward technological
obsolescence. Yet somehow these ephemeral software shells enclose the
vivid, robust heart of the dynamic geometry idea. Since the pretense of we
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programmers who claim to be software ‘designers’ is that we aspire, if not
to art, then at least to the pursuit of some discipline of formal values that
inform and illuminate our more mechanical undertakings, these perspectives
sharpen my interest in dynamic geometry’s appeal.

Of course, not everyone’s encounter with dynamic geometry leads to
the enthusiasm of the reports I quote here. And so, if I can better under-
stand that appeal where it is present, then as a programmer I can perhaps
better bottle it for others; I can commodify it. But as an author or inventor
working in the medium of code, I struggle with these questions at more sub-
jective, inchoate levels. As I make additions or changes to a program—a fea-
ture here, a sub-routine there—I must ask if they amplify its dynamic geom-
etry nature or if they suppress it. If the program is an instrument, and
dynamic geometry its music, in what direction lies best tune?

First and foremost, these are aesthetic questions and pursuit of their plau-
sible answers takes us quickly into murky psychological terrain and conjec-
tural evolutionary causalities. Understandably, neither the mathematical nor
the educational literature embraces questions that are so baldly subjective
and psychological. But in attempting at least to acknowledge the apparent
broad impulse toward, and appeal of, these software tools, certain recurrent
ideas in that literature nonetheless suggest that dynamic geometry is some-
how natural or obvious or inevitable.

One sees such a treatment, for example, in the recurring proposition
that the great mathematicians of history—Newton is summoned here, or
Apollonius—have always “thought dynamically”. The idea proposes that,
since dynamic geometry software use encourages the development of some
visual form of mathematical intuition, it helps practitioners see (on their com-
puter screens) in the manner great mathematicians see (in their imagina-
tions). Conceits such as these are provocative and useful—they have allowed
dynamic geometry technology to pass unchallenged by many gatekeepers of
acceptable mathematical or didactic practice—and they are perhaps even
correct. Hadamard (1945), for instance, wrote of the deep importance of
visual and kinetic thinking in the creative processes of eminent mathemati-
cians, and even of their dominance over other modes of speculation.

But while one readily believes that mathematicians care about their abil-
ity to ‘see’ like great mathematicians, and that at least some teachers hold
comparable beliefs, it is far more difficult to presume that younger students
come pre-equipped with similar passions. Blunt evidence on student atti-
tudes towards mathematics and mathematicians [2] suggests that many of
today’s students—at the secondary level at least—might rather pluck out
their own eyes than see like a mathematician. Thus, these propositions,
while in some sense explaining or justifying the role of the software or its
presence in a particular context, seem to me poor placeholders for more
explicit hypotheses about dynamic geometry’s aesthetic appeal or the moti-
vation or impulse toward it.
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A second line of proffered explanation for dynamic geometry’s seduc-
tive naturalness often focuses on its position within the technological tradi-
tion of computers in geometry. From the mathematical perspective, strong
affinities between geometry’s particular combination of deductive rigor and
visual appeal and the computer’s capacity for dead certainties, hard labor,
and—more recently—striking imagery have given rise to a long history of
geometric modeling, investigation and visualization realized in whole or in
part with digital machinery. Since at least the 1950s, software researchers have
pursued various automated models for geometric theorem proving. Paralleling
the emergence of these technologies enabling experimental mathematics
has come a vision of the potential for computer-based geometric modeling
to transform human mathematical activity.

In this reading, dynamic geometry is but one of an evolutionary line of
computational geometry technologies—say, the symbolic geometry technolo-
gies of the 1960s, the first graphical images of the 1970s, the fractal geome-
tries of the 1980s and then the dynamic geometries of the 1990s. But while
this rough overall chronology is indisputable, the fact of its presence in a
larger frame does not vacate the interest or relevance of its substantiating
elements. In other words, the relation of today’s geometry software to other
geometry software sheds no immediate light on the particular pleasures of
dynamic geometry or on the intensely visual and physical processes of build-
ing, manipulating and wielding continuous permutable geometry on-screen
and in real time. These pleasures form the essential particulars by which
dynamic geometry differs from its immediate software antecedents, rather
than the common soil from which they all sprout.

Didactic Mechanism

I believe at least part of this disconnect—between ample descriptions and
absent explanations (or even explorations) of dynamic geometry’s aesthetic
import—reflects less the tendency to inscribe dynamic geometry too quickly
within existing technology traditions than the tendency to place it only within
technological traditions of insufficient scale and depth. The broad social
commotion of recent decades about new and novel digital technologies of
all shapes and colors has so relentlessly focused on the future—on utopic
and dystopic visions of information-age, computer-based, high-tech, multi-
media, virtual, on-line, dot-com e-futures—that it has obscured at times our
ability to look deeply into the technological past. Thus, the dynamic geom-
etry discourse has largely (though not completely) overlooked the rich
human history of older machineries and pre-computational technologies
that—like dynamic geometry—have been deployed as ‘working models’ of
mathematical and physical properties and as conceptual illustrations or
exemplars across the natural sciences.

Historically, innovation in technological devices for didactic purposes has
accompanied (or, often, preceded) corresponding technological advances in
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applied or utilitarian domains: for each new calculating or problem-solving
technology (for each new abacus, say, or astrolabe), there has been the cor-
responding new technological demonstration or pedagogical manipulative
(a locus linkage here, an armillary sphere there). When the idea of educa-
tional technology is interpreted against a history not of recent decades but
of millennia, these didactic mechanisms are its proper object. It is within this
broader view, I argue, that we can find useful theoretical perspectives on,
and greater resonance with, the dynamic geometry experience.

Of course, to read dynamic geometry within a history of mechanical
devices, and of the traditions and philosophies that have inspired them, is
to take giant footsteps away from present context (from the local minutiae
of computer features; from the specific social, educational and psychologi-
cal contexts in which dynamic geometry has been coined and used) as to
risk abstracting or generalizing away all necessary particulars. But there are
strong reasons to continue. If the tradition of didactic or demonstrative
mechanism puts forward the machine both as a model of patterns of nature
and science and as a means to reveal and understand those patterns, then
both geometry and dynamic geometry fall squarely within that tradition.
Few domains offer as close an equivalence between the foundational ideas
or principles of the domain and the mechanical devices that embody them
as does Euclidean geometry. Textbooks call it ‘compass-and-straight-edge’
geometry to note that, here, the constituting ideas are the various defining
forms of mechanical apparatus. The dynamic geometry experience, which
begins with users familiarizing themselves with electronic simulations of the
originary mechanical compass and physical straight-edge, reinforces this
mechanical orientation and even compounds it. To the extent it represents
a double mechanical mediation of geometry, with modern software tools
representing ancient drafting devices in turn representing abstract and trans-
temporal mathematical ideas, dynamic geometry can be said not only to
uphold, but almost gleefully to celebrate, the tradition of mechanism.

Trivializations of the mechanical

But what might such a tradition of didactic mechanism tell us about dynamic
geometry or, for that matter, about other ways of knowing? From the present
perspective, deep within the digital era, the answer might first appear to be
‘not much’. When considering the history of mechanism—and especially that
of explicitly demonstrative, didactic mechanisms—it is tempting to mistake an
earlier era’s predisposition to the mechanical, and to mechanical forms of
explanation, as implying an era of only simpler or more obvious truths. The
promise of exposed clockwork denies the possibility of hidden meanings and
unseen movers. As scientific epistemology, it is distinctly pre-psychological,
pre-quantum-mechanical, in its imputation that fundamental structure can
always be brought to the surface: to expose a phenomenon is to explain it.

Current scholarship often adopts this sort of confining interpretation
when it locates and limits the tradition of demonstrative mechanism to within
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the temporal and ideological bounds of the discourse of mechanistic philos-
ophy. This is, of course, the intellectual movement that fueled the scientific
revolution and much of the instrument- and machine-dominated imagination
of the Enlightenment. In this philosophy, scientific understanding is built
upon the idea of the self-regulating and self-governing clockwork, rather than
around the more opaque teleologies of vitalism and scholasticism. From its
seventeenth-century roots, the movement flowered quickly. By the middle of
the eighteenth century, for example, in his tract Man a Machine, the atheist
physician Julien de La Mettrie (1748/1912) could read all of human physiology
and physiological homeostasis through directly mechanical conceits:

The human body is a watch, a large watch […] If the wheel which

marks the seconds happens to stop, the minute wheel turns and

keeps on going its round, and in the same way the quarter-hour

wheel, and all the others go on running when the first wheels have

stopped because rusty or, for any reason, out of order. (p. 141)

This philosophical backdrop, in which imagined or metaphorical
machines serve as intellectual emblems of self-evidence and self-gover-
nance, and in which machines serve as a basis or model of insight and
explanation, is often seen as emerging in response to growing technologi-
cal sophistication of utilitarian machinery—of time pieces, navigational
instruments and the engineering apparatus of agriculture, architecture and
warfare. In other words (the reasoning goes), machines must achieve a cer-
tain complexity of function in order for a description of their workings to
achieve the status of intellectual explanation. And once that complexity has
been broadly achieved or perceived, it becomes natural to imagine actual
machines being built—by philosophers, scientists and educators—as
explanatory devices demonstrating simpler or more accessible scientific
principles. Thus, proceeding down this line of thought, one can limit the
role of the actual demonstrative mechanism to particular didactic contexts
within the era of mechanistic philosophy’s currency, commencing perhaps
with the scientific revolution and petering out of steam, as it were, with
Watt’s engines two centuries later.

Popular or non-academic conceptions of the tradition of mechanism are
hardly more generous in the role and influence they accord to didactic
mechanical devices. Present-day fiction and film frequently limit their por-
traits of mechanism—particularly classical, pre-electronic mechanism—to
the distinctly improbable and the decidedly unreliable. With the occasional
exception of the various technologies of violence and war, the dramatic pur-
pose of the machine is either to function against all possible odds (the Rube
Goldberg mechanism) or to malfunction vividly, just at the moment it
becomes essential (“Captain! It’s jammed!”).

Caught between these academic and popular conceits, our present-day
images of yesteryear’s mechanisms are to be forgiven some degree of pejor-
ative stereotyping. The orrery of one’s mind’s eye may be ornate in its brass
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gearings, but alas no longer functions. Though it is lovely—mounted on its
mahogany pilaster—it seems also slightly precious and perhaps a touch
absurd. We delight in finding such machines well-preserved in science
museums, but otherwise do not miss them. Along with linkages, screws and
inclined planes, they evoke a time when known physical laws still bore a
correlation to reasonable intuition, when theories sought to simplify rather
than complicate phenomena and when a working facility with the principles
of engineering fell well within the realm of the aspiring polymath. Con-
fronting these simple bygone mechanisms from our contemporary, post-mod-
ern vantage—from this era of complex systems and non-linear dynamics, from
so far along the information highway—we interpret their intent to simplify as
simplistic and their desire to move structure toward the surface as only—or
inevitably—superficial.

This would be a grievous mistake, for these conceptions—scholarly and
popular—are almost entirely wrong. To relegate the impulse toward demon-
strative mechanism to an Enlightenment sense of didacticism incorrectly
imagines the timetable of such technologies’ evolution (and demise) while
also underestimating their intellectual import or moment across that time-
table. First, I argue, the attention such misconceptions pay to the scientific
revolution and the Enlightenment overlooks a much broader cultural and
historical matrix of demonstrative mechanism. Second, in heeding only the
didactic and ostensibly educative role of demonstrative mechanism, such
misconceptions ignore the signal fact that—across this broader history and
in all moments within it—demonstrative mechanisms were deployed as
often to confound as to reveal. They bear witness to sorcery as often as to
science and they stand in esoteric, as often as populist, relations to human
truth and knowledge. Any account of dynamic geometry in the tradition of
didactic mechanism must equally account for magical mechanism, for they
are one and the same.

Meaning and Mechanism

In this section, I examine one by one my objections to a ‘weak’ interpreta-
tion of didactic mechanism. I have suggested that modern popular represen-
tations tend to portray classical mechanism as inevitably a preposterous con-
traption: that is, as parody. And parody obviously has dramatic traction only
against some prior, contrary impulse, some unspoken presumption of rele-
vance, perhaps, or gravitas. But the same requirement of prior context must
apply to mechanistic philosophy’s use of the idea of machine. The view I crit-
icize holds that such a philosophy only becomes possible after an imagined
point of sufficient technological advancement. In other words, La Mettrie can
conceive of man as machine only once machine has become as rich a locus
of complexity and potential as man. But how do such attributes come to
endow our conceptions of ‘prior’ machinery? Where is one to find them? 
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To say such philosophy becomes possible only after mechanical tech-
nologies have reached a high level of sophistication and potential is to
demand context—sophistication and potential—that are not properties of the
machine as object, but rather are human conceptions embodied in discourse
and cultural practice around the machine as idea. Machines co-emerge with
the meanings we impute to them: there has been no era of unmediated tech-
nological production and our machines can only be said to ‘possess potential’
once we are committed to the possibility of such an idea. Thus, the particu-
larly heightened form of mechanistic philosophy found in the Enlightenment
must be inscribed in a larger or looser mechanistic intellectual tradition, one
that parallels, fuelling and being fueled by, the entire history of machine-
making, the whole course of human technological development.

No one documents the scope of this deeper and more epic mechanistic
tradition—of machines being conceived and received as embodiments,
exemplars, repositories and demonstrations of profound scientific knowl-
edge—more clearly than the historian of science Derek de Solla Price. Price
(1964) traced the “strong innate urge toward mechanistic explanation” (p. 10)
back through antiquity to the very edge of pre-history. In the talking statues
and articulated dolls of Middle Kingdom Egypt, in jointed African transfor-
mation masks and traditional Indonesian puppetry, he located the earliest
progenitors of the classical navigational device, the timepiece of the middle
ages, the Renaissance instrument, even the industrial machine and modern
computer. Across this history of machinery, explanation, novelty and
demonstration—more than, say, utility, industry or profit—act as the com-
pelling motors of technology development.  As Price observed:

the most ingenious mechanical devices of antiquity were not use-

ful machines but trivial toys. Only slowly do the machines of

everyday life take up the scientific advances and basic principles

used long before in […] overly-ingenious, impracticable scientific

models and instruments. (p. 15)

Dynamic Geometry as mechanism

How does dynamic geometry fit into the far vaster landscape of demonstra-
tive mechanism? Of course, in one sense, the stretching line segments and
spinning circles of the typical dynamic geometry configuration already
resemble the rods and pulleys, the pistons and axels, of classical mechanical
devices. Thus, a common pastime of the dynamic geometry scholar is to
recreate (within the software environment) the many marvelous linkages
and drawing devices by which the ancients produced their conic sections
and their many other curves. (See, for example, Scher, 2002, or Dennis and
Confrey, 1997.) Perhaps this pastime responds to the way in which the most
common form of historical record of these devices—namely, their schematic
diagrams and their mechanical blueprints—are closer to mathematical fig-
ures than to actual machines and so almost cry out for kinematics, for their
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missing actual dynamics. Our conditioned responses to a particular graphi-
cal configuration or diagram may be entirely different if we perceive it as
depicting ‘an angle from the horizontal’ rather than, say, ‘an inclined plane’.
The former conception is static, while the latter entails an obvious, latent
dynamics: we push things up inclined planes, we roll things down them.
Dynamic geometry is an expressive language within which to frame and
phrase such conceptions. In this sense, dynamic geometry interpretations of
mechanical schemata and motion diagrams make such representations
appear more true to themselves, as well as to the motions and movements
they attempt to describe.

But this correspondence of dynamic geometry to classical mechanism
takes mechanism only literally and not yet metaphorically. The distinction is
important, for the metaphoric meanings we have ascribed to mechanisms
over time are far grander than the machines we have built, with the idea of
mechanism often far more gripping than the machines themselves. For
example, in Diderot’s Encylopédie, D’Alembert’s entry for ‘equation’ spans
many pages. The definition of an algebraic equation as one might under-
stand it today is quickly dispatched and the remaining exposition is devoted
to the description of an astonishing mechanical device that can graph all
possible rational functions of any conceivable degree. The given specifica-
tions are extensive and comprehensive and include some illustrations of the
machine (Le Constructeur Universel d’Equations) in action. [3] Only at the
end of this impressive description do we learn that, due to the tragic con-
straints of friction, the machine is impossible to build for curves of degree
higher than two!

In a mechanically similar vein stands the long search for, and often-
claimed invention of, machinery capable of perpetual, self-generating motion.
Ord-Hume (1977) surveys the wealth of late-nineteenth-century blueprints
and specifications and even scale—though, of course, not working!—models
that so inundated the US Patent Office’s application process that legislative
acts were eventually required to discourage future applicants. In these
examples, though the mechanism itself does not function, the idea of mech-
anism functions clearly—as a placeholder for convincing demonstration,
and as psychological guarantor of physical plausibility against the sugges-
tion of incredible or uncredentialable conjecture.

Duality in Mechanism and Dynamic Geometry

This idea of mechanism, this psychological dimension and presence to it,
underlies much of Price’s account of the two essential domains and applica-
tions of early demonstrative mechanisms: the biological and the astronomi-
cal. From the dawn of our first technologies, it seems, we have built models
of man and models of the cosmos. Thus, on the one hand, we have articu-
lated dolls, statuary, automata and robots; on the other, spinning globes,
anaphoric clocks, orreries and planetaria. Price’s work has traced the linked
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technological trajectories of both domains and demonstrated how through
even to modern times, the techniques and engineering principles of fine
mechanism have appeared first in models within these two domains before
migrating to other machined applications. In summary, he observed:

[Biological and astronomical devices] go hand-in-hand and are
indissolubly wedded in all their subsequent developments. In
many ways they appear mechanically and historically dependent
one upon the other; they represent complementary facets of man’s
urge to exhibit the depth of his understanding and his sophisticat-
ed skills by playing the role of a do-it-yourself creator of the uni-
verse, embodying its two most noble aspects, the cosmic and the
animate. (1964, p. 15)

I find Price’s proposal intriguing as a framework in which to chart some of
the less obvious dimensions of dynamic geometry’s felt experience and per-
ceived meaning. Certainly, the psychological juxtapositions of Price’s dual-
ism are attractive. The biological stands in relation to the astronomical as the
two sides of the pan-historic coin of metaphysics: self to universe; I to other;
here-and-now to everywhere-always. Evolve this dualism to the present era,
however, and we discover that the astronomical universe, though perhaps
expanding physically, has contracted dramatically in its psychological
import. We can now see with powerful devices to its very limits. In under
three hundred years, all of space has collapsed from Newton’s unknowable
chaos infinitum ex atomis to Einstein’s handful of elegant equations. Given
this, can one perhaps imagine, in Price’s dichotomy, the role of the astro-
nomical being displaced by, or extended by, the purely mathematical, as the
new nexus of infinity and unfettered possibility?

If such substitutions—of infinity for eternity, of mathematics for mathesis
—are legitimate, even if only as contemporary shadings or late-modern
symptoms of Price’s more timeless dichotomy, then the dynamic geometry
experience must partake of this same metaphysical tension. This is because
it is precisely the milieu in which the individual ‘touches’ raw mathematical
ideas, where personal volition and physical exertion can have seismic
impact on disembodied abstractions. Davis and Hersh (1980, p. 36) describe
the writerly practice of their ‘ideal mathematician’ as follows: “His writing
follows an unbreakable convention: to conceal any sign that the author or
the intended reader is a human being”. Dynamic geometry experience is the
direct opposite of this, with constant reinscription of the human into the ide-
alized mathematics. It is the dragging of the user’s hand—a co-ordinated feat
of bone and muscle—that claims the center stage and from which all mean-
ing flowers. Rather than erase the mathematical ego, dynamic geometry
inflates it. As the mediating technology by which Price’s biological hand
touches the astronomical or mathematical noumenon, dynamic geometry
provides the metaphoric lever by which Archimedes might move the world.

But this trajectory pursues Price at his most conjectural and metaphysi-
cal. Even at a less ambitious level, Price’s formulation is provocative in its
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attribution of essential meanings to the invention of mechanisms rather than
to their application or (practical or philosophical) purpose. Thus, to refocus
only slightly, the purpose of demonstrative mechanism may be to have been
demonstrated as much as to demonstrate.

We need neither entirely accept this reformulation, nor concern our-
selves with clarifying intended purposes from received or extracted ones, to
be able to recognize the useful attention it draws to two very different func-
tions of the actual demonstration of the demonstrative mechanism: that is,
two functions of the machine in use. The first function—which I have used
until now as definitional—is to establish or communicate the essential phys-
ical properties and workings of the mechanism and to reveal the scientific
principle, the natural law, the inner logic or the outer reality embodied by
these properties. But the second function of the mechanism’s demonstration
is to attest to the ingenuity, skill, authority and potency of the mechanism’s
creator or wielder. Where the subject position of the first function is indirect
and passive—one is demonstrated to—the subject position of the second is
immediate and active: one demonstrates.

These two human roles—demonstrator and demonstratee—form the
opposing faces of dynamic geometry activity. As one wields the dynamic
compass, declaratively summoning circles into existence, one demonstrates
with a voice almost infallibly potent, almost Euclidean or Cartesian in its cer-
tain authority. But the switch from declaring geometry to dragging it about
on one’s screen recasts one completely as the student, the demonstratee.
Here, one’s actions are inquisitive and usually tentative: one is seeking,
rather than stating. As key components are dragged, the responding motions
of one’s figure always appear as improvisational choreography—a single
possible performance drawn from the limitless configuration space of the
mathematics spread across the stage.

These two experiential notes form the particular intellectual and physical
rhythm of dynamic geometry work. There is a constant alternation between
declarative acts of construction and interrogative acts of dragging. There is
a tidal movement between the modality of the certain, the expository and
the declamatory on the one hand and that of the tentative and conjectural
on the other, occasionally even the suddenly startled or the frankly surpri-
sed. These are the motions behind the aesthetic pleasures of and affective
rhythms to dynamic geometry activity described in the literature—behind
Hofstadter’s “intricate, complex dances” and Scher’s sense of “plain fun”.
Demonstrator, demonstratee; actor, audience—one might switch dozens or
hundreds of times between these two modes in a single dynamic geometry
episode. They comprise its magnetic poles.

Magic and explanation

The resemblance of these two roles to the classic didactic relationship—
demonstrator to demonstratee as teacher to student—is hardly accidental.
Positioned at the intersection of these roles, and acting as the communiqué
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between them, the demonstrated mechanical device itself is the site of a
transaction of unequal authority and power. When the mechanism is
deployed in a didactic or explanatory mode, the function of the demonstra-
tion is to harmonize this disequilibrium. By contrast, when the device is
deployed in a more magical mode—when its purpose is to astound and
amaze, rather than to explain or enlighten—its function is to sharpen that
divide, to emphasize the inequity. Actual mechanical demonstrations (like
actual uses of technology) alternate between the two modes, between har-
mony and disequilibrium, between explanation and magic.

Though mathematical practitioners who embrace dynamic geometry
may cringe at, or reject outright, a sense of magic at the core of their tech-
nological practice—for, in a simple view, their mission is that of banishing
magic through rational explanation—nonetheless, I think it is the most just
word. Revelation and obfuscation partake of the same psychological sub-
stance: the idea of the sage moves only slowly from the sorcerer to the
scholar. [4] After all, magic, even more than pedantry, relies on the presump-
tion and, indeed, demonstration of transparency.

Magic long haunts our experience of geometry. Though we may no
longer pursue the mystic practice of the Pythagoreans in our classrooms,
perhaps we retain a taste for them. The best-known proof of the theorem
of Pythagoras, attributed to Bhaskara, still comes labeled only with the sor-
cerer’s imperative: Behold ! And magic long endows our experience of tech-
nology. Today’s robot-making engineers descend directly from the architects
of ancient Egyptian temples, where Hero (62AD) tells us wine poured from
ewers untouched by human hands, doors swung mysteriously open and
shut and stone idols spoke in incomprehensible tongues, all in response to
unseen, barometric mechanisms actuated by priests’ careful regulation of the
sacred fires.

Fulfilling both of these traditions, dynamic geometry is itself rich in
magic. There is magic in its simplified and idealized physics. In dynamic
geometry animations, perpetual motion is a pedestrian state of affairs, not
some mad alchemical dream. D’Alembert’s machine functions properly in
this software world, unlike in our own, for curves of any possible degree,
and Peaucellier’s linkage draws a genuinely straight line for the first time.
There is magic in the causality of dynamic geometry. A nearby circle’s radius
adjusts immediately to reflect changes to some far-off segment—despite an
utter lack of Aristotelian connection between them. A geometric point clings
with parasitic tenacity to its shifting, restless host through no natural law or
physical obligation, but rather because a mathematical voice has intoned “let
it be so”.

And finally there is magic in the very gestures and incantations by which
one directs dynamic geometry activity. Perhaps the two most commonly
issued commands in Sketchpad are the command to Hide, and its opposite,
the apotheosis of deiknume proof, to Show All Hidden. These commands are
used by teachers to structure and present material coherently, by students to
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simplify and direct their focus, by mathematicians to explore and to manage
complexity. Lastly, the command to set mathematical objects into dynamic
geometry is Animate—Dr. Frankenstein’s own imperative voiced from the
laboratory cauldrons of science, technology and magic. If we overlook what
powerful spells these words cast, it is only because we are already comfort-
able in our role as potent adepts.

Thus, we arrive again at our previous conception, of an experience
almost paradigmatically split. The didactic or explanatory aspect of dynamic
geometry concentrates and accentuates a depersonalized conception of
mathematical knowledge—a mathematics that the language of didactic
mechanism presents as self-evident and autonomously functional. But
simultaneously—and from a psychological perspective, almost schizo-
phrenically—the magical aspect of dynamic geometry reintroduces and con-
stantly re-emphasizes the acting human self who stands in relation to that
disembodied knowledge, as witness, as collaborator and, most powerfully,
as omnipotent creator.

These split psychological conceptions of the dynamic geometry subject
position mirror opposing aesthetic motivations to dynamic geometry activity.
Operations in the explanatory mode invoke the critic’s act of aesthetic
detachment, of the willful transformation of subject to object. But dynamic
geometry’s more magical manœuvers invoke the etymologist’s understand-
ing of aesthetic engagement, as a full sensory immersion in experience.
These dimensions to its felt experience elevate dynamic geometry activity
beyond the simple, utilitarian process of drafting animated diagrams of
mechanical linkages. They transform it into a practice in which one tangibly
manipulates not only mathematics, but also one’s own image of the self’s
relation to mathematical curiosity, understanding and production. Our drag-
ging hand invests the causality and consequence of mathematics with our
own almost conspicuous agency. Reciprocally, the ability to influence and
impact austere and heightened mathematical knowledge so directly, so
immediately, in turn elevates the status of that agency—elevates our own
status, as sage and as mathematics’ master.

One subconscious voice at the heart of the dynamic geometry experi-
ence calls us out of ourselves, into detached, aesthetic contemplation of a
plane of pure mathematics. An equal, second voice sings the song of self,
celebrating our majesty, our mastery over that dominion. The deep impulse
to dynamic geometry, and the rhythm of its activity, arise from these voices’
twin duet, from the projection of our volition into geometry’s atemporal
abstraction. Dragging mathematical objects exerts our influence in that
hyperion, building and constructing them asserts our ego—our ability not
only to touch that reality, but to shape it, to define it. In this environment,
the computer mouse in our hand and the dynamic geometry cursor on our
screen are the prostheses of our will and imagination. They form the con-
centrated and distilled simulation of our self that we push before us, beyond
our shadow world and into geometry’s clear, platonic light.
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Notes

[1] Sketchpad’s origin, in a National Science Foundation project in the USA, dates
from the late 1980s (Jackiw, 1991, 2000). At the same time, and independently, a
group of French researchers invented Cabri-Géomètre, a similar program involving
direct manipulation of geometric figures (Laborde et al., 1989). By 2003, there were
at least fifty programs in the same vein, available on the internet, coming from
groups across North and South America, Europe and Asia.

[2] See, for example, Picker and Berry (2000), where an internationally broad spec-
trum of students asked to draw pictures of their ideas of (non-specific) mathemati-
cians create a harrowing portrait gallery of sadists, misanthropes and monsters.

[3] I am indebted to Jean-Marie Laborde, and through him to Michel Carral and
Roger Cuppens, for bringing D’Alembert’s marvelous machine to my attention.

[4] Within Anglo-Saxon traditions of mathematics and magic, Frances Yates (1969)
emblematizes this historical transition in the Elizabethan figure of John Dee (1527–
1608). Scholar, bibliophile and founder of Rosicrucianism, Dee stands between the
hermetic, magical knowledge of H. Cornelius Agrippa and the alchemists, and the
didactic, transparent knowledge of Robert Fludd and the mechanical engineers.
According to Yates, it is as much Dee’s interest in Euclid as in more occult philoso-
phers that led to popular accusations against him of ‘thaumaturgike’ (the making of
wondrous mechanical marvels, one of the branches of mathematics Dee listed in
his 1570 ‘Mathematicall Præface’ to the first English translation of Euclid) and to the
pillaging and destruction of his magnificent library.



CHAPTER 8
Drawing on the Image
in Mathematics and Art

David Pimm

Studies on the foundations of mathematics and mathematical

method should make substantial room for psychology, indeed even

for the aesthetic. (Henri Lebesgue, 1941, p. 122)

Woe betide him who relies solely on mathematics.

(Wassily Kandinsky, 1931, p. 351)

Aesthetic considerations concern what to attend to (the problems, elements,
objects), how to attend to them (the means, principles, techniques, methods)
and why they are worth attending to (in pursuit of the beautiful, the good,
the right, the useful, the ideal, the perfect or, simply, the true). I have delib-
erately framed this specification in general terms, so that it applies equally
well to mathematics as to art, historically the realm of much discussion of
things aesthetic. The remarks that comprise this chapter are, to some degree,
organised around these three categories of the what, the how and the why.

Almost as if prophesying the Bourbaki project which commenced just a
few years later (and which forms one of the focal points of this chapter),
Wolfgang Krull (1930/1987) noted [1]:

Mathematicians are not concerned merely with finding and prov-

ing theorems, they also want to arrange and assemble the theo-

rems so that they appear not only correct but evident and com-

pelling. Such a goal, I feel, is aesthetic rather than epistemological.

(p. 49) 

Krull’s sensibility to a distinction between ‘the correct’ and ‘the compelling’
allows a claim that the aesthetic goal of mathematical organisation can be seen
to have permeated deductive mathematics since its early Greek inception. [2] 

When William Thurston (1994, p. 162) claimed that the job of the math-
ematician is “finding ways for people to understand and think about math-
ematics”, he was going one step further than the common mathematical
view embodied in Samuel Johnson’s peremptory retort, “Sir, I have found
you an argument; but I am not obliged to find you an understanding”.
Following a discussion about some challenges of machine computational
proofs in mathematics, Yuri Manin (1977, p. 51) offered the maxim that “a
good proof is one which makes us wiser”. In doing so, he was not only
making an aesthetic claim about the nature of ‘the good’ in mathematics, he



was also tacitly echoing a centuries-old distinction between wisdom and
understanding (for discussion, see, for example, Read, 1960, p. 17). 

Claude Chevalley, when looking back over his many years of involvement
with the Bourbaki group since its inception, echoed this aesthetic:

One mustn’t forget that it was Bourbaki who introduced axiomati-
zation into France. I would also claim something else: the princi-
ple that every fact in mathematics must have an explanation. This
has nothing to do with causality. For example, anything that was
purely the result of a calculation was not considered by us to be a
good proof. (in Guedj, 1981/1985, p. 22)

Finally, historian of science Catherine Chevalley, writing of her father
Claude, memorably observed:

For him, mathematical rigour consisted of producing a new object
which could then become immutable. If you look at the way my
father worked, it seems that it was this which counted more than
anything, this production of an object which, subsequently, became
inert, in short dead. It could no longer be altered or transformed.
This was, however, without a single negative connotation. Yet it
should be said that my father was probably the only member of
Bourbaki who saw mathematics as a means of putting objects to
death for aesthetic reasons. (in Chouchan, 1995, pp. 37-38; my
translation)

This whole extract refers to the themes of this chapter: that of constructing
mathematical objects ‘well’ and then admiring them once they were perma-
nently fixed, if no longer living, no longer warm. [3] After all, surely:

Truth is truth
To the end of reckoning.
(Shakespeare, Measure for Measure, Act V, Scene 1)

Nevertheless, all of these mathematicians I have cited above were making
broader aesthetic claims in their whys than simply the pursuit of ‘the true’. 

However, the preserve of the true is not restricted to mathematicians.
For instance, Paul Cézanne, in a letter dated 23rd October, 1905 to his friend
Emile Bernard (1926, p. 67) signed off with the following acknowledgement
and promise:

I owe you the truth in painting and I will tell it to you.

There is a nice ambiguity here concerning both how to parse the phrase
‘truth in painting’ [4], as well as why he chose/needed to ‘tell it’ rather than
‘show it’, evoking for me Wittgenstein’s (1922/1958) striking assertion that
“What can be shown cannot be said” (p. 79; italics in original). In an
important sense, this chapter is trying to examine possible demarcations be-
tween image and word in relation to mathematics, as well as beliefs about
the relative propriety of those things that can be shown and those that can
be said. Artist Theo van Doesburg (1930/1974) proclaimed:
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The evolution of painting is nothing but an intellectual search for

the truth by means of a visual culture. […] We are painters who

think and measure. […] Most painters work like pastry-cooks and

milliners. In contrast we use mathematical data (whether Euclidean

or not) and science, that is to say, intellectual means. […] All instru-

ments that were created by the intellect due to a need for perfec-

tion are recommended. (pp. 181-182)

In so doing, van Doesburg was evoking similar concerns to mathematicians,
namely attention to truth, to method and to perfection, albeit in a ‘visual cul-
ture’ (see Pimm, 2001). Taken in the context of images, these three foci of
attention (linking, respectively, to the why, the how and back to the why
again) connect with this chapter’s central themes. Discussion related to a
human ‘need for perfection’ is also continued in the closing Chapter ω. In
particular, I wish to explore here to what extent elements of twentieth-
century mathematical culture incorporated and drew on the visual and to
what extent they rejected it. Part of this exploration will involve the juxta-
position of views of mathematicians and practitioners of the arts, views that
I find at times strikingly parallel.

But before pursuing these threads too assiduously, I feel we need to
take heed of van Doesburg’s sometime colleague and friend, the artist El
Lissitsky (1925/1968), who, using the abbreviation ‘A.’ for art, warned:

the parallels between A. and mathematics must be drawn very

carefully, for every time they overlap, it is fatal for A. (p. 348)

Making Sense of ‘Aesthetics’

Many books on philosophy trace the origin of the word ‘aesthetics’ back to
Alexander Baumgarten (1750/1961), specifically the Latin of his book title
Aesthetica. However, because of the word’s etymological origin in the Greek
verb aisthanomain, meaning “to perceive”, and the noun aisthesis, meaning
“sensorial perception”, the meaning of ‘aesthetics’ for me is firmly rooted in
the senses by means of which we perceive. [5] I hence take the term ‘aes-
thetic’ here to refer more to the sensorial than (necessarily) the beautiful and
to mathematical objects and artifacts (such as theorems, proofs or methods)
equally well as to instances of visual art (such as paintings, collages or
sculptures). Additionally, I choose to link the aesthetic to the expression
‘ways of seeing’ (see, for example, Berger, 1972), as well as to the ‘whys’
that are offered for seeing things in this way rather than that.

As the chapter title suggests, my central concern here is the question of
the drawn (the image and, especially, the diagrammatic) and its complex place
in mathematics, not least its movement in and out of favour at various times
and in different cultures. This concern cuts across all three of my earlier-
identified foci of the what, the how and the why, as images have had a
strong involvement in all three.
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For instance, Nicolas Goodman (1983), albeit in the context of a discus-
sion of Errett Bishop’s constructivist philosophy of mathematics, observed that:

There has been a strong trend in the development of mathematics in

the twentieth century to replace seeing with understanding. (p. 63)

He was remarking upon a shift from computational to conceptual proofs,
proofs that were frequently non-constructive in nature. (Such arguments seek
to convince by method alone rather than by making present.) But his words,
which evoke Chevalley’s claim about what made a good proof for Bourbaki,
also indirectly draw our attention to the move during much of the last cen-
tury away from visual representations in mathematics, away from the senses.

The nature of Goodman’s claim is complex, as vision provides both a
key means of understanding as well as comprising a core metaphor for it in
English. (For example, I can say both “I can see that it is true” and “I can
see why it is true”.) Vision plays a central role in both mathematics and art
(despite some philosophers wishing to disconnect mathematics from ‘sense
experience’). 

Sight is also mathematically implicated in the very word ‘theorem’, with
its roots in the Greek verb theorein – ‘to look at’ – and the noun theoria,
referring to ‘contemplation’ (especially of Theos – God). Thus, vision – seen
as a human sense – has important links to the religious metaphor of ‘light’
and, hence, to the spiritual. As René Thom (1971) noted: 

And according to a long-forgotten etymology a theorem is above

all the object of a vision. (p. 697)

But what of direct mathematical connections between theorem and image?
As one instance, albeit a negative one, James Gleick (1987), in his discus-
sion of the mathematical antecedents of chaos theory, observed:

In part, Bourbaki began in reaction to Poincaré. […] Logical analy-

sis was central. A mathematician had to begin with solid first prin-

ciples and deduce all the rest from them. The group stressed the

primacy of mathematics among sciences, and also insisted upon a

detachment from other sciences. Mathematics was mathematics –

it could not be valued in terms of its application to real physical

phenomena. And above all, Bourbaki rejected the use of pictures. A
mathematician could always be fooled by his visual apparatus.

Geometry was untrustworthy. Mathematics should be pure, formal,

and austere. (pp. 88-89; my emphasis)

Although somewhat over-enthusiastic in tone, Gleick was nevertheless
expressing one common view about the work and influence of this signifi-
cant group of predominantly French mathematicians. 

In the next section, I will look more closely at this claim with regard to
the shunning of images, with more mathematical voices present. For now, I
shall make do with the words of Pierre Cartier (one of the later Bourbaki)
who, when asked in interview why there were no images in the Bourbaki
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books, responded in the following terms: “The Bourbaki were Puritans and
Puritans are strongly opposed to pictorial representations of truths of their
faith” (in Senechal, 1998, p. 27).

The Loss of the Image

In Purity and Danger, her study of pollution and cleanliness rituals (a study
of theology interacting with anthropology), Mary Douglas (1966) identified
a variety of ways in which ‘dirt’ offends against order and ‘hygiene’ offers a
set of processes to try to ensure it. There is an identifiable connection
between her notion of purity and the mathematician’s need to maintain the
purity of ‘pure’ mathematics (and its particular interaction with the unease –
or stronger – about how ‘pictures’ debase this purity). 

Douglas singles out classification (a common pure mathematical activity)
as a key element underlying rituals by means of which purity is maintained.
One question that the term ‘pure’ mathematics invites concerns the nature
of this purity, as well as enquiring of what contagion has it been cleansed,
leaving it undefiled. And what dangers stalk, sensed perhaps but unseen, in
the long grass?

André Weil (1948), admittedly somewhat in passing, put it thus:

However, if logic is the hygiene of the mathematician, it does not
provide his food; the major problems comprise the daily bread by
which he lives. (p. 309; my translation)

When Charles Hermite wrote in 1893 (to analyst Thomas Stieltjes right in the
middle of a technical letter dated May 20th) in the following terms:

I turn away in terror and horror from this lamentable plague of
functions which have no derivatives. (1893/1905, p. 318; my trans-
lation)

we sense we are in Douglas’s territory of both ritual pollution and taboo.
Similarly, in 1908, and also in regard to real functions, Henri Poincaré com-
plained that:

Logic sometimes begets monsters. For fifty years a host of bizarre
functions have been conjured up which seem to be doing their
best to be as unlike as possible honest functions which serve some
purpose. No longer continuity, or perhaps continuity but no deriv-
atives, etc. What is more, from the logical point of view, it is these
strange functions which are the most general; those one runs into
without having sought them out no longer show up except as a
special case. They are granted only a very small corner.

Formerly, when one came up with a new function, there was a
practical end in mind; today, they are expressly invented to show
up the reasoning of our forebears and nothing more will ever
come of them than that.
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If logic were the sole guide of the teacher [6], one would have to
begin with the most general functions, that is to say with the most
bizarre. It is the novice who would need to be placed in touch
with this teratological museum [...] (pp. 131-132; my translation)

Poincaré too was writing in terms that Mary Douglas would recognise and
understand. [7] 

There is a wonderful symbolic link between ‘logical’ and ‘teratological’,
between the at-times errant (‘monstrous’) progeniture of the mind and of the
body. This link evokes so well Douglas’s chilling example of the Nuer who
powerfully reclassify anomalous “monstrous births” as “baby hippopotamuses
accidentally born to humans”. This conceptual move permits the humane
and appropriate response of their immediate return to their rightful place:
“They gently lay them in the river where they belong” (p. 39).

Finally, in discussing the dangers of over-abstraction from the empirical,
John von Neumann (1947, p. 196) expressed an antithetical concern to that
of preserving purity [8]:

In other words, at a great distance from its empirical source, or after
much ‘abstract’ inbreeding, a mathematical subject is in danger of
degeneration. 

I wish to claim there is a non-trivial parallel to be drawn between the threat
of pollution that Douglas examines in a variety of cultures and the threat of
the diagrammatic image tainting mathematics, in particular its ‘logic’. The
specific threat is that their inclusion would thereby render mathematics’
proof rituals ineffective, thereby resulting in a need to declare images taboo. 

In the next sub-section, therefore, I explore instances of the image being
seen as such a monster in a religious context, as something somehow threat-
ening, of which theology (and pure mathematics) needed to be purified.

The discarded image

C. S. Lewis’s (1964) book of this title is about the vanished mediaeval world-
view in Europe and how hard it can be to make sense of contemporary lit-
erature without knowing what it was. Much of that world-view was religious
and imagistic. For instance, in her extensive study of the erasure of images
due to English Reformation iconoclasm in the sixteenth and seventeenth
centuries, Margaret Aston (1988) wrote on the importance of images:

The image was not peripheral to medieval Christianity. It was a
central means for the individual to establish contact with God. […]
Imagery passed from being a means of instruction to being a
means of communication between worshipper and worshipped.
(p. 20)

There is a sense, however, in which images themselves (at least those con-
nected to Catholic religious art of the European mediaeval period) were
forcibly discarded completely in certain quarters. And mid-twentieth century
published mathematics in Western Europe and North America saw a similar
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discarding of images in advanced textbooks. As quoted in the introduction
to this chapter, in response to the question ‘Why is there a lack of any kind
of visual illustration in most of Bourbaki?’, Pierre Cartier commented, “the
Bourbaki were Puritans”. He went on the expand on his view:

The number of Protestants and Jews in the Bourbaki group was
overwhelming. And you know that the French Protestants especially
are very close to Jews in spirit. I have some Jewish background
and I was raised a Huguenot [Calvinist protestant]. We are people
of the Bible, of the Old Testament [...] (in Senechal, 1998, p. 27)

Cartier’s observation provides a helpful link between twentieth-century
mathematical presentation practices and a somewhat-forgotten period in the
history of Western European religious art. This was especially so in England,
where (unlike in France) a form of protestantism became the established
faith. In consequence, the iconoclastic effects – because both sanctioned by
authority and even institutionalised in law – were the more extreme and
consequently the more visible. 

In his history of British art, Andrew Graham-Dixon (1996) observes of
a reformed English church:

It is a place that has been purged and purified, denuded of image
and relic and every last vestige of superstition. It has been stripped
of everything, in fact, except the Word. (p. 32)

I am struck how this quotation could equally well describe tomes of Bourbaki’s
Eléments de Mathématique. This description also echoes the earlier words of
a fifteenth-century English archbishop, who mused, “Were it a fair thing to
come into a church and see therein none image?” (cited in Aston, 1988, p. 143).
Graham-Dixon goes on:

Their argument [the first English Protestants] with the old religion,
the Roman Catholic faith, was that it confused the things of this
world with the things of the next […] They were disturbed by what
they saw as a haemorrhaging of holiness from its proper place,
heaven, so that, dispersed among the images and cult statues and
shrines and relics of the Catholic world, it had become fatally diluted.
[…] To the Reformer, the image was quite simply a false idol, the
symbol of a dark and demon-haunted pagan past which was soon
to be left behind. Only the Bible, the authentic word of God, read
and preached and inwardly meditated upon, could lead people to
salvation. (p. 35)

How familiar this argument seems when transplanted to mathematics and
the role of diagrammatic images there. However, does it make sense to see
the Bourbaki as a self-appointed group of Puritans going about their busi-
ness of effacing, even eradicating, images, whitewashing or smashing them
out of existence? I think not. In her book, Aston revives a then-contempo-
rary now-obsolete pair of terms ‘iconomach/iconomachy’ alongside the more
familiar duet of ‘iconoclast/iconoclasm’ [9]: 
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I use iconomach alongside iconoclast to distinguish those who were
hostile to religious images from those who wished to break them.
[…] While iconoclasm necessarily involved iconomachy, the reverse
was by no means true. Not all opponents were destroyers. (p. 18) 

I am not claiming the Bourbaki were iconoclasts in this sense, but the
power and influence over professional mathematical practice which they
came to wield in parts of western Europe and north America (on this see,
for instance, Mandelbrot, 1989) in the three decades following the second
world war perhaps enabled their public iconomachy to become institution-
alised as a form of iconoclasm. 

In mathematics, as much as in religious art, one core issue is that of sub-
stitutability: the image can seem as real as the thing, can take its place. In
geometry, as Dick Tahta has observed to me, the symbol for a circle is a cir-
cle. If for no other reason than its English prepositional collocation, to be
an image implies it should be an image of something. This, in turn, neces-
sarily requires an image be distinct from the thing (‘the original’) of which
it is an image; images are consequently in a secondary, dependent relation
to things. As Aquinas argued, “the image must distinguish itself from the
original – if not, it vanishes into it” (in Besançon, 2000, p. 163). [10] To have
an image is to fail to have the thing. (In passing, the same is true of ‘paint-
ing’ – to be a painting immediately gives rise to the question ‘what is it a
painting of?’, a question that became an initial challenge for ‘abstract’ art.
While this is also true of words, it seems a far less common move to demand
what this word is a symbol for.)

The historical relations between sacred image, nature and truth,
distinct from any theoretical history of knowledge or ideas, persist-
ently attempt to describe, explain or reconcile the distance between
icon or image and an ‘authenticity’ of artistic figuration. (Steiner,
1992, p. 7)

Or, as Graham-Dixon (1996) observed about church iconography, “Images
were signposts to the next world, placed in this one” (p. 18). 

One concern of the Bourbaki was their insistence on the separation
between symbol and object, and the rooting out of abus de notation, despite
the fact such confusions between ‘the things of this world and the things of
the next’ can actually significantly improve mathematical performance.
Mathematics relies on links between surface symbolic forms and mathemat-
ical ideas, mathematical ‘objects’, on being able to move reliably from rep-
resentation to ‘truth’. One of the challenges in exploring the place of images
in mathematics involves questions of how this is to be done. 

Aston once again:

When the iconoclasts went to work they were concerned with atti-
tudes as well as objects. They wanted to erase not only the idols
defiling God’s churches, but also the idols infecting people’s
thoughts. […] The faith was remade by what believers were shut off
from, as well as by the new certainties they bumped into. (p. 2)
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One thing that Bourbaki readers were shut off from was images (another
was specific examples, a third applications). And as the influence and power
of this group and its publications grew in the post-world-war-II period, this
style of mathematical ‘worship’ also grew. Aston goes on, emphasising the
systematic and the ideological nature of the iconoclast enterprise, while also
seemingly prefiguring both the frame and scope of the Bourbaki project:

Protestant iconoclasts believed that widespread destruction was
necessary for the renewal of an entire religious system. […] They
regarded themselves, indeed, as having taken on a task comparable
to the first conversion of the world. (pp. 5, 9)

When Pierre Cartier said of Bourbaki that:

The stated goal of Bourbaki was to create a new mathematics. He
didn’t cite any other mathematical texts. Bourbaki is self-sufficient.
[…] It was the time of ideology. Bourbaki was to be the New
Euclid, he would write a textbook for the next 2000 years. (p. 27)

the parallel seems strikingly strong. The Bourbaki even referred to the collec-
tion of already-published volumes in their encyclopaedic Eléments de Mathé-
matique as the ‘canonical Bible’ (see, for example, Beaulieu, 2000, p. 227).
And François Le Lionnais (1962), in the strongly pro-Bourbaki collection he
edited Great Currents of Mathematical Thought, entitled the first part of the
expanded two-volume second edition, ‘The temple of mathematics’.

While describing the core of the twentieth century as a ‘century’ of ideol-
ogy, Pierre Cartier also specifically compared the manifestos of the surrealists
and the Italian futurists in art with the Introduction of Bourbaki’s first ‘fascicle’
of results. [11] In mathematics, that ideology was in large part one based on
method. But it also arose from a de-emphasising of particular content, of refra-
ming the core element of mathematical attention as that of relation rather than
object.

Finally, as a transition to questions of ‘method’, in his introduction to
the first part, ‘Structures’, of this collection, Le Lionnais (1948) lauded:

Mr Nicolas Bourbaki, that many-headed mathematician, who has
undertaken to reformulate the exposition of Mathematics by taking
it from its starting points – not historical but logical – and then
striving to reconstruct the complexity by means of materials passed
through the sieve of the axiomatic critique. (p. 22; my translation)

Modern Madness in Method

Greater than the temptations of beauty are those of method.
(James Richardson, 2001, p. 26)

The method in focus here, unsurprisingly, is the axiomatic method. But it
has a curious history. And despite Bourbaki’s insistence on mathematics as
a singular, unitary entity, he often referred to the axiomatic method in the
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plural, as ‘axiomatic methods’. For instance, in a call to arms found in an
article entitled ‘Modern axiomatic methods’, Dieudonné (1962/1971) exhorted
us to follow him:

Hence the absolute necessity from now on for every mathematician
concerned with intellectual probity to present his reasonings in
axiomatic form, i.e., in a form where propositions are linked by
virtue of rules of logic only, all intuitive ‘evidence’ which may sug-
gest expressions to the mind being deliberately disregarded. (p. 253)

Logic (and its ‘cold light’) and intuition (to which images become linked)
are thus polarised, with intuition and its attendant images vilified for math-
ematical presentation as opposed to discovery.

One customary place to start in discussions of ‘modern’ mathematics is
with B. L. van der Waerden’s influential 1930 treatise Moderne Algebra. (It
was only with its fourth edition in 1959 that the adjective ‘modern’ was
dropped, reflecting both a chronological shift of reference, but also that the
orientation to algebra it offered had become mainstream.) This text, as well
as the work of Hilbert, Noether and other German mathematicians, formed
the main exemplars that inspired the Bourbaki group.

A full and detailed examination of this text, not least in terms of its pub-
lic inauguration of a full embodiment of ‘modern’ algebra, can be found in
Corry (1996). Corry attempts a retrospective characterisation of the ‘structural’
approach in algebra and includes the axiomatic method as a key necessary
but not sufficient condition. For him, this approach also de-emphasises solv-
ability of equations and the particularities of the real or complex numbers.
These contributory elements are motivated by certain aesthetic valuing of
generality and abstraction, for instance, over computability (first with equa-
tions, later with, for example, Galois groups).

Just before the first publication of van der Waerden’s book, the prominent
German algebraist Helmut Hasse (1930/1986) gave a public lecture at the
Deutsche Mathematiker-Vereinigung entitled ‘The modern algebraic method’.
For him, this algebraic method helped to discern and even to create a like-
ness among unlike things – they were similar because they could be treated
as if they were the same:

Modern algebra winds a unifying band of method around essen-
tially different things and in this way contributes to the required
organic and systematic unification of mathematics. (p. 19)

Hasse characterised this method both in terms of contrast with those of
analysis and with earlier algebraic approaches. He offered two reasons for
operating in an abstract setting: the greatest possible generality of content
and the greatest possible economy of means. It is this latter aim that “repre-
sents the key difference between the older and the modern conceptions of
algebra” (p. 19).

Embedded in a discussion of the appropriate location of the “so-called
fundamental theorem of algebra” (p. 20), Hasse drew attention to subject-
matter frontiers: 
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As things stand now, what must be said when the idle question is
posed of what is the boundary between algebra and the others
mathematical disciplines, is that this is not so much a question of
substance but rather of method. (p. 20; italics in original)

In this view of the far greater salience in modern algebra of the how over
the what, Hasse significantly predated the trenchant expression of the core
of Modernist painting by its chief advocate, the critic Clement Greenberg
(1960/1965):

The essence of Modernism lies, as I see it, in the use of the char-
acteristic methods of a discipline to criticize the discipline itself –
not in order to subvert it, but to entrench it more firmly in its area
of competence. […] It quickly emerged that the unique and proper
area of competence of each art coincided with all that was unique
to the nature of its medium. The task of self-criticism became to
eliminate from the effects of each art any and every effect that
might conceivably be borrowed from or by the medium of any
other art. Thereby each art would be rendered ‘pure’, and in its
‘purity’ find the guarantee of its standards of quality as well as of
its independence. ‘Purity’ meant self-definition, and the enterprise
of self-criticism in the arts became one of self-definition with a
vengeance. (pp. 193-194)

Thus, in regard to Greenberg’s first sentence above, we can see the exten-
sive growth of ‘meta-mathematics’ during the first half of the twentieth cen-
tury as being just such a self-critical examination, one using the tools of
mathematics and logic to explore the scope of mathematics itself. In partic-
ular, this reflects what Corry (1996, 1997) refers to as a ‘reflexive’ use of
mathematics, in order to ascertain its own methodological limits, another
aesthetic criterion. This development also connects to the query raised in
Chapter α concerning possible reasons for the rise of meta-mathematical
activity and preoccupation at the beginning of the twentieth century. But
considerably earlier, Greenberg (1939) had written:

The very values in the name of which he [the poet or artist]
invokes the absolute are relative values, the values of aesthetics.
And so he turns out to be imitating, not God – and here I use ‘imi-
tate’ in its Aristotelian sense – but the disciplines and processes or
art and literature themselves. This is the genesis of the ‘abstract’. In
turning his attention away from subject-matter or common experi-
ence, the poet or artist turns it in upon the medium of his own
craft. The non-representational or ‘abstract’, if it is to have aesthetic
validity, cannot be arbitrary and accidental, but must stem from
obedience to some worthy constraint or original. This constraint,
once the world of common, extraverted experience has been
renounced, can only be found in the very processes or disciplines
by which art and literature have already imitated the former. These
themselves become the subject matter of art and literature. If, to
continue with Aristotle, all art and literature are imitation, then
what we have here is the imitation of imitating. (pp. 36-37)
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Shading one’s eyes only slightly, it is possible to read this as a description
of modern algebra, of a broad method becoming the object of study once
the material world has faded (with applied mathematics seen as a form of
imitation). And the guide that saves the mathematician from a study of the
arbitrary is an aesthetic one. This view is echoed, in part, in von Neumann’s
(1947) chapter ‘The mathematician’, where towards the end he repeatedly
touched on the role of ‘the aesthetic’, offering two criteria for salvation from
mathematics becoming:

more and more purely aestheticizing, more and more purely l’art
pour l’art. This need not be bad, if the field is surrounded by cor-
related subjects, which still have closer empirical connections, or if
the discipline is under the influence of men with an exceptionally
well-developed taste. (p. 196)

When republished in The Mathematical Intelligencer, Hasse’s essay was
accompanied by some ‘Comments’ made by Bruce Chandler and Wihelm
Magnus (1986) some sixty years later, in which they revisionistically claimed: 

What Hasse calls the ‘modern algebraic method’ is actually the
axiomatic method. […] It is strange that he claims the method as
being typical for algebra. The axiomatic method started, of course,
with geometry. (p. 24)

For them, in other words, the ‘proper area of competence’ of ‘the axiomatic
method’ was the whole of mathematics. Yet Hasse deliberately addressed his
comments “to analysts whose approach and methods are directly opposite
to modern algebraic techniques” (p. 18). For me, the key point to underline
is Hasse’s claim that this method did originate both in the twentieth century
and in algebra, a subject area that has frequently struggled in terms of its
objects. This is perhaps because algebra is more concerned with the scope
of its techniques, its computations and manipulations, and gets increasingly
detached from specific objects. [12] In the Bourbaki movement, we see an
extensive implementation of ‘the’ axiomatic method (which, like its self-
styled scientific forebear, seems only subsequently to attract the assertive
definitiveness of the definite article) put forward as the arbiter (judge,
authority, touchstone) of ‘good’ mathematics or even the ‘only’ mathematics,
the one true faith. 

Time and Motion Studies

The Cubists preferred to be intelligent, scientific, and said “It’s not
enough to see, one must also know”. From this moment, the con-
structive arts are seen to be completely new foundations. The con-
tent of such works is no longer aestheticism or painting as such,
but the two moments of time and movement. From my point of
view, our epoch is the dynamic epoch. […] Now there is simply
movement. (Kazimir Malevich, in Gavin, 1990)
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In cubism, we find representations of plurality, of elements of atomised see-
ing occurring at the same time, as if the viewer were able to occupy different
points of view at one time, or as if the viewer were seeing through the eyes
of several observers at once. 

Picasso had pictured the fifth Demoiselle from two diametrically
opposed points of view simultaneously, which not only exploded
the Renaissance convention, but also undermined a whole series
of the conventions by which we represent simultaneity in an art
object that doesn’t move. (Everdell, 1997, p. 249)

Cubism was about plurality of point of view, sharing different perspectives
‘at once’. Futurism was more concerned with machines in motion, providing
static images of the dynamic moving object, not only from multiple points
of view but also at plural times. Both of these early twentieth-century art
movements involved further undermining classical conventions of much of
the previous centuries.

In historical academic painting, there was a strong aesthetic of not allowing
brushmarks to be visible in finished paintings. (This was so instilled in the
community as to be seen as a mark of competence – it is frequently the fate
of avant-garde art to be criticised as incompetent. [13]) The means of produc-
tion were not to be in evidence, nor was the meaner, the one who meant it
to be made. The drawer was thereby ‘encouraged’ to participate in his or her
own erasure (apart from the only text customarily found on the image, the
painter’s signature), along with any sign of the process of drawing the drawn.
Along with the person, most traces of time have been effaced. 

Kandinsky (1926/1979) wrote:

Time, in painting, is a question in itself and is very complex. […]
The apparently clear and justifiable division:

Painting – space (plane)
Music – time

has upon closer, though yet hasty, examination suddenly become
doubtful and, as far as I know, this first became apparent to the
painters. The tendency to overlook the time element in painting
today still persists. (pp. 34-35)

Mathematics is overwhelmingly concerned with generality, with discovering
and deploying ways of dealing with the many as if it were one – and doing
so at one and the same time. The previous section has alluded to the
increasing decontextualisation of mathematics during the twentieth century
with the march of ‘modern’ algebraic methods, in particular in the Bourbaki
push for ‘maximal generality’ (see Corry, 1997). 

For over two thousand years, public mathematical text has been attended
by two further absentings: detemporalisation and depersonalisation. (This
important ‘de-’ triad is discussed further in Chapter ω, and can be found in
Balacheff, 1988.) Both detemporalisation and depersonalisation connect into
my third category mentioned at the outset, the why, which is related to

172 Mathematics and the Aesthetic



questions of ‘the aesthetic of purity’ in pure mathematics. My central focus
in this section, then, is on certain systematic means by which time is erased
from mathematical writing, while exploring why it necessarily lingers on
with mathematical diagrams (which thereby suggests a further possible rea-
son for mathematical iconomachy). 

In the next section, I look at the role of the person in mathematical text,
by means of the notion of ‘agency’. For, in the words of Preston Hammer’s
aphorism, the most neglected existence theorem in mathematics is the exis-
tence of people (in Brookes, 1970, p. vii). However, as will soon become
apparent, detemporalisation and depersonalisation are very closely linked.

On time in mathematics

As it was in the beginning, is now, and ever shall be, world without
end. Amen. (part of the Christian lesser doxology)

This ancient text – part biblical (‘world without end’), part early addition in the
fifth century AD – evokes for me the mathematician’s world, one without
time, where truths are always and already true. What are some contributors
to how this sense is achieved? Below, I offer four different sources, two aris-
ing from mathematical text practices, two related to the nature of geometric
diagrams and the complex procedures that emerge from the need to link
them to the written text. The latter pair are, however, only two among the
many ‘brushstrokes’ in the sand that need assiduously to be erased.

(a) Some temporal textual practices

One contribution is undoubtedly through the imposed syntax of mathemat-
ical prose itself, in particular by means of its customary verb tense structure
and other sequencing markers. (Part of learning mathematics is learning to
speak and, especially, to write mathematically.) One significant feature of
mathematical text is the extensive use of connectives, such as hence, there-
fore, but, words which explicitly mark relationships among antecedent and
subsequent sentences and clauses. Most of the connectives used in mathe-
matical English, such as then, hence, since and when, as well as the key terms
ever, always and never, also have a chronological sense in everyday English.

Solomon and O’Neill (1998), for instance, examined diverse types of
writing by mathematician William Rowan Hamilton about his discovery of
quaternions, not just in published papers, but also in more personal com-
munication and correspondence. They report on contrasting structures
among the various types of writing:

An examination of the letter and the notebook reveals a more com-
plex structure than a simple narrative. The texts contain two dis-
tinct component texts: a mathematical text is embedded within a
personal narrative. The difference between the texts is indicated in
the tense system, the choice of deictic reference and the forms of
textual cohesion employed. (p. 216; italics in original) 
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Solomon and O’Neill go on to observe that the personal narrative is written
in the past tense and it also contains deictic time markers like ‘yesterday’
[14], whereas the mathematical material is:

in the timeless present. At the same time there is also in the math-

ematical sub-text a distinct form of cohesion: the temporal order in

the narrative gives way to a logical order in the mathematics. [...]

mathematics cannot be narrative for it is structured around logical

and not temporal relations. (pp. 216-217)

Thus, quite simply put, mathematics comes to be seen as a-temporal
because that is how it is ‘supposed’ to be written about and how it is done
by prefessionals. In school and even university, students learn that, “Last
night I found that this happened” is historicised narrative, whereas shifting
first to “you find” or “one finds” and then to the stripped Euclidean asser-
tion “this is always the case” brings rewards. [15] (I return to this in the next
section on agency.)

A second, quite different, way in which the human past is brought into
the present in contemporary mathematics is by the widespread use of
eponyms, namely the naming of concepts, results, theorems and principles
by means of mathematicians’ names. According to Henwood and Rival
(1979), Charles Darwin complained about this practice in biology more than
a century ago on two grounds: inciting hasty, and therefore shallow, work
(in order to ensure the patriarchal priority of surname), as well as the impen-
etrability of mere names over descriptive naming. Mathematical examples of
the latter would be ‘Abelian’ rather than, say, ‘commutative’ groups and
‘Hilbert’ rather than, say, ‘complete normed vector space over the complex
numbers, where the norm is given by an inner product’. In mathematics, in
response to Darwin’s former complaint, such naming often is done by others:
in Hilbert’s case, by Stone and von Neumann (see Rota, 1997, p. 199).
Arguably, this is due to the reification that comes with abstraction.

I wish to add another ‘complaint’ here: the posthumous co-opting of the
past by the present, in order to render mathematical styles apparently less
temporal. By labelling a particular formulation as Lagrange’s or Cauchy’s
theorem, for example, is to recruit their work into a modern idiom, into ‘our’
style of doing mathematics. I believe it is done, in part, to make them one
of ‘us’. [16]

In this way, the ‘timelessness’ of the notions, formulations and even
styles of proof themselves become buttressed by the past and, thus, ren-
dered invisible. What we lose (and are meant to lose) is a contingent and
historical sense of our present-day mathematics. How can someone nowa-
days read Cayley or Jordan, having studied a course in group theory which
included versions of ‘Cayley’s theorem’ and the ‘Jordan-Hölder theorem’,
and not assume that they were addressing the same objects, which were
seen in the same axiomatically-specified way. [17]
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(b) Under construction: drawings being drawn in time

In the Ancient Greek world, there was considerable discussion of the ‘time-
lessness’ of geometry and the permanenence of geometric knowledge versus
the genesis (coming-into-being) of mathematical objects by means of con-
structions. Lachterman (1989) wrote:

For Speusippus the language of genesis has an ‘as-if’ character. […]
we must not treat the constructions and motions on display in a
geometrical proof as ‘makings’ in the course of actual performance,
as time-consuming just for the reason that first this is done, then
afterwards that is done, and so forth. […] What, taken literally,
seems now to be coming into being for the first time […] must be
regarded figuratively as having already been accomplished all
along. (p. 62; italics in original)

Lachterman quoted Aristotle, in On the Heavens, arguing against a parallel
between diagrammatic proofs and the cosmic myth put forward in Plato’s
Timaeus [I 10 280a4ff]:

They say that ordered things came to be out of disordered, but it is
impossible for the same to be simultaneously disordered and
ordered. There must be a genesis involving the separation [of things]
in time as well. In the diagrams, nothing is separated in/by time.
(p. 63)

Lacheterman concluded this section (p. 65) with an examination of the curi-
ous verb tense and mood of Euclidean construction language of ‘operations’
– the perfect passive imperative: examples include ‘Let such-and-such have
been done’ and ‘let it have come about that …’. 

The perfect tense tells us that the relevant operation has already
been executed prior to the reader’s encounter with the unfolding
proof. […] Euclid invites us, not to perform the operation on our
own, nor to observe him performing the operation before our
eyes, but rather to consider the operation as already anonymously
[the agentless passive mood] performed before the ‘present
moment’ […] This verbal operator does not so much suppress time
as shift it backwards into an unnoticed past [...] [18]

In mathematics, much is made of assertions by fiat, that is sentences imper-
atively beginning ‘Let …’ But who is the suppressed person toward whom
such an imperative is directed? At least with ‘Let us pray’ there is an implied
audience or congregation. But are all ‘Let ...’ utterances implied, inclusive,
first-person plurals? Or are they appeals for permission to a higher authority?
Whence derives the authority to make such utterances?

In the English translation of Euclid, such fiats are, almost entirely, simply
uttered, unattributed to any speaker: only occasionally will someone declare
‘I say that […]’, followed by the specific statement of the result in terms of the
letters in the diagram. The earlier protasis (“enunciation”) is usually simply
asserted, without reference to any diagram or an asserter. (For an instance of
this rigid structure for setting out a proposition, see Netz, 1999, pp. 10-11.) 
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It is worth recalling that the Word preceded the Light and was used to
call it into being: the most familiar word to follow fiat is ‘lux’. In the Bible,
God’s utterances are preceded by an attribution tag: ‘And God said’ comes
before ‘Let there be light’. In the Genesis account of creation, God spoke first
to call into being (the ultimate in speech acts) and then, subsequently, judged
the effect by sight, ‘And saw that it was good’: vision and detachment.

The above makes reference to the fact of letters being used to glue dia-
gram to text. Netz (1998) explores principles underlying Greek use of ‘baptism’
of diagrams by letters and argues convincingly for the diagram and not the text
being the central Greek mathematical object (see also the final section of this
chapter). He also makes a strong case for the baptism of a geometric object by
alphabetic letters being both predominantly in alphabetic order and compact
(in the sense that no ‘intermediate’ letters are omitted). In addition, labelling of
points that are completely undetermined by the text were alphabetical had
they been determined at the appropriate moment in the course of the proof.
The Greek principles of labelling carry with them sequential information about
emergent construction.

In other words, one further locale where traces of time ordering are
seemingly evoked occurs in labelled diagrams by means of their alphabetic
lettering. This provides a human path laying down letters through the
image, though to the wary this may be seen to defile it. Netz’s work has pro-
vided us with a compelling account of what he terms the ‘archaeology’ of
the mathematical diagram in Ancient Greek mathematics.

Moving mathematics

In true Wittgenstinian fashion, in Republic (527A), Plato has Socrates attempt
to undermine elements that might suggest motion and time in geometry,
specifically action, as indicators of human presence.

Their [geometers’] language is most ludicrous, though they cannot

help it, for they speak as if they were doing something and as if

all their words were directed towards action. For all their talk is of

squaring and adding and applying and the like, whereas in fact the

real object of the entire study is pure knowledge. (in Molland,

1991, p. 182)

In parallel with the hiding of brushstrokes suggesting a timeless and agent-
less ‘work of art’, geometric construction lines are also to be made to disap-
pear, once their task has been carried out. As mentioned above, in Euclid,
for instance, constructions are achieved in no ‘proof’-time whatsoever by
means of a particular evocation, the perfect passive imperative. In The
Geometer’s Sketchpad (discussed in the previous chapter), Hide Line is a uni-
versal but reversible imperative feature. However, neither appearance nor
disappearance is permanent, the lines are both there and not there at the
same time. And the infinitely repeatable Undo command allows travel back
in time, to reveal precisely the linear diagrammatic history that accompanies
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every Sketchpad ‘figure’ – in some important sense, Sketchpad figures are
temporal text objects. 

Tom Wolfe (1975/2002), in his lively polemic The Painted Word, reported
himself astonished to realise:

Modern Art has become completely literary: the paintings and other
works exist only to illustrate the text. (p. 4; italics in original)

The ‘modern’ diagram never loses its temporality: it is forever a literary object.
When I look at a Sketchpad image, an instance of a modern geometry of a
sort, I see a voice (as Bottom masquerading as Pyramus in A Midsummer
Night’s Dream would have it). [19] The voice is reciting a script, the voice is
talking, coaxing, persuading the image into existence, a voice without which
the image cannot be summoned, without which it has no identity. I can,
with the software’s help, travel backwards in time. I can revisit the drawing
(as it was drawn in the beginning, as it is being drawn now and as it ever
shall be so drawn) to hear and see once again the tale of its genesis, a tale
that is forever being told. 

Mathematical Agency

But there is quite another way of thinking about science [other
than ‘representation’]. One can start from the idea that the world is
filled not, in the first instance, with facts and observations, but with
agency. The world, I want to say, is continually doing things,
things that bear upon us not as observation statements upon dis-
embodied intellects but as forces upon material beings.
(Andrew Pickering, 1995, p. 6; italics in original)

The notion of agency is not one that has been widely discussed in relation
to mathematics. Pickering’s account of modern science centrally involves the
interaction of ‘human’ and what he terms ‘material’ agency. Pickering’s view
of scientists is as “human agents in a field of material agency which they
struggle to capture in machines” (p. 21). This dialectic of resistance and
accommodation – performers engaged in ‘a dance of agency’ – he terms the
‘mangle’ of practice: underneath lie questions of action, cause and efficacy.
After giving an example of the weather, he adds: 

Much of everyday life, I would say, has this character of coping
with material agency, agency that comes at us from outside the
human realm and that cannot be reduced to anything within that
realm. (p. 6)

In mathematics, at first sight at least, things seem different. What is and
where might lie the mathematical parallel to material (non-human) agency? 

Equally, although on the other side, there are sterling efforts made to
shed any suggestion of human agency at work in written mathematics. In
her book Writing Mathematically, Candia Morgan (1998, Chapter 2) exam-
ines a published mathematical paper (taken from the Journal of the London
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Mathematical Society) in terms of its syntactic and pragmatic features. Many
relate to the absence of the author. I summarise:

• distant authorial voice (e.g. use of passive, absence of direct author
or reader references);

• extensive use of nominalisations (transforming processes and actions
into objects: e.g. ‘stabilizer’, ‘permutation’, ‘discriminant’ or creating
more complex noun phrases);

• the use of imperatives rather than pronouns (e.g. directives to ‘con-
sider’, ‘suppose’, ‘define’, ‘let’) – though this does indirectly suggest a
human presence.

The removal of the presence of the mathematical author by genre conven-
tions of either using ‘we’ or extensive passive constructions interacts with
the perennial present tense (discussed in the previous section). Additionally,
the anthropomorphising of mathematical objects – so they are animated to
have apparent agency of their own – contributes to their gaining a perma-
nent, ‘timeless’ existence. One important effect of these nominalisations is
the obscuring of human agency: grammatically, the possibility is thereby
generated that nominal expressions can themselves become actors, that is
active subject-position participants in the text, a cause of other phenomena.
This, I suggest, is one significant means by which a parallel to material
agency is created. 

Pickering does attempt to discuss agency in the development of math-
ematical concepts. He offers the notion of the agency of the discipline. In
an extended example of William Rowan Hamilton’s work that culminated in
his construction of the quaternions on October 16th, 1843, Pickering finds
places of choice and discretion (“the classic attributes of human agency”, p.
116). He also finds others, “where the disciplinary agency […] carries scien-
tists along, where scientists become passive in the face of their training and
established procedures” (p. 116). 

Mathematicians are not simply free to create, despite some grandiose
(even child-like omnipotent) statements to the contrary. But the fact that they
are not only constrained either, not simply passive observers in the face of a
pre-existent (pre-ordained?) mathematical realm, that there are free as well as
forced moves or choices, is one place where the possibility of an aesthetic
dimension to mathematics arises. As John von Neumann (1947) observed:

And in all these fields [those that are furthest from their empirical,
human roots, including modern, “abstract” algebra and topology]
the mathematician’s subjective criterion of success, of the worth-
whileness of his effort, is very much self-contained and aesthetical
and free (or nearly free) of empirical connections. […] I think that
it is correct to say that his criteria of selection, and also those of
success, are mainly aesthetical. (pp. 191, 194)

In particular, such choices (both selecting and justifying) arose for the
Bourbaki with regard to axiom systems. Corry (1997) has posed the following
challenge:
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Dieudonné did not hesitate to use the term ‘axiomatic trash’ (1982,
620), to designate theories based upon the axiomatic treatment of
systems that he considered unimportant or uninteresting. But what
actually is the criterion for winnowing the chaff of ‘axiomatic trash’
from the wheat of the mathematically significant axiomatic sys-
tems? (p. 279)

However, Corry’s article also documents (albeit not in those terms) the con-
siderable lengths Bourbaki went to in order to mask human agency in this
regard, in order to bolster their strongly promoted claims for the ‘eternal’
nature of their work. There is an interesting connection between Bourbaki’s
hiding of human values and choices and the more general curious ‘hidden-
ness’ of the aesthetic in mathematics. 

One aspect of mathematics that continually interests me is the way in
which certain disciplinary practices serve to efface or even erase the human
mathematical agent, to remove one side of Pickering’s mangle, thus con-
tributing to the apparent inevitability, permanence and necessarily ‘inde-
pendent’ existence of mathematical objects and methods. The other is to
acknowledge that human mathematical choices are not made in a vacuum,
that past ‘callings-into-being’ also influence what is possible in the present. 

Pickering’s example is essentially algebraic, the increasingly dominant,
verbally orientated, nineteenth- and twentieth-century mathematical world-
view. In the next two sub-sections, I wish to touch briefly on the way in
which different forms of ‘disciplinary agency’ seemingly stem from words
and images.

The agency of the letter

Every sign by itself seems dead. What gives it life? (Wittgenstein,
1953/1963, p. 128; italics in original)

In contemporary mathematics, unlike in ancient Greek mathematics, the letter
is algebraic; it is essentially a ‘saying’ (whether spoken or written), linear in
time, of one thing after another. It is used as if it were an empty symbol (to
lighten the load for ease of manipulation, for calculation); it offers itself up
as a substitute, a counterpart for action; it hides its object. Dieudonné (1962/
1971) claimed:

But the difficulty [of differing intuition and imagery, of problems
of infinity, of the essence of a proposition being its content] van-
ishes if on the contrary one agrees that the essence of a proposi-
tion is its form, in other words, if one agrees that it is needless for
a proposition to evoke any other mental image than the percep-
tion of the symbols used to write it. (p. 260; italics in original)

This, for Bourbaki, corresponded to the defining issue in modern art of ‘flat-
ness’, ‘the integrity of the picture plane’ and the ‘essence of the surface’ from
Clement Greenberg’s characterisation of American Abstract Expressionism in
the 1940s and 1950s. The content is to disappear, the symbols no longer rep-
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resent: they are to become the main event, symbol becomes object. ‘Purity’,
for both groups, becomes the watchword.

Mathematical argument, mathematical text is claimed to have a certain
disembodied agency, not perhaps in the material world but in the mathe-
matical realm. It purportedly ‘shows’ things must be this way; they cannot
be otherwise. When a result is first proven, does it conceivably make it so,
whereas before it was only potentially so?

A textual mathematical proof is a certain kind of act, one whose agency
and efficacy depends on it being properly conducted. One aspect of this is
the ‘principle of retransmission of falsity’: make a mistake somewhere in the
proof and the proof should not work. In the speech act language of Austin
(1962) and Searle (1969), a proof is a ‘performative’, it is supposed to do
something in being ‘uttered’. (Netz’s conception of an ancient Greek math-
ematician addressing a diagram orally fits this sense well.) More specifically,
just as Cézanne’s statement to Emile Bernard was an overt promise to pro-
vide ‘the truth in painting’, and to say it, so simply uttering the word ‘proof’
at the top of a mathematical text is to make an implied promise to an
implied reader.

For a proof to ‘work’, it must be correctly ‘uttered’, invoked. For instance,
simply shuffle the order of its sentences and it has an efficacy comparable
with a similarly-scrambled marriage ceremony: the couple are not, in fact,
married, the theorem is not, in fact, proven. (In passing, this is another tem-
poral aspect a proof retains.) To use Wittgenstein’s term, such a purported
proof ‘misfires’. [20]

Mary Douglas (1966), whose work on pollution and taboo I mentioned
earlier, described the universe of a ‘primitive’ world-view as “personal”: that
is, one that is responsive to signs and symbols. 

The most obvious example of impersonal powers being thought

responsive to symbolic communication is the belief in sorcery. The

sorcerer is the magician who tries to transform the path of events

by symbolic enactment. He may use gestures or plain words in

spells or incantations. Now words are the proper mode of commu-

nication between persons. If there is an idea that words correctly

said are essential to the efficacy of an action, then, although the

thing spoken to cannot answer back, there is a belief in a limited

kind of one-way verbal communication. And this belief obscures

the clear thing-status of the thing being addressed. (p. 86)

Recall Chapter α introduced a number of historical instances of the magical
and the mathematical overlapping (in as possibly a worrying manner as the
concern of Lissitsky mentioned at the outset of this chapter). The truth of
the Word is supposedly independent of its asserter: we give assent to the
assertion not the asserter. And yet, once again, there is mathematical reso-
nance for me in Douglas’s description: a proof arguably places constraints
on the mathematical world, it exerts a form of agency.
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The agency of the image

In mathematics, the image is geometric; it is essentially a ‘seeing’ (see note
[19] for more on the mathematical consequence of ‘seeing’ versus ‘saying’).
It is at least two-dimensional, hence not easily mapped onto a time sequence
(though its drawing-in-time can often produce one temporarily). An image
has structure, but no necessary grammar, no necessarily ‘right’ way to be
read. [21]

The diagram is inanimate, yet is active in the proof process. Netz (1998,
1999) attributes it central agency in the Greek proving process. He has math-
ematicians dressing diagrams (in letters) and then addressing them, much as
the sorcerer does in the Douglas passage cited above. It raises for me the
following two questions:

What do we ask a mathematical diagram?
What do we ask of a diagram in mathematics?

Derrida (1978/1987, p. 4) has provided the comparable ‘performative’ ques-
tion about images, when he asked, “Does speech act theory have its coun-
terpart in painting?” For me, the question is in what sense does an image or
diagram possess or carry disciplinary agency? (Recall, too, the remarks of
Nicholas Jackiw in Chapter 7 on ego and agency in relation to Sketchpad
diagrams.) There is no room in this chapter to explore these questions, but
I feel them to be of considerable importance in understanding what the loss
from Bourbaki’s iconomachy actually was.

Mathematics and Its Objects

We have in some sense come full circle. I started this chapter asking about
what mathematicians attend to, how they attend and why. From a deliberate
twentieth-century eschewing of diagrams as a necessary or even allowable
object of attention, the methods of ‘modern’ algebra have been employed
to create new objects of attention. Ironically, perhaps, the ‘whys’ have re-
mained pretty much the same. This brief, concluding section returns to the
question of ‘what is attended to?’.

Whether written or drawn, intermediary symbols are fundamentally
employed in the practice of mathematics. Both in their different ways cease
simply to ‘represent’. In the absence of a ‘true’ object, like a cuckoo’s egg
hatching in a nest, they subvert, supplant and replace, becoming instead the
object of attention. In each instance, consequently, both the algebraic letter
and the geometric diagram then revert to being icons in the traditional, reli-
gious sense: that is, to recall Graham-Dixon’s words, “signposts to the next
world, placed in this one”. 

According to Besançon (2000), an icon:

is an instrument of contemplation [theoria] through which the soul
breaks free of the sensible world and enters the world of divine
illumination. (p. 134)
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Or, as Simone Weil (1952) offered: 

Method for understanding images, symbols, etc. Not to try to inter-

pret them, but to look at them until the light suddenly dawns.

Generally speaking, a method for the exercise of the intelligence

by means of looking. (p. 109)

Netz (1998) has a very clear view of what might, in sharp contrast to the

Hilbertian version, be called ‘Greek formalism’. He claims that, for the

ancient Greeks, quite unlike for us now when the object is defined by

means of verbal axiomatic systems, the object of mathematics was the dia-

gram:  “All the signification is contained in the diagram and the text is par-

asitic on this signification” (p. 38). My starting concern was a sense that the

image was looking pale and drawn in mathematics, and of late had been

withdrawn from many texts. This is a far cry from Archimedes boasting of

the extent of his publication by the number of drawings (diagrammata –

equally ‘diagram’ or ‘proposition’ – see Netz, 1999).

Just as with ‘instrumental’ music, which originally accompanied and

enhanced text (whether sacred or secular, choral chant or popular ballad)

before being presented on its own, algebra did not initially have to worry

about its objects. For when referents and reference were needed, it referred to

geometric ones: algebra was an embellishment, an ornament or enhancement.

Subsequently (with Euler, say), ‘classical’ objects of algebraic awareness and

attention, such as ‘equation’ or ‘polynomial in one or more variables’, were the

surface text objects that had been generated during algebraic activity. What the

modern algebraic method finally allowed was the very creation of objects to

which its methods applied, by fiat. It reflected an aesthetic, one which in a

curious but important sense valued actions or operations, ways of proceed-

ing, over things: yet it proceeded by turning them into further things in need

of new methods.

In conclusion, in keeping with the opening quotation from Lebesgue, I

see this chapter as part of a study ‘on the foundations of mathematics and

mathematical method’, but – following Kandinsky – not one that has solely

relied on mathematics. 

Words conjure

what is called.

[…]

What we name

grows. 

(Nelson, 2002, p. 23)
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Notes

[1] This quotation brings to mind Walter Benjamin’s phrase: ‘the disinterested inten-
tionlessness of truth’. John Fauvel (1988), in his article on the marked differences
between the Cartesian and Euclidean rhetorical styles, expressed the latter’s attitude
toward the reader as follows:

Euclid’s attitude is perfectly straightforward: there is no sign that
he notices the existence of readers at all. […] The reader is never
addressed. (p. 25)

It is as if Euclid is turning his back on the audience, as jazz trumpeter Miles Davis
used to do on occasion. But Euclid’s Elements are certainly far from intentionless as
a whole – they are organised/structured to various purposes, even if each proposi-
tion by itself is simply, and apparently disinterestedly, asserted and proven (QED),
each construction-problem unassumedly resolved (QEF).

[2] According to Proclus at least, Hippocrates was the first compiler of mathemati-
cal ‘Elements’. The Bourbaki, in their monumental set of texts produced some 2400
years later, not coincidentally entitled Eléments de Mathématique, aspired to be the
last. But whereas the ancient Greek notion and techniques of proof necessarily and
essentially involved lettered diagrams – see Knorr (1975) or Netz (1999) – any dia-
grams (apart from the later, internally-contested use of commutative ‘diagrams’ and
concomitant ‘diagram-chasing’ arguments) were completely eschewed by Bourbaki.
Thus, while claiming to echo and evoke the Euclidean project of Elements in their
own, the Bourbaki renounced its central methodological means, namely diagrams. 

For instance, the very opening words of the Introduction to the first book of
the first part of Bourbaki (Théorie des Ensembles) declare:

Ever since the Greeks, whomsoever says mathematic[s] says proof;
some even doubt whether proof is to be found, outside of math-
ematics, in the precise and rigorous sense that this word gained
from the Greeks and which will be given it here. It is justifiable to
claim this meaning has not changed, because what was a proof for
Euclid is still one to our eyes. (1960a, p. 1; my translation)

(In French, ‘mathematics’ is both plural and attracts a plural verb. Bourbaki claimed
there was only one ‘mathematic’: I would add, ‘theirs’.)
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[3] In that same interview (Guedj, 1981/1985), Claude Chevalley said, “It [a bible in
mathematics] is a very well arranged cemetery with a beautiful array of tombstones”
(p. 20). In his analysis of Jackson Pollock’s paintings, Robert Steiner (1992) com-
ments on:

the ‘self-portrait’ statement in Vermeer’s Allegory of Painting, in
which the face is known only by a death mask obliquely seen on
the table beside the embodiment of Clio, muse of history – in
effect, an ego at once present and not […] (p. 78)

This seems fitting to juxtapose against the Chevalley quotations, in part because of
the open question of where traces of the Bourbaki ego might lie in the singularly
self-styled Eléments de mathématique. But Steiner’s comment also seems apposite
because of the presence of Clio, the historian’s muse and marker of temporal pres-
ence. For not only did Bourbaki (1960b) shape a curiously self-serving history of
mathematics in their own image, but it was also Clio’s followers who formed part of
the forces who have helped revive some mathematics that Claude Chevalley and the
other Bourbaki believed they had put to the sword – or at least had tried to provide
with a decent and enduring burial. See, for instance, ‘The withering immortality of
Nicolas Bourbaki’ (Aubin, 1997).

[4] Jacques Derrida (1978/1987), in a characteristically complex and frequently per-
plexing work entitled The Truth in Painting, takes Cézanne’s statement as his start-
ing point for an extensive examination of aesthetics and painting. To what extent
does it matter whether the truth is to be told (as in the English moral injunction to
children to do just that) or to be shown (‘revealed’)? As William Blake optimistically
claimed: “Truth can never be told so as to be understood, and not be believ’d”.

[5] The human senses which have little if any mathematical import are those of taste
and smell. Yet ‘taste’, along with ‘judgement’, is one of the central metaphors of aes-
thetics, as well as one of the hardest notions to discuss. Consider, for example,
modernist art critic Clement Greenberg’s (1978/1999) observation that “when no
esthetic value judgment, no verdict of taste is there, then art isn’t there either” (p.
62). There is also an important distinction in the Greek meaning between the aes-
thetic and the noetic, namely between the sensible (or perceivable) and the reason-
able (or conceivable). This very old epistemological distinction also sheds some
additional light on the title of this book, in that a far more ‘conventional’ title, in
terms of how mathematics is customarily seen, would have been Mathematics and
the Noetic. But part of what the actual title and sub-title is asserting is mathematics’
connection with an ancient perceived affinity with the senses. (For much more,
including further connections between art and mathematics, see the feisty book by
Robert Dixon (1995) entitled The Baumgarten Corruption.)

[6] In addition, Poincaré was once more anticipating the future, in that Bourbaki texts
were written on the explicit principle of ‘from the most general to the particular’
(Chevalley, in Guedj, 1981/1985, p. 20) and unwitting students were indeed placed
in touch with them. Claude Chevalley once again:

There was something which repelled us all: everything we wrote
would be useless for teaching. (p. 20)

However, there is no room here to explore this pedagogic thread: for more on this,
see Love and Pimm (1996).
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[7] The language of monsters, not least as immortalised in his evocative term ‘mon-
ster-barring’, is invoked in Imre Lakatos’s (1976) book Proofs and Refutations: the
Logic of Mathematical Discovery. This is a historical–mathematical study of nine-
teenth-century mathematicians’ practices surrounding both Euler’s ‘conjecture’ for
polyhedra V – E + F = 2 and the ‘discovery’ of uniform continuity.

[8] On the question of the dangers of ‘inbreeding’, David Antin (1987) has challeng-
ingly written: 

the viability of a genre [here, perhaps, a mathematical style of pres-
entation] like the viability of a family is based on survival, and the
indispensable property of a surviving family is a continuing ability
to take in new members who bring fresh genetic material into the
old reservoir. So the viability of a genre may depend fairly heavily
on an avant-garde activity that has often been seen as threatening
its very existence, but is more accurately seen as opening its pres-
ent to its past and to its future. (p. 479)

It is unclear to me to what extent Bourbaki’s work can reasonably be seen as ‘avant-
garde activity’, not least in terms of it precisely attempting to cut mathematics off
from its past and to freeze the future. 

[9] Without using the term iconomach, Bruno Latour (2002) makes a contemporary
attempt to enrich the categorisation of ‘iconoclastic gestures’ towards images. He
differentiates five types (by means of labels A to E). As are against all images; Bs
are against ‘freeze-framing’, not against images; Cs are not against images, except
those of their opponents; Ds break images unwittingly; Es are simply the people,
mockers of iconoclasts and iconophiles alike.

What distinguishes the As from all other types of iconoclasts is that
they believe it is not only necessary but also possible to entirely
dispose of intermediaries and to access truth, objectivity, and sanc-
tity. […] Between images and symbols you have to choose or be
damned. Type A is thus the pure form of ‘classical’ iconoclasm,
recognizable in the formalist’s rejection of imagination, drawing,
and models […] Purification is their goal. (p. 26)

Jean Dieudonné, in the preface to his 1969 textbook Linear Algebra and Geometry,
wrote that he omitted all diagrams on purpose, “only to show that they are unnec-
essary” (p. 13) to a development of linear algebra and geometry. But this was quite a
while after the Bourbaki revolution, long after the complete rejection of geometric
imagery in favour of an algebra- and text-based aesthetic had been achieved.

With regard to Bs, according to Latour, what they object to is the singling out
of a single image from the plenitude. 

What they [Bs] fight is freeze-framing, that is, extracting an image
out of the flow, and becoming fascinated by it, as if it were suffi-
cient, as if all movement had stopped. What they are after is not a
world free of images, purified of all the obstacles, rid of all medi-
ators, but on the contrary, a world filled with active images, mov-
ing mediators. (pp. 26-27)
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The previous chapter in this book on The Geometer’s Sketchpad gives an instance of
software for mathematical Bs. Can any one diagram act as a general image or is
movement endlessly circulating between particulars? Is even speaking of a ‘general
image’ necessarily a catachresis or even an oxymoron? Latour offers the early twen-
tieth-century Russian artist Kazimir Malevich as an archetypal type B iconoclast.

[10] Frayn (1974) notes: 

When our symbols resemble what they represent, we teeter on the
brink of nullity, on the edge of the Duchamps [sic] tautology, the
urinal labelled ‘Urinal’. Only the act of selection, of framing, of
labelling, differentiates what is represented from what represents
it. The challenge to our reading instinct here is one of minimality.
(para. 155; italics in original)

The whole mathematical challenge of geometric diagrams is captured here in this
single observation. The ‘framing’ and ‘labelling’ of lettered diagrams comprise a
core, contested component of Greek mathematics (see Netz, 1999).

[11] Mumford (1991) has commented:

The 20th century has been, until recently, an era of ‘modern math-
ematics’ in a sense quite parallel to ‘modern art’ or ‘modern archi-
tecture’ or ‘modern music.’ That is to say, it turned to an analysis
of abstraction, it glorified purity and tried to simplify its results
until the roots of each idea were manifest. (p. xxvii)

Later in this chapter, I draw the parallel with modern art a little more explicitly.

[12] Unguru (1994) has written about Jacob Klein’s (1968) distinction between ‘the
generality of the method’ and ‘the generality of the object’ of investigation in Greek
mathematics:

According to Klein, Greek mathematical methods are dictated by
the ontology of the mathematiká, the mathematical objects, while
modern mathematics starts with a general method and is led by it
to the features of the mathematical objects. (p. 214)

[13] This holds true in mathematics also. Recall, for example, the monster-barring
comment about Hilbert’s purported (non-constructive existence) proof of a gener-
alisation of a result of Paul Gordan’s, who had earlier established a finite basis for
binary forms of any degree. It was Gordan himself who scathingly remarked, “Das
ist nicht Mathematik, das ist Theologie” (in Reid, 1986, p. 34). Of course, one of the
intents of this and the next chapter is to explore the possibility of a considerable
overlap between arguments in mathematics and in theology. And, according to
Morris Kline (1972), Gordan did also revise his position, subsequently observing
that, “I have convinced myself that theology also has its advantages” (p. 930).

[14] ‘Deixis’ or ‘deictic forms’ (e.g. you, now, here, this, that, there) comprise elements
of language that ‘point’ to particular surroundings (referents such as persons, times,
places), to the context of the utterance. The origin of the word is closely related to
the term deiknume, which refers to a direct ‘showing’ form of mathematical proof,
one of the earliest known proof types. ‘Deixis’ is also a component of the word
apodeixis, the Euclidean term for the actual demonstration part of any proof of a
proposition.
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[15] Netz (2000) makes an astute observation about a possible but not actual temporal
and voice difference between Greek proofs by analysis and those by synthesis:

Even without any second-order pronouncements [i.e. meta-com-
mentary about purpose or intention], there could have been sug-
gestions of a sequence of discovery, e.g. using a past tense in the
assertions of the analysis as opposed to the present tense in the
assertions of the synthesis, or using a first person active for the
constructions in the analysis as opposed to the third person passive
for the constructions in the synthesis. But nothing like this happens,
everything is in the present tense or the third person passive sug-
gesting the impersonal work of mathematical necessity rather than
the accident of authentic discovery. (p. 146)

[16] This practice is quite reminiscent of the Mormon belief that baptising one’s
ancestors in the present can bring them retroactively into the church. Interestingly,
no mathematical result or procedure bears the name ‘Bourbaki’, despite the refer-
ence having assumed some of the desired ‘depersonalised, detemporalised’ features
of mathematics itself (though it is still a male label). At a meta-level, there are per-
haps good reasons to call the ‘axiomatic method’ the ‘Hilbert method’ – certainly
the Bourbaki thought so, carrying out their program in his name. However, there
are some interesting and important differences between Hilbert’s and Bourbaki’s
own views of this method, particularly concerning the nature of axioms – see Corry
(1997).

[17] In his novel Small World, David Lodge (1984) had a character, Persse McGar-
rigle, claim to have done a thesis “about the influence of T. S. Eliot on Shakespeare”
(p. 51). When another character queries this, Persse replies:

we can’t avoid reading Shakespeare through the lens of T. S. Eilot’s
poetry. I mean, who can read Hamlet today without thinking of
‘Prufrock’? Who can hear the speeches of Ferdinand in The Tempest
without being reminded of ‘The Fire Sermon’ section of The Waste
Land? (p. 52)

But at least we do not call it Shakespeare-Eliot’s Hamlet.

[18] Linguist Stephen Levinson (1983) distinguished between L-tense and M-tense
(linguistic and meta-linguistic tense, respectively). The former is what we normally
think of as ‘grammatical’ tense and the latter has to do with time reference within
an account. The M-tense structure is usually organised with respect to some sort of
‘coding time’ (usually an event within the account, with respect to which events are
marked as being prior to, contemporaneous with or later than). M-tense and L-tense
attributions may coincide or differ. Gerofsky (1996, 2004), for example, has exam-
ined verbally-posed mathematics problems from this point of view. 

Although not cast into the linguistic language of Levinson’s M-tense and coding
time, Lachterman’s discussion of Euclidean discursive practice fits it perfectly. I can-
not explore this further here. However, I am interested in the issue of how M-tense
functions within mathematical proofs in general. In particular, I plan to explore else-
where the question of what the coding time is for a mathematical proof. 
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[19] A contributory source for this chapter was a series of discussions with Dick
Tahta (author of the next chapter in this book), about connections and contrasts
between the senses of hearing and sight in relation to mathematics (see Tahta and
Pimm, 2001; for more on the visual versus the tactile, see Ivins, 1946). This
exchange was triggered by a mutual reading of Jonathan Rée’s (1999) book I See a
Voice: a Philosophical History of Language, Deafness and the Senses. The ‘seeing of
voices’ of Rée’s title concerns work with deaf children who are not nowadays dis-
couraged from ‘signing’. Among other speculations, Tahta raised the possibility of
cardinal number being predominantly visual while ordinal number is predominantly
aural/oral. But what we had not yet examined was the marked extent to which
being rooted in different human senses could lead to different aesthetics, particu-
larly in relation to mathematics. 

Rée gives us a pair of extreme examples from Greek mythology, those of
Narcissus and Echo, with regard to how people encounter the world. The former
dwelt so much in his eyes, he fell in love with his own image; while the latter was
so much in her ears, she heard nothing but her own voice. “She [Echo] was a mouth
as well as an ear, but he [Narcissus] was only an eye” (p. 71). This chapter, in part,
starts to examine the relative mathematical dominance of mouth-and-ear over eye,
of Echo over Narcissus, in the twentieth-century mathematical realm. 

Netz (1998, 1999) also explores this oral nature of Greek mathematics, seen as
a silent dress rehearsal of an argument in front of a lettered diagram, prior to its
final writing down (in order to be sent to a necessarily distant mathematician – he
claims “necessarily” as they were so thin on the ground). In Greek mathematics, I
would say, Narcissus and Echo were both strongly in evidence.

[20] James Joyce’s verbal playfulness was at full force in Finnegan’s Wake:

My unchanging Word is sacred. […] Till Breath us depart! […] The
ring man in the rong shop but the rite words by the rote order!
(1939/1959, p. 167)

In the context under discussion here, perhaps ‘the right words by the wrote order’
might be more apt.

[21] These two quotations below connect to questions of grammar.

Grammar tells what kind of object anything is.
(Wittgenstein, 1953/1963, p. 116)

Strangely enough, a grammar in art today still seems ominously
dangerous to many.
(Kandinsky, 1926/1979, p. 84)

And William Ivins (1969) wrote:

Thus while there is very definitely a syntax in the putting together,
the making, of visual images, once they are put together there is
no syntax for the reading of their meaning. With rare exceptions,
we see a picture first as a whole, and only after having seen it as
a whole do we analyse it into its component parts. […] This leads
me to wonder whether the constantly recurring philosophical dis-
cussion as to which comes first, the parts or the whole, is not
merely a derivative of the different syntactical situations exempli-
fied on the one hand by visual statements and on the other by the
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necessary arrangement of word symbols in a time order. Thus it
may be that the points and lines of geometry are not things at all
but merely syntactical dodges. (pp. 61-62)

For more on this, see Pimm (1995).

[22] In Pimm (2004), I have attempted to explore some aspects of a fine teacher’s
influence, in relation to David Fowler. His extensive work on the history of Greek
mathematics, as well as his way of being in the world, both as an academic and as
a human being, proved profoundly shaping for me. I dedicate this chapter to his
memory.
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Figure 1: Christ Pantocrator, fourteenth-century mosaic, St Saviour in Chora, Istanbul



CHAPTER 9
Sensible Objects

Dick Tahta

The most imposing icon in early eighth-century Byzantium was probably the
mosaic image of Christ above the Chalke, the bronze gate entrance to the
palace built by Justinian to the south of Sancta Sophia. It is said to have been
similar in style to a surviving fourteenth-century mosaic (Figure 1, left) in the
restored church of St Saviour in Chora. [1]

By the 720s, however, there was a growing hostility – at any rate among
the ruling élite – to icons of any sort and a succession of edicts by the
emperor Leo III led to the gradual destruction of religious images all over
the city. In, or soon after, 726, he ordered his soldiers to replace the Chalke
mosaic with a cross. According to some accounts, this so incensed a group
of devout women that they assaulted and killed the officer in charge. Their
ringleader, St Theodosia, was seized by the soldiers and summarily executed.
[2] Demonstrations against the removal of icons were followed by more
stringent measures (including the removal of the cross that had replaced
the Chalke mosaic) and the so-called Iconoclasts controlled the city for the
next hundred years or so.

It may be supposed that the spread of Islam, a religion which took the
Mosaic injunction against graven images very seriously, had an influence on
the developing unease at the widespread veneration of holy relics and icons.
There was also a continuing theological controversy within the Church itself
about the nature of Christ. Those who tended to emphasise his human nature
deplored the way his image could be granted divine qualities. It seemed to
the emperor and his advisors that Christianity had lost its particular vision and
had sunk into superstition. It is often also the case that religious disputes
cloak power struggles; and secular rulers have always found some recom-
pense in the dissolving of monasteries and the sacking of churches.

Both parties in the ensuing struggles were, in fact, agreed about one
particular icon, namely the Eucharist. The image in this case was an estab-
lished church ritual which, it was believed, involved the divine presence.
But this did not involve depiction of any sort. Moses had heard God’s voice,
but saw no form: God was, in the theological jargon, ‘uncircumscribable’.
His presence in the Eucharist was achieved by a process known as ‘economy’
to theologians. This is perhaps more simply explained in terms of synec-
doche, the figure of speech in which the whole is signified by its part. God
is held to be partly manifest in the sacraments, which then ‘stand for’ him
figuratively – but, it was also supposed, completely.
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Where the Iconoclasts disagreed was when it came to the same view
being held about images of Christ. Since God was uncircumscribable, he
could not be depicted. Hence, ran the iconoclast argument, any representa-
tion of Christ could only depict his human nature and so should not be ven-
erated in terms of a divine presence. The argument was even stronger in the
case of the innumerable and increasingly popular icons of the Virgin Mary
or the Saints.

Sense and Sensibility

The reader may at this stage be wondering where this historical digression
is leading. Theological disputes seem far removed from mathematics or its
possible links with aesthetics. There were, of course, some mathematical
issues behind the theological disagreements. For example, the distinction
between the relations of ‘same’ and ‘similar’ was at the heart of the often-
bitter polemics about the nature of Christ. [3] But here the relevance will be
– despite the Iconoclasts – that icons do have a significance that I hope to
invoke when considering the nature of other objects.

The iconoclast controversy raised the issue of how an image is related
to whatever it is supposed to re-present – that which was classically called
its ‘prototype’. For St Theodore [4], a staunch defender of icons, image and
prototype were of the same category. He invoked Aristotle’s example of a
similarly linked pair, the double and the half.

For the prototype always implies the image of which it is the proto-
type, and the double always implies the half in relation to which it
is called double. For there would not be a prototype if there were
no image; there would not even be any double, if some half were
not understood. But since these things exist simultaneously, they
are understood and subsist together. (1981, p. 110)

It was not the image itself that was venerated, but the ‘form’ of the proto-
type which is ‘in-corporated’ into the image. And, according to Theodore,
“they have their being in each other”. Christ was held to be the prototype
of his own image, but here the part signified the whole in more than a fig-
urative sense. For Theodore, a linked definition meant linked simultaneous
existence. Christ’s image did not imitate, or re-semble, but rather partook in
the being of Christ. To be like was to be. Theodore described an icon as a
“self-manifested vision”, almost like moonlight, which is sunlight rather than
an image of it. Miguel Tamen (2001) comments [5]:

In sum, the extension of the term “Christ” includes “sensory appear-
ance of Christ,” which is to say that, much to our Western theolog-
ical horror, there is a very important sense in which an image of
Christ is already Christ, and a very important sense in which Christ
is already an image of Christ. (p. 24; italics in original)
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It is said that when the mosaic image of Christ was removed from the
Chalke, Leo caused a poem to be attached which deplored the speechless
nature of the icon. Of course, we might now suppose that whether an image
‘speaks’ to us is a matter of whether and how we listen. And then, indeed,
what it is we hear. A similar distinction between our inner and outer worlds
may be that which lies between looking at an icon, or indeed any object,
and what in fact it is we see.

A baby lies in the cot and seems to be looking at what an observer
might say was its hand. But what is seen is as-yet inchoate. Eyes fasten on
the strange object floating in front of them; the baby does not yet know
what the hand does, what it is for, let alone what it is called. Michael Frayn
(1974, paras 287-288) once suggested that to see something is to make a pri-
vate metaphor of it:

The metaphor might be a visual one: I see the shifting vapour as
a face, I see my hand as a hand […] The likeness of your hand to
a hand has got trodden down into the subsoil of your perception
just as the metaphors for mental states have got trodden down into
your thinking about yourself.

Sensation will eventually be linked with reflection: sensible (i.e. perceptible)
objects become sensible (i.e. comprehensible). Inner and outer are inextri-
cably linked: as the saying goes, the innocent eye is blind and the virgin
mind is empty. Moreover, it seems that eye and mind do, after all, contain
much that is uncircumscribable: whatever you look at can never be fully
expressed, nor can what you see. And so, people soon make different sense
of sensible objects.

Reason and Imagination

A dramatic example of this – in Western thought at any rate – is the so-called
‘dissociation of sensibility’ in the seventeenth century. Until the rise of sci-
ence as we now know it, reason and imagination were woven into the same
fabric. More literally, one might say, scratched in the same clay. For, in
ancient Babylonian cuneiform writing, the great god Anu was written with
one mark of the wedge – and this mark also stood for the number 1 (or 60).
The scribe would have recorded myths and charted the heavens. The bard
would have celebrated heroes and described nature. Those who told tales
were also the ones who took tallies.

But, inevitably, as distinctions were made, boundaries were delineated.
In fact, writing and reckoning may nowadays seem hostile to each other. A
famous illustration of this occurred in the account of a dinner party at the
end of 1817, given by the painter Benjamin Haydon for various literary
friends, including Wordsworth, Lamb and Keats. The party agreed that
Newton had destroyed all the poetry of the rainbow in explaining its
colours. They drank to the toast, “Newton’s health and confusion to math-
ematics!”. [6]



Keats wrote about the rainbow a few years later. In a passage in his
poem, Lamia, he referred scathingly to ‘cold philosophy’, by which he meant
mathematics and science (called ‘natural philosophy’ in his time).

There was an awful rainbow once in heaven:
We know her woof, her texture; she is given
In the dull catalogue of common things. 
Philosophy will clip an Angel’s wings,
Conquer all mysteries by rule and line,
Empty the haunted air, and gnomed mine –
Unweave a rainbow, […]

For the poet, the rainbow may be a miraculous symbol of hope: “My heart
leaps up when I behold a rainbow in the sky”, wrote Wordsworth. In the
Old Testament, of course, the rainbow was a token of God’s covenant with
Noah and succeeding generations that there would be no more catastrophic
floods (Figure 2). In other accounts, the promise of the rainbow is seen to
be elusive. You may dream of the crock of gold at the end of the rainbow,
but in reality this always moves on just when you think you are getting there.

The rainbow is a delicate subjective vision that differs for each observer.
It is perhaps this aspect of the rainbow that first stirs the curiosity of those
who would know why and how it is as it is. It is interesting to note the many
mathematicians who have tackled such questions from the ancient Greeks
onwards. The prosaic style in which Descartes, for one, described his work
on the rainbow might only confirm the prejudice of the poets (including that
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Figure 2: Noah, his family, and animals leaving the Ark, thirteenth-century mosaic, 

San Marco, Venice (courtesy of Dumbarton Oaks)



of the later seventeenth-century poet Jean-Baptiste Rousseau, for whom
Descartes “a coupé la gorge à la poésie”).

I took my pen and made an accurate calculation of the paths of

the rays which fall on the different points of a globe of water [...]

and then I found that after one reflection and two refractions there

are many more rays which can be seen at an angle of from forty-

one to forty-two degrees than at any smaller angle; and that there

are none which can be seen at a larger angle. (in Boyer, 1959, pp.

211-212)

But those who can imaginatively enter into a geometric exploration of the
shape and size of a rainbow may also find that the heart can ‘leap up’ at this
way of seeing things.

Does the magic of a rainbow reside in the object or in the mind of the
observer? Even if we reject the implied duality, there still seem to be different
ways of saying what you see. It may be helpful to think of the rainbow (Keats’s
‘awe-full’ thing) as an icon and to see in the different ways of interpreting it
echoes of the iconoclast controversy. [7]
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Figure 3: Islamic interlacing design, fourteenth-century mural, Alhambra, Granada
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Harmony and Proportion

Another example of a supposed dissociation of sensibility might be found
in the different ways people might now see the fabulous Islamic decorations
of the Alhambra palace in Granada. By at least the fourteenth century,
Islamic craftsmen had perfected a style of abstract art that was meant to offer
a mystical sense of harmony and unity in the world. In contemplating the
complex interlacing patterns of some of the Alhambra tilings, the eye has no
reason to pause anywhere; moreover, the flow comes back on itself, so that
there is no start or end. Such interlacing was felt to be a direct expression
of the idea of the divine unity behind the enormous multiplicity of the
world. Harmony was held to be both ‘unity in multiplicity’ and ‘multiplicity
in unity’ – and interlacing expressed both these aspects (Figure 3). There is
an interesting echo of such metaphysical ideas in Georg Cantor’s mathemat-
ical treatment of infinity, which was, for him, a matter of seeing the Many
as a One. [8] 

More generally, Islamic designs may, like mathematics itself, offer the
observer the freedom of a ‘hollow symbol’, one that is not tied to ‘concrete’
reality. So that there are, inevitably, some very particular mathematical inter-
pretations of the Alhambra tilings. For instance, it has been claimed (though
this is disputed) that they include an example of each of the seventeen so-
called plane crystallographic groups. A mathematical discussion of these
would, of course, be for some to ‘unweave a rainbow’ – as would, to take
another example, the following excerpt from a technical account (Grünbaum
and Shephard, 1993) of interlacing:

The number of crossings in a translational repeating unit of a

design with group p4m corresponding to a 1-strand pattern is

2c(S). If the group is p6m the number of crossings is 3c(S). If there

is more than one strand, we replace c(S) in these formulae by the

sum of the crossing numbers for each of the strands in the funda-

mental region. (p. 153)

This sort of interpretation, we may assume, is far removed from whatever
were the original intentions of the Islamic craftsmen or their patrons. What
these were is not always clear: they probably included some more worldly
ambitions as well as spiritual intent.

There would have been similar issues in the flowering of Christian art
in Italy from about the same time. To take a fully developed, example from
the fifteenth century, consider Piero della Francesca’s painting, Baptism of
Christ (Figure 4).

This was originally the central panel of an altarpiece in a church in
Piero’s native town, Borgo San Sepolcro. It stood on the altar presiding over
the Eucharist and would therefore have had some religious significance at
the time. But we do also know that there were some other considerations
in the mind of the artist. In his own words:



Painting consists of three principal parts, which we call disegno,
commensuratio and colorare. By disegno we mean profiles and
contours which enclose objects. By commensuratio we mean the
profiles and contours set in their proper places in proportion. By
colorare we mean how colours show themselves on objects [...]
(in Baxandall, 1985, p. 112)

Proportion and perspective were key elements in Piero’s paintings. Modern
critics emphasise the mathematical abstraction that seems to secularise the
religious theme.
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Figure 4: Piero della Francesca, The Baptism of Christ, panel, c.1440–1450,

photograph © The National Gallery, London



Yet even in the Baptism, the least rigidly mathematical of all his
paintings, we are at once conscious of a geometric framework; and
a few seconds’ analysis shows us that it is divided into thirds, hor-
izontally, and into quarters vertically. […] These divisions form a
central square, which is again divided into thirds and quarters, and
a triangle drawn within this square, having its apex at the Dove
and its base at the lower horizontal, gives the central motive of the
design. (Clark, 1951, p. 13)

Commensuratio revealed a mathematically ordained universe.

Idolatry and Iconoclasm

What may be called the ‘mathematisation’ of objects, like an Islamic design
or a Christian painting that have had some original iconic significance, may
be said to idolise them in a different way. The Alhambra is a tourist attract-
ion and its tilings are enjoyed, for most viewers, aesthetically rather than reli-
giously. Altarpieces are displayed in galleries and admired for their artistic
and historical interest. Indeed, it might be said that the very notion of a work
of art – a relatively recent notion – is a form of non-destructive iconoclasm.

The justification for the preservation of objects in museums and in
galleries, or archeological sites, is usually couched in terms of their being
saved from neglect or destruction. But, from another point of view, much
of their original significance has thereby been lost. Contemplation of a paint-
ing in a gallery, however ecstatic it might be, is not like the veneration of
icons, at any rate as described by an iconophil like St Theodore. The pre-
served object represents, stands for, in some way. In psychoanalytic jargon,
it is a part-object, but in its original setting its iconic significance is that of a
whole-object (with the figurative link now being a general metonymy).

When the Louvre became a national museum in 1793, it was considered
unfortunate that various objects of some national historical interest also had
undesirable political overtones. Should a sceptre from a desecrated royal
tomb be preserved in the museum? The Monuments Commission decreed it
was not to be considered a sceptre, but rather “an example of fourteenth-
century goldsmith work”. As Stanley Idzerda (1954, p. 26), in an article on
iconoclasm in the French Revolution, commented, “Immure a political symbol
in a museum and it becomes merely art”.

Museums can be mausoleums. Of course, art lovers would disagree;
they may not have the specific awesome feelings invoked originally by an
object such as a royal sceptre, but they are nevertheless idolaters, even if of
a different persuasion. The Alhambra tilings have different meanings for dif-
ferent groups of people – such as devout Muslims or devoted mathemati-
cians. Not everyone agreed with St Theodore that objects have intentions
and interpretations of their own. Nor has everyone agreed with Locke that
experience is derived solely from what he called ‘reflection on sensations’ –
the traditional empirical epistemology.
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Tamen (2001) suggests that things become interpretable only in the con-
text of what he calls “a society of friends”. Friendship is taken here simply
to involve the measure of agreement indispensable to any community. He
quotes Aristotle: “Friendship would seem to hold cities together”. Tamen
(p. 3) sees some similarity in the different ways that people share some pre-
occupation:

there are no interpretable objects or intentional objects, only what

counts as an interpretable object or, better, groups of people for

whom certain objects count as interpretable and who, accordingly,

deal with certain objects in recognizable ways. Even if there appear

to be many, if not always so formally constituted, kinds of such

groups, I submit that what allows us to speak of the existence of

such societies is roughly the empirical resemblance between what

certain people do in relation to tea leaves, and what certain (other

or the same) people do in relation to cold fronts, novels, or statues.

Or, we might add, what certain people do to sceptres, altarpieces and tiles
or to patterns and symmetries in general. The silent child in Vachel Lindsay’s
poem, Euclid, watches the solemn greybeards drawing circles in the sand.
The child watches them “from morning until noon because they drew such
charming round pictures of the moon”.

Interpretable Objects

So we become, in Tamen’s phrase, friends of interpretable objects – whether as
religious believers, art-lovers, antique collectors, gardeners, mathematicians,
whatever. The objects in such cases are anathemata – votive offerings,
devoted objects, which, for fourth-century St John Chrysostom, were “laid
up from other things”. For the poet David Jones (1952, p. 29), they were the
signs of something other, things which are “set up, lifted up, or in whatever
manner made over to the gods”. [9] It is intriguing to note that the related
word anathema originally meant something venerable, but then became
restricted to the opposite meaning – the Church now ‘anathematises’ heresy.

Objects can become special to us, they may become anathemata; but
they may also become fetishes – part-objects rather than whole ones.
Wholes may contain something holy(!) or we may, through them, be con-
tained by something unresolved in us. The ambiguity is emphasised by the
reading of the word ‘object’ as a noun (ob-ject) or as a verb (ob-ject). The
aggressive-sounding word suggests both resistance against our wishes (e.g.
an obstacle) and an aim or target (the word’s original sense) for our striv-
ings (e.g. an objective). The psychoanalyst Michael Balint (1968) pointed to
a further issue in some cases. [10]

Any threat of being separated from [the object] creates intense anx-

iety and the most frequently used defence against it is clinging. On

the other hand, the object [...] becomes so important that no con-
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cern or consideration can be given to it, it must have no separate
interests from the individual’s, it must simply be there and, in fact,
it is taken for granted. (p. 69)

It should be noted that ‘object’ is now being used in a very general sense.
“Mental Things are alone Real”, wrote William Blake. When psychoanalysts
refer to objects, they are not only referring to physical things, but may also
be referring to memories, images, dreams, emotions or concepts, as well as
(most confusingly) to people. Anything, in fact, that one might be aware of
or pay attention to.

What do mathematicians attend to? Do they note their own thought
processes? Or are they reading the physical world? Or perhaps noticing a
world of ‘forms’, something like Wordsworth’s “independent world erected
out of pure intelligence”? Practitioners emphasise some or all of these pos-
sibilities. And there will be similar variation in their views of what a ‘math-
ematical object’ might be. They might well all agree that when attending,
say, to a geometrical diagram, they are not attending to visual marks as such,
but to some abstracted generality that can only be ‘seen’ by the mind’s eye.
This is likely what St Theodore meant when he asserted that generalities are
seen with the mind and thought. And this is also the sense in which many
might agree with Plato that the power of mathematics is to draw the soul
away from the sensible to the intelligible, though already the precise inter-
pretation of these latter words is problematic. [11]

A simple example may illustrate the point. How do we read this diagram?
David Pimm (1995, p. 57) has suggested that we “see through the particularity
of [a] diagram to grasp the generality of what the drawer is attempting to
focus attention on”. The diagram, then, may be said to act symbolically, it is
“not the object that the theorem is speaking about”. [12]

Whatever the associations, consider what happens when one asks for
the area of the outlined shape? In this case, there are seven steps to the
‘staircase’. Or could it have been any number? The mathematician may read
a generality in the diagram, by seeing it in terms of half an enclosing square
together with a certain number of small half-squares (those on the ‘steps’ of
the staircase). [13] The corresponding algebraic object (i.e. the externalisa-
tion of this mental awareness in terms of written signs) would then be the
‘expression’ (1/2 .n2 + n.1/2 ).
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The process here is not unlike the way we have now learned to read
paintings. In the pictorial sense, Piero’s Baptism is a representation of an
episode in the life of Christ. But there are far more important symbolic senses.
For the religious, the painting represents a miraculous event, promising the
possibility of general transfiguration. And, as has already been shown, for
the mathematically minded, it may be a matter of harmony and proportion
– abstractions that perhaps offer another sort of transfiguration.

“The touch between the acute angle of a triangle and a circle is no less
significant”, claimed the painter Wassily Kandinsky (1931, p. 352), “than that
between the finger of Michelangelo’s Adam and God’s”. We may well ask
how mathematical objects come to bear so much investment. One clue, it
will be suggested, lies in some of the earliest objects of our experience.
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Figure 5: Pablo Picasso, Fruit and wineglass, 1908, private collection, © Picasso Estate (Paris)/ 

SODRAC (Montreal) 2005



Here and There

A two-year-old boy picks up any small object lying to hand and throws it

across the room. As he does so, he calls out something that his mother inter-

prets as an announcement that the object has gone away. This becomes a

game which he manifestly delights in repeating over and over again. Then

it happens one day that what he picks up is a wooden reel attached to a

piece of string. He holds on to the free end of the string and throws the reel

away. This is accompanied as usual with the sound that he always makes

as the object disappears. But now he pulls the reel back with the string and

greets its reappearance with a joyful call that seems to be announcing its

return. And this game of hide and seek, of rejection and return, is then also

repeated over and over again.

Many parents will recognise something similar in their own experience.

But they may not agree with the interpretation that is already embedded in

this particular account. Mothers are usually in no doubt that they know what

baby-talk is actually saying. It is clear to them when their child is joyful or

sad. But outsiders are sometimes more cautious, certainly when it comes to

any further interpretation of such familiar nursery events: for example, the

one that was offered by Sigmund Freud in 1920.

The boy was, in fact, Freud’s grandson: the sounds he made were

understood by his mother as being the German fort (meaning ‘gone’) and

da (meaning ‘there’). But Freud (1920/1955) of course, then made much

more far-reaching interpretations of the game:

It was related to the child’s great cultural achievement – the

instinctual renunciation (that is the renunciation of instinctual sat-

isfaction) which he had made in allowing his mother to go away

without protesting. He compensated himself for this, as it were, by

himself staging the disappearance and return of the objects within

his reach […] her departure had to be enacted as a necessary pre-

liminary to her joyful return, and that it was in the latter that lay

the true purpose of the game. (pp. 15-16)

Freud went on to add that the experience was initially passive, but that by

repeating the game the boy took on an active role. In throwing away the

object, he might, Freud suggested, be satisfying a repressed impulse to pun-

ish his mother for going away from him. The game established his control

over conflicting emotions. At first, all his toys seemed to be sent away –

‘gone’. At a later stage, they could be retrieved and the mastery in being able

to do this also contained the pleasure in achieving independence of the

mother who had hitherto returned the toys herself. Freud noted further that

the pleasure also involved that of conquering the pain of the loss that lurked

within the independence. Now the infant could expel and return the mother

in his mind: fort–da !
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Later, of course, repeatedly throwing and retrieving can become even
more virtual – writing and reading, adding and subtracting, differentiating
and integrating, whatever – but the pleasurable invariant may be preserved.
Moreover, as psychoanalysts have observed, a repetition of needs may be
accompanied by a need for repetition.

Some readers may have already decided that this is already too far-
fetched, that wooden reels are wooden reels and not mothers, that Freudian
interpretations are speculative and unprovable. And of course they would
be right. However, the issue is, on the one hand, whether inanimate objects
can represent (symbolise) people or feelings and, on the other, whether
unprovable interpretations may, in fact, turn out to be useful in some way.
According to Goethe, was fruchtbar ist, allein ist wahr (“only that which is
fruitful is true”). This goes against a traditional mathematical grain, but it is
the approach being taken here. Thus, one initial postulate (a Euclidean
aitema or demand) is that objects of any sort are not simply what they
phenomenologically seem, they can ‘stand for’ other things. And that what
these latter are – and whether they are held to be conscious or unconscious
– is a matter of interpretation, which is to be understood as a possibly fruit-
ful construction rather than a provable truth. [14]

Discovery and Creation

A range of experiences can be condensed into single objects, images, words
or sounds. And much of this process may be unconscious, in the sense that
it is not easily accessible, sometimes deeply repressed. This means that,
what is being triggered at an unconscious level is often quite different from
– and perhaps contradictory to – what is being considered consciously. This
can be confirmed in our experience of painting, literature or music.

It must also be part of our experience of mathematics. Thus, consider
proof by reductio ad absurdum, where the crunch point is when you
encounter a contradiction: A cannot be not-A. The ‘cannot’ here is very much
a conscious prohibition. But, according to psychoanalysts, the usual rules of
logic do not hold for unconscious processes. Freud famously said there was
no ‘not’ in the unconscious. Thus, at some level, I both hate and love at the
same time, the wooden reel is and is not my mother.

One analyst, Ignacio Matte Blanco (1975), has developed this further in
asserting that there is no order in the unconscious – no before or after, no
larger or smaller: in technical terms, there are no asymmetric relations. So
that, in unconscious ‘thought’, the icon of Christ is Christ, Piero’s painting is
the Baptism and the breast is mother – as is the wooden reel. Indeed –
unconsciously – any part is the whole. Matte Blanco quotes a schizophrenic
patient as saying “my arm is my body” and meaning this literally. This is also
an intriguing feature of the mathematics of infinite sets; for example, of the
natural numbers which, as Galileo observed, contain a part – the apparently
smaller set of squares – which can be considered to be as numerous as the
whole.
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It is tempting to see the various well-known paradoxes of infinite set
theory as expressing aspects of unconscious process. Despite such paradoxes,
mathematicians can and do eventually come to agree with one another
about mathematical properties, even where they cannot agree about the
ontological status of mathematical objects. With agreed meanings of the
terms employed, the square root of 2 is either rational or it is not – and ways
have been derived of finding out which is the case. But, echoing the theo-
logical discussion of icons, mathematicians disagree about the nature of the
square root. Is it a human construction or something already existing else-
where?

I do not myself think it is a very important issue to consider whether
mathematics (or art) is a matter of discovery or creation. The philosopher
Michael Dummett (1964, p. 509) commented that this particular either/or is
a false dichotomy which surreptitiously dominates our thinking. But I am
intrigued by the certainty with which others can answer the question and
yet do so in contradictory ways. Where does all this certainty come from?
According to the analyst Adam Phillips, the psychoanalytic question shifts
from asking whether what you say is true to enquiring about what it was in
your personal history that disposes you to believe in a particular answer.

Is it that there is some predisposition for some people to see as ‘real
objects’ what others see as ideas and conceptions? In discussing religious
experience, William James (1902) referred to a human ontological imagina-
tion which he suggested he himself may have lacked. In this, he was impres-
sively unpatronising about other people’s experience. This is unlike most of
us: although we can sometimes agree about external reality, we do not
always find it so easy when it comes to the internal realities others appear
sometimes to have created.

The argument seems to me to be of this order. So it may be relevant to
consider another context in which notions of internal and external reality
are discussed – namely, the work of the so-called object-relations school of
psychoanalysis. For instance, Donald Winnicott pointed to an ambiguity in
a baby’s experience of being breast-fed. The baby begins to believe in an
external reality which is encountered as if by magic. Contact of the nipple
with the baby’s mouth gives the baby ideas. In a sense, the baby creates the
object, but it was there waiting to be created.

This is interestingly echoed, in a different context, by Dummett’s com-
ment on the perennial debate about the nature of mathematical objects,
which he sees as springing into being in response to our own probing. For
Winnicott, some babies gain the illusion of finding what was preconceived.
But for less fortunate babies, there may be some distress at the idea of there
being no direct contact with an external reality. Is the breast there when I
want it? Sooner or later ... or, for some unfortunates, never.
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One, Two, Three, ...

To go back to the beginning – when there were no words. It is difficult to
re-enter the experience of what it was like to be in a pre-verbal state. We
not only now produce words, but are in a sense also produced by them.
How we make the transition into the world of language can be an impor-
tant determining factor in our mental health – certainly also in our power to
symbolise, to handle the as-yet unknown, to be mathematical.

In the beginning everything is one. Mother-and-babe form a whole, a
stable unit. Somehow, sometime, mother becomes other and then there is
two – though still as a sort of unit, a pair. But the other may not always be
there: the baby cannot then be one with the mother and has to cope with
a sense of lack, or – in the metaphoric language of psychoanalysis – with
the absence of breast. As Freud (1917/1955, p. 249) memorably wrote, it
might then be that “the shadow of the object fell upon the ego”. [16]

The lost object may be retrieved in fantasy, in magical wish-fulfillment
or in symbolic enactment: fort–da! The mother-and-child was a favourite
iconic theme which was to be taken up by most Renaissance painters, as
well as by René Magritte in a strikingly-titled painting The Mathematical Mind
(L’Esprit de géométrie). This latter reverses the usual image to show a man
cradling his mother – thereby making some unconscious overtones in the
original theme disturbingly explicit (Figures 6 and 7).
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To recognise difference is to create a boundary, to distinguish inside and out-
side, me and not-me. The primitive experience of ‘two’ is of a polar duality.
When does two become three? When does a sense of unit and pair move
into being able to count on to three and beyond? Well, there is often a father
or father-figure in the background, who in some sense eases the baby away
from mother. A famous painting of the Holy Family by Michelangelo can be
taken to illustrate this: it has Joseph lifting the baby Jesus over the head of
Mary. The babe is no longer the object of exclusive maternal attention; the
father will play a socialising role (Figure 8).
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For the psychoanalyst Jacques Lacan, the infant encounters language through
a pre-established symbolic agency which he called the ‘Name of the Father’.
The intrusive third – whether real or imagined father – is associated by Lacan
with this transition to what he called the Symbolic Order. And every word,
every symbol, is a step away from mother. Though, like the baby in
Michelangelo’s picture, we may still tug at her hair.

Winnicott (1971) linked the use of symbols with the first experience of
play and locates this in what he termed a ‘potential space’:

From the beginning the baby has maximally intense experiences
in the potential space between the subjective object and the object
objectively perceived, between me-extensions and the not-me. This
potential space is at the interplay between there being nothing but
me and there being objects and phenomena outside omnipotent
control. (p. 100; italics in original)
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According to Winnicott, the baby invokes ‘transitional objects’, such as com-
forters, teddy bears, toys, and so on, to mediate between Mummy and Not-
Mummy. Such objects are symbols that unite what are to become two sep-
arate things (echoing an original meaning of the Greek simbolein, ‘to put
together’). They are also a step into counting, akin to the Lacanian intrusive
third that forces a break in the stable duality. [17] The ‘third area’ is where
we experience our first use of a symbol and our first experience of play. It
is such mediation between fantasy and reality that seems to be invoked in
the experience of creativity in any field.

Playing and Reality

Mathematical objects may also be seen as transitional objects in Winnicott’s
sense. As a mathematician, Philip Maher (1994), has observed [18]:

If we accept the view that one’s mathematical reality is an instanti-
ation of one’s potential space that occurs when one is doing math-
ematics then the objects in this psychological space – the math-
ematical objects one plays with [...] – function as transitional
objects. From this perspective there is little psychological difference
between, say, a teddy bear and a self-adjoint operator [...] (p. 137)

There seem to be different ways in which we cope with the transition
between an original inner world and an outer world into which we eventu-
ally have to immerse ourselves. The third world, which mediates between
these two, is where much of our cultural experience is rooted. Our initial
experience of it, it is being suggested, determines to some extent how com-
fortable we are with symbolic representations of experience, how much we
can trust ‘abstract’ objects to provide what we want from them.

Children play with their transitional objects, whether these are actual
toys like dolls or virtual ones like numbers. Any toy involves participation,
in the sense that it is often constructed by a child out of ready-made things
that might be lying around or thoughts that have come to be noticed. A toy
can disconnect the child from the purely functional world, so that in some
private imaginative world the child becomes more aware of what she is
doing. A toy is something you can play with. And play is the imposition of
the imagination on the fabric of the real world.

Play is also seen by Winnicott (1971) as the root of much cultural expe-
rience, be that art, science – or mathematics: “Cultural experience begins
with creative living first manifested in play” (p. 100). At best, potential space
is enriched by the baby’s own creative imagination. At worst, the baby is
unable to trust his own experience and becomes over-dependent on others.
Winnicott quoted another analyst, Alfred Plaut (1966), “the capacity to form
images and to use these constructively by re-combination into new patterns
is – unlike dreams or fantasies – dependent on the individual’s ability to
trust” (p. 130). The most difficult students to teach – in art or mathematics
classrooms – are those who have lost trust in their own capabilities.
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On the seashore of endless worlds, children play.
This quotation from Rabindranath Tagore opens Winnicott’s remarkable

article (1967) on the location of cultural experience. For the psychoanalyst,

the sea and the shore represented “endless intercourse between man and

woman” (p. 368). The child of this union comes up out of the sea and lands

up on the shore. And holds both sea and shore in imaginative play.

This places the origin of all subsequent ‘playful’ cultural activity in this

first experience. With the suggestion that there is not much inner difference

between various adult cultural activities. For Willem de Kooning, according

to Harold Rosenberg (1964, p. 115), the objects he depicted “carry emotional

charges of the same order as numbers, mathematical signs, letters of the

alphabet”.

The Hidden Order of Art

There are various ways in which people have been able to link mathematics

with other activities. Mathematicians have joined friends of other interpre-

table objects. Thus, after the painter Maurits Escher discovered the Alhambra

decorations in the 1920s (they had not been previously specially noted in

guidebooks), mathematicians took an interest in these Islamic designs. And

then they took an interest in the more complicated geometry to be found in

Escher’s own work.

A different sort of link with mathematics was made by a theorist of art

education, Anton Ehrenzweig (1967). In his day, many art teachers were

concerned that the transition to puberty involved a so-called representional

crisis in which it was supposed that children who had been freely painting
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suddenly became acutely self-conscious and self-critical about their attempts
to represent what they saw in a more photographic way. Ehrenzweig
offered art teachers a way of understanding this in psychoanalytic terms.

Although he agreed that unconscious process was wholly undifferenti-
ated, he also held that it was not chaotic. Whereas there are no conceptual
distinctions in the unconscious, there is, he suggested, some perceptual
structure and it was this that constituted, for him, the ‘hidden order’ of art.
This could be invoked by tapping powers of abstract thought, which he
held became accessible in the years before puberty. Frustrated by their
inability to represent realistically the outer world, children could find satis-
faction in abstract representation of their inner world.

‘Perceptual structure’ condenses experiences from early childhood,
experiences which are unconscious in the sense that one is normally
unaware of them and perhaps has no adequate language to describe any
recaptured or transformed manifestation. One example is the way we do not
normally need to be aware of how our body fits into its surrounding space.
Is pleasure in the curve of a piece of sculpture, or – more concretely –
delight in the feel of a shoulder, a re-awakening of a submerged experience
of mother’s breast?

Mathematicians are used to working below a mental threshold of con-
sciousness in which things are known but not yet thought. What they some-
times loosely refer to as intuition is – perhaps more usefully – described by
Christopher Bollas (1987) as an “unthought known”. [19] Ehrenzweig’s
discussion of this sort of unconscious scanning invoked the work of the few
mathematicians who have tried to describe the process of mathematical
creation. 

But we might distinguish the smooth problem-solving process suggested
by the influential mathematician Henri Poincaré from the more emotionally
charged, psychoanalytic version of unconscious process. Wilfrid Bion, for
instance, invoked Kleinian theory to suggest that creativity (whether in art or
mathematics) involves a return to the so-called paranoid–schizoid position –
as in the dance of the god Shiva, for whom there is no creation without
destruction. [20]

Unconscious perceptual structure may be triggered in various ways. But
Ehrenzweig’s point was that this structure was the hidden scaffolding, the
unarticulated (but not necessarily repressed) experience, that was particularly
re-awakened by abstract art. So art teachers were encouraged to use the
latency period, on the one hand, in order to work more formally with
abstract elements like points, lines and circles and, on the other, to teach
drawing techniques in a direct and formal way.

There are obvious corresponding implications for mathematics teachers,
but these have not been so well worked out. There has always been a wide-
spread view that arithmetical processes, for instance, are best mastered
through practical applications. At one time, this meant working through
interminable calculations of artificial shopping bills – and there are still
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many contemporary equivalents. But there are alternative approaches that
strongly confirm Ehrenzweig’s different point of view. These also indicate
that – in the case of mathematics at any rate – abstract symbols can be con-
fidently manipulated (the hidden metaphor is significant) at an early age.

In general, such symbols are hollow: Ehrenzweig referred to the “full
emptiness” of abstract art. This means that they can act as condensations.
For example, points, lines and circles – the stuff of geometry, as well as the
basic elements of much abstract art – matter for various reasons, but also
because points lie on lines and lines pass through points or touch circles,
and these may be symbols for what I myself lie on, pass through or touch.

Structure on Structure

The power of mathematics lies in its abstract generality. And it sometimes
seems that mathematicians can be quite voracious in their exercise of this
power: they will ‘mathematise’ wherever they can. This tendency was, of
course, the key to scientific mastery of the natural world. It also holds out
hope that its use might eventually lead to a proper understanding and con-
trol of political and economic affairs. But, despite such achievement and
promise, it is often, quite justifiably, held in some suspicion. There can be
something bloodless, something reductive, about some of its applications.

One of the earliest uses of the verb ‘mathematise’ is ascribed in the dic-
tionaries to the nineteenth-century diarist Henri-Frédéric Amiel (1885), who
criticised a contemporary for “mathematicising” morals. When reviewing
Taine’s contemporary history of English literature, Amiel echoed the earlier
scorn of the Romantic poets at Haydon’s dinner party:

instead of animating and stirring, it parches, corrodes, and saddens
[...] It excites no feeling whatever; it is simply a means of inform-
ation [...] giving us algebra instead of life, the formula instead of the
image, the exhalations of the crucible instead of the divine madness
of Apollo. Cold vision will replace the joys of thought, and we shall
see the death of poetry, flayed and dissected by science. (pp. 181-182)

It seems that anything can be mathematised. A search on the internet reveals
about two thousand applications of ‘mathematisation’ to nature, space,
economy, psychology, reckoning, motherhood, nonsense, paintings, sym-
phonies, poems, sea-shells, pottery, agricultural practices, ... . 

David Wheeler (1979/2001) suggested that mathematisation [21] was
most easily detected in situations where something quite different was being
turned into something which was immediately recognisable as mathemati-
cal. He gave as examples a young child playing with blocks and using them
to express awareness of symmetry or an older child experimenting with a
geoboard and becoming interested in the relationships among the areas of
the triangles he can make. 

We notice that mathematisation has taken place by the signs of
organisation, of form, of additional structure, given to a situation.
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I use these tenuous clues to suggest that: mathematisation is the
act of putting a structure onto a structure. (p. 51; italics in original)

Wheeler’s examples were taken from acceptable educational contexts where
it seems that the structured blocks and geoboards are specifically intended
to have a mathematical structure laid upon them. In the case of a further
example he gave, that of an adult noticing a building and asking himself
questions about its design and so on, the issue is perhaps more complicated.
The determined teacher may invite students to look at a building, in order
to stimulate some mathematical thinking. But it should be recognised that
this may be a form of iconoclasm – the mathematical structure being
achieved and appreciated at the expense perhaps of whatever other quali-
ties (or iconic significance) the building may have previously possessed.

This is an issue that delicately lurks within the practice of identifying
(ethno-)mathematical structures laid on the structures of the various craft
works of a particular culture.

Words or Things

How do you say about anything more than it says itself?
The difficulty of interpreting artifacts on their own terms may be illus-

trated by the case of the amazing stone balls that have been found in vari-
ous neolithic sites in Scotland. There are about four hundred of these now
in various museums; they are 7–10 cm in diameter and are carved so as to
form a roughly symmetric shape with a number of knobs. Half of the known
examples have six knobs – that is, they are more or less cubes with six
curved ‘faces’. There are then examples of stones having three, four or five
knobs, as well as ones with various further numbers, including as many as
eighty. One or two of the stone balls are very intricately engraved with spiral
patterns (Figure 9).
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Three unfinished balls show that the stone was shaped to a sphere
before carving of the knobs began. It is not known what the balls would
have been used for; early speculations include suggestions that they were
used as missiles, as devices to whistle in the wind when thrown, as balls in
some game or as some sort of regal orb.

For Keith Critchlow, an architect who has been interested in recovering
‘lost knowledge’, the balls were manifestations of a neolithic delight in the
objects for their own sake. He found that the stones included examples of
all five regular (Platonic) solids, as well as four of the so-called semi-regular
solids. According to Critchlow (1979), these examples suggest a coherently
worked out geometric awareness of symmetry more than a thousand years
before the ancient Greeks developed their enumeration of the regular solids.

Critchlow suggested that the stones objects provide “as clear and con-
cise a statement in their own terms as any that could be made in either ver-
bal or written form” (p. 149). But he is also inevitably trapped into trying to
translate the statement made by the stones in some way. It is ironic that in
wishing to counteract the tendency to seek cultural origins in Hellenistic
terms, Critchlow interprets the mathematics involved in a strictly Euclidean
way. But if the stone balls are to be interpreted mathematically, then they
might as well be done so in more general terms. For example, they might
be seen to provide interesting solutions to the problem of finding k-maxi-
mal sets of points on a sphere – that is, roughly speaking, the problem of
finding arrangements of a number of points on a sphere that spread the
points as far apart as possible.

There are numerous further examples of objects that can now be re-
interpreted, if we wish, in various mathematical ways. But, as Tamen (2001)
suggests:

it is conceivable that what most of us would call interpretation
could be described by others precisely as a strange, incomprehen-
sible exercise, perhaps akin to what we in turn would consider
a rain dance, or a complex ceremony in a physics laboratory.
(pp. 131-132)

Wrought-up Things

These neolithic objects preserved in museums, and analysed mathematically,
have certainly lost any original iconic function. What about our own current
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iconic objects? These will nowadays be different. But our special objects, our
anathemata, can speak to us in ways which, if not the same as those that
Theodore tried to describe, are at least similar. If God is not now always in
the eye of the beholder, there is often some mystery that is. And we may
interact with it unconsciously, rather like the way we can sometimes with
people. Psychoanalysts have technical words with which to analyse this sort
of communication, one that is ordinarily referred to in terms of empathy or
intuition. But the important issue is that almost everyone experiences it in
some way or other, though they may not always know they do.

To know (some of) what it is they know is the lot of mathematicians
who need to be continually aware of awareness. This trained, self-reflective
activity may be pleasurable and life-enhancing or it may be painful and life-
denying. Or it may oscillate between these two. There is no need to settle
for one aspect rather than the other, any more than there is to settle the
argument between iconophils and iconoclasts: or, indeed, between those
who would see a mathematical object as a human construct or as a discov-
ered element in some world or other. Away with such distinctions! What is
at issue is whether we can let our experience become iconic (in the origi-
nal sense of that word).

Artists have always tried to capture this for us. For instance, in her
novel, Adam Bede, George Eliot charted some subtle complexities of human
relationship. In a few beautifully written pages, Eliot (1859/1961) set the
scene in which Adam will find Hetty in the garden and imagine that his feel-
ing for her is reciprocated. Adam finds her gathering fruit. He is overcome
by the sense that they are sharing a mutual, as-yet unspoken love.
Unfortunately, he is mistaken: she has been, and is, thinking of another. But
still unaware of this, he thinks he detects a sign, “a slight something”, that
his love is returned. The memories of the first moment of shared love – Eliot
called it “the time that a man can least forget in after-life” – are then com-
pared with the vanished memories of childhood in one stirring sentence.

So much of our early gladness vanishes utterly from our memory:
we can never recall the joy with which we laid our heads on our
mother’s bosom or rode on our father’s back in childhood.
Doubtless that joy is wrought up into our nature, as the sunlight of
long-past mornings is wrought up in the soft mellowness of the
apricot, but it is gone for ever from our imagination, and we can
only believe in the joy of childhood. (p. 215; italics in original)

It is, of course, Eliot’s achievement that thanks to her we might imaginatively
re-experience some of this joy that is “wrought up into our nature”. But
what do we make of wrought up? It seems that the writer suddenly leaves
the very physical, tactile images that describe the garden and uses a word
that describes a process: one that might be understood by the mathemati-
cally sensitive in different (perhaps topological) terms. If so, this might be
to mathematise in an enhancing way, one which gives something back to
the image of the apricot’s wrought-up mellowness.
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There may, of course, be images that assert a mystery that cannot be

analysed so easily: for example, the strange, self-conscious photograph of a

broom in an open doorway, by the early pioneer of photography, William

Henry Fox Talbot. [22]

Vibrating Strings

The artist Max Bill (1949/1993) ignored domestic objects like brooms when

he listed such other things as the mystery enveloping all mathematical prob-

lems, the inexplicability of space, the remoteness or nearness of infinity, the

disjunctive and disparate multiplicities constituting coherent and unified

entities, and so on. These metaphysical brooms:

can yet be fraught with the greatest moment. For though these

evocations might seem only the phantasmagorical figments of the

artist’s inward vision they are, notwithstanding, the projections of

latent forces; forces that may be active or inert, in part revealed,

inchoate or still unfathomed, which underlie each man-made system

and every law of nature it is within our power to discern. (p. 8)

How one sensitises to such forces is, of course, part of a psychotherapist’s

training. But artists, and indeed mathematicians, often train themselves.

People may attend in their chosen disciplines to different objects, but the

way they attend is often very similar. An early, remarkable account was

given by Denis Diderot (1769/1966). In a fictional dialogue, he talks with his
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contemporary, Jean D’Alembert. The latter suggests that if an object is to
make any sense, it has to remain under scrutiny while the intellect affirms
or denies certain qualities of the object. Diderot, in character, agrees and
goes on to describe the process.

That’s what I think, and it has sometimes led me to compare the
fibres of our organs with sensitive vibrating strings. A sensitive
vibrating string goes on vibrating and sounding a note long after it
has been plucked. It is this oscillation, a kind of necessary reso-
nance, which keeps the object present while the understanding is
free to consider whichever of the object’s qualities it wishes. But
vibrating strings have yet another property, that of making others
vibrate, and it is in this way that one idea calls up a second, and the
two together a third, and all three a fourth, and so on [...] (p. 156)

In reality, D’Alembert could mathematise vibrating strings, while Diderot
was able to use this to give an excellent metaphorical account of a process
we might now describe in other terms. If the phenomenon described can
be observed between resonant strings, then why, asked Diderot, cannot it
take place between “living and connected points, continuous and sensitive
fibres?” (p. 156).

Between people, or between a person and an object? A sensible object?
An artifact or a mathematical object? The central issue that I have been try-
ing to hint at, rather than assert too explicitly, is that in each case it is
whether the vibrations reach the mystery and whether we can participate in,
and perhaps venerate, this mystery.

Psychoanalysts have ways of describing such a process. For instance,
we may project something of our own into an object – a person, some inan-
imate thing, a mathematical diagram – and this may then speak back to us
in an accessible (positive or negative) way. In considering Marcel
Duchamp’s exhibition in the 1920s of a porcelain urinal (an early example
of ‘conceptual’ art), Adrian Stokes (1965, p. 13) suggested that, “We, the
spectators, do all the art-work in such a case, except for the isolating of the
object by the artist for our attention”. As always, Blake (1810/1967) put it in
his own stirring way:

If the Spectator could enter into these Images in his Imagination,
approaching them on the Fiery Chariot of his Contemplative
Thought, if he could Enter into Noah’s Rainbow or into his bosom
or could make a Friend & Companion of one of these Images of
wonder [...] then would he arise from his Grave, then would he
meet the Lord in the Air & then he would be happy. (p. 162)

As an exercise for the reader, here are two mathematical “Images of wonder”
– one probably quite familiar, the other perhaps not. [23]
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The Mystery of Things

When Shakespeare’s Lear finally begins to understand what has happened

to him, and what he has caused to happen to others, he clutches briefly at

the hope of some idyllic, though imprisoned, last years with his re-discov-

ered daughter. He envisages the two of them singing like birds in a cage.

They will, he says, “pray, and sing, and tell old tales, and laugh at gilded

butterflies […] And take upon’s the mystery of things as if we were God’s
spies”.

“What things?”, asks Christopher Bollas (1999, p. 195). [24]

The things that live as effects, in the subjects who cultivate them,

in the objects presumed to contain them, in the receivers assumed

to know them not for what they are, but the familiar movement of

the ‘are not’. Not the themes of life, the plots of the novel, the

urgent reports of the analysand, but the forms of life.

“What mystery?”, he goes on to ask.

An unanswerable, perhaps presiding question. What is the intelli-

gence that moves through the mind to create its objects, to shape

its inscapes, to word itself, to gather moods, to effect the other’s

arriving ideas, to ... to ... to?
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Notes

[1] St Saviour in Chora (i.e. in the country, so outside the original city) dates from the
early fifth century. The mosaic of Christ Pantocrator (the Almighty) in the southern
dome of the inner narthex was part of an extensive fourteenth-century restoration.
The frescoes and mosaics were – in an inevitable iconoclastic act – whitewashed over
when the church was converted into a mosque. It was handed back in the 1950s to
the Byzantine Institute of America and has been brilliantly restored.

[2] St Theodosia, an ardent iconophil nun, was stabbed in the throat with a ram’s
horn by the irate soldiers. She is portrayed in a fourteenth-century icon (now in the
British Museum), holding what is also supposed to be a small copy of the Chalke
mosaic.

[3] The first Church Council of Nicea in 325 declared that the Son was begotten of
the ‘same substance’ (homo-ousion) as the Father. Those who wished to emphasise
Christ’s human nature assumed he was of ‘like substance’ (homoi-ousion). Sceptics
have made great play with the ‘missing iota’.

[4] St Theodore was born in 759 (in the reign of Constantin V, the second icono-
clast emperor). Theodore was involved in controversies all his life and was exiled
three times – the last for defending the veneration of images.

[5] In preparing this chapter, I have been much indebted to Tamen’s stimulating and
highly original book.

[6] There was plenty to drink, and much merriment, among these ‘friends of poetical
objects’. For a recent account of the famous dinner, see Hughes-Hallet (2000).

[7] An original sense of the word ‘icon’ is being invoked here, not that of current
semiotic usage where it might be a photograph or painting rather than the rainbow
itself that would be the icon. It was the divine presence that was venerated, not the
mosaic material as such, even if it was held that the material contained – or was –
the presence.

[8] It seems ironic that Cantor always denied the reverse, namely that you might see
the One as a Many. Though he defended transfinite numbers against much scepticism,
he was aggressively critical of the notion of infinitesimals, which were, in a sense,
a mathematisation of Blake’s “world in a grain of sand”. 

[9] In the preface to his poem, Jones distinguished between prudentia and ars. The
first involves our intentions and dispositions and our final condition. But artifacts
are, he claimed, already complete: they clamour for attention, now.

[10] Balint had earlier made an interesting distinction between those he called
ocnophils, who are attached to objects and are not at ease with open spaces, and
philobats, who are at an opposite extreme. See also Chapter 7 of Klein (1987).

[11] An echo of Plato’s view of mathematics occurs in a 1980 statement of aims for
primary school mathematics in Saudi Arabia. This was compared with a contempo-
rary statement for the UK by Geoffrey Howson (1984). He summarised the Saudi
aim as: “to move children’s thoughts from the concrete world around them to the
abstract, [in a movement] from matters temporal to thoughts of things spiritual”
(p. 41). St Theodore, at any rate, would have approved of this point of view:
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“Generalities are seen with the mind and thought; particular individuals are seen
with the eyes” (1981, p. 83).

[12] Blake’s comment on seeing through was that you are led “to believe a lie when
you see with, not thro’, the eye” (The Everlasting Gospel, lines 103-104). G. Spencer-
Brown has noted that theatre and theorem have the same root, both suggesting dis-
play or spectacle – in the mathematical case, being ‘seen’ with in-sight (see Keys,
1971, p. 35).

[13] The following diagram illustrates the proposed way of ‘seeing’ the staircase
more directly. But it was not included in the main text, so that the reader ‘gazing’
at the first diagram would not be distracted. This example of a pictorial proof is
taken from Brown (1999, p. 35).

[14] Compare this with Tahta (1994). For an account of the way subjective interpre-
tations might be validated by ‘resonance’ in a ‘community of practice’, see Mason
(2002).

[15] See also an application of Matte Blanco’s ideas in Mordant (1993).

[16] Freud suggested that after the loss of a loved object, for whatever reason, ‘free
libido’ is then displaced onto another object or has to be withdrawn into the ego.
In the latter case, the ego may then become identified with the abandoned object
– hence the shadow and melancholia.

[17] Pimm (1994, pp. 119-120) offers an anecdote where a young child counts ‘one,
two, two’ that seems to shed some light on this.

[18] In this piece, Maher neatly links the views of Winnicott and Lacan.

[19] According to Bollas (1987), “We need a term to stand for that which is known
but has not yet been thought […] There is in each of us a fundamental split between
what we think we know and what we know but may never be able to think.” (pp.
280, 282). The notion of an ‘unthought known’ is also invoked in his discussion of
the aesthetic moment, which “holds self and other in symmetry and solitude [with]
a deep rapport between subject and object [and] the generative illusion of fitting
with an object” (p. 32).

[20] Melanie Klein saw what she termed the ‘paranoid–schizoid position’ as a state
which is specific to the first four months of life, but which may often be reverted
to in later life. In this position, there tends to be a split between ‘good’ and ‘bad’
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objects. This is seen as a chaotic state which needs to be resolved by a transition
to the so-called ‘depressive position’, in which good and bad are seen as one and
in which we can accept love and hate of the same object. Bion introduced the idea
that in creative problem solving one might have to revert temporarily to the previ-
ous state. See Skelton (1993).

[21] He published a number of articles on the theme of mathematisation: see, for
example, Wheeler (1982).

[22] Fox Talbot was an early pioneer of photography. He was also an amateur math-
ematician and regularly contributed to mathematical journals throughout his life; he
was elected a Fellow of the Royal Society for his work on elliptic integrals. He
invented a photographic process in the 1830s which involved printing on paper,
rather than Daguerre’s earlier, but more cumbrous, production on a silver plate. The
photograph of the broom, entitled The Open Door, appeared as Plate 12 in his book,
The Pencil of Nature, published in 1842. Early photographs were shadowy and
somewhat mysterious. Later precision and the elevation of photography into art
have been seen by Marxist critics as a form of iconoclasm: see Chapter 6 of Mitchell
(1986).

[23] The first diagram is part of the classical geometrical introduction of the derivative
of a function as the slope of a tangent. The second may require some elucidation:
it illustrates a remarkable theorem about five special lines associated with the five
complete quadrilaterals obtained by leaving out one of five lines in turn. For each
quadrilateral, there are three diagonals; it was shown by Newton that the mid-points
of these diagonals lie on a line, which has been called the diameter of the quadri-
lateral. The diagram illustrates the theorem that asserts the five such diameters all
meet in a point. This was at one time ascribed to Fox Talbot (see note [22]), but
was in fact first published by a French mathematician, Olry Terquem, in 1845. The
proof is, as they say, left to the reader. There are some interesting generalisations
of this wondrous result.

[24] The last chapter of Bollas’s book is especially recommended for its psycho-
analytic version of Diderot’s vibrating strings. See also the clear account given in
Bollas (2002). Also, note the Shakespearean echo once again in Virginia Woolf’s
(1931/1950) novel The Waves.

‘Like’ and ‘like’ and ‘like’ – but what is the thing that lies beneath
the semblance of the thing? [...] There is a square; there is an
oblong. The players take the square and place it upon the oblong.
They place it very accurately; they make a perfect dwelling-place.
Very little is left outside. The structure is now visible, what is
inchoate is here stated; we are not so various or so mean; we have
made oblongs and stood them upon squares. This is our triumph;
this is our consolation. (p. 116, Rhoda speaking)

So now, taking upon me the mystery of things, I could go like a
spy without leaving this place, without stirring from my chair. I can
visit the remote verges of the desert lands where the savage sits by
the camp-fire. Day rises; the girl lifts the watery fire-hearted jewels
to her brow; the sun levels his beams straight at the sleeping
house; the waves deepen their bars; they fling themselves on
shore; back blows the spray; sweeping their waters they surround
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the boat and the sea-holly. The birds sing in chorus; deep tunnels
run between the stalks of flowers; the house is whitened; the
sleeper stretches; gradually all is astir. Light floods the room and
drives shadow beyond shadow to where they hang in folds
inscrutable. What does the central shadow hold? Something?
Nothing? I do not know. (p. 207, Bernard speaking)
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Chapter ω

Aesthetics and the ‘Mathematical Mind’

David Pimm and Nathalie Sinclair

Listen, reader – the clock is ticking. Have you shored up your
days against pleasure and the strange? (Mark Cochrane, in Cran,
2002, p. 82)

Many authors have explicitly sought to evoke or identify the ‘universal’ in
discussing aesthetic aspects of mathematics, a quality that is regularly
claimed for mathematics itself. Such discussions at times allude to the impor-
tant values of distance and detachment on the one hand and to the quali-
ties of certainty and perfection on the other. We also believe these to be
worthy themes of attention, as this chapter bears out. Our approach, how-
ever, invokes psychological themes, ones that lead to, among other things,
seeking the natures of and ascribing origins to those impulses that make
humans both long for and seek out detachment and certainty – as well as
exploring why some choose to place them so centrally and unequivocally
within mathematics.

Such a distanced, ‘objective’ view of aesthetics involves a way of talking
and writing about mathematical experience that mathematician Gian-Carlo
Rota (1997) has trenchantly termed a “copout”. In a chapter called ‘The phe-
nomenology of mathematical beauty’, Rota writes:

Mathematical beauty is the expression mathematicians have invented
in order to obliquely admit the phenomenon of enlightenment while
avoiding acknowledgement of the fuzziness of this phenomenon.
[…] This copout is one step in a cherished activity of mathemati-
cians, that of building a perfect world immune to the messiness of
the ordinary world, a world where what we think should be true
turns out to be true, a world that is free from the disappointments,
the ambiguities, the failures of that other world in which we live.
(pp. 132-133; italics in original)

Rota suggests that mathematicians acknowledge a theorem’s beauty when
they see how it ‘fits’ in its place, how it sheds light around itself. Within his
sense of the mathematical aesthetic, the importance of personal understand-
ing is elevated. A proof is beautiful not because it is pure or detached from
human emotions and needs, but because it gives away its secret or leads the
mathematician to perceive the apparent inevitability of the statement being
proved after the event. Rota proposes that it is precisely this phenomenon
of individual enlightenment that keeps the mathematical enterprise alive. 



There is a significant danger in construing aesthetics purely as a socio-
cultural construction (let alone an ‘objective’ one), not least from the attendant
risk of losing sight of the richness and vividness of experience that individual
mathematicians sometimes report (e.g. Thurston, 1994, or Wiles, quoted
extensively in Singh, 1998). Here is Fields medallist Alain Connes in conver-
sation with neurobiologist Jean-Pierre Changeux (1995) about Hadamard’s
four stages of invention and the role of emotions in mathematics in relation
to emergence from the incubation period:

Changeux: A kind of “pleasure alarm” goes off, in other words,
rather than a danger alarm, signaling–

Connes: That what’s been found works, is coherent and, one might
even say, aesthetically pleasing. I’m certain that this pleasure is
analogous to that experienced by painters the moment they find a
solution, the moment they see that a canvas is perfectly coherent
and harmonious. The mathematical brain must function in the
same way. (p. 81)

Slightly earlier in their dialogue, Connes had observed about Hadamard’s
fourth stage (verification):

Connes: At the end of the incubation period, if one is lucky, one
experiences the illumination he describes. The final phase, verifi-
cation, begins once illumination has taken place. The process of
verification can be very painful: one’s terribly afraid of being
wrong. Of the four phases it involves the most anxiety, for one
never knows if one’s intuition is right […] But the moment illumi-
nation occurs, it engages the emotions in such a way that it’s
impossible to remain passive or indifferent. On those rare occa-
sions when I’ve actually experienced it, I couldn’t keep tears from
coming to my eyes. (p. 76; italics in original)

Contemporary views of aesthetics often attempt to combine elements of
pleasure with aspects of sensory perception. We are well aware that the
notion of aesthetics by itself is far from synonymous with that of ‘pleasure’,
especially perhaps when speaking of mathematics. But it nonetheless seems
to us worth asking what are some potential sources of pleasure for mathe-
maticians (or by enquiring, to invoke that more charged term, what are their
objects of desire). Pleasure, longing or desire, however, as we know from
more than a century of psychoanalytic concern, are never straightforward.
And all three involve unconscious thought.

One key element in some of the chapters in this book has been atten-
tion to the role of unconscious processes in mathematical life and thought,
as opposed to solely conscious, exclusively cognitive, ‘detached’ and more
‘objective’ accounts. Chapter 9 made mention of Philip Maher’s (1994) link-
ing of teddy bears and self-adjoint operators: transitional objects both, mere-
ly functioning at different levels of play and psychological development. And
the opening of Chapter 4 described the young François Le Lionnais engaged
with his number ‘toys’ at the family table. Possession – ‘my hemiolic crystal’,
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‘ma courbe’; in other words, the having and holding of both first and sub-
sequent possessions – is of central importance. When reading accounts of
the mathematician’s proclaimed detachment, it is worth remembering that
individuals are never detached about their transitional objects. [1]

In The Ruler, the Compass and the Couch: Mathematical Pleasures and
Passions, mathematician Nicolas Bouleau (2002) has written an engaging
and insightful set of psychoanalytically inspired essays on mathematics and
mathematicians. In the first of these, entitled ‘l’inconscient mathématicien’
[2], he details the considerable amount of writing by mathematicians in the
nineteenth century involved with the notion of unconscious processes and
their role in relation to creativity in particular. [3] 

In the opening preamble to his book, Bouleau observes:

Poincaré, in the famous recounting of the circumstances of his dis-
covery of Fuchsian functions, clearly argues for an active role for
the unconscious. It should be noted that, a century before, in a
foreshadowing text, Laplace offered a similar notion in the lan-
guage of the period. But the interplay between the imaginative
freedom of the unconscious and conscious logical control is
described with astonishing care by Poincaré, in terms close to those
of Freud, were it not for the absence of the notion of pleasure,
which was present in Laplace, for which aesthetic taste was the
substitute. (pp. 10-11)

Bouleau’s comment, echoing Rota’s in terms of alluding to the smoothing
and even deflecting function of much talk about aesthetics in mathematics,
can serve as a reminder about the presence of individual investments in
whatever accounts are provided. In the past couple of decades, there have
been an increasing number of published interviews with mathematicians,
whether undertaken by other mathematicians or by outsiders to the profes-
sion. [4] When reading such accounts, it is worth bearing in mind the vested
nature of such narratives, while also keeping an understanding ear out for
more subterranean and second-order readings and potential themes.

The need for an under-standing ear as well as an under-listening one is
raised in a chapter by Valerie Walkerdine (1988) called ‘Pleasure and the mas-
tery of reason’. While describing the entry of the ‘idea of beauty’ into claims
for mathematics education (for instance, “children will derive pleasure from
the purity and order which they discover”, p. 189), she goes further, identi-
fying mathematical discourse as the product of desire and spelling out some
of the costs (such as anxieties and fears) involved in its mastery. In so doing,
and by making use of the work of psychoanalyst Jacques Lacan, she draws
attention to “that universal mathematization which Lacan himself designates
a fraudulence of certainty” (p. 192). Walkerdine writes strikingly about how
the underlying ‘Other’ of mathematics is uncertainty, disorder, irrationality,
being out of control. She observes that the symbolic system that mathematics
exemplifies “is not constituted out of certainty, but produces certainty out of
a terror” (pp. 199-200).
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In the above, it seems apparent that two differing accounts of ‘uncon-
scious’ processes are at work. Poincaré’s (and subsequently Hadamard’s)
appeal to creative unconscious processes in mathematics is evidently not the
same as the darker and more chaotic unconscious alluded to by Walkerdine
(relying on Lacan) nearly a century later. Poincaré’s observations might now
be described by some as involving ‘pre-conscious’ (to use Freud’s later term)
rather than ‘unconscious’ (involving repression) mental activity. Others might
draw attention to the soothing nature of Poincaré’s account, according to
which the most unsettling characteristic of what he terms ‘the subliminal self’
is simply its freedom – the absence of any discipline and the disorder of
chance. On the other hand, Walkerdine’s allusion to ‘terror’ in connection
with mathematics might be read as over- or even melo-dramatic. [5] But
what is clear is that in any account involving pleasure, the nature of that
pleasure will depend in part on the specific unconscious involved.

So what sorts and which forms of pleasure does mathematics afford?
Alternatively put, what is mathematics’s debt to pleasure? Specifically, what
is the pleasure of the mathematical text? Might there even be an aesthetics
of mathematical pleasure to be developed? Without any further introduction,
there are three sites we propose to explore further in this chapter. The first
two, discussed in the next section, are linked (desire for distance and
detachment, longing for certainty and perfection) and are probably familiar
and expected themes. The third (solace in melancholy) is likely quite the
opposite, but it takes us into significant historical discussion about the
nature of the ‘mathematical mind’. We shall also endeavour to bear the
duals, the opposing ‘Others’, of this trio in mind as well: detachment and
passion [6], certainty and tentativeness, melancholy and joy, as well as those
more established pairs of discovery and creation, abstract and concrete,
general and particular, control and its loss.

Detachment and Certainty

Perhaps there is a perfect detachment.
God knows, I want to believe in things.
(Patrick Lane, 1982, p. 44)

Detachment, disinterest and ‘aesthetic distance’ arise over and over as impor-
tant concepts – although ones difficult to define – in broad discussions about
aesthetic experience and aesthetic judgements. These concepts have helped
philosophers of art attempt explanations of how people can have aesthetic
experiences prompted by, for instance, a dangerous and unpleasant fog at
sea or a violent, ugly depiction of war. For Kant (1790/1987), disinterest – that
is, separation from personal beliefs, passions and commitments – was essential
to aesthetic judgement. In his Critique of Judgement, he attempted to provide
a way of distinguishing judgements of taste from other types of judgements.
This was done by construing them as those made without interest in the real
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existence of the object perceived, and hence without interest in the relation

of the object to one’s own goals and ends. [7]

While a number of philosophers (see Dewey, 1934, and Polanyi, 1958,

in particular) have argued that Kantian disinterested judgements are impos-

sible for humans, others continue to argue that aesthetic judgements require

some kind of distance, as seen in Bullough’s (1963) psychical distance or

Beardsley’s (1982) detached affect. [8] Furthermore, the non-utilitarian qual-

ity of art works (which was an early but sustained misinterpretation of Kant’s

notion of disinterest) continues to be a focus of discussion in the art world. 

This supposed non-utilitarian quality of art has been the basis on which

some mathematicians have compared mathematics and the arts. Recall from

Chapter α, for instance, Hardy’s insistence on the ‘purity’ of his work, on the

fact that his discoveries had no practical application, though Jonathan Borwein

declared in Chapter 1 that he thought this had been overstated. Borwein and

Jackiw in their respective chapters in this book both explicitly mentioned the

detached or disinterested aspect of human mathematical experience.

In discussing the relative value and importance of making explicit a

mechanism already implicit (albeit unconscious) in the mind, mathematician

René Thom (1973) enquired:

How can the thinker in some way detach himself from his own

thought, visualise it abstractly, independent even of the content of

the thought? (p. 199)

Thom accepted its necessity to some extent, while drawing attention to its

opposite, to attachment as a significant mathematical process as well:

Certainly, this detachment is a necessary step in the process of

mathematical reasoning: but the inverse operation, which is the

reabsorption of the explicit into the implicit, is no less important,

no less necessary. (p. 199)

The very process of mathematisation can be specified in terms of its plurality

of detachments; it is the detachment from specifics through generalisation, the

detachment from real-world referents and details that would serve to define

a particular situation, as well as the detachment from personal connections.

Furthermore, the codifying and communication of mathematisations, which

are often carried out through the writing of proofs, can themselves be seen

as exercises in detachment. A proof distances itself from the situations and

specific examples to which it applies, as well from the personal commitments

and attractions that went into forming it. Chapter 8 also contained reflections

on the complex relationship of mathematics to time and human agency.

In fact, Nicolas Balacheff (1988) has written that the very language of

conceptual proof demands that the speaker “distance herself from the action

and the processes of solution of the problem” (p. 217). In particular, he

claims this requires:
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• a decontextualisation, giving up the actual object for the class of
objects, independent of their particular circumstances;

• a depersonalisation, detaching the action from the one who acted
and of whom it must be independent;

• a detemporalisation, disengaging the operations from their actual
time and duration: this process is fundamental to the passage from
the world of actions to that of relations and operations.
(pp. 217-218; italics in original) 

One might wonder about the consequences and human costs of this triple
detachment. These three ‘de-s’ imply a reversed norm, namely one where
such attachments have all and already been successfully made – attachment
to object, to person and to time – something which is not always the case,
for example, in individuals with autism. [9] And touch is the human sense
that involves the closest proximity and engagement, one that belies or tries
to negate distance and detachment. For, as Jonathan Swift (1745/1995, p. 25)
remarked, in his booklet Directions to Servants, “Feeling hath no Fellow”. [10] 

As an instance of a possible consequence, what happens when lan-
guage is used as a tool for logical deductions rather than as a means of com-
munication? What happens when the mathematician writes so as “to conceal
any sign that the author or the intended reader is a human being” (Davis
and Hersh, 1980, p. 36). Rota (1997) asserts that in this case mathematical
proof becomes a form of “pretending”, since the language of proof produces
a striking gap between “the written version of a mathematical result and the
discourse that is required in order to understand the same result” (p. 142).
And, thus, understanding is compromised, or rather, exchanged for a kind
of functional language, one where: “Clarity has been sacrificed to such shib-
boleths as consistency of notation, brevity of argument and the contrived
linearity of inferential reasoning” (p. 142).

The process of formalisation also requires dehumanisation; the facts must,
so to speak, be made to “speak for themselves”. (Chapter 8 addressed ways
in which conventional mathematical rhetoric helps to create the possibility of
mathematical objects being seen as bearers of their own agency.) Rota’s
notion of proof as detachment from human understanding, or at least invol-
ving concealment from it, is related to the values held and promulgated in the
mathematics community. After all, one could imagine a world of research
mathematics where the journals were filled with proofs that illuminate rather
than conceal or proofs that open up and explain rather than codify and hide. 

Thus, the world of research mathematics is animated by a specific set
of values that distinguish it from other fields of intellectual endeavour. For
instance, in Chapter 7, Nicholas Jackiw discusses an ego-driven value, one
that the child-like pronouncement “I made that” nicely captures. [11]
Further examples were given in Chapter 4, where mathematicians strongly
identified with the objects of their attention. Additionally, reference to the
work and beliefs of the Bourbaki in Chapter 8 draws attention to a certain
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set of ideological values that exist in mathematics: deductive reasoning is
the only true way of achieving satisfactory or trustworthy conclusions and
an axiomatic presentation is the only fitting way of offering mathematics.

These examples, as well as others to be found in the previous chapters
in this book, highlight the fundamentally aesthetic nature of many values
that characterise mathematics and which help determine the very shape of
mathematical knowledge and practices. The value of mathematical rational-
ism shuns – and seeks to detach from – other forms of explanations, forms
that betray the presence of their human creators. Even outside mathematics,
rationalising can mean seeking logical connections between ideas, thus over-
coming the inconsistencies, disagreements or incongruities that may arise
from personal interpretations of various situations or ideas. (This echoes
Walkerdine’s remarks about the ‘Other’ of mathematics mentioned in the
opening of this chapter.) Yet, as Yves Chevallard (1990) has wryly observed,
“Mathematics is a perfect example on which a celebration of ambiguity could
be founded” (p. 8; italics in original).

Explaining, ironically enough, can also mean “explaining away”: it is
possible to rationalise certain decisions or actions by calling on some exter-
nal, logically attractive principle, one that frequently ignores the principles
that may have tacitly but nevertheless actually guided actions. [12] Alan
Bishop (1991) writes that we are both guided by and uphold the values of
rationalism:

when we disprove a hypothesis, when we find a counter-example,
when we pursue a line of reasoning to a ‘logical conclusion’ and
find it is a contradiction to something known to be true, and when
we reconcile an argument. (p. 63)

The aesthetic dimension of rationalism relates to the valuing of the complete-
ness and wholeness that belong to a logical argument. Fuzziness, impreci-
sion and loose ends are banished and are replaced, more and more, with
Rota’s ‘pretend’ proofs, which are optimised for consistency, containment
and cohesion. The mathematician’s desire for such aesthetic qualities may
stem from a discomfort with graded truths: logical conclusions, like cohesion
and consistency, it is claimed, do not admit degrees. Arguments are, on the
one hand, either logical or not, and, on the other, either consistent or not:
neither leave room nor exhibit desire for middle ground.

The process of detachment may also enable certain forms of mathematical
reasoning. Hendrik Lenstra, in interview with Nathalie Sinclair, explained the
role of detachment in the work of algebraists:

They somehow try to get a handle on their properties by taking a
more distant attitude. That is why they introduce more abstract-
sounding notions such as rings, ideals. They nevertheless end up
being able to prove very concrete theorems about identities that
exist or may not exist without really ever exhibiting them, just
because they have this superior mechanism.
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Lenstra contrasted his very abstract way of working with a colleague’s, who
has “combinatorial points of view” and thus a more “down-to-earth” way of
working. He also hinted at the role that the computer plays in dictating these
approaches when he explained why he could work with ideals but his col-
league needed to work with polynomials: 

[He needs] to put them into the computer. It doesn’t really like to
compute with ideals. A computer needs to know what it is doing.

In Chapter 1, Borwein contended that the computer is changing the style of
mathematics: the computer forces a more concrete and less abstract or
detached way of representing and communicating. Indeed, doing math-
ematics with the computer has already challenged the complex set of inter-
twined values held by the mathematics community. (Consider, as examples,
Haken and Appel’s proof of the four-colour theorem, now some thirty years
old, and the more recent claiming of Kepler’s conjecture by Thomas Hales.
Hales’s purported proof, presented for publication in 1998, was originally
to have been divided in two between Annals of Mathematics and Discrete
and Computational Geometry, the former to have been published with a
disclaimer. For an update on this, see Morgan, 2005.) 

The way in which computer-based proofs have sparked new discus-
sions on the nature of truth in mathematics, as well as the interplay between
understanding and proving, reflects the way in which issues of detachment
and distance may be related to a larger set of mathematical values. As we
discuss in the next sub-section, there may be a sense in which desire for
detachment and distance gives rise to – and perhaps also results from – a
related longing for certainty and perfection. 

Certainty and perfection

In this sub-section, we can only start to explore some implications of the
quest for certainty [13] in mathematics, as well as the related aesthetic val-
ues of ‘perfection’ and ‘order’ that mathematics indulges. But, as before with
distance and detachment, there is also the question of the costs, obvious or
otherwise, of accepting such a grail. [14] The desire for certainty in math-
ematics has involved sharp and prolonged moves toward abstraction and
away from contingent events of the everyday world, while perfection too
takes us away from the here and now of the actual into considerations of
and comparisons among the possible. 

Even if the most devoted Platonist were some day finally to concede the
uncertainty of mathematics, there would likely be no escaping the feeling of
certainty one gets when doing mathematics. [15] There is also the very
human longing for certainty that sometimes is expressed. Towards the end
of his life, Bertrand Russell (1956) wrote:

I wanted certainty in the kind of way in which people want reli-
gious faith. I thought that certainty is more likely to be found in
mathematics than elsewhere. But […] after some twenty years of
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very arduous toil, I came to the conclusion that there was nothing
more that I could do in the way of making mathematical know-
ledge indubitable. (p. 53; italics in original)

According to mathematician Brian Rotman [16], the desire embedded in the
discourse of mathematicians involves “reason’s dream”, a powerful fantasy
of permanence and certainty:

The desire’s object is a pure, timeless unchanging discourse, where
assertions proved stay proved forever (and must somehow always
have been true), where all the questions are determinate, and all
the answers totally certain. (in Walkerdine, 1988, pp. 187-188). 

Walkerdine goes on to assert that, “the result of [this] fantasy is lived as a
fact” (p. 188). Irrespective of the above, mathematics is certainly one signif-
icant place where human beings invest their desire for certainty. [17]

Here, we want to draw on Wilhelm Worringer’s particular use of the
contrasting terms ‘abstraction’ and ‘empathy’, coined at the beginning of the
last century and described in Richard Padovan’s (1999) book Proportion.
‘Abstraction’ signals a tendency:

to regard nature as elusive and perhaps ultimately unfathomable,
and science and art as abstractions, artificial constructions that we
hold up against nature in order in some sense to grasp it and com-
mand it. (p. 12)

Worringer’s contrasting sense of ‘empathy’ marks: 

the tendency to hold that, being ourselves part of nature, we have
a natural affinity with it and an innate ability to know and under-
stand it. Le Corbusier calls this affinity ‘an indefinable trace of the
Absolute which lies in the depth of our being’. (p. 12) 

The abstraction viewpoint would see mathematics as a human-made cre-
ation, a purely artificial construction, a system of conventional signs and
the rules for manipulating them. Nature is thus something we can interpret
though mathematics only because mathematics is a human creation. There
is no need for the fallible human senses and no reference must be made
to natural forms. An empathy viewpoint – also, a Pythagorean one – sees
mathematics as being inherent in nature and distilled out of it by human
reason, through human senses. The shifting appearances of things can be
penetrated by mathematics, which is able to reveal the essential nature of
imperfectly manifested phenomena.

Padovan sums up the paradox encapsulated by these two viewpoints [18]:

No knowledge is possible, unless it comes first through the senses;
but such knowledge is at best uncertain. The certainty of mathe-
matics is due precisely to the fact that it is man-made, the uncer-
tainty of nature to the fact that it is not. (p. 11)

One of the means by which mathematics is believed to be made more cer-
tain is through abstraction. As Balacheff noted, abstraction requires, among
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other things, both a decontextualisation and a depersonalisation, detaching
from the object and from the person. Abstraction is powerful in mathemat-
ical and scientific work because it allows one to look for common features
across local instances. Then, when we apply our abstract models back to
the world and see how they fit, we should eventually get a better sense of
how things work. But do we? Or are we, in fact, entranced by the apparent
certainty that only our abstract models are able to offer? One danger is that
we might begin living in such a decontextualised world where we forget
about the impact of our abstract models on the real and messy lives of
human beings, as Rota cautioned.

Some recent writers have expressed a sense of foreboding about math-
ematics, with its extreme commitment to abstraction. For instance, Ivan Illich
(1994) has pointed to this characteristic as being one of the root causes of
social malaise in the modern world. In his lecture, he drew on the work of
the social theorist Leopold Kohr, whose ideas on social morphology are
structured around the central concern of proportion in its classical sense. 

Kohr claimed that the ancient Greeks had no conception of individual
tones nor of absolute measurements; their world-view was based on a cer-
tain sensibility captured by the word tonos, which refers to the relatedness
of things one to another, to the proportions between humans and nature.
Because of this fundamental attention to the relations between things,
tonos demands a concern for appropriateness. In his talk, Illich argued that
the growing mathematisation of science and the desire to quantify – to
separate, abstract, detach – has reduced our capacity to judge appropriate-
ness and to attend to, as well as to return to, the particularities and the
proportions of local meanings. 

No one can deny the seductive power of isolating and abstracting. But
perhaps an empathic mathematician would be a proportionist, one who re-
contextualises and evaluates appropriateness. [19] It is interesting to specu-
late whether mathematics could be influential in initiating another evolution
in human thought, and whether that evolution has a chance of reclaiming
Illich’s lost sense of proportion. It would seem, perhaps quite ironically
given the foregoing discussion, that mathematics, influential as it is in our
current world and sensitive as it can be to many different forms of propor-
tion, could be uniquely situated to lead the way. 

Melancholy and the ‘Mathematical Mind’

Mathematics is melancholy’s mirror-writing.
(Friedrich Dürrenmatt, 1989, p. 82)

This section takes a relatively and necessarily brief look at a topic, the ‘math-
ematical mind’, that has attracted interest and comment down the ages. As
the next section indicates (concerning the ‘mathematical brain’), this focus
may be taking a specifically contemporary turn. At different places in this
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book, occasional reference has been made to aspects of outlook, tempera-
ment, disposition or personality in relation to mathematicians, most particu-
larly in Chapters 4 and 6. A number of other authors have remarked indirectly
or somewhat in passing upon such psychological elements too, usually in
connection with interviews with mathematicians. [20] 

The psycho-historical strand we explore here involves connections
between melancholy and the mathematical mind. But why melancholy? If we
had to create a comparable set of three ‘de-’s to Balacheff’s triple, discussed
earlier in this chapter, say in an attempt to characterise a modern sense for
this somewhat archaic word, it might well be despondency, dejection and
delusion or despair. What possible pleasure could there be in that? And what
particular connection might it have to mathematics? [21] 

The melancholy disposition of the mathematical mind

One of the challenges facing writing about this area is the diverse set of
ascriptions (despite its central place) that the notion of melancholy has had
in more than two millennia of what we would term ‘psychological’ writing
and of literature in general. (For a very helpful and thorough commentary
on a historical selection of such ‘psychological’ writing involving melan-
choly, see Radden, 2000.) In particular, there has been a remarkable back
and forth over the centuries as to whether melancholy is a particular trait or
mood, one present in everyone to greater or lesser extent, or whether it
refers to a specific mental malady or disorder in need of treatment. 

As far back as Aristotle, we find speculations concerning the nature of
the creative mind – as well as the important instance of mathematics within
such accounts – and the state in which it prepares itself prior to and during
creative work: melancholy contemplation. In the pseudo-Aristotelian work
Problems [22], the question is posed, “Why is it that all men who have
become outstanding in [natural] philosophy […] are melancholic […]?” (Hett,
1957, p. 155). It is apparent even in this very early account that melancholy
is not being offered as a positive trait, but at least it seems one with com-
pensations on occasions, related to exceptional ‘creative energy’ or ‘genius’. 

There are two historical periods where this latter connection is particu-
larly explicit: during the early Renaissance and in nineteenth-century
Romanticism [23]:

The glorification of melancholy and the birth of the modern notion
of genius can be traced to Florentine Neoplatonism, and particularly
to the work of Marcelo Ficino. […] (Radden, 2000, p. 13)

Ficino, the most significant philosopher-translator in the Renaissance, also
claimed melancholy to be endemic among scholars. He dedicated the first
part – entitled ‘On caring for the health of men of letters’ – of his Book of Life
to an account of melancholy, its causes and putative cures. In his extremely
lively introduction to Ficino’s Book of Life, Charles Boer (1980, p. xiii)
observes:
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Melancholy, he [Ficino] thought, was a natural condition of the
soul in the body, and the scholar-philosopher was particularly
prone to it. […] For the neo-Platonist, the soul does not want to be
in the body, and melancholy is its cry for escape.

Part of the tacit suggestion of the previous sub-sections in this chapter is that
mathematics in particular invites (as well as provides a means for) the soul
to leave the body. 

One image that captures some of these elements [24] is Dürer’s famed
engraving Melencolia I (see Figure 1 opposite). For reasons that will become
clearer shortly, we have chosen to spend time with interpretation of her
facial expression, focusing especially on accounts of her eyes and gaze.

Dürer himself was both melancholic and mathematically inclined:

In mathematics, above all, to which he had devoted half a lifetime
of work, Dürer had to learn that it would never give men the sat-
isfaction they could find in metaphysical and religious revelation,
and that not even mathematics—or rather mathematics least of
all—could lead men to the discovery of the absolute, that absolute
by which, of course, he meant in the first place absolute beauty.
(Klibansky et al., 1964, p. 364)

Fifteen years after Klibanksky et al.’s extensive account of melancholy
appeared in English, and while paying tribute to the enormous labour rep-
resented in their book, key elements of their interpretation of this engrav-
ing were challenged by Frances Yates (1979). In her book, Yates argued for
an understanding based more on medical magic and also on Cabbala, what
Klibansky et al. term iatromathematics. Of interest to our very brief account
is Yates’s interpretation of the sleeping hound as:

the bodily senses, starved and under severe control […] the inactiv-
ity is not representative of failure but of an intense inner vision. The
Saturnian melancholic has ‘taken leave of the senses’ […] (p. 56)

But, for us, what is most striking is the link between a personification of
melancholy and mathematics, reflecting the middle term of Martin Luther’s
ironic triad, “Medicine makes men ill, mathematics sad, theology wicked”.
But curiously, the parallels here are not exact: the first and third (medicine
and theology) embody contrary claims. But we know of nowhere where it
is claimed mathematics is intended to make one happy.

Earlier authors who had written about this topic include the scholar
Henry of Ghent in thirteenth-century Paris (the potent phrase ‘the melan-
choly disposition of the mathematical mind’ which titles this sub-section is
attributed to him). Henry divided scholars into two differing sorts: those
who have direct access to the essence or spirit of things (in fact to the deity)
and those, whom he called mathematicians, who are obsessed by structure
and form which, interestingly in this context, he conceived as embedded in
actual matter in physical space. [25]
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Of mathematicians, Henry wrote:

Their intellect cannot free itself from the dictates of their imagina-
tion […] whatever they think of must have extension or, as the geo-
metrical point, occupy a position in space. For this reason such
people are melancholy, and are the best mathematicians, but the
worst metaphysicians; for they cannot raise their minds above the
spatial notions on which mathematics is based. (in Klibansky et al.,
1964, p. 338)
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Blindness, solipsism and the ‘mathematical mind’

We suggest one aspect of twenty-first-century work on the mathematical
aesthetic will involve an ever-deeper analysis of the mathematical psyche,
or what for many hundreds of years previously had been referred to and
reified as the ‘mathematical mind’. Historically, there have been attempts to
characterise the ‘mathematical mind’, usually by comparison or contrast with
some other specific kind, e.g. as with Henry of Ghent, the ‘metaphysical’
mind, rather than simply the ‘non-mathematical’ mind. Pascal (1659/2000),
for instance, in his Pensées, contrasts l’esprit de géométrie (the mathematical
mind) with l’esprit de finesse (sometimes rendered into English as the subtle
or intuitive mind) in terms of approaching and understanding the world. [26]

The distinction is not that clear, but rests on whether there is a paucity
or not of explanatory principles to be drawn on, whether the relevant prin-
ciples are close or removed from common usage, and whether a judging
wisdom and evaluation (and hence the aesthetic) is to be drawn upon.
Throughout, his writing is infused with the metaphor of sight and its link to
‘sense’ in both senses. But it is also clear that, for Pascal at least, mathemati-
cians lack a certain sensibility.

Throughout the subsequent century, particularly but far from exclusive-
ly in England and in France, mathematics repeatedly found itself employed
in discussions of mental life, including the influence of the five human sens-
es upon it, especially in essentialist arguments about conceptions in and of
the mind. One specific context for such exploration was in work with the
blind, especially in relation to what became known as Molyneux’s Problem
(see Degenaar, 1996).

This ‘problem’ was basically a philosophical thought experiment pro-
posed to John Locke in 1688 (and published in his Essay Concerning
Human Understanding in 1690) involving the sensory roots of ideas versus
the possibility of innate ideas. The problem queried whether persons born
blind would, if they were to regain their sight, be able to recognise objects
visually. Specifically, would he or she be able to distinguish a cube from a
sphere by sight alone when sight was restored. (Our brief account here is
directly based upon Jessica Riskin’s (2002) insightful chapter, ‘The blind and
the mathematically inclined’, which she opens with this 1751 remark of
Voltaire’s, “Mathematics [… is] the staff of the blind”, p. 19.)

Leibniz argued in 1705 against Locke: 

Leibniz distinguished “images,” specific to the senses, from “exact
ideas, which consist of definitions.” […] Though each image
belonged to an individual sense, the composite definition-idea
belonged to “the common sense, that is to say, the mind itself.”
Geometry dealt in ideas not images. So a blind man using tactile
images and a paralytic using only visual images would arrive at the
same geometry, consisting of the same ideas. (Riskin, 2002, p. 24)

The key progress made quite early in the eighteenth century in accounts of
Molyneux’s problem was due to the development of cataract surgery which
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resulted in the restoration of sight to some individuals, thereby allowing the
prospect of an empirical rather than an epistemological resolution. Riskin
observes of Julien de La Mettrie’s later view, “Geometry might enter the soul
equally through the eyes or the tips of the fingers” (p. 43). 

The philosophical context of this work involved a polarisation around
‘sensibility’, a key term in Riskin’s significant eighteenth-century study of
Western European science and culture [27]. Sensibility meant:

a physical sensory receptiveness to the world outside oneself,
whose consequence was emotional and moral openness. Its oppo-
site was a physical insensitivity that brought solipsism. (p. 21)

Mid-century, Etienne de Condillac argued forcefully that one could have
sensation without sensibility and that the source of sensibility was to be
found in touch and only in touch, in finding something outside of oneself
that did not return an inner sensation of touch when touched. (See footnote
[10], in respect to which Riskin’s chapter has a great deal to add, not least
the confusion during the eighteenth century as to whether sight or touch
were the primary sense of the intellect, of the experimental, of the rational,
of the true.) Riskin summarises:

one could perceive the external world but fail to perceive it as
external. In that case, one would be a being for whom nothing but
oneself existed. Insensibility meant isolation from “the commerce
of others”; it meant solipsism. (p. 52; italics in original)

A key figure in such discussions was that of Denis Diderot (also discussed
in Chapter 9) and, in particular, his 1749 Lettre sur les Aveugles:

Drawing upon [… among other sources] a memoir on the life of the
blind Nicolas Saunderson, late Lucasian Professor of Mathematics at
Cambridge, Diderot argued that the blind, because of their impov-
erished sensibilities, turned their minds inward and tended to think
in abstractions. This made them natural mathematicians […] a blind
man’s view of the world was made of geometrical abstractions. […]
Diderot argued first that the blind because of their sensory depri-
vation, were necessarily abstract mathematical thinkers; and sec-
ond that abstract mathematical thinking amounted to emotional
and moral solipsism. (pp. 21, 22, 53)

Riskin goes on to document how the perception of an overlap between the
blind and the mathematically minded (again, arguably a compensation or
due to a heightened inner awareness) was a virtual commonplace during
the eighteenth century. (In passing, she also reports how, in an 1801 text,
Pierre-Simon Ballanche identifies the central emotional quality of blind
poets (especially Homer and Milton) as being that of melancholy.) In his
Letter about the Blind, Diderot cited mathematician Mélanie de Salignac’s
declaration, in terms that closely echo our earlier discussion of melancholy,
that the mathematician “spends almost all his life with his eyes closed” and
that mathematics “was the true science of the blind”.
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Autism and the ‘Mathematical Brain’

In her attempt to bring up to date her historical account of the fluid mean-
ings for and associations with the notion of melancholy, Jennifer Radden
(2000) sensitively raises the question of whether the contemporary category
of ‘clinical depression’ can be seamlessly grafted onto ‘melancholy’. Some
medical authors have tried to do this, as if the two were always and every-
where the same thing. Here, we wish not so much to pursue this specific line
as indicate a different disorder, Asperger syndrome, as being of possible inter-
est and relevance to the ‘creative genius in mathematics’ strand of the fore-
going discussion. In addition, it offers a more contemporary version of the
‘mathematical mind’ discussions (albeit one which resolutely returns to the
cognitive and even to the architecture of the brain), with specific links both
to melancholy and the blind.

Sixty years ago, paediatrician Hans Asperger published a seminal paper
on ‘autistic’ children (from the Greek autos, meaning “self”, individuals for
whom in some important sense there is only themselves or perhaps no one).
In it, he characterised the essential disturbance of autism as one of contact,
“of the lively relationship with the whole environment” (1944/1991, p. 74).
In relation to abstraction, he claimed, “In the autistic person, abstraction is
so highly developed that the relationship to the concrete, to objects and to
people has been largely lost […]” (p. 85).

Asperger himself noted a link between mathematical ability and some
of the individuals he was seeing in his practice (who might retrospectively
be characterised as mildly autistic but very able in highly specific realms):

We have seen that autistic individuals […] can […] achieve profes-

sional success, usually in highly specialised academic professions,

often in very high positions, with a preference for abstract content.

We found a large number of people whose mathematical ability

determines their professions: mathematicians, technologists […].

(p. 89)

As he noted, one characteristic feature of a person with autism is in the
nature of language use:

Autistic language is not directed to the addressee but is often spo-

ken as if into empty space. This is exactly the same as with autistic

eye gaze which, instead of homing in on the gaze of the partner,

glides by him. (p. 70)

It will not have escaped the attentive reader that the first sentence provides a
pretty fair description of mathematical text: mathematics as autism’s mirror-
writing perhaps? Mathematician Brian Rotman has focused specifically the
non-subject nature of the one addressed by mathematical discourse:

Mathematical addressees are theoretical and impersonal: math-

ematicians prohibit their codes from making any sort of reference
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to the individual characteristic of the reader; or to his subjectivity or
to his physical presence in the world. (in Walkerdine, 1988, p. 186)

Another linguistic feature that is often disturbed in individuals with autism
is the use of pronouns, in particular employing ‘I’ for ‘you’ and ‘you’ for ‘I’
(see, for example, Frith, 2003, pp. 124-125). This is also the case with other
pairs of terms that tie language to context, such as ‘this’ and ‘that’ and ‘here’
and ‘there’. Speculation about possible causes for and consequences of such
deictic confusion in autistic individuals regarding the positions and points of
view of speaker and listener has been widespread. Once again, turning to
mathematical text and in particular the means by which ‘universality’ is
inscribed within it, we find that such features are actually absent:

everything else is excluded, including the addresser and addressee
– there is no ‘I’ and ‘you’ in a mathematical string. There is no
grammatical subject or object. For Lacan it is the pronouns I, you,
he/she/it which position the speaking subject ‘in language’ and
thereby fix an identity. It is in all these senses that I have wanted
to suggest that much is suppressed in order to reach the math-
ematical string itself. (Walkerdine, 1988, p. 199)

And we wish to suggest, in light of the above, that individuals with Asperger
syndrome perhaps have less to suppress or possibly that the necessary sup-
pressions to gain mathematical fluency may cost them less in psychic terms.

As indicated above, one of the characteristic disturbances of autistic
spectrum disorders has to do with fleeting gaze (whether at people or
things) and indifferent contact (especially social) with the outside world, the
world of context:

One can never be sure whether the glance goes into the far
distance or is turned inwards […]  (Asperger, 1944/1991, p. 69)

There is a striking similarity between this and Poincaré’s observation about
the analyst Charles Hermite, he “whose eyes ‘seem to shun contact with
the world’ and who seeks ‘within, not without, the vision of truth’” (in
Hadamard, 1945, p. 109), as well as with the above discussion of psycholog-
ical projections onto physical blindness. And perhaps unawarely recasting
Aristotle’s question XXX from the Problems, Asperger suggested:

It seems that for success in science or art a dash of autism is essen-
tial. For success the necessary ingredient may be an ability to turn
away from the everyday world […] (in James, 2003, p. 63)

The children and adults with whom Asperger, Kanner and others since have
worked exhibit what has come to be termed ‘autistic aloneness’, a notion
which has links back to above eighteenth-century concerns with solipsism.
And significant depression is a common concomitant of autism. We are cer-
tainly not suggesting, even among a selected ‘genius’ category of ‘historical
great minds’, that those who were seen as melancholics in earlier times would
all today have been diagnosed with autism or specifically Asperger syndrome.
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Nonetheless, it is possible to see at least an overlap among the various topics
of the last section in terms of speculation about the ‘mathematical mind’.

The connection between eminent mathematicians and autism has been
alluded to, both from within the community of autism specialists and by
professional mathematicians. Specifically, within the past five years psychol-
ogist Michael Fitzgerald and mathematician Ioan James have separately writ-
ten challengingly on this theme. Fitzgerald (2000, 2002), in two letters to the
editor of the Journal of Autism and Developmental Disorders which draw on
biographical material in relation to contemporary diagnostic criteria, raises
the question whether Asperger syndrome individuals’ cognitive style is also
a “mathematical style”?

While the evidence offered in these short communications is slight, it
does give the feel for how a far more extensive psycho-biographic argument
might go with respect to such retrospective diagnosis, as well as providing
a list of potentially relevant individuals (including Cauchy, Erdös, Galois,
Gauss, Hardy, Lagrange, Lobachevsky and Riemann). More recently,
Fitzgerald (2004) has published a book, Autism and Creativity: Is There a Link
between Autism in Men and Exceptional Ability?, in which he provides a more
detailed (though still to our minds speculative) examination of half a dozen
individuals, including Wittgenstein and Ramanujan. [28]

James (2002, 2004) has written two volumes of biographical profiles of
mathematicians and physicists, though no mention within them is made of
Asperger syndrome. However, in November 2003, he published an article in
The Mathematical Intelligencer entitled ‘Autism in mathematicians’. In it, he
discusses a range of individuals as well as characteristic traits of the disor-
der. He also speculates on the effects of myopia, exemplified by Lie,
Poincaré, Levi-Cività and Noether, mentioning its possible genetic link to
autism.

Lastly, James asks:

Why are mathematicians, along with computer scientists, commonly
regarded as loners and placed in a group with geeks and nerds?
Could it be that the type of personality which inclines people
towards mathematics has something to do with this? And could it
also be that here is part of the explanation for the difference in the
relative number of men and women to be found in mathematics?
(p. 64)

In The Essential Difference: Men, Women and the Extreme Male Brain,
Simon Baron-Cohen (2003), head of the autism research centre at Cam-
bridge University, argues that what he terms systemizing (“the drive to
analyse, explore and construct a system”, p. 3) and empathizing (“the drive
to identify another person’s emotions and thoughts, and to respond to them
with an appropriate emotion”, p. 2) comprise two core human mental pro-
cessing traits linked to attention. [29] And these traits seem relatively inde-
pendent of one another, with mathematical ability identified as “one of the
clearest examples of systemizing” (p. 116). 
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However, according to Baron-Cohen, their distribution in the population
is gender linked: statistically more males are higher systemizing than females
and more females are higher empathising than males (see also Baron-Cohen
and Wheelwright, 2004). What he unhelpfully terms the ‘male’ brain is the
combination of higher systemizing than empathising (measured in units of
standard deviations of the two measures) and the ‘female’ brain the reverse.

Baron-Cohen’s most striking proposal relates to “extreme” examples of
the ‘male’ brain (very high system, very low empathy). He links this directly
to various forms of autism (especially Asperger syndrome) and exemplifies
such a brain by means of the Cambridge mathematician Richard Borcherds
– a Fields medal winner. Baron-Cohen writes of him, “His talents in math-
ematics have resulted in his finding a niche where he can excel (to put it
mildly), and where his social oddness is tolerated” (p. 163). 

Baron-Cohen has proposed a diagnostic empathy measure (the ‘reading
the mind in the eyes’ test), reflecting the diminished capacity of individuals
with autism to ‘read’ emotion from photographs of human pairs of eyes.
From at least the time of Albrecht Dürer onwards, there has been a signifi-
cant link made between human gaze and mathematical minds. One of the
small ironies around discussions of the significance of Melancholy’s in-
turned gaze, in particular whether it be sad or pleasurably entranced from
within, is that many Asperger individuals would be unlikely to be able to
discriminate among suggested possible states or even attribute a specific
mental state to her.

In the last two sections, we have seen mathematics characterised as the
melancholy science, the blind science and now, perhaps, the autistic science.
While not doing so explicitly, in the back of our minds we have been hold-
ing up Balacheff’s triple-detachment list to the discussions and theorising of
different writers through the ages: decontextualisation, depersonalisation,
detemporalisation. The first two are without question, features of autistic
discourse; as for the last, we are simply unaware of as yet, whether there is
a ‘preference’ for the timeless present.

Both Fitzgerald and James write of the strong connection with intense
originality and creativity in some very successful individuals with Asperger
syndrome, and both offer suggestions as to why such individuals might be
found at the very pinnacle of their disciplines. We, here, are caught by some
challenging questions, questions we simply pose to move towards a conclu-
sion of this section.

What draws people into mathematics? Does mathematics necessarily
demand extreme abstraction and, if so, what are the costs and consequences
for empathic human beings? Is this an instance where overly-ordered, overly-
detached individuals nevertheless find in mathematics sufficient characteristics
in common to support their own psychology? Is mathematics, in fact, an impor-
tant component of some individuals remaining sane? Lastly, is there also a
viable question about a possible reversible influence, asking how mathematics
is shaped by the characteristics and qualities of the individuals who do it, as
well as asking how mathematics shapes those who undertake it.
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Mind, brain and mathematics

Other contemporary talk of the mathematical ‘brain’ (used in preference to

the mathematical ‘mind’ [30]) can be found in the extensive exchange

between Jean-Pierre Changeux and Alain Connes (1995), Conversations on
Mind, Matter, and Mathematics, mentioned at the outset of this chapter.

While often finding themselves disagreeing, whether about the nature of

mathematical objects or the possibility of machine replication of mathemat-

ical activity, it is engaging to watch each trying to undergird their own and

undermine the other’s account, rather in the manner of wrestlers. 

Changeux puts atoms and neurons at the explanatory heart of constitu-

tive generative enquiry and creativity in mathematics (“Mathematical objects

exist solely in the mind of the mathematician, not in some platonic world

independent of matter. They exist in the neurons and synapses of the math-

ematicians who produces them”, pp. 11-12), while Connes resolutely coun-

ters with his purely descriptive, discovery role for the brain (p. 22). What the

latter terms ‘archaic mathematical reality’ for him pre-exists any human men-

tal activity in a completely independent manner. We are back very firmly in

the arena we described in Chapter α. But there is also a stimulating discus-

sion of illumination.

In discussing the possibility of Darwinian natural selection operating on

(potential) mathematical objects, the conversation runs as follows:

Connes: Illumination is not only marked by the pleasure—the

exhiliration!—one inevitably experiences at the moment it strikes,

but also by the relief one suddenly feels at seeing a fog abruptly

lift, and disappear. […]

Changeux: You make me think of the mystical ecstasy of Saint

Teresa of Avila.

Connes: Mystical ecstasy must certainly excite the same regions of

the brain—aesthetic harmony as well—but for other reasons I

should think. (pp. 147-148)

Tahta (1996), in his essay review of this book, sees the still centre of this

genuine exchange of views being the possibility of mathematics serving as

mediating third between mind and matter, in the same way that ‘transitional

objects’ mediate between fantasy and reality for the very young child. In

so doing, he was echoing John Dee’s comment over four hundred years

earlier, one that we quoted in Chapter α: 

For, [Things Mathematicall ], being (in a manner) middle, between

things supernaturall and naturall: are not so absolute and excellent as

things supernaturall; Nor yet so base and grosse, as things naturall:

But are things immateriall, and neverthelesse, by material things able

somewhat to be signified.
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Psyche in the Realm of Essence

He said to me: “It is done. I am the Alpha and the Omega,
the Beginning and the End”. (Revelation, 21:6)

Below is the most infamous extract from Gottlob Frege’s (1884/1978) book
The Foundations of Arithmetic, one that could actually serve as a trenchant
summary of his anti-psychological views in relation to mathematics and its
origins (and the apparent fears they evoked in him, “But this account makes
everything subjective, and […] does away with truth”).

What is known as the history of concepts is really a history either
of our knowledge of concepts or the meaning of words. Often it
is only after immense intellectual effort, which may have contin-
ued over centuries, that humanity at last succeeds in achieving
knowledge of a concept in its pure form, in stripping off the irrel-
evant accretions which veil it from the eyes of the mind. What,
then, are we to say of those who, instead of advancing this work
where it is not yet completed, despise it, and betake themselves to
the nursery, or bury themselves in the remotest conceivable peri-
ods of human evolution, there to discover, like JOHN STUART
MILL, some gingerbread or pebble arithmetic! […] As far as math-
ematicians are concerned, an attack on such views would indeed
scarcely have been necessary; but […] for the philosophers […] I
found myself forced to enter a little into psychology, if only to
repel the invasion of mathematics. (pp. VIIe-VIIIe)

As will be readily apparent by now, we hold no such reservations about
psychology suitably conceived. Should we need support, we simply recall
the quotation from Henri Lebesgue, cited at the outset of Chapter 8, which
contradicts Frege by necessarily linking psychology (and ‘even the aesthetic’)
to the foundations of mathematics. [31]

Given this chapter’s location within our book, as well as our occasional
glancing back to the initial chapter, we find it interesting in closing to try to
narrow down somewhat what might be meant by one of the central terms of
the book, namely ‘mathematics’ or ‘the mathematical’. (We do this bearing in
mind that, at least as much as ‘melancholy’ if not more so, neither of the
terms ‘mathematics’ nor ‘mathematician’ have had stable or firm meanings –
nor even constant resonance – across the ages.) To this end, we simply pro-
pose to point to a series of boundaries, which we shall locate by means of
intentionally naïve questions. 

(a) Our first question concerns the human/machine interface: are we
prepared to call something that inanimate machines do ‘mathematics’? René
Thom (1973, p. 205) has characterised mathematics as “the science of the
simulation of automatisms”, though it is clear from his discussion of the role
of the human unconscious in this piece, that the automatisms he had in mind
were human ones. Nevertheless, as we saw in Chapter 7 and elsewhere,
machines are increasingly being used in the service of such simulation.
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We have heard colleagues denigrating the mathematical results of com-
puter theorem-provers (for instance, Jürgen Richter-Gebert’s comment ‘stupid
proofs of simple theorems’), though there are now instances of computers
generating not-so-simple proofs. What these colleagues may be pointing to
is the fact that the mathematician must interpret the results in the end, no
matter how many computations are made, irrespective of how sophisticated
they may be. As David Henderson and Daina Taimina observed in the third
chapter in this book: “The goal is to understand meanings” (p. 59). 

That said, a quick glance at Jonathan Borwein’s chapter in this book sug-
gests that neat distinctions between human thinking and human tools are mis-
leading. We can no longer do without those inanimate machines, which not
only provide results, insight, visualisations, counter-examples and verifications
for many pieces of mathematics, but which markedly facilitate the whole
enterprise of communication and publication within the mathematical com-
munity. If, in 2005, we still feel the need to separate the work of the machine
from that of the mathematician (as suggested by the upcoming split publica-
tion of a purported proof of Kepler’s conjecture), then the question may be,
in the end, how prepared we are to dissolve the human/machine interface.

(b) Our second question is broadly historical: what are the earliest
instances of human activity we are willing to accept as mathematics (i.e.
where do we wish to locate the beginnings of mathematics and why). [32]
In light of this, what could be considered the earliest mathematical artifact
(and how would we know)? What do different answers reveal about the
investments of different proposers? What has mathematics been?

For example, the interesting controversies around notched wolf bones
some ten thousand years old found in what is now Zaire (Fauvel and Gray,
1987, p. 5) or neolithic stone balls (Tahta, 1980, as well as in his Chapter 9
of this book) have to do with their contested status of whether or not they
are to be taken as inherently mathematical objects. Such discussions involve
the usual problem of inferring intention and design from physical attributes
alone. But the clock for mathematics keeps being restarted, sometimes in
unexpected directions. For some, the real numbers were only brought into
existence during the second half of the nineteenth century with the publi-
cation of Dedekind’s work: he himself tells us so in his Was sind und was
sollen die Zahlen? One of the more recent Year Zero attempts locates ori-
gins in France during the 1930s and 1940s with the Bourbaki group’s ency-
clopaedic and abstractionist goals. 

We have been particularly interested in the recent scholarship around
cave art in Europe and North America. For instance, David Lewis-Williams
(2002) argues that this Upper Palaeolithic art marks not only the origins of
art itself, but also of religion and consciousness. That stone-age trivium is
tantalising, particularly given the mathematics–art relationships discussed by
Martin Schiralli in Chapter 5 and the mathematics–religion connections that,
somewhat to our surprise, became a central theme in several of the chapters,
particularly in Chapter 8 and 9. 
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Finally, we are also reminded of the mathematician André Weil’s (1992)
description of the mathematical experience, which hints at its other-worldli-
ness, as “the state of lucid exaltation in which one thought succeeds another as
if miraculously, and in which the unconscious seems to play a role” (p. 27).
In the end, this question may harken back to William James (1902): why do
mathematics, religion and art all seem to give rise to extreme, integrative
experiences? 

(c) The third question refers to the chronological present and relates to
the distribution of mathematics, mathematical awareness and sensibility
within cultures, as well as globally across cultures. In other words, this
relates to what we could call the ethnomathematical question: in what sense
does everyone mathematise or ‘do’ mathematics to some extent? [33]

Is it true that everybody counts (as the eponymous 1989 US National
Academy of Sciences’ report claims)? Is it right, as Alan Bishop (1991) has
argued, that there are at least six (his total) mathematico-cultural activities
that all human groups engage in (including counting, locating and playing)
that lead to mathematics? Or shall we use Saunders Mac Lane’s (1986) longer
list, as was briefly discussed at the end of Chapter 6? Perhaps they are all to
be seen simply as varied instances of protomathematical activity (as Yves
Chevallard, 1990, and others have used this term), namely something that is
not yet mathematics, but that can, albeit under certain stringent circum-
stances, lead to it. 

While accepting the polygenesis of protomathematical experiences,
Chevallard wryly warns against too facile a presumption of continuity
between everyday and mathematical perceptions, awarenesess and experi-
ences (which, seen in a more generous light, might have been part of
Frege’s intent). Writing of a mathematics education turn toward the cultural
more than a decade ago, Chevallard notes:

It is, I observe, a desperate attempt to prove that mathematics is
not foreign to the child’s everyday experience. (1990, p. 6; italics
in original)

This moves us back to mathematisation as a human activity, “where some-
thing not obviously mathematical is being converted into something which
obviously is” (Wheeler, 1982, p. 47). Finally, what are we to make of author
Russell Hoban (1982) who, in his post-apocalyptic novel Riddley Walker, had
a character claim: “Them as counts counts moren them as dont count” (p. 18)?

(d) Our fourth and final question concerns the genesis of mathematics,
not historically within cultures, but psychologically within the individual. Are
all mentally functioning humans born with the possibility for mathematics?
Does the potential for mathematisation become actualised, say, in a manner
akin to language acquisition: that is, only with adequate external input? What
necessary adult awareness needs to be brought to bear on a young child in
order to draw attention to the very possibility of mathematics? The work of
Caleb Gattegno (e.g. 1970, 1998) is a touchstone here, not least with his

245Chapter ω – Aesthetics and the ‘Mathematical Mind’



concentrated and fertile attention to the mathematical powers of infants made
evident by and inherent in their learning of their mother tongue. 

To stress and ignore is the power of abstraction that we as children
use all the time, spontaneously and not on demand, though in its
future use we may learn to call it forth by demand. And teachers
insist that we teach abstraction to children through mathematics at
the age of twelve! (1970, p. 28; italics in original)

In Chapter 6, William Higginson presented an anecdote about an individual
being sensitive to mathematical–aesthetic issues at a very young age, while
the following quotation from mathematician Michael Sipser (1986) provides
another:

I was very young […] and I remember my father folded down the
flaps of a cardboard box so that each was holding down the next.
And I remember [...] being amazed, it was so perfect [...] my first
experience of joy in abstract thought. (p. 80)

In the end, a core pair of questions to take into an emerging twenty-first
century might well be these. What are the psychic gains and losses in doing
mathematics? Why are some so willing to engage and persist with it, while
others are equally resolute in their abiding refusal?

Notes

[1] In Symposium, in response to the question “Why does the person who loves love
beautiful things?”, Plato had Socrates reply, “To posses them for himself” (1998, p.
85). Posession is both the rationale for and the reward of love (erôs).

[2] This apparently simple title is not grammatically straightforward. Due to the word
‘inconscient’ (“unconscious”) being both an adjective and a noun in French (as in
English), ‘l’inconscient mathématicien’ could be variously rendered as “the unaware/
unconscious mathematician” and “the mathematician unconscious”. This latter
phrase comprises both the unconscious of the mathematician and the mathematical
part of the unconscious. However, the first reading requires going against a con-
ventional order of noun followed by adjective in French, while the latter requires
the noun ‘mathématicien’ being treated as an adjective. As a Lacanian, Bouleau likely
enjoys playing with all possible significations.

Right at the end of Psychoanalytic Politics, Sherry Turkle’s (1978) partial history
of Lacanian psychoanalysis in France, Lacan’s deep involvement with mathematics,
especially knot theory, is described. Indeed, what turned out to be his final project
before he died was to explore the Paris asylum records of Georg Cantor (see also
Charraud, 1994, 1997). In terms that prefigure one central focus of this chapter,
Turkle concluded:

For Lacan, mathematics is not disembodied knowledge. It is con-
stantly in touch with its roots in the unconscious. This contact has
two consequences: first, that mathematical creativity draws on the
unconscious, and second, that mathematics repays its debt by giving
us a window back to the unconscious. (p. 247)
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[3] Mention of the theme of creativity takes us back to Chapter α, where we identi-
fied it as one of three primary foci of attention explored by various writers on the
mathematical aesthetic over the previous hundred years. The first specific focus, on
the nature of mathematical enquiry, touched on the general millennia-old debate
fuelled by Plato concerning creation versus discovery. And mathematical creation has
always played a central role in such discussions. Dick Tahta argued in Chapter 9 that
one central feature is that creation and discovery are both strongly linked to the early
psychic development of the individual, namely the coming to trust and believe in
things (including human beings as things). And the contribution of the aesthetic in
relation to mathematical creativity, not least in regard to giving rise to what Poincaré
(1908, p. 20) termed ‘the selected fact’, is perhaps its most significant role.

[4] Instances concerned with aesthetics and intuition, as well as a wider range of feel-
ings associated with mathematics, can be found in Chapter 5 of Burton (2004), as
well as in Albers et al. (1985, 1990), Bouleau (1997) and Sfard (1994). Benjamin
Bloom’s extensive study during the 1930s of the personal and family history of North
American prodigies in a variety of fields (including mathematics) identified a num-
ber of characteristic personality traits. Some that were identified in the mathematical
subjects included a “penchant for solitude” and a “desire for precision” (see Gustin,
1985), as well as being independent-minded. The mathematicians made frequent ref-
erences to enjoying being able to “derive from scratch”, as well as what could be called
a fundationalist tendency, a desire to get to the ‘bottom’ of things (evoking for us
Charles Murray’s seeker of “the inner truth of things” – see Chapter 6). But, as Roland
Barthes (1975) reminds us in The Pleasure of the Text, such pleasure is Oedipal: the
desire “to know, to learn the origin and the end” (p. 10).

[5] Nevertheless, Ken Ribet (in Singh, 1998, p. 288), when faced with being wrong
about his claimed proof of the link between the Taniyama–Shimura conjecture and
Fermat’s last Theorem, observed ‘I had an immediate terror’. Philosopher of logic
Ross Skelton (1993), in an article on mathematical problem solving and Wilfred
Bion (a follower of psychoanalyst Melanie Klein), has suggested that the creative
process would involve a return to the Kleinian ‘paranoid–schizoid’ position. This
would be more chaotic and potentially destructive than what we see Poincaré as
trying to describe. And Nicolas Bouleau (2002), writing in the context of Galois’s
personality and drawing on Lacan’s view of creativity as closely linked to paranoia
and his seeing of ‘science as a successful paranoia’, remarks: 

I want to acknowledge here a personal experience corroborated
by other mathematicians: certain phases of mathematical research
have plunged me into a state of dread and emotional fragility akin to
accounts of pathological cases of paranoia or paraphrenia. (p. 178)

[6] Nicholas Jackiw, in his discussion in Chapter 7 of the aesthetic motivations for
dynamic geometry activity, identifies the dual aesthetic intrinsic to dynamic geom-
etry, and perhaps to mathematics. On the one hand, there is the detached purity
and apparent other-worldliness of mathematical objects, while, on the other lies the
felt experience that comes from tangibly manipulating mathematics towards one’s
own passionate and personal need for understanding and connection. 

[7] Disinterested pleasure is possible because the subject forms a representation of
the object. Therefore, argued Kant, if contemplation of a mental representation
causes pleasure due solely to the way it stimulates a subject’s cognitive faculties
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(rather than due to stimulation of the subject’s desires or interest), every other sub-
ject will be able to take the same pleasure in this contemplation. Kant thus held that
to judge something to be beautiful is to make a judgement that applies universally;
one is ‘judging’ that everyone ought to find the judged object beautiful as well. 

[8] For example, Beardsley’s notion of “detached affect” certainly implies some emo-
tional separation: “a sense that the objects on which interest is concentrated are
set a little at a distance emotionally” (p. 288).

[9] Art critic Meyer Schapiro (1946/1978), writing of Vincent van Gogh in contrast to
an Impressionist painter’s lesser concern with the object, commented powerfully on
his attachment to the object, what Schapiro termed his “personal realism”:

I do not mean realism in the repugnant narrow sense that it has
acquired today, […] but rather the sentiment that external reality is
an object of strong desire or need […] (p. 93)

[10] Footnote 19 of Chapter 8 made mention of a mathematical contrast between the
senses of sight and sound. The frontispiece to Gabriel Josipovici’s (1996) striking
book Touch (a book which goes further, contrasting the senses of sight and touch)
asserts that:

it is possible to feel comfortable in the world and in our relation-
ships with others only if we value touch over sight, if we respect
distance but also work to overcome it […] although sight seems to
give us the totality of what we behold, it is only when we walk or
feel our way across the distances that things become more than
images and begin to constitute the world in which we, as touchers
and not mere observers, are included.

Nicholas Jackiw’s observations in Chapter 7 about the haptic as well as visual stimuli
evoked in working with The Geometer’s Sketchpad are particularly pertinent here.

[11] Yet, as we have noted earlier in this chapter, in mathematics there is also an
extremely strong pressure towards ‘perfect detachment’, namely a complete ego-
suppression – see also Rotman (1988). However, Hermann Weyl (1949, p. 75) once
noted that a trace of the subject position of the mathematician can still be located
in space by means of the origin: “The objectification, by elimination of the ego and
its immediate life of intuition, does not fully succeed, and the coordinate system
remains as the necessary residue of the ego-extinction.”

[12] There are fascinating links here to jurisprudence and to Oliver Wendell
Holmes’s challenging declaration in Lochner v. New York that, “General principles
do not decide concrete cases” (in Menand, 2002, p. 34). “It was Holmes’s genius as
a philosopher to see that the law has no essential aspect” (p. 35). Santayana (who
was quoted in Chapter 1) referred to mathematics as “the realm of essence”.

[13] Perfection is terrible, it cannot have children.
Cold as snow breath, it tamps the womb
(Sylvia Plath, 1965, p. 74)

Catherine Chevalley echoes Plath’s observation when remembering the intrusion
Bourbaki as a group made into her life as a girl, claiming what made it worse for
her was that this was a group who “reproduced without a single woman” (in
Chouchan, 1995, p. 38).
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[14] Although the quest for certainty seems a mainstay of mathematics, in Chapter 4
Nathalie Sinclair noted Wolfgang Krull’s (1930/1987) insinuation that some math-
ematical pursuits exaggerate the quest, at the expense, perhaps, of aesthetics. Krull
expressed the view that those attracted to the study of foundations are the least aes-
thetically oriented mathematicians, since they are “concerned above all with the
irrefutable certainty” (p. 50) of their results. Yet links between beauty, pleasure and
certainty are still commonly remarked upon. As just one example, Joseph Liouville,
talking of his work to ready some of Galois’s final papers for publication, noted, “I
experienced an intense pleasure at the moment when, having filled in some slight
gaps, I saw the complete correctness of the method by which Galois proves, in par-
ticular, this beautiful theorem” (in Singh, 1998, p. 249).

[15] In a section entitled ‘The psychoanalysis of mathematics’, Connes remarks how
when investigating simple but generative mathematical concepts, “one truly has the
impression of exploring a world step by step—and of connecting up the steps so
well, so coherently, that one knows it has been entirely explored. How could one
not feel that such a world has an independent existence?”. To this, Changeux inter-
jects “‘Feel’, you say? […] I fear the ‘feeling’ you have of ‘discovering’ this wholly
platonic ‘reality’ amounts to nothing more than a purely introspective—and there-
fore subjective—analysis of the problem” (Changeux and Connes, 1995, pp. 30-32).

[16] Rotman (1993, 2000) has produced two books which indirectly and directly
explore this theme further, in his pursuit of a successful semiotic account of math-
ematics. His account includes three related ‘figures’ at work – Person, Subject and
Agent – and he refers to the passage between them as “abstractions” (and which
we might see as detachments). Rotman comments: 

It would have been more precise to have spoken of forms of prin-
cipled “forgetting” to describe the processes of reduction and trun-
cation whereby the Person (metalingual, indexical/reflexive,
involved in arguments via metasigns) gives rise to the Subject (lin-
gual, collaborative, involved in deductions with signs), who in turn
produces the Agent (sublingual, mechanical, involved in actions
on signifiers). Baldly, the move from Person to Subject is organized
around the forgetting of indexicality, and the move from Subject to
Agent around the forgetting of sense and meaning. (1993, p. 91)

When thinking of this sort of “principled amnesia” as a certain form of abstraction,
Walkerdine (1988) reminds us that, “For Freud, forgetting is an act of the uncon-
scious” (p. 189).

[17] What possible role can there be for the human in mathematical knowledge,
when, as Shapin and Schaffer (1985) simply declare, “To identify the role of human
agency in the making of an item of knowledge is to identify the possibility of it
being otherwise” (p. 23). 

[18] It is striking to juxtapose the foregoing with the following two quotations, from
earlier times. Both relate to human knowledge and the possibility of perfect and
certain understanding vis-à-vis the divine, the customary locus of the perfect and
the certain. But the two views expressed below differ in terms of the qualitative
similarity or difference of such understanding in relation to the quantity of math-
ematical truths. 
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The first comes from Galileo’s (1632/1953) Dialogue Concerning the Two Chief
World Systems:

But taking man’s understanding intensively, in so far as this term
denotes understanding some proposition perfectly, I say that the
human intellect does understand some of them perfectly, and thus
in these it has as much absolute certainty as Nature itself has. Of
such are the mathematical sciences alone; that is, geometry and
arithmetic, in which the Divine intellect indeed knows infinitely
more propositions, since it knows all. But with regard to those few
which the human intellect does understand, I believe that its
knowledge equals the Divine in objective certainty, for here it suc-
ceeds in understanding necessity, beyond which there can be no
greater sureness. (Salviati speaking, p. 103; italics in original) 

The second was written by Benjamin Peirce (1850) at the end of a paper he wrote
on fractions which occur in phyllotaxis (the formal arrangement of leaves on a  stem):

May I close with the remark, that the object of geometry in all its
measuring and computing, is to ascertain with exactness the plan of
the great Geometer, to penetrate the veil of material forms, and dis-
close the thoughts which lie beneath them? When our researches are
successful, and when a generous and heaven-eyed inspiration has
elevated us above humanity, and raised us triumphantly into the
very presence, as it were, of the divine intellect, how instantly and
entirely are human pride and vanity repressed, and, by a single
glance at the glories of the infinite mind, are we humbled to the
dust. (p. 34)

[19] The work of Sherry Turkle and Seymour Papert (1992) has provided some
glimpse of how empathic individuals might continue to participate in the culture of
mathematics. Influenced primarily by computer programming, rather than math-
ematics, they have called for an epistemological pluralism that would challenge the
“hegemony of the abstract, formal, and logical as the privileged canon in scientific
thought” (p. 3). Turkle and Papert have proposed a “revaluation of the concrete”
and identify the computer – which stands between the world of formal systems and
that of physical things – as a promising and powerful ally. Despite its prevailing
image as a logical machine, they see the computer as having the ability to make the
abstract concrete, and hence to provide visible, almost tangible, access to math-
ematical ideas (an observation that Nicholas Jackiw also made in Chapter 7). Their
empathic approach (in Worringer’s sense) to programming involves a more “flexi-
ble and non-hierarchical style, open to the experience of a close connection with
the object of study” (p. 9). Using the computer involves insisting on negotiation,
relationship and attachment. An empathic approach to mathematics might similarly
involve the computer, but in a far deeper way than that ever imagined by educa-
tional technologists.

[20] Physicist Helenka Przysiezniak offered a characteristic of physicists: arrogance.
“You want to prove that something is right if you believe in it. That’s just how it
works when you’re discussing the ‘truth’” (in Baron-Cohen, 2003, p. 65). We find a
similar generalisation expressed by Paul André Meyer, in interview with Nicolas
Bouleau (1997), when asked whether mathematics perhaps engenders a certain
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forme d’esprit (“kind of mind”): “In any case, [it involves] a certain intellectual
behaviour, that one could call audacious, if one wanted to be laudatory, presump-
tuous otherwise” (p. 47). 

[21] Here is a short extract from an interview with Andrew Wiles (in Singh, 1998, p. 306):

People have told me that I’ve taken away their problem, and asked
if I could give them something else. There is a sense of melancholy.
We’ve lost something that’s been with us for so long […]

Wiles also remarked upon his personal sense of loss (p. 331), as well as his ambiva-
lence: “I got so wrapped up in the problem that I really felt I had it all to myself, but
now I was letting go. There was a feeling that I was giving up a part of me” (p. 271). 

In 1917, Freud wrote a significant essay entitled ‘Mourning and melancholia’,
where he explored parallels between these two notions. In so doing, he empha-
sised loss in connection with melancholy: not just actual loss of a loved person, but
also perhaps “the loss of some abstraction that has taken the place of one”
(1917/1955, p. 243). Freud also observed that the melancholic “has a keener eye for
the truth than other people who are not melancholic” (p. 246). There is no space
here to detail certain links we might under-hear between Wiles’s comments about
his and others’ experience and Freud’s account. An open and significant question
for us is the nature of the psychic connection between mathematics and loss, as
well as the latter notion’s link with melancholy. 

[22] In the introduction to his translation of the Problems, Hett (1957, p. vii) informs
us that Aristotle is definitely not the author of this work, at least as it has come
down to us, but nevertheless many ancient authors cite problems as being
Aristotelian that appear in this work. In particular, Hett argues, “for example, Book
XXX. 1, the important problem dealing with the ‘melancholic’ temperament, is
vouched for as Aristotelian both by Plutarch and Cicero” (p. vii).

[23] In literature, there are two periods in English poetry when the ‘pleasing melancholy’
(a juxtaposition not used ironically) was quite a common allusion: Elizabethan and
Romantic verse. John Keats, for instance, begins the final stanza to his Ode on
Melancholy: 

She [Melancholy] dwells with Beauty – Beauty that must die.

And in the closing lines of Il Penseroso, wherein the poet hails ‘divinest
Melancholy’, even John Milton declares himself willing, in older age, to pay her
price for granting the intellectual joys to come:

These pleasures, Melancholy, give,
And I with thee will choose to live.

Of particular relevance to this chapter, Radden (2000) writes:

The link with genius was also revived in the literary movement of
the late eighteenth and early nineteenth centuries. Again the suf-
fering of melancholy was associated with greatness; again it was
idealized, as inherently valuable and even pleasurable, although
dark and painful. The melancholy man was one who felt more
deeply, saw more clearly, and came closer to the sublime than
ordinary mortals. (p. 15)
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[24] In their extensive historical account of the notion of melancholy, Saturn and
Melancholy, Klibansky, Panofsky and Saxl (1964) document the ancient tension
around melancholy as a ‘natural temperament’ and a ‘pathological disease’. They
describe a period when “the ‘abnormality’ of the melancholic could consist in
abnormal talent” (p. 31), related to an image of “the outstanding man hurled back
and forth between exaltation and overwhelming depression” (p. 42). In their book,
they describe the slow erosion of anything positive associated with melancholy: 

in future times it was to mean, unambiguously, a bad disposition
in which unpleasant traits of mind and character were combined
with poor physique […] During the first twelve hundred years after
Christ the idea of the highly gifted melancholic had apparently
been completely forgotten. (p. 67)

In the Dürer image, Klibansky et al. see a vindication of an ‘inspired intellectual
melancholy’ strand that their extensive work had uncovered. Melancholy is person-
ified here, in an image crossed with ars geometrica, one of the seven liberal arts.
And they further claim “an inner affinity between the two themes” (p. 332). The
general tale they have to tell is a portrayal of a realisation of failed effort, of lack of
achievement, of someone:

[whose] mind is preoccupied with interior visions […] Melencolia’s
eyes stare into the realm of the invisible with the same vain inten-
sity as that with which her hand grasps the impalpable. With […]
her gaze thoughtful and sad, fixed on a point in the distance, she
keeps watch, withdrawn from the world. (pp. 318-320)

[25] Ironically, by the twentieth century, mathematicians had claimed for themselves
the right to create objects independent of their physical manifestation (a right prev-
iously accorded only to God). Lieven Jonckheere (1991), a Lacanian analyst, writes: 

Henry of Ghent makes an important clinical remark: in his experi-
ence, in the experience of his time, this limitation to spatial repre-
sentation or form, this metaphysical incapacity of immediate access
to matter, is responsible for the melancholic disposition of the
mathematical mind. He who tries to measure and calculate all of
the materia, will get depressed. We could also say, referring to
Lacan, that mathematics constitute[s] a cowardice towards matter.
(p. 1)

[26] It is noteworthy that, in the expanded edition of Le Lionnais’s collection Great
Currents of Mathematical Thought, space was given to a chapter by Jean Ullmo
(1962/1971) on Pascal’s distinction. (Recall, too, Magritte’s painting, originally enti-
tled ‘Maternity’, was later retitled by him ‘The mathematical mind’ – see Figure 7 in
Chapter 9.) Interestingly, though perhaps unsurprisingly given its historical location
and time, Ullmo tries first to disparage what was translated as ‘the subtle intelli-
gence’ (l’esprit de finesse) and to ensure that the other in revised form (which Ullmo
terms the ‘scientific intelligence’) is seen as the only true one, thereby dissolving
Pascal’s attempted distinction in a particularly one-sided way.

[27] Giambattista Vico had been less sanguine about the possibility of a ‘sensible
mathematics’, declaring in the first half of the eighteenth century, “Mathematics is cre-
ated in the self-alienation of the human spirit. The spirit cannot discover itself in
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mathematics.” (in Davis and Hersh, 1986, p. x). Consequently, mathematician Jean
D’Alembert, who worked with Diderot on their Encyclpaedia and wrote its entry for
‘blind’, needed to defend “mathematicians against the popular idea that mathematics
and sensibility were mutually exclusive” (Riskin, 2002, p. 58).

To use a medieval scholastic term, for us there remains the firm possibility of cre-
ating a circumincession: 

a “mutual indwelling,” not of form and content but rather of feeling
and thought. […]  It may be wrong to think of Cowley, Donne and
Chapman as philosopher-poets, but they are poets who knew the
mind is a sensory organ like the eye, and for whom there was no
aesthetic experience like thinking. (Bringhurst, 2002, pp. 83, 87)

This affinity, between feeling and thought, between and among the various human
senses, attuned both to without and within, to the structure of the world and, pace
Vico, the psychic structure of the self, potentially links the twin sources of mathe-
matics, allowing it to regain and retain an unashamedly aesthetic core.

[28] Autism specialist Uta Frith (2003, p. 25), who first translated Asperger’s seminal
paper into English, also identifies Erdös as a likely individual with autism, basing
her cautious suggestion on biographical information contained in Paul Hoffman’s
(1998) curiously titled book, The Man Who Loved Only Numbers.

[29] While there is some resonance with Worringer’s similarly-named categories –
for instance, Baron-Cohen’s ‘systemizing’ being closely related to detachment and
abstraction – there is also difference: the empathy at play here is specifically empathy
with other humans rather than nature and such empathy requires a degree of
attachment. 

[30] The term ‘mind’ has just one entry in the index of this book:

Changeux: They [philosophers and psychologists of the “function-
alist” school] distinguish the neural organization of the brain from
what Anglo-Saxon authors call “mind” (the English term carries
none of the metaphysical connotation associated with the French
term esprit)—that is to say, they distinguish the brain’s neural
organization from its functions. (p. 82; italics in original)

[31] David Bodanis (1988), in his essay ‘Socialism, bacteria and the obsessions of
Pasteur’, discusses an similar fear in Louis Pasteur, Frege’s somewhat older contem-
porary. This signal unease in Pasteur’s case concerned contamination of the ‘body
politic’ by one agent just as that of the body could be achieved by means of pollu-
tion by effectively ‘immortal’ bacteria. Frege seemed more worried about the ‘mind
mathematic’ being invaded by teeming individual and idiosyncratic psyches, thereby
thwarting his desire for the unchanging immortality of mathematical truth. 

David Bloor (1976) claimed that Frege’s polemical concern with ‘psychologism’
in the foundations of arithmetic is “steeped in the rhetoric of purity and danger”
(p. 83). For more discussion of these notions of Mary Douglas, see Chapter 8 in our
book. Bloor immediately went on to summarise Douglas’s (1970) ‘purity rule’,
which links high status and strong social control to rigid bodily control:

The attempt is made to portray interactions as if they are between
disembodied spirits. Style and behaviour are bent towards maxim-
ising the distance between an activity and its physiological origin.
(p. 83)
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Chapter 6 documented mathematician Saunders Mac Lane’s (1986) similarly ‘psychic’
(but unpathologised) account of the human origins of mathematical concepts and
processes. Nevertheless, this earlier dispute serves as a reminder of the lengths
some will go to in order, in T. S. Eliot’s (1944, p. 39) words, ‘to purify the dialect
of the tribe’.

In Greek mythology, Psyche herself was originally human and her tale neatly
intertwines not only elements of beauty and pleasure by means of Aphrodite and
her son Eros, but also that of a human achieving the divine. In terms of the partic-
ular psychology of mathematics, it is perhaps also about the investment of human
wishes for immortality. As mathematician Marcus du Sautoy (2005) has claimed
(albeit without any exemplification, personal or otherwise), “The permanence of
mathematical proof fuels the mathematician’s belief that, of all the scientists, they
alone can achieve immortality” (p. 16).

[32] However, at the very end of his manuscript entitled The Origin of Geometry,
Edmund Husserl (1936/1970) cautioned:

For romantic spirits the mythical-magical elements of the historical
and prehistorical aspects of mathematics may be particularly attractive;
but to cling to this merely historically factual aspect of mathemat-
ics is precisely to lose oneself to a sort of romanticism and to over-
look the genuine problem, the internal-historical problem, the
epistemological problem. (p. 378)

[33] For a range of sources on ethnomathematics, see the 1994 special issue 14(2)
of the journal For the Learning of Mathematics, edited by Ubiratan D’Ambrosio and
Marcia Ascher, or the collection entitled Ethnomathematics: Challenging Euro-
centrism in Mathematics Education, edited by Arthur Powell and Marilyn
Frankenstein (1997).
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