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PREFACE

A majority of the chapters in this book first saw the light of day as talks at
a conference organised and held at Queen’s University in Kingston, Ontario,
Canada in April 2001. This small, invitational meeting, tellingly entitled Beauty
and the Mathematical Beast, brought together a range of academics inter-
ested in and committed to exploring connections between mathematics and
aesthetics. The enthusiastic response of participants at this gathering encour-
aged the presenters to expand upon their initial contributions and persuaded
the organisers to recruit further chapters in order to bring a greater balance
to the whole.

The timing of this event was not arbitrary. The preceding decade had
seen a resurgence in serious writing dealing with deeper relations between
mathematics (and science) and ‘the beautiful’. In many ways, we the editors
of this volume found these contributions to the literature were revisiting and
drawing on themes that had been prominent over two thousand five hun-
dred years ago, in certain writings of the Pythagoreans. While not intending
to offer a historical reappraisal of these ancient thinkers here, we have none the
less chosen to invoke this profound interweaving of the mathematical and
the aesthetic to which this reputedly secretive philosophical sect was exten-
sively attuned.

This book is divided into three sections comprising three chapters each,
each with its own short introduction discussing the particular chapters within.
These nine chapters in all are flanked by an introductory and a concluding
chapter, both of which written by ourselves, which we describe now.

The opening Chapter o describes the ancient affinity between the math-
ematical and the aesthetic referred to in the book’s title, an affinity we aim
to illuminate as well as cultivate and advocate by means of this collection.
Chapter a also provides a brief history of the mathematical aesthetic, begin-
ning with the Pythagoreans but flowering in the twentieth century, while
highlighting some of the themes and issues that subsequent chapters raise.
These include attention to the following familiar questions: can criteria for
mathematical beauty be discovered?, is mathematics created or discovered?
and is mathematics an art or a science?

The final chapter of this book, Chapter w, revisits some of these ques-
tions posed in Chapter a in light of the nine chapters in between. It provides
some insights into those initial questions while raising further ones of its
own. In particular, it offers three strong themes which stretch the mathemat-
ical aesthetic beyond the boundaries set by previous inquiries, all of which
are related to potential sources of pleasure and desire for the mathematician:
desire for distance and detachment; longing for certainty and perfection;
pleasure in melancholy.
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The ten authors of the various chapters in this book come from Canada,
the US and Europe. Two who were born in Britain now live and work in
Canada, while one from Latvia and one from Canada are now in the US.
Each anglophone country has its own slight variants of spoken and written
English, as well as punctuation conventions. Is the em-dash a thing of beauty
or an abhorrence three times wider than any other character in the set? Is
that extra ‘u’ in colour redundant, that repeated ‘I’ in ‘travelled’ an unneces-
sary extravagance (as a number of spell-checkers suggest)? Should the issue
of the mathematical scope of variables enter into discussions of where to
place commas and full-stops in relation to quotation marks? Is an ‘s’ or a Z’
to be preferred in generalisations? [1] What seem to be matters of conven-
tion (and are therefore, at root, arbitrary) none the less raised a number of
exercising aesthetic issues. As editors, we have decided on a position of plu-
rality and respect for individual heritage, rather than impose a completely
specified geographic orthography.

One of the considerable satisfactions we the editors have received in
creating this book has arisen from drawing on the diverse expertise of the
contributors to this volume, both mathematical and otherwise. Another has
been the extended opportunity for the three of us to work alongside one
another, exploring matters large and small.

We specifically want to mention here the breadth of scholarship that
Martin Schiralli (the author of Chapter 5) brought to this project. Tragically,
Martin died before this book was completed, aged only 56. His depth of
philosophical knowledge, combined with his fresh perspective on math-
ematics, added considerably to many elements of this collection.

Nathalie Sinclair
David Pimm

William Higginson

January, 2006

[1] An entertaining discussion of some related issues can be found in Eats, Shoots &
Leaves (Truss, 2004).
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We are very grateful to the following for permission to reproduce poetic
material in this book.

p. 45: Jet Wimp (now Jet Foncannon), co-editor of the anthology
Against Infinity, which contains the poem ‘Poet as
mathematician’ by Lillian Morrison.

p. 182: Sharon Nelson, for the lines quoted from her collection
This Flesh These Words.

p. 226: Patrick Lane, for the lines quoted from his collection
Old Mother.
p. 248: Faber and Faber Ltd (London) and HaperCollins (New York),

for the lines quoted from Sylvia Plath’s collection Ariel.
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CHAPTER O,

A Historical Gaze at the
Mathematical Aesthetic

Nathalie Sinclair and David Pimm

No matter how correct a mathematical theorem may appear to be,
one ought never to be satisfied that there was not something imper-
fect about it until it gives the impression of also being beautiful.
(George Boole, in MacHale, 1993, p. 107)

The ancient Greeks, primarily by way of the Pythagoreans, established and
celebrated a fundamental affinity between the mathematical and the aesthetic.
This affinity was nothing about surface charm or happy coincidences. It had
deep roots, integral as it was to the world-view of the Pythagoreans, to their
beliefs about knowledge and learning. It closely connected the raw world
of sense and experience to the divine world of perfection and beauty.
Number was the principle that governed all things, rather than being simply
useful for counting or measuring — as modern minds might think, if indeed
they stop to consider this omnipresent convenience at all. Through number,
one could come to know the world, and through the harmonies found in
numerical patterns and in geometrical forms, one could gain access to the
clearest and most indubitable essence — the real.

This ancient affinity started losing sway early on, even with Plato and
Aristotle. Nevertheless, traces of this Pythagorean perception have remained,
resurfacing at various times, such as at the beginning of the twentieth century.
For instance, in the second volume of his book On Growth and Form,
D’Arcy Thompson (1917/1968) wrote:

For the harmony of the world is manifest in Form and Number,
and the heart and soul and all the poetry of Natural Philosophy are
embodied in the concept of mathematical beauty. (pp. 1096-1097)

Thompson went on to add that this is what the Pythagoreans taught us,
Philolaus in particular (a Pythagorean whose influence is also discussed in
Chapter 5 of this book), before remarking:

Moreover, the perfection of mathematical beauty is such (as Colin
Maclaurin learned of the bee), that whatsoever is most beautiful
and regular is also found to be most useful and excellent. (p. 1097)

While not all would agree with his attributing to the beautiful the most util-
itarian properties (or at least the most ‘useful’, however that may be seen at
different times), Thompson is, in this passage, apparently identifying math-
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ematics as possessing the highest form of perfection — a theme we shall find
recurring repeatedly. Finally, Thompson seconded the view of a certain
Monsieur Henri Fabré, who wrote that one sees in Number “le comment et
le pourquoi des choses” [the how and the why of things] and finds in it “la
clef de voute de I'Univers” [the keystone of the universe] (p. 1097).

If Thompson signalled rapprochement, we can also identify periods of
disjunction or even denial of this ancient affinity. For instance, T. S. Eliot
(1921/1932) wrote of his sense of a ‘dissociation of sensibility’ (the loss of the
direct fusion of thought and feeling) in much of the poetry of eighteenth- and
nineteenth-century England. (This, as well as other instances, including the
nineteenth-century English Romantics’ scorn of mathematics and science, is
touched on in Chapter 9.)

And one of the more recent accounts of this process of the scientific/
artistic affinity dissolving (at least symbolically), from the mid-twentieth cen-
tury this time, was given by scientist and novelist C. P. Snow (1959) in his
essay naming and exploring aspects of ‘the two cultures’. Since then, how-
ever, these two cultures — the arts and the sciences — have once again started
to find an intermittent, yet growing rapport, as evidenced by the number of
books, conferences and courses seeking common behaviour and beliefs.

This recent work has included many productive marriages between the
sciences (including mathematics) and the arts, such as, for example, con-
temporary sculptures of numerical patterns (Dickson, 1993) and mathemat-
ical analyses of Jackson Pollock’s paintings (Taylor et al., 1999): this is fur-
ther discussed in Chapter 6. Ethnographically-oriented scholars have taken
interest in revealing the mathematical dimension of past artistic artifacts,
such as the geometry of Pueblo pottery (Campbell, 1989) and the symmetry
of Islamic design (Chorbachi, 1989). And, of course, the plethora of books
on the Dutch artist Maurits Escher, particularly the recently published M.C.
Escher’s Legacy: a Centennial Celebration (Schattschneider and Emmer, 2003),
has shown how his prints were born out of the artist’s mathematical and
artistic interests and how his work continues to inspire both mathematical
and artistic analyses.

Scholars working in this interdisciplinary, ‘cross-cultural’ arena provide
concrete examples of the ways in which mathematics and the arts can both
inspire each other, not only in contemporary settings, but also in historical
ones. Increasingly, however, scholars have also been working to reveal the
close relationship between scientific and artistic creativity and have succeeded
in defying popular beliefs that feed the antagonistic ‘two culture’ world-
view, including that which holds that scientists operate exclusively rationally
and artists solely intuitively or emotionally.

Some aspects of this ancient affinity even seem to be seeping into other,
non-academic cultural milieux. Images of fractals, for instance, which have
become increasingly widespread (who has never found themselves staring at
a fractal screensaver?), have provided many non-mathematicians with oppor-
tunities to encounter compelling, visually beautiful mathematical artifacts.
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And though mathematics is far from being seen as playing the central epis-
temological role it did for the Pythagoreans, it has nonetheless made some
inroads into more mainstream culture.

The proliferation of mathematical films and plays, such as A Beautifiil
Mind, Pi, Arcadia, Breaking the Code and Proof, harken back to ancient
times when playwrights such as Aristophanes could refer to then-current
mathematical problems (such as the squaring of the circle) as easily as polit-
ical ones. Publishers have apparently realised that the once-sullen, esoteric
line of pure mathematics books might be gaining in appeal, as titles such as
Fermat’s Last Theorem, The Code Book and The Honor Roll: Hilbert’s Pro-
blems and their Solvers populate bookstore shelves. Instead of offering
accounts of mathematics using the formal, abstract language to be found in
research journals — and often imposed upon reluctant schoolchildren — these
books tell exciting, sometimes heart-wrenching and very human stories of
mathematicians and their discoveries, seeking to convey the sense of beauty
and elegance to which mathematicians are drawn. Once again, we are being
provided with glimpses of the way in which mathematics connects experi-
ence and abstraction, connects the senses with structures, connects the
human with the divine.

The scale of the recent rapprochement among mathematics, science and
the arts, as well as the apparently growing appeal of mathematics in more
mainstream culture, are both manifestations of a re-emergent affinity between
the mathematical and the aesthetic, one that might be coming closest to the
golden era of the Pythagoreans. In keeping with the philosophy of the
Pythagoreans, the chapters in this book focus on this affinity at a deeper
level, beyond surface applications (as might be suggested by geometricised
paintings or musical fractals), to more fundamental, epistemological connec-
tions. They attempt to articulate a common sub-stratum between the math-
ematical and the aesthetic, one that is integrally related to human sense-
making and to learning.

The goal of this opening chapter is to provide a brief historical sense of
the development of ideas around the mathematical aesthetic. Readers with
backgrounds in the aesthetics branch of classical philosophy will find the
equivalent branch of mathematics rather young and comparatively uncritical.
Nevertheless, a certain amount of grappling with difficult challenges can
be found, though not with the systematic or cumulative attention that has
built and continues to build the mathematical edifices so cherished by math-
ematicians themselves.

We begin by looking at some fragments of these challenges, as found
in the long period stretching from the ancient Greeks up to the beginning
of the twentieth century. We then turn to the twentieth century itself and
find there an explosion of interest in the mathematical aesthetic, particularly
around questions such as: is mathematics an art or a science? and can cri-
teria for matbematical beauty be identified?
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Some Pre-Twentieth-Century Fragments
Concerning the Mathematical Aesthetic

The extant writings attributed to Pythagoras and his followers reveal that the
Pythagorean school, if not Pythagoras himself, found in the beauty of math-
ematics the very highest order of aesthetic interest. In fact, the Pythagoreans
were overwhelmed by the aesthetic appeal of the theorems they discovered
and were perennially preoccupied with the interconnectedness of the math-
ematical and the aesthetic. This interconnectedness permeated their world-
view, which saw reality as ultimately revealed in mathematically harmonious
concepts.

Mathematical studies were thus seen as furnishing ladders and bridges
to the divine, because they shared a perfection and beauty that was consid-
ered true of the divine, but felt lacking in the physical world. Unlike Plato,
who separated number, an abstract entity, from the things numbered, the
Pythagoreans saw number as being tied up with the actual procedure of
counting and thus closely connected with things. Number reached out or
down into the world of sense and experience. As such, the Pythagoreans
saw the roots of Plato’s exclusively abstract entities in the ‘real’; the human,
the sensory world.

Both Plato and Aristotle, though philosophically divergent in many
ways, were much influenced by the ideas of Pythagoras, particularly with
respect to the connection between mathematics and the beautiful. Plato saw
mathematics as providing the most fundamental of all ideas and believed in
mathematical objects as perfect forms. As he wrote in Philebus:

By ‘beauty of figures’ I mean in this context not what most would
consider beautiful — not, that is, the figures of creatures in real life
or in pictures. I mean a straight line, a curve and the plane and
solid figures that lathes, rulers and squares can make from them. I
hope you understand. I mean that, unlike other things, they are not
relatively beautiful: their nature is to be beautiful in any situation,
just as they are, and to have their own special pleasantness, which
is utterly dissimilar to the pleasantness of scratching. (51d; 1982,
p. 121; italics in Walterfield)

And Aristotle, in his Metaphysics, wrote that the mathematical sciences have
much to say about the beautiful and the good, and that:

the chief forms of beauty are order and symmetry and definiteness,

which the mathematical sciences demonstrate in a special degree.

(Book M, 1078b; 1966, p. 218)
(Martin Schiralli, in Chapter 5, however, discusses important differences
among the views of Plato, Aristotle and the Pythagoreans.)

Once into the Christian era, by no means all were comfortable with link-

ing the mathematical and the divine, of humans equating investing the math-
ematical and investing the divine with the qualities of perfection, thereby
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perhaps equating the two. For instance, St Augustine, in his twelve-volume
work De Genesi ad Litteram, warned:

Hence, the good Christian should beware of mathematicians and
all those who make empty prophecies, especially when they tell
the truth, for fear of leading his soul into error by consorting with
demons. (Book 1II, 23, 35-36)

When reading this observation, however, it is important to realise that the
most common connotative meaning of the word ‘mathematician’ in St
Augustine’s day was not what it would be today, including as it did those
engaged in astrology, alchemy, gematria and magic. And, as Chapter 9 spec-
ulatively explores, in Byzantium and in mediaeval Europe at least, the drive
to mathematise may have been ‘side-tracked’ into theology, until Renaissance
artists found an alternative outlet in their work.

With regard to Islam, Endress (2003) informs us that the only mediaeval
mathematics-related dissertation on the aesthetically beautiful can be found
in Tbn al-Haytham’s Optics, a discipline that was seen as the converse of
geometry by mediaeval mathematicians. It may be true that such mathemati-
cians were less inclined to talk directly about the beauty of mathematics;
nonetheless, they certainly wrote about some of its other aesthetic qualities.
For example, the tenth-century mathematician Abu Salh al-Kuhi — according
to Berggren perhaps “the last mathematician to look on mathematics with the
eyes of the great Hellenistic geometry” (cited in Endress, p. 193) — extolled
the certainty of mathematics. He wrote of the rules of geometry as being
“consistent and unchanging” and eschewed the kind of ‘bad’ mathematics
that was based on numerical, imperfect approximations.

The eleventh-century Islamic theologian Al-Ghazzali warned of math-
ematics — and particularly its predilection for aesthetic qualities such as
precision and clarity — leading to harmful things other than magic. One addi-
tional drawback of mathematics, he wrote, was that:

every student of mathematics admires its precision and the clarity
of its demonstrations. This leads him to believe in the philosophers
and to think that all the sciences resemble this one in clarity and
demonstrative power. (in Hoodbhoy, 1991, p. 105)

Such caveats against misplaced or even idolatrous authority, whether to be
located in a particular author or within mathematics itself, have been echoed
time and time again down the centuries. For instance, we note in passing that
one of the more notable complaints concerning Isaac Newton’s extensive
biblical chronology (which occupied much of the latter part of his life) was
its being credited with more credence than its due, because of the reputa-
tion of its creator in quite another area of human endeavour.

So, over a millenium after St Augustine’s expression of concern, we still
find Archbishop Francois de Fénélon (1697/1845) in Paris expressing a not-
dissimilar unease:
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Surtout ne vous laissez point ensorceler par les attraits diaboliques
de la géométrie. [Above all, do not allow yourself to be bewitched
by the diabolical attractions of geometry.] (p. 493)

In the Christian West, right up to the time of Fibonacci (and beyond, into
the sixteenth and even seventeenth centuries), the more likely meaning for
‘mathematician’ was astrologer (and, even worse, ‘conjuror’). It is worth
recalling that such an Augustinian pejorative description of ‘mathematician’
(or its common equivalent of ‘geometer’) was almost as fitting of Isaac
Newton (see, for instance, Gleick, 2003, on the ‘alternative’ Newton) as the
Elizabethan neoplatonist mathematician and magus John Dee (1527-1608)
of an England a century earlier, whose magnificent personal academic library
was perhaps the best in England at that time (see Yates, 1969).

Dee lived in very complex political, religious and intellectual times.
Similar concerns linking mathematics with devil-worship surfaced in England,
very soon after the English Reformation started, with Henry VIII asserting
the King as head of the new Church of England (via the 1534 Act of
Supremacy denying the authority of the Pope). In 1550, three years after the
death of Henry VIII, government commissioners (‘Visitors’) went destruc-
tively through Oxford University college libraries, casting more than a sus-
picious glance at books containing mathematical diagrams, consigning many
volumes to destruction. [1]

Twenty years after this book-burning event, Dee published his exten-
sive and very influential ‘fruitfull preeface’ (which ran to ninety-five printed
pages) to the first English-language version of Euclid’s Elements. Following
a highly Pythagorean discussion of the nature of mathematics in terms of
number, Dee asserted:

For, [Things Mathematicall], being (in a manner) middle, between
things supernaturall and naturall: are not so absolute and excellent
as things supernaturall; Nor yet so base and grosse, as things nat-
urall: But are things immateriall, and neverthelesse, by material
things able somewhat to be signified. And though their perticular
Images, by Art, are aggregable and divisible: yet the generall Forms
notwithstanding, are constant, unchangeable, untransformable and
incorruptible. Neither of the sense, can they, at any time, be per-
ceived or judged. Nor yet, for all that in the royall mind of man,
first conceived. But surmounting the imperfection of conjecture,
weening and opinion: and comming short of high intellectuall con-
ception, are the Mercuriall fruit of Dianceticall discourse, in per-
fect imagination subsisting. A marvellous newtrality have these
things Mathematicall, and also a strange participation between
things supernaturall, immortall, intellectuall, simple and indivisible:
and things naturall, mortall, sensible, compounded and divisible.
Probability and sensible proof, may well serve things naturall, and
is commendable: In Mathematicall reasonings, a probable Argu-
ment is nothing regarded: nor yet the testimony of senslel, any
whit credited: But onely a perfect demonstration, of truths certain,
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necessary, and invincible: universally and necessarily concluded: is
allowed as sufficient for an Argument exactly and purely Math-
ematicall. (1570; in Rudd, 1651, pp. 4-5)

There are a number of resonances between the above quotation of Dee’s
and themes addressed in this book. First, in placing mathematics neither of
this world nor the next, but somehow hovering between the two with con-
nections and links to both, Dee calls attention to the Janus-faced nature of
mathematics, as well as presciently identifying mathematics as a ‘mediating
third’ between the two.

To evoke in the context of this quotation the tension between ‘pure’ and
‘applied’” mathematics, to cast it in this modern frame (that is, to worry about
Eugene Wigner’s (1960) claim about ‘the unreasonable effectiveness of
mathematics’), is to assert the gap between mathematical and natural. But
some of the protestors cited above are at equally great pains to maintain the
separation between mathematical and what Dee terms ‘the supernaturall’,
identified by some (but not all) with ‘the divine’.

We would also like to draw on this quotation in order to make some
links with themes explored in this book. To a considerable extent, quite a
number of chapters in this book — in particular, Chapters 3, 4, 5, 8 and 9 —
explore different ways of disagreeing with Dee’s remark “Neither of the
sense, can they, at any time, be perceived or judged”. Additionally, in Chapter
1, Jonathan Borwein takes (indirect) exception to Dee’s assertion that “a
probable Argument is nothing regarded”. David Pimm, in Chapter 8, discusses
aspects of what Dee termed the “Art” of “perticular Images”, as well as
exploring the connection between ‘Popish’ catholicism and concern about
mathematical images in the twentieth century (prefaced, as we saw above,
in the sixteenth). Finally, in Chapter 9, Dick Tahta centrally examines the
nature of “sensible” objects in relation to mathematics.

The Mathematical Aesthetic in the Twentieth Century

Though the eighteenth and nineteenth centuries were extremely fruitful in
terms of mathematical discoveries and advances, it seems that mathemati-
cians infrequently, at least in print, reflected on issues related to the mathe-
matical aesthetic. This is not to say, however, that they did not think about
or mention aesthetic values. Gauss’s mathematical diary (see Gray, 1984), for
example, contains many references to the beauty or elegance of his own
mathematical ideas and discoveries. For instance, as a nineteen-year-old in
1796, Gauss wrote about a new proof obtained “all at once, from scratch,
different, and not a little elegant” (p. 108). In another entry, this time made
in 1800, he described his work on the arithmetic—geometric means as being
“most beautifully bound together and increased infinitely” (p. 122) to the
theory of transcendental quantities. In addition to beauty and elegance,
Gauss made reference to aesthetic qualities such as a “charming theorem”
(p. 125) and to a “most simple and expeditious method” (p. 124).
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However, for some reason, the turn of the past century brought about
a comparative flurry of interest in the nature of mathematics. In particular,
there were concerted efforts to ascertain whether mathematics belonged
more to the arts or to the sciences, from which it had not long ago been
divorced (during the latter part of the nineteenth century, not least due to
developments in connection with non-Euclidean geometry). It also marked
the beginning of sustained inquiries into the development of mathematical
knowledge and the extent to which it is fuelled by some aesthetic as well
as utilitarian or logical considerations (which, pace D’Arcy Thompson, were
usually seen as relatively distinct).

Finally, and early on in this flurry of activity, mathematicians became
interested once more in the psychology of mathematical discovery. [2] Some
twentieth-century mathematical writers on the aesthetic turned to the central
question of the extent to which affective responses and aesthetic sensibilities
were involved in the process of mathematical creation. Their attention to the
aesthetic was not as intense and all-encompassing as that of the earlier
Pythagoreans, but they each began, in their own way, to rekindle the embers
of this ancient affinity. Here, we examine each of these themes in turn,
tracing out, when possible, aspects of their historical developments.

The aesthetics of mathematical creation

In 1908, Henri Poincaré began to bring renewed attention to the aesthetic
dimension of mathematical creation, but his focus was more pragmatic and
markedly different from that of the ancient Greeks. He was most interested
in probing the aesthetic influences that affect the process of mathematical
discovery. This focus proved unlike that of many of the mathematicians who
would follow him, who attended more to the aesthetic values or principles
that exist in mathematical ideas or products (the discoveries themselves). By
analysing the process of mathematical creation, Poincaré tried to show that
mathematical invention depends upon the often sub-conscious choice and
selection of ‘beautiful’ combinations of ideas, those best able to “charm this
special sensibility that all mathematicians know” (1908/1956, p. 2048).

In his book The Psychology of Invention in the Mathematical Field,
Jacques Hadamard (1945) proposed the first expansion of Poincaré’s aesthet-
ic heuristic theory, additionally claiming that aesthetic sensibilities often guide
a mathematician’s general choices about which line of investigation to pur-
sue. He wrote specifically about the “sense of beauty” (p. 130) which can
inform the mathematician that “such a direction of investigation is worth fol-
lowing; we feel that the question i itself deserves interest” (p. 127; italics in
original). Hadamard also added to Poincaré’s ideas on the role of the math-
ematical pre-conscious in mathematical thinking, locating the period in which
it is most operative — the incubation period — within a larger theory of math-
ematical inquiry. Through both historical and empirical studies, he supported
his account from mathematicians such as Pierre de Fermat, Evariste Galois,
Bernhard Riemann, George Birkhoff, George Pélya and Norbert Wiener.
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Morris Kline (1953) subsequently pointed out that aesthetic concerns
not only guide the direction of an investigation, but motivate the search for
new proofs of theorems already correctly established but lacking in aesthetic
appeal — by means of their ability to “woo and charm the intellect” (p. 470)
of the mathematician. Kline took this aesthetic motivation as a definitive sign
of the artistic nature of mathematics. Wolfgang Krull (1930/1987) illustrated
how aesthetic preferences — such as a mathematician’s desire for simple,
symmetric structures — can seriously influence the further development of
mathematics, as well as the derivation of new properties and the creation of
new theories.

In his earlier attempt to define mathematics as the “classification and
study of all possible patterns” (p. 12), Warwick Sawyer (1955) implied that
the heuristic value of mathematical beauty stems from mathematicians’ sen-
sitivity to pattern and originates in their belief that “where there is pattern
there is significance” (p. 306; italics in original). Sawyer went on to explain
the heuristic value of this trust in pattern:

If in a mathematical work of any kind we find that a certain strik-

ing pattern recurs, it is always suggested that we should investigate

why it occurs. It is bound to have some meaning, which we can

grasp as an idea rather than as a collection of symbols. (p. 36; italics

in original)
Sawyer might well have explained Poincaré’s special aesthetic sensibility as
a sensibility toward pattern, viewed broadly as any regularity that can be
recognised by the mind. For him, the mathematician is not only able to
recognise regularities and symmetries, but is also attuned to look for and
respond to them with further investigation.

Poincaré’s writing on the mathematical aesthetic, which was definitely
excluding of most everyone (more so than Sawyer’s account) suggested that
only the very creative mathematicians had access to this aesthetic guide.
This claim may have provoked the “literary superstition” that Alfred North
Whitehead (1926) mentioned, which views the aesthetic appreciation of
mathematics as being a “monomania confined to a few eccentrics in each
generation” (in Hardy, 1940, p. 85). Hardy quoted Lancelot Hogben (1940)
“the aesthetic appeal of mathematics may be very real for a chosen few”
(p. 86) and accused him of echoing this “superstition”.

Indeed, Bertrand Russell’s (1917) famous quotation, “Mathematics, rightly
viewed, posseses not only truth, but supreme beauty — a beauty cold and
austere, like that of sculpture” (p. 57), does seem to suggest that mathematics
exercises a coldly impersonal attraction, one not meant for normal individ-
uals. As we shall see, Russell’s frigid tastes are not the only ones that
mathematics can satisfy. But this theme of the exclusiveness of mathematical
aesthetic judgements (concerning who is able to make them), to be found
in the writings of Poincaré, Russell and Hardy, persists in the mathematics
literature.
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Armand Borel (1983) was faced with overcoming a different kind of
exclusivity in his attempt to convey the nature of mathematics and the math-
ematical aesthetic to a wider audience, of both mathematicians and non-
mathematicians. He began by arguing that the development of mathematics
was “derived from, guided by, and judged according to aesthetic criteria”
(p. 1D, thereby astutely acknowledging both Poincaré’s heuristic aesthetic
and Hadamard’s aesthetic of choice. However, he then attempted to show
how what may seem like the “pure and esoteric” aesthetics of mathemati-
cians are actually bound up with “more earthly yardsticks” (p. 15), such as
applicability and usefulness, values that Borel hoped non-mathematicians
would find more recognisably mathematical than beauty or elegance.

Almost eighty years after Poincaré, the philosopher Harold Osborne
(1984) wrote:

the reliance on the heuristic value of mathematical beauty in sci-
entific theory has become something of a commonplace. (p. 291)

This indicates the extent to which scientists — and especially physicists — had
placed their trust in Poincaré’s notion of the mathematical aesthetic sensibility
as a kind of muse who, if listened to carefully, would both guide and inspire
creativity. [3] Indeed, scientists have been much more prolific than math-
ematicians in cataloguing and inspecting the effect of this trust on the devel-
opment of scientific theories (see, for example, Chandrasekhar, 1987; Curtin,
1982; Farmelo, 2002; McAllister, 1996; Wechsler, 1978).

Yet few scholars have explicitly discussed the differences, in terms of
their aesthetic dimensions, between mathematics and the (other) sciences.
There is certainly a common belief among physicists that what they find
beautiful in their theories is ultimately mathematical. In fact, it would seem
that mathematics plays a key bridging role between the sciences and the
arts, at times transforming scientific ideas into forms and patterns that afford
aesthetic attention. But science and mathematics have different aims, as well
as different measures of success. This leads McAllister (1996), for instance, to
warn that the nature and role of the scientific aesthetic cannot be blindly
transferred to the domain of mathematics.

Mathematics: an art or a science?

The mathematics literature has long been replete with questions about the
nature of mathematics and its place in the plural world of the arts and sciences.
While Gauss’s claim that mathematics is the queen of the sciences has often
been repeated, so has the claim that mathematics belongs more properly to the
arts. The British scholar J. W. N. Sullivan made the latter argument in 1925,
claiming that mathematics is the product of a free creative imagination,
unconditioned by the external world. It is, he argued, just as ‘subjective’ as
the other arts, even though it can be used to illuminate natural phenomena.

Moreover, Sullivan (1925/1956, p. 2020) claimed that mathematicians
are impelled by the same incentives as artists, citing as evidence the fact that
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the “literature of mathematics is full of aesthetic terms” and that many math-
ematicians are “less interested in results than in the beauty of the methods”
(p. 2020) by which those results are found. His interest in the mathematical
aesthetic experience, which he saw giving rise to the same satisfactions as
the artistic experience, was distinct from Poincaré’s focus on the mathematical
aesthetic sensibility, which acts as a guide. Yet Sullivan saw neither mathe-
matics nor art as existing to satisfy “aesthetic emotions”: rather, he saw both
art and mathematics as means by which humans can “rise to a complete self-
consciousness” (p. 2021).

The philosopher Rom Harré (1958) was more interested in the aesthetic
differences between mathematics and the arts. He pointed out the uniqueness
of mathematical aesthetic judgements by comparing them with bona fide aes-
thetic judgements. He described mathematical appraisals of beauty and ele-
gance as quasi-aesthetic, since they use “words from our regular aesthetic
vocabulary, which fall outside the normal range of aesthetic judgements”
(p. 133). In fact, for Harré, “quasi-aesthetic appraisals are not a queer sort of
aesthetic appraisal but simply not aesthetic appraisals at all” (p. 136). Quasi-
aesthetic appraisals are “essentially second-order” because of two factors (p.
137). First, appraisals such as ‘beautiful’ and ‘elegant’ do not betoken success
in mathematics the way they do in artistic fields: “If an object doesn’t move
us it has failed altogether aesthetically, but if a proof doesn’t move us it does
not for that reason fail altogether mathematically” (p. 137). Second, quasi-
aesthetic appraisals require comparing an object with very specific other
objects of the same kind. Harré contended that, in mathematics, the ele-
gance of a proof “can only be judged by a comparison, explicit or implicit,
between alternative proofs of the same result” (p. 137): in contrast, “Ordinary
aesthetic appraisals are essentially non-comparative” (p. 137).

Harré’s formalist stance forced him to trivialise almost completely the
importance of aesthetic appraisals in mathematics. Because the aesthetic is
only secondary to achievement, it is thereby robbed of any epistemic interest.
Furthermore, contemporary philosophers and art theorists would challenge
Harré’s claim about the aesthetic bar of success inherent in the arts and the
non-comparability of aesthetic judgements. The philosopher of mathematics
Thomas Tymoczko (1993) may well have pointed out the most operative
difference between aesthetic judgements in mathematics and those at work
in the arts. This is that the mathematics community does not have many
(any?) ‘mathematics critics’ to parallel the strong role played by art critics in
appreciating, interpreting and arguing about the aesthetic merit of artistic
products.

In 1933, the American mathematician George Birkhoff approached the
connection between mathematics and beauty from the reverse direction,
proposing a theory by which mathematics could be used to describe beauty.
According to Whittaker (1945), Birkhoff wanted to create:
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a general mathematical theory of the fine arts, which would do
for aesthetics what had been achieved in another philosophical
subject, logic, by the symbolisms of Boole, Peano, and Russell.
(p. 127)

Birkhoff admitted that the aesthetic feeling was “intuitive” and “sui generis”,
but held nevertheless that the attributes upon which aesthetic values depend
are accessible to measurement. He proposed three main variables constituting
typical aesthetic experiences: the complexity of the object (C), the feeling of
value or aesthetic measure (M) and the property of harmony, symmetry or
order (0). With the following equation, M = O/C, he presented to us his
hypothesis that the aesthetic measure is determined “by the density of order
relations in the aesthetic object” (1933/1956, p. 2186). He also provided
equations that could define both the variables O and C more formally.

Birkhoff’s formula never gained much currency in the world of art crit-
icism, nor in the world of mathematics. After all, the terms O and C are not
straightforward to measure: can the square grid, which is highly ordered
with little complexity, be considered of great aesthetic value? What about a
fractal image? The difficulty in measuring O and € makes the formula almost
impossible to use. And perhaps artists and mathematicians alike were unim-
pressed by Birkhoff’s formula for its tacit presumption that aesthetic value
can be measured in some absolute way (regardless of personal, social or
cultural styles), based on a set of accurate rules. Regardless of his formulaic
approach, Birkhoff did identify qualities such as order, harmony and com-
plexity as being relevant to aesthetic value, thus echoing the ancient Greeks
while at the same time anticipating the work of several of the mathemati-
cians we have yet to discuss.

Criteria for the mathematically beautiful

In 1940, G. H. Hardy published what became arguably the most widely-read
inquiry into the mathematical aesthetic. Unlike either Poincaré or Hadamard,
Hardy was primarily interested in defining mathematical beauty as it exists
in mathematical products, particularly in proofs. He proposed a somewhat
complex scheme that distinguished ‘trivial” beauty — which can be found in
chess — from ‘important’ beauty, which can only be found in serious math-
ematics. But, for Hardy, serious involved significant, which in turn required
generality — scope or reach — and depth. Generality and depth are both dif-
ficult to define, but can, according to Hardy, be immediately recognised by
those with a “high degree of mathematical sophistication” (p. 103). Such
mathematicians will find a mathematical idea significant when it can be “con-
nected, in a natural and illuminating way, with a large complex of other
mathematical ideas” (p. 89). Hardy illustrated his notion of mathematical
beauty with two examples: Euclid’s proof of the infinity of primes and the
Pythagorean proof of the irrationality of V2. These two proofs appear fre-
quently in the literature as particularly fine examples of beautiful proofs (for
example, see Dreyfus and Eisenberg, 1986, or King, 1992).
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Having defined mathematical beauty in terms of significance and seri-
ousness, Hardy went on to say that the triviality of ideas (such as those
found in chess problems, but not in beautiful mathematics) “disturbs any
more purely aesthetic judgement” (p. 113). Hardy proposed that purely aes-
thetic qualities are unexpectedness, inevitability and economy. Consider-
ably later, Roger Penrose (1974) would add to Hardy’s list the criterion of
“unexpected simplicity” (p. 267). Hardy advanced a formalist perspective of
mathematical beauty by only acknowledging responses to formal properties.
For Hardy, and many others, formalism represents the dominant ‘public aes-
thetic’ of mathematics; if mathematics presents any aesthetically relevant
qualities, these qualities must be formal in nature.

Shortly after Hardy’s publication, Francois Le Lionnais (1948/1971) pro-
posed a completely different, non-formalist way of approaching the prob-
lem of mathematical beauty — without making reference to either Hardy or
Poincaré. Le Lionnais was not interested in the process-oriented aesthetic
sensibilities that Poincaré was, but his scope was wider than Hardy’s, includ-
ing as it did various kinds of ‘facts’ and ‘methods’ as potential objects of
mathematical beauty. Le Lionnais effectively enlarged the sphere of math-
ematical entities that can have aesthetic appeal, including not only entities
such as definitions, shapes, proofs, solutions and theorems, which are
appreciated after the fact, but also the various methods and processes used
to work with mathematical entities, which can be appreciated while doing
mathematics.

In addition, Le Lionnais emphatically drew attention to the subjectivity of
aesthetic responses, by classifying mathematicians’ orientations as either
‘classical’ or ‘romantic’, thus allowing for degrees of appreciation — banned
by Hardy — according to personal preference. These categories represent two
styles of human endeavour: on the one hand, a desire for equilibrium, har-
mony and order; and, on the other, a yearning for lack of balance, form oblit-
eration and pathology. A very similar distinction was made by Freeman Dyson
(1982), who distinguished between ‘unifiers’ and ‘diversifiers’, the former find-
ing and cherishing symmetries, the latter enjoying the breaking of them.

In addition, Harold Osborne (1984), in tracing aspects of the aesthetic in
the sciences, also recognised the human dimension of mathematical aesthetic
response, arguing that aesthetic satisfaction derives from the common human
desire to impose order on chaos. Citing Davis and Hersh’s (1980) observa-
tion, “to some extent, the whole object of mathematics is to create order
where previously chaos seemed to reign, to extract structure and invariance
from the midst of disarray and turmoil” (p. 172), Osborne implied that math-
ematics provides an optimal context in which to gain aesthetic satisfaction.

Le Lionnais’s stance on the subjectivity of aesthetic responses did not do
much to quell the belief, common among mathematicians especially, that
most mathematicians will agree on their aesthetic judgements. This common
belief was fuelled in part by the exclusivity of Poincaré and Hardy, which
seemed to imply that if your aesthetic judgement did not agree with that of
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a great mathematician, then you were simply not a great mathematician. It
was also fuelled by the enormous discrepancies of taste and judgement
found in the arts which, by any mathematician’s definition of subjectivity,
dwarfed the differences identified in the mathematical world.

Jerry King (1992), like Hardy, presumed the supposed homogeneity of
mathematicians’ aesthetic response and further concluded that mathemati-
cians work from some set of commonly-accepted aesthetic principles.
Moreover, he assumed that mathematicians’ judgements are not subjective,
but instead depend solely upon the mathematics itself, making it possible
to formulate decisive criteria. In his book The Art of Mathematics, King
drew on aesthetic theories of philosophy and art criticism in order to articulate
“a complete aesthetic theory of mathematics” (p. 157).

Rather than expanding Hardy’s or Osborne’s list of factors that con-
tribute to aesthetic appeal, King’s primary goal was to identify general-level
aesthetic criteria that would help distinguish ‘good’ mathematics from ‘bad’
(thereby conflating Hardy’s distinction between the beautiful and the aes-
thetic). He thus proposed two definitive criteria: the principle of minimal
completeness and the principle of maximal applicability. King illustrated
both principles using the Pythagorean proof of the irrationality of V2. The
principle of minimal completeness, in effect, functions as a super-class to
Hardy’s aesthetic qualities. However, King’s principle of maximal applicability
resonates more with Hardy’s notions of significance, depth and generality.

Finally, David Wells’s (1990) survey of contemporary mathematicians has
most convincingly illuminated the subjectivity question. He asked the read-
ers of The Mathematical Intelligencer to rate, on a scale of one to ten, twenty-
four theorems according to their mathematical beauty. From the seventy-six
responses, many from top mathematicians mostly from North America, he
drew a number of inferences. First, mathematicians do not always agree on
their aesthetic judgements — at least not in terms of evaluating the beauty of
theorems.

Wells identified many factors that contribute to the differences in judge-
ment: field of interest; preferences for certain mathematical entities such as
problems, proofs or theorems; past experiences or associations with partic-
ular theorems; even mood. He also pointed out that aesthetic judgements
change over time: this was particularly evident in the rating of Euler’s for-
mula, which was historically considered “the most beautiful formula of
mathematics” (p. 38), but is now, according to Wells’s respondents at least,
considered too obvious even to elicit an aesthetic response.

The inferences made by Wells correspond to a contextualist view of aes-
thetic appreciation and are summed up by this respondent: “beauty, even in
mathematics, depends upon historical and cultural contexts, and therefore
tends to elude numerical interpretation” (p. 39). Indeed, John von Neumann
had already spoken of the phenomenon of mathematical ‘styles’ back in 1947,
arguing that, it is “hardly possible to believe in the existence of an absolute,
immutable concept of mathematical rigor, dissociated from all human experi-



Chapter o — A Historical Gaze at the Mathematical Aesthetic 15

ence” (p. 190). He used as evidence the changes in styles of mathematical
proofs and fashionable areas of interest over the past two millennia.

One might wonder why these changes in style appear so much less dra-
matic than the ones found in the arts. Are the styles necessarily more con-
fined in mathematics, owing to the handful of aesthetic commitments that
ultimately define the discipline? Or does the study of mathematics attract a
small enough number of like-minded people that aesthetic revolutionaries
such as Picasso, Pollock or Cage do not have mathematical equivalents?

Some Final Comments

It is certainly tempting to wonder why the twentieth century witnessed such
an explosion in thinking about the mathematical aesthetic, if only to help
predict what might be in store for the twenty-first. Will this book be unawarely
documenting the close of an active period of investigation or will it serve as
a springboard for further, fruitful inquiry?

It would be hard to overlook the fact that at turn of the twentieth cen-
tury, not long after the discovery of non-Euclidean geometries and just as
Cantor’s work on trigonometric series and the continuum was emerging,
foundational concerns were mounting and questions about axiomatisation
were beginning to press. These concerns would incite mathematicians to
begin seriously inspecting the nature of mathematics and for some, such as
David Hilbert, Herman Weyl and L. E. J. Brouwer, to turn their attention to
‘meta-mathematical’ questions, albeit with markedly different responses.

Few mathematicians since the ancient Greeks have stepped back from
the exhilarating momentum of creating mathematics to consider larger epis-
temological questions. Hilbert’s famous list of unsolved problems, which
essentially came to define much of what would be considered ‘interesting’
to work on, also came at the turn of the twentieth century. His lengthy list
either prompted or nourished a broader consideration of the whole field of
mathematics — its goals, methods, and successes — yielding yet more ‘meta’-
mathematical thinking, which could hardly ignore the important aesthetic
dimension of mathematics.

It is striking to us that mathematicians often mention ‘beauty’; yet there
seems to be a relative dearth of further amplification. One might have
expected those past mathematicians who thought in these terms to have
been capable of developing ideas of, say harmony, proportion, fit, rthythm,
etc, more precisely. To some extent, this is what Hardy (1940) tried to do,
though only by connecting ‘beauty’ to other barely less opaque terms such
as ‘elegance’, ‘depth’, ‘seriousness’ and ‘significance’. We do see instances
here and there, for instance with Alfred North Whitehead (on rhythm), with
Warwick Sawyer (on pattern) and in an overly-mathematised attempt by
George Birkhoff.

But it may well be that many mathematicians simply do not consider
this to be a serious enterprise, one worthy of their time and attention. Even
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Hardy (1940) expressed a sense that such reflection ‘about’ mathematics
(offering a different sense of ‘meta’-mathematical activity) is not really the
preferred activity or even the very business of mathematicians.

It is a melancholy experience for a professional mathematician to
find himself writing about mathematics. The function of a math-
ematician is to do something, to prove new theorems, to add to
mathematics, and not to talk about what he or other mathemati-
cians have done. (p. 61)

There seem to be some ‘inevitable’ combinations of aesthetic words that are
mathematically invoked as if conjoined: for instance, beauty and elegance,
perfection and beauty. ‘Elegance’, in particular, seems to have been co-
opted by mathematicians in their rather restricted aesthetic language, as con-
veying a sense of both succinctness and sophistication. In ordinary parlance,
‘elegance’ might be seen as a classical, class-ridden term — not so much
socio-economic ‘class’ perhaps as intellectual ‘class’ (though Bertrand
Russell, for example, certainly partook of both). Of course, there must be a
sociological proviso here — it was only very few (privileged) Greeks, and
then for a long time a very few (privileged) other individuals, who could sit
and think as opposed to practice or teach.

There might also be more subtle reasons for this explosion of aesthetic
consideration and writing. It was also around the turn of the last century that
the field of mathematics made its final separation from the sciences, its
increasing abstractions having less and less to do with the kind of questions
that drove the development of calculus, for example. Mathematics was carv-
ing itself out as a distinct, self-sufficient field with famously little to do with
the ‘real’ world. But how, then, could it justify its existence? This was a ques-
tion that those both inside and outside the tall, opaque walls guarding the
mathematical terrain asked.

Perhaps this question prompted some mathematicians to search for some
varied connections — ones that many ancient Greek mathematicians would
have assumed — between mathematics and the arts, another field which
offers few practical applications, though is admired on the whole for its dis-
play of creativity and its production of aesthetically pleasing artifacts. Like
the modernist art movement, which was burgeoning with a sense of art for
art’s sake (l'art pour l'art) during this time in the early twentieth century,
mathematics was now being done for mathematics’ sake.

One instance of this modernist mathematical ethos is apparent in van der
Waerden’s (1930/1991) Modern Algebra, in which any questions of algebra’s
utility had completely vanished (see Chapter 8). John Dee’s (1570) survey of
various branches of ‘the tree of mathematics’ in his Mathematicall prceface
referred positively to his identification of which parts of mathematics were,
to use his term, ‘commodious’: van der Waerden felt no such compunction.

This twentieth-century expansion of interest in the aesthetic did not
only occur in mathematics, of course. As Denis Donoghue (2003) observes:
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Interest in beauty and aesthetics was greatly stimulated in the first
years of the twentieth century — as C. K. Ogden, I. A. Richards,
and James Wood noted in The Foundations of Aesthetics (1922) —
by a wider knowledge of non-European art, especially of Eastern
and primitive art, and by the rapid development of psychology as
an accredited practice. (p. 360)

Additionally, in the latter part of the twentieth century, developments mostly
outside mathematics itself may have further contributed to this most recent
explosion within mathematics. For example, scholars in a number of differ-
ent fields have become increasingly attracted to sociobiologist E. O. Wilson’s
(1998) notion of ‘consilience’. In his view, unification or connection is
sought among the increasingly-fractured disciplines and ways of knowing.
He is also concerned, more generally, with the breaking down of long-
standing dichotomies between mind and body, between rational and emo-
tional, between logical and intuitive. Although few scholars have con-
tributed to the search for affinities in the still often-isolated and inhospitable
world of mathematics, these intellectual changes are at least supportive of
such endeavours, as we hope this book will show.

Notes

[1] Writing about eighty years after this event, Oxford University historian
Anthony a Wood observed:

Many MSS, guilty of no other superstition than red letters in their
fronts or title, were either condemned to the fire or jakes. [...] sure
I am that such books wherein appeared Angles, or Mathematical
Diagrams, were thought sufficient to be destroyed, because
accounted Popish, or diabolical, or both.

What was done to the public Library I shall elsewhere shew: as
for those belonging to Colleges, they suffered the same fate almost
as the public, though not in so gross a manner. From Merton Coll.
Library a cart load of MSS and above were taken away, such that
contained the Lucubrations (chiefly of controversial Divinity,
Astronomy and Mathematicks) of divers of the learned Fellows
thereof, in which Studies they in the two last centuries obtained
great renown. (in Gutch, 1796, pp. 106-107)

[2] This twentieth-century return to the question of the psychology of the math-
ematician connects for us with thirteenth-century Henry of Ghent’s potent phrase
‘the melancholy disposition of the mathematical mind’. It was coined in the light of
much Aristotelean writing and the then-dominant Galenic theory of ‘humours’, a
means of linking human psychology with the cosmos. It also relates closely to
Albrecht Direr’s famous engraving Melencolia I — see Yates (1979). This is a topic
we explore further in the closing chapter of this book.

[3] The Pythagoreans, who celebrated the Muses as “the keepers of the knowledge
of harmony and the principles of the universe which allowed access to the ever-
lasting gods” (see Comte, 1994, p. 135), would have been delighted by the trust that
scientists, and mathematicians, have come to place on this aesthetic muse.
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The Mathematician’s Art



Introduction to Section A

The three chapters of Section A, The Mathematician’s Art, all written by research
mathematicians, provide satisfying glimpses into present-day aesthetic dimen-
sions in mathematical work. By focusing on the methods, processes, expe-
riences and goals of their own mathematical endeavours, in fields such as
geometry, number theory, real and complex analysis, combinatorics and
topology, these mathematicians offer a broad view of modern manifesta-
tions of the ancient affinity of our book title. In particular, they ground the
general theory-driven accounts of Poincaré and Hadamard (discussed in
Chapter o) in their varied, day-to-day practices of working in mathematics.

Jonathan Borwein, in Chapter 1, draws on his own research in number
theory and analysis to show how aesthetic notions permeate both pure and
applied mathematics. His examples illustrate aesthetic imperatives interacting
with utility, with intuition and with the way they shape his own mathemati-
cal experiences. His examples, drawing as they do on diverse, contemporary
topics as well as ‘hot’ methods (i.e. involving computer technology), provide
a welcome and up-to-date perspective on a topic where the same ‘classical’
examples are frequently cited. Borwein is also interested in tracing out how
aesthetic criteria change over time and how these changes manifest them-
selves in the concerns and discoveries of mathematicians.

In Chapter 2, Doris Schattschneider provides a discussion of her cand-
idates for elegant statements, beautiful proofs and some important para-
digms of mathematical technique, such as Fubini’s principle or Dirichlet’s
principle. These paradigms serve as attractors, condensed and powerful modes
of arguing which signal their generative potential for the future, as well as
attest to their value in the past. Using examples taken primarily from plane
geometry and combinatorics, Schattschneider identifies various characteris-
tics of mathematical proofs that can provoke aesthetic pleasure. She devotes
the last section of her chapter to the aesthetic of doing mathematics, exam-
ining the motivational dimension of that aesthetic in mathematical activity.

David Henderson and Daina Taimina, in Chapter 3, take up Schatt-
schneider’s focus on the doing of mathematics, with a particular emphasis on
the aesthetics of generating and experiencing mathematical understanding.
Using examples from hyperbolic geometry, topology and also nineteenth-
century mechanical devices with sophisticated mathematical features, Hender-
son and Taimina illustrate the way in which their own understanding of
meaning in mathematics emerges from attempts to connect fundamental intu-
itions to subtle mathematical ideas and claims. The aesthetic experiences
they describe all involve sense-based encounters with mathematical ideas
and, in sharing them, offer compelling and sophisticated images, objects and
models that they have either created or derived.



CHAPTER 1
Aesthetics for the Working Mathematician

Jonathan M. Borwein

If my teachers had begun by telling me that mathematics was pure

play with presuppositions, and wholly in the air, I might have become

a good mathematician, because I am happy enough in the realm of

essence. But they were over-worked drudges, and I was largely inat-

tentive, and inclined lazily to attribute to incapacity in myself or to a

literary temperament that dullness which perhaps was due simply to

lack of initiation. (Santayana, 1944, p. 238)
Most research mathematicians neither think deeply about nor are terribly con-
cerned with either pedagogy or the philosophy of mathematics. Nonetheless,
as T hope to indicate, aesthetic notions have always permeated (pure and
applied) mathematics. And the top researchers have always been driven by an
aesthetic imperative. Many mathematicians over time have talked about the
‘elegance’ of certain proofs or the ‘beauty’ of certain theorems, but my analysis
goes deeper: T aim to show how the aesthetic imperative interacts with utility
and intuition, as well as indicate how it serves to shape my own mathemat-
ical experiences. These analyses, rather than being retrospective and passive, will
provide a living account of the aesthetic dimension of mathematical work.

We all believe that mathematics is an art. The author of a book, the
lecturer in a classroom tries to convey the structural beauty of
mathematics to his readers, to his listeners. In this attempt, he must
always fail. Mathematics is logical to be sure, each conclusion is
drawn from previously derived statements. Yet the whole of it, the
real piece of art, is not linear; worse than that, its perception
should be instantaneous. We all have experienced on some rare
occasions the feeling of elation in realizing that we have enabled
our listeners to see at a moment’s glance the whole architecture
and all its ramifications. (Emil Artin, in Murty, 1988, p. 60)

I shall similarly argue for aesthetics before utility. Through a suite of exam-
ples drawn from my own research and interests, I aim to illustrate how and
what this means on the front lines of research. T also will argue that the
opportunities to evoke the mathematical aesthetic in research and teaching
are almost boundless — at all levels of the curriculum. (An excellent middle-
school illustration, for instance, is described in Sinclair, 2001.)

In part, this is due to the increasing power and sophistication of visual-
isation, geometry, algebra and other mathematical software. Indeed, by
drawing on ‘hot topics’ as well as ‘hot methods’” (i.e. computer technology),
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I also provide a contemporary perspective which T hope will complement
the more classical contributions to our understanding of the mathematical
aesthetic offered by writers such as G. H. Hardy and Henri Poincaré (as dis-
cussed in Chapter o).

Webster’s dictionary (1993, p. 19) first provides six different meanings
of the word ‘aesthetic’, used as an adjective. However, I want to react to
these two definitions of ‘aesthetics’, used as a noun:

1. The branch of philosophy dealing with such notions as the beautiful,
the ugly, the sublime, the comic, etc., as applicable to the fine arts,
with a view to establishing the meaning and validity of critical judg-
ments concerning works of art, and the principles underlying or justi-
fying such judgments.

2. The study of the mind and emotions in relation to the sense of beauty.

Personally, for my own definition of the aesthetic, I would require (unex-
pected) simplicity or organisation in apparent complexity or chaos — consis-
tent with views of Dewey (1934), Santayana (1944) and others. I believe we
need to integrate this aesthetic into mathematics education at every level, so
as to capture minds for other than utilitarian reasons. I also believe detach-
ment to be an important component of the aesthetic experience: thus, it is
important to provide some curtains, stages, scaffolding and picture frames —
or at least their mathematical equivalents. Fear of mathematics certainly does
not hasten an aesthetic response.

Gauss, Hadamard and Hardy

Three of my personal mathematical heroes, very different individuals from
different times, all testify interestingly on the aesthetic and the nature of
mathematics.

Gauss

Carl Friedrich Gauss is claimed to have once confessed, “I have had my
results for a long time, but I do not yet know how I am to arrive at them” (in
Arber, 1954, p. 47). [1] One of Gauss’s greatest discoveries, in 1799, was the
relationship between the lemniscate sine function and the arithmetic—geomet-
ric mean iteration. This was based on a purely computational observation.
The young Gauss wrote in his diary that “a whole new field of analysis will
certainly be opened up” (Werke, X, p. 542; in Gray, 1984, p. 121).

He was right, as it pried open the whole vista of nineteenth-century
elliptic and modular function theory. Gauss’s specific discovery, based on
tables of integrals provided by Scotsman James Stirling, was that the recip-
rocal of the integral

2/1 1 i
TJo /1 —t4
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agreed numerically with the limit of the rapidly convergent iteration given
by setting a, := 1, b, := V2 and then computing:

a, + by,
e
It transpires that the two sequences {a,}, {b,} have a common limit of
1.1981402347355922074. ..

Which object, the integral or the iteration, is the more familiar and
which is the more elegant — then and now? Aesthetic criteria change with
time (and within different cultures) and these changes manifest themselves
in the concerns and discoveries of mathematicians. Gauss’s discovery of the
relationship between the lemniscate function and the arithmetic—geometric
mean iteration illustrates how the traditionally preferred ‘closed form’ (here,
the integral form) of equations have yielded centre stage, in terms both of
elegance and utility, to recursion. This parallels the way in which biological
and computational metaphors (even ‘biology envy’) have now replaced
Newtonian mental images, as described and discussed by Richard Dawkins
(1986) in his book The Blind Watchmarker.

In fact, T believe that mathematical thought patterns also change with
time and that these in turn affect aesthetic criteria — not only in terms of
what counts as an interesting problem, but also what methods the math-
ematician can use to approach these problems, as well as how a mathema-
tician judges their solutions. As mathematics becomes more ‘biological’, and
more computational, aesthetic criteria will continue to change.

Apy1 - —

Hadamard

A constructivist, experimental and aesthetically-driven rationale for math-
ematics could hardly do better than to start with Hadamard’s claim that:

The object of mathematical rigor is to sanction and legitimize the

conquests of intuition, and there was never any other object for it.

(in Pélya, 1981, p. 127)
Jacques Hadamard was perhaps the greatest mathematician other than
Poincaré to think deeply and seriously about cognition in mathematics. He is
quoted as saying, “in arithmetic, until the seventh grade, I was last or nearly
last” (in MacHale, 1993, p. 142). Hadamard was co-prover (independently
with Charles de la Vallée Poussin, in 1896) of the Prime Number theorem
(the number of primes not exceeding 7 is asymptotic to n/log n), one of
the culminating results of nineteenth-century mathematics and one that
relied on much preliminary computation and experimentation. He was also
the author of The Psychology of Invention in the Mathematical Field (1945),
a book that still rewards close inspection.
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Hardy’s Apology

Correspondingly, G. H. Hardy, the leading British analyst of the first half of
the twentieth century, was also a stylish author who wrote compellingly in
defence of pure mathematics. He observed that:

All physicists and a good many quite respectable mathematicians
are contemptuous about proof. (1945/1999, pp. 15-16)

His memoir, entitled A Mathematician’s Apology, provided a spirited defence
of beauty over utility:

Beauty is the first test. There is no permanent place in the world
for ugly mathematics. (1940, p. 84)

That said, although the sentiment behind it being perfectly understandable
from an anti-war mathematician in war-threatened Britain, Hardy’s claim that
real mathematics is almost wholly useless has been over-played and, to my
mind, is now very dated, given the importance of cryptography and other
pieces of algebra and number theory devolving from very pure study.

In his tribute to Srinivasa Ramanujan entitled Ramanujan: Twelve Lectures
on Subjects Suggested by His Life and Work, Hardy (1945/1999) offered the so-
called ‘Skewes number’ as a “striking example of a false conjecture” (p. 15).
The logarithmic integral function, written Li(x), is specified by:

: v 1
Li(x) :/0 =0 dt

Li(x) provides a very good approximation to the number of primes that do
not exceed x. For example, Li(10%) = 5,762,209.375..., while the number of
primes not exceeding 10° is 5,761,455. It was conjectured that the inequality

Li(x) > the number of primes not exceeding x

holds for all x and, indeed, it does so for many x. In 1933, Skewes showed
the first explicit crossing occurs before 10101°"" This has been reduced to a
relatively tiny number, a mere 10" (and, most recently, even lower), though
one still vastly beyond direct computational reach.

Such examples show forcibly the limits on numerical experimentation,
at least of a naive variety. Many readers will be familiar with the ‘law of large
numbers’ in statistics. Here, we see an instance of what some number the-
orists (e.g. Guy, 1988) call the ‘strong law of small numbers’: all small num-
bers are special, many are primes and direct experience is a poor guide. And
sadly (or happily, depending on one’s attitude), even 10" may be a small
number.

Research Motivations and Goals

As a computational and experimental pure mathematician, my main goal is
insight. Insight demands speed and, increasingly, parallelism (see Borwein
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and Borwein, 2001, on the challenges for mathematical computing). The
mathematician’s ‘aesthetic buzz’ comes not only from simply contemplating
a beautiful piece of mathematics, but, additionally, from achieving insight.
The computer, with its capacities for visualisation and computation, can
encourage the aesthetic buzz of insight, by offering the mathematician the
possibility of visual contact with mathematics and by allowing the mathemati-
cian to experiment with, and thus to become intimate with, mathematical
ideas, equations and objects.

What is ‘easy’ is changing and I see an exciting merging of disciplines,
levels and collaborators. Mathematicians are more and more able to:

e marry theory and practice, history and philosophy, proofs and
experiments;

e match elegance and balance with utility and economy;

e inform all mathematical modalities computationally — analytic,
algebraic, geometric and topological.

This is leading us towards what I term an experimental mathodology as a
philosophy and a practice (Borwein and Corless, 1999). This methodology
is based on the following three approaches:

e meshing computation and mathematics, so that intuition is acquired;

e visualisation — three is a lot of dimensions and, nowadays, we can
exploit pictures, sounds and haptic stimuli to get a ‘feel’ for relation-
ships and structures (see also Chapter 7);

e ‘exception barring’ and ‘monster barring’ (using the terms of Lakatos,

1976).

Two particularly useful components of this third approach include graphical
and randomised checks. For example, comparing 2vVy — y and <Vy In()) (for
0 < y < 1) pictorially is a much more rapid way to divine which is larger
than by using traditional analytic methods. Similarly, randomised checks of
equations, inequalities, factorisations or primality can provide enormously
secure knowledge or counter-examples when deterministic methods are
doomed. As with traditional mathematical methodologies, insight and cer-
tainty are still highly valued, yet achieved in different ways.

Pictures and symbols

If T can give an abstract proof of something, I'm reasonably happy.
But if T can get a concrete, computational proof and actually pro-
duce numbers I'm much happier. I'm rather an addict of doing
things on the computer, because that gives you an explicit criterion
of what’s going on. I have a visual way of thinking, and I'm happy if
I can see a picture of what I'm working with. (John Milnor, in Regis,
1986, p. 78)

I have personally had this experience, in the context of studying the distri-
bution of zeroes of the Riemann zeta function. Consider more explicitly the
following image (see Figure 1), which shows the densities of zeroes for
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polynomials in powers of x with —1 and 1 as coefficients (they are manipula-
ble at: www.cecm.sfu.ca/interfaces/). All roots of polynomials, up to a given
degree, with coefficients of either —1 or 1 have been calculated by permuting
through all possible combinations of polynomials, then solving for the roots of
each. These roots are then plotted on the complex plane (around the origin).

Figure 1: Density of zeroes for polynomials with coefficients of —1 and 1

In this case, graphical output from a computer allows a level of insight no
amount of numbers could.

Some colleagues and T have been building educational software with
these precepts embedded, such as LetsDoMath (see: www.mathresources.
com). The intent is to challenge students honestly (e.g. through allowing
subtle explorations within John Conway’s ‘Game of Life”), while making things
tangible (e.g. ‘Platonic solids’ offers virtual manipulables that are more
robust and expressive than the standard classroom solids).

Evidently, though, symbols are often more reliable than pictures. The
picture opposite purports to give evidence that a solid can fail to be poly-
hedral at only one point. It shows the steps up to pixel level of inscribing a
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Figure 2: A misleading picture

regular 2'-gon at height 2. However, ultimately, such a construction fails
and produces a right circular cone. The false evidence in this picture held
back a research project for several days — and might have derailed it.

Two Things about v2 and One Thing about x

Remarkably, one can still find new insights in the oldest areas. I discuss
three examples of this. The first involves a new proof of the irrationality of
V2 and the way in which it provides insight into a previously known result.
The second invokes the strange interplay between rational and irrational
numbers. Finally, the third instance reveals how the computer can make
opaque some properties that were previously transparent, and vice versa.

Irrationality

Below is a graphical representation of Tom Apostol’s (2000) lovely new
geometric proof of the irrationality of V2. This example may seem routine
at first, with respect to the literature on the mathematical aesthetic. Writers
such as Hardy (1940), King (1992) and Wells (1990) have also talked about
the beauty of quadratics such as V2. These writers have emphasised aes-
thetic criteria (such as economy and unexpectedness) that contribute to that
judgement of beauty. On the other hand, Apostol’s new proof, prefigured
in others, shows how aesthetics can also serve to motivate mathematical

inquiry.
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PROOF Consider the smallest right-angled isosceles triangle with
integer sides. Circumscribe a circle of length equal to the vertical
side and construct the tangent to the circle where the hypotenuse
cuts it (see Figure 3). The smaller isosceles triangle once again has
integer sides.

Figure 3: The square root of two is irrational

The proof is lovely because it offers new insight into a result that was first
proven over two thousand years ago. It also verges on being a ‘proof with-
out words” (Nelsen, 1993), proofs which are much admired — yet infrequently
encountered and not always trusted — by mathematicians (see Brown, 1999).
Apostol’s work demonstrates how mathematicians are not only motivated to
find ground-breaking results, but that they also strive for better ways to say
things or to show things, as Gauss was surely doing when he worked out
his fourth, fifth and sixth proof of the law of quadratic reciprocity.

Rationality

By a variety of means, including the one above, we know that the square
root of two is irrational. But mathematics is always full of surprises: V2 can
also make things rational (a case of two wrongs making a right?).

V2
(ve") = v o v o2
Hence, by the principle of the excluded middle:

Either \/5\/5 e or \/5\/5 g Q.

In either case, we can deduce that there are irrational numbers a and b
with @’ rational. But how do we know which ones? One may build a whole
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mathematical philosophy project around this. Yet, as Maple (the computer
algebra system) confirms:

setting o := V2 and B := 2In,3 yields o = 3.

This illustrates nicely that verification is often easier than discovery. (Simi-
larly, the fact that multiplication is easier than factorisation is at the base of
secure encryption schemes for e-commerce.)

7 and two integrals

Even Maple knows wt = 22/7, since:

1—3: xt 22
O</ dr — — — 7.
142 v 7 T

Nevertheless, it would be prudent to ask ‘why’ Maple is able to perform the
evaluation and whether to trust it. In contrast, Maple struggles with the fol-
lowing sophomore’s dream:

/01 id:c:io: in

Students asked to confirm this typically mistake numerical validation for
symbolic proof.

Again, we see that computing adds reality, making the abstract concrete,
and makes some hard things simple. This is strikingly the case with Pascal’s
Triangle. Figure 4 (from: www.cecm.sfu.ca/interfaces/) affords an emphatic
example where deep fractal structure is exhibited in the elementary binomial
coefficients.

Figure 4: Thirty rows of Pascal’s triangle (modulo five)
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Berlinski (1997) comments on some of the effects of such visual-experimental
possibilities in mathematics:

The computer has in turn changed the very nature of mathematical
experience, suggesting for the first time that mathematics, like physics,
may yet become an empirical discipline, a place where things are
discovered because they are seen. (p. 39)

Berlinski (1995) had earlier suggested, in his book A Tour of the Calculus,
that there will be long-term effects:

The body of mathematics to which the calculus gives rise embod-
ies a certain swashbuckling style of thinking, at once bold and dra-
matic, given over to large intellectual gestures and indifferent, in
large measure, to any very detailed description of the world. It is
a style that has shaped the physical but not the biological sciences,
and its success in Newtonian mechanics, general relativity, and
quantum mechanics is among the miracles of mankind. But the era
in thought that the calculus made possible is coming to an end.
Everyone feels this is so, and everyone is right. (p. xiii)

JU and Its Friends

My research on & with my brother, Peter Borwein, also offers aesthetic and
empirical opportunities. In this example, my personal fascinations provide
compelling illustrations of an aesthetic imperative in my own work. I first
discuss the algorithms I have co-developed to compute the digits of .
These algorithms, which consist of simple algebraic equations, have made
it possible for researchers to compute its first 3 x 2* digits. I also discuss
some of the methods and algorithms I have used to gain insight into rela-
tionships involving .

A quartic algorithm (Borwein and Borwein, 1984)

The next algorithm I present grew out of work of Ramanujan. Set a, = 6 — 4V2
and y, = V2 - 1. Tterate:
L= (1 =y
(D Yrp1 = —————
Lt (1 =y

(2) app1 = ap(1+ yen) — 223y (1 + yiepr + Yoy

Then the sequence {a,} converges quartically to 1/m.

There are nineteen pairs of simple algebraic equations (1, 2) as k ranges
from 0 to 18. After seventeen years, this still gives me an aesthetic buzz.
Why? With less than one page of equations, T have a tool for computing a
number that differs from s (the most celebrated transcendental number)
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only after seven hundred billion digits. It is not only the economy of the tool
that delights me, but also the stirring idea of ‘almost-ness’ — that even after
seven hundred billion digits we still cannot nail w. The difference might
seem trivial, but mathematicians know that it is not and they continue to
improve their algorithms and computational tools.

This iteration has been used since 1986, with the Salamin-Brent scheme,
by David Bailey (at the Lawrence Berkeley Labs) and by Yasumasa Kanada
(in Tokyo). In 1997, Kanada computed over 51 billion digits on a Hitachi
supercomputer (18 iterations, 25 hrs on 210 cpus). His penultimate world
record was 2% digits in April, 1999. A billion (2*) digit computation has been
performed on a single Pentium II PC in less than nine days. The present
record is 1.24 trillion digits, computed by Kanada in December 2002 using
quite different methods, and is described in my new book, co-authored with
David Bailey (2003).

The fifty-billionth decimal digit of & or of 1/x is 042! And after eighteen
billion digits, the string 0123456789 has finally appeared and so Brouwer’s
famous intuitionist example now converges. [2] (Details such as this about &
can be found at: www.cecm.sfu.ca/personal/jborwein/pi_cover.html.) From
a probability perspective, such questions may seem uninteresting, but they
continue to motivate and amaze mathematicians.

A further taste of Ramanujan

G. N. Watson, in discussing his response to similar formulae of the wonderful
Indian mathematical genius Srinivasa Ramanujan, describes:

a thrill which is indistinguishable from the thrill which I feel when
I enter the Sagrestia Nuova of the Capelle Medicee and see before
me the austere beauty of [the four statues representing] ‘Day,’
‘Night,” ‘Evening,” and ‘Dawn’ which Michelangelo has set over
the tombs of Giuliano de’ Medici and Lorenzo de’ Medici.
(in Chandrasekhar, 1987, p. 61)

One of these is Ramanujan’s remarkable formula, based on the elliptic and
modular function theory initiated by Gauss.

1 2v2 i (4k)!1(1103 + 26390k)
T 9801 (kM4 3964

k=0

Each term of this series produces an additional eight correct digits in the
result — and only the ultimate multiplication by V2 is not a rational opera-
tion. Bill Gosper used this formula to compute seventeen million terms of
the continued fraction for m in 1985. This is of interest, because we still
cannot prove that the continued fraction for & is unbounded. Again, every-
one knows that this is true.

That said, Ramanujan preferred related explicit forms for approximating
wt, such as the following:
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log(640320°)
V163

This equation is correct until the underlined places. Inter alia, the number
e" is the easiest transcendental to fast compute (by elliptic methods). One
‘differentiates’ e™ to obtain algorithms such as the one above for m, via the
arithmetic—geometric mean.

= 3.1415926535897930164 ~ 7.

Integer relation detection

I make a brief digression to describe what integer relation detection methods
do. (These may be tried at: www.cecm.sfu.ca/projects/IntegerRelations/.) 1
then apply them to m (see Borwein and Lisonek, 2000).

DEFINITION A vector (xq, X5, ..., X,) of real numbers possesses an
integer relation, if there exist integers a; (not all zero) with:

apxy +a;, + .. +ax, =0

PROBLEM Find a, if such integers exist. If not, obtain lower ‘exclu-
sion’ bounds on the size of possible a,.

SOLUTION For n = 2, Euclid’s algoritbm gives a solution. For n = 3,
Euler, Jacobi, Poincaré, Minkowski, Perron and many others sought
methods. The first general algorithm was found (in 1977) by Fer-
guson and Forcade. Since 1977, one has many variants: I will mainly
be talking about two algorithms, LLL (‘Lenstra, Lenstra and Lovasz’;
also available in Maple and Mathematica) and PSLQ (‘Partial sums
using matrix LQ decomposition’, 1991; parallelised, 1999).

Integer relation detection was recently ranked among:

the 10 algorithms with the greatest influence on the development
and practice of science and engineering in the 20th century.
(Dongarra and Sullivan, 2000, p. 22)

It could be interesting for the reader to compare these algorithms with the
theorems on the list of the most ‘beautiful’ theorems picked out by Wells
(1990) in his survey, in terms of criteria such as applicability, unexpected-
ness and fruitfulness.

Determining whether or not a number is algebraic is one problem that
can be attacked using integer relation detection. Asking about algebraicity
is handled by computing a to sufficiently high precision (O(zz = N?)) and
applying LLL or PSLQ to the vector (1, a, o2, ..., o). Solution integers a; are
coefficients of a polynomial likely satisfied by a. If one has computed a to
n + m digits and run LLL using 7 of them, one has m digits to confirm the
result heuristically. T have never seen this method return an honest ‘false
positive’ for m > 20, say. If no relation is found, exclusion bounds are
obtained, saying, for example, that any polynomial of degree less than N
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must have the Euclidean norm of its coefficients in excess of L (often astro-
nomical). If we know or suspect an identity exists, then integer relations
methods are very powerful. Let me illustrate this in the context of approxi-
mating d.

Machin’s formula

We use Maple to look for the linear dependence of the following quantities:

[arctan(1), arctan(1/5), arctan(1/239)]

and ‘recover’ [1, —4, 1]. In other words, we can establish the following
equation:

/4 = 4arctan(1/5) — arctan(1/239).
Machin’s formula was used on all serious computations of & from 1706 (a
hundred digits) to 1973 (a million digits), as well as more abstruse but similar
formulae used in creating Kanada’s present record. After 1980, the methods
described above started to be used instead.

Dase’s formula

Again, we use Maple to look for the linear dependence of the following
quantities:

[rt/4, arctan(1/2), arctan(1/5), arctan(1/8)].

and recover [-1, 1, 1, 1]. In other words, we can establish the following
equation:

/4 = arctan(1/2) + arctan(1/5) + arctan(1/8).

This equation was used by Dase to compute two hundred digits of m in his
head in perhaps the greatest feat of mental arithmetic ever — 1/8 is appar-
ently better than 1/239 (as in Machin’s formula) for this purpose.

Who was Dase? Another burgeoning component of modern research
and teaching life is having access to excellent data bases, such as the MacTutor
History Archive maintained at: www-history.mcs.st-andrews.ac.uk (alas, not
all sites are anywhere near so accurate and informative as this one). One may
find details there on almost all of the mathematicians appearing in this chap-
ter. I briefly illustrate its value by showing verbatim what it says about Dase.

Zacharias Dase (1824-1861) had incredible calculating skills but
little mathematical ability. He gave exhibitions of his calculating
powers in Germany, Austria and England. While in Vienna in 1840
he was urged to use his powers for scientific purposes and he dis-
cussed projects with Gauss and others.

Dase used his calculating ability to calculate w to 200 places in
1844. This was published in Crelle’s Journal for 1844. Dase also
constructed 7 figure log tables and produced a table of factors of
all numbers between 7 000 000 and 10 000 000.
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Gauss requested that the Hamburg Academy of Sciences allow
Dase to devote himself full-time to his mathematical work but,
although they agreed to this, Dase died before he was able to do
much more work.

Pentium farming

I finish this sub-section with another result obtained through integer rela-
tions methods or, as I like to call it, ‘Pentium farming’. Bailey, Borwein and
Plouffe (1997) discovered a series for m (and corresponding ones for some
other polylogaritbmic constants), which somewhat disconcertingly allows
one to compute hexadecimal digits of m without computing prior digits.
(This feels like magic, being able to tell the seventeen-millionth digit of
say, without having to calculate the ones before it; it is like seeing God
reach her hand deep into w.)

The algorithm needs very little memory and no multiple precision. The
running time grows only slightly faster than linearly in the order of the digit
being computed. The key, found by PSLQ as described above, is:

= /1N 4 2 1 1
£ G ()
Z\16) \8k+1 8k+4 8k+5 8k+6
Knowing an algorithm would follow, Bailey, Borwein and Plouffe spent sev-
eral months hunting by computer for such a formula. Once found, it is easy
to prove in Mathematica, in Maple or by hand — and provides a very nice
calculus exercise.

This was a most successful case of reverse mathematical engineering
and is entirely practicable. In September 1997, Fabrice Bellard (at INRIA)
used a variant of this formula to compute one hundred and fifty-two binary
digits of =, starting at the trillionth (10™) place. This took twelve days on
twenty work-stations working in parallel over the internet. In August 1998,
Colin Percival (Simon Fraser University, age 17) finished a ‘massively parallel’
computation of the five-trillionth bit (using twenty-five machines at roughly
ten times the speed of Bellard). In hexadecimal notation, he obtained:

07E45 733CC790B5B5979.
The corresponding binary digits of m starting at the forty-trillionth bit
are:
0 0000 1111 1001 1111.

By September 2000, the quadrillionth bit had been found to be the digit 0
(using 250 cpu years on a total of one thousand, seven hundred and thirty-
four machines from fifty-six countries). Starting at the 999,999,999,999,997th
bit of &, we find:

11100 0110 0010 0001 0110 1011 0000 0110.
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Solid and Discrete Geometry — and Number Theory

Although my own primary research interests are in numerical, classical and
functional analysis, T find that the fields of solid and discrete geometry, as
well as number theory, offer many examples of the kinds of concrete,
insightful ideas I value. In the first example, T argue for the computational
affordances available to study of solid geometry. I then discuss the genesis
of an elegant proof in discrete geometry. Finally, I illustrate a couple of deep
results in partition theory.

de Morgan

Augustus de Morgan, one of the most influential educators of his period and
first president of the London Mathematical Society, wrote:

Considerable obstacles generally present themselves to the begin-

ner, in studying the elements of Solid Geometry, from the practice

which has hitherto uniformly prevailed in this country, of never

submitting to the eye of the student, the figures on whose proper-

ties he is reasoning, but of drawing perspective representations of

them upon a plane. [...] I hope that I shall never be obliged to have

recourse to a perspective drawing of any figure whose parts are

not in the same plane. (in Rice, 1999, p. 540)
His comment illustrates the importance of concrete experiences with math-
ematical objects, even when the ultimate purpose is to abstract. There is a
sense in which insight lies in physical manipulation. T imagine that de
Morgan would have been happier using JavaViewLib (see: www.cecm.sfu.
ca/interfaces/). This is Konrad Polthier’'s modern version of Felix Klein’s
famous set of geometric models. Correspondingly, a modern interactive ver-
sion of Euclid is provided by Cinderella (a software tool which is largely
comparable with 7he Geometer’s Sketchpad,; the latter is discussed in detail
in Chapter 7 of this volume). Klein, like de Morgan, was equally influential
as an educator and as a researcher.

Sylvester’s theorem

Sylvester’s theorem is worth mentioning because of its elegant visual proof,
but also because of Sylvester’s complex relationship to geometry: “The early
study of Euclid made me a hater of geometry” (quoted in MacHale, 1993, p.
135). James Joseph Sylvester, who was the second president of the London
Mathematical Society, may have hated Euclidean geometry, but discrete
geometry (now much in fashion under the name ‘computational geometry’,
offering another example of very useful pure mathematics) was different.
His strong, emotional preference nicely illustrates how the aesthetic is
involved in a mathematician’s choice of fields.

Sylvester (1893) came up with the following conjecture, which he posed
in The Educational Times:
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THEOREM Given 7 non-collinear points in the plane, then there is

always at least one (elementary or proper) line going through

exactly two points of the set.
Sylvester’s conjecture was, so it seems, forgotten for fifty years. It was first
established — ‘badly’, in the sense that the proof is much more complicated
— by T. Grinwald (Gallai) in 1933 (see editorial comment in Steinberg, 1944)
and also by Paul Erdos. Erdos, an atheist, named ‘the Book’ the place where
God keeps aesthetically perfect proofs. L. Kelly’s proof (given below),
which Erdos accepted into ‘the Book’, was actually published by Donald
Coxeter (1948) in the American Mathbematical Monthly. This is a fine exam-
ple of how the archival record may rapidly get obscured.

PROOF Consider the point closest to a line it is not on and then
suppose that line has three points on it (the horizontal line). The
middle of those three points is clearly closer to the other line.

Figure 5. Kelly’s proof from ‘the Book’

As with Apostol’s proof of the irrationality of V2, we can see the power of
the right minimal configuration. Aesthetic appeal often comes from having
this characteristic: that is, its appeal stems from being able to reason about
an unknown number of objects by identifying a restricted view that captures
all the possibilities. This is a process that is not so very different from that
powerful method of proof known as mathematical induction.

Another example worth mentioning in this context (one that belongs in
‘the Book”) is Niven’s (1947) marvellous (simple and short), half-page proof
that = is érrational (see: www.cecm.sfu.ca/personal/jborwein/pi.pdf).

Partitions and patterns

Another subject that can be made highly accessible through experimental
methods is additive number theory, especially partition theory. The number
of additive partitions of n, p(n), is generated by the following equation:
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fla) = H 1_1 + E}J('re..)q".

k=1 n=>0

Thus, p(5) = 7, since:

5=4+1=3+2=3+1+1=2+2+1

2+1+1+1=1+1+1+1+1

QUESTION How hard is p(n) to compute? Consider this question
as it might apply in 1900 (for Major MacMahon, the father of our
modern combinatorial analysis) and in 2000 (for Maple).

ANSWER Seconds for Maple, months for MacMahon. 1t is interest-
ing to ask if development of the beautiful asymptotic analysis of
partitions by Hardy, Ramanujan and others would have been
helped or impeded by such facile computation.

Ex-post-facto algorithmic analysis can be used to facilitate independent student
discovery of Euler’s pentagonal number theorem.

>0

H(l —¢") = Z (—1)ng@ntin/2,

k=1 n=—oo
Ramanujan used MacMahon'’s table of p(7) to intuit remarkable and deep
congruences, such as:

p(n + 4) = 0 (mod 5),

p(7n +5) = 0 (mod 7),

and

p(11n + 6) = 0 (mod 11)

from data such as:

fle) = 14+q+2¢°+3¢ +5¢" +7¢° +11¢° + 15¢7 + 22¢° + 304"
+42¢'° 4 564" + 77¢'% + 101¢"® + 135¢'* 4 176¢"° + 231¢'°
+297¢'7 + 385¢'® + 490¢"? + 627¢%° + 792¢*! + 1002¢°2
+1255¢% + ...

Nowadays, if introspection fails, we can recognise the pentagonal numbers
occurring above in Sloane and Plouffe’s on-line Encyclopaedia of Integer
Sequences (see: www.research.att.com/personal/njas/sequences/eisonline.
html). Here, we see a very fine example of Mathematics: the Science of
Patterns, which is the title of Keith Devlin’s (1994) book. And much more
may similarly be done.
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Some Concluding Discussion

In recent years, there have been revolutionary advances in cognitive science
— advances that have a profound bearing on our understanding of math-
ematics. (More serious curricular insights should come from neuro-biology
— see Dehaene et al, 1999.) Perhaps the most profound of these new
insights are the following, presented in Lakoft and Nufez (2000).

1. The embodiment of mind. The detailed nature of our bodies, our
brains and our everyday functioning in the world structures human
concepts and human reason. This includes mathematical concepts
and mathematical reason. (See also Chapter 6.)

2. The cognitive unconscious. Most thought is unconscious — not
repressed in the Freudian sense, but simply inaccessible to direct
conscious introspection. We cannot look directly at our conceptual
systems and at our low-level thought processes. This includes most
mathematical thought.

3. Metaphorical thought. For the most part, human beings conceptualise
abstract concepts in concrete terms, using ideas and modes of
reasoning grounded in sensori-motor systems. The mechanism by
which the abstract is comprehended in terms of the concept is called
conceptual metaphor. Mathematical thought also makes use of
conceptual metaphor: for instance, when we conceptualise numbers
as points on a line.

Lakoff and Nunez subsequently observe:

What is particularly ironic about this is it follows from the empirical
study of numbers as a product of mind that it is natural for people
to believe that numbers are not a product of mind! (p. 81)

I find their general mathematical schema pretty persuasive but their specific
accounting of mathematics forced and unconvincing (see also Schiralli and
Sinclair, 2003). Compare this with a more traditional view, one that I most
certainly espouse:

The price of metaphor is eternal vigilance. (Arturo Rosenblueth
and Norbert Wiener, in Lewontin, 2001, p. 1264)

Form follows function

The waves of the sea, the little ripples on the shore, the sweeping
curve of the sandy bay between the headlands, the outline of the
hills, the shape of the clouds, all these are so many riddles of form,
so many problems of morphology, and all of them the physicist
can more or less easily read and adequately solve [...] (Thompson,
1917/1968, p. 10)

A century after biology started to think physically, how will mathematical
thought patterns change?



To appreciate Greg Chaitin’s comment, one has only to consider the meta-
phorical or actual origin of current ‘hot topics’ in mathematics research:
simulated annealing (‘protein folding”); genetic algorithms (‘scheduling
problems”); neural networks (‘training computers’); DNA computation (‘trav-
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The idea that we could make biology mathematical, 1 think, per-
haps is not working, but what is happening, strangely enough, is
that maybe mathematics will become biological! (Chaitin, 2002)

elling salesman problems’); quantum computing (‘sorting algorithms’).

Humanistic philosophy of mathematics

However extreme the current paradigm shifts are and whatever the outcome
of these discourses, mathematics is and will remain a uniquely human
undertaking. Indeed, Reuben Hersh’s (1995) full argument for a humanist
philosophy of mathematics, as paraphrased below, becomes all the more con-

vincing in this setting.

1.

The recognition that ‘quasi-intuitive’ methods may be used to gain good
mathematical insight can dramatically assist in the learning and discovery of
mathematics. Aesthetic and intuitive impulses are shot through our subject

Mathematics is hbuman. 1t is part of and fits into human culture. It does
not match Frege’s concept of an abstract, timeless, tenseless and objec-
tive reality (see Resnik, 1980, and Chapter 8). It shares important fea-
tures with the other humanities, including an appreciation for the role
of intuition and an understanding of the value judgements that help
determine what is investigated, how it is investigated and why.
Mathematical knowledge is fallible. As in science, mathematics can
advance by making mistakes and then correcting or even re-correcting
them. The ‘fallibilism’ of mathematics is brilliantly argued in Imre
Lakatos’s (1976) Proofs and Refutations.

There are different versions of proof or rigour. Standards of rigour can
vary depending on time, place and other things. Using computers in
formal proofs, exemplified by the computer-assisted proof of the four-
colour theorem in 1977, is just one example of an emerging, non-
traditional standard of rigour.

Aristotelian logic is not always necessarily the best way of deciding.
Empirical evidence, numerical experimentation and probabilistic
proof can all help us decide what to believe in mathematics.
Mathematical objects are a special variety of a social-cultural-historical
object. Contrary to the assertions of certain post-modern detractors,
mathematics cannot be dismissed as merely a new form of literature or
religion. Nevertheless, many mathematical objects can be seen as
shared ideas, like Moby Dick in literature or the Immaculate Conception
in religion.

and honest mathematicians will acknowledge their role.
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Some Final Observations

When we have before us, for instance, a fine map, in which the line
of coast, now rocky, now sandy, is clearly indicated, together with
the windings of the rivers, the elevations of the land, and the distri-
bution of the population, we have the simultaneous suggestion of so
many facts, the sense of mastery over so much reality, that we gaze
at it with delight, and need no practical motive to keep us studying
it, perhaps for hours together. A map is not naturally thought of as
an aesthetic object; it is too exclusively expressive. (Santayana, 1896/
1910, p. 209)

This Santayana quotation was my earliest, and still favourite, encounter with
aesthetic philosophy. It may be old fashioned and un-deconstructed in tone,
but to me it rings true. He went on:

And yet, let the tints of it be a little subtle, let the lines be a little del-
icate, and the masses of land and sea somewhat balanced, and we
really have a beautiful thing; a thing the charm of which consists
almost entirely in its meaning, but which nevertheless pleases us in
the same way as a picture or a graphic symbol might please. Give
the symbol a little intrinsic worth of form, line, and color, and it
attracts like a magnet all the values of the things it is known to sym-
bolize. It becomes beautiful in its expressiveness. (p. 210)

However, in conclusion, and to avoid possible accusations of mawkishness
at the close, T also quote Jerry Fodor (1985):

It is, no doubt, important to attend to the eternally beautiful and to
believe the eternally true. But it is more important not to be eaten.

(p. 4
Notes

[1] This quotation is commonly attributed to Gauss, but it has proven remarkably
resistant to being tracked down. Arber, the citation I give here, a philosopher of
biology, acknowledges in a footnote (p. 47) that, “the present writer has been unable
to trace this dictum to its original source”. Interestingly, even the St. Andrews his-
tory of mathematics site cites Arber. See also Dunnington (1955/2004).

[2] In Brouwer’s Cambridge Lectures on Intuitionism, the editor van Dalen (1981,
p. 95) comments in a footnote:

3. The first use of undecidable properties of effectively presented
objects (such as the decimal expansion of 1) occurs in Brouwer

(1908 [/1975D.



CHAPTER 2
Beauty and Truth in Mathematics

Doris Schattschneider

“That’s beautiful!” is the unsolicited exclamation. The response is not to a
painting, a breathtaking view or a flawless musical performance, but rather
to a mathematical statement or a mathematical proof. What brings such aes-
thetic pleasure to a mathematician or to those who wish to appreciate math-
ematics and engage in it?

Beautiful Statements

A simple, yet profound statement can evoke awe. Perhaps one of the most
surprising of all mathematical truths is:

e+ 1=0.
Here, in one incredibly spare equation, five of the most important numbers
are related. That’s beautiful!
Another mathematical truth, discovered by Archimedes (c. 240BcE), is a

geometric rival to the numerical epigram above. Figure 1 shows a 1 by 2
rectangle and, on its base, a semi-circle and an isosceles triangle are inscribed.

Figure 1: Archimedes’s discovery

From elementary calculations, it can be seen that the three areas are in the
following ratios to one another:

area of triangle : area of semi-circle : area of rectangle
1 : /2 : 2
If these three figures are rotated about the dashed vertical axis in the figure,
then a cone, a hemisphere and a cylinder are swept out simultaneously, all
having the same radius and height. Archimedes discovered this beautiful
relationship among their volumes:
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volume of cone : volume of hemisphere : volume of cylinder
1 : 2 : 3

Archimedes proved this relationship in his treatise On the Sphere and the
Cylinder. 1t is claimed he held this relationship to be so beautiful that he
asked that the diagram of a sphere inscribed in a cylinder be carved on his
gravestone. Howard Eves (1980) presents Archimedes’s proof of the rela-
tionship, and recounts as well the often-told tale of how Archimedes died
at the hands of a Roman soldier who did not share his passion for math-
emartics.

Perhaps one of the (if not the) most well-known (also well-historied and
well-proved) mathematical statements is what the Western world calls:

The Pythagorean theorem The sum of the (areas of the) squares
on the legs of a right triangle equals the (area of the) square on
the hypotenuse.

Surely, the first time this relationship was discovered (and the many times it
has been rediscovered), the discoverer must have been awe-struck. Today,
it is just one of many geometric ‘facts’, rarely discovered, but rather memo-
rized as an algebraic equation, often without hypotheses:
B+ =2

In his book, Geometry Civilized, ]. L. Heilbron (1998) discusses some of this
theorem’s history and notes that knowledge of this beautiful theorem has
been considered, by many, to be the mark of a civilized person. Some have
even proposed having what Heilbron and others have called Euclid’s ‘wind-
mill"” diagram (Figure 2) engraved in huge proportions on the landscape to
be seen from outer space. Perhaps it is not only the theorem’s beauty, but

its incredible usefulness that has made it the object of enduring admiration
(see also Valens, 1964).

Figure 2: The Pythagorean theorem as an icon
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Beautiful Proofs

A mathematical proof, more so than a mathematical statement or fact, is likely
to be labeled ‘beautiful’ by a mathematician. What makes a proof beautiful?
Here are some of the characteristics that most mathematicians would agree on:

e clegance — it is spare, cutting right to the essential idea;

e ingenuity — it has an unexpected idea, a surprising twist;

e insight — it offers a revelation as to why the statement is true,
it provides an Aha/;

e connections — it enlightens a larger picture or encompasses many
areas;

e paradigm — it provides a fruitful heuristic with wide application.

To me, a proof is beautiful if it really catches my attention and, most of all,
if it is one whose essence I will never forget. I have collected several proofs
in this chapter that I feel embody one or more of the characteristics in the
above list. Many can be shared with high-school students—it is not neces-
sary to have research-level mathematics to encounter beautiful proofs.

I begin with one of the oldest recorded proofs of the hsuan-thu (the
Pythagorean theorem) that appears in an ancient Chinese mathematical text
entitled Chou pei suan ching (The Arithmetical Classic of the Gnomon and
the Circular Paths of Heaven, possibly pre-third century BCE)—see Swetz
and Kao (1980). Although adapted to today’s use of letter symbols, it per-
fectly illustrates two paradigms of proof: visualization, with its use of dia-
gram and color, and finite dissection and reassembly, preserving areas. The
Chinese diagram shown in Figure 3 is the same as one given by the twelfth-
century Indian scholar Bhaskara, whose one-word injunction Bebold! recor-
ded his sense of awe.

In the Chinese proof, regions are colored red and yellow. Figure 3 uses
shades of gray to represent those colors. There are eight right triangles in
the diagram, all congruent to triangle DEF. Figure 3 displays the proof that
the square (ADFK) on the hypotenuse of right triangle DEF has the same
area as the sum of squares that can be built on its legs (ABCH + CEFG).

Euclid’s proof of the Pythagorean theorem (Book I, Prop. 47) is, by
comparison, more complicated. He used the ‘windmill’ diagram and had the
ingenious idea of adding strategically chosen auxiliary lines to dissect the
square on the hypotenuse into two rectangles whose respective areas are
equal to the areas of the squares on the adjacent legs. Figure 4 shows
Euclid’s famous diagram for his proof.

Euclid’s proof is not only ingenious, but is beautiful for another reason
—the argument extends, almost without change, to proving Pappus’s Theo-
rem, from Book IV of his Collection (fourth century cg), which has the
Pythagorean theorem as a mere special case. The diagram for the theorem
of Pappus is shown in Figure 5: my statement of the theorem refers to the
labeling in that diagram.
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red

yellow

I:l ADFK = red triangles + yellow square = 4 BABD + I:l GHIJ

4N\ ABD = | | aBDI + [ | DEFS

=([Jascr+ [_]com+( [Jeer-[ ] com-[] crm
=[] aBcH + [] cerG- |:| GHIJ

Replacing 4 B ABLY in the first equation with this sum gives
[[Japrk= []ascH+ [] cere

Figure 3: An ancient Chinese proof of the Pythagorean theorem

Figure 4: Euclid’s proof of the Pythagorean theorem, ¢. 300BCE
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Pappus’s theorem Let ABC be any triangle with parallelograms
ACDE and ABFG constructed externally on the sides AC and AB.
Let the rays DE and FG meet in point H, and construct B] and CK
equal and parallel to HA. Then the sum of the areas of the parallelo-
grams ACDE and ABFG equals the area of the parallelogram BCK].

H

J L K

Figure 5: Pappus’s theorem, Book 1V, The Collection, fourth century CE

Pappus had the vision to see beyond a right triangle and the insight to find
the right generalization of the Pythagorean theorem. Perhaps his theorem
and its proof can serve as an example of a proof that makes connections
and illuminates a larger picture. In her poem ‘Poet as mathematician’, Lillian
Morrison (1979, p. 45) captures the essence of this mathematical beauty:

Having perceived the connexions, he seeks

the proof, the clean revelation in its

simplest form, never doubting that somewhere

waiting in the chaos, is the unique

elegance, the precise, airy structure,
defined, swift-lined, and indestructible.

Another of Euclid’s proofs, this time from number theory, is a master-
piece of elegance. Euclid proved that the primes never run out—that is,
given any finite collection of primes, there is always one more. His brilliant
idea, which reduces the proof to a few lines, is to take the product of the
given collection of primes and add 1. That new number (which may be very
large) is not divisible by any of the primes in the collection. But every num-
ber greater than 1 can be factored into a product of primes, so there must
be a prime not in the original collection. For example, if we begin with the
six primes 2, 3, 5, 7, 11, 13, then the new number that is produced by this
construction is:
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2X3X5x7x11x13+1=30,031

which is not divisible by any of 2, 3, 5, 7, 11 or 13. In this case, the number
obtained is not itself prime (as many students tend to think it a/ways must
be): in fact, 59 is the smallest prime that divides 30,031 (= 59 x 509).

Interestingly, Euclid’s reductio ad absurdum proof that the set of primes
cannot be finite is actually a generic one. It only shows the result for a col-
lection of three primes, using the above construction in this particular case
to argue for the necessary existence of a fourth not included in the list.
There is not even a generalizing remark to the effect that ‘for any other num-
ber of primes the argument runs likewise’.

My favorite visual proofs are ones that capture the whole idea of an asser-
tion—they are like a haiku, a poem that is so spare yet searing that it can leave
you breathless. For me, the best example is George Pdlya’s proof of:

The arithmetic—geometric mean inequality For any two positive
numbers, a and b,

b
\/@ga;

The diagram, which unequivocally demonstrates the inequality, is given
below in Figure 6. (The circle, with just three lines, appears like a Japanese
crest.) A circle is constructed on a diameter of length a + b. A segment per-
pendicular to the diameter is constructed from the point that separates
length a from length b on the diameter, and joins that point to the circle. A
simple calculation shows that this segment has length Vab, while the radius
of the circle has length “;b . If more explanation is needed, the inscribed
(necessarily right) triangle at the right in Figure 6 can be drawn and a sim-
ple argument using similar triangles will show that the segment’s length is
Vab. (In fact, this was the Greek construction method for the length Vab.)
Not only does this diagram make clear why the inequality is true, but it also
demonstrates that equality between the two means occurs only when a = b.
The diagram captures the essence of the inequality in a minimal and graceful
manner; it is a picture I shall never forget.

Figure 6: Pdlya’s proof of the arithmetic—geometric mean inequality
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A haiku is not only spare, but must have exact structure: five syllables,
seven syllables, five syllables. T was amazed to find that when I read the
inequality in this theorem, either with the symbols in the algebraic form
above or using descriptive words, it fitted the form of a haiku.

Two mean haikus

Square root of a, b Geometric mean
is less than or equal to is less than or equal to
av'rage of a, b. arithmetic mean.

A real haiku is one that not only fits the beat pattern, but conveys its mes-
sage without ever saying it explicitly. Polya’s diagram (minus the letters) is
in the spirit of a true haiku.

Paradigms of Technique

Proofs that are paradigms of technique, that show an unconventional method
that can be tried in another (perhaps similar) situation, evoke admiration. On
encountering one of these, the reaction is often something like, “I'd never
have thought of that”. The fact that the technique is fruitful, and not just an
isolated idiosyncrasy, is what makes it even more memorable. (Unfortunately,
many of these paradigms are presented in texts without any fanfare, as if they
were standard methods of argument. Yet they do not arise out of the body of
mathematical logic—they are the fruit of inspired flashes of insight that have
been absorbed into the larger body of mathematical argument.)

I have already presented examples of two paradigms of technique: finite
dissection and reassembly (the Chinese proof of the Pythagorean theorem)
and visualization or ‘geometrization’ (Pdlya’s proof of the arithmetic—geo-
metric mean inequality). Some other paradigms are:

e complementarity (duality);

e the Fubini principle (counting twice);

e the pigeon-hole principle (the Dirichlet principle);
® parity;

e transformation;

e symmetry;

e patterns.

The examples I have chosen to illustrate these may seem well-worn to some,
but for someone who has never seen such arguments, they can evoke
enthusiasm and admiration.

Complementarity (duality)

This principle is encapsulated in many combinatorial proofs. For example,
if you have a set of n elements, and you choose # of them, you have auto-
matically designated 7z — r elements as “not chosen”. Each choice of r defines
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a complementary choice of n — r; this establishes a one-to-one correspon-
dence between complementary subsets of the given set. This observation
actually constitutes a proof of the following theorem:

There are exactly as many 7-element subsets of a set of 7 elements
as there are (n — r)-element subsets.

Using C(n, ) to denote the number of subsets of 7 elements chosen from

an n-element set, the theorem says C(n, ) = C(n, n— r). Although algebraic

expressions for C(n, ») and C(n, n— r) can also be manipulated to verify the

truth of this theorem, the obvious truth of the complementarity argument is

more convincing (and surprising, since it involves no computation at all).
Using the same notation, another theorem states:

If n>1 then Cln, » =Cn -1, + Clnn -1, r—1).

A complementarity argument also makes this clear: choose one element, x;,
from the given set of 7 elements. Count all the subsets of 7 elements that
do not contain x;; there are C(zz — 1, ») of these (since, by withholding x;,
there are only 7 — 1 elements from which to choose 7). Then count all the
subsets of 7 elements that do contain x,; there are C(zz — 1, r — 1) of these
(since, as one choice, X, is prescribed, there are only » — 1 choices left to
make from 7 — 1 elements). As there is no overlap of the subsets counted,
the identity is proved.

The Fubini principle (counting twice)

Sherman Stein (1979), noting the Fubini theorem from calculus allowing
interchanging the order of integration of double integrals, gives this name
to the more general principle that it does not matter in which order you
sum. This means that when you add up a collection of numbers in two dif-
ferent ways, and then equate the results, you often discover unexpected
relationships and formulas. Stein gives several examples of this paradigm;
more can be found in Schattschneider (1991).

A related technique is to add numbers in such a way as to get twice the
desired sum and then divide by 2. The most well-known example of a proof
using this principle is the often-told tale of how the young Gauss found the
sum of the first 100 consecutive integers. His solution works for any posi-
tive integer 7, not just 100, and goes like this. Write the sum from 1 to »
horizontally, then write the same sum backwards from » to 1 and arrange
the two sums vertically. All the (vertical) pairs add to n + 1, and there are
n of these pairs, so twice the sum from 1 to n equals n(n + 1). Divide by 2
and you have the sum from 1 to z. What ingenuity!

1 + 2 + 3 + + n
n + -1 + m-2) + + 1
(n+1) + (n+1) + n+1) + + n+1
Therefore, 1 + 2 + 3 + n =

nn+1)
2
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A totally visual, generic proof of this sum formula, using the same technique
of combining two equal sums and then taking half, is shown in Figure 7.
Here, the unit is represented by a square of area 1 and the area of the dark
stair-steps represents the sum from 1 to n. Two of these stair-steps combine
to form an 7 x (n + 1) rectangle; so half of that area is A”Z—HJ

Figure 7: A visual proof of the formula for the sum from 1 to n

Surprisingly, Gauss’s technique extends to summing any arithmetic sequence.
Here the sequence’s first term is a, the difference between consecutive
terms is d and there are & + 1 terms in the sequence (d is added to succes-
sive terms k times to get from the first to the last term). As was done with
the sum from 1 to n (in which @ = 1, d = 1, and n = k + 1), you can line
up the two sums, add vertically and divide by 2 to obtain the following
result:

The sum of any arithmetic sequence is:

(first term + last term) X (number of terms).
2

A visual proof of this result can be seen in Figure 8; it, too, is a direct gener-
alization of the generic image for the simpler case.

Figure 8: A visual proof of the formula for the sum of any arithmetic sequence

The pigeon-hole principle (the Dirichlet principle)

The pigeon-hole principle states the obvious: if there are more pigeons than
pigeon-holes, then (provided all the pigeons are in holes) at least one hole
contains at least two pigeons. There are, of course, generalizations of this
innocuous observation. Who would think that this could be the basis for a
mathematical proof? One of the most elegant applications of this principle
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was made by Louis P6sa, when he was only eleven years old. Even math-
ematician Paul Erdos was impressed. Honsberger (1973) recounts the story
as told by Erdos:

I met him [P6sal before he was 12 years old. When I returned from
the United States in the summer of 1959 I was told about a little
boy whose mother was a mathematician and who knew quite a bit
about high school mathematics. I was very interested and the next
day I had lunch with him. While Pésa was eating his soup I asked
him the following question: Prove that if you have »n + 1 positive
integers less than or equal to 27, some pair of them are relatively
prime. It is quite easy to see that the claim is not true of just 7 such
numbers because no two of the # even numbers up to 2n are rel-
atively prime. Actually I discovered this simple result some years
ago but it took me about ten minutes to find the really simple
proof. Pésa sat there eating his soup, and then after a half a minute
or so he said “If you have n + 1 positive integers less than or equal
to 27, some two of them will have to be consecutive and thus rel-
atively prime.” Needless to say, I was very much impressed, and I
venture to class this on the same level as Gauss’ summation of the
positive integers up to 100 when he was just 7 years old. (pp. 10-11)

What Erdos leaves out (because it is obvious to him) is the reason there
must be two consecutive integers among the 7z + 1. This is because there
are a maximum of 7 non-consecutive ‘pigeon-holes’ among 27 of them in
a line and so, by the pigeon-hole principle, placing » + 1 numbers in the
2n slots would force (at least) two of them to be in consecutive holes. Posa’s
one-line proof is indeed impressive! Some other delightful applications of
the pigeon-hole principle can be found in Rebman (1979) and Stein (1979).

Parity

Simply noting whether a number is even or odd would not seem to be
particularly useful as a mathematical tool for proof. Yet, in the right circum-
stance, it is all that is needed for a convincing argument. Honsberger (1973,
pp. 64-65) reports a particularly nice application in proving the following
theorem:

The number of divisors of a positive integer is odd if and only if 7
is a perfect square.

To see this, simply note that unequal divisors come in pairs: 7 = ab where
a <Vn and b > Vn, so these pairs account for all divisors of 7 unless 7 = a2
for some integer a, in which case (and only in this case) there is an odd
number of divisors.

Although number theory is a natural area in which you would expect
parity arguments to arise, parity is also a powerful tool in various problems
that can be translated into tiling or coloring problems (especially tiling or
covering an m x n chessboard).
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Transformation

Often a problem will fail to yield to direct attack or, if it does, the work is
lengthy and clumsy, yielding no insight. To transform the problem to another
setting is often the means required for illuminating the picture, as well as
for producing a simple solution. Of course, how and when to transform are
never obvious and it sometimes takes a stroke of brilliance to effect this
technique. It can be as simple as transforming an algebraic problem into a
geometric one (as seen in earlier examples), altering a symbolic expression
to a story interpretation (counting problems) or applying a formal transfor-
mation to a given circumstance.

Here, an invertible function transfers the given problem into another
space, but in such a manner that the characteristics essential to the problem
are preserved (remain invariant). In the new setting, the problem is solved
and then the inverse transformation carries the solution back to the original
setting. Eves (1972) calls this technique ‘transform—solve—invert’. It can be
especially fruitful in proofs of geometric statements, but is also effective in
algebraic or other settings. For example, geometric transformations can take
a configuration to an ideal special case or to a setting in which deriving a
proof is far simpler. Group representations can transform elements of groups
into matrices or into other forms that are more amenable to computation or
argument.

Theorems in geometry on concurrence, collinearity, parallelism and also
tangency are all candidates for this technique: for example, concurrence of
medians is easily proved in an equilateral triangle. To prove this concur-
rence in any triangle, you need only apply a transformation that sends the
given triangle onto an equilateral one, while preserving lines (and hence
concurrence) and mid-points—an affine transformation will do.

An elegant solution to a more complicated problem of Jakob Steiner
also yields to this approach.

Steiner’s circle problem Given a circle, with a second circle in its

interior, is it (or when is it) possible to construct a chain of circles

between the two given ones, so that each circle in the chain is

tangent both to the given circles and to the two adjacent circles in

the chain?
When the two given circles are concentric, the problem is easy to solve—
with some elementary calculations, you can give precise necessary and
sufficient conditions on the radii of the two given circles to make the con-
struction described. But the question of how to tackle the general problem
seems hopeless.

The surprising solution is to use the fact that the two given circles can
be transformed into two concentric ones by an inversion in a (third) circle
and this inversion sends every circle to another one and preserves tangency.
If the inverted versions of the given circles (now concentric) fit the require-
ments that the desired chain of tangent circles can be constructed, then a
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chain can be constructed in the given circles—just construct the chain in the
concentric circles and then invert it (back) to produce a chain in the given
circles. And, of course, if the concentric circles do not fit the requirements
to allow a chain of tangent circles, then neither do the given circles. Figure 9
gives an illustration—here, the original circles (with their chains of tangent
circles) are on the right, and their concentric images under inversion in a
dashed circle are the ones on the left.

Figure 9: Inversion provides a solution to Steiner’s circle problem

Symmetry

A well-known and often-used paradigm not only for mathematics, but for
all science, is symmetry (for example, see Weyl, 1952; Curtin, 1982). When
expressions, statements or configurations possess symmetry (such as sym-
metric polynomials, cyclic permutations or geometric figures invariant under
reflection or rotation, for example), this symmetry can often be utilized to
produce a streamlined proof. Indeed, symmetry may be the root cause of a
particular relationship. The Platonic solids, or regular polyhedra, are a per-
sonification of symmetry: each has congruent regular polygonal faces whose
vertices meet to form congruent solid corners—turning the solid makes no
difference, it looks the same no matter from which face you view it. (This
can be described more precisely in terms of symmetry groups: each corner
can be mapped onto any other corner by a rotation or reflection that leaves
the solid invariant.) This high symmetry accounts for the fact that there are
only five regular polyhedra. Since every corner must be the same, Euclid, in
his proof of this result, only needed to consider how many congruent regular
polygons could come together to make a solid corner. For triangles, only
three, four or five (tetrahedron, octahedron, icosahedron respectively); for
squares, only three (cube); for pentagons, only three (dodecahedron): there
are no others. The Platonic Solids video (Schattschneider and Fetter, 1991)
provides a delightful animation of this argument.

The high symmetry of each Platonic solid can also be effectively utilized
to find relationships among the numbers of its edges (e), faces (f), and ver-
tices (v). For example, on the dodecahedron, we can use the fact that every
face has five edges and each edge is common to exactly two faces. Counting
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all the edges around all the faces (note each edge is counted by two faces),
we obtain 5f'= 2e.

Also, three faces meet at each vertex of the dodecahedron and each face
is surrounded by five vertices. Counting all the vertices around all the faces,
we obtain 5/ = 3v. Although we could, at this point, deduce that 2e = 3y,
this can also be obtained by another count. Each vertex has three edges that
meet there and each edge has exactly two vertices as endpoints. Counting
all the edges that meet at all the vertices, we obtain 3v = 2e. This kind of
counting can be adapted to any polyhedron having high symmetry (such as
a semi-regular polyhedron). More applications of symmetry can be found in
Schattschneider and Fetter (1991).

For centuries, symmetry (and, in the last century, symmetry groups and
their actions) has provided useful techniques in mathematics and science,
both in proving results and in modeling structure (such as that of molecules
and crystals). Symmetry is beautiful and it is effective, but this beauty is
seductive. Here is where I wish to address the two key words in my title,
inspired by Keats’s (1819) famous line ‘Beauty is truth, truth beauty’, from
his poem Ode on a Grecian Urn.

‘Beauty is truth’ is the seductive claim—more than one mathematician
or scientist has fallen prey to this seduction. Johannes Kepler’s polyhedral
model of the universe is a case in point. He was so convinced that the per-
fection of geometric symmetry was the key to understanding the orbits of
the planets that he constructed a model in which each planet (that was
known at the time) traveled its path in a spherical shell, its place in the
model dictated by the strategic nesting of the five Platonic solids.

Cromwell (1997) notes that:

[Kepler] was motivated by the desire to expose [the universe’s]
mathematical design, to reveal the plan which the Creator had
used in its construction. He followed in the Pythagorean tradition
and believed that such a plan would be expressible in harmonious
geometrical relationships reflecting the decision of the Architect.
He did not believe that the polyhedra and crystal spheres actually
existed in space; he thought of them more as an invisible skeleton,
as part of the perfect design by which each planet was allotted its
own region of space. The illusory and fallacious nature of the plan-
etary model was shown up by the discovery of new planets after
Kepler’s death. [...] Just as Kepler admired the regularity of the
Platonic solids and was attracted by the idea that nature must be
constructed around such elegant forms, so the modern physicist
idolises symmetry. (p. 148)

In fact, symmetry can be tyranny. By assuming that nature is defined by
symmetry, scientists have restricted their methods of analysis of structure by
looking for symmetry and applying symmetry groups. They have believed
their models to be the truth and have not been open to looking for other
ways to understand structure. Only in the last twenty years has this tyranny
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of symmetry been questioned, as the discovery of quasicrystals in 1984
destroyed the traditional definition of crystal and new paradigms such as
self-similarity and repetitiveness of patterns have gained interest. In math-
ematics and science, beauty may not be truth.

Patterns

Another fruitful paradigm in solving mathematical problems is searching for
(and recognizing) patterns. (This theme is also the cental focus of Chapter 5.)
By looking at many specific cases of a general statement, by producing com-
puter calculations or pictures of randomized examples of a general conjec-
ture, or by carrying out a search for patterns among a vast array of data, a
mathematician can often glean not only a pattern, but also insight into why
a conjecture may be or could not be true. Often it is the evidence of pat-
tern that convinces the mathematician of a truth. Only after this conviction
is established does the search for a proof become serious. Michael de Villiers
(1999) comments on this aspect of exploration and observation of (geometric)
patterns as a precursor to proof.

Pattern alone is never a proof, although the exercise in finding patterns
(especially numerical ones) is gaining such popularity in teaching math-
ematics that students seem to believe all the more that a pattern holding true
for ten cases or so constitutes a proof that the pattern always holds (see
Hewitt, 1992). Richard Guy (1988) once coined the phrase ‘The strong law
of small numbers’ and that is what seems to be prevalent in the pointless
search for patterns. Pattern, too, can be tyranny—for the familiar patterns
we look for may not be the ones that lead to truth. The dark movie Pi pro-
vided a sad caricature of a man so obsessed with finding a pattern (in the
digits of m) that it indeed destroyed him.

The Aesthetic of Doing Mathematics

For most of us, mathematics means fairly routine calculations and straight-
forward deductions from given premises, using various bits of mathematical
knowledge to solve problems. But what grabs a mathematician? What makes
a problem ‘interesting’? Why is a mathematician willing to spend hours,
days, months or even years trying to solve a mystery? Each one may have
his or her own answer, but all wish to be able to make connections, to find
an epiphany of understanding, to feel the intellectual and emotional high of
accomplishment or the smaller satisfaction of making some inroads into an
apparently intractable problem.

Artist Sarah Stengle, as the daughter of a mathematician, grew up knowing
first-hand what mathematicians do. She writes:

Mathematical imagery is seen through a veil of cultural assump-
tions that mathematics is unemotional and pure, and that its texts
are stylistically neutral. (2000, p. 161)
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Stengle questions these assumptions, arguing:

Both the research mathematician and the artist proceed by intu-
ition, often aesthetically motivated, and both share a sense of dis-
covery and achievement if and when the desired outcome is
attained. [...] Intuition and a desire for comprehension and beauty
can motivate a mathematician or an artist. A mathematical proof
which is entirely correct but boring is second rate, just as a portrait
can be an excellent likeness but artistically dull. [Both are lacking
‘essence’ or ‘soul’.] Mathematicians and artists often use a similar
vocabulary of a search led by intuition to describe their working
process. Often the outcome is described in terms of discovery,
meaning the outcome was not known beforehand but seemed to
exist a priori. Both often have only a sense of the outcome rather
than a knowledge of it, and follow their intuition to their goals,
which they recognize only when they get there. “There” is where
things “feel” resolved and complete. The mathematical discovery
has to withstand the rigid demands of the discipline, while the
artistic discovery is subject to constant reinterpretation and debate.
[Mathematical arguments are also subject to constant reinterpreta-
tion and debate.] (pp. 161, 165)

Although mathematicians all hope to experience searing insight, yearn to
produce a flawless gem of a proof (exhibiting many of those characteristics
I have listed earlier) or dream of cracking a problem that has baffled the
best minds, most of us experience much lesser satisfactions. Yet that is often
enough. If this were not so, very little mathematics would ever get done.
A recent, best-selling book, Uncle Petros and Goldbach’s Conjecture
(Doxiadis, 2000), paints a picture of a mathematician, a failure in both his
family’s eyes and his own, but admired by his persistent nephew who strives
to find out what drove his uncle to this present situation. He learns of the
lure of an intractable unsolved problem, the dedication to solving it in total
isolation (to the exclusion of other mathematical research, even refusing to
publish partial results) and the self-branding of failure when the task was not
accomplished. It is a caricature in some ways, but also a sad commentary on
the harshness with which the mathematical world judges mathematical
prowess and results. At the same time, it celebrates the tenacity shown by
mathematicians who are drawn to a problem and, despite many setbacks, are
sufficiently encouraged by small successes to continue their search for a proof.
I recently had a personal experience in proving a theorem and, when
done, I knew that the proof failed all the tests of being beautiful. The theo-
rem is one about tiling the plane with congruent polygons. It says, in
essence, that if, in the tiling, every tile is surrounded in exactly the same way,
then any isometry that maps one particular tile onto another chosen tile will
map the whole tiling onto itself (every tile will land exactly on another tile).
The mathematician who conjectured the theorem, Nikolai Dolbilin, had
proved (in an elegant way) a powerful theorem (called the Local Theorem
for tilings) that took care of this assertion for all polygons that had no
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mirror or rotation symmetry. So the case of when the polygonal tile was sym-
metric remained to be proved. A known theorem (about the topological
network of edges of a tiling, called Laves nets) implied that polygons satis-
fying the hypothesis of the assertion could have no more than six sides. The
only way to prove the symmetric case seemed to be to look at all possible
cases—symmetric triangles, quadrilaterals, pentagons and hexagons that filled
the plane in a manner satisfying the hypothesis of the assertion.

And so I carried out (during a concentrated six-month period) a case-
by-case verification of the theorem. It turned out that there were forty cases
and, although along the way I could sometimes see I was repeating argu-
ments (and so could consolidate some arguments into lemmas to be used
more than once), an all-encompassing argument or seminal idea never
emerged.

The final result was a proof of the theorem (see Schattschneider and
Dolbilin, 1998), but there was no elegance or ingenuity, nor was there any
insight. In fact, the result, proved for tilings of the Euclidean plane, is known
to be false both for the hyperbolic plane and also for Euclidean three-space.
But the proof does not illuminate what is the essential difference, what is
special about two-dimensional Euclidean space that makes the result true.
And, moreover, Dolbilin and T were interested in proving the result for tiles
of any shape—even those of Escher: we both believe the result to be true
for this most general case in the plane. But the arguments in my plodding
proof rely on the properties of polygons—in particular, that the sum of the
interior angles of any 7n-gon is (7 — 2) x 180°—and I feel the general proof
would require far more complicated arguments than I had employed.

Yet, I received a measure of satisfaction in proving this result. T had
believed it was true and now it was proven to be true. And, along the way,
I saw some connections that I could not have seen without actually going
through the process. Begin with a tile type (for example, a hexagon mirror-
symmetric about a side bisector) and surround it completely with copies of
itself to form its ‘first corona’ (and sometimes even surround that corona
with such tiles as necessary to form a ‘second corona’). Then employ the
Local Theorem to obtain the verification of the conjecture for that case.

I used The Geometer’s Sketchpad to construct each tile and build up
these tilings: in so doing, I could deform tiles and tilings that were flexible.
This process did bring insight and connections to other cases. Figure 10
shows one unexpected connection that the dynamic geometry software
revealed. (The Geometer’s Sketchpad is the focus of Chapter 7.) This partic-
ular hexagon had five equal sides and one free edge (the bottom). When I
reduced that free edge to a point, turning it into an equilateral pentagon, I
could see that this particular pentagonal case was merely a special case of
the hexagonal tiling. I had proved the pentagonal case first and had no
inkling at the time that it was related to a more general hexagonal tiling.

Another satisfaction was that, when done, I realized that the case-by-case
attack had produced a complete catalog of isohedral tilings by symmetric
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Figure 10: A flexible tiling by symmetric hexagons having five equal sides and angle
relation O + 2B = 270 produces a related tiling by equilateral pentagons

polygons—something that had not been done before. Moreover, the Geo-
meter’s Sketchpad constructions of these cases demonstrated, in a visceral
way, the broad range of shapes of these tiles (convex and non-convex) and
their tilings. (To view and manipulate them, see: mathforum.org/dynamic/
one-corona/.)

Proofs of many theorems far more (mathematically) earth-shaking than
this one have also been the result of long, arduous work (measured in
years) with many false trails, some mistakes, many flashes of insight and
connections and many small satisfactions along the way. They have often
been guided by a program that outlined a framework of attack, so that pieces
could be worked on (often by different mathematicians) and the proof chis-
eled out a bit at a time, until all the completed pieces fitted together. Just a
few of these instances are: the classification of finite groups, the four-color
theorem, Fermat’s last theorem and Kepler’s sphere-packing theorem. Those
who completed these proofs are celebrated not for proofs that are concise
or elegant, but for having the vision, the persistence and the stamina to com-
plete the task and reach the goal. Truth can be beautiful in different ways.

And how are mathematicians rewarded for their sometimes pleasurable,
often frustrating toil? Sherman Stein (1979) catches the wonder that keeps
us at it:

Frequently the reward for the answer to a question is the challenge
of new questions. The mathematical unknown expands far more
rapidly than it can be explored; it is full of galaxies of riddles as
perplexing as the most peculiar star seen in a telescope. And the
borders of this universe are restricted only by the extent of our
curiosity and imagination. (p. 84)

I end with my own haiku, which perhaps sums up the emotions that we
frequently encounter.

A mathematical haiku (after Dante)

Lightning strikes my mind
I see all, T have the proof!
And then I awake



CHAPTER 3
Experiencing Meanings in Geometry

David W. Henderson and Daina Taimina

What geometrician or arithmetician could fail to take pleasure in the
symmetries, correspondences, and principles of order observed in
visible things? Consider, even, the case of pictures: those seeing by
the bodily sense the products of the art of painting do not see the
one thing in the one only way; they are deeply stirred by recog-
nizing in the objects depicted to the eyes the presentation of what
lies in the idea, and so are called to recollection of the truth — the
very experience out of which Love rises. (Plotinus, The Enneads,

11.9.16; 1991, p. 129)

In mathematics, as in any scientific research, we find two tenden-
cies present. On the one hand, the tendency toward abstraction
seeks to crystallize the /Jogical relations inherent in the maze of
material that is being studied, and to correlate the material in a
systematic and orderly manner. On the other hand, the tendency
toward intuitive understanding fosters a more immediate grasp of
the objects one studies, a live rapport with them, so to speak,
which stresses the concrete meaning of their relations.

As to geometry, in particular, the abstract tendency has here led
to the magnificent systematic theories of Algebraic Geometry, of
Riemannian Geometry, and of Topology; these theories make
extensive use of abstract reasoning and symbolic calculation in the
sense of algebra. Notwithstanding this, it is still as true today as it
ever was that intuitive understanding plays a major role in geom-
etry. And such concrete intuition is of great value not only for the
research worker, but also for anyone who wishes to study and
appreciate the results of research in geometry. (David Hilbert, in
Hilbert and Cohn-Vossen, 1932/1983, p. iii; italics in original)

It's a thing that non-mathematicians don’t realize. Mathematics is
actually an aesthetic subject almost entirely. (John Conway, in
Spencer, 2001, p. 165)

The artist and scientist both live within and play active roles in
constructing human mental and physical landscapes. That they
should share structural intuitions is less surprising than inevitable.
What is surprising and wonderful is how these intuitions have
manifested themselves in the works of innovative artists and scien-
tists in culturally apposite ways. (Kemp, 2000, p. 7)
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The authors quoted above all stress the importance of the deep experience
of meanings. It is these experiences in geometry (and indeed in all of math-
ematics, as well as in art and engineering) that we believe deserve to be
called aesthetic experiences. Mathematics is a natural and deep part of
human experience and experiences of meaning in mathematics should be
accessible to everyone. Much of mathematics is not accessible through formal
approaches except to those with specialized learning. However, through the use
of non-formal experience and geometric imagery, many levels of meaning in
mathematics can be opened up in a way that most people can experience and
find intellectually challenging and stimulating.

A formal proof, as we normally conceive of it, is not the goal of math-
ematics—it is a tool, a means to an end. The goal is to understand meanings.
Without understanding, we will never be satisfied—with understanding, we
want to expand the meanings and to communicate them to others (see also
Thurston, 1994). Many formal aspects of mathematics have now been mecha-
nized and this mechanization is widely available on personal computers or
even on hand-held calculators, but the experience of meaning in mathematics
is still a human enterprise. Experiencing meanings is vital for anyone who
wishes to understand mathematics or anyone wanting to understand some-
thing in their experience by means of the vehicle of mathematics. We observe
in ourselves and in our students that such experiencing of meaning is, at its
core, an aesthetic experience.

In this chapter, we recount some stories of our experience of meanings
in geometry and art. David’s story starts with art and ends with geometry,
while Daina’s story starts with geometry and ends with art. However, the
bulk of what follows we both share.

David’s Story: from Art to Mathematics

I have always loved geometry and have been thinking about geometric
kinds of things ever since I was very young, as evidenced by a drawing I
made when T was six years old (see Figure 1 overleaf).

The drawing is of a cat drawing a picture of a cat (who is presumably
drawing a picture of a cat ...). Notice the perspective from the point of view
of the cat—for example, the drawing shows the underside of the table. T was
already experiencing geometric meanings.

But I did not realize then that the geometry that I experienced was
mathematics or even that it was called ‘geometry’. I did not call it ‘geometry’
—I called it ‘drawing’ or ‘design’ or perhaps failed to call it anything at all
and just did it. T did not like mathematics in school, because it seemed very
dead to me—just memorizing techniques for computing things and I was not
very good at memorizing. I especially did not like my high-school geometry
course, with its formal, two-column proofs.

However, 1 kept on doing geometry in various forms: in art classes, in
carpentry, by woodcarving, when out exploring nature or by becoming
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Figure 1: David’s drawing ( f.myon on paper, 9”x 6”)

involved in photography. This continued on into university where I became
a joint physics and philosophy major, taking only those mathematics courses
that were required for physics majors. I became absorbed by the geometry-
based aspects of physics: mechanics, optics, electricity and magnetism, and
relativity. On the other hand, my first mathematics research paper (on the
geometry of Venn diagrams with more than four classes) evolved from a uni-
versity course on the philosophy of logic. There were no geometry courses
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except for analytic geometry and linear algebra, which only lightly touched
on anything geometric. So, it was not until my fourth and final year at the
university that T switched into mathematics and T only did so then because
I was finally convinced that the geometry that T loved really was a part of
mathematics.

Since high school, T have never taken a course in geometry, because
there were no geometry courses offered at the two universities I attended.
Now I am a professional geometer and I started teaching an undergraduate
Euclidean geometry course in the mid-1970s. My concern that both my
students and I should experience meaning in the geometry quickly led me
into conflict with traditional, formal approaches.

Daina’s Story: from Mathematics to Art

I took a lot of geometry, both in grade school and at the university. But I
only had a very few art lessons in school. From them, I developed the
impression that I could not draw and that I had little artistic talent. But I
liked geometry precisely for its aesthetic values. My mathematics teachers
always paid a lot of attention to how we drew geometric diagrams; they
encouraged Euclidean constructions with compass and straight-edge, but
also supported the free-hand drawing of geometric figures, while insisting
on accurate shapes and proportions. At university, besides other traditional
geometry courses, I also took a course in descriptive geometry, as well as a
short course on how to draw three-dimensional geometric diagrams—both
of these latter courses contained a lot about perspective. I always enjoyed
and excelled at the drawing aspects of geometry, but I did not think it had
anything to do with art or aesthetic sensibilities.

When teaching the history of mathematics, I was particularly interested
in the history of geometry and, because of my interest in art appreciation
and art history, was happy to find so many connections between geometry
and art. I was fascinated with the golden ratio, with the story of projective
geometry arising from painters’ perspective prior to it becoming a pure
mathematical subject and with the considerable impact of mathematics on
art in the twentieth century (for example, in cubism and, later, in the work of
M. C. Escher). T was also teaching a university course on ‘the psychology of
mathematical thinking’, which led me to wonder about all creative thinking.

I have had many students in my mathematics classes tell me that they
were taking my class just to fulfill a distribution requirement. But they would
also assert that they were no good at mathematics, because they are artists
(poets, musicians, actors, painters) and their thinking is different. This made
me wonder: is creative thinking really different in its very essence? So I
decided as an experiment to take a watercolor class, knowing that I had
never been any good at art. I wanted to get a glimpse of the emotions one
goes through as a student in a subject for which one has no talent. I started
the watercolor class not really understanding what techniques I should use
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for my brush, how to mix colors and other such technical details. But then
I realized it was only the techniques I did not know.

I found that my aesthetic experiences with drawing in geometry gave
me a feel for how to use my skill at geometric drawing in painting. Ideas of
composition and perspective in painting are all so geometrical. I enjoyed
reading books about composition and perspective, as well as finding out
how much T already knew from my earlier geometry studies. Proportions
(the golden ratio, particularly) and shapes are directly related to composi-
tion, but I had to learn about the use of colors. For perspective drawings, I
already knew from three-dimensional geometric drawing how to draw in
linear perspective, but I had to learn how to create an atmospheric perspec-
tive. It was crucial for me to find out that T had had similar experiences
already—albeit ones obtained in different ways and for different purposes.

Below in Figure 2 is the painting T did after attending only eight water-
color classes. T started it in class and later the same day finished it at home
because T could not stop. When it was dry, T looked at it and could not
believe T had painted it.

photograph by Daina Taimina)

Experiencing ‘Undefined’ Terms

In geometry, ‘point’ and ‘straight line’ are usually referred to as “undefined
terms”. In a formal sense, something has to be undefined, because it is
impossible to define everything without being circular. However, if we want
to pay attention to meanings in geometry, then we must still ask what is the
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meaning of ‘point’ and what is the meaning of ‘straight? The standard formal
approach of saying these are undefined terms pushes these questions away
under the carpet.

What is the meaning of ‘point’?

Euclid has one answer—according to Heath’s (1926/1956) translation of 7he
Elements, “A point is that which has no parts” (p. 153). This is one meaning
of ‘point’. ‘Point’ has another meaning in geometry and mathematics that can
be experienced by imagining zooming in on the point. A Tibetan monk/
artist/geometer explained this to one of us by saying:

Imagine a poppy seed. Now imagine in this poppy seed a temple
and in the middle of the temple a Buddha and in the navel of the
Buddha another poppy seed. Now in that poppy seed imagine a
temple and in the temple a Buddha and in the navel of the Buddha
another poppy seed. Now in that poppy seed imagine ... (and
keep going). Where is the point?
As we write this, we notice some similarity between this zooming and ideas
in David’s picture of a cat drawing a picture of a cat ... .

These meanings of ‘point’ are not the same and, thus, bring about the
following question: why and how are these meanings related? This is a
why-question that often confronts calculus students when looking at the
meanings of ‘tangent’, ‘limit’ and the ‘definite integral’.

What is the meaning of ‘straight’?

This is the question that starts both of the geometry books that we have written
(see Henderson and Taimina, 1998, 2001a). Of course, whether a text or
teacher allows this discussion or not, students (in fact, it appears, most
human beings) have an experience of meanings of ‘straight’. The meanings
of ‘straight’ are part of the core foundation for meaning in geometry.

One common meaning for ‘straight’ is “shortest distance”. This meaning
can be used in practice to produce a straight line by stretching a string (or
rubber band). There is another meaning in the realization that a straight line
is very symmetric—for instance, “it does not turn or wiggle” or “in the plane,
both sides are the same”. Straight lines have at every point the following
symmetries: reflection through the line, reflection perpendicular to the line,
a half-turn about any point on the line, translation along the line, and so
forth (see Figure 3).

~ [
N

Figure 3: ‘Straight’ as meaning “symmetric”
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This symmetry meaning is in line with Heath’s (1926/1956) translation of
Euclid’s definition of straight line as “a line that lies evenly with the points
on itself” (p. 153), which Heath then attempts to clarify in a footnote:

we can safely say that the sort of idea which Euclid wished to express
was that of a line [...] without any irregular or unsymmetrical feature
distinguishing one part or side of it from another. (p. 167)

Using these experientially-based meanings of straightness, we can ask what
are straight lines on the surface of a sphere. If we look at this question from
a point of view outside of the sphere, then clearly the answer is that there
are no straight lines on a sphere. This is the extrinsic point of view.

On the other hand, there is an intrinsic point of view. Imagine yourself
to be a bug crawling on a sphere. The bug’s universe is just the spherical
surface. What paths on the sphere would the bug experience as straight?
After some exploration, we can convince ourselves that the great circles on
the sphere are the curves that have the same symmetries (with respect to
the sphere) that ordinary straight lines have with respect to the plane. We
thus say that the great circles are intrinsically straight. A much more usual
approach in texts is simply to define straight lines on the sphere to be the
great circles—but, again, this blocks contact with the meaning (and, thus,
the potential for aesthetic experience).

So, again, why and in what way are these two meanings (“shortest” and
“symmetric”) related? On the sphere, we can see that (Figure 4), for two
nearby points of the equator (a particular great circle), the shortest distance
is along the equator. However, there is another straight path (in the sense
of “symmetric”) between the same two points that traverses the equator in
the opposite direction (going the long way round). Thus, the “symmetric”
meaning is not always the “shortest” meaning. In addition, there are surfaces
with corners (see Figure 5) for which the shortest path is not symmetric.
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Figure 4: ‘Intrinsically straight’ on a sphere
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Figure 5: “Shortest” is not the same meaning as “symmetric”

A simple question that may seem intuitively straightforward at first glance,
namely “what is the meaning of ‘straight?”, reveals some deeper intuitions
about symmetry and shortest distance, which may only become meaningful
when explored in different geometrical contexts.

Proofs as Convincing Communications
that Answer the Question Why?

Much of our own view of the nature of mathematics is intertwined with our
notion of what a proof is. This is particularly true with geometry, which has
traditionally been taught in high school in the context of ‘two-column’
proofs (see Herbst, 2002). Instead, we propose a different view of proof as
“a convincing communication that answers a why-question”.

The book entitled Proofs Without Words (Nelsen, 1993) contains numerous
examples of visual proofs that provide an experience of why something is
true—an experience that is, in most cases, difficult to obtain from the usual
formal proofs. For example, Nelsen writes about the following result, which
is usually attributed to Galileo (1615) — see Drake (1970, p. 218).

1+3+...+Q2n-1 1

Qn+D+Qun+3)+ .. +@n-1 3
We can easily check that this is true by simply adding the numbers:

1+3 1 1+3+5_1

5+7 3 7+9+11 3

these are the cases n = 2 and 7 = 3 of the more general equality.
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So the question is whether the general equation holds and, if so, why
it holds? One way to answer the first question is to apply an argument by
mathematical induction, though such an argument is unlikely to satisfy the
why-question. Instead, look at Figure 6.
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Figure 6: A proof without words (based on Nelsen, 1993, p. 115)

Through this picture, one can directly experience the meaning of Galileo’s
result and see both that is true and why it is true. The proof by induction
would answer the question: how does Galileo’s result follow from Peano’s
axioms? Most people (other than logicians) have little interest in that question.

Conclusion In order for a proof to be an aesthetic experience for us,
the proof must answer our why-question and relate our meanings of
the concepts involved.

As further evidence toward this conclusion, many report the experience of
reading a proof and following each step logically, but still not being satisfied
because the proof did not lead them to experience the answers to their why-
questions. In fact, most proofs in the literature are not written out in such a
way that it is possible to follow each step in a logical, formal way. Even if
they were so written, most proofs would be too long and too complicated
for a person to check each step.

Furthermore, even among mathematics researchers, a formal logical
proof that they can follow step-by-step is often not satisfying. For example,
David’s (1973) research paper (‘A simplicial complex whose product with
any ANR is a simplicial complex’) has a very concise, simple (half-page)
proof. This proof has provoked more questions from other mathematicians
than any of his other research papers and most of the questions were of the
sort: “Why is it true?”, “Where did it come from?”, “How did you see it?” They
accepted the proof logically, yet were not satisfied.
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Sometimes we have legitimate why-questions even with respect to state-
ments traditionally accepted as axioms. One is Side-Angle-Side (or SAS):

If two triangles have two sides and the included angle of one of
them that are congruent to two sides and the included angle of the
other, then the triangles themselves are congruent.

SAS is listed in some geometry textbooks as an axiom to be assumed; in others,
it is listed as a theorem to be proved and in others still as a definition of the
congruence of two triangles. But clearly one can ask: why is SAS true on the
plane? This is especially true because SAS is false for (geodesic) triangles on
the sphere. So naturally one can then ask: why is SAS true on the plane, but
not on the sphere?

Here is another example — the vertical-angle theorem:

If I and 1" are straight lines, then angle a is congruent to angle f.

[

Figure 7: The vertical-angle theorem

The traditional proof of this in high-school geometry is to label the upper
angle between o and f§ as y, and then assert o + y = 180" and y + § = 180".
The usual proof then concludes that a is congruent to f because they are
both equal to 180" — y. This proof seems fine until one worries about
whether the rules of arithmetic apply in this way to angles and their meas-
ures. The traditional solution in high school is to use several ‘ruler and pro-
tractor’ axioms to assert the properties needed. We do not know of anyone
for whom this proof with the attendant axioms has aesthetic qualities
(though it may be convincing). We do not usually perceive a proof as aes-
thetically pleasing when it is mostly repeating a list of axioms in a way that
the meaning does not come through clearly. This proof seems to be an
unnecessarily complicated answer to the question: why are vertical angles
congruent to one another?

For about ten years of teaching this theorem in his geometry course,
David was satisfied with the idea of this proof, though he managed to
simplify and make more geometric the necessary assumptions contained in
the ‘ruler and protractor’ axioms. But then one student suggested that the
vertical angles were congruent because both lines had half-turn symmetry
about their point of intersection, P. David’s first reaction was that her argu-
ment could not possibly be a proof—it was too simple and did not involve
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everything in the standard proof. But she persisted patiently for several days
and David’s meanings deepened. Now her proof is much more convincing
to him than the standard one, because it directly clarifies why the theorem
is true.

Even more importantly, the meaning of the student’s ‘half-turn’ proof is
closer to the meaning in the statement of the theorem. To see this, look at
the situation depicted in Figure 8.

Figure 8: Are the opposite angles O and b the same?

Here, there is no symmetry: yet, the standard proof seems to apply and
gives a misleading result. By means of either zooming in on the point of
intersection until the curves are indistinguishable from straight-line segments
(or by means of defining this angle to be the angle between the lines tan-
gent to the curves at the intersection), symmetry arguments can be shown
to apply and, hence, it is possible to argue that the angles a and p are con-
gruent. However, the standard proof does not provide a way to discuss this,
except by means of a discussion of when the ‘ruler and protractor’ axioms
are valid.
One could ask:

But, at least in plane geometry, isn’'t an angle an angle? Don’t we
all agree on what an angle is?

To which a reply could be:

Well, yes and no.

Consider the acute angle depicted in Figure 9.

Is the angle
Now erase still there?
part of its rays: How about now? V And now? p And now?

Figure 9: Where is the angle?

The angle is somehow at the corner; yet it is difficult to express this formally
(note that the zooming meaning of ‘point’ seems to be involved here). As
evidence of this difficulty, we have looked in all the plane geometry books
in Cornell University’s mathematics library for their definitions for ‘angle’.
We found nine different definitions. Each expressed a different meaning or
aspect of ‘angle’ and, thus, each could potentially lead to a different proof
for any theorem that crucially involves the meaning of ‘angle’.
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Experiencing the Hyperbolic Plane

Starting soon after Euclid’s Elements were compiled (and continuing for the
next 2000 years), mathematicians attempted either to prove Euclid’s fifth pos-
tulate as a theorem (based on the other postulates) or to modify it in various
ways. These attempts culminated around 1825 with Nicolai Lobachevsky and
Janos Bolyai independently discovering a geometry that satisfies all of Euclid’s
postulates and common notions except that the fifth (paralleD) postulate does
not hold. Tt is this geometry that is called ‘hyperbolic’. The first description
of hyperbolic geometry was given in the context of Euclid’s postulates and it
was proved that all hyperbolic geometries are the same except for scale (in
the same sense that all spheres are the same except for scale).

In the nineteenth century, mathematicians developed three so-called
‘models’ of hyperbolic geometry. During 1869-1871, Eugenio Beltrami and
Felix Klein developed the first complete model of hyperbolic geometry (and
were the first to call the specific geometry ‘hyperbolic”). In the Beltrami—
Klein model, the hyperbolic plane is represented by the interior of a circle,
straight lines are (straight) chords of that circle and the circle’s ‘reflection’
about a chord is a projective transformation that takes the circle to itself
while still leaving the chord point-wise fixed.

Around 1880, Henri Poincaré developed two related models. In the
Poincaré disc model, the hyperbolic plane is represented by the interior of
a circle, with straight lines being circular arcs perpendicular to this circle. In
the Poincaré upper-half-plane model, the hyperbolic plane is represented by
half a plane on one side of a line, with straight lines being semi-circles that
are perpendicular to this line. All three hyperbolic geometry models distort
distances (in ways that are analytically describable), but the Beltrami—Klein
model represents hyperbolic straight lines as Euclidean straight-line seg-
ments, while both of Poincaré’s models represent angles accurately. For
more details on these hyperbolic models, see Chapter 17 of Henderson and
Taimina (2005a).

These models of hyperbolic geometry have a definite aesthetic appeal,
especially through the great variety of repeating patterns that are possible in
the hyperbolic plane. The Dutch artist M. C. Escher used patterns based on
these hyperbolic models in several well-known prints (see, for example, the
one in Figure 10). Repeating patterns on the sphere have an aesthetic appeal
through their simplicity and finiteness. However, in these various hyperbolic
models, the patterns have an aesthetic appeal for us because of their con-
nections with infinity—there are infinitely many such patterns and each also
draws us to the infinity at the edge of the disc, leaving sufficient space for
our imagination.

For more than a hundred and twenty-five years, these models have
been very useful for studying hyperbolic geometry mathematically. How-
ever, many students and mathematicians (including the two of us) have
desired a more direct experience of hyperbolic geometry—wishing for an
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Figure 10: M.C. Escher’s Circle Limit IIT (based on the Poincaré disc model)
© 2004 The M.C. Escher Company

experience similar to that of experiencing spherical geometry by means of
handling a physical sphere. In other words, the experience of hyperbolic
geometry available through the models did not directly include an experience
of the intrinsic nature of hyperbolic geometry.

Mathematicians looked for surfaces that would posess the complete
hyperbolic geometry, in the same sense that a sphere has the complete
spherical geometry. A little earlier, in 1868, Beltrami had described a surface
(called the ‘pseudosphere’, see Figure 11), which has hyperbolic geometry
locally.

The pseudosphere also has a certain aesthetic appeal for us in the way
(as with the Poincaré models) it points the imagination towards infinity.
However, the pseudosphere allows only a very limited experience of hyper-
bolic geometry, because any patch on the surface that wraps around the
surface or extends to the circular boundary does not have the geometry of
any piece of the hyperbolic plane.

Figure 11: The psendosphere



Chapter 3 — Experiencing Meanings in Geometry 71

At the very beginning of the last century, David Hilbert (1901) proved that
it is impossible to use real analytic equations to define a complete surface
whose intrinsic geometry is the hyperbolic plane. In those days, ‘surface’ nor-
mally meant something defined by real analytic equations and so the search
for a complete hyperbolic surface was abandoned. And N. V. Efimov (1964)
extended Hilbert’s result, by proving that there is no isometric embedding of
the full hyperbolic plane into three-space, defined by functions whose first
and second derivatives are continuous. Still, even today, many texts state
incorrectly that a complete hyperbolic surface is impossible.

However, Nicolaas Kuiper (1955) proved the existence of complete hyper-
bolic surfaces defined by continuously differentiable functions, although
without giving an explicit construction. Then, in the 1970s, William Thurston
described the construction of a surface (one that can be made out of identical
paper annuli) that closely approximates a complete hyperbolic surface. (See
Figure 12 and Thurston, 1997, pp. 49-50.) The actual hyperbolic plane is
obtained by letting the width of the annular strips go to zero. In 1997, Daina
worked out how to crochet the hyperbolic plane, following Thurston’s
annular construction idea. (See Figure 13.) Directions for constructing

| If this annular strip is kept
flat on the plane,

then this strip will ruffle,
and this strip will bend like a cone.

Figure 12: Construction of the annular hyperbolic plane

Thurston’s surface out of paper or by crocheting can be found in Henderson
and Taimina (2005a) or in Henderson and Taimina (2001b). In these refer-
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Figure 13: A crocheted hyperbolic plane (crocheted by Daina Taimina, photograph by
David W. Henderson)

ences, there is also a description of an easily constructible polyhedral hyper-
bolic surface, called the ‘hyperbolic soccer ball’, comprising regular hep-
tagons each surrounded by seven hexagons (the usual spherical soccer ball
consists of regular pentagons each surrounded by five hexagons). This poly-
hedral surface was discovered by Keith Henderson (David’s son) and pro-
vides a very accurate polyhedral approximation to the hyperbolic plane (see
Figure 14).

e

1 4: A loiyp:erl.aoli; soccer ball (made and photographed by Keith Hendeﬁon)
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The geodesics (‘intrinsic straight lines’) on a hyperbolic surface can be
found using the “symmetry” meaning of straightness discussed above: for
example, the geodesics can be found by folding the surface (in the same
way that folding a sheet of paper will produce a straight line on the paper).
This folding also determines a reflection about that geodesic.

Now, by interacting with these surfaces, we can have a more direct
experience of meanings in hyperbolic geometry. And, very importantly, we
can experience the connections between these meanings and the three nine-
teenth-century models discussed above. These models can now be interpre-
ted as projections (or maps) of the hyperbolic surface onto a region in the
plane that distort the surface in a similar manner to the way projections
(maps) of a sphere (such as the Earth) onto a region of the plane distort dis-
tances, areas and/or angles. This is important, because these models are used
to study hyperbolic geometry in detail, while the surface itself allows us
direct experience with the intrinsic geometry.

Before we had experience of these physical surfaces, our only experi-
ences of hyperbolic geometry were through formal study with axiom systems
and analytic study of the nineteenth-century models. The models provided
aesthetic experiences that led our imagination to infinity, but this was not
directly connected with geometric meanings. For example, the question that
we (as well as most students) had was: why are geodesics in both Poincaré
models represented by semi-circles or circular arcs?

To us, the nineteenth-century models were more like artistic abstractions.
But, after constructing the surfaces, we could see how and why the geodesics
are represented in the way they are. (See Henderson and Taimina, 2005a, or
Henderson and Taimina, 2001a, for more details of these connections, includ-
ing proofs that the intrinsic geometry of each of the surfaces is the same
geometry as that represented by all of the models.)

Radius and curvature of the hyperbolic plane

Since all hyperbolic planes are the same up to scale, most treatments of the
hyperbolic plane consider the curvature to be —1. It is very difficult to give
meaning to the effects of the change of curvature without looking at actual
physical hyperbolic surfaces with different curvatures. Each sphere has a
radius » (which is extrinsic to the sphere) and its (Gaussian) curvature (as
defined in differential geometry) is 1/7%. In a similar way, each hyperbolic
plane has a radius 7, which turns out to be the (extrinsic) radius of the
annuli that go into Thurston’s construction and the (Gaussian) curvature of
the hyperbolic plane is —1/7*. We were not aware of any meaning for the
radius of a hyperbolic plane before experiencing these surfaces.

From a theoretical perspective, changing the radius or curvature is
merely a change of scale and spheres, for example, of radii 4cm, 8cm and
16 cm look very much alike. However, we were shocked when we looked
at the hyperbolic planes with these same radii (see Figures 15a, 15b and 15c,
drawn with radii of 4 cm, 8 cm and 16 cm respectively).
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Figure 15a-c: Hyperbolic planes with different vadii (crocheted by Daina Taimina,
photographed by David W. Henderson)
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There is a felt difference that is not present in the spheres of the same
radii (the main reason for this difference seems to come from the fact of expo-
nential growth in the hyperbolic plane). This experience of the meaning of
the radius of a hyperbolic plane was a profoundly aesthetic experience for us,
because we were forced to look deeper mathematically into the meanings
of both radius and curvature, as well as explore the local and global natures
of the hyperbolic plane.

Ideal triangles

By exploring the possible shapes of large triangles on the hyperbolic surface
(see Figure 16), we can see that they seem to become more and more the same
shape as they become large. This leads on to the theorem (proved by using
the models) that all ideal triangles (namely those with vertices at infinity) are
congruent and have area equal to w72 (This is the same as the extrinsic area
of the identical circles determined by the annuli in the construction.)

Figure 16: An ideal triangle on the hyperbolic plane (crocheted by Daina Taimina,
photographed by David W. Henderson)

Horocycles or horocircles

By experiencing the annular construction (see Figure 12 once more), it is
easy to see that curves perpendicular to the annuli (that is, curves that run in
the radial direction) possess reflection symmetry and, thus, are geodesics. In
addition, they are asymptotic to each other at infinity. Most treatments of
hyperbolic geometry define horocycles as those curves that are orthogonal
to a collection of asymptotic geodesics. Thus, the annuli (in the limit, as their
width goes to zero) are horocycles. Both of us had studied hyperbolic
geometry and its models; but exploring the hyperbolic surface was the first
time we had experienced horocycles in a way that made clear their close
connection with curvature and how, as many books simply assert, they can
be described as circles with infinite (intrinsic) radii.
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In the next section, we turn to look at the design of machines in the nine-
teenth century—at first sight, perhaps, a surprising leap. But in a curious way,
these machines embody striking geometric principles and experiences in their
design and the same questions we have been addressing (such as what is
‘straight’?) reappear in exciting ways and, perhaps unexpectedly, horocycles
reoccur once more.

Experiencing Geometry in Machines

Recently, we have been working on an NSF-funded project to examine the
mathematics inherent in a collection of nineteenth-century mechanisms, as
well as to see to the inclusion of these mechanisms (along with commen-
taries and learning modules) as part of the new National Science Digital
Library (NSDL—see www.nsdl.org). Our experiences with these all of vari-
ous mechanisms are offering us different perspectives on geometry, per-
spectives that arise from motion. For example, this work has brought us
back to the question: what is ‘straight™

When using a compass to draw a circle, we are not starting with a figure
we accept as circular: instead, we are using a fundamental property of circles,
namely that the points on a circle are at a fixed distance from the center, as
the basis for the tool. In other words, we are drawing on a mathematical
definition of a circle. Is there a comparable tool (serving the equivalent role
to a compass) that will draw a straight line? If, in this case, we want to use
Euclid’s definition (“a straight line is a line that lies evenly with the points
on itself”), this will not be of much help.

One could say:

We use a straight-edge for constructing a straight line.

To which a response might be:

Well, how do you know that your straight-edge is straight? How do

you know that anything is straight? How can you check that some-

thing is straight?
This question was important for James Watt. When he was thinking about
improving steam engines, he needed a mechanism in order to convert cir-
cular motion into straight-line motion and vice versa. In 1784, Watt found a
practical solution (which he called “parallel motion”) that consisted of a link-
age with six links. He described his parallel motion mechanism as being free
of “untowardly frictions and other pieces of clumsiness”, claiming it to be
“one of the most ingenious simple pieces of mechanisms that I have con-
trived” (in Ferguson, 1962, p. 195). These expressions of smoothness and
efficiency seem to be very close to what we are calling ‘aesthetic’. However,
Watt’s mechanism produced only approximate straight-line motion: in fact,
it actually produces a stretched-out figure of eight. Mathematicians were not
satisfied with this approximate solution and worked for almost a hundred
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years to find exact solutions to the problem. A linkage that draws an exact
straight line (see Figure 17a) was first reported by Peaucellier, in 1864. (See
Henderson and Taimina, 2005a, 2005b, for a discussion of relevant history.)

Figure 17a: The Peancellier linkage (photographed by Francis C. Moon)

Why does the Peaucellier linkage draw a straight line? We suggest the
reader connect to a web site where this linkage is depicted in motion (for
example, see: KMODDL library.cornell.edu). As an exercise in analytic geom-
etry, one can verify that the point Q will always lie along a straight line—but
this still does not answer the why-question. Especially difficult is being able
to see any relationship with either the “shortest” or the “symmetric” meaning
of straightness: is there perhaps a different meaning of straightness that is
operative here?

In the ‘inversor’ (that is, the links joining C, R, O, S, and P in Figure 17b),
the points P and Q are inverse pairs with respect to a circle with center ¢
and radius 7 = V§* — d* Analytically, this means that:

distance (C to P) x distance (C' to Q) = r2.

Here, the crucial property of circle inversion is that it takes circles to circles.
(For details on circle inversion, see Chapter 16 of Henderson and Taimina,
2005a.) After experiencing the motion of the linkage, we now see that P is
constrained (by means of its link to the stationary point B) to travel in a circle
around B. Thus, Q must be traveling along the arc of a circle. The radius
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Figure 17h: The Peaucellier linkage diagram

and center of this circle can be varied by changing the position of the fixed
point B and the length of the link BP.

Thus, the Peaucellier linkage draws (at Q) the arc of a circle without ref-
erence to the center of that circle. If the lengths of CB and BP are equal,
then the circle on which P moves goes through the center C. Since points
near C are inverted to points near infinity, the circle that Q lies on must go
through infinity. How can a circle go through infinity? Answer: only if the
circle has infinite radius. A4 circle with infinite radius (and thus zero curva-
ture) is a straight line. We now have a third meaning for straight line—and
the Peaucellier linkage is a tool for drawing a straight line that draws on this
meaning.

In the previous section on hyperbolic geometry, we pointed out that the
horocycles in the hyperbolic plane can be seen as circles of infinite radius.
Thus, circles with infinite radius are not straight in the hyperbolic plane,
even though they are straight in the Euclidean plane. This proves that seeing
‘straight’ as “circle of infinite radius” is a different meaning from either
‘straight’ as meaning “symmetric” or ‘straight’ as meaning “shortest”.

Behind this discussion lies the theory of circle inversions, one of the most
aesthetic geometric transformations that have also been used in modern art.
The special aesthetic appeal here is that inversions (as seen in Figure 18) can
draw out the imagination to infinity and can also bring out important geo-
metric meanings. For example, the experience of the linkage as a mecha-
nism that draws a circle without using its center allows one to understand
how the linkage can draw a circle of infinite radius and, thus, a straight line.

Peaucellier’s linkage is one of thirty-nine straight-line mechanisms in
Cornell University’s collection, which also has more then two hundred and
twenty kinematic models designed by Franz Reuleaux. These models are a
rediscovery of a lost, nineteenth-century machine design knowledge. Franz
Reuleaux is often referred to as a ‘father of modern machine design’ (see,
for example, Moon, 2003, p. 261). Reuleaux’s two most important books
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Figure 18: An example of inversion-based art (M.C. Escher’s Development II, 1939
© 2004 The M.C. Escher Company)

contain hundreds of drawings of machines and mechanisms. To comple-
ment his books, Reuleaux designed and built over eight hundred kinematic
models to illustrate his theory of machines. The models in the Cornell col-
lection clearly show the aesthetic style of Reuleaux. (To read more about
Reuleaux, his mechanisms and his theory of machines, see Moon, 2003,
which also contains many further references.)

As we have been exploring the mathematics behind the Reuleaux models
for the NSDL project, we are repeatedly surprised how much aesthetic
appeal we find there—not only in machine design itself, but also in the
mathematics. These experiences caused us to ask about the relationships
among mathematics, engineering and art. Leonardo da Vinci is a well-
known embodiment of this interrelationship, but we have found that there
seems to be a broader connection. For example, Reuleaux, in his book 7he
Kinematics of Machinery (1876/1963), refers specifically to the artist and to
experiences of deeper meanings in a manner similar to our discussion at the
beginning of this chapter.

He who best understands the machine, who is best acquainted
with its essential nature, will be able to accomplish the most by its
means. (p. 2)

In each new region of intellectual creation the inventor works as
does the artist. His genius steps lightly over the airy masonry of
reasoning which it has thrown across to the new standpoint. It is
useless to demand from either artist or inventor an account of his
steps. (p. 6)
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The real cause of the insufficiency of [previous classification sys-
tems] is not, however, the classification itself; it must be looked for
deeper. It lies [...] in the circumstance that the investigations have
never been carried back far enough, — back to the rise of the ideas;
that classification has been attempted without any real comprehen-
sion being obtained of the subjects to be classified. (p. 18)

In addition, in his article on the history of engineering, Fugene Ferguson
(1992) wrote:

Both the engineer and the artist start with a blank page. Each will
transfer to it the vision in his mind’s eye. The choice made by
artists as they construct their pictures may appear to be quite arbi-
trary, but those choices are guided by the goal of transmitting their
visions, complete with insights and meaning, to other minds. [...]
The engineers’ goal of producing a drawing of a device—a
machine or structure or system—may seem to rule out most if not
all arbitrary choices. Yet engineering design is surprisingly open-
ended. A goal may be reached by many, many different paths,
some of which are better than others but none of which is in all
respects the one best way. (p. 23)

Ferguson also notes that Robert Fulton (of steamboat fame) and Samuel
Morse (the inventor of the electrical telegraph) were both professional artists
before they turned to careers in technology.

We have already mentioned the Peaucellier linkage. Another example is
Reuleaux triangles, which are the most well-known of curves with constant
width. If a closed convex curve is placed between two parallel lines and the
lines are moved together until they touch the curve, the distance between
the parallel lines is the curve’s ‘width’ in one direction. Because a circle has
the same width in all directions, it can be rotated between two parallel lines
without altering the distance between the lines.

The simplest, non-circular, constant-width curve is known as the
Reuleaux triangle. Mathematicians knew it earlier, but Reuleaux (1876/
1963, pp. 131-146) was the first to study various motions determined by con-
stant-width figures. A Reuleaux triangle can be constructed starting with an
equilateral triangle of side s and then replacing each side by a circular arc
using the other two sides as radii, as shown in Figure 19. The resulting fig-
ure bounded by these three arcs is the Reuleaux triangle. Its constant width
is equal to s, the side length of the original equilateral triangle.

Figure 19: A Reuleanx triangle
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In Reuleaux’s collection, we find several applications of this triangle and
other constant-width curves: see, for example, Figure 20.

Figure 20: A Reuleaux mechanism using a constant-width triangle
(photographed by Francis C. Moon)

The Reuleaux triangle fits inside a square of side s and can be rotated
a full 360" within the square—this is the idea behind drill bits that can drill
(almost) a square hole: conversely, the square can rotate around the station-
ary Reuleaux triangle. Reuleaux did not give analytical descriptions of these
motions. Instead, he produced many drawings that, in an aesthetically visual
way, show the different paths of points during the motions.

Reuleaux was the first to describe properties of these motions accurately
and, in his model collection, we find several applications, such as those
illustrated above. For instance, he proved the following theorem geometri-
cally: any relative motion between two shapes, S and R, in the plane can be
realized as the motion of two other shapes, ¢S and cR, rolling on each other,
with ¢S fixed to S and cR attached to R. He called the rolling shapes ‘cen-
troids’ (the locus of instantaneous centers), but, in order to avoid confusion
with the centroid of a triangle, the word ‘centrode’ was subsequently used.

Figures 21 and 22 (overleaf) show the centrodes (namely O,0,0;0,
and m;m,m;) for the relative motions of the square and the Reuleaux trian-
gle respectively. Since the relative motions are the same in the two figures,
the centrodes are necessarily the same. But the real meaning of this rolling
motion can be experienced only by actually looking at the models in motion.
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Figure 22: A square moving around a Reuleaux triangle (from Reuleaux, 1876/1963,
p. 137)
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Conclusion

Aesthetics has always been a driving force in our experiences of mathematics.
We do not—as some mathematicians have claimed to do—carry with us a list
of criteria by which we judge the aesthetic value of a proof. In fact, rarely
do we find proofs, in and of themselves, to be aesthetic objects. Instead, we
locate the aesthetic value of mathematics in the coming-to-understanding,
in the integration of experience and meaning. We believe that the under-
standing of meanings in mathematics (often through aesthetic experiences)
comes before an understanding of the analytic formalisms. We hope that the
reader has gained, through our stories and our examples, a sense of the
aesthetic component of our perception of mathematical meanings.
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Section B

A Sense for Mathematics



Introduction to Section B

The three chapters in Section B, A Sense for Mathematics, offer perspectives
from authors with backgrounds in mathematics and philosophy who strive
to elucidate and explain the aesthetic dimension of mathematics. The focus
of these chapters is pan-mathematical, crossing specific fields and historical
periods. The authors explore aesthetic issues related to mathematical under-
standing, the development of mathematical knowledge and public percep-
tions of mathematics and mathematicians.

In Chapter 4, Nathalie Sinclair proposes a model of the aesthetic nature
of mathematical inquiry. Although mathematicians tend to privilege the beauty
and elegance of their proofs, theorems and other mathematical entities —
their works of art — a closer examination of their processes of inquiry reveals
important, perhaps necessary, roles played by the aesthetic in the discovery
and development of mathematical knowledge. Based on her interviews with
professional mathematicians, as well as reports found in the literature,
Sinclair identifies and illustrates three distinct roles of the aesthetic. These
mathematicians’ aesthetic claims relating to these roles are then analysed
and explained in terms of contemporary theories of inquiry and experience.

Martin Schiralli, in Chapter 5, attempts an analysis of the key concept of
‘pattern” and examines the way ‘pattern’ functions in the thinking of math-
ematicians about mathematics through the ages. He is especially interested
in the way the aesthetic insinuates itself — seemingly ineluctably — into that
thinking. By focusing on certain notions of arithmos (number) most prevalent
and powerful in Pythagorean thinking, Schiralli links some of the earliest
aspects of mathematical-aesthetic thinking with influential contemporary
views on mathematics as the ‘science’ of patterns. More broadly, the perva-
sive use of the idea of pattern in Gregory Bateson’s work in biology and ‘the
ecology of mind’; as well as in the work of art historian Ernst Gombrich on
‘the sense of order’, inform this chapter. Both Bateson (on science and epis-
temology) and Gombrich (on abstract and decorative art) offer perspectives
on the correspondence between the aesthetic and the mathematical that
may profitably be linked back to these early Greek views.

In Chapter 6, William Higginson situates the book’s investigation on the
connection between mathematics and the aesthetic in a much broader intel-
lectual terrain, namely around the age-old question of “What does it mean
to be human?” He both enriches and complicates the connection on the one
hand, by probing perspectives on mathematics and mathematicians in the
broader culture, including social scientists, schoolchildren, playwrights,
moviemakers and novelists, and on the other, by drawing on researchers’
insights in cognitive science, philosophy and anthropology regarding the
aesthetic nature of human activity. He argues that the roots of mathematical
activity are located perhaps surprisingly close to this human aesthetic pre-
disposition.



CHAPTER 4

The Aesthetic Sensibilities
of Mathematicians

Nathalie Sinclair

I begin with a story told by the French mathematician Francois Le Lionnais
(1983) about his first experience, at age seven, of a mathematical discovery.
It illustrates, perhaps more immediately than a trip to the Great Museum of
‘elegant’ mathematical proofs, how aesthetic responses, values and experi-
ences can snugly insinuate themselves alongside logical steps and decisions
throughout mathematical activity.

The young Le Lionnais is sitting alone at the family kitchen table, with
a pencil and some paper, not tired enough to join the rest of his family for
the afternoon siesta. Seated at the table, he writes the numbers from 1 to 9.
But instead of multiplying one number by the others, as he has been learn-
ing to do in school, he multiplies each by itself, before writing the result in
the row beneath.

1 2 3 4 5 6 7 8 9
1 4 9 16 25 36 49 64 81

“Suddenly”, he writes, describing his memory of the experience, “a veil lifts,
allowing me to perceive in this otherwise dull alignment a beautiful structure”
(p. 12; my translation, as arve all quotations from bis account). But to see it,
he continues, one has to consent to “an amputation” (p. 12), striking out the
digits in the tens decimal place, conserving only the units. This produces:

1 2 3 4 5 6 7 8 9
1 4 9 6 5 6 9 4 1

Le Lionnais admits that an ordinary adult might have found the resulting sym-
metry (with respect to the middle number) quite banal, but, having discov-
ered it himself, he is thunderstruck. He feels he has entered a “vast domain
where a multitude of treasures has been hidden” (p. 13). Surely, he could con-
tinue mining his beautiful array simply by multiplying the digits once again
(and maybe even again), remembering to strike out the tens decimal place.

1 2 3 4 5 6 7 8 9
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Heélas! The symmetry has been lost. Le Lionnais is stubborn, though, certain
that “chaos could not have taken over the society of numbers, which had
thus far been so well organised” (p. 13). And all of a sudden, he sees it: the
digits occupying the symmetric positions are complements of each other in
ten: 1 +9=10; 8+ 2=10; 7+ 3 =10; 4 + 6 = 10. Now he can move on:
what happens in the fourth row? Le Lionnais works on his rows of digits all
afternoon until he is called for dinner, finding that the sixth row reproduces
the second, while the seventh reproduces the third, and so on.

Le Lionnais recounts this story in a prelude to his quixotic book of num-
bers, as a way of describing how he, himself, became bewitched by that
queenly domain of mathematics, the theory of numbers. Remarkably, instead
of extolling the great beauty of Euclid’s proof of the infinity of primes or the
Pythagorean proof of the irrationality of V2 — as so many other mathemati-
cians have done — Le Lionnais describes the beauty he sees in the process of
playing with, manipulating and transforming simple whole numbers.

He has not produced a proof, or even a theorem — the traditional prod-
ucts with aesthetic currency in mathematics. Rather, he has sought out (and
found) pleasing and generative instances of symmetry, balance and pattern
in the magical, self-sufficient world of numbers. When he lifts the veil and
notes the symmetry in his row of numbers, he perceives the rich potential of
his simple rule (multiply each number by itself) that motivates him to explore
further; after all, as he remarks, symmetry does not happen by accident.

The evaluative role of the aesthetic — in which properties such as ‘beauty’
and ‘elegance’ are used to distinguish good from not-so-good mathematical
products — has been quite well documented by mathematicians. As was
mentioned in Chapter a,, a number of mathematicians, such as Hardy (1940),
have even offered lists of aesthetic criteria that can be applied to determine
a product’s aesthetic value, perhaps because they felt that a proof’'s ‘beauty’
and ‘elegance’ should be as timeless and objective as its truth. However, Le
Lionnais’s story evokes two additional roles for the aesthetic over and above
the purely evaluative. On the one hand, he is guided by his response to
qualities such as symmetry and balance; on the other, he is motivated by the
unexpected treasures he finds as he plays with numbers. The aesthetic both
organises and motivates his mathematical activity.

In the following sections, I flesh out and broaden these three roles of
the aesthetic — what I call the evaluative, the generative and the motivational
— each of which turns out to be far more pervasive in and fundamental to the
development of mathematics than might be suggested by a single story of a
precocious boy playing with numbers. There are several thorny issues to con-
tend with, including the very definitions of the words ‘aesthetic’, ‘beauty’ and
‘elegance’. While different mathematicians may retain personal, idiosyn-
cratic meanings for ‘beauty’ and ‘elegance’, I will be using the word ‘aesthetic’
in a quite specific sense, namely that of the American philosopher John Dewey
(1934). Dewey claimed experiences, responses and objects have an aesthetic
quality when they provoke a pleasurable ‘sense of fit’ for the individual.
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Thus, the aesthetic, for Dewey, pertains to decisions about pleasure as
well as meaning, thereby operating on both affective and cognitive levels.
Objects do not, in and of themselves, possess aesthetic qualities [1]; they
require a perceiver as well as a socio-historical context. Cultural differences
influence aesthetic responses: yet, given the large degree of communication
now possible, the differences in responses between contemporary Greek and
ancient Greek mathematicians are certainly greater than those between, say,
twenty-first-century North American and Japanese mathematicians. However,
since T am presently concerned with the way the aesthetic deploys itself
across the spectrum of the contemporary mathematics milieu, I forego a
socio-historical analysis.

In the rest of this chapter, I propose a tripartite categorisation for struc-
turing the diversity of aesthetic responses found in the mathematics literature.

(a) The most obvious and public of the three characteristics is the eval-
uative; it concerns the aesthetic value of mathematical products such
as results or proofs and, more specifically, the judgements made
about which products are most significant. Mathematicians may eval-
uate both their own work, as they complete a proof or solution, as
well as the work of others, as they review potential journal articles or
attend colloquia.

(b) The generative characteristic of the aesthetic pertains to those aesthetic
modes of reasoning used in solving problems, as opposed to logical
or even intuitive ones. I have used the term ‘generative’, because it is
described by mathematicians as being responsible for generating new
ideas and insights that could not be derived by logical steps alone
(see, for example, Poincaré, 1908/1956).

(¢) lastly, the motivational characteristic relates to the role of the aesthetic
in attracting mathematicians to certain fields and, in turn, in stimulating
them to work on certain problems. While the evaluative characteristic
of aesthetics operates on mathematicians’ finished, public work, the
motivational and generative characteristics belong to more private,
evolving facets of mathematical inquiry.

The Evaluative Characteristic of the Aesthetic

Of the hundreds of thousands of theorems that are now proved each year,
how do mathematicians select which theorems become a part of the body
of mathematical knowledge? Which are to be those that get printed in jour-
nals or presented at conferences, which are deemed worthy of being further
developed, as well as worth being taught to students or placed in textbooks?

Tymoczko (1993) argues that aesthetic criteria are necessary in order to
ground value judgements in mathematics (judgements such as importance
and relevance) for two reasons. First, selection is essential in a world where
infinitely many correct theorems could be produced. Second, mathematical
reality cannot provide its own criteria: that is, a mathematical result can
not be judged important because it matches some supposed mathematical
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reality — mathematics is not self-organised. In fact, it is only in relation to
actual mathematicians with actual interests and values that mathematical
reality is divided up between the trivial and the important.

Steiner (1998) goes even further in claiming that there is no objective
criterion for a certain structure to qualify as mathematics — and not every
structure counts as a mathematical structure (chess, for example). Instead,
he claims mathematicians decide what structures are ‘mathematical’ based
on the aesthetic criteria of beauty and convenience. Both beauty and con-
venience are anthropocentric (or ‘species-specific’) notions, because they
are based on the needs and limitations of human beings. If human brains
were a thousand times more powerful, they might have no need for a con-
venient concept such as the logarithm.

Hardy (1940) privileged supposedly objective criteria such as depth and
generality, but his more ‘purely aesthetic’ criteria such as unexpectedness,
inevitability and economy certainly play a role in determining the value of
mathematical products. For example, most mathematicians agree that the
Riemann hypothesis is a significant problem — perhaps because it is so inter-
twined with other results or perhaps because it is somewhat surprising — but
its solution (if and when it comes) will not necessarily itself be considered
‘beautiful’. That judgement will depend on many things, including the
knowledge and experience of the mathematician in question and whether
it illuminates any of the many connections mathematicians have identified
or whether it renders them too obvious. [2]

Buckminster Fuller (quoted in Fadiman, 1985) said that, when working
on a problem, he “never thinks about beauty” (p. 85). It is only if he finds
that “the solution is not beautiful” (p. 85) that he knows it is wrong. His
statement, echoed by many others, is misleading: do mathematicians only
think about the beauty of solutions after the event? The work of Le Lionnais
(1948/1986) illustrates many other mathematical entities, other than proofs
and solutions, which are amenable to aesthetic consideration, including
images, definitions, methods of proving and concepts themselves. He also
treated the mathematical aesthetic in terms of a matrix of two principles: the
structure of mathematicians’ works and a human’s conception of beauty.
Following Nietzsche, Le Lionnais saw an individual’s conception of beauty
as falling into two categories — classicism and romanticism — which parallel
the Apollonian and Dionysian ones. These categories represent two styles
of human endeavour: on the one hand, a desire for equilibrium, harmony
and order; on the other, a yearning for lack of balance, form obliteration and
pathology. [3]

For Le Lionnais, classically beautiful ‘facts’ are ones whose beauty im-
presses through austerity or mastery over diversity, such as magic squares and
Pascal’s triangle. [4] Romantically beautiful ‘facts’, such as the imaginary
numbers, impress through “le culte des émotions violentes, du non-con-
formisme et de la bizarrerie” (p. 444). These engaged, even ecstatic, descrip-
tions of romantically appealing mathematical facts imply the existence of
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intemperate aesthetic responses antithetical to ones such as detachment
which are usually articulated with such equanimity — they speak of a radi-
cal, emotional, individualised component to aesthetic response. Classically
beautiful ‘methods’ permit the attainment of powerful effects through mod-
eration, such as proof by recurrence or the notion of the locus. On the other
hand, romantically beautiful ‘methods’, such as reductio ad absurdum or
non-constructive existence proofs, are characterised by indirectness: failing
to shed light on the mathematical structure, they leave one in a state of con-
flict or even that of dissatisfaction.

That mathematicians can respond aesthetically to the wide range of their
tools and materials, and not only to their solutions and proofs which involve
a truth component, makes it much easier to see how different mathematicians
come to choose their specific research domains. In addition, the mathemati-
cian’s constant interaction with mathematical tools and materials, in the
course of inquiry, explains how aesthetic judgements can easily affect the
process of inquiry and not just its final product. For example, in an interview
with me [5], Jonathan Borwein observed, “I would emphasise how many
mathematicians will abandon a proof technique they are ‘sure’ will work,
because it would be dull, ugly, inelegant”. However, before pursuing this
idea, I want to continue focusing on mathematicians’ aesthetic evaluation of
mathematical products. But this time, however, I want to attend more closely
to the way they are shared within the mathematical community.

The aesthetic dimension of mathematical expression and
communication

The evaluative characteristic of the aesthetic is not only involved in judging
the great theorems of the past or existing mathematical entities, but it is also
actively involved in mathematicians’ decisions about expressing and com-
municating their own work. As Wolfgang Krull (1930/1987) wrote:

Mathematicians are not concerned merely with finding and proving
theorems, they also want to arrange and assemble the theorems so
that they appear not only correct but evident and compelling. (p. 49)

In the same interview with me as mentioned above, Borwein noted that some
mathematicians derive “the most pleasure in refining, polishing and harvest-
ing their conquests at this stage”. This would certainly seem to be the case
for Gauss, who presented no less than six different proofs of the law of
quadratic reciprocity in his Disquisitiones Arithmeticae (1801/1966). In an
article published in 1817, discussing his various proofs of this result, Gauss
wrote about his own quest for beauty and simplicity, defending it from
charges of redundancy.

As soon as a new result is discovered by induction, one must con-
sider as the first requirement the finding of a proof by any possible
means. But after such good fortune, one must not in higher arith-
metic consider the investigation closed or view the search for other
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proofs as a superfluous luxury. For sometimes one does not at first

come upon the most beautiful and simplest proof, and then it is

just the insight into the wonderful concatenation of truth in higher

arithmetic that is the chief attraction for study and often leads to the

discovery of new truths. For these reasons the finding of new proofs

for known truths is often at least as important as the discovery itself.

(Gauss, 18063, pp. 159-160; in May, 1972, p. 299)
Several aesthetic qualities I identified in the previous sub-section are oper-
ative at this stage of the mathematician’s inquiry as well. For instance, while
some mathematicians may provide the genesis of a result, as well as logical
and intuitive substantiation, others prefer a ‘clean’, ‘pure’ or ‘minimal’ pres-
entation of only the logically formed results, of only the elements needed to
reveal the structure. On the other hand, Philip Davis (1997) wants his proofs
to be transparent:

I wanted to append to the figure a few lines, so ingeniously placed
that the whole matter would be exposed to the naked eye. I wanted
to be able to say not gnsp £de1 dELEQL (¢ quod erat demonstrandum),
as did the ancient Greek mathematicians, but simply, “Lo and
behold! The matter is as plain as the nose on your face.” (p. 17)

Thus, the mathematician’s aesthetic judgements also affect the way she
organises her exposition, whether opting for an intuitive, perhaps visually-
oriented proof, a detailed proof with examples or a short, abstract proof. In
these cases, as well as those in between, the mathematician is expressing an
understanding according to a personal aesthetic. Of course, there is a strong
enculturation that takes place. In interview, Robert Osserman claimed that
younger mathematicians will use this last method of presentation as a
default. They may even accept this method as the way things are or even
should be (see Chapter 8 for more on this). In his conversation with me, Joe
Buhler noted, “It took me a long time to realise that some of my most
admired role models were crummy expositors!”

However, Osserman went on to point out that it is not uncommon to
find more seasoned and established mathematicians communicating in nar-
ratives, by including in their expositions arguments of relevance, connection
and personal interest. Some mathematicians bemoan the dry, terse form of
most proofs that can often obscure the motivations and paths that led to
them (see Burton, 2004). These mathematicians are interested in the moti-
vations behind results, the false starts and lucky guesses that led to the
results and the possibility of ‘seeing’ what is beautiful and interesting about
the result. In fact, behind the terse face of journal articles and textbooks,
there is a world of aesthetic persuasion. Buhler talked about having to ‘mar-
ket ideas, adding “you have to take whatever turned you on about it and
try to communicate that to someone”. This is not about convincing col-
leagues or readers of truth or correctness; it is about convincing them about
interest and attractiveness, about how it ‘connects’ to them.
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These judgements of beauty, elegance and worth are not frivolous ones:
rather, they contribute to the on-going negotiation concerning which are the
problems worth attending to, worth solving, which solutions are acceptable
and what contributes to greater mathematical understanding. When Tymoczko
(1993) advocates greater explicit aesthetic criticism in mathematics, he is not
implying that aesthetic judgements are non-existent in the mathematics com-
munity. On the contrary, they are pervasive and operative, as suggested in
the above descriptions, yet are often implicit and rarely made public.

In addition, the mathematicians quoted above highlight the role of the
evaluative characteristic of the aesthetic in their own formulation and pres-
entation of results, thus revealing a very personal side to aesthetic judgement
of mathematical products. They describe the aesthetic decisions involved in
expressing their results in the most satisfying ways, in much the same way
as poets describe the aesthetics of expressing their various thoughts in cer-
tain forms. [6] Thus, the evaluative characteristic of the aesthetic is opera-
tional not only in the community’s decisions about the significance of
results, but also in the mathematician’s individual decisions about the per-
sonal value of those results.

The Generative Characteristic of the Aesthetic

The generative characteristic of the aesthetic may be the most difficult of the
three to discuss explicitly, operating as it most often does at a tacit or even
sub-conscious level and intertwined as it frequently is with intuitive modes
of thinking. The generative characteristic of the aesthetic is involved in the
actual process of inquiry, in the discovery and the invention of solutions or
ideas. It guides the actions and choices that mathematicians make as they
try to make sense of objects and relations.

Some background

Henri Poincaré (1908/1956) was one of the first modern mathematicians to
draw attention to the aesthetic dimension of mathematical invention and cre-
ation. According to his account, two operations take place in mathematical
invention: first the construction of possible combinations of ideas and then
the selection of the fruitful ones. Thus, to invent is to choose useful combi-
nations from the numerous ones available, the useful ones being those that
are the most beautiful, those best able to “charm this special sensibility that
all mathematicians know” (p. 2048).

Poincaré explained that such combinations of ideas are quite harmo-
niously disposed, so the mind can effortlessly embrace their totality without
realising their details. It is this harmony that at once satisfies the mind’s aes-
thetic sensibilities and acts as an aid to the mind, sustaining and guiding it.
He claimed that the sorting of combinations of ideas must happen in the
unconscious, since mathematicians only become aware of the ones that
already have the stamp of beauty.
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This may sound a bit far-fetched, but there seems to be some scientific
basis for it. The contemporary neuroscientist Antonio Damasio (1994) points
out that because humans are not parallel processors, they must somehow
filter the multitude of stimuli coming in from the environment. Some kind
of pre-selection is carried out, whether covertly or not.

A concrete example might help to illustrate Poincaré’s claims. Silver and
Metzger (1989) report on a mathematician’s attempts to solve a number-
theory problem. (Prove that there are no prime numbers in the infinite
sequence of integers 10001, 100010001, 1000100010001, ... .) In working
through the problem, the subject hits upon a certain prime factorisation,
namely 137 x 73, that he describes as being “wonderful with those patterns”
(p. 67). Something about the surface symmetry of these factors appeals to
the mathematician, leading him to believe that they might go down a gen-
erative path. (The young Le Lionnais had a very similar generative experi-
ence when he perceived the symmetry in his second row of numbers and
yet another when he discerned the complementary balance inherent in the
third row of numbers.)

Based on their observations, Silver and Metzger also argue that aesthetic
monitoring is not strictly cognitive, but appears to have a strong affective
component:

decisions or evaluations based on aesthetic considerations are

often made because the problem solver ‘feels’ he or she should do

so because he or she is satisfied or dissatistied with a method or

result. (p. 70)
The above example illustrates how an aesthetic response to a certain con-
figuration is generative, in that it serves to lead the mathematician down a
certain path of inquiry. This path is not chosen for logical reasons but,
rather, because the mathematician feels that the appealing configuration
should reveal some insight or fact.

There is a range of stimuli that can trigger aesthetic responses: a quality
such as symmetry might do so, but more subtle qualities such as the ‘pret-
tiness’ of an equation or the sudden emergence of a new quantity can also
act as triggers. This example also illustrates how mathematicians must
believe in, and trust, their feelings in order to exploit the generative charac-
teristic of the aesthetic. They must view mathematics as a domain of inquiry
where phenomena such as feeling and intuition play an important role
alongside hard work and logical reasoning.

Evoking the generative characteristic of the aesthetic

There are also some special strategies that mathematicians use during the
course of inquiry which seem to be oriented toward triggering the genera-
tive characteristic of the aesthetic. I will discuss four such strategies:

e playing with or ‘getting a feel for’ a situation;
e establishing intimacy;
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e enjoying the craft;
e capitalising on intuition.

The phase of playing around or ‘getting a feel for’ is aesthetic in so far as
the mathematician is framing an area of exploration, qualitatively trying to
fit things together and seeking patterns that connect or integrate. Helen
Featherstone (2000) terms this ‘mathematical play’, drawing on Johan Huizinga’s
(1950) theory of play. Huizinga saw play as the free, orderly and aesthetic
exploration of a situation. The exploration is aesthetic in that the one play-
ing is seeking to identify organising themes and structures and to arrange
the objects being played with in a meaningful, expressive way.

Play is neither random, nor does it have the ultimate goal that solving
problems has: rather, its goal is the exploration itself. In seeing play in this
way, Huizinga called attention to the possibility that, in ‘mathematical play’,
the mathematician is aesthetically exploring a certain terrain, trying to
impose structures and generate patterns. And, in the course of such play,
structures and patterns are indeed revealed.

Secondly, mathematicians seem to develop a personal, intimate relation-
ship with the objects they work with, as can be evidenced by the way they
anthropomorphise them or coin special names in an attempt to hold them,
to own them. For example, Douglas Hofstadter (1992) first baptises his
emerging object “my Magic Triangle” and then “my hemiolic crystal” (pp. 9-11).
Paul Lévy (1970) becomes equally possessive about the objects; he insists
on referring to the focus of his investigations as “ma courbe” (p. 20), even
though it is generally known as the von Koch curve. Possessively naming
these objects makes them easier to refer to and may even foreshadow iden-
tifying their properties. Equally as important, though, it gives the mathemati-
cian some traction on the still-vague territory, some way of marking what
she does understand.

Norbert Wiener (1956) did not underestimate these attempts to operate
with vague ideas. He recognised the mathematician’s:

power to operate with temporary emotional symbols and to organ-
ize out of them a semi-permanent, recallable language. If one is not
able to do this, one is likely to find that his ideas evaporate from
the sheer difficulty of preserving them in an as-yet unformulated
shape. (p. 86)

Verena Huber-Dyson (1998) also evokes this unformulated, tacit knowledge:

All the while you are aware of the pattern [...], just below the
threshold of consciousness, exactly as a driver is aware of the traf-
fic laws and of the coordinated efforts of his body and his jeep.
That is how you find your way through the maze of mathematical
possibilities to the ‘interesting’ [cases]. (p. 2)

Thirdly, there is a certain amount of craft in the mathematician’s work that
is also aesthetic in nature. Mathematicians have tools that can be used to
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create new mathematical objects or transform existing ones. Le Lionnais’s
(1948/1986) various kinds of ‘methods’ used to work with mathematical
entities can also be thought of as tools.

Adrian Lewis (in his interview with me) described the use of certain
tools as part of the aesthetic dimension of enjoying his craft, of using “well-
worn tools in often routine ways, like a well-oiled piece of engineering”.
What he finds beautiful is “not just the startling revelation or the philosoph-
ical wonder” of a work of mathematics, but the craft of it, “the inexorable
sequence of simple tools at work”. Although less dramatic than a startling
revelation, for him there is something comforting in the knowledge that the
careful application of a tool will produce a “perfect, fine-tuned result”.

In comparing science and art, Freeman Dyson also commented on:

[the] aesthetic pleasure of the craftsmanship of performance [par-
ticularly in mathematics]. And if one is handling mathematical tools
with some sophistication it is a very nonverbal and a very, very
pleasurable experience just to know how to handle the tools well.
It's a great joy. (Dyson et al., 1982, p. 139)

Doris Schattschneider (in Chapter 2) provides additional insight into this
notion of craft, when she describes some of the ‘paradigms’ that mathemati-
cians use in the course of solving problems and proving theorems. For exam-
ple, a symmetry argument (or the pigeon-hole principle) is used as a way to
transform an unknown complex situation into a simpler, more familiar one.
It may also provide insight into the structure of the unknown situation.
Schattschneider views these paradigms as beautiful, because of their pow-
erful ability to simplify, to cut across complexity and surface differences or
to reformulate a problem in more familiar terms. Also, these paradigms may
still carry vestiges of the aesthetic impact they had when mathematicians first
encountered them in a proof or solution, as her description of them reveals.
My fourth, final category of the generative characteristic of the aesthetic
relates to drawing on and working with intuition. In their interviews with
me, Buhler and Borwein both described the way in which they could get,
often quite suddenly, an ‘out-of-the-blue’ insight. They recognised it as an
insight because of the strong feeling that accompanied it, almost alerting
them to pay attention. [7] It may have some compelling order, simplicity or
structure; it may resonate with something else they know; it may provide them
with a new perspective. These are qualitative judgements they make. Buhler
explained, “I have the idea but not the words”. This convinces him — whether
rightly or not — that it will lead to a solution. As Borwein said, a mathemati-
cian gets the “remarkable sense that the rest is do-able: this will work”.
What are the types of things that make mathematicians feel that ‘this will
work out”? Very generally, they are things that have some aesthetic import.
Hofstadter (1992, p. 5) senses the rightness of a particular relationship when
he notices that it produces parallel lines — had the lines been oblique, he
would have skipped right over them. He also feels that a simple analogy in
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symbolic form, though meaningless to him geometrically, must be right —
such a thing cannot just be an accident. This ‘looking right’ is an elusive
notion, one that stumps mathematicians who try to describe or explain it. Is
there a perceptible harmony in terms of proportion or symmetry? Is there a
resonance with a previously successful strategy? Are there simply some inex-
pressible or tacit conceptions that have finally found a formulation?

The third question here emphasises the aesthetic sensitivities that con-
tribute to mathematicians’ sense-making. In contemplating, experimenting
with, playing with the elements of a situation, the mathematician is gaining
a feel for patterns and potential patterns (see Martin Schiralli’s discussion of
pattern in Chapter 5 of this book). Hofstadter describes the sudden insight,
the aesthetic moment, as being when inner images and external impressions
converge; it is “the concrete realisation of the abstract analogy — a lovely
idea, irresistible to me” (p. 7).

The mathematician may feel that she is bringing something beautiful but
unfinished to its inevitable completion, to closure. In retrospect, she might
appreciate the growth of her own grappling: she might be surprised (and
thankful) that she pursued a certain path; she might realise how she wrongly
dismissed something as irrelevant or meaningless along the way. This appre-
ciation alerts her to the mysteries of her own mathematical thinking process,
mysteries that in many ways parallel in their depth the mysteries she
encounters in mathematics.

This generative characteristic of the aesthetic operates not only at a pas-
sive, sub-conscious level, as Poincaré would have it, but also actively, as the
mathematician deliberately searches for order and structure. During this
process, the mathematician becomes more intimate with objects and rela-
tions through various transformations and reformulations. As will become
clear in the next section of this chapter, the generative characteristic of the
aesthetic distinguishes itself in many different ways from the motivational
one. While the latter pertains to what mathematicians perceive, the generative
characteristic seems to relate to what they do: for example, playing around
with or getting a feel for; gaining intimacy; using certain tools; calling on
intuition. The act of doing in itself seems to carry a positive affective com-
ponent with it, in the course of stimulating and supporting aesthetic modes
of reasoning.

The Motivational Characteristic of the Aesthetic

Jacques Hadamard (1945), John von Neumann (1947) and Roger Penrose
(1974) have all argued that that the motivations for doing mathematics, as
Penrose states, “turn out to be ultimately aesthetic ones” (p. 266). Tymoczko
(1993) claims that there is a logical imperative for the motivational charac-
teristic of the aesthetic. A mathematician has a great variety of fields to
choose from, widely differing from one another in character, style, aims and
influence; within each field there is a variety of problems and phenomena.
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Thus, mathematicians must select in terms of the research they pursue, the
classes they teach and the ‘canon’ they help to pass on.

While there are some mathematical problems that are more famous and
even more fashionable than others, it would be difficult to argue that there
is an objective perspective — a mathematical reality against which the value
of mathematical products can be measured. Contrast this with physics, for
example, another discipline that makes strong aesthetic claims (see Curtin,
1982, or Farmelo, 2002). There, questions and products can be measured up
against physical reality: for instance, how well they seem to explain the
shape of the universe or the behaviour of light.

Hadamard (1945) firmly claimed that one of the most important motiva-
tional aesthetic criteria is that of potential, the fruitfulness of a future result:

Without knowing anything further, we feel that such a direction of
investigation is worth following; we feel that the question in itself
deserves interest [...] (p. 127; italics in original)

When the young Le Lionnais perceived that initial symmetry, he could predict
— or ‘feel’ — that the investigation would yield many treasures. An attraction to
the potential of a result or to the harmony of a mathematical structure seems
to appeal more to the intellect than to the senses. Penrose, however, describes
another criterion, that of visual appeal, in explaining his attraction to the
strange symmetries in his irregular tilings. Visual appeal seems to be an
increasingly available criterion; the computer-generated images that are now
being widely produced have bewitched many — as David Mumford et al.
(2002) acknowledge in their recent and colourful book Indra’s Pearls.

In analysing scientific inquiry in general, including mathematics, philo-
sopher of science Michael Polanyi (1958) argued that the scientist’'s sense of
intellectual beauty serves a crucial selective function:

intellectual passions have an affirmative content; in science they

affirm the scientific interest and value of certain facts, as against

any lack of interest and value in others. (p. 159)
Moreover, Polanyi had already asserted in his book that the motivational
characteristic of the aesthetic plays the specific psychological role that Penrose
mentions above:

Intellectual passions do not merely affirm the existence of har-

monies which foreshadow an indeterminate range of future discov-

eries, but can evoke intimations of specific discoveries and sustain

their persistent pursuit through years of labour. (p. 143)
Although the authors above argue that aesthetic motivation is necessary
for mathematical inquiry, they provide very few examples of the types of
aesthetic response that might be motivational. In the following sub-section,
I provide categories of responses that are frequently mentioned in interview
by mathematicians.
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Categories of aesthetic motivation

There are several ways in which the aesthetic motivates mathematical activity:
appeal, at both a sensory and cognitive level; surprise and paradox; orien-
tation to the social; identification; desire for ‘the feeling’.

Mathematicians can be attracted by the visual appeal of certain math-
ematical entities, by perceived aesthetic attributes such as simplicity and
order or by some sense of fit’ that applies to a whole structure. As I men-
tioned, Penrose (1974) is aesthetically motivated by the visual complexity of
non-periodic tilings, but since so much of mathematics seems inaccessible
to the senses, visual appeal is necessarily limited. Lewis points to another
source of appeal in mathematics: “the unexpected order that so often
emerges for no apparent reason” from complex situations. Davis (1997) pro-
vides a specific example, describing being caught by the unexpected order
emerging from an irregular triangle in Napoleon’s theorem and spending
years of his life trying to figure out why it occurs.

Apparent simplicity is another frequently-occurring appeal and is exem-
plified by these words from Andrew Gleason (quoted in Albers et al., 1990):

I am gripped by explicit, easily stated things [...] I'm very fond of
problems in which somehow an at least very simple sounding
hypothesis is sufficient to really pinch something together and
make something out of it. (p. 93)

Katherine Heinrich, one of my interviewees, concurred: “I like simply stated
and clearly understood questions that with just a little background the ‘man
on the street’ could understand”, though she acknowledged that such prob-
lems are often “deceptively simple”. Number theory [8] seems to attract many
mathematicians, including Le Lionnais, as it swarms with problems and
claims that are deceptively simple to state, such as Goldbach’s conjecture or
Fermat’s Last Theorem.

In my interview with Hendrik Lenstra, he emphasised that his sense of
attraction involved a sense of network, of connection and relationship: “It’s
the whole texture, the whole logical network that creates beauty”. He com-
pared his attraction to a mathematical situation with seeing “the insides of a
watch, the beauty of the copper as well as of the rhythmic synchronisation
of the motion of the gears”. He explained that, “Something draws you in to
look deeper, to see which movements are linked to which others or why a
certain gear is there”. Lenstra claimed that he will select questions based on
his network view of mathematics; he will be attracted to a question if it “is
not a dead end but is somehow connected to other things”.

The mathematician’s aesthetic response is necessarily personal, emerg-
ing from a certain set of preferences and interests. Osserman’s source of
attraction is partly the mystery of his own mind. He finds it remarkable that
something he knows is true does not have a more transparent proof, that
there is not a more “enlightening” explanation: if it is true, then he should
be able to “see” it. The desire to ‘see’ it, to have an immediate gestalt of
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understanding is primarily an aesthetic one. It is not enough to know that
something is true; one wants to be able to apprehend it in a holistic way.
Similarly, Heinrich claimed that some problems generate on-going interest,
because “no one has seen the ‘right’ way to do them”. Such problems awaken
a sense of desire to solve them in a more aesthetically pleasing way. (Wit-
ness the continuing attempts to find additional proofs of the irrationality of
V2 — most recently in Apostol, 2000 — as described in Chapter 1.)

Secondly, a sense of surprise and paradox can also be aesthetically
motivating. For example, the paradox of the ‘hat problem’ recently intrigued
and attracted many mathematicians across North America (Robinson, 2001).
Surprise constantly arises in mathematics, as mathematicians find things they
have no reason to expect: a pattern emerging in a sequence of numbers; a
common point of intersection found in a group of lines; a large change
resulting from a small variation; a finite real thing proved by means of appeal
to an infinite, possibly unreal, object. Movshovits-Hadar (1988) reveals the
motivational power of surprise in mathematics, by showing how this feeling
of surprise stimulates curiosity which can, in small steps, lead towards intel-
ligibility.

Surprise makes one struggle with one’s expectations, with the limita-
tions of knowledge and, thus, with intuitive understanding, both informal
and formal. Bill Gosper (quoted in Albers et al., 1990) expressed surprise at
the way continued fractions allow you to ‘see’ what a real number is: “it’s
completely astounding [...] it looks like you are cheating God somehow”
(p. 112). He claimed this sense of surprise had motivated him to do extensive
work with continued fractions. Of course, in order to respond to surprise, one
must have some kind of frame of reference that generates expectations, so
that something that surprises one person may not surprise another (see also
Stanley, 2002).

The work on foundations of mathematics provides a good example of
non-surprising problems, almost by definition. In fact, Krull (1930/1987) sug-
gested that those attracted to the study of foundations (investigating, for
example, the extent to which the set of all infinite decimals can be consid-
ered a logically faultless concept) are the least aesthetically oriented mathe-
maticians. He argued this is so since they are “concerned above all with the
irrefutable certainty” (p. 50) of their results. He additionally claimed that:

the more aesthetically oriented mathematicians will have less interest

in the study of foundations, with its painstaking and often necessarily

complicated and unattractive investigations. (p. 50)
Krull quite clearly situated himself in the latter camp, but was perhaps too
quick to judge ‘foundations” mathematicians as a whole as non-aesthetically
oriented. The inclination toward finding basic, underlying order is certainly
an aesthetic one — though different in kind from the inclination to surprise.
This differentiation in motivation evokes Le Lionnais’s distinction between
‘classical’ and ‘romantic’ impulses.
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The response of surprise can sometimes be oriented toward the math-
ematician’s own way of thinking, rather than toward the mathematics itself.
For example, Lenstra recalled his amazement at the fact that he can much
more readily understand and “control” infinity than the enormous numbers
— known as Ramsey numbers — required in a combinatorial proof that he
worked on. “Isn’t that beautiful”, he exclaimed, at the apparent paradox of
being able to understand the “biggest but not the very big”. Similarly, Buhler
found pleasure in seeing a new feature of a phenomenon he thought he
knew so well. It surprised him. “I couldn’t believe that I hadn’t seen it
before. It was so basic.” This was the hook that initiated his mathematical
inquiry. He had to work out why this feature — so obvious as it seemed now
— had previously eluded him: “How ever could I have missed it?”

Thirdly, there is also a social dimension to aesthetic motivation. William
Thurston (1994) agrees with Penrose, Hadamard and von Neumann on the
necessary aesthetic dimension to a mathematician’s choice of field and prob-
lems, but he adds another, one that is rarely discussed:

social setting is also important. We are inspired by other people,
we seek appreciation by other people and we like to help other
people solve their mathematical problems. (p. 171)

In my interview with him, Lenstra concurred:

There is not much fun in deciding for yourself that a particular area of
mathematics is beautiful and spend your life on it if you are the only
person who finds it beautiful. If someone else is interested in some-
thing that you are doing, that's an enormous boost. It’s a real stimulus.

For Buhler, a judgement of significance can be affected by social influences —
colleagues can convey the promise of pleasure through “infectious excitement”.

These observations provide some indication of how mathematicians’
aesthetic choices might (partially, at least) be learned from their community
as they interact with other mathematicians and also seek their approval. Of
course, not all social interactions among mathematicians have an aesthetic
dimension. The case of John Nash exemplifies a non-aesthetic social moti-
vation. His biographer Sylvia Nasar (1998) describes how he would only
work on a problem once he had ascertained that great mathematicians
thought it highly important — pestering them for affirmation. The promise of
recognition, rather than the intrinsic appeal of the problem or situation,
seemed to be the motivating factor.

A fourth source of motivation might come from a sense of identifica-
tion, when a mathematician perceives a rapport — a connection between the
situation and her own interests and aptitudes. As Osserman explained in his
interview with me, he is drawn to a problem when he realises that it is like,
or connects to, something that he already knows. And this is so, regardless of
whether it is a concept or method of mathematics and whether or not it is
an approach or style of his own. Buhler claimed he is attracted to a prob-
lem if “it relates to something that I've done”.
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Lenstra was even more candid, explaining that he would only attack a
problem “if it is the type of problem I am good at solving”. Gleason (in
Albers et al., 1990) explained that he is specifically attracted to problems that
“go from what might be called a qualitative way of looking at things to the
quantitative way of looking at things” (p. 91), for instance problems that com-
bine classical and analytic geometry. A mathematician’s judgement of rapport
can provides a sense of confidence and the pleasure of knowing that she is
particularly well-suited to solving a problem, that there is something about
the way she thinks that fits with the mathematics, that the problem is — in a
way — amenable to becoming hers.

My fifth and final motivating factor is different in kind from the others.
In all the cases described above, the aesthetic basis for motivation depended
upon perceiving the qualities of the problem or situation itself. However, the
motivating factor of longing for ‘the feeling’ depends more on the math-
ematician’s prior, positive experiences of mathematical inquiry. Thus, a
mathematician might embark on a particular exploration or problem-solving
process because she remembers the feelings of tension, of puzzlement, of
frustration and of final satisfaction that make up her successful mathematical
experience. She explicitly seeks out this experience when selecting certain
problems to work on.

There are many periods of drudgery in mathematical work: as Lewis
remarked, “You often have to do relatively grungy mathematics, which isn’t
terribly appealing, but it is part of what you are doing”. However, a mathe-
matician keeps returning for those special moments when, as Heinrich
explained, “I see something of elegance and almost magic — when you think
that’s how a proof is meant to be, or you are just amazed that a particular
thing could be true”. Lenstra claimed that such feelings are what keep him
doing mathematics: “It is a very good feeling, I wouldn’t do mathematics if
it weren’t for that”. Mathematicians can also have this feeling as ‘spectators’
rather than creators. Heinrich recalled the moving experience she had when
a colleague presented a new proof of an old result at a conference: “It was
so beautiful and elegant everyone spontaneously applauded when they saw
how it was working — somehow everyone knew they had just seen some-
thing significant”.

Polanyi (1958) insisted that the various ways in which mathematicians
become attracted to mathematical situations and problems do not solely
serve an affective motivational purpose. Rather, the attraction also has a
beuristic function, by influencing the ability to discern features in a situation
and thereby directing the thought patterns of the inquirer. He suggested that
the motivational characteristic of the aesthetic does not operate merely as an
‘eye-catching’ device, nor does it provide merely the psychological support
needed to struggle through a problem. It is also central to the very process
that enables the mathematician to produce qualitatively derived hypotheses
deliberately: it initiates an action-guiding hypothesis.
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Some Concluding Remarks

Most surface definitions of mathematics describe the materials mathematicians
work with: ‘mathematics is the study of shapes and numbers’, ‘mathematics is
a description of nature’ or ‘mathematics is a theory of formal patterns’. An
analogous definition for the visual arts — so obviously inadequate — might
read: ‘visual art is the manipulation of form, colour and texture’.

Some less objective definitions of mathematics remind that mathematics
is a tool we use to interpret the world: ‘mathematics is a language’. But few
purported definitions capture the animating purposes of mathematicians:
why do mathematicians do mathematics? What impulses, what inclinations
are responsible for producing the body of knowledge that is mathematics?

This chapter has at least begun to answer these questions, identifying
the aesthetic basis for many of the choices that mathematicians make when
posing, solving and sharing problems. I close with the following definition
of mathematics, offered by James Shaw:

Mathematics is, on the artistic side, a creation of new rhythms,
orders, designs and harmonies, and on the knowledge side, is a
systematic study of the various rhythms, orders, designs and har-
monies. Mathematics is, on the one side, the qualitative study of
the structure of beauty, and on the other side is the creator of new
artistic forms of beauty. (in Schaaf, 1948, p. 50)

For me, this attempt at a definition subtly suggests the ways in which math-
ematics satisfies the basic human impulse to find and describe pattern.

Notes

[1] This assertion stands in contrast to what Hardy (1940) implied in his discussion
of mathematical beauty, as well as in contrast to the traditional conception of
aesthetics found in philosophy and art criticism (see, for example, Bell, 1914/1992,
pp. 113-116). However, the survey conducted by Wells (1990) provides substantial
evidence that not all mathematicians share the same aesthetic values; that their
experiences and preferences, as well as their states of mind, may greatly affect their
aesthetic judgements.

[2] In the past, some mathematicians have referred to Euler’s equation (e" + 1 = 0)
as one of the most beautiful in mathematics, but others nowadays think it is too
obvious to be called beautiful (Wells, 1990). Schattschneider (see Chapter 2) still
finds this formula beautiful. When assessing a mathematical idea’s aesthetic value,
she might agree with the mathematician in Wells’s survey who wrote, “I tried to
remember the feelings T had when I first heard of it” (p. 39).

[3] Wolfgang Krull (1930/1987) suggests a very similar line of division: the concrete
(instead of the romantic) versus the abstract (instead of the classical). He sees math-
ematicians with concrete inclinations as being attracted to “diversity, variegation
and the like”, comparing them with those who prefer heavily ornamented buildings.
On the other hand, those with an abstract orientation prefer “simplicity, clarity, and



104 Mathematics and the Aesthetic

great ‘line” (p. 52). And Freeman Dyson (1982, pp. 49-55) has suggested a related
line of division in the sciences, distinguishing scientific ‘diversifiers’ (e.g. Ruther-
ford) from ‘unifiers’ (e.g. Einstein). Unifiers use “the enormous power of mathemati-
cal symmetry as a tool of discovery” (p. 50) and they are “happy if they can leave the
universe looking a little simpler than they found it” (p. 51). Diversifiers are symmetry-
breakers who are “happy if they leave the universe a little more complicated than they
found it” (p. 51). Moreover, Dyson claimed these two types are complementary in the
quantum-theoretical sense. He went on, “It is easy to understand why we have two
kinds of scientists, the unifiers looking inward and backward, the diversifiers looking
outward and forward into the future” (p. 51). Dyson concluded: “every science needs
for its healthy growth a creative balance between unifiers and diversifiers” (p. 54).

[4] It may seem odd to classify magic squares and Pascal’s triangle as mathematical
‘facts’. In choosing this term, Le Lionnais may have been attempting to distinguish
static mathematical ideas, which are the result of mathematical inquiry, from the
processes (or ‘methods’) that generate those ideas.

[5] I interviewed Jonathan Borwein, who until 2004 led the Centre for Experimental
and Constructive Mathematics at Simon Fraser University, Canada, as part of a larger
study into the roles of the aesthetic in the activities of contemporary mathematicians
(Sinclair, 2002). I also interviewed the following mathematicians: Joe Buhler (Reed
College), Katherine Heinrich (University of Regina), Hendrik Lenstra (University of
California, Berkeley), Adrian Lewis (University of Waterloo) and Robert Osserman
(MSRD. In order to increase this chapter’s readability, as well as to distinguish quo-
tations by these mathematicians arising from my interviews from others found in
the literature, excerpts from my interviews will be used throughout this chapter
without further reference being given. The first occasion I quote from these inter-
viewees, I use their full name; subsequent to that, I just refer to them as, for exam-
ple, Borwein or Heinrich.

[6] This comparison between poetry and mathematics has in fact been noted by sev-
eral scholars — e.g. Gosta Mittag-Leffler compared the works of the mathematician
Niels Henrik Abel with “truly lyrical poems possessing a supreme beauty, in which
the perfection of form reveals the depth of thought” (quoted in Le Lionnais,
1948/1986, p. 456; my translation). Also, most recently, see Mazur (2003).

[7] See Richard Skemp’s (1979) Intelligence, Learning and Action for a more in-
depth discussion of the role of emotions in problem solving.

[8] André Weil (1984) suggests that number theory may, in fact, surpass all other
fields in its quantity of deceptively simple problems. The simplicity may arise, at
least in part, from the fact that its primary objects — whole numbers — are among
the most basic and familiar ones in mathematics.



CHAPTER 5
The Meaning of Pattern

Martin Schiralli

In the late 1970s, when the eminent anthropologist and biologist Gregory
Bateson sought to codify his influential views on the ecology of mind, he
chose the idea of pattern as his central heuristic device. The choice was not
surprising, for Bateson, in a remarkably productive career as both scientist
and educator, had by that time been using this concept to explore, identify
and represent the essential features of biology and anthropology for more
than a quarter of a century. In his summative Mind and Nature, published
in 1979, Bateson related one early experience in his career that illustrates
particularly well the power that the notion of pattern can have in helping to
organise one’s thinking in fundamental ways.

In the 1950s, Bateson was teaching a course aimed at introducing the
essential purposes of biological science to a group of art students at the
California School of Fine Arts in San Francisco. Astutely realising that the group
of about a dozen students would be particularly responsive to the visual and
the tactile, Bateson came to the initial class with a paper bag containing the
remains of a recently-cooked crab. Putting the crab on the table in front of
the students, he asked them to produce arguments in support of the con-
tention that the thing before them was indeed the remains of a living thing.
As Bateson had correctly anticipated, the students’ attention was drawn to
the perceptual qualities of the crab. An animated discussion ensued during
which the idea of symmetry was offered by some students and rejected by
others as suitable proof of the claim.

The point at issue was that while there was admittedly an ordered cor-
respondence between the claws, one claw was significantly larger than the
other, which thereby made talk of symmetry problematic. Finally, one stu-
dent said, “Yes, one claw is bigger than the other, but both claws are made
of the same parts” (p. 9). In recalling the moment, Bateson was delighted
with this observation:

Ah! What a beautiful and noble statement that is, how the speaker
politely flung into the trash can the idea that size could be of pri-
mary or profound importance and went after the pattern which
connects. He discarded an asymmetry in size in favor of a deeper
symmetry in formal relations. (p. 9; italics in original)

In Bateson’s demonstration, patterns within a specific, individual crab (first-
order connections) would soon give rise to second-order patterns, those phylo-
genetic homologies that connect crabs to, say, lobsters. Finally, connections
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that link crabs and lobsters also suggest third-order patterns between other
homologies like that between horses and men. In this way, Bateson and his
students constructed “a ladder of how to think about [...] the pattern which
connects” (p. 11).

Reflecting on his success with the art students, Bateson identified one
significant element in their own backgrounds and aptitudes:

I faced them with what was (though I knew it not) an aesthetic
question: How are you related to this creature? What pattern con-
nects you to it?[...] 1[...] forced the diagnosis of life back into iden-
tification with living self: “You carry the bench marks, the criteria,
with which you could look at the crab to find that it, too, carries
the same marks.” My question was much more sophisticated than
I knew. (p. 9; italics in original)

The identification of a pattern is, therefore, a fundamentally aesthetic appre-
hension that in systematic inquiry soon moves beyond the immediately
perceptible towards the more formal conceptual connections with which
scientific and mathematical theory is ultimately concerned. Thus, in Bateson’s
mature thought, the ‘pattern which connects’ became the meta-pattern, the
dynamic sub-stratum of purposeful structures and functions — those inter-
connecting, evolving lines of functional symmetries and correspondences
that link all living things, including human minds.

For my present purpose, that of gaining some points of purchase on the
concept of ‘pattern’ itself, Bateson’s account provides a vivid illustration of
the way in which this concept may function comfortably at or among the
levels of aesthetic perception, empirical investigation and formal relation.
One further element in this account is of particular significance. Bateson
cautioned his readers against having too rigid a conception of ‘pattern’:

We have been trained to think of patterns [...] as fixed affairs. It is

easier and lazier that way but, of course, all nonsense. In truth, the

right way to begin to think about the pattern which connects is to

think of it as primarily [...] a dance of interacting parts and only

secondarily pegged down by various sorts of physical limits and by

those limits which organisms characteristically impose. (p. 13; italics

in original)
One might observe that it is not only by training that we have come to think
of pattern in this way, for ‘pattern’ in one of its senses, namely the fixed and
easily replicable pattern of the cookie-cutter or, perhaps, the arithmetic progres-
sion, is quite determinate. The conceptual difficulty of moving from this sense
to the related, more indeterminate “dance of interacting parts” that Bateson
rightly saw as a more powerful sense of the term will be recognised immedi-
ately upon filling in the ellipsis immediately following the word primarily’ in
the above quotation. For Bateson wrote “primarily (whatever that means) a
dance of interacting parts”. This chapter will later attempt to provide a way of
making sense of Bateson’s use of the word ‘primarily’ in this connection.
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At about the same time that Gregory Bateson’s Mind and Nature
appeared, the art historian Ernst Gombrich was preparing for publication his
own study of pattern in visual art. Having earlier presented the results of his
inquiries into the psychology of perception in representational art, in the
definitive Art and Hlusion (1960), Gombrich was now poised to explore
the still more subtle problems of the psychology of abstract design and
the art of decoration. Substantially reworking and expanding the drafts of
the 1970 Wrightsman lectures, which he had originally given in New York,
Gombrich’s The Sense of Order was, like Bateson’s Mind and Nature, pub-
lished in 1979.

In this comprehensive study, Gombrich located the animating principle
for abstract and decorative art in a human need to find and to consolidate
patterns in experience. Influenced by broad intellectual currents as diverse
as Immanuel Kant, Karl Popper and Konrad Lorenz, Gombrich provided an
account of pattern grounded in epistemology and ethology, as well as in
psychology. For Gombirich, the sense of order was closely connected to
Popper’s notion of the need for regularity. In Objective Knowledge, Popper
(1972) had written:

It was first in animals and children, but later also in adults, that I
observed the immensely powerful need for regularity — the need
which makes them seek for regularities [...] (p. 23; italics in original)

Gombirich (1979) maintained that this need for regularity is the product of
part of the instinctual scaffolding that all organisms possess, a “built-in
hypothesis” (p. 3) respecting the possibility of locating and exploiting envi-
ronmental regularities in the on-going business of living. The mode of
hypothesis confirmation, or better, refutation — for Gombrich was a genuine
Popperian — is perception itself, now functioning metaphorically as a search-
light. In a particularly telling passage, Gombrich wrote:

the ‘searchlight’” metaphor comes in useful, for it reminds us of the
activity that is inseparable from the most primitive model of per-
ception. The organism must probe the environment and must, as
it were, plot the message it receives against that elementary expec-
tation of regularity which underlies what I call the sense of order.

(p. 3

For Gombrich, this sense of order is at work when we discern patterns, as
well as when we make them. The human propensity to make decorative
patterns, the special relationship of patterning to mathematics in general
(and to geometry in particular) and the intentions and tools of the pattern-
makers are surveyed in Gombrich’s generative study. The effects of such
deliberately contrived instances of “ordered profusion” (p. 16) on the human
mind, their relationship to the more representational figures of traditional
iconography (see also Chapter 9 in our book) and even an extrapolation
into the realm of auditory phenomena and music were likewise explored in
the remainder of this important work.
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Like Bateson, Gombrich acknowledged a proclivity in thinking about
patterning towards the fixed, readily progressive patterns we all acknow-
ledge as central cases of the concept. But, also like Bateson, Gombrich saw
the importance of relating the concept to the more open and less easily
specified ordered arrangements that may, in Bateson’s image, ‘dance’ for us
in more complex contexts:

Here the sense of order is given free rein in generating patterns of
any degree of clarity or complication. We cannot prescribe to the
designer whether he should aim at restlessness or repose. The
West generally preferred symmetry, the Far East more subtle forms
of balance. (p. 146)

Still other patterns, Gombrich continued, “explore the instability derived
from the wealth of different interpretations the design offers to the search-
ing eye” (p. 160). It may be noted that this brings us very close, of course,
to the world of the abstract fine artist whose works may often display such
an ordered instability. This is a kind of patterning whose inner logic resists
description in terms of readily identifiable symmetries and regularities, but
which nonetheless achieves an aesthetic stasis of unity and purposeful
integrity.

Although approaching the idea of pattern from the ostensibly dissimilar
subject matters of visual art and biology, both Gombrich and Bateson may
be seen to have opened the concept of ‘pattern’ for use as an intellectual
tool for discerning and representing less than fully determinate regularities.
The abstract design of rectilinear planes in a painting by Piet Mondrian or
Theo van Doesburg and the apparently haphazard splashes of paint on a
Jackson Pollock canvas may, likewise, both be perceptually interrogated in
terms of pattern (see Walter, 2001; Pimm, 2001; Taylor, Micolich and Jones,
1999) — just as Bateson’s homological correspondences may be conceptu-
alised within the same connecting pattern as the human mind itself.

Beauty Bared

A mathematician, like a painter or a poet, is a maker of patterns.

If his patterns are more permanent than theirs, it is because they

are made with ideas. A painter makes patterns with shapes and

colours, a poet with words. [...] A mathematician, on the other

hand, has no material to work with but ideas, and so his patterns

are likely to last longer since ideas wear less with time than words.

(Hardy, 1940, pp. 84-85; italics in original)
In asserting that poets, painters and mathematicians are all makers of pat-
terns, Cambridge analyst and number theorist Godfrey Harold Hardy iden-
tified a common element between mathematics and the arts. If the beauty
arising from the patterns of verbal and visual materials in art is more palpa-
ble, Hardy further proposed, the intellectual beauty of mathematics is of a
far more durable kind. In choosing to focus on the relative longevity of the
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two types of beauty, rather than their respective and comparative values,
Hardy here resisted the temptation at least as old as Pythagoras to find in the
beauty of mathematics the very highest order of aesthetic interest possible.

Bertrand Russell, however, had no difficulty in considering the beauty
of mathematics to be “supreme”. Considered correctly, Russell (1917) main-
tained, mathematics may be seen to possess “a beauty cold and austere, like
that of sculpture”. But this “sublimely pure”, “stern perfection” has no “appeal
to any part of our weaker nature”. It is “without the gorgeous trappings of
painting or music” (one is almost tempted to read “uncontaminated by” for
“without”) and routinely produces a beauty that “only the greatest art can
show” (p. 57).

Perhaps the finest expression of this strong view of mathematical beauty
occurs, somewhat ironically, in that more fragile medium, poetry. Edna St.
Vincent Millay’s (1956, p. 605) sonnet, Euclid alone bas looked on beauty
bare — from which the heading of this section is derived — is well-known
and much admired by mathematicians. This admiration is not too difficult to
understand, for it is indeed a fine poem; nor does the poet’s presentation of
the mathematician in passionate, grandly heroic terms create too many tex-
tual problems for this group of readers. Indeed, the poem is almost math-
ematical itself in the elegance, lucidity and economy of means by which the
special beauty of mathematics is demonstrated. Let those who merely “prate
of Beauty hold their peace”, Millay urged, for theirs is the mundane percep-
tual sphere of “dusty bondage” where “geese gabble and hiss” in muddled
confusion about the true nature of aesthetic value.

Happily, those distorted views of beauty, dependent as they are on the
frailties of light reflecting on mutable things, have been transcended by
Euclid in whose Elements light itself is “anatomized”. This human glimpse
of “light anatomized” or beauty liberated from the constraints of perceptual
distortion is indeed a glimpse of Aphrodite, the goddess of Beauty herself,
whose “massive sandal set on stone” was felt only at the moment of Euclid’s
inspiration. Empowered by this powerful vision, succeeding generations of
mathematicians may as “heroes seek release [...] into the luminous air”.

As the substance of poetic value here is verbal expression, one may find
an additional irony. This poem provides a vivid mythopoeic description of
the unique beauty possessed by mathematics, one that would be impossible
to provide, Bertrand Russell notwithstanding, in the admittedly more pris-
tine terms of mathematical expression itself.

‘Pattern’ in Art and Mathematics

Among mathematicians, therefore, the notion of pattern is frequently used
in describing the essential core of their activity. To Hardy’s and Russell’s
may be added the voice of Warwick Sawyer (1943, 1955, 1970) who wrote
extensively on this theme. The interpenetration of aesthetic and formal
considerations in these descriptions, an approach I have already shown to
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characterise Gombrich’s view of art and Bateson’s view of nature, has also
played an important part in the long history of mathematicians’ thinking
about mathematics.

Also among mathematicians there is a growing interest in the less-fixed
possibilities of pattern that Gombrich and Bateson alerted us to. Although
one might be tempted to see less scope for the notion of indeterminate pat-
tern in a field in which inexorable proofs are pursued so relentlessly, and
on occasion with so much drama, contemporary mathematicians would be
quick to agree that indeterminate or ‘fuzzy’ patterns are now a vital part of
mathematical inquiry. The mathematical fact that the number & is not alge-
braic but transcendental, for example, does not preclude the search for
‘themes’ within and among the myriad digits stretching out seemingly inde-
terminately beyond the decimal point (see Chapter 1 for more detaiD).

The contemporary mathematician Keith Devlin (1994) has traced the
roots of the mathematician’s proclivity to talk of pattern to the ancient
Greeks, for whom mathematics had not only intense intellectual interest but
aesthetic value and spiritual significance as well. By focusing on the activi-
ties of mathematicians, including historical examples of the doing of math-
ematics, his book Mathematics: the Science of Patterns is more than an intro-
duction to the subject matter of mathematics as formally represented. It is
an attempt to capture the very essence of mathematical inquiry in terms of
the concept of pattern itself.

Devlin characterises each branch of mathematics as the exploration of
pattern: the patterns of number and counting as the subject matter of number
theory, while geometry studies patterns of shapes. Devlin also identifies those
patterns of reasoning that underlie mathematical logic, while those of motion
form the subject matter of calculus. Patterns of position and closeness comprise
the study of topology and probability theory attends to patterns of chance.

If by ‘science’ of patterns, however, Devlin means the systematic explo-
ration and representation of pattern possibilities, it can easily be shown that
art likewise explores pattern possibilities. These explorations are often quite
systematic (as, for instance, in the case of Monet’s studies of Rouen Cathedral
under a range of daylight conditions, the mosaics of the Alhambra mosque
in Granada or Bach’s Art of the Fugue) and these possibilities are likewise
represented in publicly accessible forms.

One might counter that the artist is more concerned with the ‘creative’
exploration of pattern possibilities than the mathematician, but few math-
ematicians would fail to acknowledge the central role that creativity plays in
genuine mathematical activity. Providing a more detailed characterisation of
the various activities routinely undertaken by mathematicians when doing
or studying mathematics may help to clarify the issue, particularly if these
activities are compared with those routinely practised by people making or
studying art.

Devlin is certainly right in claiming that mathematicians are intrigued by
patterns. Mathematicians often:
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e wonder at the patterns discerned in experience;

e analyse patterns — noticing, noting, associating patterns and
elements of patterns;

e represent patterns, i.e. describe them in formal terms;

* manipulate patterns;

e create novel or original symbolic patterns;

e imagine the possibilities of patterns;

e connect pattern possibilities, i.e. analyse, classify and theorise
patterns, thereby creating larger, more comprehensive patterns.

Mathematicians also:
e demonstrate, i.e. prove (or describe) the necessity (or nature) of
patterned relationships using other patterns, viz. the patterns of
logical operations.

In so doing, mathematicians:
e compute, i.e. perform operations on patterned relationships using
other patterns, viz. arithmetical, algebraic, and so forth.

Finally, mathematicians:

e appreciate the historical and contemporary achievements of other
mathematicians;
e cvaluate the achievements of other mathematicians.

While there is no gainsaying that mathematicians study patterns, many of
the activities specified above may also be noted in the arts. Although their
interest also embraces other aspects of perceptually interesting phenomena,

artists or scholars in the arts are likewise intrigued by patterns. They:

e wonder at the patterns, sights, textures, sounds and apparent
emotional vitality of perceptual phenomena;

e analyse patterns: noticing, noting, associating patterns and
elements of patterns;

e represent patterns, i.e. embody them in sensory terms;

o manipulate patterns using different media and materials;

e create novel or original expressive patterns;

e imagine the possibilities of patterns;

e connect pattern possibilities, i.e. conceptualise and theorise
patterns creating larger, more comprehensive patterns.

Artists or arts scholars also:
e attempt to understand the nature and possibilities of patterned
relationships using other patterns, viz. those of logical operations.

In so doing, artists or arts scholars also:

e develop stylistic ‘vocabularies’ of patterns, using ideas, media,
techniques and materials, as well as other aspects of aesthetic
interest such as sensory and expressive qualities;

e appreciate the historical and contemporary achievements of
other artists and arts scholars;

e cvaluate the achievements of other artists and arts scholars.
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At one level, therefore, it would seem that certain root activities that are
common to both domains may be detected in the spheres of both practic-
ing mathematicians and practicing artists or arts scholars. Although the ends
or purposes of these common activities are obviously distinct when under-
taken in either a mathematical or an artistic context, they nonetheless share
some very significant core components.

In doing calculus, for instance, it may be said that the mathematician is
exploring patterns in motion and time. But composers, choreographers,
film-makers, poets and other artists likewise explore patterns in motion and
time. Of course, in doing calculus, the mathematician does many other
things the artist does not do and the artist likewise does things in the arts
that the mathematician does not do: but at one level they do nevertheless
both explore patterns in motion and time. Similarly, in making a photograph
or an oil painting, the artist explores patterns of shapes and surfaces, of
edges and proximities — activities not so unlike those of the geometer and
the topologist.

Although the ends or purposes of mathematical and artistic activities
are distinct — with the mathematical centrally concerned with manipulable
symbolic representations and the artistic centrally concerned with represen-
tations in sensory terms — underlying those differences some significant
commonalities may be detected. In so far as actively engaging the subject
matter of patterns is concerned, the arts would appear to have as strong a
proprietorial claim on the concept as mathematics.

In defining mathematics in terms of the subject matter of patterns, there-
fore, it would seem that Devlin’s specification raises some important ques-
tions. At the actual level in which the commonalities discussed above occur,
it would appear that the mathematical and the aesthetic are both embedded
in a very special relationship outside Devlin’s definition (or better, perhaps,
underneath it), one that warrants further analysis. Happily, in reminding us
very early in the book of the proclivity of mathematicians to define them-
selves and their inquiries by means of the language of patterns, pattern-
making and beauty, through the words of Hardy and Russell already quoted
above, Devlin has oriented his discussion within a tradition that reaches
back to the very origins of systematic mathematical demonstration among
the ancient Greeks.

In so doing, and especially in view of his reliance on ‘pattern’ as the
essential component of mathematical study, Devlin invites a reconsideration
of those ancient issues surrounding the nature of the mathematical that may
help in answering the questions provoked by the ease with which art and the
aesthetic insinuate themselves into his definitional stance on mathematics. I
will, therefore, pursue further the principal sources of the Greek, especially
the Pythagorean, preoccupation with the interconnectedness of the math-
ematical and the aesthetic — through the mediating force of patterns.
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Pythagorean Pattern

Little is known about the historical Pythagoras, apart from the fact that he
was born towards the middle of the sixth century BC on the island of Samos.
An Tonian Greek, he emigrated to southern Italy where he founded a society
with religious, philosophical and possibly political interests. That society, the
Order of the Pythagoreans, was secret and it is probably for that reason that
little was actually written down by the Pythagoreans themselves. By the
middle of the fifth century BC, the members of the society had dispersed
throughout the Greek-speaking world and their founder had become the
object of considerable legend and lore (see, for example, von Fritz, 1975).

With one significant exception — the fragments of Philolaus of Croton —
whatever accounts we do have of Pythagoras and the Pythagoreans, espe-
cially with regard to mathematics, are often tendentious. These descriptions
were written by later philosophers unsympathetic to (their versions of)
Pythagorean doctrines (Aristotle and the Aristotelians) or by others (Plato
and the Platonists) whose elaboration of these doctrines moved them into
philosophical systems with significantly different underlying presumptions
from those the Pythagoreans may actually have held themselves.

It has generally been considered reasonable, however, to ascribe to
Pythagoras and the earliest Pythagoreans at least the following:

e the mathematical theorem bearing Pythagoras’s name, equating the
sum of the squares on the two shorter sides of a right triangle and
the square on its hypotenuse;

e the discovery that V2 (the ratio of the side and diagonal of a square)
is ‘irrational’ (alogos, i.e. indeterminate);

¢ the introduction of the doctrine of metempsychosis (the transmigration
of souls) into Greek thinking, a view respecting immortality that
originated prehistorically in Indian thought and culture;

e a mystical apprehension of the pervasiveness of number and harmony
in the substance and structure of the universe (including what we would
now separately identify as mathematics, music theory and astronomy).

The first two items have more directly mathematical import. With regard to an
apparently passing detail in the first item in this list, the difference between
the preposition ‘on’ (as used here) and the now more common preposition
‘of reflects a world of mathematical difference.

Squares ‘on’ sides of triangles signal a perspective whereby the figures
that are provably ‘equal’ are geometric squares (and such proofs often
employ finite dissection methods, discussed briefly in Chapter 2). The prepo-
sition ‘of reflects a twenty-four-hundred-year later sensibility, whereby
lengths are taken to be real numbers and the theorem involves the arithmetic
operation of numerical squaring being applied to them (see Fowler, 1985a,
1985b). Richard Dedekind (1872/1963) himself wrote about his sense of
the significant challenge of establishing secure proofs for results involving
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arithmetic operations with irrational numbers:

Just as addition is defined, so can the other operations of the so-
called elementary arithmetic be defined, viz., the formation of dif-
ferences, products, quotients, powers, roots, logarithms, and in this
way we arrive at real proofs of theorems (as, e.g., V2 . V3 = vV6),
which to the best of my knowledge have never been established
before. (p. 22)

Likewise, in relation to the second item in the earlier list, many refer (as I
deliberately did here) to the Pythagorean result as ‘proving that V2 is irra-
tional’. However, to do so implies a dramatically different conception of
number, immeasurably far from that which the best sources available
(admittedly few and far between) could remotely justify.

With regard to the latter two items listed earlier, whether viewing the
spiritual sphere as an ordered arrangement of appropriately recycled souls
passing successively, and fittingly, through various forms of life or viewing
reality as ultimately to be revealed in mathematically harmonious concepts,
the notion of pattern permeated Pythagorean thinking.

Number as pattern

A key to understanding the significance of pattern among the Pythagoreans
is to be found in the actual numerals used by the early Greeks, for in con-
sidering the notational system used by these ancient mathematicians, the
distinctiveness of the early Greek conception of number may be inferred.
There were in fact two very different systems of numerical notation at work
among the ancient Greeks. Karl Menninger’s (1958/1969) Number Words
and Number Symbols informs us that the earlier of the two, “arranged the
numbers in order and grouped them like the Roman numerals” (p. 268).

[These so-called] row numerals [...] are patterned on a decimal 10-

grouping interrupted by a quinary 5-grouping. The units are rep-

resented by vertical strokes. (p. 268)
In the fifth century BC, there appeared a new, more “erudite system of
alphabetical numerals” (p. 268). But this system “was not adopted as the
official system of numerals in Athens until the 1st century B.C.” (p. 268). The
Greek alphabetical numerals made use of the twenty-four letters of the
Greek alphabet augmented by three more. The first nine stood for 1 to 9,
the next nine for 10 to 90 and the final nine for 100 to 900. A comma was
used to mark the ‘thousands’ place. (In passing, note how such double duty
for letters as components of words and as ‘digits’ of numbers certainly
makes for a greater plausibility for numerology.) One disadvantage of this
non-place value system compared with our current place-value system is that
there is no symbolic link among, say, the symbols for 3, 30 and 300 to exploit
algorithmically. However, perhaps a more pertinent question is to ask in
what ways were the new numerals to be preferred over the older ones?
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Their advantage over the old row numerals can hardly be missed;
they represent an enormous simplification, since they use only one
sign for each unit (rank) [...] another advantage of these alphabet-
ical numerals, in fact their most important advantage: With these
numerals it was possible at long last to make computations in writ-
ing, without having to use an abacus. (Menninger, pp. 271-272)

While the advantage of written computation with numerals alone, as
opposed to manipulative work with physical representations of numbers,
has frequently been overestimated (see Rotman, 1987, or Tahta, 1991), it cer-
tainly altered the relationship of the user to the trace of ‘ordered plurality’
(see below) that resided in the older numerals. While the alphabetical
numerals permitted more robust written calculations, they also obliterated
the underlying iconic pattern that in the older system linked numerals with
palpably isomorphic configurations of discretely ordered units and groups
of units. What the older numerals also provided by means of their config-
ured patterning of quantities was something quite important to the early
Greek and Pythagorean conception of number.

Arithmos

In his landmark work, Lore and Science in Ancient Pythagoreanism, Walter
Burkert (1972) cautioned that arithmos (pl. arithmoi), the early Greek term
widely used for number, should not be confused with more modern con-
ceptions of number:

ApwBuog [Arithmos] is always a whole number, and tied up with the

actual procedure of counting. Thus it is closely connected with

things, and in fact is itself a thing, or at least an ordering of things.

AptBuog means a numerically arranged system, or its parts. (p. 265)
This distinction has been well acknowledged in the traditions of classical
scholarship and Burkert noted a somewhat earlier and quite vivid account by
Oskar Becker (1957), who rendered arithmos into the German term geord-
nete Mannigfaltigkeit (‘ordered plurality’) (pp. 21-22). He compared this con-
ception with related contemporary notions like ‘couple’, ‘dozen’ and ‘score’.
Subsequently, the historian of mathematics David Fowler (1999) claimed:

a much more faithful impression [than cardinal numbers] of the very
concrete sense of the Greek arithmoi is given by the sequence:
duet, trio, quartet, quintet, ... [...] These numbers are ordered by
size (‘a quartet is bigger than a trio”), and can be added by concate-
nation (‘a trio plus a quartet makes a septet’) and subtracted ‘the less
from the greater’. The arithmoi also appear in other forms, such as
the adverbial sequence: once, twice, three-times, four-times, ... [...]
I shall refer to them as ‘repetition numbers’. (pp. 13-14)

Viewing number, as the Pythagoreans must surely have done, as ordered
plurality shows how central the notion of ordered arrangement or pattern
was to their conception of number. It also helps explain a number of
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Pythgorean positions, such as their view that the universe is revealed in
numbers (discernible patterns or ordered arrangements), the intense inter-
est in the collateral geometric and arithmetic branches of mathematics (as
evidenced, for instance, by the fascination with the properties of ‘polygonal’
numbers, as well as the phenomenon of incommensurability) and, indeed,
their apprehension of the mystical properties of numbers-in-things.

This serious mathematical and spiritual interest in number as pattern is
indicated by the fact that the Pythagoreans “devoted great efforts to the
study of figurate numbers: triangular, square, pentagonal, and so on” (Gazalé,
1999, p. 11). Indeed, such figurate numbers were “represented geometrically
by triangles of stones laid on the ground” (Grattan-Guinness, 1997, p. 46).
The tetraktys, the pattern representing the fourth of the triangular numbers,
10, was “deemed so mystical by Pythagoras’s followers that they adopted it
as the emblem of their secret brotherhood” (Gazalé, 1999, p. 12).

However, there was plausibly also a far more subtle numerical pattern-
ing through arithmoi at work, arising in the context of incommensurability.
Historian Ivor Grattan-Guinness (1997) has provided an account of the pur-
ported Pythagorean discovery with regard to incommensurability that will
further help in understanding these fascinations:

Another famous finding attributed to the Pythagoreans is usually
formulated thus: The number V2 is irrational; but this formulation
is anachronistic in various ways. Firstly, “(ir)rational” have become
normal adjectives in European languages, due to Latin translations;
but they give a wrong impression, and the Greek words “(a)logos”
are better rendered as “word(less)”, and “ar(rhetos)” as “(in)expres-
sible”. Secondly, the theorem concerns numbers, whereas when
the Greeks referred to it (which was not often) they used geomet-
rical phrases such as “the incomensurability of the side and the
diagonal” of a square. (p. 48)

In light of Fowler’s (1999) reconstruction of a pre-Euclidean mathematics
based centrally on a notion of ratio (another meaning for the Greek word
logos), as mentioned earlier alogos could simply mean “without ratio”. Yet,
Fowler went on to argue that if ratio did indeed refer to the sequence of
arithmoi (his ‘repetition numbers’) generated by the process of anthy-
phairesis (continued subtraction in turn, ‘the lesser from the greater’ — what
we think of as the Euclidean algorithm), then there is a ratio between the
side and diameter of a square. Admittedly, it is an infinite sequence of arith-
moi, but it is entirely predictable and provably regular.

Earlier mention was made of the tetraktys as an emblematic configuration
for the Pythagoreans. However, other accounts suggest a different symbol
playing a similar role for them, namely the pentagram (a regular pentagon
with all diagonals drawn in). The side and diagonal of a regular pentagon are
also incommensurable (indeed, they are always in the golden ratio) ¢:1 = sz
With regard to the process of anthypbairesis applied to the side and diagonal
of the pentagon, we obtain the simplest infinite repeating pattern of arithmoi
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‘once, once, once, once, ...” — simpler even than that between the side and
diagonal of a square, which produces the sequence ‘once, twice, twice, twice,
twice, ...”. (For more detail, see Fowler, 1999.)

Incommensurability does not entail indeterminacy. To say that the side
and the diagonal of a square are incommensurable is, in part, to claim that
neither may be expressed fully in units or perfectly equivalent parts of the
other. But much can be ascertained about the relationship between the two.
Notwithstanding Aristotle’s complaint that the Pythagoreans failed to sepa-
rate number from the things numbered, it seems wholly plausible to suggest
that the Pythagoreans were not confused at all. Even the much-repeated tale
of the expulsion and murder of the Pythagorean Hippasus for revealing this
secret to the outside world and the concomitant Pythagorean ‘crisis’ of
incommensurability could be a complete fabrication. [1]

The Meaning of Pattern

Within the context of profound possibilities that the Pythagoreans explored
in patterns, it must count as one of the great ironies that the concept of ‘pat-
tern’ itself is often viewed apologetically as a weak, catch-all notion unsuited
for serious theoretical investigation. Even Gombrich, whose use of the con-
cept has been shown in fact to be so skilled, felt compelled to acknowledge
(in The Sense of Order) that he used it only by default, unsuccessful as he
was in locating a more precise term with which to articulate his subtle
points:

There remains that jack-of-all-trades, the term ‘pattern’, which I
shall use quite frequently though not with a very good conscience.
For the word is derived from Latin pater (via patron), and was orig-
inally used for any example or model and then also for a matrix,
mould or stencil. It has also become a jargon term for a type of
precedent and has therefore lost any precise connotation it may
have once had. (1979, p. x)

But is the absence of precise connotation a weakness or may it actually be
a sign of strength? Gombrich quickly consoled himself with the following
admission:

Luckily it is a mistake to think that what cannot be defined cannot
be discussed. If that were so we could talk neither about life nor
about art. (p. x)

Of course, there are many other examples of such powerful words that defy
precise definition — or better, that defy, or at least resist, what could be
called determinate definition. To call words like ‘art’, ‘life’ or ‘beauty’ vague
is not to demean, but rather to acknowledge that the concepts they mark
out resist formulation in propositionally definitive lexical terms. Such deter-
minate definitions, as a form, aspire to identify sets of necessary and suffi-
cient conditions for any legitimate use of a term.
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Often, however, especially in a living language, concepts not only con-
nect in linear, logical ways but also enter into complex relationships with
other, related notions, and metaphorically with yet others still. This is the
case with many of the most important concepts, until they become quite
thoroughly enmeshed in complex and interconnected patterns of human
meaning and purpose.

Philosophers, following Ludwig Wittgenstein (1953/1963), sometimes
refer to such concepts as ‘open’ and point to the notion of ‘family resem-
blances’ (developed by Wittgenstein in his Philosophical Investigations) as a
way of showing how words may still have quite sound meanings, even if
their meanings cannot be represented definitionally in neat, propositional
terms. Wittgenstein illustrated this possibility with the notion of ‘game’. One
may discern a regularity in its uses, even though there is no common set of
necessary and sufficient conditions to be discerned in its various applica-
tions. The concept underlying such words may in fact be a very complex
one in respect of:

lits] complicated network of similarities overlapping and criss-
crossing: sometimes overall similarities, sometimes similarities of
detail. (p. 32)

But this concept may also be quite potent with respect to the thematic
threads that may be inferred from examples of its use:

And the strength of the thread does not reside in the fact that some
one fibre runs through its whole length, but in the overlapping of
many fibres. (p. 32)

Just as a given pattern may be discerned as a pattern minus a determinate
set of properties common to all its related examples, it is likewise the case
that the concept of ‘pattern’ itself may be quite meaningful while missing a
single set of necessary and sufficient defining conditions that capture all its
legitimate uses. It is for this absence of a clear set of defining conditions that
Gombrich worried about relying upon the concept of ‘pattern’ in his theo-
retical discussion. With the help of Wittgenstein, we can see why it is for
precisely the same reason that Gombrich need not have be so concerned.

However difficult or impossible it might be to provide a determinate
definition for ‘pattern’; it is still possible, again following Wittgenstein, to
attempt to identify one or two of the more important themes or ‘threads of
similarity’ that run through ranges of its use. Such an attempt is made in the
next paragraph. It is important to note that no claim is made that in this
characterisation the theme identified is at work in all legitimate uses of the
term, nor that one may not use the concept of ‘pattern’ legitimately if it is
absent. Notwithstanding these caveats, I do hold that the theme identified is
consistent with all the uses of ‘pattern’ that this chapter has considered.

At least in so far as a provisional account of pattern is concerned, there-
fore, to discern a pattern is to see or consider something as part of an
ordered arrangement such that it is possible to identify at least one of the
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principles constituting that order. To say an arrangement is ordered is to
claim that the relationships among the arranged phenomena are not arbi-
trary, that the arrangement may be at least partially described in terms of
one or more relational principles or themes.

In this respect, patterns need not be fully describable, their ordered
arrangements need not be completely determinate. A pattern may be dis-
cerned across a number of phenomena (like a pattern in historical events)
or within a given phenomenon (like the pattern in a specific work of art).
Moreover, the determinate patterns pursued in most of the branches of
mathematics in Devlin’s account are reflected in this theme, as are the more
open-textured applications of the concept in the work of Bateson and
Gombrich. Bateson presented a challenge by characterising the pattern
which connects as an unfixed pattern, “primarily (whatever that means) a
dance of interacting parts”. In an important sense, the theme identified
above, in providing an accompaniment to this dance, can help complete
Bateson’s thought.

Finally, and most interestingly, this theme assists in locating a fresh epis-
temological perspective on the Pythagorean preoccupation with number as
ordered plurality, one that may ultimately — as will be suggested in the
remainder of this chapter — have enormous contemporary significance.

Pattern for Philolaus

Unlike ‘order’, which may often be considered in almost exclusively abstract
and formal terms, there is something palpable about ‘pattern’ that reaches
directly into the world of the senses and experience. The fact that the
Pythagoreans most likely saw one of our more abstract contemporary con-
cepts (number) in the positive terms of patterned entities tells us much
about their view of mathematics and the world. It helps explain, for
instance, their serious, even mystical, preoccupation with number — as
ordered plurality — in the very fabric of the knowable world and their efforts
to find the principles unifying that fabric in the mathematical-aesthetic ratios
of harmonic intervals.

One of the most impressive views commonly attributed to these early
philosophers, therefore, is the belief that the universe reveals itself to us in
terms of number and principles of harmonious arrangement that are them-
selves expressible mathematically. Put that way, the Pythagorean position
would appear a paradigmatically modern view, although it is customary to
trace back the provenance of the modern view respecting the efficacy of
mathematics in describing physical reality to Galileo’s imagistic claim that
the universe is a book written in the language of mathematics.

Galileo’s observation does indeed mark a turning point in the develop-
ment of a genuinely scientific method, but perhaps more credit should be
given to the Pythagoreans in this regard. Certainly their work proceeded
within a framework of metaphysical presumptions respecting the ultimate
nature of reality, one that we now may view as quasi-religious or mystical.
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Nevertheless, many contemporary philosophical investigations into the
foundations of scientific method have shown that all science proceeds on
certain metaphysical presumptions that lie outside the empirical reassur-
ances of either verifiability or falsifiability.

What can be said, what can be shown

Moreover, it is likely that the ultimate reality of the Pythagoreans was viewed
by them as unknowable in principle by human beings. A very modern view
itself, this perspective is much in the spirit of Wittgenstein’s (1922/1958)
proclamation at the very end of the Tractatus Logico-Philosophicus: “Whereof
one cannot speak, thereof one must be silent” (p. 189). Wittgenstein held his
own metaphysical achievement in that work to be a heuristic trope, a figu-
rative ‘ladder’ that could be discarded once it had done its work:

My propositions are elucidatory in this way: he who understands
me finally recognizes them as senseless, when he has climbed out
through them, on them, over them. (He must so to speak throw
away the ladder, after he has climbed up on it.) He must surmount
these propositions; then he sees the world rightly. (p. 189)

In Wittgenstein’s logically austere foundations of science, therefore:

There is indeed the inexpressible. This shows itself; it is the mystical.

(p. 187, italics in original)
There is indeed the supra-empiricist and supra-conceptual metaphysical
framework that shows itself figuratively, indeed poetically, through sets of
admittedly ‘senseless’ propositions. In the Tractatus, as in that other master-
piece of modernist philosophy of science by A. J. Ayer (1952), Language,
Truth and Logic, the inexpressible insights enabling scientific inquiry and
other non-empirical or non-tautological insights could be shown figuratively
and apprehended viscerally, even though they could not be articulated in
propositional form.

As a final, modern touch, we shall soon see that the claims made by the
Pythagoreans for the pervasiveness of ‘number’ in the universe — as know-
able by human beings — may plausibly be taken to relate to the positive,
human reality of experience and perception. They may, in fact, be intended
to relate to discoverable, empirical patterns.

The Pythagoreans and Philolaus

Within a largely a-textual tradition, there is one piece that has come down to
us in fragments — the first written by a genuine Pythagorean, one Philolaus
of Croton. Tt provides tantalising and vivid glimpses into the nature of these
Pythagorean views and the crucial role the concept of pattern plays therein.
In light of the suggestion just offered that Philolaus and the Pythagoreans
anticipated the modern view of Galileo on the role of mathematics in under-
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standing the universe and other modern perspectives, it is more than inter-
esting to note that Copernicus himself noted that the “stimulus for his revo-
lutionary cosmological system” came from ancient sources and that “in this
connection he twice names Philolaus” (Burkert, 1972, p. 337). Indeed, at the
time of Copernicus, and for a good time thereafter, the Copernican system
itself was referred to as astronomia Philolaica or astronomia Pythagorica.

It is not with these most prescient cosmological views, however, that
this chapter is concerned, but rather with two short fragments (numbers 4
and 6) that turn on the nature and possibility of human knowledge. In con-
sidering these Pythagorean fragments, some interpretations of Philolaus and
the Pythagorean Order will be offered.

Philolaus of Croton
Of Philolaus, Walter Burkert wrote:

Practically nothing is known of his life. His home was Croton, or
maybe Tarentum, and he spent some time in Thebes — all the rest,
what little there is of it, is demonstrable embellishment or simple
misunderstanding. (1972, p. 228)

To this dearth of factual knowledge surrounding the historical Philolaus may
be added the traditional problems associated with early Greek thinking.
Such fragmentary textual evidence as we do have often comes down to us
tendentiously, cited by other writers with their own powerful philosophical
presumptions to propound or defend. In addition to this textual morass,
there also are long, minutely detailed and intellectually impressive debates
among scholars concerning the authenticity as well as the interpretation of
each part of the fragmentary record. Such debates are well beside the point
of this exploratory effort, except to assist in noting that in a textual environ-
ment that admits of so many possible interpretations, any plausible interpre-
tation may usefully find a place.

Carl Huffman (1993) places Philolaus solidly within the context of pre-
Socratic philosophy. The Tonian philosophers Thales, Anaximander and
Araximenes, those famed sixth-century originators of systematic, speculative
inquiry into the nature and origins of the physical world, sought to identify
the basic principles at work in the world in a properly philosophical way.
They pursued their inquiries independently of any religious or mythopoeic
explanations and developed their positions according to defensible rational
standards.

Each of these three posited an underlying ‘stuff’ out of which all worlds
must arise. For Thales, this primary material was held to be water; for Araxi-
menes, it was air; for Anaximander, it was boundless, indeterminate apeiron
from which the elements are formed, but different from any of them.
Opposition, change and transformation become the sustaining principles
within worlds as systems, with things as they appear to us in this world
being simply mutable expressions of more primary materials. To the mutable
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physical reality of their cosmology, the Tonians also challenged the religious
and cultural ethnocentrism of the Greeks. Xenophanes noted sharply the
ways in which different races pictured gods in their own distinctive images
and, even more tellingly, the manner in which projected an anthropomor-
phic structure onto their identity.

Philolaus was, however, agnostic regarding these sorts of philosophical
conclusions. While his cosmology included a central fire around which the
earth orbits, Philolaus made no claims for fire as the universal Urstoff. What
Philolaus offered epistemologically was, in a remarkably modern vein, a view
on the limitations of human knowledge. The core of fragment number 6, in
Huffman’s definitive 1993 translation, presumes that:

Concerning nature and harmony the situation is this: the being of
things, which is eternal, and nature in itself admit of divine and not
human knowledge. (p. 123)

More anticipations of the modern?

Nature in itself — the face of reality as it would be configured in the mind
of God — is unknowable to human beings. What Kant, more than two thou-
sand years later, would call the noumenal world, the world of things-in-
themselves, was, for Philolaus, as it would be for Kant, not susceptible to
human representation. What humans do know, what it is possible for us to
know — for Kant — are the phenomena as structured by the cognitive ‘scaf-
folding’ comprising the bounds of human sense, structures of reason involv-
ing those a priori concepts immanent in the human mind itself. Given the
ways in which modern ideas seem to be prefigured in the thinking of
Philolaus and the Pythagoreans, one might well wonder if some early com-
parable version of the Kantian scaffolding was at work among them as well.
The speculation that this chapter is exploring is affirmative in that regard and
offers — as a plausible, provisional hypothesis only — that the pseudo-Kantian
scaffolding in Philolaus involves the concept of number or ordered plurality.

The importance of any cognitive scaffolding theory in our time of rap-
idly expanding interest in embodied cognition is manifest (see, for example,
Lakoff and Nufez, 2000). In these contemporary terms, in which the locus
of mind increasingly is to be discerned in the viscera and physiology of
human beings, we should have no difficulty in understanding a pseudo-
Kantian position on intellectual scaffolding. Unlike Kant, who viewed it as
a disembodied feature of pure reason, we might more comfortably express
it scientifically in terms of genetically achieved physiological and especially
neuro-physiological predispositions that undergird our capacity for percep-
tion and language.

In an embodied cognitive model, this scaffolding would be seen to sup-
port our ability to discern and represent phenomena in ways our specific evo-
lutionary history has found advantageous. Two key ingredients in any such
embodied predisposition must surely be captured in Kant’s synthetic a priori
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position on causality. Human knowledge and action proceed on the principle
that every event has a cause, a form of efficacious connective tissue. However,
those causal links cannot, as Hume, Kant and many other philosophers have
maintained, be empirically discovered, observed or conceptually deduced,
apart from a theoretical framework whose explanatory concepts provide
whatever causal efficacy may be held to do the linking.

As the eminent philosopher of science Norwood Hanson wrote in 1958:

Causes certainly are connected with effects; but this is because our
theories connect them, not because the world is held together by
cosmic glue. (p. 64)
In the properly agnostic vein of Kant and Philolaus, Hanson went on to
observe:

the world may be glued together by imponderables, but that is

irrelevant for understanding causal explanation. (p. 64; italics in

original)
An embodied presumption of caused events is likewise not so difficult to
understand in biological terms. It is difficult to imagine the human species
or its many predecessor species having much viability without a biological
predisposition to discriminate among events as possible effects and to dis-
criminate among specifiable phenomena as potential causes. Hence, the
propensity to represent the world in terms of discrete entities linked cogni-
tively and meaningfully by organising concepts would likewise appear to
be an important part of our evolutionary strategy. In these terms, therefore,
one might well be tempted to see enormous contemporary significance in
Philolaus’s fourth fragment:

And indeed all the things that are known have number. For it is
not possible that anything whatsoever be understood or known
without this. (in Huffman, 1993, p. 172)

Number as Cognitive Scaffolding

For Philolaus, therefore, everything that is knowable has number. Recalling
that by number Philolaus meant ordered plurality, this means in one impor-
tant sense that everything knowable is patterned. In order to be able to
know, we need to be able to identify a range of phenomena as discrete (i.e.
denumerable) phenomena of a certain kind. Regardless of whether or not
reality is ultimately one integral ‘stuff’ in the mind of God, in order for
human beings to achieve any efficacy in our environments, we need to be
able to distinguish individual phenomena of one or another kind.

These phenomena, better, these sets of phenomena, therefore have
number. To know them is to discern the pattern at work among them, that
is to understand the principle(s) by which they are ordered. Similarly, to
have a concept is to have discerned a pattern in the uses of an expression.
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Hence, everything known or knowable must have number, must exhibit an
ordered plurality. And so for Philolaus, the mathematical — in that special early
Greek sense in which the mathematical and the aesthetic seem to commingle
so productively — is at work in all human knowledge. As a final speculation,
is it plausible to suggest that in the Pythagoreans’ views on number and
knowledge, we may discern a fundamental commonality between the math-
ematical and the aesthetic of enormous potency? Might this commonality have
been for them the cognitive infrastructure or ‘scaffolding’ for knowing?

Surely, there is a special sub-pattern to be discerned synoptically in
mathematics and art. If mathematics may productively be viewed as the cre-
ative exploration and formal representation of pattern possibilities, art may
equally and symmetrically be viewed as the creative exploration and sensory
representation of pattern possibilities. Are we dealing with two ‘subjects’ or
‘disciplines’ here, like history and geography, or with distinctive expressions
of a common patterning proclivity, scaffolding or cognitive infrastructure? Is
it this common patterning proclivity that enables us to discern and to make
patterns, either physically or symbolically?

To view knowledge as pattern on this kind of account is to view history,
geography, science, etc. as the pursuit of discoverable patterns in physical,
social and symbolic environments and their representation, with number as
ordered plurality as its epistemological engine. Without the enabling infra-
structure of number in the profound sense of Philolaus and the Pytha-
goreans, would we be able to have a history or a geography or a science?
Remove our ability to discern pattern and would we be able to know
anything?

Note

[1] The claim ‘The number V2 is irrational’ would seem to imply that the notion,
indeed the phenomenon, of irrationality (or the linked geometric notion of incom-
mensurability) was pre-existent and that this result were simply a matter of show-
ing this fact for the particular instance of V2. However, after providing a proof of
this result in terms of the side-to-diagonal incommensurability of the square (involv-
ing reductio ad absurdum arguments about particular numbers of units necessarily
being both odd and even) — and bearing in mind that, according to Aristotle, inves-
tigation of ‘the odd and the even was of particularly fundamental significance to the
Pythagoreans’ — the historian of mathematics John Fauvel (1987) argued:

It is not known whether this was the original proof of the result
that the side and the diagonal of the square are incommensurable.
Nor is it known whether the case of the square was the first in
which the phenomenon of incommensurability was recognised.
(Some historians have argued that this recognition took place in
connection with investigations of the regular pentagon, whose side
and diagonal are also incommensurable.) It is not important to
resolve this for the purposes of our story. But notice one signifi-
cant aspect of the result you have just seen proved: assuming you
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found it convincing, and now believe the result, you do so only
because of the proof. The result has very little plausibility without
proof accompanying it. This is an entirely new situation. Other
results earlier in the [undergraduate mathematics student] unit —
Hippocrates’ quadrature of lunes, say, or the unlimited number of
primes — had proofs which acted more so as to corroborate what
might have seemed quite likely beforehand. But the discovery that
two lines were incommensurable, and the proof, must have been
more-or-less simultaneous. Indeed we might go further and say that
its first proof must have constituted its discovery, though the details
of this event are no longer known. (p. 18; italics in original)

Admittedly, the examples Fauvel gives of Hippocrates and certainly Euclid date
from at least a century later than the first Pythagoreans. But his final observation
seems most telling: in an important sense, the very phenomenon, the very concept
of incommensurability must (to use Lakatos’s term) have been a proof-generated
one. (See also Fowler, 1993.)



CHAPTER 6
Mathematics, Aesthetics and Being Human

William Higginson

The problem is more aesthetic than ethical, philosophical, sexual,

psychological, or political, though it goes without saying that such

divisions are unacceptable to me because everything that matters

is, in the long run, aesthetic. (Mario Vargas Llosa, 1999, p. 194)
The general intellectual terrain in which this chapter is situated is large,
heavily trafficked and contentious. The underlying scholarly question that
circumscribes it — ‘What does it mean to be human?’ — has been actively pur-
sued since classical times by both humanists and scientists. In addressing
this issue, philosophers have often connected it to questions of cognition.
For instance, in the opening paragraphs of his book On Human Nature,
Harvard biologist E. O. Wilson (1978) wrote:

These are the central questions that the great philosopher David
Hume said are of unspeakable importance: How does the mind
work, and beyond that why does it work in such a way and not
another, and from these two considerations together, what is man’s
ultimate nature. (p. 1)

A great deal of the extensive discourse around this question in the past three
decades has been driven by scientific and technological advances in the bio-
logical sciences. Wilson has been just one of many scientists to make the case
for socio-biological underpinnings of much human behavior. Social scientists
have not been slow to pursue the implications of some level of genetic pre-
disposition. Consider, for example, Charles Murray (2003), in the introduction
to his book Human Accomplisbment, who draws attention to two core human
impulses:

The first is the abiding impulse of human beings to understand, to

seek out the inner truth of things. [...] The other impulse is Homo

sapiens’ abiding attraction to beauty. [...] Many of the most endur-

ing human accomplishments have been, simply, things of beauty.

(pp. xix-xx)
Murray’s choice of what he considers to be the two most prominent ‘embed-
ded’ characteristics of human beings fits the theme of this chapter particu-
larly well. This is because I am especially interested in the ways in which
mathematics — seen conjointly as an artifact and an activity — both forms,
and is formed by, human abilities and cultures. [1]
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Other contributions to this book have included many compelling demon-
strations of the role of the beautiful in mathematical functioning and varied
and articulate views of mathematicians themselves about this issue. Some-
what by contrast, in this chapter I want to move outside of this particular
‘insider’ arena in two different directions.

For my first shift, I look in more detail at what the world at large (at least
the world as portrayed in more popular and populist culture, as well as the
images of schoolchildren) believes to be the case about mathematics and
mathematicians. There is, of course, something uncomfortably familiar about
the baleful looks perennially cast at the subject, its institutional purveyors and,
most certainly, its perpetrators. However, I wish to look at how this public
image might plausibly be argued to be undergoing something of a sea change.

Then, in a second move, I begin to explore what certain humanist fig-
ures in the arts and social sciences have had to say about the centrality and
importance of mathematics to human concerns, creativity and awareness.
Finally, at the end of my chapter, I return to examine in more depth my pro-
posal of the possibly essential mathematical character of human beings.

But first, I foreshadow this later discussion by a brief excerpt from a set
of lectures by the eminent literary critic George Steiner, who, in 1990, deliv-
ered the Gifford lectures at the University of Edinburgh on the idea of cre-
ation in Western thought, literature, religion and history. When published in
significantly elaborated form more than a decade later (Steiner, 2001), even
readers familiar with Steiner’s eclecticism and penchant for academic pere-
grination were startled, and in the case of some reviewers befuddled and
annoyed, by the central role given to mathematics in his consideration of
the wellsprings of human creativity.

To Plato, the point would have been self-evident. It is inconceiv-
able that one should question a life of the mind without address-
ing mathematics and the sciences which, in the main, derive from
the sovereignty of mathematics. Since Galileo and Descartes, this
injunction has become theoretically and pragmatically inescapable.
It is in mathematics and the sciences that the concepts of creation
and of invention, of intuition and of discovery, exhibit their most
immediate, visible force. [...]

The difficulty, however, is twofold. Mathematicians and scientists
“get on with the job”. [...] they avoid too close a scrutiny of the
epistemological foundations of their disciplines. [...] The second
difficulty is one of access. [...] One needs considerable familiarity
with mathematical symbolism in order to follow the controversies
on whether or not there are in pure mathematics “discoveries” or,
instead, an autonomous unfolding of a priori, as it were tautological,
systems generated from within the human intellect and its deep-
seated instinct for speculative, other-worldly play. Homo ludens. 1f,
as Galileo ruled, nature speaks mathematics, far too many of us
remain deaf. [...]



128 Mathematics and the Aesthetic

It is at this subliminal level that decisive choices are arrived at as
between a congeries of possible, though rule-bound, combina-
tions. [...] But how does the sub-conscious choose? [...] What is
arresting is the move towards the aesthetic. [...] The “useful com-
binations,” where “useful” signifies the generative strength which
will lead to further propositions, to related theorems and general
laws, “are precisely the most beautiful”. (pp. 176-178)

In drawing these initial remarks to a close, and in the spirit of the opening
quotation from Vargas Llosa, I choose to interpret Murray’s two selected
‘aspects of human nature’ as two variations on an aesthetic theme. The drive
to understand and the attraction to beauty can both be seen as manifesta-
tions of a universal human ability to sense what ‘fits’ in a given situation and
what does not.

I wish to take this assertion two steps further and then add a necessary
caveat. First, I want to contend that the roots of all mathematical activity are
located close to this aesthetic predisposition. Second, I claim that this argu-
ment parallels in many important ways the sustained argument made by Ellen
Dissanayake (1995) that humans are inherently aesthetic in their approach to
the world. I wish to acknowledge here the influence of her speculations about
Homo Aestheticus (the title of her book) on my vision of humans as inherently
mathematical beings.

However, I also need to acknowledge that much in the world, especially
the pervasive and resilient public image of mathematics and, alas, mathe-
maticians, seems set in quite the opposite direction. So it is in this latter con-
text that I start my explorations here, with a formative recollection that
served to trigger my own interest in this area.

Atlantic Primes

Scholarly interest in particular topics can sometimes be connected to partic-
ular events. The roots of this chapter go back to an experience I had more
than twenty years ago, while looking after two five-year-olds; my daughter,
Kate, and Aaron (not his real name), the son of friends. As perhaps befitted
healthy children of this age, with educated and supportive parents, the two
youngsters were energetic, intellectually curious and articulate. In addition
to these general characteristics, Aaron had exceptionally advanced capabil-
ities in both mathematics and language. Numbers fascinated him and he was
already — as a pre-schooler — an avid reader. Knowing this, I decided to
make him aware of something I had just read.

The piece in question had a rather complex history. Appearing in the
April 1980 issue of the venerable American periodical The Atlantic Monthly, it
had been written by Horace Judson, a science writer whose book on the evo-
lution of the field of molecular biology, 7The Eighth Day of Creation (1979),
had received exceptionally positive reviews. As part of his research for 7he
Eighth Day, Judson had interviewed a large number of leading scientists
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about what motivated them and the satisfactions they received from their
work. Intrigued by what they had said, he wrote, as something of an off-
shoot of his main work, an introductory book on the philosophy of science,
called The Search for Solutions (19802). In an attempt to capture, early in his
publication, something of the passion that appears to be a universal moti-
vator of scientists, Judson began Chapter One, entitled Inwvestigation: the
Rage to Know, with a story about one of his friends.

Certain moments of the mind have a special quality of well-being.
A mathematician friend of mine remarked the other day that his
daughter, aged eight, had just stumbled without his teaching onto
the fact that some numbers are prime numbers [..] “She called
them ‘unfair’ numbers,” he said. “And when I asked her why they
were unfair, she told me, ‘Because there’s no way to share them
out evenly’.” What delighted him most was not her charming turn
of phrase nor her equitable turn of mind [...] but — as a mathemati-
cian — the knowledge that the child had experienced a moment of
pure scientific perception. She had discovered for herself some-
thing of the way things are. (p. 2)

It was this first chapter of The Search for Solutions that was published as an
article in 7he Atlantic under the title “The rage to know’ (1980b). Given that
he was writing for lay people, Judson had felt compelled to explain just
what prime numbers are. Hence, part-way through the passage noted
above, we read, “prime numbers — those like 11 or 19 or 83 or 1,023, that
cannot be divided by any other integer [except, trivially, by 1]”. Judson was
a highly intelligent, well-educated individual. Despite this, in his attempts to
clarify, he made an error in one part of his statement. This was the obser-
vation I decided to share with Aaron.

“I read something interesting in 7he Atlantic today, Aaron”, I said. “A man
wrote that 1,023 was a prime number.” Aaron’s response was immediate and
definite. With eyes wide and his face somehow managing to express both
delight and dismay, he responded, “Oh, no! 1,023 is 3 times 11 times 31.”
Shortly thereafter I heard him say excitedly to Kate, “Some man said in the
ocean that 1,023 was prime!”

I never did pursue just what my daughter made of that particular obser-
vation. I was conscious, however, that this incident had planted a seed for
me. How could it come to be that a species might exhibit this exceptional
range of behavior with many highly educated adults failing to match the
insights of a very young, formally untutored, child? Just what was this domain
where such things happened? What were some implications of this? Under
what circumstances might they be altered?

There are, of course, orthodox answers to these questions, most of them
pointing, lazily, in the direction of inexplicable genius and an extreme form
of élitism. According to this view, mathematics, as has been mentioned in
earlier chapters, is seen as the prerogative of a special few — a few who
often pay a high human price for their powers of abstraction. [2] Lurking not
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very far beneath the surface are parallels with the magical and wizardly. The
subject is useful, but potentially dangerous. Societies very much need math-
ematical insights, but as individuals we might perhaps be relieved to be
unburdened by the gift of mathematical precocity.

Some Possibly Less-Familiar Examples
of a Familiar Stereotype

I attempt here to illustrate ways in which some of the different elements of
the orthodox stereotype of mathematicians (and, indirectly, of mathematics)
have been reflected and perpetuated in the writings and actions of a num-
ber of influential thinkers over the past two centuries. Stereotypes are, by
their nature, not concepts that invite critical analysis and this one is no
exception.

In cases where some of these issues have been the focus of reflection,
there has been a tendency to recycle a small number of archetypical exam-
ples (much as some of the mathematical examples of the aesethetic have
been). Hence, as the example of mathematical precocity we have frequent
repetition of the story of the schoolboy Gauss shocking his teacher with his
rapid calculation of the sum of the first one hundred natural numbers. The
equivalent story at the level of the mathematical researcher and the ques-
tion of mathematical creativity most likely is the account by Poincaré of his
work on Fuchsian functions.

To omit these examples is not to deny their validity, although my sense
is that the Gauss example is not as strong as it is often assumed to be. T have
attempted to dig a little deeper and to find some lesser-known examples
that come from a more extended range of individuals. In the views I shall
provide, articulated by Charles Darwin, Alfred North Whitehead and C. P.
Snow, there are intimations of power, pervasiveness, precocity and a whiff
of both the divine and the delicious, and the not completely rational. There
is a distinct sense of a pecking order, of the learning experience as being
crucial to later attitudes and a strong stereotype of the mathematician as
social (at times awkwardly so) eccentric.

Darwin, Whitehead and Snow

The first set of images comes from Charles Darwin, who, when in his mid-
sixties, wrote, with his children as his intended audience, an informal biog-
raphy (1887/1958). In the section where he recalls his undergraduate years,
Darwin noted:

During the three years which I spent at Cambridge my time was
wasted, as far as the academical studies were concerned, as com-
pletely as at Edinburgh and at school. T attempted mathematics, and
even went during the summer of 1828 with a private tutor to
Barmouth, but I got on very slowly. The work was repugnant to
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me, chiefly from my not being able to see any meaning in the early
steps in algebra. This impatience was very foolish, and in after years
I have deeply regretted that I did not proceed far enough at least
to understand something of the great leading principles of mathe-
matics, for men thus endowed seem to have an extra sense. (p. 18)

This passage seems to invoke a very similar idea to that expressed by George
Steiner a hundred and fifty years later. In a subsequent passage, Darwin’s son
Francis, who served as editor for his father’s autobiography, noted:

My father’s letters to Fox show how sorely oppressed he felt by the
reading for an examination. His despair over mathematics must
have been profound, when he expresses a hope that Fox’s silence
is due to “your being ten fathoms deep in the Mathematics; and if
you are, God help you, for so am I, only with this difference, I
stick fast in the mud at the bottom, and there I shall remain”. Mr.
Herbert says: “He had, I imagine, no natural turn for mathematics,
and he gave up his mathematical reading before he had mastered
the first part of algebra, having had a special quarrel with Surds
and the Binomial Theorem.” (p. 114)

Some five decades after Darwin’s reflections, the Anglo-American math-
ematician and philosopher Alfred North Whitehead delivered the Lowell lec-
tures at Harvard University. These lectures which the author saw as “a study
of some aspects of Western culture during the past three centuries in so far
as it has been influenced by the development of science” (p. ix) constituted
the core of his Science and the Modern World (1926). The second chapter
of this book is called ‘Mathematics as an element in the history of thought’
and in it we find the following observation:

The science of Pure Mathematics, in its modern developments,
may claim to be the most original creation of the human spirit. [...]
There is an erroneous literary tradition which represents the love
of mathematics as a monomania confined to a few eccentrics in
each generation [...] Even now there is a very wavering grasp of
the true position of mathematics as an element in the history of
thought. I will not go so far as to say that to construct a history of
thought without profound study of the mathematical ideas of suc-
cessive epochs is like omitting Hamlet from the play which is
named after him. That would be claiming too much. But it is cer-
tainly analogous to cutting out the part of Ophelia. This simile is
singularly exact. For Ophelia is quite essential to the play, she is
very charming — and a little mad. Let us grant that the pursuit of
mathematics is a divine madness of the human spirit, a refuge from
the goading urgency of contingent happenings. (pp. 29-31)

Once again, George Steiner, seventy years on, would seem to suggest that
omitting mathematics now would be more like losing Hamlet himself.

For the third of these vignettes, I turn C. P. Snow’s 1959 Rede Lecture,
entitled 7The Two Cultures and the Scientific Revolution. The theme of the
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lecture was that a deep and widening gulf existed between the worlds of
scientists and humanists. As part of his argument, early in is lecture, Snow
recounted a ‘high table’ story:

By this T intend something serious. I am not thinking of the pleas-
ant story of how one of the more convivial Oxford greats dons —
I have heard the story attributed to A. L. Smith — came over to
Cambridge to dine. The date is perhaps the 1890’s. I think it must
have been at St. John’s, or possibly Trinity. Anyway, Smith was sit-
ting at the right hand of the President — or Vice-Master — and he
was a man who liked to include all round him in the conversation,
although he was not immediately encouraged by the expressions
of his neighbours. He addressed some cheerful Oxonian chit-chat
at the one opposite him, and got a grunt. He then tried the man
on his own right hand and got another grunt. Then, rather to his
surprise, one looked at the other and said, ‘Do you know what
he’s talking about?” ‘T haven’t the least idea.” At this, even Smith
was getting out of his depth. But the President, acting as a social
emollient, put him at his ease, by saying, ‘Oh, those are mathemati-
cians! We never talk to them. (p. 3; italics in original)

Just why Snow should think that this is a “pleasant story” is not entirely clear.
For my purposes, interested in the way mathematics and mathematicians are
perceived in society, it is significant to note that this is one of the few places
in the lecture, or in the substantial related material that Snow wrote in subse-
quent years, where he uses examples from other than the physical sciences.

Peirce peére et fils

The figure of Benjamin Peirce cuts a wide swath in the history of American
mathematics. Frequently identified as the first major mathematical thinker to
reside in North America, he was the author, in 1870, of Linear Associative
Algebra, a text where he presented mathematics as “the science which
draws necessary conclusions”. Born in 1809, he joined the Harvard faculty
in the early 1830s and remained there for almost five decades. He is best
known in some intellectual circles as the father of the brilliant but erratic
philosopher and mathematician, Charles Sanders Peirce.

The Peirces, father and son, came to the attention of a wider than usual
audience in 2001 when Louis Menand included Charles as one of the four
key thinkers (along with Oliver Wendell Holmes, William James and John
Dewey) in his Pulitzer Prize winning book, The Metaphysical Club. Menand’s
portrait of Benjamin Peirce begins:

Peirce was probably the first world-class — in the sense of interna-
tionally recognized — mathematician the United States produced.
He cultivated a certain wizardliness of manner. His hair was iron-
gray, and he wore it long, with, in later years, a thick beard. And
his obscurity was legendary. It was said at Harvard that you never
realized how truly incapable you were of understanding a scientific



Chapter 6 — Mathematics, Aesthetics and Being Human 133

matter until Professor Peirce had elucidated it for you. [...] Peirce
enjoyed the reputation and even played up to it, because he was a
confirmed intellectual elitist, a pure meritocrat with no democracy
about him. “Do you follow me?” he is supposed to have asked one
of his advanced classes during a lecture. No one did. “I'm not sur-
prised,” he said. “I know of only three persons who could.” [...] It
was Peirce’s view that mathematics was the supreme science, but
a science accessible only to a few. (p. 153)

Menand’s image of Peirce senior is supported by several passages in Joseph
Brent’s (1998) biography of Charles Sanders Peirce. There we find:

Charles’s father was also by all accounts, a most unusual and
unconventional man. Students remembered him with great respect
and affection and thought of him as a genius who, as often as not,
they were unable to understand. This description of a typical class
was written by one of his students.

I have hinted that his lectures were not easy to follow. They

were never carefully prepared. The work with which he rap-

idly covered the blackboard was very illegible, marred with

frequent erasures, and not infrequent mistakes (he worked

too fast for accuracy). He was always ready to digress from

the straight path and explore some sidetrack that had sudden-

ly attracted his attention, but which was likely to have led

nowhere when the college bell announced the close of the

hour and we filed out, leaving him abstractedly staring at his

work, still with chalk and eraser in his hands, entirely oblivious

of his departing class. (p. 32)
Shortly thereafter Brent notes that, “Benjamin Peirce taught mathematics as
a kind of Pythagorean prayer” (p. 33). Many of his students saw him as “a
real live genius, who had a touch of the prophet in his make-up” (p. 32). [3]

I have quoted Menand and Brent at length because the picture they

paint of Benjamin Peirce resonates in many ways with descriptions of math-
ematical researchers and teachers found in other books and papers. Take,
for instance, the well-known image of the “traditional mathematics profes-
sor” (Pélya, 1957, p. 208) who “writes a, he [sic] says b, he means ¢, but it
should be d”. Or, the less amusing but real description of a young math-
ematics professor whose:

lectures were useless and right from the book [...] He showed no
concern for the students [...] He absolutely refuses to answer ques-
tions by completely ignoring the students. (Gibbs et al., 1996, p. 41)

The instructional context for this comment was another leading mathemati-
cal research center, in this case the Berkeley campus of the University of
California. The teacher was Ted Kaczynski, at that time a highly regarded
early-career researcher, who was, quite a number of years later, to achieve
great notoriety as the Unabomber.
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The particular role played by Peirce in the establishment and perpetu-
ation of the image of the mathematician as a brilliant but distanced and
‘other worldly’ individual is certainly debatable. But there is certainly no
doubt that he fitted it. What seems much more certain is the robustness of
the image of the mathematician in society.

Schoolchildren’s images of mathematics and mathemat-
icians
In the late 1960s, Cambridge psychologist Liam Hudson (1970) carried out
a widely reported piece of research (published under the title Frames of
Mind) where he examined the attitudes and perceptions of selected groups
of male secondary school students to different professions. Using question-
naires and a ‘semantic differential’ technique, subjects rated a number of
“typical figures (in this case, ‘Novelist’, ‘Historian’, ‘Mathematician’, ‘Phy-
sicist’, etc.) against pairs of adjectives (‘warm/cold’, ‘intelligent/stupid’, ‘hard/
soft’, ‘valuable/worthless’, and so on)” (p. 46).

Hudson found a high degree of consensus in the responses. He reported:

one is struck by the tendency for certain typical figures to cluster
together: Mathematician, Physicist, and Engineer clearly resemble
each other closely in schoolboys’ minds; and so too do Poet, Attist,
and Novelist. Examined in detail, this ‘scientific’ cluster can be bro-
ken down a little. The Engineer is seen as less intelligent, cold and
dull than the other two, but as more manly, and dependable and
imaginative. The Mathematician is seen as even colder, duller and
less imaginative than the Physicist. At the other extreme, the Poet is
seen as more intelligent than the Artist, but less warm and exciting;
the Novelist is more imaginative than the Artist, but less soft and
feminine. [...] If these two clusters — the scientific and the artistic —
are set up as polar opposites, the other professions represented form
a spectrum between them. (pp. 48-49)

Thirty years after Frames of Mind was published, an American and a British
researcher (Picker and Berry, 2000) carried out an international study that
replicated several aspects of the mathematical component of Hudson’s
research. Most of the negative elements of the stereotypical mathematician
found in Hudson’s work remained firmly in place in the minds of some five
hundred lower secondary school students in the United States, the United
Kingdom, Finland, Sweden and Romania. Part of their data comprised
sketches the students made. The most common figure sketched by the stu-
dents was an unkempt, glasses-wearing, balding, middle-aged white male.

The researchers went on to note that a “completely unexpected theme that
emerged from the drawings” was that of “mathematics as coercion” (p. 74). In
a significant percentage of the drawings pupils drew mathematicians as
teachers who used intimidation, violence or threats of violence to ‘make’
their charges learn. The connection between mathematics and violence is
returned to in the final chapter.
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In the next section, I turn to examine more recent examples of portray-
als of the nature of mathematics and its human connections and manifesta-
tions. Many of these examples are generated, at least indirectly, by variations
on the theme of embodiment emerging from the biological and cognitive
sciences. Others are to be found in a new location, the arts. The last decade
has seen a rash of books, movies and plays with broad and non-trivial math-
ematical content (Emmer and Manaresi, 2003). On the surface, many of these
seem only to perpetuate the standard view of the creative mathematician as
the eccentric genius. But by looking more broadly and deeply, I suggest one
can perceive a shift in the direction of seeing mathematics as a natural human
ability. This is not to deny the existence of a broad range of that ability, but
it does challenge the ‘zero/one’ model of the nature of mathematical ability,
which sees it as the exclusive preserve of a small, predominantly male, €lite.

Mathematics and the Human, Revisited

In very broad terms, there has been the empirical ‘rejuvenation’ of math-
ematics from two different but related directions. More in keeping with the
field’s traditional alliances with the ‘hard’ sciences, there have been influ-
ences emerging from the rapid and highly mathematised development of the
various instruments of new information technology. Co-ordinated by ever
more powerful computational tools, several fields, including mathematics,
have entered into a period of considerable transformation. As one case in
point, the development of ‘experimental’ and ‘constructive’ approaches to
the discipline have appeared that would have been inconceivable to most
scholars in the field even twenty years ago (Borwein and Bailey, 2003).

Technology has also been a factor in the links being forged from another
direction, namely the biological and human sciences. The development of
tools and techniques to probe ‘life’ at the molecular level have prompted yet
another round of debates on human nature. In discussions that have per-
haps capitulated far too much to the polarised, Aristotelian, either—ors of
‘nature’ and ‘nurture’, there has been a vigorous counter-attack on the part
of scholars leaning toward the deterministic. Building in many cases on the
broad groundwork laid by E. O. Wilson, and stated most aggressively by
Stephen Pinker (2002) in The Blank Slate: the Modern Denial of Human
Nature, there has been a reconsideration from many perspectives of the
possibility that humans are ‘hard-wired’ to behave in certain ways.

These reconsiderations manifest themselves in many areas. The field of
cognitive science, for instance, owes its relatively recent existence to the co-
ordinated study of issues which in more classical times would have been
relegated to specialised and isolated investigation by psychologists, philoso-
phers, physiologists, logicians, anthropologists and even computer scientists
(Gardner, 1987). The talented neurologist and gifted writer Oliver Sacks has
been particularly successful in making interested readers more aware o