
Chapter 1

Vectors

1.1 Vectors in Two and Three Dimensions

1. Here we just connect the point (0, 0) to the points indicated:
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2. Although more difficult for students to represent this on paper, the figures should look something like the following. Note that
the origin is not at a corner of the frame box but is at the tails of the three vectors.
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In problems 3 and 4, we supply more detail than is necessary to stress to students what properties are being used:
3. (a) (3, 1) + (−1, 7) = (3 + [−1], 1 + 7) = (2, 8).
(b) −2(8, 12) = (−2 · 8,−2 · 12) = (−16,−24).
(c) (8, 9) + 3(−1, 2) = (8 + 3(−1), 9 + 3(2)) = (5, 15).
(d) (1, 1) + 5(2, 6) − 3(10, 2) = (1 + 5 · 2 − 3 · 10, 1 + 5 · 6 − 3 · 2) = (−19, 25).
(e) (8, 10) + 3((8,−2) − 2(4, 5)) = (8 + 3(8 − 2 · 4), 10 + 3(−2 − 2 · 5)) = (8,−26).

4. (a) (2, 1, 2) + (−3, 9, 7) = (2 − 3, 1 + 9, 2 + 7) = (−1, 10, 9).
(b) 1

2
(8, 4, 1) + 2

(
5,−7, 1

4

)
=
(
4, 2, 1

2

)
+
(
10,−14, 1

2

)
= (14,−12, 1).

(c) −2
(
(2, 0, 1) − 6

(
1
2
,−4, 1

))
= −2((2, 0, 1) − (3,−24, 6)) = −2(−1, 24,−5) = (2,−48, 10).

5. We start with the two vectors a and b. We can complete the parallelogram as in the figure on the left. The vector from the
origin to this new vertex is the vector a + b. In the figure on the right we have translated vector b so that its tail is the head of
vector a. The sum a + b is the directed third side of this triangle.
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6. a = (3, 2) b = (−1, 1)
a − b = (3 − (−1), 2 − 1) = (4, 1) 1

2
a =

(
3
2
, 1
)

a + 2b = (1, 4)
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7. (a)
−→
AB = (−3 − 1, 3 − 0, 1 − 2) = (−4, 3,−1)

−→
BA = −−→

AB = (4,−3, 1)

(b)
−→
AC = (2 − 1, 1 − 0, 5 − 2) = (1, 1, 3)−→
BC = (2 − (−3), 1 − 3, 5 − 1) = (5,−2, 4)−→
AC+

−→
CB = (1, 1, 3) − (5,−2, 4) = (−4, 3,−1)

(c) This result is true in general:

A

B

C

Head-to-tail addition demonstrates this.
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Section 1.1. Vectors in Two and Three Dimensions 3

8. The vectors a = (1, 2, 1),b = (0,−2, 3) and a + b = (1, 2, 1) + (0,−2, 3) = (1, 0, 4) are graphed below. Again note that
the origin is at the tails of the vectors in the figure.

Also, −1(1, 2, 1) = (−1,−2,−1). This would be pictured by drawing the vector (1, 2, 1) in the opposite direction.
Finally, 4(1, 2, 1) = (4, 8, 4) which is four times vector a and so is vector a stretched four times as long in the same direction.
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9. Since the sum on the left must equal the vector on the right componentwise:
−12 + x = 2, 9 + 7 = y, and z + −3 = 5. Therefore, x = 14, y = 16, and z = 8.

10. If we drop a perpendicular from (3, 1) to the x-axis we see that by the Pythagorean Theorem the length of the vector (3, 1) =√
32 + 12 =

√
10.
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11. Notice that b (represented by the dotted line) = 5a (represented by the solid line).
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4 Chapter 1 Vectors

12. Here the picture has been projected into two dimensions so that you can more clearly see that a (represented by the solid
line) = −2b (represented by the dotted line).
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13. The natural extension to higher dimensions is that we still add componentwise and that multiplying a scalar by a vector means
that we multiply each component of the vector by the scalar. In symbols this means that:

a + b = (a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn) and ka = (ka1, ka2, . . . , kan).
In our particular examples, (1, 2, 3, 4) + (5,−1, 2, 0) = (6, 1, 5, 4), and 2(7, 6,−3, 1) = (14, 12,−6, 2).

14. The diagrams for parts (a), (b) and (c) are similar to Figure 1.12 from the text. The displacement vectors are:
(a) (1, 1, 5)
(b) (−1,−2, 3)
(c) (1, 2,−3)
(d) (−1,−2)

Note: The displacement vectors for (b) and (c) are the same but in opposite directions (i.e., one is the negative of the
other). The displacement vector in the diagram for (d) is represented by the solid line in the figure below:
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15. In general, we would define the displacement vector from (a1, a2, . . . , an) to (b1, b2, . . . , bn) to be (b1−a1, b2−a2, . . . , bn−
an).

In this specific problem the displacement vector from P1 to P2 is (1,−4,−1, 1).
16. Let B have coordinates (x, y, z). Then

−→
AB = (x − 2, y − 5, z + 6) = (12,−3, 7) so x = 14, y = 2, z = 1 so B has

coordinates (14, 2, 1).
17. If a is your displacement vector from the Empire State Building and b your friend’s, then the displacement vector from you

to your friend is b − a.
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18. Property 2 follows immediately from the associative property of the reals:

(a + b) + c = ((a1, a2, a3) + (b1, b2, b3)) + (c1, c2, c3)

= ((a1 + b1, a2 + b2, a3 + b3) + (c1, c2, c3)

= ((a1 + b1) + c1, (a2 + b2) + c2, (a3 + b3) + c3)

= (a1 + (b1 + c1), a2 + (b2 + c2), a3 + (b3 + c3))

= (a1, a2, a3) + ((b1 + c1), (b2 + c2), (b3 + c3))

= a + (b + c).

Property 3 also follows from the corresponding componentwise observation:

a + 0 = (a1 + 0, a2 + 0, a3 + 0) = (a1, a2, a3) = a.

19. We provide the proofs for R3:

(1) (k + l)a = (k + l)(a1, a2, a3) = ((k + l)a1, (k + l)a2, (k + l)a3)

= (ka1 + la1, ka2 + la2, ka3 + la3) = ka + la.

(2) k(a + b) = k((a1, a2, a3) + (b1, b2, b3)) = k(a1 + b1, a2 + b2, a3 + b3)

= (k(a1 + b1), k(a2 + b2), k(a3 + b3)) = (ka1 + kb1, ka2 + kb2, ka3 + kb3)

= (ka1, ka2, ka3) + (kb1, kb2, kb3) = ka + kb.

(3) k(la) = k(l(a1, a2, a3)) = k(la1, la2, la3)

= (kla1, kla2, kla3) = (lka1, lka2, lka3)

= l(ka1, ka2, ka3) = l(ka).

20. (a) 0a is the zero vector. For example, inR3:

0a = 0(a1, a2, a3) = (0 · a1, 0 · a2, 0 · a3) = (0, 0, 0).

(b) 1a = a. Again inR3:
1a = 1(a1, a2, a3) = (1 · a1, 1 · a2, 1 · a3) = (a1, a2, a3) = a.

21. (a) The head of the vector sa is on the x-axis between 0 and 2. Similarly the head of the vector tb lies somewhere on the
vector b. Using the head-to-tail method, sa + tb is the result of translating the vector tb, in this case, to the right by 2s
(represented in the figure by tb*). The result is clearly inside the parallelogram determined by a and b (and is only on the
boundary of the parallelogram if either t or s is 0 or 1.

sa

tb

b

a

tb*

x
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6 Chapter 1 Vectors

(b) Again the vectors a and b will determine a parallelogram (with vertices at the origin, and at the heads of a, b, and a + b.
The vectors sa + tb will be the position vectors for all points in that parallelogram determined by (2, 2, 1) and (0, 3, 2).

22. Here we are translating the situation in Exercise 21 by the vector
−−→
OP0. The vectors will all be of the form

−−→
OP0 + sa + tb for

0 ≤ s, t ≤ 1.
23. (a) The speed of the flea is the length of the velocity vector =

√
(−1)2 + (−2)2 =

√
5 units per minute.

(b) After 3 minutes the flea is at (3, 2) + 3(−1,−2) = (0,−4).
(c) We solve (3, 2)+t(−1,−2) = (−4,−12) for t and get that t = 7minutes. Note that both 3−7 = −4 and 2−14 = −12.
(d) We can see this algebraically or geometrically: Solving the x part of (3, 2) + t(−1,−2) = (−13,−27) we get that

t = 16. But when t = 16, y = −30 not −27. Also in the figure below we see the path taken by the flea will miss the
point (−13,−27).
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24. (a) The plane is climbing at a rate of 4 miles per hour.
(b) To make sure that the axes are oriented so that the plane passes over the building, the positive x direction is east and the

positive y direction is north. Then we are heading east at a rate of 50 miles per hour at the same time we’re heading north
at a rate of 100 miles per hour. We are directly over the skyscraper in 1/10 of an hour or 6 minutes.

(c) Using our answer in (b), we have traveled for 1/10 of an hour and so we’ve climbed 4/10 of a mile or 2112 feet. The plane
is 2112 − 1250 or 862 feet about the skyscraper.

25. (a) Adding we get: F1 + F2 = (2, 7,−1) + (3,−2, 5) = (5, 5, 4).
(b) You need a force of the same magnitude in the opposite direction, so F3 = −(5, 5, 4) = (−5,−5,−4).

26. (a) Measuring the force in pounds we get (0, 0,−50).
(b) The z components of the two vectors along the ropes must be equal and their sum must be opposite of the z component

in part (a). Their y components must also be opposite each other. Since the vector points in the direction (0, ±2, 1),
the y component will be twice the z component. Together this means that the vector in the direction of (0,−2, 1) is
(0,−50, 25) and the vector in the direction (0, 2, 1) is (0, 50, 25).

27. The force F due to gravity on the weight is given by F = (0, 0,−10). The forces along the ropes are each parallel to the
displacement vectors from the weight to the respective anchor points. That is, the tension vectors along the ropes are

F1 = k((3, 0, 4) − (1, 2, 3)) = k(2,−2, 1)

F2 = l((0, 3, 5) − (1, 2, 3)) = l(−1, 1, 2),

where k and l are appropriate scalars. For the weight to remain in equilibrium, we must haveF1+F2+F = 0, or, equivalently,
that

k(2,−2, 1) + l(−1, 1, 2) + (0, 0,−10) = (0, 0, 0).

Taking components, we obtain a system of three equations:⎧⎨
⎩

2k − l = 0
−2k + l = 0
k + 2l = 10.

Solving, we find that k = 2 and l = 4, so that

F1 = (4,−4, 2) and F2 = (−4, 4, 8).
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Section 1.2. More about Vectors 7

1.2 More about Vectors

It may be useful to point out that the answers to Exercises 1 and 5 are the “same”, but that in Exercise 1, i = (1, 0) and in Exercise
5, i = (1, 0, 0). This comes up when going the other direction in Exercises 9 and 10. In other words, it’s not always clear whether
the exercise “lives” inR2 orR3.
1. (2, 4) = 2(1, 0) + 4(0, 1) = 2i + 4j.
2. (9,−6) = 9(1, 0) − 6(0, 1) = 9i − 6j.
3. (3, π,−7) = 3(1, 0, 0) + π(0, 1, 0) − 7(0, 0, 1) = 3i + πj − 7k.
4. (−1, 2, 5) = −1(1, 0, 0) + 2(0, 1, 0) + 5(0, 0, 1) = −i + 2j + 5k.
5. (2, 4, 0) = 2(1, 0, 0) + 4(0, 1, 0) = 2i + 4j.
6. i + j − 3k = (1, 0, 0) + (0, 1, 0) − 3(0, 0, 1) = (1, 1,−3).
7. 9i − 2j +

√
2k = 9(1, 0, 0) − 2(0, 1, 0) +

√
2(0, 0, 1) = (9,−2,

√
2).

8. −3(2i − 7k) = −6i + 21k = −6(1, 0, 0) + 21(0, 0, 1) = (−6, 0, 21).
9. πi − j = π(1, 0) − (0, 1) = (π,−1).
10. πi − j = π(1, 0, 0) − (0, 1, 0) = (π,−1, 0).

Note: You may want to assign both Exercises 11 and 12 together so that the students may see the difference. You should stress
that the reason the results are different has nothing to do with the fact that Exercise 11 is a question aboutR2 while Exercise 12 is
a question aboutR3.

11. (a) (3, 1) = c1(1, 1) + c2(1,−1) = (c1 + c2, c1 − c2), so
{

c1 + c2 = 3, and
c1 − c2 = 1.

Solving simultaneously (for instance by adding the two equations), we find that 2c1 = 4, so c1 = 2 and c2 = 1. So
b = 2a1 + a2.

(b) Here c1 + c2 = 3 and c1 − c2 = −5, so c1 = −1 and c2 = 4. So b = −a1 + 4a2.

(c) More generally, (b1, b2) = (c1 + c2, c1 − c2), so
{

c1 + c2 = b1, and
c1 − c2 = b2.

Again solving simultaneously, c1 =
b1 + b2

2
and c2 =

b1 − b2

2
. So

b =

(
b1 + b2

2

)
a1 +

(
b1 − b2

2

)
a2.

12. Note that a3 = a1 + a2, so really we are only working with two (linearly independent) vectors.
(a) (5, 6,−5) = c1(1, 0,−1) + c2(0, 1, 0) + c3(1, 1,−1); this gives us the equations:⎧⎨

⎩
5 = c1 + c3

6 = c2 + c3

−5 = −c1 − c3.

The first and last equations contain the same information and so we have infinitely many solutions. You will quickly see
one by letting c3 = 0. Then c1 = 5 and c2 = 6. So we could write b = 5a1 + 6a2. More generally, you can choose any
value for c1 and then let c2 = c1 + 1 and c3 = 5 − c1.

(b) We cannot write (2, 3, 4) as a linear combination of a1, a2, and a3. Here we get the equations:⎧⎨
⎩

c1 + c3 = 2
c2 + c3 = 3

−c1 − c3 = 4.

The first and last equations are inconsistent and so the system cannot be solved.
(c) As we saw in part (b), not all vectors in R3 can be written in terms of a1, a2, and a3. In fact, only vectors of the form

(a, b,−a) can be written in terms of a1, a2, and a3. For your students who have had linear algebra, this is because the
vectors a1, a2, and a3 are not linearly independent.

Note: As pointed out in the text, the answers for 13–21 are not unique.

13. r(t) = (2,−1, 5) + t(1, 3,−6) so

⎧⎨
⎩

x = 2 + t
y = −1 + 3t
z = 5 − 6t.

c© 2012 Pearson Education, Inc.



8 Chapter 1 Vectors

14. r(t) = (12,−2, 0) + t(5,−12, 1) so

⎧⎨
⎩

x = 12 + 5t
y = −2 − 12t
z = t.

15. r(t) = (2,−1) + t(1,−7) so
{

x = 2 + t
y = −1 − 7t.

16. r(t) = (2, 1, 2) + t(3 − 2,−1 − 1, 5 − 2) so

⎧⎨
⎩

x = 2 + t
y = 1 − 2t
z = 2 + 3t.

17. r(t) = (1, 4, 5) + t(2 − 1, 4 − 4,−1 − 5) so

⎧⎨
⎩

x = 1 + t
y = 4
z = 5 − 6t.

18. r(t) = (8, 5) + t(1 − 8, 7 − 5) so
{

x = 8 − 7t
y = 5 + 2t.

Note: In higher dimensions, we switch our notation to xi.

19. r(t) = (1, 2, 0, 4) + t(−2, 5, 3, 7) so

⎧⎪⎪⎨
⎪⎪⎩

x1 = 1 − 2t
x2 = 2 + 5t
x3 = 3t
x4 = 4 + 7t.

20. r(t) = (9, π,−1, 5, 2) + t(−1 − 9, 1 − π,
√

2 + 1, 7 − 5, 1 − 2) so

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 = 9 − 10t
x2 = π + (1 − π)t

x3 = −1 + (
√

2 + 1)t
x4 = 5 + 2t
x5 = 2 − t.

21. (a) r(t) = (−1, 7, 3) + t(2,−1, 5) so

⎧⎨
⎩

x = −1 + 2t
y = 7 − t
z = 3 + 5t.

(b) r(t) = (5,−3, 4) + t(0 − 5, 1 + 3, 9 − 4) so

⎧⎨
⎩

x = 5 − 5t
y = −3 + 4t
z = 4 + 5t.

(c) Of course, there are infinitely many solutions. For our variation on the answer to (a) we note that a line parallel to the
vector 2i − j + 5k is also parallel to the vector −(2i − j + 5k) so another set of equations for part (a) is:⎧⎨

⎩
x = −1 − 2t
y = 7 + t
z = 3 − 5t.

For our variation on the answer to (b) we note that the line passes through both points so we can set up the equation with
respect to the other point: ⎧⎨

⎩
x = −5t
y = 1 + 4t
z = 9 + 5t.

(d) The symmetric forms are:

x + 1

2
= 7 − y =

z − 3

5
(for (a))

5 − x

5
=

y + 3

4
=

z − 4

5
(for (b))

x + 1

−2
= y − 7 =

z − 3

−5
(for the variation of (a))

x

−5
=

y − 1

4
=

z − 9

5
(for the variation of (b))
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22. Solve for t in each of the parametric equations. Thus

t =
x − 5

−2
, t =

y − 1

3
, t =

z + 4

6

and the symmetric form is
x − 5

−2
=

y − 1

3
=

z + 4

6
.

23. Solving for t in each of the parametric equations gives t = x−7, t = (y+9)/3, and t = (z−6)/(−8), so that the symmetric
form is

x − 7

1
=

y + 9

3
=

z − 6

−8
.

24. Set each piece of the equation equal to t and solve:

x − 2

5
= t ⇒ x − 2 = 5t ⇒ x = 2 + 5t

y − 3

−2
= t ⇒ y − 3 = −2t ⇒ y = 3 − 2t

z + 1

4
= t ⇒ z + 1 = 4t ⇒ z = −1 + 4t.

25. Let t = (x+5)/3. Then x = 3t−5. In view of the symmetric form, we also have that t = (y−1)/7 and t = (z+10)/(−2).
Hence a set of parametric equations is x = 3t − 5, y = 7t + 1, and z = −2t − 10.

Note: In Exercises 26–29, we could say for certain that two lines are not the same if the vectors were not multiples of each
other. In other words, it takes two pieces of information to specify a line. You either need two points, or a point and a direction (or
in the case ofR2, equivalently, a slope).

26. The first line is parallel to the vector a1 = (5,−3, 4), while the second is parallel to a2 = (10,−5, 8). Since a1 and a2 are
not parallel, the lines cannot be the same.

27. If we multiply each of the pieces in the second symmetric form by −2, we are effectively just traversing the same path at a
different speed and with the opposite orientation. So the second set of equations becomes:

x + 1

3
=

y + 6

7
=

z + 5

5
.

This looks a lot more like the first set of equations. If we now subtract one from each piece of the second set of equations (as
suggested in the text), we are effectively just changing our initial point but we are still on the same line:

x + 1

3
− 3

3
=

y + 6

7
− 7

7
=

z + 5

5
− 5

5
.

We have transformed the second set of equations into the first and therefore see that they both represent the same line inR3.

28. If you first write the equation of the two lines in vector form, we can see immediately that their direction vectors are the same
so either they are parallel or they are the same line:

r1(t) = (−5, 2, 1) + t(2, 3,−6)

r2(t) = (1, 11,−17) − t(2, 3,−6).

The first line contains the point (−5, 2, 1). If the second line contains (−5, 2, 1), then the equations represent the same line.
Solve just the x component to get that −5 = 1 − 2t ⇒ t = 3. Checking we see that r2(3) = (1, 11,−17) − 3(2, 3,−6) =
(−5, 2, 1) so the lines are the same.

29. Here again the vector forms of the two lines can be written so that we see their headings are the same:

r1(t) = (2,−7, 1) + t(3, 1, 5)

r2(t) = (−1,−8,−3) + 2t(3, 1, 5).

The point (2,−7, 1) is on line one, so we will check to see if it is also on line two. As in Exercise 28 we check the equation for
the x component and see that−1+6t = 2 ⇒ t = 1/2. Checking we see that r2(1/2) = (−1,−8,−3)+(1/2)(2)(3, 1, 5) =
(2,−7, 2) �= (2,−7, 1) so the equations do not represent the same lines.
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10 Chapter 1 Vectors

Note: It is a good idea to assign both Exercises 30 and 31 together. Although they look similar, there is a difference that
students might miss.

30. If you make the substitution u = t3, the equations become:

⎧⎨
⎩

x = 3u + 7,
y = −u + 2, and
z = 5u + 1.

The map u = t3 is a bijection. The important fact is that u takes on exactly the same values that t does, just at different times.
Since u takes on all reals, the parametric equations do determine a line (it’s just that the speed along the line is not constant).

31. This time if you make the substitution u = t2, the equations become:

⎧⎨
⎩

x = 5u − 1,
y = 2u + 3, and
z = −u + 1.

The problem is that u cannot take on negative values so these parametric equations are for a ray with endpoint (−1, 3, 1) and
heading (5, 2,−1).

32. (a) The vector form of the equations is: r(t) = (7,−2, 1)+ t(2, 1,−3). The initial point is then r(0) = (7,−2, 1), and after
3 minutes the bird is at r(3) = (7,−2, 1) + 3(2, 1,−3) = (13, 1,−8).

(b) (2, 1,−3)
(c) We only need to check one component (say the x): 7 + 2t = 34/3 ⇒ t = 13/6. Checking we see that r

(
13
6

)
=

(7,−2, 1) +
(

13
6

)
(2, 1,−3) =

(
34
3

, 1
6
,− 11

2

)
.

(d) As in part (c), we’ll check the x component and see that 7 + 2t = 17 when t = 5. We then check to see that r(5) =
(7,−2, 1) + 5(2, 1,−3) = (17, 3,−14) �= (17, 4,−14) so, no, the bird doesn’t reach (17, 4,−14).

33. We can substitute the parametric forms of x, y, and z into the equation for the plane and solve for t. So (3t − 5) + 3(2 −
t) − (6t) = 19 which gives us t = −3. Substituting back in the parametric equations, we find that the point of intersection is
(−14, 5,−18).

34. Using the same technique as in Exercise 33, 5(1− 4t)− 2(t− 3/2) + (2t + 1) = 1 which simplifies to t = 2/5. This means
the point of intersection is (−3/5,−11/10, 9/5).

35. We will set each of the coordinate equations equal to zero in turn and substitute that value of t into the other two equations.

x = 2t − 3 = 0 ⇒ t = 3/2.When t = 3/2, y = 13/2 and z = 7/2.

y = 3t + 2 = 0 ⇒ t = −2/3, so x = −13/3 and z = 17/3.

z = 5 − t = 0 ⇒ t = 5, so x = 7 and y = 17.

The points are (0, 13/2, 7/2), (−13/3, 0, 17/3), and (7, 17, 0).

36. We could show that two points on the line are also in the plane or that for points on the line:
2x − y + 4z = 2(5 − t) − (2t − 7) + 4(t − 3) = 5, so they are in the plane.

37. For points on the line we see that x− 3y + z = (5− t)− 3(2t− 3) + (7t + 1) = 15, so the line does not intersect the plane.

38. First we parametrize the line by setting t = (x − 3)/6, which gives us x = 6t + 3, y = 3t − 2, z = 5t. Plugging these
parametric values into the equation for the plane gives

2(6t + 3) − 5(3t − 2) + 3(5t) + 8 = 0 ⇐⇒ 12t + 24 = 0 ⇐⇒ t = −2.

The parameter value t = −2 yields the point (6(−2) + 3, 3(−2) − 2, 5(−2)) = (−9,−8,−10).
39. We find parametric equations for the line by setting t = (x − 3)/(−2), so that x = 3 − 2t, y = t + 5, z = 3t − 2. Plugging

these parametric values into the equation for the plane, we find that

3(3 − 2t) + 3(t + 5) + (3t − 2) = 9 − 6t + 3t + 15 + 3t − 2 = 22

for all values of t. Hence the line is contained in the plane.
40. Again we find parametric equations for the line. Set t = (x + 4)/3, so that x = 3t − 4, y = 2 − t, z = 1 − 9t. Plugging

these parametric values into the equation for the plane, we find that

2(3t − 4) − 3(2 − t) + (1 − 9t) = 7 ⇐⇒ 6t − 8 − 6 + 3t + 1 − 9t = 7 ⇐⇒ −13 = 7.

Hence we have a contradiction; that is, no value of t will yield a point on the line that is also on the plane. Thus the line and
the plane do not intersect.
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Section 1.2. More about Vectors 11

41. We just plug the parametric expressions for x, y, z into the equation for the surface:

(at + a)2

a2
+

b2

b2
− (ct + c)2

c2
=

c2(t + 1)2

a2
+ 1 − c2(t + 1)2

c2
= 1

for all values of t ∈ R. Hence all points on the line satisfy the equation for the surface.
42. As explained in the text, we can’t just set the two sets of equations equal to each other and solve. If the two lines intersect at a

point, we may get to that point at two different times. Let’s call these times t1 and t2 and solve the equations⎧⎪⎨
⎪⎩

2t1 + 3 = 15 − 7t2,

3t1 + 3 = t2 − 2, and
2t1 + 1 = 3t2 − 7.

Eliminate t1 by subtracting the third equation from the first to get t2 = 2. Substitute back into any of the equations to get
t1 = −1. Using either set of equations, you’ll find that the point of intersection is (1, 0,−1).

43. The way the problem is phrased tips us off that something is going on. Let’s handle this the same way we did in Exercise 42.⎧⎪⎨
⎪⎩

2t1 + 1 = 3t2 + 1,

−3t1 = t2 + 5, and
t1 − 1 = 7 − t2.

Adding the last two equations eliminates t2 and gives us t1 = 13/2. This corresponds to the point (14, −39/2, 11/2).
Substituting this value of t1 into the third equation gives us t2 = 3/2, while substituting this into the first equation gives us
t2 = 13/3. This inconsistency tells us that the second line doesn’t pass through the point (14,−39/2, 11/2).

44. (a) The distance is
√

(3t − 5 + 2)2 + (1 − t − 1)2 + (4t + 7 − 5)2 =
√

26t2 − 2t + 13.
(b) Using a standard first year calculus trick, the distance is minimized when the square of the distance is minimized. So we

find D = 26t2 − 2t + 13 is minimized (at the vertex of the parabola) when t = 1/26. Substitute back into our answer
for (a) to find that the minimal distance is

√
337/26.

45. (a) As in Example 2, this is the equation of a circle of radius 2 centered at the origin. The difference is that you are traveling
around it three times as fast. This means that if t varied between 0 and 2π that the circle would be traced three times.

(b) This is just like part (a) except the radius of the circle is 5.
(c) This is just like part (b) except the x and y coordinates have been switched. This is the same as reflecting the circle about

the line y = x and so this is also a circle of radius 5. If you care, the circle in (b) was drawn starting at the point (5, 0)
counterclockwise while this circle is drawn starting at (0, 5) clockwise.

(d) This is an ellipse with major axis along the x-axis intersecting it at (±5, 0) and minor axis along the y-axis intersecting it
at (0,±3) : x2

25
+ y2

9
= 1.

x

y

-4

-2

2

4

-4 -2 2 4

46. The discussion in the text of the cycloid looked at the path traced by a point on the circumference of a circle of radius a as it is
rolled without slipping on the x-axis. The vector from the origin to our point P was split into two pieces:

−→
OA (the vector from

the origin to the center of the circle) and
−→
AP (the vector from the center of the circle to P ). This split remains the same in our

problem.
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12 Chapter 1 Vectors

The center of the circle is always a above the x-axis, and after the wheel has rolled through a central angle of t radians the
x coordinate is just at. So

−→
OA = (at, a). This does not change in our problem.

The vector
−→
AP was calculated to be (−a sin t,−a cos t). The direction of the vector is still correct but the length is not. If

we are b units from the center then
−→
AP = −b(sin t, cos t).

We conclude then that the parametric equations are x = at − b sin t, y = a − b cos t. When a = b this is the case of the
cycloid described in the text; when a > b we have the curtate cycloid; and when a < b we have the prolate cycloid.

For a picture of how to generate one consider the diagram:

Here the inner circle is rolling along the ground and the prolate cycloid is the path traced by a point on the outer circle.
There is a classic toy with a plastic wheel that runs along a handheld track, but your students are too young for that. You could
pretend that the big circle is the end of a round roast and the little circle is the end of a skewer. In a regular rotisserie the roast
would just rotate on the skewer, but we could imagine rolling the skewer along the edges of the grill. The motion of a point on
the outside of the roast would be a prolate cycloid.

47. You are to picture that the circular dispenser stays still so Egbert has to unwind around the dispenser. The direction is
(cos θ, sin θ). The length is the radius of the circle a, plus the amount of tape that’s been unwound. The tape that’s been
unwound is the distance around the circumference of the circle. This is aθ where θ is again in radians. The equation is
therefore (x, y) = a(1 + θ)(cos θ, sin θ).

1.3 The Dot Product

Exercises 1–16 are just straightforward calculations. For 1–6 use Definition 3.1 and formula (1). For 7–11 use formula (4). For
12–16 use formula (5).
1. (1, 5) · (−2, 3) = 1(−2) + 5(3) = 13, ‖(1, 5)‖ =

√
12 + 52 =

√
26,

‖(−2, 3)‖ =
√

(−2)2 + 32 =
√

13.

2. (4,−1) · (1/2, 2) = 4(1/2) − 1(2) = 0, ‖(4,−1)‖ =
√

42 + (−1)2 =
√

17

‖(1/2, 2)‖ =
√

(1/2)2 + 22 =
√

17/2.

3. (−1, 0, 7) · (2, 4,−6) = −1(2) + 0(4) + 7(−6) = −44, ‖(−1, 0, 7)‖ =
√

(−1)2 + 02 + 72 =
√

50 = 5
√

2, and
‖(2, 4,−6)‖ =

√
22 + 42 + (−6)2 =

√
56 = 2

√
14.

4. (2, 1, 0)·(1,−2, 3) = 2(1)+1(−2)+0(3) = 0, ‖(2, 1, 0)‖ =
√

22 + 1 =
√

5, and ‖(1,−2, 3)‖ =
√

12 + (−2)2 + 32 =√
14.

5. (4i − 3j + k) · (i + j + k) = 4(1) + −3(1) + 1(1) = 2, ‖4i − 3j + k‖ =
√

42 + 32 + 12 =
√

26, and ‖i + j + k‖ =√
1 + 1 + 1 =

√
3.

6. (i + 2j − k) · (−3j + 2k) = 2(−3) − 1(2) = −8, ‖i + 2j − k‖ =
√

12 + 22 + (−1)2 =
√

6, and ‖ − 3j + 2k‖ =√
(−3)2 + 22 =

√
13.

7. θ = cos−1

(
(
√

3i + j) · (−√
3i + j)

‖(√3i + j)‖ ‖ − √
3i + j‖

)
= cos−1

(−3 + 1

(2)(2)

)
= cos−1

(−1

2

)
=

2π

3
.

c© 2012 Pearson Education, Inc.



Section 1.3. The Dot Product 13

8. θ = cos−1

(
(−1, 2) · (3, 1)

‖(−1, 2)‖ ‖(3, 1)‖
)

= cos−1

( −3 + 2√
5
√

10

)
= cos−1

(
− 1

5
√

2

)
.

9. θ = cos−1

(
(i + j) · (i + j + k)

‖i + j‖ ‖i + j + k‖
)

= cos−1

(
1 + 1√
2
√

3

)
= cos−1

(√
2√
3

)
.

10. θ = cos−1

(
(i + j − k) · (−i + 2j + 2k)

‖i + j − k‖ ‖ − i + 2j + 2k‖
)

= cos−1

(−1 + 2 − 2

(
√

3)(
√

3)

)
= cos−1

( −1

3
√

3

)
.

11. θ = cos−1

(
(1,−2, 3) · (3,−6,−5)

‖(1,−2, 3)‖ ‖(3,−6,−5)‖
)

= cos−1

(
3 + 12 − 15√

14
√

70

)
= cos−1(0) =

π

2
.

Note: The answers to 12 and 13 are the same. You may want to assign both exercises and ask your students why this should be
true. You might then want to ask what would happen if vector a was the same but vector b was divided by

√
2.

12. proji+j(2i + 3j − k) =

(
(i + j) · (2i + 3j − k)

(i + j) · (i + j)

)
(i + j) =

2 + 3

1 + 1
(1, 1, 0) =

(
5

2
,
5

2
, 0

)
.

13. proj i+j√
2

(2i + 3j − k) =

⎛
⎝
(

i+j√
2

)
· (2i + 3j − k)(

i+j√
2

)
·
(

i+j√
2

)
⎞
⎠(

i+j√
2

)
=

1√
2
(2 + 3)
1+1
2

(1, 1, 0)√
2

=

(
5

2
,
5

2
, 0

)
.

14. proj5k(i − j + 2k) =

(
(5k) · (i − j + 2k)

(5k) · (5k)

)
(5k) =

10

25
(5k) = 2k.

15. proj−3k(i − j + 2k) =

(
(−3k) · (i − j + 2k)

(−3k) · (−3k)

)
(−3k) =

−6

9
(−3k) = 2k.

16. proji+j+2k(2i − 4j + k) =

(
(i + j + 2k) · (2i − 4j + k)

(i + j + 2k) · (i + j + 2k)

)
(i + j + 2k) =

2 − 4 + 2

1 + 1 + 4
(1, 1, 2) = 0.

17. We just divide the vector by its length: 2i − j + k

||2i − j + k|| =
1√
6
(2,−1, 1).

18. Here we take the negative of the vector divided by its length: i − 2k

‖i − 2k‖ =
1√
5
(1, 0,−2).

19. Same idea as Exercise 17, but multiply by 3: 3(i + j − k)

‖i + j − k‖ =
3√
3
(1, 1,−1) =

√
3(1, 1,−1).

20. There are a whole plane full of perpendicular vectors. The easiest three to find are when we set the coefficients of the coordinate
vectors equal to zero in turn: i + j, j + k, and −i + k.

21. We have two cases to consider.
If either of the projections is zero: projab = 0 ⇔ a · b = 0 ⇔ projba = 0.
If neither of the projections is zero, then the directions must be the same. This means that a must be a multiple of b. Let
a = cb, then on the one hand

projab = projcbb =
cb · b
cb · cb cb = b.

On the other hand

projba = projbcb =
b · cb
b · b b = cb.

These are equal only when c = 1.
In other words, projab = projba when a · b = 0 or when a = b.

22. Property 2: a · b = (a1, a2, a3) · (b1, b2, b3) = a1b1 + a2b2 + a3b3 = b1a1 + b2a2 + b3a3 = b · a.
Property 3: a · (b + c) = (a1, a2, a3) · ((b1, b2, b3) + (c1, c2, c3)) = (a1, a2, a3) · (b1 + c1, b2 + c2, b3 + c3) = a1(b1 +
c1) + a2(b2 + c2) + a3(b3 + c3) = (a1b1 + a2b2 + a3b3) + (a1c1 + a2c2 + a3c3) = a · b + a · c.
Property 4: (ka) · b = (k(a1, a2, a3)) · (b1, b2, b3) = (ka1, ka2, ka3) · (b1, b2, b3) = ka1b1 + ka2b2 + ka3b3(for the
1st equality) = k(a1b1 + a2b2 + a3b3) = k(a · b). (for the 2nd equality) = a1 kb1 + a2 kb2 + a3 kb3 = (a1, a2, a3) ·
(kb1, kb2, kb3) = a · (kb).

23. We have ‖ka‖ =
√

ka · ka =
√

k2(a · a) =
√

k2
√

a · a = |k| ‖a‖.
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14 Chapter 1 Vectors

24. The following diagrams might be helpful:

a

0.5 1 1.5 2 2.5 3 3.5 4

F

-2

-1.5

-1

-0.5

0.5

1

1.5

2
y

x

x

F

F1

F2

-2

-1.5

-1

-0.5

0.5 1 1.5 2

y

To find F1, the component of F in the direction of a, we project F onto a:

F1 = projaF =

(
(i − 2j) · (4i + j)

(4i + j) · (4i + j)

)
(4i + j) =

2

17
(4, 1).

To find F2, the component of F in the direction perpendicular to a, we can just subtract F1 from F:

F2 = (1,−2) − 2

17
(4, 1) =

(
9

17
,
−36

17

)
=

9

17
(1,−4).

Note that F1 is a multiple of a so that F1 does point in the direction of a and that F2 · a = 0 so F2 is perpendicular to a.
25. (a) The work done by the force is given to be the product of the length of the displacement (‖−−→PQ‖) and the component of

force in the direction of the displacement (±‖proj−−→
PQ

F‖ or in the case pictured in the text, ‖F‖ cos θ). That is,

Work = ‖−−→PQ‖ ‖F‖ cos θ = F ·

−−→
PQ

using Theorem 3.3.
(b) The displacement vector is

−−→
PQ = i + j − 2k and so, using part (a), we have

Work = F ·

−−→
PQ = (i + 5j + 2k) · (i + j − 2k) = 1 + 5 − 4 = 2.

26. The amount of work is
‖F‖ ‖−−→PQ‖ cos 20◦ = 60 · 12 · cos 20◦ ≈ 676.6 ft-lb.

27. To move the bananas, one must exert an upward force of 500 lb. Such a force makes an angle of 60◦ with the ramp, and it is
the ramp that gives the direction of displacement. Thus the amount of work done is

‖F‖ ‖−−→PQ‖ cos 60◦ = 500 · 40 · 1
2

= 10, 000 ft-lb.

28. Note that i, j, and k each point along the positive x-, y-, and z-axes. Therefore, we may use Theorem 3.3 to calculate that

cos α =
(i + 2j − k) · i

‖i + 2j − k‖(1)
=

1√
6
;

cos β =
(i + 2j − k) · j

‖i + 2j − k‖(1)
=

2√
6
;

cos γ =
(i + 2j − k) · k

‖i + 2j − k‖(1)
= − 1√

6
.
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29. As in the previous problem, we use a = 3i + 4k to find that

cos α =
(3i + 4k) · i

‖3i + 4k‖(1)
=

3

5
;

cos β =
(3i + 4k) · j

‖3i + 4k‖(1)
= 0;

cos γ =
(3i + 4k) · k

‖3i + 4k‖(1)
=

4

5
.

30. You could either use the three right triangles determined by the vector a and the three coordinate axes, or you could use

Theorem 3.3. By that theorem, cos α =
a · i

‖a‖ ‖i‖ =
a1√

a2
1 + a2

2 + a2
3

. Similarly, cos β =
a2√

a2
1 + a2

2 + a2
3

and cos γ =

a3√
a2
1 + a2

2 + a2
3

.

31. Consider the figure:

B

A

C
P1

P2

If P1 is the point onAB located r times the distance fromA toB, then the vector
−→
AP1 = r

−→
AB. Similarly, since P2 is the point

on AC located r times the distance from A to C, then the vector
−→
AP2 = r

−→
AC. So now we can look at the line segment P1P2

using vectors.

−−−→
P1P2 =

−→
AP2 −−→

AP1 = r
−→
AC− r

−→
AB = r(

−→
AC−−→

AB) = r
−→
BC.

The two conclusions now follow. Because
−−−→
P1P2 is a scalar multiple of

−→
BC, they are parallel. Also the positive scalar r pulls

out of the norm so ‖−−−→P1P2‖ = ‖r−→BC‖ = r‖−→BC‖.
32. This now follows immediately from Exercise 31 or Example 6 from the text. Consider first the triangle ABC.
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16 Chapter 1 Vectors

D

A

B

C

M1

M2

M3

M4

If M1 is the midpoint of AB and M2 is the midpoint of BC, we’ve just shown that M1M2 is parallel to AC and has
half its length. Similarly, consider triangle DAC where M3 is the midpoint of CD and M4 is the midpoint of DA. We see
thatM3M4 is parallel to AC and has half its length. The first conclusion is thatM1M2 andM3M4 have the same length and
are parallel. Repeat this process for triangles ABD and CBD to conclude that M1M4 and M2M3 have the same length and
are parallel. We conclude that M1M2M3M4 is a parallelogram. For kicks—have your students draw the figure for ABCD a
non-convex quadrilateral. The argument and the conclusion still hold even though one of the “diagonals” is not inside of the
quadrilateral.

33. In the diagram in the text, the diagonal running from the bottom left to the top right is a + b and the diagonal running from
the bottom right to the top left is b − a.

‖a + b‖ = ‖−a + b‖ ⇔√
(a + b) · (a + b) =

√
(−a + b) · (−a + b) ⇔√

a · a + b · b + 2a · b =
√

(−1)2a · a + b · b − 2a · b ⇔
a · b = 0

Since neither a nor b is zero, they must be orthogonal.
34. Using the same set up as that in Exercise 33, we note first that

(a + b) · (−a + b) = a · (−a) + b · (−a) + a · b + b · b = −‖a‖2 + ‖b‖2.

It follows immediately that
(a + b) · (−a + b) = 0 ⇔ ‖a‖ = ‖b‖.

In other words that the diagonals of the parallelogram are perpendicular if and only if the parallelogram is a rhombus.
35. (a) Let’s start with the two circles with centers at W1 and W2. Assume that in addition to their intersection at point O that

they also intersect at point C as shown below.

C

O

W2W1

The polygon OW1CW2 is a parallelogram. In fact, because all sides are equal, it is a rhombus. We can, therefore, write
the vector c =

−→
OC =

−→
OW1 +

−→
OW2 = w1 + w2. Similarly, we can write b = w1 + w3 and a = w2 + w3.
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(b) Let’s use the results of part (a) together with the hint. We need to show that the distance from each of the points A, B,
and C to P is r. Let’s show, for example, that ‖−→CP‖ is r:

‖−→CP‖ = ‖−→OP−−→
OC‖ = ‖(w1 + w2 + w3) − (w1 + w2)‖ = ‖w3‖ = r.

The arguments for the other two points are analogous.
(c) What we really need to show is that each of the lines passing throughO and one of the pointsA,B, orC is perpendicular to

the line containing the two other points. Using vectors we will show that
−→
OA ⊥ −→

BC,
−→
OB ⊥ −→

AC, and
−→
OC ⊥ −→

AB by showing
their dot products are 0. It’s enough to show this for one of them:

−→
OA · −→BC = (w2 + w3) · ((w1 + w2)− (w1 + w3)) =

(w2 + w3) · (w2 − w3) = w2 · w2 + w3 · w2 − w2 · w3 − w3 · w3 = r2 − r2 = 0.
36. (a) This follows immediately from Exercise 34 if you notice that the vectors are the diagonals of the rhombus with two sides

‖b‖a and ‖a‖b.
Or we can proceed with the calculation: (‖b‖a + ‖a‖) · (‖b‖a − ‖a‖b). The only bit of good news here is that the

cross terms clearly cancel each other out and we’re left with: ‖b‖2(a · a)−‖a‖2(b ·b) = ‖b‖2‖a‖2 −‖a‖2‖b‖2 = 0.
(b) As in (a), the slicker way is to recall (or reprove geometrically) that the diagonals of a rhombus bisect the vertex angles.

Then note that (‖b‖a+‖a‖b) is the diagonal of the rhombus with sides ‖b‖a and ‖a‖b and so bisects the angle between
them which is the same as the angle between a and b.

Another way is to let θ1 be the angle between a and ‖b‖a+‖a‖b, and let θ2 be the angle between b and ‖b‖a+‖a‖b.
Then

cos−1 θ1 =
a · (‖b‖a + ‖a‖b)

(‖a‖)‖(‖b‖a + ‖a‖b)‖ =
‖a‖2‖b‖ + ‖a‖a · b

(‖a‖)‖(‖b‖a + ‖a‖b)‖ =
‖a‖ ‖b‖ + a · b
‖(‖b‖a + ‖a‖b)‖ .

Also

cos−1 θ2 =
b · (‖b‖a + ‖a‖b)

(‖b‖)‖(‖b‖a + ‖a‖b)‖ =
‖b‖b · a + ‖b‖2‖a‖

(‖b‖)‖(‖b‖a + ‖a‖b)‖ =
b · a + ‖a‖ ‖b‖
‖(‖b‖a + ‖a‖b)‖ .

So ‖b‖a + ‖a‖b bisects the angle between the vectors a and b.

1.4 The Cross Product

For Exercises 1–4 use Definition 4.2.
1. (2)(3) − (4)(1) = 2.
2. (0)(6) − (5)(−1) = 5.
3. (1)(2)(3) + (3)(7)(−1) + (5)(0)(0) − (5)(2)(−1) − (1)(7)(0) − (3)(0)(3) = −5.
4. (−2)(6)(2) + (0)(−1)(4) + (1/2)(3)(−8) − (1/2)(6)(4) − (−2)(−1)(−8) − (0)(3)(2) = −32.

Note: In Exercises 5–7, the difference between using (2) and (3) really amounts to changing the coefficient of j from (a3b1 −
a1b3) in formula (2) to −(a1b3 − a3b1) in formula (3). The details are only provided in Exercise 5.

5. First we’ll use formula (2):

(1, 3,−2) × (−1, 5, 7) = [(3)(7) − (−2)(5)]i + [(−2)(−1) − (1)(7)]j + [(1)(5) − (3)(−1)]k

= 31i − 5j + 8k = (31,−5, 8).

If instead we use formula (3), we get:

(1, 3,−2) × (−1, 5, 7) =

∣∣∣∣∣∣
i j k

1 3 −2
−1 5 7

∣∣∣∣∣∣
=

∣∣∣∣ 3 −2
5 7

∣∣∣∣ i −
∣∣∣∣ 1 −2
−1 7

∣∣∣∣ j +

∣∣∣∣ 1 3
−1 5

∣∣∣∣k
= 31i − 5j + 8k = (31,−5, 8).
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18 Chapter 1 Vectors

6. Just using formula (3):

(3i − 2j + k) × (i + j + k) =

∣∣∣∣∣∣
i j k

3 −2 1
1 1 1

∣∣∣∣∣∣ =

∣∣∣∣ −2 1
1 1

∣∣∣∣ i −
∣∣∣∣ 3 1

1 1

∣∣∣∣ j +

∣∣∣∣ 3 −2
1 1

∣∣∣∣k
= −3i − 2j + 5k = (−3,−2, 5).

7. Note that these two vectors form a basis for the xy-plane so the cross product will be a vector parallel to (0, 0, 1). Again, just
using formula (3):

(i + j) × (−3i + 2j) =

∣∣∣∣∣∣
i j k

1 1 0
−3 2 0

∣∣∣∣∣∣ =

∣∣∣∣ 1 0
2 0

∣∣∣∣ i −
∣∣∣∣ 1 0
−3 0

∣∣∣∣ j +

∣∣∣∣ 1 1
−3 2

∣∣∣∣k = 5k = (0, 0, 5).

8. By (1) (a + b) × c = −c × (a + b).
By (2), this = −c × a + −c × b.
By (1), this = a × c + b × c.

9. (a + b) × (a − b) = (a × a) + (b × a) − (a × b) − (b × b). The cross product of a vector with itself is 0 and also
(b × a) = −(a × b), so

(a + b) × (a − b) = −2(a × b).

You may wish to have your students consider what this means about the relationship between the cross product of the sides of a
parallelogram and the cross product of its diagonals. In any case, we are given that a×b = (3,−7,−2), so (a+b)×(a−b) =
(−6, 14, 4).

10. If you plot the points you’ll see that they are given in a counterclockwise order of the vertices of a parallelogram. To find the
area we will view the sides from (1, 1) to (3, 2) and from (1, 1) to (−1, 2) as vectors by calculating the displacement vectors:
(3, 2) − (1, 1) and (−1, 2) − (1, 1). We then embed the problem in R3 and take a cross product. The length of this cross
product is the area of the parallelogram.

-

-1 -0.5 0.5 1 1.5 2 2.5 3

1

-0.5

0.5

1

1.5

2

2.5

3
y

x

(3 − 1, 2 − 1, 0) × (−1 − 1, 2 − 1, 0) = (2, 1, 0) × (−2, 1, 0) = 4k = (0, 0, 4).

So the area is ‖(0, 0, 4)‖ = 4.
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11. This is tricky, as the points are not given in order. The figure on the left shows the sides connected in the order that the points
are given.

x

y

-2

0

2

-2

0

2

z

-2

0

2

4

x

y

-2

0

2

-2

0

2

z

-2

0

2

4

As the figure on the right shows, if you take the first side to be the side that joins the points (1, 2, 3) and (4,−2, 1) then
the next side is the side that joins (4,−2, 1) and (0,−3,−2). We will again calculate the length of the cross product of the
displacement vectors. So the area of the parallelogram will be the length of

(0 − 4,−3 − (−2),−2 − 1) × (1 − 4, 2 − (−2), 3 − 1) = (−4,−1,−3) × (−3, 4, 2) = (10, 17,−19).

The length of (10, 17,−19) is
√

102 + 172 + (−19)2 =
√

750 = 5
√

30.
12. The cross product will give us the right direction; if we then divide this result by its length we will get a unit vector:

(2, 1,−3) × (1, 0, 1)

‖(2, 1,−3) × (1, 0, 1)‖ =
(1,−5,−1)

‖(1,−5,−1)‖ =
1√
27

(1,−5,−1).

13. For (a × b) · c to be zero either
• One or more of the three vectors is 0,
• (a × b) = 0 which would happen if a = kb for some real k, or

• c is in the plane determined by a and b.

For Exercises 14–17 we’ll just take half of the length of the cross product. Unlike Exercises 10 and 11, in Exercises 16 and 17
we don’t have to worry about the ordering of the points. In a triangle, whichever order we choose we are traveling either clockwise
or counterclockwise. Just choose any of the vertices as the base for the cross product. Our choices may differ, but the solution
won’t.
14. (1/2)‖(1, 1, 0) × (2,−1, 0)‖ = (1/2)‖(0, 0,−3)‖ = 3/2.
15. (1/2)‖(1,−2, 6) × (4, 3,−1)‖ = (1/2)‖(−16, 25, 11)‖ =

√
1002/2.

16. (1/2)‖(−1 − 1, 2 − 1, 0) × (−2 − 1,−1 − 1, 0)‖ = (1/2)‖(−2, 1, 0) × (−3,−2, 0)‖ =
(1/2)‖(0, 0, 7)‖ = 7/2.

17. (1/2)‖(0 − 1, 2, 3 − 1) × (−1 − 1, 5,−2 − 1)‖ = (1/2)‖(−1, 2, 2) × (−2, 5,−3)‖ =
(1/2)‖(−16,−7,−1)‖ =

√
306/2 = 3

√
34/2.

The triple scalar product is used in Exercises 18 and 19 and the equivalent determinant form mentioned in the text is proved
in Exercise 20.

Some people write this product as a · (b × c) instead of (a × b) · c. Exercise 28 shows that these are equivalent.

c© 2012 Pearson Education, Inc.



20 Chapter 1 Vectors

18. Here we are given the vectors so we can just use the triple scalar product:

(a × b) · c = ((3i − j) × (−2i + k)) · (i − 2j + 4k) =

∣∣∣∣∣∣
3 −1 0

−2 0 1
1 −2 4

∣∣∣∣∣∣
= 3

∣∣∣∣ 0 1
−2 4

∣∣∣∣− (−1)

∣∣∣∣ −2 1
1 4

∣∣∣∣+ 0

∣∣∣∣ −2 0
1 −2

∣∣∣∣ = 3(2) + (−9) = −3.

Volume = |(a × b) · c| = 3.
19. You need to figure out a useful ordering of the vertices. You can either plot them by hand or use a computer package to help

or you can make some observations about them. First look at the z coordinates. Two points have z = −1 and two have z = 0.
These form your bottom face. Of the remaining points two have z = 5—these will match up with the bottom points with
z = −1, and two have z = 6—these will match up with the bottom points with z = 0. The parallelepiped is shown below.

We’ll use the highlighted edges as our three vectors a, b, and c. You could have based the calculation at any vertex. I have
chosen (4, 2,−1). The three vectors are:

a = (0, 3, 0) − (4, 2,−1) = (−4, 1, 1)

b = (4, 3, 5) − (4, 2,−1) = (0, 1, 6)

c = (3, 0,−1) − (4, 2,−1) = (−1,−2, 0)

0

2

4

0
1

2
3

4

0

2

4

6

z

x

y

We can now calculate

(a × b) · c = ((−4, 1, 1) × (0, 1, 6)) · (−1,−2, 0) =

∣∣∣∣∣∣
−4 1 1

0 1 6
−1 −2 0

∣∣∣∣∣∣
= −4

∣∣∣∣ 1 6
−2 0

∣∣∣∣− 1

∣∣∣∣ 0 6
−1 0

∣∣∣∣+ 1

∣∣∣∣ 0 1
−1 −2

∣∣∣∣ = −4(12) − (6) + (1) = −53.

Finally, Volume = |(a × b) · c| = 53.

Note: The proofs of Exercises 20 and 28 are easier if you remember that if matrix A is just matrix B with any two rows
interchanged then the determinant of A is the negative of the determinant of B. If you don’t use this fact (which is explored in
exercises later in this chapter), you can prove this with a long computation. That is why the author of the text suggests that a
computer algebra system could be helpful—and this would be a great place to use it in a class demonstration.
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20. This is not as bad as it might first appear.

(a × b) · c =

⎛
⎝
∣∣∣∣∣∣

i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
⎞
⎠ · (c1, c2, c3)

=

(
i

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣− j

∣∣∣∣ a1 a3

b1 b3

∣∣∣∣+ k

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣
)
· (c1, c2, c3)

= c1

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣− c2

∣∣∣∣ a1 a3

b1 b3

∣∣∣∣+ c3

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣
=

∣∣∣∣∣∣
c1 c2 c3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ = −
∣∣∣∣∣∣

a1 a2 a3

c1 c2 c3

b1 b2 b3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
21. (a × b) · c =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ by Exercise 20. Similarly, a · (b × c) = (b × c) · a =

∣∣∣∣∣∣
b1 b2 b3

c1 c2 c3

a1 a2 a3

∣∣∣∣∣∣ by Exercise 20.
Expand these determinants to see that they are equal.∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ = a1(b2c3 − b3c2) − a2(b1c3 − b3c1) + a3(b1c2 − b2c1)

∣∣∣∣∣∣
b1 b2 b3

c1 c2 c3

a1 a2 a3

∣∣∣∣∣∣ = b1(a3c2 − a2c3) − b2(a3c1 − a1c3) + b3(a2c1 − a1c2)

22. The value of |(a× b) · c| is the volume of the parallelepiped determined by the vectors a,b, c. But so is |b · (a× c)|, so the
quantities must be equal.

23. (a) We have

Area = 1
2
‖−−−→P1P2 ×−−−→

P1P3‖
= 1

2
‖(x2 − x1, y2 − y1, 0) × (x3 − x1, y3 − y1, 0)‖

Now
−−−→
P1P2 ×−−−→

P1P3 =

∣∣∣∣∣∣
i j k

x2 − x1 y2 − y1 0
x3 − x1 y3 − y1 0

∣∣∣∣∣∣
= [(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)]k

P3

y

x

P2
P1

Hence the area is 1
2
|(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)|. On the other hand

1
2

∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ = 1
2

(∣∣∣∣ x2 x3

y2 y3

∣∣∣∣−
∣∣∣∣ x1 x3

y1 y3

∣∣∣∣+
∣∣∣∣ x1 x2

y1 y2

∣∣∣∣
)

.

Expanding and taking absolute value, we obtain
1
2
|x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1|.
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From here, its easy to see that this agrees with the formula above.

(b) We compute the absolute value of 1
2

∣∣∣∣∣∣
1 1 1
1 2 −4
2 3 −4

∣∣∣∣∣∣ = 1
2
(−8 − 8 + 3 − 4 + 12 + 4) = 1

2
(−1) = − 1

2
.

Thus the area is
∣∣− 1

2

∣∣ = 1
2
.

24. Surface area = 1
2
(‖a × b‖ + ‖b × c‖ + ‖a × c‖ + ‖(b − a) × (c − a)‖)

c

a

b

25. We assume that a, b, and c are non-zero vectors inR3.
(a) The cross product a × b is orthogonal to both a and b.

(b) Scale the cross product to a unit vector by dividing by the length and then multiply by 2 to get 2
(

a × b

‖a × b‖
)
.

(c) projab =

(
a · b
a · a

)
a.

(d) Here we divide vector a by its length and multiply it by the length of b to get
(‖b‖
‖a‖

)
a.

(e) The cross product of two vectors is orthogonal to each: a × (b × c).
(f) A vector perpendicular to a × b will be back in the plane determined by a and b, so our answer is (a × b) × c.

26. I love this problem—students tend to go ahead and calculate without thinking through what they’re doing first. This would
make a great quiz at the beginning of class.
(a) Vector: The cross product of the vectors a and b is a vector so you can take its cross product with vector c.
(b) Nonsense: The dot product of the vectors a and b is a scalar so you can’t dot it with a vector.
(c) Nonsense: The dot products result in scalars and you can’t find the cross product of two scalars.
(d) Scalar: The cross product of the vectors a and b is a vector so you can take its dot product with vector c.
(e) Nonsense: The cross product of the vectors a and b is a vector so you can take its cross product with vector that is the

result of the cross product of c and d.
(f) Vector: The dot product results in a scalar that is then multiplied by vector d. We can evaluate the cross product of vector

a with this result.
(g) Scalar: We are taking the dot product of two vectors.
(h) Vector: You are subtracting two vectors.

Note: You can have your students use a computer algebra system for these as suggested in the text. I’ve included worked out
solutions for those as old fashioned as I am.

27. Exercise 25(f) shows us that (a×b)× c is in the plane determined by a and b and so we expect the solution to be of the form
k1a + k2b for scalars k1 and k2.

Using formula (3) from the text for a × b:

(a × b) × c =

∣∣∣∣∣∣∣∣
i j k∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ −
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣
c1 c2 c3

∣∣∣∣∣∣∣∣
=

(
−
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ c3 −
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ c2

)
i −

(∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ c3 −
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ c1

)
j

+

(∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ c2 +

∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ c1

)
k

Look first at the coefficient of i: −a1b3c3 + a3b1c3 − a1b2c2 + a2b1c2. If we add and subtract a1b1c1 and regroup we have:
b1(a1c1 + a2c2 + a3c3) − a1(b1c1 + b2c2 + b3c3) = b1(a · c) − a1(b · c). Similarly for the coefficient of j. Expand then
add and subtract a2b2b3 and regroup to get b2(a · c)− a2(b · c). Finally for the coefficient of k, expand then add and subtract
a3b3c3 and regroup to obtain b3(a · c) − a3(b · c). This shows that (a × b) × c = (a · c)b − (b · c)a.
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Now here’s a version of Exercise 27 worked on Mathematica. First you enter the following to define the vectors a, b, and
c.

a = {a1, a2, a3}
b = {b1, b2, b3}
c = {c1, c2, c3}

The reply fromMathematica is an echo of your input for c. Let’s begin by calculating the cross product. You can either select
the cross product operator from the typesetting palette or you can type the escape key followed by “cross” followed by the
escape key. Mathematica should reformat this key sequence as× and you should be able to enter

(a × b) × c.

Mathematica will respond with the calculated cross product

{a2b1c2 − a1b2c2 + a3b1c3 − a1b3c3,

−a2b1c1 + a1b2c1 + a3b2c3 − a2b3c3,

−a3b1c1 + a1b3c1 − a3b2c2 + a2b3c2}.
Now you can check the other expression. Use a period for the dot in the dot product.

(a.c)b − (b.c) a

Mathematica will immediately respond

{b1(a1c1 + a2c2 + a3c3) − a1(b1c1 + b2c2 + b3c3),

b2(a1c1 + a2c2 + a3c3) − a2(b1c1 + b2c2 + b3c3),

b3(a1c1 + a2c2 + a3c3) − a3(b1c1 + b2c2 + b3c3)}
This certainly looks different from the previous expression. Before giving up hope, note that this one has been factored and
the earlier one has not. You can expand this by using the command

Expand[(a.c)b − (b.c)a]

or useMathematica’s command % to refer to the previous entry and just type

Expand[%].

This still might not look familiar. So take a look at

(a × b) × c − [(a.c)b − (b.c)a].

If this still isn’t what you are looking for, simplify it with the command

Simplify[%]

andMathematica will respond
{0, 0, 0}.

28. The exercise asks us to show that six quantities are equal.
The most important pair is a · (b×c) = c · (a×b). Because of the commutative property of the dot product c · (a×b) =

(a × b) · c and so we are showing that a · (b × c) = (a × b) · c.

c · (a × b) = (a × b) · c =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
b1 b2 b3

c1 c2 c3

a1 a2 a3

∣∣∣∣∣∣
= (b × c) · a = a · (b × c).
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The determinants of the 3 by 3 matrices above are equal because we had to interchange two rows twice to get from one to
the other. This fact has not yet been presented in the text. This would be an excellent time to use a computer algebra system
to show the two determinants are equal. Of course, you could use Mathematica or some other such system to do the entire
problem.

To show that a · (b × c) = b · (c × a) we use a similar approach:

a · (b × c) = (b × c) · a =

∣∣∣∣∣∣
b1 b2 b3

c1 c2 c3

a1 a2 a3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
c1 c2 c3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
= (c × a) · b = b · (c × a).

So we’ve established that the first three triple scalars are equal.
We get the rest almost for free by noticing that three pairs of equations are trivial:

a · (b × c) = −a · (c × b),

b · (c × a) = −b · (a × c), and

c · (a × b) = −c · (b × a).

Each of the above pairs are equal by the anticommutativity property of the cross product. If you prefer the matrix approach,
this also follows from the fact that interchanging two rows changes the sign of the determinant.

29. By Exercise 28, (a × b) · (c × d) = c · (d × (a × b)).
By anticommutativity, c · (d × (a × b)) = −c · ((a × b) × d).

By Exercise 27, −c · ((a × b) × d) = −c · ((a · d)b − (b · d)a) = (a · c)(b · d) − (a · d)(b · c) =

∣∣∣∣ a · c a · d
b · c b · d

∣∣∣∣.
30. Apply the results of Exercise 27 to each of the three components:

(a × b) × c + (b × c) × a + (c × a) × b = [(a · c)b − (b · c)a] + [(b · a)c − (c · a)b]

+ [(c · b)a − (a · b)c] = 0.

(For example, the (a · c)b cancels with the (c · a)b because of the commutative property for the dot product.)
31. If your students are using a computer algebra system, they may not notice that this is exactly the same problem as Exercise 27.

Just replace c with (c × d) on both sides of the equation in Exercise 27 to obtain the result here.
32. First apply Exercise 29 to the dot product to get

(a × b) · (b × c) × (c × a) = [a · (b × c)][b · (c × a)] − [a · (c × a)][b · (b × c)].

You can either observe that two of these quantities must be 0, or you can apply Exercise 28 to see a ·(c×a) = c ·(a×a) = 0.
Exercise 28 also shows that b · (c × a) = a · (b × c). The result follows.

33. We did this above in Exercise 29.
34. The amount of torque is the product of the length of the “wrench” and the component of the force perpendicular to the

“wrench”. In this case, the wrench is the door—so the length is four feet. The 20 lb force is applied perpendicular to the
plane of the doorway and the door is open 45◦. So from the text, the amount of torque = ‖a‖‖F‖ sin θ = (4)(20)(

√
2/2) =

40
√

2 ft-lb.
35. (a) Here the length of a is 1 foot, the force F = 40 pounds and angle θ = 120 degrees. So

Torque = (1)(40) sin 120◦ = 40

(√
3

2

)
= 20

√
3 foot-pounds.

(b) Here all that has changed is that ‖a‖ is 1.5 feet, so

Torque = (3/2)(40) sin 120◦ = 60

(√
3

2

)
= 30

√
3 foot-pounds.
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36. a = 2 in but torque is measured in foot-pounds so ‖a‖ = (1/6) ft.

Torque = a × F =

(
1

6
, 0, 0

)
× (0, 15, 0) =

(
0, 0,

5

2

)
.

So Egbert is using 5/2 foot-pounds straight up.
37. From the figure

sin θ =
1.5

3
=

1

2

⇒ θ = π/6.

This is the angle the seesaw makes with horizontal. The angle we want is

π/6 + π/2 = 2π/3.

Since ‖r‖ = 3 and ‖F‖ = 50, the amount of torque is

‖T‖ = ‖r × F‖ = ‖r‖ ‖F‖ sin
2π

3

= 3 · 50 ·
√

3

2
= 75

√
3 ft-lb

1.5�
3�

�

F

r

2�/3

F (translated)

38. (a) The linear velocity is v = ω × r so that

‖v‖ = ‖ω‖ ‖r‖ sin θ.

We have that the angular speed is 2π radians
24 hrs

= π
12

radians/hr (this is ‖ω‖.) Also ‖r‖ = 3960, so at 45◦ North latitude,
‖v‖ = π

12
· 3960 · sin 45◦ = 330π√

2
≈ 733.08 mph.

(b) Here the only change is that θ = 90◦. Thus ‖v‖ = π
2
· 3960 · sin 90◦ = 330π ≈ 1036.73 mph.

39. Archie’s actual experience isn’t important in solving this problem; he could have ridden closer to the center. Since we are only
interested in comparing Archie’s experience with Annie’s, it turns out that their difference would be the same so long as the dif-
ference in their distance from the center remained at 2 inches. The difference in speed is (331/3)(2π)(6)−(331/3)(2π)(4) =
(331/3)(2π)(2) = 4π(331/3) = 1331/3π = 400π/3 in/ min.

40. (a) v = ω × r = (0, 0, 12) × (2,−1, 3) = (12, 24, 0) = 12i + 24j.
(b) The height of the point doesn’t change so we can view this as if it were a problem inR2. When x = 2 and y = −1, we

can find the central angle by taking tan−1(−1/2). In one second the angle has moved 12 radians so the new point is

(
√

5 cos(tan−1(−1/2) + 12),
√

5 sin(tan−1(−1/2) + 12), 3) ≈ (1.15,−1.92, 3).
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41. Consider the rotations of a sphere about each of the two parallel axes pictured below.

W2 W1

Assume the two corresponding angular velocity vectors ω1 and ω2 (denoted w1 and w2 in the diagram) are “parallel” and
even have the same magnitude. Let them both point straight up (parallel to (0, 0, 1)) with magnitude 2π radians per second.
The idea is that as “free vectors” ω1 and ω2 are both equal to (0, 0, 2π). but that the corresponding rotational motions are
very different.

In the case of ω1, each second every point on the sphere has made a complete orbit around the axis. The corresponding
motion is that the sphere is rotating about this axis. (More concretely, take your Vector Calculus book and stand it up on its
end. Imagine an axis anywhere and spin it around that axis at a constant speed.)

In the case of ω2, each second every point on the sphere has made a complete orbit around the axis. In this case that means
that the corresponding motion is that the sphere is orbiting about this axis. (Hold your Vector Calculus book at arms length
and you spin around your axis.)

1.5 Equations for Planes; Distance Problems

1. This is a straightforward application of formulas (1) and (2):

1(x − 3) − (y + 1) + 2(z − 2) = 0 ⇐⇒ x − y + 2z = 8.

2. Again we apply formula (2):
(x − 9) − 2(z + 1) = 0 ⇐⇒ x − 2z = 11.

So what happened to the y term? The equation is independent of y. In the x− z plane draw the line x− 2z = 11 and then the
plane is generated by “dragging” the line either way in the y direction.

3. We first need to find a vector normal to the plane, so we take the cross product of two displacement vectors:

(3 − 2,−1 − 0, 2 − 5) × (1 − 2,−2 − 0, 4 − 5) = (1,−1,−3) × (−1,−2,−1) = (−5, 4,−3).

Now we can apply formula (2) using any of the three points:

−5(x − 3) + 4(y + 1) − 3(z − 2) = 0 ⇐⇒ −5x + 4y − 3z = −25.

4. We’ll again find the cross product of two displacement vectors:

(A,−B, 0) × (0,−B, C) = (−BC,−AC,−AB).

Now we apply formula (2):

−BC(x − A) − AC(y) − AB(z) = 0 ⇐⇒ BCx + ACy + ABz = ABC.

5. If the planes are parallel, then a vector normal to one is normal to the other. In this case the normal vector is n = (5,−4, 1).
So using formula (2) we get:

5(x − 2) − 4(y + 1) + (z + 2) = 0 ⇐⇒ 5x − 4y + z = 12.
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6. The plane must have a normal vector parallel to the normal n = 2i − 3j + k of the given plane; therefore, the vector n may
also be taken to be the normal to the desired plane. Hence an equation is

2(x + 1) − 3(y − 1) + 1(z − 2) = 0 ⇐⇒ 2x − 3y + z = −3.

7. We may take the normal to the plane to be the same as a normal to the given plane; thus we may let n = i − j + 7k. Hence
an equation for the desired plane is

1(x + 2) − 1(y − 0) + 7(z − 1) = 0 ⇐⇒ x − y + 7z = 5.

8. We may take the normal to the desired plane to be n = 2i + 2j + k. Therefore, the equation of the plane must be of the
form 2x + 2y + z = D for some constant D. For the plane to contain the given line, every point on the line must satisfy the
equation for the plane. Thus for all t ∈ R we must have

2(2 − t) + 2(2t + 1) + (3 − 2t) = D

⇐⇒ 4 − 2t + 4t + 2 + 3 − 2t = D

⇐⇒ 9 = D.

Hence the desired equation is 2x + 2y + z = 9.
9. Any plane parallel to 5x − 3y + 2z = 10 can be written in the form 5x − 3y + 2z = D for some constantD. For this plane
to contain the given line, it must be the case that for all t ∈ R we have

5(t + 4) − 3(3t − 2) + 2(5 − 2t) = D

⇐⇒ 5t + 20 − 9t + 6 + 10 − 4t = D

⇐⇒ 36 − 8t = D ⇐⇒ 8t = 36 − D.

However, there is no constant value for D for which 8t = 36 − D for all t ∈ R. Hence the given line will intersect each
plane parallel to 5x − 3y + 2z = 10, but it will never be completely contained in any of them.

10. The plane contains the line r(t) = (−1, 4, 7) + (2, 3,−1)t and the point (2, 5, 0). Choose two points on the line, for example
(−1, 4, 7) and (13, 25, 0) and proceed as in Exercises 3 and 4.

(−1 − 2, 4 − 5, 7 − 0) × (13 − 2, 25 − 5, 0) = (−3,−1, 7) × (11, 20, 0) = (−140, 77,−49)

= 7(−20, 11,−7).

We are just looking for the plane perpendicular to this vector so we can ignore the scalar 7.

−20(x − 2) + 11(y − 5) − 7(z) = 0 ⇐⇒ −20x + 11y − 7z = 15.

11. The only relevant information contained in the equation of the line r(t) = (−5, 4, 7) + (3,−2,−1)t is the vector coefficient
of t. This is the normal vector n = (3,−2,−1).

3(x − 1) − 2(y + 1) − (z − 2) = 0 ⇐⇒ 3x − 2y − z = 3.

12. We have two lines given by the vector equations:

r1(t) = (2,−5, 1) + (1, 3, 5)t

r2(t) = (5,−10, 9) + (−1, 3,−2)t

The vector (1, 3, 5) × (−1, 3,−2) = (−21,−3, 6) = −3(7, 1,−2) is orthogonal to both lines. So the equation of the plane
containing both lines is:

7(x − 2) + y + 5 − 2(z − 1) = 0 ⇐⇒ 7x + y − 2z = 7.
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13. The line shared by two planes will be orthogonal each of their normal vectors. First, calculate: (1, 2,−3) × (5, 5,−1) =
(13,−14,−5). Now find a point on the line by setting z = 0 and solving the two equations{

x + 2y = 5
5x + 5y = 1

to get x = −23/5 and y = 24/5. The equation of the line is r(t) = (−23/5, 24/5, 0) + (13,−14,−5)t, or in paramet-
ric form: ⎧⎪⎨

⎪⎩
x = 13t − 23

5

y = −14t + 24
5

z = −5t.

14. The normal to the plane is n = (2,−3, 5) and the line passes through the point P = (5, 0, 6). The equation of the line

r(t) = P + nt = (5, 0, 6) + (2,−3, 5) t.

In parametric form this is: ⎧⎨
⎩

x = 2t + 5
y = −3t
z = 5t + 6.

15. The easiest way to solve this is to check that the vector from the coefficients of the first equation (8,−6, 9A) is a multiple of
the coefficients of the second equation (A, 1, 2). In this case the first is −6 times the second. This means that 8 = −6A or
A = −4/3. Checking we see this is confirmed by 9A = −6(2).

16. For perpendicular planes we check that 0 = (A,−1, 1) · (3A, A,−2). This yields the quadratic 0 = 3A2 − A − 2 =
(3A + 2)(A − 1). The two solutions are A = −2/3 and A = 1.

17. This is a direct application of formula (10):

x(s, t) = sa + tb + c = s(2,−3, 1) + t(1, 0,−5) + (−1, 2, 7).

In parametric form this is: ⎧⎨
⎩

x = 2s + t − 1
y = −3s + 2
z = s − 5t + 7

18. Again this follows from formula (10):

x(s, t) = s(−8, 2, 5) + t(3,−4,−2) + (2, 9,−4) or

⎧⎨
⎩

x = −8s + 3t + 2
y = 2s − 4t + 9
z = 5s − 2t − 4

19. The plane contains the lines given by the equations:

r1(t) = (5,−6, 10) + t(2,−3, 4), and

r2(t) = (−1, 3,−2) + t(5, 10, 7).

So we use formula (10) with the vectors (2,−3, 4) and (5, 10, 7) and either of the two points to get:

x(s, t) = t(2,−3, 4) + s(5, 10, 7) + (−1, 3,−2) or

⎧⎨
⎩

x = 2t + 5s − 1
y = −3t + 10s + 3
z = 4t + 7s − 2.

20. We need to find two out of the three displacement vectors and use any of the three points:

a = (0, 2, 1) − (7,−1, 5) = (−7, 3,−4) and b = (0, 2, 1) − (−1, 3, 0) = (1,−1, 1) so

x(s, t) = s(−7, 3,−4) + t(1,−1, 1) + (0, 2, 1) or

⎧⎨
⎩

x = −7s + t
y = 3s − t + 2
z = −4s + t + 1.
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21. The equation of the line r(t) = (−5, 10, 9) + t(3,−3, 2) immediately gives us one of the two vectors a = (3,−3, 2). The
displacement vector from a point on the line to our given point gives us the vector b = (−5, 10, 9)− (−2, 4, 7) = (−3, 6, 2).
So our equations are:

x(s, t) = s(3,−3, 2) + t(−3, 6, 2) + (−5, 10, 9) or

⎧⎨
⎩

x = 3s − 3t − 5
y = −3s + 6t + 10
z = 2s + 2t + 9.

22. To convert to the parametric form we will need two vectors orthogonal to the normal direction n = (2,−3, 5) and a point on
the plane. The easiest way to find an orthogonal vector is to let one coordinate be zero and find the other two. For example if
the x component is zero then (2,−3, 5) · (0, y, z) = −3y + 5z is solved when y = 5k and z = 3k for any scalar k. In other
words, the vectors a = (0, 5, 3) and b = (3, 2, 0) are orthogonal to n. For a point in the plane 2x − 3y + 5z = 30, set any
two of x, y, and z to zero. For example (0, 0, 6) is in the plane. Our parametric equations are:

x(s, t) = s(0, 5, 3) + t(3, 2, 0) + (0, 0, 6) or

⎧⎨
⎩

x = 3t
y = 5s + 2t
z = 3s + 6.

23. We combine the parametric equations into the single equation:

x(s, t) = s(3, 4, 1) + t(−1, 1, 5) + (2, 0, 3).

Use the cross product to find the normal vector to the plane:

n = (3, 4, 1) × (−1, 1, 5) = (19,−16, 7).

So the equation of the plane is:

19(x − 2) − 16y + 7(z − 3) = 0 or 19x − 16y + 7z = 59.

24. Using method 1 of Example 7, choose a point B on the line, say B = (−5, 3, 4). Then −−→BP0 = (−5, 3, 4) − (1,−2, 3) =
(−6, 5, 1), and a = (2,−1, 0). So

proja
−−→BP0 =

(
a · −−→BP0

a · a

)
a =

(
(2,−1, 0) · (−6, 5, 1)

(2,−1, 0) · (2,−1, 0)

)
(2,−1, 0) =

−17

5
(2,−1, 0).

The distance is

‖−−→BP0 − proja
−−→BP0‖ =

∥∥∥∥(−6, 5, 1) − −17

5
(2,−1, 0)

∥∥∥∥ = (1/5)‖(4, 8, 5)‖ =
√

105/5.

25. This time we’ll use method 2 of Example 7. Again choose a pointB on the line and a vector a parallel to the line. The distance
is then

D =
‖a × −−→BP0‖

‖a‖ =
‖(3, 5, 0) × (7 − 2,−3 + 1, 0)‖

‖(3, 5, 0)‖ =
31√
34

.

For a method 3, you could have solved for an arbitrary point on the line B such that −−→BP0 · a = 0 and then found the length of−→BP0. InR2, the calculation is not too bad.
26. Using method 1 of Example 7, choose a point B on the line, say B = (5, 3, 8). Then −−→BP0 = (−11, 10, 20) − (5, 3, 8) =

(−16, 7, 12), and a = (−1, 0, 7). So

proja
−−→BP0 =

(
a · −−→BP0

a · a

)
a =

(
(−1, 0, 7) · (−16, 7, 12)

(−1, 0, 7) · (−1, 0, 7)

)
(−1, 0, 7) = (−2, 0, 14).

The distance is
‖−−→BP0 − proja

−−→BP0‖ = ‖(−16, 7, 12) − (−2, 0, 14)‖ = ‖(−14, 7,−2)‖ =
√

249.
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27. Use Example 9 and for two points B1 = (−1, 3, 5) on l1 and B2 = (0, 3, 4) on l2 calculate
−−−→
B1B2 = (1, 0,−1). To find the

vector n, calculate the cross product n = (8,−1, 0) × (0, 3, 1) = (−1,−8, 24).

projn
−−−→
B1B2 =

(
n · −−−→B1B2

n · n

)
n =

(
(−1,−8, 24) · (1, 0,−1)

(−1,−8, 24) · (−1,−8, 24)

)
(−1,−8, 24)

= − 25

641
(−1,−8, 24).

Finally
∥∥∥∥− 25

641
(−1,−8, 24)

∥∥∥∥ =
25√
641

.

28. Again, use Example 9 and for two points B1 = (−7, 1, 3) on l1 and B2 = (0, 2, 1) on l2 calculate
−−−→
B1B2 = (7, 1,−2). To

find the vector n, calculate the cross product n = (1, 5,−2) × (4,−1, 8) = (38,−16,−21).

projn
−−−→
B1B2 =

(
n · −−−→B1B2

n · n

)
n =

(
(38,−16,−21) · (7, 1,−2)

(38,−16,−21) · (38,−16,−21)

)
(38,−16,−21)

=
292

2141
(38,−16,−21).

Finally
∥∥∥∥ 292

2141
(38,−16,−21)

∥∥∥∥ =
292√
2141

.

29. (a) Again, use Example 9 with the two pointsB1 = (4, 0, 2), andB2 = (2, 1, 3) and normal vectorn = (3, 1, 2)×(1, 2, 3) =

(−1,−7, 5). The displacement vector is
−−−→
B1B2 = (−2, 1, 1). Note that

−−−→
B1B2 is orthogonal to n and so the projection

projn
−−−→
B1B2 = 0 (if you’d like, you can go ahead and calculate this) and so the lines are distance 0 apart.

(b) This means that the lines must have a point in common (that they intersect at least once). The lines are not parallel so they
have exactly one point in common (i.e., they aren’t the same line).

30. (a) The shortest distance between a point P0 and a line l is a straight line that meets P0 orthogonally. If we have two
nonparallel lines then we can use the cross product to find the one direction n that is orthogonal to each. The shortest
segment between two lines will meet each orthogonally, for two skew lines l1 and l2 the line that joins them at these
closest points will be parallel to n.

If instead l1 is parallel to l2 we get a whole plane’s worth of orthogonal directions. We have no way of choosing a
unique vector n that is used in the calculation.

O.K., that’s why we can’t use the method of Example 9. What can we do instead?
(b) Fix a point on l1, say P1 = (2, 0,−4). Then as we saw in an earlier exercise, the distance from P1 to an arbitrary point

P2 = (1 + t, 3 − t,−5 + 5t) on l2 is

‖−−−→P1P2‖ =
√

(t − 1)2 + (3 − t)2 + (−1 + 5t)2 =
√

27t2 − 18t + 11.

‖−−−→P1P2‖ is minimized when ‖−−−→P1P2‖2 is minimized. This is at the vertex of the parabola, when 54t− 18 = 0 or t = 1/3.
At this point the distance is √

27(1/3)2 − 18(1/3) + 11 =
√

3 − 6 + 11 =
√

8 = 2
√

2.

Note: In Exercises 31–33 we could just cut to the end of Example 8 and realize that the length of projn
−−−→
P1P2 =

|n · −−−→P1P2|
‖n‖ .

Instead we will stay true to the spirit of the examples and follow the argument through.

31. These planes are parallel so we can use Example 8. The point P1 = (1, 0, 0) is on plane one and the point P2 = (8, 0, 0) is
on plane two. We project the displacement vector

−−−→
P1P2 = (7, 0, 0) onto the normal direction n = (1,−3, 2):

projn
−−−→
P1P2 =

(
(7, 0, 0) · (1,−3, 2)

(1,−3, 2) · (1,−3, 2)

)
(1,−3, 2) =

7

14
(1,−3, 2) =

1

2
(1,−3, 2).

So the distance is ‖projn
−−−→
P1P2‖ =

√
14/2.
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32. These planes are also parallel. We choose point P1 = (0, 0, 6) on plane one and P2 = (0, 0,−2) on plane two. The
displacement vector is therefore

−−−→
P1P2 = (0, 0,−8), and the normal vector is n = (5,−2, 2). So

projn
−−−→
P1P2 =

(
(0, 0,−8) · (5,−2, 2)

(5,−2, 2) · (5,−2, 2)

)
(5,−2, 2) =

−16

33
(5,−2, 2).

The distance is ‖projn
−−−→
P1P2‖ = 16√

33
.

33. As in Exercises 27 and 28, we’ll choose a point P1 = (D1/A, 0, 0) on plane one and P2 = (D2/A, 0, 0) on plane two. The
displacement vector is

−−−→
P1P2 =

(
D2 − D1

A
, 0, 0

)
.

A vector normal to the plane is n = (A, B, C).

projn
−−−→
P1P2 =

((
D2−D1

A
, 0, 0

) · (A, B, C)

(A, B, C) · (A, B, C)

)
(A, B, C) =

D2 − D1

A2 + B2 + C2
(A, B, C).

The distance between the two planes is:

‖projn
−−−→
P1P2‖ =

|D2 − D1|
A2 + B2 + C2

‖(A, B, C)‖ =
|D2 − D1|√

A2 + B2 + C2
.

34. (a) Plane one is normal to n1 = (9,−5, 9) × (3,−2, 3) = (3, 0,−3) while plane two is normal to n2 = (−9, 2,−9) ×
(−4, 7,−4) = (55, 0,−55). So n1 = (3/55)n2, i.e. they normal vectors are parallel so the planes are parallel.

(b) We’ll use the two points in the given equations to get the displacement vector
−−−→
P1P2 = (8,−4, 12), and the normal vector

n = (3, 0,−3). So

projn
−−−→
P1P2 =

(
(8,−4, 12) · (3, 0,−3)

(3, 0,−3) · (3, 0,−3)

)
(3, 0,−3) =

−12

18
(3, 0,−3).

The distance is ‖projn
−−−→
P1P2‖ = 12√

18
= 12

3
√

2
= 4√

2
= 2

√
2.
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35. This exercise follows immediately from Exercise 33 (and can be very difficult without it). Here A = 1, B = 3, C = −5 and
D1 = 2. The equation in Exercise 33 becomes:

3 =
|2 − D2|√

12 + 32 + (−5)2
=

|2 − D2|√
35

.

So
3
√

35 = |2 − D2| or 2 − D2 = ±3
√

35.

SoD2 = 2 ± 3
√

35 and the equations of the two planes are:

x + 3y − 5z = 2 ± 3
√

35.

36. The lines are parallel, so the distance between them is the same as the distance between any point on one of the lines and the

other line. Thus take b2—the position vector of a point on the second line—and use Example 7. ThenD =
‖a × (b2 − b1)‖

‖a‖ .

a

a

b1

b2

37. We have
−→
AB = b − a.

D = ‖projn(b − a)‖ =
|n · (b − a)|

‖n‖2
‖n‖

=
|n · (b − a)|

‖n‖ .

B

A

n

(As for the motivation, consider Example 8 with A as P1, B as P2.)
38. The parallel planes have equations n · (x − x1) = 0 and n · (x − x2) = 0. The desired distance is given by ‖projn

−−−→
P1P2‖

where Pi is the point whose position vector is xi. Thus
−−−→
P1P2 = x2 − x1 so

‖projn
−−−→
P1P2‖ =

|n · (x2 − x1)|
‖n‖2

‖n‖

=
|n · (x2 − x1)|

‖n‖ .

39. By letting t = 0 in each vector parametric equation, we obtain b1,b2 as position vectors of points B1, B2 on the respective
lines. Hence

−−−→
B1B2 = b2 − b1. A vector n perpendicular to both lines is given by n = a1 × a2. Thus

D = ‖projn
−−−→
B1B2‖ =

|n · −−−→B1B2|
‖n‖2

‖n‖ =
|n · −−−→B1B2|

‖n‖

=
|(a1 × a2) · (b2 − b1)|

‖a1 × a2‖ .
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1.6 Some n-dimensional Geometry

1. (a) (1, 2, 3, . . . , n) = (1, 0, 0, . . . , 0) + 2(0, 1, 0, 0, . . . , 0) + · · · + n(0, 0, 0, . . . , 0, 1) = e1 + 2e2 + 3e3 + · · · + nen.
(b) (1, 0,−1, 1, 0,−1, . . . , 1, 0,−1) = e1 − e3 + e4 − e6 + e7 − e9 + · · · + en−2 − en.

2. e1 + e2 + · · · + en = (1, 1, 1, . . . , 1).
3. e1 − 2e2 + 3e3 − 4e4 + · · · + (−1)n+1nen = (1,−2, 3,−4, . . . , (−1)n+1n).
4. e1 + en = (1, 0, 0, . . . , 0, 1).
5. (a) a + b = (1 + 2, 3− 4, 5 + 6, 7− 8, . . . , 2n− 1 + (−1)n+12n) = (3,−1, 11,−1, 19,−1, . . . , 2n− 1 + (−1)n+12n).

The nth term is
{

4n − 1 if n is odd, and
−1 if n is even.

(b) a−b = (1− 2, 3 + 4, 5− 6, 7 + 8, . . . , 2n− 1− (−1)n+12n) = (−1, 7,−1, 15,−1, . . . , 2n− 1− (−1)n+12n). The

nth term is
{

4n − 1 if n is even, and
−1 if n is odd.

(c) −3(1, 3, 5, 7, . . . , 2n − 1) = (−3,−9,−15,−21, . . . ,−6n + 3).
(d) ‖a‖ =

√
a · a =

√
12 + 32 + 52 + · · · + (2n − 1)2.

(e) a · b = 1(2) + 3(−4) + 5(6) + · · · + (2n − 1)(−1)n+12n = 2 − 12 + 30 − 56 + · · · + (−1)n+12n(2n − 1).
6. We want to show that ‖a + b‖ ≤ ‖a‖ + ‖b‖. Here n is even and a and b are vectors inRn,

a = (1, 0, 1, 0, . . . , 0)

b = (0, 1, 0, 1, . . . , 1), and

a + b = (1, 1, 1, 1, . . . , 1).

‖a + b‖ =
√

12 + 12 + · · · + 12︸ ︷︷ ︸
n times

=
√

n = 2
√

n/4 ≤ 2
√

n/2 = 2
√

12 + 12 + · · · + 12︸ ︷︷ ︸
n/2 times

= ‖a‖ + ‖b‖.

7. First we calculate

‖a‖ =
√

12 + 22 + 32 + · · · + n2 =

√
n(n + 1)(2n + 1)

6

‖b‖ =
√

12 + 12 + · · · + 12︸ ︷︷ ︸
n times

=
√

n, and

|a · b| = 1 + 2 + 3 + · · · + n =
n(n + 1)

2

So

‖a‖ ‖b‖ =

(√
n(n + 1)(2n + 1)

6

)
(
√

n) =
(n

2

)(√ 2(n + 1)(2n + 1)

3

)
.

For n = 1,
√

2(n+1)(2n+1)
3

= 2 = n + 1.

For n = 2,
√

2(n+1)(2n+1)
3

=
√

10 ≥ 3 = n + 1.
For n ≥ 3, (n

2

)(√ 2(n + 1)(2n + 1)

3

)
≥
(n

2

) 2n + 1√
3

≥
(n

2

)
(n + 1) = |a · b|.

8. As always,

projab =

(
a · b
a · a

)
a =

2 − 5 + 27 − 2

1 + 1 + 49 + 9 + 4
a =

22

64
a

=
11

32
(1,−1, 7, 3, 2) =

(
11

32
,
−11

32
,
77

32
,
11

16

)
.

9. This is just the triangle inequality:

‖a − b‖ = ‖(a − c) + (c − b)‖ ≤ ‖a − c‖ + ‖c − b‖.
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10. We are given that c = a + b so

‖c‖2 = ‖a + b‖2 = (a + b) · (a + b) = a · a + a · b + b · a + b · b.

But a · b = 0 = b · a, so
a · a + a · b + b · a + b · b = a · a + b · b = ‖a‖2 + ‖b‖2.

This is analogous to the Pythagorean Theorem. Here a and b are playing the role of the legs. They are orthogonal vectors.
The third side of the triangle is a + b = c. The theorem in this case says that the sum of the squares of the lengths of the
“legs” is the square of the length of the “hypotenuse”.

11. We have

‖a + b‖ = ‖a − b‖ ⇒ ‖a + b‖2 = ‖a − b‖2

⇒ (a + b) · (a + b) = (a − b) · (a − b).

Expand to find

a · a + 2a · b + b · b = a · a − 2a · b + b · b
⇒ 4a · b = 0,

so a and b are orthogonal.
12. As above, if ‖a − b‖ > ‖a + b‖, then −2a · b > 2a · b so −4a · b > 0 ⇔ a · b < 0. Thus cos θ = a · b

‖a‖ ‖b‖ < 0. Hence
π
2

< 0 ≤ π.
13. The equation could also be written in the more suggestive form:

(2, 3,−7, 1,−5) · [(x1, x2, x3, x4, x5) − (1,−2, 0, 4,−1)] = 0.

These are the points in R5 so that (x1, x2, x3, x4, x5) − (1,−2, 0, 4,−1) is orthogonal to the vector (2, 3,−7, 1,−5). This
is the four dimensional hyperplane inR5 orthogonal to (2, 3,−7, 1,−5) containing the point (1,−2, 0, 4,−1).

14. Half of each type of your inventory gives T-shirts in quantities of 10, 15, 12, 10 (in order of lowest to highest selling price).
Half of each type of your friend’s inventory gives 15, 8, 10, 14 baseball caps. The value of your half of the inventory is

(8, 10, 12, 15) · (10, 15, 12, 10) = $524.

The value of your friend’s inventory is

(8, 10, 12, 15) · (15, 8, 10, 14) = $530.

Thus your friend might be reluctant to accept your offer, unless he’s quite a good friend.
15. (a) We have

p = (200, 250, 300, 375, 450, 500)

Total cost = p · x = 200x1 + 250x2 + 300x3 + 375x4 + 450x5 + 500x6

(b) With p as in part (a), the customer can afford commodity bundles x in the set

{x ∈ R6|p · x ≤ 100,000}.

The budget hyperplane is p · x = 100,000 or 200x1 + 250x2 + 300x3 + 375x4 + 450x5 + 500x6 = 100,000.
16.

3A − 2B = 3

[
1 2 3

−2 0 1

]
− 2

[ −4 9 5
0 3 0

]

=

[
3 6 9

−6 0 3

]
−
[ −8 18 10

0 6 0

]

=

[
11 −12 −1
−6 −6 3

]
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17.

AC =

[
1 2 3

−2 0 1

] ⎡⎣ 1 −1 0
2 0 7
0 3 −2

⎤
⎦

=

[
1(1) + 2(2) + 3(0) 1(−1) + 2(0) + 3(3) 1(0) + 2(7) + 3(−2)

−2(1) + 0(2) + 1(0) −2(−1) + 0(0) + 1(3) −2(0) + 0(7) + 1(−2)

]

=

[
5 8 8

−2 5 −2

]
.

18.

DB =

[
1 0
2 −3

] [ −4 9 5
0 3 0

]

=

[
1(−4) + 0(0) 1(9) + 0(3) 1(5) + 0(0)
2(−4) − 3(0) 2(9) − 3(3) 2(5) − 3(0)

]

=

[ −4 9 5
−8 9 10

]
.

19.

BT D =

⎡
⎣ −4 0

9 3
5 0

⎤
⎦ [ 1 0

2 −3

]

=

⎡
⎣ −4(1) + 0(2) −4(0) + 0(−3)

9(1) + 3(2) 9(0) + 3(−3)
5(1) + 0(2) 5(0) + 0(−3)

⎤
⎦

=

⎡
⎣ −4 0

15 −9
5 0

⎤
⎦

20. (a)

I2 =

[
1 0
0 1

]
, I3 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , and I4 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

(b) The ijth entry of the product of matrices A and B is the product of the ith row of A and the jth column of B. So in case
i. we have:

(AIn)ij = [ai1 ai2 ai3 . . . ain](ej)
T = (ai1, ai2, ai3, . . . , ain) · ej = aij .

In case ii. we have:

(InA)ij = (ei)

⎛
⎜⎜⎜⎜⎜⎝

a1j

a2j

a3j

...
anj

⎞
⎟⎟⎟⎟⎟⎠ = ei · (a1j , a2j , a3j , . . . , anj) = aij .

In both cases we’ve shown that the ijth component of the product is the ijth component of matrix A, so AIn = A = InA.
21. We’ll expand on the first row:∣∣∣∣∣∣∣∣

7 0 −1 0
2 0 1 3
1 −3 0 2
0 5 1 −2

∣∣∣∣∣∣∣∣ = 7

∣∣∣∣∣∣
0 1 3

−3 0 2
5 1 −2

∣∣∣∣∣∣−
∣∣∣∣∣∣

2 0 3
1 −3 2
0 5 −2

∣∣∣∣∣∣
= 7

(
−1

∣∣∣∣ −3 2
5 −2

∣∣∣∣+ 3

∣∣∣∣ −3 0
5 1

∣∣∣∣
)
−
(

2

∣∣∣∣ −3 2
5 −2

∣∣∣∣+ 3

∣∣∣∣ 1 −3
0 5

∣∣∣∣
)

= 7(−1(−4) + 3(−3)) − (2(−4) + 3(5)) = −42.
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Note: Exercises 22 and 23 are good exploration problems for students before they’ve done Exercise 25.
22. Note that if we expand along the first row, only one term survives. If at each step we expand along the first row, the pattern

continues. What we are left with is the product of the elements along the diagonal.∣∣∣∣∣∣∣∣
8 0 0 0

15 1 0 0
−7 6 −1 0

8 1 9 7

∣∣∣∣∣∣∣∣ = 8

∣∣∣∣∣∣
1 0 0
6 −1 0
1 9 7

∣∣∣∣∣∣
= (8)(1)

∣∣∣∣ −1 0
9 7

∣∣∣∣
= (8)(1)(−1)(7) = −56.

23. This is similar to Exercise 22. Either we could expand along the last row of each matrix at each step or we could expand along
the first column at each step. It is easier to keep track of signs if we choose this second approach. We again find that the
determinant is the product of the diagonal elements.∣∣∣∣∣∣∣∣∣∣

5 −1 0 8 11
0 2 1 9 7
0 0 4 −3 5
0 0 0 2 1
0 0 0 0 −3

∣∣∣∣∣∣∣∣∣∣
= 5

∣∣∣∣∣∣∣∣
2 1 9 7
0 4 −3 5
0 0 2 1
0 0 0 −3

∣∣∣∣∣∣∣∣

= (5)(2)

∣∣∣∣∣∣
4 −3 5
0 2 1
0 0 −3

∣∣∣∣∣∣
= (5)(2)(4)

∣∣∣∣ 2 1
0 −3

∣∣∣∣
= (5)(2)(4)(2)(−3) = −240.

24. There really isn’t anything to show. Using the convenient fact provided after Example 8:

• If row i consists of all zeros (i.e., aij = 0 for 1 ≤ j ≤ n) then expand along row i. Using the cofactor notation:

|A| = (−1)i+1ai1|Ai1| + (−1)i+2ai2|Ai2| + · · · + (−1)i+nain|Ain|
= (−1)i+1(0)|Ai1| + (−1)i+2(0)|Ai2| + · · · + (−1)i+n(0)|Ain| = 0.

• If column j consists of all zeros (i.e., aij = 0 for all 1 ≤ i ≤ n) then expand along column j. As above we get

|A| = (−1)1+ja1j |A1j | + (−1)2+ja2j |A2j | + · · · + (−1)n+janj |Anj |
= (−1)1+j(0)|A1j | + (−1)2+j(0)|A2j | + · · · + (−1)n+j(0)|Anj | = 0.

25. (a) A lower triangularmatrix is an n×nmatrix whose entries above the main diagonal are all zero. For example the matrix
in Exercise 22 is lower triangular.

(b) If we expand the determinant of an upper triangular matrix along its first column we get:

|A| = (−1)1+1a11|A11| + (−1)2+1a21|A21| + · · · + (−1)n+1an1|An1|
= (−1)1+1(a11)|A11| + (−1)2+1(0)|A2j | + · · · + (−1)n+1(0)|Anj | = (a11)|A11|.

Looking back on what we have found: The determinant of an upper triangular matrix is equal to the term in the upper left
position multiplied by the determinant of the matrix that’s left when the top most row and left most column are removed. Each
time we remove the top row and left column we are left with an upper triangular matrix of one dimension lower. Repeat the
process n times and it is clear that

|A| = a11|A11| = a11(a22|(A11)11|) = · · · = a11a22a33 · · · ann.
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26. (a) Type I Rule: If matrix B results from matrix A by exchanging rows i and j then |A| = −|B|.
As one example, ∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1, while

∣∣∣∣∣∣
0 1 0
1 0 0
0 0 1

∣∣∣∣∣∣ = −1.

A more important example is

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ = a1b2 − a2b1 = −(b1a2 − b2a1) = −
∣∣∣∣ b1 b2

a1 a2

∣∣∣∣ .

The reason this second example is more important is that you can always expand the determinants ofA and B so that you
are left with a sum of scalars times the determinants of 2 by 2 matrices involving only the two rows being switched. Since
the scalars will be the same in both cases, this second example shows that the effect of switching rows i and j is to switch
the sign of every component in the sum and so |A| = −|B|.

(b) Type III Rule: If matrix B results from matrix A by adding a multiple of row i to row j and leaving row i unchanged
then |A| = |B|.

As one example, ∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1, and also

∣∣∣∣∣∣
1 1 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1.

To see what’s going on, let’s look at the example

∣∣∣∣ a1 + nb1 a2 + nb2

b1 b2

∣∣∣∣ = (a1 + nb1)b2 − (a2 + nb2)b1 = a1b2 − a2b1 + n(b1b2 − b2b1)

= a1b2 − a2b1.

Another way to look at the example above is to see that the determinant splits into two pieces:

a1b2 − a2b1 + n(b1b2 − b2b1) =

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣+ n

∣∣∣∣ b1 b2

b1 b2

∣∣∣∣ =

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ .

Note: A more general case of this rule will be proved in Exercise 28.
(c) Type II Rule: If matrix B results from matrix A by multiplying the entries in the ith row of A by the scalar c then

|B| = c|A|.
We will prove this by expanding the determinant for B along the ith row. Because row i is the only one changed, the

cofactors Bij are the same as the cofactors Aij .

|B| = (−1)i+1bi1|Bi1| + (−1)i+2bi2|Bi2| + · · · + (−1)i+nbin|Bin|
= (−1)i+1cai1|Ai1| + (−1)i+2cai2|Ai2| + · · · + (−1)i+ncain|Ain|
= c((−1)i+1ai1|Ai1| + (−1)i+2ai2|Ai2| + · · · + (−1)i+nain|Ain|) = c|A|.
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27. Here we go: at each step we’ll specify what we’ve done.

∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
1 0 1 −2 4

−1 1 2 3 −5
0 2 3 1 7

−3 2 −1 0 1

∣∣∣∣∣∣∣∣∣∣
= (−1)

∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
−1 1 2 3 −5

1 0 1 −2 4
0 2 3 1 7

−3 2 −1 0 1

∣∣∣∣∣∣∣∣∣∣
switched rows 2

and 3

= (−1)

∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
1 0 1 −2 4
0 2 3 1 7
0 2 2 −6 13

∣∣∣∣∣∣∣∣∣∣
← row 2+ row 3

← row 5+ 3(row 3)

=

(−1

2

)
∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
2 0 2 −4 8
0 2 3 1 7
0 2 2 −6 13

∣∣∣∣∣∣∣∣∣∣
← 2(row 3)

=

(−1

2

)
∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
0 −1 4 −11 0
0 2 3 1 7
0 2 2 −6 13

∣∣∣∣∣∣∣∣∣∣
← row 3− row 1

=

(−1

2

)
∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
0 0 7 −10 −1
0 0 −3 −1 9
0 0 −4 −8 15

∣∣∣∣∣∣∣∣∣∣
← row 3+ row 2
← row 4− 2(row 2)
← row 5− 2(row 2)

=

( −1

2(7)(7)

)
∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
0 0 7 −10 −1
0 0 −21 −7 63
0 0 −28 −56 105

∣∣∣∣∣∣∣∣∣∣ ← 7(row 4)
← 7(row 5)

=

( −1

2(7)(7)

)
∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
0 0 7 −10 −1
0 0 0 −37 60
0 0 0 −96 101

∣∣∣∣∣∣∣∣∣∣ ← row 4+ 3(row 4)
← row 5+ 4(row 3)

=

( −1

2(7)(7)(−37)

)
∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
0 0 7 −10 −1
0 0 0 −37 60
0 0 0 3552 −3737

∣∣∣∣∣∣∣∣∣∣ ← −37(row 5)

=

( −1

2(7)(7)(−37)

)
∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
0 0 7 −10 −1
0 0 0 −37 60
0 0 0 0 2023

∣∣∣∣∣∣∣∣∣∣ ← row 5+ 96(row 4)

=

( −1

2(7)(7)(−37)

)
(2)(1)(7)(−37)(2023) =

2023

7
= −289.
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28. (a) If you let A =

(
1 0
0 0

)
and B =

(
0 0
0 1

)
then 1 = det(A + B) but det(A) = det(B) = 0. So in general

det(A + B) �= det(A) + det(B).

(b)

∣∣∣∣∣∣
1 2 7

3 + 2 1 − 1 5 + 1
0 −2 0

∣∣∣∣∣∣ = −58, while

∣∣∣∣∣∣
1 2 7
3 1 5
0 −2 0

∣∣∣∣∣∣ +
∣∣∣∣∣∣

1 2 7
2 −1 1
0 −2 0

∣∣∣∣∣∣ = −32 − 26 = −58. It makes sense that

these should be equal; if you imagine expanding on the second row we see that∣∣∣∣∣∣
1 2 7

3 + 2 1 − 1 5 + 1
0 −2 0

∣∣∣∣∣∣ = (3 + 2)

∣∣∣∣ 2 7
−2 0

∣∣∣∣+ (1 − 1)

∣∣∣∣ 1 7
0 0

∣∣∣∣+ (5 + 1)

∣∣∣∣ 1 7
0 0

∣∣∣∣
=

(
3

∣∣∣∣ 2 7
−2 0

∣∣∣∣+
∣∣∣∣ 1 7

0 0

∣∣∣∣+ 5

∣∣∣∣ 1 7
0 0

∣∣∣∣
)

+

(
2

∣∣∣∣ 2 7
−2 0

∣∣∣∣−
∣∣∣∣ 1 7

0 0

∣∣∣∣+ 1

∣∣∣∣ 1 7
0 0

∣∣∣∣
)

=

∣∣∣∣∣∣
1 2 7
3 1 5
0 −2 0

∣∣∣∣∣∣+
∣∣∣∣∣∣

1 2 7
2 −1 1
0 −2 0

∣∣∣∣∣∣ .

(c)

∣∣∣∣∣∣
1 3 2 + 3
0 4 −1 + 5

−1 0 0 − 2

∣∣∣∣∣∣ = 0, while

∣∣∣∣∣∣
1 3 2
0 4 −1

−1 0 0

∣∣∣∣∣∣+
∣∣∣∣∣∣

1 3 3
0 4 5

−1 0 −2

∣∣∣∣∣∣ = −11 + 11 = 0.

(d) We might characterize the rules for rows as follows:
Let A, B and C be three matrices whose elements are the same except for those in row i where cij = aij + bij for
1 ≤ j ≤ n. Then det(C) = det(A) + det(B). We prove this by expanding the determinant along row i noting that in that
case the cofactors for all three matrices are equal (i.e., Aij = Bij = Cij for 1 ≤ j ≤ n):

|C| = (−1)i+1ci1|Ci1| + (−1)i+2ci2|Ci2| + · · · (−1)i+ncin|Cin|

= (−1)i+1(ai1 + bi1)|Ci1| + (−1)i+2(ai2 + bi2)|Ci2| + · · · (−1)i+n(ain + bin)|Cin|

= (−1)i+1(ai1)|Ci1| + (−1)i+2(ai2)|Ci2| + · · · (−1)i+n(ain)|Cin|

+ (−1)i+1(bi1)|Ci1| + (−1)i+2(bi2)|Ci2| + · · · (−1)i+n(bin)|Cin|
= (−1)i+1(ai1)|Ai1| + (−1)i+2(ai2)|Ai2| + · · · (−1)i+n(ain)|Ain|

+ (−1)i+1(bi1)|Bi1| + (−1)i+2(bi2)|Bi2| + · · · (−1)i+n(bin)|Bin|
= |A| + |B|.

The rule for columns is exactly the same:
Let A, B and C be three matrices whose elements are the same except for those in column j where cij = aij + bij for
1 ≤ i ≤ n. Then det(C) = det(A) + det(B). We could prove this by expanding the determinant along column j just as
above. Instead note that AT , BT , and CT satisfy the above rule for rows and that the determinant of a matrix is equal to
the determinant of its transpose. Our proof is then:

|C| = |CT | = |AT | + |BT | = |A| + |B|.

29. This is a pretty cool fact. If AB and BA both exist, these two matrices may not be equal. It doesn’t matter. They still have the
same determinant. The proof is straightforward: det(AB) = (det A)(det B) = (det B)(det A) = det (BA).

30. (a) Check the products in both directions . . .[
1 0
1 1

] [
1 0

−1 1

]
=

[
(1 + 0) (0 + 0)
(1 − 1) (0 + 1)

]
=

[
1 0
0 1

]

=

[
(1 + 0) (0 + 0)

(−1 + 1) (0 + 1)

]
=

[
1 0

−1 1

] [
1 0
1 1

]
.
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(b) Again, the products in both directions yield the identity matrix:

⎡
⎣ 1 2 3

2 5 3
1 0 8

⎤
⎦
⎡
⎣ −40 16 9

13 −5 −3
5 −2 −1

⎤
⎦ =

⎡
⎣ (−40 + 26 + 15) (16 − 10 − 6) (9 − 6 − 3)

(−80 + 65 + 15) (32 − 25 − 6) (18 − 15 − 3)
(−40 + 0 + 40) (16 + 0 − 16) (9 + 0 − 8)

⎤
⎦

=

⎡
⎣ −40 16 9

13 −5 −3
5 −2 −1

⎤
⎦
⎡
⎣ 1 2 3

2 5 3
1 0 8

⎤
⎦ =

⎡
⎣ (−40 + 32 + 9) (−80 + 80 + 0) (−120 + 48 + 72)

(13 − 10 − 3) (26 − 25 + 0) (39 − 15 − 24)
(5 − 4 − 1) (10 − 10 + 0) (15 − 6 − 8)

⎤
⎦ .

31. Say the given matrix is A. Then the top left entry in the inverse must be 1/2 because 1 is the top left entry of the product of
A−1A and it is twice the top left entry in the inverse matrix.

Looking at the second row of A, in the product AA−1 it “picks out” the element in the second row. This means that the
second row of A−1 is (0, 1, 0). Similarly, the third row of A picks out the opposite of the element in the third row in the
product AA−1 so the third row of A−1 is (0, 0,−1).

The third column of A tells us that the first and third elements of the top row of A−1 must be the same. The final element
to solve for is the middle element of the top row of A−1. It must be the opposite of the middle element of the third row of
A−1. Putting this information together, we have that

A−1 =

⎡
⎣ 1/2 −1 1/2

0 1 0
0 0 −1

⎤
⎦

32. Since the first column is 0, the determinant is 0. This means that the matrix could not have an inverse. We’ll actually show
this in Exercise 35 below. Say, for a minute that you don’t accept the results of Exercise 35 and you think you have found an
inverse matrix A−1 for the given matrix A. Then look at the product A−1A. It should be the identity matrix I3 but the first
column of the product will be all 0’s. For this reason, no inverse for A could exist.

33. Using the hint, assume that A has two inverses B and C. Then

B = BI = B(AC) = (BA)C = IC = C.

34. We just verify that B−1A−1 behaves as an inverse:

(B−1A−1)(AB) = B−1(A−1A)B = B−1InB = B−1B = In

(AB)(B−1A−1) = A(BB−1)A−1 = AInA−1 = AA−1 = In

35. (a) If A is invertible, consider the product AA−1 = I . By the formula in Exercise 29, (det A)(det A−1) = det(AA−1) =
det I = 1. From this we see that det A �= 0. In fact, we see more − the results of part (b) follow immediately.

(b) See part (a).
36. (a)

1

ad− bc
[

d −b
−c a

] [
a b
c d

]
=

1

ad− bc
[
ad− bc 0

0 ad− bc
]

= I2

[
a b
c d

]
· 1

ad− bc
[

d −b
−c a

]
=

1

ad− bc
[
ad− bc 0

0 ad− bc
]

= I2

(b) [
2 4

−1 2

]−1

=
1

(2 · 2 − (4)(−1))

[
2 −4
1 2

]
=

1

8

[
2 −4
1 2

]
=

[
1/4 −1/2
1/8 1/4

]
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37. If A =

⎡
⎣ 2 1 1

0 2 4
1 0 3

⎤
⎦, then det A = 12 + 4 − 2 = 14, so the formula gives

A−1 =
1

14

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣ 2 4
0 3

∣∣∣∣ −
∣∣∣∣ 1 1

0 3

∣∣∣∣
∣∣∣∣ 1 1

2 4

∣∣∣∣
−
∣∣∣∣ 0 4

1 3

∣∣∣∣
∣∣∣∣ 2 1

1 3

∣∣∣∣ −
∣∣∣∣ 2 1

0 4

∣∣∣∣∣∣∣∣ 0 2
1 0

∣∣∣∣ −
∣∣∣∣ 2 1

1 0

∣∣∣∣
∣∣∣∣ 2 1

0 2

∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
1

14

⎡
⎣ 6 −3 2

4 5 −8
−2 1 4

⎤
⎦ =

⎡
⎢⎢⎣

3
7

− 3
14

1
7

2
7

5
14

− 4
7

− 1
7

1
14

2
7

⎤
⎥⎥⎦

38. If A =

⎡
⎣ 2 −1 3

1 2 −2
3 0 1

⎤
⎦, then det A = 4 + 6 − 18 + 1 = −7, so the formula gives

A−1 = −1

7

⎡
⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣ 2 −2
0 1

∣∣∣∣ −
∣∣∣∣ −1 3

0 1

∣∣∣∣
∣∣∣∣ −1 3

2 −2

∣∣∣∣
−
∣∣∣∣ 1 −2

3 1

∣∣∣∣
∣∣∣∣ 2 3

3 1

∣∣∣∣ −
∣∣∣∣ 2 3

1 −2

∣∣∣∣∣∣∣∣ 1 2
3 0

∣∣∣∣ −
∣∣∣∣ 2 −1

3 0

∣∣∣∣
∣∣∣∣ 2 −1

1 2

∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

= −1

7

⎡
⎣ 2 1 −4

−7 −7 7
−6 −3 5

⎤
⎦ =

⎡
⎢⎢⎣

− 2
7

− 1
7

4
7

1 1 −1

6
7

3
7

− 5
7

⎤
⎥⎥⎦

39. We’ll transform the cross product into a determinant. To make the determinant easier to calculate we’ll replace the fourth row
with the sum of the fourth row and five times the second row. Finally we’ll expand along the first column.

(1, 2,−1, 3) × (0, 2,−3, 1) × (−5, 1, 6, 0) =

∣∣∣∣∣∣∣∣
e1 e2 · · · en
1 2 −1 3
0 2 −3 1

−5 1 6 0

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
e1 e2 · · · en
1 2 −1 3
0 2 −3 1
0 11 1 15

∣∣∣∣∣∣∣∣ ← row 4 + 5(row 2)

= e1

∣∣∣∣∣∣
2 −1 3
2 −3 1

11 1 15

∣∣∣∣∣∣−
∣∣∣∣∣∣
e2 e3 e4
2 −3 1
11 1 15

∣∣∣∣∣∣
= 32e1 + 46e2 + 19e3 − 35e4 = (32, 46, 19,−35).
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40. (a) We use the matrix form to write the cross product as a determinant. We then switch row i + 1 (the row consisting of
ai1, ai2, . . . , ain) with row j + 1 (the row consisting of aj1, aj2, . . . , ajn) which multiplies the determinant by −1:

a1 × · · · × ai × · · · × aj × · · · × an−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · en
a11 a12 · · · ain
...

...
...

...
ai1 ai2 · · · ain
...

...
...

...
aj1 aj2 · · · ajn

...
...

. . . ...
a(n−1)1 a(n−1)2 · · · a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · en
a11 a12 · · · a1n

...
...

...
...

ai1 ai2 · · · ain

...
...

...
...

aj1 aj2 · · · ajn

...
...

. . . ...
a(n−1)1 a(n−1)2 · · · a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

← Switch this row (i + 1)

← with this row (j + 1)

= −(a1 × · · · × aj × · · · × ai × · · · × an−1)

(b) Again we will change to the matrix form and then use the rule for the row operation of type II to pull the scalar k out and
then rewrite as a cross product.

a1 × · · · × kai × · · · × an−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 . . . en
a11 a12 . . . a1n

...
...

...
...

kai1 kai2 . . . kain

...
...

. . . ...
a(n−1)1 a(n−1)2 . . . a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 . . . en
a11 a12 . . . a1n

...
...

...
...

ai1 ai2 . . . ain

...
...

. . . ...
a(n−1)1 a(n−1)2 . . . a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
← row (i + 1) divided by k

= k(a1 × · · · × ai × · · · × an−1)

(c) Once again, we will change to the matrix form. This time we will use the rule we developed in Exercise 28 to write this
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as two determinants. Finally we will convert each back to the cross product form.

a1 × · · · × (ai + b) × · · · × an−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 . . . en
a11 a12 . . . a1n

...
...

...
...

(ai1 + b1) (ai2 + b2) . . . (ain + bn)

...
...

. . . ...
a(n−1)1 a(n−1)2 . . . a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 . . . en
a11 a12 . . . a1n

...
...

...
...

ai1 ai2 . . . ain

...
...

. . . ...
a(n−1)1 a(n−1)2 . . . a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

le1 e2 . . . en
a11 a12 . . . a1n

...
...

...
...

b1 b2 . . . bn

...
...

. . . ...
a(n−1)1 a(n−1)2 . . . a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (a1 × · · · × ai × · · · × an−1) + (a1 × · · · × b× · · · × an−1)

(d) Expand the determinant along the first row; we’ll refer to the cross product matrix as C:

b · |C| = b · ((a1 × · · · × ai × · · · × an−1) = b ·

∣∣∣∣∣∣∣∣∣∣∣

e1 e2 . . . en
a11 a12 . . . a1n

...
...

. . . ...
a(n−1)1 a(n−1)2 . . . a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣
= b · (e1|C11| − e2|C12| + · · · + (−1)1+nen|C1n|)

= b1|C11| − b2|C12| + · · · + (−1)1+nbn|C1n| =

∣∣∣∣∣∣∣∣∣∣∣

b1 b2 · · · bn

a11 a12 · · · a1n

...
...

. . . ...
a(n−1)1 a(n−1)2 · · · a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣
41. This follows immediately from part (d) of Exercise 28. For 1 ≤ i ≤ n − 1,

ai · (a1 × · · · × ai × · · · × an−1) =

∣∣∣∣∣∣∣∣∣∣∣

ai1 ai2 · · · ain

a11 a12 · · · a1n

...
...

. . . ...
a(n−1)1 a(n−1)2 · · · a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣
.

Replace the first row with the difference between row 1 and row i+1 and you will get (by Exercise 26) a matrix with the same
determinant, namely: ∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0
a11 a12 · · · a1n

...
...

. . . ...
a(n−1)1 a(n−1)2 · · · a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Therefore b is orthogonal to ai for 1 ≤ i ≤ n − 1.
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42. To find the normal direction n we’ll take the cross product of the displacement vectors:

−−−→
P0P1 = (2,−1, 0, 0, 5) − (1, 0, 3, 0, 4) = (1,−1,−3, 0, 1)

−−−→
P0P2 = (7, 0, 0, 2, 0) − (1, 0, 3, 0, 4) = (6, 0,−3, 2,−4)

−−−→
P0P3 = (2, 0, 3, 0, 4) − (1, 0, 3, 0, 4) = (1, 0, 0, 0, 0)

−−−→
P0P4 = (1,−1, 3, 0, 4) − (1, 0, 3, 0, 4) = (0,−1, 0, 0, 0)

We take the cross product which is the determinant (expand along the fourth row, and then along the last row):∣∣∣∣∣∣∣∣∣∣

e1 e2 e3 e4 e5

1 −1 −3 0 1
6 0 −3 2 −4
1 0 0 0 0
0 −1 0 0 0

∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣
e2 e3 e4 e5

−1 −3 0 1
0 −3 2 −4

−1 0 0 0

∣∣∣∣∣∣∣∣ = −
∣∣∣∣∣∣

e3 e4 e5

−3 0 1
−3 2 −4

∣∣∣∣∣∣
= 2e3 + 15e4 + 6e5 = (0, 0, 2, 15, 6).

We can choose any of the points, say P0 to find the equation of the hyperplane:

2(x3 − 3) + 15(x4) + 6(x5 − 4) = 0 or 2x3 + 15x4 + 6x5 = 30.

1.7 New Coordinate Systems

In Exercises 1–3 use equations (1) x = r cos θ and y = r sin θ.
1. x =

√
2 cos π/4 = (

√
2)(

√
2/2) = 1, and y =

√
2 sin π/4 = 1. The rectangular coordinates are (1, 1).

2. x =
√

3 cos 5π/6 = (
√

3)(−√
3/2) = −3/2, and y =

√
3 sin 5π/6 = (

√
3)(1/2) =

√
3/2. The rectangular coordinates

are (−3/2,
√

3/2).
3. x = 3 cos 0 = 3(1) = 3, and y = 3 sin 0 = 0. The rectangular coordinates are (3, 0).

In Exercises 4–6 use equations (2) r2 = x2 + y2, and tan θ = y/x.

4. r2 = (2
√

3)2 + 22 = 16, so r = 4. Also, tan θ = 2/2
√

3 = (1/2)/(
√

3/2). Since we are in the first quadrant the polar
coordinates are (4, π/6).

5. r2 = (−2)2 + 22 = 8, so r = 2
√

2. Also, tan θ = 2/(−2) = −1. Since we are in the second quadrant the polar coordinates
are (2

√
2, 3π/4).

6. r2 = (−1)2 + (−2)2 = 5, so r =
√

5. Also, tan θ = −2/(−1) = 2. If the point were in the first quadrant, then the angle
would be tan−1 2. Since we are in the third quadrant the polar coordinates are (

√
5, π + tan−1 2).

Exercises 7–9 involve exactly the same idea as Exercises 1–3. Since the z coordinates are the same again we use equations (1)
or (3).

7. Here there’s nothing to do; the rectangular coordinates are (2 cos 2, 2 sin 2, 2).
8. x = π cos π/2 = (π)(0), y = π sin π/2 = (π)(1), and z = 1. The rectangular coordinates are (0, π, 1).
9. x = 1 cos 2π/3 = −1/2, y = 1 sin 2π/3 =

√
3/2, and z = −2. The rectangular coordinates are (−1/2,

√
3/2,−2).

In Exercises 10–13 use equations (7) x = ρ sin ϕ cos θ, y = ρ sin ϕ sin θ, and z = ρ cos ϕ.

10. x = 4(sin π/2)(cos π/3) = 4(1)(1/2) = 2, y = 4(sin π/2)(sin π/3) = 4(1)(
√

3/2) = 2
√

3, and z = 4 cos π/2 =
4(0) = 0. So the rectangular coordinates are (2, 2

√
3, 0).

11. x = 3(sin π/3)(cos π/2) = 3(
√

3/2)(0) = 0, y = 3(sin π/3)(sin π/2) = 3(
√

3/2)(1) = 3
√

3/2, and z = 3 cos π/3 =
3(1/2) = 3/2. So the rectangular coordinates are (0, 3

√
3/2, 3/2).

12. x = (sin 3π/4)(cos 2π/3) = (
√

2/2)(−1/2) = −√
2/4, y = (sin 3π/4)(sin 2π/3) = (

√
2/2)(

√
3/2) =

√
6/4, and

z = cos 3π/4 = −√
2/2. So the rectangular coordinates are (−√

2/4,
√

6/4,−√
2/2). I gave the answer in this form

because most students have been told throughout high school that you can never leave a square root in the denominator. They
should, of course, feel comfortable leaving the answer as (−1/

√
8,
√

3/
√

8,−1/
√

2), but most won’t.
13. x = 2(sin π)(cos π/4) = 2(0)(

√
2/2) = 0, y = 2(sin π)(sin π/4) = 2(0)(

√
2/2) = 0, and z = 2 cos π = 2(−1) = −2.

So the rectangular coordinates are (0, 0,−2).
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Exercises 14–16 are basically the same as Exercises 4–6 since the z coordinates are the same in both coordinate systems. Use
equations (2) or (4).

14. r2 = (−1)2 + 02 = 1, so r = 1. Also, tan θ = 0/(−1) = 0, so θ = π. The cylindrical coordinates are (1, π, 2).
15. r2 = (−1)2 + (

√
3)2, so r = 2. Also, tan θ =

√
3/(−1) = (

√
3/2)/(−1/2), so θ = 2π/3. The cylindrical coordinates are

(2, 2π/3, 13).
16. r2 = 52 + 62, so r =

√
61. Also tan θ = 6/5, so θ = tan−1 6/5. The cylindrical coordinates are (

√
61,

tan−1 6/5, 3).

In Exercises 17 and 18 use equations (7) ρ2 = x2 + y2 + z2, tan ϕ =
√

x2 + y2/z, and tan θ = y/x.

17. ρ2 = (1)2 + (−1)2 + (
√

6)2 = 8, so ρ =
√

8 = 2
√

2. Also, tan ϕ =
√

12 + (−1)2/
√

6 =
√

2/
√

6 = (1/2)/(
√

3/2),
so ϕ = π/6. Finally, tan θ = −1/1 = −1, so θ = 7π/4 (since the point, when projected onto the xy-plane is in the fourth
quadrant). In spherical coordinates the point is (2

√
2, π/6, 7π/4).

18. ρ2 = 02 + (
√

3)2 + 12 = 4, so ρ = 2. Also tan ϕ =
√

02 + (
√

3)2/1 =
√

3, so ϕ = π/3. Finally, when we project the
point onto the xy-plane we see that the point is on the positive y-axis so θ = π/2. Or, just using the equation tan θ =

√
3/0,

so θ = π/2. In spherical coordinates the point is (2, π/3, π/2).

The figures in Exercises 19–21 form a progression. To complete it, the next in line following Exercise 21 would be a sphere.

19. As in Example 5, θ does not appear so the surface will be circularly symmetric about the z-axis. Once we have our answer to
part (a), we can just rotate it about the z-axis to generate the answer to part (b).
(a) We are slicing in the direction π/2 which puts us in the yz-plane for positive y. This means that (r − 2)2 + z2 = 1

becomes (y − 2)2 + z2 = 1. This is a circle of radius 1 centered at (0, 2, 0).

0.5 1 1.5 2 2.5 3 3.5 4

z

y

-2

-1.5

-1

-0.5

0.5

1

1.5

2

(b) As we start to rotate this about the z-axis, we get a feel for the shape being generated (see below left). In the figure above
we see the result of the condition that r ≥ 0. Without that restriction we would see two circles, each sweeping out a
trail like that above. We would end up tracing our surface twice. Rotating this circle (with the restriction on r) about the
z-axis, we will end up with a torus (see below right).
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20. (a) As in Example 2, we could reason that our result is a circle that is traced twice (in the figures a is taken to be 1):

-1 -0.5 0.5 1

0.5

1

1.5

2
y

x

(b) When we move to spherical coordinates ϕ takes on the role of θ from part (a). Note θ does not explicitly appear in this
spherical equation. As in the case for cylindrical equations, this means that the surface will be circularly symmetric about
the z-axis. As we start to revolve about the z-axis we get the figure on the left.
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0
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1

z

Again, the completed figure is a torus (see above right), but this time the “hole” closes off at the origin.

Note: You might want to assign both Exercises 21 and 22. They look so similar and yet the results are very different.

21. As noted above, surface will be circularly symmetric about the z-axis (the equation does not involve θ). In this case we are
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rotating a piece of the cardioid 1 − cos ϕ shown below left:

0.20.40.60.8 1 1.2
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-1

-0.5

z

x

As we start to rotate it we see a “flattened” circle sweeping out the figure pictured above right. The completed figure is like a
“dimpled” sphere:
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22. Once again, the surface will be circularly symmetric about the z-axis (the equation does not involve θ). In this case we are
rotating a piece of the cardioid 1 − sin ϕ shown below left:

x

-1

-0.5

0.5

1

z

0.05 0.15 0.25

As we start to rotate it we see a “double hump” sweeping out the figure pictured above right. The completed figure is shown
below:

23. The equation: ρ sin ϕ sin θ = 2 is clearly a spherical equation (it involves all three of the spherical coordinates).
• Use equation (7) to convert it to cartesian coordinates: y = ρ sin ϕ sin θ so the cartesian form is simply

y = 2.
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This is a vertical plane parallel to the xz-plane.

• Use equation (6) to convert to cylindrical coordinates. sin θ stays sin θ and ρ sin ϕ = r. So the cylindrical form is

r sin θ = 2.

24. The equation

z2 = 2x2 + 2y2

is clearly a cartesian equation (it involves all three of the cartesian coordinates).

• Use equation (4) to convert it to cylindrical coordinates: z2 = 2(x2 + y2) = 2r2 so the cylindrical form is simply

z2 = 2r2.

This is a cone which is symmetric about the z-axis, whose vertex is at the origin, one nappe above and one below the
xy-plane.

• Use equation (7) to convert to spherical coordinates. z2 = 2x2 +2y2, so 0 = 2(x2 +y2 + z2)−3z2. So the cylindrical
form is

0 = 2ρ2 − 3(ρ cos ϕ)2 or cos ϕ = ±
√

2/3.

In this final form it is again clear that the surface is a cone.

25. r = 0 is an equation in cylindrical coordinates. If r = 0 then it doesn’t matter what θ is and z is free to take on any value.
This is the z-axis. In cartesian coordinates this is

x = y = 0,

and in spherical coordinates ρ and θ are not constrained but

ϕ = 0 or ϕ = π.

26. You are slicing a wedge out of a cylinder. The result looks like a quarter of a wheel of cheese.
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27. Here you are taking the triangular region above the ray z = r and below the ray z = 5 in a plane for which θ is fixed (say
θ = 0) and rotating it through half a rotation to get half of a cone. The figure is below left.
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28. Again we are rotating a triangular region—but this time it is above the line z = 2r and below the line z = 5 − 3r. This gives
us an image that looks like a diamond spun on a diagonal. The figure is above right.

29. This solid is bound by two paraboloids.

-1
0

1
x-1

0
1

y

0

2

4

z

Note: For Exercises 30–32 no sketch is included. I’ve just roughly described the figure.
30. This is a hollow sphere. The sphere of radius 2 is missing a spherical hole of radius 1.
31. This is the top half of the unit sphere.
32. This is a quarter of the unit sphere sitting over (and under) the first quadrant.
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33. This looks like an ice cream cone:

x

y

z

34. This may look complicated, but it is the cone without the ice cream from the previous problem. The equation ρ = 2/ cos ϕ
looks worse than it is. Remember that z = ρ cos ϕ so this is equivalent to z = 2. So we get a flat topped cone with height 2
and tip on the origin.

35. This is a sphere of radius 3 centered at the origin from which we’ve removed a sphere of radius 1 centered at
(0, 0, 1).

x

y

z

36. (a) Look for where (x, y) = (r, θ). We know also that x = r cos θ, so r cos θ = r. This implies that cos θ = 1 so θ = 0.
Also y = r sin θ, but sin θ = 0 so y = 0. So points of the form (a, 0) are the same in both cartesian and polar coordinates.

(b) The only difference between this and part (a) is that a z coordinate has been added to each. So points of the form (a, 0, b)
are the same in both rectangular and cylindrical coordinates.

(c) Here (x, y, z) must equal (ρ, ϕ, θ), where x = ρ sin ϕ cos θ, y = ρ sin ϕ sin θ, and z = ρ cos ϕ.
By the first equation ρ sin ϕ cos θ = ρ. This implies that sin ϕ = 1 which in turn implies that cos ϕ = 0,
cos θ = 1, and sin θ = 0. But then z = ρ cos ϕ = 0, and y = ρ sin ϕ sin θ = ρ(1)(0) = 0. It looks as if we’re
headed to solutions on the x-axis again. But wait a minute, if y = 0, then ϕ = 0, but if sin ϕ = 1 then ϕ can’t be zero.
The only point satisfying all of the conditions is the origin (0, 0, 0).

37. (a) Picture drawing the graph of the polar equation r = f(θ) by standing at the origin and turning to angle θ and then walking
radially out to f(θ). You can see that if instead you walked radially out to−f(θ) you would be heading the same distance
in the opposite direction. This tells you that the graph r = −f(θ) is just the graph r = f(θ) reflected through the origin.

(b) Although we now have an additional degree of freedom the idea is the same. For each direction specified by ϕ and θ we
would be heading the same distance in the opposite direction. Again this tells you that the graph ρ = −f(ϕ, θ) is just the
graph ρ = f(ϕ, θ) reflected through the origin.

(c) We’re back to the situation in part (a). This time you head in the same direction, you just walk three times as far. So
r = 3f(θ) is as if we expanded the graph r = f(θ) to three times its original size without changing its shape or
orientation.

(d) Analogously, ρ = 3f(ϕ, θ) is as if we expanded the graph ρ = f(ϕ, θ) to three times its original size without changing
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its shape or orientation.
38. Because there is no dependence on θ it means that for each r and the corresponding z = f(r) you have a solution set that

corresponds to rotating the point (r, f(r)) about the z-axis.
39. (a) We need to take six dot products. Each vector dotted with itself must be 1 and each vector dotted with any other must

be 0.

er · er = (cos θ, sin θ, 0) · (cos θ, sin θ, 0) = cos2 θ + sin2 θ = 1.

eθ · eθ = (− sin θ, cos θ, 0) · (− sin θ, cos θ, 0) = sin2 θ + cos2 θ = 1.

ez · ez = (0, 0, 1) · (0, 0, 1) = 1.

er · eθ = (cos θ, sin θ, 0) · (− sin θ, cos θ, 0) = − cos θ sin θ + sin θ cos θ = 0.

er · ez = (cos θ, sin θ, 0) · (0, 0, 1) = 0.

eθ · ez = (− sin θ, cos θ, 0) · (0, 0, 1) = 0.

(b) We now do the same for the spherical basis vectors.

eρ · eρ = (sin ϕ cos θ, sin ϕ sin θ, cos ϕ) · (sin ϕ cos θ, sin ϕ sin θ, cos ϕ) = sin2 ϕ cos2 θ + sin2 ϕ sin2 θ + cos2 ϕ

= sin2 ϕ + cos2 ϕ = 1.

eϕ · eϕ = (cos ϕ cos θ, cos ϕ sin θ,− sin ϕ) · (cos ϕ cos θ, cos ϕ sin θ,− sin ϕ) = cos2 ϕ cos2 θ

+ cos2 ϕ sin2 θ + sin2 ϕ = cos2 ϕ + sin2 ϕ = 1.

eθ · eθ = (− sin θ, cos θ, 0) · (− sin θ, cos θ, 0) = sin2 θ + cos2 θ = 1.

eρ · eϕ = (sin ϕ cos θ, sin ϕ sin θ, cos ϕ) · (cos ϕ cos θ, cos ϕ sin θ,− sin ϕ) = sin ϕ cos ϕ cos2 θ + sin ϕ cos ϕ cos2 θ

− sin ϕ cos ϕ = sin ϕ cos ϕ − sin ϕ cos ϕ = 0.

eρ · eθ = (sin ϕ cos θ, sin ϕ sin θ, cos ϕ) · (− sin θ, cos θ, 0) = − sin ϕ cos θ sin θ + sin ϕ sin θ cos θ = 0.

eϕ · eθ = (cos ϕ cos θ, cos ϕ sin θ,− sin ϕ) · (− sin θ, cos θ, 0) = − cos ϕ cos θ sin θ + cos ϕ sin θ cos θ = 0.

40. Begin with

er = cos θ i+ sin θ j

eθ = − sin θ i+ cos θ j.

Then

sin θ er + cos θ eθ = (sin θ cos θ i+ sin2 θ j) + (− cos θ sin θ i+ cos2 θ j)

= j.

Similarly, cos θ er − sin θ eθ = i. Thus, all together

i = cos θ er − sin θ eθ

j = sin θ er + cos θ eθ

k = ez.

41. First note that, from (9),

sin ϕ eρ + cos ϕ eϕ = (sin2 ϕ cos θ i+ sin2 ϕ sin θ j) + (cos2 ϕ cos θ i+ cos2 ϕ sin θ j)

= cos θ i+ sin θ j.

Hence

cos θ (sin ϕ eρ + cos ϕ eϕ) − sin θ eθ = (cos2 θ i+ cos θ sin θ j) + (sin2 θ i− sin θ cos θ j)

= i.
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and, similarly, sin θ (sin ϕ eρ + cos ϕ eϕ) + cos θ eθ = j.
Finally, verify that cos ϕ eρ − sin ϕ eϕ = k.
So our results are

i = sin ϕ cos θ eρ + cos ϕ cos θ eϕ − sin θ eθ

j = sin ϕ sin θ eρ + cos ϕ sin θ eϕ + cos θ eθ

k = cos ϕ eρ − sin ϕ eϕ.

42. The exercise is more naturally set up for spherical coordinates.
(a) Here we are inside the portion of the sphere ρ = 3 for | tan ϕ| ≤ 1/

√
8.

Ice cream cone = {(ρ, ϕ, θ)|0 ≤ ρ ≤ 3, 0 ≤ ϕ ≤ tan−1(1/
√

8), and 0 ≤ θ < 2π}.
(b) Here, z’s lower limit is the cone portion so z ≥ √

8r. The upper limit is the portion of the sphere so z ≤ √
32 − r2.

The variable r is free to be anything between 0 and 1 and θ is free to take on values between 0 and 2π. The cylindrical
description is:

{(r, θ, z)|
√

8r ≤ z ≤
√

9 − r2, 0 ≤ r ≤ 1, and 0 ≤ θ ≤ 2π}.
43. From the formulas in (10) in §1.7, we have that

x1 = ρ sin ϕ1 sin ϕ2 · · · sin ϕn−2 cos ϕn−1

and
x2 = ρ sin ϕ1 sin ϕ2 · · · sin ϕn−2 sin ϕn−1.

Thus when we take the ratio x2/x1, everything cancels to leave us with

x2

x1
=

sin ϕn−1

cos ϕn−1
= tan ϕn−1.

44. (a) Using the formulas in (10), we have that

x2
1 + x2

2 = ρ2 sin2 ϕ1 · · · sin2 ϕn−2 cos2 ϕn−1 + ρ2 sin2 ϕ1 · · · sin2 ϕn−2 sin2 ϕn−1

= ρ2 sin2 ϕ1 · · · sin2 ϕn−2

(
cos2 ϕn−1 + sin2 ϕn−1

)
= ρ2 sin2 ϕ1 · · · sin2 ϕn−2.

(b) If we assume the restrictions given by the inequalities in (11), then the result in part (a) implies that√
x2

1 + x2
2

x3
=

ρ sin ϕ1 · · · sin ϕn−3 sin ϕn−2

ρ sin ϕ1 · · · sin ϕn−3 cos ϕn−2

=
sin ϕn−2

cos ϕn−2
= tan ϕn−2.

45. (a) From part (a) of the previous exercise, we know that x2
1 + x2

2 = ρ2 sin2 ϕ1 · · · sin2 ϕn−2. Thus(
x2

1 + x2
2

)
+ x2

3 = ρ2 sin2 ϕ1 · · · sin2 ϕn−3 sin2 ϕn−2

+ ρ2 sin2 ϕ1 · · · sin2 ϕn−3 cos2 ϕn−2

= ρ2 sin2 ϕ1 · · · sin2 ϕn−3

(
sin2 ϕn−2 + cos2 ϕn−2

)
= ρ2 sin2 ϕ1 · · · sin2 ϕn−3.

(b) Assuming the restrictions given by the inequalities in (11), we obtain√
x2

1 + x2
2 + x2

3

x4
=

ρ sin ϕ1 · · · sin ϕn−4 sin ϕn−3

ρ sin ϕ1 · · · sin ϕn−4 cos ϕn−3

=
sin ϕn−3

cos ϕn−3
= tan ϕn−3.
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46. (a) By the work in the previous two exercises, the result holds when k = 2 and k = 3. To establish the result in general by
mathematical induction, we suppose that

x2
1 + · · · + x2

k−1 = ρ2 sin2 ϕ1 · · · sin2 ϕn−(k−1).

Then (
x2

1 + · · · + x2
k−1

)
+ x2

k = ρ2 sin2 ϕ1 · · · sin2 ϕn−k sin2 ϕn−k+1

+ ρ2 sin2 ϕ1 · · · sin2 ϕn−k cos2 ϕn−k+1

= ρ2 sin2 ϕ1 · · · sin2 ϕn−k

(
sin2 ϕn−k+1 + cos2 ϕn−k+1

)
= ρ2 sin2 ϕ1 · · · sin2 ϕn−k.

(b) Assuming the restrictions given by the inequalities in (11), then the result in part (a) implies that√
x2

1 + · · · + x2
k

xk+1
=

ρ sin ϕ1 · · · sin ϕn−k−1 sin ϕn−k

ρ sin ϕ1 · · · sin ϕn−k−1 cos ϕn−k

=
sin ϕn−k

cos ϕn−k
= tan ϕn−k.

47. By part (a) of the previous exercise with k = n − 1, we have

x2
1 + · · · + x2

n−1 = ρ2 sin2 ϕ1 · · · sin2 ϕn−(n−1) = ρ2 sin2 ϕ1.

Hence (
x2

1 + · · · + x2
n−1

)
+ x2

n = ρ2 sin2 ϕ1 + ρ2 cos2 ϕ1 = ρ2.

True/False Exercises for Chapter 1

1. False. (The corresponding components must be equal.)
2. True. (Apply two kinds of distributive laws.)
3. False. ((−4,−3,−3) is the displacement vector from P2 to P1.)
4. True.
5. False. (Velocity is a vector, but speed is a scalar.)
6. False. (Distance is a scalar, but displacement is a vector.)
7. False. (The particle will be at (2,−1) + 2(1, 3) = (4, 5).)
8. True.
9. False. (From the parametric equations, we may read a vector parallel to the line to be (−2, 4, 0). This vector is not parallel to

(−2, 4, 7).)
10. True. (Note that a vector parallel to the line is (1, 2, 3) − (4, 3, 2) = (−3,−1, 1).)
11. False. (The line has symmetric form x−2

−3
= y − 1 = z+3

2
.)

12. True. (Check that the points (−1, 2, 5) and (2, 1, 7) lie on both lines.)
13. False. (The parametric equations describe a semicircle because of the restriction on t.)
14. False. (The dot product is the cosine of the angle between the vectors.)
15. False. (‖ka‖ = |k| ‖a‖.)
16. True.
17. False. (Let a = b = i, and c = j.)
18. True.
19. True.
20. True.
21. True. (Check that each point satisfies the equation.)
22. False. (No values of s and t give the point (1, 2, 1).)
23. False. (The product BA is not defined.)
24. False. (The expression gives the opposite of the determinant.)
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25. False. (det(2A) = 2n det A.)

26. True.
27. False. (The surface with equation ρ = 4 cos ϕ is a sphere.)
28. True. (It’s the plane x = 3.)
29. True.
30. False. (The spherical equation should be ϕ = tan−1 1

2
.)

Miscellaneous Exercises for Chapter 1

1. Solution 1. We add the vectors head-to-tail by parallel translating
−−→
OP 2 so its tail is at the vertex P1, translating

−−→
OP 3 so that

its tail is at the head of the translated
−−→
OP 2, etc. Since each vector

−−→
OP i has the same length and, for i = 2, . . . , n, the vector−−→

OP i is rotated 2π/n from
−−→
OP i−1, the translated vectors will form a closed (regular) n-gon, as the figure below in the case

n = 5 demonstrates.

P2

P1

P5

P4 P3

O

Thus, using head-to-tail addition with the closed n-gon, we see that
∑n

i=1

−−→
OP i = 0.

Solution 2. Suppose that
∑n

i=1

−−→
OP i = a �= 0. Imagine rotating the entire configuration through an angle of 2π/n about

the center O of the polygon. The vector a will have rotated to a different nonzero vector b. However, the original polygon
will have rotated to an identical polygon (except for the vertex labels), so the new vector sum

∑n
i=1

−−→
OP i must be unchanged.

Hence a = b, which is a contradiction. Thus a = 0.

2. The line will be r(t) = (1, 0,−2) + t(3,−7, 1), or

⎧⎨
⎩

x = 1 + 3t
y = −7t
z = −2 + t.

3. The displacement vector (3t0 + 1, 5 − 7t0, t0 + 12) − (1, 0,−2) = (3t0, 5 − 7t0, t0 + 14) is orthogonal to (3,−7, 1). This
means that

0 = (3t0, 5 − 7t0, t0 + 14) · (3,−7, 1) = 9t0 − 35 + 49t0 + t0 + 14 = 59t0 − 21.

So t0 = 21/59. The displacement vector gives us the direction of the line:

(3t0, 5 − 7t0, t0 + 14) = (1/59)(63, 148, 847).

So the equation of the line is

r(t) = (1, 0,−2) + t(63, 148, 847), or

⎧⎨
⎩

x = 1 + 63t
y = 148t
z = −2 + 847t.

4. (a) If r(t) =
−→
OP0 + t

−−→
P0P 1, then r(0) =

−→
OP0 and r(1) =

−→
OP0 +

−−→
P0P 1 =

−→
OP1.

(b) Part (a) set us up for part (b). We know that r(0) and r(1) give us the end points of the line segment so r(t) =
−→
OP0+t

−−→
P0P 1,

for 0 ≤ t ≤ 1 is the equation of the line segment.
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(c) We can just plug into our equation in part (b) to get r(t) = (0, 1, 3) + t(2, 4,−10) for 0 ≤ t ≤ 1. In parametric form
this is ⎧⎨

⎩
x = 2t
y = 1 + 4t
z = 3 − 10t

for 0 ≤ t ≤ 1.

5. (a) The desired line must pass through the midpoint of P1P 2, which has coordinates
(−1+5

2
, 3−7

2

)
= (2,−2). The line must

also be perpendicular to
−−−→
P1P2. The vector

−−−→
P1P2 is (5 + 1,−7 − 3) = (6,−10). A vector perpendicular to this must

satisfy (6,−10) · (a1, a2) = 0 so 3a1 − 5a2 = 0 Hence a = (5, 3) will serve. A vector parametric equation for the line
is l(t) = (2,−2) + t(5, 3), yielding {

x = 5t + 2
y = 3t − 2.

P1

P2

(b) We generalize part (a). Midpoint of P1P 2 is
(

a1+b1
2

, a2+b2
2

)
. Vector

−−→
P1P 2 is (b1−a1, b2−a2). A vector v perpendicular

to
−−→
P1P 2 satisfies (b1−a1, b2−a2)·v = 0Wemay therefore take v to be v = (b2−a2, a1−b1) so l(t) =

(
a1+b1

2
, a2+b2

2

)
+

t(b2 − a2, a1 − b1) yielding

x = (b2 − a2)t +
a1 + b1

2

y = (a1 − b1)t +
a2 + b2

2
.

P2

P1

6. (a) Desired plane passes through midpointM(1, 2,−1) and has
−−→
P1P 2 = (−10,−2, 2) as normal vector. So the equation is

−10(x − 1) − 2(y − 2) + 2(z + 1) = 0 ⇐⇒ 5x + y − z = 8.

(b) M is
(

a1+b1
2

, a2+b2
2

, a3+b3
2

)
;
−−→
P1P 2 = (b1 − a1, b2 − a2, b3 − a3).

Equation for plane is

(b1 − a1)

(
x − a1 + b1

2

)
+ (b2 − a2)

(
y − a2 + b2

2

)
+ (b3 − a3)

(
z − a3 + b3

2

)
= 0

or
(b1 − a1)x + (b2 − a2)y + (b3 − a3)z =

1

2
(b2

1 + b2
2 + b2

3 − a2
1 − a2

2 − a2
3).

7. (a) Midpoint of segment is
(

1−3
2

, 6−2
2

, 0+4
2

, 3+1
2

−2+0
2

)
= (−1, 2, 2, 2,−1). Normal to hyperplane is

−−−→
P1P2 = (−4,−8, 4,

−2, 2) so the equation of the hyperplane is −4(x1 + 1) − 8(x2 − 2) + 4(x3 − 2) − 2(x4 − 2) + 2(x5 + 1) = 0 or
2x1 + 4x2 − 2x3 + x4 − x5 = 5.

(b) Very similar to 6(b). Equation for plane is

(b1 − a1)

(
x1 − a1 + b1

2

)
+ · · · + (bn − an)

(
xn − an + bn

2

)
= 0

or
(b1 − a1)x1 + · · · + (bn − an)xn =

1

2
(b2

1 + · · · + b2
n − a2

1 − · · · − a2
n).
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8. We have
‖a× b‖ = ‖a‖ ‖b‖ sin θ = sin θ, a · b = ‖a‖ ‖b‖ cos θ = cos θ,

since a, b are unit vectors. Thus ‖a× b‖2 + (a · b)2 = sin2 θ + cos2 θ = 1.
9. (a) No. a · b = a · c just means that the angle between vectors a and b and the angle between vectors a and b have the same

cosine. If you would prefer, rewrite the equation as a · (b− c) = 0 and you can see that what this says is that one of the
following is true: vector a is orthogonal to the vector b− c or a = 0 or b− c = 0.

(b) No. Use the distributive property of cross products to rewrite the equation as a × (b− c) = 0. This could be true if a is
parallel to b− c or if a = 0 or if b− c = 0.

10. The lines are r1(t) = (−3, 1, 5) + t(1,−2, 2) and r2(t) = (4, 3, 6) + t(−2, 4,−4). The direction vector for line 2 is −2
times the direction vector for line 1 so either they are parallel or they are the same line. Look at the displacement vector from a
point on line 1 to a point on line 2, for example (4, 3, 6)− (−3, 1, 5) = (7, 2, 1). This is not a multiple of the direction vector
so they are not the same line. Now, to find the normal direction we’ll take

(7, 2, 1) × (1,−2, 2) = (6,−13,−16).

The equation of the plane is therefore

6(x + 3) − 13(y − 1) − 16(z − 5) = 0 or 6x − 13y − 16z = −111.

11. (a) The angle between the two planes will be the same as the angle between the normal vectors. The normal to x + y = 1 is
n1 = (1, 1, 0), and the normal to y + z = 1 is n2 = (0, 1, 1).

The angle is then

cos−1

(
(1, 1, 0) · (0, 1, 1)

‖(1, 1, 0)‖ ‖(0, 1, 1)‖
)

= cos−1

(
1

2

)
=

π

3
.

(b) The line common to both planes must be orthogonal to both n1 and n2. We use the cross product to find:

n1 × n2 = (1, 1, 0) × (0, 1, 1) = (1,−1, 1).

The line must also pass through the point (0, 1, 0). Of course this isn’t the only point you could have come up with, but it
is the easiest to see. So parametric equations for the line are:⎧⎨

⎩
x = t
y = 1 − t
z = t.

12. We begin by computing vectors that are parallel to each of the given lines. In particular, we have

a = 4i − 2j + 8k for line (a),

b = −6i + 3j − 9k for line (b),

c = −2i + j − 4k for line (c),

d = 2i − j + 3k for line (d).

Note that a = −2c and b = −3d, but c and d are not scalar multiples of one another. Hence lines (a) and (c) are at least
parallel, as are lines (b) and (d), but line (a) is not parallel to (b). To see if any of the parallel pairs coincide, note that by letting
t = 0 in the parametric equations for line (a) we obtain the point (6, 2, 1). This point also lies in line (c): let t = −2 in the
parametric equations for (c) to obtain it. Hence since we already know that the lines are parallel, this shows that they must in
fact be the same. However, if we let t = 0 in the parametric equations for (b), we obtain the point (3, 0, 4). This point does
not lie on line (d) because the only point on (d) with a y-coordinate of 0 is (6, 0, 1). Hence lines (b) and (d) are only parallel.

13. First note that vectors normal to the respective planes are given by:

a = 2i + 3j − k for plane (a),

b = −6i + 4j − 2k for plane (b),

c = i + j − k for plane (c),

d = 10i + 15j − 5k for plane (d),

e = 3i − 2j + k for plane (e).
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It is easy to see that d = 5a and b = −2e and that c is not a scalar multiple of any of the other vectors (also that b and d are
not multiples of one another). Hence planes (a) and (d) must be at least parallel; so must planes (b) and (e). In the case of (b)
and (e) note that the equation for (b) may be written as

−2(3x − 2y + z) = −2(1).

That is, the equation for (b) may be transformed into that for (e) by dividing terms by −2. Hence (b) and (e) are equations
for the same plane. In the case of (a) and (d), note that (0, 0,−3) lies on plane (a), but not on (d). Hence (a) and (d) are
parallel, but not identical. Finally, it is easy to check that c · e = 3 − 2 − 1 = 0. Thus the normal vectors to planes (c) and
(e) are perpendicular, so that the corresponding planes are perpendicular as well. (c · a = 2 + 3 + 1 = 6 �= 0, so plane (c) is
perpendicular to neither plane (a) nor (d).)

14. Set up a cube so that one vertex is at the origin and the rest of the bottom face has vertices at (1, 0, 0), (0, 1, 0), and (1, 1, 0).
Then the top face will have vertices at (0, 0, 1), (1, 0, 1), (0, 1, 1), and (1, 1, 1).
(a) The angle between the diagonal and one of the edges is

cos−1

(
(1, 1, 1) · (1, 0, 0)

‖(1, 1, 1)‖ ‖(1, 0, 0)‖
)

= cos−1

(
1√
3

)
.

(b) You might be tempted to think that the angle between the diagonal of the cube and the diagonal of one of its faces is (by
inspection) half of a right angle. The triangle with the diagonal of the cube as its hypotenuse and the diagonal of one of
the faces as one of the legs is a 1 :

√
2 :

√
3 right triangle. The cosine of the angle between the diagonal of the cube and

the diagonal of a side is
√

2/
√

3. Using the formula above we also see

cos−1

(
(1, 1, 1) · (1, 1, 0)

‖(1, 1, 1)‖ ‖(1, 1, 0)‖
)

= cos−1

(
2√
6

)
= cos−1

(√
2√
3

)
= cos−1

(√
6

3

)
.

15. The dot product of your two vectors indicates how much you agree with your friend on these five questions. When you both
agree or both disagree with an item, the contribution to your dot product is 1. When one of you agrees and the other disagrees
the contribution is −1. Your dot product will be an odd number between −5 and 5.

16. (a) Following the instructions, we can write −→BM1 =
−→
AM1 −−→

AB = 1
2

−→
AC−−→

AB becauseM1 is the midpoint of AC. Similarly,−→
CM2 = 1

2

−→
AB−−→

AC.
(b) P is onBM1 so we can write

−→BP as some multiple of−→BM1. For definiteness, let’s say that
−→BP = k

−→BM1 where 0 < k < 1.
Similarly,

−→
CP = l

−→
CM2 where 0 < l < 1. Putting this together with our results from part (a), −→BP = k( 1

2

−→
AC − −→

AB) and−→
CP = l( 1

2

−→
AB−−→

AC).
(c) First,

−→
CB =

−→
CP +

−→PB =
−→
CP − −→BP. From part (b), this is l( 1

2

−→
AB − −→

AC) − k( 1
2

−→
AC − −→

AB) = ( l
2

+ k)
−→
AB − (l + k

2
)
−→
AC.

But,
−→
CB also equals

−→
CA +

−→
AB =

−→
AB − −→

AC. Equating the coefficients gives us the simultaneous equations ( l
2

+ k) = 1
and (l + k

2
) = 1. This easily gives us l = k = 2/3.

(d) Repeat steps (a) through (c) with
−→
AM3 and either of the other median vectors. You will again get a point of intersection,

say Q. You will show that Q is 2/3 of the way down each median and so must be the same point as P .
17. We are assuming that the plane Π contains the vectors a, b, c, and d. The vector n1 = a× b is orthogonal to Π, and the vector

n2 = c× d is orthogonal to Π. So the vectors n1 and n2 are parallel. This means that n1 × n2 = 0.
18. The first two ways that may come to mind to your students each depends on prior knowledge:

Method One: Recall that the area of a triangle is (1/2)‖a‖ ‖b‖ sin C, whereC is the angle between a and b. So the area is

(
1

2

)
‖a‖ ‖b‖ sin C =

(
1

2

)√
‖a‖2 ‖b‖2 sin2 C

=

(
1

2

)√
‖a‖2 ‖b‖2(1 − cos2 C)

=

(
1

2

)√
‖a‖2 ‖b‖2 − (‖a‖2 ‖b‖2) cos2 C

=

(
1

2

)√
‖a‖2 ‖b‖2 − (a · b)2.
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Method Two: The area of a triangle is 1/2 the area of the parallelogram determined by the same two vectors. The area of
the parallelogram is the length of the cross product. So the area is(

1

2

)
‖a× b‖ =

(
1

2

)√
(a× b) · (a× b)

(by Section 1.4, Exercise 29) =

(
1

2

)√
(a · a)(b · b) − (a · b)(b · a)

=

(
1

2

)√
‖a‖2 ‖b‖2 − (a · b)2.

19. (a) The vertices are given so that if they are connected in order ABDC we will sketch a parallelogram. From Exercise 18 we
could say that

Area =

√
‖−→AB‖2 ‖−→AC‖2 − (

−→
AB · −→AC)2

= [‖(4 − 1,−1 − 3, 3 + 1)‖2 ‖(2 − 1, 5 − 3, 2 + 1)‖2

− ((4 − 1,−1 − 3, 3 + 1) · (2 − 1, 5 − 3, 2 + 1))2]1/2

=
√

‖(3,−4, 4)‖2 ‖(1, 2, 3)‖2 − ((3,−4, 4) · (1, 2, 3))2

=
√

(41)(14) − (72) =
√

525 = 5
√

21.

(b) When we project the parallelogram in the xy-plane we get the same points with the z coordinate equal to 0. We do the
same calculation as in part a with the new vectors:

Area =

√
‖−→AB‖2 ‖−→AC‖2 − (

−→
AB · −→AC)2

=
√

‖(4 − 1,−1 − 3, 0)‖2 ‖(2 − 1, 5 − 3, 0)‖2 − ((4 − 1,−1 − 3, 0) · (2 − 1, 5 − 3, 0))2

=
√

‖(3,−4, 0)‖2 ‖(1, 2, 0)‖2 − ((3,−4, 0) · (1, 2, 0))2

=
√

(25)(5) − (52) =
√

100 = 10.

20. (a) Students raised on the slope-intercept form of a line may be more comfortable once you point out that the slope of the line
ax + by = d is Δy

Δx
= −a

b
. Now the direction that the vector points is clear: v = (b,−a).

(b) A vector n normal to the line l must be orthogonal to the vector v you found in part (a). We are also told that the first
component of n is a. This means that

0 = n · v = (a, ?) · (b,−a) = ab−? a.

So n = (a, b).
(c) Choose a point P1 on the line ax + by = d. For example, if P1 has x component zero then y = d/b. In other words,

choose P1 = (0, d/b). It doesn’t matter. We are going to project the displacement vector from the point P1 to the point
P0 = (x0, y0) onto n.

‖projn
−−−→
P0P1‖ =

∥∥∥∥∥
(
n · −−−→P0P1

n · n

)
n

∥∥∥∥∥ =
|n · −−−→P0P1|

‖n‖ =
|(a, b) · (x0, y0 − d/b)|

‖(a, b)‖ =
|ax0 + by0 − d|√

a2 + b2
.

(d) We plug into our brand new formula:

Distance from (3, 5) to l : (3x − 5y = 2) is |8(3) − 5(5) − 2|√
82 + 52

=
3√
89

.

21. (a) As should be expected, this is similar to the calculation in Exercise 20. We choose any point P1 in the plane Π :
Ax+By+Cz = D. For example, let P1 = (0, 0, D/C) and P0 = (x0, y0, z0). The normal vector n = (A, B, C). Again
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the distance from P0 to Π is

‖projn
−−−→
P1P0‖ =

∥∥∥∥∥
(
n · −−−→P1P0

n · n

)
n

∥∥∥∥∥
=

|n · −−−→P1P0|
‖n‖

=
|(A, B, C) · (x0, y0, z0 − D/C)|

‖(A, B, C)‖

=
|Ax0 + By0 + Cz0 − D|√

A2 + B2 + C2
.

(b) We plug into our formula from part (a):

Distance from (1, 5,−3) to Π: (x − 2y + 2z + 12 = 0) is |1(1) − 2(5) + 2(−3) + 12|√
12 + (−2)2 + 22

=
3√
9

= 1.

22. (a) A vector n normal to Π may be obtained as n = b× c as both b =
−→
AB and c =

−→
AC are parallel to Π. Thus the distance

from P to Π may be found by taking ‖projn
−→
AP‖ = ‖projnp‖. Now

projnp =
n · p

n · n
n =

n · p

‖n‖2
n.

Thus
‖projnp‖ =

|n · p|
‖n‖2

‖n‖ =
|n · p|
‖n‖ =

|(b × c) · p|
‖n‖ .

(b) We have b = (2,−3, 1) − (1, 2, 3) = (1,−5,−2), c = (2,−1, 0) − (1, 2, 3) = (1,−3,−3), and p = (1, 0,−1) −
(1, 2, 3) = (0,−2,−4). Thus

b × c =

∣∣∣∣∣∣
i j k

1 −5 −2
1 −3 −3

∣∣∣∣∣∣ = (9, 1, 2).

Hence the desired distance is
|(0,−2,−4) · (9, 1, 2)|

‖(9, 1, 2)‖ =
| − 10|√

86
=

10√
86

.

23. (a) The vector
−→
AB ×−→

AC = 0 if and only if
−→
AB is parallel to

−→
AC. This happens if and only if A, B, and C are collinear.

(b) We note that
−−→
CD �= 0 since C and D are distinct points. Then (

−→
AB ×−→

AC) ·

−−→
CD = 0 if and only if

−→
AB ×−→

AC = 0 or−→
AB ×−→

AC is perpendicular to
−−→
CD. The first case occurs exactly when A, B, and C are collinear (so A, B, C andD are

coplanar). In the second case,
−→
AB × −→

AC is perpendicular to the plane containing A, B, and C and so
−−→
CD can only be

perpendicular to it if and only ifD lies in this plane as well.
24. We have the equation that if α is the angle between vectors x and the vector k = (0, 0, 1), then

cos α =
x · k

‖x‖ ‖k‖ =
x · k
‖x‖ .

Since we are given that this last quantity = 1/
√

2, x makes an angle of 45 degrees with the positive z-axis. So the points P
satisfying the condition of this exercise sweep out the top nappe of the cone making an angle of 45 degrees with the positive
z-axis minus the origin.

25. The equation a × x = b tells us that x points in the direction of b × a. Now we have to determine the length of x. We can
choose any vector in the direction of x. For convenience, let y be the unit vector in direction of x:

y =
b× a

‖b× a‖ .

The angle between a and x is the same as that between a and y so

a · y
‖a‖ =

a · x
‖a‖ ‖x‖ =

c

‖a‖ ‖x‖ .

c© 2012 Pearson Education, Inc.



Miscellaneous Exercises for Chapter 1 61

So if c �= 0,

‖x‖ =
c

a · y , and, x =

(
c

a · y
)
y.

If c = 0 then a is orthogonal to x (and y). Use the fact that

‖b‖ = ‖a× x‖ = ‖a‖ ‖x‖ sin θ = ‖a‖ ‖x‖ sin π/2 = ‖a‖ ‖x‖.

So when c = 0,

‖x‖ =
‖b‖
‖a‖ and x =

(‖b‖
‖a‖

)
y.

26. (a) Let a = i, b = c = j. Then
a × (b × c) = i × (j × j) = i × 0 = 0,

but
(a × b) × c = (i × j) × j = k × j = −i.

(b) The Jacobi identity states that
(a × b) × c + (b × c) × a + (c × a) × b = 0.

This result is equivalent to
−(b × c) × a = (a × b) × c + (c × a) × b.

Since −(b × c) × a = a × (b × c), we see that we always have

a × (b × c) = (a × b) × c + (c × a) × b,

so that
a × (b × c) = (a × b) × c

precisely when (c × a) × b = 0.
27. (a) In the figure below left, the cross product a × b is a vector outwardly normal to the face containing edges a and b with

length equal to twice the area of the face. To keep the diagram uncluttered, it has been split into two:

a

b

c

d

e

So the sum of the four vectors v1, v2, v3, and v4 asked for in the exercise can be expressed as

(1/2)[(a× b) + (b× c) + (c× a) + (e× d)].

But d = b− a and e = c− a so

e× d = (c− a) × (b− a)
= (c× b) − (a× b) − (c× a) + (a× a)
= −(a× b) − (b× c) − (c× a).

We put this together with the above to conclude:

v1 + v2 + v3 + v4 = (1/2)[(a× b) + (b× c) + (c× a) + (e× d)]
= (1/2)[(a× b) + (b× c) + (c× a) − (a× b) − (b× c) − (c× a)]
= 0.
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(b) Denote the vectors associated with the first tetrahedron as v1, v2, v3, and v4 and the vectors associated with the second
tetrahedron as v′1, v′2, v′3, and v′4. Let the vectors associated with the sides being glued together be v1 and v′1.

By construction v1 and v′1 have equal lengths and point in opposite directions so v1 + v′1 = 0. From part (a) we
know that

v1 = −(v2 + v3 + v4) and v′1 = −(v′2 + v′3 + v′4).

This means that
(v2 + v3 + v4) + (v′2 + v′3 + v′4) = 0.

(c) Just as we can break any polygon into triangles, we can break any polyhedron into tetrahedra. The key to part (b) was that
when we glue two tetrahedra together, the vector of the face being hidden is equal to the sum of the three vectors being
introduced. In symbols,

v′1 = v2 + v3 + v4.

From part (a) we know that for any tetrahedron v1 + v2 + v3 + v4 = 0. So as we build up our polyhedron by gluing
tetrahedra together, at each stage (by parts (a) and (b)) the sum of the outward normals with length equal to the area of the
face will be zero.

28. We may construct vectors v1, . . . ,v4 outwardly normal to each face of the tetrahedron and with length equal to the area of
that face. Using the result of part (a) of Exercise 27, we have that v1 + · · · + v4 = 0. Hence v4 = −(v1 + v2 + v3). Let’s
assume that the vectors are indexed so that v4 is the vector normal to the face that is opposite to vertex R. Then v1, v2, v3

are pairwise perpendicular and thus v1 · v2 = v1 · v3 = v2 · v3 = 0.
Now we compute

d2 = ‖v4‖2 = ‖ − (v1 + v2 + v3)‖2 = ‖v1 + v2 + v3‖2

= (v1 + v2 + v3) · (v1 + v2 + v3)

= v1 · v1 + v2 · v2 + v3 · v3 + 2v1 · v2 + 2v1 · v3 + 2v2 · v3

= ‖v1‖2 + ‖v2‖2 + ‖v3‖2 + 0 + 0 + 0

= a2 + b2 + c2.

29. (a) Remember, if the adjacent sides of a parallelogram are a and b, then the diagonals are a+ b and a− b. So the sum of the
squares of the lengths of the diagonals are

‖a+ b‖2 + ‖a− b‖2 = (a+ b) · (a+ b) + (a− b) · (a− b)
= (a · a+ 2a · b+ b · b) + (a · a− 2a · b+ b · b) = 2‖a‖2 + 2‖b‖2

which is the sum of the squares of the lengths of the four sides (opposite sides have equal lengths).
(b) ‖a+ b‖2 + ‖a− b‖2 = 2(‖a‖2 + ‖b‖2).

30. The last line of the proof of the Cauchy–Schwarz inequality in Section 1.6 is

‖a‖2‖b‖2 ≥ (a · b)2.

Now we only need to notice that

(a · b)2 =

[
n∑

i=1

aibi

]2

‖a‖2 =
n∑

i=1

a2
i

‖b‖2 =
n∑

i=1

b2
i

and the result follows immediately: [
n∑

i=1

a2
i

] [
n∑

i=1

b2
i

]
≥
[

n∑
i=1

aibi

]2

.
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31. (a)

A =

[
1 1
0 1

]
, A2 =

[
1 2
0 1

]
, A3 =

[
1 3
0 1

]
, A4 =

[
1 4
0 1

]

(b) It seems reasonable to guess that

An =

[
1 n
0 1

]
.

(c) We need only show the inductive step:

An+1 = AAn =

[
1 1
0 1

] [
1 n
0 1

]
=

[
1 n + 1
0 1

]
.

32. (a) There’s nothing much to show. A2 = 0.
(b) You shouldn’t need a calculator or computer for this. The diagonal of 1’s keeps moving to the left so that

A2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ , A3 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

A4 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , and A5 = 0.

33. (a) The determinants are:

|H2| =
1

12
, |H3| =

1

2160
, |H4| =

1

6048000
,

|H5| =
1

266716800000
, and |H6| =

1

186313420339200000

The determinants are going to 0 as n gets larger. As for writing out the matrices, note thatH2 is the upper left two by two
matrix inH10 in part (b). Similarly,H3 is the upper left three by three . . . H6 is the upper left six by six matrix inH10. I
would consider deducting points from any student who actually writes these out. They can use a computer algebra system
to accomplish this. ForMathematica the command for generatingH10 would be

Table[1/(i + j − 1), {i, 10}, {j, 10}]//MatrixForm.

The command for calculating the determinant would be

Det[Table[1/(i + j − 1), {i, 10}, {j, 10}]].

(b) Using the Mathematica commands described in part (a), the determinant

|H10| = 1/46206893947914691316295628839036278726983680000000000

≈ 2.16 × 10−53.
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The matrix is

H10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
7

1
8

1
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(c) Again, the code examples will be from Mathematica. Let’s first calculate a numerical approximation A of H10 with the
command

A = N[Table[1/(i + j − 1), {i, 10}, {j, 10}]].
We can then calculate the inverse B and A with the command

B = Inverse[A].

You can display these as matrices by appending “//MatrixForm” to the command. Now generate AB and BA with the
commands

A.B//MatrixForm and B.A//MatrixForm.

You should note that these aren’t equal and neither is the 10 × 10 identity matrix I10.
34. The center of the moving circle is at (a − b)(cos t, sin t). Notice that as the moving circle rolls so that its center moves

counterclockwise it is turning clockwise relative to its center. When the small circle has traveled completely around the large
circle it has rolled over a length of 2π(a). Its circumference is 2πb so if it were rolling along a straight line it would have
revolved a/b times. The problem is that it is rolling around in a circle and so it has lost a rotation each time the center has
traveled completely around. In other words the smaller wheel is turning at a rate of

((a/b) − 1)t = (a − b)t/b.

The position of P relative to the center of the moving circle is

b

(
cos

(
− (a − b)t

b

)
, sin

(
− (a − b)t

b

))
= b

(
cos

(a − b)t

b
,− sin

(a − b)t

b

)
.

Putting this together, the position of P is the sum of the vector from the origin to the center of the moving circle and the vector
from the center of the moving circle to P . This is

(a − b)(cos t, sin t) + b

(
cos

(
(a − b)t

b

)
,− sin

(
(a − b)t

b

))
.

35. Not much changes here. The center of the moving circle is now at (a + b)(cos t, sin t). Now the moving circle gains one
revolution each time around the fixed circle and so turns at a rate of ((a/b) + 1)t = (a + b)t/b. Since we are starting P
at (a, 0), the initial angle from the center of the moving circle to P is π so the position of P relative to the center of the
moving circle is b

(
cos

(
π + (a+b)t

b

)
, sin

(
(a−b)t

b

))
= −b

(
cos (a+b)t

b
, sin (a+b)t

b

)
. As in Exercise 34 we sum the same

two vectors to get the expression:

(a + b)(cos t, sin t) − b

(
cos

(
(a + b)t

b

)
, sin

(
(a + b)t

b

))
.
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36. (a) Let’s look at diagrams of hypocycloid (below on the left) and an epicycloid (below on the right) with a = 6 and b = 5:

-6 -4 -2 2 4 6

-4

-2

2

4

y

x -15 -10 -5 5 10 15
x

y

-15

-10

-5

5

10

15

What are the roles of a and b? You can see in the figure on the left that there are 6 cusps. This is also true, but harder
to see, in the figure on the right. Let’s look at what portion of these curves correspond to 0 ≤ t ≤ 2π.
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The figure on the left shows that 6/5 of the hypocycloid is covered for 0 ≤ t ≤ 2π. The figure on the right is the
corresponding portion of the epicycloid. Usually what we call the hypocycloid is what we draw until the ends close up.
In this case, the hypocycloid is complete when t = 5(2π). Again, although it is harder to see, this epicycloid will close
up when t = 5(2π).

If a and b have no common divisors and are both rational, then the hypocycloid or epicycloid will have a cusps and
will close up after t = b(2π). If a and b have common divisors then write a/b in lowest terms. The hypocycloid or
epicycloid will have as many cusps as the numerator. The same answer holds for epicycloids.

(b) We noted in part (a) that if a/b is rational in lowest terms, the hypocycloid or epicycloid closes up when t = b(2π). In the
case of the hypocycloid, this is because then (a− b)(cos b(2π), sin b(2π)) + b

(
cos

(
a−b

b

)
b(2π),− sin

(
a−b

b

)
b(2π)

)
=

(a − b)(cos 0, sin 0) + b
(
cos

(
a−b

b

)
0,− sin

(
a−b

b

)
0
)
. In words, its because the angle is a rational multiple of 2π.
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A picture of part of an epicycloid for which a/b is irrational is:
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If a/b is irrational then the curve will never close up. It can’t. At no time when the center of the moving circle comes
back to its original position will P be back in its original position.

A picture of part of a hypocycloid for which a/b is irrational is:
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In each case, the figure on the left shows several periods. For the figure on the right we let t get larger. If we let t get
arbitrarily large the curve is dense.

37. Look at the second part of the answers in Exercises 34 and 35. The only difference is that we are changing the distance from
the center of the moving wheel to P from b to c. The formula for a hypotrochoid is:

(a − b)(cos t, sin t) + c

(
cos

(
(a − b)t

b

)
,− sin

(
(a − b)t

b

))
.
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In parametric form, the formulas for a hypotrochoid are:

x = (a − b) cos t + c cos

(
(a − b)t

b

)
, y = (a − b) sin t − c sin

(
(a − b)t

b

)
.

The formula for an epitrochoid is:

(a + b)(cos t, sin t) − c

(
cos

(
(a + b)t

b

)
, sin

(
(a + b)t

b

))
.

In parametric form, the formulas for an epitrochoid are:

x = (a + b) cos t − c cos

(
(a + b)t

b

)
, y = (a + b) sin t − c sin

(
(a + b)t

b

)
.

38. (a) Here (below left) we get the four leaf rose:

-1 -0.5 0.5 1
x

-1

-0.5

0.5

1

y

(b) We just erect a cylinder on that base and get the above right image.
(c) There is no θ explicitly in the equation, so the rose is being rotated about the z-axis (we show both the completed figure

and a partial to see how it is formed):
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(d) Here we show half of the figure and then the completed figure. From the outside, the figure looks as if the rose has been
first rotated about the x-axis and then about the y-axis.

39. Parts (a), (b), and (d) are pictured below top, left, and right. They look very similar to the graphs from the previous exercise.
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(c) This looks very different from its counterpart for Exercise 38. It looks like a dented sphere.

40. (a) We begin with a three leaf rose (the path is traced twice) shown below left.
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(b) The cylindrical equation again adds nothing. A cylinder is built over the rose. It is shown above right.
(c) This interesting and different image is shown below left.

(d) This three leaf version of what we saw in Exercises 38 and 39 is shown above right.
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41. The polar plot, cylinder and part (d) are similar to the corresponding solutions for Exercise 40. They are shown below.
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(c) Here in the figure shown below you see a difference in the solid generated by using sine instead of cosine.
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42. (a) The nephroid is shown below left.
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(b) The cylinder based on it is shown above right.
(c) The first spherical graph is a dimpled sphere.

(d) The second spherical graph has a lot of complexity so I have included a partial graph and the completed graph.
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43. (a) The curve is a spiral and is pictured below left.
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(b) The cylinder based on the spiral in part (a) is shown above right.
(c) Because only part of the spiral is used, the resulting surface is a dimpled ball.
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(d) Finally, we see a lovely and intricate shell-like surface.

x

y

z

44. (a) In spherical coordinates the flat top of the hemisphere is the xy-plane with spherical equation ϕ = π/2. The hemispherical
bottom has equation ρ = 5, but only with π/2 ≤ ϕ ≤ π. Thus we may describe the object as

{(ρ, ϕ, θ)|0 ≤ ρ ≤ 5, π/2 ≤ ϕ ≤ π, 0 ≤ θ < 2π}.

(b) Now the flat top is described in cylindrical coordinates as z = 0 and the bottom hemisphere as z2 + r2 = 25 with z ≤ 0,
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that is, as z = −√
25 − r2. Bearing this in mind, the solid object is the set of points

{(r, θ, z)| −
√

25 − r2 ≤ z ≤ 0, 0 ≤ r ≤ 5, 0 ≤ θ < 2π}.

45. Position the cylinder so that the center of the bottom disk is at the origin and the z-axis is the axis of the cylinder.
(a) In cylindrical coordinates θ is free to take on any values between 0 and 2π. The z-coordinate is bounded by 0 and 3, and

0 ≤ r ≤ 3. To sum up:
{(r, θ, z) | 0 ≤ r ≤ 3, 0 ≤ z ≤ 3, 0 ≤ θ ≤ 2π}.

(b) Since the solid cylinder is rotationally symmetric about the z-axis, there is no restriction on the θ coordinate, and we may
slice the cylinder with the half-plane θ = constant, in which case we see that the cross section is a filled-in square of side
length 3. Consider the cross section by the half-plane θ = 0, pictured below:
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The top of the square (which corresponds to the top of the cylinder) has equation z = 3, or ρ cos ϕ = 3. Thus the top
of the cylinder is the plane ρ = 3 sec ϕ. The bottom is, of course, the plane z = 0, which is given by ρ cos ϕ = 0,
which implies ϕ = π/2. The right side of the square, pictured as x = 3 in the figure above, corresponds to a cross
section of the lateral surface of the cylinder given in cylindrical coordinates as r = 3, and thus in spherical coordinates by
ρ sin ϕ = 3 ⇐⇒ ρ = 3 csc ϕ.

Now fix a value of ϕ. If this value of ϕ is between 0 and π/4, the spherical coordinate ρ must be between 0 and the
top of the cylinder ρ = 3 sec ϕ. On the other hand, if this value of ϕ is between π/4 and π/2, the spherical coordinate ρ
must be between 0 and the lateral part of the cylinder ρ = 3 csc ϕ. If ϕ is larger than π/2, no value of ρ (other than zero)
would give a point remaining inside the solid cylinder. To sum up:

{(ρ, ϕ, θ) | 0 ≤ ρ ≤ 3 sec ϕ, 0 ≤ ϕ ≤ π/4, 0 ≤ θ ≤ 2π}
∪{(ρ, ϕ, θ) | 0 ≤ ρ ≤ 3 csc ϕ, π/4 ≤ ϕ ≤ π/2, 0 ≤ θ ≤ 2π}.
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