
Chapter 2

Differentiation in Several Variables

2.1 Functions of Several Variables; Graphing Surfaces

1. f : R→ R : x �→ 2x2 + 1
(a) Domain f = {x ∈ R}, Range f = {y ∈ R|y ≥ 1}.
(b) No. For instance f(1) = 3 = f(−1).
(c) No. For instance if y = 0, there is no x such that f(x) = 0.

2. f : R2 → R : (x, y) �→ 2x2 + 3y2 − 7
(a) Domain g = {(x, y) ∈ R2}, Range g = {z ∈ R|z ≥ −7}.
(b) Let Domain g = {(x, x) ∈ R2|x ≥ 0}.
(c) Let Codomain g = Range g.

3. Domain f = {(x, y) ∈ R2|y �= 0}, Range f = R.
4. Domain f = {(x, y) ∈ R2|x + y > 0}, Range f = R.
5. Domain g = R3, Range g = {w ∈ R|w ≥ 0}.
6. Domain g = {x ∈ R3| ‖x‖ < 2}, Range g = {y ∈ R|y ≥ 1/2}.
7. Domain f = {(x, y) ∈ R2|y �= 1}, Range f = {(x, y, z) ∈ R3|y �= 0, y2z = (xy− y − 1)2 + (y + 1)2}.
8. The component functions of f are f1(x, y) = x + y, f2(x, y) = yex, and f3(x, y) = x2y + 7.
9. The component functions of v are obtained by extracting the i-, j- and k-components of the expression for v(x, y, z, t). Thus
we have

v1(x, y, z, t) = xyzt, v2(x, y, z, t) = x2 − y2, v3(x, y, z, t) = 3z + t.

10. If x = (x1, x2, x3) = x1i + x2j + x3k, then

f(x) = x + 3j = x1i + (x2 + 3)j + x3k,

so that the component functions are

f1(x) = x1, f2(x) = x2 + 3, f3(x) = x3.

11. (a) f(x) = −2x/‖x‖.
(b) The component functions are

f1(x, y, z) =
−2x√

x2 + y2 + z2
, f2(x, y, z) =

−2y√
x2 + y2 + z2

, and f3(x, y, z) =
−2z√

x2 + y2 + z2
.

12. (a) The component functions of f are just the components of the output vector f(x) = Ax. Thus we calculate

f(x) =

⎡
⎣ 2 −1

5 0
−6 3

⎤
⎦ [x1

x2

]
=

⎡
⎣ 2x1 − x2

5x1

−6x1 + 3x2

⎤
⎦ .

Hence the component functions are:

f1(x1, x2) = 2x1 − x2, f2(x1, x2) = 5x1, f3(x1, x2) = −6x1 + 3x2.

(b) First note that, as x varies through all of R2, the expression 2x1 − x2 can be any real number and 5x1 can be any real
number. In addition, considering our answer in part (a), we see that

f3(x1, x2) = −6x1 + 3x2 = −3(2x1 − x2) = −3f1(x1, x2).

Thus the range of f consists of those vectors y = (y1, y2, y3) ∈ R3 with y3 = −3y1.
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13. (a) The component functions of f are the components of the output vector f(x) = Ax. Thus

f(x) =

⎡
⎣ 2 0 −1 1

0 3 0 0
2 0 −1 1

⎤
⎦
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎣2x1 − x3 + x4

3x2

2x1 − x3 + x4

⎤
⎦ .

The component functions are thus:

f1(x) = 2x1 − x3 + x4, f2(x) = 3x2, f3(x) = 2x1 − x3 + x4.

(b) Note that, as x varies through all of R4, the expression 2x1 − x3 + x4 can be any real number and 3x2 can be any real
number. In addition, considering our answer in part (a), we see that

f1(x) = 2x1 − x3 + x4 = f3(x).

Hence the range of f consists of those vectors y = (y1, y2, y3) ∈ R3 with y1 = y3.
14. Here there is nothing to show. Everything is at level 3. This surface is a plane parallel to the xy-plane 3 units above it so the

level set is the entire xy-plane if c = 3 and is the empty set if c �= 3.
15. For c > 0 the level sets are circles centered at the origin of radius

√
c. For c = 0 the level set is just the origin. There are

no values corresponding to c < 0. Note that the curves get closer together, indicating that we are climbing faster as we head
out radially from the origin. The second figure below shows the plot of the level curves shaded to indicate the height of the
level set (lighter is higher). The surface is therefore a paraboloid symmetric about the z-axis. We show it with and without the
surface filled in.
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16. This is exactly the same as Exercise 15 except that the paraboloid has been shifted down 9 units so the level curves begin in
the center at c = −9, not c = 0.

17. Again this time for c > 0 the level curves are circles. This time, however, the circles corresponding to the level sets at height
c are of radius c. In other words, they are evenly spaced. We are climbing at a constant rate as we head out radially, so the
surface is a cone.
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18. This time the level curves are ellipses. The sections as we cut in the direction x is constant or y is constant are still parabolas.
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z

19. The graphs xy = c are hyperbolas (unless c = 0 in which case it is the union of the two axes). When x and y are both positive
the height of the level curves are positive and so the hyperboloid is increasing as we head away from the origin radially in
either the first or third quadrant. When x and y are of different signs, the heights of the level curves are negative and so the
hyperboloid is decreasing as we head out radially in either the second or fourth quadrant.
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20. This is exactly the same as Exercise 21 except that the image has been reflected about the plane y = x.
21. We have a problem when y = 0. When k < 0, the section by x = k looks like the hyperbola in the figure on the left, when

k > 0, the section looks like the hyperbola in the figure on the right:

You can see that as y → 0 from either side, along a line where x is constant and not 0, the z values won’t match up. We
are going to get a tear down the line y = 0. The level sets look like:
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Notice that you can see that tear on the right center part of the above graph. The solid black and solid white areas which
are on either side of the x-axis point to the behavior around the tear.
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Graph each side of the x-axis and you will see the following piece of the surface:
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Our final surface is what you get when you try to glue two of those together:

22. The surface is a plane. Level sets for which f(x, y) = c are lines c = 3 − 2x − y or y = −2x + (3 − c). Level sets are
pictured below on the left. The surface is pictured below on the right.

-7.5 -5 -2.5 0 2.5 5 7.5

-7.5

-5

-2.5

0

2.5

5

7.5

-5
0

5
x -5

0

5

y
-20

0

20

z

23. Here we are looking at the graph of z = |x|. For c > 0, level sets for z = c will be the lines x = ± c. For c = 0 the level set
is the y-axis. The graph is like a folded plane.

c© 2012 Pearson Education, Inc.



80 Chapter 2 Differentiation in Several Variables

-7.5 -5 -2.5 0 2.5 5 7.5

-7.5

-5

-2.5

0

2.5

5

7.5

x

y

z

Note: In Problems 24–27 the level curves are shown along with the contour shading so you get an idea at what height to hang
the curves. You should be able to figure out the orientation of the surface from the contour plot.

24. Figures below:
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25. Figures below:
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26. Figures below: (note only a portion of the surface has been sketched so that you get a better idea of what’s going on)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3

0

x -2

0

2

y
0
1

2

3

z

-2

-1

27. Figures below:
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28. (a) We solve the equation PV = kT for T , obtaining T = f(P, V ) = (1/k)PV. This is the same as we considered in Exercise
15. See the figures for Exercise 19 for the general shape of the level curves.

(b) Here V = g(P, T ) = kT
P
. This is the same as the cases we considered in Exercises 20 and 21. We will get a “torn” surface

similar to the one shown in Exercise 21. The level curve V = c is the line through the origin: P = (k/c)T .

29. (a) The surface z = x2 is graphed below left and z = y2 below right.
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(b) Consider first the surface z = f(x) by considering the curve in the uv-plane given by v = f(u). The intersection of the
surface with planes of the form y = c will look the same as the curve in the uv-plane for any value of y. This helps us see
that if we “drag” this curve in each direction along the y-axis, the trail will trace out the surface. Similarly, but along the
x-axis for surfaces of the form z = f(y). The lack of dependence on x is our clue.

(c) The graph of the surface y = x2 is shown below. It’s what we would expect from parts (b) and (a).
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30. See the solution to Exercise 21 and the note in Exercise 20.

31. They can’t intersect—even though they may sometimes appear to. Say that two different level curves f(x, y) = c1 and
f(x, y) = c2 where c1 �= c2 intersect at some point (a, b). Then f(a, b) would have assigned to it two non-equal values. This
can’t happen for a function (it’s our vertical line test). On the other hand, if the limit as you approach (a, b) along different
paths is different, those level curves may appear to intersect at (a, b) no matter how good the resolution on your contour plot.

32. The level surfaces are planes x − 2y + 3z = c.

33. The level surfaces at level w = c are elliptic paraboloids.

34. The level surfaces at level w = c are nested spheres of radius
√

c centered at the origin.

35. The level surfaces at level w = c are nested ellipsoids.

36. The level surfaces are of the form y(x − z) = c. If c = 0 we get the union of the xz-plane and the plane x = z. If c �= 0 we
get the hyperbola in the xy-plane y = c/x; this generates the solution surfaces when translated bym(1, 0,−1).

37. (a) These are cylinders with the z-axis being the axis of the cylinder. For the surface at level w = c, the radius of the cylinder
is
√

c.
(b) This is related to Exercise 29. A level surface at w = c will be the surface generated by building a cylinder on the curve

h(x, y) = c in the z = 0 plane. You are dragging the curve both directions along the z-axis so that all cross sections for
z = c1 look identical.

(c) Same thing in the y direction.
(d) If you said “same thing in the x direction,” read the problem again. You are solving equations that look like h(x) = c.

For each xi that solves this equation, you have no dependency on y or z so the level set looks like a plane in R3 parallel
to the yz-plane of the form x = xi.

38. (a) F is, of course, not uniquely determined. But if we let F (x, y, z) = x2 + xy − xz − 2, then the surface is the level set
F (x, y, z) = 0.

(b) x2 + xy− xz = 2 is equivalent to z =
x2 + xy− 2

x
= f(x, y).

39. The ellipsoid is pictured below left. To see why you couldn’t express the surface as one function z = f(x, y), look for example
at the intersection of the ellipsoid and the plane y = 0 pictured below on the right.
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You can see that for −2 < x < 2 there correspond two values of z. We could express the top portion of the ellipsoid as
f(x, y) =

√
1 − (x2/4 + y2/9) and the bottom portion as g(x, y) = −

√
1 − (x2/4 + y2/9).

40. The figure is a hyperbolic paraboloid shown below left.
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41. The only difference here is that z is squared. Here we get a cone with axis of symmetry the x-axis. The figure is shown above
right.

42. This is Exercise 40 with the roles of x, y and z permuted and a change in the constants. The figure is shown below left.

0
0.5

1x

-2

-1

0

1

2

y

-2

-1

0

1

2

z

x

y

z

43. This is “cone” where the cross sections are ellipses, not circles. The figure is shown above right.
44. We see the figure is a hyperboloid. It is shown below left.
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45. This is a hyperboloid of two sheets. It is shown above right.
46. Here we have the parabola z = y2 +2 translated arbitrarily in the x direction. This is what we call a cylinder over the parabola

z = y2 + 2.
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Note: Except that your students have to complete the square first, these are similar to Exercises 40–46 above. You may want
them to be more explicit in reporting the translation as that’s sometimes hard to pick up from a diagram.

47. This is the equation of an elliptic cone with vertex at (1,−1,−3). The graph is shown below left.
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48. Here we have an elliptic paraboloid. The graph is shown above right.
49. This is the equation of an ellipsoid 4(x + 1)2 + y2 + z2 = 4. The graph is shown below left.
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50. This is the equation of a hyperboloid of one sheet 4(x + 1)2 + (y − 2)2 − 4z2 = 4. The graph is shown above right.
51. This is similar to Exercise 48. The equation is equivalent to z − 1 = (x − 3)2 + 2y2.
52. Here we get 9x2 + 4(y − 1)2 − 36(z + 4)2 = 684 which is similar to Exercise 50.

2.2 Limits

Note: In Exercises 1–6, the rule of thumb is that a set is closed if it contains all of its boundary points.
1. This is an annulus which doesn’t include its inner or outer boundary and so is open.
2. This is an annulus which includes all of its boundary points and so is closed.
3. This is an annulus which includes its inner boundary but not its outer boundary and so it is neither open nor closed.
4. This is a hollowed out sphere which includes its boundary points and so is closed.
5. This may be a bit harder to see. This is the union of an infinite open strip in the plane (−1 < x < 1) and a closed line in the
plane (x = 2) and so is neither open nor closed.

6. This is the open infinite cylinder in R3 and so is open. You could follow up on this by asking about {(x, y, z) ∈ R3|1 ≤
x2 + y2 ≤ 4}.
Note: As pointed out in the text, the most common and convincing way to prove that a limit of a function with domain in R2

doesn’t exist is to show that you get two different answers when you follow two different paths. After doing Exercises 7–18 students
may get in the habit of thinking that it is sufficient to check a few straight paths. Exercise 23 should make them think twice.

7. There’s no trick to taking this limit. Just let (x, y, z) → (0, 0, 0) and x2 + 2xy+ yz+ z3 + 2 → 2.
8. We can see that lim

(x,y)→(0,0)

|y|√
x2+y2

doesn’t exist by looking at the limit along the paths x = 0 and y = 0. On the one hand

lim
(0,y)→(0,0)

|y|√
x2 + y2

=
|y|√
y2

= 1 while lim
(x,0)→(0,0)

|y|√
x2 + y2

=
0√
x2

= 0.

9. Again, the limit does not exist.

lim
(x,y)→(0,0)

(x + y)2

x2 + y2
= lim

(x,y)→(0,0)

x2 + 2xy+ y2

x2 + y2
= 1 + lim

(x,y)→(0,0)

2xy
x2 + y2

.

When x = y,

1 + lim
(x,y)→(0,0)

2xy
x2 + y2

= 1 + lim
x→0

2x2

x2 + x2
= 1 + 1 = 2.

When x = 0,
1 + lim

(0,y)→(0,0)

2xy
x2 + y2

= 1 + lim
y→0

0

y2
= 1.
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10. Here nothing goes wrong so we can evaluate the limit by substituting in the expression.

lim
(x,y)→(0,0)

exey

x + y + 2
=

e0e0

0 + 0 + 2
=

1

2
.

11. No limit exists.
lim

(x,y)→(0,0)

2x2 + y2

x2 + y2
= 1 + lim

(x,y)→(0,0)

x2

x2 + y2
.

We reason, as above, that if x = y then the limit is 3/2, but if y = 0 the limit is 2.
12. Here we can evaluate the function at the limit point and find that

lim
(x,y)→(−1,2)

2x2 + y2

x2 + y2
=

6

5
.

13. Just as with limits in first semester Calculus, this is begging to be simplified.

lim
(x,y)→(0,0)

x2 + 2xy+ y2

x + y
= lim

(x,y)→(0,0)

(x + y)2

x + y
= lim

(x,y)→(0,0)
(x + y) = 0.

14. This is the same as the limit in Exercise 9 (once we simplified it). The limit does not exist.
15. This, too, is begging to be simplified.

lim
(x,y)→(0,0)

x4 − y4

x2 + y2
= lim

(x,y)→(0,0)

(x2 − y2)(x2 + y2)

x2 + y2
= lim

(x,y)→(0,0)
(x2 − y2) = 0.

16. This is the same as the limit in Exercise 11 (once we simplified it). The limit does not exist.
17. This is another standard trick from first year Calculus.

lim
(x,y)→(0,0),x�=y

x2 − xy√
x −√

y
= lim

(x,y)→(0,0),x�=y

x(x − y)√
x −√

y
= lim

(x,y)→(0,0),x�=y

x(
√

x +
√

y)(
√

x −√
y)√

x −√
y

= lim
(x,y)→(0,0),x�=y

x(
√

x +
√

y) = 0.

18. You can see that you would get different values depending on the path you took to (x, y) = (2, 0). If you followed the path
(2, y) → (2, 0) the limit would be−1. If you followed the path (x, 0) → (2, 0) the limit would be 1. So the limit doesn’t exist.

19. The function is continuous so the limit is f(0,
√

π, 1) = e0 cos π − 0 = −1.
20. As in Exercise 18, you get different values depending on the path you choose. Look, for example, at paths along the three

axes. Along (x, 0, 0) → (0, 0, 0) the limit is 2, along (0, y, 0) → (0, 0, 0) the limit is 3 and along (0, 0, z) → (0, 0, 0) the
limit is 1. We can see that no limit can exist.

21. Again the limit doesn’t exist because the value would differ on different paths. If you followed a path (t, t, t) → (0, 0, 0) the
limit would be 1/3. If you followed the path (x, 0, 0) → (0, 0, 0) the limit would be 0.

22. (a) We know from single-variable calculus (either using l’Hôpital’s rule or the direct geometric argument) that

lim
θ→0

sin θ

θ
= 1.

(b) lim
(x,y)→(0,0)

sin(x+y)
x+y

= lim
θ→0

sin θ
θ

= 1.

(c) lim
(x,y)→(0,0)

sin(xy)
xy = lim

θ→0

sin θ
θ

= 1.

Note: Exercise 23 is a classic and cool problem. You may wish to set it up in class before assigning it. Write the function on the
board and ask the students to evaluate the limit or explain why the limit fails to exist. For those who get it right, this is wonderful.
For those who get it wrong, they are now in a position to appreciate the subtlety of the problem.

23. Our goal is to evaluate lim(x,y)→(0,0)
x4y4

(x2 + y4)3
or explain why the limit fails to exist. We divide the answer into parts to

make it easier to follow—there are no corresponding parts (a)–(d) in the text.
(a) If you evaluate the limit along the lines x = 0 and y = 0 the limit is 0. We might be tempted to guess that

lim(x,y)→(0,0) f(x, y) = 0 but as we saw in Exercise 14, we could get a limit of 0 along the paths x = 0 and y = 0 but
perhaps not along x = y.
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(b) So now let’s follow the line y = mx into the origin and see where f heads off to.

lim
(x,y)→(0,0),y=mx

x4y4

(x2 + y4)3
= lim

x→0

x4(mx)4

(x2 + (mx)4)3

= lim
x→0

m4x8

(x2(1 + m4x2))3

= m4 lim
x→0

x8

(x6)(1 + m4x2)3

= m4 lim
x→0

x2

(1 + m4x2)3
= 0.

This means then if we head into the origin along any straight line the limit of f is 0. Here is the point of this problem: If
we head into the origin in any constant direction, the limit of f is 0 and yet lim(x,y)→(0,0) f(x, y) does not exist!

(c) For the limit to exist f must approach the same number no matter what path we choose to take to the origin. So let’s
approach along the parabola x = y2.

lim
(x,y)→(0,0),x=y2

x4y4

(x2 + y4)3
= lim

y→0

(y2)4y4

((y2)2 + y4)3

= lim
y→0

y12

(2y4)3

= lim
y→0

y12

8y12
=

1

8
.

(d) So we get different answers for lim(x,y)→(0,0)
x4y4

(x2 + y4)3
depending on what path we follow into the origin. So the limit

does not exist.

Note—In Exercises 24–27 your students may find better visual information by using a contour plot than a three-dimensional
plot.

24. Below see two graphs of the function. The three-dimensional plot makes it seem as if there are mountains and valleys quite
close to the origin. The contour plot helps you see from the diagonal lines that meet at the origin that the limit doesn’t exist.
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Analytically, f is equivalent to 1 + (x2 + 2xy)/(3x2 + 5y2). Head in toward the origin on a path where x = y and the
limit is 13/8. Head in toward the origin on a path where x = 0 and the limit is 1. Head in toward the origin on a path where
y = 0 and the limit is 11/3. So the limit doesn’t exist.

25. Below see two graphs of the function. You actually get most of the picture from the three-dimensional graph—except that it
looks as if things are joined smoothly. The contour plot shows the dramatic problems near the origin. Particularly if you look
along the vertical line x = 0 you’ll see that the limit does not exist at the origin.
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Analytically, look at the path x = 0. Here we’re looking at the graph of z = −1/y. The limits as we approach from
positive and negative y values is ±∞ so no limit exists.

26. In the three-dimensional graph below you can see that the extreme behavior calms down near the origin. This is confirmed in
the contour plot. From the graphs it appears that the limit exists at the origin.
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Before exploring this one analytically, consider the graph g(x, t) = xt/(x2 + t2) Its contour plot is shown below.

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

So really the problem we are considering is the same with t = y5. We’re not looking along a path that shows us enough. Let’s
look at the limit for our original function f as we approach the origin. Along a path where x = 0 or y = 0 the limit is 0.
Along a path where x = y5 the limit is 1/2. This is a good place to encourage your students to be careful drawing conclusions
from even very good graphs.

27. You’d think we would have learned our lesson from Exercise 26. On the other hand, it sure looks as if things are calming down
near the origin. Sure sin 1/y oscillates madly between −1 and 1 but x seems to dampen it. We’ll boldly assert that the limit
exists at the origin.
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Actually, the discussion above leads us to the truth. The product of a bounded function and one going to 0 goes to 0. The
limit exists and is 0.

28. We rewrite x2y

x2 + y2
as

r2 cos2 θ · r sin θ

r2 cos2 θ + r2 sin2 θ
= r cos2 θ sin θ.

Because 0 ≤ cos2 ≤ 1 and −1 ≤ sin θ ≤ 1, we have

0 ≤ r cos2 θ sin θ ≤ r.

Thus

lim
(x,y)→(0,0)

x2y

x2 + y2
= lim

r→0
r cos2 θ sin θ = 0

because the expression r cos2 θ sin θ is squeezed between two others that have the same limits as r → 0.
29.

lim
(x,y)→(0,0)

x2

x2 + y2
= lim

r→0

r2 cos2 θ

r2
= lim

r→0
cos2 θ = cos2 θ

Limit does not exist as the result depends on θ.
30.

lim
(x,y)→(0,0)

x2 + xy+ y2

x2 + y2
= lim

r→0

r2 + (r cos θ)r sin θ

r2
= lim

r→0
(1 + cos θ sin θ) = 1 + cos θ sin θ.

Thus the limit does not exist.
31. We have

lim
(x,y)→(0,0)

x5 + y4 − 3x3y + 2x2 + 2y2

x2 + y2

= lim
r→0

r5 cos5 θ + r4 sin4 θ − 3r4 cos3 θ sin θ + 2r2 cos2 θ + 2r2 sin2 θ

r2 cos2 θ + r2 sin2 θ

= lim
r→0

r2(r3 cos5 θ + r2 sin4 θ − 3r2 cos3 θ sin θ + 2)

r2

= lim
r→0

[
r2(r cos5 θ + sin4 θ − 3 cos3 θ sin θ) + 2

]
Note that −1 ≤ cosn θ ≤ 1 when n is odd, −1 ≤ sin θ ≤ 1, and 0 ≤ sinm θ ≤ 1 whenm is even. Thus we have that

r2(−r + 0 − 3) + 2 ≤ r2(r cos5 θ + sin4 θ − 3 cos3 θ sin θ) + 2 ≤ r2(r + 1 + 3) + 2.

Now
lim
r→0

[−r2(r + 3) + 2
]

= lim
r→0

[
r2(r + 4) + 2

]
= 2;

thus limr→0

[
r2(r cos5 θ + sin4 θ − 3 cos3 θ sin θ) + 2

]
= 2 by squeezing.
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32.

lim
(x,y)→(0,0)

x2 − y2√
x2 + y2

= lim
r→0

r2 cos2 θ − r2 sin2 θ√
r2 cos2 θ + r2 sin2 θ

= lim
r→0+

r2 cos 2θ

r
= lim

r→0+
r cos 2θ,

from the double-angle formula for cosine. (Note that since
√

r2 = |r|, we used a one-sided limit.) Since −r ≤ r cos 2θ ≤ r,
we conclude that limr→0+ r cos 2θ = 0 by squeezing.

33.

lim
(x,y)→(0,0)

x + y√
x2 + y2

= lim
r→0

r cos θ + r sin θ√
r2 cos2 θ + r2 sin2 θ

= lim
r→0+

r cos θ + r sin θ

r

= lim
r→0+

(cos θ + sin θ) = cos θ + sin θ.

Since this result depends on θ, the limit does not exist.
34.

lim
(x,y,z)→(0,0,0)

x2y

x2 + y2 + z2
= lim

ρ→0

(
ρ2 sin2 ϕ cos2 θ

)
(ρ sin ϕ sin θ)

ρ2

= lim
ρ→0

ρ sin3 ϕ cos2 θ sin θ

Since 0 ≤ cos2 θ ≤ 1, we have 0 ≤ ρ sin3 ϕ cos2 θ sin θ ≤ ρ. Thus we conclude that limρ→0 ρ sin3 ϕ cos2 θ sin θ = 0 by
squeezing.

35.

lim
(x,y,z)→(0,0,0)

xyz
x2 + y2 + z2

= lim
ρ→0

(ρ sin ϕ cos θ)(ρ sin ϕ sin θ)(ρ cos ϕ)

ρ2

= lim
ρ→0

ρ sin2 ϕ cos ϕ cos θ sin θ = 0

36.

lim
(x,y,z)→(0,0,0)

x2 + y2√
x2 + y2 + z2

= lim
ρ→0

ρ2 sin2 ϕ cos2 θ + ρ2 sin2 ϕ sin2 θ

ρ
= lim

ρ→0
ρ sin2 ϕ = 0

37.

lim
(x,y,z)→(0,0,0)

xz

x2 + y2 + z2
= lim

ρ→0

ρ2 sin ϕ cos ϕ cos θ

ρ2
= lim

ρ→0
sin ϕ cos ϕ cos θ = sin ϕ cos ϕ cos θ

The limit does not exist.

In Exercises 38–45: as the rules on continuity show, if the components are continuous and we put the functions together by
adding, subtracting, multiplying, or composing, then the result is continuous. It should be clear to the students what points need
checking.

38. This is a polynomial and is continuous everywhere.
39. This too is a polynomial and is continuous everywhere.

To make the point about composition, you may want to assign Exercises 40 and 41 together.

40. The only place we could get into trouble is where the denominator is 0, but x2 + 1 �= 0 so g is always continuous.
41. Here we are composing a continuous function (cos) with the continuous function g from Exercise 22, so the composition is

continuous.
42. You can even rewrite the function as (cos x)2 − 2(sin xy)2 so that it is clear that this is just the composition of continuous

functions.
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43. The only place we need to check is the origin. We need to show that the limit of f as we approach (0, 0) is 0. If we add and
subtract y2 to the numerator we find that:

lim
(x,y)→(0,0)

x2 − y2

x2 + y2
= 1 − 2 lim

(x,y)→(0,0)

y2

x2 + y2
.

In Exercise 16 we showed that this limit doesn’t exist (in this case you get two different answers if you follow the paths y = 0
and y = x) and so f is not continuous at (0, 0).

44. As in Exercise 43, the only point we need to check is the origin.

lim
(x,y)→(0,0)

x3 + x2 + xy2 + y2

x2 + y2
= lim

(x,y)→(0,0)

(x2 + y2)(x + 1)

x2 + y2
= lim

(x,y)→(0,0)
(x + 1) = 1.

The good news is that the limit exists, the bad news is that

lim
(x,y)→(0,0)

g(x, y) = 1 �= 2 = g(0, 0),

so g is not continuous at the origin.
45. A vector-valued function is continuous if each of its component functions is continuous. Each clearly is, so F is continuous.
46. Notice that when (x, y) �= 0,

x3 + xy2 + 2x2 + 2y2

x2 + y2
=

(x2 + y2)(x + 2)

x2 + y2
= x + 2.

So c = 2 and the function g(x, y) is seen to be equivalent to x + 2.
47. Here you can view f as being a function R3 → R; then f(x1, x2, x3) = 2x1 − 3x2 + x3 which is linear in x1, x2, and x3

and therefore continuous.
48. This is equivalent to f(x, y, z) = (−5y, 5x− 6z, 6y). Since each of the component functions from R3 → R is continuous, so

is f.

We make students do at least a few of the following because “it’s good for them.” Exercise 49 is a review of how they looked at
limits in first semester Calculus—it prepares them for Exercise 50. Exercise 51 is a generalization of Exercise 50.
49. Here f(x) = 2x − 3.

(a) If |x − 5| < δ, then |f(x) − 7| = |(2x − 3) − 7| = |2x − 10| = 2|x − 5| < 2δ.
(b) For any ε > 0, if 0 < |x − 5| < ε/2, then |f(x) − 7| < ε. This means that limx→5 f(x) = 7.

50. Now the function is f(x, y) = 2x − 10y + 3.
(a) Really we’re just arguing that the hypotenuse of a right triangle is at least as long as either leg.

δ > ‖(x, y) − (5, 1)‖ =
√

(x − 5)2 + (y − 1)2 ≥
√

(x − 5)2 = |x − 5|.
And

δ > ‖(x, y) − (5, 1)‖ =
√

(x − 5)2 + (y − 1)2 ≥
√

(y − 1)2 = |y − 1|.
(b) First:

|f(x, y) − 3| = |2x − 10y + 3 − 3| = |2x − 10y| = |2(x − 5) − 10(y − 1)|.
(c) By the triangle inequality

|2(x − 5) − 10(y − 1)| ≤ |2(x − 5)| + |10(y − 1)| = 2|x − 5| + 10|y − 1|.
But we are assuming that ‖(x, y) − (5, 1)‖ < δ and from part (a) we know that this implies that |x − 5| < δ and
|y − 1| < δ, so

2|x − 5| + 10|y − 1| < 2δ + 10δ = 12δ.

(d) We put these together to obtain: For any ε > 0, if 0 < ‖(x, y)− (5, 1)‖ < ε/12, then |f(x, y)− 3| < ε. In other words,

lim
(x,y)→(5,1)

f(x, y) = 3.

51. This is just a generalization of Exercise 50. We can use the same steps outlined there:
(a)

δ > ‖(x, y) − (x0, y0)‖ =
√

(x − x0)2 + (y − y0)2 ≥
√

(x − x0)2 = |x − x0|.
And

δ > ‖(x, y) − (x0, y0)‖ =
√

(x − x0)2 + (y − y0)2 ≥
√

(y − y0)2 = |y − y0|.
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(b) Assume that ‖(x, y) − (x0, y0)‖ < δ, then follow the steps in part (b) of Exercise 50:

|f(x, y) − (Ax0 + By0 + C)| = |Ax + By + C − (Ax0 + By0 + C)|
= |A(x − x0) + B(y − y0)| ≤ |A(x − x0)| + |B(y − y0)|
= |A||x − x0| + |B||y − y0| < |A|δ + |B|δ = (|A| + |B|)δ.

(c) Now we’re ready to put this together: For any ε > 0, if 0 < ‖(x, y)− (x0, y0)‖ < ε/(|A|+ |B|), then |f(x, y)− (Ax0 +
By0 + C)| < ε. In other words,

lim
(x,y)→(x0,y0)

f(x, y) = Ax0 + By0 + C.

52. (a) This is really what we just showed in Exercise 51 with x0 = 0 and y0 = 0.

‖(x, y)‖ =
√

x2 + y2 ≥
√

x2 = |x|.

And
‖(x, y)‖ =

√
x2 + y2 ≥

√
y2 = |y|.

(b) We follow the hint given in the text: |x3 + y3| ≤ |x3|+ |y3| = |x|3 + |y|3. But by part (a), |x| ≤ ‖(x, y)‖ =
√

x2 + y2,
and |y| ≤ ‖(x, y)‖ =

√
x2 + y2. Therefore,

|x3 + y3| ≤ |x|3 + |y|3 ≤ 2(
√

x2 + y2)3 = 2(x2 + y2)3/2.

(c) If 0 < ‖(x, y)‖ < δ then by part (b),∣∣∣∣x3 + y3

x2 + y2

∣∣∣∣ ≤
∣∣∣∣2(x2 + y2)3/2

x2 + y2

∣∣∣∣ = 2
√

x2 + y2 = 2‖(x, y)‖ < 2δ.

(d) First we know by part (c) that x3 + y3

x2 + y2
can be made to be arbitrarily close to 0 by choosing (x, y) close enough to the

origin. This means that the limit is 0.
Assemble the pieces: For any ε > 0, if 0 < ‖(x, y)‖ < ε/2, then |f(x, y)| < ε. This shows that

lim
(x,y)→(0,0)

x3 + y3

x2 + y2
= 0.

53. (a) 0 ≤ (a+ b)2 = a2 +2ab+ b2, so−2ab ≤ a2 + b2. Also 0 ≤ (a− b)2 = a2 −2ab+ b2, so 2ab ≤ a2 + b2. We combine
these two results to get: 2|ab| ≤ a2 + b2.

(b) If ‖(x, y)‖ < δ, then we’ll use part (a) to rewrite |xy| in the following calculation:∣∣∣∣xy
(

x2 − y2

x2 + y2

)∣∣∣∣ = |xy|(|x2 − y2|)
x2 + y2

≤ (1/2)(x2 + y2)|x2 − y2|
x2 + y2

=

(
1

2

)
|x2 − y2|.

We can apply part (a) again with a = x + y and b = x − y so that

|(x + y)(x − y)| ≤ (x + y)2 + (x − y)2

2
= x2 + y2.

Noting that x2 + y2 = ‖(x, y)‖2 = δ2, we have:∣∣∣∣xy
(

x2 − y2

x2 + y2

)∣∣∣∣ ≤
(

1

2

)
|x2 − y2| =

δ2

2
.

(c) As in Exercise 52, the limit has to be 0 because we can make f as small as we want by choosing (x, y) close enough to the
origin.

We summarize the above as: For any ε > 0, if 0 < ‖(x, y)‖ <
√

2ε, then |f(x, y)| < ε. This shows that

lim
(x,y)→(0,0)

∣∣∣∣xy
(

x2 − y2

x2 + y2

)∣∣∣∣ = 0.
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2.3 The Derivative

The general strategy for Exercises 1–15 is to treat all variables except for the one with respect to which we are differentiating as
constants.
1. f(x, y) = xy2 + x2y, so ∂f/∂x = y2 + 2xy, and ∂f/∂y = 2xy+ x2.
2. f(x, y) = ex2+y2

, so ∂f/∂x = 2xex2+y2

, and ∂f/∂y = 2yex2+y2

.
3. f(x, y) = sin xy+ cos xy, so ∂f/∂x = y cos xy− y sin xy, and ∂f/∂y = x cos xy− x sin xy.

4. f(x, y) =
x3 − y2

1 + x2 + 3y4
, so

∂f

∂x
=

(1 + x2 + 3y4)(3x2) − (x2 − y2)(2x)

(1 + x2 + 3y4)2

and
∂f

∂y
=

(1 + x2 + 3y4)(−2y) − (x2 − y2)(12y3)

(1 + x2 + 3y4)2
.

5. f(x, y) =
x2 − y2

x2 + y2
, so ∂f

∂x
=

(x2 + y2)(2x) − (x2 − y2)(2x)

(x2 + y2)2
=

4xy2

(x2 + y2)2

and ∂f

∂y
=

(x2 + y2)(−2y) − (x2 − y2)(2y)

(x2 + y2)2
=

−4x2y

(x2 + y2)2
.

6. f(x, y) = ln(x2 + y2), so ∂f

∂x
=

1

x2 + y2
(2x) =

2x

x2 + y2
and ∂f

∂y
=

2y

x2 + y2
.

7. f(x, y) = cos x3y, so ∂f

∂x
= (− sin x3y)(3yx2) = −3x2y sin x3y and ∂f

∂y
= −x3 sin x3y.

8. f(x, y) = ln (x/y), so ∂f

∂x
=

1

x/y
· 1

y
=

1

x
and ∂f

∂y
=

1

x/y

(
− x

y2

)
= −1

y
.

9. f(x, y) = xey + y sin (x2 + y), so ∂f/∂x = ey + 2xy cos (x2 + y) and ∂f/∂y = xey + sin (x2 + y) + y cos (x2 + y).
10. F (x, y, z) = x + 3y − 2z, so ∂F/∂x = 1, ∂F/∂y = 3, and ∂F/∂z = −2.

11. F (x, y, z) =
x − y

y + z
, so ∂F

∂x
=

1

y + z
,

∂F

∂y
=

(y + z)(−1) − (x − y)(1)

(y + z)2
= − x + z

(y + z)2
,

and

∂F

∂z
=

(y + z)(0) − (x − y)(1)

(y + z)2
=

y − x

(y + z)2
.

12. F (x, y, z) = xyz, so ∂F/∂x = yz, ∂F/∂y = xz, and ∂F/∂z = xy.

13. F (x, y, z) =
√

x2 + y2 + z2 = (x2 + y2 + z2)1/2. The partial derivatives are:

∂F

∂x
=

2x

2
√

x2 + y2 + z2
=

x√
x2 + y2 + z2

,

∂F

∂y
=

y√
x2 + y2 + z2

and,

∂F

∂z
=

z√
x2 + y2 + z2

.

14. F (x, y, z) = eax cos by + eaz sin bx so

∂F

∂x
= aeax cos by + beaz cos bx,

∂F

∂y
= −beax sin by, and

∂F

∂z
= aeaz sin bx.
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15. F (x, y, z) =
x + y + z

(1 + x2 + y2 + z2)3/2

Fx(x, y, z) =
(1 + x2 + y2 + z2)3/2 − (x + y + z)(3/2)(1 + x2 + y2 + z2)1/2(2x)

(1 + x2 + y2 + z2)3

=
1 − 2x2 + y2 + z2 − 3xy− 3xz

(1 + x2 + y2 + z2)5/2

Fy(x, y, z) =
1 + x2 − 2y2 + z2 − 3xy− 3yz

(1 + x2 + y2 + z2)5/2
, and

Fz(x, y, z) =
1 + x2 + y2 − 2z2 − 3xz− 3yz

(1 + x2 + y2 + z2)5/2
.

16. F (x, y, z) = sin x2y3z4 so this is similar to Exercise 7 above. Fx(x, y, z) = 2xy3z4 cos x2y3z4, Fy(x, y, z) =
3x2y2z4 cos x2y3z4 and Fz(x, y, z) = 4x2y3z3 cos x2y3z4.

17. F (x, y, z) =
x3 + yz

(x2 + z2 + 1)
We’ve seen this form a couple of times by now.

Fx(x, y, z) =
(x2 + z2 + 1)(3x2) − (x3 + yz)(2x)

(x2 + z2 + 1)2
=

x4 + 3x2z2 + 3x2 − 2xyz
(x2 + z2 + 1)2

Fy(x, y, z) =
(x2 + z2 + 1)(z) − (x3 + yz)(0)

(x2 + z2 + 1)2
=

z

x2 + z2 + 1

Fz(x, y, z) =
(x2 + z2 + 1)(y) − (x3 + yz)(2z)

(x2 + z2 + 1)2
=

x2y − yz2 + y − 2x3z

(x2 + z2 + 1)2

The gradient of f is the function (fx(x, y, z), fy(x, y, z), fz(x, y, z)). In Exercises 18–25 we are evaluating the gradient at a
given point.

18. f(x, y) = x2y + ey/x, so∇f(x, y) = (2xy+ (−y/x2)ey/x, x2 + (1/x)ey/x). This means that∇f(1, 0) = (0, 2).

19. f(x, y) =
x − y

x2 + y2 + 1
, so

∇f(x, y) =

(
(x2 + y2 + 1)(1) − (x − y)(2x)

(x2 + y2 + 1)2
,
(x2 + y2 + 1)(−1) − (x − y)(2y)

(x2 + y2 + 1)2

)

=

(−x2 + y2 + 1 + 2xy
(x2 + y2 + 1)2

,
−x2 + y2 − 1 − 2xy

(x2 + y2 + 1)2

)
.

So

∇f(2,−1) =

(
− 6

36
,

0

36

)
=

(
−1

6
, 0

)
.

20. f(x, y, z) = sin xyz, so∇f(x, y, z) = (cos xyz)(yz, xz, xy). This means that

∇f(π, 0, π/2) = cos 0(0, π2/2, 0) = (0, π2/2, 0).

21. f(x, y, z) = xy+ y cos z − x sin yz, so∇f(x, y, z) = (y − sin yz, x + cos z − xz cos yz,−y sin z − xy cos yz). So,

∇f(2,−1, π) = (−1 − sin(−π), 2 + cos(π) − 2(π) cos(−π), sin(π) + 2 cos(−π))

= (−1, 1 + 2π,−2).

22. f(x, y) = exy+ln(x−y), so∇f(x, y) = (yexy+1/(x−y), xexy−1/(x−y)). This means that∇f(2, 1) = (e2+1, 2e2−1).
23. f(x, y, z) = (x + y)e−z , so∇f(x, y, z) = (e−z, e−z,−(x + y)e−z). So,∇f(3,−1, 0) = (1, 1,−2).
24. f(x, y, z) = cos z ln (x + y2), so ∇f(x, y, z) = (1/(x + y2), 2y/(x + y2),− sin z ln (x + y2)). Hence ∇f(e, 0, π/4) =

(1/e, 0,−1/
√

2).
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25. f(x, y, z) =
xy2 − x2z

y2 + z2 + 1
, so we have ∂f

∂x
=

y2 − 2xz

y2 + z2 + 1
and the quotient rule applied appropriately gives

∂f

∂x
=

(y2 + z2 + 1)(2xy) − (xy2 − x2z)(2y)

(y2 + z2 + 1)2
=

2xy(xz + z2 + 1)

(y2 + z2 + 1)2

and
∂f

∂x
=

(y2 + z2 + 1)(−x2) − (xy2 − x2z)(2z)

(y2 + z2 + 1)2
=

x(xz2 − xy2 − 2y2z − x)

(y2 + z2 + 1)2
.

Therefore,∇f(−1, 2, 1) = (1,−1/9, 1/9).

The nth row of the derivative matrix is the gradient of the nth component function.

26. f(x, y) = x
y
,Df(x, y) =

[
1
y
, −x

y2

]
. So Df(3, 2) = [1/2,−3/4].

27. f(x, y, z) = x2+x ln (yz), soDf(x, y, z) =
[
2x + ln (yz) x/y x/z

]
and thusDf(−3, e, e) =

[−4 −3/e −3/e
]
.

28. f(x, y, z) =
(
2x − 3y + 5z, x2 + y, ln (yz)

)
, soDf(x, y, z) =

⎡
⎣ 2 −3 5

2x 1 0
0 1/y 1/z

⎤
⎦. Hence

Df(3,−1,−2) =

⎡
⎣ 2 −3 5
−6 1 0
0 −1 −1/2

⎤
⎦ .

29. f(x, y, z) = (xyz,
√

x2 + y2 + z2), so

Df(x, y, z) =

⎡
⎣ yz xz xy

x/
√

x2 + y2 + z2 y/
√

x2 + y2 + z2 z/
√

x2 + y2 + z2

⎤
⎦ .

This means,

Df(1, 0,−2) =

[
0 −2 0

1/
√

5 0 −2/
√

5

]
.

30. f(t) = (t, cos 2t, sin 5t), so

Df(t) =

⎡
⎣ 1

−2 sin 2t
5 cos 5t

⎤
⎦ and so Df(0) =

⎡
⎣ 1

0
5

⎤
⎦ .

31. f(x, y, z, w) = (3x − 7y + z, 5x + 2z − 8w, y − 17z + 3w) so

Df(x, y, z, w) =

⎡
⎣ 3 −7 1 0

5 0 2 −8
0 1 −17 3

⎤
⎦ .

Since all of the entries are constant, the matrix doesn’t depend on a.
32. f(x, y) = (x2y, x + y2, cos πxy), so

Df(x, y) =

⎡
⎣ 2xy x2

1 2y
−πy sin πxy −πx sin πxy

⎤
⎦ .

This means,

Df(2,−1) =

⎡
⎣ −4 4

1 −2
0 0

⎤
⎦ .

33. f(s, t) = (s2, st, t2), so

Df(s, t) =

⎡
⎣ 2s 0

t s
0 2t

⎤
⎦ .
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This means,

Df(−1, 1) =

⎡
⎣ −2 0

1 −1
0 2

⎤
⎦ .

We will appeal to Theorem 3.5 for Exercises 34–36.

34. f(x, y) = xy − 7x8y2 + cos x is differentiable because the two partials fx(x, y) = y − 56x7y2 − sin x and fy(x, y) =
x − 14x8y are continuous.

35. f(x, y, z) =
x + y + z

x2 + y2 + z2
is differentiable because the three partials

fx(x, y, z) =
−x2 + y2 + z2 − 2xy− 2xz

(x2 + y2 + z2)2

fy(x, y, z) =
x2 − y2 + z2 − 2xy− 2yz

(x2 + y2 + z2)2

fz(x, y, z) =
x2 + y2 − z2 − 2xz− 2yz

(x2 + y2 + z2)2

are all continuous.

36. f(x, y) =

(
xy2

x2 + y4
,
x

y
+

y

x

)
is differentiable because the partials in the matrix

Df(x, y) =

⎡
⎢⎣

y6 − x2y2

(x2 + y4)2
2x3y − 2xy5

(x2 + y4)2
1

y
− y

x2

−x

y2
+

1

x

⎤
⎥⎦

are continuous in the domain of f.
37. (a) The graph of z = x3 − 7xy+ ey has continuous partial derivatives at (−1, 0, 0).

(b) By Theorem 3.3, the equation for the tangent plane is: z = f(−1, 0) + fx(−1, 0)(x − (−1)) + fy(−1, 0)(y − 0). In
this case fx(x, y) = 3x2 − 7y so fx(−1, 0) = 3. Also fy(x, y) = −7x + ey and so fy(−1, 0) = 8. The equation of the
plane is z = 3(x + 1) + 8y.

38. Again using Theorem 3.3, the equation for the tangent plane is: z = f(π/3, 1) + fx(π/3, 1)(x− π/3) + fy(π/3, 1)(y − 1).
Here z = 4 cos xy, so fx(x, y) = −4y sin xy and fy(x, y) = −4x sin xy. Plugging in we get z = 2 − 2

√
3(x − π/3) −

(2π/
√

3)(y − 1).
39. Again using Theorem 3.3, the equation for the tangent plane is: z = f(0, 1) + fx(0, 1)(x) + fy(0, 1)(y − 1). Here z =

ex+y cos xy, so fx(x, y) = ex+y(cos xy − y sin xy) and fy(x, y) = ex+y(cos xy − x sin xy). Plugging in we get z =
e + ex+ e(y − 1) or z = ex+ ey.

40. First find the two partials fx(x, y) = 2x− 6 and fy(x, y) = 3y2. Then putting the tangent plane equation into the same form
as the plane 4x−12y+z = 7 gives us z−(2a−6)(x−a)−(3b2)(y−b) = a2−6a+b3 or z−(2a−6)x−3b2y = −a2−2b3. So
2a−6 = −4 so a = 1 and 3b2 = 12 so b = ±2. This gives two tangent planes. The equation for one is 4x−12y + z = −17
and the equation for the other is 4x − 12y + z = 15.

41. For f(x1, . . . , x4) = 10 − (x2
1 + 3x2

2 + 2x2
3 + x2

4), we have

∇f = (−2x1,−6x2,−4x3,−2x4) so ∇f(2,−1, 1, 3) = (−4, 6,−4,−6).

Formula (8) gives that the hyperplane has equation

x5 = −8 + (−4, 6,−4,−6)(x1 − 2, x2 + 1, x3 − 1, x4 − 3)

= −8 − 4(x1 − 2) + 6(x2 + 1) − 4(x3 − 1) − 6(x4 − 3)

or
x5 = −4x1 + 6x2 − 4x3 − 6x4 + 28.
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42. (a)

fx(2, 3) ≈ f(1.98, 3) − f(2, 3)

1.98 − 2
=

12.1 − 12

−.02
=

.1

−.02
= −5

fy(2, 3) ≈ f(2, 3.01) − f(2, 3)

3.01 − 3
=

12.2 − 12

0.01
=

.2

.01
= 20

Thus, formula (4) of §2.3 would give an approximate equation for the tangent plane as

z = f(2, 3) + fx(2, 3)(x − 2) + fy(2, 3)(y − 3) ≈ 12 − 5(x − 2) + 20(y − 3)

or
z = −5x + 20y − 8.

(b)

f(1.98, 2.98) ≈ 12 − 5(1.98 − 2) + 20(2.98 − 3) = 12 − 5(−0.02) + 20(−0.02)

= 11.7

Exercises 43–45 have the student investigate the linear approximation h of f near a given point a. We use the formula in
Definition 3.8:

h(x) = f(a) + Df(a)(x− a).
43. Here f(x, y) = ex+y so the partials are fx(x, y) = ex+y = fy(x, y).

(a) h(.1,−.1) = f(0, 0) + (e0, e0) · (.1,−.1) = 1.
(b) f(.1,−.1) = e0 = 1. So the approximation is exact.

44. Here f(x, y) = 3 + cos πxy so the partials are fx(x, y) = −πy sin πxy and fy(x, y) = −πx sin πxy.
(a) h(.98, .51) = 3+cos π(1)(.5)−(π(.5) sin[π(1)(.5)], π(1) sin[π(1)(.5)]) ·(−.02, .01) = 3−π(.5, 1) ·(−.02, .01) = 3.
(b) f(.98, .51) = 3 + cos π(.98)(.51) ≈ 3.00062832.

45. f(x, y, z) = x2 + xyz+ y3z, so the partials are fx(x, y, z) = 2x + yz, fy(x, y, z) = xz+ 3y2z, and fz(x, y, z) = xy+ y3.
(a) h(1.01, 1.95, 2.2) = f(1, 2, 2) + (fx(1, 2, 2), fy(1, 2, 2), fz(1, 2, 2)) · (.01,−.05, .2) = 21 +

(6, 26, 10) · (.01,−.05, .2) = 21.76.
(b) f(1.01, 1.95, 2.2) = 21.665725.

46.

f(x1, x2, . . . , xn) =
x1 + x2 + · · · + xn√
x2

1 + x2
2 + · · · + x2

n

, so

fxi
(x1, x2, . . . , xn) =

√
x2

1 + x2
2 + · · · + x2

n − xi(x1 + x2 + · · · + xn)(x2
1 + x2

2 + · · · + x2
n)−1/2

x2
1 + x2

2 + · · · + x2
n

=
x2

1 + x2
2 + · · · + x2

n − xi(x1 + x2 + · · · + xn)

(x2
1 + x2

2 + · · · + x2
n)3/2

.

47. (a) For (x, y) �= (0, 0) we can find a neighborhood that misses the origin. In this neighborhood

f(x, y) =
xy2 − x2y + 3x3 − y3

x2 + y2
= x − y +

2x3

x2 + y2
.

We can then easily compute the partials as

fx(x, y) = 1 +
2x4 + 6x2y2

(x2 + y2)2
and fy(x, y) = −1 − 4x3y

(x2 + y2)2
.

(b) Using Definition 3.2 of the partial derivative, if

f(x, y) =

⎧⎨
⎩ x − y +

2x3

x2 + y2
if (x, y) �= (0, 0)

0 if (x, y) = (0, 0)
,
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then
∂f

∂x
(0, 0) = lim

h→0

f(h, 0) − f(0, 0)

h
= lim

h→0

3h

h
= 3,

and
∂f

∂y
(0, 0) = lim

h→0

f(0, h) − f(0, 0)

h
= lim

h→0

−h

h
= −1.

Note: Exercises 48–51 are review exercises for single-variable calculus. The idea is to see that near a point, the tangent line
approximates the curve. This idea will then be extended to a tangent plane and a surface in Exercises 53–57. For Exercises 48–51
use either the point-slope equation y − f(a) = f ′(a)(x − a) or solve for y to get y = f ′(a)x + f(a) − f ′(a)a.

48. For the tangent line to F (x) = x3 − 2x + 3 at a = 1 F ′(x) = 3x2 − 2 so F ′(1) = 1. The tangent line is y = x + 1. The
graph of F and the tangent line near x = 1 (in this case for .8 ≤ x ≤ 1.2) is shown below left.

49. For the tangent line to F (x) = x + sin x at a = π/4 F ′(x) = 1 + cos x so F ′(π/4) = 1 +
√

2/2. The tangent line is
y = (1 +

√
2/2)x + (π/4 +

√
2/2 − (1 +

√
2/2)π/4). The graph of F and the tangent line near x = π/4 is shown above

right.
50. For the tangent line rewrite F (x) = x − 3 + 3/(x2 + 1). F ′(x) = 1 − 6x/(x2 + 1)2 so F ′(0) = 1 and F (0) = 0. The

tangent line is y = x. We can see that by looking at our rewritten version of F . The graph of F and the tangent line near
x = 0 is shown below left.

51. For the tangent line to F (x) = ln(x2 + 1) at a = −1, F ′(x) = 2x/(x2 + 1) so F ′(−1) = −1. The tangent line is
y = −x + ln 2 − 1. The graph of F and the tangent line near x = −1 is shown above right.

52. Looking at the graph below, we can see that there is a cusp at x = 2 (trust me, that’s where the cusp is). You can also see that
the limit of the derivative using points to the left of 2 would not be the same as the derivative using points to the right of 2 as
one set is negative and the other is positive. Finally, the tangent line looks to be a vertical line. This has no slope and so the
derivative wouldn’t exist.

53. (a) For the function f(x, y) = x3 − xy + y2, fx(x, y) = 3x2 − y and fy(x, y) = −x + 2y. So at the point (2, 1) these
become f(2, 1) = 7, fx(2, 1) = 11, and fy(2, 1) = 0. The equation of the tangent plane is z = 7 + 11(x − 2).
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(b)

(c) The partials are continuous so by Theorem 3.5, f is differentiable.
54. (a) To find the partial derivatives fx(1, 0) and fy(1, 0), we must look at appropriate partial functions of f(x, y) = ((x −

1)y)2/3:

f(x, 0) ≡ 0 ⇒ fx(1, 0) = 0

f(1, y) ≡ 0 ⇒ fy(1, 0) = 0

Since f(1, 0) = 0, the candidate tangent plane has equation z = 0 + 0(x − 1) + 0(y − 0) or z = 0.
(b) A computer graph looks as follows.

0.8
0.9

1
1.1

-0.2

-0.1

0

0.1

0.2

0
0.025
0.05

0.075
0.1

Zooming in closer to the point (1, 0, 0) doesn’t make things appear very different, so it’s tempting to conclude that f must
not be differentiable at (1, 0).

(c) From our calculations in part (a), the linear function h(x, y) = f(1, 0) + fx(1, 0)(x − 1) + fy(1, 0)(y − 0) = 0. Thus,
for (x, y) �= (1, 0) we have

0 ≤ |f(x, y) − h(x, y)|
‖(x, y) − (1, 0)‖ =

|f(x, y)|√
(x − 1)2 + y2

.

Now

|f(x, y)| = |x − 1|2/3|y|2/3 ≤ ((x − 1)2 + y2)1/3((x − 1)2 + y2)1/3

= ((x − 1)2 + y2)2/3.

Thus

|f(x, y)|√
(x − 1)2 + y2

≤ ((x − 1)2 + y2)2/3

((x − 1)2 + y2)1/2
= ((x − 1)2 + y2)1/6.

Since this last expression approaches zero as (x, y) → (1, 0), we see that f must be differentiable at (1, 0) by Defini-
tion 3.4.

55. (a) For the function f(x, y) =
xy

x2 + y2 + 1
, fx(x, y) =

−x2y + y3 + y

(x2 + y2 + 1)2
and fy(x, y) =

x3 − xy2 + y

(x2 + y2 + 1)2
. So at the point

(0, 0) these become f(0, 0) = 0, fx(0, 0) = 0, and fy(0, 0) = 0. The equation of the tangent plane is z = 0.
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(b) The surface is shown below left. It is shown with the tangent plane below right.

-2
-1

0
1

2

x
-2

-1

0

1

2

y
-0.4
-0.2

0
0.2
0.4

z

-2
-1

0
1

2

x

-2 -1 0 1 2y

-0.4
-0.2

0

0.2

0.4

z

(c) This is the plane that best approximates the surface at that point. But we can see that it’s not a very good approximation
as you move way in any direction other than the two axes lines. Analytically, the reason is that the partials are continuous
in a neighborhood of (0, 0).

56. (a) For the function f(x, y) = sin x cos y, fx(x, y) = cos x cos y and fy(x, y) = − sin x sin y. So at the point (π/6, 3π/4)
these become f(π/6, 3π/4) = −√

2/4, fx(π/6, 3π/4) = −√
6/4, and fy(π/6, 3π/4) = −√

2/4. The equation of the
tangent plane is z = −√

2/4 −√
6/4(x − π/6) −√

2/4(y − 3π/4).
(b)

-0.5
0

0.5
1

1.5
x 1.5

2

2.5

3

y

-1
-0.5

0
0.5
1

z

(c) Again the partials are continuous in a neighborhood of (π/6, 3π/4) so by Theorem 3.5, f is differentiable at the point.
57. (a) For the function f(x, y) = x2 sin y + y2 cos x, fx(x, y) = 2x sin y − y2 sin x and fy(x, y) = x2 cos y + 2y cos x.

So at the point (π/3, π/4) these become f(π/3, π/4) = π2
√

2/18 + π2/32, fx(π/3, π/4) = π
√

2/3 − π2
√

3/32,
and fy(π/3, π/4) = π2

√
2/18 + π/4. The equation of the tangent plane is z = (π2

√
2/18 + π2/32) + (π

√
2/3 −

π2
√

3/32)(x − π/3) + (π2
√

2/18 + π/4)(y − π/4).
(b)

0
0.5

1
1.5

2

x
0

0.5

1

1.5

2

y

0

2

4

z

(c) The partials are continuous near (π/3, π/4) so by Theorem 3.5, f is differentiable there.
58. (a) Yes g(x, y) = (xy)1/3 is continuous at (0, 0).

(b) ∂g/∂x = (1/3)x−2/3y1/3, and ∂g/∂y = (1/3)x1/3y−2/3.
(c) Unfortunately we can’t just substitute the point (0, 0) in our answers to (b), but using Definition 3.2 of partial derivatives,

we see that the two partials must be 0. In other words we define gx(0, 0) = 0, and gy(0, 0) = 0.
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(d) No (choose a path that crosses the x- and y-axes).
(e) You can see this answer if you look along the line y = x. There g(x, x) = x2/3 which has a corner at (0, 0). So there

can’t be a tangent plane.
(f) No g isn’t differentiable at (0, 0).

59. If f(x) = Ax =
(∑n

k=1 a1kxk,
∑n

k=1 a2kxk, . . . ,
∑n

k=1 amkxk

)
. Let’s look at the entry in row i column j of Df(x). This

will be
∂fi

∂xj
=

∂

∂xj

(
n∑

k=1

aikxk

)
= aij .

SoDf(x) = A.
60. By Theorem 2.6, if limx→a F(x) = 0, then limx→a Fi(x) = 0 for each component functionFi ofF. Hence limx→a ‖F(x)‖ =

0.
Conversely, assume that limx→a ‖F(x)‖ = 0. This means that, given any ε > 0, we can find an appropriate δ > 0 such

that if 0 < ‖x − a‖ < δ, then |‖F(x)‖ − 0| < 0. But note that

|Fi(x)| ≤
√

F1(x)2 + F2(x)2 + · · · + Fm(x)2 = |‖F(x)‖ − 0|.
Hence if 0 < ‖x − a‖ < δ, then |Fi(x) − 0| < ε, so that limx→a F(x) = 0.

61. (a) First, Exercise 60 shows that

lim
x→a

f(x) − [f(a) + A(x − a)]

‖x − a‖ = lim
x→a

f(x) − [f(a) + B(x − a)]

‖x − a‖ .

Subtracting these limits we have

0 = lim
x→a

(
f(x) − f(a) − A(x − a)

‖x − a‖ − f(x) − f(a) − B(x − a)

‖x − a‖
)

= lim
x→a

(B − A)(x − a)

‖x − a‖ .

(b) When taking the limit, it’s possible to have x → a in a completely arbitrary manner. But one way to have x → a is along
a straight-line path, which may be described as x = a + th. For such paths, having x → a is achieved by letting t → 0.
Thus if we know that

lim
x→a

(B − A)(x − a)

‖x − a‖ = 0,

then it must follow that
lim
t→0

(B − A)(th)

‖th‖ = 0.

(Note: The converse need not be true.) It follows that we must have a consistent one-sided limit; hence

lim
t→0+

(B − A)(th)

‖th‖ = 0.

Now, for t > 0, we have
(B − A)(th)

‖th‖ =
(B − A)h

‖h‖ .

Thus if
lim

t→0+

(B − A)(th)

‖th‖ = lim
t→0+

(B − A)h

‖h‖ = 0,

it must be the case that (B −A)h = 0. Moreover, this must be true for any nonzero vector h ∈ Rn. By setting h in turn
equal to the standard basis vectors e1, . . . , en, we conclude that B − A must be the zero matrix. Similarly, we must also
have

lim
t→0−

(B − A)(th)

‖th‖ = 0.

For t < 0, we have
(B − A)(th)

‖th‖ =
(B − A)(th)

|t|‖h‖ = − (B − A)h

‖h‖ .

Thus if
lim

t→0−

(B − A)(th)

‖th‖ = lim
t→0−

− (B − A)h

‖h‖ = 0,

again it must be the case that (B − A)h = 0. Hence B − A must be the zero matrix.
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62. (a) In the fraction that defines the function F, the denominator ‖x − a‖ is already a scalar-valued expression. Thus

Fi(x) =
fi(x) − fi(a) − (row i of A)(x − a)

‖x − a‖ .

(b) By Theorem 2.6, since limx→a F(x) = 0, we must have limx→a Fi(x) = 0 for i = 1, . . . , m as well. Since the latter
limit is known and is zero, it must be that the same limit is attained by letting x approach a along any straight-line path.
We may describe staight-line paths that run parallel to the coordinate axes by x = a + hej , where ej is a standard basis
vector forRn. Thus if limx→a Fi(x) = 0, then limh→0 Fi(a + hej) = 0.

Now we determine limh→0 Fi(a + hej). Using the description of the component function Fi from part (a), we have

0 = lim
h→0

fi(a + hej) − fi(a) − (row i of A)(hej)

‖hej‖

= lim
h→0

[
fi(a + hej) − fi(a)

‖hej‖ − (row i of A)(hej)

‖hej‖
]

= lim
h→0

[
fi(a + hej) − fi(a)

|h|‖ej‖ − (row i of A)(hej)

|h|‖ej‖
]

= lim
h→0

[
fi(a + hej) − fi(a)

|h| − (row i of A)(hej)

|h|
]

,

since the standard basis vectors are all unit vectors. Now consider one-sided limits. Suppose first that h > 0. Then

0 = lim
h→0+

[
fi(a + hej) − fi(a)

|h| − (row i of A)(hej)

|h|
]

= lim
h→0+

[
fi(a + hej) − fi(a)

h
− (row i of A)ej

]

= lim
h→0+

fi(a1, . . . , aj + h, . . . , an) − fi(a1, . . . , an)

h
− aij .

Similarly, if h < 0,

0 = lim
h→0−

[
fi(a + hej) − fi(a)

|h| − (row i of A)(hej)

|h|
]

= lim
h→0−

[
fi(a + hej) − fi(a)

−h
+ (row i of A)ej

]

= lim
h→0−

−fi(a1, . . . , aj + h, . . . , an) − fi(a1, . . . , an)

h
+ aij .

Taking both cases together, we have shown that

lim
h→0

fi(a1, . . . , aj + h, . . . , an) − fi(a1, . . . , an)

h
= aij .

This last limit is precisely the definition of the partial derivative. Hence we have shown that aij =
∂fi

∂xj
(a), as desired.

2.4 Properties; Higher-Order Partial Derivatives

In Exercises 1–4 there isn’t much to show . . . the students just need to verify that the sum of the derivative is the derivative of the
sum (Proposition 4.1).
1. f(x, y) = xy+ cos x, and g(x, y) = sin(xy) + y3, so Df = [y − sin x, x],Dg = [y cos xy, x cos xy+ 3y2], andD(f + g) =

[y − sin x + y cos xy, x + x cos xy+ 3y2].
2. f(x, y) = (ex+y, xey), and g(x, y) = (ln(xy), yex), so

Df =
[

ex+y ex+y

ey xey

]
, Dg =

[ y
xy

x
xy

yex ex

]
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and

D(f + g) =

[
ex+y + y

xy ex+y + x
xy

ey + yex xey + ex

]
.

Note the use of the product rule in Exercise 3 when calculating (g1)x.

3. f(x, y, z) = (x sin y + z, yex − 3x2) and g(x, y, z) = (x3 cos x, xyz), so

Df =
[

sin y x cos y 1
−6x ez yez

]
, Dg =

[
3x2 cos x − x3 sin x 0 0

yz xz xy

]
and

D(f + g) =

[
sin y + 3x2 cos x − x3 sin x x cos y 1

−6x + yz ez + xz yez + xy

]
.

4. f(x, y, z) = (xyz2, xe−y, y sin xz) and g(x, y, z) = (x − y, x2 + y2 + z2, ln(xz+ 2)), so

Df =

⎡
⎣ yz2 xz2 2xyz

e−y −xe−y 0
zy cos xz sin xz xy cos xz

⎤
⎦ , Dg =

⎡
⎣ 1 −1 0

2x 2y 2z
z/(xz+ 2) 0 x/(xz+ 2)

⎤
⎦ and

D(f + g) =

⎡
⎣ 1 + yz2 −1 + xz2 2xyz

e−y + 2x −xe−y + 2y 2z
zy cos xz+ z/(xz+ 2) sin xz xy cos xz+ x/(xz+ 2)

⎤
⎦ .

Exercises 5–8 are again mainly calculations to convince the students of the formulas given in Proposition 4.2; we hope that
they remember to apply them when confronted with a product or quotient. In Exercises 6 and 7 we notice that we just get the
quotient rule in each component which factors into the quotient rule given in the proposition (and we drop the argument when
convenient and clear).

5. f(x, y) = x2y + y3, g(x, y) = x/y, f(x, y)g(x, y) = x3 + xy2, and f(x, y)

g(x, y)
= xy2 + y4/x.

So Df = [2xy, x2 + 3y2], and Dg = [1/y,−x/y2],

D(fg) = [3x2 + y2, 2xy]

= (x2y + y3)[1/y,−x/y2] + (x/y)[2xy, x2 + 3y2]

= fD(g) + gD(f), and

D

(
f

g

)
= [y2 − y4/x2, 2xy+ 4y3/x]

= (y/x)[2xy, x2 + 3y2] − (y2/x2)(x2y + y3)[1/y,−x/y2]

=
gDf− fDg

g2
.

6. f(x, y) = exy, g(x, y) = x sin 2y, f(x, y)g(x, y) = xexy sin 2y, and f(x, y)

g(x, y)
=

exy

x sin 2y
.

So Df = [yexy, xexy], and Dg = [sin 2y, 2x cos 2y],

D(fg) = [sin 2y(exy + xy exy), x(xexy sin 2y + 2exy cos 2y)]

= exy[sin 2y, 2x cos 2y] + x sin 2y[yexy, xexy]

= fD(g) + gD(f), and

D

(
f

g

)
=

[
xyexy sin 2y − exy sin 2y

x2 sin2 2y
,
x2exy sin 2y − 2xexy cos 2y

x2 sin2 2y

]

=
x sin 2y[yexy, xexy] − exy[sin 2y, 2x cos 2y]

x2 sin2 2y

=
gDf− fDg

g2
.
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7. f(x, y) = 3xy+ y5, g(x, y) = x3 − 2xy2, f(x, y)g(x, y) = 3x4y + x3y5 − 6x2y3 − 2xy7, and f(x, y)

g(x, y)
=

3xy+ y5

x3 − 2xy2
. So

Df = [3y, 3x + 5y4], and Dg = [3x2 − 2y2,−4xy],

D(fg) = [12x3y + 3x2y5 − 12xy3 − 2y7, 3x4 + 5x3y4 − 18x2y2 − 14xy6]

= (3xy+ y5)[3x2 − 2y2,−4xy] + (x3 − 2xy2)[3y, 3x + 5y4]

= fD(g) + gD(f), and

D

(
f

g

)
=

[
g(x, y)fx(x, y) − f(x, y)gx(x, y)

[g(x, y)]2
,
g(x, y)fy(x, y) − f(x, y)gy(x, y)

[g(x, y)]2

]

=
gDf− fDg

g2
.

8. f(x, y, z) = x cos(yz), g(x, y, z) = x2 + x9y2 + y2z3 + 2, f(x, y)g(x, y) = x3 cos(yz) + x10y2 cos(yz) + xy2z3 cos(yz) +

2x cos(yz), and f(x, y)

g(x, y)
=

x cos(yz)
x2 + x9y2 + y2z3 + 2

.

So Df = [cos(yz),−xz sin(yz),−xy sin(yz)], and Dg = [2x + 9x8y2, 2x9y + 2yz3, 3y2z2],

D(fg) =

⎡
⎢⎣ 3x2 cos yz+ 10x9y2 cos yz+ y2z3 cos yz+ 2 cos yz

−x3z sin yz+ 2x10y cos yz− x10y2z sin yz+ 2xyz3 cos yz− xy2z4 sin yz− 2xz sin yz
−x3y sin yz− x10y3 sin yz+ 3xy2z2 cos xy− xy3z3 sin yz− 2xy sin yz

⎤
⎥⎦

T

= (x cos yz)

⎡
⎣ 2x + 9x8y2

2x9y + 2yz3
3y2z2

⎤
⎦T

+ (x2 + x9y2 + y2z3 + 2)

⎡
⎣ cos yz

−xz sin yz
−xy sin yz

⎤
⎦T

= fDg+ gDf, and

D

(
f

g

)
=

[
gfx − fgx

g2
,
gfy − fgy

g2
,
gfz − fgz

g2

]

=
gDf− fDg

g2
.

In Exercises 9–21, students should verify that fxy = fyx. The fact that in these problems the derivative with respect to y of fx

is equal to the derivative with respect to x of fy is not trivial. Problem 22 explicitly asks them to examine the mixed partials.

9. f(x, y) = x3y7 + 3xy2 − 7xy so fx(x, y) = 3x2y7 + 3y2 − 7y and fy(x, y) = 7x3y6 + 6xy− 7x. The second order partials
are:

fxx(x, y) = 6xy7,

fxy(x, y) = fyx(x, y) = 21x2y6 + 6y − 7, and

fyy(x, y) = 42x3y5 + 6x.

10. f(x, y) = cos(xy) so fx(x, y) = −y sin(xy) and fy(x, y) = −x sin(xy). The second order partials are:

fxx(x, y) = −y2 cos xy,

fxy(x, y) = fyx(x, y) = −xy cos xy− sin xy, and

fyy(x, y) = −x2 cos xy.
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11. f(x, y) = ey/x − ye−x so fx(x, y) =
−y

x2
ey/x + ye−x and fy(x, y) =

1

x
ey/x − e−x. The second order partials are:

fxx(x, y) =
2y

x3
ey/x +

y2

x4
ey/x − ye−x,

fxy(x, y) = fyx(x, y) =
−1

x2
ey/x − y

x3
ey/x + e−x, and

fyy(x, y) =
1

x2
ey/x.

12. f(x, y) = sin
√

x2 + y2 so

fx(x, y) =
x cos

√
x2 + y2√

x2 + y2
and fy(x, y) =

y cos
√

x2 + y2√
x2 + y2

.

The second order partials are:

fxx(x, y) =

√
x2 + y2

[
cos
√

x2 + y2 + (x)
−x sin

√
x2+y2√

x2+y2

]
− (x cos

√
x2 + y2) x√

x2+y2

x2 + y2

=
y2 cos

√
x2 + y2 − x2

√
x2 + y2 sin

√
x2 + y2

(x2 + y2)3/2
, and by symmetry

fyy(x, y) =
x2 cos

√
x2 + y2 − y2

√
x2 + y2 sin

√
x2 + y2

(x2 + y2)3/2
, and

fxy(x, y) = fyx(x, y) =
−xy
√

x2 + y2 sin
√

x2 + y2 − xy cos
√

x2 + y2

(x2 + y2)3/2
.

13. f(x, y) =
1

sin2 x + 2ey
so

fx(x, y) =
−2 sin x cos x

(sin2 x + 2ey)2
=

− sin 2x

(sin2 x + 2ey)2
and fy(x, y) =

−2ey

(sin2 x + 2ey)2
.

The second order partials are:

fxx(x, y) =
(sin2 x + 2ey)2(−2 cos 2x) + sin 2x · 2(sin2 x + 2ey) sin 2x

(sin2 x + 2ey)4

=
(sin2 x + 2ey)(−2 cos 2x) + 2 sin2 2x

(sin2 x + 2ey)3
,

fxy(x, y) = fyx(x, y) =
4ey sin 2x

(sin2 x + 2ey)3
, and

fyy(x, y) =
2ey(2ey − sin2 x)

(sin2 x + 2ey)3
.

14. f(x, y) = ex2+y2

so fx(x, y) = 2xex2+y2

and fy(x, y) = 2yex2+y2

. The second order partials are:

fxx(x, y) = 2ex2+y2

+ 2x · 2xex2+y2

= ex2+y2

(2 + 4x2),

fxy(x, y) = fyx(x, y) = 4xyex2+y2

, and

fyy(x, y) = ex2+y2

(2 + 4y2).
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15. f(x, y) = y sin x − x cos y, so

fx(x, y) = y cos x − cos y and fy(x, y) = sin x + x sin y.

The second order partial derivatives are:

fxx(x, y) = −y sin x,

fxy(x, y) = fyx(x, y) = cos x + sin y, and

fyy(x, y) = x cos y.

16. f(x, y) = ln

(
x

y

)
, so

fx(x, y) =
y

x
· 1

y
=

1

x
and fy(x, y) =

( y

x

)(
− x

y2

)
= −1

y
.

The second order partial derivatives are:

fxx(x, y) = − 1

x2
,

fxy(x, y) = fyx(x, y) = 0, and

fyy(x, y) =
1

y2
.

17. f(x, y, z) = x2ey + e2z , so fx(x, y, z) = 2xey , fy(x, y, z) = x2ey , and fz(x, y, z) = 2e2z . The second order partial
derivatives are:

fxx(x, y, z) = 2ey

fyy(x, y, z) = x2ey

fzz(x, y, z) = 4e2z

fxy(x, y, z) = fyx(x, y, z) = 2xey

fxz(x, y, z) = fzx(x, y, z) = 0

fyz(x, y, z) = fzy(x, y, z) = 0

18. f(x, y, z) =
x − y

y + z
, so

fx(x, y, z) =
1(y + z) − 0(x − y)

(y + z)2
=

1

y + z

fy(x, y, z) =
−1(y + z) − 1(x − y)

(y + z)2
= − x + z

(y + z)2

fz(x, y, z) =
0(y + z) − 1(x − y)

(y + z)2
=

y − x

y + z)2
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The second order partial derivatives are:

fxx(x, y, z) = 0

fyy(x, y, z) =
2(x + z)

(y + z)3

fzz(x, y, z) =
2(x − y)

(y + z)3

fxy(x, y, z) = fyx(x, y, z) = − 1

(y + z)2

fxz(x, y, z) = fzx(x, y, z) = − 1

(y + z)2

fyz(x, y, z) = fzy(x, y, z) = −1(y + z)2 − 2(y + z)(x + z)

(y + z)4
=

2x − y + z

(y + z)3

19. f(x, y, z) = x2yz + xy2z + xyz2 so fx(x, y, z) = 2xyz + y2z + yz2, fy(x, y, z) = x2z + 2xyz + xz2, and fz(x, y, z) =
x2y + xy2 + 2xyz. The second order partials are:

fxx(x, y, z) = 2yz

fyy(x, y, z) = 2xz

fzz(x, y, z) = 2xy

fxy(x, y, z) = fyx(x, y, z) = 2xz+ 2yz+ z2

fxz(x, y, z) = fzx(x, y, z) = 2xy+ y2 + 2yz

fyz(x, y, z) = fzy(x, y, z) = x2 + 2xy+ 2xz

20. f(x, y, z) = exyz so fx(x, y, z) = yzexyz, fy(x, y, z) = xzexyz, and fz(x, y, z) = xyexyz. The second order partials are:

fxx(x, y, z) = y2z2exyz

fyy(x, y, z) = x2z2exyz

fzz(x, y, z) = x2y2exyz

fxy(x, y, z) = fyx(x, y, z) = zexyz(1 + xyz)

fxz(x, y, z) = fzx(x, y, z) = yexyz(1 + xyz)

fyz(x, y, z) = fzy(x, y, z) = xexyz(1 + xyz)

21. f(x, y, z) = eax sin y + ebx cos z so fx(x, y, z) = aeax sin y + bebx cos z, fy(x, y, z) = eax cos y, and
fz(x, y, z) = −ebx sin z. The second order partials are:

fxx(x, y, z) = a2eax sin y + b2ebx cos z

fyy(x, y, z) = −eax sin y

fzz(x, y, z) = −ebx cos z

fxy(x, y, z) = fyx(x, y, z) = aeax cos y

fxz(x, y, z) = fzx(x, y, z) = −bebx sin z

fyz(x, y, z) = fzy(x, y, z) = 0

22. F (x, y, z) = 2x3y + xz2 + y3z5 − 7xyz so Fx(x, y, z) = 6x2y + z2 − 7yz, Fy(x, y, z) = 2x3 + 3y2z5 − 7xz, and
Fz(x, y, z) = 2xz+ 5y3z4 − 7xy.
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(a) Fxx(x, y, z) = 12xy, Fyy(x, y, z) = 6yz5, and Fzz(x, y, z) = 20y3z3 + 2x.
(b) Fxy(x, y, z) = 6x2 − 7z = Fyx(x, y, z), Fxz(x, y, z) = 2z − 7y = Fzx(x, y, z), and Fyz(x, y, z) = 15y2z4 − 7x =

Fzy(x, y, z).
(c) Fxyx(x, y, z) = 12x = Fxxy(x, y, z). We knew that these would be equal because they are the mixed partials of Fx (i.e.,

(Fx)yx = (Fx)xy).
(d) Fxyz(x, y, z) = −7 = Fyzx(x, y, z).

23. For f(x, y) = ye3x, we have fx(x, y) = 3ye3x; that is, the differentiation with respect to x causes a factor of 3 to arise.
Hence it follows that

∂nf

∂xn
= 3nye3x.

Moreover, this result is valid for n ≥ 1. On the other hand, fy(x, y) = e3x; note that y does not appear in the derivative.
Therefore,

∂nf

∂yn
= 0 for n ≥ 2.

24. For f(x, y, z) = xe2y + ye3z + ze−x, we have fx(x, y, z) = e2y − ze−x; note that x only appears in the second term of the
derivative (and a negative sign has arisen). Therefore,

∂nf

∂xn
=

{
e2y − ze−x n = 1

(−1)nze−x n ≥ 2
.

Similarly, fy(x, y, z) = 2xe2y + e3z; note that y does not appear in the second term of this derivative. Therefore,

∂nf

∂yn
=

{
2xe2y + e3z n = 1

2nxe2y n ≥ 2
.

Finally, fz(x, y, z) = 3ye3z + e−x. In the same manner, we have

∂nf

∂zn
=

{
3ye3z + e−x n = 1

3nye3z n ≥ 2
.

25. First, for f(x, y, z) = ln
(xy

z

)
, we have

fx(x, y, z) =

(
z

xy

)(y

z

)
=

1

x
,

fy(x, y, z) =

(
z

xy

)(x

z

)
=

1

y
,

fz(x, y, z) =

(
z

xy

)(
−xy

z2

)
= −1

z
.

From this, we see that, for n ≥ 1.

∂nf

∂xn
=

(−1)n−1(n − 1)!

xn
,

∂nf

∂yn
=

(−1)n−1(n − 1)!

yn
, and ∂nf

∂zn
=

(−1)n(n − 1)!

zn
.

Note that all mixed partials of this function are zero, since the first-order partial derivatives each involve just a single variable.
26. Note that the function f is of class C∞, so we may differentiate in any order we wish.

(a) If we differentiate first with respect to y and z, we obtain

∂2f

∂y∂z
= 6x7yz2 − 2x4.

Differentiating this result with respect to x twice gives our answer:

∂4f

∂x2∂y∂z
= 252x5yz2 − 24x2.
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(b) We may take our answer in part (a) and differentiate once more with respect to x:

∂5f

∂x3∂y∂z
= 1260x4yz2 − 48x.

(c) Every additional time we differentiate f with respect to x, the power in x drops. Since the highest power of x that appears
is 7, once we differentiate with respect to x seven times, the partial derivative will be constant with respect to x. Hence
any higher derivatives with respect to x will be zero and so ∂15f/∂x13∂y∂z = 0.

27. We will denote the degree of f by deg(f ) in this solution.
(a) deg(px) = 16, deg(py) = 16, deg(pxx) = 15, deg(pyy) = 15, and deg(pyx) = 15.
(b) deg(px) = 3, deg(py) = 3, deg(pxx) = 2, deg(pyy) is undefined, and deg(pyx) = 2.
(c) This is difficult because the term of highest degree can switch during the process of taking a derivative. For example

consider f(x, y) = xy2 + x3y. Take the derivative with respect to y and the degree has decreased by one as we would
expect: fy(x, y) = 2xy + x3 so deg(fy) = 3. Now take another derivative with respect to y: fyy(x, y) = 2x and so the
degree is now one.
For a polynomial f(x1, x2, . . . , xn) which has degree d = d1 + d2 + · · · + dn because of a term cxd1

1 xd2
x . . . xdn

n ,
∂kf/∂xi1 . . . ∂xik

has degree d − k if xj occurs at most dj times in the partial derivative—
otherwise wemust look for the highest degree of any other surviving terms. If no terms survive, (i.e., ∂kf/∂xi1 . . . ∂xik

=
0) then the degree is undefined.

Exercises 28 and 29 have the students verify that certain functions are solutions to the given differential equations. When
the students studied exponential equations in first semester calculus they may have seen that f(x) = cekx solves the differential
equation y′ = ky. Here is a nice way to introduce the idea of a partial differential equation.
28. (a) For the first function, f(x, y, z) = x2 + y2 − 2z2, fx(x, y, z) = 2x, fy(x, y, z) = 2y, and fx(x, y, z) = −4z.

This means that fxx(x, y, z) = 2, fyy(x, y, z) = 2, and fzz(x, y, z) = −4. We see that fxx + fyy + fzz = 0 and
conclude that f is harmonic.

For the second function, f(x, y, z) = x2 − y2 + z2, fx(x, y, z) = 2x, fy(x, y, z) = −2y, and fz(x, y, z) = 2z.
This means that fxx(x, y, z) = 2, fyy(x, y, z) = −2, and fzz(x, y, z) = 2. We see that fxx + fyy + fzz �= 0 and

conclude that f is not harmonic.
(b) One possible example is f(x1, x2, . . . , xn) = x2

1 − x2
2 + 3x3 + 4x4 + 5x5 + · · · + nxn.

Here fxixi
=

⎧⎨
⎩

2 if i = 1,
−2 if i = 2,

0 if i > 2.
and we see that

∑n
i=1 fxixi

= 0 so f is harmonic.

29. (a) To show that T (x, t) = e−kt cos x satisfies the differential equation kTxx = Tt we calculate the derivatives:

Tx(x, t) = −e−kt sin x

Txx(x, t) = −e−kt cos x

Tt(x, t) = −ke−kt cos x

so kTxx = Tt.
For t0 = 0 and t0 = 1 the graphs are:
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For t0 = 10 the graph is further damped. The graph of the surface z = T (x, t) is:
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(b) To show that T (x, y, t) = e−kt(cos x + cos y) satisfies the differential equation k(Txx + Tyy) = Tt we calculate the
derivatives:

Tx(x, y, t) = −e−kt sin x

Txx(x, y, t) = −e−kt cos x

Ty(x, y, t) = −e−kt sin y

Tyy(x, y, t) = −e−kt cos y

Tt(x, y, t) = −ke−kt(cos x + cos y)

so k(Txx + Tyy) = Tt.
The graphs of the surfaces given by z = T (x, y, t0) for t0 = 0, 1, and 10 are:
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0z
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c© 2012 Pearson Education, Inc.



Section 2.4. Properties; Higher-Order Partial Derivatives 111

(c) Finally, to show that T (x, y, z, t) = e−kt(cos x+cos y+cos z) satisfies the differential equation k(Txx+Tyy+Txx) = Tt

we calculate the derivatives:

Tx(x, y, z, t) = −e−kt sin x

Txx(x, y, z, t) = −e−kt cos x

Ty(x, y, z, t) = −e−kt sin y

Tyy(x, y, z, t) = −e−kt cos y

Tz(x, y, z, t) = −e−kt sin z

Tzz(x, y, z, t) = −e−kt cos z

Tt(x, y, z, t) = −ke−kt(cos x + cos y + cos z)

so k(Txx + Tyy + Tzz) = Tt.
30. (a) For (x, y) �= (0, 0), compute the partial derivatives:

fx(x, y) = y

(
x2 − y2

x2 + y2

)
+ xy

(
[x2 + y2](2x) − [x2 − y2](2x)

(x2 + y2)2

)

=
y(x2 − y2)(x2 + y2) + xy(4xy2)

(x2 + y2)2

=
y(x4 + 4x2y2 − y4)

(x2 + y2)2
and similarly

fy(x, y) =
x(x4 − 4x2y2 − y4)

(x2 + y2)2

(b) We use part (a):

fx(0, y) =
y(−y4)

(y2)2

= −y for y �= 0, and

fy(x, 0) = x for x �= 0.

(c) From part (b), fxy(0, y) = −1 while fyx(x, 0) = 1 and fx(0, y) and fy(x, 0) are continuous at the origin so you can
conclude that fxy(0, 0) = −1 while fyx(0, 0) = 1. Why aren’t the mixed partials equal? The answer is that the second
partials are not continuous at the origin. We can see this by calculating

fxy(x, y) =
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
.

Therefore fxy(x, 0) = 1 and

fxy(0, y) = −1.

Hence lim
(x,y)→(0,0)

fxy(x, y) does not exist.

In other words, fxy is not continuous at the origin.
31. An equation of a plane in the form z = f(x, y) is z = Ax + By + C. Here zx = A, zy = B and the second derivatives are

all 0. The partial differential equation for minimal surfaces is therefore trivially satisfied and a plane is seen to be a minimal
surface.
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32. (a) Here’s an image of Scherk’s surface.

(b) In this case z = ln(cos x/ cos y). So zx = − tan x, zy = tan y, zxy = 0, zxx = − sec2 x, and zyy = sec2 y. So

(1 + z2
y)zxx + (1 + z2

x)zyy = (1 + tan2 y)(− sec2 x) + (1 + tan2 x)(sec2 y)

= − sec2 x sec2 y + sec2 x sec2 y = 0.

This agrees with the right side of the equation as zxy = 0.
33. (a) Here’s an image of the helicoid:

-2
-1

0
1

2

x

-2
-1

0
1

2

y

-2

0

2

z

(b) There’s no reason not to think of this surface as z = x tan y. Then zx = tan y, zy = x sec2 y, zxx = 0, zxy = sec2 y, and
zyy = 2 tan y sec2 y. So

(1 + z2
y)zxx + (1 + z2

x)zyy = (1 + x2 sec4 y)(0) + (1 + tan2 y)(2 tan y sec2 y)

= (sec2 y)(2 tan y sec2 y) = 2(tan y)(x sec2 y)(sec2 y)

= 2zxzyzxy
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2.5 The Chain Rule

In Exercises 1– 3 students see that if you have a composite function you can take the derivative either by substituting or by using
the chain rule.
1. f(x, y, z) = x2 − y3 + xyz, x = 6t + 7, y = sin 2t, and z = t2.

Substitution:

f(x(t), y(t), z(t)) = (6t + 7)2 − (sin 2t)3 + (6t + 7)(sin 2t)(t2)

= (6t + 7)2 − (sin 2t)3 + (6t3 + 7t2)(sin 2t) and so

df
dt

= 2(6t + 7)6 − 3(sin 2t)2(2 cos 2t) + (18t2 + 14t) sin 2t + (6t3 + 7t2)(2 cos 2t)

Chain Rule:

df
dt

=
∂f

∂x

dx
dt

+
∂f

∂y

dy
dt

+
∂f

∂z

dz
dt

= (2x + yz)(6) + (−3y2 + xz)(2 cos 2t) + (xy)(2t)

= [2(6t + 7) + (sin 2t)(t2)](6) + [−3 sin2 2t + (6t + 7)t2](2 cos 2t) + [(6t + 7) sin 2t](2t)

2. f(x, y) = sin(xy), x = s + t, and y = s2 + t2.
(a) f(x(t), y(t)) = sin(x(t)y(t)) = sin[(s + t)(s2 + t2)].

∂f

∂s
= cos[(s + t)(s2 + t2)][(s2 + t2) + (s + t)(2s)]

∂f

∂t
= cos[(s + t)(s2 + t2)][(s2 + t2) + (s + t)(2t)]

(b)
∂f

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s

= y cos(xy) + x cos(xy)2s

= cos[(s + t)(s2 + t2)][(s2 + t2) + (s + t)(2s)] and

∂f

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t

= y cos(xy) + x cos(xy)2t

= cos[(s + t)(s2 + t2)][(s2 + t2) + (s + t)(2t)]

3. (a) We want

dP
dt

=
∂P

∂x

dx
dt

+
∂P

∂y

dy
dt

+
∂P

∂z

dz
dt

=
12xz
y

(−2 sin t) − 6x2z

y2
(2 cos t) +

6x2

y
(3)

=
12(2 cos t)(3t)

2 sin t
(−2 sin t) − 6(4 cos2 t)3t

4 sin2 t
(2 cos t) +

6(4 cos2 t)

2 sin t
(3)

= −72t cos t − 36t
cos3 t

sin2 t
+

36 cos2 t

sin t
.

Therefore,

dP
dt

∣∣∣∣
t=π/4

=
(36 − 27π)√

2
.

c© 2012 Pearson Education, Inc.



114 Chapter 2 Differentiation in Several Variables

(b) P (x(t), y(t), z(t)) = 6(2 cos t)2(3t)
2 sin t

= 36t cos2 t
sin t

, so

dP
dt

=
sin t(36 cos2 t − 36t · 2 cos t sin t) − 36t cos2 t(cos t)

sin2 t
.

Therefore,

dP
dt

∣∣∣∣
t=π/4

=
(36 − 27π)√

2
.

(c) Using differentials,

ΔP ≈
(
dP
dt

∣∣∣∣
t=π/4

)
(dt) =

(
36 − 27π√

2

)
(.01) ≈ −.34523.

So (writing P as a function of t),

P (π/4 + .01) ≈ P (π/4) + ΔP ≈ 9π√
2
− .34523 ≈ 19.6477.

4. We are thinking of z = z(s, t) = [x(s, t)]2 + [y(s, t)]3. So

∂z

∂t
(2, 1) =

∂z

∂x

∣∣∣∣
(2,1)

· ∂x

∂t

∣∣∣∣
(2,1)

+
∂z

∂y

∣∣∣∣
(2,1)

· ∂y

∂t

∣∣∣∣
(2,1)

= 2x|(2,1) · s|(2,1) + 0 = 8.

5. Here V = LWH, so

dV
dt

=
∂V

∂L

dL
dt

+
∂V

∂W

dW
dt

+
∂V

∂H

dH
dt

= WH

(
dL
dt

)
+ LH

(
dW
dt

)
+ LW

(
dH
dt

)
= 5 · 4(.75) + 7 · 4(.5) + 7 · 5(−1)

= −6 in3/min.

Since dV

dt
< 0, the volume of the dough is decreasing at this instant.

6. Let the length of the butter be y and the length of an edge of the cross section be x. Then the volume V = x2y. The rate at
which the volume is changing is

dV
dt

= 2xydx
dt

+ x2 dy
dt

= 2(1.5)(6)(−.125) + (1.5)2(−.25) = −2.8125 in3/min.

7. Note that in 6 months:

x = 1 + .6 − cos π = 2.6

y = 200 + 12 sin π = 200

The chain rule gives

dP
dt

∣∣∣∣
t=6

=
∂P

∂x

∣∣∣∣
x=2.6
y=200

dx
dt

∣∣∣∣
t=6

+
∂P

∂y

∣∣∣∣
x=2.6
y=200

dy
dt

∣∣∣∣
t=6

= 10(0.1x + 10)−
1
2 (0.1)|x=2.6

(
0.1 − π

6
sin

πt

6

)∣∣∣∣
t=6

− 4y− 2
3 |y=200

(
2 sin

πt

6
+

2πt

6
cos

πt

6

)∣∣∣∣
t=6

= (10.26)−
1
2 (0.1) − 4(200− 2

3 )(−2π)

= 0.031219527 + 0.734885812 = 0.766105339 units/month (demand in rising slightly).
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8. (a) The chain rule gives

d
dt

(BMI) =
∂(BMI)

∂w

dw
dt

+
∂(BMI)

∂h

dh
dt

=
10,000

h2

dw
dt

− 20,000 w

h3

dh
dt

On the child’s 10th birthday: w = 33 kg, h = 140 cm,

dw
dt

= 0.4,
dh
dt

= 0.6.

So

d(BMI)
dt

=
10,000

1402
(0.4) − 20,000 · 33

1403
(0.6)

≈ 0.0598 points/month.
(b) The rate we found in part (a) is greater than the typical rate by about 49%. I’d monitor the situation monthly so that it

doesn’t persist for too long, but I wouldn’t be very concerned, since the current BMI is roughly 16.84, which is quite low.
9. If we let h denote the height of the pile and r the base radius, then we have the volume V given by V =

π

3
r2h. If we

differentiate with respect to time t and use the chain rule, we obtain

dV

dt
=

π

3

(
2rh

dr

dt
+ r2 dh

dt

)
.

We wish to find dr/dt when h = 30, r = 12, dh/dt = 1, and dV/dt = 320. Using this numerical information, we have

320 =
π

3

(
720

dr

dt
+ 144 · 1

)
= π

(
240

dr

dt
+ 48

)
.

Now we solve for dr/dt:
dr

dt
=

1

240

(
320

π
− 48

)
=

4

3π
− 1

5
≈ 0.2244 cm/min.

10. Bearing in mind that c is a constant (i.e., 330 m/sec), the frequency Hermione hears when f = 440 and v = 4 is

φ(f, v) =

(
330 + 4

330

)
440 = 445.3 Hz.

Now we wish to find dφ/dt when f = 440 and v = 4. To do this, we use the chain rule:

dφ

dt
=

∂φ

∂f

df

dt
+

∂φ

∂v

dv

dt
=

c + v

c

df

dt
+

f

c

dv

dt
.

The numerical information tells us that when f = 440 and v = 4:

df

dt
= 100,

dv

dt
= −2.

Therefore,
dφ

dt
= 1.012(100) + 1.3(−2) = 98.54 Hz/sec.

Since this result is positive, the perceived frequency is increasing, so that Hermione hears the clarinet as sounding higher.
11. Since x = er cos θ and y = er sin θ we can write

∂z

∂r
=

(
∂z

∂x

)(
∂x

∂r

)
+

(
∂z

∂y

)(
∂y

∂r

)
=

(
∂z

∂x

)
(er cos θ) +

(
∂z

∂y

)
(er sin θ).

Similarly,

∂z

∂θ
=

(
∂z

∂x

)(
∂x

∂θ

)
+

(
∂z

∂y

)(
∂y

∂θ

)
=

(
∂z

∂x

)
(−er sin θ) +

(
∂z

∂y

)
(er cos θ).
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Therefore,

(
∂z

∂r

)2

+

(
∂z

∂θ

)2

= e2r

[
(cos2 θ + sin2 θ)

(
∂z

∂x

)2

+(cos2 θ + sin2 θ)

(
∂z

∂y

)2

+ (2 cos θ sin θ − 2 cos θ sin θ)

(
∂z

∂x

)(
∂z

∂y

)]

= e2r

[(
∂z

∂x

)2

+

(
∂z

∂y

)2
]

.

The result follows.

Exercises 12–18 are fun exercises. You may want to stress that we are showing that the partial differential equations are true
without even knowing the “outside” function.

12. By the chain rule, we have

∂z

∂u
=

∂z

∂x

∂x

∂u
+

∂z

∂y

∂y

∂u
= 2v

∂z

∂x
+ 2u

∂z

∂y
,

∂z

∂v
=

∂z

∂x

∂x

∂v
+

∂z

∂y

∂y

∂v
= 2u

∂z

∂x
+ 2v

∂z

∂y
.

Hence

∂z

∂u

∂z

∂v
= 4uv

(
∂z

∂x

)2

+
(
4u2 + 4v2) ∂z

∂x

∂z

∂y
+ 4uv

(
∂z

∂y

)2

= 4uv

[(
∂z

∂x

)2

+

(
∂z

∂y

)2
]

+ 4
(
u2 + v2) ∂z

∂x

∂z

∂y

= 2x

[(
∂z

∂x

)2

+

(
∂z

∂y

)2
]

+ 4y
∂z

∂x

∂z

∂y

since x = 2uv and y = u2 + v2.
13. First we calculate

∂w

∂u
=

∂w

∂x

∂x

∂u
+

∂w

∂y

∂y

∂u
= 2u

∂w

∂x
− 2u

∂w

∂y
,

∂w

∂v
=

∂w

∂x

∂x

∂v
+

∂w

∂y

∂y

∂v
= −2v

∂w

∂x
+ 2v

∂w

∂y
.

Hence

v
∂w

∂u
+ u

∂w

∂v
= v

(
2u

∂w

∂x
− 2u

∂w

∂y

)
+ u

(
−2v

∂w

∂x
+ 2v

∂w

∂y

)

= 2uv
∂w

∂x
− 2uv

∂w

∂y
− 2uv

∂w

∂x
+ 2uv

∂w

∂y
= 0.
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14. We’ll start by calculating the components on the left side:

∂z

∂x
=

∂z

∂u

∂u

∂x
+

∂z

∂v

∂v

∂x

=
∂z

∂u
(1) +

∂z

∂v
(1)

=
∂z

∂u
+

∂z

∂v
and

∂z

∂y
=

∂z

∂u

∂u

∂y
+

∂z

∂v

∂v

∂y

=
∂z

∂u
(1) +

∂z

∂v
(−1)

=
∂z

∂u
− ∂z

∂v
so

∂z

∂x

∂z

∂y
=

(
∂z

∂u
+

∂z

∂v

)(
∂z

∂u
− ∂z

∂v

)

=

(
∂z

∂u

)2

−
(

∂z

∂v

)2

.

15. First calculate:

∂u

∂x
=

y(y2 − x2)

(x2 + y2)2
and

∂u

∂y
=

x(x2 − y2)

(x2 + y2)2

Now
x

∂w

∂x
+ y

∂w

∂y
= x

∂w

∂u

∂u

∂x
+ y

∂w

∂u

∂u

∂y

=

(
∂w

∂u

)(
x

∂u

∂x
+ y

∂u

∂y

)

=

(
∂w

∂u

)(
x

y(y2 − x2)

(x2 + y2)2
+ y

x(x2 − y2)

(x2 + y2)2

)
= 0.

16. First calculate:
∂u

∂x
=

4xy2

(x2 + y2)2
and

∂u

∂y
=

−4x2y

(x2 + y2)2

Now

x
∂w

∂x
+ y

∂w

∂y
= x

∂w

∂u

∂u

∂x
+ y

∂w

∂u

∂u

∂y

=

(
∂w

∂u

)(
x

∂u

∂x
+ y

∂u

∂y

)

=

(
∂w

∂u

)(
x

4xy2

(x2 + y2)2
+ y

−4x2y

(x2 + y2)2

)
= 0.

c© 2012 Pearson Education, Inc.



118 Chapter 2 Differentiation in Several Variables

17. ∂u

∂x
=

−1

x2
, ∂u

∂y
=

1

y2
, and ∂u

∂z
= 0. Also ∂v

∂x
=

−1

x2
, ∂v

∂y
= 0, and ∂v

∂z
=

1

z2
. Now it is just a matter of using the chain rule

and plugging in:

x2 ∂w

∂x
+ y2 ∂w

∂y
+ z2 ∂w

∂z
= x2

[
∂w

∂u

∂u

∂x
+

∂w

∂v

∂v

∂x

]
+ y2

[
∂w

∂u

∂u

∂y
+

∂w

∂v

∂v

∂y

]
+ z2

[
∂w

∂u

∂u

∂z
+

∂w

∂v

∂v

∂z

]

=
∂w

∂u

[
x2 ∂u

∂x
+ y2 ∂u

∂y
+ z2 ∂u

∂z

]
+

∂w

∂v

[
x2 ∂v

∂x
+ y2 ∂v

∂y
+ z2 ∂v

∂z

]

=
∂w

∂u

[
x2

(−1

x2

)
+ y2

(
1

y2

)
+ 0

]
+

∂w

∂v

[
x2

(−1

x2

)
+ 0 + z2

(
1

z2

)]
= 0.

18. ∂u

∂x
=

1

y
, ∂u

∂y
=

−x

y2
, and ∂u

∂z
= 0. Also ∂v

∂x
= 0, ∂v

∂y
=

−z

y2
, and ∂v

∂z
=

1

y
. Again, it is just a matter of using the chain rule

and plugging in:

x
∂w

∂x
+ y

∂w

∂y
+ z

∂w

∂z
= x

[
∂w

∂u

∂u

∂x
+

∂w

∂v

∂v

∂x

]
+ y

[
∂w

∂u

∂u

∂y
+

∂w

∂v

∂v

∂y

]
+ z

[
∂w

∂u

∂u

∂z
+

∂w

∂v

∂v

∂z

]

=
∂w

∂u

[
x

∂u

∂x
+ y

∂u

∂y
+ z

∂u

∂z

]
+

∂w

∂v

[
x

∂v

∂x
+ y

∂v

∂y
+ z

∂v

∂z

]

=
∂w

∂u

[
x

(
1

y

)
+ y

(−x

y2

)
+ 0

]
+

∂w

∂v

[
0 + y

(−z

y2

)
+ z

(
1

y

)]
= 0.

19. (a) f ◦ g = (3(s − 7t)5, e2s−14t) so

D(f ◦ g) =

[
15(s − 7t)4 −105(s − 7t)4

2e2s−14t −14e2x−14t

]
(b)

Df =
[

15x4

2e2x

]
=

[
15(s − 7t)4

2e2s−14t

]
and Dg =

[
1 −7

]
We can easily see thatDf Dg = D(f ◦ g).

20. (a) f ◦ g =
(
(s + t2 + u3)2, cos 3(s + t2 + u3), ln (s + t2 + u3)

)
so

D(f ◦ g) =

⎡
⎣ 2(s + t2 + u3) 4t(s + t2 + u3) 3u2(s + t2 + u3)
−3 sin 3(s + t2 + u3) −6t sin 3(s + t2 + u3) −9u2 sin 3(s + t2 + u3)

1
s+t2+u3

2t
s+t2+u3

3u2

s+t2+u3

⎤
⎦

(b)

Df =

⎡
⎣ −3 sin 3x

1/x
1/x + 3 sin 3x

⎤
⎦ =

⎡
⎣ −3 sin 3(s + t2 + u3)

1/(s + t2 + u3)
1/(s + t2 + u3) + 3 sin 3(s + t2 + u3)

⎤
⎦

and
Dg =

[
1 2t 3u2

]
,

so thatDfDg = D(f ◦ g).
21. (a) f ◦ g = (s + t)es−t so

D(f ◦ g) =
[
(s + t)es−t + es−t −(s + t)es−t + es−t

]
(b)

Df =
[
yex ex

]
=
[
(s + t)es−t es−t

]
and

Dg =

[
1 −1
1 1

]
,

so that
DfDg =

[
(s + t)es−t es−t

] [1 −1
1 1

]
= D(f ◦ g).
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22. (a) f ◦ g = (st)2 − 3(s + t2)2 = s2t2 − 3s2 − 6st2 − 3t4, so

D(f ◦ g) = [2st2 − 6s − 6t2 2s2t − 12st − 12t3].

(b) Df =
[

2x −6y
]

=
[

2st −6s − 6t2
]
, andDg =

[
t s
1 2t

]
, so

Df Dg =
[

2st −6s − 6t2
] [ t s

1 2t

]
= [2st2 − 6s − 6t2 2s2t − 12st − 12t3].

23. (a) f ◦ g =

(
(s/t)s2t − s2t

s/t
,
s/t

s2t
+ s6t3

)
=

(
s3 − st2, 1

st2
+ s6t3

)
, so

D(f ◦ g) =

[
3s2 − t2 −2st

−1/(s2t2) + 6s5t3 −2/(st3) + 3s6t2

]
(b)

Df =
[

y + y
x2 x − 1

x
1
y

−x
y2 + 3y2

]
=

[
s2t + s2t

s2/t2
s
t
− t

s
1

s2t

−s/t

s4t2
+ 3s4t2

]
=

[
s2t + t3 s2−t2

st
1

s2t
− 1

s3t3
+ 3s4t2

]

and Dg =

[
1
t

− s
t2

2st s2

]
so

DfDg =

[
s2t + t3 s2−t2

st
1

s2t
− 1

s3t3
+ 3s4t2

] [ 1
t

− s
t2

2st s2

]
=

[
3s2 − t2 −2st

−1
s2t2

+ 6s5t3 −2
st3

+ 3s6t2

]
.

24. (a) f ◦ g = ((t − 2)2(3t + 7) + (3t + 7)2t3, (t − 2)(3t + 7)t3, et3) so

D(f ◦ g) =

⎡
⎣ 45t4 + 168t3 + 156t2 − 10t − 16

15t4 + 4t3 − 42t2

3t2et3

⎤
⎦ .

(b)

D(f) =

⎡
⎣ 2xy x2 + 2yz y2

yz xz xy
0 0 ez

⎤
⎦

=

⎡
⎣ 2(t − 2)(3t + 7) (t − 2)2 + 2(3t + 7)t3 (3t + 7)2

(3t + 7)t3 (t − 2)t3 (t − 2)(3t + 7)

0 0 et3

⎤
⎦

and D(g) =

⎡
⎣ 1

3
3t2

⎤
⎦ so D(f)D(g) =

⎡
⎣ 45t4 + 168t3 + 156t2 − 10t − 16

15t4 + 4t3 − 42t2

3t2et3

⎤
⎦ .

25. (a) f ◦ g =
(
e2t sin t, et sin2 t, sin3 t + e3t,

)
so

D(f ◦ g) =

⎡
⎣ 2e2t sin t + e2t cos t

et sin2 t + 2et sin t cos t
3 sin2 t cos t + 3e3t

⎤
⎦

(b)

Df =

⎡
⎣ y2 2xy

2xy x2

3x2 3y2

⎤
⎦ =

⎡
⎣ e2t 2et sin t

2et sin t sin2 t
3 sin2 t 3e2t

⎤
⎦

and
Dg =

[
cos t
et

]
,
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so that

DfDg =

⎡
⎣ e2t 2et sin t

2et sin t sin2 t
3 sin2 t 3e2t

⎤
⎦ [cos t

et

]
= D(f ◦ g).

26. (a) f ◦ g =
(
(s + 2t + 3u)2 − stu, stu/(s + 2t + 3u), estu) so

D(f ◦ g) =

⎡
⎣2(s + 2t + 3u) − tu 4(s + 2t + 3u) − su 6(s + 2t + 3u) − st

tu(2t+3u)

(s+2t+3u)2
su(s+3u)

(s+2t+3u)2
st(s+2t)

(s+2t+3u)2

tuestu suestu stestu

⎤
⎦

(b)

Df =

⎡
⎣ 2x −1
−y/x2 1/x

0 ey

⎤
⎦ =

⎡
⎣ 2(s + 2t + 3u) −1
−stu/(s + 2t + 3u)2 1/(s + 2t + 3u)

0 estu

⎤
⎦

and

Dg =

[
1 2 3
tu su st

]
.

Again, we can see thatDfDg = D(f ◦ g).
27. (a) f ◦ g = (st+ tu+ su, s3t3 − estu

2

) so

D(f ◦ g) =

[
t + u s + u s + t

3s2t3 − tu2estu2 3s3t2 − su2estu
2 −2stuestu

2

]
.

(b)

Df =
[

1 1 1
3x2 −zeyz −yeyz

]
=

[
1 1 1

3s2t2 −suestu2 −tuestu2
]

and Dg =

⎡
⎣ t s 0

0 u t
u 0 s

⎤
⎦ so DfDg =

[
t + u s + u s + t

3s2t3 − tu2estu
2

3s3t2 − su2estu
2 −2stuestu

2

]
.

28. This is a matter of seeing what we have to determine and which formula to use. We calculate D(f ◦ g)(1,−1, 3) as
Df(g(1,−1, 3))D(g(1,−1, 3)). The second piece is given in the exercise. For the first we calculate

Df(g(1,−1, 3)) =

[
2y 2x
3 −1

]∣∣∣∣
g(1,−1,3)

=

[
2y 2x
3 −1

]∣∣∣∣
(2,5)

=

[
10 4
3 −1

]
.

Then we can multiply the matrices to get the result

D(f ◦ g)(1,−1, 3) =

[
10 4
3 −1

] [
1 −1 0
4 0 7

]
=

[
26 −10 28
−1 −3 −7

]
.

29. (a) This is similar to Exercise 28.

D(f ◦ g)(1, 2) = Df(g(1, 2))Dg(1, 2) = Df(3, 5)Dg(1, 2)

=

[
1 1
3 5

] [
2 3
5 7

]
=

[
7 10

31 44

]

(b)

D(g ◦ f)(4, 1) = Dg(f(4, 1))Df(4, 1) = Dg(1, 2)Df(4, 1)

=

[
2 3
5 7

] [ −1 2
1 3

]
=

[
1 13
2 31

]
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30. We’ll start with the right hand side of the equation because we can easily calculate the partials of x and y with respect to r and
θ. (

∂z

∂r

)2

+
1

r2

(
∂z

∂θ

)2

=

(
∂z

∂x

∂x

∂r
+

∂z

∂y

∂y

∂r

)2

+
1

r2

(
∂z

∂x

∂x

∂θ
+

∂z

∂y

∂y

∂θ

)2

=

(
∂z

∂x

)2
[(

∂x

∂r

)2

+
1

r2

(
∂x

∂θ

)2
]

+

(
∂z

∂y

)2
[(

∂y

∂r

)2

+
1

r2

(
∂y

∂θ

)2
]

+ 2
∂z

∂x

∂z

∂y

[
∂y

∂r

∂x

∂r
+

1

r2

∂x

∂θ

∂y

∂θ

]

=

(
∂z

∂x

)2 [
cos2 θ +

1

r2
(r2 sin2 θ)

]
+

(
∂z

∂y

)2 [
sin2 θ +

1

r2
(r2 cos2 θ)

]

+ 2
∂z

∂x

∂z

∂y

[
sin θ cos θ +

1

r2
(−r sin θ)(r cos θ)

]
=

(
∂z

∂x

)2

+

(
∂z

∂y

)2

31. (a) From formula (10) in Section 2.5, we have

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
and

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ

Hence if z = f(x, y), then

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
= cos θ

∂

∂r

(
∂z

∂x

)
− sin θ

r

∂

∂θ

(
∂z

∂x

)

= cos θ
∂

∂r

(
cos θ

∂z

∂r
− sin θ

r

∂z

∂θ

)
− sin θ

r

∂

∂θ

(
cos θ

∂z

∂r
− sin θ

r

∂z

∂θ

)
Now use the product rule:

∂2z

∂x2
= cos θ

(
cos θ

∂2z

∂r2
+

sin θ

r2

∂z

∂θ
− sin θ

r

∂2z

∂r∂θ

)

− sin θ

r

(
− sin θ

∂z

∂r
+ cos θ

∂2z

∂θ∂r
− cos θ

r

∂z

∂θ
− sin θ

r

∂2z

∂θ2

)

= cos2 θ
∂2z

∂r2
+

2 sin θ cos θ

r2

∂z

∂θ
− 2 sin θ cos θ

r

∂2z

∂r∂θ
+

sin2 θ

r

∂z

∂r
+

sin2 θ

r2

∂2z

∂θ2
.

Follow the same steps to calculate

∂2z

∂y2
=

∂

∂y

(
∂z

∂y

)
= sin θ

∂

∂r

(
∂z

∂y

)
+

cos θ

r

∂

∂θ

(
∂z

∂y

)

= sin θ
∂

∂r

(
sin θ

∂z

∂r
+

cos θ

r

∂z

∂θ

)
+

cos θ

r

∂

∂θ

(
sin θ

∂z

∂r
+

cos θ

r

∂z

∂θ

)

= sin2 θ
∂2z

∂r2
− 2 sin θ cos θ

r2

∂z

∂θ
+

2 sin θ cos θ

r

∂2z

∂θ∂r
+

cos2 θ

r

∂z

∂r
+

cos2 θ

r2

∂2z

∂θ2
.

(b) Adding the two equations above we easily see that

∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

32. Given Exercise 31, this is easy: We know ∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

∂

r2

∂2

∂θ2
. Since the z-coordinate means the same

thing in both Cartesian and cylindrical coordinates, the result follows.
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33. (a) The chain rule gives ∂w

∂ρ
=

∂w

∂r

∂r

∂ρ
+

∂w

∂θ

∂θ

∂ρ
+

∂w

∂z

∂z

∂ρ
for any appropriately differentiable function w. Now (6) of §1.7

gives z = ρ cos ϕ, r = ρ sin ϕ. Hence

∂w

∂ρ
= sin ϕ

∂w

∂r
+ 0 + cos ϕ

∂w

∂z
= sin ϕ

∂w

∂r
+ cos ϕ

∂w

∂z
.

Also
∂w

∂ϕ
= ρ cos ϕ

∂w

∂r
− ρ sin ϕ

∂w

∂z
from a similar chain rule computation.

From this, we have

ρ sin ϕ
∂w

∂ρ
+ cos ϕ

∂w

∂ϕ
=

(
ρ sin2 ϕ

∂w

∂r
+ ρ sin ϕ cos ϕ

∂w

∂z

)
+

(
ρ cos2 ϕ

∂w

∂r
− ρ cos ϕ sin ϕ

∂w

∂z

)

= ρ
∂w

∂r
.

Thus
∂w

∂r
= sin ϕ

∂w

∂ρ
+

cos ϕ

ρ

∂w

∂ϕ
or ∂

∂r
= sin ϕ

∂

∂ρ
+

cos ϕ

ρ

∂

∂ϕ
.

(Alternatively, consider formula (10) in this section with x = z, y = r, θ replaced by ϕ, and r replaced by ρ.)

(b) The cylindrical Laplacian is ∂2

∂r2
+

∂2

∂z2
+

1

r2

∂2

∂θ2
+

1

r

∂

∂r
. From z = ρ cos ϕ, r = ρ sin ϕ, we may treat z and r as if

they are Cartesian coordinates, so that

∂2

∂r2
+

∂2

∂z2
=

∂2

∂ρ2
+

1

ρ2

∂2

∂ϕ2
+

1

ρ

∂

∂ρ
(Cartesian/cylindrical)

Now we know ∂

∂r
from part (a). So, with r = ρ sin ϕ, we have

(
∂2

∂r2
+

∂2

∂z2

)
+

1

r2

∂2

∂θ2
+

1

r

∂

∂r
=

(
∂2

∂ρ2
+

1

ρ2

∂2

∂ϕ2
+

1

ρ

∂

∂ρ

)

+
1

ρ2 sin2 ϕ

∂2

∂θ2
+

1

ρ sin ϕ

(
sin ϕ

∂

∂ρ
+

cos ϕ

ρ

∂

∂ϕ

)

=
∂2

∂ρ2
+

1

ρ2

∂2

∂ϕ2
+

2

ρ

∂

∂ρ
+

1

ρ2 sin2 ϕ

∂2

∂θ2
+

cot ϕ

ρ2

∂

∂ϕ
as desired.

Exercises 34–36 puts the implicit differentiation techniques which the students learned in a previous course in the context of
the current discussion. This is one of those problems where it would be immediately clear if we were able to talk to each other. The
problem is explaining to you which derivative with respect to x is being considered. One solution is to introduce another variable.
You might want to use this as an example of why the author introduces the notation she does for Exercises 39–43. One other note
is that the results hold also for F (x, y) or F (x, y, z) being constant (not necessarily 0).

34. (a) View x and y as functions of t, where x = x(t) = t and y = y(t). Since F (x, y) = 0 we know that Ft(x, y) = 0. This
means that we know:

0 =
dF
dt

= Fx(x, y)
dx
dt

+ Fy(x, y)
dy
dt

.

But dx
dt

= 1 and dy
dt

=
dy
dx
so dy
dx

= −Fx(x, y)

Fy(x, y)
.

(b-i) If F (x, y) = x3 − y2 then Fx(x, y) = 3x2 and Fy(x, y) = −2y so dy
dx

= − 3x2

−2y
=

3x2

2y
.

(b-ii) y2 = x3 so y = x3/2 so dy
dx

=
3

2
x1/2. Multiply numerator and denominator by x3/2 to get the answer in

(b-ii) (b-i).
35. Here we’ll just use the formula from Exercise 34(a) where here F (x, y) = sin(xy) − x2y7 + ey .

dy
dx

= − y cos(xy) − 2xy7

x cos(xy) − 7x2y6 + ey
.
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The results of Exercise 36 are used in Exercises 41 and 43 in a nice way. None of them is very time consuming—it is worth
assigning all three.

36. (a) We have the same problem here with ambiguity about what is meant by the derivative with respect to x and y. Let
x = x(s, t) = s, y = y(s, t) = t, and z = z(s, t). Then

0 =
∂F

∂s
= Fx(x, y, z)

∂x

∂s
+ Fy(x, y, z)

∂y

∂s
+ Fz(x, y, z)

∂z

∂s
= Fx(x, y, z) + Fz(x, y, z)

∂z

∂x
.

Solving we get
∂z

∂x
= −Fx(x, y, z)

Fz(x, y, z)
.

An analogous calculation gives
∂z

∂y
= −Fy(x, y, z)

Fz(x, y, z)
.

(b-i) F (x, y, z) = xyz− 2 so by part (a):

∂z

∂x
= − yz

xy
= − z

x
and ∂z

∂y
= − xz

xy
= − z

y
.

(b-ii) z = 2/xy so
∂z

∂x
=

−2

x2y
and ∂z

∂y
=

−2

xy2
.

37. Use the equations from Exercise 36(a) for F (x, y, z) = x3z + y cos z + (sin y)/z = 0:

∂z

∂x
=

−3x2z

x3 − y sin z − (sin y)/z2
=

−3x2z3

x3z2 − yz2 sin z − sin y
and

∂z

∂y
=

− cos z − (cos y)/z

x3 − y sin z − (sin y)/z2
=

−z2 cos z − z cos y

x3z2 − yz2 sin z − sin y
.

Exercise 38 is a good example of why you can not just blindly apply formulas such as the chain rule without first checking that
all of the hypotheses are met.

38. (a) By definition

fx(0, 0) = lim
h→0

f(h, 0) − f(0, 0)

h
= lim

h→0

0

h
= 0, and

fy(0, 0) = lim
h→0

f(0, h) − f(0, 0)

h
= lim

h→0

0

h
= 0.

(b)

f ◦ x =

{ at

1 + a2
if t �= 0

0 if t = 0

therefore f ◦ x =
at

1 + a2
and soD(f ◦ x)(0) =

a

1 + a2
.

(c) By definition,D(f)(0, 0) = [fx(0, 0), fy(0, 0)]. We calculated these in part (a) to be 0 so

Df(0, 0)Dx(0) =
[

0 0
] [ 1

a

]
= 0.

The function f is not differentiable at the origin and so not all of the assumptions of the chain rule are met.

39. (a)
(

∂w

∂x

)
y,z

= 1,
(

∂w

∂y

)
x,z

= 7,
(

∂w

∂z

)
x,y

= −10,
(

∂w

∂x

)
y

= 1− 10(2x) = 1− 20x, and
(

∂w

∂y

)
x

= 7− 10(2y) =

7 − 20y.

(b)
(

∂w

∂x

)
y

=

(
∂w

∂x

)
y,z

(
∂x

∂x

)
+

(
∂w

∂y

)
x,z

(
∂y

∂x

)
+

(
∂w

∂z

)
x,y

(
∂z

∂x

)
. But ∂x

∂x
= 1 and ∂y

∂x
= 0 so

(
∂w

∂x

)
y

=(
∂w

∂x

)
y,z

+

(
∂w

∂z

)
x,y

(
∂z

∂x

)
.
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40.
(

∂w

∂x

)
y,z

= 3x2,

(
∂w

∂y

)
x,z

= 3y2,

(
∂w

∂z

)
x,y

= 3z2,

(
∂w

∂x

)
y

= 3x2 + 3z2(2) = 3x2 + 6(2x − 3y)2, and
(

∂w

∂y

)
x

=

3y2 + 3z2(−3) = 3y2 − 9(2x − 3y)2.

41.
(

∂s

∂z

)
x,y,w

= xw− 2z, so
(

∂s

∂z

)
x,w

=

(
∂s

∂z

)
x,y,w

+

(
∂s

∂y

)
x,z,w

(
∂y

∂z

)
x,w

.

To calculate
(

∂y

∂z

)
x,w

we can use the results of Exercise 36 with F (x, y, z, w) = xyw− y3z + xz:

(
∂y

∂z

)
x,w

= −Fz(x, y, z, w)

Fy(x, y, z, w)
= − −y3 + x

xw− 3y2z
.

So
(

∂s

∂z

)
x,w

= xw− 2z + (x2)

(
y3 − x

xw− 3y2

)
.

42. U = F (P, V, T ) and PV = kT.

(a)
(

∂U

∂T

)
P

=

(
∂U

∂T

)
P,V

+

(
∂U

∂V

)
P,T

(
∂V

∂T

)
= FT (P, V, T ) + FV (P, V, T )

(
k

P

)
.

(b)
(

∂U

∂T

)
V

=

(
∂U

∂T

)
P,V

+

(
∂U

∂P

)
V,T

(
∂P

∂T

)
= FT (P, V, T ) + FP (P, V, T )

(
k

V

)
.

(c)
(

∂U

∂P

)
V

=

(
∂U

∂P

)
V,T

+

(
∂U

∂T

)
P,V

(
∂T

∂P

)
= FP (P, V, T ) + FT (P, V, T )

(
V

k

)
.

43.
(

∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

=

(
−Fy(x, y, z)

Fx(x, y, z)

)(
−Fz(x, y, z)

Fy(x, y, z)

)(
−Fx(x, y, z)

Fz(x, y, z)

)
= −1.

44. In this case P = kT/V so (∂P/∂T )V = k/V . Similarly, V = kT/P so (∂V/∂P )T = −kT/P 2 and T = PV/k so
(∂T/∂V )P = P/k. So

(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

=

(
k

V

)(−kt

P 2

)(
P

k

)
=

−kTP
V P 2

=
−kT
VP

= −1.

The last equality holds since PV = kT.
45. It is easiest to use implicit differentiation and solve. For example, for the equation ax2 + by2 + cz2 − d = 0, hold z constant

and take the derivative with respect to y. You get 2ax(∂x/∂y)z +2by = 0. Solve this and get (∂x/∂y)z = −by/ax. Similarly
we get that (∂y/∂z)x = −cz/by and (∂z/∂x)y = −ax/cz. So

(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

=

(−by
ax

)(−cz
by

)(−ax
cz

)
= −1.

2.6 Directional Derivatives and the Gradient

1. (a) ∇f(x, y, z) · (−k) is the directional derivative of f(x, y, z) in the direction −k (i.e., the negative z direction).
(b) ∇f(x, y, z) · (−k) =

(
∂f
∂x

, ∂f
∂y

, ∂f
∂z

)
· (0, 0,−1) = − ∂f

∂z
.

In Exercises 2–8, the students should notice that the given vector u is not always a unit vector and that they may have to
normalize it first.
2. ∇f(x, y) = (ey cos x, ey sin x) so∇f(π/3, 0) = (1/2,

√
3/2).

Duf(π/3, 0) = ∇f(π/3, 0) · (3,−1)/
√

10 =
3 −√

3

2
√

10
.

3. ∇f(x, y) = (2x − 6x2y,−2x3 + 6y2), so∇f(2,−1) = (28,−10) and

Duf(2,−1) = (28,−10) · (1, 2)√
5

=
8√
5
.
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4. As noted above, here we have to normalize u soDu(f(a)) = ∇f(a) · u
‖u‖ .

∇f(x, y) =

( −2x

(x2 + y2)2
,

−2y

(x2 + y2)2

)
so∇f(3,−2) = (1/169)(−6, 4) and

Duf(a) =

( −6

169
,

4

169

)
· (1,−1)√

2
=

−10

169
√

2
.

5. ∇f(x, y) = (ex − 2x, 0) so∇f(1, 2) = (e − 2, 0) and

Duf(a) = (e − 2, 0) · (2, 1)√
5

=
2e − 4√

5
.

6. ∇f(x, y, z) = (yz, xz, xy) so∇f(−1, 0, 2) = (0,−2, 0) and

Duf(a) = (0,−2, 0) · (−1, 0, 2)√
5

= 0.

7. ∇f(x, y, z) = −e−(x2+y2+z2)(2x, 2y, 2z) so∇f(1, 2, 3) = −e−14(2, 4, 6) and

Duf(a) = −e−14(2, 4, 6) · (1, 1, 1)√
3

= −4
√

3e−14.

8. ∇f(x, y, z) =
(

ey

3z2+1
, xey

3z2+1
, −6xeyz

(3z2+1)2

)
so∇f(2,−1, 0) = (e−1, 2e−1, 0) and

Duf(a) = (e−1, 2e−1, 0) · (1,−2, 3)√
14

=
−3

e
√

14
.

9. (a)

fx(0, 0) = lim
h→0

f(h, 0) − f(0, 0)

h
= lim

h→0

0 − 0

h
= 0.

fy(0, 0) = lim
h→0

f(0, h) − f(0, 0)

h
= lim

h→0

0 − 0

h
= 0.

(b)

D(u,v)f(0, 0) = lim
h→0

f(hu, hv) − 0

h
= lim

h→0

hu|hv|
h
√

h2u2 + h2v2

But (u, v) is a unit vector so this

= lim
h→0

hu|h||v|
h|h|(1)

= u|v|

for all unit vectors (u, v).
(c) The graph is shown below.
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0
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-1
-0.5
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0
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10. (a)

fx(0, 0) = lim
h→0

f(h, 0) − f(0, 0)

h
= lim

h→0

0 − 0

h
= 0.

fy(0, 0) = lim
h→0

f(0, h) − f(0, 0)

h
= lim

h→0

0 − 0

h
= 0.
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(b)

D(u,v)f(0, 0) = lim
h→0

f(hu, hv) − 0

h
= lim

h→0

(hu)(hv)
h
√

h2u2 + h2v2

But (u, v) is a unit vector so this

= lim
h→0

h2uv
h|h| = uv(sgn(h))

for all unit vectors (u, v) where sgn(h) is 1 for h ≥ 0 and −1 for h < 0. Unless u or v are zero, this limit doesn’t exist.
(c) The graph is shown below.
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11. The gradient direction for the function h is∇h = (−6xy2,−6x2y).
(a) Head in the direction ∇h(1,−2) = (−24, 12). If you prefer your directions given by a unit vector, we normalize to

obtain:
∇h(1,−2)

‖∇h(1,−2)‖ =
(−24, 12)√
242 + 122

=
(−2, 1)√

5
.

(b) Head in a direction orthogonal to your answer for part (a): ± (1,2)√
5
.

12. fx(3, 7) = 3 and fy(3, 7) = −2 so the gradient is∇f(3, 7) = (3,−2).
(a) To warm up we head in the direction of the gradient; this is the unit vector (3,−2)/

√
13.

(b) To cool off we head in the opposite direction; this is the unit vector (−3, 2)/
√

13.
(c) To maintain temperature we head in a direction orthogonal to the gradient, namely ±(2, 3)/

√
13.

13. We begin by heading east and keep heading towards lower levels while intersecting each level curve orthogonally. See the
solution given in the text.

14. We’re looking at the top half of this ellipsoid. The equation is f(x, y) = z =
√

4 − x2 − y2/4. For the path of steepest
descent, we look at the negative gradient

−∇f(x, y) = (1/2)(4 − x2 − y2/4)−1/2(2x, y/2).

This means that
dy
dx

=
y/2

2x
=

y

4x
.

This is the separable differential equation (4/y) dy = (1/x) dx or 4 ln y = ln x + c. Work the usual magic and get y4 = kx.
So the raindrops will follow curves of that form where z is constrained by the surface of the ellipsoid.

15. We want to head in the direction of the negative gradient. Since M(x, y) = 3x2 + y2 + 5000, the negative gradient is
−∇M(x, y) = (−6x,−2y). This means that

dy
dx

=
−2y

−6x
=

y

3x
.

This is the separable differential equation (3/y) dy = (1/x) dx or 3 ln y = ln x + c. Work the usual magic and get y3 = kx.
Substitute in the point (8, 6) to solve for k to end up with the path y3 = 27x.

For Exercises 16–22 we can use equations (5) and (6) from Section 2.6 in the text.

16. f(x, y, z) = x3 + y3 + z3 = 7 so ∇f(x, y, z) = (3x2, 3y2, 3z2) and ∇f(0,−1, 2) = (0, 3, 12). So the equation of the
tangent plane is:

0 = (0, 3, 12) · (x − 0, y + 1, z − 2) or y + 4z = 7.
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17. f(x, y, z) = zey cos x = 1 so ∇f(x, y, z) = (−zey sin x, zey cos x, ey cos x) and ∇f(π, 0,−1) = (0, 1,−1). So the
equation of the tangent plane is:

0 = (0, 1,−1) · (x − π, y, z + 1) or y − z = 1.

18. f(x, y, z) = 2xz + yz − x2y + 10 = 0 so ∇f(x, y, z) = (2x − 2xy, z − x2, 2x + y) and ∇f(1,−5, 5) = (20, 4,−3). So
the equation of the tangent plane is:

0 = (20, 4,−3) · (x − 1, y + 5, z − 5) or 20x + 4y − 3z = −15.

19. f(x, y, z) = 2xy2 − 2z2 + xyz so ∇f(x, y, z) = (2y2 + yz, 4xy+ xz, xy− 4z) and ∇f(2,−3, 3) = (9,−18,−18). So the
equation of the tangent plane is:

0 = (9,−18,−18) · (x − 2, y + 3, z − 3) or x − 2y − 2z = 2.

20. (a) First we use the formula (4) from Section 2.3 in the text: z = f(a, b)+fx(a, b)(x−a)+fy(a, b)(y−b). If x2−2y2+5xz =

7 then z = 7+2y2−x2

5x
= f(x, y). Calculate the two partial derivatives:

fx(x, y) =
−7 − 2y2 − x2

5x2
so fx(−1, 0) =

−8

5

and fy(x, y) =
4y

5x
so fy(−1, 0) = 0.

At (−1, 0,−6/5) formula (4) gives the equation of the tangent plane as

z =
−6

5
+

−8

5
(x + 1).

(b) Now we’ll use formula (6) from this section and calculate the gradient of f(x, y, z) = x2 − 2y2 + 5xz as∇f(x, y, z) =
(2x + 5z,−4y, 5x) so∇f(−1, 0,−6/5) = (−8, 0,−5) and so the equation for the plane is

0 = (−8, 0,−5) · (x + 1, y, z + 6/5) or − 8x − 5z = 14.

This agrees with the answer we found in part (a).
21. (a) First we use the formula (4) from Section 2.3 in the text: x = f(a, b)+fy(a, b)(y−a)+fz(a, b)(z−b). If x sin y+xz2 =

2eyz then x = 2eyz

sin y+z2 = f(y, z). Calculate the two partial derivatives:

fy(y, z) = 2eyz
z sin y + z3 − cos z

(sin y + z2)2
so fy(π/2, 0) = 0

and fz(y, z) = 2eyz
y sin y + yz2 − 2z

(sin y + z2)2
so fz(π/2, 0) = π.

At (2, π/2, 0) formula (4) gives the equation of the tangent plane as

x = 2 + πz.

(b) Nowwe’ll use formula (6) from this section and calculate the gradient of f(x, y, z) = x sin y+xz2−2eyz as∇f(x, y, z) =
(sin y + z2,−x cos y − 2zeyz, 2xz− 2yeyz) so∇f(2, π/2, 0) = (1, 0,−π) and so the equation for the plane is

0 = (1, 0,−π) · (x − 2, y − π/2, z) or x − 2 − πz = 0.

This agrees with the answer we found in part (a).
22. Using formula (6) we get that the gradient of f(x, y, z) = x3−2y2+z2 at (x0, y0, z0) is∇f(x0, y0, z0) = (3x2

0,−4y0, 2z0).
For this to be perpendicular to the given line, (3x2

0,−4y0, 2z0) = k(3, 2,−√
2). This means that x2

0 = −2y0 and z0 =
−(

√
2/2)x2

0. Substituting this back into the equation of the surface, we get that x3
0 − 2x4

0/4 + x4
0/2 = 27 or x0 = 3. Our

point is, therefore (3,−9/2,−9
√

2/2).
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23. The tangent plane to the surface at a point (x0, y0, z0) is

0 = 18x0(x − x0) − 90y0(y − y0) + 10z0(z − z0).

For this to be parallel to x + 5y − 2z = 7, the vector

(18x0,−90y0, 10z0) = k(1, 5,−2).

This means that y0 = −x0 and z0 = (−18/5)x0. Substitute these back into the equation of the hyperboloid: 9x2 − 45y2 +
5z2 = 45 to get:

45 = 9x2
0 − 45x2

0 + 5(182/52)x2
0 therefore x0 = ±5/4.

This means that the points are (5/4,−5/4,−9/2) and (−5/4, 5/4, 9/2).
24. First note that (2, 1,−1) lies on both surfaces: 7 · 22 − 12 · 2− 5 · 1 = −1, 2 · 1(−1)2 = 2. The normal to the first surface at

(2, 1,−1) is given by (fx(2, 1), fy(2, 1),−1)where f(x, y) = 7x2−12x−5y2. This is ((14x−12)|(2,1),−10y|(2,1),−1) =
(16,−10,−1). The normal to the second surface at (2, 1,−1) is∇F (2, 1,−1) where F (x, y, z) = xyz2. This is
(yz2, xz2, 2xyz)|(2,1,−1) = (1, 2,−4). We have

(16,−10,−1) · (1, 2,−4) = 16 − 20 + 4 = 0.

Since the normals are orthogonal, the tangent planes must be so as well.
25. The two surfaces are tangent at (x0, y0, z0) ⇔ the tangent planes at (x0, y0, z0) are the same⇔ normal vectors at (x0, y0, z0)

are parallel (since the surfaces intersect at (x0, y0, z0)) ⇔ ∇F (x0, y0, z0) ×∇G(x0, y0, z0) = 0.
26. (a) S is the level set at height 0 of f(x, y, z) = x2 + 4y2 − z2 so∇f = (2x, 8y,−2z) ⇒

∇f(3,−2,−5) = (6,−16, 10). Thus formula (6) gives the equation of the tangent plane as 6(x − 3) − 16(y + 2) +
10(z + 5) = 0 or 3x − 8y + 5z = 0.

(b) ∇f(0, 0, 0) = (0, 0, 0) so formula (6) cannot be used. Note that there’s no tangent plane at the origin, which is the vertex
of the cone (i.e., the surface is not “locally flat” there).

27. (a) For f(x, y, z) = x3 − x2y2 + z2,∇f(x, y, z) = (3x2 − 2xy2,−2x2y, 2z) so ∇f(2,−3/2, 1) = (3, 12, 2). Thus the
equation of the tangent plane is

3(x − 2) + 12(y + 3/2) + 2(z − 1) = 0 or 3x + 12y + 2z + 10 = 0.

(b) ∇f(0, 0, 0) = (0, 0, 0) so the gradient cannot be used as a normal vector. If we solve z = ±
√

y2x2 − x3 =

±x
√

y2 − x, we see that g(x, y) = x
√

y2 − x fails to be differentiable at (0, 0)—so there is no tangent plane there.

28. (a) 2x + 2y
dy
dx

= 0 so

dy
dx

∣∣∣∣
(−√

2,
√

2)

=
−x

y

∣∣∣∣
(−√

2,
√

2)

=
−√

2

−√
2

= 1.

The equation of the line is y −√
2 = x +

√
2.

(b) The equation of the tangent line is 0 = ∇f(x0, y0)·(x−x0, y−y0). Here f(x, y) = x2+y2 = 4 so∇f(x, y) = (2x, 2y)
or∇f(−√

2,
√

2) = (−2
√

2, 2
√

2). The equation of the tangent line is

0 = (−2
√

2, 2
√

2) · (x +
√

2, y −
√

2) or x − y = −2
√

2.

29. (a) 3y2 dy
dx

= 2x + 3x2 so dy
dx

∣∣∣∣
(1, 3√2)

=
5

(3)22/3
. The equation of the tangent line is

y − 3
√

2 =
5

(3)22/3
(x − 1).

(b) f(x, y) = y3 − x2 − x3 so∇f(x, y) = (−2x− 3x2, 3y2) so∇f(1, 3
√

2) = (−5, (3)22/3). The equation of the tangent
line is

0 = (−5, (3)22/3) · (x − 1, y − 3
√

2) or − 5x + (3)22/3y = 1.

30. (a) 5x4 + 2y + 2x
dy
dx

+ 3y2 dy
dx

= 0 so dy
dx

∣∣∣∣
(2,−2)

=
−76

16
=

−19

4
. The equation of the tangent line is

y + 2 =
−19

4
(x − 2).
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(b) f(x, y) = y3 − x2 − x3 so ∇f(x, y) = (5x4 + 2y, 2x + 3y2) so ∇f(2,−2) = (76, 16). The equation of the tangent
line is

0 = (76, 16) · (x − 2, y + 2) or 19x + 4y = 30.

31. If f(x, y) = x2 − y2 then∇f(5,−4) = (10, 8) so the equations of the normal line are

x(t) = 10t + 5 and y(t) = 8t − 4 or 8x − 10y = 80.

32. If f(x, y) = x2 − x3 − y2 then∇f(−1,
√

2) = (5, 2
√

2) so the equations of the normal line are

x(t) = 5t − 1 and y(t) = 2
√

2t −
√

2 or 2
√

2x − 5y = −7
√

2.

33. If f(x, y) = x3 − 2xy+ y5 then∇f(2,−1) = (14, 1) so the equations of the normal line are

x(t) = 14t + 2 and y(t) = t − 1 or x − 14y = 16.

34. If f(x, y, z) = x3z + x2y2 + sin(yz) then

∇f(x, y, z) = (3x2 + 2xy2, 2x2y + z cos(yz), x3 + y cos(yz)).

(a) The plane is given by 0 = ∇f(−1, 0, 3) · (x + 1, y, z − 3) = 9(x + 1) + 3y − (z − 3) or 9x + 3y − z = −12.
(b) The normal line to the surface at (−1, 0, 3) is given by⎧⎨

⎩
x = 9t − 1
y = 3t
z = −t + 3.

35. Using the method above for f(x, y, z) = exy + ezx − 2eyz, we find that ∇f = (yexy + zexz, xexy − 2zeyz, xexz − 2yeyz) so
∇f(−1,−1,−1) = e(−2, 1, 1). So⎧⎨

⎩
x = −2et− 1
y = et− 1
z = et− 1

or, factoring out e,

⎧⎨
⎩

x = −2t − 1
y = t − 1
z = t − 1.

36. Remember in the equation of a plane 0 = v · (x − x0, y − y0, z − z0) that v is a vector orthogonal to the plane. We saw in
this section that we can use ∇f(x0, y0, z0) for v. This means that the equation of the line normal to a surface given by the
equation F (x, y, z) = 0 at a given point (x0, y0, z0) is

(x, y, z) = ∇F (x0, y0, z0)t + (x0, y0, z0).

37. The hypersurface is the level set at height −1 of the function f(x1, . . . , x5) = sin x1 + cos x2 + sin x3 + cos x4 + sin x5.

We find∇f

(
π, π,

3π

2
, 2π, 2π

)
= (−1, 0, 0, 0, 1). Hence the tangent hyperplane has equation

−1(x1 − π) + 1(x5 − 2π) = 0 or x5 − x1 = π.

38. The surface is the level set at height n(n + 1)

2
of the function f(x1, . . . , xn) = x2

1 + 2x2
2 + · · · + nx2

n. We have ∇f =

(2x1, 4x2, 6x3, . . . , 2nxn) ⇒ ∇f(−1, . . . ,−1) = −2(1, 2, 3, . . . , n). An equation for the tangent hyperplane is thus

1(x1 + 1) + 2(x2 + 1) + 3(x3 + 1) + · · · + n(xn + 1) = 0

or
x1 + 2x2 + 3x3 + · · · + nxn +

n(n + 1)

2
= 0

39. Here f(x1, x2, . . . , xn) = x2
1 + x2

2 + · · · + x2
n so∇f(x1, x2, . . . , xn) = (2x1, 2x2, . . . , 2xn). Using the techniques of this

section, the tangent hyperplane to the (n − 1)-dimensional sphere f(x1, x2, . . . , xn) = 1 at (1/
√

n, 1/
√

n, . . . , 1/
√

n,
−1/

√
n) is

0 = ∇f(1/
√

n, . . . , 1/
√

n,−1/
√

n) · (x1 − 1/
√

n, x2 − 1/
√

n, . . . , xn−1 − 1/
√

n, xn + 1/
√

n)

=
2√
n

(
x1 − 1√

n

)
+

2√
n

(
x2 − 1√

n

)
+ · · · + 2√

n

(
xn−1 − 1√

n

)
+

−2√
n

(
xn +

1√
n

)
or

0 = (x1 − 1/
√

n) + (x2 − 1/
√

n) + · · · + (xn−1 − 1/
√

n) − (xn + 1/
√

n) so
√

n = x1 + x2 + · · · + xn−1 − xn.
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40. F (x, y, z) = z2y3 + x2y = 2.
(a) We can write z = f(x, y) when Fz �= 0. Fz(x, y, z) = 2zy3 is not 0 when both z �= 0 and y �= 0.
(b) We can write x = f(y, z) when Fx �= 0. Fx(x, y, z) = 2xy is not 0 when both x �= 0 and y �= 0.
(c) We can write y = f(x, z) when Fy �= 0. Fy(x, y, z) = 3z2y2 + x2 is not 0 everywhere but on the y- or z-axis (i.e.,

except when x = 0 at the same time that either y = 0 or z = 0).

41. (a) ∂F

∂z
= xexz. This is non-zero whenever x �= 0. There we can solve for z to get

z =
ln(1 − sin xy− x3y)

x
.

(b) Looking only at points in S we only need to stay away from points in yz-plane (i.e., where x = 0).
(c) You shouldn’t then make the leap from your answer to part (b) that you can graph z =

ln(1 − sin xy− x3y)

x
for any values of x and y just so x �= 0. Your other restriction is that 1− sin xy− x3y > 0 as it is

the argument of the natural logarithm. A sketch that gives you an idea of the surface is:
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Now the actual surface S includes the plane x = 0 since x = 0 satisfies the original equation: sin xy+ exz + x3y = 1. S
will actually look a bit like:
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42. The point of this problem is that since F (x, y) = c defines a curve C in R2 such that either fx(x0, y0) �= 0 or fy(x0, y0) �= 0
then by the implicit function theorem we can represent the curve near (x0, y0) as either the graph of a function x = g(y) or a
function y = g(x).

Exercise 43 poses a bit of a puzzle. Here we can write the equation of C as y = f(x) even though Fy is zero at the origin.
Why doesn’t this contradict the implicit function theorem? What “goes bad” in Exercise 43 is that we have a corner at the origin.
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You may also want to assign the students the same problem for the function F (x, y) = x − y3.

43. (a) F (0, 0) = 0 so the origin lies on the curve C. Fy(x, y) = 3y2 and so Fy(0, 0) = 0.
(b) We can write C as the graph of y = x2/3. The graph of C is

-1 -0.5 0.5 1
x

0.2

0.4

0.6

0.8

1

y

(c) So here we are with Fy(0, 0) = 0 but we can express the graph of C everywhere as y = x2/3. On second look we see
that C is not a C1 function—it has a corner at the origin—and so the implicit function theorem doesn’t apply.

44. (a) F (x, y) = xy+ 1 so Fy(x, y) = x and so we cannot solve F (x, y) = c for y when x = 0 or when c = 0(y) + 1 = 1. In
other words, level sets are unions of smooth curves in R2 except for c = 1.

(b) Here the function is F (x, y, z) = xyz + 1. Using a similar argument to that in part (a), Fz(x, y, z) = xy and this is only
0 when xy = 0. This means that we cannot solve F (x, y, z) = c for z when xy = 0 or when c = z(0) + 1 = 1. So level
sets of this family are unions of smooth surfaces in R3 except for level c = 1.

45. (a) G(−1, 1, 1) = F (−1 − 2 + 1,−1 − 1 + 3) = F (−2, 1) = 0.
(b) To invoke the implicit function theorem, we need to show that Gz(−1, 1, 1) �= 0.

Gz(−1, 1, 1) = Fu(−2, 1)
∂(x3 − 2y2 + z5)

∂z

∣∣∣∣
(−1,1,1)

+ Fv(−2, 1)
∂(xy− x2z + 3)

∂z

∣∣∣∣
(−1,1,1)

= (7)(5) + (5)(1) = 40 �= 0.

46. Let F1 = x2y2 − x1 cos y1 = 5 and F2 = x2 sin y1 + x1y2 = 2. Solving for y in terms of x means that we have to look at
the determinant

det

⎡
⎢⎢⎣

∂F1

∂y1

∂F1

∂y2

∂F2

∂y1

∂F2

∂y2

⎤
⎥⎥⎦ = det

[
x1 sin y1 x2

x2 cos y1 x1

]
= x2

1 sin y1 + x2
2 cos y1.

To see that you can solve for y1 and y2 in terms of x1 and x2 near (x1, x2, y1, y2) = (2, 3, π, 1), evaluate the determinant at
that point. We get −9. This is not 0 so you can, at least in theory, solve for the y’s in terms of the x’s.
To see that you can solve for y1 and y2 as functions of x1 and x2 near (x1, x2, y1, y2) = (0, 2, π/2, 5/2), evaluate the
determinant at that point. We get 0. We can not solve for the y’s in terms of the x’s.

47. (a) Let F1 = x2
1y

2
2 − 2x2y3 = 1, F2 = x1y

5
1 + x2y2 − 4y2y3 = −9, and F3 = x2y1 + 3x1y

2
3 = 12. Solving for y’s in

terms of x’s means that we have to look at the determinant

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂F1

∂y1

∂F1

∂y2

∂F1

∂y3

∂F2

∂y1

∂F2

∂y2

∂F2

∂y3

∂F3

∂y1

∂F3

∂y2

∂F3

∂y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡
⎢⎣ 0 2x2

1y2 −2x2

5x1y
4
1 x2 − 4y3 −4y2

x2 0 6x1y3

⎤
⎥⎦

= −60x4
1y

4
1y2y3 − 8x2

1x2y
2
2 + 2x3

2 − 8x2
2y3.

Evaluating this at the point (x1, x2, y1, y2, y3) = (1, 0,−1, 1, 2) results in −120 �= 0. This means that we can solve for
y1, y2, and y3 in terms of x1 and x2.
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(b) Take the partials of the three equations with respect to x1 to get⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y2
2 + 2x1y2

∂y2

∂x1
− 2x2

∂y3

∂x1
= 0

y5
1 + 5x1y

4
1

∂y1

∂x1
+ x2

∂y2

∂x1
− 4y3

∂y2

∂x1
− 4y2

∂y3

∂x1
= 0

x2
∂y1

∂x1
+ 3y2

3 + 6x1y3
∂y3

∂x1
= 0.

At the point (1, 0,−1, 1, 2) this system of equations becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 + 2
∂y2

∂x1
= 0

−1 + 5
∂y1

∂x1
− 8

∂y2

∂x1
− 4

∂y3

∂x1
= 0

12 + 12
∂y3

∂x1
= 0.

Solving, we find that
∂y1

∂x1
=

−7

5
,
∂y2

∂x1
= −1

2
, and ∂y3

∂x1
= −1.

48. (a) We need to consider where the following determinant is non-zero.∣∣∣∣∣∣∣
∂F1/∂r ∂F1/∂θ ∂F1/∂z

∂F2/∂r ∂F2/∂θ ∂F2/∂z

∂F3/∂r ∂F3/∂θ ∂F3/∂z

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣ = r cos2 θ + r sin2 θ = r.

In other words, for any points for which r �= 0.
(b) This makes complete sense. When the radius is 0 then r and z completely determine the point. You get no extra infor-

mation from the θ component. Without the z coordinate, this is the standard problem when using polar coordinates in the
plane.

49. (a) As with Exercise 48, we need to consider where the same determinant is non-zero. In this case the determinant is∣∣∣∣∣∣∣
sin ϕ cos θ ρ cos ϕ cos θ −ρ sin ϕ sin θ

sin ϕ sin θ ρ cos ϕ sin θ ρ sin ϕ cos θ

cos ϕ −ρ sin ϕ 0

∣∣∣∣∣∣∣ = ρ2 sin ϕ cos2 ϕ + ρ2 sin3 ϕ = ρ2 sin ϕ.

In other words, for any points for which ρ �= 0 and for which sin ϕ �= 0.
(b) Again, this makes complete sense. When the radius is 0, then ρ completely determines the point as being the origin. When

sin ϕ = 0 you are on the z-axis so θ no longer contributes any information.

2.7 Newton’s Method

1. We begin by defining the function f(x, y) = (y2ex − 3, 2yex + 10y4). Then we have

Df(x, y) =

[
y2ex 2yex

2yex 2ex + 40y3

]
.

The inverse of this matrix is

[Df(x, y)]−1 =

⎡
⎢⎢⎣

2ex + 40y3

40y5ex − 2y2e2x

1

yex − 20y4

1

yex − 20y4

1

40y3 − 2ex

⎤
⎥⎥⎦ .

Hence the iteration expression
xk = xk−1 − [Df(xk−1)]

−1
f(xk−1)
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becomes (after some simplification usingMathematica)

xk =
xk−1y

2
k−1e

xk−1 − y2
k−1e

xk−1 + 10y5
k−1 − 60e−xk−1y3

k−1 − 20xk−1y
5
k−1 − 3

y2
k−1e

xk−1 − 20y5
k−1

yk =
y2

k−1e
xk−1 − 15y5

k−1 + 3

yk−1exk−1 − 20y4
k−1

.

Using initial vector (x0, y0) = (1,−1) and iterating the formulas above we obtain the following results:
k xk yk

0 1 −1
1 1.279707977 −0.911965173
2 1.302659547 −0.902966291
3 1.302942519 −0.902880458
4 1.302942538 −0.902880451
5 1.302942538 −0.902880451

Since the result appears to be stable to nine decimal places, we conclude that the approximate solution is (1.302942538,
−0.902880451).

2. (a) We obtain the following graph for the ellipses:

-2 -1 1 2 x
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y

From this graph, we can estimate an intersection point in the first quadrant to be near to the point (1, 1).
(b) If (X, Y ) is an intersection point, then we must have{

3X2 + Y 2 = 7
X2 + 4Y 2 = 8

.

Because only even exponents appear, we also conclude that{
3(±X)2 + (±Y )2 = 7
(±X)2 + 4(±Y )2 = 8

.

Hence if (X, Y ) is an intersection point, then so are (−X, Y ), (X,−Y ), and (−X,−Y ).
(c) Using the function f(x, y) = (3x2 + y2 − 7, x2 + 4y2 − 8), we have

Df(x, y) =

[
6x 2y
2x 8y

]
=⇒ [Df(x, y)]−1 =

⎡
⎢⎢⎣

2

11x
− 1

22x

− 1

22x

3

22y

⎤
⎥⎥⎦ .

Hence the iteration expression in formula (6) becomes

xk =
11x2

k−1 + 20

22xk−1
, yk =

11y2
k−1 + 17

22yk−1
.
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Using initial vector (x0, y0) = (1, 1) and iterating the formulas above we obtain the following results:

k xk yk

0 1 1
1 1.409090909 1.272727273
2 1.349706745 1.243506494
3 1.348400358 1.243163168
4 1.348399725 1.243163121
5 1.348399725 1.243163121

This result appears to be stable to nine decimal places, so we conclude that the intersection point in the first quadrant is
approximately (1.348399725, 1.243163121). In view of part (b), the other intersection points must be (approximately)
(−1.348399725, 1.243163121), (1.348399725,−1.243163121), and (−1.348399725,−1.243163121).

(d) From the equation 3x2 + y2 = 7, we must have y2 = 7− 3x2. Substituting for y2 in the equation x2 + 4y2 = 8, we find
that

x2 + 4(7 − 3x2) = 8 ⇐⇒ 11x2 = 20 ⇐⇒ x = ±
√

20

11
≈ ±1.348399725

and

y = ±
√

17

11
≈ ±1.243163121.

3. (a) The graphs of the curves are as follows:
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From the graph, we estimate one intersection point near (1, 1/2), and a second near (−1/2,−3/4).
(b) Using the function f(x, y) = (x3 − 4y3 − 1, x2 + 4y2 − 2), we have

Df(x, y) =

[
3x2 −12y2

2x 8y

]
=⇒ [Df(x, y)]−1 =

⎡
⎢⎢⎣

1

3x2 + 3xy

y

2x2 + 2xy

− 1

12xy + 12y2

x

8xy + 8y2

⎤
⎥⎥⎦ .

Then the iteration expression in formula (6) becomes

xk =
4x3

k−1 + 3x2
k−1yk−1 − 4y3

k−1 + 6yk−1 + 2

6xk−1(xk−1 + yk−1)

yk =
−x3

k−1 + 12xk−1y
2
k−1 + 16y3

k−1 + 6xk−1 − 2

24yk−1(xk−1 + yk−1)
.

Using initial vector (x0, y0) = (1, 0.5) and iterating the formulas above we obtain the following results:

k xk yk

0 1 0.5
1 1.111111111 0.444444444
2 1.103968254 0.441964286
3 1.103931712 0.441965716
4 1.103931711 0.441965716
5 1.103931711 0.441965716

c© 2012 Pearson Education, Inc.



Section 2.7. Newton’s Method 135

The data imply that to nine decimal places there is an intersection point at (1.103931711, 0.441965716). Using initial
vector (x0, y0) = (−0.5,−0.75) and iterating, we find

k xk yk

0 −0.5 −0.75
1 −0.5 −0.666666667
2 −0.518518519 −0.657986111
3 −0.518214436 −0.65792361
4 −0.518214315 −0.657923613
5 −0.518214315 −0.657923613

Thus it appears that to nine decimal places there is an second intersection point at (−0.518214315,−0.657923613).
4. Let L denote limk→∞ xk. Then limk→∞ xk−1 = L and taking limits in (6), we have

L = L− [Df(L)]−1f(L).

Hence [Df(L)]−1f(L) = 0. Now multiply by Df(L) on the left to obtain Df(L)([Df(L)]−1f(L))Df(L)0 = 0 ⇔ Inf(L) =
0⇔ f(L) = 0.

5. (a)
k xk yk
0 −1 1
1 −1.3 1.7
2 −1.2653846 1.55588235
3 −1.2649112 1.54920772
4 −1.2649111 1.54919334
5 −1.2649111 1.54919334

This table suggests that xk → (−1.2649111, 1.54919334) ≈ (−
√

8/5,
√

12/5).
(b)

k xk yk
0 1 −1
1 1.3 −1.7
2 1.26538462 −1.558824
3 1.2649115 −1.5492077
4 1.26491106 −1.5491933
5 1.26491106 −1.5491933

Here xk → (
√

8/5,−
√

12/5) it seems.

k xk yk
0 −1 −1
1 −1.3 −1.7
2 −1.2653846 −1.555824
3 −1.2649112 −1.5492077
4 −1.2649111 −1.5491933
5 −1.2649111 −1.5491933

Here xk → (−
√

8/5,−
√

12/5).
(c) The results don’t seem too strange; each initial vector is in a different quadrant and the limit is an intersection point in the

same quadrant.
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6. (a) k xk yk
0 1.4 10
1 54.7 −317.452
2 28.0832917 −75583.381
3 14.8412307 −9364.2812
4 8.35050251 −1128.3294
5 5.34861164 −119.96986
6 4.2264792 −4.8602841
7 4.00886454 4.73583325
8 4.0001468 4.99959722
9 4 5
10 4 5

(b)
k xk yk
0 1.3 10
1 −105.35 641.7815
2 −52.041661 606283.635
3 −25.420779 75622.9747
4 −12.17662 9372.7823
5 −5.6848239 1132.95037
6 −2.6823677 124.108919
7 −1.5599306 8.94078154
8 −1.3422068 −0.6614827
9 −1.333348 −0.9255223
10 −1.3333333 −0.9259259
11 −1.3333333 −0.9259259

(c) (1.3, 10) is a good deal closer to (4, 5) than it is to (−1.3333333, −0.9259259).
(d) It seems surprising that, beginning with x0 = (1.3, 10), we found the limit we did, especially when x0 = (1.4, 10) causes

things to converge to (4, 5). This suggests that, when there are multiple solutions, it can be difficult to know to which
solution the initial vector will converge.

7. Formula (6) says xk+1 = xk − [Df(xk)]−1f(xk). But if xk solves (2) exactly, then f(xk) = 0. Thus xk+1 = xk −
[Df(xk)]−10 = xk. By the same argument xk = xk+2 = xk+3 = · · · .

8. Df(x, y) =

[
fx fy

gx gy

]
. By Exercise 36 of §1.6, [Df(x, y)]−1 = 1

fxgy−fygx

[
gy −fy

−gx fx

]
. If we evaluate at (xk−1, yk−1)

and calculate, we find that formula (6) tells us that

[
xk

yk

]
=

[
xk−1

yk−1

]
− 1

fxgy − fygx

[
gy −fy

−gx fx

] [
f
g

]
︸ ︷︷ ︸

all evaluated at (xk−1,yk−1)

.

Expanding and taking entries we obtain the desired formulas.

9. DF(x, y) = [4y cos(xy)+3x2, 4x cos(xy)+3y2], so we want to solve
{

4y cos xy+ 3x2 = 0
4x cos xy+ 3y2 = 0

. Using the result of Exercise

8, we have

xk =

6y2
k−1 cos(xk−1yk−1) + xk−1(6(x3

k−1 + 3y3
k−1) sin(xk−1yk−1)−

xk−1yk−1(9 + 8 sin 2xk−1yk−1))

2(2 − 9xk−1yk−1 + 2 cos(2xk−1yk−1) + 6(x3
k−1 + y3

k−1) sin(xk−1yk−1)−
4xk−1yk−1 sin(2xk−1yk−1))

yk =

6x2
k−1 cos(xk−1yk−1) + yk−1(6(3x3

k−1 + y3
k−1) sin(xk−1yk−1)−

xk−1yk−1(9 + 8 sin(2xk−1yk−1)))

2(2 − 9xk−1yk−1 + 2 cos(2xk−1yk−1) + 6(x3
k−1 + y3

k−1) sin(xk−1yk−1)

−4xk−1yk−1 sin(2xk−1yk−1))

(This was obtained usingMathematica to simplify.)
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Using initial vector (x0, y0) = (−1,−1) and iterating the formulas above we find

k xk yk

0 −1 −1
1 −0.9206484 −0.9206484
2 −0.9073724 −0.9073724
3 −0.9070156 −0.9070156
4 −0.9070154 −0.9070154
5 −0.9070154 −0.9070154 ← Here’s the approximate root.

10. (a) Here we’re trying to solve the system

⎧⎨
⎩

x2 + y2 + z2 = 4
x2 + y2 = 1
4y2 + z2 = 4.

Hence we define f(x, y, z) = (x2 + y2 + z2 − 4, x2 +

y2 − 1, 4y2 + z2 − 4).

ThusDf(x, y, z) =

⎡
⎣ 2x 2y 2z

2x 2y 0
0 8y 2z

⎤
⎦. It follows (see Exercise 37 of §1.6) that

[Df(x, y, z)]−1 =

⎡
⎢⎢⎢⎢⎢⎣

1

8x

3

8x
− 1

8x

− 1

8y

1

8y

1

8y
1

2z
− 1

2z
0

⎤
⎥⎥⎥⎥⎥⎦ .

Thus

⎡
⎣ xk

yk

zk

⎤
⎦ =

⎡
⎣ xk−1

yk−1

zk−1

⎤
⎦ − [Df(xk−1, yk−1, zk−1)]

−1

⎡
⎢⎣ x2

k−1 + y2
k−1 + z2

k−1 − 4

x2
k−1 + y2

k−1 − 1

4y2
k−1 + z2

k−1 − 4

⎤
⎥⎦.

This simplifies to give

xk =
xk−1

2
+

3

8xk−1

yk =
yk−1

2
+

1

8yk−1

zk =
zk−1

2
+

3

2zk−1

Newton’s method with x0 = (1, 1, 1) gives the following set of results
k xk yk zk
0 1 1 1
1 0.875 0.625 2
2 0.86607143 0.5125 1.75
3 0.86602541 0.50015244 1.73214286
4 0.8660254 0.50000002 1.73205081
5 0.8660254 0.5 1.73205081
6 0.8660254 0.5 1.73205081

With x0 = (1,−1, 1), we find
k xk yk zk
0 1 −1 1
1 0.875 −0.625 2
2 0.86607143 −0.5125 1.75
3 0.86602541 −0.5001524 1.73214286
4 0.8660254 −0.5 1.73205081
5 0.8660254 −0.5 1.73205081

(b) We solve

⎧⎨
⎩

x2 + y2 + z2 = 4
x2 + y2 = 1
4y2 + z2 = 4

by hand. First insert the second equation into the first: 1 + z2 = 4 ⇔ z = ±√
3. Use

this in the third equation 4y2 + 3 = 4 ⇔ y = ± 1
2
.
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Now use this in the second equation: x2 + 1
4

= 1 ⇔ x = ±
√

3
2
.

So we have 8 solutions:(√
3

2
,
1

2
,
√

3

)
,

(
−
√

3

2
,
1

2
,
√

3

)
,

(
−
√

3

2
,−1

2
,
√

3

)
,

(√
3

2
,−1

2
,
√

3

)
(√

3

2
,
1

2
,−

√
3

)
,

(
−
√

3

2
,
1

2
,−

√
3

)
,

(
−
√

3

2
,−1

2
,−

√
3

)
,

(√
3

2
,−1

2
,−

√
3

)

We found two of them above.

True/False Exercises for Chapter 2

1. False.
2. True.
3. False. (The range also requires v �= 0.)
4. False. (Note that f(i) = f(j).)
5. True.
6. False. (It’s a paraboloid.)
7. False. (The graph of x2 + y2 + z2 = 0 is a single point.)
8. True.
9. False.
10. False. (The limit does not exist.)
11. False. (lim(x,y)→(0,0) f(x, y) = 0 �= 2.)

12. False.
13. False.
14. True.
15. False. (∇f(x, y, z) = (0, cos y, 0).)

16. False. (It’s a 4 × 3 matrix.)
17. True.
18. False.
19. False. (The partial derivatives must be continuous.)
20. True.
21. False. (fxy �= fyx.)

22. False. (f must be of class C2.)
23. True. (Write the chain rule for this situation.)
24. True.
25. False. (The correct equation is 4x + y + 4z = 0.)
26. False. (The plane is normal to the given vector.)
27. True.
28. False. (The directional derivative equals −∂f/∂z.)
29. False.
30. True.

Miscellaneous Exercises for Chapter 2

1. (a) Calculate the determinant ∣∣∣∣∣∣∣
i j k
1 0 1

x1 x2 x3

∣∣∣∣∣∣∣ = (−x2, x1 − x3, x2).

More explicitly, the component functions are f1(x1, x2, x3) = −x2, f2(x1, x2, x3) = x1−x3, and f3(x1, x2, x3) = x2.
(b) The domain is all of R3 while the range restricts the first component to be the opposite of the last component. In other

words the range is the set of all vectors (a, b,−a).
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2. (a) It might help to see f explicitly first as(
(3,−2, 1) · (x, y, z)

(3,−2, 1) · (3,−2,−1)

)
(3,−2, 1) =

3x − 2y + z

14
(3,−2, 1).

(b) The domain is all of R3 and the range are vectors of the form (3a,−2a, a).
3. (a) The domain of f is {(x, y)|x ≥ 0 and y ≥ 0} ∪ {(x, y)|x ≤ 0 and y ≤ 0}. The range is all real numbers greater than or

equal to 0.
(b) The domain is closed. The quarter planes are closed on two sides because they include the axes.

4. (a) The domain of f is {(x, y)|x ≥ 0 and y > 0} ∪ {(x, y)|x ≤ 0 and y < 0}. The range is all real numbers greater than or
equal to 0.

(b) The domain is neither open nor closed. The quarter planes are closed on one side because they include the y-axis but they
don’t include the x-axis and so aren’t closed.

5.
f (x, y) Graph Level curves
1/(x2 + y2 + 1) D d
sin
√

x2 + y2 B e
(3y2 − 2x2)e−x2−2y2

A b
y3 − 3x2y E c
x2y2e−x2−y2

F a
ye−x2−y2

C f
6. (a) See below left.

-4 -2 0 2 4
-4

-2

0

2

4

-4
-2

0

2

4

x
-4

-2

0

2

4

y

2
3
4
5

z

(b) See above right.
7. First we’ll substitute x = r cos θ and y = r sin θ while noting that (x, y) → (0, 0) is equivalent to r → 0.

lim
(x,y)→(0,0)

yx2 − y3

x2 + y2
= lim

r→0

(r sin θ)(r2 cos2 θ) − (r3 sin3 θ)

r2 cos2 θ + r2 sin2 θ

= lim
r→0

r3(cos2 θ − sin2 θ) sin θ

r2

= lim
r→0

r cos 2θ sin θ = 0

8. (a) 2xy
x2 + y2

=
2r2 cos θ sin θ

r2
= 2 cos θ sin θ = sin 2θ. So

f(x, y) =

{
sin 2θ if r �= 0
0 if r = 0

.

(b) We’re looking for (x, y) such that f(x, y) = c. For −1 < c < 1 the level sets are pairs of radial lines symmetric about
θ = π/4.
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For example, if c = 1/2 then we are looking for θ such that sin 2θ = 1/2. In this case, θ = π/12, 5π/12, 13π/12, and
17π/12. So the level sets are the lines θ = π/12 and θ = 5π/12. These could also be written as θ = π/4 ± π/6.
For c = 1 the level set is the line θ = π/4, for c = −1 the level set is the line θ = 3π/4 and for |c| > 1 the level set is
the empty set.

(c) f is constant along radial lines, so the figure below just shows a ribbon corresponding to .4 < r < 1.

-1
-0.5

0
0.5

1
x

-0.5
0

0.5
1

y

-1

-0.5

0

0.5

1

z

-1

(d) lim(x,y)→(0,0) f(x, y) = limr→0 sin 2θ which doesn’t exist.
(e) Since the limit doesn’t exist at the origin, f couldn’t be continuous there. Also, f takes on every value between 1 and −1

in every open neighborhood of the origin.

Before assigning Exercise 9 you may want to ask the students if it is true that if a function F (x, y) is continuous in each variable
separately it is continuous. The calculations in Exercise 9 are fairly routine but the conclusion is very important.

9. g(x) = F (x, 0) ≡ 0 and so is continuous at x = 0 and h(y) = F (0, y) ≡ 0 and so is continuous at y = 0. Consider
p(x) = F (x, x) = 1 when x �= 0 and F (0, 0) = 0. Clearly, p(x) is not continuous at 0 so F (x, y) is not continuous at (0, 0).

10. (a) You can see as x gets closer and closer to 0 that 1/x2 gets larger and larger. More formally, for any N > 0, if 0 < |x| <
1/

√
N then 1/x2 > N .

(b) Here ‖(x, y) − (1, 3)‖ =
√

(x − 1)2 + (y − 3)2 so for any N > 0, if 0 < ‖(x, y) − (1, 3)‖ <
√

(2/N), then

2

(x − 1)2 + (y − 3)2
=

2

‖(x, y) − (1, 3)‖2
>

2

2/N
= N.

(c) The definition is analogous to that for above: limx→a f(x) = −∞ means that given any N < 0 there is some δ > 0 such
that if 0 < ‖x− a‖ < δ then f(a) < N .

(d) We are considering lim(x,y)→(0,0) so let’s restrict our attention to |x| < 1 and |y| < 1. For |x| < 1 we have

1 − x

xy4 − y4 + x3 − x2
=

−1

y4 + x2
.

For |y| < 1 we have y4 < y2 so
−1

y4 + x2
<

−1

y2 + x2
=

−1

‖(x, y)‖2
.

So for any N < 0 if 0 < ‖(x, y)‖ < min{1, 1/
√−N} then 1 − x

xy4 − y4 + x3 − x2
< N .

11. We read right from the table in the text:
(a) 15◦ F.
(b) 5◦ F.

12. (a) If the temperature of the air is 10◦ F we read off the chart that when the windspeed is 10 mph the windchill is −4; when
the windspeed is 15 mph the windchill is −7. Since we are looking to estimate when the windchill is −5 you might be
tempted to stop here and just conclude that the answer is between 10 mph and 15 mph (and you’d be correct) but we want
to say more. Our first estimate will just use linear interpolation (similar triangles) to get x

2
= 5

3
or the distance from 15 is

x = 10/3. We would then conclude that, to the nearest degree, the windspeed is 15 − 10/3 ≈ 12 mph.
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(b) Before you feel too good about your answer to part (a) you should notice further that when the windspeed is 20 the
windchill is −9 and when the windspeed is 25 the windchill is −11. In other words, the rate at which the windchill is
dropping is slowing slightly. In calculus terms, for the function f(s) = W (s mph, 30◦), f ′′(s) seems to be positive so
the curve is concave up. The line used to estimate in part (a) then probably lies above the curve and our guess of 12 mph
is, most likely, too high.

13. For the functionW (s mph, t◦), we want to estimate

∂W

∂t

∣∣∣∣
(30 mph,35◦)

= lim
h→0

W (30, 35 + h) − W (30, 35)

h
.

We will use the slopes of the two secant lines:

W (30, 40) − W (30, 35)

5
=

28 − 22

5
= 1.2

W (30, 30) − W (30, 35)

−5
=

15 − 22

−5
= 1.4

We average them to get an estimate of 1.3.
14. We will use the same technique as in Exercise 13 and estimate the derivative with respect to windspeed by averaging the slopes

of the two secant lines.

W (20, 25) − W (15, 25)

5
=

11 − 13

5
= −0.4

W (10, 25) − W (15, 25)

−5
=

15 − 13

−5
= −0.4

so we average them to get an estimate of −0.4.
15. (a) Comparison with Exercise 11: With an air temperature of 25◦ F, windspeed of 10 mph,

W (10, 25) = 91.4 + (25 − 91.4)(0.474 + 0.304
√

10 − 0.203)

≈ 9.573 or 10◦ F

(as compared to 15◦ F in 11(a)).
If s = 20 mph, thenW = −15◦ F if

91.4 + (t − 91.4)(0.474 + 0.304
√

20 − 0.406) = −15.

Hence t = 91.4 − 15 + 91.4

(0.474 + 0.304
√

20 − 0.406)
≈ 16.866 or 17◦ F (as compared to 5◦ F in 11(b)).

Comparison with Exercise 12: WithW (s, t) = 91.4 + (t − 91.4)(.474 + .304
√

s − .0203s), we must solve

−5 = 91.4 + (10 − 91.4)(.474 + .304
√

s − .0203s)

or

−5 − 91.4

10 − 91.4
= .474 + .304

√
s − .0203s so that

1.18428 ≈ .474 + .304
√

s − .0203s or

0 ≈ .0203s − .304
√

s + .7102752

Now solve the quadratic:
√

s ≈ .304 ±√
.186391

.0406
. The two solutions are 8.39128 and 145.893.

(b) The windchill effect of windspeed appears to be greater in the Siple formula than that which may be inferred from the
table.

(c) For temperatures greater than 91.4 the model has the wind actually making the apparent temperature warmer than air tem-
perature. Physically, the model probably falls apart because between 91.4 and 106 you are too close to body temperature
for the wind to have much effect and if you are in temperatures much greater than 106 a breeze won’t replace a frosty
beverage. For winds below 4 mph, the effect is negligible and won’t be reflected in the model.
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16. Comparison with Exercise 13: We want to calculateWt(30, 35). ∂W/∂t = 0.621 + 0.4275s0.16, soWt(30, 35) = 0.621 +
(0.4275)300.16 ≈ 1.358 (this is close).
Comparison with Exercise 14: We wantWs(15, 25).

∂W/∂s = −35.75(0.16)s−0.84 + 0.4275(0.16)ts−0.84

= (−5.72 + 0.0684t)s−0.84

Ws(15, 25) = (−5.72 + 0.0684 · 25)15−0.84 ≈ −0.412 (again close).

17. (a) Pictured (left) are the pairsW1(s, 40) andW2(s, 40) and, on the right, the pairsW1(s, 5) andW2(s, 5).

20 40 60 80 100 120
s10

15

20

25

30

35

40

W1

W2

W(s,40)

20 40 60 80 100 120
s

-40

-30

-20

-10

10

W2

W1

W(s,5)

From these graphs, we see that windspeed depresses apparent temperature in the Siple formula much more than in the
National Weather Service Formula.

(b) Pictured (left) are the pairsW1(10, t) andW2(10, t) and, on the right, the pairsW1(30, t); andW2(30, t). Again we see
that the Siple formula results in lower apparent temperatures predicted, only the effect appears to be more of a constant
difference.

W2

W1

W(10,t)

-40 -20 20 40
t

-60

-40

-20

20
-40 -20 20 40

t

-120

-100

-80

-60

-40

-20

20

W2

W1

W(30,t)

(c) The surfaces z = W1(s, t) and z = W2(s, t) are pictured. Note that the Siple surface determined byW1 is more curved,
demonstrating a more nonlinear effect of windspeed.

20

40

60

s -40

-20

0

20

40

t

-100

-50

0
W1

20

40

60

s
-40

-20

0

20

40

t

-100

-50

0
W2

18. The equation of the sphere is F (x, y, z) = x2 + y2 + z2 = 9 so∇F = (2x, 2y, 2z) and the plane tangent to the sphere at (1,
2, 2) is 0 = (2, 4, 4) · (x − 1, y − 2, z − 2) or x + 2y + 2z = 9. This intersects the x-axis when y = 0 and z = 0 so x = 9.
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19. Without loss of generality we can locate the center of the sphere at the origin and so the equation of the sphere is F (x, y, z) =
x2 + y2 + z2 = r2 so ∇F = (2x, 2y, 2z) and the equation of the plane tangent to the sphere at P = (x0, y0, z0) is
0 = (2x0, 2y0, 2z0) ·(x−x0, y−y0, z−z0) or x0x+y0y+z0z = x2

0 +y2
0 +z2

0 . This is orthogonal to the vector (x0, y0, z0)
which is the vector from the center of the sphere to P .

20. Because we’re looking at a curve in the plane 2x−y = 1 we know the x and y components of the parametric equations. What
is left to determine is z. Substitute in 2x−1 for y in the equation of the surface to get z = 3x2 +x3/6−x4/8−4(2x−1)2 =
−5x2 + x3/6 − x4/8 + 4. We can now calculate the derivative ∂z/∂x = −10x + x2/2 − x3/2 and evaluate it at the point
(1, 1,−23/24) to get −10. Because the value of z is −23/24 when x = 1, this component of the tangent line is derived by
looking at z + 23/24 = −10(x − 1). So the parametric equations for the tangent line are (t, 2t − 1,−10t + 192/24).

21. (a) For the function f(x, y, z) = x2 + y2 − z2 = 0 we consider∇f(x0) · (x− x0) = 0. Here we get (2(3), 2(−4),−2(5)) ·
(x − 3, y + 4, z − 5) = 0 or the equation is 6(x − 3) − 8(y + 4) − 10(z − 5) = 0.

(b) In general we get (2(a), 2(b),−2(c)) · (x−a, y−b, z−c) = 0. This amounts to 2a(x−a)+2b(y−b)−2c(z−c) = 0.
(c) Note that (0, 0, 0) is a solution so the plane passes through the origin.

22. Show that the two surfaces
S1 : z = xy and S2 : z =

3

4
x2 − y2

intersect perpendicularly at the point (2, 1, 2). First we see that 2 = 1(2) and 2 = (3/4)(4) − 1 so (2, 1, 2) is a point on both
surfaces. Rewrite the surfaces so that they are level sets of functions:

F1(x, y, z) = xy− z and F2(x, y, z) = z + y2 − 3

4
x2.

The gradients are normal to the tangent planes (see Section 2.6, Exercise 36), so we calculate the two gradients at the given
point: ∇F1(2, 1, 2) = (1, 2,−1) and∇F2(2, 1, 2) = (−3, 2, 1) so

∇F1(2, 1, 2) · ∇F2(2, 1, 2) = 0.

So the two surfaces intersect perpendicularly at (2, 1, 2).
23. (a) As we have done before we find the plane tangent to the surface given by F (x, y, z) = z − x2 − 4y2 = 0 by formula (6):

0 = ∇F (1,−1, 5) · (x − 1, y + 1, z − 5) = (−2, 8, 1) · (x − 1, y + 1, z − 5)

or− 2x + 8y + z = −5.

(b) The line is parallel to a vector which is orthogonal to ∇F (1,−1, 5) = (−2, 8, 1) and with no component in the x
direction. So it is of the form (0, a, b) with (0, a, b) · (−2, 8, 1) = 0 so the line has the direction (0, 1,−8) and passes

through (1,−1, 5). The equations are

⎧⎨
⎩

x = 1
y = t − 1
z = −8t + 5.

24. We are assuming that the collar is fairly rigid so that it is maintaining a cylindrical shape throughout this process. We want
∂V

∂t
at t = t0. Since V = πr2h, ∂V

∂t
= 2πrhdr

dt
+ πr2 dh

dt
. We are given that the rate of change of the circumference at

t = t0 is −.2 in/min. This means

−.2 =
∂C

∂t

∣∣∣∣
t0

=
∂(2πr)

∂t

∣∣∣∣
t0

= 2π
dr
dt

∣∣∣∣
t0

.

We also know that at t = t0, 2πr = 18, h = 3, and dh
dt

= .1. Substituting into the equation above, we get:

∂V

∂t

∣∣∣∣
t0

= (18)(3)

(−.2

2π

)
+ π

(
18

2π

)2

(.1) =
−5.4

π
+

8.1

π
=

2.7

π
.

So the volume is increasing at t = t0.
25. First note that 0.2 degC/day = 0.2 · 24 = 4.8 degC/month. Then, with time measured in months, the chain rule tells us

dP
dt

=
∂P

∂S

dS
dt

+
∂P

∂T

dT
dt

.
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Here dS
dt

= −2, dT
dt

= 4.8. With P (S, T ) = 330S2/3T 4/5, we have

dP
dt

∣∣∣∣
(S=75,T=15)

= (220S−1/3T 4/5)|(75,15)(−2) + 264S2/3T−1/5|(75,15)(4.8)

= 220(75)−1/3(15)4/5(−2) + 264(75)2/3(15)−1/5(4.8)

= 12,201.4 units/month

(or 508.392 units/day)

26. We want to know du
dt
(t in weeks) when x = 80, y = 240, given that dx

dt
= 5 and dy

dt
= −15. The chain rule tells us

du
dt

=
∂u

∂x

dx
dt

+
∂u

∂y

dy
dt

= (0.002xe−0.001x2−0.00005y2

)
dx
dt

+ (0.0001ye−0.001x2−0.00005y2

)
dy
dt

Thus

du
dt

∣∣∣∣
x=80,y=240

= e(−0.001)802−0.00005(240)2 [(0.002)80 · 5 − (0.0001)240 · 15]

≈ 0.000041.

So the utility function is increasing ever so slightly.
27.

w = x2 + y2 + z2,

x = ρ cos θ sin ϕ,

y = ρ sin θ sin ϕ and

z = ρ cos ϕ

(a)

∂w

∂ρ
=

∂w

∂x

∂x

∂ρ
+

∂w

∂y

∂y

∂ρ
+

∂w

∂z

∂z

∂ρ

= 2x cos θ sin ϕ + 2y sin θ sin ϕ + 2z cos ϕ

= 2ρ cos2 θ sin2 ϕ + 2ρ sin2 θ sin2 ϕ + 2ρ cos2 ϕ

= 2ρ,

∂w

∂ϕ
=

∂w

∂x

∂x

∂ϕ
+

∂w

∂y

∂y

∂ϕ
+

∂w

∂z

∂z

∂ϕ

= 2xρ cos θ cos ϕ + 2yρ sin θ cos ϕ − 2zρ sin ϕ

= 2ρ2 cos2 θ cos ϕ sin ϕ + 2ρ2 sin2 θ cos ϕ sin ϕ − 2ρ2 cos ϕ sin ϕ

= 0, and

∂w

∂θ
=

∂w

∂x

∂x

∂θ
+

∂w

∂y

∂y

∂θ
+

∂w

∂z

∂z

∂θ

= −2xρ sin θ sin ϕ + 2yρ cos θ sin ϕ

= −2ρ2 cos θ sin θ sin2 ϕ + 2ρ2 cos θ sin θ sin2 ϕ

= 0.

(b) First substitute: w = x2 + y2 + z2 = (ρ cos θ sin ϕ)2 + (ρ sin θ sin ϕ)2 + (ρ cos ϕ)2 = ρ2. Now taking the derivatives
from part (a) is trivial: wρ = 2ρ, wϕ = 0, and wθ = 0.
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28. If w = f
(

x+y
xy

)
, let u = x+y

xy . So

x2 ∂w

∂x
− y2 ∂w

∂y
= x2 ∂w

∂u

∂u

∂x
− y2 ∂w

∂u

∂u

∂y

= x2 ∂w

∂u

( −y2

x2y2

)
− y2 ∂w

∂u

( −x2

x2y2

)
= 0.

29. (a) First use the chain rule to find ∂z

∂r
and ∂z

∂θ
:

∂z

∂r
=

∂z

∂x

∂x

∂r
+

∂z

∂y

∂y

∂r

=
∂z

∂x
(er cos θ) +

∂z

∂y
(er sin θ), and

∂z

∂θ
=

∂z

∂x

∂x

∂θ
+

∂z

∂y

∂y

∂θ

=
∂z

∂x
(−er sin θ) +

∂z

∂y
(er cos θ).

Now solve for ∂z

∂x
and ∂z

∂y
:

∂z

∂x
= e−r cos θ

∂z

∂r
− e−r sin θ

∂z

∂θ
, and

∂z

∂y
= e−r sin θ

∂z

∂r
+ e−r cos θ

∂z

∂θ
.

(b) Given the results for ∂z

∂x
and ∂z

∂y
in part (a), we compute:

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
= e−r cos θ

∂

∂r

(
∂z

∂x

)
− e−r sin θ

∂

∂θ

(
∂z

∂x

)

= e−r cos θ
∂

∂r

(
e−r cos θ

∂z

∂r
− e−r sin θ

∂z

∂θ

)
− e−r sin θ

∂

∂θ

(
e−r cos θ

∂z

∂r
− e−r sin θ

∂z

∂θ

)

= e−r cos θ

(
−e−r cos θ

∂z

∂r
+ e−r cos θ

∂2z

∂r2
+ e−r sin θ

∂z

∂θ
− e−r sin θ

∂2z

∂r∂θ

)

− e−r sin θ

(
−e−r sin θ

∂z

∂r
+ e−r cos θ

∂2z

∂θ∂r
− e−r cos θ

∂z

∂θ
− e−r sin θ

∂2z

∂θ2

)

= e−2r

[
(sin2 θ − cos2 θ)

∂z

∂r
+ cos2 θ

∂2z

∂r2
+ 2 sin θ cos θ

∂z

∂θ
− 2 sin θ cos θ

∂2z

∂r∂θ
+ sin2 θ

∂2z

∂θ2

]
A similar calculation gives:

∂2z

∂y2
=

∂

∂y

(
∂z

∂y

)
= e−r sin θ

∂

∂r

(
∂z

∂y

)
+ e−r cos θ

∂

∂θ

(
∂z

∂y

)

= e−r sin θ
∂

∂r

(
e−r sin θ

∂z

∂r
+ e−r cos θ

∂z

∂θ

)
+ e−r cos θ

∂

∂θ

(
e−r sin θ

∂z

∂r
+ e−r cos θ

∂z

∂θ

)

= e−2r

[
(cos2 θ − sin2 θ)

∂z

∂r
+ sin2 θ

∂2z

∂r2
− 2 sin θ cos θ

∂z

∂θ
+ 2 sin θ cos θ

∂2z

∂r∂θ
+ cos2 θ

∂2z

∂θ2

]
.

Now add these to get:

∂2z

∂x2
+

∂2z

∂y2
= e−2r[(cos2 θ + sin2 θ)zθθ + (cos2 θ + sin2 θ)zrr] = e−2r[zθθ + zrr].
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30. (a) Consider w = f(x, y) = xy = ey ln x. Then d
du (u

u) can be calculated by taking the derivative and evaluating at the point
(u, u).

dw
du

=
∂w

∂x

dx
du

+
∂w

∂y

dy
du

= yxy−1 + ln xey ln x = u · uu−1 + (ln u) uu = uu(1 + ln u).

(b) Here x = sin t and y = cos t. So

dw
dt

=
∂w

∂x

dx
dt

+
∂w

∂y

dy
dt

= yxy−1 cos t + (ln x) ey ln x(− sin t) = cos2 t(sin t)cos t−1 − sin t ln(sin t) sin tcos t.

31. This is an extension of the preceding exercise. This time w = f(x, y, z) = xyz

. If x = u, y = u, and z = u we again
calculate

dw
du

=
∂w

∂x

dx
du

+
∂w

∂y

dy

du
+

∂w

∂z

dz
du

= yzxyz−1 + eyz ln x(z ln x)yz−1 + eez ln y ln x(ln x) ez ln y ln y

= uuu(uu−1) + uuu

(u ln u)uu−1 + uuu

(ln u)2uu = uuuuu

(1/u + ln u + (ln u)2).

32. With
r = ‖x‖ =

√
x2

1 + · · · + x2
n,

∂r

∂xi
=

xi√
x2

1 + · · · + x2
n

=
xi

r
.

The chain rule gives ∂f

∂xi
=

dg

dr

∂r

∂xi
= g′(r)

xi

r
By the product and chain rules:

∂2f

∂x2
i

=
∂

∂xi

(
g′(r)

xi

r

)
=

g′(r)
r

+ xi
d
dr

(
g′(r)

r

)
∂r

∂xi

=
1

r
g′(r) + xi

(
rg′′(r) − g′(r)

r2

)
xi

r

=
1

r
g′(r) + x2

i

(
g′′(r)

r2
− g′(r)

r3

)
.

Add these to find

∇2f =
n∑

i=1

∂2f

∂xi
2

=
n

r
g′(r) +

(
g′′(r)

r2
− g′(r)

r3

)
(x2

1 + · · · + x2
n)︸ ︷︷ ︸

=r2

=
n

r
g′(r) + g′′(r) − g′(r)

r

=
1

r
(n − 1)g′(r) + g′′(r).

33. (a)

∇2(∇2f(x, y)) =
∂2

∂x2

(
∂2f

∂x2
+

∂2f

∂y2

)
+

∂2

∂y2

(
∂2f

∂x2
+

∂2f

∂y2

)

=
∂4f

∂x4
+

∂4f

∂x2∂y2
+

∂4f

∂y2∂x2︸ ︷︷ ︸
these are equal−f is of class C4

+
∂4f

∂y4

= desired expression.

(b) Similar:

∇2(∇2f) =
∂2

∂x2
1

(
n∑

j=1

∂2f

∂x2
j

)
+ · · · + ∂2

∂x2
n

(
n∑

j=1

∂2f

∂xj

)

=
n∑

i=1

∂2

∂xi
2

(
n∑

j=1

∂2f

∂x2
j

)
=

n∑
i,j=1

∂4f

∂x2
i ∂x2

j

.
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34. Livinia is at (0, 0, 1) and T (x, y, z) = 10(xe−y2

+ ze−x2

)
(a) The unit vector in the direction from (0, 0, 1) to (2, 3, 1) is u = (2, 3, 0)/

√
13.

DuT = ∇T (0, 0, 1) · u = 10(1, 0, 1) · (2, 3, 0)/
√

13 = 20/
√

13 deg/cm.

(b) She should head in the direction of the negative gradient: (−1, 0,−1)/
√

2.
(c) (3)10(1, 0, 1) · (−1, 0,−1)/

√
2 = −30

√
2 deg/sec.

35. z = r cos 3θ
(a) z = r[cos θ cos 2θ − sin θ sin 2θ] = r[cos θ(cos2 θ − sin2 θ) − sin θ(2 sin θ cos θ)] so

z =
r3[cos3 θ − cos θ sin2 θ − 2 sin2 θ cos θ]

r2
=

x3 − 3xy2

x2 + y2
.

(b) Note that limr→0 r cos 3θ = 0 which is the value of the function at the origin. So yes, f(x, y) = z is continuous at the
origin.

(c) (i) fx =
(x2 + y2)(3x2 − 3y2) − (x3 − 3xy2)2x

(x2 + y2)2
=

x4 − 3y4 + 6x2y2

(x2 + y2)2
.

(ii) fy =
(x2 + y2)(−6xy) − (x3 − 3xy2)2y

(x2 + y2)2
=

−8x3y

(x2 + y2)2
.

(iii) fx(0, 0) = limh→0
f(h, 0) − f(0, 0)

h
= lim

h→0

h − 0

h
= 1.

(iv) fy(0, 0) = limh→0
f(0, h) − f(0, 0)

h
= lim

h→0

0 − 0

h
= 0.

(d) g(r, θ) = r cos 3θ so gr(r, θ) = cos 3θ. This is the directional derivativeDuf .

(e) When (x, y) �= (0, 0), fy(x, y) =
−8x3y

x2 + y2
. In particular, when y = x, fy = −2. From part (c) fy(0, 0) = 0 so fy is

not continuous at the origin.
(f) Below are two sketches; the one on the left just shows a ribbon of the surface:
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0
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1

x
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0

0.5

1
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0

0.5

1
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36. (a) u = cos(x − t) + sin(x + t) − 2ez+t − (y − t)3 so
• ux = − sin(x − t) + cos(x + t) and uxx = − cos(x − t) − sin(x + t).
• uy = −3(y − t)2 and uyy = −6(y − t).
• uz = −2ez+t and uzz = −2ez+t.
• ut = sin(x − t) + cos(x + t) − 2ez+t + 3(y − t)2 and utt = − cos(x − t) − sin(x + t) − 2ez+t − 6(y − t).

We have, therefore, the result: uxx + uyy + uzz = utt.
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(b) u(x, y, z, t) = f1(x − t) + f2(x + t) + g1(y − t) + g2(y + t) + h1(z − t) + h2(z + t) so

• ux = (f1)x−t
∂(x − t)

∂x
+ (f2)x+t

∂(x + t)

∂x
= (f1)x−t + (f2)x+t so

• ∂2u

∂x2
=

∂2f1

∂(x − t)2
+

∂2f2

∂(x + t)2

• uy = (g1)y−t
∂(y − t)

∂y
+ (g2)y+t

∂(y + t)

∂y
= (g1)y−t + (g2)y+t so

• ∂2u

∂y2
=

∂2g1

∂(y − t)2
+

∂2g2

∂(y + t)2
.

• uz = (h1)z−t
∂(z − t)

∂z
+ (h2)z+t

∂(z + t)

∂z
= (h1)z−t + (h2)z+t so

• ∂2u

∂z2
=

∂2h1

∂(z − t)2
+

∂2h2

∂(z + t)2
.

• ut = (f1)x−t
∂(x − t)

∂t
+ (f2)x+t

∂(x + t)

∂t
+ (g1)y−t

∂(y − t)

∂t
+ (g2)y+t

∂(y + t)

∂t
+

(h1)z−t
∂(z − t)

∂t
+ (h2)z+t

∂(z + t)

∂t
so ut = −(f1)x−t + (f2)x+t − (g1)y−t + (g2)y+t − (h1)z−t

∂(z − t)

∂t
+

(h2)z+t
∂(z + t)

∂t
and

• utt = uxx + uyy + uzz.
37. F (tx, ty) = t3x3 + t3xy2 − 6t3y3 = t3F (x, y) so F is homogeneous of degree 3.
38. F (tx, ty, tz) = t3x3y − t4x2z2 + t8z8 so, no, F is not homogeneous.
39. F (tx, ty, tz) = t3zy2 − t3x3 + t3x2z = t3F (x, y, z) so yes F is homogeneous of degree 3.
40. F (tx, ty) = ety/tx = ey/x = F (x, y) so F is homogeneous of degree 0.

41. F (tx, ty, tz) =
t3x3 + t3x2y − t3yz2

t3xyz+ 7t3xz2
= F (x, y, z) so F is homogeneous of degree 0.

42. Make sure that the students realize (as in Exercises 40 and 41) that a function can be homogeneous and not be a polynomial.
In the special case that F is a polynomial, F is homogeneous when all of the terms are of the same degree.

43. F (tx1, tx2, . . . , txn) = tdF (x1, x2, . . . , xn) so that, by differentiating both sides with respect to t:

x1
∂F

∂x1
(tx1, . . . , txn) + · · · + xn

∂F

∂xn
(tx1, . . . , txn) = dtd−1F (x1, . . . , xn).

Now let t = 1 and we get the result:

x1
∂F

∂x1
+ · · · + xn

∂F

∂xn
= dF.

44. The conjecture is:
n∑

i1,...,ik=1

= xi1xi2 · · ·xik
Fxi1

xi2
···xik

=
d!

(d− k)!
F.

Although not asked in the text, a good exercise is to ask the students to establish the formula given in this exercise. Show that

∂

∂xi
[dF ] =

n∑
j=1

xj
∂2F

∂xi∂xj
+

∂F

∂xi
.

Then you can show

d2F = d
n∑

i=1

xi
∂F

∂xi
=

n∑
i,j=1

xixj
∂2F

∂xi∂xj
+ dF.

You can finish from there.
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