
Chapter 4

Maxima and Minima in Several Variables

4.1 Differentials and Taylor’s Theorem

In Exercises 1–7 we will first calculate f(x), f ′(x), . . . , f (k)(x) and f(a), f ′(a), . . . , f (k)(a). Then we’ll plug into the formula
for Taylor’s theorem in one variable (Theorem 1.1 in the text):

pk(x) = f(a) + f ′(a)(x − a) + · · · + f (k)(a)

k!
(x − a)k.

1. Here a = 0 and k = 4:
f(x) = e2x f(0) = 1

f (n)(x) = 2ne2x f (n)(0) = 2n

so

p4(x) = 1 + 2x +
4

2
x2 +

8

6
x3 +

16

24
x4

= 1 + 2x + 2x2 +
4

3
x3 +

2

3
x4.

2. Here a = 0 and k = 3:
f(x) = ln(1 + x) f(0) = 0

f ′(x) =
1

1 + x
f ′(0) = 1

f ′′(x) = − 1

(1 + x)2
f ′′(0) = −1

f ′′′(x) = −2

( −1

(1 + x)3

)
f ′′′(0) = 2,

so

p3(x) = 0 + x − 1

2
x2 +

2

6
x3

= x − 1

2
x2 +

1

3
x3.

3. Here a = 1 and k = 4:
f(x) =

1

x2
f(1) = 1

f ′(x) = − 2

x3
f ′(1) = −2

f ′′(x) =
6

x4
f ′′(1) = 6

f ′′′(x) = −24

x5
f ′′′(1) = −24

f ′′′′(x) =
120

x6
f ′′′′(1) = 120,
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196 Chapter 4 Maxima and Minima in Several Variables

so

p4(x) = 1 − 2(x − 1) +
6

2
(x − 1)2 − 24

6
(x − 1)3 +

120

24
(x − 1)4

= 1 − 2(x − 1) + 3(x − 1)2 − 4(x − 1)3 + 5(x − 1)4.

Students sometimes forget that the Taylor polynomial depends on the choice of a. Some texts include the parameter a in the
notation to stress this fact. A nice way to remind your students of this dependence on a is to either assign Exercises 4 and 5 or 6
and 7 together.

We’ll do the scratch work for both Exercises 4 and 5 together:

f(x) =
√

x f(1) = 1 f(9) = 3

f ′(x) =
1

2
√

x
f ′(1) =

1

2
f ′(9) =

1

6

f ′′(x) =
−1

4x3/2
f ′′(1) = −1

4
f ′′(9) = − 1

108

f ′′′(x) =
3

8x5/2
f ′′′(1) =

3

8
f ′′′(9) =

1

648
.

4. Here a = 1 and k = 3 so, using the work above:

p3(x) = 1 +
1

2
(x − 1) − 1

8
(x − 1)2 +

1

16
(x − 1)3.

5. Here a = 9 and k = 3 so, using the work above:

p3(x) = 3 +
1

6
(x − 9) − 1

216
(x − 9)2 +

1

3888
(x − 9)3.

We’ll do the scratch work for both Exercises 6 and 7 together:

f(x) = sin x f(0) = 0 f(π/2) = 1

f ′(x) = cos x f ′(0) = 1 f ′(π/2) = 0

f ′′(x) = − sin x f ′′(0) = 0 f ′′(π/2) = −1

f ′′′(x) = − cos x f ′′′(0) = −1 f ′′′(π/2) = 0

f ′′′′(x) = sin x f ′′′′(0) = 0 f ′′′′(π/2) = 1

f ′′′′′(x) = cos x f ′′′′′(0) = 1 f ′′′′′(π/2) = 0.

6. Here a = 0 and k = 5 so, using the work above:

p5(x) = x − x3

6
+

x5

120
.

7. Here a = π/2 and k = 5 so, using the work above:

p5(x) = 1 − (x − π/2)2

2
+

(x − π/2)4

24
.

Three notes:

• It makes sense to assign Exercises 8, 9, 16, and 21 together as they explore the same function. Exercise 14 is a higher-
dimensional analogue.

• In Exercises 8–15, we again do the preliminary calculations and then substitute into the formulas given in Theorem 1.3

p1(x) = f(a) + Df(a)(x− a)
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Section 4.1. Differentials and Taylor’s Theorem 197

and Theorem 1.5

p2(x) = f(a) +
n∑

i=1

fxi
(a)(xi − ai) +

1

2

n∑
i,j=1

fxixj
(a)(xi − ai)(xj − aj)

= p1(x) +
1

2

n∑
i,j=1

fxixj
(a)(xi − ai)(xj − aj).

• Just as in the one-variable versions of Taylor’s theorem, note the lower degree polynomials are contained in the expres-
sions for the higher degree ones.

We’ll do the scratch work for both Exercises 8 and 9 together:

f(x, y) =
1

x2 + y2 + 1
f(0, 0) = 1 f(1,−1) = 1/3

fx(x, y) =
−2x

(x2 + y2 + 1)2
fx(0, 0) = 0 fx(1,−1) = −2/9

fy(x, y) =
−2y

(x2 + y2 + 1)2
fy(0, 0) = 0 fy(1,−1) = 2/9

fxx(x, y) =
6x2 − 2y2 − 2

(x2 + y2 + 1)3
fxx(0, 0) = −2 fxx(1,−1) = 2/27

fyy(x, y) =
6y2 − 2x2 − 2

(x2 + y2 + 1)3
fyy(0, 0) = −2 fyy(1,−1) = 2/27

fxy(x, y) =
8xy

(x2 + y2 + 1)3
fxy(0, 0) = 0 fxy(1,−1) = −8/27

8. a = (0, 0) so, using the work above:

p1(x) = f(0, 0) + Df(0, 0)x = 1 and

p2(x) = p1(x) +
1

2
(fxx(0, 0)x2 + 2fxy(0, 0)xy + fyy(0, 0)y2)

= 1 − x2 − y2.

9. a = (1,−1) so, using the work above:

p1(x) = f(1,−1) + Df(1,−1)(x− (1,−1)) =
1

3
+

[
−2

9

2

9

] [
x − 1
y + 1

]

=
1

3
− 2(x − 1)

9
+

2(y + 1)

9
and

p2(x) = p1(x) +
1

2
(fxx(1,−1)(x − 1)2 + 2fxy(1,−1)(x − 1)(y + 1) + fyy(1,−1)(y + 1)2)

=
1

3
− 2(x − 1)

9
+

2(y + 1)

9
+

(x − 1)2

27
− 8(x − 1)(y + 1)

27
+

(y + 1)2

27
.

10. Here a = (0, 0) and
f(x, y) = e2x+y f(0, 0) = 1

fx(x, y) = 2e2x+y fx(0, 0) = 2

fy(x, y) = e2x+y fy(0, 0) = 1

fxx(x, y) = 4e2x+y fxx(0, 0) = 4

fyy(x, y) = e2x+y fyy(0, 0) = 1

fxy(x, y) = 2e2x+y fxy(0, 0) = 2,
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198 Chapter 4 Maxima and Minima in Several Variables

so

p1(x) = f(0, 0) + Df(0, 0)x = 1 + 2x + y and

p2(x) = 1 + 2x + y +
1

2
(4x2 + 2(2)xy + y2)

= 1 + 2x + y + 2x2 + 2xy +
y2

2

11. Here a = (0, π) and

f(x, y) = e2x cos 3y f(0, π) = −1

fx(x, y) = 2e2x cos 3y fx(0, π) = −2

fy(x, y) = −3e2x sin 3y fy(0, π) = 0

fxx(x, y) = 4e2x cos 3y fxx(0, π) = −4

fyy(x, y) = −9e2x cos 3y fyy(0, π) = 9

fxy(x, y) = −6e2x sin 3y fxy(0, π) = 0,

so

p1(x) = −1 − 2x and

p2(x) = −1 − 2x +
1

2
(−4x2 + 9(y − π)2)

= −1 − 2x − 2x2 +
9

2
(y − π)2.

12. Here a = (0, 0, 2) and

f(x, y, z) = ye3x + ze2y f(0, 0, 2) = 2

fx(x, y, z) = 3ye3x fx(0, 0, 2) = 0

fy(x, y, z) = e3x + 2ze2y fy(0, 0, 2) = 5

fz(x, y, z) = e2y fy(0, 0, 2) = 1

fxx(x, y, z) = 9ye3x fxx(0, 0, 2) = 0

fxy(x, y, z) = 3e3x fxy(0, 0, 2) = 3 = fyx(0, 0, 2)

fxz(x, y, z) = 0 fxz(0, 0, 2) = 0 = fzx(0, 0, 2)

fyy(x, y, z) = 4ze2y fyy(0, 0, 2) = 8

fyz(x, y, z) = 2e2y fyz(0, 0, 2) = 2 = fzy(0, 0, 2)

fzz(x, y, z) = 0 fyy(0, 0, 2) = 0,

so

p1(x) = 2 + 5y + 1(z − 2) = 5y + z and

p2(x) = 5y + z +
1

2
(6xy + 8y2 + 4y(z − 2))

= y + z + 3xy + 4y2 + 2yz.
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Section 4.1. Differentials and Taylor’s Theorem 199

13. Here a = (2,−1, 1) and

f(x, y, z) = xy − 3y2 + 2xz f(2,−1, 1) = −1

fx(x, y, z) = y + 2z fx(2,−1, 1) = 1

fy(x, y, z) = x − 6y fy(2,−1, 1) = 8

fz(x, y, z) = 2x fy(2,−1, 1) = 4

fxx(x, y, z) = 0 fxx(2,−1, 1) = 0

fxy(x, y, z) = 1 fxy(2,−1, 1) = 1 = fyx(2,−1, 1)

fxz(x, y, z) = 2 fxz(2,−1, 1) = 2 = fzx(2,−1, 1)

fyy(x, y, z) = −6 fyy(2,−1, 1) = −6

fyz(x, y, z) = 0 fyz(2,−1, 1) = 0 = fzy(2,−1, 1)

fzz(x, y, z) = 0 fyy(2,−1, 1) = 0,

so

p1(x) = −1 + 1(x − 2) + 8(y + 1) + 4(z − 1) = 1 + x + 8y + 4z and

p2(x) = 1 + x + 8y + 4z +
1

2
(2(x − 2)(y + 1) + 4(x − 2)(z − 1) − 6(y + 1)2)

= xy − 3y2 + 2xz.

Note that the second-order polynomial matches the original function exactly. This makes sense, since f is itself a polynomial
of degree two.

14. Here a = (0, 0, 0) and there is quite a bit of symmetry so we’ll only calculate:

f(x, y, z) =
1

x2 + y2 + z2 + 1
f(0, 0, 0) = 1

fx(x, y, z) =
−2x

(x2 + y2 + z2 + 1)2
fx(0, 0, 0) = 0 = fy(0, 0, 0) = fz(0, 0, 0)

fxx(x, y, z) =
6x2 − 2y2 − 2z2 − 2

(x2 + y2 + z2 + 1)3
fxx(0, 0, 0) = −2 = fyy(0, 0, 0) = fzz(0, 0, 0)

fxy(x, y) =
8xy

(x2 + y2 + z2 + 1)3
fxy(0, 0, 0) = 0 = fxz(0, 0, 0) = fyz(0, 0, 0)

so

p1(x) = 1 and

p2(x) = 1 +
1

2
(−2x2 − 2y2 − 2z2)

= 1 − x2 − y2 − z2.

15. Again a = (0, 0, 0) and there is quite a bit of symmetry so we’ll only calculate:

f(x, y, z) = sin xyz f(0, 0, 0) = 0

fx(x, y, z) = yz cos xyz fx(0, 0, 0) = 0 = fy(0, 0, 0) = fz(0, 0, 0)

fxx(x, y, z) = −y2z2 sin xyz fxx(0, 0, 0) = 0 = fyy(0, 0, 0) = fzz(0, 0, 0)

fxy(x, y) = z cos xyz − xyz2 sin xyz fxy(0, 0, 0) = 0 = fxz(0, 0, 0) = fyz(0, 0, 0)

so p1(x) = 0 and p2(x) = 0.

16. From Exercise 8 we can read off that the Hessian Hf(0, 0) =

[ −2 0
0 −2

]
.
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200 Chapter 4 Maxima and Minima in Several Variables

17. f(x, y) = cos x sin y
fx(x, y) = − sin x sin y fy(x, y) = cos x cos y

fxx(x, y) = − cos x sin y fyx(x, y) = − sin x cos y

fxy(x, y) = − sin x cos y fyy(x, y) = − cos x sin y
so

Hf
(π

4
,
π

3

)
=

⎡
⎣ −

√
6

4
−

√
2

4

−
√

2
4

−
√

6
4

⎤
⎦ .

18. f(x, y, z) =
z√
xy

fx(x, y, z) = − z

2x3/2y1/2
fy(x, y, z) = − z

2x1/2y3/2
fz(x, y, z) =

1√
xy

fxx(x, y, z) =
3z

4x5/2y1/2
fyx(x, y, z) =

z

4x3/2y3/2
fzx(x, y, z) = − 1

3x3/2y1/2

fxy(x, y, z) =
z

4x3/2y3/2
fyy(x, y, z) =

3z

4x1/2y5/2
fzy(x, y, z) = − 1

2x1/2y3/2

fxz(x, y, z) = − 1

2x3/2y1/2
fyz(x, y, z) = − 1

2x1/2y3/2
fzz(x, y, z) = 0

so

Hf(1, 2,−4) =

⎡
⎢⎢⎣

− 3√
2

− 1

2
√

2
− 1

2
√

2

− 1

2
√

2
− 3

4
√

2
− 1

4
√

2

− 1

2
√

2
− 1

4
√

2
0

⎤
⎥⎥⎦ .

19. f(x, y, z) = x3 + x2y − yz2 + 2z3

fx(x, y, z) = 3x2 + 2xy fy(x, y, z) = x2 − z2 fz(x, y, z) = −2yz + 6z2

fxx(x, y, z) = 6x + 2y fyx(x, y, z) = 2x fzx(x, y, z) = 0

fxy(x, y, z) = 2x fyy(x, y, z) = 0 fzy(x, y, z) = −2z

fxz(x, y, z) = 0 fyz(x, y, z) = −2z fzz(x, y, z) = −2y + 12z

so

Hf(1, 0, 1) =

⎡
⎣ 6 2 0

2 0 −2
0 −2 12

⎤
⎦ .

20. f(x, y, z) = e2x−3y sin 5z

fx(x, y, z) = 2e2x−3y sin 5z fy(x, y, z) = −3e2x−3y sin 5z fz(x, y, z) = 5e2x−3y cos 5z

fxx(x, y, z) = 4e2x−3y sin 5z fyx(x, y, z) = −6e2x−3y sin 5z fzx(x, y, z) = 10e2x−3y cos 5z

fxy(x, y, z) = −6e2x−3y sin 5z fyy(x, y, z) = 9e2x−3y sin 5z fzy(x, y, z) = −15e2x−3y cos 5z

fxz(x, y, z) = 10e2x−3y cos 5z fyz(x, y, z) = −15e2x−3y cos 5z fzz(x, y, z) = −25e2x−3y sin 5z

so

Hf(0, 0, 0) =

⎡
⎣ 0 0 10

0 0 −15
10 −15 0

⎤
⎦ .

For Exercises 21–25 you’ll need formula (10): p2(x) = f(a) + Df(a)h+ (1/2)hTHf(a)h where h = x− a.
21. Use the work from Exercises 8 and 16:

p2(x) = f(0, 0) + Df(0, 0)x+
1

2
xT

[ −2 0
0 −2

]
x

= 1 +
1

2

[
x y

] [ −2 0
0 −2

] [
x
y

]
.
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22. Use the work from Exercise 11:

p2(x, y) = f(0, π) + Df(0, π)

[
x

y − π

]
+

1

2

[
x y − π

]
Hf(0, π)

[
x

y − π

]

= −1 +
[ −2 0

] [ x
y − π

]
+

1

2

[
x y − π

] [ −4 0
0 9

] [
x

y − π

]
.

23. Use the work from Exercise 12:

p2(x, y, z) = f(0, 0, 2) + Df(0, 0, 2)

⎡
⎣ x

y
z − 2

⎤
⎦ +

1

2

[
x y z − 2

]
Hf(0, 0, 2)

⎡
⎣ x

y
z − 2

⎤
⎦

= 2 +
[

0 5 1
] ⎡⎣ x

y
z − 2

⎤
⎦ +

1

2

[
x y z − 2

] ⎡⎣ 0 3 0
3 8 2
0 2 0

⎤
⎦
⎡
⎣ x

y
z − 2

⎤
⎦ .

24. Use the work from Exercise 19:

p2(x) = f(1, 0, 1) + Df(1, 0, 1)(x− (1, 0, 1)) +
1

2
(x− (1, 0, 1))T

[ −2 0
0 −2

]
(x− (1, 0, 1))

= 3 +
[

3 0 6
] ⎡⎣ x − 1

y
z − 1

⎤
⎦ +

1

2

[
x − 1 y z − 1

] ⎡⎣ 6 2 0
2 0 −2
0 −2 12

⎤
⎦
⎡
⎣ x − 1

y
z − 1

⎤
⎦ .

Exercises 25 and 26 are related and could be assigned together. To make it a cohesive single problem, you may want to tell the
students to use the function from Exercise 26 in place of the function given in Exercise 25.

25. The function is f(x1, x2, . . . , xn) = ex1+2x2+···+nxn .
(a) Df(x1, x2, . . . , xn) = ex1+2x2+···+nxn

[
1 2 · · · n

]
, and therefore Df(0, 0, . . . , 0) =

[
1 2 · · · n

]
.

Taking second derivatives and evaluating at the origin results in:

Hf(0, 0, . . . , 0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 · · · n
2 4 6 · · · 2n
3 6 9 · · · 3n

...
...

...
. . . ...

n 2n 3n · · · n2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(c) Since (c) follows immediately from (a) we will skip (b) for a moment.

p2(x) = f(0, 0, . . . , 0) + Df(0, 0, . . . , 0)x+
1

2
xTHf(0, 0, . . . , 0)x

= 1 +
[

1 2 · · · n
]
⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ +

1

2

[
x1 x2 · · · xn

]
⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 · · · n
2 4 6 · · · 2n
3 6 9 · · · 3n

...
...

...
. . . ...

n 2n 3n · · · n2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ .

(b) Now we can read the answer to (b) right off of our answer to (c).

p1(x) = 1 + x1 + 2x2 + · · · + nxn and

p2(x) = 1 + x1 + 2x2 + · · · + nxn +
1

2

n∑
i,j=1

ijxixj .
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202 Chapter 4 Maxima and Minima in Several Variables

26. This is an extension of a special case of Exercise 25. Note that fxixjxk
(0, 0, 0) = ijk so

p3(x) = 1 + x + 2y + 3z +
1

2
(x2 + 4y2 + 9z2 + 4xy + 6xz + 12yz)

+
1

6
(x3 + 8y3 + 27z3 + 6x2y + 9x2z + 12xy2 + 36y2z + 27xz2 + 54yz2 + 36xyz).

27. Df(x, y, z) =
[

4x3 + 3x2y − z2 + 2xy + 3y x3 + 6y2 + x2 + 3x −2xz − 1
]
and

Hf(x, y, z) =

⎡
⎣ 12x2 + 6xy + 2y 3x2 + 2x + 3 −2z

3x2 + 2x + 3 12y 0
−2z 0 −2x

⎤
⎦ .

The only non-zero third derivatives are

fxxx(x, y, z) = 24x + 6y fxxy(x, y, z) = 6x + 2

fxzz(x, y, z) = −2 fyyy(x, y, z) = 12

and their permutations.

(a) Here a = (0, 0, 0) so f(0, 0, 0) = 2, Df(0, 0, 0) =
[

0 0 −1
]
, and Hf(0, 0, 0) =

⎡
⎣ 0 3 0

3 0 0
0 0 0

⎤
⎦.

p3(x) = 2 − z + 3xy +
1

6
(6x2y − 6xz2 + 12y3)

= 2 − z + 3xy + x2y − xz2 + 2y3.

(b) Here f(1,−1, 0) = −4,Df(1,−1, 0) =
[ −4 11 −1

]
, and Hf(1,−1, 0) =

⎡
⎣ 4 8 0

8 −12 0
0 0 −2

⎤
⎦.

p3(x) = −4 − 4(x − 1) + 11(y + 1) − z

+
1

2
[4(x − 1)2 + 16(x − 1)(y + 1) − 12(y + 1)2 − 2z2]

+
1

6
[18(x − 1)3 + 3(8)(x − 1)2(y + 1) − 3(2)(x − 1)z2 + 12(y + 1)3]

= −4 − 4(x − 1) + 11(y + 1) − z + 2(x − 1)2 + 8(x − 1)(y + 1) − 6(y + 1)2 − z2

+ 3(x − 1)3 + 4(x − 1)2(y + 1) − (x − 1)z2 + 2(y + 1)3.

Exercises 28 and 32 are used in Exercise 33 (a) and (b). From Definition 1.4, the total differential of f is

df(a, h) =
n∑

i=1

∂f

∂xi
(a) dxi.

28. f(x, y) = x2y3 so df(x, y, h) = 2xy3 dx + 3x2y2 dy.
29. f(x, y, z) = x2 + 3y2 − 2z3 so df(x, y, z, h) = 2x dx + 6y dy − 6z2 dz.
30. f(x, y, z) = cos(xyz) so df(x, y, z, h) = −yz sin(xyz) dx − xz sin(xyz) dy − xy sin(xyz) dz.
31. f(x, y, z) = ex cos y + ey sin z so df(x, y, z, h) = ex cos y dx + (−ex sin y + ey sin z) dy + ey cos z dz.
32. f(x, y, z) = 1/

√
xyz so df(x, y, z, h) = − 1

2
(xyz)−3/2(yz dx + xz dy + xy dz).

33. (a) Use the function from Exercise 28: f(x, y) = x2y3 with x = 7, y = 2, dx = .07, and dy = −.02. So

(7.07)2(1.98)3 ≈ 7223 + df((7, 2), (.07,−.02)) = 2(7)(23)(.07) + 3(72)(22)(−.02)

= −3.92.
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(b) Use the function from Exercise 32: f(x, y, z) = 1/
√

xyz with x = 4, y = 2, z = 2, dx = .1, dy = −.04,
and dz = .05. So

1√
(4.1)(1.96)(2.05)

≈ 1√
(4)(2)(2)

− 1

2
(16)−3/2(4(.1) + 8(−.04) + 8(.05))

=
1

4
− 1

128
(.48) = .24625.

(c) Here the function is f(x, y, z) = x cos(yz) with x = 1, y = π, z = 0, dx = .1, dy = −.03, and dz = .12. So

(1.1) cos((π − 0.03)(0.12)) ≈ 1 + (cos 0)(.1) − (π sin 0)(.12) = 1.1.

34. dg(x, y, z, h) = (3x2 − 2y + 2xz) dx + (−2x) dy + (x2 + 7) dz, so dg(1,−2, 1, h) = 9 dx− 2 dy + 8 dz. This means that
changes in x have the most effect.

35. Although students will probably solve this more formally, they should see that, intuitively, changes in the upper left entry are
multiplied by the largest number so that is the entry for which the value of the determinant is most sensitive.

36. r = 2, dr = .1, h = 3, and dh = .05.
(a) V = πr2h, so dV = 2πrh dr + πr2 dh = 2π(2)(3)(.1) + π(22)(.05) = 1.4π.
(b) S = 2πrh + 2πr2, so dS = (2πh + 4πr) dr + 2πr dh = (2π(3) + 4π(2))(.1) + 2π(2)(.05) = 1.6π.

37. Let x denote the diameter of the can, y the height. Then the volume V is given by

V = π
(x

2

)2

y =
π

4
x2y.

The change in volume,ΔV , that occurs when x and y are changed by small amounts dx and dy is given approximately by the
differential:

ΔV ≈ dV =
π

2
xy dx +

π

4
x2 dy.

When x = 5 and y = 12 this becomes

dV = π

(
30 dx +

25

4
dy

)
.

If x is decreased by 0.5 cm, so that dx = −0.5, then

dV = π

(
−15 +

25

4
dy

)
.

For dV to be zero (which represents approximately no change in volume), we see that

dy =
60

25
= 2.4 cm.

38. (a) The area A is given by

A =
1

2
ab sin θ, so dA =

1

2
b sin θ da +

1

2
a sin θ db +

1

2
ab cos θ dθ.

With a = 3, b = 4, and θ = π/3, this becomes

dA =
√

3 da +
3
√

3

4
db + 3 dθ.

Thus, at these values, the area is most sensitive to changes in the angle θ.
(b) We use the differential appearing in part (a):

ΔA ≈ dA =
√

3 da +
3
√

3

4
db + 3 dθ.

If the measurement of a is in error by at most 5%, then

|da| ≤ 0.05(3) = 0.15.

Similarly,
|db| ≤ 0.05(4) = 0.2 and |dθ| ≤ 0.02

(π

3

)
= 0.006π.

c© 2012 Pearson Education, Inc.



204 Chapter 4 Maxima and Minima in Several Variables

Hence the maximum error that results in the calculated value of the area is

|dA| ≤
√

3(0.15) +
3
√

3

4
(0.2) + 0.02π ≈ 0.58245 cm2.

The percentage error that this represents is calculated as

|dA|
A

≤ 0.58245

3
√

3
≈ 0.112,

or 11.2%.
39. We are told that dr = dh and know that V = (1/3)πr2h. So dV = (2/3)πrh dr + (1/3)πr2dh = (28π/3) dr. Now we

want |dV | to be at most .2 so |dV | = (28π/3)|dr| ≤ .2 or |dr| ≤ .3/(14π) ≈ .0068209.
40. V = xyz where x = 3, y = 4, z = 2 and we assume that dx = dy = dz. So dV = (4)(2) dx + (3)(2) dy + (3)(4) dz =

26dx. We want |dV | ≤ .2 so |dx| ≤ .2/26 ≈ .00769. This is a percentage error of .2/24 = .8333%.
41. (a) We do the preliminary calculations:

f(x, y) = cos x sin y f(0, π/2) = 1

fx(x, y) = − sin x sin y fx(0, π/2) = 0

fy(x, y) = cos x cos y fy(0, π/2) = 0

fxx(x, y) = − cos x sin y fxx(0, π/2) = −1

fyy(x, y) = − cos x sin y fyy(0, π/2) = −1

fxy(x, y) = − sin x cos y fxy(0, π/2) = 0

So p2(x) = 1 − x2/2 − (y − π/2)2/2.
(b) We’ll just follow the estimate in Example 12 in the text: “since all partial derivatives of f will be the product of sines and

cosines and hence no larger than 1 in magnitude” and |h1| and |h2| are each no more than .3,

|R2(0, π/2, h1, h2)| ≤ 1

6
(|h1|3 + 3h2

1|h2| + 3|h1|h2
2 + |h2|3) ≤ 1

6
(8 · (0.3)3) = .036.

42. (a) We do the preliminary calculations:

f(x, y) = ex+2y f(0, 0) = 1

fx(x, y) = ex+2y fx(0, 0) = 1

fy(x, y) = 2ex+2y fy(0, 0) = 2

fxx(x, y) = ex+2y fxx(0, 0) = 1

fyy(x, y) = 4ex+2y fyy(0, 0) = 4

fxy(x, y) = 2ex+2y fxy(0, 0) = 2.

So p2(x) = 1 + x + 2y + x2/2 + 2xy + 2y2.
(b) This time each third derivative has a factor of ex+2y in it. Each derivative with respect to y brings out an additional factor

of two. Here |h1| and |h2| are no more than .1 and on our set ex+2y ≤ e.3 < 2. So

|R2(0, 0, h1, h2)| ≤ (2)
1

6
(|h1|3 + 6h2

1|h2| + 12|h1|h2
2 + 8|h2|3) ≤ 1

3
(27 · (0.1)3) = .009.

43. (a) The preliminary calculations for f(x, y) = e2x cos y are

f(x, y) = e2x cos y f(0, π/2) = 0

fx(x, y) = 2e2x cos y fx(0, π/2) = 0

fy(x, y) = −e2x sin y fy(0, π/2) = −1

fxx(x, y) = 4e2x cos y fxx(0, π/2) = 0

fxy(x, y) = −2e2x sin y fxy(0, π/2) = −2 = fyx(0, π/2)

fyy(x, y) = −e2x cos y fyy(0, π/2) = 0.
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Thus
p2(x, y, z) = −

(
y − π

2

)
+

1

2

(
−4x

(
y − π

2

))
=

π

2
− y − 2x

(
y − π

2

)
.

(b) The eight third-order partial derivatives are:

fxxx(x, y) = 8e2x cos y

fxxy(x, y) = −4e2x sin y = fxyx(x, y) = fyxx(x, y)

fxyy(x, y) = −2e2x cos y = fyxy(x, y) = fyyx(x, y)

fyyy(x, y) = e2x sin y,

Lagrange’s form of the remainder tells us that

∣∣∣R2

(
x, y, 0,

π

2

)∣∣∣ = 1

3!

∣∣∣∣∣∣
2∑

i,j,k=1

fxixjxk
(z)hihjhk

∣∣∣∣∣∣ ,
where z is a point on the line segment joining (0, π/2) and (x, y). Note that the exponential function e2x increases with
x and the sine and cosine have maximum values of 1. Thus

|fxxx(x, y)| ≤ 8e0.4,

and similar results apply to the other third-order partials. Hence
∣∣∣R2

(
x, y, 0,

π

2

)∣∣∣ ≤ 1

6

(
8e0.4|h1|3 + 3 · 4e0.4|h1|2|h2| + 3 · 2e0.4|h1| |h2|2 + e0.4|h2|3

)

=
e0.4

6

(
8|h1|3 + 12|h1|2|h2| + 6|h1| |h2|2 + |h2|3

)
.

If |h1| ≤ 0.2 and |h2| ≤ 0.1, then

∣∣∣R2

(
x, y, 0,

π

2

)∣∣∣ ≤ e0.4

6
(8(0.008) + 12(0.004) + 6(0.002) + 0.001) ≈ 0.03108.

4.2 Extrema of Functions

1. f(x, y) = 4x + 6y − 12 − x2 − y2 so fx(x, y) = 4 − 2x, fy(x, y) = 6 − 2y, fxx(x, y) = −2, fxy(x, y) = 0, and
fyy(x, y) = −2.
(a) To find the critical point we will set each of the first partial derivatives equal to 0 and solve: fx(x, y) = 0when 4−2x = 0

or when x = 2 and fy(x, y) = 0 when 6 − 2y = 0 or when y = 3. So f has a unique critical point at (2, 3).
(b) The increment

Δf = f(2 + Δx, 3 + Δy) − f(2, 3)

= 4(2 + Δx) + 6(3 + Δy) − 12 − (2 + Δx)2 − (3 + Δy)2

− (4(2) + 6(3) − 12 − 22 − 32) = −(Δx)2 − (Δy)2.

This tells us that little changes in x and/or y result in a decrease in the value of f . This means that f must have a local
maximum at (2, 3).

(c) The Hessian isHf(2, 3) =

[ −2 0
0 −2

]
so d1 = −2 and d2 = 4 so by the second derivative test, f has a local maximum

at (2, 3).
2. g(x, y) = x2 − 2y2 + 2x + 3 so gx(x, y) = 2x + 2, gy(x, y) = −4y, gxx(x, y) = 2, gxy(x, y) = 0, and gyy(x, y) = −4.
(a) To find the critical point we will set each of the first partial derivatives equal to 0 and solve: gx(x, y) = 0when 2x+2 = 0

or when x = −1 and gy(x, y) = 0 when −4y = 0 or when y = 0. So g has a unique critical point at (−1, 0).
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(b) The increment

Δg = g(−1 + Δx, Δy) − g(−1, 0)

= (−1 + Δx)2 − 2(Δy)2 + 2(−1 + Δx) + 3 − ((−1)2 + 2(−1) + 3)

= (Δx)2 − 2(Δy)2.

This tells us that any changes in x result in an increase in the value of g and little changes in y result in a decrease in the
value of g. This means that f must have a saddle at (−1, 0).

(c) The Hessian is Hg(−1, 0) =

[
2 0
0 −4

]
so d1 = 2 and d2 = −8, so by the second derivative test, g has a saddle at

(−1, 0).

In Exercises 3–20, most of the mistakes will be algebra mistakes made in solving for the critical points. For Exercises 3–14,
you are using the familiar rule for the second derivative test at a point a = (a, b) where fx(a) = 0 = fy(a). The determinant of
the Hessian is often referred to as the discriminant:

D(a, b) = |Hf(a, b)| = fxx(a, b)fyy(a, b) − [fxy(a, b)]2.

The second derivative test (see Example 5) is then

• if D(a, b) > 0 and

if fxx(a, b) > 0 then f has a local minimum at (a, b)
if fxx(a, b) < 0 then f has a local maximum at (a, b)

• if D(a, b) < 0 then f has a saddle at (a, b).
• Otherwise the test tells us nothing.

In many calculus classes students never see the extension of this test to higher dimensions. In Exercises 15–20, the students will
need to use the R3 version of the second derivative test.

3. f(x, y) = 2xy − 2x2 − 5y2 + 4y − 3, so fx(x, y) = 2y − 4x and fy(x, y) = 2x− 10y + 4. At a critical point 2y − 4x = 0
so y = 2x. Also 4 = 10y − 2x = 10y − y = 9y so y = 4/9 and x = 2/9. So f has a critical point at (2/9, 4/9).

We easily calculate the Hessian Hf =
[ −4 2

2 −10

]
so d1 = −4 and d2 = 36. So f has a local maximum at (2/9, 4/9).

4. f(x, y) = ln(x2 + y2 + 1), so fx(x, y) =
2x

x2 + y2 + 1
and fy(x, y) =

2y

x2 + y2 + 1
. The only critical point of f is at the

origin.

The second derivatives are fxx(x, y) =
−2x2 + 2y2 + 2

(x2 + y2 + 1)2
, fyy(x, y) =

2x2 − 2y2 + 2

(x2 + y2 + 1)2
, and also

fxy(x, y) =
4xy

(x2 + y2 + 1)2
. At the origin, the Hessian Hf(0, 0) =

[
2 0
0 2

]
so d1 = 2 and d2 = 4. So f has a local

minimum at (0, 0).
5. f(x, y) = x2 + y3 − 6xy + 3x + 6y, so fx(x, y) = 2x − 6y + 3 and fy(x, y) = 3y2 − 6x + 6. At a critical point for f ,

2x = 6y − 3 and 0 = 3y2 − 6x + 6 so 0 = y2 − 2x + 2. Substituting, 0 = y2 − 6y + 5 = (y − 1)(y − 5). We have critical
points at (3/2, 1) and (27/2, 5).
The second derivatives are fxx(x, y) = 2, fyy(x, y) = 6y, and fxy(x, y) = −6. d1 = 2 and d2 = 12y − 36. In other words,
d1 is always positive and d2 is positive when y = 5 and negative when y = 1 so by the second derivative test f has a saddle
point at (3/2, 1) and f has a local minimum at (27/2, 5).

6. f(x, y) = y4 − 2xy2 + x3 − x, so fx(x, y) = −2y2 + 3x2 − 1 and fy(x, y) = 4y3 − 4xy = 4y(y2 − x). At a critical point
for f , y = 0 or y2 = x. If y = 0 then x = ±1/

√
3. If y2 = x then 0 = 3x2 − 2x− 1 = (3x + 1)(x− 1). This gives us that

x = 1 or x = −1/3 but x can’t be negative. So there are four critical points for f : (±1/
√

3, 0), and (1,±1).
The second derivatives are fxx(x, y) = 6x, fyy(x, y) = 12y2 − 4x, and fxy(x, y) = −4y. d1 = 6x and d2 = 8(9xy2 −
2y2 − 3x2). We’ll calculate di at each critical point to classify them:

Critical Point d1 d2 Classification
(1/

√
3, 0) 6/

√
3 −8 saddle

(−1/
√

3, 0) −6/
√

3 −8 saddle
(1,−1) 6 32 local minimum
(1, 1) 6 32 local minimum
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7. f(x, y) = xy +
8

x
+

1

y
, so fx(x, y) = y − 8

x2
and fy(x, y) = x− 1

y2
. At a critical point for f , x =

1

y2
and y =

8

x2
= 8y4

so 0 = y(8y3 − 1) so either y = 0 or y = 1/2. Since y = 0 is not in the domain of f , the only critical point of f is at (4, 1/2).

The second derivatives are fxx(x, y) =
16

x3
, fyy(x, y) =

2

y3
, and fxy(x, y) = 1. d1 =

16

x3
and d2 =

32

x3y3
− 1. At our

critical point both d1 and d2 are positive so (4, 1/2) is a local minimum.
8. f(x, y) = ex sin y so fx(x, y) = ex sin y and fy(x, y) = ex cos y. There are no values of x and y for which both first partials
are 0 so there are no critical points.

9. f(x, y) = e−y(x2 − y2), so fx(x, y) = 2xe−y and fy(x, y) = −e−y(x2 − y2 + 2y). At a critical point for f , x = 0 and
0 = −y2 + 2y = −y(y − 2) so the critical points of f are at (0, 0) and (0, 2).
The second derivatives are fxx(x, y) = 2e−y , fyy(x, y) = e−y(x2 − y2 + 4y − 2), and fxy(x, y) = −2xe−y . d1 > 0 and
d2(0, y) = −2e−2y(y2 − 4y + 2). In other words, d1 is always positive and d2 is negative when y = 0 and positive when
y = 2 so by the second derivative test f has a saddle point at (0, 0) and f has a local minimum at (0, 2).

10. f(x, y) = x + y − x2y − xy2, so fx(x, y) = 1− 2xy − y2 and fy(x, y) = 1− 2xy − x2. At a critical point for f , x2 = y2

so x = ±y. If x = y, then 0 = 1− 2xy − y2 = 1− 3x2 so x = y = ±1/
√

3. If x = −y, then 0 = 1− 2xy − y2 = 1 + y2

for which there are no real solutions. So the critical points for f are ±(1/
√

3, 1/
√

3).
The second derivatives are fxx(x, y) = −2y, fyy(x, y) = −2x, and fxy(x, y) = −2x − 2y. d1 = −2y and d2 =
−4x2 − 4xy − 4y2. At the critical points d2 is negative and d1 is non-zero so f has a saddle point at both ±(1/

√
3, 1/

√
3).

11. f(x, y) = x2 − y3 − x2y + y, so fx(x, y) = 2x − 2xy = 2x(1 − y) and fy(x, y) = −3y2 − x2 + 1. At a critical point for
f , either x = 0 or y = 1. When x = 0, y must be ±1/

√
3. No solution corresponds to y = 1, So the critical points for f are

(0,±1/
√

3).
The second derivatives are fxx(x, y) = 2 − 2y, fyy(x, y) = −6y, and fxy(x, y) = −2x. d1 = 2 − 2y and d2 =
−12y + 12y2 − 4x2. At (0,−1/

√
3), d1 is positive and d2 is positive so f has a local minimum at (0,−1/

√
3). At

(0, 1/
√

3), d1 is positive and d2 is negative so f has a saddle point at (0, 1/
√

3).
12. f(x, y) = e−x(x2 + 3y2), so fx(x, y) = (2x−x2 − 3y2)e−x and fy(x, y) = 6ye−x. From fy we see that at a critical point

for f , we must have y = 0. Plugging back into fx we conclude that there are critical points at (0, 0) and at (2, 0).
The second derivatives are fxx(x, y) = (2 − 4x + x2 + 3y2)e−x, fyy(x, y) = −6e−x, and fxy(x, y) = −6ye−x. d1 =
(2 − 4x + x2 + 3y2)e−x and d2 = 6e−2x(1 − 4x + x2 − 3y2). At (0, 0), d1 and d2 are positive so f has a local minimum
at (0, 0). At (2, 0), d1 and d2 are negative so f has a saddle point at (2, 0).

13. f(x, y) = 2x − 3y + ln xy, so fx(x, y) = 2 + 1/x and fy(x, y) = −3 + 1/y. The critical point is (−1/2, 1/3).
The second derivatives are fxx(x, y) = −1/x2, fyy(x, y) = −1/y2, and fxy(x, y) = 0. d1 = −1/x2 and d2 = 1/x2y2. At
(−1/2, 1/3), d1 is negative and d2 is positive so f has a local max at (−1/2, 1/3).

14. f(x, y) = cos x sin y, so fx(x, y) = − sin x sin y and fy(x, y) = cos x cos y. The critical points are of the form (nπ, π/2 +
mπ) and (π/2 + nπ, mπ) wherem and n are integers.
The second derivatives are fxx(x, y) = − cos x sin y, fyy(x, y) = − cos x sin y, and fxy(x, y) = − sin x cos y. d1 =
− cos x sin y and d2 = cos2 x sin2 y − sin2 x cos2 y. At points of the form (nπ, π/2 + mπ), d1 alternates between negative
and positive values while d2 is positive so f has an alternating string of local maxs and mins at such points. At the point
(0, π/2), for example, f has a local max. At points of the form (π/2 + nπ, mπ), d1 = 0 and d2 is negative so such points
are saddle points.

15. f(x, y, z) = x2 − xy + z2 − 2xz + 6z, so fx(x, y, z) = 2x − y − 2z, fy(x, y, z) = −x and fz(x, y, z) = 2z − 2x + 6.
From the second equation, x = 0. From the third, then, z = −3 and from the first it follows that y = 6.
The second derivatives are fxx(x, y, z) = 2, fyy(x, y, z) = 0, fzz(x, y, z) = 2, fxy(x, y, z) = −1, fxz(x, y, z) = −2 and
fyz(x, y, z) = 0. d1 = 2, d2 = −1 and d3 = −2 so f has a saddle point at (0, 6,−3).

16. f(x, y, z) = (x2+2y2+1) cos z, so fx(x, y, z) = 2x cos z, fy(x, y, z) = 4y cos z and fz(x, y, z) = −(x2+2y2+1) sin z.
From the third equation, z = nπ. The other two equations imply that x and y both are 0. So the critical points are of the form
(0, 0, nπ).
The second derivatives are fxx(x, y, z) = 2 cos z, fyy(x, y, z) = 4 cos z, fzz(x, y, z) = −(x2+2y2+1) cos z, fxy(x, y, z) =
0, fxz(x, y, z) = −2x sin z and fyz(x, y, z) = −4y sin z. d1 = 2 cos z and d2 = 8 cos2 z. It is easier to calculate d3 at our
critical point. In this case d3(0, 0, nπ) = ∓8 while d1(0, 0, nπ) = ±2, d2 = 8. So f has saddle points at (0, 0, nπ).

17. f(x, y, z) = x2 + y2 + 2z2 + xz so fx(x, y, z) = 2x + z, fy(x, y, z) = 2y, and fz(x, y, z) = 4z + x. It is easy to see that
the only critical point is at the origin.

The Hessian is Hf =

⎡
⎣ 2 0 1

0 2 0
1 0 4

⎤
⎦ so d1 = 2, d2 = 4, and d3 = 14. By the second derivative test, f has a local minimum
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at (0, 0, 0).
18. f(x, y, z) = x3 + xz2 − 3x2 + y2 + 2z2 so fx(x, y, z) = 3x2 + z2 − 6x, fy(x, y, z) = 2y, and fz(x, y, z) = 2xz +

4z = 2z(x + 2). We see immediately that at a critical point of f , y = 0 and either z = 0 or x = −2. If z = 0 then
0 = 3x2 − 6x = 3x(x− 2) so x = 0 or x = 2. If x = −2 then z2 = −24 for which there are no real solutions. We conclude
that f has critical points at (0, 0, 0) and (2, 0, 0).

The Hessian is Hf =

⎡
⎣ 6x − 6 0 2z

0 2 0
2z 0 2x + 4

⎤
⎦ so Hf(x, 0, 0) =

⎡
⎣ 6x − 6 0 0

0 2 0
0 0 2x + 4

⎤
⎦. This makes it easier to calcu-

late d1(x, 0, 0) = 6x − 6, d2(x, 0, 0) = 2d1(x, 0, 0), and d3(x, 0, 0) = (2x + 4) d2. At (0, 0, 0) all three di’s are negative
and at (2, 0, 0) all three are positive. By the second derivative test, f has a saddle point at (0, 0, 0) and a local minimum at (2,
0, 0).

19. f(x, y, z) = xy + xz + 2yz +
1

x
so fx(x, y, z) = y + z − 1

x2
, fy(x, y, z) = x + 2z, and fz(x, y, z) = x + 2y. We see

immediately that at a critical point of f , y = z so both 2z = −x and 2z =
1

x2
so −x =

1

x2
so x = −1. Therefore, f has a

critical point at (−1, 1/2, 1/2).

The Hessian is Hf =

⎡
⎣ 2/x3 1 1

1 0 2
1 2 0

⎤
⎦ so d1(−1, 1/2, 1/2) = −2, d2(−1, 1/2, 1/2) = −1, and d3(−1, 1/2, 1/2) = 12.

This is the case of the second derivative test where the conditions are valid but neither of the first two cases holds so f has a
saddle point at (−1, 1/2, 1/2).

20. f(x, y, z) = ex(x2 − y2 − 2z2) so fx(x, y, z) = ex(x2 + 2x− y2 − 2z2), fy(x, y, z) = −2yex, and fz(x, y, z) = −4zex.
We see immediately that at a critical point of f , y = z = 0 and therefore 0 = x2 + 2x = x(x + 2). The two critical points of
f are (0, 0, 0) and (−2, 0, 0).

The Hessian is Hf =

⎡
⎣ ex(x2 + 4x + 2 − y2 − 2z2) −2yex −4zex

−2yex −2ex 0
−4zex 0 −4ex

⎤
⎦ so

Hf(x, 0, 0) =

⎡
⎣ ex(x2 + 4x + 2) 0 0

0 −2ex 0
0 0 −4ex

⎤
⎦ .

For (0, 0, 0), d1 > 0, d2 < 0, and d3 < 0 so f has a saddle at (0, 0, 0). For (−2, 0, 0), d1 < 0, d2 > 0, and d3 < 0 so f has a
local maximum at (−2, 0, 0).

21. (a) f(x, y) =
2y3 − 3y2 − 36y + 2

1 + 3x2
so fx(x, y) =

6x(2y3 − 3y2 − 36y + 2)

(1 + 3x2)
and fy(x, y) =

6(y2 − y − 6)

1 + 3x2

=
6(y − 3)(y + 2)

1 + 3x2
. From fy we see that either y = 3 or y = −2. Neither of these values makes fx = 0 so x = 0. The

critical points for f are (0,−2) and (0, 3).
(b)

Hf =

⎡
⎢⎢⎣

6(3x − 1)(3x + 1)(2y3 − 3y2 − 36y + 2)

(3x2 + 1)3
−36x(y − 3)(y + 2)

(3x2 + 1)2

−36x(y − 3)(y + 2)

(3x2 + 1)2
6(2y − 1)

3x2 + 1

⎤
⎥⎥⎦ and

Hf(0, y) =

[
−6(2y3 − 3y2 − 36y + 2) 0

0 6(2y − 1)

]
.

At (0,−2) we find that d1 < 0 and d2 > 0 so f has a local maximum at (0,−2). At (0, 3) we find that d1 > 0 and
d2 > 0 so f has a local minimum at (0, 3).

22. (a) f(x, y) = kx2 − 2xy + ky2 so fx(x, y) = 2kx − 2y and fy(x, y) = −2x + 2ky. We see that the origin is a critical

point for any value of k. The Hessian is
[

2k −2
−2 2k

]
so d1 = 2k and d2 = 4k2 − 4. For f to have a non-degenerate

local maximum or minimum d2 > 0 so k2 − 1 > 0 so either k > 1 or k < −1. If k > 1, then d1 > 0 and the origin is a
non-degenerate local minimum. If k < −1, then d1 < 0 and the origin is a non-degenerate local maximum.

c© 2012 Pearson Education, Inc.



Section 4.2. Extrema of Functions 209

(b) g(x, y, z) = kx2 + kxz − 2yz − y2 + kz2/2 so gx(x, y, z) = 2kx + kz, gy(x, y, z) = −2z − 2y, and gz(x, y, z) =

kx − 2y + kz. The Hessian is

⎡
⎣ 2k 0 k

0 −2 −2
k −2 k

⎤
⎦. First note that d1 = 2k and d2 = −4k. These are of opposite signs

so a non-degenerate local minimum is not possible. For a non-degenerate local maximum we need d1 < 0 and d2 > 0 so
k < 0. We also need d3 = 2k(−k − 4) < 0 so k < −4. So we have a non-degenerate local maximum when k < −4.

23. If you think of this problem geometrically it should be reasonably straightforward. The slices through the origin where only
one variable is allowed to change are parabolas. They open up if the coefficient of the term containing that variable is positive
and down if it is negative. This tells you that if all of the coefficients are positive then we have a local minimum, if all of the
coefficients are negative then we have a local maximum, and if some are positive and some are negative then we have a saddle
point.
(a) f(x, y) = ax2 + by2 so fx(x, y) = 2ax and fy(x, y) = 2by. Since neither a nor b is 0, the critical point must be the

origin. The Hessian is Hf =

[
2a 0
0 2b

]
. The first condition is that d2 > 0 so 4ab > 0 so a and b are the same sign.

Also, d1 = 2a so when a and b are negative the origin is a local maximum and when a and b are positive the origin is a
local minimum.

(b) f(x, y) = ax2 + by2 + cz2 so fx(x, y, z) = 2ax, fy(x, y, z) = 2by and fz(x, y, z) = 2cz. Since none of a, b and c is

0, the critical point must be the origin. The Hessian is Hf =

⎡
⎣ 2a 0 0

0 2b 0
0 0 2c

⎤
⎦. Again, in either case d2 > 0 so 4ab > 0

so a and b are the same sign. Also, d1 = 2a and d3 = 8abc. In either case d1 and d3 must be the same sign. When a, b
and c are negative the origin is a local maximum and when a, b and c are positive the origin is a local minimum.

(c) Really the analysis is no harder, it is just harder to write down. The function is now f(x1, x2, . . . , xn) = a1x
2
1 + a2x

2
2 +

· · · + anx2
n. The first derivatives are fxi

(x1, x2, . . . , xn) = 2aixi. Because none of the ai is zero and all of the first
derivatives are 0, we conclude that the only critical point is at the origin. The Hessian is an n × n matrix with zeros
everywhere off of the main diagonal and the entry in position (i, i) is 2ai. We easily calculate di = 2ia1a2 . . . ai. As
above, d2 must be positive so both a1 and a2 are of the same sign. We could continue to argue that d4 = 4a3a4d2 so a3

and a4 must be of the same sign. In fact, we can continue that reasoning to say for k odd, ak and ak+1 must be of the
same sign. For f to have a local maximum d1 < 0 so a1 and a2 are both negative. Also, dk = 2akdk−1 and for k odd
dk < 0 so we can move up through the entries and argue that all of the ai’s must be negative. Similarly, for f to have a
local minimum all of the ai’s must be positive.

Note: In Exercises 24–27 we have used a computer algebra system. In fact, I’ve used Mathematica. In Exercise 24, I’ve
included a list of the relevant commands. These were adapted for each of the exercises.

24. We’ll use the following sequence of commands:

• f [x−, y−] = y4 − 2xy2 + x3 − x

• Solve [{D[f [x, y], x] == 0, D[f [x, y], y] == 0}]
• H = {{∂x,xf [x, y], ∂x,yf [x, y]}, {∂y,xf [x, y], ∂y,yf [x, y]}}
• MatrixForm [H/.{x → 1, y → −1}] (since (1,−1) is the critical point found in the second step)

This is how you define the function, solve∇f = 0, create the Hessian and display it at the critical points.
In this case we get the following solutions to the simultaneous equations: (−1/3, ±i/

√
3), (1, ±1), and (±1/

√
3, 0). Let’s

examine the real-valued solutions.
At (1, 1) the Hessian is

[
6 −4

−4 8

]
. This means that d1 > 0 and d2 > 0 so (1, 1) is a local minimum.

At (1,−1) the Hessian is
[

6 4
4 8

]
. This means that d1 > 0 and d2 > 0 so (1,−1) is a local minimum.

At (−1/
√

3, 0) the Hessian is
[ −2

√
3 0

0 4/
√

3

]
. This means that d1 < 0 and d2 < 0 so (−1/

√
3, 0) is a saddle point.

At (1/
√

3, 0) the Hessian is
[

2
√

3 0

0 −4/
√

3

]
. This means that d1 < 0 and d2 < 0 so (1/

√
3, 0) is a saddle point.

25. The commands are the same as those outlined in Exercise 24. The critical points are (0, 0), (±
√

3/2, 0), and±(1/
√

2,−1/
√

2).

At (0, 0) the Hessian is
[

0 −3
−3 −2

]
. This means that d1 = 0 and d2 < 0 so (0, 0) is a saddle point.
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At (±
√

3/2, 0) the Hessian is
[

0 6
6 −2

]
. Again, d1 = 0 and d2 < 0 so both (

√
3/2, 0) and (−

√
3/2, 0) are saddle

points.

At ±(1/
√

2,−1/
√

2) the Hessian is
[ −6 0

0 −2

]
. This means that d1 < 0 and d2 > 0 so both (1/

√
2,−1/

√
2) and

(−1/
√

2, 1/
√

2) are local maxima.
26. We need to slightly alter the commands from the previous two exercises. The command to find the roots specified by the three

first partials is now:
Solve [{D[f [x, y, z], x] == 0, D[f [x, y, z], y] == 0, D[f [x, y, z], z] == 0}].

We also need to change the specification of the Hessian to:

H = {{∂x,xf [x, y, z], ∂x,yf [x, y, z], ∂x,zf [x, y, z]},
{∂y,xf [x, y, z], ∂y,yf [x, y, z], ∂y,zf [x, y, z]},
{∂z,xf [x, y, z], ∂z,yf [x, y, z], ∂z,zf [x, y, z]}}

Finally, it will be helpful to use the computer to calculate the determinant. ForMathematica you type Det[M] whereM is the
matrix for which you wish to calculate the determinant.

The critical points are at (1 − 2
√

2,−
√

2(4 −√
2),−

√
4 −√

2), (1 − 2
√

2,
√

2(4 −√
2),
√

4 −√
2),

(1 + 2
√

2,−
√

2(4 +
√

2),
√

4 +
√

2), (1 + 2
√

2,
√

2(4 +
√

2),−
√

4 +
√

2), and (0, 0, 0).

At (0, 0, 0) the Hessian is

⎡
⎣ −2 0 0

0 −2 1
0 1 −4

⎤
⎦. So d1 < 0, d2 > 0 and d3 < 0 so (0, 0, 0) is a local max.

At (1 − 2
√

2,−
√

2(4 −√
2),−

√
4 −√

2) the Hessian is

⎡
⎢⎢⎢⎣

−2
√

4 −√
2
√

2(4 −√
2)√

4 −√
2 −2 2

√
2√

2(4 −√
2) 2

√
2 −4

⎤
⎥⎥⎥⎦.

So, d1 = −2 < 0 and d2 =
√

2 > 0 and d3 = 64− 16
√

2 > 0 so (1− 2
√

2,−
√

2(4 −√
2),−

√
4 −√

2) is a saddle point.

At (1 − 2
√

2,
√

2(4 −√
2),
√

4 −√
2) the Hessian is

⎡
⎢⎢⎢⎣

−2 −
√

4 −√
2 −

√
2(4 −√

2)

−
√

4 −√
2 −2 2

√
2

−
√

2(4 −√
2) 2

√
2 −4

⎤
⎥⎥⎥⎦.

So, d1 = −2 < 0 and d2 =
√

2 > 0 and d3 = 64 − 16
√

2 > 0 so (1 − 2
√

2,
√

2(4 −√
2),
√

4 −√
2) is a saddle point.

At (1 + 2
√

2,−
√

2(4 +
√

2),
√

4 +
√

2) the Hessian is

⎡
⎢⎢⎢⎣

−2 −
√

4 +
√

2
√

2(4 +
√

2)

−
√

4 +
√

2 −2 −2
√

2√
2(4 +

√
2) −2

√
2 −4

⎤
⎥⎥⎥⎦.

So, d1 = −2 < 0 and d2 = −√
2 < 0 and d3 = 64 + 16

√
2 > 0 so (1 + 2

√
2,−
√

2(4 +
√

2),
√

4 +
√

2) is a saddle point.

At (1 + 2
√

2,
√

2(4 +
√

2),−
√

4 +
√

2) the Hessian is

⎡
⎢⎢⎢⎣

−2
√

4 +
√

2 −
√

2(4 +
√

2)√
4 +

√
2 −2 −2

√
2

−
√

2(4 +
√

2) −2
√

2 −4

⎤
⎥⎥⎥⎦.

So, d1 = −2 < 0 and d2 = −√
2 < 0 and d3 = 64 + 16

√
2 > 0 so (1 + 2

√
2,
√

2(4 +
√

2),−
√

4 +
√

2) is a saddle point.

27. The commands are extended as they were in Exercise 26. The critical points are (0, 0, 0, 0), (−√
2, 2

√
2, 1,−√

2), (
√

2, 2
√

2,
−1,−√

2), (−√
2,−2

√
2,−1,

√
2), and (

√
2,−2

√
2, 1,

√
2).

At (0, 0, 0, 0) the Hessian is

⎡
⎢⎢⎣

−2 0 0 0
0 0 0 1
0 0 −4 0
0 1 0 2

⎤
⎥⎥⎦. So d1 = −2 < 0, d2 = 0, d3 = 0, and d4 = −8 < 0, so (0, 0, 0, 0) is a

saddle point.
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At (−√
2, 2

√
2, 1,−√

2) the Hessian is

⎡
⎢⎢⎣

−2 −1 −2
√

2 0

−1 0
√

2 1

−2
√

2
√

2 −4 0
0 1 0 2

⎤
⎥⎥⎦. So d1 = −2 < 0, d2 = −1 < 0, d3 = 16 > 0,

and d4 = 32 > 0, so (−√
2, 2

√
2, 1,−√

2) is a saddle point.

At (
√

2, 2
√

2,−1,−√
2) the Hessian is

⎡
⎢⎢⎣

−2 1 −2
√

2 0

1 0 −√
2 1

−2
√

2 −√
2 −4 0

0 1 0 2

⎤
⎥⎥⎦. So d1 = −2 < 0, d2 = −1 < 0, d3 = 16 > 0,

and d4 = 32 > 0, so (
√

2, 2
√

2,−1,−√
2) is a saddle point.

At (−√
2,−2

√
2,−1,

√
2) the Hessian is

⎡
⎢⎢⎣

−2 1 2
√

2 0

1 0
√

2 1

2
√

2
√

2 −4 0
0 1 0 2

⎤
⎥⎥⎦. So d1 = −2 < 0, d2 = −1 < 0, d3 = 16 > 0, and

d4 = 32 > 0, so (−√
2,−2

√
2,−1,

√
2) is a saddle point.

At (
√

2,−2
√

2, 1,
√

2) the Hessian is

⎡
⎢⎢⎣

−2 −1 2
√

2 0

−1 0 −√
2 1

2
√

2 −√
2 −4 0

0 1 0 2

⎤
⎥⎥⎦. So d1 = −2 < 0, d2 = −1 < 0, d3 = 16 > 0, and

d4 = 32 > 0, so (
√

2,−2
√

2, 1,
√

2) is a saddle point.

28. We want to maximize V = xyz subject to the constraint 2xy + 2xz + 2yz = c. Solve the second equation for z =
c − 2xy

2x + 2y
and substitute to get

V (x, y) =
cxy − 2x2y2

2x + 2y
.

The derivatives are Vx = −y2(2x2 + 4xy − c)

2(x + y)2
and Vy = −x2(2y2 + 4xy − c)

2(x + y)2
. Since neither x nor y could be zero (we

wouldn’t have a box), a critical point of f occurs when both 2x2 +4xy−c = 0 and 2y2 +4xy−c = 0. Solving these together
we find that x2 = y2 and since x and y are positive we conclude that x = y. Substituting back in, 0 = 2x2 + 4xy − c =

2x2 + 4x2 − c = 6x2 − c so x = y =
√

c/6. z =
c − 2xy

2x + 2y
=

c − (c/3)

4
√

c/6
=
√

c/6. So our only critical point is when

the box is a cube. To conclude that this is a local maximum we see that d1 = −y2(c + 2y2)

(x + y)3
< 0 and at our critical point

d2 = −2x2y2(2x2 + 8xy + 2y2 − 3c)

(x + y)4
= −2x4(12x2 − 3c)

(2x)4
= −2c − 3c

8
> 0. So the largest rectangular box with fixed

surface area is a cube.
29. We will actually minimize the square of the distance (i.e., the sum of the squares of the differences in each direction):

D(x, y) = x2 + y2 + (3x − 4y − 24)2 so Dx(x, y) = 20x − 24y − 144 and Dy(x, y) = 34y − 24x + 192. Set
these equal to 0 and solve to get that the point on the plane closest to the origin is (36/13,−48/13,−12/13).

30. Again we will minimize the square of the distance. For points (x, y, z) on the surface we have z2 = 4−xy, so that the square
of the distance x2 + y2 + z2 = x2 + y2 + 4 − xy; thus we consider the function D(x, y) = x2 − xy + y2 + 4. We have
Dx(x, y) = 2x − y andDy(x, y) = 2y − x. Set the partial derivatives equal to 0 and solve the system{

2x − y = 0
−x + 2y = 0

.

The only solution is (0, 0). This solution corresponds to the points (0, 0, 2) and (0, 0,−2) on the surface xy + z2 = 4. To see
that these points really do give the minimum distance, we rewriteD as

D(x, y) = x2 − xy + y2 + 4 =
(
x − y

2

)2

+
3y2

4
+ 4.

Thus we see thatD(x, y) ≥ 4 for all (x, y) andD = 4 exactly when x = y = 0.
31. We solve {

Rx(x, y) = 8 − 2x + 2y = 0

Ry(x, y) = 6 − 4y + 2x = 0
.
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Adding the two equations gives 14 − 2y = 0 which implies that y = 7. Using this in the first equation gives 22 − 2x = 0 so
that x = 11. Hence (11, 7) is the unique critical point. A quick check with the Hessian

HR(11, 7) =

[−2 2
2 −4

]

reveals that d1 = −2, d2 = 8− 4 = 4, so this critical point yields a maximum value ofR. (Note: we may rewrite the revenue
function as R(x, y) = 8x+6y− (x− y)2 − y2. From this it is clear that this critical point must be a global maximum.) Thus
you should manufacture 1100 units of model X and 700 units of model Y.

Exercises 32–39 force us to check values on the border of our region.

32. f(x, y) = x2 + xy + y2 − 6y so fx(x, y) = 2x + y and fy(x, y) = x + 2y − 6. At a critical point for f , y = −2x so
6 = x + 2y = −3x. Our only critical point is (−2, 4). We need to check the value of f at the critical point and along the
boundary of the region −3 ≤ x ≤ 3, 0 ≤ y ≤ 5.

• f(−2, 4) = −12,

• f(−3, y) = 9 − 9y + y2 has a minimum of −11.25 at y = 4.5 and a maximum of 9 at y = 0,

• f(3, y) = 9 − 3y + y2 has a minimum of 27/4 at y = 3/2 and a maximum of 19 at y = 5,

• f(x, 0) = x2 which has a minimum of 0 at x = 0 and a maximum of 9 at x = ±3,

• f(x, 5) = x2 + 5x − 5 has a minimum of −11.25 at x = −5/2 and a maximum of 19 at x = 3.

The absolute maximum is, therefore, 19 at (3, 5) and the absolute minimum is −12 at (−2, 4).
33. f(x, y, z) = x2 +xz−y2 +2z2 +xy +5x so fx(x, y, z) = 2x+y +z +5, fy(x, y, z) = x−2y, and fz(x, y, z) = x+4z.

At a critical point for f , x = 2y = −4z so −5 = 2x + y + z = −8z − 2z + z = −9z. Our only critical point is
(−20/9,−10/9, 5/9) which is not within our region. We need to check the value of f along the boundary of the region
−5 ≤ x ≤ 0, 0 ≤ y ≤ 3, 0 ≤ z ≤ 2. This consists of six two-dimensional faces, twelve one-dimensional edges and eight
vertices.

• f(x, 0, 0) = x2 + 5x has a minimum of −6.25 at x = −5/2 and a maximum of 0 at x = −5 or 0,

• f(x, 0, 2) = x2 + 7x + 8 has a minimum of −4.25 at x = −7/2 and a maximum of 8 at x = 0,

• f(x, 3, 0) = x2 + 8x − 9 has a minimum of 25 at x = −4 and a maximum of −9 at x = 0,

• f(x, 3, 2) = x2 + 10x − 1 has a minimum of −26 at x = −5 and a maximum of −1 at x = 0,

• f(−5, y, 0) = −y2 − 5y has a minimum of −24 at y = 3 and a maximum of 0 at y = 0,

• f(0, y, 0) = −y2 has a minimum of −9 at y = 3 and a maximum of 0 at y = 0,

• f(−5, y, 2) = −y2 − 5y − 2 has a minimum of −26 at y = 3 and a maximum of −2 at y = 0,

• f(0, y, 2) = 8 − y2 has a minimum of −1 at y = 3 and a maximum of 8 at y = 0,

• f(−5, 0, z) = 2z2 − 5z has a minimum of −25/8 at z = 5/4 and a maximum of 0 at z = 0,

• f(0, 0, z) = 2z2 has a minimum of 0 at z = 0 and a maximum of 8 at z = 2,

• f(−5, 3, z) = 2z2 − 5z − 24 has a minimum of −217/8 at z = 5/4 and a maximum of −24 at z = 0,

• f(0, 3, z) = 2z2 − 9 has a minimum of −9 at z = 0 and a maximum of −1 at z = 2.

You also must check for extrema on each face and at each vertex. When you do you find: The absolute maximum is 8 at (0, 0,
2) and the absolute minimum is −191/7 at (−32/7, 3, 8/7).

34. In a fit of compassion, the author of the text has not forced Livinia the housefly to walk around the metal plate in search of
the hottest and coldest points. The temperature is T (x, y) = 2x2 + y2 − y − 3 so Tx(x, y) = 4x and Ty(x, y) = 2y − 1.
We have a critical point for T at (0, 1/2) and T (0, 1/2) = 2.75. To check the temperature of the boundary we note that it is a
unit disk and so x = cos θ and y = sin θ. We can rewrite T (θ) = 2 cos2 θ + sin2 θ − sin θ + 3 = cos2 θ − sin θ + 4. Then
Tθ(θ) = −2 cos θ sin θ − cos θ = − cos θ(2 sin θ + 1). We, therefore, have critical points on the boundary when cos θ = 0
(so θ = π/2 or 3π/2) and when sin θ = −1/2 (so θ = 7π/6 or 11π/6). Checking the values we see that T (π/2) = 3,
T (3π/2) = 5 and T (7π/6) = T (11π/6) = 21/4. We conclude that the coldest spot on the plate is at (0, 1/2) where the
temperature is 11/4 and the two hottest spots are at (±√

3/2,−1/2) where the temperature is 21/4.
35. Because the function is “separable”, we can analyze it without calculus. The maximum value for f is 1 and the minimum value

for f is −1. The absolute maximum is achieved at (π/2, 0), (π/2, 2π), and (3π/2, π). The absolute minimum is achieved at
(3π/2, 0), (3π/2, 2π), and (π/2, π).
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36.

∂f

∂x
= −2 sin x

∂f

∂y
= 3 cos y

So “ordinary” critical points on {(x, y)|0 ≤ x ≤ 4, 0 ≤ y ≤ 3} are at (0, π
2

)
,
(
π, π

2

)
. (In fact,

(
π, π

2

)
is the only critical

point that’s actually in the interior of the rectangle.)
Now we look at the boundary of the rectangle:

f1(x) = f(x, 0) = 2 cos x f ′
1(x) = −2 sin x so critical points at (0, 0), (π, 0);

f2(x) = f(x, 3) = 2 cos x + 3 sin 3 f ′
2(x) = −2 sin x so critical points at (0, 3), (π, 3);

f3(y) = f(0, y) = 2 + 3 sin y f ′
3(y) = 3 cos y so critical point at

(
0, π

2

)
;

f4(y) = f(4, y) = 2 cos 4 + 3 sin y f ′
4(y) = 3 cos y so critical point at

(
4, π

2

)
.

Now we compare values:
(x, y) f(x, y) = 2 cos x + 3 sin y(
0, π

2

)
5(

π, π
2

)
1

(0, 0) 2
(π, 0) −2

(0, 3) 2 + 3 sin 3 ≈ 2.423

(π, 3) −2 + 3 sin 3 ≈ −1.577(
4, π

2

)
2 cos 4 + 3 ≈ 1.693

(4, 0) 2 cos 4 ≈ −1.307

(4, 3) 2 cos 4 + 3 sin 3 ≈ −0.884

Thus the absolute minimum occurs at (π, 0) and is −2. The absolute maximum occurs at
(
0, π

2

)
and is 5.

37. f(x, y) = 2x2 − 2xy + y2 − y + 3, so fx(x, y) = 4x − 2y and fy(x, y) = −2x + 2y − 1. At a critical point for f we have
y = 2x, so −2x + 4x − 1 = 0. Thus the only critical point is ( 1

2
, 1).

Now we need to consider the boundary of the region. It consists of three parts: (1) the horizontal line y = 0, where
0 ≤ x ≤ 2; (2) the vertical line x = 0, where 0 ≤ y ≤ 2; (3) the line x + y = 2 (or y = 2 − x), where 0 ≤ x ≤ 2. Thus we
compare

• f( 1
2
, 1) = 5

2
,

• f(x, 0) = 2x2 + 3 has a minimum of 3 at x = 0 and a maximum of 11 at x = 2,

• f(0, y) = y2 − y + 3 has a minimum of 11
4
at y = 1

2
and a maximum of 5 at y = 2,

• f(x, 2 − x) = 5x2 − 7x + 5 has a minimum of 51
20
at x = 7

10
and a maximum of 11 at x = 2

Thus the absolute minimum is 5
2
occurring at ( 1

2
, 1) and the absolute maximum is 11 occurring at (2, 0).

38. f(x, y) = x2y so fx(x, y) = 2xy and fy(x, y) = x2. Therefore the only ordinary critical point is (0, 0). The boundary ofD
may be parametrized by x = 2 cos t, y =

√
3 sin t for 0 ≤ t < 2π. Thus

F (t) = f(2 cos t,
√

3 sin t) = 4
√

3 cos2 t sin t

and

F ′(t) = 4
√

3
(−2 cos t sin2 t + cos3 t

)
= 4

√
3 cos t

(−2(1 − cos2 t) + cos2 t
)

= 4
√

3 cos t(3 cos2 t − 2).

We see that F ′(t) = 0 when either cos t = 0 (in which case sin t = ±1) or cos t = ±
√

2/3 (in which case sin t = ±1/
√

3).
Thus, in addition to (0, 0), we need to consider six more points: (0,±√

3), (±2
√

2/3,±1). From the following table
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(x, y) f(x, y) = x2y

(0, 0) 0

(0,±√
3) 0(

±2
√

2√
3

, 1

)
8

3(
±2

√
2√
3

,−1

)
−8

3

we see that absolute minima occur at (2
√

2/3,−1) and (−2
√

2/3,−1) and absolute maxima at (2
√

2/3, 1) and (−2
√

2/3, 1).
39. The boundary of the closed ball is given by x2 + y2 − 2y + z2 +4z = 0. Completing the square, we find x2 + y2 − 2y +1+

z2 +4z +4 = 5 or x2 +(y− 1)2 +(z +2)2 = 5. (Note also that x2 + y2 − 2y + z2 +4z = x2 +(y− 1)2 +(z +2)2 − 5.)
The function f(x, y, z) = e1−x2−y2+2y−z2−4z has

fx(x, y, z) = −2xe1−x2−y2+2y−z2−4z = 0 when x = 0

fy(x, y, z) = (−2y + 2)e1−x2−y2+2y−z2−4z = 0 when y = 1

fz(x, y, z) = (−2z − 4)e1−x2−y2+2y−z2−4z = 0 when z = −2

So (0, 1,−2) is an interior critical point (the only one). Note that on the boundary x2 + y2 − 2y + z2 + 4z = 0, we have

f(x, y, z) = e1−0 = e

f(0, 1,−2) = e1−(−5) = e6 ← so absolute max is at (0, 1,−2).

The absolute minimum of e occurs at all points of the boundary. If we setw = x2+y2−2y+z2+4z, then f(x, y, z) = e1−w,
so that it’s clear that the minimum must occur when w = 0 (since w ≤ 0 defines the domain we are to consider). Likewise,
the maximum must occur at the center of the ball.

It’s good to take a step back and see that sometimes we can tell what type of critical point we have without using the tools
we’ve developed. In single-variable calculus, when the second derivative test failed to tell us anything we returned either to the
first derivative test or to an analysis of the function.

In Exercises 40–45, the exponents are all at least two so (see, for example, Section 2.4, Exercise 27) when the Hessian is
evaluated at the origin, all of the entries will be 0. The fact that Hf(0) = 0 means that the Hessian doesn’t provide us with any
information about the nature of the critical point at the origin. This is part (a) for Exercises 40–45. By a deleted neighborhood of
the origin, we will mean a neighborhood of the origin with the origin removed.

40. f(x, y) = x2y2: in every deleted neighborhood of the origin f(x, y) > 0 so f(0, 0) < f(x, y) for every point (x, y) near but
not equal to (0, 0) so f has a local minimum at the origin.

41. f(x, y) = 4 − 3x2y2: in every deleted neighborhood of the origin x2y2 > 0 so −3x2y2 < 0 so f(x, y) < 4 so f(0, 0) >
f(x, y) for every point (x, y) near but not equal to (0, 0) so f has a local maximum at the origin.

42. f(x, y) = x3y3: in every deleted neighborhood of the origin in quadrants I and III f(x, y) > 0 and in quadrants II and IV
f(x, y) < 0 so f has neither a minimum nor a maximum at the origin.

43. f(x, y, z) = x2y3z4: in every deleted neighborhood of the origin where y > 0, f(x, y, z) > 0; when y < 0, f(x, y, z) < 0
so f has neither a minimum nor a maximum at the origin.

44. f(x, y, z) = x2y2z4: in every deleted neighborhood of the origin f(x, y, z) > 0 so f(0, 0, 0) < f(x, y, z) for every point
(x, y, z) near but not equal to (0, 0, 0) so f has a local minimum at the origin.

45. f(x, y, z) = 2 − x4y4 − z4: in every deleted neighborhood of the origin x4y4 + z4 > 0 so f(x, y, z) < 2 so f(0, 0, 0) >
f(x, y, z) for every point (x, y, z) near but not equal to (0, 0, 0) so f has a local maximum at the origin.

46. f(x, y) = ex2+5y2

. Notice that eu is a monotone increasing function of u and x2 + 5y2 has a unique minimum at (0, 0). So
f has a local minimum at (0, 0) so f(0, 0) = 1 is a global minimum.

47. f(x, y, z) = e2−x2−2y2−3x4

. Notice that eu is a monotone increasing function of u and 2 − x2 − 2y2 − 3x4 has a unique
maximum of 2 at (0, 0, 0). So f has a local maximum at (0, 0, 0), so f(0, 0, 0) = e2 is a global maximum.

48. f(x, y) = x3 + y3 − 3xy + 7.
(a) The first partial derivatives are fx(x, y) = 3x2 − 3y and fy(x, y) = 3y2 − 3x so we have critical points at (0, 0) and (1,

1). At the origin we have a saddle point. For the behavior at (1, 1), d1(1, 1) = 6 and d2(1, 1) = 36 − 9 = 27. By the
second derivative test we have a local minimum.

(b) We know there are no global extrema. Look along the x-axis. The function is f(x, 0) = x3 + 7. As x → ∞ f increases
without bound and as x → −∞ f decreases without bound.
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49. There can’t be a global maximum because, for example, for fixed y, as x → 0+ the function grows without bound. fx(x, y) =

y − 1/x and fy(x, y) = x + 2 − 2/y so f has a critical point at (2, 1/2). From the Hessian
[

1/4 1
1 8

]
we see that there is

a local minimum at (2, 1/2) of 2 + ln 2. Note that fx(2, y) = y − 1/2.
We would like to now conclude that f has a unique critical point at (2, 1/2) which is a local minimum and hence it is
a global minimum—such a conclusion seems reasonable, but, as Exercise 52 will demonstrate, is not correct. Consider
fx(x, 1/2) = 1/2−1/x. For x > 2 this is positive and so f is increasing along this line. Now look at fy(x, y) = x+2−2/y
for x ≥ 2. When y > 1/2 this is positive and when 0 < y < 1/2 this is negative. So as we move vertically away from the
line y = 1/2 for x ≥ 2 we see that f is increasing. A similar analysis for the remaining regions shows that f has a global
minimum at (2, 1/2).

50. First we’ll determine the local extrema. We have fx(x, y, z) = 3x2 + 6x − 3z, fy(x, y, z) = 2yey2+1, and fz(x, y, z) =
2z − 3x. Thus the critical points are (0, 0, 0) and (−1/2, 0,−3/4). The Hessian is

Hf(x, y, z) =

⎡
⎣6x + 6 0 −3

0 (2 + 4y2)ey2+1 0
−3 0 2

⎤
⎦ .

Thus

Hf(0, 0, 0) =

⎡
⎣ 6 0 −3

0 2e 0
−3 0 2

⎤
⎦

whose sequence of principal minors is d1 = 6, d2 = 12e, d3 = 6e. Thus (0, 0, 0) yields a local minimum. In addition,

Hf
(− 1

2
, 0,− 3

4

)
=

⎡
⎣ 3 0 −3

0 2e 0
−3 0 2

⎤
⎦

whose sequence of principal minors is d1 = 3, d2 = 6e, d3 = −6e. Hence this critical point is a saddle point.
There are no global extrema. If we fix y and z both equal to zero, then f(x, 0, 0) = x3 + 3x2 + e. As x → +∞, the

expression x3 + 3x2 + e grows without bound and as x → −∞, it decreases without bound.
51. (a) We have

∂f

∂x
= −2

3
[(x − 1)(y − 2)]−1/3 (y − 2) = −2(y − 2)2/3

3(x − 1)1/3

∂f

∂y
= −2

3
[(x − 1)(y − 2)]−1/3 (x − 1) = −2(x − 1)2/3

3(y − 2)1/3
.

Note that ∂f/∂x is undefined when x = 1 and zero when y = 2 (and x �= 1). Similarly, ∂f/∂y is undefined when y = 2
and zero when x = 1 (and y �= 2). Hence the set of critical points consists of all points on the lines x = 1 and y = 2.
Note that these critical points are not isolated.

(b) The domain of f is all of R2; the expression [(x − 1)(y − 2)]2/3 is always nonnegative and is zero only when either
x = 1 or y = 2. Thus f(x, y) ≤ 3 for all (x, y) ∈ R

2 and f(x, y) = 3 precisely when either x = 1 or y = 2. Hence
there are (global) maxima of 3 along these lines.

52. (a) Say that f has a local maximum at x0 and no other critical points. Assume that f(x0) is not the global maximum. Then
there exists a point x1 such that f(x1) > f(x0). By the extreme value theorem, on the closed interval with endpoints x0

and x1 there must be a global maximum and a global minimum somewhere on that closed interval. The global minimum
could not be at x0 since it is a local maximum. It could not be at x1, since f(x1) > f(x0). The global minimum must be
somewhere on the open interval and it must be at a critical point. This contradicts the assumption that there were no other
critical points. If instead the unique critical point of f were a local minimum, then just modify the argument appropriately.

(b) f(x, y) = 3yex − e3x − y3 so fx(x, y) = 3yex − 3e3x and fy(x, y) = 3ex − 3y2. Solving, y = 0 or y = 1, but y
can’t be 0 since ex = y2. The only critical point for f is at (0, 1) and f(0, 1) = 1. Also, d1(0, 1) = fxx(0, 1) = −6 and
d2(0, 1) = 27 so at (0, 1) f has a local maximum. Along the y-axis, f(0, y) = 3y − 1 − y3, so as y → −∞ we see that
f increases without bound.

53. (a) Let the local maxima occur at a < b. Consider f on [a, b]. By the extreme value theorem, f must attain both a maximum
and minimum somewhere on [a, b]. The minimum cannot occur at a or b since local maxima occur there. Hence there
must be some c is the open interval (a, b) that gives an absolute minimum on [a, b]—hence it must be at least a local
minimum on R.
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(b)
fx(x, y) = −2(xy2 − y − 1)y2

fy(x, y) = −2(xy2 − y − 1)(2xy − 1) − 4(y2 − 1)y

For fx = 0, either xy2−y−1 = 0 or y2 = 0 (so y = 0). If y = 0, then the fy = 0 equation becomes−2(−1)(−1) = 0,
which is false. Thus xy2 − y − 1 = 0 and the fy = 0 equation becomes −4y(y2 − 1) = 0. Since y �= 0, we must have
y2 − 1 = 0 or y = ±1. With y = 1 in the fx = 0 equation, we have −2(x − 2) = 0 ⇒ x = 2. With y = −1 in the
fx = 0 equation, we have −2(x + 1 − 1) = 0 so x = 0. So we have two critical points: (2, 1) and (0,−1). The Hessian
matrix is

Hf(x, y) =

[ −2y4 −2(4xy3 − 3y2 − 2y)
−2(4xy3 − 3y2 − 2y) −2(6x2y2 − 6xy − 2x + 1) − 4(3y2 − 1)

]
so

Hf(2, 1) =

[ −2 −6
−6 −26

]
sequence of minors is −2, 16 ⇒ localmax;

Hf(0,−1) =

[ −2 2
2 −10

]
sequence of minors is −2, 16 ⇒ localmax .

(c) Best left to a computer. Stay close to the critical points to see the surface details well.

0
0.5

1

1.5

2

x

-1

-0.5
0

0.5
1

y

-2

0

2

z

4.3 Lagrange Multipliers

1. The plane is given by 2x − 3y − z = 4. There will be only one critical point in each case. Geometrically, it cannot be a local
maximum because there will always be points nearby which are farther away. There is at least one point on the plane closest
to the origin so the single critical point will be at this point. You can also perform the second derivative test.
(a) We’ll minimize the square of the distance: D(x, y) = x2 + y2 + (2x − 3y − 4)2. The partials are Dx(x, y) =

10x − 12y − 16 and Dy(x, y) = 20y − 12x + 24. Set these equal to zero and solve simultaneously to find the critical
point (4/7,−6/7,−2/7).

(b) Minimize f(x, y, z) = x2 + y2 + z2 subject to the constraint g(x, y, z) = 2x − 3y − z = 4. We solve the system⎧⎪⎪⎨
⎪⎪⎩

2x = 2λ
2y = −3λ
2z = −λ
2x − 3y − z = 4.

We see that x = λ so y = −(3/2)x and z = −x/2. Substituting into the last equation: 2x + 9x/2 + x/2 = 4 so
x = 4/7 and our critical point is (4/7,−6/7,−2/7).

2. The function is f(x, y) = y subject to the constraint g(x, y) = 2x2 + y2 = 4. We solve the system⎧⎨
⎩

0 = 4λx
1 = 2λy
2x2 + y2 = 4.

From the first equation, λx = 0, but λ �= 0 since 2λy �= 0. Hence we must have x = 0, so y2 = 4; therefore the critical
points are (0,±2).
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3. The function is f(x, y) = 5x + 2y subject to the constraint g(x, y) = 5x2 + 2y2 = 14. We solve the system⎧⎨
⎩

5 = 10λx
2 = 4λy
5x2 + 2y2 = 14.

By either of the first two equations we see that λ �= 0. Together, the first two equations imply that x = y so 7x2 = 14 so the
critical points are ±(

√
2,
√

2).
4. The function is f(x, y) = xy subject to the constraint g(x, y) = 2x − 3y = 6. We solve the system⎧⎨

⎩
y = 2λ
x = −3λ
2x − 3y = 6.

If λ were 0, then both x and y would be 0 which would contradict the third equation. In short, λ �= 0. In that case, the first
two equations imply that x = −(3/2)y so −3y − 3y = 6 or y = −1. The critical point is at (3/2,−1).

5. The function is f(x, y, z) = xyz subject to the constraint g(x, y, z) = 2x + 3y + z = 6. We solve the system⎧⎪⎪⎨
⎪⎪⎩

yz = 2λ
xz = 3λ
xy = λ
2x + 3y + z = 6.

One possibility is that two of x, y, and z are zero. In this case the three possible critical points are (3, 0, 0),
(0, 2, 0), and (0, 0, 6). If none of x, y, and z is zero then the first two equations imply that x = (3/2)y, and the second
and third equations together imply that 3y = z. Hence, 3y + 3y + 3y = 6, so the final critical point is (1, 2/3, 2).

6. The function is f(x, y, z) = x2 + y2 + z2 subject to the constraint g(x, y, z) = x + y − z = 1. We solve the system⎧⎪⎪⎨
⎪⎪⎩

2x = λ
2y = λ
2z = −λ
x + y − z = 1.

We see immediately that x = y = −z, which implies that x + x + x = 1. Therefore, the critical point is (1/3, 1/3,−1/3).
7. The function is f(x, y, z) = 3 − x2 − 2y2 − z2 subject to the constraint g(x, y, z) = 2x + y + z = 2. We solve the system⎧⎪⎪⎨

⎪⎪⎩
−2x = 2λ
−4y = λ
−2z = λ
2x + y + z = 2.

Immediately we have λ = −x = −4y = −2z ⇐⇒ x = 4y = 2z. Thus x = 2z and y = z/2 so that the last equation of
the system becomes 4z + z/2 + z = 2 ⇐⇒ z = 4/11. Therefore, there is a unique critical point of

(
8
11

, 2
11

, 4
11

)
.

8. The function is f(x, y, z) = x6 + y6 + z6 subject to the constraint g(x, y, z) = x2 + y2 + z2 = 6. We solve the system⎧⎪⎪⎨
⎪⎪⎩

6x5 = 2λx
6y5 = 2λy
6z5 = 2λz
x2 + y2 + z2 = 6.

The first equation of the system implies either x = 0 or λ = 3x4. Similarly, the second equation implies either y = 0
or λ = 3y4 and the third equation implies either z = 0 or λ = 3z4. No more than two of x, y, or z can be zero, or
else the constraint x2 + y2 + z2 = 6 cannot be satisfied. Let us suppose that y = z = 0. Then x = ±√

6 from the
constraint. Hence (±√

6, 0, 0) are two of the critical points. Similarly, if x = z = 0, then we obtain (0,±√
6, 0) as additional

critical points, and if x = y = 0 we obtain (0, 0,±√
6). If just z = 0, then λ = 3x4 = 3y4, so x = ±y and the

constraint x2 + y2 + z2 = 6 implies 2x2 = 6 or x = ±√
3 and there are thus four more critical points (±√

3,±√
3, 0).

In a similar manner (±√
3, 0,±√

3) and (0,±√
3,±√

3) are critical points. Finally, if none of x, y, or z is zero, then
λ = 3x4 = 3y4 = 3z4, which implies x = ±y = ±z. Hence the last equation of the system implies that 3x2 = 6, so
x = ±√

2. Therefore, there are eight more critical points, namely (±√
2,±√

2,±√
2). Thus there are 26 critical points in

all.
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9. The function is f(x, y, z) = 2x+y2−z2 subject to the two constraints g1(x, y, z) = x−2y = 0 and g2(x, y, z) = x+z = 0.
We solve the system ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 = λ + μ
2y = −2λ
−2z = μ
x = 2y
x = −z.

Solving, we see that 2 = λ + μ = −y − 2z = −x/2 + 2x = 3x/2. So the critical point is (4/3, 2/3,−4/3).
10. The function is f(x, y, z) = 2x + y2 + 2z subject to the two constraints g1(x, y, z) = x2 − y2 = 1 and g2(x, y, z) =

x + y + z = 2. We solve the system ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 = 2λx + μ
2y = −2λy + μ
2 = μ
x2 − y2 = 1
x + y + z = 2.

The third equation of the system implies that the first equation becomes 2λx = 0. Thus either λ = 0 or x = 0. If x = 0, the
fourth equation becomes −y2 = 1, which has no solution. If λ = 0, then the second equation becomes 2y = 2 ⇐⇒ y = 1.
Hence x2 = 2 in the fourth equation. Using the last equation, we see that (

√
2, 1, 1−√

2) and (−√
2, 1, 1+

√
2) are the only

critical points.
11. The function is f(x, y, z) = xy + yz subject to the two constraints g1(x, y, z) = x2 + y2 = 1 and g2(x, y, z) = yz = 1. We

solve the system ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y = 2λx
x + z = 2λy + μz
y = μy
x2 + y2 = 1
yz = 1.

The third equation of the system implies that either μ = 1 or y = 0. However, y cannot be zero from the last equation. Thus
μ = 1 and the second equation reduces to x = 2λy, and the first equation becomes y = 4λ2y. Thus either y = 0 (which we
reject) or λ = ±1/2. This in turn implies that x = ±y, and the fourth equation thus becomes 2x2 = 1, so that x = ±1/

√
2

and y = ±1/
√

2. Now z = 1/y from the last equation, so there are four critical points:(
1√
2
,

1√
2
,
√

2

)
,

(
1√
2
,− 1√

2
,−

√
2

)
,

(
− 1√

2
,

1√
2
,
√

2

)
,

(
− 1√

2
,− 1√

2
,−

√
2

)
.

12. The function is f(x, y, z) = x+y+z subject to the two constraints g1(x, y, z) = y2−x2 = 1 and g2(x, y, z) = x+2z = 1.
We solve the system ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 = −2λx + μ
1 = 2λy
1 = 2μ
y2 − x2 = 1
x + 2z = 1.

Solving, we see that μ = 1/2 and 2λ = 1/y so 1/2 = −2λx = −x/y or y = −2x. This means that 1 = y2 − x2 = 3x2, so
the critical points are (−1/

√
3, 2/

√
3, (3 +

√
3)/6) and (1/

√
3,−2/

√
3, (3 −√

3)/6).
13. (a) The function is f(x, y) = x2 + y subject to the constraint g(x, y) = x2 + 2y2 = 1. We solve the system⎧⎨

⎩
2x = 2xλ
1 = 4yλ
x2 + 2y2 = 1.

From the first equation, we see that either x = 0 or λ = 1. If λ = 1, then y = 1/4, so x = ±
√

7/8. If x = 0, then
y = ±

√
1/2. In short, the critical points are (±

√
7/8, 1/4) and (0,±

√
1/2).

(b) L(λ; x, y) = x2 + y − λ(x2 + 2y2 − 1) so

H(λ; x, y) =

⎡
⎣ 0 −2x −4y

−2x 2 − 2λ 0
−4y 0 −4λ

⎤
⎦ .
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So −d3 = −16y[x2 + 1/2 − 2y]. Substitute the critical points to find that there are local maxima at (±
√

7/8, 1/4) and
local minima at (0,±

√
1/2).

14. (a) The function is f(x, y, z, w) = x2 + y2 + z2 + w2 subject to the three constraints g1(x, y, z, w) = 2x + y + z =
1, g2(x, y, z, w) = x − 2z − w = −2 and g3(x, y, z, w) = 3x + y + 2w = −1. We solve the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x = 2λ + μ + 3ν
2y = λ + ν
2z = λ − 2μ
2w = −μ + 2ν
2x + y + z = 1
x − 2z − w = −2
3x + y + 2w = −1.

After a great deal of fussing we find that there is a critical point at 1

68
(−11, 15, 75,−25).

(b)

HL(λ, μ, ν, x, y, z, w) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −2 −1 −1 0
0 0 0 −1 0 2 1
0 0 0 −3 −1 0 −2

−2 −1 −3 2 0 0 0
−1 0 −1 0 2 0 0
−1 2 0 0 0 2 0

0 1 −2 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We calculate −d7 = 628 and conclude that f has a local minimum at the critical point.

Note: For Exercises 15–19 the Mathematica code would be similar to that in Exercise 15.

15. Input the following three lines intoMathematica (or the equivalent into your favorite computer algebra system)

f = 3xy − 4z

g = 3x + y − 2xz

Solve [{D[f, x] == λD[g, x], D[f, y] == λD[g, y], D[f, z] == λD[g, z], 3x + y − 2x z == 1}]
The solutions are

• λ =
√

6, (x, y, z) = (
√

2/3, 1/2, (12 −√
6)/8) and

• λ = −√
6, (x, y, z) = (−

√
2/3, 1/2, (12 +

√
6)/8).

16. Use the same basic code you used in Exercise 15, allowing for two Lagrange multipliers. The solution is λ1 = 482/121,
λ2 = −107/121, (x, y, z) = (31, 29, 5)/11.

17. Many solutions are returned byMathematica. They are
• (0,−1, 0) for λ = −3/2

• (0, 1, 0) for λ = 3/2

• (−2/3,−2/3,−1/3) and (2/3,−2/3, 1/3) for λ = −4/3

• (−1, 0, 0) and (1, 0, 0) for λ = −1

• (0, 0,−1) and (0, 0, 1) for λ = 0 and

• (
√

11/2/8,−3/8,−3
√

11/2/8) and (−
√

11/2/8,−3/8, 3
√

11/2/8) for λ = 1/8.

18. The solutions given are
• (1,−1/2,±

√
3/2) for λ = −1

• ((−1 −√
5)/2, (−3 −√

5)/4,±i51/4/
√

2) for λ = (1 +
√

5)/2.

• ((1 −√
5)/2, (−3 +

√
5)/4,±51/4/

√
2) for λ = (1 −√

5)/2.

• (−i, i, 0) and (i,−i, 0) for λ = −2, and

• (−1,−1, 0) and (1, 1, 0) for λ = 2.

Note that several of the solutions are complex and, for the purposes of this discussion, can be discarded.
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19. Here there are two solutions:
• (w, x, y, z) = ((1 −√

2)/2, 1/
√

2, 1/
√

2, (1 −√
2)/2) for λ1 = 2 − 1/

√
2, λ2 = 1 −√

2, and λ3 = 0, and
• (w, x, y, z) = ((1 +

√
2)/2,−1/

√
2,−1/

√
2, (1 +

√
2)/2) for λ1 = 2 + 1/

√
2, λ2 = 1 +

√
2, and λ3 = 0.

20. (a) We need to solve ⎧⎨
⎩

3x2 = λy
6y = λx
xy = −4

Substitute y = −4/x into the second equation to get λ = −24/x2. Substitute both of these into the right side of the first
equation to get x5 = −32 or x = 2. So y = −2 and λ = −6.

(b) The Hessian in this case is

⎡
⎣ 0 2 −2

2 12 6
−2 6 6

⎤
⎦. Following the rule for the second derivative test for constrained local

extrema, note that n = 2 and k = 1 so the only relevant term in sequence (1) is

(−1)1d3 = (−1)[(−2)(24) − 2(36)] = 120 > 0.

We conclude that there is a constrained local minimum at the point (2,−2).
(c) You can see from the figure below that there is a constrained local minimum at (2,−2) on the curve. This will be the

point at which the constraint curve is tangent to one of the level curves.

0 1 2 3 4
-4

-3

-2

-1

0

21. The symmetry of the problem suggests the answer, but we are maximizing f(x, y, z) = xyz subject to the constraint
g(x, y, z) = x + y + z = 18. We solve the system⎧⎪⎪⎨

⎪⎪⎩
yz = λ
xz = λ
xy = λ
x + y + z = 18.

None of the solutions that corresponds to one of x, y, and z being zero is a maximum. The solution we get is x = y = z, so
3x = 18, so the maximum product occurs at the point (6, 6, 6).

22. First, a sphere is a compact surface and the function f is continuous so, by the extreme value theorem, we know that both
a minimum and a maximum must be attained. We find the extrema of f(x, y, z) = x + y − z subject to the constraint
x2 + y2 + z2 = 81. We solve the system ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
1 = 2λx

1 = 2λy

−1 = 2λz

x2 + y2 + z2 = 81.
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We see that x = y = −z, so the critical points are (3
√

3, 3
√

3,−3
√

3) and (−3
√

3,−3
√

3, 3
√

3). By evaluating at
f(x, y, z) = x + y − z, we see that the first must yield a maximum of 9

√
3, and the second a minimum of −9

√
3.

23. This is a nice problem to assign because by this point some students are only checking boundary values. We are looking for
the maximum and minimum values of f(x, y) = x2 +xy+y2 constrained to be inside the closed disk g(x, y) = x2 +y2 ≤ 4.
First we find the critical points without paying attention to the constraint. The partial derivatives are fx(x, y) = 2x + y and
fy(x, y) = x + 2y so we have a critical point at the origin, and f(0, 0) = 0. Next we look for extrema of the function on the
boundary of the disk by solving the system ⎧⎨

⎩
2x + y = 2λx
x + 2y = 2λy
x2 + y2 = 4.

From the first two equations we see that x2 = y2 so x = ±y and x = ±√
2. Substituting, we find that the minimum is 0 at

the origin and the maximum is 6 at (
√

2,
√

2).
24. We are maximizing V (x, y, z) = xyz subject to the constraint g(x, y, z) = 2x + 2y + z ≤ 108. In this case, the maximum

must occur on the boundary because the only unconstrained critical point requires two of the coordinates to be zero—these
points are on the boundary and give the (degenerate) minimum solution of 0. We solve the system⎧⎪⎪⎨

⎪⎪⎩
yz = 2λ
xz = 2λ
xy = λ
2x + 2y + z = 108.

Since none of x, y, or z can be zero, we find that x = y = z/2, so 3z = 108 and the critical point is (18, 18, 36). So the
dimensions are 18” by 18” by 36”.

25. We are maximizing f(r, h) = πr2h subject to the constraint that g(r, h) = 2πrh + 2πr2 = c. We solve the system⎧⎨
⎩

2πrh = λ(2πh + 4πr)
πr2 = 2λπr
2πrh + 2πr2 = c.

Since r �= 0 the second equation implies that r = 2λ, so, substituting this into the first equation, we see that h = 2r. Hence,
the height should equal the diameter.

26. We are minimizing the cost which is C(r, h) = πr2 + 2(2πrh) + 5(2πr2) = 11πr2 + 4πrh subject to the constraint
g(r, h) = πr2h + (2/3)πr3 = 900π. We solve the system⎧⎨

⎩
22πr + 4πh = πλ(2rh + 2r2)
4πr = λπr2

πr2h + (2/3)πr3 = 900π.

As above, we see that 4 = λr so 22πr +4πh = (4π/r)(2rh+2r2) or 14r = 4h. Substituting, 900 = (7/2)r3 +(2/3)r3 =
(25/6)r3 so the radius is 6 feet and the height is 21 feet.

27. We wish to minimizeM(x, y, z) = xz − y2 + 3x + 3 subject to the constraint g(x, y, z) = x2 + y2 + z2 = 9. We solve the
system ⎧⎪⎪⎨

⎪⎪⎩
z + 3 = 2λx
−2y = 2λy
x = 2λz
x2 + y2 + z2 = 9.

Either y = 0 or λ = −1. If y = 0, then z = −3 or 3/2 so we get (0, 0,−3) and (±3
√

3/2, 0, 3/2) as critical points. If
λ = −1, we find the critical points are (−2, 2, 1) and (−2,−2, 1). Comparing values ofM , the minimum of −9 is attained
at either (−2, 2, 1) or (−2,−2, 1).

28. It’s easier to maximize the square of the area f(x, y, z) = s(s − x)(s − y)(s − z) subject to x + y + z = 2s (= P ), a
constant.

Thus∇f = λ∇g (where g(x, y, z) = x + y + z) gives us the system:⎧⎪⎪⎨
⎪⎪⎩

−s(s − y)(s − z) = λ
−s(s − x)(s − z) = λ
−s(s − x)(s − y) = λ

x + y + z = 2s (0 < x, y, z ≤ s)
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Hence −s(s − y)(s − z) = −s(s − x)(s − z) = −s(s − x)(s − y). The first equality implies z = s or x = y. Note that
z = s means f = 0—so there’s zero area which cannot possibly be maximum. Thus x = y. From −s(s − x)(s − z) =

−s(s − x)(s − y) we similarly conclude that y = z. Hence x = y = z

(
=

2

3
s

)
gives us our critical point and corresponds

to having an equilateral triangle. Our constraint looks like a portion of a plane. The dark triangle in the figure below is the part

to be considered—it’s where f is ≥ 0. Therefore, the point
(

2

3
s,

2

3
s,

2

3
s

)
yields the maximum.

z

(0,0,2s)

(0,2s,0)(2s,0,0)

yx

29. A sphere centered at the origin has equation x2 +y2 +z2 = r2. Thus we want to maximize f(x, y, z) = x2 +y2 +z2 subject
to the constraint g(x, y, z) = 3x2 + 2y2 + z2 = 6. We can solve this using Lagrange multipliers, but we must make sure we
find an inscribed sphere. We consider the system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2x = 6λx 1st equation gives x = 0 or λ = 1/3

2y = 4λy 2nd equation gives y = 0 or λ = 1/2

2z = 2λz 3rd equation gives z = 0 or λ = 1
3x2 + 2y2 + z2 = 6 (Note that we can’t have x = y = z = 0

and still satisfy the constraint.)

Thus if λ = 1/3, y = z = 0 and the constraint implies x = ±√
2. If λ = 1/2, x = z = 0 and y = ±√

3. Finally, if λ = 1,
then x = y = 0 and z = ±√

6. Comparing values, we have

f(±
√

2, 0, 0) = 2, f(0,±
√

3, 0) = 3, f(0, 0,±
√

6) = 6,

so that it’s tempting to say that the largest sphere has a radius of
√

6. However, such a sphere is not actually inscribed in the
ellipsoid. The largest sphere that actually remains inscribed in the ellipsoid has a radius of

√
2.
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30. This is just Exercise 1 with two constraints. We are minimizing f(x, y, z) = x2 + y2 + z2 with the constraints g1(x, y, z) =
2x + y + 3z = 9 and g2(x, y, z) = 3x + 2y + z = 6. We solve the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2x = 2λ + 3μ

2y = λ + 2μ

2z = 3λ + μ

2x + y + 3z = 9

3x + 2y + z = 6.

Eliminate λ and μ and then solve to get a critical point at (1, 2/5, 11/5).
31. This is just Exercise 22 translated by (2, 5,−1). We are minimizing f(x, y, z) = (x − 2)2 + (y − 5)2 + (z + 1)2 with the

constraints g1(x, y, z) = x − 2y + 3z = 8 and g2(x, y, z) = 2z − y = 3. We solve the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2(x − 2) = λ

2(y − 5) = −2λ − μ

2(z + 1) = 3λ + 2μ

x − 2y + 3z = 8

2z − y = 3.

Eliminate μ by combining the second and third equations and then substitute 2(x − 2) for λ. Solve to get a critical point at
(9/2, 2, 5/2).

32. We want to maximize and minimize the distance function
√

x2 + y2 + z2, but the task is equivalent to finding the extrema
of the square of the distance. Hence we find the extrema of f(x, y, z) = x2 + y2 + z2 subject to the two constraints that
g1(x, y, z) = x + y + z = 4 and g2(x, y, z) = x2 + y2 − z = 0. Note that f is continuous and the ellipse defined by the
constraints is compact, so the extreme value theorem guarantees that f has a global maximum and a global minimum on the
ellipse. From the Lagrange multiplier equation ∇f = λ1∇g1 + λ2∇g2, plus the constraints, we see that we must solve the
system ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2x = 2λ1x + λ2

2y = 2λ1y + λ2

2z = −λ1 + λ2

x + y + z = 4

x2 + y2 − z = 0.

The first two equations imply λ2 = 2x − 2λ1x = 2y − 2λ1y, so that 2x(1 − λ1) = 2y(1 − λ1). Hence either λ1 = 1 or
x = y. If λ1 = 1, then λ2 = 0 and the third equation becomes 2z = −1, so z = −1/2. The last two equations are thus
x + y − 1/2 = 4 and x2 + y2 + 1/2 = 0. However, there can be no real solutions to x2 + y2 = −1/2. Therefore, the case
that λ1 = 1 leads to no critical points.

If x = y, then the last two equations become 2x + z = 4 and 2x2 − z = 0. Hence z = 4 − 2x, so that 2x2 − z = 0 is
equivalent to 2x2 + 2x − 4 = 0, which has solutions x = −2, 1. Therefore our critical points are (−2,−2, 8) and (1, 1, 2).

Finally, note that f(−2,−2, 8) = 72 > f(1, 1, 2) = 6. Hence, in view of the initial observations above, (1, 1, 2) is the
point on the ellipse nearest the origin and (−2,−2, 8) the point farthest from the origin.

33. This is the same as Exercise 32 except that we are trying to find extrema for f(x, y, z) = z and the plane has the equation
g1(x, y, z) = x + y + 2z = 2. Again, using a computer algebra system we find that the lowest point is at (1/2, 1/2, 1/2) and
the highest is at (−1,−1, 2).

34. Minimize f(x, y, u, v) = (x−u)2+(y−v)2 subject to the two constraints: g1(x, y, u, v) = x2+2y2 = 1 and g2(x, y, u, v) =
u + v = 4. We solve the system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(x − u) = 2λx

−2(x − u) = μ

2(y − v) = 2λy

−2(y − v) = μ

x2 + 2y2 = 1

u + v = 4.
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Solving you get two critical points (x, y, u, v) = (
√

2/3,
√

1/6, 2+
√

6/12, 2−√
6/12) for which the square of the distance

is 35/4 − 2
√

6 ≈ 3.85 and (x, y, u, v) = (−
√

2/3,−
√

1/6, 2 −√
6/12, 2 +

√
6/12) for which the square of the distance

is 35/4 + 2
√

6 ≈ 13.65. The minimum distance is
√

35/4 − 2
√

6 ≈ 1.96.
35. (a) f(x, y) = x + y with the constraint xy = 6 so we solve the system⎧⎪⎨

⎪⎩
1 = 2λy

1 = 2λx

xy = 6.

So x = y and the critical points are at ±(
√

6,
√

6).
(b) The constraint curve is not connected. There are two distinct components. Although (−√

6,−√
6) produces a local

maximum of −2
√

6 on its component, the value of the function at any point on the other component is greater. Similarly,
(
√

6,
√

6) produces a local minimum of 2
√

6 on its component, but the value of the function at any point on the other
component is less.

36. We use a Lagrange multiplier to find the maximum value of f(α, β, γ) = sin α sin β sin γ subject to the constraint that
α + β + γ = π. (Note that we also assume that each of α, β, γ must be strictly between 0 and π.) The system of equations to
consider is ⎧⎪⎪⎨

⎪⎪⎩
cos α sin β sin γ = λ
sin α cos β sin γ = λ
sin α sin β cos γ = λ
α + β + γ = π.

The first two equations imply that cos α sin β sin γ = sin α cos β sin γ This holds if either cos α sin β = sin α cos β or
sin γ = 0. However, if sin γ = 0, then γ is 0 or π which we have already ruled out. (Also, f would necessarily be zero and
clearly not maximized since any acute triangle will yield a positive value of f .) Hence

cos α sin β = sin α cos β ⇐⇒ sin α cos β − cos α sin β = 0 ⇐⇒ sin(α − β) = 0.

It follows that α = β. Similarly, the second and third equations together imply that sin α cos β sin γ = sin α sin β cos γ Thus
either sin α = 0 (which we reject) or

cos β sin γ = sin β cos γ ⇐⇒ sin β cos γ − cos β sin γ = 0 ⇐⇒ sin(β − γ) = 0.

Hence β = γ and so α = β = γ = π/3 using the last equation. Therefore, the maximum value of f is 3
√

3/8.
37. Let P have coordinates (x, y, z). The square of the distance from P to the origin is given by the function f(x, y, z) =

x2 + y2 + z2 and the coordinates of P must satisfy g(x, y, z) = c. Thus if f is maximized at P , then, since ∇g(x, y, z) is
given never to vanish,∇f(x, y, z) = λ∇g(x, y, z) for some λ. If we write this out, we find

(2x, 2y, 2z) = λ∇g(x, y, z).

But
(2x, 2y, 2z) = 2(x, y, z) = 2

−−→
OP,

where
−−→
OP denotes the displacement vector from the origin to P . Therefore,

−−→
OP =

λ

2
∇g(x, y, z);

that is,
−−→
OP is parallel to ∇g. (Note that

−−→
OP must be nonzero if the distance from the origin to P is to be maximized.) Since

the gradient vector∇g at P is known to perpendicular to the level set of g through P , the result follows.
38. This is a non-linear version of Exercise 30. Minimize f(x, y, z) = x2 + y2 + z2 subject to the constraints g1(x, y, z) =

x2 + y2 = 4 and g2(x, y, z) = 2x + 2y + z = 2. We solve the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2x = 2λx + 2μ

2y = 2λy + 2μ

2z = μ

x2 + y2 = 4

2x + 2y + z = 2.

Solving we see that either x = y or λ = 1. If x = y then x = y = ±√
2 and z = 2 ∓ 4

√
2. The farthest point is

(−√
2,−√

2, 2 + 4
√

2). If λ = 1 then x = (1 ±√
7)/2, y = (1 ∓√

7)/2, and z = 0—these last two are the closest points.
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39. We want to find the extreme values of the function f(x, y) = x2 + y2 (the square of the distance from the point (x, y) to the
origin) subject to the constraint g(x, y) = 3x2 − 4xy + 3y2 = 50. (Note that there will be a global maximum and a global
minimum by the extreme value theorem since the ellipse is a compact set inR

2.) We solve the system⎧⎨
⎩

2x = λ(6x − 4y)
2y = λ(−4x + 6y)
3x2 − 4xy + 3y2 = 50.

The first two equations together imply

1

λ
=

6x − 4y

2x
=

−4x + 6y

2y
⇐⇒ 3 − 2y

x
= 3 − 2x

y
⇐⇒ y2 = x2.

Thus y = ±x. If y = x, then the last equation becomes

3x2 − 4x2 + 3x2 = 50 ⇐⇒ x2 = 25 ⇐⇒ x = ±5.

Thus there are two critical points (5, 5) and (−5,−5). If y = −x, then the last equation becomes

3x2 + 4x2 + 3x2 = 50 ⇐⇒ x2 = 5 ⇐⇒ x = ±
√

5.

Hence there are two more critical points (
√

5,−√
5) and (−√

5,
√

5). Finally, we have

f(5, 5) = f(−5,−5) = 50 and f(
√

5,−
√

5) = f(−
√

5,
√

5) = 10,

so that (5, 5) and (−5,−5) are the points on the ellipse farthest from the origin and (
√

5,−√
5) and (−√

5,
√

5) are the points
nearest the origin.

40. (a) This follows immediately from the extreme value theorem. The constraint defines a quarter circle, including the endpoints,
which is a compact set inR

2 and the function f(x, y) =
√

x+8
√

y is continuous whenever x and y are both nonnegative.
(b) The system we consider is

⎧⎪⎨
⎪⎩
(

1

2
√

x
,

8

2
√

y

)
= λ(2x, 2y)

x2 + y2 = 17

or

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2
√

x
= 2λx

4√
y

= 2λy

x2 + y2 = 17.

The first two equations of the system together imply that

2λ =
1

2x3/2
=

4

y3/2
=⇒ y3/2 = 8x3/2 =⇒ y = 4x.

Using this result in the last equation gives x2 + 16x2 = 17. Thus x = 1 since we only want x (and y) nonnegative. Thus
the only critical point we identify in this manner is (1, 4).

(c) Note that∇f(x, y) is undefined if either x or y is zero. Given the constraint, this means that we should also consider the
points (

√
17, 0) and (0,

√
17). Comparing values, we have

• f(1, 4) = 17,
• f(

√
17, 0) = 4

√
17,

• f(0,
√

17) = 8 4
√

17 ≈ 16.24.
Hence (1, 4) yields the global maximum and (

√
17, 0) the global minimum on the quarter circle.

41. (a) The system is ⎧⎪⎨
⎪⎩

1 = λ(16x3 − 12x2)

0 = 2λy

y2 − 4x3 + 4x4 = 0.

The second equation implies that either y = 0 or λ = 0. But λ = 0 cannot satisfy the first equation, so y = 0. The last
equation implies 4x3(1 − x) = 0; thus x = 0 or 1. But x = 0 cannot satisfy the first equation. Thus the only solution to
the system is (1, 0).
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(b) The graph of the curve (known as the piriform) is shown in the figure below. From it, it’s clear that the maximum value
of f(x, y) = x occurs at (1, 0) and the minimum value at (0, 0).

x

y

0.2 0.4 0.6 0.8 1

-0.2

-0.6

-0.4

0.2

0.4

0.6

(c) Note that∇g(x, y) = (16x3 − 12x2, 2y) = (0, 0) at (0, 0) (and at (3/4, 0)). (0, 0) is a point on the curve ((3/4, 0) is not).
It’s the singular point of the piriform and, although not a solution to the Lagrange multiplier system in part (a), it must be
considered as a possible site for extrema.

42. (a) The relevant Lagrange multiplier system to solve is⎧⎪⎪⎨
⎪⎪⎩

2x = 0
2y = 0
0 = λ
z = c

The obvious unique solution is (0, 0, c) with λ = 0.

(b) L(l; x, y, z) = x2 + y2 − l(z − c). With c as a constant and x1 = x, x2 = y, x3 = z, we have

HL(l; x, y, z) =

⎡
⎢⎢⎣

0 0 0 −1
0 2 0 0
0 0 2 0

−1 0 0 0

⎤
⎥⎥⎦ = HL(0; 0, 0, c).

The second derivative test asks us to calculate (−1)1d3 and (−1)1d4 or

−d3 = − det

⎡
⎣ 0 0 0

0 2 0
0 0 2

⎤
⎦ = 0; −d4 = − det

⎡
⎢⎢⎣

0 0 0 −1
0 2 0 0
0 0 2 0

−1 0 0 0

⎤
⎥⎥⎦ = −(−4) = 4.

Thus the second derivative test seems to suggest that we’ve found a saddle point.
(c) Now we let x1 = z, x2 = y, x3 = x and look at

HL(l; z, y, x) =

⎡
⎢⎢⎣

0 −1 0 0
−1 0 0 0

0 0 2 0
0 0 0 2

⎤
⎥⎥⎦ .
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In this case we find

−d3 = − det

⎡
⎣ 0 −1 0

−1 0 0
0 0 2

⎤
⎦ = −(−2) = 2 and

−d4 = − det

⎡
⎢⎢⎣

0 −1 0 0
−1 0 0 0

0 0 2 0
0 0 0 2

⎤
⎥⎥⎦ = −(−4) = 4.

This time the sound derivative test suggests a local minimum.
(d) Indeed, inspection tells us that the expression x2 +y2 attains a globalminimum at x = y = 0. So to satisfy the constraint

z = c, we see that (0, 0, c) yields a global minimum. The difference between the results of (b) and (c) can be explained
by looking at ∂g/∂x vs. ∂g/∂z: ∂g/∂x = 0, but ∂g/∂z = 1 �= 0.
In part (b), we did not satisfy the hypothesis of the second derivative test that the variables be ordered so that

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂g1

∂x1
(a) . . .

∂g1

∂xk
(a)

...
. . . ...

∂gk

∂x1
(a) . . .

∂gk

∂xk
(a)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�= 0.

(The determinant in this situation is just ∂g/∂x.) In part (c), we did satisfy the hypothesis, since ∂g/∂z �= 0.
43. (a) In order for (λ, a) to be a solution of the constrained problem, (λ, a) must solve the system

⎧⎪⎨
⎪⎩

fxi
(a) =

k∑
j=1

λj(gj)xi
(a) for 1 ≤ i ≤ n

gj(a) = cj for 1 ≤ j ≤ k.

On the other hand, an unconstrained critical point for L must be where all first partials are zero. In other words, we
must have

Llj = 0, 1 ≤ j ≤ k and Lxj
= 0, 1 ≤ j ≤ n.

Upon explicit calculation of the partials these equations are:

{
flj (a) − (gj(a) − cj) = 0 for 1 ≤ j ≤ k, and
fxj

(a) −∑k
i=1 λi(gi)xj

(a) = 0 for 1 ≤ j ≤ n.

This is the same system as that for the constrained case.
(b) Calculate the Hessian in four blocks. All of the entries in the upper left k × k block are 0. This is because the entry

in position (i, j) is Llilj and the highest power of any li appearing in L is 1. The top right block with k rows and
n columns gives back the negative first partials of the constraint conditions because the entry in position (k + i, j) is
Lxilj = −(gj − cj)xi

= −(gj)xi
. The lower left block of n rows and k columns is just the transpose of this last block.

The lower right n × n block is such that the entry in position (k + i, k + j) = Lxixj
= (f −∑k

q=1 lqgq)xixj
. When λ

and a are substituted for l and x, the desired matrix is obtained.
44. We find extreme values of f(x1, . . . , xn, y1, . . . , yn) =

∑n
i=1 xiyi subject to the two constraints g1(x1, . . . , xn, y1, . . .,

yn) = x1
2 + · · ·+xn

2 = 1 and g2(x1, . . . , xn, y1, . . . , yn) = y1
2 + · · ·+yn

2 = 1. Thus we look at∇f = λ1∇g1 +λ2∇g2
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together with the constraints to solve
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = 2λ1x1

...
yn = 2λ1xn

⎫⎪⎬
⎪⎭

The first n equations (and the last) imply 1 =
∑

yi
2 = 4λ1

2
∑

xi
2

= 4λ1
2 · 1

so λ1 = ±1

2
.

x1 = 2λ2y1

...
xn = 2λ2yn

⎫⎪⎬
⎪⎭

The next n equations (and the next-to-last) imply 1 =
∑

xi
2 = 4λ2

2
∑

yi
2 = 4λ2

2

so λ2 = ±1

2
.

∑
xi

2 = 1∑
yi

2 = 1

Putting all the information together, we find that x = y (when λ1 = λ2 = 1
2
) and x = −y (when λ1 = λ2 = − 1

2
). When

x = y, f(x, y) =
∑

xi
2 = 1. When x = −y, f(x,−x) =

∑
(−xi

2) = −1. Though it takes a little bit of argumentation, the
hypersphere in Rn is compact—hence so is the product of hyperspheres in R2n(= Rn × Rn). Thus we find maximum and
minimum values of +1 and −1, respectively.

45. (a)
n∑

i=1

ui
2 = u1

2 + · · · + un
2 =

x1
2

(
√

xi
2)2

+
x2

2

(
√

xi
2)2

+ · · · + xn
2

(
√

xi
2)2

=

∑
xi

2∑
xi

2
= 1.

So u is an the unit hypersphere. The case for v is identical.
(b) By Exercise 44, we have −1 ≤∑n

i=1 uivi ≤ 1. Hence

−1 ≤
∑

i

⎛
⎝ xi√∑

j
x2

j

⎞
⎠
⎛
⎝ yi√∑

j
y2

j

⎞
⎠ ≤ 1

⇔−
√∑

j
x2

j

√∑
j
y2

j ≤
∑

i
xiyi ≤

√∑
j
x2

j

√∑
j
y2

i

⇔− ‖x‖‖y‖ ≤ x · y ≤ ‖x‖‖y‖
⇔ |x · y| ≤ ‖x‖‖y‖.

4.4 Some Applications of Extrema

1. This problem can be done using calculators or the following table to help with Proposition 4.1:

xi yi xi
2 xiyi

0 2 0 0
1 3 1 3
2 5 4 10
3 3 9 9
4 2 16 8
5 7 25 35
6 7 36 42
21 29 91 107

So m0 =
7(107) − (21)(29)

7(91) − (21)2
=

140

196
=

35

49
≈ .71428

and b0 =
(91)(29) − (21)(107)

7(91) − (21)2
=

392

196
=

98

49
= 2.

The equation of the least squares line is y = (35/49)x + 2.
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2. Again, using Proposition 4.1,

m =
2(x1y1 + x2y2) − (x1 + x2)(y1 + y2)

2(x2
1 + x2

2) − (x1 + x2)2
=

(x1 − x2)(y1 − y2)

(x1 − x2)2
=

y1 − y2

x1 − x2
.

b =
(x2

1 + x2
2)(y1 + y2) − (x1 + x2)(x1y1 + x2y2)

2(x2
1 + x2

2) − (x1 + x2)2
=

(x1y2 − x2y1)(x1 − x2)

(x1 − x2)2
=

x1y2 − x2y1

x1 − x2
.

You can check that (x1, y1) and (x2, y2) are both on the line

y =

(
y1 − y2

x1 − x2

)
x +

x1y2 − x2y1

x1 − x2
.

3. (a) As in the text, the function D(a, b) will be the sum of the squares of the differences between the observed y values and
the y values on the curve y = a/x + b. This means that

D(a, b) =
n∑

i=1

(yi − (a/xi + b))2.

(b) Make the substitutionXi = 1/xi and then fit the line y = aX + b to this transformed data using Proposition 4.1. We get

a =
n
∑

Xiyi −
(∑

Xi

) (∑
yi

)
n
∑

X2
i −

(∑
Xi

)2 and b =

(∑
X2

i

) (∑
yi

)
−
(∑

Xi

) (∑
Xiyi

)
n
∑

X2
i −

(∑
Xi

)2 .

Transform the data back, replacingXi with 1/xi, then the curve of the form y = a/x + b that best fits the data has

a =
n
∑

yi/xi −
(∑

1/xi

) (∑
yi

)
n
∑

1/x2
i −
(∑

1/xi

)2 and b =

(∑
1/x2

i

) (∑
yi

)
−
(∑

1/xi

) (∑
yi/xi

)
n
∑

1/x2
i −
(∑

1/xi

)2 .

4. We’ll use the results of Exercise 3 and organize our sums with the following table:

1/xi yi 1/x2
i yi/xi

1 0 1 0
1/2 −1 1/4 −1/2
2 1 4 2
1/3 −1/2 1/9 −1/6
23/6 −1/2 193/36 8/6

So a =
4(8/6) − (23/6)(−1/2)

4(193/36) − (23/6)2
=

261

243
=

29

27

and b =
(193/36)(−1/2) − (23/6)(8/6)

4(193/36) − (23/6)2
= −561

486
= −187

162
.

The equation of the least squares curve of the desired form is y = 29/(27x) − 187/162.
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5. Again the functionD(a, b, c) will be the sum of the squares of the differences between the observed y values and the y values
on the curve y = ax2 + bx + c. This means that

D(a, b, c) =
n∑

i=1

(yi − (ax2
i + bxi + c))2

=
n∑

i=1

y2
i + a2

n∑
i=1

x4
i + b2

n∑
i=1

x2
i + nc2 − 2a

n∑
i=1

x2
i yi − 2b

n∑
i=1

xiyi − 2c
n∑

i=1

yi

+ 2ab
n∑

i=1

x3
i + 2ac

n∑
i=1

x2
i + 2bc

n∑
i=1

xi so

Da(a, b, c) = 2a

n∑
i=1

x4
i − 2

n∑
i=1

x2
i yi + 2b

n∑
i=1

x3
i + 2c

n∑
i=1

x2
i ,

Db(a, b, c) = 2b
n∑

i=1

x2
i − 2

n∑
i=1

xiyi + 2a
n∑

i=1

x3
i + 2c

n∑
i=1

xi, and

Dc(a, b, c) = 2cn − 2
n∑

i=1

yi + 2a
n∑

i=1

x2
i + 2b

n∑
i=1

xi.

Set each of the partial derivatives equal to zero, move the term with coefficient −2 to the other side, and divide by 2 to get the
desired equations.

6. You may want to point out to the students that the independent variable x corresponds to hours of sleep because that is what
(in theory) Egbert can control.
(a) To get a line y = ax + b we’ll need

xi yi x2
i xiyi

8 85 64 680
8.5 72 72.25 612
9 95 81 855
7 68 49 476
4 52 16 208
8.5 75 72.25 637.5
7.5 90 56.25 675
6 65 36 390
58.5 602 446.75 4533.5

Using the formulas in Proposition 4.1 you’ll find that the least squares line is

y = (4204/607)x + (14935/607) ≈ 6.93x + 24.6.

(b) We will need some additional data:
xi x3

i x4
i x2

i yi

8 512 4096 5440
8.5 614.125 5220.0625 5202
9 729 6561 7695
7 343 2401 3332
4 64 256 832
8.5 614.125 5220.0625 5418.75
7.5 421.875 3164.0625 5062.5
6 216 1296 2340
58.5 3514.125 28214.1875 35322.25

Use the formulas given in Exercise 5 to obtain the system⎧⎨
⎩

28214.1875a + 3514.125b + 446.75c = 35322.25
3514.125a + 446.75b + 58.5c = 4533.5
446.75a + 58.5b + 8c = 602.
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Solve this system to get the following (approximate) quadratic:

y = −.192044054x2 + 9.42923983x + 17.02314387.

(c) Plugging 6.8 into the linear model predicts that Egbert will get 71.7, plugging 6.8 into the quadratic model predicts that
Egbert will get 72.26.

7. (a) We are required to show that F is a gradient (conservative) vector field. Clearly if V (x, y) = x2 + 2xy + 3y2 + x + 2y
then −∇V = (−2x − 2y − 1)i+ (−2x − 6y − 2)j = F.

(b) We find equilibrium points of F when F = 0. Solve the system of equations
{ −2x − 2y = 1

−2x − 6y = 2

and find one solution at (−1/4,−1/4). The Hessian is

HV =

[
2 2
2 6

]

so both d1 and d2 are positive so the equilibrium is stable.
8. Here V (x, y) = 2x2−8xy−y2 +12x−8y+12 so∇V = −F = (4x−8y+12,−8x−2y−8). This is 0 at (−11/9, 8/9).
The Hessian is

HV =

[
4 −8

−8 −2

]
.

Note that d1 > 0 and d2 < 0 so the equilibrium at (−11/9, 8/9) is not stable.
9. Here V (x, y, z) = 3x2 + 2xy + z2 − 2yz + 3x + 5y − 10 so∇V = −F = (6x + 2y + 3, 2x− 2z + 5,−2y + 2z). This is
0 at (−1, 3/2, 3/2). The Hessian is

HV =

⎡
⎣ 6 2 0

2 0 −2
0 −2 2

⎤
⎦ .

Note that d1 > 0, d2 < 0, and d3 > 0 so the equilibrium at (−1, 3/2, 3/2) is not stable.
10. (a) Here we are looking for constrained equilibria (as in Example 3 in the text). Our equation is F − ∇V = λ∇g where

g(x, y, z) = 2x2 + 3y2 + z2 = 1, F = −mgk, and V (x, y, z) = 2x. So our system of equations is
⎧⎪⎪⎨
⎪⎪⎩

−2 = 4λx
0 = 6λy
−mg = 2λz
2x2 + 3y2 + z2 = 1.

Note from the first equation that λ �= 0 so by the second equation y = 0. From the third equation 2λ = −mg/z so
z = mgx. Substituting into the equation of the ellipsoid, 2x2 + m2g2x2 = 1 so x = ±1/

√
2 + m2g2. So our two

equilibria are at ±(1/
√

2 + m2g2, 0, mg/
√

2 + m2g2).
(b) Note the direction of the force is (−2, 0,−mg) so −(1/

√
2 + m2g2, 0, mg/

√
2 + m2g2) is a stable equilibrium.

11. Maximize R(x, y, z) = xyz2 − 25000x − 25000y − 25000z subject to the constraint x + y + z = 200000. Our system of
equations is ⎧⎪⎪⎨

⎪⎪⎩
yz2 − 25000 = λ
xz2 − 25000 = λ
2xyz − 25000 = λ
x + y + z = 200000.

The hidden condition is that all of the variables are non-negative. This means that we are finding a maximum on the triangular
portion of the plane that lies in the first octant. The maximum revenue will occur at a boundary point or at a critical point.
Along the boundary at least one of the variables is 0 and the revenue is at most 0 when at least one of x, y and z is 0. We will
see the value of R at the critical point is greater and therefore that it is our global maximum. Assume none of the variables is
zero. Then, from the first two equations, since z �= 0 then x = y. From the third equation paired with either of the first two we
see that z = 2x = 2y. Finally, since their sum is 200000 we find the solution (50000, 50000, 100000) is where the maximum
revenue occurs.
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12. This is similar to Example 4 from the text. We are maximizing U(x1, x2, x3) = x1x2 + 2x1x3 + x1x2x3 subject to the
constraint g(x1, x2, x3) = x1 + 4x2 + 2x3 = 90. Our system of equations is⎧⎪⎪⎨

⎪⎪⎩
x2 + 2x3 + x2x3 = λ
x1 + x1x3 = 4λ
2x1 + x1x2 = 2λ
x1 + 4x2 + 2x3 = 90.

The only solution of this system with all three of the xi’s non-negative is (33.0149, 6.37314, 15.7463). You can only order inte-
ger amounts, so experiment with the different ways of rounding to obtain a maximum at
(34, 6, 16).

13. We maximize the function B subject to the constraint 15x + 10y = 500. Using a Lagrange multiplier, we solve the system⎧⎨
⎩

8x = 15λ
2y = 10λ
15x + 10y = 500.

The first two equations imply that 5λ = 8
3
x = y. Using this in the constraint equation yields

15x +
80

3
x = 500 ⇐⇒ x = 12.

Thus (x, y) = (12, 32) is our only critical point. We should compare the yield B at this point with that at the boundary values
of
(

100
3

, 0
)
(all irrigation) and (0, 50) (all fertilizer). We have

B(12, 32) = 2200, B
(

100
3

, 0
)

= 5044.4, B(0, 50) = 3100.

Thus she should forgo the fertilizer entirely and simply irrigate the field.
14. (a) We maximize the given production function f subject to the constraint 8x+2y = 1000. Using a Lagrange multiplier, the

system we must consider is ⎧⎨
⎩

4y − 2 = 8λ
4x − 8 = 2λ
8x + 2y = 1000.

The first two equations of the system imply that

4λ = 8x − 16 = 2y − 1 =⇒ 8x = 2y + 15.

Using this in the last equation we have 4y + 15 = 1000 ⇐⇒ y = 985/4. Hence x = 1015/16. (Note that in the
constraint 8x + 2y = 1000, we must have 0 ≤ x ≤ 125 and 0 ≤ y ≤ 500. The endpoints (125, 0) and (0, 500) give
negative values for f and so (1015/16, 985/4) must yield the maximum value of f on the line segment described by the
constraints.) Hence the manufacturer should purchase 63.4375 lb of cashmere and 246.2516 lb of cotton. The ratio of
cotton to cashmere is 4

(
985
1015

) ≈ 3.88.
(b) Most of the essential features of the situation remain unchanged. The constraint equation becomes 8x + 2y = B, so that

the relevant system to solve is ⎧⎨
⎩

4y − 2 = 8λ
4x − 8 = 2λ
8x + 2y = B.

As before, 8x = 2y + 15 and, using this we find that

(x, y) =

(
B + 15

16
,
B − 15

4

)

is the critical point that maximizes f . Thus the ratio of cotton to cashmere should be

(B − 15)/4

(B + 15)/16
= 4

(
B − 15

B + 15

)
.

As B becomes very large, we have

lim
B→+∞

4

(
B − 15

B + 15

)
= lim

B→+∞

4 (1 − 15/B)

1 + 15/B
= 4,

which is the ratio of the cost of cashmere to that of cotton.
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15. (a) This is an example of the Cobb-Douglas production function with p = w = 1 (see Example 5 from the text). The only
critical point will be (K, L) = ((1/3)360000, (2/3)360000) = (120000, 240000).

(b) ∂Q/∂K = 20(L/K)2/3 and so at (120000, 240000), ∂Q/∂K = 20(2)2/3. On the other hand, ∂Q/∂L = 40(K/L)1/3

and so at (120000, 240000), ∂Q/∂L = 40(1/2)1/3. These quantities are equal at the critical point.
16. This time we are minimizing pK + wL = M subject to the constraint Q(K, L) = c. Our system of equations is⎧⎪⎪⎨

⎪⎪⎩
p = λ

∂Q

∂K

w = λ
∂Q

∂L
.

Since none of p, q, and λ is 0, we can divide the top equation by pλ, divide the bottom equation by qλ and the result is
immediate.

True/False Exercises for Chapter 4

1. True.
2. False. (The increment measures the change in the function.)
3. True.
4. True.
5. True.
6. False. (p2(x, y) = 1 − 3x + y + 3x2 + 2xy.)

7. False. (f is most sensitive to changes in y.)
8. False. (The result is true if f is of class C2.)
9. False.
10. True.
11. True.
12. False. (The set is not bounded.)
13. False. (Consider the function f(x, y) = x2 + y2.)
14. True. (This ball is compact.)
15. True.
16. False. (The point a might not be a critical point.)
17. False. (The point is not a critical point of the function.)
18. False. (The point (0, 0, 0) gives a local minimum.)
19. True.
20. True.
21. False. (The critical point is a saddle point.)
22. False. (A local extremum can occur where a partial derivative fails to exist.)
23. False. (Extrema may also occur at points where g = c and∇g = 0.)
24. False. (Solutions to the system only give critical points.)
25. False. (You will have to solve a system of 7 equations in 7 unknowns.)
26. True.
27. True.
28. True.
29. False. (The equilibrium points are the critical points of the potential function.)
30. False. (This is only true at values of labor and capital that maximize the output.)

Miscellaneous Exercises for Chapter 4

1. If V = πr2h then dV = 2πrh dr + πr2dh, so in order for V to be equally sensitive to small changes in r and h, we must be
at a point (r0, h0) where 2πr0h0 ≈ πr2

0 so r0 = 2h0.
2. (a) If f(x1, x2, . . . , xn) = e−x2

1
−x2

2
−···−x2

n , then fxi
(x1, x2, . . . , xn) = −2xie

−x2

1
−x2

2
−···−x2

n and is 0 only when xi = 0.
So the only critical point is at the origin.
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(b) If i �= j, then fxixj
(x1, x2, . . . , xn) = 4xixje

−x2

1
−x2

2
−···−x2

n , so fxixj
(0, 0, . . . , 0) = 0. Also fxixi

(x1, x2, . . . ,

xn) = (−2 + 4x2
i )e

−x2

1
−x2

2
−···−x2

n , so fxixi
(0, 0, . . . , 0) = −2. The Hessian is an n× n diagonal matrix with −2’s on

the main diagonal and 0’s everywhere else. It is easy to calculate di(0, 0, . . . , 0) = (−2)i and so by the second derivative
test, f has a local maximum at the origin.

3. We are asked to maximize the profit P (x, y) = (x− 2)(80− 100x + 40y) + (y − 4)(20 + 60x− 35y) = −100x2 + 40x−
35y2 + 80y + 100xy − 240. The partial derivatives are Px(x, y) = −200x + 100y + 40 and Py(x, y) = 100x− 70y + 80.
These are both zero at (27/10, 5). You can read the Hessian right off the first derivatives and you see that d1 = −200 < 0 and
d2 = 4000 > 0 so profit is maximized when you charge $2.70 for Mocha and $5 for Kona.

4. (a) Revenue is R(x, y, z) = 1000x(4 − 0.02x) + 1000y(4.5 − 0.05y) + 1000z(5 − 0.1z) = −20x2 + 4000x − 50y2 +
4500y − 100z2 + 5000z.

(b) When (x, y, z) = (6, 5, 4), the prices of brands X, Y and Z are, respectively, $3.88, $4.25, and $4.60, and when
(x, y, z) = (1, 3, 3), the prices are $3.98, $4.35, and $4.70. The difference is R(1, 3, 3) − R(6, 5, 4) = 31, 130 −
62, 930 = −31, 800. The revenue will decline by $31,800 if the prices are raised.

(c) The partial derivatives are Rx(x, y, z) = 4000 − 40x, Ry(x, y, z) = 4500 − 100y, and Rz(x, y, z) = 5000 − 200z.
Thus the critical point is (100, 45, 25) and hence the selling prices should be $2 for brandX , $2.25 for brand Y and $2.50
for brand Z.

5. We note that there must be both a (global) maximum and a minimum value of f because the constraint equation defines the
surface of a sphere, which is compact, and f is continuous, so that the extreme value theorem applies.
(a) We find the extrema of f(x, y, z) = x −√

3y subject to g(x, y, z) = x2 + y2 + z2 = 4. Using the Lagrange multiplier
method, we solve ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
1 = 2λx

−√
3 = 2λy

0 = 2λz

x2 + y2 + z2 = 4.

From the first equation, we must have λ �= 0, so from the third equation z = 0. Then the first two equations imply that
y = −√

3x. Thus, since x2 + 3x2 = 4, our critical points are ±(1,−√
3, 0). We evaluate f at these points to find that

we have a maximum of 4 at (1,−√
3, 0) and a minimum of −4 at (−1,

√
3, 0).

(b) Now we are looking at the function g(ϕ, θ) = f(2 sin ϕ cos θ, 2 sin ϕ sin θ, 2 cos ϕ) = 2 sin ϕ cos θ − 2
√

3 sin ϕ sin θ.
Thus gϕ(ϕ, θ) = 2 cos ϕ cos θ − 2

√
3 cos ϕ sin θ and gθ(ϕ, θ) = −2 sin ϕ sin θ − 2

√
3 sin ϕ cos θ so that we should

solve {
−2 sin ϕ(sin θ +

√
3 cos θ) = 0

2 cos ϕ(cos θ −√
3 sin θ) = 0.

Either ϕ = 0, π and cos θ =
√

3 sin θ (hence tan θ = 1/
√

3 so θ = π/6, 7π/6), or ϕ = π/2, 3π/2 and sin θ =
−√

3 cos θ (hence tan θ = −√
3 so θ = 2π/3, 5π/3). Note that these points are (using (x, y, z) = (2 sin ϕ cos θ,

2 sin ϕ sin θ, 2 cos ϕ)):

(ϕ, θ) =
(
0, π

6

) ⇐⇒ (x, y, z) = (0, 0, 2)

(ϕ, θ) =
(
0, 7π

6

) ⇐⇒ (x, y, z) = (0, 0, 2)

(ϕ, θ) =
(
π, π

6

) ⇐⇒ (x, y, z) = (0, 0,−2)

(ϕ, θ) =
(
π, 7π

6

) ⇐⇒ (x, y, z) = (0, 0,−2)

(ϕ, θ) =
(

π
2
, 2π

3

) ⇐⇒ (x, y, z) = (−1,
√

3, 0)

(ϕ, θ) =
(

π
2
, 5π

3

) ⇐⇒ (x, y, z) = (1,−
√

3, 0)

(ϕ, θ) =
(

3π
2

, 2π
3

) ⇐⇒ (x, y, z) = (−1,
√

3, 0)

(ϕ, θ) =
(

3π
2

, 5π
3

) ⇐⇒ (x, y, z) = (1,−
√

3, 0).

We obtain the same points as in part (a), plus the additional critical points (0, 0, 2) and (0, 0,−2), which are not global
extrema, since f(0, 0,±2) = 0.

6. (a) Here we are maximizing T (x, y, z) = 200xyz2 subject to the constraint g(x, y, z) = x2 + y2 + z2 = 1. Using the
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Lagrange multiplier method, we solve

⎧⎪⎪⎨
⎪⎪⎩

200yz2 = 2λx
200xz2 = 2λy
400xyz = 2λz
x2 + y2 + z2 = 1.

From the third equation, λ �= 0 so 2λ = 400xy so 2x2 = 2y2 = z2. From the last equation we see that 4x2 = 1 so
our critical points are the eight possible combinations of x = ±1/2, y = ±1/2 and z = ±1/

√
2. The temperature is a

maximum of 25 when the sign of x and y are the same. This is at the four points ±(1/2, 1/2,±1/
√

2).
7. (a) fx(x, y) = 2x(−3y + 4x2) while fy(x, y) = 2y − 3x2. From fx we see that either x = 0 or y = (4/3)x2. But from

the second equation y = (3/2)x2. So we conclude that the only solution is at (0, 0).

(b) fxx(x, y) = 6(−y + 4x2), fxy(x, y) = −6x, and fyy(x, y) = 2. At the origin, the Hessian is
[

0 0
0 2

]
and so the

determinant is 0 and the critical point is degenerate.
(c) If y = mx then the original equation becomes F (x) = m2x2 − 3mx3 + 2x4. We calculate F ′(x) = 2m2x − 9mx2 +

8x3 = 2x(m2 − 9mx/2 + 4x2). From the second derivative we see that F ′′(x) = 2m2 − 18mx + 24x2. This is
positive at x = 0 for all m �= 0 so there is a minimum for x = 0 along any line other than the two axes. When
m = 0, F ′(x) = 8x3 and so the first derivative test implies that there is a minimum at x = 0 when m = 0. Finally,
consider G(y) = f(0, y) = y2. This clearly has a minimum at y = 0. We’ve shown that along any line through the
origin, f has a minimum at (0, 0).

(d) Consider g(x) = f(x, 3x2/2) = (−x2/2)(x2/2) = −x4/4. From the derivative g′(x) = −x3 we see that g has a
maximum at x = 0 and hence f has a maximum at the origin when constrained to the given parabola. This means that
the origin is actually a saddle point for f .

(e) A portion of the surface is shown below.

x

y

z

8. (a) Here we are finding the critical points of f(x, y) = xy subject to the constraint g(x, y) = x2 + y2 − 1 = 0. So taking
the partials of f(x, y) = λg(x, y) along with the constraint we get the following system of equations.

⎧⎨
⎩

y = 2λx
x = 2λy
1 = x2 + y2.

The solutions correspond to λ = ±1/2 and are the four critical points (1/
√

2, 1/
√

2), (−1/
√

2, 1/
√

2), (1/
√

2,−1/
√

2),
and (−1/

√
2,−1/

√
2).

(b) Here is a contour plot of f(x, y) = xy along with the constraint curve x2 + y2 = 1 and the four critical points.
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-1.5 -1 -0.5 0 0.5 1 1.5
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(c) You can see from the figure that f is at its highest value along the constraint curve at two of the critical points and at
its lowest at two of the others. In particular, f has a constrained max at ±(1/

√
2, 1/

√
2) and has a constrained min at

±(1/
√

2,−1/
√

2).

9. (a) Here we are finding the critical points of f(x, y, z) = xy subject to the constraint g(x, y, z) = x2 + y2 + z2 − 1 = 0.
So taking the partials of f(x, y, z) = λg(x, y, z) along with the constraint we get the following system of equations.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y = 2λx

x = 2λy

0 = 2λz

1 = x2 + y2 + z2

This problem is very similar to Exercise 8 and so it is no surprise that we again get four critical points corresponding to
λ = ±1/2. They are (1/

√
2, 1/

√
2, 0), (−1/

√
2, 1/

√
2, 0), (1/

√
2,−1/

√
2, 0), and (−1/

√
2,−1/

√
2, 0). We also get

critical points at the two poles corresponding to λ = 0. These are at (0, 0,±1).
(b) Of course, it is harder to represent this situation than its lower-dimensional counterpart. Here are some level sets, the unit

sphere and the critical points.

-2

-1

0

1x -2

-1

0

1

2

y
-1

-0.5

0

0.5

1

z

2
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(c) The arguments that f has a constrained max at ±(1/
√

2, 1/
√

2, 0) and has a constrained min at ±(1/
√

2, −1/
√

2, 0)
are the same as in Exercise 8. The two poles must be saddle points. If you travel in a direction where y = x, f(x, y) is
increasing while if you travel in a direction where y = −x, f(x, y) is decreasing. So there are saddle points at (0, 0,±1).

10. From the diagram you can see that we are minimizing f(x, y) = (x+ y)y subject to the constraint that x2 + y2 = 1. Because
this is a physical problem, we can assume that x > 0 and y > 0. A look at the contour plot for f along with the constraint
curve lets us see that this solution will be a max.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Our system of equations is ⎧⎨
⎩

y = 2λx
x + 2y = 2λy
1 = x2 + y2

Solving gives us one solution for which x and y are positive, namely x = (
√

2 +
√

2/2)(
√

2 − 1) and y = (
√

2 +
√

2/2).
The area of the rectangle is, therefore, (

√
2 + 1)/2.

11. Minimize f(x1, x2, . . . , xn) = x2
1+x2

2+· · ·+x2
n subject to the constraint g(x1, x2, . . . , xn) = a1x1+a2x2+· · ·+anxn = 1

where not all the ai’s are zero. We solve

{
2xi = aiλ for 1 ≤ i ≤ n
a1x1 + a2x2 + · · · + anxn = 1.

This means that our constrained critical point is at xi = aiλ/2 and 2/(a2
1+a2

2+· · ·+a2
n) = λ so xi = ai/(a2

1+a2
2+· · ·+a2

n).
So our minimum is

f(x1, x2, . . . , xn) = f

(
a1

a2
1 + a2

2 + · · · + a2
n

,
a2

a2
1 + a2

2 + · · · + a2
n

, . . . ,
an

a2
1 + a2

2 + · · · + a2
n

)

=

(
a1

a2
1 + a2

2 + · · · + a2
n

)2

+

(
a2

a2
1 + a2

2 + · · · + a2
n

)2

+ · · · +
(

an

a2
1 + a2

2 + · · · + a2
n

)2

=
1

a2
1 + a2

2 + · · · + a2
n

.

12. Minimize the function f(x1, x2, . . . , xn) = (a1x1 + a2x2 + · · · + anxn)2 subject to the constraint g(x1, x2, . . . , xn) =
x2

1 + x2
2 + · · · + x2

n = 1 where not all the ai’s are zero. We solve

{
2ai(a1x1 + a2x2 + · · · + anxn) = 2λxi for 1 ≤ i ≤ n, and
x2

1 + x2
2 + · · · + x2

n = 1.
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From the first equation, x2
i = (aixi/λ)(a1x1 + a2x2 + · · · + anxn), so

λ = a1x1(a1x1 + a2x2 + · · · + anxn) + a2x2(a1x1 + a2x2 + · · · + anxn) + · · ·
+ anxn(a1x1 + a2x2 + · · · + anxn)

= (a1x1 + a2x2 + · · · + anxn)2 so

xi =
ai

a1x1 + a2x2 + · · · + anxn
and finally,

n∑
i=1

x2
i =

n∑
i=1

a2
i

(a1x1 + a2x2 + · · · + anxn)2
= 1.

Now we can substitute back into the original equation:

f(x1, x2, . . . , xn) = f

(
a1

a1x1 + a2x2 + · · · + anxn
, . . . ,

an

a1x1 + a2x2 + · · · + anxn

)

=

(
a2
1 + a2

2 + · · · + a2
n

a1x1 + a2x2 + · · · + anxn

)2

=

(
a2
1 + a2

2 + · · · + a2
n

(a1x1 + a2x2 + · · · + anxn)2

)
(a2

1 + a2
2 + · · · + a2

n)

= a2
1 + a2

2 + · · · + a2
n.

13. Since the faces are parallel to the coordinate planes, we can reduce the problem to maximizingM(x, y, z) = xyz subject to
the constraint g(x, y, z) = x2 +2y2 +4z2 = 12, where x, y, and z are all positive. Here, by the symmetry of the problem, we
are maximizing the volume of one eighth of the box and therefore we will have the dimensions of the box itself by doubling
x, y, and z. We solve ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
yz = 2λx

xz = 4λy

xy = 8λz

x2 + 2y2 + 4z2 = 12.

So x2 = 2y2 = 4z2 and 12z2 = 12 so a critical point is (2,
√

2, 1). The dimensions of the box are twice these values so the
largest box is 4 × 2

√
2 × 2.

14. We are minimizing the cost of producing a sphere and a cylinder of equal radii with the given constraints. We also need to
convert 8000 gallons to 8000/7.480520 ≈ 1069.444 cubic feet. So minimize V (r, h) = 2πrh + 8πr2 subject to g(r, h) =
πr2h + (4/3)πr3 = 1069.444. We solve ⎧⎪⎨

⎪⎩
2πh + 16πr = λ(2πrh + 4πr2)

2πr = λ(πr2)

πr2h + (4/3)πr3 = 1069.444.

Physically, r cannot be zero, so by the second equation λ = 2/r and then by the first h = 4r and so by the third 1069.444 =
4πr3 + (4/3)πr3 = (16π/3)r3. Therefore, the best dimensions are r ≈ 3

√
63.8277 ≈ 3.9964 feet and h ≈ 15.9856 feet.

15. MinimizeM(x, y, z) = x2 + y2 + z2 subject to x2 − (y − z)2 = 1. We solve
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2x = 2λx

2y = −2λ(y − z)

2z = 2λ(y − z)

x2 − (y − z)2 = 1.

Since the last equation implies that x �= 0, the first equation gives us that λ = 1, so y = z = 0 and thus x = ±1. The
minimum distance is, therefore, 1.
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16. Place the vertex of the cone at the North Pole (0, 0, a), with the axis of symmetry of the cone coinciding with the z-axis. The
height of the cone is h and the radius is r. We are maximizing V (r, h) = (1/3)πr2h subject to the constraint (h−a)2 +r2 =
a2 or g(h, a) = h2 − 2ha + r2 = 0. We solve ⎧⎪⎨

⎪⎩
(2/3)πrh = 2λr

(1/3)πr2 = 2λ(h − a)

h2 − 2ha + r2 = 0.

From the first equation we know λ �= 0 and πh/3 = λ. So substitute this into the second equation to find that r2 = 2h2−2ah.
Solve this with the third equation to find that h = 4a/3 and r = 2

√
2a/3.

17. We want to maximize V = xyz subject to bcx + acy + abz = abc.

corner (x,y,z)
on plane

z

yx

Thus we solve

{ ∇V = λ∇(bcx + acy + abz)
bcx + acy + abz = abc

or

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yz = λbc

xz = λac

xy = λab
x

a
+

y

b
+

z

c
= 1.

Hence λ =
yz

bc
=

xz

ac
=

xy

ab
.

yz

bc
=

xz

ac
⇔ z = 0 or y =

bc

ac
x =

b

a
x.

Now z = 0 makes V = 0, so this cannot possibly maximize. Thus y = (b/a)x. Now yz

bc
=

xy

ab
⇔ y = 0 (reject) or

z =
bc

ab
x or z =

c

a
x. Hence the constraint becomes

x

a
+

x

a
+

x

a
= 1 so x = a/3 ⇒ y = b/3 z = c/3.

18. We have V (x, y) = π
(x

2

)2

y =
π

4
x2y with πx + y ≤ 108.

(a) We maximize V subject to g(x, y) = πx + y = 108. Thus, with a Lagrange multiplier we solve
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

πxy

2
= πλ

πx2

4
= λ

πx + y = 108

.

The first two equations imply that λ =
xy

2
=

πx2

4
so that either x = 0 (which we reject) or y

2
=

πx

4
, so y =

πx

2
.

Thus, in the constraint we must have πx +
πx

2
= 108 so x =

2 · 108

3π
=

72

π
. Hence the maximizing dimensions are 72

π

′′

diameter, 36′′ length. (That these dimensions really do maximize volume may be seen from the following picture.)
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increasing
V

constraint line

0 5 10 15 20 25 30 35
0

20

40

60

80

100

(b) Perhaps this is an easier method: πx + y = 108 ⇔ y = 108 − πx so v(x) = V (x, 108 − πx) =
πx2

4
(108 − πx)

defined on
[
0,

108

π

]
. Thus v′(x) =

π

4
(216x − 3πx2) so critical points are x = 0, 72

π
.

Compare values: v(0) = 0, v

(
72

π

)
> 0, v

(
108

π

)
= 0, so x = 72/π must give the absolute maximum.

19. The two equations are x = y/2 − 1 and x = y2. We will minimize the square of the distance between a point (x1, y1) on the
line and a point (x2, y2) on the parabola. Maximize f(y1, y2) = (y1/2 − 1 − y2

2)2 + (y2 − y1)
2. Take the first partials:

fy1
(y1, y2) =

5

2
y1 − 1 − y2

2 − 2y2 and

fy2
(y1, y2) = 4y2

2 − 2y1y2 + 6y2 − 2y1.

Set these equal to zero and solve to find the critical point at (y1, y2) = (5/8, 1/4). The minimal distance is therefore 3
√

5/8.

x

y

-1 1 2 3 4

-2

-1

1

2

3

20. (a) For each section the time is the distance divided by the rate and the hypotenuse is the altitude divided by the cosine of the
angle that is formed by the altitude and the hypotenuse. So

T (θ1, θ2) =
a

v1 cos θ1
+

b

v2 cos θ2
.
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(b) We are minimizing time subject to the constraint that the horizontal separation is constant: a tan θ1 + b tan θ2 = c. We
solve ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a sin θ1

v1 cos2 θ1
=

λa

cos2 θ1

b sin θ2

v2 cos2 θ2
=

λb

cos2 θ2

a tan θ1 + b tan θ2 = c.

The first two equations immediately give the result: sin θ1

sin θ2
=

v1

v2
.

21. We are minimizing the square of the distance f(x, y) = (x − x0)
2 + (y − y0)

2 subject to the constraint ax + by = d. We
solve ⎧⎪⎨

⎪⎩
2(x − x0) = aλ

2(y − y0) = bλ

ax + by = d.

Solving, we see that x = (aλ + 2x0)/2 and y = (bλ + 2y0)/2 so substituting for x and y in the third equation (a2 + b2)λ =
2(d − ax0 − by0). Also substituting for x and y in f we see that

f(x, y) =

(
aλ

2

)2

+

(
bλ

2

)2

=

(
a2 + b2

4

)
λ2 =

a2 + b2

4

(
2(d − ax0 − by0)

a2 + b2

)2

=
(d − ax0 − by0)

2

a2 + b2

so the distanceD is the square root of this: D =
|ax0 + by0 − d|√

a2 + b2
.

22. This is very similar to Exercise 21. Minimize the square of the distance f(x, y, z) = (x − x0)
2 + (y − y0)

2 + (z − z0)
2

subject to the constraint ax + by + cz = d. We solve
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(x − x0) = aλ

2(y − y0) = bλ

2(z − z0) = cλ

ax + by + cz = d.

Solving, we see that x = (aλ + 2x0)/2, y = (bλ + 2y0)/2 and z = (cλ + 2z0)/2 so substituting for x, y and z in the fourth
equation (a2 + b2 + c2)λ = 2(d − ax0 − by0 − cz0). Also substituting for x, y and z in f we see that

f(x, y, z) =

(
a2 + b2 + c2

4

)
λ2 =

(d − ax0 − by0 − cz0)
2

a2 + b2

so the distanceD is the square root of this: D =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
.

23. (a) We solve ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2xy2z2 = 2λx

2x2yz2 = 2λy

2x2y2z = 2λz

x2 + y2 + z2 = a2.

If λ = 0, then at least one of x, y and z is 0 and this corresponds to a minimum. If λ �= 0, we see that, at a critical point,
x2 = y2 = z2, so 3x2 = a2 or x2 = a2/3. Therefore, at a critical point,

f(x, y, z) =

(
a2

3

)3

=
a6

27
.

(b) In part (a) we showed x2y2z2 ≤ (a2/3)3 = [(x2 + y2 + z2)/3]3 and so this result follows immediately.
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(c) We make the appropriate adjustments to parts (a) and (b) and maximize f(x1, x2, . . . , xn) = x2
1x

2
2 · · ·x2

n subject to
x2

1 + x2
2 + · · · + x2

n = a2. Because, as in part (a), the case λ = 0 corresponds to a minimum, we see that at a maximum
no xi is 0. So we solve {

2x2
1x

2
2 · · ·x2

n/xi = 2λxi for 1 ≤ i ≤ n

x2
1 + x2

2 + · · · + x2
n = a2.

At a maximum, x2
1 = x2

2 = · · · = x2
n, so x2

i = a2/n. Therefore, the maximum of f is (a2/n)n. So we conclude that
x2

1x
2
2 · · ·x2

n ≤ (a2/n)n = [(x2
1 + x2

2 + · · · + x2
n)/n]n. The result follows immediately.

(d) We found that f was maximized when x2
1 = x2

2 = · · · = x2
n so, since here we are assuming xi > 0 for all i, the equality

holds when x1 = x2 = · · · = xn.
24. (a)

∂f

∂xk
=

n∑
j=1

akj
xj +

n∑
i=1

aikxi =
n∑

j=1

(ajk + akj)xj

∂g

∂xk
= 2xk.

Thus the Lagrange multiplier system is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j

(aj1 + a1j)xj = 2λx1

...∑
j

(ajn + anj)xj = 2λxn

x2
1 + · · · + x2

n = 1.

(b) Because A is symmetric, ajk = akj so the system becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j

2a1jxj = 2λx1

...∑
j

2anjxj = 2λxn

x2
1 + · · · + x2

n = 1.

The first n equations come from∇f = λ∇g and simplify to
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
j

a1jxj = λx1

...∑
j

anjxj = λxn.

Note that
∑
j

akjxj is the dot product of the kth row of A with x. So the n equations, taken together, express

Ax = λx.

(c)

f(x1, . . . , xn) = xT Ax = xT (λx) (x is an eigenvector)

= λ(xT x) = λx · x
= λ‖x‖2 = λ · 1,

since x is assumed to be a unit vector.
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25. (a) To set things up using Lagrange multipliers, we solve⎧⎪⎨
⎪⎩

2ax + 2by = 2λx

2bx + 2cy = 2λy

x2 + y2 = 1

⇔

⎧⎪⎨
⎪⎩

(a − λ)x + by = 0

bx + (c − λ)y = 0

x2 + y2 = 1.

In the last system, multiply the first equation by λ − c and the second by b, then add to obtain:

((a − λ)(λ − c) + b2)x = 0.

Now multiply the first equation by b and the second by λ − a, then add to get:

(b2 + (λ − a)(c − λ))y = 0.

Since x2 + y2 = 1, we cannot have both x and y equal to 0. Thus

b2 + (λ − a)(c − λ) = 0 ⇔ λ2 − (a + c)λ + ac − b2 = 0.

Hence

λ1, λ2 =
(a + c) ±

√
(a + c)2 − 4(ac − b2)

2
.

(b) Rewriting, λ1, λ2 =
(a + c) ±

√
(a − c)2 + 4b2

2
. (a − c)2 + 4b2 ≥ 0 so the eigenvalues are always real.

26. (a) λ1 = λ2 ⇔ (a − c)2 + 4b2 = 0 ⇔ a = c, b = 0 so f(x, y) = a(x2 + y2).
(b) The eigenvalues are the max and min values of f on the circle. If both are positive, then f has a positive minimum on the

circle; hence f must be positive on the entire circle.
(c) If both eigenvalues are negative, then f has a negative maximum on the circle—so f must be negative on the entire circle.

27. (a)

f(kx1, . . . , kxn) =

n∑
i,j=1

aij(kxi)(kxj) = k2
n∑

i,j=1

aijxixj

(b) Let u = x/‖x‖ when x �= 0. Then u is a point on the unit hypersphere. If f has a positive minimum on the hypersphere,
then f must be positive on the entire hypersphere. Hence, for x �= 0:

f(x) = f(ku) = k2f(u) > 0 (k = ‖x‖).

The case where f has a negative maximum on the hypersphere is similar.
(c) Clearly the converses of the results of part (b) hold (i.e., if f(x) > 0 for all x �= 0, then f is positive on the hypersphere

. . .). From Exercise 24, the minimum value of f is the smallest eigenvalue of A. Thus the quadratic form is positive
definite⇔ f(x) > 0 for all x �= 0 ⇔ f is positive on the hypersphere⇔ the smallest eigenvalue of A is positive⇔ all
eigenvalues are positive. (The negative definite result is similar.)
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